Science.gov

Sample records for c-type lectin surface

  1. C-type lectins facilitate tumor metastasis

    PubMed Central

    Ding, Dongbing; Yao, Yao; Zhang, Songbai; Su, Chunjie; Zhang, Yonglian

    2017-01-01

    Metastasis, a life-threatening complication of cancer, leads to the majority of cases of cancer-associated mortality. Unfortunately, the underlying molecular and cellular mechanisms of cancer metastasis remain to be fully elucidated. C-type lectins are a large group of proteins, which share structurally homologous carbohydrate-recognition domains (CRDs) and possess diverse physiological functions, including inflammation and antimicrobial immunity. Accumulating evidence has demonstrated the contribution of C-type lectins in different steps of the metastatic spread of cancer. Notably, a substantial proportion of C-type lectins, including selectins, mannose receptor (MR) and liver and lymph node sinusoidal endothelial cell C-type lectin, are important molecular targets for the formation of metastases in vitro and in vivo. The present review summarizes what has been found regarding C-type lectins in the lymphatic and hematogenous metastasis of cancer. An improved understanding the role of C-type lectins in cancer metastasis provides a comprehensive perspective for further clarifying the molecular mechanisms of cancer metastasis and supports the development of novel C-type lectins-based therapies the for prevention of metastasis in certain types of cancer. PMID:28123516

  2. C-type lectins facilitate tumor metastasis.

    PubMed

    Ding, Dongbing; Yao, Yao; Zhang, Songbai; Su, Chunjie; Zhang, Yonglian

    2017-01-01

    Metastasis, a life-threatening complication of cancer, leads to the majority of cases of cancer-associated mortality. Unfortunately, the underlying molecular and cellular mechanisms of cancer metastasis remain to be fully elucidated. C-type lectins are a large group of proteins, which share structurally homologous carbohydrate-recognition domains (CRDs) and possess diverse physiological functions, including inflammation and antimicrobial immunity. Accumulating evidence has demonstrated the contribution of C-type lectins in different steps of the metastatic spread of cancer. Notably, a substantial proportion of C-type lectins, including selectins, mannose receptor (MR) and liver and lymph node sinusoidal endothelial cell C-type lectin, are important molecular targets for the formation of metastases in vitro and in vivo. The present review summarizes what has been found regarding C-type lectins in the lymphatic and hematogenous metastasis of cancer. An improved understanding the role of C-type lectins in cancer metastasis provides a comprehensive perspective for further clarifying the molecular mechanisms of cancer metastasis and supports the development of novel C-type lectins-based therapies the for prevention of metastasis in certain types of cancer.

  3. Lactobacillus reuteri Surface Mucus Adhesins Upregulate Inflammatory Responses Through Interactions With Innate C-Type Lectin Receptors

    PubMed Central

    Bene, Krisztián P.; Kavanaugh, Devon W.; Leclaire, Charlotte; Gunning, Allan P.; MacKenzie, Donald A.; Wittmann, Alexandra; Young, Ian D.; Kawasaki, Norihito; Rajnavolgyi, Eva; Juge, Nathalie

    2017-01-01

    The vertebrate gut symbiont Lactobacillus reuteri exhibits strain-specific adhesion and health-promoting properties. Here, we investigated the role of the mucus adhesins, CmbA and MUB, upon interaction of L. reuteri ATCC PTA 6475 and ATCC 53608 strains with human monocyte-derived dendritic cells (moDCs). We showed that mucus adhesins increased the capacity of L. reuteri strains to interact with moDCs and promoted phagocytosis. Our data also indicated that mucus adhesins mediate anti- and pro-inflammatory effects by the induction of interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), IL-1β, IL-6, and IL-12 cytokines. L. reuteri ATCC PTA 6475 and ATCC 53608 were exclusively able to induce moDC-mediated Th1 and Th17 immune responses. We further showed that purified MUB activates moDCs and induces Th1 polarized immune responses associated with increased IFNγ production. MUB appeared to mediate these effects via binding to C-type lectin receptors (CLRs), as shown using cell reporter assays. Blocking moDCs with antibodies against DC-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) or Dectin-2 did not affect the uptake of the MUB-expressing strain, but reduced the production of TNF-α and IL-6 by moDCs significantly, in line with the Th1 polarizing capacity of moDCs. The direct interaction between MUB and CLRs was further confirmed by atomic force spectroscopy. Taken together these data suggest that mucus adhesins expressed at the cell surface of L. reuteri strains may exert immunoregulatory effects in the gut through modulating the Th1-promoting capacity of DCs upon interaction with C-type lectins. PMID:28326063

  4. Scavenger Receptor C-Type Lectin Binds to the Leukocyte Cell Surface Glycan Lewis By a Novel Mechanism

    SciTech Connect

    Feinberg, H.; Taylor, M.E.; Weis, W.I.; /Stanford U., Med. School /Imperial Coll., London

    2007-07-10

    The scavenger receptor C-type lectin (SRCL) is unique in the family of class A scavenger receptors, because in addition to binding sites for oxidized lipoproteins it also contains a C-type carbohydrate-recognition domain (CRD) that interacts with specific glycans. Both human and mouse SRCL are highly specific for the Lewis(x) trisaccharide, which is commonly found on the surfaces of leukocytes and some tumor cells. Structural analysis of the CRD of mouse SRCL in complex with Lewis(x) and mutagenesis show the basis for this specificity. The interaction between mouse SRCL and Lewis(x) is analogous to the way that selectins and DC-SIGN bind to related fucosylated glycans, but the mechanism of the interaction is novel, because it is based on a primary galactose-binding site similar to the binding site in the asialoglycoprotein receptor. Crystals of the human receptor lacking bound calcium ions reveal an alternative conformation in which a glycan ligand would be released during receptor-mediated endocytosis.

  5. Macrophage inducible C-type lectin (Mincle) recognizes glycosylated surface (S)-layer of the periodontal pathogen Tannerella forsythia.

    PubMed

    Chinthamani, Sreedevi; Settem, Rajendra P; Honma, Kiyonobu; Kay, Jason G; Sharma, Ashu

    2017-01-01

    The oral pathogen Tannerella forsythia is implicated in the development of periodontitis, a common inflammatory disease that leads to the destruction of the gum and tooth supporting tissues, often leading to tooth loss. T. forsythia is a unique Gram-negative organism endowed with an elaborate protein O-glycosylation system that allows the bacterium to express a glycosylated surface (S)-layer comprising two high molecular weight glycoproteins modified with O-linked oligosaccharides. The T. forsythia S-layer has been implicated in the modulation of cytokine responses of antigen presenting cells, such as macrophages, that play a significant role during inflammation associated with periodontitis. The macrophage-inducible C-type lectin receptor (Mincle) is an FcRγ-coupled pathogen recognition receptor that recognizes a wide variety of sugar containing ligands from fungal and bacterial pathogens. In this study, we aimed to determine if Mincle might be involved in the recognition of T. forsythia S-layer and modulation of cytokine response of macrophages against the bacterium. Binding studies using recombinant Mincle-Fc fusion protein indicated a specific Ca2+-dependent binding of Mincle to T. forsythia S-layer. Subsequent experiments with Mincle-expressing and Mincle-knockdown macrophages revealed a role for Mincle/S-layer interaction in the induction of both pro- and anti-inflammatory cytokine secretion in macrophages stimulated with T. forsythia as well as its S-layer. Together, these studies revealed Mincle as an important macrophage receptor involved in the modulation of cytokine responses of macrophages against T. forsythia, and thus may play a critical role in orchestrating the host immune response against the bacterium.

  6. Macrophage inducible C-type lectin (Mincle) recognizes glycosylated surface (S)-layer of the periodontal pathogen Tannerella forsythia

    PubMed Central

    Chinthamani, Sreedevi; Settem, Rajendra P.; Honma, Kiyonobu; Kay, Jason G.

    2017-01-01

    The oral pathogen Tannerella forsythia is implicated in the development of periodontitis, a common inflammatory disease that leads to the destruction of the gum and tooth supporting tissues, often leading to tooth loss. T. forsythia is a unique Gram-negative organism endowed with an elaborate protein O-glycosylation system that allows the bacterium to express a glycosylated surface (S)-layer comprising two high molecular weight glycoproteins modified with O-linked oligosaccharides. The T. forsythia S-layer has been implicated in the modulation of cytokine responses of antigen presenting cells, such as macrophages, that play a significant role during inflammation associated with periodontitis. The macrophage-inducible C-type lectin receptor (Mincle) is an FcRγ-coupled pathogen recognition receptor that recognizes a wide variety of sugar containing ligands from fungal and bacterial pathogens. In this study, we aimed to determine if Mincle might be involved in the recognition of T. forsythia S-layer and modulation of cytokine response of macrophages against the bacterium. Binding studies using recombinant Mincle-Fc fusion protein indicated a specific Ca2+-dependent binding of Mincle to T. forsythia S-layer. Subsequent experiments with Mincle-expressing and Mincle-knockdown macrophages revealed a role for Mincle/S-layer interaction in the induction of both pro- and anti-inflammatory cytokine secretion in macrophages stimulated with T. forsythia as well as its S-layer. Together, these studies revealed Mincle as an important macrophage receptor involved in the modulation of cytokine responses of macrophages against T. forsythia, and thus may play a critical role in orchestrating the host immune response against the bacterium. PMID:28264048

  7. The Neck Region of the C-type Lectin DC-SIGN Regulates Its Surface Spatiotemporal Organization and Virus-binding Capacity on Antigen-presenting Cells*

    PubMed Central

    Manzo, Carlo; Torreno-Pina, Juan A.; Joosten, Ben; Reinieren-Beeren, Inge; Gualda, Emilio J.; Loza-Alvarez, Pablo; Figdor, Carl G.; Garcia-Parajo, Maria F.; Cambi, Alessandra

    2012-01-01

    The C-type lectin DC-SIGN expressed on dendritic cells (DCs) facilitates capture and internalization of a plethora of different pathogens. Although it is known that DC-SIGN organizes in nanoclusters at the surface of DCs, the molecular mechanisms responsible for this well defined nanopatterning and role in viral binding remain enigmatic. By combining biochemical and advanced biophysical techniques, including optical superresolution and single particle tracking, we demonstrate that DC-SIGN intrinsic nanoclustering strictly depends on its molecular structure. DC-SIGN nanoclusters exhibited free, Brownian diffusion on the cell membrane. Truncation of the extracellular neck region, known to abrogate tetramerization, significantly reduced nanoclustering and concomitantly increased lateral diffusion. Importantly, DC-SIGN nanocluster dissolution exclusively compromised binding to nanoscale size pathogens. Monte Carlo simulations revealed that heterogeneity on nanocluster density and spatial distribution confers broader binding capabilities to DC-SIGN. As such, our results underscore a direct relationship between spatial nanopatterning, driven by intermolecular interactions between the neck regions, and receptor diffusion to provide DC-SIGN with the exquisite ability to dock pathogens at the virus length scale. Insight into how virus receptors are organized prior to virus binding and how they assemble into functional platforms for virus docking is helpful to develop novel strategies to prevent virus entry and infection. PMID:23019323

  8. C-type lectin receptors in tuberculosis: what we know.

    PubMed

    Goyal, Surabhi; Klassert, Tilman E; Slevogt, Hortense

    2016-12-01

    Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), is recognized by a number of pathogen recognition receptors (PRRs), either soluble or predominantly expressed on the surface of various cells of innate and adaptive immunity. C-type lectin receptors (CTLRs) are a class of PRRs which can recognize a variety of endogenous and exogenous ligands, thereby playing a crucial role in immunity, as well as in maintaining homeostasis. Mtb surface ligands, including mannose-capped lipoarabinomannan and cord factor, are important immune modulators which recently have been found to be directly recognized by several CTLRs. Receptor ligation is followed by cellular activation, mainly via nuclear factor κB mediated by a series of adaptors with subsequent expression of pro-inflammatory cytokines. Mtb recognition by CTLRs and their cross talk with other PRRs on immune cells is of key importance for the better understanding of the Mtb-induced complexity of the host immune responses. Epidemiological studies have shown that single nucleotide polymorphisms (SNPs) in several PRRs, as well as the adaptors in their signaling cascades, are directly involved in the susceptibility for developing disease and the disease outcome. In addition, an increasing number of CTLRs have been studied for their functional effects in the pathogenesis of TB. This review summarizes current knowledge regarding the various roles played by different CTLRs in TB, as well as the role of their SNPs associated with disease susceptibility and outcome in different human populations.

  9. Mosquito C-type lectins maintain gut microbiome homeostasis

    PubMed Central

    Pang, Xiaojing; Xiao, Xiaoping; Liu, Yang; Zhang, Rudian; Liu, Jianying; Liu, Qiyong; Wang, Penghua; Cheng, Gong

    2016-01-01

    The long-term evolutionary interaction between the host immune system and symbiotic bacteria determines their cooperative rather than antagonistic relationship. It is known that commensal bacteria have evolved a number of mechanisms to manipulate the mammalian host immune system and maintain homeostasis. However, the strategies employed by the microbiome to overcome host immune responses in invertebrates still remain to be understood. Here, we report that the gut microbiome in mosquitoes utilizes C-type lectins (mosGCTLs) to evade the bactericidal capacity of antimicrobial peptides (AMPs). Aedes aegypti mosGCTLs facilitate colonization by multiple bacterial strains. Furthermore, maintenance of the gut microbial flora relies on the expression of mosGCTLs in A. aegypti. Silencing the orthologues of mosGCTL in another major mosquito vector (Culex pipiens pallens) also impairs the survival of gut commensal bacteria. The gut microbiome stimulates the expression of mosGCTLs, which coat the bacterial surface and counteract AMP activity. Our study describes a mechanism by which the insect symbiotic microbiome offsets gut immunity to achieve homeostasis. PMID:27170846

  10. Transmission-blocking antibodies against mosquito C-type lectins for dengue prevention.

    PubMed

    Liu, Yang; Zhang, Fuchun; Liu, Jianying; Xiao, Xiaoping; Zhang, Siyin; Qin, Chengfeng; Xiang, Ye; Wang, Penghua; Cheng, Gong

    2014-02-01

    C-type lectins are a family of proteins with carbohydrate-binding activity. Several C-type lectins in mammals or arthropods are employed as receptors or attachment factors to facilitate flavivirus invasion. We previously identified a C-type lectin in Aedes aegypti, designated as mosquito galactose specific C-type lectin-1 (mosGCTL-1), facilitating the attachment of West Nile virus (WNV) on the cell membrane. Here, we first identified that 9 A. aegypti mosGCTL genes were key susceptibility factors facilitating DENV-2 infection, of which mosGCTL-3 exhibited the most significant effect. We found that mosGCTL-3 was induced in mosquito tissues with DENV-2 infection, and that the protein interacted with DENV-2 surface envelop (E) protein and virions in vitro and in vivo. In addition, the other identified mosGCTLs interacted with the DENV-2 E protein, indicating that DENV may employ multiple mosGCTLs as ligands to promote the infection of vectors. The vectorial susceptibility factors that facilitate pathogen invasion may potentially be explored as a target to disrupt the acquisition of microbes from the vertebrate host. Indeed, membrane blood feeding of antisera against mosGCTLs dramatically reduced mosquito infective ratio. Hence, the immunization against mosGCTLs is a feasible approach for preventing dengue infection. Our study provides a future avenue for developing a transmission-blocking vaccine that interrupts the life cycle of dengue virus and reduces disease burden.

  11. C-type lectins do not act as functional receptors for filovirus entry into cells

    SciTech Connect

    Matsuno, Keita; Nakayama, Eri; Noyori, Osamu; Marzi, Andrea; Ebihara, Hideki; Irimura, Tatsuro; Feldmann, Heinz; Takada, Ayato

    2010-12-03

    Research highlights: {yields} Filovirus glycoprotein (GP) having a deficient receptor binding region were generated. {yields} Mutant GPs mediated virus entry less efficiently than wild-type GP. {yields} Mutant GPs bound to C-type lectins but not mediated entire steps of cellular entry. {yields} C-type lectins do not independently mediate filovirus entry into cells. {yields} Other molecule(s) are required for C-type lectin-mediated entry of filoviruses. -- Abstract: Cellular C-type lectins have been reported to facilitate filovirus infection by binding to glycans on filovirus glycoprotein (GP). However, it is not clearly known whether interaction between C-type lectins and GP mediates all the steps of virus entry (i.e., attachment, internalization, and membrane fusion). In this study, we generated vesicular stomatitis viruses pseudotyped with mutant GPs that have impaired structures of the putative receptor binding regions and thus reduced ability to infect the monkey kidney cells that are routinely used for virus propagation. We found that infectivities of viruses with the mutant GPs dropped in C-type lectin-expressing cells, parallel with those in the monkey kidney cells, whereas binding activities of these GPs to the C-type lectins were not correlated with the reduced infectivities. These results suggest that C-type lectin-mediated entry of filoviruses requires other cellular molecule(s) that may be involved in virion internalization or membrane fusion.

  12. The Mycobacterium tuberculosis cell-surface glycoprotein apa as a potential adhesin to colonize target cells via the innate immune system pulmonary C-type lectin surfactant protein A.

    PubMed

    Ragas, Aude; Roussel, Lucie; Puzo, Germain; Rivière, Michel

    2007-02-23

    Tuberculosis is still a major health problem, and understanding the mechanism by which Mycobacterium tuberculosis (Mtb) invades and colonizes its host target cells remains an important issue for the control of infection. The innate immune system C-type lectins (C-TLs), including the human pulmonary surfactant protein A (PSP-A), have been recently identified as determinant players in the early recognition of the invading pathogen and in mounting the host defense response. Although the antigenic lipoglycan mannosylated lipoarabinomannan is currently considered to be the major C-TL target on the mycobacterial surface, the recognition by some C-TLs of the only mycobacterial species composing the "Mtb complex" indicates that mannosylated lipoarabinomannan cannot account alone for this specificity. Thus, we searched for the mycobacterial molecules targeted by human PSP-A, focusing our attention on the Mtb surface glycoproteins. We developed an original functional proteomic approach based on a lectin blot assay using crude human bronchoalveolar lavage fluid as a source of physiological PSP-A. Combined with selective cell-surface protein extraction and mass spectrometry peptide mapping, this strategy allowed us to identify the Apa (alanine- and proline-rich antigenic) glycoprotein as new potential target for PSP-A. This result was supported by direct binding of PSP-A to purified Apa. Moreover, EDTA addition or deglycosylation of purified Apa samples completely abolished the interaction, demonstrating that the interaction is calcium- and mannose-dependent, as expected. Finally, we provide convincing evidence that Apa, formerly considered as mainly secreted, is associated with the cell wall for a sufficiently long time to aid in the attachment of PSP-A. Because, to date, Apa seems to be restricted to the Mtb complex strains, we propose that it may account for the selective recognition of those strains by PSP-A and other immune system C-TLs containing homologous functional

  13. The three-dimensional structure of codakine and related marine C-type lectins.

    PubMed

    Gourdine, Jean-Philippe; Markiv, Anatoly; Smith-Ravin, Juliette

    2007-10-01

    Codakine is a new Ca(2+)-dependent mannose-binding C-type lectin (MBL) isolated from the gill tissue of the tropical clam, Codakia orbicularis. Bioinformatic analyses with the BLAST program have revealed similarities with marine lectins involved in immunity whose three-dimensional (3D) structures were unknown up until recently. In this article, we present bioinformatic analyses of marine lectins that are homologous to codakine, in particular lectins from the sea worm Laxus oneistus, named mermaid. These lectins are involved in the symbiotic association with sulphur-oxidizing bacteria which are closely related to the C. orbicularis gill symbiont. Using homology modelling, folding that is characteristic of C-type lectins was observed in all the marine Ca(2+)-dependent lectins studied, with conservation of random coiled structures of the carbohydrate recognition domain (CRD) and Ca(2+)-binding sites. Like codakine, the marine lectins analysed contain a signal peptide commonly found in secreted and transmembrane proteins. The majority of the predictive 3D models established from the lectins exhibit a common feature, namely the involvement in invertebrate and vertebrate immunity (dendritic cell receptor, macrophage receptor, etc.). These bioinformatic analyses and the literature data support the hypothesis that codakine, like the L. oneistus mermaids, is probably involved in the cellular mediation of symbiosis and defence against pathogenic microorganisms.

  14. C-type Lectin Binds to β-Integrin to Promote Hemocytic Phagocytosis in an Invertebrate*

    PubMed Central

    Wang, Xian-Wei; Zhao, Xiao-Fan; Wang, Jin-Xing

    2014-01-01

    Phagocytosis is a conserved cellular response among metazoans. Opsonins are some molecules that label targets to increase their susceptibility to phagocytosis. Opsonins are usually captured by receptors on the surface of phagocytes. Our previous study found the C-type lectin FcLec4 from Chinese white shrimp Fenneropenaeus chinensis might function as an opsonin to facilitate bacterial clearance. In the present study we purified the native FcLec4 protein and confirmed its opsonic activity in the near relation, kuruma shrimp Marsupenaeus japonicus. The possible receptor of FcLec4 was identified as β-integrin by panning a T7 phage display library of shrimp hemocytes and then confirmed by co-immunoprecipitation assay. We further proved that the interaction between FcLec4 and β-integrin did not rely on the carbohydrate recognition domain but on the N terminus of FcLec4. In addition, inhibition of FcLec4 expression using RNAi delayed bacterial clearance, and β-integrin knockdown suppressed the opsonic activity of FcLec4. This study is the first to show the direct interaction between an opsonin and its receptor in crustaceans. Our study provides new insights into invertebrate phagocytosis and the functions of C-type lectins. PMID:24324258

  15. A C-type lectin associated and translocated with cortical granules during oocyte maturation and egg fertilization in fish.

    PubMed

    Dong, Cai-Hua; Yang, Shu-Ting; Yang, Zhong-An; Zhang, Lei; Gui, Jian-Fang

    2004-01-15

    Oocyte maturation and egg fertilization in both vertebrates and invertebrates are marked by orchestrated cytoplasmic translocation of secretory vesicles known as cortical granules. It is thought that such redistribution of cellular content is critical for asymmetrical cell division during early development, but the mechanism and regulation of the process is poorly understood. Here we report the identification, purification and cDNA cloning of a C-type lectin from oocytes of a freshwater fish species gibel carp (Carassius auratus gibelio). The purified protein has been demonstrated to have lectin activity and to be a Ca(2+)-dependent C-type lectin by hemagglutination activity assay. Immunocytochemistry revealed that the lectin is associated with cortical granules, gradually translocated to the cell surface during oocyte maturation, and discharged to the egg envelope upon fertilization. Interestingly, the lectin becomes phosphorylated on threonine residues upon induction of exocytosis by fertilization and returns to its original state after morula stage of embryonic development, suggesting that this posttranslational modification may represent a critical molecular switch for early embryonic development.

  16. A C-Type Lectin from Bothrops jararacussu Venom Disrupts Staphylococcal Biofilms

    PubMed Central

    Klein, Raphael Contelli; Fabres-Klein, Mary Hellen; de Oliveira, Leandro Licursi; Feio, Renato Neves; Malouin, François; Ribon, Andréa de Oliveira Barros

    2015-01-01

    Bovine mastitis is a major threat to animal health and the dairy industry. Staphylococcus aureus is a contagious pathogen that is usually associated with persistent intramammary infections, and biofilm formation is a relevant aspect of the outcome of these infections. Several biological activities have been described for snake venoms, which led us to screen secretions of Bothrops jararacussu for antibiofilm activity against S. aureus NRS155. Crude venom was fractionated by size-exclusion chromatography, and the fractions were tested against S. aureus. Biofilm growth, but not bacterial growth, was affected by several fractions. Two fractions (15 and 16) showed the best activities and were also assayed against S. epidermidis NRS101. Fraction 15 was identified by TripleTOF mass spectrometry as a galactose-binding C-type lectin with a molecular weight of 15 kDa. The lectin was purified from the crude venom by D-galactose affinity chromatography, and only one peak was observed. This pure lectin was able to inhibit 75% and 80% of S. aureus and S. epidermidis biofilms, respectively, without affecting bacterial cell viability. The lectin also exhibited a dose-dependent inhibitory effect on both bacterial biofilms. The antibiofilm activity was confirmed using scanning electron microscopy. A pre-formed S. epidermidis biofilm was significantly disrupted by the C-type lectin in a time-dependent manner. Additionally, the lectin demonstrated the ability to inhibit biofilm formation by several mastitis pathogens, including different field strains of S. aureus, S. hyicus, S. chromogenes, Streptococcus agalactiae, and Escherichia coli. These findings reveal a new activity for C-type lectins. Studies are underway to evaluate the biological activity of these lectins in a mouse mastitis model. PMID:25811661

  17. Overexpression of a C-type lectin enhances bacterial resistance in red swamp crayfish Procambarus clarkii.

    PubMed

    Zhang, Xiao-Wen; Liu, Ying-Ying; Mu, Yi; Ren, Qian; Zhao, Xiao-Fan; Wang, Jin-Xing

    2013-05-01

    C-type lectins play important roles in the innate immune system of crustaceans. In this study, a novel C-type lectin gene, designated as PcLec4, was obtained from the red swamp crayfish (Procambarus clarkii). Quantitative real-time polymerase chain reaction revealed that PcLec4 is mainly expressed in the crayfish hepatopancreas and intestine, and the PcLec4 mRNA expression is upregulated after challenged with the bacteria Vibrio anguillarum. PcLec4 was recombinantly expressed in Escherichia coli and anti-PcLec4 polyclonal antiserum was prepared. Binding experiments revealed that the recombinant PcLec4 binds to various bacteria and polysaccharides on the bacterial surface, which suggests that PcLec4 recognizes bacterial pathogens. Overexpression of PcLec4 in crayfish using the pIeLec4 vector was performed. The results show that the crayfish overexpressing PcLec4 eliminate injected V. anguillarum more quickly than the control, which suggests that PcLec4 elicits further immune response for removing invading bacteria. The results of the survival experiment confirmed the function of PcLec4 in resisting V. anguillarum because PcLec4 overexpression in crayfish significantly increased the crayfish survival rate. These results reveal that PcLec4 has an important role in the antibacterial immunity of crayfish, and in vivo PcLec4 overexpression might be used as a disease control strategy in aquiculture.

  18. C-type lectin-like receptors of the dectin-1 cluster: ligands and signaling pathways.

    PubMed

    Plato, Anthony; Willment, Janet A; Brown, Gordon D

    2013-04-01

    Innate immunity is constructed around genetically encoded receptors that survey the intracellular and extracellular environments for signs of invading microorganisms. These receptors recognise the invader and through complex intracellular networks of molecular signaling, they destroy the threat whilst instructing effective adaptive immune responses. Many of these receptors, like the Toll-like receptors in particular, are well-known for their ability to mediate downstream responses upon recognition of exogenous or endogenous ligands; however, the emerging family known as the C-type lectin-like receptors contains many members that have a huge impact on immune and homeostatic regulation. Of particular interest here are the C-type lectin-like receptors that make up the Dectin-1 cluster and their intracellular signaling motifs that mediate their functions. In this review, we aim to draw together current knowledge of ligands, motifs and signaling pathways, present downstream of Dectin-1 cluster receptors, and discuss how these dictate their role within biological systems.

  19. Two antibacterial C-type lectins from crustacean, Eriocheir sinensis, stimulated cellular encapsulation in vitro.

    PubMed

    Jin, Xing-Kun; Li, Shuang; Guo, Xiao-Nv; Cheng, Lin; Wu, Min-Hao; Tan, Shang-Jian; Zhu, You-Ting; Yu, Ai-Qing; Li, Wei-Wei; Wang, Qun

    2013-12-01

    The first step of host fighting against pathogens is that pattern recognition receptors recognized pathogen-associated molecular patterns. However, the specificity of recognition within the innate immune molecular of invertebrates remains largely unknown. In the present study, we investigated how invertebrate pattern recognition receptor (PRR) C-type lectins might be involved in the antimicrobial response in crustacean. Based on our previously obtained completed coding regions of EsLecA and EsLecG in Eriocheir sinensis, the recombinant EsLectin proteins were produced via prokaryotic expression system and affinity chromatography. Subsequently, both rEsLecA and rEsLecG were discovered to have wide spectrum binding activities towards microorganisms, and their microbial-binding was calcium-independent. Moreover, the binding activities of both rEsLecA and rEsLecG induced the aggregation against microbial pathogens. Both microorganism growth inhibitory activities assays and antibacterial activities assays revealed their capabilities of suppressing microorganisms growth and directly killing microorganisms respectively. Furthermore, the encapsulation assays signified that both rEsLecA and rEsLecG could stimulate the cellular encapsulation in vitro. Collectively, data presented here demonstrated the successful expression and purification of two C-type lectins proteins in the Chinese mitten crab, and their critical role in the innate immune system of an invertebrate.

  20. Molecular cloning and characterization of a C-type lectin in yellow catfish Tachysurus fulvidraco.

    PubMed

    Ke, F; Zhang, H B; Wang, Y; Hou, L F; Dong, H J; Wang, Z F; Pan, G W; Cao, X Y

    2016-09-01

    This study represents the first report of a C-type lectin (ctl) in yellow catfish Tachysurus fulvidraco. The complete sequence of ctl complementary (c)DNA consisted of 685 nucleotides. The open reading frame potentially encoded a protein of 177 amino acids with a calculated molecular mass of c.y 20.204 kDa. The deduced amino-acid sequence contained a signal peptide and a single carbohydrate recognition domain with four cysteine residues and GlnProAsp (QPD) and TrpAsnAsp (WND) motifs. Ctl showed the highest identity (56.0%) to the predicted lactose binding lectin from channel catfish Ictalurus punctatus. Quantitative real-time (qrt)-PCR analysis showed that ctl messenger (m)RNA was constitutively expressed in all examined tissues in normal fish, with high expression in trunk kidney and head kidney, which was increased following Aeromonas hydrophila challenge in a duration-dependent manner. Purified recombinant Ctl (rCtl) from Escherichia coli BL21 was able to bind and agglutinate Gram-positive and Gram-negative bacteria in a calcium-dependent manner. These results suggested that Ctl might be a C-type lectin of T. fulvidraco involved in innate immune responses as receptors (PRR).

  1. The C-type lectin-like receptors of Dectin-1 cluster in natural killer gene complex.

    PubMed

    Xie, Jianhui

    2012-08-01

    Natural killer gene complex (NKC) encodes a group of proteins with a single C-type lectin-like domain, (CTLD) which can be subdivided several subfamilies according to their structures and expression patterns. The receptors containing the conserved calcium binding sites in the CTLD fold belong to group II of C-type lectin superfamily and are expressed on myeloid cells and non- myeloid cells. The receptors lacking conserved calcium binding sites in the CTLD fold have evolved to bind ligands other than carbohydrates independently on calcium and thereby are named as C-type lectin-like receptors. The C-type lectin-like receptors are previously thought to be exclusively expressed on natural killer (NK) cells and enable NK cells to discriminate self, missing self or altered self. However, some C-type lectin-like receptors are identified in myeloid cells and are intensely investigated, recently. These myeloid C-type lectin-like receptors, especially Dectin-1 cluster, have a wide variety of ligands, including those of exogenous origin, and play important roles in the physiological functions and pathological processes including immune homeostasis, immune defenses, and immune surveillance. In this review, we summarize each member of the Dectin-1 cluster, including their structural profiles, expression patterns, signaling properties as well as known physiological functions.

  2. Dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN, CD209), a C-type surface lectin in human DCs, is a receptor for Leishmania amastigotes.

    PubMed

    Colmenares, María; Puig-Kröger, Amaya; Pello, Oscar Muñiz; Corbí, Angel L; Rivas, Luis

    2002-09-27

    Dendritic cells (DCs) play a critical role in the initiation of the immunological response against Leishmania parasites. However, the receptors involved in amastigote-dendritic cell interaction are unknown, especially in absence of opsonizing antibodies. We have studied the interaction of Leishmania pifanoi axenic amastigotes with the C-type lectin DC-specific intercellular adhesion molecule (ICAM)-3-grabbing nonintegrin (DC-SIGN, CD209), a receptor for ICAM-2, ICAM-3, human immunodeficiency virus gp120, and Ebola virus. L. pifanoi amastigotes interact with immature human dendritic cells and CD209-transfected K562 cells in a time- and dose-dependent manner. Leishmania amastigote binding to human dendritic cells and DC-SIGN-transfected cells is inhibited by a function-blocking DC-SIGN-specific monoclonal antibody. More importantly, this monoclonal antibody dramatically reduces internalization of Leishmania amastigotes by immature human DCs. These results constitute the first description of a nonviral pathogen ligand for DC-SIGN and provide evidence for a relevant role of DC-SIGN in Leishmania amastigote uptake by dendritic cells. Our finding has important implications for Leishmania host-cell interaction and the immunoregulation of cutaneous leishmaniasis.

  3. High Bacterial Agglutination Activity in a Single-CRD C-Type Lectin from Spodoptera exigua (Lepidoptera: Noctuidae)

    PubMed Central

    Gasmi, Leila; Ferré, Juan; Herrero, Salvador

    2017-01-01

    Lectins are carbohydrate-interacting proteins that play a pivotal role in multiple physiological and developmental aspects of all organisms. They can specifically interact with different bacterial and viral pathogens through carbohydrate-recognition domains (CRD). In addition, lectins are also of biotechnological interest because of their potential use as biosensors for capturing and identifying bacterial species. In this work, three C-type lectins from the Lepidoptera Spodoptera exigua were produced as recombinant proteins and their bacterial agglutination properties were characterized. The lowest protein concentration producing bacterial agglutination against a panel of different Gram+ and Gram− as well as their carbohydrate binding specificities was determined for the three lectins. One of these lectins, BLL2, was able to agglutinate cells from a broad range of bacterial species at an extremely low concentration, becoming a very interesting protein to be used as a biosensor or for other biotechnological applications involving bacterial capture. PMID:28257054

  4. High Bacterial Agglutination Activity in a Single-CRD C-Type Lectin from Spodoptera exigua (Lepidoptera: Noctuidae).

    PubMed

    Gasmi, Leila; Ferré, Juan; Herrero, Salvador

    2017-03-01

    Lectins are carbohydrate-interacting proteins that play a pivotal role in multiple physiological and developmental aspects of all organisms. They can specifically interact with different bacterial and viral pathogens through carbohydrate-recognition domains (CRD). In addition, lectins are also of biotechnological interest because of their potential use as biosensors for capturing and identifying bacterial species. In this work, three C-type lectins from the Lepidoptera Spodoptera exigua were produced as recombinant proteins and their bacterial agglutination properties were characterized. The lowest protein concentration producing bacterial agglutination against a panel of different Gram+ and Gram- as well as their carbohydrate binding specificities was determined for the three lectins. One of these lectins, BLL2, was able to agglutinate cells from a broad range of bacterial species at an extremely low concentration, becoming a very interesting protein to be used as a biosensor or for other biotechnological applications involving bacterial capture.

  5. Myeloid C-Type Lectin Receptors in Viral Recognition and Antiviral Immunity

    PubMed Central

    Monteiro, João T.; Lepenies, Bernd

    2017-01-01

    Recognition of viral glycans by pattern recognition receptors (PRRs) in innate immunity contributes to antiviral immune responses. C-type lectin receptors (CLRs) are PRRs capable of sensing glycans present in viral pathogens to activate antiviral immune responses such as phagocytosis, antigen processing and presentation, and subsequent T cell activation. The ability of CLRs to elicit and shape adaptive immunity plays a critical role in the inhibition of viral spread within the host. However, certain viruses exploit CLRs for viral entry into host cells to avoid immune recognition. To block CLR interactions with viral glycoproteins, antiviral strategies may involve the use of multivalent glycan carrier systems. In this review, we describe the role of CLRs in antiviral immunity and we highlight their dual function in viral clearance and exploitation by viral pathogens. PMID:28327518

  6. C-type lectin from red swamp crayfish Procambarus clarkii participates in cellular immune response.

    PubMed

    Zhang, Xiao-Wen; Wang, Xian-Wei; Sun, Chen; Zhao, Xiao-Fan; Wang, Jin-Xing

    2011-03-01

    Lectins are potential immune recognition proteins. In this study, a novel C-type lectin (Pc-Lec1) is reported in freshwater crayfish Procambarus clarkii. Pc-Lec1 encodes a protein of 163 amino acids with a putative signal peptide and a single carbohydrate recognition domain. It was constitutively expressed in various tissues of a normal crayfish, especially in the hepatopancreas and gills. Expressions of Pc-Lec1 were up-regulated in the hepatopancreas and gills of crayfish challenged with Vibrio anguillarum, Staphylococcus aureus, or the white spot syndrome virus. Recombinant mature Pc-Lec1 bound bacteria and polysaccharides (peptidoglycan, lipoteichoic acid, and lipopolysaccharide) but did not agglutinate bacteria. Pc-Lec1 enhanced hemocyte encapsulation of the sepharose beads in vitro, and the blocking of beads by a polyclonal antibody inhibited encapsulation. Pc-Lec1 promoted clearance of V. anguillarum in vivo. These results suggest that Pc-Lec1 is a pattern recognition receptor and participates in cellular immune response. Pc-Lec1 performs its function as an opsonin by enhancing the encapsulation or clearance of pathogenic bacteria.

  7. Schistosoma mansoni egg glycoproteins and C-type lectins of host immune cells: molecular partners that shape immune responses.

    PubMed

    Meevissen, Moniek H J; Yazdanbakhsh, Maria; Hokke, Cornelis H

    2012-09-01

    Schistosome eggs and egg-derived molecules are potent immunomodulatory agents. There is increasing evidence that the interplay between egg glycoproteins and host C-type lectins plays an important role in shaping immune responses during schistosomiasis. As most experiments in this field so far have been performed using complex protein/glycoprotein mixtures or synthetic model glycoconjugates, it is still largely unclear which individual moieties of schistosome eggs are immunologically active. In this review we will discuss molecular aspects of Schistosoma mansoni egg glycoproteins, their interactions with C-type lectins, and the relevance to schistosome egg immunobiology.

  8. Efficient generation of a monoclonal antibody against the human C-type lectin receptor DCIR by targeting murine dendritic cells

    PubMed Central

    Heidkamp, Gordon F.; Neubert, Kirsten; Haertel, Eric; Nimmerjahn, Falk; Nussenzweig, Michel C.; Dudziak, Diana

    2010-01-01

    1. Summary Dendritic cells (DCs) are very important for the generation of long lasting immune responses against pathogens or the induction of anti-tumor responses. Targeting antigen to dendritic cells via monoclonal antibodies specific for DC cell surface receptors such as DEC205 was shown to elicit potent cellular and humoral immune responses in vivo. Therefore we investigated whether this novel strategy might also be useful for the generation of new monoclonal antibodies against molecules of choice. We show, that by targeting the extracellular domain of the human C-type lectin receptor ClecSF6/DCIR/LLIR (hDCIR) to DEC205 on DCs in vivo, we were able to generate highly specific monoclonal antibodies against hDCIR. PMID:20566350

  9. A new LDLa domain-containing C-type lectin with bacterial agglutinating and binding activity in amphioxus.

    PubMed

    Qu, Baozhen; Yang, Shuangshuang; Ma, Zengyu; Gao, Zhan; Zhang, Shicui

    2016-12-15

    Over 1200 C-type lectin gene models have been identified in amphioxus, but only a few of them have been functionally characterized. In this study, we identified a C-type lectin, BjCTL, with domain structure of LDLa-CTLD-EGF_Lam, the first such data in chordates. It was expressed mainly in the notochord and ovary in a tissue-dependent fashion. Recombinant BjCTL was characterized as a typical Ca(2+)-dependent carbohydrate-binding protein capable of agglutinating and binding to both Gram-negative and positive bacteria we tested. In addition, it specifically bound to insoluble lipopolysaccharide, lipoteichoic acid and peptidoglycan, which can be inhibited by galactose. We also showed that the interaction of BjCTL with the bacteria is primarily attributable to CTLD domain. Thus, BjCTL is a novel pattern recognition protein involved in lectin-mediated innate immunity.

  10. C-type lectin-like receptor 2 promotes hematogenous tumor metastasis and prothrombotic state in tumor-bearing mice.

    PubMed

    Shirai, T; Inoue, O; Tamura, S; Tsukiji, N; Sasaki, T; Endo, H; Satoh, K; Osada, M; Sato-Uchida, H; Fujii, H; Ozaki, Y; Suzuki-Inoue, K

    2017-03-01

    Essentials The role of C-type lectin-like receptor-2 (CLEC-2) in cancer progression is unclear. CLEC-2-depleted mouse model is generated by using a rat anti-mouse CLEC-2 monoclonal antibody. CLEC-2 depletion inhibits hematogenous tumor metastasis of podoplanin-expressing B16F10 cells. CLEC-2 depletion prolongs cancer survival by suppressing thrombosis and inflammation.

  11. Human CLEC18 Gene Cluster Contains C-type Lectins with Differential Glycan-binding Specificity*

    PubMed Central

    Huang, Ya-Lang; Pai, Feng-Shuo; Tsou, Yun-Ting; Mon, Hsien-Chen; Hsu, Tsui-Ling; Wu, Chung-Yi; Chou, Teh-Ying; Yang, Wen-Bin; Chen, Chung-Hsuan; Wong, Chi-Huey; Hsieh, Shie-Liang

    2015-01-01

    The human C-type lectin 18 (clec18) gene cluster, which contains three clec18a, clec18b, and clec18c loci, is located in human chromosome 16q22. Although the amino acid sequences of CLEC18A, CLEC18B, and CLEC18C are almost identical, several amino acid residues located in the C-type lectin-like domain (CTLD) and the sperm-coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) domain, also known as the cysteine-rich secretory proteins/antigen 5/pathogenesis-related 1 proteins (CAP) domain, are distinct from each other. Genotyping by real-time PCR and sequencing further shows the presence of multiple alleles in clec18a/b/c loci. Flow cytometry analysis demonstrates that CLEC18 (CLEC18A, -B, and -C) are expressed abundantly in human peripheral blood cells. Moreover, CLEC18 expression is further up-regulated when monocytes differentiate into macrophages and dendritic cells. Immunofluorescence staining reveals that CLEC18 are localized in the endoplasmic reticulum, Golgi apparatus, and endosome. Interestingly, CLEC18 are also detectable in human sera and culture supernatants from primary cells and 293T cells overexpressing CLEC18. Moreover, CLEC18 bind polysaccharide in Ca2+-independent manner, and amino acid residues Ser/Arg339 and Asp/Asn421 in CTLD domain contribute to their differential binding abilities to polysaccharides isolated from Ganoderma lucidum (GLPS-F3). The Ser339 (CLEC18A) → Arg339 (CLEC18A-1) mutation completely abolishes CLEC18A-1 binding to GLPS-F3, and a sugar competition assay shows that CLEC18 preferentially binds to fucoidan, β-glucans, and galactans. Because proteins with the SCP/TAPS/CAP domain are able to bind sterol and acidic glycolipid, and are involved in sterol transport and β-amyloid aggregation, it would be interesting to investigate whether CLEC18 modulates host immunity via binding to glycolipids, and are also involved in glycolipid transportation and protein aggregation in the future. PMID:26170455

  12. A C-type lectin could selectively facilitate bacteria clearance in red swamp crayfish, Procambarus clarkii.

    PubMed

    Zhang, Xiao-Wen; Ren, Qian; Zhang, Hong-Wei; Wang, Ke-Ke; Wang, Jin-Xing

    2013-11-01

    C-type lectins function as pattern recognition receptors and play important roles in the innate immune system of crustaceans. In this study, we reported a new CTL gene (designated as PcLec5) from red swamp crayfish, Procambarus clarkii. PcLec5 was mainly distributed in hepatopancreas, gills and intestine, and the PcLec5 transcripts were up-regulated in all the three tissues after challenge with bacteria Vibrio anguillarum. For further functional analyses, PcLec5 was recombinantly expressed in Escherichia coli and anti-PcLec5 polyclonal antiserum was prepared. The results of bacteria binding assay revealed that PcLec5 could selectively bind to 5 of 9 kinds of bacteria we used and had a tendency to bind to Gram-negative bacteria. Sugar binding assay showed that PcLec5 could bind to peptidoglycan, lipoteichoic acid and lipopolysaccharide, with the highest affinity to LPS. Furthermore, bacteria-clearance experiment showed PcLec5 could selectively facilitate the clearance of injected bacteria in crayfish, and the bacteria-clearance facilitating spectrum of PcLec5 was totally in agreement with its bacteria binding spectrum. These results suggested PcLec5 function as a pattern recognition receptor in crayfish immune system and had certain selectivity on bacteria pathogens.

  13. C-type lectins on macrophages participate in the immunomodulatory response to Fasciola hepatica products

    PubMed Central

    Guasconi, Lorena; Serradell, Marianela C; Garro, Ana P; Iacobelli, Luciana; Masih, Diana T

    2011-01-01

    Fasciola hepatica releases excretory–secretory products (FhESP), and immunomodulatory properties have been described for the carbohydrates present in these parasite products. The interaction of FhESP with the innate immune cells, such as macrophages, is crucial in the early stage of infection. In this work we observed that peritoneal macrophages from naive BALB/c mice stimulated in vitro with FhESP presented: an increased arginase activity as well as Arginase I expression, and high levels of transforming growth factor-β and interleukin-10. A similar macrophage population was also observed in the peritoneum of infected mice. A partial inhibition of the immunomodulatory effects described above was observed when macrophages were pre-incubated with Mannan, anti-mannose receptor, Laminarin or anti-Dectin-1, and then stimulated with FhESP. In addition, we observed a partial inhibition of these effects in macrophages obtained from mice that were intraperitoneally injected with Mannan or Laminarin before being infected. Taken together, these results suggest the participation of at least two C-type lectin receptors, mannose receptor and Dectin-1, in the interaction of FhESP with macrophages, which allows this parasite to induce immunoregulatory effects on these important innate immune cells and may constitute a crucial event for extending its survival in the host. PMID:21595685

  14. Differential expression of skin mucus C-type lectin in two freshwater eel species, Anguilla marmorata and Anguilla japonica.

    PubMed

    Tsutsui, Shigeyuki; Yoshinaga, Tatsuki; Komiya, Kaoru; Yamashita, Hiroka; Nakamura, Osamu

    2016-08-01

    Two types of lactose-specific lectins, galectin (AJL-1) and C-type lectin (AJL-2), were previously identified in the mucus of adult Anguilla japonica. Here, we compared the expression profiles of these two homologous lectins at the adult and juvenile stages between the tropical eel Anguilla marmorata and the temperate eel A. japonica. Only one lectin, predicted to be an orthologue of AJL-1 by LC-MS/MS, was detected in the mucus of adult A. marmorata. We also found that an orthologous gene to AJL-2 was expressed at very low levels, or not at all, in the skin of adult A. marmorata. However, we detected the gene expression of an AJL-2-orthologue in the skin of juvenile A. marmorata, and a specific antibody also detected the lectin in the juvenile fish epidermis. These findings suggest that expression profiles of mucosal lectins vary during development as well as between species in the Anguilla genus.

  15. Lectin-Dependent Enhancement of Ebola Virus Infection via Soluble and Transmembrane C-type Lectin Receptors

    PubMed Central

    Lear, Calli; Chen, Li; Yantosca, L. Michael; Scully, Corinne; Sarraju, Ashish; Sokolovska, Anna; Zariffard, M. Reza; Eisen, Damon P.; Mungall, Bruce A.; Kotton, Darrell N.; Omari, Amel; Huang, I-Chueh; Farzan, Michael; Takahashi, Kazue; Stuart, Lynda; Stahl, Gregory L.; Ezekowitz, Alan B.; Spear, Gregory T.; Olinger, Gene G.; Schmidt, Emmett V.; Michelow, Ian C.

    2013-01-01

    Mannose-binding lectin (MBL) is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV) glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR) as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A) as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion during active

  16. Collaboration between a soluble C-type lectin and calreticulin facilitates white spot syndrome virus infection in shrimp.

    PubMed

    Wang, Xian-Wei; Xu, Yi-Hui; Xu, Ji-Dong; Zhao, Xiao-Fan; Wang, Jin-Xing

    2014-09-01

    White spot syndrome virus (WSSV) mainly infects crustaceans through the digestive tract. Whether C-type lectins (CLs), which are important receptors for many viruses, participate in WSSV infection in the shrimp stomach remains unknown. In this study, we orally infected kuruma shrimp Marsupenaeus japonicus to model the natural transmission of WSSV and identified a CL (designated as M. japonicus stomach virus-associated CL [MjsvCL]) that was significantly induced by virus infection in the stomach. Knockdown of MjsvCL expression by RNA interference suppressed the virus replication, whereas exogenous MjsvCL enhanced it. Further analysis by GST pull-down and coimmunoprecipitation showed that MjsvCL could bind to viral protein 28, the most abundant and functionally relevant envelope protein of WSSV. Furthermore, cell-surface calreticulin was identified as a receptor of MjsvCL, and the interaction between these proteins was a determinant for the viral infection-promoting activity of MjsvCL. The MjsvCL-calreticulin pathway facilitated virus entry likely in a cholesterol-dependent manner. This study provides insights into a mechanism by which soluble CLs capture and present virions to the cell-surface receptor to facilitate viral infection.

  17. Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2.

    PubMed

    Acton, Sophie E; Astarita, Jillian L; Malhotra, Deepali; Lukacs-Kornek, Veronika; Franz, Bettina; Hess, Paul R; Jakus, Zoltan; Kuligowski, Michael; Fletcher, Anne L; Elpek, Kutlu G; Bellemare-Pelletier, Angelique; Sceats, Lindsay; Reynoso, Erika D; Gonzalez, Santiago F; Graham, Daniel B; Chang, Jonathan; Peters, Anneli; Woodruff, Matthew; Kim, Young-A; Swat, Wojciech; Morita, Takashi; Kuchroo, Vijay; Carroll, Michael C; Kahn, Mark L; Wucherpfennig, Kai W; Turley, Shannon J

    2012-08-24

    To initiate adaptive immunity, dendritic cells (DCs) move from parenchymal tissues to lymphoid organs by migrating along stromal scaffolds that display the glycoprotein podoplanin (PDPN). PDPN is expressed by lymphatic endothelial and fibroblastic reticular cells and promotes blood-lymph separation during development by activating the C-type lectin receptor, CLEC-2, on platelets. Here, we describe a role for CLEC-2 in the morphodynamic behavior and motility of DCs. CLEC-2 deficiency in DCs impaired their entry into lymphatics and trafficking to and within lymph nodes, thereby reducing T cell priming. CLEC-2 engagement of PDPN was necessary for DCs to spread and migrate along stromal surfaces and sufficient to induce membrane protrusions. CLEC-2 activation triggered cell spreading via downregulation of RhoA activity and myosin light-chain phosphorylation and triggered F-actin-rich protrusions via Vav signaling and Rac1 activation. Thus, activation of CLEC-2 by PDPN rearranges the actin cytoskeleton in DCs to promote efficient motility along stromal surfaces.

  18. Molecular Characterization and Biological Effects of a C-Type Lectin-Like Receptor in Large Yellow Croaker (Larimichthys crocea)

    PubMed Central

    Ao, Jingqun; Ding, Yang; Chen, Yuanyuan; Mu, Yinnan; Chen, Xinhua

    2015-01-01

    The C-type lectin-like receptors (CTLRs) play important roles in innate immunity as one type of pattern recognition receptors. Here, we cloned and characterized a C-type lectin-like receptor (LycCTLR) from large yellow croaker Larimichthys crocea. The full-length cDNA of LycCTLR is 880 nucleotides long, encoding a protein of 215 amino acids. The deduced LycCTLR contains a C-terminal C-type lectin-like domain (CTLD), an N-terminal cytoplasmic tail, and a transmembrane region. The CTLD of LycCTLR possesses six highly conserved cysteine residues (C1–C6), a conserved WI/MGL motif, and two sugar binding motifs, EPD (Glu-Pro-Asp) and WYD (Trp-Tyr-Asp). Ca2+ binding site 1 and 2 were also found in the CTLD. The LycCTLR gene consists of five exons and four introns, showing the same genomic organization as tilapia (Oreochromis niloticus) and guppy (Poecilia retitculata) CTLRs. LycCTLR was constitutively expressed in various tissues tested, and its transcripts significantly increased in the head kidney and spleen after stimulation with inactivated trivalent bacterial vaccine. Recombinant LycCTLR (rLycCTLR) protein produced in Escherichia coli BL21 exhibited not only the hemagglutinating activity and a preference for galactose, but also the agglutinating activity against two food-borne pathogenic bacteria E. coli and Bacillus cereus in a Ca2+-dependent manner. These results indicate that LycCTLR is a potential galactose-binding C-type lectin that may play a role in the antibacterial immunity in fish. PMID:26690423

  19. Identification of natural killer cell receptor clusters in the platypus genome reveals an expansion of C-type lectin genes.

    PubMed

    Wong, Emily S W; Sanderson, Claire E; Deakin, Janine E; Whittington, Camilla M; Papenfuss, Anthony T; Belov, Katherine

    2009-08-01

    Natural killer (NK) cell receptors belong to two unrelated, but functionally analogous gene families: the immunoglobulin superfamily, situated in the leukocyte receptor complex (LRC) and the C-type lectin superfamily, located in the natural killer complex (NKC). Here, we describe the largest NK receptor gene expansion seen to date. We identified 213 putative C-type lectin NK receptor homologs in the genome of the platypus. Many have arisen as the result of a lineage-specific expansion. Orthologs of OLR1, CD69, KLRE, CLEC12B, and CLEC16p genes were also identified. The NKC is split into at least two regions of the genome: 34 genes map to chromosome 7, two map to a small autosome, and the remainder are unanchored in the current genome assembly. No NK receptor genes from the LRC were identified. The massive C-type lectin expansion and lack of Ig-domain-containing NK receptors represents the most extreme polarization of NK receptors found to date. We have used this new data from platypus to trace the possible evolutionary history of the NK receptor clusters.

  20. A C-type lectin with an immunoglobulin-like domain promotes phagocytosis of hemocytes in crayfish Procambarus clarkii.

    PubMed

    Zhang, Xiao-Wen; Wang, Yue; Wang, Xian-Wei; Wang, Lei; Mu, Yi; Wang, Jin-Xing

    2016-07-14

    C-type lectins are important immune molecules that participate in host defense response. The present work reports a novel C-type lectin (PcLec3) from the red swamp crayfish Procambarus clarkii. Sequence analysis found that PcLec3 encodes a polypeptide with252 amino acid residues, which contains an immunoglobulin-like domain (IG) and a C-type lectin domain (CTLD) arranged in tandem. Tissue distribution analysis indicated that PcLec3 is enriched expressed in hemocytes and hepatopancreas cells, in which PcLec3 was up-regulated following bacterial challenge by Vibrio anguillarum. Function analysis using recombinant full-length PcLec3, IG, and CTLD proteins revealed that these recombinant proteins had the capacity to bind carbohydrates and bacteria, while IG determined the cell binding activity. However, only full-length PcLec3 promotes the phagocytic activity of hemocytes and subsequent clearance of invasive bacteria. Taken together, these results manifest that PcLec3 acts as a hemocyte adhesion molecule to promote hemocyte phagocytosis against invasive V. anguillarum.

  1. A C-type lectin with an immunoglobulin-like domain promotes phagocytosis of hemocytes in crayfish Procambarus clarkii

    PubMed Central

    Zhang, Xiao-Wen; Wang, Yue; Wang, Xian-Wei; Wang, Lei; Mu, Yi; Wang, Jin-Xing

    2016-01-01

    C-type lectins are important immune molecules that participate in host defense response. The present work reports a novel C-type lectin (PcLec3) from the red swamp crayfish Procambarus clarkii. Sequence analysis found that PcLec3 encodes a polypeptide with252 amino acid residues, which contains an immunoglobulin-like domain (IG) and a C-type lectin domain (CTLD) arranged in tandem. Tissue distribution analysis indicated that PcLec3 is enriched expressed in hemocytes and hepatopancreas cells, in which PcLec3 was up-regulated following bacterial challenge by Vibrio anguillarum. Function analysis using recombinant full-length PcLec3, IG, and CTLD proteins revealed that these recombinant proteins had the capacity to bind carbohydrates and bacteria, while IG determined the cell binding activity. However, only full-length PcLec3 promotes the phagocytic activity of hemocytes and subsequent clearance of invasive bacteria. Taken together, these results manifest that PcLec3 acts as a hemocyte adhesion molecule to promote hemocyte phagocytosis against invasive V. anguillarum. PMID:27411341

  2. Venom of Parasitoid, Pteromalus puparum, Suppresses Host, Pieris rapae, Immune Promotion by Decreasing Host C-Type Lectin Gene Expression

    PubMed Central

    Fang, Qi; Wang, Fei; Gatehouse, John A.; Gatehouse, Angharad M. R.; Chen, Xue-xin; Hu, Cui; Ye, Gong-yin

    2011-01-01

    Background Insect hosts have evolved immunity against invasion by parasitoids, and in co-evolutionary response parasitoids have also developed strategies to overcome host immune systems. The mechanisms through which parasitoid venoms disrupt the promotion of host immunity are still unclear. We report here a new mechanism evolved by parasitoid Pteromalus puparum, whose venom inhibited the promotion of immunity in its host Pieris rapae (cabbage white butterfly). Methodology/Principal Findings A full-length cDNA encoding a C-type lectin (Pr-CTL) was isolated from P. rapae. Quantitative PCR and immunoblotting showed that injection of bacterial and inert beads induced expression of Pr-CTL, with peaks of mRNA and Pr-CTL protein levels at 4 and 8 h post beads challenge, respectively. In contrast, parasitoid venom suppressed Pr-CTL expression when co-injected with beads, in a time and dose-dependent manner. Immunolocalization and immunoblotting results showed that Pr-CTL was first detectable in vesicles present in cytoplasm of granulocytes in host hemolymph, and was then secreted from cells into circulatory fluid. Finally, the secreted Pr-CTL bound to cellular membranes of both granulocytes and plasmatocytes. Injection of double-stranded RNA specific for target gene decreased expression of Pr-CTL, and a few other host immune-related genes. Suppression of Pr-CTL expression also down-regulated antimicrobial and phenoloxidase activities, and reducing phagocytotic and encapsulation rates in host. The inhibitory effect of parasitoid venom on host encapsulation is consistent with its effect in suppressing Pr-CTL expression. Binding assay results showed that recombinant Pr-CTL directly attached to the surface of P. puparum egges. We infer that Pr-CTL may serve as an immune signalling co-effector, first binding to parasitoid eggs, regulating expression of a set of immune-related genes and promoting host immunity. Conclusions/Significance P. puparum venom inhibits promotion of host

  3. The Structure of the Poxvirus A33 Protein Reveals a Dimer of Unique C-Type Lectin-Like Domains

    SciTech Connect

    Su, Hua-Poo; Singh, Kavita; Gittis, Apostolos G.; Garboczi, David N.

    2010-11-03

    The current vaccine against smallpox is an infectious form of vaccinia virus that has significant side effects. Alternative vaccine approaches using recombinant viral proteins are being developed. A target of subunit vaccine strategies is the poxvirus protein A33, a conserved protein in the Chordopoxvirinae subfamily of Poxviridae that is expressed on the outer viral envelope. Here we have determined the structure of the A33 ectodomain of vaccinia virus. The structure revealed C-type lectin-like domains (CTLDs) that occur as dimers in A33 crystals with five different crystal lattices. Comparison of the A33 dimer models shows that the A33 monomers have a degree of flexibility in position within the dimer. Structural comparisons show that the A33 monomer is a close match to the Link module class of CTLDs but that the A33 dimer is most similar to the natural killer (NK)-cell receptor class of CTLDs. Structural data on Link modules and NK-cell receptor-ligand complexes suggest a surface of A33 that could interact with viral or host ligands. The dimer interface is well conserved in all known A33 sequences, indicating an important role for the A33 dimer. The structure indicates how previously described A33 mutations disrupt protein folding and locates the positions of N-linked glycosylations and the epitope of a protective antibody.

  4. Galactose recognition by a tetrameric C-type lectin, CEL-IV, containing the EPN carbohydrate recognition motif.

    PubMed

    Hatakeyama, Tomomitsu; Kamiya, Takuro; Kusunoki, Masami; Nakamura-Tsuruta, Sachiko; Hirabayashi, Jun; Goda, Shuichiro; Unno, Hideaki

    2011-03-25

    CEL-IV is a C-type lectin isolated from a sea cucumber, Cucumaria echinata. This lectin is composed of four identical C-type carbohydrate-recognition domains (CRDs). X-ray crystallographic analysis of CEL-IV revealed that its tetrameric structure was stabilized by multiple interchain disulfide bonds among the subunits. Although CEL-IV has the EPN motif in its carbohydrate-binding sites, which is known to be characteristic of mannose binding C-type CRDs, it showed preferential binding of galactose and N-acetylgalactosamine. Structural analyses of CEL-IV-melibiose and CEL-IV-raffinose complexes revealed that their galactose residues were recognized in an inverted orientation compared with mannose binding C-type CRDs containing the EPN motif, by the aid of a stacking interaction with the side chain of Trp-79. Changes in the environment of Trp-79 induced by binding to galactose were detected by changes in the intrinsic fluorescence and UV absorption spectra of WT CEL-IV and its site-directed mutants. The binding specificity of CEL-IV toward complex oligosaccharides was analyzed by frontal affinity chromatography using various pyridylamino sugars, and the results indicate preferential binding to oligosaccharides containing Galβ1-3/4(Fucα1-3/4)GlcNAc structures. These findings suggest that the specificity for oligosaccharides may be largely affected by interactions with amino acid residues in the binding site other than those determining the monosaccharide specificity.

  5. Ophioluxin, a convulxin-like C-type lectin from Ophiophagus hannah (King cobra) is a powerful platelet activator via glycoprotein VI.

    PubMed

    Du, Xiao-Yan; Clemetson, Jeannine M; Navdaev, Alexei; Magnenat, Edith M; Wells, Timothy N C; Clemetson, Kenneth J

    2002-09-20

    Ophioluxin, a potent platelet agonist, was purified from the venom of Ophiophagus hannah (King cobra). Under nonreducing conditions it has a mass of 85 kDa, similar to convulxin, and on reduction gives two subunits with masses of 16 and 17 kDa, slightly larger than those of convulxin. The N-terminal sequences of both subunits are very similar to those of convulxin and other C-type lectins. Ophioluxin induces a pattern of tyrosine-phosphorylated proteins in platelets like that caused by convulxin, when using appropriate concentrations based on aggregation response, because it is about 2-4 times more powerful as agonist than the latter. Ophioluxin and convulxin induce [Ca(2+)](i) elevation both in platelets and in Dami megakaryocytic cells, and each of these C-type lectins desensitizes responses to the other. Convulxin agglutinates fixed platelets at 2 microg/ml, whereas ophioluxin does not, even at 80 microg/ml. Ophioluxin resembles convulxin more than echicetin or alboaggregin B because polyclonal anti-ophioluxin antibodies recognize both ophioluxin and convulxin, but not echicetin, and platelets adhere to and spread on ophioluxin- or convulxin-precoated surfaces in the same way that is clearly different from their behavior on an alboaggregin B surface. Immobilized ophioluxin was used to isolate the glycoprotein VI-Fcgamma complex from resting platelets, which also contained Fyn, Lyn, Syk, LAT, and SLP76. Ophioluxin is the first multiheterodimeric, convulxin-like snake C-type lectin, as well as the first platelet agonist, to be described from the Elapidae snake family.

  6. Function of two novel single-CRD containing C-type lectins in innate immunity from Eriocheir sinensis.

    PubMed

    Huang, Ying; Huang, Xin; Wang, Zheng; Tan, Jing-Min; Hui, Kai-Min; Wang, Wen; Ren, Qian

    2014-04-01

    C-type lectin is one of the pattern-recognition proteins of the non-self-innate immune system in invertebrates. In this study, two novel C-type lectin cDNAs (EsCTL1 and EsCTL2) of Eriocheir sinensis were cloned and characterized. EsCTL1 has 169 amino acids, whereas EsCTL2 has 164 amino acids. These two lectins contain one carbohydrate-recognition domain. Phylogenetic analysis showed that EsCTL1 and EsCTL2 were not clustered with other reported lectins from crabs. EsCTL1 and EsCTL2 were expressed only in the hepatopancreas, as detected by real-time PCR. When healthy crabs were challenged with lipopolysaccharide (LPS), peptidoglycan (PGN), Staphylococcus aureus, or Aeromonas hydrophila, the expression levels of EsCTL1 and EsCTL2 were significantly regulated. The recombinant EsCTL1 and EsCTL2 can agglutinate both Gram-positive (S. aureus) and Gram-negative bacteria (Vibrio parahaemolyticus and A. hydrophila) in a Ca2+ -dependent manner. The recombinant EsCTL1 and EsCTL2 can directly bind to LPS and PGN and to all tested microorganisms (S. aureus, Bacillus thuringiensis, Bacillus subtilis, Escherichia coli, Vibrio natriegens, V. parahaemolyticus, and A. hydrophila). Furthermore, rEsCTL1 and rEsCTL2 may facilitate the clearance of V. parahaemolyticus in vivo. These results suggest that EsCTL1 and EsCTL2 may have important roles in the anti-bacterial immunity of Chinese mitten crab.

  7. Clr-a: A Novel Immune-Related C-Type Lectin-like Molecule Exclusively Expressed by Mouse Gut Epithelium.

    PubMed

    Rutkowski, Emilia; Leibelt, Stefan; Born, Christina; Friede, Miriam E; Bauer, Stefan; Weil, Sandra; Koch, Joachim; Steinle, Alexander

    2017-01-15

    The mouse gut epithelium represents a constitutively challenged environment keeping intestinal commensal microbiota at bay and defending against invading enteric pathogens. The complex immunoregulatory network of the epithelial barrier surveillance also involves NK gene complex (NKC)-encoded C-type lectin-like molecules such as NKG2D and Nkrp1 receptors. To our knowledge, in this study, we report the first characterization of the orphan C-type lectin-like molecule Clr-a encoded by the Clec2e gene in the mouse NKC. Screening of a panel of mouse tissues revealed that Clec2e transcripts are restricted to the gastrointestinal tract. Using Clr-a-specific mAb, we characterize Clr-a as a disulfide-linked homodimeric cell surface glycoprotein. Of note, a substantial fraction of Clr-a molecules are retained intracellularly, and analyses of Clr-a/Clr-f hybrids attribute intracellular retention to both the stalk region and parts of the cytoplasmic domain. Combining quantitative PCR analyses with immunofluorescence studies revealed exclusive expression of Clr-a by intestinal epithelial cells and crypt cells throughout the gut. Challenge with polyinosinic-polycytidylic acid results in a rapid and strong downregulation of intestinal Clr-a expression in contrast to the upregulation of Clr-f, a close relative of Clr-a, that also is specifically expressed by the intestinal epithelium and acts as a ligand of the inhibitory Nkrp1g receptor. Collectively, we characterize expression of the mouse NKC-encoded glycoprotein Clr-a as strictly associated with mouse intestinal epithelium. Downregulation upon polyinosinic-polycytidylic acid challenge and expression by crypt cells clearly distinguish Clr-a from the likewise intestinal epithelium-restricted Clr-f, pointing to a nonredundant function of these highly related C-type lectin-like molecules in the context of intestinal immunosurveillance.

  8. Characterization of C-type lectins reveals an unexpectedly limited interaction between Cryptococcus neoformans spores and Dectin-1

    PubMed Central

    Walsh, Naomi M.; Wuthrich, Marcel; Wang, Huafeng; Klein, Bruce; Hull, Christina M.

    2017-01-01

    Phagocytosis by innate immune cells is an important process for protection against multiple pathologies and is particularly important for resistance to infection. However, phagocytosis has also been implicated in the progression of some diseases, including the dissemination of the human fungal pathogen, Cryptococcus neoformans. Previously, we identified Dectin-1 as a likely phagocytic receptor for C. neoformans spores through the use of soluble components in receptor-ligand blocking experiments. In this study, we used gain-of-function and loss-of-function assays with intact cells to evaluate the in vivo role of Dectin-1 and other C-type lectins in interactions with C. neoformans spores and discovered stark differences in outcome when compared with previous assays. First, we found that non-phagocytic cells expressing Dectin-1 were unable to bind spores and that highly sensitive reporter cells expressing Dectin-1 were not stimulated by spores. Second, we determined that some phagocytes from Dectin-1-/- mice interacted with spores differently than wild type (WT) cells, but the effects varied among assays and were modest overall. Third, while we detected small but statistically significant reductions in phagocytosis by primary alveolar macrophages from Dectin-1-/- mice compared to WT, we found no differences in survival between WT and Dectin-1-/- mice challenged with spores. Further analyses to assess the roles of other C-type lectins and their adapters revealed very weak stimulation of Dectin-2 reporter cells by spores and modest differences in binding and phagocytosis by Dectin-2-/- bone marrow-derived phagocytes. There were no discernable defects in binding or phagocytosis by phagocytes lacking Mannose Receptor, Mincle, Card-9, or FcRγ. Taken together, these results lead to the conclusion that Dectin-1 and other C-type lectins do not individually play a major roles in phagocytosis and innate defense by phagocytes against C. neoformans spores and highlight

  9. Characterization of C-type lectins reveals an unexpectedly limited interaction between Cryptococcus neoformans spores and Dectin-1.

    PubMed

    Walsh, Naomi M; Wuthrich, Marcel; Wang, Huafeng; Klein, Bruce; Hull, Christina M

    2017-01-01

    Phagocytosis by innate immune cells is an important process for protection against multiple pathologies and is particularly important for resistance to infection. However, phagocytosis has also been implicated in the progression of some diseases, including the dissemination of the human fungal pathogen, Cryptococcus neoformans. Previously, we identified Dectin-1 as a likely phagocytic receptor for C. neoformans spores through the use of soluble components in receptor-ligand blocking experiments. In this study, we used gain-of-function and loss-of-function assays with intact cells to evaluate the in vivo role of Dectin-1 and other C-type lectins in interactions with C. neoformans spores and discovered stark differences in outcome when compared with previous assays. First, we found that non-phagocytic cells expressing Dectin-1 were unable to bind spores and that highly sensitive reporter cells expressing Dectin-1 were not stimulated by spores. Second, we determined that some phagocytes from Dectin-1-/- mice interacted with spores differently than wild type (WT) cells, but the effects varied among assays and were modest overall. Third, while we detected small but statistically significant reductions in phagocytosis by primary alveolar macrophages from Dectin-1-/- mice compared to WT, we found no differences in survival between WT and Dectin-1-/- mice challenged with spores. Further analyses to assess the roles of other C-type lectins and their adapters revealed very weak stimulation of Dectin-2 reporter cells by spores and modest differences in binding and phagocytosis by Dectin-2-/- bone marrow-derived phagocytes. There were no discernable defects in binding or phagocytosis by phagocytes lacking Mannose Receptor, Mincle, Card-9, or FcRγ. Taken together, these results lead to the conclusion that Dectin-1 and other C-type lectins do not individually play a major roles in phagocytosis and innate defense by phagocytes against C. neoformans spores and highlight

  10. Association of a hepatopancreas-specific C-type lectin with the antibacterial response of Eriocheir sinensis.

    PubMed

    Jin, Xing-Kun; Guo, Xiao-Nv; Li, Shuang; Wu, Min-Hao; Zhu, You-Ting; Yu, Ai-Qing; Tan, Shang-Jian; Li, Wei-Wei; Zhang, Ping; Wang, Qun

    2013-01-01

    Pattern recognition receptors (PPRs) are part of the initial step of a host defense against pathogens in detecting pathogen-associated molecular patterns. However, determinants of the specificity of this recognition by innate immune molecules of invertebrates remain largely unknown. In this study, we investigated the potential involvement of an invertebrate PRR C-type lectin in the antimicrobial response of the crustacean Eriocheir sinensis. Based on the initial expressed sequence tags (EST) of a hepatopancreatic cDNA library, the full-length EsLecF cDNA was cloned and determined to contain a 477-bp open reading frame encoding a putative 158-amino-acid protein. A comparison with other reported invertebrate and vertebrate C-type lectin superfamily sequences revealed the presence of a common carbohydrate recognition domain (CRD). EsLecF transcripts in E. sinensis were mainly detected in the hepatopancreas and were inducible by a lipopolysaccharide (LPS) injection. The recombinant EsLecF (rEsLecF) protein produced via a prokaryotic expression system and affinity chromatography was found to have a wide spectrum of binding activities towards various microorganisms, and its microbial-binding activity was calcium-independent. Moreover, the binding of rEsLecF induced the aggregation of microbial pathogens. Results of the microorganism growth inhibitory assay and antibacterial assay revealed capabilities of rEsLecF in suppressing microorganism growth and directly killing bacteria, respectively. Furthermore, rEsLecF could enhance cellular encapsulation in vitro. Collectively, the findings presented here demonstrated the successful isolation of a novel C-type lectin in a crustacean and highlighted its critical role in the innate immunity of an invertebrate.

  11. Identification and Characterization of Cryptosporidium parvum Clec, a Novel C-Type Lectin Domain-Containing Mucin-Like Glycoprotein

    PubMed Central

    Bhalchandra, Seema; Ludington, Jacob; Coppens, Isabelle

    2013-01-01

    Cryptosporidium species are waterborne apicomplexan parasites that cause diarrheal disease worldwide. Although the mechanisms underlying Cryptosporidium-host cell interactions are not well understood, mucin-like glycoproteins of the parasite are known to mediate attachment and invasion in vitro. We identified C. parvum Clec (CpClec), a novel mucin-like glycoprotein that contains a C-type lectin domain (CTLD) and has orthologs in C. hominis and C. muris. CTLD-containing proteins are ligand-binding proteins that function in adhesion and signaling and are present in a wide range of organisms, from humans to viruses. However, this is the first report of a CTLD-containing protein in protozoa and in Apicomplexa. CpClec is predicted to be a type 1 membrane protein, with a CTLD, an O-glycosylated mucin-like domain, a transmembrane domain, and a cytoplasmic tail containing a YXXϕ sorting motif. The predicted structure of CpClec displays several characteristics of canonical CTLD-containing proteins, including a long loop region hydrophobic core associated with calcium-dependent glycan binding as well as predicted calcium- and glycan-binding sites. CpClec expression during C. parvum infection in vitro is maximal at 48 h postinfection, suggesting that it is developmentally regulated. The 120-kDa mass of native CpClec is greater than predicted, most likely due to O-glycosylation. CpClec is localized to the surface of the apical region and to dense granules of sporozoites and merozoites. Taken together, these findings, along with the known functions of C. parvum mucin-like glycoproteins and of CTLD-containing proteins, strongly implicate a significant role for CpClec in Cryptosporidium-host cell interactions. PMID:23817613

  12. Role of the C-type lectins DC-SIGN and L-SIGN in Leishmania interaction with host phagocytes.

    PubMed

    Caparrós, Esther; Serrano, Diego; Puig-Kröger, Amaya; Riol, Lorena; Lasala, Fátima; Martinez, Iñigo; Vidal-Vanaclocha, Fernando; Delgado, Rafael; Rodríguez-Fernández, José Luis; Rivas, Luis; Corbí, Angel L; Colmenares, María

    2005-01-01

    Leishmaniasis is a parasitic disease that courses with cutaneous or visceral clinical manifestations. The amastigote stage of the parasite infects phagocytes and modulates the effector function of the host cells. Our group has described that the interaction between Leishmania and immature monocyte-derived dendritic cells (DCs) takes place through dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN), a C-type lectin that specifically recognizes fungal, viral and bacterial pathogens. The DC-SIGN-mediated recognition of Leishmania amastigotes does not induce DC maturation, and the DC-SIGN ligand/s on Leishmania parasites is/are still unknown. We have also found that the DC-SIGN-related molecule L-SIGN, specifically expressed in lymph node and liver sinusoidal endothelial cells, acts as a receptor for L. infantum, the parasite responsible for visceral leishmaniasis, but does not recognize L. pifanoi, which causes the cutaneous form of the disease. Therefore, DC-SIGN and L-SIGN differ in their ability to interact with Leishmania species responsible for either visceral or cutaneous leishmaniasis. A deeper knowledge of the parasite-C-type lectin interaction may be helpful for the design of new DC-based therapeutic vaccines against Leishmania infections.

  13. Abundant expression of HIV target cells and C-type lectin receptors in the foreskin tissue of young Kenyan men.

    PubMed

    Hirbod, Taha; Bailey, Robert C; Agot, Kawango; Moses, Stephen; Ndinya-Achola, Jeckoniah; Murugu, Ruth; Andersson, Jan; Nilsson, Jakob; Broliden, Kristina

    2010-06-01

    A biological explanation for the reduction in HIV-1 (HIV) acquisition after male circumcision may be that removal of the foreskin reduces the number of target cells for HIV. The expression of potential HIV target cells and C-type lectin receptors in foreskin tissue of men at risk of HIV infection were thus analyzed. Thirty-three foreskin tissue samples, stratified by Herpes simplex virus type 2 status, were obtained from a randomized, controlled trial conducted in Kenya. The samples were analyzed by confocal in situ imaging microscopy and mRNA quantification by quantitative RT-qPCR. The presence and location of T cells (CD3(+)CD4(+)), Langerhans cells (CD1a(+)Langerin/CD207(+)), macrophages (CD68(+) or CD14(+)), and submucosal dendritic cells (CD123(+)BDCA-2(+) or CD11c(+)DC-SIGN(+)) were defined. C-type lectin receptor expressing cells were detected in both the epithelium and submucosa, and distinct lymphoid aggregates densely populated with CD3(+)CD4(+) T cells were identified in the submucosa. Although the presence of lymphoid aggregates and mRNA expression of selected markers varied between study subjects, Herpes simplex virus type 2 serostatus was not the major determinant for the detected differences. The detection of abundant and superficially present potential HIV target cells and submucosal lymphoid aggregates in foreskin mucosa from a highly relevant HIV risk group demonstrate a possible anatomical explanation that may contribute to the protective effect of male circumcision on HIV transmission.

  14. C-type lectin Mermaid inhibits dendritic cell mediated HIV-1 transmission to CD4+ T cells.

    PubMed

    Nabatov, Alexey A; de Jong, Marein A W P; de Witte, Lot; Bulgheresi, Silvia; Geijtenbeek, Teunis B H

    2008-09-01

    Dendritic cells (DCs) are important in HIV-1 transmission; DCs capture invading HIV-1 through the interaction of the gp120 oligosaccharides with the C-type lectin DC-SIGN and migrate to the lymphoid tissues where HIV-1 is transmitted to T cells. Thus, the HIV-1 envelope glycoprotein gp120 is an attractive target to prevent interactions with DCs and subsequent viral transmission. Here, we have investigated whether the structural homologue of DC-SIGN, the nematode C-type lectin Mermaid can be used to prevent HIV-1 transmission by DCs. Our data demonstrate that Mermaid interacts with high mannose structures present on HIV-1 gp120 and thereby inhibits HIV-1 binding to DC-SIGN on DCs. Moreover, Mermaid inhibits DC-SIGN-mediated HIV-1 transmission from DC to T cells. We have identified Mermaid as a non-cytotoxic agent that shares the glycan specificity with DC-SIGN and inhibits DC-SIGN-gp120 interaction. The results are important for the anti-HIV-1 microbicide development directed at preventing DC-HIV-1 interactions.

  15. C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells

    PubMed Central

    Troegeler, Anthony; Mercier, Ingrid; Cougoule, Céline; Pietretti, Danilo; Colom, André; Duval, Carine; Vu Manh, Thien-Phong; Capilla, Florence; Poincloux, Renaud; Pingris, Karine; Nigou, Jérôme; Rademann, Jörg; Dalod, Marc; Verreck, Frank A. W.; Al Saati, Talal; Lugo-Villarino, Geanncarlo; Lepenies, Bernd; Hudrisier, Denis; Neyrolles, Olivier

    2017-01-01

    Immune response against pathogens is a tightly regulated process that must ensure microbial control while preserving integrity of the infected organs. Tuberculosis (TB) is a paramount example of a chronic infection in which antimicrobial immunity is protective in the vast majority of infected individuals but can become detrimental if not finely tuned. Here, we report that C-type lectin dendritic cell (DC) immunoreceptor (DCIR), a key component in DC homeostasis, is required to modulate lung inflammation and bacterial burden in TB. DCIR is abundantly expressed in pulmonary lesions in Mycobacterium tuberculosis-infected nonhuman primates during both latent and active disease. In mice, we found that DCIR deficiency impairs STAT1-mediated type I IFN signaling in DCs, leading to increased production of IL-12 and increased differentiation of T lymphocytes toward Th1 during infection. As a consequence, DCIR-deficient mice control M. tuberculosis better than WT animals but also develop more inflammation characterized by an increased production of TNF and inducible NOS (iNOS) in the lungs. Altogether, our results reveal a pathway by which a C-type lectin modulates the equilibrium between infection-driven inflammation and pathogen’s control through sustaining type I IFN signaling in DCs. PMID:28069953

  16. An LDLa domain-containing C-type lectin is involved in the innate immunity of Eriocheir sinensis.

    PubMed

    Huang, Ying; An, Liang; Hui, Kai-Min; Ren, Qian; Wang, Wen

    2014-02-01

    C-type lectins (CTLs) have crucial functions in recognizing and eliminating pathogens in innate immunity. This study identified a novel low-density lipoprotein receptor class A (LDLa) domain-containing CTL, designated as EsCTLDcp, from the Chinese mitten crab Eriocheir sinensis. The EsCTLDcp cDNA is 1258 bp long, with a 975 bp open reading frame that encodes a 324-amino acid protein. EsCTLDcp contains a signal peptide, an LDLa, and a single C-type lectin-like domain. EsCTLDcp was only expressed in the hepatopancreas of normal crabs, and its expression was regulated following crab challenge with pathogen-associated molecular patterns and with bacteria. The recombinant EsCTLDcp agglutinates Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Vibrio parahaemolyticus and Aeromonas hydrophila) in the presence of calcium. rEsCTLDcp also binds to various bacteria including S. aureus, Bacillus thuringiensis, Bacillus subtilis, Escherichia coli, Vibrio natriegens, V. parahaemolyticus, and A. hydrophila. The rEsCTLDcp protein helped the crabs clear the virulent Gram-negative bacterium V. parahaemolyticus in vivo, as well as interacted with VP24, an envelope protein of white spot syndrome virus (WSSV). These data suggest that EsCTLDcp functions as a pattern-recognition receptor involved in the innate immunity of E. sinensis.

  17. The C-type lectin receptor CLECSF8/CLEC4D is a key component of anti-mycobacterial immunity.

    PubMed

    Wilson, Gillian J; Marakalala, Mohlopheni J; Hoving, Jennifer C; van Laarhoven, Arjan; Drummond, Rebecca A; Kerscher, Bernhard; Keeton, Roanne; van de Vosse, Esther; Ottenhoff, Tom H M; Plantinga, Theo S; Alisjahbana, Bachti; Govender, Dhirendra; Besra, Gurdyal S; Netea, Mihai G; Reid, Delyth M; Willment, Janet A; Jacobs, Muazzam; Yamasaki, Sho; van Crevel, Reinout; Brown, Gordon D

    2015-02-11

    The interaction of microbes with pattern recognition receptors (PRRs) is essential for protective immunity. While many PRRs that recognize mycobacteria have been identified, none is essentially required for host defense in vivo. Here, we have identified the C-type lectin receptor CLECSF8 (CLEC4D, MCL) as a key molecule in anti-mycobacterial host defense. Clecsf8-/- mice exhibit higher bacterial burdens and increased mortality upon M. tuberculosis infection. Additionally, Clecsf8 deficiency is associated with exacerbated pulmonary inflammation, characterized by enhanced neutrophil recruitment. Clecsf8-/- mice show reduced mycobacterial uptake by pulmonary leukocytes, but infection with opsonized bacteria can restore this phagocytic defect as well as decrease bacterial burdens. Notably, a CLECSF8 polymorphism identified in humans is associated with an increased susceptibility to pulmonary tuberculosis. We conclude that CLECSF8 plays a non-redundant role in anti-mycobacterial immunity in mouse and in man.

  18. C-Type Lectin Receptor Dectin-2 Binds to an Endogenous Protein β-Glucuronidase on Dendritic Cells

    PubMed Central

    Mori, Daiki; Shibata, Kensuke; Yamasaki, Sho

    2017-01-01

    C-type lectin receptors (CLRs) recognize pathogen-derived ligands and abnormal self that trigger protective immune responses. However, the precise nature of self ligands recognized by CLRs remains to be determined. Here, we found that Dectin-2 recognizes bone marrow-derived dendritic cells (BMDCs) using Dectin-2-expressing reporter cells. This activity was inhibited by an excessive amount of mannose, and by the mutation of mannose-binding motif in Dectin-2. β-glucuronidase (Gusb) was identified as a protein bound to Dectin-2 and mutations of N-glycosylation sites in Gusb impaired the binding of Gusb to Dectin-2. Overexpression of Gusb in a macrophage cell line conferred an ability to stimulate Dectin-2-expressing reporter cells. Our study suggests that a glycosylated protein with mannose-related structure is recognized by Dectin-2. PMID:28046067

  19. Molecular cloning and characterization of a C-type lectin from Ancylostoma ceylanicum: evidence for a role in hookworm reproductive physiology.

    PubMed Central

    Brown, Allison C.; Harrison, Lisa M.; Kapulkin, Wadim; Jones, Brian F.; Sinha, Anindita; Savage, Amy; Villalon, Nicholas; Cappello, Michael

    2007-01-01

    Lectins comprise a family of related proteins that mediate essential cell functions through binding to carbohydrates. Within this protein family, C-type lectins are defined by the requirement of calcium for optimal biologic activity. Using reverse transcription PCR, a cDNA corresponding to a putative C-type lectin has been amplified from the hookworm parasite Ancylostoma ceylanicum. The 550 nucleotide open reading frame of the Ancylostoma ceylanicum C-type Lectin-1 (AceCTL-1) cDNA corresponds to a 167 amino acid mature protein (18706 Da) preceded by a 17 amino acid secretory signal sequence. The recombinant protein (rAceCTL-1) was expressed in Drosophila S2 cells and purified using a combination of affinity chromatography and reverse phase HPLC. Using in vitro carbohydrate binding studies, it was determined that rAceCTL-1 binds N-acetyl-D-glucosamine, a common component of eukaryotic egg cell membranes. Using a polyclonal IgG raised against the recombinant protein, the native AceCTL-1 was identified in sperm and soluble protein extracts of adult male A. ceylanicum by immunoblot. Probing of adult hookworm sections with the polyclonal IgG demonstrated localization to the testes in males, as well as the spermatheca and developing embryos in females, consistent with its role as a sperm protein. Together, these data strongly suggest that AceCTL-1 is a male gender-specific C-type lectin with a function in hookworm reproductive physiology. PMID:17129620

  20. Involvement of viral envelope GP2 in Ebola virus entry into cells expressing the macrophage galactose-type C-type lectin

    SciTech Connect

    Usami, Katsuaki; Matsuno, Keita; Igarashi, Manabu; Denda-Nagai, Kaori; Takada, Ayato; Irimura, Tatsuro

    2011-04-01

    Highlights: {yields} Ebola virus infection is mediated by binding to and fusion with the target cells. {yields} Structural feature of the viral glycoprotein determines the infectivity. {yields} Surface C-type lectin, MGL, of macrophages and dendritic cells mediate the infection. {yields} GP2, one of glycoprotein subunits, plays an essential role in MGL-mediated infection. {yields} There is a critical amino acid residue involved in high infectivity. -- Abstract: Ebola virus (EBOV) infection is initiated by the interaction of the viral surface envelope glycoprotein (GP) with the binding sites on target cells. Differences in the mortality among different species of the Ebola viruses, i.e., Zaire ebolavirus (ZEBOV) and Reston ebolavirus (REBOV), correspond to the in vitro infectivity of the pseudo-typed virus constructed with the GPs in cells expressing macrophage galactose-type calcium-type lectin (MGL/CD301). Through mutagenesis of GP2, the transmembrane-anchored subunit of GP, we found that residues 502-527 of the GP2 sequence determined the different infectivity between VSV-ZEBOV GP and -REBOV GP in MGL/CD301-expressing cells and a histidine residue at position 516 of ZEBOV GP2 appeared essential in the differential infectivity. These findings may provide a clue to clarify a molecular basis of different pathogenicity among EBOV species.

  1. C-type lectin-like carbohydrate recognition of the hemolytic lectin CEL-III containing ricin-type -trefoil folds.

    PubMed

    Hatakeyama, Tomomitsu; Unno, Hideaki; Kouzuma, Yoshiaki; Uchida, Tatsuya; Eto, Seiichiro; Hidemura, Haruki; Kato, Norihisa; Yonekura, Masami; Kusunoki, Masami

    2007-12-28

    CEL-III is a Ca(2+)-dependent hemolytic lectin, isolated from the marine invertebrate Cucumaria echinata. The three-dimensional structure of CEL-III/GalNAc and CEL-III/methyl alpha-galactoside complexes was solved by x-ray crystallographic analysis. In these complexes, five carbohydrate molecules were found to be bound to two carbohydrate-binding domains (domains 1 and 2) located in the N-terminal 2/3 portion of the polypeptide and that contained beta-trefoil folds similar to ricin B-chain. The 3-OH and 4-OH of bound carbohydrate molecules were coordinated with Ca(2+) located at the subdomains 1alpha, 1gamma, 2alpha, 2beta, and 2gamma, simultaneously forming hydrogen bond networks with nearby amino acid side chains, which is similar to carbohydrate binding in C-type lectins. The binding of carbohydrates was further stabilized by aromatic amino acid residues, such as tyrosine and tryptophan, through a stacking interaction with the hydrophobic face of carbohydrates. The importance of amino acid residues in the carbohydrate-binding sites was confirmed by the mutational analyses. The orientation of bound GalNAc and methyl alpha-galactoside was similar to the galactose moiety of lactose bound to the carbohydrate-binding site of the ricin B-chain, although the ricin B-chain does not require Ca(2+) ions for carbohydrate binding. The binding of the carbohydrates induced local structural changes in carbohydrate-binding sites in subdomains 2alpha and 2beta. Binding of GalNAc also induced a slight change in the main chain structure of domain 3, which could be related to the conformational change upon binding of specific carbohydrates to induce oligomerization of the protein.

  2. The Interaction of Pneumocystis with the C-Type Lectin Receptor Mincle Exerts a Significant Role in Host Defense against Infection.

    PubMed

    Kottom, Theodore J; Hebrink, Deanne M; Jenson, Paige E; Nandakumar, Vijayalakshmi; Wüthrich, Marcel; Wang, Huafeng; Klein, Bruce; Yamasaki, Sho; Lepenies, Bernd; Limper, Andrew H

    2017-03-15

    Pneumocystis pneumonia (PCP) remains a major cause of morbidity and mortality within immunocompromised patients. In this study, we examined the potential role of macrophage-inducible C-type lectin (Mincle) for host defense against Pneumocystis Binding assays implementing soluble Mincle carbohydrate recognition domain fusion proteins demonstrated binding to intact Pneumocystis carinii as well as to organism homogenates, and they purified major surface glycoprotein/glycoprotein A derived from the organism. Additional experiments showed that rats with PCP expressed increased Mincle mRNA levels. Mouse macrophages overexpressing Mincle displayed increased binding to P. carinii life forms and enhanced protein tyrosine phosphorylation. The binding of P. carinii to Mincle resulted in activation of FcRγ-mediated cell signaling. RNA silencing of Mincle in mouse macrophages resulted in decreased activation of Syk kinase after P. carinii challenge, critical in downstream inflammatory signaling. Mincle-deficient CD4-depleted (Mincle(-/-)) mice showed a significant defect in organism clearance from the lungs with higher organism burdens and altered lung cytokine responses during Pneumocystis murina pneumonia. Interestingly, Mincle(-/-) mice did not demonstrate worsened survival during PCP compared with wild-type mice, despite the markedly increased organism burdens. This may be related to increased expression of anti-inflammatory factors such as IL-1Ra during infection in the Mincle(-/-) mice. Of note, the P. murina-infected Mincle(-/-) mice demonstrated increased expression of known C-type lectin receptors Dectin-1, Dectin-2, and MCL compared with infected wild-type mice. Taken together, these data support a significant role for Mincle in Pneumocystis modulating host defense during infection.

  3. Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development.

    PubMed

    Yoshida, Shigeto; Shimada, Yohei; Kondoh, Daisuke; Kouzuma, Yoshiaki; Ghosh, Anil K; Jacobs-Lorena, Marcelo; Sinden, Robert E

    2007-12-01

    The midgut environment of anopheline mosquitoes plays an important role in the development of the malaria parasite. Using genetic manipulation of anopheline mosquitoes to change the environment in the mosquito midgut may inhibit development of the malaria parasite, thus blocking malaria transmission. Here we generate transgenic Anopheles stephensi mosquitoes that express the C-type lectin CEL-III from the sea cucumber, Cucumaria echinata, in a midgut-specific manner. CEL-III has strong and rapid hemolytic activity toward human and rat erythrocytes in the presence of serum. Importantly, CEL-III binds to ookinetes, leading to strong inhibition of ookinete formation in vitro with an IC(50) of 15 nM. Thus, CEL-III exhibits not only hemolytic activity but also cytotoxicity toward ookinetes. In these transgenic mosquitoes, sporogonic development of Plasmodium berghei is severely impaired. Moderate, but significant inhibition was found against Plasmodium falciparum. To our knowledge, this is the first demonstration of stably engineered anophelines that affect the Plasmodium transmission dynamics of human malaria. Although our laboratory-based research does not have immediate applications to block natural malaria transmission, these findings have significant implications for the generation of refractory mosquitoes to all species of human Plasmodium and elucidation of mosquito-parasite interactions.

  4. C-type Lectin Mincle Recognizes Glucosyl-diacylglycerol of Streptococcus pneumoniae and Plays a Protective Role in Pneumococcal Pneumonia.

    PubMed

    Behler-Janbeck, Friederike; Takano, Tomotsugu; Maus, Regina; Stolper, Jennifer; Jonigk, Danny; Tort Tarrés, Meritxell; Fuehner, Thomas; Prasse, Antje; Welte, Tobias; Timmer, Mattie S M; Stocker, Bridget L; Nakanishi, Yoichi; Miyamoto, Tomofumi; Yamasaki, Sho; Maus, Ulrich A

    2016-12-01

    Among various innate immune receptor families, the role of C-type lectin receptors (CLRs) in lung protective immunity against Streptococcus pneumoniae (S. pneumoniae) is not fully defined. We here show that Mincle gene expression was induced in alveolar macrophages and neutrophils in bronchoalveolar lavage fluids of mice and patients with pneumococcal pneumonia. Moreover, S. pneumoniae directly triggered Mincle reporter cell activation in vitro via its glycolipid glucosyl-diacylglycerol (Glc-DAG), which was identified as the ligand recognized by Mincle. Purified Glc-DAG triggered Mincle reporter cell activation and stimulated inflammatory cytokine release by human alveolar macrophages and alveolar macrophages from WT but not Mincle KO mice. Mincle deficiency led to increased bacterial loads and decreased survival together with strongly dysregulated cytokine responses in mice challenged with focal pneumonia inducing S. pneumoniae, all of which was normalized in Mincle KO mice reconstituted with a WT hematopoietic system. In conclusion, the Mincle-Glc-DAG axis is a hitherto unrecognized element of lung protective immunity against focal pneumonia induced by S. pneumoniae.

  5. E3 ubiquitin ligase Cbl-b negatively regulates C-type lectin receptor–mediated antifungal innate immunity

    PubMed Central

    Zhu, Le-Le; Xu, Xia; Zhao, Xue-Qiang; Wang, Ting-Ting; Tang, Bing; Jiang, Yuan-Ying

    2016-01-01

    Activation of various C-type lectin receptors (CLRs) initiates potent proinflammatory responses against various microbial infections. However, how activated CLRs are negatively regulated remains unknown. In this study, we report that activation of CLRs Dectin-2 and Dectin-3 by fungi infections triggers them for ubiquitination and degradation in a Syk-dependent manner. Furthermore, we found that E3 ubiquitin ligase Casitas B–lineage lymphoma protein b (Cbl-b) mediates the ubiquitination of these activated CLRs through associating with each other via adapter protein FcR-γ and tyrosine kinase Syk, and then the ubiquitinated CLRs are sorted into lysosomes for degradation by an endosomal sorting complex required for transport (ESCRT) system. Therefore, the deficiency of either Cbl-b or ESCRT subunits significantly decreases the degradation of activated CLRs, thereby resulting in the higher expression of proinflammatory cytokines and inflammation. Consistently, Cbl-b–deficient mice are more resistant to fungi infections compared with wild-type controls. Together, our study indicates that Cbl-b negatively regulates CLR-mediated antifungal innate immunity, which provides molecular insight for designing antifungal therapeutic agents. PMID:27432944

  6. The C-Type Lectin Receptor MCL Mediates Vaccine-Induced Immunity against Infection with Blastomyces dermatitidis

    PubMed Central

    Wang, Huafeng; Li, Mengyi; Lerksuthirat, Tassanee; Klein, Bruce

    2015-01-01

    C-type lectin receptors (CLRs) are essential in shaping the immune response to fungal pathogens. Vaccine-induced resistance requires Dectin-2 to promote differentiation of antifungal Th1 and Th17 cells. Since Dectin-2 and MCL heterodimerize and both CLRs use FcRγ as the signaling adaptor, we investigated the role of MCL in vaccine immunity to the fungal pathogen Blastomyces dermatitidis. MCL−/− mice showed impaired vaccine resistance against B. dermatitidis infection compared to that of wild-type animals. The lack of resistance correlated with the reduced recruitment of Th17 cells to the lung upon recall following experimental challenge and impaired interleukin-17 (IL-17) production by vaccine antigen-stimulated splenocytes in vitro. Soluble MCL fusion protein recognized and bound a water-soluble ligand from the cell wall of vaccine yeast, but the addition of soluble Dectin-2 fusion protein did not augment ligand recognition by MCL. Taken together, our data indicate that MCL regulates the development of vaccine-induced Th17 cells and protective immunity against lethal experimental infection with B. dermatitidis. PMID:26667836

  7. Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs.

    PubMed

    Kerrigan, Ann M; Brown, Gordon D

    2010-03-01

    Different dendritic cell (DC) subsets have distinct specialized functions contributed in part by their differential expression of pattern recognition receptors (PRRs). C-type lectin receptors (CLRs) are a group of PRRs expressed by DCs and other myeloid cells that can recognize endogenous ligands as well as a wide range of exogenous structures present on pathogens. Dual roles in homeostasis and immunity have been demonstrated for some members of this receptor family. Largely due to their endocytic ability and subset specific expression, DC-expressed CLRs have been the focus of significant antigen-targeting studies. A number of CLRs function on the basis of signaling via association with immunoreceptor tyrosine-based activation motif (ITAM)-containing adapter proteins. Others contain ITAM-related motifs or immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic tails. Here we review CLRs that induce intracellular signaling via a single tyrosine-based ITAM-like motif and highlight their relevance in terms of DC function.

  8. C-type Lectin Mincle Recognizes Glucosyl-diacylglycerol of Streptococcus pneumoniae and Plays a Protective Role in Pneumococcal Pneumonia

    PubMed Central

    Behler-Janbeck, Friederike; Maus, Regina; Stolper, Jennifer; Jonigk, Danny; Fuehner, Thomas; Prasse, Antje; Welte, Tobias; Stocker, Bridget L.; Nakanishi, Yoichi; Miyamoto, Tomofumi; Yamasaki, Sho; Maus, Ulrich A.

    2016-01-01

    Among various innate immune receptor families, the role of C-type lectin receptors (CLRs) in lung protective immunity against Streptococcus pneumoniae (S. pneumoniae) is not fully defined. We here show that Mincle gene expression was induced in alveolar macrophages and neutrophils in bronchoalveolar lavage fluids of mice and patients with pneumococcal pneumonia. Moreover, S. pneumoniae directly triggered Mincle reporter cell activation in vitro via its glycolipid glucosyl-diacylglycerol (Glc-DAG), which was identified as the ligand recognized by Mincle. Purified Glc-DAG triggered Mincle reporter cell activation and stimulated inflammatory cytokine release by human alveolar macrophages and alveolar macrophages from WT but not Mincle KO mice. Mincle deficiency led to increased bacterial loads and decreased survival together with strongly dysregulated cytokine responses in mice challenged with focal pneumonia inducing S. pneumoniae, all of which was normalized in Mincle KO mice reconstituted with a WT hematopoietic system. In conclusion, the Mincle-Glc-DAG axis is a hitherto unrecognized element of lung protective immunity against focal pneumonia induced by S. pneumoniae. PMID:27923071

  9. Conservation of the C-type lectin fold for massive sequence variation in a Treponema diversity-generating retroelement

    SciTech Connect

    Le Coq, Johanne; Ghosh, Partho

    2012-06-19

    Anticipatory ligand binding through massive protein sequence variation is rare in biological systems, having been observed only in the vertebrate adaptive immune response and in a phage diversity-generating retroelement (DGR). Earlier work has demonstrated that the prototypical DGR variable protein, major tropism determinant (Mtd), meets the demands of anticipatory ligand binding by novel means through the C-type lectin (CLec) fold. However, because of the low sequence identity among DGR variable proteins, it has remained unclear whether the CLec fold is a general solution for DGRs. We have addressed this problem by determining the structure of a second DGR variable protein, TvpA, from the pathogenic oral spirochete Treponema denticola. Despite its weak sequence identity to Mtd ({approx}16%), TvpA was found to also have a CLec fold, with predicted variable residues exposed in a ligand-binding site. However, this site in TvpA was markedly more variable than the one in Mtd, reflecting the unprecedented approximate 10{sup 20} potential variability of TvpA. In addition, similarity between TvpA and Mtd with formylglycine-generating enzymes was detected. These results provide strong evidence for the conservation of the formylglycine-generating enzyme-type CLec fold among DGRs as a means of accommodating massive sequence variation.

  10. Mitogenic activity of CEL-I, an N-acetylgalactosamine (GalNAc)-specific C-type lectin, isolated from the marine invertebrate Cucumaria echinata (Holothuroidea).

    PubMed

    Jiang, Zedong; Kim, Daekyung; Yamasaki, Yasuhiro; Yamanishi, Tomohiro; Hatakeyama, Tomomitsu; Yamaguchi, Kenichi; Oda, Tatsuya

    2010-01-01

    An N-acetylgalactosamine (GalNAc)-specific Ca(2+)-dependent lectin (C-type lectin), isolated from the marine invertebrate Holothuroidea (Cucumaria echinata), CEL-I, showed potent mitogenic activity toward normal mouse spleen cells. The mitogenic activity of CEL-I, which reached a maximum at 100 microg/ml, was inhibited by GalNAc in a concentration-dependent manner. The mitogenic effect of CEL-I at 10 microg/ml on T cell- enriched splenocytes was at a similar level due to a well-known T cell mitogen, concanavalin A (Con A), at 10 microg/ml. Furthermore, CEL-I evoked a mitogenic response from nude mouse spleen cells, while no significant effects of Con A on this cell population were observed over a wide range of concentrations. These results suggest that CEL-I is a potent mitogenic lectin with the ability to stimulate both T and B cells.

  11. Crystallization and preliminary crystallographic study of an invertebrate C-type lectin, CEL-I, from the marine invertebrate Cucumaria echinata.

    PubMed

    Hatakeyama, Tomomitsu; Matsuo, Noriaki; Aoyagi, Haruhiko; Sugawara, Hajime; Uchida, Tatsuya; Kurisu, Genji; Kusunoki, Masami

    2002-01-01

    CEL-I is a GalNAc-specific carbohydrate-binding protein (lectin) isolated from the sea cucumber Cucumaria echinata. This protein belongs to the widely distributed C-type lectin family of animal lectins, which require Ca(2+) for their carbohydrate-binding ability and play important roles in various molecular-recognition processes in organisms. CEL-I was crystallized with 2-methyl-2,4-pentanediol using the hanging-drop vapour-diffusion technique. The CEL-I crystals belong to the monoclinic space group C2, with unit-cell parameters a = 92.38 (3), b = 69.94 (3), c = 76.69 (3) A, beta = 136.46 (2) degrees. Diffraction data were collected to 2.0 A resolution using synchrotron radiation. The asymmetric unit contains one CEL-I molecule.

  12. Cytotoxicity of a GalNAc-specific C-type lectin CEL-I toward various cell lines.

    PubMed

    Kuramoto, Takuya; Uzuyama, Hitomi; Hatakeyama, Tomomitsu; Tamura, Tadashi; Nakashima, Takuji; Yamaguchi, Kenichi; Oda, Tatsuya

    2005-01-01

    We found that CEL-I was a potent cytotoxic lectin. MDCK, HeLa, and XC cells were highly sensitive to CEL-I cytotoxicity and killed in a dose-dependent manner, whereas CHO, L929, and RAW264.7 cells were relatively resistant to CEL-I, and no significant toxicity was observed up to 10 microg/ml. Among these cell lines, MDCK cells showed the highest susceptibility to CEL-I cytotoxicity. A binding study using FITC-labeled CEL-I (F-CEL-I) revealed that the amounts of bound F-CEL-I on the sensitive cell lines were evidently greater than those on the resistant cell lines, suggesting that the different susceptibility of the cell lines to CEL-I cytotoxicity is partly explained by different efficiencies of binding of CEL-I to these cell lines. Interestingly, the cytotoxicity of CEL-I toward MDCK cells was more potent than those of other lectins such as WGA, PHA-L, and Con A, even though these lectins were capable of binding to MDCK cells at comparable levels to CEL-I. Since the cytotoxicity of CEL-I was strongly inhibited by GalNAc, the binding to cell surface specific carbohydrates is essential for the CEL-I cytotoxicity. The trypan blue dye exclusion test indicated that CEL-I caused a disorder of plasma membrane integrity as a relatively early event. CEL-I failed to induce the release of carboxyfluorescein (CF) from CF-loaded MDCK cells as seen for pore-forming hemolytic isolectin CEL-III, suggesting that the primary cellular target of CEL-I may be the plasma membrane, but its action mechanism differs from that of CEL-III. Although CEL-I induced dramatic cellular morphological changes in MDCK cells, neither typical apoptotic nuclear morphological changes nor DNA fragmentation was observed in CEL-I-treated MDCK cells even after such cellular changes. Our results demonstrated that CEL-I showed a potent cytotoxic effect, especially on MDCK cells, by causing plasma membrane disorder without induction of apoptosis.

  13. Lebecin, a new C-type lectin like protein from Macrovipera lebetina venom with anti-tumor activity against the breast cancer cell line MDA-MB231.

    PubMed

    Jebali, Jed; Fakhfekh, Emna; Morgen, Maram; Srairi-Abid, Najet; Majdoub, Hafedh; Gargouri, Ali; El Ayeb, Mohamed; Luis, José; Marrakchi, Naziha; Sarray, Sameh

    2014-08-01

    C-type lectins like proteins display various biological activities and are known to affect especially platelet aggregation. Few of them have been reported to have anti-tumor effects. In this study, we have identified and characterized a new C-type lectin like protein, named lebecin. Lebecin is a heterodimeric protein of 30 kDa. The N-terminal amino acid sequences of both subunits were determined by Edman degradation and the entire amino acid sequences were deduced from cDNAs. The precursors of both lebecin subunits contain a 23-amino acid residue signal peptide and the mature α and β subunits are composed of 129 and 131 amino acids, respectively. Lebecin is shown to be a potent inhibitor of MDA-MB231 human breast cancer cells proliferation. Furthermore, lebecin dose-dependently inhibited the integrin-mediated attachment of these cells to different adhesion substrata. This novel C-type lectin also completely blocked MDA-MB231 cells migration towards fibronectin and fibrinogen in haptotaxis assays.

  14. CEL-I, an N-acetylgalactosamine (GalNAc)-specific C-type lectin, induces nitric oxide production in RAW264.7 mouse macrophage cell line.

    PubMed

    Yamanishi, Tomohiro; Hatakeyama, Tomomitsu; Yamaguchi, Kenichi; Oda, Tatsuya

    2009-08-01

    We found that CEL-I, a GalNAc-specific C-type lectin isolated from the marine invertebrate Holothuroidea (Cucumaria echinata), induces inducible nitric oxide synthase (iNOS) expression and NO production in RAW264.7 cells. The NO production was inhibited by an iNOS inhibitor, L-NAME, but was not by a lipopolysaccharide (LPS) inhibitor, polymyxin B. In the presence of 0.1-M GalNAc, increased NO production by CEL-I-treated RAW264.7 cells was observed rather than the inhibition. Bovine serum albumin (BSA) significantly inhibited the CEL-I-induced NO production as well as the binding of FITC-labelled CEL-I on RAW264.7 cells. Three MAP kinase inhibitors (specific to extra-cellular regulated kinase, c-jun NH(2)-terminal kinase and p38 MAP kinase) inhibited CEL-I-induced NO production with different extents. Heat-treatment of CEL-I resulted in a decreased activity of CEL-I depending on the temperature. These results suggest that CEL-I induces NO production in RAW264.7 cells through the protein-cell interaction rather than the binding to the specific carbohydrate chains on the cell surface.

  15. Molecular cloning of a new secreted sulfated mucin-like protein with a C-type lectin domain that is expressed in lymphoblastic cells.

    PubMed

    Bannwarth, S; Giordanengo, V; Lesimple, J; Lefebvre, J C

    1998-01-23

    We have previously demonstrated hyposialylation of the two major CD45 and leukosialin (CD43) molecules at the surface of latently human immunodeficiency virus type 1-infected CEM T cells (CEMLAI/NP), (Lefebvre, J. C., Giordanengo, V., Doglio, A., Cagnon, L., Breittmayer, J. P., Peyron, J. F., and Lesimple, J. (1994) Virology 199, 265-274; Lefebvre, J. C., Giordanengo, V., Limouse, M., Doglio, A., Cucchiarini, M., Monpoux, F., Mariani, R., and Peyron, J. F. (1994) J. Exp. Med. 180, 1609-1617). Searching to clarify mechanism(s) of hyposialylation, we observed two sulfated secreted glycoproteins (molecular mass approximately 47 and approximately 40 kDa) (P47 and P40), which were differentially sulfated and/or differentially secreted in the culture supernatants of CEMLAI/NP cells when compared with parental CEM cells. A hybridoma clone (7H1) resulting from the fusion between CEMLAI/NP and human embryonic fibroblasts MRC5 cells produced very large amounts of P47 that was purified using Jacalin lectin (specific for O-glycans) and microsequenced. Cloning of P47 was achieved using a CEMLAI/NP cDNA library screened with a degenerate oligonucleotide probe based on its NH2-terminal amino acid sequence. A single open reading frame encoding a protein of 323 amino acids was deduced from the longest isolated recombinant (1.4 kilobase). P47 is a secreted sulfated protein. It carries an NH2-terminal RGD (Arg-Gly-Asp) triplet, a striking alpha-helical leucine zipper composed of six heptads, and a C-terminal C-type lectin domain. The NH2-terminal portion is rich in glutamic acids with a predicted pI of 3.9. In addition, a hinge region with numerous condensed potential sites for O-glycan side chains, which are also the most likely sulfation sites, is located between the RGD and leucine zipper domains. Transcripts were detected in lymphoid tissues (notably bone marrow) and abundantly in T and B lymphoblastoid but very faintly in monocytoid cell lines.

  16. A novel C-type lectin with four CRDs is involved in the regulation of antimicrobial peptide gene expression in Hyriopsis cumingii.

    PubMed

    Zhao, Ling-Ling; Wang, Yu-Qing; Dai, Yun-Jia; Zhao, Li-Juan; Qin, Qiwei; Lin, Li; Ren, Qian; Lan, Jiang-Feng

    2016-08-01

    C-type lectins (CTLs) are found in a wide number of invertebrates, and have been reported to participate in immune responses, such as the activation of prophenoloxidase, cell adhesion, bacterial clearance and phagocytosis. Previous studies on CTLs focused on the function of their carbohydrate recognition domains (CRDs). Currently, studies on lectins with multi-CRDs are limited. In this study, a lectin with four CRDs was cloned from Hyriopsis cumingii, and called HcLec4. HcLec4 was widely distributed in several tissues and was significantly down-regulated at the early stage (2 h) of bacterial infection. We further analyzed the bacteria and carbohydrate binding activities of HcLec4. The results showed that HcLec4 could bind to several bacteria, lipopolysaccharide (LPS) and peptidoglycan (PGN). In HcLec4 knockdown mussels, the bacterial clearance rate was increased, and the expression level of antimicrobial peptides (AMPs) was up-regulated. This study reveals that HcLec4 exerts its antibacterial effect by regulating the expression of AMPs at the early stage of bacterial infection.

  17. Distinct usage of three C-type lectins by Japanese encephalitis virus: DC-SIGN, DC-SIGNR, and LSECtin.

    PubMed

    Shimojima, Masayuki; Takenouchi, Atsushi; Shimoda, Hiroshi; Kimura, Naho; Maeda, Ken

    2014-08-01

    Infection with West Nile virus and dengue virus, two mosquito-borne flaviviruses, is enhanced by two calcium-dependent lectins: dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), and its related molecule (DC-SIGNR). The present study examined the relationship between Japanese encephalitis virus (JEV) infection and three lectins: DC-SIGN, DC-SIGNR, and liver sinusoidal endothelial cell lectin (LSECtin). Expression of DC-SIGNR resulted in robust JEV proliferation in a lymphoid cell line, Daudi cells, which was otherwise non-permissive to infection. DC-SIGN expression caused moderate JEV proliferation, with effects that varied according to the cells in which JEV was prepared. LSECtin expression had comparatively minor, but consistent, effects, in all cell types used in JEV preparation. While DC-SIGN/DC-SIGNR-mediated JEV infection was inhibited by yeast mannan, LSECtin-mediated infection was inhibited by N-acetylglucosamine β1-2 mannose. Although involvement of DC-SIGN/DC-SIGNR in infection seems to be a common characteristic, this is the first report on usage of LSECtin in mosquito-borne flavivirus infection.

  18. Pathogen recognition of a novel C-type lectin from Marsupenaeus japonicus reveals the divergent sugar-binding specificity of QAP motif

    PubMed Central

    Alenton, Rod Russel R.; Koiwai, Keiichiro; Miyaguchi, Kohei; Kondo, Hidehiro; Hirono, Ikuo

    2017-01-01

    C-type lectins (CTLs) are calcium-dependent carbohydrate-binding proteins known to assist the innate immune system as pattern recognition receptors (PRRs). The binding specificity of CTLs lies in the motif of their carbohydrate recognition domain (CRD), the tripeptide motifs EPN and QPD bind to mannose and galactose, respectively. However, variants of these motifs were discovered including a QAP sequence reported in shrimp believed to have the same carbohydrate specificity as QPD. Here, we characterized a novel C-type lectin (MjGCTL) possessing a CRD with a QAP motif. The recombinant MjGCTL has a calcium-dependent agglutinating capability against both Gram-negative and Gram-positive bacteria, and its sugar specificity did not involve either mannose or galactose. In an encapsulation assay, agarose beads coated with rMjGCTL were immediately encapsulated from 0 h followed by melanization at 4 h post-incubation with hemocytes. These results confirm that MjGCTL functions as a classical CTL. The structure of QAP motif and carbohydrate-specificity of rMjGCTL was found to be different to both EPN and QPD, suggesting that QAP is a new motif. Furthermore, MjGCTL acts as a PRR binding to hemocytes to activate their adherent state and initiate encapsulation. PMID:28374848

  19. Alteration of the carbohydrate-binding specificity of a C-type lectin CEL-I mutant with an EPN carbohydrate-binding motif.

    PubMed

    Hatakeyama, Tomomitsu; Ishimine, Tomohiro; Baba, Tomohiro; Kimura, Masanari; Unno, Hideaki; Goda, Shuichiro

    2013-07-01

    CEL-I is a Gal/GalNAc-specific C-type lectin isolated from the sea cucumber Cucumaria echinata. This lectin is composed of two carbohydrate-recognition domains (CRDs) with the carbohydrate-recognition motif QPD (Gln-Pro- Asp), which is generally known to exist in galactose-specific C-type CRDs. In the present study, a mutant CEL-I with EPN (Glu-Pro-Asn) motif, which is thought to be responsible for the carbohydrate-recognition of mannose-specific Ctype CRDs, was produced in Escherichia coli, and its effects on the carbohydrate-binding specificity were examined using polyamidoamine dendrimer (PD) conjugated with carbohydrates. Although wild-type CEL-I effectively formed complexes with N-acetylgalactosamine (GalNAc)-PD but not with mannose-PD, the mutant CEL-I showed relatively weak but definite affinity for mannose-PD. These results indicated that the QPD and EPN motifs play a significant role in the carbohydrate-recognition mechanism of CEL-I, especially in the discrimination of galactose and mannose. Additional mutations in the recombinant CEL-I binding site may further increase its specificity for mannose, and should provide insights into designing novel carbohydrate-recognition proteins.

  20. The Cryptosporidium parvum C-Type Lectin CpClec Mediates Infection of Intestinal Epithelial Cells via Interactions with Sulfated Proteoglycans

    PubMed Central

    Ludington, Jacob G.

    2016-01-01

    The apicomplexan parasite Cryptosporidium causes significant diarrheal disease worldwide. Effective anticryptosporidial agents are lacking, in part because the molecular mechanisms underlying Cryptosporidium-host cell interactions are poorly understood. Previously, we identified and characterized a novel Cryptosporidium parvum C-type lectin domain-containing mucin-like glycoprotein, CpClec. In this study, we evaluated the mechanisms underlying interactions of CpClec with intestinal epithelial cells by using an Fc-tagged recombinant protein. CpClec-Fc displayed Ca2+-dependent, saturable binding to HCT-8 and Caco-2 cells and competitively inhibited C. parvum attachment to and infection of HCT-8 cells. Binding of CpClec-Fc was specifically inhibited by sulfated glycosaminoglycans, particularly heparin and heparan sulfate. Binding was reduced after the removal of heparan sulfate and following the inhibition of glycosaminoglycan synthesis or sulfation in HCT-8 cells. Like CpClec-Fc binding, C. parvum attachment to and infection of HCT-8 cells were inhibited by glycosaminoglycans and were reduced after heparan sulfate removal or inhibition of glycosaminoglycan synthesis or sulfation. Lastly, CpClec-Fc binding and C. parvum sporozoite attachment were significantly decreased in CHO cell mutants defective in glycosaminoglycan synthesis. Together, these results indicate that CpClec is a novel C-type lectin that mediates C. parvum attachment and infection via Ca2+-dependent binding to sulfated proteoglycans on intestinal epithelial cells. PMID:26975991

  1. Schistosoma mansoni soluble egg antigens are internalized by human dendritic cells through multiple C-type lectins and suppress TLR-induced dendritic cell activation.

    PubMed

    van Liempt, Ellis; van Vliet, Sandra J; Engering, Anneke; García Vallejo, Juan Jesus; Bank, Christine M C; Sanchez-Hernandez, Marta; van Kooyk, Yvette; van Die, Irma

    2007-04-01

    In schistosomiasis, a parasitic disease caused by helminths, the parasite eggs induce a T helper 2 cell (T(H)2) response in the host. Here, the specific role of human monocyte-derived dendritic cells (DCs) in initiation and polarization of the egg-specific T cell responses was examined. We demonstrate that immature DCs (iDCs) pulsed with schistosome soluble egg antigens (SEA) do not show an increase in expression of co-stimulatory molecules or cytokines, indicating that no conventional maturation was induced. The ability of SEA to affect the Toll-like receptor (TLR) induced maturation of iDCs was examined by copulsing the DCs with SEA and TLR-ligands. SEA suppressed both the maturation of iDCs induced by poly-I:C and LPS, as indicated by a decrease in co-stimulatory molecule expression and production of IL-12, IL-6 and TNF-alpha. In addition, SEA suppressed T(H)1 responses induced by the poly-I:C-pulsed DCs, and skewed the LPS-induced mixed response towards a T(H)2 response. Immature DCs rapidly internalized SEA through the C-type lectins DC-SIGN, MGL and the mannose receptor and the antigens were targeted to MHC class II-positive lysosomal compartments. The internalization of SEA by multiple C-type lectins may be important to regulate the response of the iDCs to TLR-induced signals.

  2. A C-type lectin (MrLec) with high expression in intestine is involved in innate immune response of Macrobrachium rosenbergii.

    PubMed

    Feng, Jinling; Huang, Xin; Jin, Min; Zhang, Yi; Li, Tingting; Hui, Kaimin; Ren, Qian

    2016-12-01

    C-type lectins (CTLs) are pattern-recognition proteins that play an important role in innate immunity of vertebrates and invertebrates. In this study, a lectin cDNA named MrLec was cloned and characterized from giant freshwater prawns (Macrobrachiun rosenbergii). The full-length cDNA of MrLec was 1431 bp, which contained an open reading frame of 1041 bp that encoded a protein with 346 amino acids. MrLec was found to contain a typical signal peptide of 18 amino acids and a single carbohydrate-recognition domain with 121 amino acids. The phylogenetic analysis showed that MrLec was grouped with vertebrates and had 57% identity with C-type lectin 3 from Marsupenaeus japonicas. Tissue expression analysis showed that MrLec was ubiquitously distributed at a high level in the intestine, with lower expression levels in the hemocytes, heart, hepatopancreas, gill and stomach. Vibrio parahaemolyticus infection induced the upregulation of MrLec in the gills and intestine. For the white spot syndrome virus (WSSV) challenge, MrLec in gills was upregulated at 24, 36 and 48 h. In intestine, MrLec also went up at 36 and 48 h WSSV challenge. Recombinant MrLec can agglutinate (Ca(2+)-dependent) and bind both Gram-negative and Gram-positive bacteria. rMrLec could attach to lipopolysaccharide and peptidoglycan in a dose-dependent manner. These results indicated possible MrLec involvement in the immune response of giant freshwater prawns.

  3. Characteristic recognition of N-acetylgalactosamine by an invertebrate C-type Lectin, CEL-I, revealed by X-ray crystallographic analysis.

    PubMed

    Sugawara, Hajime; Kusunoki, Masami; Kurisu, Genji; Fujimoto, Tokiko; Aoyagi, Haruhiko; Hatakeyama, Tomomitsu

    2004-10-22

    CEL-I is a C-type lectin, purified from the sea cucumber Cucumaria echinata, that shows a high specificity for N-acetylgalactosamine (GalNAc). We determined the crystal structures of CEL-I and its complex with GalNAc at 2.0 and 1.7 A resolution, respectively. CEL-I forms a disulfide-linked homodimer and contains two intramolecular disulfide bonds, although it lacks one intramolecular disulfide bond that is widely conserved among various C-type carbohydrate recognition domains (CRDs). Although the sequence similarity of CEL-I with other C-type CRDs is low, the overall folding of CEL-I was quite similar to those of other C-type CRDs. The structure of the complex with GalNAc revealed that the basic recognition mode of GalNAc was very similar to that for the GalNAc-binding mutant of the mannose-binding protein. However, the acetamido group of GalNAc appeared to be recognized more strongly by the combination of hydrogen bonds to Arg115 and van der Waals interaction with Gln70. Mutational analyses, in which Gln70 and/or Arg115 were replaced by alanine, confirmed that these residues contributed to GalNAc recognition in a cooperative manner.

  4. C-type lectin-like receptor LOX-1 promotes dendritic cell-mediated class-switched B cell responses.

    PubMed

    Joo, HyeMee; Li, Dapeng; Dullaers, Melissa; Kim, Tae-Whan; Duluc, Dorothee; Upchurch, Katherine; Xue, Yaming; Zurawski, Sandy; Le Grand, Roger; Liu, Yong-Jun; Kuroda, Marcelo; Zurawski, Gerard; Oh, SangKon

    2014-10-16

    Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a pattern-recognition receptor for a variety of endogenous and exogenous ligands. However, LOX-1 function in the host immune response is not fully understood. Here, we report that LOX-1 expressed on dendritic cells (DCs) and B cells promotes humoral responses. On B cells LOX-1 signaling upregulated CCR7, promoting cellular migration toward lymphoid tissues. LOX-1 signaling on DCs licensed the cells to promote B cell differentiation into class-switched plasmablasts and led to downregulation of chemokine receptor CXCR5 and upregulation of chemokine receptor CCR10 on plasmablasts, enabling their exit from germinal centers and migration toward local mucosa and skin. Finally, we found that targeting influenza hemagglutinin 1 (HA1) subunit to LOX-1 elicited HA1-specific protective antibody responses in rhesus macaques. Thus, LOX-1 expressed on B cells and DC cells has complementary functions to promote humoral immune responses.

  5. Structural and binding studies of a C-type galactose-binding lectin from Bothrops jararacussu snake venom.

    PubMed

    Sartim, Marco A; Pinheiro, Matheus P; de Pádua, Ricardo A P; Sampaio, Suely V; Nonato, M Cristina

    2017-02-01

    BJcuL is a snake venom galactoside-binding lectin (SVgalL) isolated from Bothrops jararacussu and is involved in a wide variety of biological activities including triggering of pro-inflammatory response, disruption of microbial biofilm structure and induction of apoptosis. In the present work, we determined the crystallographic structure of BJcuL, the first holo structure of a SVgalL, and introduced the fluorescence-based thermal stability assay (Thermofluor) as a tool for screening and characterization of the binding mechanism of SVgalL ligands. BJcuL structure revealed the existence of a porous and flexible decameric arrangement composed of disulfide-linked dimers related by a five-fold symmetry. Each monomer contains the canonical carbohydrate recognition domain, a calcium ion required for BJcuL lectinic activity and a sodium ion required for protein stabilization. BJcuL thermostability was found to be induced by calcium ion and galactoside sugars which exhibit hyperbolic saturation profiles dependent on ligand concentration. Serendipitously, the gentamicin group of aminoglycoside antibiotics (gAGAs) was also identified as BJcuL ligands. On contrast, gAGAs exhibited a sigmoidal saturation profile compatible with a cooperative mechanism of binding. Thermofluor, hemagglutination inhibition assay and molecular docking strategies were used to identify a distinct binding site in BJcuL localized at the dimeric interface near the fully conserved intermolecular Cys86-Cys86 disulfide bond. The hybrid approach used in the present work provided novel insights into structural behavior and functional diversification of SVgaLs.

  6. C-type lectin-like domain and fibronectin-like type II domain of phospholipase A(2) receptor 1 modulate binding and migratory responses to collagen.

    PubMed

    Takahashi, Soichiro; Watanabe, Kazuhiro; Watanabe, Yosuke; Fujioka, Daisuke; Nakamura, Takamitsu; Nakamura, Kazuto; Obata, Jun-ei; Kugiyama, Kiyotaka

    2015-03-24

    Phospholipase A2 receptor 1 (PLA2R) mediates collagen-dependent migration. The mechanisms by which PLA2R interacts with collagen remain unclear. We produced HEK293 cells expressing full-length wild-type PLA2R or a truncated PLA2R that lacks fibronectin-like type II (FNII) domains or several regions of C-type lectin-like domain (CTLD). We show that the CTLD1-2 as well as the FNII domain of PLA2R are responsible for binding to collagen and for collagen-dependent migration. Thus, multiple regions and domains of the extracellular portion of PLA2R participate in the responses to collagen. These data suggest a potentially new mechanism for PLA2R-mediated biological response beyond that of a receptor for secretory PLA2.

  7. Amino acid sequence and carbohydrate-binding analysis of the N-acetyl-D-galactosamine-specific C-type lectin, CEL-I, from the Holothuroidea, Cucumaria echinata.

    PubMed

    Hatakeyama, Tomomitsu; Matsuo, Noriaki; Shiba, Kouhei; Nishinohara, Shoichi; Yamasaki, Nobuyuki; Sugawara, Hajime; Aoyagi, Haruhiko

    2002-01-01

    CEL-I is one of the Ca2+-dependent lectins that has been isolated from the sea cucumber, Cucumaria echinata. This protein is composed of two identical subunits held by a single disulfide bond. The complete amino acid sequence of CEL-I was determined by sequencing the peptides produced by proteolytic fragmentation of S-pyridylethylated CEL-I. A subunit of CEL-I is composed of 140 amino acid residues. Two intrachain (Cys3-Cys14 and Cys31-Cys135) and one interchain (Cys36) disulfide bonds were also identified from an analysis of the cystine-containing peptides obtained from the intact protein. The similarity between the sequence of CEL-I and that of other C-type lectins was low, while the C-terminal region, including the putative Ca2+ and carbohydrate-binding sites, was relatively well conserved. When the carbohydrate-binding activity was examined by a solid-phase microplate assay, CEL-I showed much higher affinity for N-acetyl-D-galactosamine than for other galactose-related carbohydrates. The association constant of CEL-I for p-nitrophenyl N-acetyl-beta-D-galactosaminide (NP-GalNAc) was determined to be 2.3 x 10(4) M(-1), and the maximum number of bound NP-GalNAc was estimated to be 1.6 by an equilibrium dialysis experiment.

  8. PcLT, a novel C-type lectin from Procambarus clarkii, is involved in the innate defense against Vibrio alginolyticus and WSSV.

    PubMed

    Chen, Dan-Dan; Meng, Xiao-Lin; Xu, Jin-Ping; Yu, Jing-You; Meng, Ming-Xiang; Wang, Jian

    2013-03-01

    Lectins play important roles in the innate immunity. In this work, a C-type lectin, PcLT, was obtained from Procambarus clarkii which contained a carbohydrate recognition domain (CRD) with the ability to bind to Vibrio alginolyticus and white spot syndrome virus (WSSV). RT-PCR and qRT-PCR analyses demonstrated PcLT was specifically expressed in the hepatopancreas and the mRNA was markedly upregulated by V. alginolyticus and WSSV challenge, although a slight difference in timing was observed. The study also revealed upregulation of the mRNA expression and activity of immunological factors, peroxinectin, phenoloxidase, and superoxide dismutase in hemolymph in response to recombinant PcLT (rPcLT). Moreover, rPcLT also enhanced the phagocytosis, facilitated the subsequent clearance of V. alginolyticus and prolonged the survival of WSSV-infected shrimp. These results suggested that PcLT not only served as a pathogen recognition receptor (PRR), but also functioned as an immune modulator, participating in host defense against invaders.

  9. A C-type lectin (AiCTL-3) from bay scallop Argopecten irradians with mannose/galactose binding ability to bind various bacteria.

    PubMed

    Huang, Mengmeng; Song, Xiaoyan; Zhao, Jianmin; Mu, Changkao; Wang, Lingling; Zhang, Huan; Zhou, Zhi; Liu, Xiaolin; Song, Linsheng

    2013-11-15

    C-type lectins are a family of Ca(2+)-dependent carbohydrate-binding proteins playing crucial roles in innate immunity of vertebrates and invertebrates. In the present study, the cDNA of a C-type lectin with one carbohydrate-recognition domain (CRD) of 127 amino acids was cloned from bay scallop Argopecten irradians (designated AiCTL-3) by rapid amplification of cDNA end (RACE) techniques based on expressed sequence tag (EST) analysis. The mRNA transcripts of AiCTL-3 could be detected in all the tested tissues including hepatopancreas, gonad, adductor muscle, heart, hemocytes, mantle and gill, with the highest expression level in hepatopancreas. After the challenges with Vibrio anguillarum and Micrococcus luteus, the mRNA expression level of AiCTL-3 was obviously up-regulated and reached the maximum level at 9h (11.87fold, P<0.01, and 20.02-fold, P<0.05, respectively). The recombinant AiCTL-3 (designated as rAiCTL-3) could bind LPS, PGN, and glucan in vitro, but could not bind mannan. And it also bound Gram-positive bacteria Staphylococcus aureus as well as Gram-negative bacteria Escherichia coli and V. anguillarum. With a Ca(2+) binding site 2 EPN (Glu-Pro-Asn) motif, rAiCTL-3 could bind both mannose and galactose which was quite different from those in vertebrate. Meanwhile, it could significantly enhance the phagocytosis of scallop hemocytes in vitro. The results clearly suggested that AiCTL-3 could serve not only as a PRR participated in the immune response against various PAMPs and bacteria in non-self recognition via mannose/galactose binding specificity but an opsonin playing an important part in clearance of invaders.

  10. Interaction of lectins with membrane receptors on erythrocyte surfaces.

    PubMed

    Sung, L A; Kabat, E A; Chien, S

    1985-08-01

    The interactions of human genotype AO erythrocytes (red blood cells) (RBCs) with N-acetylgalactosamine-reactive lectins isolated from Helix pomatia (HPA) and from Dolichos biflorus (DBA) were studied. Binding curves obtained with the use of tritium-labeled lectins showed that the maximal numbers of lectin molecules capable of binding to human genotype AO RBCs were 3.8 X 10(5) and 2.7 X 10(5) molecules/RBC for HPA and DBA, respectively. The binding of one type of lectin may influence the binding of another type. HPA was found to inhibit the binding of DBA, but not vice versa. The binding of HPA was weakly inhibited by a beta-D-galactose-reactive lectin isolated from Ricinus communis (designated RCA1). Limulus polyphemus lectin (LPA), with specificity for N-acetylneuraminic acid, did not influence the binding of HPA but enhanced the binding of DBA. About 80% of LPA receptors (N-acetylneuraminic acid) were removed from RBC surfaces by neuraminidase treatment. Neuraminidase treatment of RBCs resulted in increases of binding of both HPA and DBA, but through different mechanisms. An equal number (7.6 X 10(5) of new HPA sites were generated on genotypes AO and OO RBCs by neuraminidase treatment, and these new sites accounted for the enhancement (AO cells) and appearance (OO cells) of hemagglutinability by HPA. Neuraminidase treatment did not generate new DBA sites, but increased the DBA affinity for the existing receptors; as a result, genotype AO cells increased their hemagglutinability by DBA, while OO cells remained unagglutinable. The use of RBCs of different genotypes in binding assays with 3H-labeled lectins of known specificities provides an experimental system for studying cell-cell recognition and association.

  11. Critical Role for an acidic amino acid region in platelet signaling by the HemITAM (hemi-immunoreceptor tyrosine-based activation motif) containing receptor CLEC-2 (C-type lectin receptor-2).

    PubMed

    Hughes, Craig E; Sinha, Uma; Pandey, Anjali; Eble, Johannes A; O'Callaghan, Christopher A; Watson, Steve P

    2013-02-15

    CLEC-2 is a member of new family of C-type lectin receptors characterized by a cytosolic YXXL downstream of three acidic amino acids in a sequence known as a hemITAM (hemi-immunoreceptor tyrosine-based activation motif). Dimerization of two phosphorylated CLEC-2 molecules leads to recruitment of the tyrosine kinase Syk via its tandem SH2 domains and initiation of a downstream signaling cascade. Using Syk-deficient and Zap-70-deficient cell lines we show that hemITAM signaling is restricted to Syk and that the upstream triacidic amino acid sequence is required for signaling. Using surface plasmon resonance and phosphorylation studies, we demonstrate that the triacidic amino acids are required for phosphorylation of the YXXL. These results further emphasize the distinct nature of the proximal events in signaling by hemITAM relative to ITAM receptors.

  12. Characterization of recombinant CEL-I, a GalNAc-specific C-type lectin, expressed in Escherichia coli using an artificial synthetic gene.

    PubMed

    Hatakeyama, Tomomitsu; Shiba, Kouhei; Matsuo, Noriaki; Fujimoto, Tokiko; Oda, Tatsuya; Sugawara, Hajime; Aoyagi, Haruhiko

    2004-01-01

    CEL-I is a C-type lectin isolated from the Holothuroidea Cucumaria echinata. This lectin shows very high N-acetylgalactosamine-binding specificity. We constructed an artificial gene encoding recombinant CEL-I (rCEL-I) using a combination of synthetic oligonucleotides, and expressed it in Escherichia coli cells. Since the recombinant protein was obtained as inclusion bodies, the latter were solubilized using urea and 2-mercaptoethanol, and the protein was refolded during the purification and dialysis steps. The purified rCEL-I showed comparable hemagglutinating activity to that of native CEL-I at relatively high Ca(2+)-concentrations, whereas it was weaker at lower Ca(2+)-concentrations due to decreased Ca(2+)-binding affinity. rCEL-I exhibited similar carbohydrate-binding specificity to native CEL-I, including strong GalNAc-binding specificity, as examined by hemagglutination inhibition assay. Comparison of the far UV-CD spectra of recombinant and native CEL-I revealed that the two proteins undergo a similar conformational change upon binding of Ca(2+). Single crystals of rCEL-I were also obtained under the same conditions as those used for the native protein, suggesting that they have similar tertiary structures. Although native CEL-I exhibited strong cytotoxicity toward cultured cells, rCEL-I showed low cytotoxicity. These results indicate that rCEL-I has a tertiary structure and carbohydrate-binding specificity similar to those of native CEL-I. Howeger, there is a subtle difference in the properties between the two proteins probably due to the additional methionine residue at the N-terminus of rCEL-I.

  13. Functional analysis of ligand-binding and signal transduction domains of CD69 and CD23 C-type lectin leukocyte receptors.

    PubMed

    Sancho, D; Santis, A G; Alonso-Lebrero, J L; Viedma, F; Tejedor, R; Sánchez-Madrid, F

    2000-10-01

    CD69 and CD23 are leukocyte receptors with distinctive pattern of cell expression and functional features that belong to different C-type lectin receptor subfamilies. To assess the functional equivalence of different domains of these structurally related proteins, a series of CD69/CD23 chimeras exchanging the carbohydrate recognition domain, the neck region, and the transmembrane and cytoplasmic domains were generated. Biochemical analysis revealed the importance of the neck region (Cys68) in the dimerization of CD69. Functional analysis of these chimeras in RBL-2H3 mast cells and Jurkat T cell lines showed the interchangeability of structural domains of both proteins regarding Ca2+ fluxes, serotonin release, and TNF-alpha synthesis. The type of the signal transduced mainly relied on the cytoplasmic domain and was independent of receptor oligomerization. The cytoplasmic domain of CD69 transduced a Ca2+-mediated signaling that was dependent on the extracellular uptake of Ca2+. Furthermore, a significant production of TNF-alpha was induced through the cytoplasmic domain of CD69 in RBL-2H3 cells, which was additive to that promoted via FcepsilonRI, thus suggesting a role for CD69 in the late phase of reactions mediated by mast cells. Our results provide new important data on the functional equivalence of homologous domains of these two leukocyte receptors.

  14. Syk and Src Family Kinases Regulate C-type Lectin Receptor 2 (CLEC-2)-mediated Clustering of Podoplanin and Platelet Adhesion to Lymphatic Endothelial Cells*

    PubMed Central

    Pollitt, Alice Y.; Poulter, Natalie S.; Gitz, Eelo; Navarro-Nuñez, Leyre; Wang, Ying-Jie; Hughes, Craig E.; Thomas, Steven G.; Nieswandt, Bernhard; Douglas, Michael R.; Owen, Dylan M.; Jackson, David G.; Dustin, Michael L.; Watson, Steve P.

    2014-01-01

    The interaction of C-type lectin receptor 2 (CLEC-2) on platelets with Podoplanin on lymphatic endothelial cells initiates platelet signaling events that are necessary for prevention of blood-lymph mixing during development. In the present study, we show that CLEC-2 signaling via Src family and Syk tyrosine kinases promotes platelet adhesion to primary mouse lymphatic endothelial cells at low shear. Using supported lipid bilayers containing mobile Podoplanin, we further show that activation of Src and Syk in platelets promotes clustering of CLEC-2 and Podoplanin. Clusters of CLEC-2-bound Podoplanin migrate rapidly to the center of the platelet to form a single structure. Fluorescence lifetime imaging demonstrates that molecules within these clusters are within 10 nm of one another and that the clusters are disrupted by inhibition of Src and Syk family kinases. CLEC-2 clusters are also seen in platelets adhered to immobilized Podoplanin using direct stochastic optical reconstruction microscopy. These findings provide mechanistic insight by which CLEC-2 signaling promotes adhesion to Podoplanin and regulation of Podoplanin signaling, thereby contributing to lymphatic vasculature development. PMID:25368330

  15. Association of C-Type Lectin Mincle with FcεRIβγ Subunits Leads to Functional Activation of RBL-2H3 Cells through Syk

    PubMed Central

    Honjoh, Chisato; Chihara, Kazuyasu; Yoshiki, Hatsumi; Yamauchi, Shota; Takeuchi, Kenji; Kato, Yuji; Hida, Yukio; Ishizuka, Tamotsu; Sada, Kiyonao

    2017-01-01

    Macrophage-inducible C-type lectin (Mincle) interacts with the γ-subunit of high-affinity IgE receptor (FcεRIγ) and activates Syk by recognizing its specific ligand, trehalose-6,6′-dimycolate, a glycolipid produced by Mycobacterium tuberculosis. It has been suggested that mast cells participate in the immune defense against pathogenic microbes including M. tuberculosis, although the functions are still uncertain. In this study, we examined the Mincle-mediated signaling pathway and cellular responses using RBL-2H3 cells. Mincle formed a protein complex with not only FcεRIγ but also FcεRIβ in a stable cell line expressing myc-tagged Mincle. In addition, engagement of Mincle increased the levels of protein tyrosine phosphorylation and ERK phosphorylation. A pull-down assay demonstrated that cross-linking of Mincle induced binding of FcεRIβγ subunits to the Src homology 2 domain of Syk. Pharmacological and genetic studies indicated that activation of Syk was critical for Mincle-mediated activation of phospholipase Cγ2, leading to the activation of ERK and nuclear factor of activated T cells. Moreover, engagement of Mincle efficiently induced up-regulation of characteristic mast cell genes in addition to degranulation. Taken together, our present results suggest that mast cells contribute to Mincle-mediated immunity through Syk activation triggered by association with the FcεRIβγ complex. PMID:28393919

  16. C-type lectin-like molecule-1 (CLL1)-targeted TRAIL augments the tumoricidal activity of granulocytes and potentiates therapeutic antibody-dependent cell-mediated cytotoxicity.

    PubMed

    Wiersma, Valerie R; de Bruyn, Marco; Shi, Ce; Gooden, Marloes J M; Wouters, Maartje C A; Samplonius, Douwe F; Hendriks, Djoke; Nijman, Hans W; Wei, Yunwei; Zhou, Jin; Helfrich, Wijnand; Bremer, Edwin

    2015-01-01

    The therapeutic effect of anti-cancer monoclonal antibodies stems from their capacity to opsonize targeted cancer cells with subsequent phagocytic removal, induction of antibody-dependent cell-mediated cytotoxicity (ADCC) or induction of complement-mediated cytotoxicity (CDC). The major immune effector cells involved in these processes are natural killer (NK) cells and granulocytes. The latter and most prevalent blood cell population contributes to phagocytosis, but is not effective in inducing ADCC. Here, we report that targeted delivery of the tumoricidal protein tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to granulocyte marker C-type lectin-like molecule-1 (CLL1), using fusion protein CLL1:TRAIL, equips granulocytes with high levels of TRAIL. Upon CLL1-selective binding of this fusion protein, granulocytes acquire additional TRAIL-mediated cytotoxic activity that, importantly, potentiates antibody-mediated cytotoxicity of clinically used therapeutic antibodies (e.g., rituximab, cetuximab). Thus, CLL1:TRAIL could be used as an adjuvant to optimize the clinical potential of anticancer antibody therapy by augmenting tumoricidal activity of granulocytes.

  17. Purification and characterization of a novel C-type hemolytic lectin for clot lysis from the fresh water clam Villorita cyprinoides: a possible natural thrombolytic agent against myocardial infarction.

    PubMed

    Sudhakar, G R Learnal; Vincent, S G Prakash

    2014-02-01

    Villorita cyprinoides (black clam) is a fresh water clam that belongs as a bivalve to the group of mollusc. The saline extracts from the muscle reveal high titers of agglutination potency on trypsin-treated rabbit erythrocytes. With the help of affinity chromatography a hemolytic protein with lectin activity which could all be inhibited by D-galactose were isolated. The lectins were separated on DEAE-cellulose and the main component was purified after an additional step of gel filtration on sephadex G-75. The main component is a non-glycosylated protein with a molecular weight of 96,560 Da determined by MALDI-ToF, consisting of a single protein chain and characterized by the lack of polymers and intermediate disulfide bonds. The pure main lectin with clot lytic feature shows two bands at molecular weights 36,360 and 26, 520 Da. Optimal inhibition of the pure lectin is achieved by D-galactose containing oligo- and polysaccharides. The lectin activity decreased above 40 °C and was lost at 62 °C, the stability over the pH range between 7.0 and 8.0 and requires divalent cations for their activity. The novel C-type hemolytic lectin for clot lysis from the clam Villorita cyprinoides was identified and evaluated, the purified hemolytic lectin (0.35 mg/ml and 0.175 mg/ml) enhanced clot lysis activity when compared to the different concentration (5 mg/ml and 1 mg/ml) of commercial streptokinase. In the present study identified hemolytic lectin was a rapid and effective clot lytic molecule and could be developed as new drug molecule in future.

  18. Development of gastrointestinal surface. VIII. Lectin identification of carbohydrate differences

    SciTech Connect

    Pang, K.Y.; Bresson, J.L.; Walker, W.A.

    1987-05-01

    Binding of microvillus membranes (MVM) from newborn and adult rats by concanavalin A (Con A), Ulex europaeus (UEA I), Dolichos bifluorus (DBA), and Triticum vulgaris (WGA) was examined to determine the availability of carbohydrate-containing sites for these lectins on the intestinal surface during development. Consistent patterns of differences in the reaction of MVM with these lectins were found. Con A and UEA had much higher reactivities to MVM of adult than newborn rats. /sup 125/I-labeled-UEA gel overlay experiments revealed the abundance of UEA-binding sites in MVM of adult rat in contrast to the two binding sites in MVM of a newborn rat. DBA bound only to MVM of the adults, and very few binding sites were found in immature MVM. In contrast to these lectins, WGA binding was much higher in MVM of the newborns and decreased with maturation. Additional experiments on the age dependence of UEA and DBA reactivities revealed that the most striking changes occur in animals from 2 to 2 wk of age. In MVM from 2-wk-old rats, there were only 13.9% and < 0.2% of the adult binding capacities for UEA and DBA, respectively. By the time the animals were 4 wk old, the binding capacity for UEA had attained close to the level of the adults, whereas for DBA it reached 71.3% of the adult value. These results provide definite evidence of changes in the intestinal surface during perinatal development.

  19. Super-resolution imaging of C-type lectin spatial rearrangement within the dendritic cell plasma membrane at fungal microbe contact sites

    PubMed Central

    Itano, Michelle S.; Graus, Matthew S.; Pehlke, Carolyn; Wester, Michael J.; Liu, Ping; Lidke, Keith A.; Thompson, Nancy L.; Jacobson, Ken; Neumann, Aaron K.

    2014-01-01

    Dendritic cells express DC-SIGN and CD206, C-type lectins (CTLs) that bind a variety of pathogens and may facilitate pathogen uptake for subsequent antigen presentation. Both proteins form punctate membrane nanodomains (∼80 nm) on naïve cells. We analyzed the spatiotemporal distribution of CTLs following host-fungal particle contact using confocal microscopy and three distinct methods of cluster identification and measurement of receptor clusters in super-resolution datasets: DBSCAN, Pair Correlation and a custom implementation of the Getis spatial statistic. Quantitative analysis of confocal and super-resolution images demonstrated that CTL nanodomains become concentrated in the contact site relative to non-contact membrane after the first hour of exposure and established that this recruitment is sustained out to 4 h. DC-SIGN nanodomains in fungal contact sites exhibit a 70% area increase and a 38% decrease in interdomain separation. Contact site CD206 nanodomains possess 90% greater area and 42% lower interdomain separation relative to non-contact regions. Contact site CTL clusters appear as disk-shaped domains of approximately 150–175 nm in diameter. The increase in length scale of CTL nanostructure in contact sites suggests that the smaller nanodomains on resting membranes may merge during fungal recognition, or that they become packed closely enough to achieve sub-resolution inter-domain edge separations of <30 nm. This study provides evidence of local receptor spatial rearrangements on the nanoscale that occur in the plasma membrane upon pathogen binding and may direct important signaling interactions required to recognize and respond to the presence of a relatively large pathogen. PMID:25506589

  20. A platform to screen for C-type lectin receptor-binding carbohydrates and their potential for cell-specific targeting and immune modulation.

    PubMed

    Maglinao, Maha; Eriksson, Magdalena; Schlegel, Mark K; Zimmermann, Stephanie; Johannssen, Timo; Götze, Sebastian; Seeberger, Peter H; Lepenies, Bernd

    2014-02-10

    Myeloid C-type lectin receptors (CLRs) in innate immunity represent a superfamily of pattern recognition receptors that recognize carbohydrate structures on pathogens and self-antigens. The primary interaction of an antigen-presenting cell and a pathogen shapes the following immune response. Therefore, the identification of CLR ligands that can either enhance or modulate the immune response is of interest. We have developed a screening platform based on glycan arrays to identify immune modulatory carbohydrate ligands of CLRs. A comprehensive library of CLRs was expressed by fusing the extracellular part of each respective CLR, the part containing the carbohydrate-recognition domain (CRD), to the Fc fragment of human IgG1 molecules. CLR-Fc fusion proteins display the CRD in a dimeric form, are properly glycosylated, and can be detected by a secondary antibody with a conjugated fluorophore. Thus, they are valuable tools for high-throughput screening. We were able to identify novel carbohydrate binders of CLRs using the glycan array technology. These CLR-binding carbohydrates were then covalently attached to the model antigen ovalbumin. The ovalbumin neoglycoconjugates were used in a dendritic cell/T cell co-culture assay to stimulate transgenic T cells in vitro. In addition, mice were immunized with these conjugates to analyze the immune modulatory properties of the CLR ligands in vivo. The CLR ligands induced an increased Th1 cytokine production in vitro and modulated the humoral response in vivo. The platform described here allows for the identification of CLR ligands, as well as the evaluation of each ligand's cell-specific targeting and immune modulatory properties.

  1. A Lectin from Dioclea violacea Interacts with Midgut Surface of Lutzomyia migonei, Unlike Its Homologues, Cratylia floribunda Lectin and Canavalia gladiata Lectin

    PubMed Central

    Monteiro Tínel, Juliana Montezuma Barbosa; Benevides, Melina Fechine Costa; Frutuoso, Mércia Sindeaux; Rocha, Camila Farias; Arruda, Francisco Vassiliepe Sousa; Vasconcelos, Mayron Alves; Pereira-Junior, Francisco Nascimento; Cajazeiras, João Batista; do Nascimento, Kyria Santiago; Martins, Jorge Luiz; Teixeira, Edson Holanda; Cavada, Benildo Sousa; dos Santos, Ricardo Pires; Lima Pompeu, Margarida Maria

    2014-01-01

    Leishmaniasis is a vector-borne disease transmitted by phlebotomine sand fly. Susceptibility and refractoriness to Leishmania depend on the outcome of multiple interactions that take place within the sand fly gut. Promastigote attachment to sand fly midgut epithelium is essential to avoid being excreted together with the digested blood meal. Promastigote and gut sand fly surface glycans are important ligands in this attachment. The purpose of the present study was to evaluate the interaction of three lectins isolated from leguminous seeds (Diocleinae subtribe), D-glucose and D-mannose-binding, with glycans on Lutzomyia migonei midgut. To study this interaction the lectins were labeled with FITC and a fluorescence assay was performed. The results showed that only Dioclea violacea lectin (DVL) was able to interact with midgut glycans, unlike Cratylia floribunda lectin (CFL) and Canavalia gladiata lectin (CGL). Furthermore, when DVL was blocked with D-mannose the interaction was inhibited. Differences of spatial arrangement of residues and volume of carbohydrate recognition domain (CRD) may be the cause of the fine specificity of DVL for glycans in the surface on Lu. migonei midgut. The findings in this study showed the presence of glycans in the midgut with glucose/mannose residues in its composition and these residues may be important in interaction between Lu. migonei midgut and Leishmania. PMID:25431778

  2. U(VI) reduction by diverse outer surface c-type cytochromes of Geobacter sulfurreducens.

    PubMed

    Orellana, Roberto; Leavitt, Janet J; Comolli, Luis R; Csencsits, Roseann; Janot, Noemie; Flanagan, Kelly A; Gray, Arianna S; Leang, Ching; Izallalen, Mounir; Mester, Tünde; Lovley, Derek R

    2013-10-01

    Early studies with Geobacter sulfurreducens suggested that outer-surface c-type cytochromes might play a role in U(VI) reduction, but it has recently been suggested that there is substantial U(VI) reduction at the surface of the electrically conductive pili known as microbial nanowires. This phenomenon was further investigated. A strain of G. sulfurreducens, known as Aro-5, which produces pili with substantially reduced conductivity reduced U(VI) nearly as well as the wild type, as did a strain in which the gene for PilA, the structural pilin protein, was deleted. In order to reduce rates of U(VI) reduction to levels less than 20% of the wild-type rates, it was necessary to delete the genes for the five most abundant outer surface c-type cytochromes of G. sulfurreducens. X-ray absorption near-edge structure spectroscopy demonstrated that whereas 83% ± 10% of the uranium associated with wild-type cells correspond to U(IV) after 4 h of incubation, with the quintuple mutant, 89% ± 10% of uranium was U(VI). Transmission electron microscopy and X-ray energy dispersion spectroscopy revealed that wild-type cells did not precipitate uranium along pili as previously reported, but U(IV) was precipitated at the outer cell surface. These findings are consistent with those of previous studies, which have suggested that G. sulfurreducens requires outer-surface c-type cytochromes but not pili for the reduction of soluble extracellular electron acceptors.

  3. U(VI) Reduction by Diverse Outer Surface c-Type Cytochromes of Geobacter sulfurreducens

    PubMed Central

    Leavitt, Janet J.; Comolli, Luis R.; Csencsits, Roseann; Janot, Noemie; Flanagan, Kelly A.; Gray, Arianna S.; Leang, Ching; Izallalen, Mounir; Mester, Tünde; Lovley, Derek R.

    2013-01-01

    Early studies with Geobacter sulfurreducens suggested that outer-surface c-type cytochromes might play a role in U(VI) reduction, but it has recently been suggested that there is substantial U(VI) reduction at the surface of the electrically conductive pili known as microbial nanowires. This phenomenon was further investigated. A strain of G. sulfurreducens, known as Aro-5, which produces pili with substantially reduced conductivity reduced U(VI) nearly as well as the wild type, as did a strain in which the gene for PilA, the structural pilin protein, was deleted. In order to reduce rates of U(VI) reduction to levels less than 20% of the wild-type rates, it was necessary to delete the genes for the five most abundant outer surface c-type cytochromes of G. sulfurreducens. X-ray absorption near-edge structure spectroscopy demonstrated that whereas 83% ± 10% of the uranium associated with wild-type cells correspond to U(IV) after 4 h of incubation, with the quintuple mutant, 89% ± 10% of uranium was U(VI). Transmission electron microscopy and X-ray energy dispersion spectroscopy revealed that wild-type cells did not precipitate uranium along pili as previously reported, but U(IV) was precipitated at the outer cell surface. These findings are consistent with those of previous studies, which have suggested that G. sulfurreducens requires outer-surface c-type cytochromes but not pili for the reduction of soluble extracellular electron acceptors. PMID:23934497

  4. Lectins with anti-HIV activity: a review.

    PubMed

    Akkouh, Ouafae; Ng, Tzi Bun; Singh, Senjam Sunil; Yin, Cuiming; Dan, Xiuli; Chan, Yau Sang; Pan, Wenliang; Cheung, Randy Chi Fai

    2015-01-06

    Lectins including flowering plant lectins, algal lectins, cyanobacterial lectins, actinomycete lectin, worm lectins, and the nonpeptidic lectin mimics pradimicins and benanomicins, exhibit anti-HIV activity. The anti-HIV plant lectins include Artocarpus heterophyllus (jacalin) lectin, concanavalin A, Galanthus nivalis (snowdrop) agglutinin-related lectins, Musa acuminata (banana) lectin, Myrianthus holstii lectin, Narcissus pseudonarcissus lectin, and Urtica diocia agglutinin. The anti-HIV algal lectins comprise Boodlea coacta lectin, Griffithsin, Oscillatoria agardhii agglutinin. The anti-HIV cyanobacterial lectins are cyanovirin-N, scytovirin, Microcystis viridis lectin, and microvirin. Actinohivin is an anti-HIV actinomycete lectin. The anti-HIV worm lectins include Chaetopterus variopedatus polychaete marine worm lectin, Serpula vermicularis sea worm lectin, and C-type lectin Mermaid from nematode (Laxus oneistus). The anti-HIV nonpeptidic lectin mimics comprise pradimicins and benanomicins. Their anti-HIV mechanisms are discussed.

  5. Attenuated natural killer (NK) cell activation through C-type lectin-like receptor NKp80 is due to an anomalous hemi-immunoreceptor tyrosine-based activation motif (HemITAM) with impaired Syk kinase recruitment capacity.

    PubMed

    Rückrich, Thomas; Steinle, Alexander

    2013-06-14

    Cellular cytotoxicity is the hallmark of NK cells mediating both elimination of virus-infected or malignant cells, and modulation of immune responses. NK cytotoxicity is triggered upon ligation of various activating NK cell receptors. Among these is the C-type lectin-like receptor NKp80 which is encoded in the human Natural Killer Gene Complex (NKC) adjacent to its ligand, activation-induced C-type lectin (AICL). NKp80-AICL interaction promotes cytolysis of malignant myeloid cells, but also stimulates the mutual crosstalk between NK cells and monocytes. While many activating NK cell receptors pair with ITAM-bearing adaptors, we recently reported that NKp80 signals via a hemITAM-like sequence in its cytoplasmic domain. Here we molecularly dissect the NKp80 hemITAM and demonstrate that two non-consensus amino acids, in particular arginine 6, critically impair both hemITAM phosphorylation and Syk recruitment. Impaired Syk recruitment results in a substantial attenuation of cytotoxic responses upon NKp80 ligation. Reconstituting the hemITAM consensus or Syk overexpression resulted in robust NKp80-mediated responsiveness. Collectively, our data provide a molecular rationale for the restrained activation potential of NKp80 and illustrate how subtle alterations in signaling motifs determine subsequent cellular responses. They also suggest that non-consensus alterations in the NKp80 hemITAM, as commonly present among mammalian NKp80 sequences, may have evolved to dampen NKp80-mediated cytotoxic responses toward AICL-expressing cells.

  6. Vimentin and desmin possess GlcNAc-binding lectin-like properties on cell surfaces.

    PubMed

    Ise, Hirohiko; Kobayashi, Satoshi; Goto, Mitsuaki; Sato, Takao; Kawakubo, Masatomo; Takahashi, Masafumi; Ikeda, Uichi; Akaike, Toshihiro

    2010-07-01

    Vimentin and desmin are intermediate filament proteins found in various mesenchymal and skeletal muscle cells, respectively. These proteins play an important role in the stabilization of the cytoplasmic architecture. Here, we found, using artificial biomimicking glycopolymers, that vimentin and desmin possess N-acetylglucosamine (GlcNAc)-binding lectin-like properties on the cell surfaces of various vimentin- and desmin-expressing cells such as cardiomyocytes and vascular smooth muscle cells. The rod II domain of these proteins was demonstrated to be localized to the cell surface and to directly bind to the artificial biomimicking GlcNAc-bearing polymer, by confocal laser microscopy and surface plasmon resonance analysis. These glycopolymers strongly interact with lectins and are useful tools for the analysis of lectin-carbohydrate interactions, since glycopolymers binding to lectins can induce the clustering of lectins due to multivalent glycoside ligand binding. Moreover, immunocytochemistry and pull-down assay with His-tagged vimentin-rod II domain protein showed that the vimentin-rod II domain interacts with O-GlcNAc proteins. These results suggest that O-GlcNAc proteins might be one candidate for physiological GlcNAc-bearing ligands with which vimentin and desmin interact. These findings demonstrate a novel function of vimentin and desmin that does not involve stabilization of the cytoplasmic architecture by which these proteins interact with physiological GlcNAc-bearing ligands such as O-GlcNAc proteins on the cell surface through their GlcNAc-binding lectin-like properties.

  7. CEL-I, an invertebrate N-acetylgalactosamine-specific C-type lectin, induces TNF-alpha and G-CSF production by mouse macrophage cell line RAW264.7 cells.

    PubMed

    Yamanishi, Tomohiro; Yamamoto, Yoshiko; Hatakeyama, Tomomitsu; Yamaguchi, Kenichi; Oda, Tatsuya

    2007-11-01

    Our previous studies demonstrated that CEL-I, an N-acetylgalactosamine (GalNAc)-specific C-type lectin purified from the marine invertebrate Cucumaria echinata (Holothuroidea) showed potent cytotoxicity to several cell lines such as HeLa, MDCK and XC cells. In this study, we found that CEL-I induced increased secretion of tumour necrosis factor-alpha (TNF-alpha) and granulocyte colony stimulation factor (G-CSF) by mouse macrophage cell line RAW264.7 cells in a dose-dependent manner, whereas this cell line was highly resistant to CEL-I cytotoxicity. The cytokine-inducing activity of CEL-I was stronger than that of phytohaemagglutinin (PHA-L). A binding study using FITC-labelled CEL-I (F-CEL-I) indicated that the amount of bound F-CEL-I on RAW264.7 cells was greater than that of F-PHA-L, suggesting that the greater activity of CEL-I to induce cytokine secretion by RAW264.7 cells is partly due to the higher binding ability. Since the cell binding and cytokine-inducing activity of CEL-I were partly but significantly inhibited by the specific sugar (GalNAc), it is considered that the binding of CEL-I to cell-surface-specific saccharide moieties, which may be recognized by CEL-I with higher affinity than GalNAc, is essential for the induction of cytokine secretion. The secretion of TNF-alpha and G-CSF from CEL-I-treated RAW264.7 cells were almost completely prevented by brefeldin A (BFA), whereas increase in mRNA levels of these cytokines were not affected by BFA. Bio-Plex beads assay suggested that temporal increase in phosphorylation of extracellular-regulated kinase (ERK), c-jun NH(2)-terminal kinase (JNK) and p38 MAP kinase occurred at relatively early time following CEL-I treatment. Furthermore, the secretion of TNF-alpha and G-CSF were inhibited by specific inhibitors for these MAP kinases. These results suggest that the intracellular signal transduction through the activation of MAP kinase system is involved in CEL-I-induced cytokine secretion.

  8. The Activating C-type Lectin-like Receptor NKp65 Signals through a Hemi-immunoreceptor Tyrosine-based Activation Motif (hemITAM) and Spleen Tyrosine Kinase (Syk).

    PubMed

    Bauer, Björn; Wotapek, Tanja; Zöller, Tobias; Rutkowski, Emilia; Steinle, Alexander

    2017-02-24

    NKp65 is an activating human C-type lectin-like receptor (CTLR) triggering cellular cytotoxicity and cytokine secretion upon high-affinity interaction with the cognate CTLR keratinocyte-associated C-type lectin (KACL) selectively expressed by human keratinocytes. Previously, we demonstrated that NKp65-mediated cellular cytotoxicity depends on tyrosine 7, located in a cytoplasmic sequence motif of NKp65 resembling a hemi-immunoreceptor tyrosine-based activation motif (hemITAM). HemITAMs have been reported for a few activating myeloid-specific CTLRs, including Dectin-1 and CLEC-2, and consist of a single tyrosine signaling unit preceded by a triacidic motif. Upon receptor engagement, the hemITAM undergoes phosphotyrosinylation and specifically recruits spleen tyrosine kinase (Syk), initiating cellular activation. In this study, we addressed the functionality of the putative hemITAM of NKp65. We show that NKp65 forms homodimers and is phosphorylated at the hemITAM-embedded tyrosine 7 upon engagement by antibodies or KACL homodimers. HemITAM phosphotyrosinylation initiates a signaling pathway involving and depending on Syk, leading to cellular activation and natural killer (NK) cell degranulation. However, although NKp65 utilizes Syk for NK cell activation, a physical association of Syk with the NKp65 hemITAM could not be detected, unlike shown previously for the hemITAM of myeloid CTLR. Failure of NKp65 to recruit Syk is not due to an alteration of the triacidic motif, which rather affects the efficiency of hemITAM phosphotyrosinylation. In summary, NKp65 utilizes a hemITAM-like motif for cellular activation that requires Syk, although Syk appears not to be recruited to NKp65.

  9. Hayabusa's follow-on mission for surface and sub-surface sample return from a C-type NEO

    NASA Astrophysics Data System (ADS)

    Yano, Hajime; Yoshikawa, M.; Yano, H.; Tsuda, Y.; Nakazawa, S.; Mimamino, H.; Terui, F.; Saiki, T.; Nishiyama, K.; Kubota, T.; Okada, T.; Morimoto, M. Y.; Ogawa, N.; Okamoto, C.; Takagi, Y.; Tachibana, S.; Nakamura, R.; Hirata, N.; Demura, H.

    n JAXA's Long-term Vision 2005-2025, acquiring the capability of deep space round trip be-yond the Earth-Moon system is one of key elements for the future space exploration and that has been Hayabusa's primary engineering goal. According to the solar system exploration sci-ence roadmap set by ISAS and JSPEC in 2007, a programmatic approach to small body sample returns from S-type, C-type and then P/D-type asteroids as well as dormant comets, i.e., 'the further, the smaller, the more primitive strategy', is recommended for strengthening Japan's unique position in the field of space exploration. In a more recent international context, NEOs and Martian satellites have been identified as critical targets for the future human space explo-ration en route to Mars; thus their robotic precursor missions with the round trip capability have become more important than ever. Thus, Hayabusa's immediate follow-on mission, nicknamed so far as 'Hayabusa-2', is to aim establishing round trip exploration capability with both technical and operational heritage and lessons leaerned from the original Haybusa mission. It will also conduct in-situ observation and surface and sub-surface sample returns of a C-type NEO after Hayabusa's investigation and sampling attempt at Itokawa, a sub-km, S-type NEO. Important to be reminded is that C-type asteroid exploration is not just matching with carbona-ceous chondrites and interplanetary dust but also enhancing chances to discover new extrater-restrial materials unknown to us today that may become clues to decode interactions among organic, inorganic compounds and "water" kept in various forms inside the object. These three groups of asteroidal materials are basic constituents of the planet Earth, its ocean and its life. Also physical probing inside solid planetary bodies has been recognized as an effective tool to open new scientific insights. By excavating sub-surface materials with artificial physical in-teractions such as an impactor

  10. Flow cytometric analysis of lectin binding to in vitro-cultured Perkinsus marinus surface carbohydrates

    USGS Publications Warehouse

    Gauthier, J.D.; Jenkins, J.A.; La Peyre, Jerome F.

    2004-01-01

    Parasite surface glycoconjugates are frequently involved in cellular recognition and colonization of the host. This study reports on the identification of Perkinsus marinus surface carbohydrates by flow cytometric analyses of fluorescein isothiocyanate-conjugated lectin binding. Lectin-binding specificity was confirmed by sugar inhibition and Kolmogorov-Smirnov statistics. Clear, measurable fluorescence peaks were discriminated, and no parasite autofluorescence was observed. Parasites (GTLA-5 and Perkinsus-1 strains) harvested during log and stationary phases of growth in a protein-free medium reacted strongly with concanavalin A and wheat germ agglutinin, which bind to glucose-mannose and N-acetyl-D-glucosamine (GlcNAc) moieties, respectively. Both P. marinus strains bound with lower intensity to Maclura pomifera agglutinin, Bauhinia purpurea agglutinin, soybean agglutinin (N-acetyl-D-galactosamine-specific lectins), peanut agglutinin (PNA) (terminal galactose specific), and Griffonia simplicifolia II (GlcNAc specific). Only background fluorescence levels were detected with Ulex europaeus agglutinin I (L-fucose specific) and Limulus polyphemus agglutinin (sialic acid specific). The lectin-binding profiles were similar for the 2 strains except for a greater relative binding intensity of PNA for Perkinsus-1 and an overall greater lectin-binding capacity of Perkinsus-1 compared with GTLA-5. Growth stage comparisons revealed increased lectin-binding intensities during stationary phase compared with log phase of growth. This is the first report of the identification of surface glycoconjugates on a Perkinsus spp. by flow cytometry and the first to demonstrate that differential surface sugar expression is growth phase and strain dependent. ?? American Society of Parasitologists 2004.

  11. Fluorescein Isothiocyanate-Labeled Lectin Analysis of the Surface of the Nitrogen-Fixing Bacterium Azospirillum brasilense by Flow Cytometry

    PubMed Central

    Yagoda-Shagam, Janet; Barton, Larry L.; Reed, William P.; Chiovetti, Robert

    1988-01-01

    The cell surface of Azospirillum brasilense was probed by using fluorescein isothiocyanate (FITC)-labeled lectins, with binding determined by fluorescence-activated flow cytometry. Cells from nitrogen-fixing or ammonium-assimilating cultures reacted similarly to FITC-labeled lectins, with lectin binding in the following order: Griffonia simplicifolia II agglutinin > Griffonia simplicifolia I agglutinin > Triticum vulgaris agglutinin > Glycine max agglutinin > Canavalia ensiformis agglutinin > Limax flavus agglutinin > Lotus tetragonolobus agglutinin. The fluorescence intensity of cells labeled with FITC-labeled G. simplicifolia I, C. ensiformis, T. vulgaris, and G. max agglutinins was influenced by lectin concentration. Flow cytometry measurements of lectin binding to cells was consistent with measurements of agglutination resulting from lectin-cell interaction. Capsules surrounding nitrogen-fixing and ammonium-assimilating cells were readily demonstrated by light and transmission electron microscopies. Images PMID:16347693

  12. Generation and characterization of β1,2-gluco-oligosaccharide probes from Brucella abortus cyclic β-glucan and their recognition by C-type lectins of the immune system

    PubMed Central

    Zhang, Hongtao; Palma, Angelina S; Zhang, Yibing; Childs, Robert A; Liu, Yan; Mitchell, Daniel A; Guidolin, Leticia S; Weigel, Wilfried; Mulloy, Barbara; Ciocchini, Andrés E; Feizi, Ten; Chai, Wengang

    2016-01-01

    The β1,2-glucans produced by bacteria are important in invasion, survival and immunomodulation in infected hosts be they mammals or plants. However, there has been a lack of information on proteins which recognize these molecules. This is partly due to the extremely limited availability of the sequence-defined oligosaccharides and derived probes for use in the study of their interactions. Here we have used the cyclic β1,2-glucan (CβG) of the bacterial pathogen Brucella abortus, after removal of succinyl side chains, to prepare linearized oligosaccharides which were used to generate microarrays. We describe optimized conditions for partial depolymerization of the cyclic glucan by acid hydrolysis and conversion of the β1,2-gluco-oligosaccharides, with degrees of polymerization 2–13, to neoglycolipids for the purpose of generating microarrays. By microarray analyses, we show that the C-type lectin receptor DC-SIGNR, like the closely related DC-SIGN we investigated earlier, binds to the β1,2-gluco-oligosaccharides, as does the soluble immune effector serum mannose-binding protein. Exploratory studies with DC-SIGN are suggestive of the recognition also of the intact CβG by this receptor. These findings open the way to unravelling mechanisms of immunomodulation mediated by β1,2-glucans in mammalian systems. PMID:27053576

  13. C-type lectin receptor dectin-3 mediates trehalose 6,6'-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-κB activation.

    PubMed

    Zhao, Xue-Qiang; Zhu, Le-Le; Chang, Qing; Jiang, Changying; You, Yun; Luo, Tianming; Jia, Xin-Ming; Lin, Xin

    2014-10-24

    Previous studies indicate that both Dectin-3 (also called MCL or Clec4d) and Mincle (also called Clec4e), two C-type lectin receptors, can recognize trehalose 6,6'-dimycolate (TDM), a cell wall component from mycobacteria, and induce potent innate immune responses. Interestingly, stimulation of Dectin-3 by TDM can also induce Mincle expression, which may enhance the host innate immune system to sense Mycobacterium infection. However, the mechanism by which Dectin-3 induces Mincle expression is not fully defined. Here, we show that TDM-induced Mincle expression is dependent on Dectin-3-mediated NF-κB, but not nuclear factor of activated T-cells (NFAT), activation, and Dectin-3 induces NF-κB activation through the CARD9-BCL10-MALT1 complex. We found that bone marrow-derived macrophages from Dectin-3-deficient mice were severely defective in the induction of Mincle expression in response to TDM stimulation. This defect is correlated with the failure of TDM-induced NF-κB activation in Dectin-3-deficient bone marrow-derived macrophages. Consistently, inhibition of NF-κB, but not NFAT, impaired TDM-induced Mincle expression, whereas NF-κB, but not NFAT, binds to the Mincle promoter. Dectin-3-mediated NF-κB activation is dependent on the CARD9-Bcl10-MALT1 complex. Finally, mice deficient for Dectin-3 or CARD9 produced much less proinflammatory cytokines and keyhole limpet hemocyanin (KLH)-specific antibodies after immunization with an adjuvant containing TDM. Overall, this study provides the mechanism by which Dectin-3 induces Mincle expression in response to Mycobacterium infection, which will have significant impact to improve adjuvant and design vaccine for antimicrobial infection.

  14. Hodgkin's lymphoma cell lines express a fusion protein encoded by intergenically spliced mRNA for the multilectin receptor DEC-205 (CD205) and a novel C-type lectin receptor DCL-1.

    PubMed

    Kato, Masato; Khan, Seema; Gonzalez, Nelson; O'Neill, Brian P; McDonald, Kylie J; Cooper, Ben J; Angel, Nicola Z; Hart, Derek N J

    2003-09-05

    Classic Hodgkin's lymphoma (HL) tissue contains a small population of morphologically distinct malignant cells called Hodgkin and Reed-Sternberg (HRS) cells, associated with the development of HL. Using 3'-rapid amplification of cDNA ends (RACE) we identified an alternative mRNA for the DEC-205 multilectin receptor in the HRS cell line L428. Sequence analysis revealed that the mRNA encodes a fusion protein between DEC-205 and a novel C-type lectin DCL-1. Although the 7.5-kb DEC-205 and 4.2-kb DCL-1 mRNA were expressed independently in myeloid and B lymphoid cell lines, the DEC-205/DCL-1 fusion mRNA (9.5 kb) predominated in the HRS cell lines (L428, KM-H2, and HDLM-2). The DEC-205 and DCL-1 genes comprising 35 and 6 exons, respectively, are juxtaposed on chromosome band 2q24 and separated by only 5.4 kb. We determined the DCL-1 transcription initiation site within the intervening sequence by 5'-RACE, confirming that DCL-1 is an independent gene. Two DEC-205/DCL-1 fusion mRNA variants may result from cotranscription of DEC-205 and DCL-1, followed by splicing DEC-205 exon 35 or 34-35 along with DCL-1 exon 1. The resulting reading frames encode the DEC-205 ectodomain plus the DCL-1 ectodomain, the transmembrane, and the cytoplasmic domain. Using DCL-1 cytoplasmic domain-specific polyclonal and DEC-205 monoclonal antibodies for immunoprecipitation/Western blot analysis, we showed that the fusion mRNA is translated into a DEC-205/DCL-1 fusion protein, expressed in the HRS cell lines. These results imply an unusual transcriptional control mechanism in HRS cells, which cotranscribe an mRNA containing DEC-205 and DCL-1 prior to generating the intergenically spliced mRNA to produce a DEC-205/DCL-1 fusion protein.

  15. The Snake Venom Rhodocytin from Calloselasma rhodostoma—A Clinically Important Toxin and a Useful Experimental Tool for Studies of C-Type Lectin-Like Receptor 2 (CLEC-2)

    PubMed Central

    Bruserud, Øyvind

    2013-01-01

    The snake venom, rhodocytin, from the Malayan viper, Calloselasma rhodostoma, and the endogenous podoplanin are identified as ligands for the C-type lectin-like receptor 2 (CLEC-2). The snakebites caused by Calloselasma rhodostoma cause a local reaction with swelling, bleeding and eventually necrosis, together with a systemic effect on blood coagulation with distant bleedings that can occur in many different organs. This clinical picture suggests that toxins in the venom have effects on endothelial cells and vessel permeability, extravasation and, possibly, activation of immunocompetent cells, as well as effects on platelets and the coagulation cascade. Based on the available biological studies, it seems likely that ligation of CLEC-2 contributes to local extravasation, inflammation and, possibly, local necrosis, due to microthrombi and ischemia, whereas other toxins may be more important for the distant hemorrhagic complications. However, the venom contains several toxins and both local, as well as distant, symptoms are probably complex reactions that cannot be explained by the effects of rhodocytin and CLEC-2 alone. The in vivo reactions to rhodocytin are thus examples of toxin-induced crosstalk between coagulation (platelets), endothelium and inflammation (immunocompetent cells). Very few studies have addressed this crosstalk as a part of the pathogenesis behind local and systemic reactions to Calloselasma rhodostoma bites. The author suggests that detailed biological studies based on an up-to-date methodology of local and systemic reactions to Calloselasma rhodostoma bites should be used as a hypothesis-generating basis for future functional studies of the CLEC-2 receptor. It will not be possible to study the effects of purified toxins in humans, but the development of animal models (e.g., cutaneous injections of rhodocytin to mimic snakebites) would supplement studies in humans. PMID:23594438

  16. Lectin-functionalized poly(glycidyl methacrylate)-block-poly(vinyldimethyl azlactone) surface supports for high avidity microbial capture

    SciTech Connect

    Hansen, Ryan R; Hinestrosa Salazar, Juan P; Shubert, Katherine R; Morrell, Jennifer L.; Pelletier, Dale A; Messman, Jamie M; Kilbey, II, S Michael; Lokitz, Bradley S; Retterer, Scott T

    2013-01-01

    Microbial exopolysaccharides (EPS) play a critical and dynamic role in shaping the interactions between microbial community members and their local environment. The capture of targeted microbes using surface immobilized lectins that recognize specific extracellular oligosaccharide moieties offers a non-destructive method for functional characterization based on EPS content. In this report, we evaluate the use of the block co-polymer, poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA), as a surface support for lectin-specific microbial capture. Arrays of circular polymer supports ten micron in diameter were generated on silicon substrates to provide discrete, covalent coupling sites for Triticum vulgare and Lens culinaris lectins. These supports promoted microbe adhesion and colony formation in a lectin-specific manner. Silicon posts with similar topography containing only physisorbed lectins showed significantly less activity. These results demonstrate that micropatterned PGMA-b-PVDMA supports provide a unique platform for microbial capture and screening based on EPS content by combining high avidity lectin surfaces with three-dimensional topography.

  17. A lectin-based cell microarray approach to analyze the mammalian granulosa cell surface glycosylation profile.

    PubMed

    Accogli, Gianluca; Desantis, Salvatore; Martino, Nicola Antonio; Dell'Aquila, Maria Elena; Gemeiner, Peter; Katrlík, Jaroslav

    2016-10-01

    The high complexity of glycome, the repertoire of glycans expressed in a cell or in an organism, is difficult to analyze and the use of new technologies has accelerated the progress of glycomics analysis. In the last decade, the microarray approaches, and in particular glycan and lectin microarrays, have provided new insights into evaluation of cell glycosylation status. Here we present a cell microarray method based on cell printing on microarray slides for the analysis of the glycosylation pattern of the cell glycocalyx. In order to demonstrate the reliability of the developed method, the glycome profiles of equine native uncultured mural granulosa cells (uGCs) and in vitro cultured mural granulosa cells (cGCs) were determined and compared. The method consists in the isolation of GCs, cell printing into arrays on microarray slide, incubation with a panel of biotinylated lectins, reaction with fluorescent streptavidin and signal intensity detection by a microarray scanner. Cell microarray technology revealed that glycocalyx of both uGCs and cGCs contains N-glycans, sialic acid terminating glycans, N-acetylglucosamine and O-glycans. The comparison of uGCs and cGCs glycan signals indicated an increase in the expression of sialic acids, N-acetylglucosamine, and N-glycans in cGCs. Glycan profiles determined by cell microarray agreed with those revealed by lectin histochemistry. The described cell microarray method represents a simple and sensitive procedure to analyze cell surface glycome in mammalian cells.

  18. Cyborg lectins: novel leguminous lectins with unique specificities.

    PubMed

    Yamamoto, K; Maruyama, I N; Osawa, T

    2000-01-01

    Bauhinia purpurea lectin (BPA) is one of the beta-galactose-binding leguminous lectins. Leguminous lectins contain a long metal-binding loop, part of which determines their carbohydrate-binding specificities. Random mutations were introduced into a portion of the cDNA coding BPA that corresponds to the carbohydrate-binding loop of the lectin. An library of the mutant lectin expressed on the surface of lambda foo phages was screened by the panning method. Several phage clones with an affinity for mannose or N-acetylglucosamine were isolated. These results indicate the possibility of making artificial lectins (so-called "cyborg lectins") with distinct and desired carbohydrate-binding specificities.

  19. Convulxin, a C-type lectin-like protein, inhibits HCASMCs functions via WAD-motif/integrin-αv interaction and NF-κB-independent gene suppression of GRO and IL-8.

    PubMed

    Shih, Chun-Ho; Chiang, Tin-Bin; Wang, Wen-Jeng

    2017-03-15

    Convulxin (CVX), a C-type lectin-like protein (CLPs), is a potent platelet aggregation inducer. To evaluate its potential applications in angiogenic diseases, the multimeric CVX were further explored on its mode of actions toward human coronary artery smooth muscle cells (HCASMCs). The N-terminus of β-chain of CVX (CVX-β) contains a putative disintegrin-like domain with a conserved motif upon the sequence comparison with other CLPs. Importantly, native CVX had no cytotoxic activity as examined by electrophoretic pattern. A Trp-Ala-Asp (WAD)-containing octapeptide, MTWADAEK, was thereafter synthesized and analyzed in functional assays. In the case of specific integrin antagonists as positive controls, the anti-angiogenic effects of CVX on HCASMCs were investigated by series of functional analyses. CVX showed to exhibit multiple inhibitory activities toward HCASMCs proliferation, adhesion and invasion with a dose- and integrin αvβ3-dependent fashion. However, the WAD-octapeptide exerting a minor potency could also work as an active peptidomimetic. In addition, flow cytometric analysis demonstrated both the intact CVX and synthetic peptide can specifically interact with integrin-αv on HCASMCs and CVX was shown to have a down-regulatory effect on the gene expression of CXC-chemokines, such as growth-related oncogene and interleukin-8. According to nuclear factor-κB (NF-κB) p65 translocation assay and Western blotting analysis, the NF-κB activation was not involved in the signaling events of CVX-induced gene expression. In conclusion, CVX may act as a disintegrin-like protein via the interactions of WAD-motif in CVX-β with integrin-αv on HCASMCs and it also is a gene suppressor with the ability to diminish the expression of two CXC-chemokines in a NF-κB-independent manner. Indeed, more extensive investigations are needed and might create a new avenue for the development of a novel angiostatic agent.

  20. Thermal Inertia Determination of C-type Asteroid Ryugu from in-situ Surface Brightness Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Hamm, Maximilian; Grott, Matthias; Knollenberg, Jörg; Kührt, Ekkehard; Pelivan, Ivanka

    2016-10-01

    The Japanese Hayabusa-2 mission is a sample-return mission currently on its way to the C-type asteroid Ryugu. Hayabusa-2 carries the small lander MASCOT (Mobile Asteroid Surface Scout), whose scientific payload includes the infrared radiometer MARA. The primary science goal of MARA is to determine Ryugu's surface brightness temperatures at the landing site for a full asteroid rotation, which will be measured using a long-pass filter, an 8 to 12 µm bandpass, as well as four narrow bandpasses centered at wavelengths between 5 and 15 µm. From these measurements, surface thermal inertia will be derived, but because MARA performs single pixel measurements, heterogeneity in the field of view cannot be resolved. Yet, the surface will likely exhibit different surface textures, and thermal inertia in the field of view could vary from 600 (small rocks) to 50 Jm-2s-0.5K-1 (fine regolith grains). Sub-pixel heterogeneity is a common problem when interpreting radiometer data, since the associated ambiguities cannot be resolved without additional information on surface texture. For MARA, this information will be provided by the MASCOT camera, and in the present paper we have investigated to what extent different thermal inertias can be retrieved from MARA data. To test the applied approach, we generated synthetic MARA data using a thermal model of Ryugu, assuming different thermal inertias for sections of the field of view. We find that sub-pixel heterogeneity systematically deforms the diurnal temperature curve so that it is not possible to fit the data using a single thermal inertia value. However, including the area fractions of the different surface sections enables us to reconstruct the different thermal inertias to within 10% assuming appropriate measurement noise. The presented approach will increase robustness of the Ryugu thermal inertia determination and results will serve as a ground truth for the global measurements performed by the thermal infrared mapper (TIR) on

  1. Analysis of unconventional approaches for the rapid detection of surface lectin binding ligands on human cell lines.

    PubMed

    Welty, Lily Anne Y; Heinrich, Eileen L; Garcia, Karina; Banner, Lisa R; Summers, Michael L; Baresi, Larry; Metzenberg, Stan; Coyle-Thompson, Cathy; Oppenheimer, Steven B

    2006-01-01

    For over a decade our laboratory has developed and used a novel histochemical assay using derivatized agarose beads to examine the surface properties of various cell types. Most recently, we have used this assay to examine lectin binding ligands on two human cell types, CCL-220, a colon cancer cell line, and CRL-1459, a non-cancer colon cell line. We found that CCL-220 cells bound specific lectins better than CRL-1459, and this information was used to test for possible differential toxicity of these lectins in culture, as a possible approach in the design of more specific anti-cancer drugs. Although we have examined the validity of the bead-binding assay in sea urchin cell systems, we have not previously validated this technique for mammalian cells. Here the binding results of the bead assay are compared with conventional fluorescence assays, using lectins from three species (Triticum vulgaris, Phaseolus vulgaris, and Lens culinaris) on the two colon cell lines. These lectins were chosen because they seemed to interact with the two cell lines differently. Binding results obtained using both assays were compared for frozen, thawed and fixed; cultured and fixed; and live cells. Both qualitative and quantitative fluorescence results generally correlated with those using the bead assay. Similar results were also obtained with all of the three different cell preparation protocols. The fluorescence assay was able to detect lower lectin binding ligand levels than the bead assay, while the bead assay, because it can so rapidly detect cells with large numbers of lectin binding ligands, is ideal for initial screening studies that seek to identify cells that are rich in surface binders for specific molecules. The direct use of frozen, thawed and fixed cells allows rapid mass screening for surface molecules, without the requirement for costly and time consuming cell culture.

  2. Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria.

    PubMed

    Carlson, Hans K; Iavarone, Anthony T; Gorur, Amita; Yeo, Boon Siang; Tran, Rosalie; Melnyk, Ryan A; Mathies, Richard A; Auer, Manfred; Coates, John D

    2012-01-31

    Almost nothing is known about the mechanisms of dissimilatory metal reduction by Gram-positive bacteria, although they may be the dominant species in some environments. Thermincola potens strain JR was isolated from the anode of a microbial fuel cell inoculated with anaerobic digester sludge and operated at 55 °C. Preliminary characterization revealed that T. potens coupled acetate oxidation to the reduction of hydrous ferric oxides (HFO) or anthraquinone-2,6-disulfonate (AQDS), an analog of the redox active components of humic substances. The genome of T. potens was recently sequenced, and the abundance of multiheme c-type cytochromes (MHCs) is unusual for a Gram-positive bacterium. We present evidence from trypsin-shaving LC-MS/MS experiments and surface-enhanced Raman spectroscopy (SERS) that indicates the expression of a number of MHCs during T. potens growth on either HFO or AQDS, and that several MHCs are localized to the cell wall or cell surface. Furthermore, one of the MHCs can be extracted from cells with low pH or denaturants, suggesting a loose association with the cell wall or cell surface. Electron microscopy does not reveal an S-layer, and the precipitation of silver metal on the cell surface is inhibited by cyanide, supporting the involvement of surface-localized redox-active heme proteins in dissimilatory metal reduction. These results provide unique direct evidence for cell wall-associated cytochromes and support MHC involvement in conducting electrons across the cell envelope of a Gram-positive bacterium.

  3. Surface multiheme c-type cytochromes from Thermincola potens: Implications for dissimilatory metal reduction by Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Carlson, H. K.; Iavarone, A. T.; Gorur, A.; Yeo, B. S.; Tran, R.; Melnyk, R. A.; Mathies, R. A.; Auer, M.; Coates, J. D.

    2011-12-01

    Almost nothing is known about the mechanisms of dissimilatory metal reduction by Gram-positive bacteria, although they have been shown to be the dominant species in some environments. Thermincola potens strain JR was isolated from the anode of a microbial fuel cell inoculated with anaerobic digester sludge and operated at 55 °C. Preliminary characterization revealed that T. potens coupled acetate oxidation to the reduction of hydrous ferric oxides (HFO) or the humic substances analog, anthraquinone-2,6-disulfonate (AQDS). The genome of T. potens was recently sequenced, and the abundance of multiheme c-type cytochromes (MHCs) is unusual for a Gram-positive bacterium. We present evidence from trypsin shaving LC-MS/MS experiments and surface-enhanced Raman spectroscopy (SERS) that indicates the expression of a number of MHCs during T. potens growth on either HFO or AQDS and that several MHCs are localized to the cell wall or cell surface of T. potens. Furthermore, one of the MHCs can be extracted from cells with low pH or denaturants suggesting a loose association with the cell wall or cell surface. Electron microscopy does not reveal an S-layer, and the precipitation of silver metal on the cell surface is inhibited by cyanide, supporting the involvement of surface-localized redox-active heme proteins in dissimilatory metal reduction. These results are the first direct evidence for cell-wall associated cytochromes and MHC involvement in conducting electrons across the cell envelope of a Gram-positive bacterium.

  4. Mammalian Cell Surface Display as a Novel Method for Developing Engineered Lectins with Novel Characteristics

    PubMed Central

    Soga, Keisuke; Abo, Hirohito; Qin, Sheng-Ying; Kyoutou, Takuya; Hiemori, Keiko; Tateno, Hiroaki; Matsumoto, Naoki; Hirabayashi, Jun; Yamamoto, Kazuo

    2015-01-01

    Leguminous lectins have a conserved carbohydrate recognition site comprising four loops (A–D). Here, we randomly mutated the sequence and length of loops C and D of peanut agglutinin (PNA) and expressed the proteins on the surface of mouse green fluorescent protein (GFP)-reporter cells. Flow cytometry, limiting dilution, and cDNA cloning were used to screen for several mutated PNAs with distinct properties. The mutated PNA clones obtained using NeuAcα2-6(Galβ1-3)GalNAc as a ligand showed preference for NeuAcα2-6(Galβ1-3)GalNAc rather than non-sialylated Galβ1-3GlcNAc, whereas wild-type PNA binds to Galβ1-3GlcNAc but not sialylated Galβ1-3GalNAc. Sequence analyses revealed that for all of the glycan-reactive mutated PNA clones, (i) loop C was eight amino acids in length, (ii) loop D was identical to that of wild-type PNA, (iii) residue 127 was asparagine, (iv) residue 125 was tryptophan, and (v) residue 130 was hydrophobic tyrosine, phenylalanine, or histidine. The sugar-binding ability of wild-type PNA was increased nine-fold when Tyr125 was mutated to tryptophan, and that of mutated clone C was increased more than 30-fold after His130 was changed to tyrosine. These results provide an insight into the relationship between the amino acid sequences of the carbohydrate recognition site and sugar-binding abilities of leguminous lectins. PMID:26287256

  5. Reverse micellar extraction of lectin from black turtle bean (Phaseolus vulgaris): optimisation of extraction conditions by response surface methodology.

    PubMed

    He, Shudong; Shi, John; Walid, Elfalleh; Zhang, Hongwei; Ma, Ying; Xue, Sophia Jun

    2015-01-01

    Lectin from black turtle bean (Phaseolus vulgaris) was extracted and purified by reverse micellar extraction (RME) method. Response surface methodology (RSM) was used to optimise the processing parameters for both forward and backward extraction. Hemagglutinating activity analysis, SDS-PAGE, RP-HPLC and FTIR techniques were used to characterise the lectin. The optimum extraction conditions were determined as 77.59 mM NaCl, pH 5.65, AOT 127.44 mM sodium bis (2-ethylhexyl) sulfosuccinate (AOT) for the forward extraction; and 592.97 mM KCl, pH 8.01 for the backward extraction. The yield was 63.21 ± 2.35 mg protein/g bean meal with a purification factor of 8.81 ± 0.17. The efficiency of RME was confirmed by SDS-PAGE and RP-HPLC, respectively. FTIR analysis indicated there were no significant changes in the secondary protein structure. Comparison with conventional chromatographic method confirmed that the RME method could be used for the purification of lectin from the crude extract.

  6. A quantitative method to discriminate between non-specific and specific lectin-glycan interactions on silicon-modified surfaces.

    PubMed

    Yang, Jie; Siriwardena, Aloysius; Boukherroub, Rabah; Ozanam, François; Szunerits, Sabine; Gouget-Laemmel, Anne Chantal

    2016-02-15

    Essential to the success of any surface-based carbohydrate biochip technology is that interactions of the particular interface with the target protein be reliable and reproducible and not susceptible to unwanted nonspecific adsorption events. This condition is particularly important when the technology is intended for the evaluation of low-affinity interactions such as those typically encountered between lectins and their monomeric glycan ligands. In this paper, we describe the fabrication of glycan (mannoside and lactoside) monolayers immobilized on hydrogenated crystalline silicon (111) surfaces. An efficient conjugation protocol featuring a key "click"-based coupling step has been developed which ensures the obtention of interfaces with controlled glycan density. The adsorption behavior of these newly developed interfaces with the lectins, Lens culinaris and Peanut agglutinin, has been probed using quantitative IR-ATR and the data interpreted using various isothermal models. The analysis reveals that protein physisorption to the interface is more prevalent than specific chemisorption for the majority of washing protocols investigated. Physisorption can be greatly suppressed through application of a strong surfactinated rinse. The coexistence of chemisorption and physisorption processes is further demonstrated by quantification of the amounts of adsorbed proteins distributed on the surface, in correlation with the results obtained by atomic force microscopy (AFM). Taken together, the data demonstrates that the nonspecific adsorption of proteins to these glycan-terminated surfaces can be effectively eliminated through the proper control of the chemical structure of the surface monolayer combined with the implementation of an appropriate surface-rinse protocol.

  7. Identification of a porcine DC-SIGN-related C-type lectin, porcine CLEC4G (LSECtin), and its order of intron removal during splicing: comparative genomic analyses of the cluster of genes CD23/CLEC4G/DC-SIGN among mammalian species.

    PubMed

    Huang, Y W; Meng, X J

    2009-06-01

    Human CLEC4G (previously named LSECtin), DC-SIGN, and L-SIGN are three important C-type lectins capable of mediating viral and bacterial pathogen recognitions. These three genes, together with CD23, form a lectin gene cluster at chromosome 19p13.3. In this study, we have experimentally identified the cDNA and the gene encoding porcine CLEC4G (pCLEC4G). Full-length pCLEC4G cDNA encodes a type II transmembrane protein of 290 amino acids. pCLEC4G gene has the same gene structure as the human and the predicted bovine, canis, mouse and rat CLEC4G genes with nine exons. A multi-species-conserved site at the extreme 3'-untranslated region of CLEC4G mRNAs was predicted to be targeted by microRNA miR-350 in domesticated animals and by miR-145 in primates, respectively. We detected pCLEC4G mRNA expression in liver, lymph node and spleen tissues. We also identified a series of sequential intermediate products of pCLEC4G pre-mRNA during splicing from pig liver. The previously unidentified porcine CD23 cDNA containing the complete coding region was subsequently cloned and found to express in spleen, thymus and lymph node. Furthermore, we compared the chromosomal regions syntenic to the human cluster of genes CD23/CLEC4G/DC-SIGN/L-SIGN in representative mammalian species including primates, domesticated animal, rodents and opossum. The L-SIGN homologues do not exist in non-primates mammals. The evolutionary processes of the gene cluster, from marsupials to primates, were proposed based upon their genomic structures and phylogenetic relationships.

  8. Population heterogeneity in the surface expression of Ulex europaeus I-lectin (UEA I)-binding sites in cultured malignant and transformed cells.

    PubMed

    Virtanen, I; Lehtonen, E; Närvänen, O; Leivo, I; Lehto, V P

    1985-11-01

    We studied the binding of fluorochrome-coupled Ulex europaeus I-lectin (UEA-I) to cultured malignant cells: all human malignant and transformed cells and also mouse teratocarcinoma cells examined gave a homogeneous cell membrane-type of surface staining only in some of the cells. Such a population heterogeneity appeared to be independent of the cell cycle. Instead, other lectin conjugates used bound homogeneously to all cells. In permeabilized cells, a juxtanuclear reticular staining of the Golgi apparatus was seen in the UEA-I-positive cells. No staining of the pericellular matrix components, produced by malignant cells grown in serum-free culture medium, could be obtained with TRITC-UEA-I. UEA-I-lectin recognized most polypeptides from A8387 fibrosarcoma cells and HeLa cells, metabolically labeled with [3H]fucose. Furthermore, surface labelling of these cells with the neuraminidase-galactose oxidase/sodium borohydride method disclosed that both UEA-I and Ricinus communis agglutinin I revealed the same major surface glycoproteins. Results with metabolically labelled cells showed, in addition, that UEA-I-lectin did not bind to secreted glycoproteins produced by A8387 cells and recognized by other lectins. The results indicate that transformed and malignant cells show a distinct population heterogeneity in their expression of some cell surface-associated fucosyl glycoconjugates. The results also suggest that malignant cells can glycosylate their membrane and secreted glycoproteins in a different manner.

  9. The Antiretroviral Lectin Cyanovirin-N Targets Well-Known and Novel Targets on the Surface of Entamoeba histolytica Trophozoites ▿ †

    PubMed Central

    Carpentieri, Andrea; Ratner, Daniel M.; Ghosh, Sudip K.; Banerjee, Sulagna; Bushkin, G. Guy; Cui, Jike; Lubrano, Michael; Steffen, Martin; Costello, Catherine E.; O'Keefe, Barry; Robbins, Phillips W.; Samuelson, John

    2010-01-01

    Entamoeba histolytica, the protist that causes amebic dysentery and liver abscess, has a truncated Asn-linked glycan (N-glycan) precursor composed of seven sugars (Man5GlcNAc2). Here, we show that glycoproteins with unmodified N-glycans are aggregated and capped on the surface of E. histolytica trophozoites by the antiretroviral lectin cyanovirin-N and then replenished from large intracellular pools. Cyanovirin-N cocaps the Gal/GalNAc adherence lectin, as well as glycoproteins containing O-phosphodiester-linked glycans recognized by an anti-proteophosphoglycan monoclonal antibody. Cyanovirin-N inhibits phagocytosis by E. histolytica trophozoites of mucin-coated beads, a surrogate assay for amebic virulence. For technical reasons, we used the plant lectin concanavalin A rather than cyanovirin-N to enrich secreted and membrane proteins for mass spectrometric identification. E. histolytica glycoproteins with occupied N-glycan sites include Gal/GalNAc lectins, proteases, and 17 previously hypothetical proteins. The latter glycoproteins, as well as 50 previously hypothetical proteins enriched by concanavalin A, may be vaccine targets as they are abundant and unique. In summary, the antiretroviral lectin cyanovirin-N binds to well-known and novel targets on the surface of E. histolytica that are rapidly replenished from large intracellular pools. PMID:20852023

  10. Characterization of the Decaheme c-type Cytochrome OmcA in Solution and on Hematite Surfaces by Small Angle X-ray Scattering and Neutron Reflectometry

    SciTech Connect

    Johs, Alexander; Shi, Liang; Droubay, Timothy; Ankner, John Francis; Liang, Liyuan

    2010-01-01

    The outer membrane protein OmcA is an 85 kDa decaheme c-type cytochrome located on the surface of the dissimilatory metal reducing bacterium Shewanella oneidensis MR-1. It is assumed to mediate electron shuttling, generated by the bacteria s metabolism, to extracellular acceptors that include solid metal oxides such as hematite ( -Fe2O3). To investigate the mechanism by which OmcA interacts with hematite, we purified OmcA and characterized its solution structure by small angle X-ray scattering (SAXS) and its interaction with hematite by neutron reflectometry (NR). SAXS results showed that OmcA is a monomer that adopts a flat ellipsoidal shape with a dimension of 3.4 9.0 6.5 nm3. Changes in redox state affect OmcA conformation. In addition, OmcA interacts with small organic ligands known to act as electron shuttle molecules, such as flavin mononucleotide (FMN), resulting in the formation of high molecular weight assemblies. A model system, developed using NR to study the interaction of OmcA with hematite, shows that OmcA forms a well-defined monomolecular layer on hematite surfaces. This allows OmcA to preferentially interact with hematite in a conformation that maximizes its contact area with the mineral surface. Overall, these results provide experimental and quantitative evidence for OmcA reduction of solid metal oxides involving both direct and indirect mechanisms.

  11. Engulfment and clearance of apoptotic cells based on a GlcNAc-binding lectin-like property of surface vimentin.

    PubMed

    Ise, Hirohiko; Goto, Mitsuaki; Komura, Kenta; Akaike, Toshihiro

    2012-06-01

    The clearance of apoptotic cells is important to maintain tissue homeostasis. The engulfment of apoptotic cells is performed by professional phagocytes, such as macrophages, and also by non-professional phagocytes, such as mesenchymal cells. Here, we show that vimentin, a cytoskeletal protein, functions as an engulfment receptor on neighboring phagocytes, which recognize O-linked β-N-acetylglucosamine (O-GlcNAc)-modified proteins from apoptotic cells as "eat me" ligands. Previously, we reported that vimentin possesses a GlcNAc-binding lectin-like property on cell surface. However, the physiological relevance of the surface localization and GlcNAc-binding property of vimentin remained unclear. In the present study, we observed that O-GlcNAc proteins from apoptotic cells interacted with the surface vimentin of neighboring phagocytes and that this interaction induced serine 71-phosphorylation and recruitment of vimentin to the cell surface of the neighboring phagocytes. Moreover, tetrameric vimentin that was disassembled by serine 71-phosphorylation possessed a GlcNAc-binding activity and was localized to the cell surface. We demonstrated our findings in vimentin-expressing common cell lines such as HeLa cells. Furthermore, during normal developmental processes, the phagocytic engulfment and clearance of apoptotic footplate cells in mouse embryos was mediated by the interaction of surface vimentin with O-GlcNAc proteins. Our results suggest a common mechanism for the clearance of apoptotic cells, through the interaction of surface vimentin with O-GlcNAc-modified proteins.

  12. Cell-surface changes in cadmium-resistant Euglena: Studies using lectin-binding techniques and flow cytometry

    SciTech Connect

    Bonaly, J.; Brochiero, E.

    1994-01-01

    Most in vitro studies on contaminants focus on the short-term effects of pollutants on cells, without regard to long-term effects and the ability of cells or microorganisms to develop a specific resistance to a pollutant. Cadmium is ubiquitous environmental contaminant. This heavy metal enters the aquatic environment mainly through vapor emissions and fallout during smelting operations. Diverse mechanisms of algal resistance to toxic metals are known. Among these, the most general mechanism is the development of metal-binding proteins. In cadmium-resistant unicellular Euglena gracilis Z algae cells, the metal did not appear to be sequestered on soluble metal-binding ligands. Previous experiments have shown that resistance development is related to a diminution of cadmium penetration into cells, implicating cell surface or membrane alteration. This research investigates the mechanisms of development of cadmium resistance in Euglena cells at the cell-surface level. Sugar chains of glycoproteins and glycolipids are a predominant feature of the surface of cells. Moreover, the cell-response to environmental changes is often orchestrated through surface macromolecules such as glycoproteins. In this study, we applied this lectin method to investigate surface carbohydrate expression during and after resistance development. Our interest was twofold: (1) to learn more about the carbohydrate composition of the cell-surface of Euglena; and (2) to determine whether transition from wild cells to Cd-resistant cells changes the expression of cell-surface carbohydrates. 13 refs., 2 figs., 1 tab.

  13. Characterization of the Decaheme c-Type Cytochrome OmcA in Solution and on Hematite Surfaces by Small Angle X-Ray Scattering and Neutron Reflectometry

    SciTech Connect

    Johs, A.; Shi, L.; Droubay, T.; Ankner, J. F.; Liang, L.

    2010-06-15

    The outer membrane protein OmcA is an 85 kDa decaheme c-type cytochrome located on the surface of the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. It is assumed to mediate shuttling of electrons to extracellular acceptors that include solid metal oxides such as hematite (α-Fe2O3). No information is yet available concerning OmcA structure in physiologically relevant conditions such as aqueous environments. We purified OmcA and characterized its solution structure by small angle x-ray scattering (SAXS), and its interaction at the hematite-water interface by neutron reflectometry. SAXS showed that OmcA is a monomer that adopts a flat ellipsoidal shape with an overall dimension of 34 × 90 × 65 Å3. To our knowledge, we obtained the first direct evidence that OmcA undergoes a redox state-dependent conformational change in solution whereby reduction decreases the overall length of OmcA by ~7 Å (the maximum dimension was 96 Å for oxidized OmcA, and 89 Å for NADH and dithionite-reduced OmcA). OmcA was also found to physically interact with electron shuttle molecules such as flavin mononucleotide, resulting in the formation of high-molecular-weight assemblies. Neutron reflectometry showed that OmcA forms a well-defined monomolecular layer on hematite surfaces, where it assumes an orientation that maximizes its contact area with the mineral surface. Finally, these novel insights into the molecular structure of OmcA in solution, and its interaction with insoluble hematite and small organic ligands, demonstrate the fundamental structural bases underlying OmcA's role in mediating redox processes.

  14. Lectins and Tetrahymena - A review.

    PubMed

    Csaba, György

    2016-09-01

    The unicellular ciliate Tetrahymena is a complete organism, one of the most highly developed protozoans, which has specialized organelles performing each of the functions characteristic to the cells of higher ranked animals. It is also able to produce, store, and secrete hormones of higher ranked animals and also react to them. It produces lectins that can bind them and has functions, which are influenced by exogenous lectins. The review lists the observations on the relationship between lectins and Tetrahymena and try to construe them on the basis of the data, which are at our disposal. Considering the data, lectins can be used by Tetrahymena as materials for influencing conjugation, for stimulating hormone receptors, and by this, mimic the hormonal functions. Lectins can influence phagocytosis and movement of the cells as well as the cell division. As Tetrahymena can recognize both related and hostile cells by the help of lectins and surface sugars, it could be surmised a complex predator-prey system. This could determine the survival of the population as well as the nourishment conditions. When Tetrahymena is pathogenic, it can use lectins as virulence factors.

  15. Use of lectins in immunohematology

    PubMed Central

    Gorakshakar, Ajit C.; Ghosh, Kanjaksha

    2016-01-01

    Lectins are carbohydrate binding proteins present in seeds of many plants, especially corals and beans, in fungi and bacteria, and in animals. Apart from their hemagglutinating property, a wide range of functions have been attributed to them. Their importance in the area of immunohematology is immense. They are used to detect specific red cell antigens, to activate different types of lymphocytes, in order to resolve problems related to polyagglutination and so on. The introduction of advanced biotechnological tools generates new opportunities to exploit the properties of lectins, which were not used earlier. Stem cell research is a very important area in transplant medicine. Certain lectins detect surface markers of stem cell. Hence, they are used to understand the developmental biology of stem cells. The role of various lectins in the areas of transfusion and transplant medicine is discussed in detail in this review. PMID:27011665

  16. Evidence for an increase in positive surface charge and an increase in susceptibility to trypsin of Sarcophaga lectin (from the flesh fly, Sarcophaga peregrina) on its interaction with galactose, a hapten sugar of the lectin.

    PubMed

    Komano, H; Kurama, T; Nagasawa, Y; Natori, S

    1992-05-15

    When Sarcophaga lectin (from the flesh fly, Sarcophaga peregrina), an insect humoral lectin, was eluted from a column of DEAE-cellulose in the presence of galactose (a hapten sugar of this lectin), it emerged at a lower salt concentration than when galactose was absent. In the presence of galactose the lectin was, in addition, more susceptible to trypsin digestion. The lectin was found to have an affinity for basic proteins such as histone H3 and sarcotoxin IA, but this property was lost in the presence of galactose. These results suggested that the lectin changes its conformation on interaction with galactose. This change is suggested to result in the exposure of some hidden lysine and/or arginine residues.

  17. Evidence for an increase in positive surface charge and an increase in susceptibility to trypsin of Sarcophaga lectin (from the flesh fly, Sarcophaga peregrina) on its interaction with galactose, a hapten sugar of the lectin.

    PubMed Central

    Komano, H; Kurama, T; Nagasawa, Y; Natori, S

    1992-01-01

    When Sarcophaga lectin (from the flesh fly, Sarcophaga peregrina), an insect humoral lectin, was eluted from a column of DEAE-cellulose in the presence of galactose (a hapten sugar of this lectin), it emerged at a lower salt concentration than when galactose was absent. In the presence of galactose the lectin was, in addition, more susceptible to trypsin digestion. The lectin was found to have an affinity for basic proteins such as histone H3 and sarcotoxin IA, but this property was lost in the presence of galactose. These results suggested that the lectin changes its conformation on interaction with galactose. This change is suggested to result in the exposure of some hidden lysine and/or arginine residues. Images Fig. 1. Fig. 3. PMID:1599400

  18. Lectins and their application to clinical microbiology.

    PubMed Central

    Slifkin, M; Doyle, R J

    1990-01-01

    Lectins are generally associated with plant or animal components, selectively bind carbohydrates, and interact with procaryotic and eucaryotic cells. Lectins have various specificities that are associated with their ability to interact with acetylaminocarbohydrates, aminocarbohydrates, sialic acids, hexoses, pentoses, and as other carbohydrates. Microbial surfaces generally contain many of the sugar residues that react with lectins. Lectins are presently used in the clinical laboratory to type blood cells and are used in a wide spectrum of applications, including, in part, as carriers of chemotherapeutic agents, as mitogens, for fractionation of animal cells, and for investigations of cellular surfaces. Numerous studies have shown that lectins can be used to identify rapidly certain microorganisms isolated from a clinical specimen or directly in a clinical specimen. Lectins have been demonstrated to be important diagnostic reagents in the major realms of clinical microbiology. Thus, they have been applied in bacteriology, mycology, mycobacteriology, and virology for the identification and/or differentiation of various microorganisms. Lectins have been used successfully as epidemiologic as well as taxonomic markers of specific microorganisms. Lectins provide the clinical microbiologist with cost-effective and potential diagnostic reagents. This review describes the applications of lectins in clinical microbiology. Images PMID:2200603

  19. SEM visualization of glycosylated surface molecules using lectin-coated microspheres

    NASA Technical Reports Server (NTRS)

    Duke, J.; Janer, L.; Campbell, M.

    1985-01-01

    There are several techniques currently used to localize glycosylated surface molecules by scanning electron microscopy (Grinnell, 1980; Molday, 1976; Linthicum and Sell, 1975; Nicolson, 1974; Lo Buglio, et al, 1972). A simple and rapid method, using a modification of Grinnell's technique is reported here. Essentially, microspheres coated with Concavalin A are used to bind to glycosylated regions of the palatal shelf epithelium and are visualized in the scanning electron microscope (SEM).

  20. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile

    SciTech Connect

    Bradshaw, William J.; Kirby, Jonathan M.; Thiyagarajan, Nethaji; Chambers, Christopher J.; Davies, Abigail H.; Roberts, April K.; Shone, Clifford C.; Acharya, K. Ravi

    2014-07-01

    The crystal structure of Cwp84, an S-layer protein from Clostridium difficile is presented for the first time. The cathepsin L-like fold of cysteine protease domain, a newly observed ‘lectin-like’ domain and several other features are described. Clostridium difficile is a major problem as an aetiological agent for antibiotic-associated diarrhoea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood, but undoubtedly involves a myriad of components present on the bacterial surface. The mechanism of C. difficile surface-layer (S-layer) biogenesis is also largely unknown but involves the post-translational cleavage of a single polypeptide (surface-layer protein A; SlpA) into low- and high-molecular-weight subunits by Cwp84, a surface-located cysteine protease. Here, the first crystal structure of the surface protein Cwp84 is described at 1.4 Å resolution and the key structural components are identified. The truncated Cwp84 active-site mutant (amino-acid residues 33–497; C116A) exhibits three regions: a cleavable propeptide and a cysteine protease domain which exhibits a cathepsin L-like fold followed by a newly identified putative carbohydrate-binding domain with a bound calcium ion, which is referred to here as a lectin-like domain. This study thus provides the first structural insights into Cwp84 and a strong base to elucidate its role in the C. difficile S-layer maturation mechanism.

  1. Lectins from opportunistic bacteria interact with acquired variable-region glycans of surface immunoglobulin in follicular lymphoma.

    PubMed

    Schneider, Dunja; Dühren-von Minden, Marcus; Alkhatib, Alabbas; Setz, Corinna; van Bergen, Cornelis A M; Benkißer-Petersen, Marco; Wilhelm, Isabel; Villringer, Sarah; Krysov, Sergey; Packham, Graham; Zirlik, Katja; Römer, Winfried; Buske, Christian; Stevenson, Freda K; Veelken, Hendrik; Jumaa, Hassan

    2015-05-21

    B-cell antigen receptor (BCR) expression is a key feature of most B-cell lymphomas, but the mechanisms of BCR signal induction and the involvement of autoantigen recognition remain unclear. In follicular lymphoma (FL) B cells, BCR expression is retained despite a chromosomal translocation that links the antiapoptotic gene BCL2 to the regulatory elements of immunoglobulin genes, thereby disrupting 1 heavy-chain allele. A remarkable feature of FL-BCRs is the acquisition of potential N-glycosylation sites during somatic hypermutation. The introduced glycans carry mannose termini, which create potential novel binding sites for mannose-specific lectins. Here, we investigated the effect of N-linked variable-region glycosylation for BCR interaction with cognate antigen and with lectins of different origins. N-glycans were found to severely impair BCR specificity and affinity to the initial cognate antigen. In addition, we found that lectins from Pseudomonas aeruginosa and Burkholderia cenocepacia bind and stimulate FL cells. Human exposure to these bacteria can occur by contact with soil and water. In addition, they represent opportunistic pathogens in susceptible hosts. Understanding the role of bacterial lectins might elucidate the pathogenesis of FL and establish novel therapeutic approaches.

  2. Lectin staining and flow cytometry reveals female-induced sperm acrosome reaction and surface carbohydrate reorganization

    PubMed Central

    Kekäläinen, Jukka; Larma, Irma; Linden, Matthew; Evans, Jonathan P.

    2015-01-01

    All cells are covered by glycans, an individually unique layer of oligo- and polysaccharides that are critical moderators of self-recognition and other cellular-level interactions (e.g. fertilization). The functional similarity between these processes suggests that gamete surface glycans may also have an important, but currently overlooked, role in sexual selection. Here we develop a user-friendly methodological approach designed to facilitate future tests of this possibility. Our proposed method is based on flow cytometric quantification of female-induced sperm acrosome reaction and sperm surface glycan modifications in the Mediterranean mussel Mytilus galloprovincialis. In this species, as with many other taxa, eggs release water-soluble factors that attract conspecific sperm (chemoattraction) and promote potentially measurable changes in sperm behavior and physiology. We demonstrate that flow cytometry is able to identify sperm from other seawater particles as well as accurately measure both acrosome reaction and structural modifications in sperm glycans. This methodological approach can increase our understanding of chemically-moderated gamete-level interactions and individual-specific gamete recognition in Mytilus sp. and other taxa with similar, easily identifiable acrosome structure. Our approach is also likely to be applicable to several other species, since carbohydrate-mediated cellular-level interactions between gametes are universal among externally and internally fertilizing species. PMID:26470849

  3. Contact-dependent transfer of the galactose-specific lectin of Entamoeba histolytica to the lateral surface of enterocytes in culture.

    PubMed

    Leroy, A; De Bruyne, G; Mareel, M; Nokkaew, C; Bailey, G; Nelis, H

    1995-11-01

    In a study to investigate early interactions of Entamoeba histolytica with epithelial cell monolayers, we found that a monoclonal antibody (MAb), CD6, against an ameba surface antigen recognized the lateral surface of epithelial cells after coculture with trophozoites. Display of the CD6 antigen on the epithelial cells necessitated contact with active trophozoites. It was found neither at 4 degrees C, nor with prefixed trophozoites, nor with trophozoite-conditioned media, nor when a filter prevented direct contact. Monolayers exposed to amebic sonicates or detergent lysates showed random immunostaining. Access to the antigenic site was limited, as immunostaining occurred predominantly with subconfluent monolayers. CD6 epithelial cell binding was first observed after 5 min of coculture; trophozoite-mediated target cell lysis was not detected until 15 min following coculture. Epithelial cell immunostaining occurred with some other ameba-specific antibodies but not with MAbs raised against the 170-kDa subunit of the galactose-N-acetylgalactosamine (Gal/GalNAc)-specific lectin. The CD6 MAb as well as some other ameba-specific antibodies immunoprecipitated from trophozoite lysates the same bands as the MAbs against the cysteine-rich domain of the 170-kDa subunit of the Gal/GalNAc-specific lectin. Why the latter MAbs failed to stain epithelial cells in the vicinity of attached trophozoites is presently unknown. We concluded that E. histolytica trophozoites transferred the intact amebic Gal/GalNAc-specific lectin or a portion of it to the lateral surface of epithelial cells. This juxtacrine transfer preceded killing of target cells.

  4. Purification and Characterization of OmcZ, an Outer-Surface, Octaheme c-Type Cytochrome Essential for Optimal Current Production by Geobacter sulfurreducens▿ †

    PubMed Central

    Inoue, Kengo; Qian, Xinlei; Morgado, Leonor; Kim, Byoung-Chan; Mester, Tünde; Izallalen, Mounir; Salgueiro, Carlos A.; Lovley, Derek R.

    2010-01-01

    Previous studies have demonstrated that Geobacter sulfurreducens requires the c-type cytochrome OmcZ, which is present in large (OmcZL; 50-kDa) and small (OmcZS; 30-kDa) forms, for optimal current production in microbial fuel cells. This protein was further characterized to aid in understanding its role in current production. Subcellular-localization studies suggested that OmcZS was the predominant extracellular form of OmcZ. N- and C-terminal amino acid sequence analysis of purified OmcZS and molecular weight measurements indicated that OmcZS is a cleaved product of OmcZL retaining all 8 hemes, including 1 heme with the unusual c-type heme-binding motif CX14CH. The purified OmcZS was remarkably thermally stable (thermal-denaturing temperature, 94.2°C). Redox titration analysis revealed that the midpoint reduction potential of OmcZS is approximately −220 mV (versus the standard hydrogen electrode [SHE]) with nonequivalent heme groups that cover a large reduction potential range (−420 to −60 mV). OmcZS transferred electrons in vitro to a diversity of potential extracellular electron acceptors, such as Fe(III) citrate, U(VI), Cr(VI), Au(III), Mn(IV) oxide, and the humic substance analogue anthraquinone-2,6-disulfonate, but not Fe(III) oxide. The biochemical properties and extracellular localization of OmcZ suggest that it is well suited for promoting electron transfer in current-producing biofilms of G. sulfurreducens. PMID:20400562

  5. Identification of mycobacterial lectins from genomic data.

    PubMed

    Abhinav, K V; Sharma, Alok; Vijayan, M

    2013-04-01

    Sixty-four sequences containing lectin domains with homologs of known three-dimensional structure were identified through a search of mycobacterial genomes. They appear to belong to the β-prism II, the C-type, the Microcystis virdis (MV), and the β-trefoil lectin folds. The first three always occur in conjunction with the LysM, the PI-PLC, and the β-grasp domains, respectively while mycobacterial β-trefoil lectins are unaccompanied by any other domain. Thirty heparin binding hemagglutinins (HBHA), already annotated, have also been included in the study although they have no homologs of known three-dimensional structure. The biological role of HBHA has been well characterized. A comparison between the sequences of the lectin from pathogenic and nonpathogenic mycobacteria provides insights into the carbohydrate binding region of the molecule, but the structure of the molecule is yet to be determined. A reasonable picture of the structural features of other mycobacterial proteins containing one or the other of the four lectin domains can be gleaned through the examination of homologs proteins, although the structure of none of them is available. Their biological role is also yet to be elucidated. The work presented here is among the first steps towards exploring the almost unexplored area of the structural biology of mycobacterial lectins.

  6. Interaction of Lens culinaris lectin, concanavalin A, Ricinus communis agglutinin and wheat germ agglutinin with the cell surface of normal and transformed rat liver cells.

    PubMed

    Roth, J; Neupert, G; Thoss, K

    1975-01-01

    The observation of BOREK et al. (1973) on nonagglutinability of transformed rat liver cells by Lens culinaris lectin and our ultrastructural findings of a greater mobility of the Lens culinaris lectin receptors on transformed rat liver cells as compared to normal rat liver cells (ROTH 1975) initiated the present agglutination experiments on liver cells with lectins. For agglutination assay the microhemadsorption technique after FURMANSKI et al. (1973) was used with exception of several tests on EDTA-detached cells. The transformed rat liver cells exhibited, in contrast to the findings of BOREK et al. (1973), a positive microhemadsorption with Lens culinaris lectin as well as with Concanavalin A, Ricinus communis lectin and wheat germ agglutinin whereas the normal rat liver cells became positive only after a brief trypsin treatment. The significance of the difference in agglutinability of rat liver cells with Lens culinaris lectin and the other lectins used is discussed with regard to the cell-cell interaction mediated by lectins.

  7. Lectin-binding epitopes at the surface of Escherichia coli K-12: examination by electron microscopy, with special reference to the presence of a colanic acid-like polymer.

    PubMed

    Stoitsova, Stoyanka; Ivanova, Radka; Dimova, Ivanka

    2004-01-01

    The presence and distribution of lectin-binding epitopes at the surface of Escherichia coli K-12, strain W1655, was studied by electron microscopy after lectin-gold labeling and negative staining. A comparison was made between the lectin-binding capacity of cells cultivated at 20 degrees C and 37 degrees C (in broth or on agar). A variety of pre-treatment protocols were applied prior to labeling. The gold-conjugated lectins used were wheat germ agglutinin (WGA), soybean agglutinin (SBA) and Ulex europaeus lectin (UEA-I). For all culture conditions, the bacteria had moderate exposure of WGA-binding sites, and this was not changed after pre-treatment. Cells cultivated at 37 degrees C had exposed SBA- and UEA-I-binding epitopes apparently associated with the cell surface. These significantly increased in number after boiling the cells for 10 min. With bacteria cultivated at 20 degrees C these two lectins recognized sites situated on exopolysaccharide filaments. Affino dot-blot experiments with isolated polysaccharides of the strain identified the K-12 lipooligosaccharide as the source of WGA-binding epitopes, and the exopolysaccharide, colanic acid (CA) as the source of SBA- and UEA-I-binding sites. The interaction with these two lectins of bacteria cultivated at 37 degrees C could be due to altered translocation of CA from the cytoplasm to the environment. This suggestion was supported by the demonstration by electron microscopy of SBA and UEA-I binding at the surface of hot phenol-water extracted cell walls.

  8. Functional Specialty of CD40 and Dendritic Cell Surface Lectins for Exogenous Antigen Presentation to CD8(+) and CD4(+) T Cells.

    PubMed

    Yin, Wenjie; Gorvel, Laurent; Zurawski, Sandra; Li, Dapeng; Ni, Ling; Duluc, Dorothée; Upchurch, Katherine; Kim, JongRok; Gu, Chao; Ouedraogo, Richard; Wang, Zhiqing; Xue, Yaming; Joo, HyeMee; Gorvel, Jean-Pierre; Zurawski, Gerard; Oh, SangKon

    2016-03-01

    Dendritic cells (DCs) are major antigen-presenting cells that can efficiently prime and cross-prime antigen-specific T cells. Delivering antigen to DCs via surface receptors is thus an appealing strategy to evoke cellular immunity. Nonetheless, which DC surface receptor to target to yield the optimal CD8(+) and CD4(+) T cell responses remains elusive. Herein, we report the superiority of CD40 over 9 different lectins and scavenger receptors at evoking antigen-specific CD8(+) T cell responses. However, lectins (e.g., LOX-1 and Dectin-1) were more efficient than CD40 at eliciting CD4(+) T cell responses. Common and distinct patterns of subcellular and intracellular localization of receptor-bound αCD40, αLOX-1 and αDectin-1 further support their functional specialization at enhancing antigen presentation to either CD8(+) or CD4(+) T cells. Lastly, we demonstrate that antigen targeting to CD40 can evoke potent antigen-specific CD8(+) T cell responses in human CD40 transgenic mice. This study provides fundamental information for the rational design of vaccines against cancers and viral infections.

  9. Diversified Carbohydrate-Binding Lectins from Marine Resources

    PubMed Central

    Ogawa, Tomohisa; Watanabe, Mizuki; Naganuma, Takako; Muramoto, Koji

    2011-01-01

    Marine bioresources produce a great variety of specific and potent bioactive molecules including natural organic compounds such as fatty acids, polysaccharides, polyether, peptides, proteins, and enzymes. Lectins are also one of the promising candidates for useful therapeutic agents because they can recognize the specific carbohydrate structures such as proteoglycans, glycoproteins, and glycolipids, resulting in the regulation of various cells via glycoconjugates and their physiological and pathological phenomenon through the host-pathogen interactions and cell-cell communications. Here, we review the multiple lectins from marine resources including fishes and sea invertebrate in terms of their structure-activity relationships and molecular evolution. Especially, we focus on the unique structural properties and molecular evolution of C-type lectins, galectin, F-type lectin, and rhamnose-binding lectin families. PMID:22312473

  10. Spectral characters of lectin saccharide interaction

    NASA Astrophysics Data System (ADS)

    Wang, Deyu; Jiang, Duxiao; Yuan, Chunwei

    1999-09-01

    In this paper we report attempts to directly detect the interaction behavior between erythrocyte and lectin concanavalin a (Con A) as well as phaseolus vulgaris (PHA) on the polystyrene film surface. In the procedure, an optical transducer based reflectance interferometry was set up and used to detect the film thickness change during the lectin adsorption and lectin- erythrocyte interaction. The specific interactions among Con A, PHA and erythrocyte were obtained. The solubility monosaccharide inhibition test confirmed that there is affinity between (alpha) - D-mannose and Con A.

  11. Complete structure of the cell surface polysaccharide of Streptococcus oralis ATCC 10557: A receptor for lectin-mediated interbacterial adherence

    SciTech Connect

    Abeygunawardana, C.; Bush, C.A. ); Cisar, J.O. )

    1991-07-02

    Lectin-carbohydrate binding is known to play an important role in a number of different cell-cell interactions including those between certain species of oral streptococci and actinomyces that colonize teeth. The cell wall polysaccharides of Streptococcus oralis ATCC 10557, S. oralis 34, and Streptococcus mitis J22, although not identical antigenically, each function as a receptor molecule for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii. Carbohydrate analysis of the receptor polysaccharide isolated from S. oralis ATCC 10557 shows galactose (3 mol), glucose (1 mol), GalNAc (1 mol), and rhamnose (1 mol). {sup 1}H NMR spectra of the polysaccharide show that is partially O-acetylated. Analysis of the {sup 1}H NMR spectrum of the de-O-acetylated polysaccharide shows that it is composed of repeating subunits containing six monosaccharides and that the subunits are joined by a phosphodiester linkage. The {sup 1}H and {sup 13}C NMR spectra were completely assigned by two-dimensional homonuclear correlation methods and by {sup 1}H-detected heteronuclear multiple-quantum correlation ({sup 1}H({sup 13}C)HMQC). The complete {sup 1}H and {sup 13}C assignment of the native polysaccharide was carried out by the same techniques augmented by a {sup 13}C-coupled hybrid HMQC-COSY method, which is shown to be especially useful for carbohydrates in which strong coupling and overlapping peaks in the {sup 1}H spectrum pose difficulties.

  12. Analysis of EST and lectin expressions in hemocytes of Manila clams (Ruditapes philippinarum) (Bivalvia: Mollusca) infected with Perkinsus olseni.

    PubMed

    Kang, Yoon-Suk; Kim, Young-Mee; Park, Kyung-Il; Kim Cho, Somi; Choi, Kwang-Sik; Cho, Moonjae

    2006-01-01

    The hemocytes of invertebrates play key roles in both cellular and humoral immune reactions by phagocytosis or delivering immune factors such as lectin and anti-microbial peptides. Bacterial infection causes changes in components such as lectins, anti-bacterial peptides, and lysosomal enzymes of plasma or hemolymph in molluscs. Previously, we found that infection with the protozoan parasite, Perkinsus, increases lectin synthesis in hemocytes. In order to investigate the patterns of genes expressed in Manila clams (Ruditapes philippinarum) infected with the protozoan parasite Perkinsus olseni, we constructed a cDNA library and sequenced 1850 clones (expressed sequence tags). A total of 79 ESTs, were related to 29 functional immune genes such as C-type lectin, lysozyme, and cystatin B, in Manila clams. Lectins were the largest group of immune-function ESTs found in our Manila clams library. Among 7 lectin clones, two full length cDNAs of lectins were cloned. MCL-3, which is a simple C-type lectin composed of 151 amino acids, has a relatively short signal sequence of 17aa and single carbohydrate-recognition domain (CRD) of approximately 130 residues. It is highly homologous to eel C-type lectin. The sequence of mc-sialic acid-binding lectin consists of 168 amino acid residues with molecular weight of 19.2 and shows high homology to sialic acid-binding lectin from the snail, Cepaea hortensis. The expression of 7 different lectins in hemocytes was analyzed by RT-PCR using gene-specific primers. Hemocytes from Perkinsus-infected clam expressed different sets of lectins than with Vibrio infection. These results demonstrate that several lectins are involved in Manila clam innate immunity and different challenges induce expression of different lectins.

  13. Agglutination of Helicobacter pylori coccoids by lectins

    PubMed Central

    Khin, Mar Mar; Hua, Jie Song; Ng, Han Cong; Wadström, Torkel; Ho, Bow

    2000-01-01

    AIM: To study the agglutination pattern of Helicobacter pylori coccoid and spiral forms. METHODS: Assays of agglutination and agglutination inhibition were applied using fifteen commercial lectins. RESULTS: Strong agglutination was observed with mannose-specific Concanavalin A (Con A), fucose-specific Tetragonolobus purpureas (Lotus A) and N-acetyl glucosamine-specific Triticum vulgaris (WGA) lectins. Mannose and fucose specific lectins were reactive with all strains of H. pylori coccoids as compared to the spirals. Specific carbohydrates, glycoproteins and mucin were shown to inhibit H. pylori lectin-agglutination reactions. Pre-treatment of the bacterial cells with formalin and sulphuric acid did not alter the agglutination patterns with lectins. However, sodium periodate treatment of bacterial cells were shown to inhibit agglutination reaction with Con A, Lotus A and WGA lectins. On the contrary, enzymatic treatment of coccoids and spirals did not show marked inhibition of H. pylori lectin agglutination. Interes tingly, heating of H. pylori cells at 60 °C for 1 h was shown to augment the agglutination with all of the lectins tested. CONCLUSION: The considerable differences in lectin agglutination patterns seen among the two differentiated forms of H. pylori might be attributable to the structural changes during the events of morphological transformation, resulting in exposing or masking some of the sugar residues on the cell surface. Possibility of various sugar residues on the cell wall of the coccoids may allow them to bind to different carbohydrate receptors on gastric mucus and epithelial cells. The coccoids with adherence characteristics like the spirals could aid in the pathogenic process of Helicobacter infection. This may probably lead to different clinical outcome of H. pylori associated gastroduodenal disease. PMID:11819557

  14. Differential responses of Helicoverpa armigera C-type immunlectin genes to the endoparasitoid Campoletis chlorideae.

    PubMed

    Wang, Xiong-Ya; Bai, Su-Fen; Li, Xin; An, Shi-Heng; Yin, Xin-Ming; Li, Xian-Chun

    2017-03-01

    The C-type lectins mediate nonself recognition in insects. The previous studies focused on host immunlectin response to bacterial infection; however, the molecular basis of immunlectin reactions to endoparasitoids has not been elucidated. The present study investigated the effect of parasitization by Campoletis chlorideae on hemagglutination activity (HA; defined as the ability of lectin to agglutinate erythrocytes or other cells), and transcriptional expression of C-type immunlectin genes in the larval host, Helicoverpa armigera. Parasitization induced four- to eightfold higher HA in the parasitized larvae, compared to nonparasitized larvae at days 2 and 6 postparasitization (PP), however inhibited HA at other days PP. Eight C-type lectins were differentially expressed in different host developmental stages, from feeding to wandering stage. The mRNA levels of HaCTL1, HaCTL3, HaCTL4, and HaCTL5 were upregulated and HaCTL2 and HaCTL7 were downregulated. Tissue analysis showed that HaCTLs were mainly expressed in fat body or hemocytes, while HaCTL5 was highly expressed in testes. The effects of parasitization on the lectin expression patterns differed. Lectins except HaCTL6 or HaCTL5 were significantly down- or upregulated in parasitized larvae at day 4 or 6 PP compared with that of nonparasitized larvae. We infer from our results that C-type immunlectins are involved in host-parasitoid interactions, and parasitization alter host immunlectin levels both in inhibiting and promoting host immune defenses to endoparasitoids. These immunlectin genes indicated an altered physiological status of the host insect, depending on developmental stage, tissue, and parasitization.

  15. Lectin-binding by sporozoites of Elmeria tenella.

    PubMed

    Fuller, A L; McDougald, L R

    2002-02-01

    Sporozoites of Eimeria tenella were reacted in vitro with 19 different lectins characterized with a variety of carbohydrate-binding properties. Nine lectins caused sporozoite agglutination, which was inhibited by the specific carbohydrates mannose, sialic acid, melibiose, D-galactose, or D-galNAc. When intact live or fixed whole sporozoites were reacted with fluorescein isothiocyanate-conjugated lectins, another nine lectins bound to sporozoites, giving weak to strong fluorescence but not agglutination. Of these, all nine lectins bound to surface sites, but four also bound to the refractile body. Two of the agglutinating lectins also bound to intracellular organelles of air-dried sporozoites. SDS-PAGE analysis showed that biotinylated lectins bound a wide variety of parasite proteins. Lectins with similar carbohydrate specificities had some similarity in binding patterns of parasite proteins, as well as marked differences. In a few cases lectins with different carbohydrate specificities bound common protein bands. Only one lectin (Dolichos biflorus) showed no evidence of binding to whole sporozoites, organelles, or proteins.

  16. Lectins, Interconnecting Proteins with Biotechnological/Pharmacological and Therapeutic Applications

    PubMed Central

    Silva, Priscila Marcelino dos Santos

    2017-01-01

    Lectins are proteins extensively used in biomedical applications with property to recognize carbohydrates through carbohydrate-binding sites, which identify glycans attached to cell surfaces, glycoconjugates, or free sugars, detecting abnormal cells and biomarkers related to diseases. These lectin abilities promoted interesting results in experimental treatments of immunological diseases, wounds, and cancer. Lectins obtained from virus, microorganisms, algae, animals, and plants were reported as modulators and tool markers in vivo and in vitro; these molecules also play a role in the induction of mitosis and immune responses, contributing for resolution of infections and inflammations. Lectins revealed healing effect through induction of reepithelialization and cicatrization of wounds. Some lectins have been efficient agents against virus, fungi, bacteria, and helminths at low concentrations. Lectin-mediated bioadhesion has been an interesting characteristic for development of drug delivery systems. Lectin histochemistry and lectin-based biosensors are useful to detect transformed tissues and biomarkers related to disease occurrence; antitumor lectins reported are promising for cancer therapy. Here, we address lectins from distinct sources with some biological effect and biotechnological potential in the diagnosis and therapeutic of diseases, highlighting many advances in this growing field. PMID:28367220

  17. The Distribution of Lectins across the Phylum Nematoda: A Genome-Wide Search

    PubMed Central

    Bauters, Lander; Naalden, Diana; Gheysen, Godelieve

    2017-01-01

    Nematodes are a very diverse phylum that has adapted to nearly every ecosystem. They have developed specialized lifestyles, dividing the phylum into free-living, animal, and plant parasitic species. Their sheer abundance in numbers and presence in nearly every ecosystem make them the most prevalent animals on earth. In this research nematode-specific profiles were designed to retrieve predicted lectin-like domains from the sequence data of nematode genomes and transcriptomes. Lectins are carbohydrate-binding proteins that play numerous roles inside and outside the cell depending on their sugar specificity and associated protein domains. The sugar-binding properties of the retrieved lectin-like proteins were predicted in silico. Although most research has focused on C-type lectin-like, galectin-like, and calreticulin-like proteins in nematodes, we show that the lectin-like repertoire in nematodes is far more diverse. We focused on C-type lectins, which are abundantly present in all investigated nematode species, but seem to be far more abundant in free-living species. Although C-type lectin-like proteins are omnipresent in nematodes, we have shown that only a small part possesses the residues that are thought to be essential for carbohydrate binding. Curiously, hevein, a typical plant lectin domain not reported in animals before, was found in some nematode species. PMID:28054982

  18. The Distribution of Lectins across the Phylum Nematoda: A Genome-Wide Search.

    PubMed

    Bauters, Lander; Naalden, Diana; Gheysen, Godelieve

    2017-01-04

    Nematodes are a very diverse phylum that has adapted to nearly every ecosystem. They have developed specialized lifestyles, dividing the phylum into free-living, animal, and plant parasitic species. Their sheer abundance in numbers and presence in nearly every ecosystem make them the most prevalent animals on earth. In this research nematode-specific profiles were designed to retrieve predicted lectin-like domains from the sequence data of nematode genomes and transcriptomes. Lectins are carbohydrate-binding proteins that play numerous roles inside and outside the cell depending on their sugar specificity and associated protein domains. The sugar-binding properties of the retrieved lectin-like proteins were predicted in silico. Although most research has focused on C-type lectin-like, galectin-like, and calreticulin-like proteins in nematodes, we show that the lectin-like repertoire in nematodes is far more diverse. We focused on C-type lectins, which are abundantly present in all investigated nematode species, but seem to be far more abundant in free-living species. Although C-type lectin-like proteins are omnipresent in nematodes, we have shown that only a small part possesses the residues that are thought to be essential for carbohydrate binding. Curiously, hevein, a typical plant lectin domain not reported in animals before, was found in some nematode species.

  19. Lectins discriminate between pathogenic and nonpathogenic South American trypanosomes

    SciTech Connect

    de Miranda Santos, I.K.; Pereira, M.E.

    1984-09-01

    Cell surface carbohydrates of Trypanosoma cruzi, Trypanosoma rangeli, and Trypanosoma conorhini were analyzed by a micro-agglutination assay employing 27 highly purified lectins and by binding assays using various /sup 125/I-labeled lectins. The following seven lectins discriminated between the trypanosomes: 1) tomato lectin (an N-acetyl-D-glucosamine-binding protein), both in purified form and as crude tomato juice; 2) Bauhinea purpurea and Sophora japonica lectins (both N-acetyl-D-galactosamine-binding proteins), which selectively agglutinated T. cruzi; 3) Vicia villosa (an N-acetyl-D-galactosamine-binding protein) which was specific for T. rangeli; 4) peanut lectin (a D-galactose-binding protein) both in purified form and as crude saline extract; and 5) Ulex europaeus and Lotus tetragonolobus (both L-fucose-binding proteins) lectins which reacted only with T. conorhini. Binding studies with 125I-labeled lectins were performed to find whether unagglutinated cells of the three different species of trypanosomes might have receptors for these lectins, in which case absence of agglutination could be due to a peculiar arrangement of the receptors. These assays essentially confirmed the agglutination experiments.

  20. Lectins discriminate between pathogenic and nonpathogenic South American trypanosomes.

    PubMed

    de Miranda Santos, I K; Pereira, M E

    1984-09-01

    Cell surface carbohydrates of Trypanosoma cruzi, Trypanosoma rangeli, and Trypanosoma conorhini were analyzed by a micro-agglutination assay employing 27 highly purified lectins and by binding assays using various 125I-labeled lectins. The following seven lectins discriminated between the trypanosomes: 1) tomato lectin (an N-acetyl-D-glucosamine-binding protein), both in purified form and as crude tomato juice; 2) Bauhinea purpurea and Sophora japonica lectins (both N-acetyl-D-galactosamine-binding proteins), which selectively agglutinated T. cruzi; 3) Vicia villosa (an N-acetyl-D-galactosamine-binding protein) which was specific for T. rangeli; 4) peanut lectin (a D-galactose-binding protein) both in purified form and as crude saline extract; and 5) Ulex europaeus and Lotus tetragonolobus (both L-fucose-binding proteins) lectins which reacted only with T. conorhini. Binding studies with 125I-labeled lectins were performed to find whether unagglutinated cells of the three different species of trypanosomes might have receptors for these lectins, in which case absence of agglutination could be due to a peculiar arrangement of the receptors. These assays essentially confirmed the agglutination experiments.

  1. Lectin binding to cystic stages of Taenia taeniaeformis.

    PubMed

    Sandeman, R M; Williams, J F

    1984-10-01

    Studies of membrane glycoconjugates of Taenia taeniaeformis were initiated by assays of the lectin binding characteristics of 35-day-old cysticerci. Parasites fixed in glutaraldehyde were incubated with one of the following FITC-labelled lectins: Concanavalin A (Con A), Lens culinaris agglutinin (LCA), Ricinus communis agglutinin (RCA), peanut agglutinin (PNA), fucose binding protein (FBP) and wheat germ agglutinin (WGA) and either their specific or a nonspecific sugar. Ultraviolet microscopy revealed that only Con A and LCA bound in large amounts to the surface of cysticerci. This binding was partly inhibited by the specific sugar, but the nonspecific sugar had little effect. The lectin not removed by either of the sugars may have been bound nonspecifically to the charged glycocalyx. Lectins were primarily bound on the anterior third of the parasite around the scolex invagination. Kinetic studies of lectin interactions were carried out with LCA and RCA by spectrophotofluorometric analysis of the amount bound specifically or nonspecifically over a range of lectin concentrations. Lens culinaris lectin binding was found to be specific and involve 2 receptors which showed large differences in their affinity for lectin and prevalence on the surface. Ricinus communis lectin did not bind specifically but nonspecific interactions were observed. Adherence of small numbers of host cells was shown to have no measurable effect on the lectin binding characteristics. The results suggest that the major surface carbohydrates exposed are D-mannose and/or D-glucose residues with the other sugar groups poorly represented. This relatively homogeneous surface may have implications for the antigenicity of the parasite in its host.

  2. Lectin-binding properties of Aeromonas caviae strains

    PubMed Central

    Rocha-de-Souza, Cláudio M.; Hirata-Jr, Raphael; Mattos-Guaraldi, Ana L.; Freitas-Almeida, Angela C.; Andrade, Arnaldo F. B.

    2008-01-01

    The cell surface carbohydrates of four strains of Aeromonas caviae were analyzed by agglutination and lectin-binding assays employing twenty highly purified lectins encompassing all sugar specificities. With the exception of L-fucose and sialic acid, the sugar residues were detected in A. caviae strains. A marked difference, however, in the pattern of cell surface carbohydrates in different A. caviae isolates was observed. Specific receptors for Tritricum vulgaris (WGA), Lycopersicon esculentum (LEL) and Solanum tuberosum (STA) (D-GlcNAc-binding lectins) were found only in ATCC 15468 strain, whereas Euonymus europaeus (EEL, D-Gal-binding lectin) sites were present exclusively in AeQ32 strain, those for Helix pomatia (HPA, D-GalNAc-binding lectin) in AeC398 and AeV11 strains, and for Canavalia ensiformes (Con A, D-Man-binding lectin) in ATCC 15468, AeC398, AeQ32 and AeV11 strains, after bacterial growing at 37°C. On the other hand, specific receptors for WGA and EEL were completely abrogated growing the bacteria at 22°C. Binding studies with 125I- labeled lectins from WGA, EEL and Con A were performed. These assays essentially confirmed the selectivity, demonstrated in the agglutination assays of these lectins for the A. caviae strains. PMID:24031204

  3. Tandem lectin affinity chromatography monolithic columns with surface immobilised concanavalin A, wheat germ agglutinin and Ricinus communis agglutinin-I for capturing sub-glycoproteomics from breast cancer and disease-free human sera.

    PubMed

    Selvaraju, Subhashini; El Rassi, Ziad

    2012-07-01

    In this study, a liquid-phase separation platform consisting of tandem lectin affinity chromatography was introduced for the selective capturing of sub-glycoproteomics that are affected in cancers, e.g. breast cancer. The platform is comprised of three monolithic columns with surface immobilised lectins including concanavalin A (Con A), wheat germ agglutinin (WGA) and Ricinus communis agglutinin-I (RCA-I). While WGA and Con A have specificities directed towards the core portion of N-glycans on the glycoprotein surface, RCA-I specifically interacts with the non-reducing terminal moieties of the outer chain structures of N-glycans. The effects of the order in which the three lectin columns were arranged in the tandem columns format were evaluated. The most suitable order proved to be WGA → Con A → RCA-I (denoted as WCR) as far as the number of captured proteins was concerned. The WCR tandem columns allowed the capture of 113 and 112 proteins from disease-free and breast cancer sera, respectively, corresponding to 75 and 65 non-redundant proteins, respectively. Using mass spectral count ratios and Q-Q plots yielded a panel of 23 non-redundant differentially expressed proteins (i.e. a panel of 23 candidate markers), which should in principle be more representative of a pathophysiological state than a single marker candidate.

  4. Structure-function relationship of monocot mannose-binding lectins.

    PubMed Central

    Barre, A; Van Damme, E J; Peumans, W J; Rougé, P

    1996-01-01

    The monocot mannose-binding lectins are an extended superfamily of structurally and evolutionarily related proteins, which until now have been isolated from species of the Amaryllidaceae, Alliaceae, Araceae, Orchidaceae, and Liliaceae. To explain the obvious differences in biological activities, the structure-function relationships of the monocot mannose-binding lectins were studied by a combination of glycan-binding studies and molecular modeling using the deduced amino acid sequences of the currently known lectins. Molecular modeling indicated that the number of active mannose-binding sites per monomer varies between three and zero. Since the number of binding sites is fairly well correlated with the binding activity measured by surface plasmon resonance, and is also in good agreement with the results of previous studies of the biological activities of the mannose-binding lectins, molecular modeling is of great value for predicting which lectins are best suited for a particular application. PMID:8972598

  5. Histological and lectin histochemical studies on the olfactory and respiratory mucosae of the sheep.

    PubMed

    Ibrahim, Dalia; Nakamuta, Nobuaki; Taniguchi, Kazumi; Yamamoto, Yoshio; Taniguchi, Kazuyuki

    2014-03-01

    The olfactory and respiratory mucosae of the Corriedale sheep were examined using lectin histochemistry in order to clarify the histochemical and glycohistochemical differences between these two tissues. The olfactory epithelium was stained with 13 lectins out of 21 lectins examined, while the respiratory epithelium was positive to 16 lectins. The free border of both of the olfactory and respiratory epithelia was stained with 12 lectins: Wheat germ agglutinin (WGA), succinylated-wheat germ agglutinin (s-WGA), Lycopersicon esculentum lectin (LEL), Solanum tuberosum lectin (STL), Datura stramonium lectin (DSL), Soybean agglutinin (SBA), Bandeiraea simplicifolia lectin-I (BSL-I), Ricinus communis agglutinin-I (RCA-120), Erythrina cristagalli lectin (ECL), Concanavalin A (Con A), Phaseolus vulgaris agglutinin-E (PHA-E) and Phaseolus vulgaris agglutinin-L (PHA-L). The associated glands of the olfactory mucosa, Bowman's glands, were stained with 13 lectins. While both the goblet cells and mucous nasal glands were stained with 8 lectins; five of them (WGA, s-WGA, STL, Vicia villosa agglutinin (VVA) and ECL) were mutually positive among the Bowman's glands, mucous nasal glands and the goblet cells. These findings indicate that the glycohistochemical characteristics of the free borders of both olfactory and respiratory epithelia are similar to each other, suggesting that secretions from the Bowman's glands and those of the goblet cells and mucous nasal glands are partially exchanged between the surface of two epithelia to contribute the functions of the respiratory epithelium and the olfactory receptor cells, respectively.

  6. Glycan profiling of endometrial cancers using lectin microarray.

    PubMed

    Nishijima, Yoshihiro; Toyoda, Masashi; Yamazaki-Inoue, Mayu; Sugiyama, Taro; Miyazawa, Masaki; Muramatsu, Toshinari; Nakamura, Kyoko; Narimatsu, Hisashi; Umezawa, Akihiro; Mikami, Mikio

    2012-10-01

    Cell surface glycans change during the process of malignant transformation. To characterize and distinguish endometrial cancer and endometrium, we performed glycan profiling using an emerging modern technology, lectin microarray analysis. The three cell lines, two from endometrial cancers [well-differentiated type (G1) and poorly differentiated type (G3)] and one from normal endometrium, were successfully categorized into three independent groups by 45 lectins. Furthermore, in cancer cells, a clear difference between G1 and G3 type was observed for the glycans recognized with six lectins, Ulex europaeus agglutinin I (UEA-I), Sambucus sieboldiana agglutinin (SSA), Sambucus nigra agglutinin (SNA), Trichosanthes japonica agglutinin I (TJA-I), Amaranthus caudatus agglutinin (ACA), and Bauhinia purpurea lectin (BPL). The lectin microarray analysis using G3 type tissues demonstrated that stage I and stage III or IV were distinguished depending on signal pattern of three lectins, Dolichos biflorus agglutinin (DBA), BPL, and ACA. In addition, the analysis of the glycans on the ovarian cancer cells showed that only anticancer drug-sensitive cell lines had almost no activities to specific three lectins. Glycan profiling by the lectin microarray may be used to assess the characteristics of tumors and potentially to predict the success of chemotherapy treatment.

  7. Lectin affinity electrophoresis.

    PubMed

    Kobayashi, Yuka

    2014-01-01

    An interaction or a binding event typically changes the electrophoretic properties of a molecule. Affinity electrophoresis methods detect changes in the electrophoretic pattern of molecules (mainly macromolecules) that occur as a result of biospecific interactions or complex formation. Lectin affinity electrophoresis is a very effective method for the detection and analysis of trace amounts of glycobiological substances. It is particularly useful for isolating and separating the glycoisomers of target molecules. Here, we describe a sensitive technique for the detection of glycoproteins separated by agarose gel-lectin affinity electrophoresis that uses antibody-affinity blotting. The technique is tested using α-fetoprotein with lectin (Lens culinaris agglutinin and Phaseolus vulgaris agglutinin)-agarose gels.

  8. Self-assembled carbohydrate-based vesicles for lectin targeting.

    PubMed

    Dos Santos, Marinalva Cardoso; Micheletto, Yasmine Miguel Serafini; da Silveira, Nadya Pesce; da Silva Pinto, Luciano; Giacomelli, Fernando Carlos; de Lima, Vânia Rodrigues; Frizon, Tiago Elias Allievi; Dal-Bó, Alexandre Gonçalves

    2016-12-01

    This study examined the physicochemical interactions between vesicles formed by phosphatidylcholine (PC) and glycosylated polymeric amphiphile N-acetyl-β-d-glucosaminyl-PEG900-docosanate (C22PEG900GlcNAc) conjugated with Bauhinia variegata lectin (BVL). Lectins are proteins or glycoproteins capable of binding glycosylated membrane components. Accordingly, the surface functionalization by such entities is considered a potential strategy for targeted drug delivery. We observed increased hydrodynamic radii (RH) of PC+C22PEG900GlcNAc vesicles in the presence of lectins, suggesting that this aggregation was due to the interaction between lectins and the vesicular glycosylated surfaces. Furthermore, changes in the zeta potential of the vesicles with increasing lectin concentrations implied that the vesicular glycosylated surfaces were recognized by the investigated lectin. The presence of carbohydrate residues on vesicle surfaces and the ability of the vesicles to establish specific interactions with BVL were further explored using atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS) analysis. The results indicated that the thickness of the hydrophilic layer was to some extent influenced by the presence of lectins. The presence of lectins required a higher degree of polydispersity as indicated by the width parameter of the log-normal distribution of size, which also suggested more irregular structures. Reflectance Fourier transform infrared (HATR-FTIR), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR) and ultraviolet-visible (UV-vis.) analyses revealed that the studied lectin preferentially interacted with the choline and carbonyl groups of the lipid, thereby changing the choline orientation and intermolecular interactions. The protein also discretely reduced the intermolecular communication of the hydrophobic acyl chains, resulting in a disordered state.

  9. The lectin of Dolichos biflorus agglutinin recognises glycan epitopes on the surface of a subset of cardiac progenitor cells.

    PubMed

    Chen, Zhanfeng; Wang, Man; Xiang, Qiang; Sun, Zhenliang; Zhang, Rong

    2013-11-01

    The discovery of adult cardiac progenitor cells (CPCs) provides a promising way for treating heart disease; however, their surface characteristics that play a critical role in regulating their maintenance, self-renewal, migration, and differentiation have not been fully investigated. One subpopulation of Dolichos biflorus agglutinin (DBA)-positive cells was identified in the heart of adult mice. Flow cytometry showed that 3.7% of heart cells could be labeled by FITC conjugated DBA. BrdU pulse-chase showed that 55-75% of DBA(+) cells were CPCs. Evidences from 5-FU-induced myelosuppression along with BrdU pulse-chasing suggests that DBA-positive cells are proliferative. Furthermore, DBA positive cells display a cologenic appearance in vivo. Our findings suggest that DBA-positive cells in the heart of adult mouse contained a subset of CPCs, and DBA reactivity is one novel surface characteristic on CPCs.

  10. Lectin typing of Campylobacter isolates.

    PubMed Central

    O'Sullivan, N; Benjamin, J; Skirrow, M B

    1990-01-01

    Isolates of Campylobacter jejuni, C coli, C fetus and C laridis were tested for agglutination reactions with a panel of five lectins: Arachis hypogaea, Bauhinia purpurea, Solanum tuberosum, Triticum vulgaris and Wisteria floribunda. Twenty three patterns of agglutination (lectin types) were recorded among 376 isolates. Patterns were consistent and reproducible. Only 4.5% of isolates were untypable because of autoagglutination. Some lectin types were found exclusively or predominantly in a species, but others were shared between species. Forty two per cent of C jejuni and 35% of C coli isolates belonged to lectin type 4. There was no apparent correlation between lectin type and serotype; different lectin types were found among strains of single Penner and Lior serotypes. Lectin typing is a simple and economical procedure suitable for use in non-specialist laboratories, either as an adjunct to serogrouping or, after further development, as a sole typing scheme. PMID:2262570

  11. Latent Ice Recrystallization Inhibition Activity in Nonantifreeze Proteins: Ca2+-Activated Plant Lectins and Cation-Activated Antimicrobial Peptides.

    PubMed

    Mitchell, Daniel E; Gibson, Matthew I

    2015-10-12

    Organisms living in polar regions have evolved a series of antifreeze (glyco) proteins (AFGPs) to enable them to survive by modulating the structure of ice. These proteins have huge potential for use in cellular cryopreservation, ice-resistant surfaces, frozen food, and cryosurgery, but they are limited by their relatively low availability and questions regarding their mode of action. This has triggered the search for biomimetic materials capable of reproducing this function. The identification of new structures and sequences capable of inhibiting ice growth is crucial to aid our understanding of these proteins. Here, we show that plant c-type lectins, which have similar biological function to human c-type lectins (glycan recognition) but no sequence homology to AFPs, display calcium-dependent ice recrystallization inhibition (IRI) activity. This IRI activity can be switched on/off by changing the Ca2+ concentration. To show that more (nonantifreeze) proteins may exist with the potential to display IRI, a second motif was considered, amphipathicity. All known AFPs have defined hydrophobic/hydrophilic domains, rationalizing this choice. The cheap, and widely used, antimicrobial Nisin was found to have cation-dependent IRI activity, controlled by either acid or addition of histidine-binding ions such as zinc or nickel, which promote its amphipathic structure. These results demonstrate a new approach in the identification of antifreeze protein mimetic macromolecules and may help in the development of synthetic mimics of AFPs.

  12. Latent Ice Recrystallization Inhibition Activity in Nonantifreeze Proteins: Ca2+-Activated Plant Lectins and Cation-Activated Antimicrobial Peptides

    PubMed Central

    2015-01-01

    Organisms living in polar regions have evolved a series of antifreeze (glyco) proteins (AFGPs) to enable them to survive by modulating the structure of ice. These proteins have huge potential for use in cellular cryopreservation, ice-resistant surfaces, frozen food, and cryosurgery, but they are limited by their relatively low availability and questions regarding their mode of action. This has triggered the search for biomimetic materials capable of reproducing this function. The identification of new structures and sequences capable of inhibiting ice growth is crucial to aid our understanding of these proteins. Here, we show that plant c-type lectins, which have similar biological function to human c-type lectins (glycan recognition) but no sequence homology to AFPs, display calcium-dependent ice recrystallization inhibition (IRI) activity. This IRI activity can be switched on/off by changing the Ca2+ concentration. To show that more (nonantifreeze) proteins may exist with the potential to display IRI, a second motif was considered, amphipathicity. All known AFPs have defined hydrophobic/hydrophilic domains, rationalizing this choice. The cheap, and widely used, antimicrobial Nisin was found to have cation-dependent IRI activity, controlled by either acid or addition of histidine-binding ions such as zinc or nickel, which promote its amphipathic structure. These results demonstrate a new approach in the identification of antifreeze protein mimetic macromolecules and may help in the development of synthetic mimics of AFPs. PMID:26407233

  13. Lectin domains at the frontiers of plant defense

    PubMed Central

    Lannoo, Nausicaä; Van Damme, Els J. M.

    2014-01-01

    Plants are under constant attack from pathogens and herbivorous insects. To protect and defend themselves, plants evolved a multi-layered surveillance system, known as the innate immune system. Plants sense their encounters upon perception of conserved microbial structures and damage-associated patterns using cell-surface and intracellular immune receptors. Plant lectins and proteins with one or more lectin domains represent a major part of these receptors. The whole group of plant lectins comprises an elaborate collection of proteins capable of recognizing and interacting with specific carbohydrate structures, either originating from the invading organisms or from damaged plant cell wall structures. Due to the vast diversity in protein structures, carbohydrate recognition domains and glycan binding specificities, plant lectins constitute a very diverse protein superfamily. In the last decade, new types of nucleocytoplasmic plant lectins have been identified and characterized, in particular lectins expressed inside the nucleus and the cytoplasm of plant cells often as part of a specific plant response upon exposure to different stress factors or changing environmental conditions. In this review, we provide an overview on plant lectin motifs used in the constant battle against pathogens and predators during plant defenses. PMID:25165467

  14. Use of labeled tomato lectin for imaging vasculature structures.

    PubMed

    Robertson, Richard T; Levine, Samantha T; Haynes, Sherry M; Gutierrez, Paula; Baratta, Janie L; Tan, Zhiqun; Longmuir, Kenneth J

    2015-02-01

    Intravascular injections of fluorescent or biotinylated tomato lectin were tested to study labeling of vascular elements in laboratory mice. Injections of Lycopersicon esculentum agglutinin (tomato lectin) (50-100 µg/100 µl) were made intravascularly, through the tail vein, through a cannula implanted in the jugular vein, or directly into the left ventricle of the heart. Tissues cut for thin 10- to 12-µm cryostat sections, or thick 50- to 100-µm vibratome sections, were examined using fluorescence microscopy. Tissue labeled by biotinylated lectin was examined by bright field microscopy or electron microscopy after tissue processing for biotin. Intravascular injections of tomato lectin led to labeling of vascular structures in a variety of tissues, including brain, kidney, liver, intestine, spleen, skin, skeletal and cardiac muscle, and experimental tumors. Analyses of fluorescence in serum indicated the lectin was cleared from circulating blood within 2 min. Capillary labeling was apparent in tissues collected from animals within 1 min of intravascular injections, remained robust for about 1 h, and then declined markedly until difficult to detect 12 h after injection. Light microscopic images suggest the lectin bound to the endothelial cells that form capillaries and endothelial cells that line some larger vessels. Electron microscopic studies confirmed the labeling of luminal surfaces of endothelial cells. Vascular labeling by tomato lectin is compatible with a variety of other morphological labeling techniques, including histochemistry and immunocytochemistry, and thus appears to be a sensitive and useful method to reveal vascular patterns in relationship to other aspects of parenchymal development, structure, and function.

  15. Lectin domains at the frontiers of plant defense.

    PubMed

    Lannoo, Nausicaä; Van Damme, Els J M

    2014-01-01

    Plants are under constant attack from pathogens and herbivorous insects. To protect and defend themselves, plants evolved a multi-layered surveillance system, known as the innate immune system. Plants sense their encounters upon perception of conserved microbial structures and damage-associated patterns using cell-surface and intracellular immune receptors. Plant lectins and proteins with one or more lectin domains represent a major part of these receptors. The whole group of plant lectins comprises an elaborate collection of proteins capable of recognizing and interacting with specific carbohydrate structures, either originating from the invading organisms or from damaged plant cell wall structures. Due to the vast diversity in protein structures, carbohydrate recognition domains and glycan binding specificities, plant lectins constitute a very diverse protein superfamily. In the last decade, new types of nucleocytoplasmic plant lectins have been identified and characterized, in particular lectins expressed inside the nucleus and the cytoplasm of plant cells often as part of a specific plant response upon exposure to different stress factors or changing environmental conditions. In this review, we provide an overview on plant lectin motifs used in the constant battle against pathogens and predators during plant defenses.

  16. Lectins in human pathogenic fungi.

    PubMed

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  17. Isolation of the galactose-binding lectin that mediates the in vitro adherence of Entamoeba histolytica.

    PubMed Central

    Petri, W A; Smith, R D; Schlesinger, P H; Murphy, C F; Ravdin, J I

    1987-01-01

    Entamoeba histolytica adheres to human colonic mucus, colonic epithelial cells, and other target cells via a galactose (Gal) or N-acetyl-D-galactosamine (GalNAc) inhibitable surface lectin. Blockade of this adherence lectin with Gal or GalNAc in vitro prevents amebic killing of target cells. We have identified and purified the adherence lectin by two methods: affinity columns derivatized with galactose monomers or galactose terminal glycoproteins, and affinity columns and immunoblots prepared with monoclonal antibodies that inhibit amebic adherence. By both methods the adherence lectin was identified as a 170-kD secreted and membrane-bound amebic protein. The surface location of the lectin was confirmed by indirect immunofluorescence. Purified lectin competitively inhibited amebic adherence to target cells by binding to receptors on the target Chinese hamster ovary cells in a Gal-inhibitable manner. Images PMID:2890654

  18. Glycan and lectin biosensors

    PubMed Central

    Belický, Štefan; Katrlík, Jaroslav

    2016-01-01

    A short description about the importance of glycan biorecognition in physiological (blood cell type) and pathological processes (infections by human and avian influenza viruses) is provided in this review. Glycans are described as much better information storage media, compared to proteins or DNA, due to the extensive variability of glycan structures. Techniques able to detect an exact glycan structure are briefly discussed with the main focus on the application of lectins (glycan-recognising proteins) in the specific analysis of glycans still attached to proteins or cells/viruses. Optical, electrochemical, piezoelectric and micromechanical biosensors with immobilised lectins or glycans able to detect a wide range of analytes including whole cells/viruses are also discussed. PMID:27365034

  19. Lectins stain cells differentially in the coral, Montipora capitata

    USGS Publications Warehouse

    Work, Thierry M.; Farah, Yael

    2014-01-01

    A limitation in our understanding of coral disease pathology and cellular pathogenesis is a lack of reagents to characterize coral cells. We evaluated the utility of plant lectins to stain tissues of a dominant coral, Montipora capitata, from Hawaii. Of 22 lectins evaluated, nine of these stained structures in the upper or basal body wall of corals. Specific structures revealed by lectins that were not considered distinct or evident on routine hematoxylin and eosin sections of coral tissues included apical and basal granules in gastrodermis and epidermis, cnidoglandular tract and actinopharynx cell surface membranes, capsules of mature holotrichous isorhizas, and perivitelline and periseminal cells. Plant lectins could prove useful to further our understanding of coral physiology, anatomy, cell biology, and disease pathogenesis.

  20. Interactions of lectins with plasma membrane glycoproteins of the Ehrlich ascites carcinoma cell.

    PubMed

    Nachbar, M S; Oppenheim, J D; Aull, F

    1976-02-06

    Several aspects of the interaction of various lectins with the surface of Ehrlich ascites carcinoma cells are described. The order of agglutinating activity for various lectins is Ricinus communis greater than wheat germ greater than or equal to concanavalin A greater than or equal to soybean greater than Limulus polyphemus. No agglutination was noted for Ulex europaeus. Using 125I-labeled lectins it was determined that there are 1.6 and 7 times as many Ricinus communis lectin binding sites for concanavalin A and soybean lectins. Sodium deoxycholate-solubilized plasma membrane material was subjected to lectin affinity chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The lectin receptors of the plasma membrane appeared to be heterogeneous and some qualitative differences could be discerned among the electrophoretically analyzed material, which bound to and was specifically eluted from the various lectin affinity columns. The characteristics of elution of bound material from individual lectin columns indicated secondary hydrophobic interactions between concanavalin A or wheat germ agglutinin and their respective lectin receptor molecules.

  1. MMBL proteins: from lectin to bacteriocin.

    PubMed

    Ghequire, Maarten G K; Loris, Remy; De Mot, René

    2012-12-01

    Arguably, bacteriocins deployed in warfare among related bacteria are among the most diverse proteinacous compounds with respect to structure and mode of action. Identification of the first prokaryotic member of the so-called MMBLs (monocot mannose-binding lectins) or GNA (Galanthus nivalis agglutinin) lectin family and discovery of its genus-specific killer activity in the Gram-negative bacteria Pseudomonas and Xanthomonas has added yet another kind of toxin to this group of allelopathic molecules. This novel feature is reminiscent of the protective function, on the basis of antifungal, insecticidal, nematicidal or antiviral activity, assigned to or proposed for several of the eukaryotic MMBL proteins that are ubiquitously distributed among monocot plants, but also occur in some other plants, fish, sponges, amoebae and fungi. Direct bactericidal activity can also be effected by a C-type lectin, but this is a mammalian protein that limits mucosal colonization by Gram-positive bacteria. The presence of two divergent MMBL domains in the novel bacteriocins raises questions about task distribution between modules and the possible role of carbohydrate binding in the specificity of target strain recognition and killing. Notably, bacteriocin activity was also demonstrated for a hybrid MMBL protein with an accessory protease-like domain. This association with one or more additional modules, often with predicted peptide-hydrolysing or -binding activity, suggests that additional bacteriotoxic proteins may be found among the diverse chimaeric MMBL proteins encoded in prokaryotic genomes. A phylogenetic survey of the bacterial MMBL modules reveals a mosaic pattern of strongly diverged sequences, mainly occurring in soil-dwelling and rhizosphere bacteria, which may reflect a trans-kingdom acquisition of the ancestral genes.

  2. Ureaplasma urealyticum binds mannose-binding lectin.

    PubMed

    Benstein, Barbara D; Ourth, Donald D; Crouse, Dennis T; Shanklin, D Radford

    2004-10-01

    Mannose-binding C-type lectin (MBL) is an important component of innate immunity in mammals. Mannose-binding lectin (MBL), an acute phase protein, acts as an opsonin for phagocytosis and also activates the mannan-binding lectin complement pathway. It may play a particularly significant role during infancy before adequate specific protection can be provided by the adaptive immune system. Ureaplasma urealyticum has been linked to several diseases including pneumonia and chronic lung disease (CLD) in premature infants. We therefore investigated the ability of U. urealyticum to bind MBL. A guinea pig IgG anti-rabbit-MBL antiserum was produced. An immunoblot (dot-blot) assay done on nitrocellulose membrane determined that the anti-MBL antibody had specificity against both rabbit and human MBL. Pure cultures of U. urealyticum, serotype 3, were used to make slide preparations. The slides containing the organisms were then incubated with nonimmune rabbit serum containing MBL. Ureaplasma was shown to bind rabbit MBL with an immunocytochemical assay using the guinea pig IgG anti-rabbit MBL antiserum. Horseradish peroxidase (HRP)-labeled anti-guinea pig IgG was used to localize the reaction. The anti-MBL antiserum was also used in an immunocytochemical assay to localize U. urealyticum in histological sections of lungs from mice specifically infected with this organism. The same method also indicated binding of MBL by ureaplasma in human lung tissue obtained at autopsy from culture positive infants. Our results demonstrate that ureaplasma has the capacity to bind MBL. The absence of MBL may play a role in the predisposition of diseases related to this organism.

  3. Pharmacological inhibition of mannose-binding lectin ameliorates neurobehavioral dysfunction following experimental traumatic brain injury.

    PubMed

    De Blasio, Daiana; Fumagalli, Stefano; Longhi, Luca; Orsini, Franca; Palmioli, Alessandro; Stravalaci, Matteo; Vegliante, Gloria; Zanier, Elisa R; Bernardi, Anna; Gobbi, Marco; De Simoni, Maria-Grazia

    2017-03-01

    Mannose-binding lectin is present in the contusion area of traumatic brain-injured patients and in that of traumatic brain-injured mice, where mannose-binding lectin-C exceeds mannose-binding lectin-A. The reduced susceptibility to traumatic brain injury of mannose-binding lectin double knock-out mice (mannose-binding lectin(-/-)) when compared to wild type mice suggests that mannose-binding lectin may be a therapeutic target following traumatic brain injury. Here, we evaluated the effects of a multivalent glycomimetic mannose-binding lectin ligand, Polyman9, following traumatic brain injury in mice. In vitro surface plasmon resonance assay indicated that Polyman9 dose-dependently inhibits the binding to immobilized mannose residues of plasma mannose-binding lectin-C selectively over that of mannose-binding lectin-A. Male C57Bl/6 mice underwent sham/controlled cortical impact traumatic brain injury and intravenous treatment with Polyman9/saline. Ex-vivo surface plasmon resonance studies confirmed that Polyman9 effectively reduces the binding of plasma mannose-binding lectin-C to immobilized mannose residues. In vivo studies up to four weeks post injury, showed that Polyman9 induces significant improvement in sensorimotor deficits (by neuroscore and beam walk), promotes neurogenesis (73% increase in doublecortin immunoreactivity), and astrogliosis (28% increase in glial fibrillary acid protein). Polyman9 administration in brain-injured mannose-binding lectin(-/-) mice had no effect on post-traumatic brain-injured functional deficits, suggestive of the specificity of its neuroprotective effects. The neurobehavioral efficacy of Polyman9 implicates mannose-binding lectin-C as a novel therapeutic target for traumatic brain injury.

  4. Dual Specificity of Langerin to Sulfated and Mannosylated Glycans via a Single C-type Carbohydrate Recognition Domain*

    PubMed Central

    Tateno, Hiroaki; Ohnishi, Koji; Yabe, Rikio; Hayatsu, Norihito; Sato, Takashi; Takeya, Motohiro; Narimatsu, Hisashi; Hirabayashi, Jun

    2010-01-01

    Langerin is categorized as a C-type lectin selectively expressed in Langerhans cells, playing roles in the first line of defense against pathogens and in Birbeck granule formation. Although these functions are thought to be exerted through glycan-binding activity of the C-type carbohydrate recognition domain, sugar-binding properties of Langerin have not been fully elucidated in relation to its biological functions. Here, we investigated the glycan-binding specificity of Langerin using comprehensive glycoconjugate microarray, quantitative frontal affinity chromatography, and conventional cell biological analyses. Langerin showed outstanding affinity to galactose-6-sulfated oligosaccharides, including keratan sulfate, while it preserved binding activity to mannose, as a common feature of the C-type lectins with an EPN motif. By a mutagenesis study, Lys-299 and Lys-313 were found to form extended binding sites for sulfated glycans. Consistent with the former observation, the sulfated Langerin ligands were found to be expressed in brain and spleen, where the transcript of keratan sulfate 6-O-sulfotransferase is expressed. Moreover, such sulfated ligands were up-regulated in glioblastoma relative to normal brain tissues, and Langerin-expressing cells were localized in malignant brain tissues. Langerin also recognized pathogenic fungi, such as Candida and Malassezia, expressing heavily mannosylated glycans. These observations provide strong evidence that Langerin mediates diverse functions on Langerhans cells through dual recognition of sulfated as well as mannosylated glycans by its uniquely evolved C-type carbohydrate-recognition domain. PMID:20026605

  5. Microencapsulation of lectin anti-cancer agent and controlled release by alginate beads, biosafety approach.

    PubMed

    El-Aassar, M R; Hafez, Elsayed E; El-Deeb, Nehal M; Fouda, Moustafa M G

    2014-08-01

    Hepatocellular carcinoma (HCC) is considered as one of the most aggressive cancer worldwide. In Egypt, the prevalence of HCC is increasing during last years. Recently, drug-loaded microparticles were used to improve the efficiency of various medical treatments. This study is designed to evaluate the anticancer potentialities of lectins against HCC while hinting to its safety usage. The aim is also extended to encapsulate lectins in alginate microbeads for oral drug delivery purposes. The extracted lectins showed anti-proliferative effect against HCC with a percentage of 60.76% by using its nontoxic dose with an up-regulation of P53 gene expression. Concerning the handling of lectin alginate microbeads for oral drug delivery, the prepared lectin alginate beads were ∼100μm in diameter. The efficiency of the microcapsules was checked by scanning electron microscopy, the SEM showed the change on the alginate beads surface revealing the successful lectin encapsulation. The release of lectins from the microbeads depended on a variety of factors as the microbeads forming carriers and the amount-encapsulated lectins. The Pisum sativum extracted lectins may be considered as a promising agent in controlling HCC and this solid dosage form could be suitable for oral administration complemented with/or without the standard HCC drugs.

  6. Bjcul, a snake venom lectin, modulates monocyte-derived macrophages to a pro-inflammatory profile in vitro.

    PubMed

    Dias-Netipanyj, M F; Boldrini-Leite, L M; Trindade, E S; Moreno-Amaral, A N; Elifio-Esposito, S

    2016-06-01

    Macrophages are cells of high plasticity and can act in different ways to ensure that the appropriate immune response remains controlled. This study shows the effects of the C-type Bothrops jararacussu venom lectin (BJcuL) on the activation of human macrophages derived from the U937 cell line. BJcuL binds on the cell surface, and this event is inhibited by its specific carbohydrate. It induced phagocytosis and production of H2O2, and expression of antigen presentation molecules. It also enhanced the production of TNF-α, GM-CSF and IL-6 by macrophages and indirectly induced T cells to an increased production of TNF-α, IFN-γ and IL-6 in the presence of LPS. Our results suggest that BJcuL can modulate macrophage functional activation towards an M1 state.

  7. Parkia pendula lectin as histochemistry marker for meningothelial tumour.

    PubMed

    Beltrão, E I C; Medeiros, P L; Rodrigues, O G; Figueredo-Silva, J; Valença, M M; Coelho, L C B B; Carvalho, L B

    2003-01-01

    Lectins have been intensively used in histochemical techniques for cell surface characterization. These proteins are involved in several biological processes and their use as histochemical markers have been evaluated since they can indicate differences in cell surfaces. Parkia pendula lectin (PpeL) was evaluated as histochemical marker for meningothelial meningioma biopsies. Tissue slices were incubated with PpeL conjugated to horseradish peroxidase (PpeL-HRP) and Concanavalin A-HRP (ConA-HPR) and the binding visualized with diaminobenzidine and hydrogen peroxide. The lectin-tissue binding was inhibited with D-glucose. PpeL showed to be a useful tool for the characterization of meningothelial tumour and clinico-pathological diagnosis.

  8. Assessment of weak sugar-binding ability using lectin tetramer and membrane-based glycans.

    PubMed

    Yamamoto, Kazuo

    2014-01-01

    To consider biological significance of glycosylation of proteins, it is necessary to evaluate the importance of sugar-recognition processes mediated by lectins. Though the interaction between sugars and proteins, especially animal lectins, is quite weak with K d approximately 10(-4) M, cellular and molecular recognitions mediated via sugar-protein interaction increase their avidity by 1-3 orders of magnitude by the self-association of both receptors and their ligands on cell surfaces. To assess the weak interaction between lectins and their sugar ligands, we established lectin tetramer binding to cell surface glycans using flow cytometry. This strategy is highly sensitive, and useful to determine whether or not a putative lectin domain may have sugar-binding ability.

  9. Probing the cons and pros of lectin-induced immunomodulation: case studies for the mistletoe lectin and galectin-1.

    PubMed

    Gabius, H J

    2001-07-01

    When imagining to monitor animal cells through a microscope with resolution at the molecular level, a salient attribute of their surfaces will be the abundance of glycan chains. They present galactosides at their termini widely extending like tentacles into the extracellular space. Their spatial accessibility and their potential for structural variability endow especially these glycan parts with capacity to act as docking points for molecular sensors (sugar receptors such as lectins). Binding and ligand clustering account for transmission of post-binding signals into the cell interior. The range of triggered activities has turned plant lectins into popular tools in cell biology and immunology. Potential for clinical application has been investigated rigorously only in recent years. As documented in vitro and in vivo for the galactoside-specific mistletoe lectin, its apparent immunomodulatory capacity reflected in upregulation of production of proinflammatory cytokines will not necessarily be clinically favorable but a double-edged sword. In fact, lectin application has been shown to stimulate tumor growth in cell lines, histocultures of human tumors and in two animal models using chemical carcinogenesis or tumor transplantation. When testing immunological effects of the endogenous lectin galectin-1, protection against disorders mediated by activated T cells came up for consideration. Elimination of these cells via CD7-dependent induction of apoptosis, and a shift to the Th2 response by the galectin, are factors to ameliorate disease states. This result encourages further efforts with other galectins. Functional redundancy, synergism, diversity or antagonism among galectins are being explored to understand the actual role of this class of endogenous lectins in inflammation. Regardless of the results of further preclinical testing for galectin-1, these two case studies break new ground in our understanding how glycans as ligands for lectins convey reactivity to

  10. Lectin binding to olfactory system in a shark, Scyliorhinus canicula.

    PubMed

    Franceschini, V; Ciani, F

    1993-01-01

    Lectin histochemical studies were performed on the olfactory system of Scyliorhinus canicula to identify specific glycoconjugates on the cell surface of primary olfactory neurons. The olfactory receptor cells, the olfactory nerve fibers and their terminals in the bulbs were labelled with SBA, BSA-I and BSA-I-B4. The lectin staining patterns indicate that the membranes of small-spotted catshark olfactory neurons had glycoproteins with alpha-galactose residues. This carbohydrate moiety could be related to modulation of the cell-cell interactions in the olfactory system.

  11. [Separation of osteoclasts by lectin affinity chromatography].

    PubMed

    Itokazu, M; Tan, A; Tanaka, S

    1991-09-01

    Newborn rat calvaria bone cells obtained by digestion were fractionated on columns of wheat-germ agglutinin (WGA) sepharose 6MB for osteoclast isolation. The initial nonspecific binding cells which were passed through the WGA sepharose column by a buffer acquired a high enzyme activity of alkaline phosphatase, but not that of acid phosphatase. However, elution of cells using a buffer with the addition of N-acetyl-D-glucosamine resulted in a high acid phosphatase activity but no alkaline phosphatase activity. The former WGA binding negative fraction enriched osteoblasts averaging 30 microns in size. The latter WGA binding positive fraction enriched osteoclasts ranging from 20 microns to 60 microns in size. The electron-microscope clearly demonstrated the cellular details of osteoclasts. Isolated cell counts showed a ratio of six to four. These results indicate that our method of osteoclast isolation is simple and useful in lectin affinity chromatography because all cells have sugar moieties on their surface and the binding of osteoclasts can be reversed by the addition of specific lectin-binding sugars to the eluting buffer.

  12. Receptor mobility and the binding of cells to lectin-coated fibers

    PubMed Central

    1975-01-01

    The ability of cells to bind to nylon fibers coated with lectin molecules interspaced with varying numbers of albumin molecules has been analyzed. The cells used were lymphoma cells, normal lymphocytes, myeloid leukemia cells, and normal and transformed fibroblasts, and the fibers were coated with different densities of concanavalin A or the lectins from soybean or wheat germ. Cells fixed with glutaraldehyde did not bind to lectin-coated fibers. The number of cells bound to fibers could be increased by increasing the density of lectin molecules on the fiber, the density of specific receptors on the cell, or the mobility of the receptors. It is suggested that binding of cells to fibers involves alignment and binding of specific cell surface receptors with lectin molecules immobilized on the fibers, and that this alignment requires short-range rapid lateral mobility (RLM) of the receptors. The titration of cell binding to fibers coated with different densities of lectin and albumin has been used to measure the relative RLM of unoccupied cell surface receptors for the lectin. The results indicate a relationship of RLM to lectin-induced cell-to-cell binding. The RLM or receptors for concanavalin A (Con A) was generally found to be higher than that of receptors for the lectins from wheat germ or soybean. Receptor RLM could be decreased by use of metabolic inhibitors or by lowering the temperature. Receptors for Con A had a lower RLM on normal fibroblasts than on SV40-transformed fibroblasts, and trypsinization of normal fibroblasts increased Con A receptor RLM. Normal lymphocytes, lymphoma cells, and lines of myeloid leukemia cells that can be induced to differentiate had a high receptor RLM, whereas lines of myeloid leukemia cells that could not be induced to differentiate had a low receptor RLM. These results suggest that the RLM of Con A receptors is related to the transformation of fibroblasts and the ability of myeloid leukemia cells to undergo differentiation PMID

  13. A novel L-fucose-binding lectin from Fenneropenaeus indicus induced cytotoxicity in breast cancer cells.

    PubMed

    Chatterjee, Biji; Ghosh, Krishna; Yadav, Nitin; Kanade, Santosh R

    2017-01-01

    Lectins are omnipresent in almost all life forms, being the proteins which specifically bind to carbohydrate moieties on the cell surface; they have been explored for their anti-tumour activities. In this study, we purified a fucose specific-lectin (IFL) from Fenneropenaeus indicus haemolymph using fucose-affinity column and characterized for its haemagglutination activity, carbohydrate specificity, dependency on cations and cytotoxicity against cancer cells. The lectin showed non-specificity against human erythrocytes. It was a Ca(2+)-dependent lectin which remained stable over wide pH and temperature ranges. The lectin showed effective dose dependent cytotoxicity against different human cancer cell lines and induced apoptosis in MCF-7 cells as evidenced by DNA ladder assay and PARP cleavage in a dose dependent manner. Moreover, an increased p21 level corresponding to cyclin D downregulation in response to IFL treatment was observed which might work as probable factors to inhibit cell growth and induce apoptosis of MCF-7 cells. Therefore, we report a novel lectin from the prawn haemolymph with high specificity for L-fucose and antiproliferative towards human cancer cells. However, further establishment of the modus operandi of this lectin is required to enable its biotechnological applications.

  14. Purification and Characterization of a Mucin Specific Mycelial Lectin from Aspergillus gorakhpurensis: Application for Mitogenic and Antimicrobial Activity

    PubMed Central

    Singh, Ram Sarup; Kaur, Hemant Preet; Singh, Jatinder

    2014-01-01

    Background Lectins are carbohydrate binding proteins or glycoproteins that bind reversibly to specific carbohydrates present on the apposing cells, which are responsible for their ability to agglutinate red blood cells, lymphocytes, fibroblasts, etc. Interest in lectins has been intensified due to their carbohydrate specificity as they can be valuable reagents for the investigation of cell surface sugars, purification and characterization of glycoproteins. The present study reports the purification, characterization and evaluation of mitogenic and antimicrobial potential of a mycelial lectin from Aspergillus gorakhpurensis. Methods Affinity chromatography on mucin-sepharose column was carried out for purification of Aspergillus gorakhpurensis lectin. The lectin was characterized for physico-chemical parameters. Mitogenic potential of the lectin was evaluated against splenocytes of Swiss albino mice by MTT assay. Antimicrobial activity of the purified lectin has also been evaluated by disc diffusion assay. Results Single-step affinity purification resulted in 18.6-fold purification of the mycelial lectin. The molecular mass of the lectin was found to be 70 kDa and it was composed of two subunits of 34.8 kDa as determined by gel filtration chromatography, SDS-PAGE and MALDI-TOF analysis. pH optima of the lectin was found to be 6.5–9.5, while optimum temperature for lectin activity was 20–30°C. Lectin was stable within a pH range of 7.0–10.5 and showed fair thermostability. EDTA did not affect lectin activity whereas it was found susceptible to the denaturants tested. MTT assay revealed strong mitogenic potential of A. gorakhpurensis lectin at a concentration upto 150 µg/mL. Antimicrobial activity assay showed its potent antibacterial activity against Bacillus cereus, Staphylococcous aureus and Escherichia coli and marginal antifungal activity against Saccharomyces cerevisiae. Conclusion This is the first report on the mitogenic and antimicrobial potential of

  15. Lectin staining patterns in human gastric mucosae with and without exposure to Helicobacter pylori

    PubMed Central

    Melo-Junior, Mario R.; Cavalcanti, Carmelita L.B.; Pontes-Filho, Nicodemos T.; Carvalho Jr, Luiz B.; Beltrão, Eduardo I. C.

    2008-01-01

    The aim of the present study was to evaluate qualitative changes in the glycoconjugate expression in human gastric tissue of positive and negative patients for Helicobacter pylori, through lectins: Wheat Germ Agglutinin (WGA) and Concanavalin A (Con A). The lectins recognized differently the glycoconjugates in the superficial mucous layer at the gastric tissues. The results suggest a significant change in the carbohydrate moieties present on the surface of the gastric cells during infection. PMID:24031208

  16. Putative glycoprotein and glycolipid polymorphonuclear leukocyte receptors for the Actinomyces naeslundii WVU45 fimbrial lectin.

    PubMed Central

    Sandberg, A L; Ruhl, S; Joralmon, R A; Brennan, M J; Sutphin, M J; Cisar, J O

    1995-01-01

    Recognition of receptors on sialidase-treated polymorphonuclear leukocytes (PMNs) by the Gal/GalNAc lectin associated with the type 2 fimbriae of certain strains of actinomyces results in activation of the PMNs, phagocytosis, and destruction of the bacteria. In the present study, plant lectins were utilized as probes to identify putative PMN receptors for the actinomyces lectin. The Gal-reactive lectin from Ricinus communis (RCAI), the Gal/GalNAc-reactive lectins from R. communis (RCAII) and Bauhinia purpurea (BPA), as well as the Gal beta 1-3GalNAc-specific lectins from Arachis hypogaea (PNA) and Agaricus bisporus (ABA) inhibited killing of Actinomyces naeslundii WVU45 by sialidase-treated PMNs. These five lectins detected a 130-kDa surface-labeled glycoprotein on nitrocellulose transfers of PMN extracts separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This glycoprotein was revealed only after treatment of the transfers with sialidase, a condition analogous to the sialidase dependence of the lectin-mediated biological responses of the PMNs to the actinomyces. The mannose-reactive lectin concanavalin A did not inhibit killing of the actinomyces and failed to detect the 130-kDa glycoprotein but did block PMN-dependent killing of Escherichia coli B, a bacterium that possesses mannose-sensitive fimbriae. Therefore, the PMN glycoprotein receptor for A. naeslundii is clearly distinct from those recognized by E. coli. Two major putative glycolipid receptors were also identified by actinomyces and RCAI overlays on sialidase-treated thin-layer chromatograms of PMN gangliosides. Thus, both a 130-kDa glycoprotein and certain gangliosides are implicated in the attachment of the actinomyces to PMNs. PMID:7790078

  17. Lectin cDNA and transgenic plants derived therefrom

    DOEpatents

    Raikhel, Natasha V.

    2000-10-03

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties.

  18. Plant as a plenteous reserve of lectin

    PubMed Central

    Hivrale, AU; Ingale, AG

    2013-01-01

    Lectins are clusters of glycoproteins of nonimmune foundation that combine specifically and reversibly to carbohydrates, mainly the sugar moiety of glycoconjugates, resulting in cell agglutination and precipitation of glycoconjugates. They are universally distributed in nature, being established in plants, fungi, viruses, bacteria, crustacea, insects, and animals, but leguminacae plants are rich source of lectins. The present review reveals the structure, biological properties, and application of plant lectins. PMID:24084524

  19. Lectin Binding to the Root and Root Hair Tips of the Tropical Legume Macroptilium atropurpureum Urb

    PubMed Central

    Ridge, R. W.; Rolfe, B. G.

    1986-01-01

    Ten fluorescein isothiocyanate-labeled lectins were tested on the roots of the tropical legume Macroptilium atropurpureum Urb. Four of these (concanavalin A, peanut agglutinin, Ricinis communis agglutinin I [RCA-I], wheat germ agglutinin) were found to bind to the exterior of root cap cells, the root cap slime, and the channels between epidermal cells in the root elongation zone. One of these lectins, RCA-I, bound to the root hair tips in the mature and emerging hair zones and also to sites at which root hairs were only just emerging. There was no RCA-I binding to immature trichoblasts. Preincubation of these lectins with their hapten sugars eliminated all types of root cell binding. By using a microinoculation technique, preincubation of the root surface with RCA-I lectin was found to inhibit infection and nodulation by Rhizobium spp. Preincubation of the root surface with the RCA-I hapten β-d-galactose or a mixture of RCA-I lectin and its hapten failed to inhibit nodulation. Application of RCA-I lectin to the root surface caused no apparent detrimental effects to the root hair cells and did not prevent the growth of root hairs. The lectin did not prevent Rhizobium sp. motility or viability even after 24 h of incubation. It was concluded that the RCA-I lectin-specific sugar β-d-galactose may be involved in the recognition or early infection stages, or both, in the Rhizobium sp. infection of M. atropurpureum. Images PMID:16346989

  20. Influence of Lectins on Constricting Ring Formation by Arthrobotrys dactyloides.

    PubMed

    Kaplan, D T; Davis, E L; Walter, D E

    1991-04-01

    Incubation of Arthrobotrys dactyloides conidia in the presence of Radopholus citrophilus in lectin solutions with their corresponding sugars did not alter the stimulation of trap formation in solutions containing lectins alone. The lack of inhibition of lectin-stimulated trap formation by sugars or by lectin denaturation and the lack of lectin specificity indicate that the carbohydrate-binding regions of the particular lectins studied are not the stimulatory moieties of these macromolecules.

  1. Mechanisms of the insecticidal action of TEL (Talisia esculenta lectin) against Callosobruchus maculatus (Coleoptera: Bruchidae).

    PubMed

    Macedo, Maria Lígia Rodrigues; de Castro, Márcia Mota; Freire, Maria das Graças Machado

    2004-06-01

    Plant lectins have insecticidal activity that is probably mediated through their ability to bind carbohydrates. To examine the influence of sugars on the insecticidal activity of a lectin from Talisia esculenta seeds (TEL), the lectin was mixed with mannose, glucose, or mannose plus glucose. Mannose abolished the insecticidal activity. Affinity chromatography showed that TEL bound to midgut proteins of the insect Callosobruchus maculatus. Immunoblotting showed that TEL recognized some proteins, probably glycoproteins, present in the midgut membrane of this insect. The principal proteases responsible for digestive proteolysis in fourth instar larvae of C. maculatus were purified by chromatography on activated thiol-Sepharose. These purified proteases were unable to digest TEL after a 15-h incubation. These results suggest that the insecticidal activity of TEL involves a specific carbohydrate-lectin interaction with glycoconjugates on the surface of digestive tract epithelial cells, as well as binding to assimilatory glycoproteins present in midgut extracts and resistance to enzymatic digestion by cysteine proteinases.

  2. A Lectin-Based Glycomic Approach to Identify Characteristic Features of Xenopus Embryogenesis

    PubMed Central

    Onuma, Yasuko; Tateno, Hiroaki; Tsuji, Shingo; Hirabayashi, Jun; Ito, Yuzuru; Asashima, Makoto

    2013-01-01

    Cell surface glycans show dynamic changes during cell differentiation. Several glycans are useful biomarkers of tumors, stem cells, and embryogenesis. Glycomic studies have been performed using liquid chromatography and mass spectrometry, which are powerful tools for glycan structural analysis but are difficult to use for small sample sizes. Recently, a lectin microarray system was developed for profiling cell surface glycome changes to terminal carbohydrate chains and branch types, using sample sizes of a few micrograms. In this study, we used the lectin microarray system for the first time to investigate stage-specific glycomes in Xenopus laevis embryos. Unsupervised cluster analysis of lectin microarray data indicated that glycan profiles changed sequentially during development. Nine lectin probes showed significantly different signals between early and the late-stage embryos: 4 showed higher signals in the early stages, and 5 exhibited higher signals in the late stages. The gene expression profiles of relevant glycosyltransferase genes support the lectin microarray data. Therefore, we have shown that lectin microarray is an effective tool for high-throughput glycan analysis in Xenopus embryogenesis, allowing glycan profiling of early embryos and small biopsy specimens. PMID:23457585

  3. Distribution of cell surface saccharides on pancreatic cells

    PubMed Central

    Maylie-Pfenninger, M; Jamieson, JD

    1979-01-01

    We describe here a simple, general procedure for the purification of a variety of lectins, and for the preparation of lectin-ferritin conjugates of defined molar composition and binding properties to be used as probes for cell surface saccharides. The technique uses a “universal” affinity column for lectins and their conjugates, which consists of hog sulfated gastric mucin glycopeptides covalently coupled to agarose. The procedure involes: (a) purification of lectins by chromatography of aqueous extracts of seeds or other lectin-containing fluids over the affinity column, followed by desorption of the desired lectin with its hapten suge; (b) iodination of the lectin to serve as a marker during subsequent steps; (c) conjugation of lectin to ferritin with glutaraldehyde; (d) collection of active lectin-ferritin conjugates by affinity chromatography; and (e) separation of monomeric lectin-ferritin conjugates from larger aggregates and unconjugated lectin by gel chromatography. Based on radioactivity and absorbancy at 310 nm for lectin and ferritin, respectively, the conjugates consist of one to two molecules of lectin per ferrritin molecule. Binding studies of native lectins and their ferritin conjugates to dispersed pancreatic acinar cells showed that the conjugation procedure does not significantly alter either the affinity constant of the lectin for its receptor on the cell surface or the number of sites detected. PMID:422653

  4. Expression of LSLCL, a new C-type lectin, is closely restricted, in bone marrow, to immature neutrophils.

    PubMed

    Perrin, C; Bayle, J; Bannwarth, S; Michiels, J F; Heudier, P; Lefebvre, J C; Giordanengo, V

    2001-12-01

    In vitro, LSLCL is expressed by numerous myeloid, promyelocytic, and T or B lymphoblastoid cell lines. In vivo, LSLCL is strongly expressed in bone marrow and only faintly in lymphoid organs. We show here that, in bone marrow, LSLCL is detected: (i) concentrated in the cytoplasm of immature neutrophils but not in myeloblasts nor in mature neutrophils, (ii) in extracellular bone marrow fluid. Besides, numerous cDNAs, similar to LSLCL (identity of 93-99%), are found in 'expressed sequence tags' databases from various origins, mostly fetal and undifferentiated tumour tissues. Since LSLCL and various closely related cDNAs are expressed at definite stages of cellular maturation processes, we hypothesize that this class of proteins could play an important role in the control of cellular differentiation.

  5. The role of Toll-like receptors and C-type lectins for vaccination against Candida albicans.

    PubMed

    Ferwerda, Gerben; Netea, Mihai G; Joosten, Leo A; van der Meer, Jos W M; Romani, Luigina; Kullberg, Bart Jan

    2010-01-08

    Recent progress has provided important novel insights in the processes driving the adaptive immune responses. Central to these developments is the discovery of pattern recognition receptors like TLRs and CLRs that not only induce innate immune responses, but also modulate cellular and humoral adaptive immunity. As vaccination is one of the great achievements in medicine and probably the most powerful tool to protect human and animals against infectious disease, further vaccine development and optimization of current strategies can improve health status of large groups of people. Development of a vaccine against Candida spp. should induce both cellular and humoral immune responses. While the TLRs are strong inducers of inflammatory responses, it seems that the CLRs have the potential to modulate these responses by enhancement or inhibition of cytokine production. Understanding the natural host defense mechanisms against pathogens like C. albicans therefore helps to identify the proper targets for inducing a strong adjuvant effect, in order to stimulate an effective adaptive immune response and protection.

  6. Fluorescence Lectin Bar-Coding of Glycoconjugates in the Extracellular Matrix of Biofilm and Bioaggregate Forming Microorganisms

    PubMed Central

    Neu, Thomas R.; Kuhlicke, Ute

    2017-01-01

    Microbial biofilm systems are defined as interface-associated microorganisms embedded into a self-produced matrix. The extracellular matrix represents a continuous challenge in terms of characterization and analysis. The tools applied in more detailed studies comprise extraction/chemical analysis, molecular characterization, and visualisation using various techniques. Imaging by laser microscopy became a standard tool for biofilm analysis, and, in combination with fluorescently labelled lectins, the glycoconjugates of the matrix can be assessed. By employing this approach a wide range of pure culture biofilms from different habitats were examined using the commercially available lectins. From the results, a binary barcode pattern of lectin binding can be generated. Furthermore, the results can be fine-tuned and transferred into a heat map according to signal intensity. The lectin barcode approach is suggested as a useful tool for investigating the biofilm matrix characteristics and dynamics at various levels, e.g. bacterial cell surfaces, adhesive footprints, individual microcolonies, and the gross biofilm or bio-aggregate. Hence fluorescence lectin bar-coding (FLBC) serves as a basis for a subsequent tailor-made fluorescence lectin-binding analysis (FLBA) of a particular biofilm. So far, the lectin approach represents the only tool for in situ characterization of the glycoconjugate makeup in biofilm systems.  Furthermore, lectin staining lends itself to other fluorescence techniques in order to correlate it with cellular biofilm constituents in general and glycoconjugate producers in particular. PMID:28208623

  7. Lectin binding patterns and carbohydrate mediation of sperm binding to llama oviductal cells in vitro.

    PubMed

    Apichela, Silvana A; Valz-Gianinet, Jorge N; Schuster, Stefanie; Jiménez-Díaz, María A; Roldán-Olarte, Eugenia M; Miceli, Dora C

    2010-04-01

    Sperm binding to oviductal epithelium would be involved in sperm reservoir formation in the utero tubal junction (UTJ). Although in other mammals sperm-oviduct interaction has been proved to be mediated by carbohydrate-recognition mechanisms, the factors implicated in the sperm adhesion to oviductal epithelium of llama are still unknown. In order to assess the role of carbohydrates present in the mucosa surface, we examined the distribution of glycoconjugates in the llama oviduct by confocal lectin-histochemistry. Mannosyl, glucosyl, N-acetylglucosaminyl, galactosyl, N-acetylgalactosaminyl and sialic acid residues were detected in the oviductal mucose glycocalyx. By incubation of UTJ oviductal explants with LCA, DBA, UEA-1 or PNA lectin previous to co-culture with sperm, we observed a significant decrease in sperm binding only with LCA lectin. In the mucosa surface there were numerous d-glucosyl and D-manosyl residues, which were spotted by this lectin. Probably, this fact promotes the whole covering of the oviduct luminal surface by the sugar-lectin complex, preventing sperm access and adhesion of further residues. However, sperm incubation with mannose or glucose does not significantly prevent binding, which means that glucose and mannose would not be involved in a specific sperm-oviduct interaction. On the other hand, we observed a high reduction in sperm binding to UTJ explants with N-acetylgalactosamine and galactose (p<0.001). Coincidentally, binding sites for N-acetylgalactosamine-PAA-FITC conjugate were observed on the whole surface of the sperm, supporting the concept that llama sperm have lectin-like molecules in their surface, as is the case in other mammals. Probably, these lectin-like molecules, by means of N-acetylgalactosamine and galactose recognition, could link the sperm to the oviductal mucosa with the purpose of forming storing sites in the UTJ. Our results support the idea that more than one carbohydrate could participate in sperm reservoir

  8. Lectin engineering, a molecular evolutionary approach to expanding the lectin utilities.

    PubMed

    Hu, Dan; Tateno, Hiroaki; Hirabayashi, Jun

    2015-04-27

    In the post genomic era, glycomics--the systematic study of all glycan structures of a given cell or organism--has emerged as an indispensable technology in various fields of biology and medicine. Lectins are regarded as "decipherers of glycans", being useful reagents for their structural analysis, and have been widely used in glycomic studies. However, the inconsistent activity and availability associated with the plant-derived lectins that comprise most of the commercially available lectins, and the limit in the range of glycan structures covered, have necessitated the development of innovative tools via engineering of lectins on existing scaffolds. This review will summarize the current state of the art of lectin engineering and highlight recent technological advances in this field. The key issues associated with the strategy of lectin engineering including selection of template lectin, construction of a mutagenesis library, and high-throughput screening methods are discussed.

  9. Mouse macrophage galactose-type lectin (mMGL) is critical for host resistance against Trypanosoma cruzi infection.

    PubMed

    Vázquez, Alicia; Ruiz-Rosado, Juan de Dios; Terrazas, Luis I; Juárez, Imelda; Gomez-Garcia, Lorena; Calleja, Elsa; Camacho, Griselda; Chávez, Ana; Romero, Miriam; Rodriguez, Tonathiu; Espinoza, Bertha; Rodriguez-Sosa, Miriam

    2014-01-01

    The C-type lectin receptor mMGL is expressed exclusively by myeloid antigen presenting cells (APC) such as dendritic cells (DC) and macrophages (Mφ), and it mediates binding to glycoproteins carrying terminal galactose and α- or β-N-acetylgalactosamine (Gal/GalNAc) residues. Trypanosoma cruzi (T. cruzi) expresses large amounts of mucin (TcMUC)-like glycoproteins. Here, we show by lectin-blot that galactose moieties are also expressed on the surface of T. cruzi. Male mMGL knockout (-/-) and wild-type (WT) C57BL/6 mice were infected intraperitoneally with 10(4) T. cruzi trypomastigotes (Queretaro strain). Following T. cruzi infection, mMGL-/- mice developed higher parasitemia and higher mortality rates compared with WT mice. Although hearts from T. cruzi-infected WT mice presented few amastigote nests, mMGL-/- mice displayed higher numbers of amastigote nests. Compared with WT, Mφ from mMGL-/- mice had low production of nitric oxide (NO), interleukin (IL)-12 and tumor necrosis factor (TNF)-α in response to soluble T. cruzi antigens (TcAg). Interestingly, upon in vitro T. cruzi infection, mMGL-/- Mφ expressed lower levels of MHC-II and TLR-4 and harbored higher numbers of parasites, even when mMGL-/- Mφ were previously primed with IFN-γ or LPS/IFN-γ. These data suggest that mMGL plays an important role during T. cruzi infection, is required for optimal Mφ activation, and may synergize with TLR-4-induced pathways to produce TNF-α, IL-1β and NO during the early phase of infection.

  10. Is mannan-binding lectin (MBL) detectable on monocytes and monocyte-derived immature dendritic cells?

    PubMed

    MacDonald, Shirley L; Downing, Ian; Turner, Marc; Kilpatrick, David C

    2008-12-01

    MBL (mannan-binding lectin; also called mannose-binding lectin) is a circulating C-type lectin with a collagen-like region synthesized mainly by the liver. MBL may influence susceptibility to infection in recipients of stem cell transplants, and it has even been suggested that the MBL status of a donor can influence the recipient's susceptibility to post-transplant infections. We have previously reported that MBL can be detected on human monocytes and monocyte-derived dendritic cells, based on detection using biotinylated anti-MBL, suggesting that those cells could synthesize MBL. If true, permanent MBL replacement therapy could be achieved by stem cell infusions. However, two other groups independently failed to find mbl-2-derived mRNA in monocytes. Therefore, to confirm or refute our previous observations, we used an alternative experimental strategy. Instead of using biotinylated antibody and labelled streptavidin, detection of surface MBL was attempted using MBL-specific primary antibodies (131-1, 131-10 and 131-11) followed by fluorescein-labelled anti-IgG, and controlled by the use of non-specific IgG as primary antibody. Monocytes were counterstained with anti-CD14-PE before FACS analysis. Adherent monocytes were also cultured for 48 h in serum-free medium or converted into immature dendritic cells by culture with IL-4 (interleukin-4) and GM-CSF (granulocyte/monocyte colony-stimulating factor). During FACS analysis, the dendritic cells were gated after counter-staining with anti-CD1a-PE. MBL was readily detected on the surface of fresh monocytes using all three specific anti-MBL monoclonal antibodies, but specific anti-MBL binding was greatly diminished after monocytes had been cultured for 2 days in serum-free medium. Moreover, we could not detect any MBL present on the surface of monocyte-derived dendritic cells. We therefore conclude that MBL is indeed present on the surface of fresh human monocytes. However, in view of the mRNA findings of others and our

  11. Griffithsin: An Antiviral Lectin with Outstanding Therapeutic Potential

    PubMed Central

    Lusvarghi, Sabrina; Bewley, Carole A.

    2016-01-01

    Griffithsin (GRFT), an algae-derived lectin, is one of the most potent viral entry inhibitors discovered to date. It is currently being developed as a microbicide with broad-spectrum activity against several enveloped viruses. GRFT can inhibit human immunodeficiency virus (HIV) infection at picomolar concentrations, surpassing the ability of most anti-HIV agents. The potential to inhibit other viruses as well as parasites has also been demonstrated. Griffithsin’s antiviral activity stems from its ability to bind terminal mannoses present in high-mannose oligosaccharides and crosslink these glycans on the surface of the viral envelope glycoproteins. Here, we review structural and biochemical studies that established mode of action and facilitated construction of GRFT analogs, mechanisms that may lead to resistance, and in vitro and pre-clinical results that support the therapeutic potential of this lectin. PMID:27783038

  12. Regional differences in lectin binding patterns of vestibular hair cells

    NASA Technical Reports Server (NTRS)

    Baird, R. A.; Schuff, N. R.; Bancroft, J.

    1993-01-01

    Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylglucosamine (WGA), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not strain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type I hair cells while labeling, as in the bullfrog, Type II hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.

  13. Regional differences in lectin binding patterns of vestibular hair cells

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.; Schuff, N. R.; Bancroft, J.

    1994-01-01

    Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not stain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type 1 hair cells while labeling, as in the bullfrog, Type 2 hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.

  14. Crystal structure of a symbiosis-related lectin from octocoral.

    PubMed

    Kita, Akiko; Jimbo, Mitsuru; Sakai, Ryuichi; Morimoto, Yukio; Miki, Kunio

    2015-09-01

    D-Galactose-binding lectin from the octocoral, Sinularia lochmodes (SLL-2), distributes densely on the cell surface of microalgae, Symbiodinium sp., an endosymbiotic dinoflagellate of the coral, and is also shown to be a chemical cue that transforms dinoflagellate into a non-motile (coccoid) symbiotic state. SLL-2 binds with high affinity to the Forssman antigen (N-acetylgalactosamine(GalNAc)α1-3GalNAcβ1-3Galα1-4Galβ1-4Glc-ceramide), and the presence of Forssman antigen-like sugar on the surface of Symbiodinium CS-156 cells was previously confirmed. Here we report the crystal structures of SLL-2 and its GalNAc complex as the first crystal structures of a lectin involved in the symbiosis between coral and dinoflagellate. N-Linked sugar chains and a galactose derivative binding site common to H-type lectins were observed in each monomer of the hexameric SLL-2 crystal structure. In addition, unique sugar-binding site-like regions were identified at the top and bottom of the hexameric SLL-2 structure. These structural features suggest a possible binding mode between SLL-2 and Forssman antigen-like pentasaccharide.

  15. Near-planar Solution Structures of Mannose-binding Lectin Oligomers Provide Insight on Activation of Lectin Pathway of Complement

    PubMed Central

    Miller, Ami; Phillips, Anna; Gor, Jayesh; Wallis, Russell; Perkins, Stephen J.

    2012-01-01

    The complement system is a fundamental component of innate immunity that orchestrates complex immunological and inflammatory processes. Complement comprises over 30 proteins that eliminate invading microorganisms while maintaining host cell integrity. Protein-carbohydrate interactions play critical roles in both the activation and regulation of complement. Mannose-binding lectin (MBL) activates the lectin pathway of complement via the recognition of sugar arrays on pathogenic surfaces. To determine the solution structure of MBL, synchrotron x-ray scattering and analytical ultracentrifugation experiments showed that the carbohydrate-recognition domains in the MBL dimer, trimer, and tetramer are positioned close to each other in near-planar fan-like structures. These data were subjected to constrained modeling fits. A bent structure for the MBL monomer was identified starting from two crystal structures for its carbohydrate-recognition domain and its triple helical region. The MBL monomer structure was used to identify 10–12 near-planar solution structures for each of the MBL dimers, trimers, and tetramers starting from 900 to 6,859 randomized structures for each. These near-planar fan-like solution structures joined at an N-terminal hub clarified how the carbohydrate-recognition domain of MBL binds to pathogenic surfaces. They also provided insight on how MBL presents a structural template for the binding and auto-activation of the MBL-associated serine proteases to initiate the lectin pathway of complement activation. PMID:22167201

  16. Labeling of lectin receptors during the cell cycle.

    PubMed

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling.

  17. Lectins influence chondrogenesis and osteogenesis in limb bud mesenchymal cells.

    PubMed

    Talaei-Khozani, Tahereh; Monsefi, Malihezaman; Ghasemi, Mansoureh

    2011-02-01

    The role of cell surface glycoproteins in cell behavior can be characterized by their interactions with plant lectins. This study was designed to identify the effects of lectins on chondrogenesis and osteogenesis in limb bud mesenchymal cells in vitro. Limb bud mesenchymal cells from mouse embryos were cultured in high-density micromass culture. Wheat germ agglutinin (WGA), concanavalin A (ConA), peanut agglutinin (PNA), Dolichos biflorus agglutinin (DBA) and Ricinus communis agglutinin (RCA) were added separately to the culture media. Cells were cultured for 5 or 9 days, and cell viability was assayed by neutral red on day 5. The micromasses were stained with alcian blue, alizarin red S and Von Kossa stains, and alkaline phosphatase assays were also done. Dolichos biflorus agglutinin induced an increase in chondrogenesis, calcium precipitation and proteoglycan production. ConA and PNA did not affect chondrocyte differentiation but induced chondrocytes to produce more proteoglycan. Wheat germ agglutinin reduced chondrification and ossification but induced mesenchymal cells to store lipid droplets. Ricinus communis agglutinin 1 was toxic and significantly reduced cell survival. In conclusion, DBA was the most effective inducer of ossification and chondrification. Wheat germ agglutinin induced adipogenesis instead. These assays showed that lectins play important roles in limb bud development.

  18. The Lectin Pathway of Complement and Rheumatic Heart Disease

    PubMed Central

    Beltrame, Marcia Holsbach; Catarino, Sandra Jeremias; Goeldner, Isabela; Boldt, Angelica Beate Winter; de Messias-Reason, Iara José

    2014-01-01

    The innate immune system is the first line of host defense against infection and is comprised of humoral and cellular mechanisms that recognize potential pathogens within minutes or hours of entry. The effector components of innate immunity include epithelial barriers, phagocytes, and natural killer cells, as well as cytokines and the complement system. Complement plays an important role in the immediate response against microorganisms, including Streptococcus sp. The lectin pathway is one of three pathways by which the complement system can be activated. This pathway is initiated by the binding of mannose-binding lectin (MBL), collectin 11 (CL-K1), and ficolins (Ficolin-1, Ficolin-2, and Ficolin-3) to microbial surface oligosaccharides and acetylated residues, respectively. Upon binding to target molecules, MBL, CL-K1, and ficolins form complexes with MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2), which cleave C4 and C2 forming the C3 convertase (C4b2a). Subsequent activation of complement cascade leads to opsonization, phagocytosis, and lysis of target microorganisms through the formation of the membrane-attack complex. In addition, activation of complement may induce several inflammatory effects, such as expression of adhesion molecules, chemotaxis and activation of leukocytes, release of reactive oxygen species, and secretion of cytokines and chemokines. In this chapter, we review the general aspects of the structure, function, and genetic polymorphism of lectin-pathway components and discuss most recent understanding on the role of the lectin pathway in the predisposition and clinical progression of Rheumatic Fever. PMID:25654073

  19. Glycan heterogeneity on gold nanoparticles increases lectin discrimination capacity in label-free multiplexed bioassays†

    PubMed Central

    Otten, Lucienne; Vlachou, Denise; Richards, Sarah-Jane; Gibson, Matthew I.

    2016-01-01

    The development of new analytical tools as point-of-care biosensors is crucial to combat the spread of infectious diseases, especially in the context of drug-resistant organisms, or to detect biological warfare agents. Glycan/lectin interactions drive a wide range of recognition and signal transduction processes within nature and are often the first site of adhesion/recognition during infection making them appealing targets for biosensors. Glycosylated gold nanoparticles have been developed that change colour from red to blue upon interaction with carbohydrate-binding proteins and may find use as biosensors, but are limited by the inherent promiscuity of some of these interactions. Here we mimic the natural heterogeneity of cell-surface glycans by displaying mixed monolayers of glycans on the surface of gold nanoparticles. These are then used in a multiplexed, label-free bioassay to create ‘barcodes’ which describe the lectin based on its binding profile. The increased information content encoded by using complex mixtures of a few sugars, rather than increased numbers of different sugars makes this approach both scalable and accessible. These nanoparticles show increased lectin identification power at a range of lectin concentrations, relative to single-channel sensors. It was also found that some information about the concentration of the lectins can be extracted, all from just a simple colour change, taking this technology closer to being a realistic biosensor. PMID:27181289

  20. Hemagglutinating activity and conformation of a lactose-binding lectin from mushroom Agrocybe cylindracea.

    PubMed

    Liu, Chao; Zhao, Xi; Xu, Xiao-Chao; Li, Ling-Rui; Liu, Yan-Hong; Zhong, Shao-Dong; Bao, Jin-Ku

    2008-03-01

    A lactose-binding lectin (Agrocybe cylindracea Lectin, ACL) purified from fruiting bodies of the mushroom A. cylindracea was investigated to determine the hemagglutinating activity and conformation changes after chemical modification, removal of metal ion and treatment at different temperatures and pH. ACL agglutinated both rabbit and human erythrocytes and its hemagglutinating activity could be inhibited by lactose. This lectin was stable in the pH range of 6-9 and temperature up to 60 degrees C. Fluorescence quenching and modification of tryptophan residues indicated that there were about two tryptophan residues in ACL molecule and one of them might be located on the surface, while the other was buried in the hydrophobic shallow groove near the surface. Chemical modification of serine/threonine and histidine showed that the partial necessity of these residues for the hemagglutinating activity of ACL. However, modifications of arginine, tyrosine and cysteine residues had no effect on its agglutinating activity.

  1. Galactose-specific seed lectins from Cucurbitaceae.

    PubMed

    Swamy, Musti J; Marapakala, Kavitha; Sultan, Nabil Ali M; Kenoth, Roopa

    2015-01-01

    Lectins, the carbohydrate binding proteins have been studied extensively in view of their ubiquitous nature and wide-ranging applications. As they were originally found in plant seed extracts, much of the work on them was focused on plant seed lectins, especially those from legume seeds whereas much less attention was paid to the lectins from other plant families. During the last two decades many studies have been reported on lectins from the seeds of Cucurbitaceae species. The main focus of the present review is to provide an overview of the current knowledge on these proteins, especially with regard to their physico-chemical characterization, interaction with carbohydrates and hydrophobic ligands, 3-dimensional structure and similarity to type-II ribosome inactivating proteins. The future outlook of research on these galactose-specific proteins is also briefly considered.

  2. Lectin-like Oxidized Low-Density Lipoprotein (LDL) Receptor (LOX-1): A Chameleon Receptor for Oxidized LDL.

    PubMed

    Zeya, Bushra; Arjuman, Albina; Chandra, Nimai Chand

    2016-08-16

    LOX-1, one of the main receptors for oxLDL, is found mainly on the surface of endothelial cells. It is a multifacet 52 kDa type II transmembrane protein that structurally belongs to the C-type lectin family. It exists with short intracellular N-terminal and long extracellular C-terminal hydrophilic domains separated by a hydrophobic domain of 26 amino acids. LOX-1 acts like a bifunctional receptor either showing pro-atherogenicity by activating the NFκB-mediated down signaling cascade for gene activation of pro-inflammatory molecules or playing an atheroprotective agent by receptor-mediated uptake of oxLDL in the presence of an anti-inflammatory molecule like IL-10. Mildly, moderately, and highly oxidized LDL show their characteristic features upon LOX-1 activation and its ligand binding indenture. The polymorphic LOX-1 genes are intensively associated with increased susceptibility to myocardial diseases. The splicing variant LOX IN dimerizes with the native form of LOX-1 and protects cells from damage by oxidized LDL. In the developing field of regenerating medicine, LOX-1 is a potential target for therapeutic intervention.

  3. [Lectin histochemical studies on the musk gland in the house musk shrew (Suncus murinus)].

    PubMed

    Aoki-Komori, S; Saito, T R; Umeda, M; Sugiyama, M; Takahashi, K W; Taniguchi, K

    1993-07-01

    The musk gland of the adult house musk shrews (Suncus murinus) of both sexes was studied lectin histochemically. The musk gland was a kind of scent gland, consisted of congregation of branched or unbranched simple tubuloalveolar gland holocrine in nature and was attached by an apocrine gland-like structure (sweat gland) in the deeper layer of its periphery. Acinar cells of the musk gland were distinguishable into three type from basal to luminal parts of the acinus; immature cells, mature cells and degenerating cells. There was no histological difference between both sexes. Lectin-binding pattern of the musk gland was examined in comparison with that of the sweat gland and ordinary sebaceous gland by histochemical staining techniques using seven lectins: ConA, RCA I, PNA, SBA, UEA-I, DBA, WGA, WGA and PNA labelled the duct of the musk gland more intense than the acinus. Several lectins showed a tendency to label the cells situated near the luminal surface more intense than those near the basement membrane in both the acinus and duct of the musk gland. In the sweat gland and ordinary sebaceous gland, the lectin-binding pattern was different with each other and from that in the musk gland. These findings suggest that the musk gland, sweat gland, and ordinary sebaceous gland are different to each other in nature of cells and the secretion.

  4. Determining the binding affinities of prostate-specific antigen to lectins: SPR and microarray approaches.

    PubMed

    Damborský, Pavel; Zámorová, Martina; Katrlík, Jaroslav

    2016-12-01

    Prostate cancer (PCa) is one of the most common newly diagnosed cancers among men and we focused on its traditional biomarker, prostate-specific antigen (PSA), using targeted glycomics-based strategies. The aberrant glycosylation pattern of PSA may serve as a valuable tool for improving PCa diagnosis including its early-stage. In this study, we evaluated the usability of two techniques, surface plasmon resonance and protein microarray assay, for the study and characterization of interactions of PSA (both free and complexed) with six lectins (SNA, ConA, RCA, AAL, WGA and MAA II). The information on the character of such interactions is important for the application of lectins as prospective bioreceptors for biomarker glycoprofiling in a follow-up biosensing assays. SPR as well as established bioanalytical techniques allowed determination of KD values of PSA-lectin interactions in a more reliable way than protein microarray. The protein microarray method did not allow accurate quantification of KD values. However, the features of a microarray approach, such as speed and costs, enabled the screening and estimation of the nature of lectin-glycan biomarker interaction in an effective and time-saving way. All of the tested lectins interacted with commercial PSA standard isolated from healthy persons, except MAA II which reacted only very weakly.

  5. A lectin-based gold nanoparticle assay for probing glycosylation of glycoproteins.

    PubMed

    Sánchez-Pomales, Germarie; Morris, Todd A; Falabella, James B; Tarlov, Michael J; Zangmeister, Rebecca A

    2012-09-01

    We report a glycoanalysis method in which lectins are used to probe the glycans of therapeutic glycoproteins that are adsorbed on gold nanoparticles. A model mannose-presenting glycoprotein, ribonuclease B (RNase B), and the therapeutic monoclonal antibody (mAb) rituximab, were found to adsorb spontaneously and non-specifically to bare gold nanoparticles such that glycans were accessible for lectin binding. Addition of a multivalent binding lectin, such as concanavalin A (Con A), to a solution of the modified gold nanoparticles resulted in cross-linking of the nanoparticles. This phenomenon was evidenced within 1 min by a change in the hydrodynamic diameter, D(H), measured by dynamic light scattering (DLS) and a shift and increase in absorbance of the plasmon resonance band of the gold nanoparticles. By combining the sugar-binding specificity and the cross-linking capabilities of lectins, the non-specific adsorption of glycoproteins to gold surfaces, and the unique optical reporting properties of gold nanoparticles, a glycosylation pattern of rituximab could be generated. This assay provides advantages over currently used glycoanalysis methods in terms of short analysis time, simplicity of the conjugation method, convenience of simple spectroscopic detection, and feasibility of providing glycan characterization of the protein drug product by using a variety of binding lectins.

  6. Lectin sensitized anisotropic silver nanoparticles for detection of some bacteria.

    PubMed

    Gasparyan, Vardan K; Bazukyan, Inga L

    2013-03-05

    A method of bacteria detection by sensitized anisotropic silver nanoparticles is presented. Anisotropic silver nanoparticles with two bands of surface plasmon resonance (SPR) are prepared and sensitized with potato lectin. These nanoparticles are able to detect three bacterial species: Escherichia coli, Bacillus subtilis and Staphylococcus aureus. The interaction of these bacteria with such nanoparticles induces drastic changes in optical spectra of nanoparticles that are correlated with bacteria titer. The maximal sensitivity is observed for S. aureus (up to 1.5×10(4) mL(-1)).

  7. Epidemiological characterization of Neisseria gonorrhoeae by lectins.

    PubMed Central

    Schalla, W O; Whittington, W L; Rice, R J; Larsen, S A

    1985-01-01

    A total of 101 isolates of penicillinase-producing and non-penicillinase-producing Neisseria gonorrhoeae with known nutritional requirements, plasmid content, and serovars, were examined for lectin agglutination patterns. These isolates were from outbreaks in Georgia, California, Hawaii, and Pennsylvania. Cell suspensions made from 16- to 18-h cultures were mixed with 14 different lectins, and the resultant agglutination patterns were classified as agglutination groups. Among the 101 isolates tested, 24 different agglutination groups were demonstrated. Of the organisms tested, 55% were located in 3 of the 24 groups, and 86% of the isolates reacted with the lectins Trichosanthes kinlowii, Griffonia simplicifolia I, peanut agglutinin, soybean agglutinin, potato agglutinin, and wheat germ agglutinin. One isolate did not react with peanut or potato agglutinin, five isolates lacked reactivity with potato agglutinin, and six isolates did not react with wheat germ agglutinin. Of the wheat germ-negative isolates, four were from Pennsylvania and were identical with regard to auxotype, plasmid content, serovar, and lectin group. The other two wheat germ-negative isolates were from California and were unrelated by the same criteria to the four Pennsylvania isolates and to each other. Among the isolates tested, there were no differences in lectin groups with regard to the sex of the patient. In the Georgia collection, agglutination with one lectin group was confined to isolates of serogroup IA. This association was not observed for the other geographic areas. Some isolates showing identical auxotype, plasmid content, and serovars could be differentiated based on lectin agglutination patterns, whereas other isolates were identical by all testing criteria. PMID:3930560

  8. Functional environmental proteomics: elucidating the role of a c-type cytochrome abundant during uranium bioremediation.

    PubMed

    Yun, Jiae; Malvankar, Nikhil S; Ueki, Toshiyuki; Lovley, Derek R

    2016-02-01

    Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface.

  9. Carbohydrate-binding specificity of the daffodil (Narcissus pseudonarcissus) and amaryllis (Hippeastrum hybr.) bulb lectins.

    PubMed

    Kaku, H; Van Damme, E J; Peumans, W J; Goldstein, I J

    1990-06-01

    retarded on the immobilized HHA column; Man5-GlcNAc2-Asn [containing two Man alpha 1,3(Man alpha 1,6) units] bound to the HHA column. On the contrary, glycopeptides with hybrid type glycan chains were not retarded on either column. These two new lectins which differ in their fine sugar binding specificity from each other, and also from the snowdrop lectin, should prove to be useful probes for the detection and preliminary characterization of glycoconjugates on cell surfaces and in solution.

  10. Porifera Lectins: Diversity, Physiological Roles and Biotechnological Potential.

    PubMed

    Gardères, Johan; Bourguet-Kondracki, Marie-Lise; Hamer, Bojan; Batel, Renato; Schröder, Heinz C; Müller, Werner E G

    2015-08-07

    An overview on the diversity of 39 lectins from the phylum Porifera is presented, including 38 lectins, which were identified from the class of demosponges, and one lectin from the class of hexactinellida. Their purification from crude extracts was mainly performed by using affinity chromatography and gel filtration techniques. Other protocols were also developed in order to collect and study sponge lectins, including screening of sponge genomes and expression in heterologous bacterial systems. The characterization of the lectins was performed by Edman degradation or mass spectrometry. Regarding their physiological roles, sponge lectins showed to be involved in morphogenesis and cell interaction, biomineralization and spiculogenesis, as well as host defense mechanisms and potentially in the association between the sponge and its microorganisms. In addition, these lectins exhibited a broad range of bioactivities, including modulation of inflammatory response, antimicrobial and cytotoxic activities, as well as anticancer and neuromodulatory activity. In view of their potential pharmacological applications, sponge lectins constitute promising molecules of biotechnological interest.

  11. Different Origins or Different Evolutions? Decoding the Spectral Diversity Among C-type Asteroids

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Castillo-Rogez, J.; Beck, P.; Emery, J.; Brunetto, R.; Delbo, M.; Marsset, M.; Marchis, F.; Groussin, O.; Zanda, B.; Lamy, P.; Jorda, L.; Mousis, O.; Delsanti, A.; Djouadi, Z.; Dionnet, Z.; Borondics, F.; Carry, B.

    2017-02-01

    Anhydrous pyroxene-rich interplanetary dust particles (IDPs) have been proposed as surface analogs for about two-thirds of all C-complex asteroids. However, this suggestion appears to be inconsistent with the presence of hydrated silicates on the surfaces of some of these asteroids, including Ceres. Here, we report the presence of enstatite (pyroxene) on the surface of two C-type asteroids (Ceres and Eugenia) based on their spectral properties in the mid-infrared range. The presence of this component is particularly unexpected in the case of Ceres, because most thermal evolution models predict a surface consisting of hydrated compounds only. The most plausible scenario is that Ceres’ surface has been partially contaminated by exogenous enstatite-rich material, possibly coming from the Beagle asteroid family. This scenario questions a similar origin for Ceres and the remaining C-types, and it possibly supports recent results obtained by the Dawn mission (NASA) that Ceres may have formed in the very outer solar system. Concerning the smaller D ∼ 200 km C-types such as Eugenia, both their derived surface composition (enstatite and amorphous silicates) and low density (<1.5 g cm‑3) suggest that these bodies accreted from the same building blocks, namely chondritic porous, pyroxene-rich IDPs and volatiles (mostly water ice), and that a significant volume fraction of these bodies has remained unaffected by hydrothermal activity likely implying a late accretion. In addition, their current heliocentric distance may best explain the presence or absence of water ice at their surfaces. Finally, we raise the possibility that CI chondrites, Tagish-Lake-like material, or hydrated IDPs may be representative samples of the cores of these bodies.

  12. Detection of colorectal dysplasia using fluorescently labelled lectins

    PubMed Central

    Kuo, Joe Chin-Hun; Ibrahim, Ashraf E. K.; Dawson, Sarah; Parashar, Deepak; Howat, William J.; Guttula, Kiran; Miller, Richard; Fearnhead, Nicola S.; Winton, Douglas J.; Neves, André A.; Brindle, Kevin M.

    2016-01-01

    Colorectal cancer screening using conventional colonoscopy lacks molecular information and can miss dysplastic lesions. We tested here the ability of fluorescently labelled lectins to distinguish dysplasia from normal tissue when sprayed on to the luminal surface epithelium of freshly resected colon tissue from the Apcmin mouse and when applied to fixed human colorectal tissue sections. Wheat germ agglutinin (WGA) showed significantly decreased binding to adenomas in the mouse tissue and in sections of human colon from 47 patients. Changes in WGA binding to the human surface epithelium allowed regions containing normal epithelium (NE) or hyperplastic polyps (HP) to be distinguished from regions containing low-grade dysplasia (LGD), high-grade dysplasia (HGD) or carcinoma (C), with 81% sensitivity, 87% specificity and 93% positive predictive value (PPV). Helix pomatia agglutinin (HGA) distinguished epithelial regions containing NE from regions containing HP, LGD, HGD or C, with 89% sensitivity, 87% specificity and 97% PPV. The decreased binding of WGA and HPA to the luminal surface epithelium in human dysplasia suggests that these lectins may enable more sensitive detection of disease in the clinic using fluorescence colonoscopy. PMID:27071814

  13. Structural and functional properties of C-type starches.

    PubMed

    Cai, Jinwen; Cai, Canhui; Man, Jianmin; Zhou, Weidong; Wei, Cunxu

    2014-01-30

    This study investigated the structural and functional properties of C-type starches from pea seeds, faba bean seeds, yam rhizomes and water chestnut corms. These starches were mostly oval in shape with significantly different sizes and contents of amylose, damaged starch and phosphorus. Pea, faba bean and water chestnut starches had central hila, and yam starch had eccentric hilum. Water chestnut and yam starches had higher amylopectin short and long chain, respectively. Water chestnut and faba bean starches showed CA-type crystallinities, and pea and yam starches had C-type crystallinities. Water chestnut starch had the highest swelling power, granule swelling and pasting viscosity, lowest gelatinization temperatures and enthalpy. Faba bean starch had the lowest pasting viscosity, whereas yam starch had the highest gelatinization temperatures. Water chestnut and yam starches possessed significantly higher and lower susceptibility to acid and enzyme hydrolysis, the highest and lowest RDS contents, and the lowest and highest RS contents, respectively.

  14. A rainbow trout lectin with multimeric structure.

    PubMed

    Jensen, L E; Thiel, S; Petersen, T E; Jensenius, J C

    1997-04-01

    A novel lectin has been identified in rainbow trout serum and plasma. The lectin binds to Sepharose (an agarose polymer) in a calcium-dependent manner. Glucose, N-acetyl-glucosamine, mannose, N-acetyl-mannosamine, L-fucose, maltose and alpha-methyl-mannoside are good inhibitors of this binding, whereas glucosamine and D-fucose inhibits to a lesser degree and mannosamine and galactose do not inhibit the binding to Sepharose. When analysed by SDS-PAGE under non-reducing conditions, the lectin appears as a characteristic ladder of bands with approximately 16 kDa between consecutive bands. Upon reduction, the lectin appears as a 16-kDa band. On size-exclusion chromatography of trout serum and plasma, the protein emerges over a broad range corresponding to sizes from about 2000 kDa to less than 200 kDa. The NH2-terminal sequence (AAENRNQXPPG) shows no significant homology with known proteins. Because of the characteristic appearance in non-reducing SDS-PAGE and the lectin activity, we propose to name the protein "ladderlectin."

  15. Isolation, characterization and molecular cloning of a leaf-specific lectin from ramsons (Allium ursinum L.).

    PubMed

    Smeets, K; Van Damme, E J; Van Leuven, F; Peumans, W J

    1997-11-01

    Lectins were isolated from roots and leaves of ramsons and compared to the previously described bulb lectins. Biochemical analyses indicated that the root lectins AUAIr and AUAIIr are identical to the bulb lectins AUAI and AUAII, whereas the leaf lectin AUAL has no counterpart in the bulbs. cDNA cloning confirmed that the leaf lectin differs from the bulb lectins. Northern blot analysis further indicated that the leaf lectin is tissue-specifically expressed. Sequence comparisons revealed that the ramsons leaf lectin differs considerably from the leaf lectins of garlic, leek, onion and shallot.

  16. Unfolding energetics and stability of banana lectin.

    PubMed

    Gupta, Garima; Sinha, Sharmistha; Surolia, Avadhesha

    2008-08-01

    The unfolding pathway of banana lectin from Musa paradisiaca was determined by isothermal denaturation induced by the chaotrope GdnCl. The unfolding was found to be a reversible process. The data obtained by isothermal denaturation provided information on conformational stability of banana lectin. The high values of DeltaG of unfolding at various temperatures indicated the strength of intersubunit interactions. It was found that banana lectin is a very stable and denatures at high chaotrope concentrations only. The basis of the stability may be attributed to strong hydrogen bonds of the order 2.5-3.1 A at the dimeric interface along with the presence of water bridges. This is perhaps very unique example in proteins where subunit association is not a consequence of the predominance of hydrophobic interactions.

  17. Diversity in recognition of glycans by F-type lectins and galectins: molecular, structural, and biophysical aspects

    PubMed Central

    Vasta, Gerardo R.; Ahmed, Hafiz; Bianchet, Mario A.; Fernández-Robledo, José A.; Amzel, L. Mario

    2013-01-01

    Although lectins are “hard-wired” in the germline, the presence of tandemly arrayed carbohydrate recognition domains (CRDs), of chimeric structures displaying distinct CRDs, of polymorphic genes resulting in multiple isoforms, and in some cases, of a considerable recognition plasticity of their carbohydrate binding sites, significantly expand the lectin ligand-recognition spectrum and lectin functional diversification. Analysis of structural/functional aspects of galectins and F-lectins—the most recently identified lectin family characterized by a unique CRD sequence motif (a distinctive structural fold) and nominal specificity for l-Fuc—has led to a greater understanding of self/nonself recognition by proteins with tandemly arrayed CRDs. For lectins with a single CRD, however, recognition of self and nonself glycans can only be rationalized in terms of protein oligomerization and ligand clustering and presentation. Spatial and temporal changes in lectin expression, secretion, and local concentrations in extracellular microenvironments, as well as structural diversity and spatial display of their carbohydrate ligands on the host or microbial cell surface, are suggestive of a dynamic interplay of their recognition and effector functions in development and immunity. PMID:22973821

  18. Lectins Offer New Perspectives in the Development of Macrophage-Targeted Therapies for COPD/Emphysema

    PubMed Central

    Mukaro, Violet R.; Bylund, Johan; Hodge, Greg; Holmes, Mark; Jersmann, Hubertus; Reynolds, Paul N.; Hodge, Sandra

    2013-01-01

    We have previously shown that the defective ability of alveolar macrophages (AM) to phagocytose apoptotic cells (‘efferocytosis’) in chronic obstructive pulmonary disease/emphysema (COPD) could be therapeutically improved using the C-type lectin, mannose binding lectin (MBL), although the exact mechanisms underlying this effect are unknown. An S-type lectin, galectin-3, is also known to regulate macrophage phenotype and function, via interaction with its receptor CD98. We hypothesized that defective expression of galectin/CD98 would be associated with defective efferocytosis in COPD and that mechanisms would include effects on cytoskeletal remodeling and macrophage phenotype and glutathione (GSH) availability. Galectin-3 was measured by ELISA in BAL from controls, smokers and current/ex-smokers with COPD. CD98 was measured on AM using flow cytometry. We assessed the effects of galectin-3 on efferocytosis, CD98, GSH, actin polymerisation, rac activation, and the involvement of PI3K (using β-actin probing and wortmannin inhibition) in vitro using human AM and/or MH-S macrophage cell line. Significant decreases in BAL galectin-3 and AM CD98 were observed in BAL from both current- and ex-smoker COPD subjects vs controls. Galectin 3 increased efferocytosis via an increase in active GTP bound Rac1. This was confirmed with β-actin probing and the role of PI3K was confirmed using wortmannin inhibition. The increased efferocytosis was associated with increases in available glutathione and expression of CD98. We provide evidence for a role of airway lectins in the failed efferocytosis in COPD, supporting their further investigation as potential macrophage-targeted therapies. PMID:23441163

  19. Identification and transcriptional analysis of two types of lectins (SgCTL-1 and SgGal-1) from mollusk Solen grandis.

    PubMed

    Wei, Xiumei; Yang, Jianmin; Liu, Xiangquan; Yang, Dinglong; Xu, Jie; Fang, Jinghui; Wang, Weijun; Yang, Jialong

    2012-08-01

    C-type lectin and galectin are two types of animal carbohydrate-binding proteins which serve as pathogen recognition molecules and play crucial roles in the innate immunity of invertebrates. In the present study, a C-type lectin (designated as SgCTL-1) and galectin (designated as SgGal-1) were identified from mollusk Solen grandis, and their expression patterns, both in tissues and toward three pathogen-associated molecular patterns (PAMPs) stimulation were characterized. The full-length cDNA of SgCTL-1 and SgGal-1 was 1280 and 1466 bp, containing an open reading frame (ORF) of 519 and 1218 bp, respectively. Their deduced amino acid sequences showed high similarity to other members of C-type lectin and galectin superfamily, respectively. SgCTL-1 encoded a single carbohydrate-recognition domain (CRD), and the motif of Ca(2+)-binding site 2 was EPN (Glu(135)-Pro(136)-Asn(137)). While SgGal-1 encoded two CRDs, and the amino acid residues constituted the carbohydrate-binding motifs were well conserved in CRD1 but partially conserved in CRD2. Although SgCTL-1 and SgGal-1 exhibited different tissue expression pattern, they were both constitutively expressed in all tested tissues, including hemocytes, gonad, mantle, muscle, gill and hepatopancreas, and they were both highly expressed in hepatopancreas and gill. Furthermore, the mRNA expression of two lectins in hemocytes was significantly (P < 0.01) up-regulated with different levels after S. grandis were stimulated by lipopolysaccharide (LPS), peptidoglycan (PGN) or β-1,3-glucan. Our results suggested that SgCTL-1 and SgGal-1 from razor clam were two novel members of animal lectins, and they might function as pattern recognition receptors (PRRs) taking part in the process of pathogen recognition.

  20. Characterization of Caenorhabditis Elegans Lectin-Binding Mutants

    PubMed Central

    Link, C. D.; Silverman, M. A.; Breen, M.; Watt, K. E.; Dames, S. A.

    1992-01-01

    We have identified 45 mutants of Caenorhabditis elegans that show ectopic surface binding of the lectins wheat germ agglutinin (WGA) and soybean agglutinin (SBA). These mutations are all recessive and define six genes: srf-2, srf-3, srf-4, srf-5, srf-8 and srf-9. Mutations in these genes fall into two phenotypic classes: srf-2, -3, -5 mutants are grossly wild-type, except for their lectin-binding phenotype; srf-4, -8, -9 mutants have a suite of defects, including uncoordinated movement, abnormal egg laying, and defective copulatory bursae morphogenesis. Characterization of these pleiotropic mutants at the cellular level reveals defects in the migration of the gonadal distal tip cell and in axon morphology. Unexpectedly, the pleiotropic mutations also interact with mutations in the lin-12 gene, which encodes a putative cell surface receptor involved in the control of cell fate. We propose that the underlying defect in the pleiotropic mutations may be in the general processing or secretion of extracellular proteins. PMID:1516818

  1. Non-labeled QCM Biosensor for Bacterial Detection using Carbohydrate and Lectin Recognitions

    PubMed Central

    Shen, Zhihong; Huang, Mingchuan; Xiao, Caide; Zhang, Yun; Zeng, Xiangqun; Wang, Peng G.

    2008-01-01

    High percentages of harmful microbes or their secreting toxins bind to specific carbohydrate sequences on human cells at the recognition and attachment sites. A number of studies also show that lectins react with specific structures of bacteria and fungi. In this report, we take advantage of the fact that a high percentage of microorganisms have both carbohydrate and lectin binding pockets at their surface. We demonstrate here for the first time that a carbohydrate non-labeled mass sensor in combination with lectin-bacterial O-antigen recognition can be used for detection of high molecular weight bacterial targets with remarkably high sensitivity and specificity. A functional mannose self-assembled monolayer (SAM) in combination with lectin Con A was used as molecular recognition elements for the detection of E. coli W1485 using Quartz Crytsal Microbalance (QCM) as a transducer. The multivalent binding of Concanavalin A (Con A) to the Escherichia coli (E. coli) surface O-antigen favors the strong adhesion of E. coli to mannose modified QCM surface by forming bridges between these two. As a result, the contact area between cell and QCM surface increases that leads to rigid and strong attachment. Therefore it enhances the binding between E. coli and the mannose. Our results show a significant improvement of the sensitivity and specificity of carbohydrate QCM biosensor with a experimental detection limit of a few hundred bacterial cells. The linear range is from 7.5 × 102 to 7.5 × 107 cells/mL that is four decade wider than the mannose alone QCM sensor. The change of damping resistances for E. coli adhesion experiments was no more than 1.4% suggesting that the bacterial attachment was rigid, rather than a viscoelastic behavior. Little non-specific binding was observed for Staphylococcus aureus and other proteins (Fetal Bovine serum, Erythrina cristagalli lectin). Our approach not only overcomes the challenges of applying QCM technology for bacterial detection but

  2. Role of Lectins in Plant-Microorganism Interactions

    PubMed Central

    Pueppke, Steven G.; Bauer, Wolfgang D.; Keegstra, Kenneth; Ferguson, Ardene L.

    1978-01-01

    Three different assay procedures have been used to quantitate the levels of soybean (Glycine max [L.] Merr.) lectin in various tissues of soybean plants. The assays used were a standard hemagglutination assay, a radioimmunoassay, and an isotope dilution assay. Most of the lectin in seeds was found in the cotyledons, but lectin was also detected in the embryo axis and the seed coat. Soybean lectin was present in all of the tissues of young seedlings, but decreased as the plants matured and was not detectable in plants older than 2 to 3 weeks. Soybean lectin isolated from seeds of several soybean varieties were identical when compared by several methods. PMID:16660384

  3. Fruit-specific lectins from banana and plantain.

    PubMed

    Peumans, W J; Zhang, W; Barre, A; Houlès Astoul, C; Balint-Kurti, P J; Rovira, P; Rougé, P; May, G D; Van Leuven, F; Truffa-Bachi, P; Van Damme, E J

    2000-09-01

    One of the predominant proteins in the pulp of ripe bananas (Musa acuminata L.) and plantains (Musa spp.) has been identified as a lectin. The banana and plantain agglutinins (called BanLec and PlanLec, respectively) were purified in reasonable quantities using a novel isolation procedure, which prevented adsorption of the lectins onto insoluble endogenous polysaccharides. Both BanLec and PlanLec are dimeric proteins composed of two identical subunits of 15 kDa. They readily agglutinate rabbit erythrocytes and exhibit specificity towards mannose. Molecular cloning revealed that BanLec has sequence similarity to previously described lectins of the family of jacalin-related lectins, and according to molecular modelling studies has the same overall fold and three-dimensional structure. The identification of BanLec and PlanLec demonstrates the occurrence of jacalin-related lectins in monocot species, suggesting that these lectins are more widespread among higher plants than is actually believed. The banana and plantain lectins are also the first documented examples of jacalin-related lectins, which are abundantly present in the pulp of mature fruits but are apparently absent from other tissues. However, after treatment of intact plants with methyl jasmonate, BanLec is also clearly induced in leaves. The banana lectin is a powerful murine T-cell mitogen. The relevance of the mitogenicity of the banana lectin is discussed in terms of both the physiological role of the lectin and the impact on food safety.

  4. Mushroom Lectins: Specificity, Structure and Bioactivity Relevant to Human Disease

    PubMed Central

    Hassan, Mohamed Ali Abol; Rouf, Razina; Tiralongo, Evelin; May, Tom W.; Tiralongo, Joe

    2015-01-01

    Lectins are non-immunoglobulin proteins that bind diverse sugar structures with a high degree of selectivity. Lectins play crucial role in various biological processes such as cellular signaling, scavenging of glycoproteins from the circulatory system, cell–cell interactions in the immune system, differentiation and protein targeting to cellular compartments, as well as in host defence mechanisms, inflammation, and cancer. Among all the sources of lectins, plants have been most extensively studied. However, more recently fungal lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities. Given that only 10% of mushroom species are known and have been taxonomically classified, mushrooms represent an enormous unexplored source of potentially useful and novel lectins. In this review we provide an up-to-date summary on the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity. PMID:25856678

  5. Mushroom lectins: specificity, structure and bioactivity relevant to human disease.

    PubMed

    Hassan, Mohamed Ali Abol; Rouf, Razina; Tiralongo, Evelin; May, Tom W; Tiralongo, Joe

    2015-04-08

    Lectins are non-immunoglobulin proteins that bind diverse sugar structures with a high degree of selectivity. Lectins play crucial role in various biological processes such as cellular signaling, scavenging of glycoproteins from the circulatory system, cell-cell interactions in the immune system, differentiation and protein targeting to cellular compartments, as well as in host defence mechanisms, inflammation, and cancer. Among all the sources of lectins, plants have been most extensively studied. However, more recently fungal lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities. Given that only 10% of mushroom species are known and have been taxonomically classified, mushrooms represent an enormous unexplored source of potentially useful and novel lectins. In this review we provide an up-to-date summary on the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity.

  6. Docking, synthesis, and NMR studies of mannosyl trisaccharide ligands for DC-SIGN lectin.

    PubMed

    Reina, José J; Díaz, Irene; Nieto, Pedro M; Campillo, Nuria E; Páez, Juan A; Tabarani, Georges; Fieschi, Franck; Rojo, Javier

    2008-08-07

    DC-SIGN, a lectin, which presents at the surface of immature dendritic cells, constitutes nowadays a promising target for the design of new antiviral drugs. This lectin recognizes highly glycosylated proteins present at the surface of several pathogens such as HIV, Ebola virus, Candida albicans, Mycobacterium tuberculosis, etc. Understanding the binding mode of this lectin is a topic of tremendous interest and will permit a rational design of new and more selective ligands. Here, we present computational and experimental tools to study the interaction of di- and trisaccharides with DC-SIGN. Docking analysis of complexes involving mannosyl di- and trisaccharides and the carbohydrate recognition domain (CRD) of DC-SIGN have been performed. Trisaccharides Manalpha1,2[Manalpha1,6]Man 1 and Manalpha1,3[Manalpha1,6]Man 2 were synthesized from an orthogonally protected mannose as a common intermediate. Using these ligands and the soluble extracellular domain (ECD) of DC-SIGN, NMR experiments based on STD and transfer-NOE were performed providing additional information. Conformational analysis of the mannosyl ligands in the free and bound states was done. These studies have demonstrated that terminal mannoses at positions 2 or 3 in the trisaccharides are the most important moiety and present the strongest contact with the binding site of the lectin. Multiple binding modes could be proposed and therefore should be considered in the design of new ligands.

  7. Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms

    PubMed Central

    Zhang, R Y; Neu, T R; Bellenberg, S; Kuhlicke, U; Sand, W; Vera, M

    2015-01-01

    Biofilm formation and the production of extracellular polymeric substances (EPS) by meso- and thermoacidophilic metal-oxidizing archaea on relevant substrates have been studied to a limited extent. In order to investigate glycoconjugates, a major part of the EPS, during biofilm formation/bioleaching by archaea on pyrite, a screening with 75 commercially available lectins by fluorescence lectin-binding analysis (FLBA) has been performed. Three representative archaeal species, Ferroplasma acidiphilum DSM 28986, Sulfolobus metallicus DSM 6482T and a novel isolate Acidianus sp. DSM 29099 were used. In addition, Acidianus sp. DSM 29099 biofilms on elemental sulfur were studied. The results of FLBA indicate (i) 22 lectins bound to archaeal biofilms on pyrite and 21 lectins were binding to Acidianus sp. DSM 29099 biofilms on elemental sulfur; (ii) major binding patterns, e.g. tightly bound EPS and loosely bound EPS, were detected on both substrates; (iii) the three archaeal species produced various EPS glycoconjugates on pyrite surfaces. Additionally, the substratum induced different EPS glycoconjugates and biofilm structures of cells of Acidianus sp. DSM 29099. Our data provide new insights into interactions between acidophilic archaea on relevant surfaces and also indicate that FLBA is a valuable tool for in situ investigations on archaeal biofilms. PMID:25488256

  8. Epithelial repair is inhibited by an alpha(1,6)-fucose binding lectin.

    PubMed

    Adam, Elizabeth C; Holgate, Stephen T; Lackie, Peter M

    2007-02-01

    The effective repair of damage to the airway epithelium is essential to maintain the ability to exclude airborne particulates and protect against potential pathogens. Carbohydrates on the cell surface have an important role in cell-cell and cell substrate interactions. Using a model of repair with airway epithelial-derived cells of the 16HBE 14o(-) cell line, we have examined the effect of the Aleuria aurantia lectin (AAL), which binds very selectively to alpha(1,6)-linked fucose residues. Addition of unconjugated or FITC-labeled AAL reduced the rate of epithelial repair to approximately one-third of control values as measured by image analysis while cell viability was maintained. Pulse labeling with AAL-FITC for 30 min followed by incubation in AAL-free medium caused similar inhibition of repair but could be reversed by addition of fucose up to 7 h after AAL removal. By confocal microscopy, AAL binding was found to be on the apical, but not basolateral, surfaces of cells, and internalization of the labeled lectin was seen. Preincubation of the lectin with fucose prevented this effect. Ulex europeaus I lectin, which is also fucose specific, resulted in similar binding to the cells and internalization, but it did not affect the speed of the repair process. We conclude that alpha(1,6)-fucose binding sites play an important role in epithelial repair. Better understanding of this process will provide a deeper insight into the crucial mechanisms of epithelial repair.

  9. BAD-lectins: boronic acid-decorated lectins with enhanced binding affinity for the selective enrichment of glycoproteins.

    PubMed

    Lu, Ying-Wei; Chien, Chih-Wei; Lin, Po-Chiao; Huang, Li-De; Chen, Chang-Yang; Wu, Sz-Wei; Han, Chia-Li; Khoo, Kay-Hooi; Lin, Chun-Cheng; Chen, Yu-Ju

    2013-09-03

    The weak and variable binding affinities exhibited by lectin-carbohydrate interactions have often compromised the practical utility of lectin in capturing glycoproteins for glycoproteomic applications. We report here the development and applications of a new type of hybrid biomaterial, namely a boronic acid-decorated lectin (BAD-lectin), for efficient bifunctional glycoprotein labeling and enrichment. Our binding studies showed an enhanced affinity by BAD-lectin, likely to be mediated via the formation of boronate ester linkages between the lectin and glycan subsequent to the initial recognition process and thus preserving its glycan-specificity. Moreover, when attached to magnetic nanoparticles (BAD-lectin@MNPs), 2 to 60-fold improvement on detection sensitivity and enrichment efficiency for specific glycoproteins was observed over the independent use of either lectin or BA. Tested at the level of whole cell lysates for glycoproteomic applications, three different types of BAD-lectin@MNPs exhibited excellent specificities with only 6% overlapping among the 295 N-linked glycopeptides identified. As many as 236 N-linked glycopeptides (80%) were uniquely identified by one of the BAD-lectin@MNPs. These results indicated that the enhanced glycan-selective recognition and binding affinity of BAD-lectin@MNPs will facilitate a complementary identification of the under-explored glycoproteome.

  10. Use of lectin-functionalized particles for oral immunotherapy

    PubMed Central

    Diesner, Susanne C; Wang, Xue-Yan; Jensen-Jarolim, Erika; Untersmayr, Eva; Gabor, Franz

    2013-01-01

    Immunotherapy, in recent times, has found its application in a variety of immunologically mediated diseases. Oral immunotherapy may not only increase patient compliance but may, in particular, also induce both systemic as well as mucosal immune responses, due to mucosal application of active agents. To improve the bioavailability and to trigger strong immunological responses, recent research projects focused on the encapsulation of drugs and antigens into polymer particles. These particles protect the loaded antigen from the harsh conditions in the GI tract. Furthermore, modification of the surface of particles by the use of lectins, such as Aleuria aurantia lectin, wheatgerm agglutinin or Ulex europaeus-I, enhances the binding to epithelial cells, in particular to membranous cells, of the mucosa-associated lymphoid tissue. Membranous cell-specific targeting leads to an improved transepithelial transport of the particle carriers. Thus, enhanced uptake and presentation of the encapsulated antigen by antigen-presenting cells favor strong systemic, but also local, mucosal immune responses. PMID:22834202

  11. Redox processes controlling the biogenesis of c-type cytochromes.

    PubMed

    Bonnard, Géraldine; Corvest, Vincent; Meyer, Etienne H; Hamel, Patrice P

    2010-11-01

    In mitochondria, two mono heme c-type cytochromes are essential electron shuttles of the respiratory chain. They are characterized by the covalent attachment of their heme C to a CXXCH motif in the apoproteins. This post-translational modification occurs in the intermembrane space compartment. Dedicated assembly pathways have evolved to achieve this chemical reaction that requires a strict reducing environment. In mitochondria, two unrelated machineries operate, the rather simple System III in yeast and animals and System I in plants and some protozoans. System I is also found in bacteria and shares some common features with System II that operates in bacteria and plastids. This review aims at presenting how different systems control the chemical requirements for the heme ligation in the compartments where cytochrome c maturation takes place. A special emphasis will be given on the redox processes that are required for the heme attachment reaction onto apocytochromes c.

  12. The size, shape and specificity of the sugar-binding site of the jacalin-related lectins is profoundly affected by the proteolytic cleavage of the subunits.

    PubMed Central

    Houlès Astoul, Corinne; Peumans, Willy J; van Damme, Els J M; Barre, Annick; Bourne, Yves; Rougé, Pierre

    2002-01-01

    Mannose-specific lectins with high sequence similarity to jacalin and the Maclura pomifera agglutinin have been isolated from species belonging to the families Moraceae, Convolvulaceae, Brassicaceae, Asteraceae, Poaceae and Musaceae. Although these novel mannose-specific lectins are undoubtedly related to the galactose-specific Moraceae lectins there are several important differences. Apart from the obvious differences in specificity, the mannose- and galactose-specific jacalin-related lectins differ in what concerns their biosynthesis and processing, intracellular location and degree of oligomerization of the protomers. Taking into consideration that the mannose-specific lectins are widely distributed in higher plants, whereas their galactose-specific counterparts are confined to a subgroup of the Moraceae sp. one can reasonably assume that the galactose-specific Moraceae lectins are a small-side group of the main family. The major change that took place in the structure of the binding site of the diverging Moraceae lectins concerns a proteolytic cleavage close to the N-terminus of the protomer. To corroborate the impact of this change, the specificity of jacalin was re-investigated using surface plasmon resonance analysis. This approach revealed that in addition to galactose and N -acetylgalactosamine, the carbohydrate-binding specificity of jacalin extends to mannose, glucose, N -acetylmuramic acid and N -acetylneuraminic acid. Owing to this broad carbohydrate-binding specificity, jacalin is capable of recognizing complex glycans from plant pathogens or predators. PMID:12169094

  13. Production, purification, and capsid stability of rhinovirus C types.

    PubMed

    Griggs, Theodor F; Bochkov, Yury A; Nakagome, Kazuyuki; Palmenberg, Ann C; Gern, James E

    2015-06-01

    The rhinovirus C (RV-C) were discovered in 2006 and these agents are an important cause of respiratory morbidity. Little is known about their biology. RV-C15 (C15) can be produced by transfection of recombinant viral RNA into cells and subsequent purification over a 30% sucrose cushion, even though yields and infectivity of other RV-C genotypes with this protocol are low. The goal of this study was to determine whether poor RV-C yields were due to capsid instability, and moreover, to develop a robust protocol suitable for the purification of many RV-C types. Capsid stability assays indicated that virions of RV-C41 (refractory to purification) have similar tolerance for osmotic and temperature stress as RV-A16 (purified readily), although C41 is more sensitive to low pH. Modification to the purification protocol by removing detergent increased the yield of RV-C. Addition of nonfat dry milk to the sucrose cushion increased the virus yield but sacrificed purity of the viral suspension. Analysis of virus distribution following centrifugation indicated that the majority of detectable viral RNA (vRNA) was found in pellets refractory to resuspension. Reduction of the centrifugal force with commiserate increase in spin-time improved the recovery of RV-C for both C41 and C2. Transfection of primary lung fibroblasts (WisL cells) followed by the modified purification protocol further improved yields of infectious C41 and C2. Described herein is a higher yield purification protocol suitable for RV-C types refractory to the standard purification procedure. The findings suggest that aggregation-adhesion problems rather than capsid instability influence RV-C yield during purification.

  14. P2C-Type ATPases and Their Regulation.

    PubMed

    Retamales-Ortega, Rocío; Vio, Carlos P; Inestrosa, Nibaldo C

    2016-03-01

    P2C-type ATPases are a subfamily of P-type ATPases comprising Na(+)/K(+)-ATPase and H(+)/K(+)-ATPase. Na(+)/K(+)-ATPase is ubiquitously expressed and has been implicated in several neurological diseases, whereas H(+)/K(+)-ATPase is found principally in the colon, stomach, and kidney. Both ATPases have two subunits, α and β, but Na(+)/K(+)-ATPase also has a regulatory subunit called FXYD, which has an important role in cancer. The most important functions of these ATPases are homeostasis, potassium regulation, and maintaining a gradient in different cell types, like epithelial cells. Na(+)/K(+)-ATPase has become a center of attention ever since it was proposed that it might play a crucial role in neurological disorders such as bipolar disorder, mania, depression, familial hemiplegic migraine, rapid-onset dystonia parkinsonism, chronic stress, epileptogenesis, and Alzheimer's disease. On the other hand, it has been reported that lithium could have a neuroprotective effect against ouabain, which is the best known Na(+)/K(+)-ATPase inhibitor, but and high concentrations of lithium could affect negatively H(+)/K(+)-ATPase activity, that has a key role in regulating acidosis and potassium deficiencies. Finally, potassium homeostasis regulation is composed of two main mechanisms, extrarenal and renal. Extrarenal mechanism controls plasma levels, shifting potassium from the extracellular to the intracellular, whereas renal mechanism concerns with body balance and is influenced by potassium intake and its urinary excretion. In this article, we discuss the functions, isoforms, and localization of P2C-type ATPases, describe some of their modulators, and discuss their implications in some diseases.

  15. Purification of a secreted lectin from Andrias davidianus skin and its antibacterial activity.

    PubMed

    Qu, Min; Tong, Changqing; Kong, Liang; Yan, Xin; Chernikov, Oleg V; Lukyanov, Pavel A; Jin, Qiao; Li, Wei

    2015-01-01

    A lectin secreted from Andrias davidianus skin (ADL) was purified by affinity chromatography on porcine stomach mucin (type III) (PSM)-crosslinked albumin, followed by gel filtration on Sephadex G-100 and HPLC on TSK gel G3000PWXL. The purified lectin was found to be a dimeric protein, as revealed by SDS-PAGE and MALDI-TOF analysis. SDS-PAGE showed that the ADL protein had a molecular mass of 17 kDa. ADL produced an 8.5 kDa band when examined using SDS-PAGE under reducing conditions. ADL agglutinated native and trypsinized human B erythrocytes. The hemagglutination activity was inhibited by glycoproteins, such as PSM and asialo-PSM, but not by any of the monosaccharides tested. The activity was stable between 4 °C and 50 °C. Significant ADL activity was observed between pH 4–5. The lectin reaction did not depend on the presence of the divalent cation Ca2+ or Mg2+. The N-terminal ADL sequence was determined to be VGYTVGATPM. The lectin exhibited antibacterial activity, involving growth and respiration inhibition in Escherichia coli, Enterobacter aerogenes, Staphylococcus aureus, Bacillus subtilis and Shewanella sp. Furthermore, ADL showed inhibition activity against the yeast Saccharomyces cerevisiae. These findings suggest that ADL plays an important role in the innate immunity of A. davidianus on the body surface.

  16. Evaluation of glycophenotype in breast cancer by quantum dot-lectin histochemistry.

    PubMed

    Andrade, Camila G; Cabral Filho, Paulo E; Tenório, Denise P L; Santos, Beate S; Beltrão, Eduardo I C; Fontes, Adriana; Carvalho, Luiz B

    2013-01-01

    Cell surface glycoconjugates play an important role in differentiation/dedifferentiation processes and lectins are employed to evaluate them by several methodologies. Fluorescent probes are considered a valuable tool because of their ability to provide a particular view, and are more detailed and sensitive in terms of cell structure and molecular content. The aim of this study was to evaluate and compare the expression and distribution of glycoconjugates in normal human breast tissue, and benign (fibroadenoma), and malignantly transformed (invasive ductal carcinoma) breast tissues. For this, we used mercaptosuccinic acid-coated Cadmium Telluride (CdTe) quantum dots (QDs) conjugated with concanavalin A (Con A) or Ulex europaeus agglutinin I (UEA I) lectins to detect α-D-glucose/mannose and L-fucose residues, respectively. The QD-lectin conjugates were evaluated by hemagglutination activity tests and carbohydrate inhibition assays, and were found to remain functional, keeping their fluorescent properties and carbohydrate recognition ability. Fluorescence images showed that different regions of breast tissue expressed particular types of carbohydrates. While the stroma was preferentially and intensely stained by QD-Con A, ductal cells were preferentially labeled by QD-UEA I. These results indicate that QD-lectin conjugates can be used as molecular probes and can help to elucidate the glycoconjugate profile in biological processes.

  17. Evaluation of glycophenotype in breast cancer by quantum dot-lectin histochemistry

    PubMed Central

    Andrade, Camila G; Cabral Filho, Paulo E; Tenório, Denise PL; Santos, Beate S; Beltrão, Eduardo IC; Fontes, Adriana; Carvalho, Luiz B

    2013-01-01

    Cell surface glycoconjugates play an important role in differentiation/dedifferentiation processes and lectins are employed to evaluate them by several methodologies. Fluorescent probes are considered a valuable tool because of their ability to provide a particular view, and are more detailed and sensitive in terms of cell structure and molecular content. The aim of this study was to evaluate and compare the expression and distribution of glycoconjugates in normal human breast tissue, and benign (fibroadenoma), and malignantly transformed (invasive ductal carcinoma) breast tissues. For this, we used mercaptosuccinic acid-coated Cadmium Telluride (CdTe) quantum dots (QDs) conjugated with concanavalin A (Con A) or Ulex europaeus agglutinin I (UEA I) lectins to detect α-D-glucose/mannose and L-fucose residues, respectively. The QD-lectin conjugates were evaluated by hemagglutination activity tests and carbohydrate inhibition assays, and were found to remain functional, keeping their fluorescent properties and carbohydrate recognition ability. Fluorescence images showed that different regions of breast tissue expressed particular types of carbohydrates. While the stroma was preferentially and intensely stained by QD-Con A, ductal cells were preferentially labeled by QD-UEA I. These results indicate that QD-lectin conjugates can be used as molecular probes and can help to elucidate the glycoconjugate profile in biological processes. PMID:24324334

  18. Lotus corniculatus nodulation specificity is changed by the presence of a soybean lectin gene

    PubMed

    van Rhijn P; Goldberg; Hirsch

    1998-08-01

    Plant lectins have been implicated as playing an important role in mediating recognition and specificity in the Rhizobium-legume nitrogen-fixing symbiosis. To test this hypothesis, we introduced the soybean lectin gene Le1 either behind its own promoter or behind the cauliflower mosaic virus 35S promoter into Lotus corniculatus, which is nodulated by R. loti. We found that nodulelike outgrowths developed on transgenic L. corniculatus plant roots in response to Bradyrhizobium japonicum, which nodulates soybean and not Lotus spp. Soybean lectin was properly targeted to L. corniculatus root hairs, and although infection threads formed, they aborted in epidermal or hypodermal cells. Mutation of the lectin sugar binding site abolished infection thread formation and nodulation. Incubation of bradyrhizobia in the nodulation (nod) gene-inducing flavonoid genistein increased the number of nodulelike outgrowths on transgenic L. corniculatus roots. Studies of bacterial mutants, however, suggest that a component of the exopolysaccharide surface of B. japonicum, rather than Nod factor, is required for extension of host range to the transgenic L. corniculatus plants.

  19. Intravital lectin perfusion analysis of vascular permeability in human micro- and macro- blood vessels.

    PubMed

    Debbage, P L; Sölder, E; Seidl, S; Hutzler, P; Hugl, B; Ofner, D; Kreczy, A

    2001-10-01

    We previously applied intravital lectin perfusion in mouse models to elucidate mechanisms underlying vascular permeability. The present work transfers this technique to human models, analysing vascular permeability in macro- and microvessels. Human vascular endothelial surface carbohydrate biochemistry differs significantly from its murine counterpart, lacking alpha-galactosyl epitopes and expressing the L-fucose moiety in the glycocalyx; the poly-N-lactosamine glycan backbone is common to all mammals. We examined extensively lectin binding specificities in sections and in vivo, and then applied the poly-N-lactosamine-specific lectin LEA and the L-fucose-specific lectin UEA-I in human intravital perfusions. Transendothelial transport differed in macrovessels and microvessels. In microvessels of adult human fat tissue, rectal wall and rectal carcinomas, slow transendothelial transport by vesicles was followed by significant retention at the subendothelial basement membrane; paracellular passage was not observed. Passage time exceeded 1 h. Thus we found barrier mechanisms resembling those we described previously in murine tissues. In both adult and fetal macrovessels, the vena saphena magna and the umbilical vein, respectively, rapid passage across the endothelial lining was observed, the tracer localising completely in the subendothelial tissues within 15 min; vesicular transport was more rapid than in microvessels, and retention at the subendothelial basement membrane briefer.

  20. A multigene family encoding surface glycoproteins in Trypanosoma congolense

    PubMed Central

    Thonnus, Magali; Guérin, Amandine; Rivière, Loïc

    2017-01-01

    Trypanosoma congolense, the causative agent of the most important livestock disease in Africa, expresses specific surface proteins involved in its parasitic lifestyle. Unfortunately, the complete repertoire of such molecules is far from being deciphered. As these membrane components are exposed to the host environment, they could be used as therapeutic or diagnostic targets. By mining the T. congolense genome database, we identified a novel family of lectin-like glycoproteins (TcoClecs). These molecules are predicted to have a transmembrane domain, a tandem repeat amino acid motif, a signal peptide and a C-type lectin-like domain (CTLD). This paper depicts several experimental arguments in favor of a surface localization in bloodstream forms of T. congolense. A TcoClec gene was heterologously expressed in U-2 OS cells and the product could be partially found at the plasma membrane. TcoClecs were also localized at the surface of T. congolense bloodstream forms. The signal was suppressed when the cells were treated with a detergent to remove the plasma membrane or with trypsin to « shave » the parasites and remove their external proteins. This suggests that TcoClecs could be potential diagnostic or therapeutic antigens of African animal trypanosomiasis. The potential role of these proteins in T. congolense as well as in other trypanosomatids is discussed. PMID:28357394

  1. A profile of protein-protein interaction: Crystal structure of a lectin-lectin complex.

    PubMed

    Surya, Sukumaran; Abhilash, Joseph; Geethanandan, Krishnan; Sadasivan, Chittalakkottu; Haridas, Madhathilkovilakathu

    2016-06-01

    Proteins may utilize complex networks of interactions to create/proceed signaling pathways of highly adaptive responses such as programmed cell death. Direct binary interactions study of proteins may help propose models for protein-protein interaction. Towards this goal we applied a combination of thermodynamic kinetics and crystal structure analyses to elucidate the complexity and diversity in such interactions. By determining the heat change on the association of two galactose-specific legume lectins from Butea monosperma (BML) and Spatholobus parviflorus (SPL) belonging to Fabaceae family helped to compute the binding equilibrium. It was extended further by X-ray structural analysis of BML-SPL binary complex. In order to chart the proteins interacting mainly through their interfaces, identification of the nature of forces which stabilized the association of the lectin-lectin complex was examined. Comprehensive analysis of the BMLSPL complex by isothermal titration calorimetry and X-ray crystal structure threw new light on the lectin-lectin interactions suggesting of their use in diverse areas of glycobiology.

  2. Using Single Lectins to Enrich Glycoproteins in Conditioned Media.

    PubMed

    Sethi, Manveen K; Fanayan, Susan

    2015-08-03

    Lectins are sugar-binding proteins that can recognize and bind to carbohydrates conjugated to proteins and lipids. Coupled with mass spectrometry technologies, lectin affinity chromatography is becoming a popular approach for identification and quantification of glycoproteins in complex samples such as blood, tumor tissues, and cell lines. Given the commercial availability of a large number of lectins that recognize diverse sugar structures, it is now possible to isolate and study glycoproteins for biological and medical research. This unit provides a general guide to single-lectin-based enrichment of glycoproteins from serum-free conditioned media. Due to the unique carbohydrate specificity of most lectins and the complexity of the samples, optimization steps may be required to evaluate different elution buffers and methods as well as binding conditions, for each lectin, for optimal recovery of bound glycoproteins.

  3. Lectin cDNA and transgenic plants derived therefrom

    DOEpatents

    Raikhel, Natasha V.

    1994-01-04

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties. GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon.

  4. Lectin cDNA and transgenic plants derived therefrom

    DOEpatents

    Raikhel, N.V.

    1994-01-04

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties. GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon. .

  5. Endothelial C-type natriuretic peptide maintains vascular homeostasis.

    PubMed

    Moyes, Amie J; Khambata, Rayomand S; Villar, Inmaculada; Bubb, Kristen J; Baliga, Reshma S; Lumsden, Natalie G; Xiao, Fang; Gane, Paul J; Rebstock, Anne-Sophie; Worthington, Roberta J; Simone, Michela I; Mota, Filipa; Rivilla, Fernando; Vallejo, Susana; Peiró, Concepción; Sánchez Ferrer, Carlos F; Djordjevic, Snezana; Caulfield, Mark J; MacAllister, Raymond J; Selwood, David L; Ahluwalia, Amrita; Hobbs, Adrian J

    2014-09-01

    The endothelium plays a fundamental role in maintaining vascular homeostasis by releasing factors that regulate local blood flow, systemic blood pressure, and the reactivity of leukocytes and platelets. Accordingly, endothelial dysfunction underpins many cardiovascular diseases, including hypertension, myocardial infarction, and stroke. Herein, we evaluated mice with endothelial-specific deletion of Nppc, which encodes C-type natriuretic peptide (CNP), and determined that this mediator is essential for multiple aspects of vascular regulation. Specifically, disruption of CNP leads to endothelial dysfunction, hypertension, atherogenesis, and aneurysm. Moreover, we identified natriuretic peptide receptor-C (NPR-C) as the cognate receptor that primarily underlies CNP-dependent vasoprotective functions and developed small-molecule NPR-C agonists to target this pathway. Administration of NPR-C agonists promotes a vasorelaxation of isolated resistance arteries and a reduction in blood pressure in wild-type animals that is diminished in mice lacking NPR-C. This work provides a mechanistic explanation for genome-wide association studies that have linked the NPR-C (Npr3) locus with hypertension by demonstrating the importance of CNP/NPR-C signaling in preserving vascular homoeostasis. Furthermore, these results suggest that the CNP/NPR-C pathway has potential as a disease-modifying therapeutic target for cardiovascular disorders.

  6. C-Type Natriuretic Peptide Analog as Therapy for Achondroplasia.

    PubMed

    Legeai-Mallet, Laurence

    2016-01-01

    Fibroblast growth factor receptor 3 (FGFR3) is an important regulator of bone formation. Gain-of-function mutations in the FGFR3 gene result in chondrodysplasias which include achondroplasia (ACH), the most common form of dwarfism, in which skull, appendicular and axial skeletons are affected. The skeletal phenotype of patients with ACH showed defective proliferation and differentiation of the chondrocytes in the growth plate cartilage. Both endochondral and membranous ossification processes are disrupted during development. At cellular level, Fgfr3 mutations induce increased phosphorylation of the tyrosine kinase receptor FGFR3, which correlate with an enhanced activation of its downstream signaling pathways. Potential therapeutic strategies have emerged for ACH. Several preclinical studies have been conducted such as the C-type natriuretic peptide (CNP) analog (BMN111), intermittent parathyroid hormone injections, soluble FGFR3 therapy, and meclozine and statin treatments. Among the putative targets to antagonize FGFR3 signaling, CNP (or BMN111) is one of the most promising strategies. BMN111 acts as a key regulator of longitudinal bone growth by downregulating the mitogen-activated protein kinase pathway, which is activated as a result of a FGFR3 gain-of-function mutation. Preclinical studies showed that BMN111 treatment led to a large improvement in skeletal parameters in Fgfr3Y367C/+ mice mimicking ACH. In 2014, a clinical trial (phase 2) of BMN111 in pediatric patients with ACH has started. This first clinical trial marks the first big step towards real treatment for these patients.

  7. Endothelial C-type natriuretic peptide maintains vascular homeostasis

    PubMed Central

    Moyes, Amie J.; Khambata, Rayomand S.; Villar, Inmaculada; Bubb, Kristen J.; Baliga, Reshma S.; Lumsden, Natalie G.; Xiao, Fang; Gane, Paul J.; Rebstock, Anne-Sophie; Worthington, Roberta J.; Simone, Michela I.; Mota, Filipa; Rivilla, Fernando; Vallejo, Susana; Peiró, Concepción; Sánchez Ferrer, Carlos F.; Djordjevic, Snezana; Caulfield, Mark J.; MacAllister, Raymond J.; Selwood, David L.; Ahluwalia, Amrita; Hobbs, Adrian J.

    2014-01-01

    The endothelium plays a fundamental role in maintaining vascular homeostasis by releasing factors that regulate local blood flow, systemic blood pressure, and the reactivity of leukocytes and platelets. Accordingly, endothelial dysfunction underpins many cardiovascular diseases, including hypertension, myocardial infarction, and stroke. Herein, we evaluated mice with endothelial-specific deletion of Nppc, which encodes C-type natriuretic peptide (CNP), and determined that this mediator is essential for multiple aspects of vascular regulation. Specifically, disruption of CNP leads to endothelial dysfunction, hypertension, atherogenesis, and aneurysm. Moreover, we identified natriuretic peptide receptor–C (NPR-C) as the cognate receptor that primarily underlies CNP-dependent vasoprotective functions and developed small-molecule NPR-C agonists to target this pathway. Administration of NPR-C agonists promotes a vasorelaxation of isolated resistance arteries and a reduction in blood pressure in wild-type animals that is diminished in mice lacking NPR-C. This work provides a mechanistic explanation for genome-wide association studies that have linked the NPR-C (Npr3) locus with hypertension by demonstrating the importance of CNP/NPR-C signaling in preserving vascular homoeostasis. Furthermore, these results suggest that the CNP/NPR-C pathway has potential as a disease-modifying therapeutic target for cardiovascular disorders. PMID:25105365

  8. C-type natriuretic peptide stimulates ovarian follicle development.

    PubMed

    Sato, Yorino; Cheng, Yuan; Kawamura, Kazuhiro; Takae, Seido; Hsueh, Aaron J W

    2012-07-01

    C-type natriuretic peptide (CNP) encoded by the NPPC (Natriuretic Peptide Precursor C) gene expressed in ovarian granulosa cells inhibits oocyte maturation by activating the natriuretic peptide receptor (NPR)B (NPRB) in cumulus cells. RT-PCR analyses indicated increased NPPC and NPRB expression during ovarian development and follicle growth, associated with increases in ovarian CNP peptides in mice. In cultured somatic cells from infantile ovaries and granulosa cells from prepubertal animals, treatment with CNP stimulated cGMP production. Also, treatment of cultured preantral follicles with CNP stimulated follicle growth whereas treatment of cultured ovarian explants from infantile mice with CNP, similar to FSH, increased ovarian weight gain that was associated with the development of primary and early secondary follicles to the late secondary stage. Of interest, treatment with FSH increased levels of NPPC, but not NPRB, transcripts in ovarian explants. In vivo studies further indicated that daily injections of infantile mice with CNP for 4 d promoted ovarian growth, allowing successful ovulation induction by gonadotropins. In prepubertal mice, CNP treatment alone also promoted early antral follicle growth to the preovulatory stage, leading to efficient ovulation induction by LH/human chorionic gonadotropin. Mature oocytes retrieved after CNP treatment could be fertilized in vitro and developed into blastocysts, allowing the delivery of viable offspring. Thus, CNP secreted by growing follicles is capable of stimulating preantral and antral follicle growth. In place of FSH, CNP treatment could provide an alternative therapy for female infertility.

  9. A comparison of tomato (Lycopersicon esculentum) lectin with its deglycosylated derivative.

    PubMed

    Kilpatrick, D C; Graham, C; Urbaniak, S J; Jeffree, C E; Allen, A K

    1984-06-15

    A deglycosylated derivative of tomato (Lycopersicon esculentum) lectin was prepared with the use of trifluoromethanesulphonic acid. Its properties were generally similar to those of the native lectin, but differences were evident in terms of relative agglutinating activity towards sheep, (untreated) human and trypsin-treated human erythrocytes. The two forms of tomato lectin were used in conjunction with a battery of specific antisera to investigate structural relatedness among solanaceous lectins. Immunological cross-reactivity between tomato, potato and Datura lectins depends on the integrity of the glycosylated region of those lectins; that between Datura lectin and other seed lectins, however, has a separate structural basis.

  10. Regional heterogeneity of glycoconjugate distribution in the glomerulus revealed by lectin-gold cytochemistry and SDS-PAGE.

    PubMed Central

    Brown, D.; Vassalli, J. D.; Kunz, A.; Mühlhauser, J.; Orci, L.; Mulhauser, J.

    1986-01-01

    The authors have used SDS-PAGE and lectin overlay analysis in parallel with lectin-gold cytochemistry to identify Helix pomatia lectin (HPL) binding glycoconjugates in rat kidney glomeruli. Previous work revealed HPL binding sites only beneath podocyte foot process bases, where they contact the glomerular basement membrane. It is shown here that after neuraminidase digestion of thin sections of glomeruli before incubation with HPL-gold complexes, the number of HPL binding sites is markedly increased. These new sites are mainly associated with the podocyte free surface (adjacent to the urinary space) and with capillary endothelial cells. By lectin overlays, this neuraminidase-dependent HPL binding was shown to be due to reaction of the lectin with desialylated podocalyxin. In contrast, HPL binding sites detected prior to neuraminidase digestion are associated with a novel glycoconjugate having a lower electrophoretic mobility than podocalyxin. Although any role for this glycoconjugate is at present speculative, it is strategically positioned at the site of interaction between foot process bases and the glomerular basement membrane. Its presence correlates with normal podocyte architecture, as shown by our previous studies on developmental and aminonucleoside nephrosis-associated changes in HPL binding to podocytes. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 PMID:2432793

  11. Lectin-mediated attachment of liposomes to cornea: influence on transcorneal drug flux

    SciTech Connect

    Schaeffer, H.E.; Breitfeller, J.M.; Krohn, D.L.

    1982-10-01

    A method to enhance retention of drug-bearing liposomes at the corneal surface under conditions of tear flow was investigated. Mixed brain gangliosides were incorporated into the membranes of phosphatidyl choline liposomes to provide receptor sites for wheat germ agglutinin, a plant lectin that binds strongly to both human and rabbit corneal epithelium. Ganglioside-containing liposomes showed a 2.5-fold increase in their binding to rabbit cornea in vitro when corneas were pretreated with wheat germ agglutinin (500 micrograms/ml), suggesting that the lectin mediates specific binding of these liposomes to the corneal surface. In addition, under conditions of continuous tear flow (1 ml/hr), ganglioside-containing liposomes with entrapped carbachol significantly enhanced carbachol flux across isolated rabbit corneas pretreated with wheat germ agglutinin 90 min after drug delivery. The data support the potential use of liposomes as a vehicle for topical drug flux enhancement.

  12. Structure of the Lectin Regulatory Domain of the Cholesterol-Dependent Cytolysin Lectinolysin Reveals the Basis for Its Lewis Antigen Specificity

    PubMed Central

    Feil, Susanne C.; Lawrence, Sara; Mulhern, Terrence D.; Holien, Jessica K.; Hotze, Eileen M.; Farrand, Stephen; Tweten, Rodney K.; Parker, Michael W.

    2013-01-01

    SUMMARY The cholesterol-dependent cytolysins (CDCs) punch holes in target cell membranes through a highly regulated process. Streptococcus mitis lectinolysin (LLY) exhibits another layer of regulation with a lectin domain that enhances the pore-forming activity of the toxin. We have determined the crystal structures of the lectin domain by itself and in complex with various glycans that reveal the molecular basis for the Lewis antigen specificity of LLY. A small-angle X-ray scattering study of intact LLY reveals the molecule is flat and elongated with the lectin domain oriented so that the Lewis antigen-binding site is exposed. We suggest that the lectin domain enhances the pore-forming activity of LLY by concentrating toxin molecules at fucose-rich sites on membranes, thus promoting the formation of pre-pore oligomers on the surface of susceptible cells. PMID:22325774

  13. Lectin cytochemical localisation of glycoconjugates in the olfactory system of the lizards Lacerta viridis and Podarcis sicula.

    PubMed

    Franceschini, V; Lazzari, M; Ciani, F

    2000-07-01

    To investigate the presence of defined carbohydrate moieties on the cell surface of the olfactory and vomeronasal receptor cells and the projections of the latter into the olfactory bulbs, a lectin binding study was performed on the olfactory system of the lizards: Lacerta viridis and Podarcis sicula. Both lizards showed a high lectin binding for N-acetyl-glucosamine in the sensory neurons. The lectin binding patterns in Lacerta indicated that the main olfactory system possessed a moderate density of N-acetyl-galactosamine residues and detectable levels of galactose ones. The vomeronasal system on the other hand contained a high density of N-acetyl-galactosamine moieties and a moderate density of glucosamine ones. In Podarcis the main olfactory system and vomeronasal organ contained respectively detectable and moderate levels of galactose residues. The expression of specific glycoconjugates may be associated with outgrowth, guidance and fasciculation of olfactory and vomeronasal axons.

  14. Onion-like glycodendrimersomes from sequence-defined Janus glycodendrimers and influence of architecture on reactivity to a lectin

    PubMed Central

    Xiao, Qi; Zhang, Shaodong; Wang, Zhichun; Sherman, Samuel E.; Moussodia, Ralph-Olivier; Peterca, Mihai; Muncan, Adam; Williams, Dewight R.; Hammer, Daniel A.; Vértesy, Sabine; André, Sabine; Gabius, Hans-Joachim; Klein, Michael L.; Percec, Virgil

    2016-01-01

    A library of eight amphiphilic Janus glycodendrimers (GDs) with d-mannose (Man) headgroups, a known routing signal for lectin-mediated transport processes, was constructed via an iterative modular methodology. Sequence-defined variations of the Janus GD modulate the surface density and sequence of Man after self-assembly into multilamellar glycodendrimersomes (GDSs). The spatial mode of Man presentation is decisive for formation of either unilamellar or onion-like GDS vesicles. Man presentation and Janus GD concentration determine GDS size and number of bilayers. Beyond vesicle architecture, Man topological display affects kinetics and plateau level of GDS aggregation by a tetravalent model lectin: the leguminous agglutinin Con A, which is structurally related to endogenous cargo transporters. The agglutination process was rapid, efficient, and readily reversible for onion-like GDSs, demonstrating their value as versatile tools to explore the nature of physiologically relevant glycan/lectin pairing. PMID:26787853

  15. Tracheobronchial epithelium of the sheep: IV. Lectin histochemical characterization of secretory epithelial cells.

    PubMed

    Mariassy, A T; Plopper, C G; St George, J A; Wilson, D W

    1988-09-01

    Conventional histochemical characterization of the mucus secretory apparatus is often difficult to reconcile with the biochemical analysis of respiratory secretions. This study was designed to examine the secretory glycoconjugates in airways using lectins with biochemically defined affinities for main sugar residues of mucus. We used five biotinylated lectins--DBA (Dolichos biflorus) and SBA (Glycine max) for N-acetyl galactosamine (galNAc), BSA I (Bandeiraea simplicifolia) and PNA (Arachis hypogea) for galactose (gal), and UEA I (Ulex europeus)--for detection of fucose (fuc) in HgCl2-fixed, paraffin-embedded, serially sectioned trachea, lobar and segmental bronchi and bronchioles of nine sheep. Lectins selectively localized the carbohydrate residues in luminal secretions, on epithelial cell surfaces, and in secretory cells. In proximal airways, the major carbohydrate residues in luminal secretions, cell surfaces, goblet cells, and glands were fuc and gal-NAc. PNA reacted mainly with apical granules of less than 10% of goblet cells, and gal residues were only detected in some of the mucous cells and on basolateral cell surfaces. Distal airways contained sparse secretion in the lumen, mucous cells contained weakly reactive fuc and gal-NAc, and the epithelial surfaces of Clara cells contained gal. Sugars abundant in the airway secretions were also the major component of cells in glands. We conclude that there is a correlation between specific sugar residues in secretory cells, glycocalyx, and luminal secretions in proximal and distal airways. This suggests that lectins may be used to obtain information about airway secretory cell composition from respiratory secretions.

  16. Organogel-assisted topochemical synthesis of multivalent glyco-polymer for high-affinity lectin binding.

    PubMed

    Krishnan, Baiju P; Raghu, Sreedevi; Mukherjee, Somnath; Sureshan, Kana M

    2016-12-01

    An organogelator, 2,4-undeca-diynyl-4',6'-O-benzylidene-β-d-galactopyranoside, which aligns its diacetylene upon gelation, has been synthesized. UV irradiation of its gel resulted in topochemical polymerization of the gelator forming polydiacetylene (PDA). We have used this gel-state reaction for the synthesis of surface-immobilized multi-valent glycoclusters, which showed 1000-fold enhanced binding, compared to monomers, with various galactose-binding lectins.

  17. Effects of Ca2+ on refolding of the recombinant hemolytic lectin CEL-III.

    PubMed

    Hisamatsu, Keigo; Unno, Hideaki; Goda, Shuichiro; Hatakeyama, Tomomitsu

    2009-05-01

    CEL-III is a hemolytic lectin isolated from Cucumaria echinata. Although recombinant CEL-III (rCEL-III) expressed in Escherichia coli showed very weak hemolytic activity compared with native protein, it was considerably enhanced by refolding in the presence of Ca(2+). This suggests that Ca(2+) supported correct folding of the carbohydrate-binding domains of rCEL-III, leading to effective binding to the cell surface and subsequent self-oligomerization.

  18. Effect of lectins on hepatic clearance and killing of Candida albicans by the isolated perfused mouse liver.

    PubMed Central

    Sawyer, R T; Garner, R E; Hudson, J A

    1992-01-01

    The isolated perfused mouse liver model was used to study the effects of various lectins on hepatic trapping and killing of Candida albicans. After mouse livers were washed with 20 to 30 ml of perfusion buffer, 10(6) C. albicans CFU were infused into the livers. At the time of recovery, 63% +/- 2% (mean +/- standard error of the mean) of the infused C. albicans CFU were recovered from the liver and 14% +/- 1% were recovered from the effluent for a total recovery of 77% +/- 2%. This indicated that 86% +/- 9% of the original inoculum was trapped by the liver and that 23% +/- 2% was killed within the liver. When included in both preperfusion and postperfusion buffers (0.2 mg of lectin per ml), Ulex europeaus lectin (binding specificity for fucose) decreased hepatic trapping of C. albicans by 37% and eluted trapped C. albicans from the liver only when included in postperfusion buffer. By comparison, treatment of C. albicans with U. europeaus lectin before infusion had no effect on the trapping or killing of yeast cells. When Lens culinaris lectin (binding specificity for mannose) was included in the perfusion buffers, hepatic killing of C. albicans increased by 16% with no significant effect on hepatic killing when yeast cells were treated with L. culinaris lectin before infusion. Forty to 55% of the infused C. albicans were killed when concanavalin A (binding specificities for mannose and glucose), Glycine max (binding specificity for N-acetylgalactosamine), or Arachis hypogea (binding specificity for galactose) lectin was included in the perfusion buffer or when yeast cells were treated with these lectins before their infusion. When C. albicans was treated with concanavalin A at a concentration of less than 0.02 mg/ml, hepatic killing of yeast cells was not significantly increased. The data suggest that a fucose-containing receptor on the surface of either sinusoidal endothelial cells or Kupffer cells is involved in the trapping of C. albicans by the perfused mouse

  19. Glycosylation of the T-cell antigen-specific receptor and its potential role in lectin-mediated cytotoxicity

    SciTech Connect

    Hubbard, S.C.; Kranz, D.M.; Longmore, G.D.; Sitkovsky, M.V.; Eisen, H.N.

    1986-03-01

    Cytotoxic T lymphocytes (CTLs) normally destroy only those cells (target cells) whose surface antigens they recognize. However, in the presence of lectins such as Con A, CTLs destroy virtually any cell, regardless of its antigens. The oligosaccharides of the T-cell antigen-specific receptor, a dimeric surface glycoprotein composed of disulfide-linked ..cap alpha.. and ..beta.. subunits, are of interest because of their potential involvement in this lectin-dependent cytotoxic activity. The authors report here that three or four asparagine-linked oligosaccharides could be enzymatically removed from each of the receptor subunits expressed by a cloned line of murine CTLs (clone 2C), consistent with the presence of glycosylation sites deduced from cDNA sequences of the ..cap alpha.. and ..beta.. genes expressed in this clone. All the N-linked glycans on the ..cap alpha.. subunit were of the complex type, but the ..beta.. subunit carried two or three endoglycosidase H-sensitive oligosaccharides. High-mannose glycans can bind tightly to Con A and, indeed, this lectin was found to bind specifically to solubilized 2C T-cell receptor. The Con A-dependent cytotoxic activity of clone 2C, but not of other CTL clones, was inhibited by a monoclonal antibody (1B2) that is specific for the T-cell receptor of clone 2C. Antibody 1B2 also inhibited clone 2C cytotoxicity mediated by phytohemagglutinin, lentil-lectin, and wheat-germ agglutinin. These results suggest that, although lectin-dependent lysis of target cells by CTLs is antigen nonspecific, the cytolytic activity can be triggered by binding of the lectin to the T-cell antigen-specific receptor.

  20. Lectin-mediated effects on bone resorption in vitro: a morphological and functional study

    SciTech Connect

    Popoff, S.N.

    1986-01-01

    Lectins have been used to study the structure and function of a variety of cells and tissues. The authors used 4 different lectins, concanavalin A (con A), wheat germ agglutinin (WGA), soybean agglutinin (SBA) and peanut agglutinin (PNA) as in vitro biological probes to study the osteoclast, a multinucleated bone cell that is widely accepted as the primary effector cell responsible for normal bone resorption. They evaluated the effects of each of these lectins on osteoclastic bone resorbing activity and then examined mechanisms that may be responsible for the activation and/or inhibition of osteoclastic activity. Using con A and hemocyanin, a marker molecule used to visualize cell-bound con A via scanning electron microscopy, they demonstrated that osteoclasts have specific con A binding sites on their cell surface. They conducted a series of /sup 45/Ca bone release assays demonstrating that con A has a dose-dependent biphasic effect on bone resorption; stimulation at low concentrations and inhibition at higher concentrations. The findings suggest that the specificity of lectin binding to cell surface receptors may play an important role in the induction of altered cell function. Recently, cells of the mononuclear phagocyte system have been proposed as surrogates of less readily available osteoclasts. They used a macrophage-devitalized bone culture system to evaluate the effects of con A and SBA on the attachment of macrophages to bone and their subsequent functional activity. The results showed that con A, but not SBA, alters the morphology and function of macrophages on a devitalized bone surface. The results support the hypothesis that certain, specific saccharides regulate the interaction between macrophages and bone.

  1. Isothermal calorimetric analysis of lectin-sugar interaction.

    PubMed

    Takeda, Yoichi; Matsuo, Ichiro

    2014-01-01

    Isothermal titration calorimetry (ITC) is a powerful tool for analyzing lectin-glycan interactions because it can measure the binding affinity and thermodynamic properties such as ∆H and ΔS in a single experiment without any chemical modification or immobilization. Here we describe a method for preparing glycan and lectin solution to minimize the buffer mismatch, setting parameters, and performing experiments.

  2. Characterization of mannose binding lectin from channel catfish Ictalurus punctatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mannose-binding lectin (MBL) is an important component of innate immunity capable of activating the lectin pathway of the complement system. A MBL gene was isolated from channel catfish (Ictalurus punctatus). The deduced protein contains a canonical collagen-like domain, a carbohydrate recognition d...

  3. Porifera Lectins: Diversity, Physiological Roles and Biotechnological Potential

    PubMed Central

    Gardères, Johan; Bourguet-Kondracki, Marie-Lise; Hamer, Bojan; Batel, Renato; Schröder, Heinz C.; Müller, Werner E. G.

    2015-01-01

    An overview on the diversity of 39 lectins from the phylum Porifera is presented, including 38 lectins, which were identified from the class of demosponges, and one lectin from the class of hexactinellida. Their purification from crude extracts was mainly performed by using affinity chromatography and gel filtration techniques. Other protocols were also developed in order to collect and study sponge lectins, including screening of sponge genomes and expression in heterologous bacterial systems. The characterization of the lectins was performed by Edman degradation or mass spectrometry. Regarding their physiological roles, sponge lectins showed to be involved in morphogenesis and cell interaction, biomineralization and spiculogenesis, as well as host defense mechanisms and potentially in the association between the sponge and its microorganisms. In addition, these lectins exhibited a broad range of bioactivities, including modulation of inflammatory response, antimicrobial and cytotoxic activities, as well as anticancer and neuromodulatory activity. In view of their potential pharmacological applications, sponge lectins constitute promising molecules of biotechnological interest. PMID:26262628

  4. Lectin-Magnetic Beads for Plasma Membrane Isolation.

    PubMed

    Lee, Yu-Chen; Liu, Hsuan-Chen; Chuang, Carol; Lin, Sue-Hwa

    2015-07-01

    Plasma membrane proteins mainly function to transmit external signals into the cell. Many plasma membrane receptor tyrosine kinases (e.g., HER2 and EGFR) are known to mediate oncogenic progression, making them prime targets for cancer therapy. Recently, it has become important to identify plasma membrane proteins that are differentially expressed in normal versus cancer cells, in drug-sensitive versus drug-resistant cells, or among tumor cells that metastasize to different organ sites because these differentially expressed membrane proteins may lead to the identification of therapeutic targets or diagnostic markers. In addition, there is an increased interest in identifying cell-surface proteins that could serve as markers for stem cells, progenitor cells, or cells of different lineages. Traditionally, membrane isolation requires multiple centrifugation steps to isolate different organelles based on their density. With the advent of affinity matrix technology, it is possible to separate organelles based on their molecular differences. A defining characteristic of the plasma membrane is that plasma membrane proteins are more extensively glycosylated than are intracellular membrane proteins. As a result, affinity chromatography employing lectin, a carbohydrate-binding protein, is commonly used to isolate plasma membrane proteins. We have extended this concept for plasma membrane isolation by using concanavalin A (ConA), a lectin with mannose specificity. Here we describe a protocol that uses immobilized ConA bound to magnetic beads to isolate plasma membranes from homogenized cell lysates. The captured plasma membrane proteins are then solubilized from the ConA-magnetic beads by detergents in the presence of a competing sugar, methyl α-mannopyranoside.

  5. A developmentally regulated lectin in Bufo arenarum embryos.

    PubMed

    Elola, M T; Fink-de-Cabutti, N E; Herkovits, H

    1987-01-01

    We report the levels of an endogenous beta-galactoside lectin activity from Bufo arenarum whole embryos extracts and specific inhibition by saccharides at different developmental stages. Specific activity measured against trypsinized rabbit red blood cells showed relatively high and fluctuating levels during early stages (up to about 76 h post-fertilization) which fell to significantly lower and more constant values at late stages (77-264 h post-fertilization). Lactose is the most potent inhibitor of this lectin activity, and saccharides having alpha-galactoside configurations are weaker inhibitors. At the last embryonic stage, the agglutinating activity showed a different sugar specificity which suggests either the modification of the preexistent lectin or the synthesis of another type of lectin. The possible physiological roles of these lectins in the blockage of polyspermy or in embryonic cell-cell interactions are discussed.

  6. Entamoeba histolytica: expression and localization of Gal/GalNAc lectin in virulent and non-virulent variants from HM1:IMSS strain.

    PubMed

    López-Vancell, R; Arreguín Espinosa, R; González-Canto, A; Néquiz Avendaño, M; García de León, M C; Olivos-García, A; López-Vancell, D; Pérez-Tamayo, R

    2010-07-01

    We have purified Gal/GalNAc lectin from Entamoeba histolytica by electroelution. The purified protein was used to immunize rabbits and obtain polyclonal IgG's anti-lectin. These antibodies were used as tools to analyze the expression and localization of the amoebic lectin in both virulent (vEh) and non-virulent (nvEh) variants of axenically cultured HM1:IMSS strain. vEh is able to induce liver abscesses in hamsters, whereas nvEh has lost this ability. In vitro, amoebic trophozoites from both variants equally express this protein as shown by densitometric analysis of the corresponding band in Western blots from lysates. In both types of trophozoites, the pattern of distribution of the lectin was mainly on the surface. We have also compared by immunohistochemistry the presence and distribution of lectin in the in vivo liver lesions produced in hamsters. In order to prolong the survival of nvEh to analyze both variants in an in vivo model, hamsters inoculated with nvEh were treated with methyl prednisolone. Our results suggest that the Gal/GalNAc lectin is equally expressed in both nvEh and vEh.

  7. Two Chitotriose-Specific Lectins Show Anti-Angiogenesis, Induces Caspase-9-Mediated Apoptosis and Early Arrest of Pancreatic Tumor Cell Cycle

    PubMed Central

    Sarkar, Dhiman; Suresh, C. G.

    2016-01-01

    The antiproliferative activity of two chito- specific agglutinins purified from Benincasa hispida (BhL) and Datura innoxia (DiL9) of different plant family origin was investigated on various cancer cell lines. Both lectins showed chitotriose specificity, by inhibiting lectin hemagglutinating activity. On further studies, it was revealed that these agglutinins caused remarkable concentration-dependent antiproliferative effect on human pancreatic cancerous cells but not on the normal human umbilical vein endothelial cells even at higher doses determined using MTT assay. The GI50 values were approximately 8.4 μg ml-1 (0.247 μM) and 142 μg ml-1(14.8 μM) for BhL and DiL9, respectively, against PANC-1 cells. The growth inhibitory effect of these lectins on pancreatic cancer cells were shown to be a consequence of lectin cell surface binding and triggering G0/G1 arrest, mitochondrial membrane depolarization, sustained increase of the intracellular calcium release and the apoptotic signal is amplified by activation of caspases executing cell death. Interestingly, these lectins also showed anti-angiogenic activity by disrupting the endothelial tubulogenesis. Therefore, we report for the first time two chito-specific lectins specifically binding to tumor glycans; they can be considered to be a class of molecules with antitumor activity against pancreatic cancer cells mediated through caspase dependent mitochondrial apoptotic pathway. PMID:26795117

  8. Ulex europaeus I lectin induces activation of matrix-metalloproteinase-2 in endothelial cells.

    PubMed

    Gomez, D E; Yoshiji, H; Kim, J C; Thorgeirsson, U P

    1995-11-02

    In this report, we show that the lectin Ulex europaeus agglutinin I (UEA I), which binds to alpha-linked fucose residues on the surface of endothelial cells, mediates activation of the 72-kDa matrix metalloproteinase-2 (MMP-2). A dose-dependent increase in the active 62-kDa form of MMP-2 was observed in conditioned medium from monkey aortic endothelial cells (MAEC) following incubation with concentrations of UEA I ranging from 2 to 100 micrograms/ml. The increase in the 62-kDa MMP-2 gelatinolytic activity was not reflected by a rise in MMP-2 gene expression. The UEA I-mediated activation of MMP-2 was blocked by L-fucose, which competes with UEA I for binding to alpha-fucose. These findings may suggest that a similar in vivo mechanism exists, whereby adhesive interactions between tumor cell lectins and endothelial cells can mediate MMP-2 activation.

  9. Two-dimensional photonic crystal sensors for visual detection of lectin concanavalin A.

    PubMed

    Zhang, Jian-Tao; Cai, Zhongyu; Kwak, Daniel H; Liu, Xinyu; Asher, Sanford A

    2014-09-16

    We fabricated a two-dimensional (2-D) photonic crystal lectin sensing material that utilizes light diffraction from a 2-D colloidal array attached to the surface of a hydrogel that contains mannose carbohydrate groups. Lectin-carbohydrate interactions create hydrogel cross-links that shrink the hydrogel volume and decrease the 2-D particle spacing. This mannose containing 2-D photonic crystal sensor detects Concanavalin A (Con A) through shifts in the 2-D diffraction wavelength. Con A concentrations can be determined by measuring the diffracted wavelength or visually determined from the change in the sensor diffraction color. The concentrations are easily monitored by measuring the 2-D array Debye ring diameter. Our observed detection limit for Con A is 0.02 mg/mL (0.7 μM). The 2-D photonic crystal sensors are completely reversible and can monitor Con A solution concentration changes.

  10. Lectin activity in mycelial extracts of Fusarium species.

    PubMed

    Bhari, Ranjeeta; Kaur, Bhawanpreet; Singh, Ram S

    2016-01-01

    Lectins are non-immunogenic carbohydrate-recognizing proteins that bind to glycoproteins, glycolipids, or polysaccharides with high affinity and exhibit remarkable ability to agglutinate erythrocytes and other cells. In the present study, ten Fusarium species previously not explored for lectins were screened for the presence of lectin activity. Mycelial extracts of F. fujikuroi, F. beomiformii, F. begoniae, F. nisikadoi, F. anthophilum, F. incarnatum, and F. tabacinum manifested agglutination of rabbit erythrocytes. Neuraminidase treatment of rabbit erythrocytes increased lectin titers of F. nisikadoi and F. tabacinum extracts, whereas the protease treatment resulted in a significant decline in agglutination by most of the lectins. Results of hapten inhibition studies demonstrated unique carbohydrate specificity of Fusarium lectins toward O-acetyl sialic acids. Activity of the majority of Fusarium lectins exhibited binding affinity to d-ribose, l-fucose, d-glucose, l-arabinose, d-mannitol, d-galactosamine hydrochloride, d-galacturonic acid, N-acetyl-d-galactosamine, N-acetyl-neuraminic acid, 2-deoxy-d-ribose, fetuin, asialofetuin, and bovine submaxillary mucin. Melibiose and N-glycolyl neuraminic acid did not inhibit the activity of any of the Fusarium lectins. Mycelial extracts of F. begoniae, F. nisikadoi, F. anthophilum, and F. incarnatum interacted with most of the carbohydrates tested. F. fujikuroi and F. anthophilum extracts displayed strong interaction with starch. The expression of lectin activity as a function of culture age was investigated. Most species displayed lectin activity on the 7th day of cultivation, and it varied with progressing of culture age.

  11. Isolation and characterization of lectins and lectin-alliinase complexes from bulbs of garlic (Allium sativum) and ramsons (Allium ursinum).

    PubMed

    Smeets, K; Van Damme, E J; Van Leuven, F; Peumans, W J

    1997-04-01

    A procedure developed to separate the homodimeric and heterodimeric mannose-binding lectins from bulbs of garlic (Allium sativum L.) and ramsons (Allium ursinum L.) also enabled the isolation of stable lectin-alliinase complexes. Characterization of the individual lectins indicated that, in spite of their different molecular structure, the homomeric and heteromeric lectins resemble each other reasonably well with respect to their agglutination properties and carbohydrate-binding specificity. However, a detailed analysis of the lectin-alliinase complexes from garlic and ramsons bulbs demonstrated that only the heterodimeric lectins are capable of binding to the glycan chains of the alliinase molecules (EC 4.4.1.4). Moreover, it appears that only a subpopulation of the alliinase molecules is involved in the formation of lectin-alliinase complexes and that the complexed alliinase contains more glycan chains than the free enzyme. Finally, some arguments are given that the lectin-alliinase complexes do not occur in vivo but are formed in vitro after homogenization of the tissue.

  12. The Liverwort Contains a Lectin That Is Structurally and Evolutionary Related to the Monocot Mannose-Binding Lectins1

    PubMed Central

    Peumans, Willy J.; Barre, Annick; Bras, Julien; Rougé, Pierre; Proost, Paul; Van Damme, Els J.M.

    2002-01-01

    A mannose (Man)-binding lectin has been isolated and characterized from the thallus of the liverwort Marchantia polymorpha. N-terminal sequencing indicated that the M. polymorpha agglutinin (Marpola) shares sequence similarity with the superfamily of monocot Man-binding lectins. Searches in the databases yielded expressed sequence tags encoding Marpola. Sequence analysis, molecular modeling, and docking experiments revealed striking structural similarities between Marpola and the monocot Man-binding lectins. Activity and specificity studies further indicated that Marpola is a much stronger agglutinin than the Galanthus nivalis agglutinin and exhibits a preference for methylated Man and glucose, which is unprecedented within the family of monocot Man-binding lectins. The discovery of Marpola allows us, for the first time, to corroborate the evolutionary relationship between a lectin from a lower plant and a well-established lectin family from flowering plants. In addition, the identification of Marpola sheds a new light on the molecular evolution of the superfamily of monocot Man-binding lectins. Beside evolutionary considerations, the occurrence of a G. nivalis agglutinin homolog in a lower plant necessitates the rethinking of the physiological role of the whole family of monocot Man-binding lectins. PMID:12114560

  13. Lectin histochemistry and alkaline phosphatase activity in the pia mater vessels of spontaneously hypertensive rats (SHR).

    PubMed

    Szumańska, G; Gadamski, R

    1992-01-01

    Some lectins were used to study the localization of sugar residues on the endothelial cell surface in the pia mater blood vessels of control (WKY) and hypertensive rats (SHR). The lectins tested recognized the following residues: beta-D-galactosyl (Ricinus communis agglutinin 120, RCA-1), alpha-L-fucosyl (Ulex europaeus agglutinin, UEA-1), N-acetylglucosaminyl and sialyl (Wheat germ agglutinin, WGA), N-glycolyl-neuraminic acid (Limax flavus agglutinin, LFA), and N-acetyl-D-galactosaminyl (Helix pomatia agglutinin, HPA). Several differences were revealed in the presence of sugar receptors on the surface of endothelial cells between the control and the hypertensive rats. Our studies showed also differences in the localization of the tested glycoconjugates between pial capillaries, small, medium-size and large pial arteries. The histochemical evaluation of alkaline phosphatase revealed an increased activity of the enzyme in the pial vessels of SHRs as compared with control rats with a similar localization of the enzyme activity. Some differences in the distribution of lectin binding sites and alkaline phosphatase activity could be associated with the different functions of particular segments of the pial vascular network.

  14. Binding of isolated plant lectin by rhizobia during episodes of reduced gravity obtained by parabolic flight

    NASA Technical Reports Server (NTRS)

    Henry, R. L.; Green, P. D.; Wong, P. P.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1990-01-01

    Development of a legume root nodule is a complex process culminating in a plant/bacterial symbiosis possessing the capacity for biological dinitrogen fixation. Formation of root nodules is initiated by the binding and stabilization of rhizobia to plant root hairs, mediated in part by a receptor/ligand recognition system composed of lectins on the plant root surface and lectin-binding sites on the rhizobial cell surface. The dinitrogen fixation activity of these root nodules may be an important feature of enclosed, space-based life support systems, and may provide an ecological method to recycle nitrogen for amino acid production. However, the effects on nodule development of varied gravitational fields, or of root nutrient delivery hardware, remain unknown. We have investigated the effects of microgravity on root nodule formation, with preliminary experiments focused upon the receptor/ligand component. Microgravity, obtained during parabolic flight aboard NASA 930, has no apparent effect on the binding of purified lectin to rhizobia, a result that will facilitate forthcoming experiments using intact root tissues.

  15. Insights into Collagen Uptake by C-type Mannose Receptors from the Crystal Structure of Endo180 Domains 1–4

    PubMed Central

    Paracuellos, Patricia; Briggs, David C.; Carafoli, Federico; Lončar, Tan; Hohenester, Erhard

    2015-01-01

    Summary The C-type mannose receptor and its homolog Endo180 (or uPARAP, for urokinase plasminogen activator receptor-associated protein) mediate the endocytic uptake of collagen by macrophages and fibroblasts. This process is required for normal tissue remodeling, but also facilitates the growth and dissemination of tumors. We have determined the crystal structure at 2.5 Å resolution of the N-terminal region of Endo180, consisting of a ricin-like domain, a fibronectin type II (FN2) domain, and two C-type lectin (CTL) domains. The L-shaped arrangement of these domains creates a shallow trench spanning the FN2 and CTL1 domains, which was shown by mutagenesis to bind triple-helical and denatured collagen. Small-angle X-ray scattering showed that the L-shaped structure is maintained in solution at neutral and acidic pH, irrespective of calcium ion loading. Collagen binding was equally unaffected by acidic pH, suggesting that collagen release in endosomes is not regulated by changes within the Endo180 N-terminal region. PMID:26481812

  16. Closed state-coupled C-type inactivation in BK channels.

    PubMed

    Yan, Jiusheng; Li, Qin; Aldrich, Richard W

    2016-06-21

    Ion channels regulate ion flow by opening and closing their pore gates. K(+) channels commonly possess two pore gates, one at the intracellular end for fast channel activation/deactivation and the other at the selectivity filter for slow C-type inactivation/recovery. The large-conductance calcium-activated potassium (BK) channel lacks a classic intracellular bundle-crossing activation gate and normally show no C-type inactivation. We hypothesized that the BK channel's activation gate may spatially overlap or coexist with the C-type inactivation gate at or near the selectivity filter. We induced C-type inactivation in BK channels and studied the relationship between activation/deactivation and C-type inactivation/recovery. We observed prominent slow C-type inactivation/recovery in BK channels by an extreme low concentration of extracellular K(+) together with a Y294E/K/Q/S or Y279F mutation whose equivalent in Shaker channels (T449E/K/D/Q/S or W434F) caused a greatly accelerated rate of C-type inactivation or constitutive C-inactivation. C-type inactivation in most K(+) channels occurs upon sustained membrane depolarization or channel opening and then recovers during hyperpolarized membrane potentials or channel closure. However, we found that the BK channel C-type inactivation occurred during hyperpolarized membrane potentials or with decreased intracellular calcium ([Ca(2+)]i) and recovered with depolarized membrane potentials or elevated [Ca(2+)]i Constitutively open mutation prevented BK channels from C-type inactivation. We concluded that BK channel C-type inactivation is closed state-dependent and that its extents and rates inversely correlate with channel-open probability. Because C-type inactivation can involve multiple conformational changes at the selectivity filter, we propose that the BK channel's normal closing may represent an early conformational stage of C-type inactivation.

  17. Bridging lectin binding sites by multivalent carbohydrates.

    PubMed

    Wittmann, Valentin; Pieters, Roland J

    2013-05-21

    Carbohydrate-protein interactions are involved in a multitude of biological recognition processes. Since individual protein-carbohydrate interactions are usually weak, multivalency is often required to achieve biologically relevant binding affinities and selectivities. Among the possible mechanisms responsible for binding enhancement by multivalency, the simultaneous attachment of a multivalent ligand to several binding sites of a multivalent receptor (i.e. chelation) has been proven to have a strong impact. This article summarizes recent examples of chelating lectin ligands of different size. Covered lectins include the Shiga-like toxin, where the shortest distance between binding sites is ca. 9 Å, wheat germ agglutinin (WGA) (shortest distance between binding sites 13-14 Å), LecA from Pseudomonas aeruginosa (shortest distance 26 Å), cholera toxin and heat-labile enterotoxin (shortest distance 31 Å), anti-HIV antibody 2G12 (shortest distance 31 Å), concanavalin A (ConA) (shortest distance 72 Å), RCA120 (shortest distance 100 Å), and Erythrina cristagalli (ECL) (shortest distance 100 Å). While chelating binding of the discussed ligands is likely, experimental proof, for example by X-ray crystallography, is limited to only a few cases.

  18. Innate immunity mediated longevity and longevity induced by germ cell removal converge on the C-type lectin domain protein IRG-7

    PubMed Central

    Yunger, Elad; Safra, Modi; Levi-Ferber, Mor; Haviv-Chesner, Anat

    2017-01-01

    In C. elegans, removal of the germline triggers molecular events in the neighboring intestine, which sends an anti-aging signal to the rest of the animal. In this study, we identified an innate immunity related gene, named irg-7, as a novel mediator of longevity in germlineless animals. We consider irg-7 to be an integral downstream component of the germline longevity pathway because its expression increases upon germ cell removal and its depletion interferes with the activation of the longevity-promoting transcription factors DAF-16 and DAF-12 in germlineless animals. Furthermore, irg-7 activation by itself sensitizes the animals' innate immune response and extends the lifespan of animals exposed to live bacteria. This lifespan-extending pathogen resistance relies on the somatic gonad as well as on many genes previously associated with the reproductive longevity pathway. This suggests that these genes are also relevant in animals with an intact gonad, and can affect their resistance to pathogens. Altogether, this study demonstrates the tight association between germline homeostasis and the immune response of animals, and raises the possibility that the reproductive system can act as a signaling center to divert resources towards defending against putative pathogen attacks. PMID:28196094

  19. Molecular characterization of the reniform nematode C-type lectin gene family reveals a likely role in mitigating environmental stresses during plant parasitism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reniform nematode, Rotylenchulus reniformis, is a damaging semi-endoparasitic pathogen of more than 300 plant species. As a sedentary obligate biotroph, R. reniformis must establish a complex feeding site within the root vasculature that functions as a continuous supply of nutrients. It was re...

  20. Extended gene map reveals tripartite motif, C-type lectin, and Ig superfamily type genes within a subregion of the chicken MHC-B affecting infectious disease.

    PubMed

    Shiina, Takashi; Briles, W Elwood; Goto, Ronald M; Hosomichi, Kazuyoshi; Yanagiya, Kazuyo; Shimizu, Sayoko; Inoko, Hidetoshi; Miller, Marcia M

    2007-06-01

    MHC haplotypes have a remarkable influence on whether tumors form following infection of chickens with oncogenic Marek's disease herpesvirus. Although resistance to tumor formation has been mapped to a subregion of the chicken MHC-B region, the gene or genes responsible have not been identified. A full gene map of the subregion has been lacking. We have expanded the MHC-B region gene map beyond the 92-kb core previously reported for another haplotype revealing the presence of 46 genes within 242 kb in the Red Jungle Fowl haplotype. Even though MHC-B is structured differently, many of the newly revealed genes are related to loci typical of the MHC in other species. Other MHC-B loci are homologs of genes found within MHC paralogous regions (regions thought to be derived from ancient duplications of a primordial immune defense complex where genes have undergone differential silencing over evolutionary time) on other chromosomes. Still others are similar to genes that define the NK complex in mammals. Many of the newly mapped genes display allelic variability and fall within the MHC-B subregion previously shown to affect the formation of Marek's disease tumors and hence are candidates for genes conferring resistance.

  1. Extensive amino acid sequence homologies between animal lectins

    SciTech Connect

    Paroutaud, P.; Levi, G.; Teichberg, V.I.; Strosberg, A.D.

    1987-09-01

    The authors have established the amino acid sequence of the ..beta..-D-galactoside binding lectin from the electric eel and the sequences of several peptides from a similar lectin isolated from human placenta. These sequences were compared with the published sequences of peptides derived from the ..beta..-D-galactoside binding lectin from human lung and with sequences deduced from cDNAs assigned to the ..beta..-D-galactoside binding lectins from chicken embryo skin and human hepatomas. Significant homologies were observed. One of the highly conserved regions that contains a tryptophan residue and two glutamic acid resides is probably part of the ..beta..-D-galactoside binding site, which, on the basis of spectroscopic studies of the electric eel lectin, is expected to contain such residues. The similarity of the hydropathy profiles and the predicted secondary structure of the lectins from chicken skin and electric eel, in spite of differences in their amino acid sequences, strongly suggests that these proteins have maintained structural homologies during evolution and together with the other ..beta..-D-galactoside binding lectins were derived form a common ancestor gene.

  2. Cloning and characterization of root-specific barley lectin

    SciTech Connect

    Lerner, D.R.; Raikhel, N.V. )

    1989-09-01

    Cereal lectins are a class of biochemically and antigenically related proteins localized in a tissue-specific manner in embryos and adult plants. To study the specificity of lectin expression, a barley (Hordeum vulgare L.) embryo cDNa library was constructed and a clone (BLc3) for barley lectin was isolated. BLc3 is 972 nucleotides long and includes an open reading frame of 212 amino acids. The deduced amino acid sequence contains a putative signal peptide of 26 amino acid residues followed by a 186 amino acid polypeptide. This polypeptide has 95% sequence identity to the antigenically indistinguishable wheat germ agglutinin isolectin-B (WGA-B) suggesting that BLc3 encodes barley lectin. Further evidence that BLc3 encodes barley lectin was obtained by immunoprecipitation of the in vitro translation products of BLc3 RNA transcripts and barley embryo poly(A{sup +}) RNA. In situ hybridizations with BLc3 showed that barley lectin gene expression is confined to the outermost cell layers of both embryonic and adult root tips. On Northern blots, BLc3 hybridizes to a 1.0 kilobyte mRNA in poly(A{sup +}) RNA from both embryos and root tips. We suggest, on the basis of immunoblot experiments, that barley lectin is synthesized as a glycosylated precursor and processed by removal of a portion of the carboxyl terminus including the single N-linked glycosylation site.

  3. Cloning and Characterization of Root-Specific Barley Lectin 1

    PubMed Central

    Lerner, David R.; Raikhel, Natasha V.

    1989-01-01

    Cereal lectins are a class of biochemically and antigenically related proteins localized in a tissue-specific manner in embryos and adult plants. To study the specificity of lectin expression, a barley (Hordeum vulgare L.) embryo cDNA library was constructed and a clone (BLc3) for barley lectin was isolated. BLc3 is 972 nucleotides long and includes an open reading frame of 212 amino acids. The deduced amino acid sequence contains a putative signal peptide of 26 amino acid residues followed by a 186 amino acid polypeptide. This polypeptide has 95% sequence identity to the antigenically indistinguishable wheat germ agglutinin isolectin-B (WGA-B) suggesting that BLc3 encodes barley lectin. Further evidence that BLc3 encodes barley lectin was obtained by immunoprecipitation of the in vitro translation products of BLc3 RNA transcripts and barley embryo poly(A+) RNA. In situ hybridizations with BLc3 showed that barley lectin gene expression is confined to the outermost cell layers of both embryonic and adult root tips. On Northern blots, BLc3 hybridizes to a 1.0 kilobyte mRNA in poly(A+) RNA from both embryos and root tips. We suggest, on the basis of immunoblot experiments, that barley lectin is synthesized as a glycosylated precursor and processed by removal of a portion of the carboxyl terminus including the single N-linked glycosylation site. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:16666982

  4. Purification, some properties of a D-galactose-binding leaf lectin from Erythrina indica and further characterization of seed lectin.

    PubMed

    Konozy, Emadeldin H E; Mulay, Ranjana; Faca, Vitor; Ward, Richard John; Greene, Lewis Joel; Roque-Barriera, Maria Cristina; Sabharwal, Sushma; Bhide, Shobhana V

    2002-10-01

    Lectin from a leaf of Erythrina indica was isolated by affinity chromatography on Lactamyl-Seralose 4B. Lectin gave a single band in polyacrylamide gel electrophoresis (PAGE). In SDS-gel electrophoresis under reducing and non-reducing conditions Erythrina indica leaf lectin (EiLL) split into two bands with subunit molecular weights of 30 and 33 kDa, whereas 58 kDa was obtained for the intact lectin by gel filtration on Sephadex G-100. EiLL agglutinated all human RBC types, with a slight preference for the O blood group. Lectin was found to be a glycoprotein with a neutral sugar content of 9.5%. The carbohydrate specificity of lectin was directed towards D-galactose and its derivatives with pronounced preference for lactose. EiLL had pH optima at pH 7.0; above and below this pH lectin lost sugar-binding capability rapidly. Lectin showed broad temperature optima from 25 to 50 degrees C; however, at 55 degrees C EiLL lost more than 90% of its activity and at 60 degrees C it was totally inactivated. The pI of EiLL was found to be 7.6. The amino acid analysis of EiLL indicated that the lectin was rich in acidic as well as hydrophobic amino acids and totally lacked cysteine and methionine. The N-terminal amino acids were Val-Glu-Thr-IIe-Ser-Phe-Ser-Phe-Ser-Glu-Phe-Glu-Ala-Gly-Asn-Asp-X-Leu-Thr-Gln-Glu-Gly-Ala-Ala-Leu-. Chemical modification studies of both EiLL and Erythrina indica seed lectin (EiSL) with phenylglyoxal, DEP and DTNB revealed an absence of arginine, histidine and cysteine, respectively, in or near the ligand-binding site of both lectins. Modification of tyrosine with NAI led to partial inactivation of EiLL and EiSL; however, total inactivation was observed upon NBS-modification of two tryptophan residues in EiSL. Despite the apparent importance of these tryptophan residues for lectin activity they did not seem to have a direct role in binding haptenic sugar as D-galactose did not protect lectin from inactivation by NBS.

  5. Lysophosphatidic acid stimulates thrombomodulin lectin-like domain shedding in human endothelial cells

    SciTech Connect

    Wu Hualin; Lin ChiIou; Huang Yuanli; Chen, Pin-Shern; Kuo, Cheng-Hsiang; Chen, Mei-Shing; Wu, G.C.-C.; Shi, G.-Y.; Yang, H.-Y.; Lee Hsinyu

    2008-02-29

    Thrombomodulin (TM) is an anticoagulant glycoprotein highly expressed on endothelial cell surfaces. Increased levels of soluble TM in circulation have been widely accepted as an indicator of endothelial damage or dysfunction. Previous studies indicated that various proinflammatory factors stimulate TM shedding in various cell types such as smooth muscle cells and epithelial cells. Lysophosphatidic acid (LPA) is a bioactive lipid mediator present in biological fluids during endothelial damage or injury. In the present study, we first observed that LPA triggered TM shedding in human umbilical vein endothelial cells (HUVECs). By Cyflow analysis, we showed that the LPA-induced accessibility of antibodies to the endothelial growth factor (EGF)-like domain of TM is independent of matrix metalloproteinases (MMPs), while LPA-induced TM lectin-like domain shedding is MMP-dependent. Furthermore, a stable cell line expressing TM without its lectin-like domain exhibited a higher cell proliferation rate than a stable cell line expressing full-length TM. These results imply that LPA induces TM lectin-like domain shedding, which might contribute to the exposure of its EGF-like domain for EGF receptor (EGFR) binding, thereby stimulating subsequent cell proliferation. Based on our findings, we propose a novel mechanism for the exposure of TM EGF-like domain, which possibly mediates LPA-induced EGFR transactivation.

  6. Epidermal growth factor receptors on PC12 cells: alteration of binding properties by lectins

    SciTech Connect

    Vale, R.D.; Shooter, E.M.

    1983-01-01

    The PC12 cell line displays cell surface receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF). It has been previously shown that the lectin wheat germ agglutinin (WGA) alters the properties of NGF receptors on these cells. We now report that preincubations with either WGA or concanavalin A (Con A) decrease the binding of /sup 125/I-EGF to PC12 cells by greater than 50%. The inhibition of binding occurred at 37 degrees C and 4 degrees C and could be blocked or reversed by the addition of sugars which bind specifically to WGA or Con A. Scatchard analysis revealed that these lectins decreased binding primarily by lowering the affinity of the receptor and to a lesser extent by decreasing receptor number. Succinylation of Con A (sCon A) produced a derivative that was less effective than the native lectin in decreasing EGF binding; however, addition of an antibody against Con A restored the ability of sCon A to decrease binding. Similar to results obtained with /sup 125/I-NGF binding, WGA but not Con A was found to increase, by severalfold, the proportion of /sup 125/I-EGF binding that is resistant to solubilization by Triton X-100 detergent. A potential association of the EGF receptor with cytoskeletal elements is discussed which could account for such results.

  7. Histochemistry of six lectins in the tissues of the flat fish Paralichthys olivaceus.

    PubMed

    Jung, Kyung-Sook; Ahn, Mee-Jung; Lee, Yong-Duk; Go, Gyung-Min; Shin, Tae-Kyun

    2002-12-01

    Lectins are glycoproteins that specifically bind carbohydrate structures and may participate in the biodefense mechanisms of fish. In this study, the binding of three lectins, Dolichos biflorus agglutinin (DBA), soybean agglutinin (SBA), Bandeiraea simplicifolia BS-1 (isolectin B4), Triticum vulgaris (WGA), Arachis hypogaea (PNA) and Ulex europaeus (UEA-I) were studied in the gill, liver, intestine, kidney, heart, and spleen of the flat fish Paralichthys olivaceus. DBA was detected in intestinal mucous cells, as well as in gill epithelial and mucous cells. It was weakly detected in renal tubule epithelial cells and in bile duct epithelial cells. The strong SBA staining was seen in the intestinal club cells, in bile duct epithelial cells and renal tubule epithelial cells. There were intense positive reactions for isolectin B4 in gill epithelial and mucous cells, and the strong isolectin B4 staining was seen in epithelial cells of the bile duct and intestine. The strong WGA staining was seen in the gill mucosal cells, sinusoid, renal tubule epithelial cells and mucosal cells of the intestine. UEA-I was detected in the gill epithelial and mucosal cells, bile duct epithelial cells and renal tubular epithelial cells. These results suggest that the six lectins examined were localized in the covering epithelia of the various organs of the flat fish and they may participate in the biodefense mechanism of the intra body surface in which is exposed to various antigens.

  8. Chelating agents inhibit activity and prevent expression of streptococcal glucan-binding lectins.

    PubMed Central

    Lü-Lü; Singh, J S; Galperin, M Y; Drake, D; Taylor, K G; Doyle, R J

    1992-01-01

    Several of the cariogenic mutans streptococci produce cell wall-associated glucan-binding lectins (GBLs). The lectins bind alpha-1,6-linked glucans and have no affinity for other polysaccharides or anomeric linkages. When citrate or lactate was included in the growth medium, expression of the activities of the GBLs of Streptococcus cricetus and S. sobrinus was prevented. Furthermore, chelating agents, including citrate, lactate, EDTA, and acetylacetone, were able to reversibly inhibit glucan-induced aggregation of GBL+ streptococci. In addition, the chelating agents prevented sucrose-dependent streptococcal adhesion to glass surfaces and dispersed preformed adherent masses of the streptococci. Neither citrate nor other chelating agents modified the activities of glucosyltransferases. Expression of the lectin could only be achieved by the addition of manganous ion to the growth medium. Chloramphenicol and other metabolic inhibitors prevented synthesis of GBL in cells obtained from manganese-deficient medium and shifted to manganous ion-sufficient medium. The GBL may be a manganoprotein, the manganese of which may be perturbed, but not removed, by chelating agents. During synthesis of the GBL, manganous ion may be required in order for the protein to achieve an active conformation. Citrate or other chelating agents may have promise as anticaries agents. Images PMID:1500189

  9. Synthesis of lactosylated glycoclusters and inhibition studies with plant and human lectins.

    PubMed

    Cecioni, Samy; Matthews, Susan E; Blanchard, Helen; Praly, Jean-Pierre; Imberty, Anne; Vidal, Sébastien

    2012-07-15

    Under microwave activation, the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) between an azido-functionalized lactoside and tetra-alkynylated core scaffolds (one porphyrin and three topological conformers of calix[4]arenes) afforded four lactosylated glycoclusters in high yields. The glycoclusters were then evaluated and compared to a monovalent probe as ligands of two lectins: ECA from legume plant Erythrina cristagalli and recombinant human galectin-1. Micromolar inhibition concentrations and IC(50) values were measured by inhibition of hemagglutination (HIA) or enzyme-linked lectin assays (ELLA), respectively for these glycoclusters for binding to ECA. A slight binding preference was identified for the porphyrin and the 1,3-alternate calixarene scaffolds. Similar inhibition studies were performed for galectin-1 by HIA and surface plasmon resonance (SPR) analyses. A strong selectivity was observed for the porphyrin and cone conformer topologies under HIA experimental conditions but these could not be confirmed using SPR analysis. This difference in the inhibitory properties based on two techniques confirmed the need for multiple complementary analyses for in-depth and accurate analysis of the inhibitory properties of multivalent glycoconjugates to multivalent lectins.

  10. Electrochemical lectin based biosensors as a label-free tool in glycomics

    PubMed Central

    Bertók, Tomáš; Katrlík, Jaroslav; Gemeiner, Peter; Tkac, Jan

    2016-01-01

    Glycans and other saccharide moieties attached to proteins and lipids, or present on the surface of a cell, are actively involved in numerous physiological or pathological processes. Their structural flexibility (that is based on the formation of various kinds of linkages between saccharides) is making glycans superb “identity cards”. In fact, glycans can form more “words” or “codes” (i.e., unique sequences) from the same number of “letters” (building blocks) than DNA or proteins. Glycans are physicochemically similar and it is not a trivial task to identify their sequence, or - even more challenging - to link a given glycan to a particular physiological or pathological process. Lectins can recognise differences in glycan compositions even in their bound state and therefore are most useful tools in the task to decipher the “glycocode”. Thus, lectin-based biosensors working in a label-free mode can effectively complement the current weaponry of analytical tools in glycomics. This review gives an introduction into the area of glycomics and then focuses on the design, analytical performance, and practical utility of lectin-based electrochemical label-free biosensors for the detection of isolated glycoproteins or intact cells. PMID:27239071

  11. In vivo biosynthetic studies of the Dolichos biflorus seed lectin

    SciTech Connect

    Quinn, J.M.; Etzler, M.E. )

    1989-12-01

    The in vivo biosynthesis of the Dolichos biflorus seed lectin was studied by pulse-chase labeling experiments using ({sup 35}S)methionine and ({sup 14}C)glucosamine. These studies demonstrate that each of the two mature lectin subunit types are derived by the processing of separate glycosylated precursors. The appearance of the precursor to subunit I before the precursor to subunit II supports the possibility raised by previous studies that both subunit types of this lectin may originate from a single gene product.

  12. Energetics of carbohydrate binding to Momordica charantia (bitter gourd) lectin: an isothermal titration calorimetric study.

    PubMed

    Sultan, Nabil Ali Mohammed; Swamy, Musti J

    2005-05-01

    Physico-chemical and carbohydrate binding studies have been carried out on the Momordica charantia (bitter gourd) seed lectin (MCL). The lectin activity is maximal in the pH range 7.4-11.0, but decreases steeply below pH 7.0. The lectin activity is mostly unaffected in the temperature range 4-50 degrees C, but a sharp decrease is seen between 50 and 60 degrees C, which could be correlated to changes in the structure of the protein as seen by circular dichroism and fluorescence spectroscopy. Isothermal titration calorimetric studies show that the tetrameric MCL binds two sugar molecules and the binding constants (Kb), determined at 288.15 K, for various saccharides were found to vary between 7.3 x 10(3) and 1.52 x 10(4)M(-1). The binding reactions for all the saccharides investigated were essentially enthalpy driven, with the binding enthalpies (DeltaHb) at 288.15 K being in the range of -50.99 and -43.39 kJ mol(-1), whereas the contribution to the binding reaction from the entropy of binding was negative, with values of binding entropy (DeltaSb) ranging between -99.2 and -72.0 J mol(-1)K(-1) at 288.15 K. Changes in heat capacity (DeltaCp) for the binding of disaccharides, lactose and lactulose, were significantly larger in magnitude than those obtained for the monosaccharides, methyl-beta-D-galactopyranoside, and methyl-alpha-D-galactopyranoside, and could be correlated reasonably well with the surface areas of these ligands. Enthalpy-entropy compensation was observed for all the sugars studied, suggesting that water structure plays an important role in the overall binding reaction. CD spectroscopy indicates that carbohydrate binding does not lead to significant changes in the secondary and tertiary structures of MCL, suggesting that the carbohydrate binding sites on this lectin are mostly preformed.

  13. Mannose-binding lectin polymorphisms and rheumatoid arthritis: A short review and meta-analysis.

    PubMed

    Epp Boschmann, Stefanie; Goeldner, Isabela; Tuon, Felipe Francisco; Schiel, Wagner; Aoyama, Fernanda; de Messias-Reason, Iara J

    2016-01-01

    Mannose-binding lectin (MBL) is a pattern recognition receptor of the lectin pathway of complement system. MBL binds to carbohydrates on microorganism's surfaces leading to complement activation, opsonization and phagocytosis. Polymorphisms in the MBL gene (MBL2) are associated with variations on MBL serum levels and with the susceptibility to various infectious and autoimmune diseases. The involvement of the lectin pathway in rheumatoid arthritis (RA) has been demonstrated by several studies and although MBL has been considered to have a dual role in the pathogenesis of the disease, the association between MBL and RA remains inconclusive. In an attempt to clarify this relationship, we developed this short review summarizing accumulated evidences in regard to MBL and RA and a meta-analysis to evaluate the influence of MBL2 polymorphisms on the susceptibility to RA. Among a total of 217 articles that were identified following a predefined search strategy on PubMed, Scopus, Scielo, EMBASE and Cochrane databases, only 13 met all inclusion criteria and were included in the meta-analysis. Data assessment was conducted by three independent investigators and presented in odds ratio (OR) and 95% confidence intervals (CIs) using forest plot charts. Both heterogeneity and publication bias were analyzed. The results of the meta-analysis evidenced that MBL2 low producing OO and XX genotypes do not confer higher risk to RA, even when data were analyzed according to cohort's ethnicity. Further studies are needed in order to clarify the importance of other genes of the lectin pathway in the pathogenesis of RA.

  14. Synthesis and non-covalent functionalization of carbon nanotubes rings: new nanomaterials with lectin affinity

    NASA Astrophysics Data System (ADS)

    Assali, Mohyeddin; Pernía Leal, Manuel; Fernández, Inmaculada; Khiar, Noureddine

    2013-03-01

    We present a mild and practical carbon nanotubes rings (CNRs) synthesis from non-covalent functionalized and water-soluble linear single-wall carbon nanotubes. The hemi-micellar-supramolecular self-organization of lactose-based glycolipid 1 on the ring surface, followed by photo-polymerization of the diacetylenic function triggered by UV light afforded the first water-soluble and biocompatible CNRs. The obtained donut-like nanoconstructs expose a high density of lactose moieties on their surface, and are able to engage specific interactions with Arachis hypogea lectin similar to glycoconjugates on the cell membrane.

  15. The peanut lectin-binding glycoproteins of human epidermal keratinocytes

    SciTech Connect

    Morrison, A.I. ); Keeble, S.; Watt, F.M. )

    1988-08-01

    The peanut lectin (PNA) is known to bind more strongly to keratinocytes that are undergoing terminal differentiation than to proliferating keratinocytes. In order to investigate the significance of this change in cell-surface carbohydrate authors have identified the PNA-binding glycoproteins of cultured human keratinocytes and antibodies against them. Two heavily glycosylated bands of 110 and 250 kDa were resolved by PAGE of ({sup 14}C)galactose- or ({sup 14}C)mannose- and ({sup 14}C)glucosamine-labeled cell extracts eluted with galactose from PNA affinity columns. The higher molecular weight band was also detected on PNA blots of unlabeled cell extracts transferred to nitrocellulose. Both bands were sensitive to pronase digestion, but only the 250-kDa band was digested with trypsin. A rabbit antiserum that we prepared (anti-PNA-gp) immunoprecipitated both bands from cell extracts. In contrast to PNA, anti-PNA-gp bound equally to proliferating and terminally differentiating cells, indicating that some epitope(s) of the PNA-binding glycoproteins is present on the cell surface prior to terminal differentiation. When keratinocytes grown as a monolayer in low-calcium medium were switched to medium containing 2 mM calcium ions in order to induce desmosome formation and stratification, there was a dramatic redistribution of the PNA-binding glycoproteins, which became concentrated at the boundaries between cells. This may suggest a role for the glycoproteins in cell-cell interactions during stratification.

  16. Mannose-binding lectin (MBL) in health and disease.

    PubMed

    Turner, M W

    1998-08-01

    Mannose-binding lectin (MBL) is the most intensively studied human collectin. It is recognized to be a versatile macro-molecule with many of the functional characteristics of IgM, IgG and Clq. In the presence of calcium the protein can bind to a wide spectrum of oligosaccharides through multiple lectin domains. Such binding to the repeating sugar arrays on microbial surfaces may result in direct uptake by one or more collectin receptors on phagocyte surface or may trigger the activation of a pro-serine protease complex (MASP 1 and MASP 2) leading to cleavage of C4 and C2 of the classical complement pathway. Although serum levels of MBL are normally rather low (1500 micrograms/litre) there is increasing evidence that the protein plays an important role in immune defence, particularly during the phase of primary contact with a microorganism. This is suggested by the observed association of an increased incidence of infections in individuals with structural mutations in exon 1 of the MBL gene. A cluster of such mutations in codons 52, 54 and 57 lead to secondary structural abnormalities of the collagenous triple helix and a failure to form biologically functional higher order oligomers. The codon 54 mutation has been identified in several Eurasian populations whereas the codon 57 mutation is characteristic of sub-Saharan populations. One intriguing paradox arising from the MBL genotyping studies is the observation that in many populations there are surprisingly high frequencies of either the codon 54 or codon 57 mutation, suggesting that there may be some biological advantage associated with absence of the protein. Nevertheless, various groups have reported either low serum levels of MBL or an increased frequency of the structural gene mutations in patients with suspected immunodeficiencies, those with frequent unexplained infections and those with systemic lupus erythematosus. There is also evidence that the rate of progression of AIDS in HIV positive men is faster

  17. Photogenerated Lectin Sensors Produced by Thiol-Ene/Yne Photo-Click Chemistry in Aqueous Solution

    PubMed Central

    Norberg, Oscar; Lee, Irene H.; Aastrup, Teodor; Yan, Mingdi; Ramström, Olof

    2012-01-01

    The photoinitiated radical reactions between thiols and alkenes/alkynes (thiol-ene and thiol-yne chemistry) have been applied to a functionalization methodology to produce carbohydrate-presenting surfaces for analyses of biomolecular interactions. Polymer-coated quartz surfaces were functionalized with alkenes or alkynes in a straightforward photochemical procedure utilizing perfluorophenylazide (PFPA) chemistry. The alkene/alkyne surfaces were subsequently allowed to react with carbohydrate thiols in water under UV-irradiation. The reaction can be carried out in a drop of water directly on the surface without photoinitiator and any disulfide side products were easily washed away after the functionalization process. The resulting carbohydrate-presenting surfaces were evaluated in real-time studies of protein-carbohydrate interactions using a quartz crystal microbalance flow-through system with recurring injections of selected lectins with intermediate regeneration steps using low pH buffer. The resulting methodology proved fast, efficient and scalable to high-throughput analysis formats, and the produced surfaces showed significant protein binding with expected selectivities of the lectins used in the study. PMID:22341757

  18. Alterations in lectin binding to the epidermis following treatment with 8-methoxypsoralen plus long-wave ultraviolet radiation

    SciTech Connect

    Danno, K.; Takigawa, M.; Horio, T.

    1984-02-01

    The alterations in lectin fluorescence stainings to the epidermis were examined in guinea pig skin treated with topical application of a 1% 8-methoxypsoralen (8-MOP) solution plus long-wave ultraviolet (UVA) radiation (1.5-3.5 J/cm2) (PUVA). Serial biopsy specimens taken up to 21 days postirradiation were stained with 8 commercially available lectins labeled with either fluorescein isothiocyanate (FITC) or biotin (followed by avidin D-FITC): Bandeiraea simplicifolia agglutinin I (BSA), concanavalin A (Con-A), Dolichos biflorus agglutinin (DBA), peanut agglutinin (PNA), Ricinus communis agglutinin I (RCA), soybean agglutinin (SBA), Ulex europeus agglutinin I (UEA), and wheat germ agglutinin (WGA). In normal guinea pig skin UEA staining was absent. Following PUVA treatment, UEA and DBA stainings became apparent or stronger in intensity after days 7-14 (UEA) and days 4-7 (DBA), respectively, and returned to negative or weak by days 14-21. Stainings with Con-A, SBA, and WGA gave remarkable decreases in intensity after days 2-4 and recovered to the baseline by days 7-14. Intensity of BSA, PNA, and RCA stainings was decreased to a lesser degree than the other lectins. Such changes were not produced by application of 8-MOP, UVA radiation (less than 10 J/cm2), UVB radiation (900-2700 mJ/cm2), or tape stripping. These results suggest that PUVA treatment perturbs the composition or organization of epidermal cell surface glycoconjugates to induce alterations in lectin stainings.

  19. Specific interaction of lectins with liposomes and monolayers bearing neoglycolipids.

    PubMed

    Faivre, Vincent; Costa, Maria de Lourdes; Boullanger, Paul; Baszkin, Adam; Rosilio, Véronique

    2003-10-01

    The interaction of three lectins (wheat germ, Ulex europaeus I, and Lotus tetragonolobus agglutinins: WGA, UEA-I and LTA) with either N-acetyl-D-glucosamine or L-fucose neoglycolipids incorporated into phospholipid monolayers and liposome bilayers was studied at the air/water interface and in bulk solution. The results show that for both systems studied, synthesized neoglycolipids were capable of binding their specific lectin and that, in general, the binding of lectins increased with the increase in the molar fraction of the saccharide derivative incorporated in either the monolayers or bilayers. However, whereas for UEA-I, molecular recognition was enhanced by a strong hydrophobic interaction, for WGA and LTA successful recognition was predominantly related to the distance between neighboring sugar groups. The observed lengthy adsorption times of these lectins onto their specific ligands were attributed to interfacial conformational changes occurring in the proteins upon their adsorption at the interfaces.

  20. Molecular cloning of mannose-binding lectins from Clivia miniata.

    PubMed

    Van Damme, E J; Smeets, K; Van Leuven, F; Peumans, W J

    1994-03-01

    Screening of a cDNA library constructed from total RNA isolated from young developing ovaries of Clivia miniata Regel with the amaryllis lectin cDNA clone resulted in the isolation of four different isolectin clones which clearly differ from each other in their nucleotide sequences and hence also in their deduced amino acid sequences. Apparently the lectin is translated from an mRNA of ca. 800 nucleotides encoding a precursor polypeptide of 163 amino acids. Northern blot analysis of total RNA isolated from different tissues of Clivia miniata has shown that the lectin is expressed in most plant tissues with very high lectin mRNA concentrations in the ovary and the seed endosperm.

  1. Effect of plant lectins on Ustilago maydis in vitro.

    PubMed

    Santiago, A P; Saavedra, E; Pérez Campos, E; Córdoba, F

    2000-12-01

    Ustilago maydis is an edible parasitic basidiomycete, which specifically infects corn (Zea mays) and teocintle (Z. diploperennis). To characterise the interaction between the basidiomycete and its host organism, we tested the effect of plant lectins with well-known sugar specificity on the growth and germination of U. maydis spores. Lectins specific for N-acetyl-D-galactosamine, such as those from Dolichos biflorus and Phaseolus lunatus, and the wheatgerm agglutinin specific for N-acetyl-D-glucosamine inhibited spore germination, but were ineffective in modifying U. maydis cell growth. The galactose-specific lectin from the corn coleoptyle inhibited both germination and cell growth, while the lectin concanavalin A (mannose/glucose specific) activated spore germination and growth. Our results suggest that specific saccharide-containing receptors participate in regulating the growth and maturation of U. maydis spores.

  2. An alternate high yielding purification method for Clitoria ternatea lectin.

    PubMed

    Naeem, Aabgeena; Ahmad, Ejaz; Khan, Rizwan Hasan

    2007-10-01

    In our previous publication we had reported the purification and characterization of Clitoria ternatea agglutinin from its seeds on fetuin CL agarose affinity column, designated CTA [A. Naeem, S. Haque, R.H. Khan. Protein J., 2007]. Since CTA binds beta-d-galactosides, this lectin can be used as valuable tool for glycobiology studies in biomedical and cancer research. So an attempt was made for a high yielding alternative purification method employing the use of asialofetuin CL agarose column for the above-mentioned lectin, designated CTL. The fetuin affinity purified agglutinin was found similar to asialofetuin affinity purified lectin in SDS pattern, HPLC and N-terminal sequence. The content of lectin was found to be 30mg/30g dry weight of pulse. The yield was 2.8% as compared to 0.3% obtained on fetuin column. The number of tryptophan and tyrosine estimated was four and six per subunit.

  3. Development and Distribution of Dolichos biflorus Lectin as Measured by Radioimmunoassay 1

    PubMed Central

    Talbot, Craig F.; Etzler, Marilynn E.

    1978-01-01

    A radioimmunoassay, capable of detecting the Dolichos biflorus lectin at concentrations as low as 400 ng/ml, was developed and used to follow the distribution of this lectin in the plant during its life cycle. The lectin was first detected in the seeds of the plant 27 days after flowering and rapidly attained the high level of lectin present in the mature seed. The lectin content of the plant is highest in the seeds and cotyledons and decreases as the storage materials of the cotyledons decrease. A low but measurable amount of material that reacts with antibodies to the seed lectin was detected in the leaves, stems, and pods of the plant. This material gives a precipitin band of only partial identity to the seed lectin when tested in immunodiffusion against antiserum to the seed lectin. No lectin was detected by the radioimmunoassay in the roots of the plant at any stage of development. ImagesFIG. 4 PMID:16660399

  4. Interactions between Rhizobia and Lectins of Lentil, Pea, Broad Bean, and Jackbean 1

    PubMed Central

    Wong, Peter P.

    1980-01-01

    A quantitative method was developed to measure the binding of fluorescent-labeled lentil (Lens esculenta Moench), pea (Pisum sativum L.), broad bean (Vicia faba L.), and jackbean (Canavalia ensiformis L., DC.) lectins to various Rhizobium strains. Lentil lectin bound to three of the five Rhizobium leguminosarum strains tested. The number of lentil lectin molecules bound per R. leguminosarum 128C53 cell was 2.1 × 104. Lentil lectin also bound to R. japonicum 61A133. Pea and broad bean lectins bound to only two of the five strains of R. leguminosarum, whereas concanavalin A (jackbean lectin) bound to all strains of R. leguminosarum, R. phaseoli, R. japonicum, and R. sp. tested. Since these four lectins have similar sugarbinding properties but different physical properties, the variation in bindings of these lectins to various Rhizobium strains indicates that binding of lectin to Rhizobium is determined not only by the sugar specificity of the lectin but also by its physical characteristics. The binding of lentil lectin and concanavalin A to R. leguminosarum 128C53 could be inhibited by glucose, fructose, and mannose. However, even at 150 millimolar glucose, about 15% of the binding remained. The binding of lentil lectin to R. japonicum 61A133 could be inhibited by glucose but not by galactose. It is concluded that the binding site of lentil lectin to R. japonicum is different from the binding site of soybean lectin to R. japonicum. PMID:16661328

  5. Over-expression of Multi-heme C-type Cytochromes

    SciTech Connect

    Shi, Liang; Lin, Chiann Tso; Markillie, Lye Meng; Squier, Thomas C.; Hooker, Brian S.

    2005-02-01

    ABSTRACT-Because they contain covalently attached hemes, c-type cytochromes, especially those with multi-heme, are difficult to over-express. The gram negative bacterium Shewanella oneidensis MR-1 has been successfully used for over-expression of multi-heme c-type cytochromes...

  6. A lectin with some unique characteristics from the samta tomato.

    PubMed

    Wang, H; Ng, T B

    2006-04-01

    A lectin, with a molecular mass of 79 kDa, and with specificity toward rhamnose and O-nitrophenyl-beta-D-galactopyranoside, was isolated from samta tomato fruits. The procedure entailed ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on CM-cellulose and gel filtration by fast protein liquid chromatography on Superdex 75. The lectin was unadsorbed on DEAE-cellulose but adsorbed on Affi-gel blue gel and CM-cellulose. The lectin was stable up to 70 degrees C. The lectin activity was potentiated by NaOH solutions (25-100 mM), but was reduced by 50 and 100 mM HCl solutions. The activity of the lectin was reduced in the presence of CaCl(2), MgCl(2) and ZnCl(2), but was potentiated by 5 and 10 mM AlCl(3) solutions. The lectin stimulated the mitogenic response in mouse splenocytes and inhibited human immunodeficiency virus-1 reverse transcriptase with an IC(50) of 6.2 microM.

  7. Structures and binding specificity of galactose- and mannose-binding lectins from champedak: differences from jackfruit lectins.

    PubMed

    Gabrielsen, Mads; Abdul-Rahman, Puteri Shafinaz; Othman, Shatrah; Hashim, Onn H; Cogdell, Richard J

    2014-06-01

    Galactose-binding and mannose-binding lectins from the champedak fruit, which is native to South-east Asia, exhibit useful potential clinical applications. The specificity of the two lectins for their respective ligands allows the detection of potential cancer biomarkers and monitoring of the glycosylated state of proteins in human serum and/or urine. To fully understand and expand the use of these natural proteins, their complete sequences and crystal structures are presented here, together with details of sugar binding.

  8. Utilization of lectin-histochemistry in forensic neuropathology: lectin staining provides useful information for postmortem diagnosis in forensic neuropathology.

    PubMed

    Nishi, Katsuji; Tanegashima, Akio; Yamamoto, Yoshio; Ushiyama, Ikuko; Ikemoto, Keiko; Yamasaki, Shigeru; Nishimura, Akiyoshi; Rand, Steven; Brinkmann, Bernd

    2003-09-01

    We have investigated the deposition of glycoconjugates in human brain tissue with or without brain disorders. In this review we describe the application of lectin-histochemistry techniques to forensic neuropathology. Lectin staining is able to reveal several kinds of carbohydrate-related depositions in addition to the conventional degenerative changes including senile plaques, neurofibrillary tangles and corpora amylacea. The senile plaques and neurofibrillary tangles were clearly stained by Con A, PSA and GSI lectins, the corpora amylacea which is relevant to repeated brain hypoxia and mitochondrial damage was also easily detected by these and many other kinds of lectins. Amorphous spaces were detected around blood vessels and independently from blood vessels by lectin staining in the white matter from patients with brain disorders or severe edema. The white matter lesions were not considered relevant for forensic pathology, until a large group of cerebral white matter lesions were detected in the elderly with increasing frequency by modern neuro-imaging methods. The spherical deposits were newly detected by lectin staining in the molecular layer of the dentate gyrus of the hippocampal formation chiefly from patients with schizophrenia or cognitive dysfunctions.

  9. Enhancing T-DNA Transfer Efficiency in Barley (Hordeum vulgare L.) Cells Using Extracellular Cellulose and Lectin.

    PubMed

    Gürel, Filiz; Uçarlı, Cüneyt; Tufan, Feyza; Kalaskar, Deepak M

    2015-06-01

    A major limitation of transforming barley tissues by Agrobacterium tumefaciens is the low frequency of T-DNA transfer due to recalcitrance of barley as a host. The effect of extracellular cellulose and lectin on Agrobacterium transformation efficiency was investigated in this study. Barley callus cultures were transformed with the AGL1 strain containing the vector pBI121 in the presence of 10 mg mL(-1) cellulose or 0.001, 0.05 and 0.1 mg mL(-1) lectin. Addition of cellulose significantly (P ≤ 0.05) increased the number of GUS spots by 50 % compared to standard conditions in the presence of only 200 μM acetosyringone (AS). Frequency of G418-resistant aggregates on the surfaces of callus cultures was 29 and 71.5 %, following AS and AS + cellulose treatments, respectively, after 4 weeks of selection. Presence of 0.05 or 0.1 mg mL(-1) lectin also increased the number of GUS spots and frequency of G418-resistant cells in the selection period, but the increase in blue spots was not significant. We examined the effect of lectin and cellulose on bacterial attachment to callus tissues. Both cellulose and lectin were found to have a significant positive effect on the numbers of bacteria attached to barley callus. Epifluorescence microscopy revealed that Agrobacterium cells had accumulated in the scaffolds of irregular fibrous cellulose with a mean particle size of 200 μm. Expression of nptII in transformed callus lines confirmed the stable transformation of the gene. Our study showed for the first time the binding of Agrobacterium cells to fibrous cellulose and also demonstrated how polysaccharides and glycoproteins can be used to improve T-DNA transfer in monocotyledon transformation procedures.

  10. Secondary Cell Wall Polymers of Enterococcus faecalis Are Critical for Resistance to Complement Activation via Mannose-binding Lectin*

    PubMed Central

    Geiss-Liebisch, Stefan; Rooijakkers, Suzan H. M.; Beczala, Agnieszka; Sanchez-Carballo, Patricia; Kruszynska, Karolina; Repp, Christian; Sakinc, Tuerkan; Vinogradov, Evgeny; Holst, Otto; Huebner, Johannes; Theilacker, Christian

    2012-01-01

    The complement system is part of our first line of defense against invading pathogens. The strategies used by Enterococcus faecalis to evade recognition by human complement are incompletely understood. In this study, we identified an insertional mutant of the wall teichoic acid (WTA) synthesis gene tagB in E. faecalis V583 that exhibited an increased susceptibility to complement-mediated killing by neutrophils. Further analysis revealed that increased killing of the mutant was due to a higher rate of phagocytosis by neutrophils, which correlated with higher C3b deposition on the bacterial surface. Our studies indicated that complement activation via the lectin pathway was much stronger on the tagB mutant compared with wild type. In concordance, we found an increased binding of the key lectin pathway components mannose-binding lectin and mannose-binding lectin-associated serine protease-2 (MASP-2) on the mutant. To understand the mechanism of lectin pathway inhibition by E. faecalis, we purified and characterized cell wall carbohydrates of E. faecalis wild type and V583ΔtagB. NMR analysis revealed that the mutant strain lacked two WTAs with a repeating unit of →6)[α-l-Rhap-(1→3)]β-d-GalpNAc-(1→5)-Rbo-1-P and →6) β-d-Glcp-(1→3) [α-d-Glcp-(1→4)]-β-d-GalpNAc-(1→5)-Rbo-1-P→, respectively (Rbo, ribitol). In addition, compositional changes in the enterococcal rhamnopolysaccharide were noticed. Our study indicates that in E. faecalis, modification of peptidoglycan by secondary cell wall polymers is critical to evade recognition by the complement system. PMID:22908219

  11. Lectin Complement Protein Collectin 11 (CL-K1) and Susceptibility to Urinary Schistosomiasis

    PubMed Central

    Antony, Justin S.; Ojurongbe, Olusola; Kremsner, Peter G.; Velavan, Thirumalaisamy P.

    2015-01-01

    Background Urinary Schistosomiasis is a neglected tropical disease endemic in many sub Saharan -African countries. Collectin Kidney 1 (CL-K1, encoded by COLEC11 on chromosome 2p25.3), a member of the vertebrate C-type lectin super family, has recently been identified as pattern-recognition molecule (PRR) of the lectin complement pathway. CL-K1 is preferentially expressed in the kidneys, but also in other organs and it is considered to play a role in host defense to some infectious agents. Schistosome teguments are fucosylated and CL-K1 has, through its collagen-like domain, a high binding affinity to fucose. Methodology/Principal Findings We utilized a Nigerian study group consisting of 167 Schistosoma haematobium infected individuals and 186 matched healthy subjects, and investigated the contribution of CL-K1 deficiency and of COLEC11 polymorphisms to infection phenotype. Higher CL-K1 serum levels were associated with decreased risk of schistosome infection (Pcorr = 0.0004). CL-K1 serum levels were differentially distributed between the COLEC11 genotypes and haplotypes observed. The non-synonymous variant p.R216H was associated with the occurrence of schistosomiasis (OR = 0.44, 95%CI = 0.22–0.72, Pcorr = 0.0004). The reconstructed COLEC11*TCCA haplotypes were associated with higher CL-K1 serum levels (P = 0.002) and with decreased schistosomiasis (OR = 0.38, 95%CI = 0.23–0.63, Pcorr = 0.0001). Conclusions In agreement with findings from our earlier published study, our findings support the observation that CL-K1 and their functional variants may be host factors associated with protection in schistosomiasis and may be a useful marker for further investigations. PMID:25807310

  12. Preferential lectin binding of cancer cells upon sialic acid treatment under nutrient deprivation.

    PubMed

    Badr, Haitham A; Elsayed, Abdelaleim I; Ahmed, Hafiz; Dwek, Miriam V; Li, Chen-Zhong; Djansugurova, Leyla B

    2013-10-01

    The terminal monosaccharide of glycoconjugates on a eukaryotic cell surface is typically a sialic acid (Neu5Ac). Increased sialylation usually indicates progression and poor prognosis of most carcinomas. Here, we utilize two human mammary epithelial cell lines, HB4A (breast normal cells) and T47D (breast cancer cells), as a model system to demonstrate differential surface glycans when treated with sialic acid under nutrient deprivation. Under a starved condition, sialic acid treatment of both cells resulted in increased activities of α2→3/6 sialyltransferases as demonstrated by solid phase assay using lectin binding. However, a very strong Maackia amurensis agglutinin I (MAL-I) staining on the membrane of sialic acid-treated T47D cells was observed, indicating an increase of Neu5Acα2→3Gal on the cell surface. To our knowledge, this is a first report showing the utility of lectins, particularly MAL-I, as a means to discriminate between normal and cancer cells after sialic acid treatment under nutrient deprivation. This method is sensitive and allows selective detection of glycan sialylation on a cancer cell surface.

  13. The cell recognition model in chlorolichens involving a fungal lectin binding to an algal ligand can be extended to cyanolichens.

    PubMed

    Vivas, M; Sacristán, M; Legaz, M E; Vicente, C

    2010-07-01

    Leptogium corniculatum, a cyanolichen containing Nostoc as photobiont, produces and secretes arginase to culture medium containing arginine. This secreted arginase was pre-purified by affinity chromatography on beads of activated agarose to which a polygalactosylated urease, purified from Evernia prunastri, was attached. Arginase was eluted from the beads with 50 mm alpha-d-galactose. The eluted arginase binds preferentially to the cell surface of Nostoc isolated from this lichen thallus, although it is also able to bind, to some extent, to the cell surface of the chlorobiont isolated from E. prunastri. Previous studies in chlorolichens have shown that a fungal lectin that develops subsidiary arginase activity can be a factor in recognition of compatible algal cells through binding to a polygalactosylated urease, which acts as a lectin ligand in the algal cell wall. Our experiments demonstrate that this model can now be extended to cyanolichens.

  14. Lectin-like molecules in transcriptome of Littorina littorea hemocytes.

    PubMed

    Gorbushin, Alexander M; Borisova, Elena A

    2015-01-01

    The common periwinkle Littorina littorea was introduced in the list of models for comparative immunobiology as a representative of phylogenetically important taxon Caenogastropoda. Using Illumina sequencing technology, we de novo assembled the transcriptome of Littorina littorea hemocytes from 182 million mRNA-Seq pair-end 100 bp reads into a total of 15,526 contigs clustered in 4472 unigenes. The transcriptome profile was analyzed for presence of carbohydrate-binding molecules in a variety of architectural contexts. Hemocytes' repertoire of lectin-like proteins bearing conserved carbohydrate-recognition domains (CRDs) is highly diversified, including 11 of 15 lectin families earlier described in animals, as well as the novel members of lectin family found for the first time in mollusc species. The new molluscan lineage-specific domain combinations were confirmed by cloning and sequencing, including the fuco-lectin related molecules (FLReMs) composed of N-terminal region with no sequence homology to any known protein, a middle Fucolectin Tachylectin-4 Pentaxrin (FTP) domain, and a C-terminal epidermal growth factor (EGF) repeat region. The repertoire of lectin-like molecules is discussed in terms of their potential participation in the receptor phase of immune response. In total, immune-associated functions may be attributed to 70 transcripts belonging to 6 lectin families. These lectin-like genes show low overlap between species of invertebrates, suggesting relatively rapid evolution of immune-associated genes in the group. The repertoire provides valuable candidates for further characterization of the gene functions in mollusc immunity.

  15. New amphiphilic glycopolymers by click functionalization of random copolymers – application to the colloidal stabilisation of polymer nanoparticles and their interaction with concanavalin A lectin

    PubMed Central

    Otman, Otman; Boullanger, Paul; Drockenmuller, Eric

    2010-01-01

    Summary Glycopolymers with mannose units were readily prepared by click chemistry of an azido mannopyranoside derivative and a poly(propargyl acrylate-co-N-vinyl pyrrolidone). These glycopolymers were used as polymer surfactants, in order to obtain glycosylated polycaprolactone nanoparticles. Optimum stabilization for long time storage was achieved by using a mixture of glycopolymers and the non-ionic triblock copolymer Pluronic® F-68. The mannose moieties are accessible at the surface of nanoparticles and available for molecular recognition by concanavalin A lectin. Interaction of mannose units with the lectin were evaluated by measuring the changes in nanoparticles size by dynamic light scattering in dilute media. PMID:20625527

  16. Cytochemical analysis of alkaline phosphatase and esterase activities and of lectin-binding and anionic sites in rat and mouse Peyer's patch M cells.

    PubMed

    Owen, R L; Bhalla, D K

    1983-10-01

    M cells in Peyer's patch follicle epithelium endocytose and transport luminal materials to intraepithelial lymphocytes. We examined (1) enzymatic characteristics of the epithelium covering mouse and rat Peyer's patches by using cytochemical techniques, (2) distribution of lectin-binding sites by peroxidase-labeled lectins, and (3) anionic site distribution by using cationized ferritin to develop a profile of M cell surface properties. Alkaline phosphatase activity resulted in deposits of dense reaction product over follicle surfaces but was markedly reduced over M cells, unlike esterase which formed equivalent or greater product over M cells. Concanavalin A, ricinus communis agglutinin, wheat germ agglutinin and peanut agglutinin reacted equally with M cells and with surrounding enterocytes over follicle surfaces. Cationized ferritin distributed in a random fashion along microvillus membranes of both M cells and enterocytes, indicating equivalent anionic site distribution. Staining for alkaline phosphatase activity provides a new approach for distinguishing M cells from enterocytes at the light microscopic level. Identical binding of lectins indicates that M cells and enterocytes share common glycoconjugates even though molecular groupings may differ. Lectin binding and anionic charge similarities of M cells and enterocytes may facilitate antigen sampling by M cells of particles and compounds that adhere to intestinal surfaces in non-Peyer's patch areas.

  17. Photo- and biophysical studies of lectin-conjugated fluorescent nanoparticles: reduced sensitivity in high density assays.

    PubMed

    Wang, Yaqi; Gildersleeve, Jeffrey C; Basu, Amit; Zimmt, Matthew B

    2010-11-18

    Lectin-conjugated, fluorescent silica nanoparticles (fNP) have been developed for carbohydrate-based histopathology evaluations of epithelial tissue biopsies. The fNP platform was selected for its enhanced emissive brightness compared to direct dye labeling. Carbohydrate microarray studies were performed to compare the carbohydrate selectivity of the mannose-recognizing lectin Concanavalin A (ConA) before and after conjugation to fluorescent silica nanoparticles (ConA-fNP). These studies revealed surprisingly low emission intensities upon staining with ConA-fNP compared to those with biotin-ConA/Cy3-streptavidin staining. A series of photophysical and biophysical characterizations of the fNP and ConA-fNP conjugates were performed to probe the low sensitivity from fNP in the microarray assays. Up to 1200 fluorescein (FL) and 80 tetramethylrhodamine (TR) dye molecules were incorporated into 46 nm diameter fNP, yielding emissive brightness values 400 and 35 times larger than the individual dye molecules, respectively. ConA lectin conjugated to carboxylic acid surface-modified nanoparticles covers 15-30% of the fNP surface. The CD spectra and mannose substrate selectivity of ConA conjugated to the fNP differed slightly compared to that of soluble ConA. Although, the high emissive brightness of fNP enhances detection sensitivity for samples with low analyte densities, large fNP diameters limit fNP recruitment and binding to samples with high analyte densities. The high analyte density and nearly two-dimensional target format of carbohydrate microarrays make probe size a critical parameter. In this application, fNP labels afford minimal sensitivity advantage compared to direct dye labeling.

  18. Affinity Separation of Lectins Using Porous Membranes Immobilized with Glycopolymer Brushes Containing Mannose or N-Acetyl-d-Glucosamine

    PubMed Central

    Ogata, Yutaro; Seto, Hirokazu; Murakami, Tatsuya; Hoshino, Yu; Miura, Yoshiko

    2013-01-01

    Porous membranes with glycopolymer brushes were prepared as biomaterials for affinity separation. Glycopolymer brushes contained acrylic acid and D-mannose or N-acetyl-D-glucosamine, and were formed on substrates by surface-initiated atom transfer radical polymerization. The presence of glycopolymer brush was confirmed by X-ray photoelectron spectroscopy, contact angle, and ellipsometry measurements. The interaction between lectin and the glycopolymer immobilized on glass slides was confirmed using fluorescent-labeled proteins. Glycopolymer-immobilized surfaces exhibited specific adsorption of the corresponding lectin, compared with bovine serum albumin. Lectins were continuously rejected by the glycopolymer-immobilized membranes. When the protein solution was permeated through the glycopolymer-immobilized membrane, bovine serum albumin was not adsorbed on the membrane surface. In contrast, concanavalin A and wheat germ agglutinin were rejected by membranes incorporating D-mannose or N-acetyl-D-glucosamine, respectively. The amounts of adsorbed concanavalin A and wheat germ agglutinin was increased five- and two-fold that of adsorbed bovine serum albumin, respectively. PMID:24956944

  19. Structure and Specificity of a Binary Tandem Domain F-Lectin from Striped Bass (Morone saxatilis)

    SciTech Connect

    Bianchet, M.; Odom, E; Vasta, J; Amzel, M

    2010-01-01

    The plasma of the striped bass Morone saxatilis contains a fucose-specific lectin (MsaFBP32) that consists of two F-type carbohydrate recognition domains (CRDs) in tandem. The crystal structure of the complex of MsaFBP32 with l-fucose reported here shows a cylindrical 81-A-long and 60-A-wide trimer divided into two globular halves: one containing N-terminal CRDs (N-CRDs) and the other containing C-terminal CRDs (C-CRDs). The resulting binding surfaces at the opposite ends of the cylindrical trimer have the potential to cross-link cell surface or humoral carbohydrate ligands. The N-CRDs and C-CRDs of MsaFBP32 exhibit significant structural differences, suggesting that they recognize different glycans. Analysis of the carbohydrate binding sites provides the structural basis for the observed specificity of MsaFBP32 for simple carbohydrates and suggests that the N-CRD recognizes more complex fucosylated oligosaccharides and with a relatively higher avidity than the C-CRD. Modeling of MsaFBP32 complexed with fucosylated glycans that are widely distributed in prokaryotes and eukaryotes rationalizes the observation that binary tandem CRD F-type lectins function as opsonins by cross-linking 'non-self' carbohydrate ligands and 'self' carbohydrate ligands, such as sugar structures displayed by microbial pathogens and glycans on the surface of phagocytic cells from the host.

  20. Structure predictions of two Bauhinia variegata lectins reveal patterns of C-terminal properties in single chain legume lectins.

    PubMed

    Moreira, Gustavo M S G; Conceição, Fabricio R; McBride, Alan J A; Pinto, Luciano da S

    2013-01-01

    Bauhinia variegata lectins (BVL-I and BVL-II) are single chain lectins isolated from the plant Bauhinia variegata. Single chain lectins undergo post-translational processing on its N-terminal and C-terminal regions, which determines their physiological targeting, carbohydrate binding activity and pattern of quaternary association. These two lectins are isoforms, BVL-I being highly glycosylated, and thus far, it has not been possible to determine their structures. The present study used prediction and validation algorithms to elucidate the likely structures of BVL-I and -II. The program Bhageerath-H was chosen from among three different structure prediction programs due to its better overall reliability. In order to predict the C-terminal region cleavage sites, other lectins known to have this modification were analysed and three rules were created: (1) the first amino acid of the excised peptide is small or hydrophobic; (2) the cleavage occurs after an acid, polar, or hydrophobic residue, but not after a basic one; and (3) the cleavage spot is located 5-8 residues after a conserved Leu amino acid. These rules predicted that BVL-I and -II would have fifteen C-terminal residues cleaved, and this was confirmed experimentally by Edman degradation sequencing of BVL-I. Furthermore, the C-terminal analyses predicted that only BVL-II underwent α-helical folding in this region, similar to that seen in SBA and DBL. Conversely, BVL-I and -II contained four conserved regions of a GS-I association, providing evidence of a previously undescribed X4+unusual oligomerisation between the truncated BVL-I and the intact BVL-II. This is the first report on the structural analysis of lectins from Bauhinia spp. and therefore is important for the characterisation C-terminal cleavage and patterns of quaternary association of single chain lectins.

  1. Structure Predictions of Two Bauhinia variegata Lectins Reveal Patterns of C-Terminal Properties in Single Chain Legume Lectins

    PubMed Central

    Moreira, Gustavo M. S. G.; Conceição, Fabricio R.; McBride, Alan J. A.; Pinto, Luciano da S.

    2013-01-01

    Bauhinia variegata lectins (BVL-I and BVL-II) are single chain lectins isolated from the plant Bauhinia variegata. Single chain lectins undergo post-translational processing on its N-terminal and C-terminal regions, which determines their physiological targeting, carbohydrate binding activity and pattern of quaternary association. These two lectins are isoforms, BVL-I being highly glycosylated, and thus far, it has not been possible to determine their structures. The present study used prediction and validation algorithms to elucidate the likely structures of BVL-I and -II. The program Bhageerath-H was chosen from among three different structure prediction programs due to its better overall reliability. In order to predict the C-terminal region cleavage sites, other lectins known to have this modification were analysed and three rules were created: (1) the first amino acid of the excised peptide is small or hydrophobic; (2) the cleavage occurs after an acid, polar, or hydrophobic residue, but not after a basic one; and (3) the cleavage spot is located 5-8 residues after a conserved Leu amino acid. These rules predicted that BVL-I and –II would have fifteen C-terminal residues cleaved, and this was confirmed experimentally by Edman degradation sequencing of BVL-I. Furthermore, the C-terminal analyses predicted that only BVL-II underwent α-helical folding in this region, similar to that seen in SBA and DBL. Conversely, BVL-I and -II contained four conserved regions of a GS-I association, providing evidence of a previously undescribed X4+unusual oligomerisation between the truncated BVL-I and the intact BVL-II. This is the first report on the structural analysis of lectins from Bauhinia spp. and therefore is important for the characterisation C-terminal cleavage and patterns of quaternary association of single chain lectins. PMID:24260572

  2. Internal Materials and structural Investigations of C-type Asteroid using carry-on Impactor by Hayabusa-2

    NASA Astrophysics Data System (ADS)

    Okamoto, Chisato; Takagi, Yasuhiko; Yano, Hajime; Saiki, Takanao; Tsuda, Yuichi; Yoshikawa, Makoto

    Recent explorations carried out by spacecraft provided important information regarding the physical properties of asteroids, particularly their bulk density and surface morphology. For example, Hayabusa spacecraft launched in 2003 investigated 25143 Itokawa, an S-type asteroid, after it arrived at 25143 Itokawa in September, 2005. Hayabusa has made a large amount of scientific discoveries and technological achievements during its stay, and left Itokawa in December, 2005 in order to deliver us the surface material. Observations by the Hayabusa spacecraft revealed that 25143 Itokawa has a rubble-pile structure owing to the re-accumulation of disrupted impact fragments. Itokawa has a high porosity (˜40%), probably because of the macro-porosity among the disrupted fragments. Based on such previous observations, it is proposed that the internal structures of asteroids have diversity in bulk densities and porosities. However, we have no direct observational data for the internal structure and materials. It is possible that the surface materials of small bodies seriously damaged by cosmic ray exposure. Thus, we should investigate the chemical and physical properties of the internal material. Also, we need to investigate the internal structure in order to understand the formation history. Now we are planning the study of the next asteroid exploration mission in 2014. From the point of the scientific objective, 1999 JU3, a C-type asteroid, was chosen as the target; C-type asteroids are considered to have more primitive material such as organic matters in comparison to Itokawa, an S-type asteroid. The spacecraft called as Hayabusa-2 basically follows the design of Hayabusa spacecraft. But, we will develop some new equipment to investigate the C-type asteroid, especially a carry-on impactor for the internal materials and structural investigations. The impactor will be shoot on the asteroid at ˜2km/s in order to expose the internal materials via crater formation and induce

  3. Prevalence of the F-type lectin domain.

    PubMed

    Bishnoi, Ritika; Khatri, Indu; Subramanian, Srikrishna; Ramya, T N C

    2015-08-01

    F-type lectins are fucolectins with characteristic fucose and calcium-binding sequence motifs and a unique lectin fold (the "F-type" fold). F-type lectins are phylogenetically widespread with selective distribution. Several eukaryotic F-type lectins have been biochemically and structurally characterized, and the F-type lectin domain (FLD) has also been studied in the bacterial proteins, Streptococcus mitis lectinolysin and Streptococcus pneumoniae SP2159. However, there is little knowledge about the extent of occurrence of FLDs and their domain organization, especially, in bacteria. We have now mined the extensive genomic sequence information available in the public databases with sensitive sequence search techniques in order to exhaustively survey prokaryotic and eukaryotic FLDs. We report 437 FLD sequence clusters (clustered at 80% sequence identity) from eukaryotic, eubacterial and viral proteins. Domain architectures are diverse but mostly conserved in closely related organisms, and domain organizations of bacterial FLD-containing proteins are very different from their eukaryotic counterparts, suggesting unique specialization of FLDs to suit different requirements. Several atypical phylogenetic associations hint at lateral transfer. Among eukaryotes, we observe an expansion of FLDs in terms of occurrence and domain organization diversity in the taxa Mollusca, Hemichordata and Branchiostomi, perhaps coinciding with greater emphasis on innate immune strategies in these organisms. The naturally occurring FLDs with diverse domain organizations that we have identified here will be useful for future studies aimed at creating designer molecular platforms for directing desired biological activities to fucosylated glycoconjugates in target niches.

  4. Lectin histochemistry of palatine glands in the developing rat.

    PubMed

    Hakami, Zaki; Kitaura, Hideki; Honma, Shiho; Wakisaka, Satoshi; Takano-Yamamoto, Teruko

    2014-05-01

    This study examined the binding pattern of lectins, soybean agglutinin (SBA), Dolichos biflorus agglutinin (DBA), Vicia villosa agglutinin (VVA), Ulex europaeus agglutinin-I (UEA-I), peanut agglutinin (PNA), wheat germ agglutinin (WGA), and succinylated WGA (sucWGA) in the developing rat palatine glands. In adult rats, heterogeneous lectin binding patterns were revealed between the anterior and posterior portions of palatine glands, as DBA, VVA, and WGA were bound more intensely and broadly in the posterior portion. SBA, PNA, and sucWGA showed far less reactivity in the anterior than in the posterior portion. At embryonic day 18 (E18), weak labeling was observed with UEA-I and WGA at the basal membrane of terminal buds, UEA-I and PNA labeled the epithelial cord, and there was no apparent binding for SBA, DBA, VVA, and sucWGA. At E20, after acinar lumenization, all lectins were detected at the acinar cell basal membranes. After birth, all lectins detectably labeled at the mucous cell apical membranes and progressively, with maturation, extended from the apical to basal portions of the cytoplasm. Apparent serous cells were observed around postnatal day 10 (PN10) and bound UEA-I. Lectins reached peak reactivity at PN21 and the binding patterns became identical to those of adults around PN28.

  5. Bauhinia variegata var. variegata lectin: isolation, characterization, and comparison.

    PubMed

    Chan, Yau Sang; Ng, Tzi Bun

    2015-01-01

    Bauhinia variegata var. variegata seeds are rich in proteins. Previously, one of the major storage proteins of the seeds was found to be a trypsin inhibitor that possessed various biological activities. By using another purification protocol, a glucoside- and galactoside-binding lectin that demonstrated some differences from the previously reported B. variegata lectin could be isolated from the seeds. It involved affinity chromatography on Affi-gel blue gel, ion exchange chromatography on Q-Sepharose and Mono Q, and also size exclusion chromatography on Superdex 75. The lectin was not retained on Affi-gel blue gel but interacted with Q-Sepharose. The lectin was a 64-kDa protein with two 32-kDa subunits. It had low thermostability (stable up to 50 °C) and moderate pH stability (stable in pH 3-10). It exhibited anti-proliferative activity on nasopharyngeal carcinoma HONE1 cells with an IC50 of 12.8 μM after treatment for 48 h. It also slightly inhibited the growth of hepatoma HepG2 cells. The lectin may have potential in aiding cancer treatments.

  6. Lectin Activity in Gut Extract of Culex pipiens

    PubMed Central

    Koosha, Mona; Abai, Mohammad Reza; Abolhasani, Mandan; Charedar, Soroor; Basseri, Hamid Reza

    2013-01-01

    Background: The role of lectins is important in interaction between pathogens and mosquito vectors. This study was performed to identify agglutinin activities of protein molecules on the midgut of Culex pipiens. Methods: Culex pipiens was reared in insectray condition and the midguts of males and females (blood fed and unfed) were dissected separately in Tris-HCl buffer. The extracts of midguts were applied for hemagglutinin assay against red blood cells of rabbit, mouse, rat, dog, horse, sheep, guinea pig, cow, human (A, B, AB, O groups). Then, the RBCs with relatively high agglutinin activity were chosen for carbohydrate inhibition assay. D (+) glucose, D (+) galactose, D (+) mannose, D (−) fructose, D (−) arabinose, L (−) fucose, lactose, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, sialic acid were used to specify carbohydrate binding lectin. Results: The highest agglutinin activities were found against sheep and rabbits RBCs. Sexual diversity of agglutinin activities was observed among midgut extraction of males and females. In addition, variation in agglutinin activity of blood fed and unfed female mosquitoes were detected. The lectin activity was inhibited highly with glucose, galactose, fucose and fructose but less inhibitor activities was observed by arabinose, N-acetyl-D-galactosamine, n-acetyl-d-glucosamine, lactose and mannose. Conclusion: The secretion of hemagglutinins (lectins or lectin-like molecules) in the digestive system depends on the type of food in the gut. This suggests that emptying of the gut in preparation for protein rich food probably starts the secretion of hemagglutinins. PMID:23785692

  7. Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration

    SciTech Connect

    Gao, Haichun; Barua, Soumitra; Liang, Yili; Wu, Lianming; Dong, Yangyang; Reed, Samantha B.; Chen, Jingrong; Culley, David E.; Kennedy, David W.; Yang, Yunfeng; He, Zhili; Nealson, Kenneth H.; Fredrickson, Jim K.; Tiedje, James M.; Romine, Margaret F.; Zhou, Jizhong

    2010-06-24

    Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c-type cytochromes. To investigate the involvement of c-type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr -1, 36 in-frame deletion mutants, among possible 41 predicted, c-type cytochrome genes were obtained. The potential involvement of each individual c-type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the wellstudied c-type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr -1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c-type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis.

  8. Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration.

    PubMed

    Gao, Haichun; Barua, Soumitra; Liang, Yili; Wu, Lin; Dong, Yangyang; Reed, Samantha; Chen, Jingrong; Culley, Dave; Kennedy, David; Yang, Yunfeng; He, Zhili; Nealson, Kenneth H; Fredrickson, James K; Tiedje, James M; Romine, Margaret; Zhou, Jizhong

    2010-07-01

    Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c-type cytochromes. To investigate the involvement of c-type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr -1, 36 in-frame deletion mutants, among possible 41 predicted, c-type cytochrome genes were obtained. The potential involvement of each individual c-type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the well-studied c-type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr -1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c-type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis.

  9. Recombinant lectins: an array of tailor-made glycan-interaction biosynthetic tools.

    PubMed

    Oliveira, Carla; Teixeira, José A; Domingues, Lucília

    2013-03-01

    Lectins are a heterogeneous group of proteins found in plants, animals and microorganisms, which possess at least one non-catalytic domain that binds reversibly to specific mono- or oligosaccharides. The range of lectins and respective biological activities is unsurprising given the immense diversity and complexity of glycan structures and the multiple modes of interaction with proteins. Recombinant DNA technology has been traditionally used for cloning and characterizing newly discovered lectins. It has also been employed as a means of producing pure and sequence-defined lectins for different biotechnological applications. This review focuses on the production of recombinant lectins in heterologous organisms, and highlighting the Escherichia coli and Pichia pastoris expression systems, which are the most employed. The choice of expression host depends on the lectin. Non-glycosylated recombinant lectins are produced in E. coli and post-translational modified recombinant lectins are produced in eukaryotic organisms, namely P. pastoris and non-microbial hosts such as mammalian cells. Emphasis is given to the applications of the recombinant lectins especially (a) in cancer diagnosis and/or therapeutics, (b) as anti-microbial, anti-viral, and anti-insect molecules or (c) in microarrays for glycome profiling. Most reported applications are from recombinant plant lectins. These applications benefit from the tailor-made design associated with recombinant production and will aid in unraveling the complex biological mechanisms of glycan-interactions, bringing recombinant lectins to the forefront of glycobiology. In conclusion, recombinant lectins are developing into valuable biosynthetic tools for biomedical research.

  10. Quantitation of Alkaline Phosphatase Isoenzymes Using Agarose Containing Wheat Germ Lectin

    DTIC Science & Technology

    1989-07-01

    SIl Quantitation of Alkaline Phosphatase Isoenzymes Using Agarose Containing Wheat Germ Lectin A thesis submitted in partial fulfillment of the...16 Wheat Germ Lectin Electrophoresis to Quantitate Alkaline Phosphatase Isoenzymes ................ 16 Alkaline Phosphatase Isoenzyme...vs Polyacrylamide Gel Electrophoresis ......................... 40 Clinical Correlation Using Wheat Germ Lectin 45 Placental Alkaline Phosphatase

  11. Studies on lectins. XLIX. The use of glycosyl derivatives of Dextran T-500 for affinity electrophoresis of lectins.

    PubMed

    Cerovský, V; Tichá, M; Horejsi, V; Kocourek, J

    1980-09-01

    p-Aminophenyl glycosides and glycosylamines were coupled to periodate oxidized Dextran T-500 either directly or through an epsilon-aminocaproic acid spacer. The new glycosylated derivatives of dextran specifically precipitate lectins having the appropriate carbohydrate specificity, and thus were used in the preparation of affinity gels for affinity electrophoresis of lectins. The apparent strength of interaction of several lectins with carbohydrate residues immobilized in this way was less than with carbohydrates immobilized in O-glycosyl polyacrylamide copolymers. The presence of epsilon-aminocaproic spacer had no effect on the strength of interaction. The advantages of this type of macromolecular derivative of the ligand for affinity electrophoresis and some differences between the glycosylated dextrans and O-glycosyl polyacrylamide copolymers are discussed. Dextrans containing bound p-aminophenyl alpha-D-mannopyranoside and p-aminophenyl alpha-D-glucopyranoside were used to study the binding properties of concanavalin A and the lectin from Lathyrus sativus seeds. For the investigation of interaction of lectins from Ricinus communis and Glycine soja seeds, dextran derivatives containing bound p-aminophenyl alpha- and beta-D-galactopyranosides and alpha- and beta-D-galactopyranosylamines were used.

  12. Isolation and biochemical characterization of Apios tuber lectin.

    PubMed

    Kenmochi, Eri; Kabir, Syed Rashel; Ogawa, Tomohisa; Naude, Ryno; Tateno, Hiroaki; Hirabayashi, Jun; Muramoto, Koji

    2015-01-09

    Apios tuber lectin, named ATL, was isolated from Apios americana Medikus by two chromatography steps, hydrophobic chromatography and anion-exchange chromatography. The minimum concentration required for the hemagglutination activity toward rabbit erythrocytes of ATL was 4 μg/mL. ATL was composed of a homodimer of 28.4 kDa subunits. The amino acid sequence of ATL was similar to those of other legume lectins. The lectin showed moderate stability toward heating and acidic pH, and the binding affinity against several monosaccharides, such as D-glucosamine and D-galactosamine. ATL also bound to desialylated or agalactosylated glycoproteins such as asialo and agalacto transferrin. ATL decreased the transepithelial electrical resistance across human intestinal Caco-2 cell monolayers, suggesting the effect on the tight junction-mediated paracellular transport.

  13. Lectin histochemical studies on the vomeronasal organ of the sheep.

    PubMed

    Ibrahim, Dalia; Nakamuta, Nobuaki; Taniguchi, Kazumi; Taniguchi, Kazuyuki

    2013-01-01

    The vomeronasal organ of sheep was examined using lectin histochemistry in order to compare the types and amounts of the glycoconjugates among various components of the vomeronasal sensory and non-sensory epithelia. In the vomeronasal sensory epithelium, Dolichos biflorus agglutinin (DBA) stained particular cells, located at the same level as the vomeronasal receptor cells, while the distribution, shape and number of the stained cells did not correspond to those of the vomeronasal receptor cells. Datura stramonium lectin (DSL), Concanavalin A (Con A), Phaseolus vulgaris agglutinin-E (PHA-E) and Phaseolus vulgaris agglutinin-L (PHA-L) labeled the basal cells of both vomeronasal sensory and non-sensory epithelia. While, Wheat germ agglutinin (WGA), Succinylated-wheat germ agglutinin (s-WGA), Lycopersicon esculentum lectin (LEL), Solanum tuberosum lectin (STL) and Ricinus communis agglutinin-I (RCA-120) labeled the basal cells of the sensory epithelium, and Bandeiraea simplicifolia lectin-I (BSL-I) stained the basal cells of the non-sensory epithelium, respectively. Seventeen lectins labeled the free border of both vomeronasal sensory and non-sensory epithelia, while Sophora japonica agglutinin (SJA), Jacalin and Pisum sativum agglutinin (PSA) labeled neither free border of the sensory nor that of non-sensory epithelia. The expression pattern of glycoconjugate was similar, but not identical, in the free border between the sensory and non-sensory epithelia. These results indicate that there are dissimilar features in the type and amount of glycoconjugates between the vomeronasal sensory and non-sensory epithelia, and at the same time, among the various cell types either in the vomeronasal sensory or non-sensory epithelium.

  14. Purification of a thermostable antinociceptive lectin isolated from Andira anthelmia.

    PubMed

    Nascimento, Kyria Santiago; Nascimento, Francisco Lucas Faustino do; Silva, Mayara Torquato Lima; Nobre, Camila Bezerra; Moreira, Cleane Gomes; Brizeno, Luiz André Cavalcante; da Ponte, Edson Lopes; Assreuy, Ana Maria Sampaio; Cavada, Benildo Sousa

    2016-06-01

    Andira anthelmia (tribe Dalbergieae), a plant from Brazilian Amazon, possesses a seed lectin that was purified by affinity chromatography in sepharose-mannose. This novel Dalbergieae lectin, named AAL, agglutinated rabbit erythrocytes treated with trypsin. The hemagglutinating activity of AAL was maintained after incubation at a wide range of temperature (40 to 70 °C) and pH, was shown to be dependent on divalent cations, and was inhibited by d-mannose and d-sucrose. AAL showed an electrophoretic profile in sodium dodecyl sulfate-polyacrylamide gel electrophoresis similar to other lectins of the tribe Dalbergieae, presenting a double band of molecular weight with approximately 20 kDa and other minor bands of 17, 15, and 13 kDa, being the smaller fragment glycosylated. AAL injected by intravenous route in mice showed antinociceptive activity in two behavioral tests (writhing and formalin). In the writhing test induced by acetic acid, AAL showed inhibitory effect at 0.01 mg/kg (68%), 0.1 mg/kg (46%) and 1 mg/kg (74%). In the formalin test, AAL (0.1 mg/kg) inhibited by 48% the licking time in the inflammatory phase, an effect that was recovered by the lectin association with mannose. In conclusion, AAL presents analgesic effect involving the lectin domain via peripheral mechanisms of inflammatory nociception. This activity highlights the importance of lectins as tools to be used for understanding the interaction of protein-carbohydrate in processes associated to inflammatory pain. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Lectin-dependent cell-mediated cytotoxicity in an invertebrate model: Con A does not act as a bridge.

    PubMed Central

    Boswell, C A; Bayne, C J

    1986-01-01

    The plant lectin concanavalin A (Con A) has been used in an invertebrate model of lectin-dependent cell-mediated cytotoxicity (LDCC). Macrophage-like cells from the susceptible host snail Biomphalaria glabrata become cytotoxic effectors when they encounter sporocysts of the parasitic trematode Schistosoma mansoni that have been treated with Con A. The sugar alpha-methyl mannoside and rabbit anti-Con A antibodies fail to block this LDCC. Con A is effective only when the target, not the effector cell, has been exposed to it. These results constitute evidence against the molecular bridging hypothesis and support the notion that surface modulation of the target may be the stimulus that provokes cytotoxicity. Results from this invertebrate model are discussed in the context of murine T lymphocyte LDCC. PMID:3949370

  16. Crystallization and preliminary crystallographic study of oligomers of the haemolytic lectin CEL-III from the sea cucumber Cucumaria echinata.

    PubMed

    Unno, Hideaki; Hisamatsu, Keigo; Nagao, Tomonao; Tateya, Yuki; Matsumoto, Naoki; Goda, Shuichiro; Hatakeyama, Tomomitsu

    2013-04-01

    CEL-III is a Ca(2+)-dependent haemolytic lectin isolated from the marine invertebrate Cucumaria echinata. This lectin binds to Gal/GalNAc-containing carbohydrate chains on the cell surface and, after conformational changes, oligomerizes to form ion-permeable pores in cell membranes. CEL-III also forms soluble oligomers similar to those formed in cell membranes upon binding of specific carbohydrates in high-pH and high-salt solutions. These soluble and membrane CEL-III oligomers were crystallized and X-ray diffraction data were collected. Crystals of soluble oligomers and membrane oligomers diffracted X-rays to 3.3 and 4.2 Å resolution, respectively, using synchrotron radiation and the former was found to belong to space group C2. Self-rotation functional analysis of the soluble oligomer crystal suggested that it might be composed of heptameric CEL-III.

  17. Colorimetric and plasmonic detection of lectins using core-shell gold glyconanoparticles prepared by copper-free click chemistry.

    PubMed

    Hu, Xi-Le; Jin, Hong-Ying; He, Xiao-Peng; James, Tony D; Chen, Guo-Rong; Long, Yi-Tao

    2015-01-28

    This study describes the simple preparation of core-shell glycosyl gold nanoparticles (AuNPs) using stepwise, copper-free click chemistry-promoted self-assembly. The as-formed glyco-AuNPs can be used for the selective detection of sugar-lectin interactions, which are vital to many important physiological and pathological processes. The approach uses AuNPs as bioprobes since they produce, sensitively, changes in both color visible to the naked eye and surface plasmon resonance (SPR), on aggregation. Strain-promoted click reaction of an azido galactoside with a lipid cyclooctyne affords a galactolipid that can be embedded into polyethylene glycol (PEG)-coated AuNP via self-assembly. Subsequently, using naked-eye and plasmon resonance scattering spectroscopy, we were able to observe the colorimetric and plasmonic variations of the glyco-AuNPs, respectively, in the presence of a selective lectin over other proteins.

  18. Ultrastructural and lectin-histochemical differences between the scolex/strobila and bladder teguments of the Taenia taeniaeformis strobilocercus.

    PubMed

    Olson, E J; Oaks, J A; Osmundson, G D; Hildreth, M B

    2000-02-01

    The strobilocercus stage of the cat tapeworm Taenia taeniaeformis is surrounded by a single syncytial sheet of cytoplasm called the tegument. The outer membrane of the tegument covers both the scolex/strobila (S/S) and the bladder portions of the strobilocercus, but only the S/S region is resistant to intestinal digestion. It has been suggested that the glycocalyx, the surface-exposed glycoconjugates of the outer membrane, may serve to insulate underlying surface membrane components from digestion. In this study, we used lectin binding to test the hypothesis that the glycocalyx of the S/S is different from that of the bladder and that this may serve as the resistance mechanism of the S/S to digestion. Biotin-labeled lectins and an avidin-glucose oxidase detection system were applied to whole strobilocerci and to 1-microm epon-araldite plastic-embedded sections. Lectins bound to either both regions of the strobilocerci, to the S/S regions only, or did not bind at all. The restriction of some glycoconjugates to the glycocalyx of the S/S region only is consistent with our hypothesis.

  19. Ribosome-inactivating lectins with polynucleotide:adenosine glycosidase activity.

    PubMed

    Battelli, M G; Barbieri, L; Bolognesi, A; Buonamici, L; Valbonesi, P; Polito, L; Van Damme, E J; Peumans, W J; Stirpe, F

    1997-05-26

    Lectins from Aegopodium podagraria (APA), Bryonia dioica (BDA), Galanthus nivalis (GNA), Iris hybrid (IRA) and Sambucus nigra (SNAI), and a new lectin-related protein from Sambucus nigra (SNLRP) were studied to ascertain whether they had the properties of ribosome-inactivating proteins (RIP). IRA and SNLRP inhibited protein synthesis by a cell-free system and, at much higher concentrations, by cells and had polynucleotide:adenosine glycosidase activity, thus behaving like non-toxic type 2 (two chain) RIP. APA and SNAI had much less activity, and BDA and GNA did not inhibit protein synthesis.

  20. Probing the nature of the cluster effect observed with synthetic multivalent galactosides and peanut agglutinin lectin.

    PubMed

    Almant, Mehdi; Mastouri, Amira; Gallego-Yerga, Laura; García Fernandez, José Manuel; Ortiz Mellet, Carmen; Kovensky, José; Morandat, Sandrine; El Kirat, Karim; Gouin, Sébastien G

    2013-01-07

    We designed a set of multi-galactosides with valencies ranging from one to seven and different spacer-arm lengths. The compounds display a high structural homology for a strict assessment of multivalent phenomena. The multimers were first evaluated by an enzyme-linked lectin assay (ELLA) toward the peanut agglutinin (PNA). The binding affinity was shown to be dependent on the spacer-arm length, and cluster effects were observed for the galactosides bearing the shortest and the longest linkers. The latter compounds were shown to be much more potent PNA cross-linkers in a "sandwich assay". Dynamic light scattering (DLS) experiments also revealed the formation of soluble aggregates between heptavalent derivatives with medium or long linkers and the labeled PNA. ELLA experiments performed with valency-controlled clusters and labeled lectins are therefore not always devoid from aggregative processes. The precise nature of the multivalent interaction observed by ELLA for the compounds bearing the shortest linkers, which are unable to form PNA aggregates, was further investigated by atomic force microscopy (AFM). The galactosides were grafted onto the tip of a cantilever and the PNA lectin onto a gold surface. Similar unbinding forces were registered when the valency of the ligands was increased, thus showing that the multimers cannot interact more strongly with PNA. Multiple binding events to the PNA were also never observed, thus confirming that a chelate binding mode does not operate with the multivalent galactosides, probably because the linkers are too short. Altogether, these results suggest that the cluster effect that operates in ELLA with the multimers is not related to additional PNA stabilizations and can be ascribed to local concentration effects that favor a dynamic turnover of the tethered galactosides in the PNA binding sites.

  1. Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2

    NASA Astrophysics Data System (ADS)

    Okada, Tatsuaki; Fukuhara, Tetsuya; Tanaka, Satoshi; Taguchi, Makoto; Imamura, Takeshi; Arai, Takehiko; Senshu, Hiroki; Ogawa, Yoshiko; Demura, Hirohide; Kitazato, Kohei; Nakamura, Ryosuke; Kouyama, Toru; Sekiguchi, Tomohiko; Hasegawa, Sunao; Matsunaga, Tsuneo; Wada, Takehiko; Takita, Jun; Sakatani, Naoya; Horikawa, Yamato; Endo, Ken; Helbert, Jörn; Müller, Thomas G.; Hagermann, Axel

    2016-09-01

    The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16 × 12° and a spatial resolution of 0.05° per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission.

  2. Identification of OmpA-Like Protein of Tannerella forsythia as an O-Linked Glycoprotein and Its Binding Capability to Lectins.

    PubMed

    Horie, Toshi; Inomata, Megumi; Into, Takeshi; Hasegawa, Yoshiaki; Kitai, Noriyuki; Yoshimura, Fuminobu; Murakami, Yukitaka

    2016-01-01

    Bacterial glycoproteins are associated with physiological and pathogenic functions of bacteria. It remains unclear whether bacterial glycoproteins can bind to specific classes of lectins expressed on host cells. Tannerella forsythia is a gram-negative oral anaerobe that contributes to the development of periodontitis. In this study, we aimed to find lectin-binding glycoproteins in T. forsythia. We performed affinity chromatography of wheat germ agglutinin, which binds to N-acetylglucosamine (GlcNAc) and sialic acid (Sia), and identified OmpA-like protein as the glycoprotein that has the highest affinity. Mass spectrometry revealed that OmpA-like protein contains O-type N-acetylhexosamine and hexose. Fluorometry quantitatively showed that OmpA-like protein contains Sia. OmpA-like protein was found to bind to lectins including E-selectin, P-selectin, L-selectin, Siglec-5, Siglec-9, Siglec-10, and DC-SIGN. The binding of OmpA-like protein to these lectins, except for the Siglecs, depends on the presence of calcium. N-acetylneuraminic acid (NeuAc), which is the most abundant Sia, inhibited the binding of OmpA-like protein to all of these lectins, whereas GlcNAc and mannose only inhibited the binding to DC-SIGN. We further found that T. forsythia adhered to human oral epithelial cells, which express E-selectin and P-selectin, and that this adhesion was inhibited by addition of NeuAc. Moreover, adhesion of an OmpA-like protein-deficient T. forsythia strain to the cells was reduced compared to that of the wild-type strain. Our findings indicate that OmpA-like protein of T. forsythia contains O-linked sugar chains that can mediate interactions with specific lectins. This interaction is suggested to facilitate adhesion of T. forsythia to the surface of host cells.

  3. Identification of OmpA-Like Protein of Tannerella forsythia as an O-Linked Glycoprotein and Its Binding Capability to Lectins

    PubMed Central

    Horie, Toshi; Inomata, Megumi; Into, Takeshi; Hasegawa, Yoshiaki; Kitai, Noriyuki; Yoshimura, Fuminobu; Murakami, Yukitaka

    2016-01-01

    Bacterial glycoproteins are associated with physiological and pathogenic functions of bacteria. It remains unclear whether bacterial glycoproteins can bind to specific classes of lectins expressed on host cells. Tannerella forsythia is a gram-negative oral anaerobe that contributes to the development of periodontitis. In this study, we aimed to find lectin-binding glycoproteins in T. forsythia. We performed affinity chromatography of wheat germ agglutinin, which binds to N-acetylglucosamine (GlcNAc) and sialic acid (Sia), and identified OmpA-like protein as the glycoprotein that has the highest affinity. Mass spectrometry revealed that OmpA-like protein contains O-type N-acetylhexosamine and hexose. Fluorometry quantitatively showed that OmpA-like protein contains Sia. OmpA-like protein was found to bind to lectins including E-selectin, P-selectin, L-selectin, Siglec-5, Siglec-9, Siglec-10, and DC-SIGN. The binding of OmpA-like protein to these lectins, except for the Siglecs, depends on the presence of calcium. N-acetylneuraminic acid (NeuAc), which is the most abundant Sia, inhibited the binding of OmpA-like protein to all of these lectins, whereas GlcNAc and mannose only inhibited the binding to DC-SIGN. We further found that T. forsythia adhered to human oral epithelial cells, which express E-selectin and P-selectin, and that this adhesion was inhibited by addition of NeuAc. Moreover, adhesion of an OmpA-like protein-deficient T. forsythia strain to the cells was reduced compared to that of the wild-type strain. Our findings indicate that OmpA-like protein of T. forsythia contains O-linked sugar chains that can mediate interactions with specific lectins. This interaction is suggested to facilitate adhesion of T. forsythia to the surface of host cells. PMID:27711121

  4. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation

    NASA Astrophysics Data System (ADS)

    Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I.; Lindahl, Erik; Elinder, Fredrik

    2016-06-01

    Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions – a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd2+ bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K+ coordination, a hallmark for C-type inactivation. An engineered Cd2+ bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel.

  5. The Carbohydrate Lectin Receptor Dectin-1 Mediates the Immune Response to Exserohilum rostratum.

    PubMed

    Reedy, Jennifer L; Negoro, Paige E; Feliu, Marianela; Lord, Allison K; Khan, Nida S; Lukason, Dan P; Wiederhold, Nathan P; Tam, Jenny M; Mansour, Michael K; Patterson, Thomas F; Vyas, Jatin M

    2017-03-01

    Dematiaceous molds are found ubiquitously in the environment and cause a wide spectrum of human disease, including infections associated with high rates of mortality. Despite this, the mechanism of the innate immune response has been less well studied, although it is key in the clearance of fungal pathogens. Here, we focus on Exserohilum rostratum, a dematiaceous mold that caused 753 infections during a multistate outbreak due to injection of contaminated methylprednisolone. We show that macrophages are incapable of phagocytosing Exserohilum Despite a lack of phagocytosis, macrophage production of tumor necrosis factor alpha is triggered by hyphae but not spores and depends upon Dectin-1, a C-type lectin receptor. Dectin-1 is specifically recruited to the macrophage-hyphal interface but not the macrophage-spore interface due to differences in carbohydrate antigen expression between these two fungal forms. Corticosteroid and antifungal therapy perturb this response, resulting in decreased cytokine production. In vivo soft tissue infection in wild-type mice demonstrated that Exserohilum provokes robust neutrophilic and granulomatous inflammation capable of thwarting fungal growth. However, coadministration of methylprednisolone acetate results in robust hyphal tissue invasion and a significant reduction in immune cell recruitment. Our results suggest that Dectin-1 is crucial for macrophage recognition and the macrophage response to Exserohilum and that corticosteroids potently attenuate the immune response to this pathogen.

  6. The use of lectin microarray for assessing glycosylation of therapeutic proteins

    PubMed Central

    Zhang, Lei; Luo, Shen; Zhang, Baolin

    2016-01-01

    ABSTRACT Glycans or carbohydrates attached to therapeutic glycoproteins can directly affect product quality, safety and efficacy, and therefore must be adequately analyzed and controlled throughout product life cycles. However, the complexity of protein glycosylation poses a daunting analytical challenge. In this study, we evaluated the utility of a lectin microarray for assessing protein glycans. Using commercial lectin chips, which contain 45 lectins toward distinct glycan structures, we were able to determine the lectin binding patterns of a panel of 15 therapeutic proteins, including 8 monoclonal antibodies. Lectin binding signals were analyzed to generate glycan profiles that were generally consistent with the known glycan patterns for these glycoproteins. In particular, the lectin-based microarray was found to be highly sensitive to variations in the terminal carbohydrate structures such as galactose versus sialic acid epitopes. These data suggest that lectin microarray could be used for screening glycan patterns of therapeutic glycoproteins. PMID:26918373

  7. Purification and characterization of a new type lactose-binding Ulex europaeus lectin by affinity chromatography.

    PubMed

    Konami, Y; Yamamoto, K; Osawa, T

    1991-02-01

    A new type lactose-binding lectin was purified from extracts of Ulex europaeus seeds by affinity chromatography on a column of galactose-Sepharose 4B, followed by gel filtration on Sephacryl S-300. This lectin, designated as Ulex europaeus lectin III (UEA-III), was found to be inhibited by lactose. The dimeric lectin is a glycoprotein with a molecular mass of 70,000 Da; it consists of two apparently identical subunits of a molecular mass of 34,000 Da. Compositional analysis showed that this lectin contains 30% carbohydrate and a large amount of aspartic acid, serine and valine, but no sulfur-containing amino acids. The N-terminal amino-acid sequences of L-fucose-binding Ulex europaeus lectin I (UEA-I) and di-N-acetylchitobiose-binding Ulex europaeus lectin II (UEA-II), both of which we have already purified and characterized, and that of UEA-III were determined and compared.

  8. Lectin coated MgO nanoparticle: its toxicity, antileishmanial activity, and macrophage activation.

    PubMed

    Jebali, Ali; Hekmatimoghaddam, Seyedhossein; Kazemi, Bahram; Allaveisie, Azra; Masoudi, Alireza; Daliri, Karim; Sedighi, Najme; Ranjbari, Javad

    2014-10-01

    The purpose of this research was to evaluate toxicity of uncoated magnesium oxide nanoparticles (MgO NPs), MgO NPs coated with Peanut agglutinin (PNA) lectin, and PNA alone on the promastigotes of Leishmania major (L. major) and macrophages of BALB/c mice. On the other hand, antileishmanial property of uncoated MgO NPs, lectin coated MgO NPs, and PNA lectin alone was evaluated, and also macrophage activation was investigated after treatment with these materials by measurement of nitrite, H2O2, and some interleukins. This study showed that PNA lectin and lectin coated MgO NPs had approximately no toxicity on L. major and macrophages, but some toxic effects were observed for uncoated MgO NPs, especially at concentration of 500 µg/mL. Interestingly, lectin coated MgO NPs had the highest antileishmanial activity and macrophage activation, compared with uncoated MgO NPs and PNA lectin.

  9. c-Type cytochromes and manganese oxidation in Pseudomonas putida MnB1

    SciTech Connect

    Caspi, R.; Tebo, B.M.; Haygood, M.G.

    1998-10-01

    Pseudomonas putida MnB1 is an isolate from an Mn oxide-encrusted pipeline that can oxidize Mn(II) to Mn oxides. The authors used transposon mutagenesis to construct mutants of strain MnB1 that are unable to oxidize manganese, and they characterized some of these mutants. The mutants were divided into three groups: mutants defective in the biogenesis of c-type cytochromes, mutants defective in genes that encode key enzymes of the tricarboxylic acid cycle, and mutants defective in the biosynthesis of tryptophan. The mutants in the first two groups were cytochrome c oxidase negative and did not contain c-type cytochromes. Mn(II) oxidation capability could be recovered in a c-type cytochrome biogenesis-defective mutant by complementation of the mutation.

  10. New low-Ni (igneous?) particles among the C and C? types of cosmic dust

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.; Bajt, S.; Kloeck, W.

    1993-01-01

    Low-Ni particles with major element abundances, optical properties, and morphologies sufficiently similar to chondritic interplanetery dust particles (IDP's) to receive JSC Cosmic Dust Catalog classifications of C or C?-types were shown to have trace element contents and mineralogies similar to igneous material. Examination of the JSC Catalog EDX spectra by Cooke et al. has shown that 13 percent of the C-type and 38 percent of the C?-type particles are potentially low-Ni particles. Two new low-Ni particles were identified, and it was shown that an additional fragment from the L2002*C cluster has an igneous composition. A newly analyzed fragment of the W7066*A cluster has a chondritic composition. The W7066*A cluster is important because it has yielded a fragment of igneous composition and another fragment having high concentrations of He and Ne suggesting an extraterrestrial origin.

  11. Binding sites of Ulex europaeus-lectin I in human parotid gland. A light-microscopic and ultrastructural study using the immunoperoxidase technique and immunocryoultramicrotomy.

    PubMed

    Born, I A; Zimmer, K P; Schwechheimer, K; Maier, H; Möller, P

    1987-05-01

    Twenty non-neoplastic parotid glands (removed during neck dissection for regional tumours) were examined for cellular and subcellular binding sites of Ulex europaeus-lectin I (UEA-I), a lectin reported to be specific for alpha-L-fucose. For light microscopy, an extended peroxidase-antiperoxidase method was applied; for the evaluation of the subcellular localization of bound lectin, three of these glands were examined following immunocryoultramicrotomy and staining by the protein A-gold technique. In addition to the known cytoplasmic affinity of UEA-I for capillary endothelium, acinar cells bound the lectin within the cytoplasmic compartment; the number and distribution of stained acinar cells varied among individuals. Furthermore, cytomembrane-bound labelling that occurred most markedly at the luminar surface was observed in striated-duct epithelium. Using the electron microscope, protein A-gold particles were seen in zymogen granules and in Golgi cisternae of serous acinar cells; primary saliva secreted in the lumina exhibited strong labelling; serous acinar cells had binding sites on their cell membranes, striated-duct epithelium had binding sites on its surface membrane and in the vicinity of apical vesicles. Our results show that UEA-I is a useful tool for the study of the structure and functional states of the parotid gland epithelium and its associated pathological alterations.

  12. Influence of ligand presentation density on the molecular recognition of mannose-functionalised glyconanoparticles by bacterial lectin BC2L-A.

    PubMed

    Reynolds, Michael; Marradi, Marco; Imberty, Anne; Penadés, Soledad; Pérez, Serge

    2013-11-01

    Polyvalent carbohydrate-protein interactions play a key role in bio- and pathological processes, including cell-cell communication and pathogen invasion. In order to study, control and manipulate these interactions gold nanoparticles have been employed as a 3D scaffold, presenting carbohydrate ligands in a multivalent fashion for use as high affinity binding partners and a model system for oligosaccharide presentation at biomacromolecular surfaces. In this study, the binding of a series of mannose-functionalised gold nanoparticles to the dimeric BC2L-A lectin from Burkholderia cenocepacia has been evaluated. BC2L-A is known to exhibit a high specificity for (oligo)mannosides. Due to the unique structure and binding nature of this lectin, it provides a useful tool to study (oligo)saccharides presented on multivalent scaffolds. Surface plasmon resonance and isothermal titration calorimetric assays were used to investigate the effect of ligand presentation density towards binding to the bacterial lectin. We show how a combination of structural complementarities between ligand presentation and lectin architecture and statistical re-binding effects are important for increasing the avidity of multivalent ligands for recognition by their protein receptors; further demonstrating the application of glyconanotechnology towards fundamental glycobiology research as well as a potential towards biomedical diagnostics and therapeutic treatments.

  13. Use of lectin microarray to differentiate gastric cancer from gastric ulcer

    PubMed Central

    Huang, Wei-Li; Li, Yang-Guang; Lv, Yong-Chen; Guan, Xiao-Hui; Ji, Hui-Fan; Chi, Bao-Rong

    2014-01-01

    AIM: To investigate the feasibility of lectin microarray for differentiating gastric cancer from gastric ulcer. METHODS: Twenty cases of human gastric cancer tissue and 20 cases of human gastric ulcer tissue were collected and processed. Protein was extracted from the frozen tissues and stored. The lectins were dissolved in buffer, and the sugar-binding specificities of lectins and the layout of the lectin microarray were summarized. The median of the effective data points for each lectin was globally normalized to the sum of medians of all effective data points for each lectin in one block. Formalin-fixed paraffin-embedded gastric cancer tissues and their corresponding gastric ulcer tissues were subjected to Ag retrieval. Biotinylated lectin was used as the primary antibody and HRP-streptavidin as the secondary antibody. The glycopatterns of glycoprotein in gastric cancer and gastric ulcer specimens were determined by lectin microarray, and then validated by lectin histochemistry. Data are presented as mean ± SD for the indicated number of independent experiments. RESULTS: The glycosylation level of gastric cancer was significantly higher than that in ulcer. In gastric cancer, most of the lectin binders showed positive signals and the intensity of the signals was stronger, whereas the opposite was the case for ulcers. Significant differences in the pathological score of the two lectins were apparent between ulcer and gastric cancer tissues using the same lectin. For MPL and VVA, all types of gastric cancer detected showed stronger staining and a higher positive rate in comparison with ulcer, especially in the case of signet ring cell carcinoma and intra-mucosal carcinoma. GalNAc bound to MPL showed a significant increase. A statistically significant association between MPL and gastric cancer was observed. As with MPL, there were significant differences in VVA staining between gastric cancer and ulcer. CONCLUSION: Lectin microarray can differentiate the different

  14. Momordica charantia seed lectin: toxicity, bacterial agglutination and antitumor properties.

    PubMed

    Kabir, Syed Rashel; Nabi, Md Mahamodun; Nurujjaman, Md; Abu Reza, Md; Alam, A H M Khurshid; Uz Zaman, Rokon; Khalid-Bin-Ferdaus, Khandaker Md; Amin, Ruhul; Khan, Md Masudul Hasan; Hossain, Md Anowar; Uddin, Md Salim; Mahmud, Zahid Hayat

    2015-03-01

    In last three decades, several studies were carried out on the D-galactose-specific lectin of Momordica charantia seeds (MCL). In the present study, in vitro growth inhibition (8-23 %) at different concentrations (6-24 μg/ml) of MCL was observed against Ehrlich ascites carcinoma (EAC) cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. MCL also showed 28, 45, and 75 % growth inhibitions against EAC cells when administered 1.2, 2.0, and 2.8 mg/kg/day (i.p.), respectively for five consequent days in vivo in mice. After lectin treatment, the level of red blood cell and hemoglobin was increased significantly with the decrease of white blood cell and maintained the normal level when compared with EAC-bearing control and normal mice without EAC cells. Although MCL caused cell cycle arrest at G0/G1 phase of EAC cells, any irregular shape or apoptotic morphological alterations in the lectin-treated EAC cells was not observed by an optical and fluorescence microscope. Lectin showed toxicity against brine shrimp nauplii with an LC50 value of 49.7 μg/ml. Four out of seven pathogenic bacteria were agglutinated by MCL in the absence of inhibitory sugar D-lactose/D-galactose. In conclusion, MCL showed strong cytotoxic effect and therefore can be used as a potent anticancer chemotherapeutic agent.

  15. Lectin Binding to Radopholus citrophilus and R. similis Proteins.

    PubMed

    Kaplan, D T; Gottwald, T R

    1992-06-01

    Lectin-binding glycoproteins in seven populations of two burrowing nematode sibling species were probed with five different biotinylated lectins on Western blots, and differences were correlated with nematode ability to parasitize citrus and to overcome citrus rootstock resistance. Banding patterns of molecular weight standards were fit best by an exponential decay function, and a predictive equation was used to estimate molecular weights (r(2) = 0.999). A band (131 kDa) that labeled with the lectin Concanavalin A (Con A) occurred in extracts from cuticles and egg shells of populations of Radopholus citrophilus that parasitize citrus. Wheat germ agglutin labeled a band (58 kDa) in aqueous homogenates of populations that reproduce in roots of citrus rootstock normally resistant to burrowing nematodes. The two sibling species R. citrophilus and R. similis were distinguished by a high molecular weight Con A-labeled band (608 kDa) from cuticle and egg shells. Probing blots with the lectin Limulus polyphemus agglutinin indicated that each population contained a band (12-16 kDa) specifically inhibited by the addition of 25 mM neuraminic acid, suggesting that glycoproteins with sialic acid moieties are present in burrowing nematodes.

  16. Pseudomonas Aeruginosa Lectins As Targets for Novel Antibacterials

    PubMed Central

    Grishin, A. V.; Krivozubov, M. S.; Karyagina, A. S.; Gintsburg, A. L.

    2015-01-01

    Pseudomonas aeruginosa is one of the most widespread and troublesome opportunistic pathogens that is capable of colonizing various human tissues and organs and is often resistant to many currently used antibiotics. This resistance is caused by different factors, including the acquisition of specific resistance genes, intrinsic capability to diminish antibiotic penetration into the bacterial cell, and the ability to form biofilms. This situation has prompted the development of novel compounds differing in their mechanism of action from traditional antibiotics that suppress the growth of microorganisms or directly kill bacteria. Instead, these new compounds should decrease the pathogens’ ability to colonize and damage human tissues by inhibiting the virulence factors and biofilm formation. The lectins LecA and LecB that bind galactose and fucose, as well as oligo- and polysaccharides containing these sugars, are among the most thoroughly-studied targets for such novel antibacterials. In this review, we summarize the results of experiments highlighting the importance of these proteins for P. aeruginosa pathogenicity and provide information on existing lectins inhibitors and their effectiveness in various experimental models. Particular attention is paid to the effects of lectins inhibition in animal models of infection and in clinical practice. We argue that lectins inhibition is a perspective approach to combating P. aeruginosa. However, despite the existence of highly effective in vitro inhibitors, further experiments are required in order to advance these inhibitors into pre-clinical studies. PMID:26085942

  17. Genetics Home Reference: mannose-binding lectin deficiency

    MedlinePlus

    ... MBL2 gene. Mannose-binding lectin plays an important role in the body's immune response by attaching to foreign invaders such as bacteria, viruses, or yeast and turning on (activating) the complement system . The complement system is a group of immune system proteins that work together to ...

  18. Peanut lectin-binding sites in large bowel carcinoma.

    PubMed

    Cooper, H S

    1982-10-01

    Peanut lectin is known to bind to B-D-Gal-(1 leads to 3)-D-GalNac which provides antigenic determination for the T (TAg) blood group antigen. We examined 33 rectosigmoid carcinomas and 15 corresponding controls for their ability to express peanut lectin-binding sites. In controls one could localize TAg to the supranuclear portion of the cell, however, in cancers one noticed a cytostructural relocalization of TAg with the following two major patterns: localization to the region of the glycocalyx and localization intracytoplasmically in the apical portion of the cell. These two patterns were associated with glandular differentiation. Less frequently noted or in association with the above was a mucin glob-like pattern and/or a fine diffuse intracytoplasmic pattern associated with solid, nonglandular areas. The more poorly differentiated cancers less frequently expressed peanut lectin-binding sites. Benign (nontransitional zone) epithelium in those patients whose tumor expressed TAg was negative for peanut lectin-binding sites in 66 per cent of the cases. Reduced tumoral glycosyltransferases may explain this increased synthesis of TAg in cancers as compared with controls, if one considers TAg to be an incomplete glycoprotein of the MN blood group system.

  19. The D-galactose-binding lectin of the octocoral Sinularia lochmodes: characterization and possible relationship to the symbiotic dinoflagellates.

    PubMed

    Jimbo, M; Yanohara, T; Koike, K; Koike, K; Sakai, R; Muramoto, K; Kamiya, H

    2000-02-01

    A D-galactose binding lectin (SLL-2) was isolated from Sinularia lochmodes, an octocoral, by a combination of affinity chromatography on acid-treated agarose and FPLC on Superdex 200. SLL-2 agglutinated rabbit and horse erythrocytes while SLL-1, a minor component, reacted only with rabbit erythrocytes. SLL-2 is a glycoprotein with a molecular mass of 122 kDa and is composed of eight identical subunits (15 kDa). The sequence of the amino terminal region of SLL-2 did not show any apparent homology to the sequences of other animal and plant lectins. D-Galactose, N-acetyl-D-galactosamine, lactose, and melibiose were moderate inhibitors to the agglutination of rabbit erythrocytes. In contrast, horse erythrocytes were much more susceptible to agglutination by SLL-2, which was inhibited by sugars and glycoproteins such as D-galactose, N-acetyl-D-galactosamine, lactose, melibiose, and porcine stomach mucin. SLL-2 showed considerable tolerance to heating and kept its activity after heating at 80 degrees C for 60 min. In immuno-histochemical studies using an anti-SLL-2 antiserum and protein A gold conjugate, SLL-2 was found to be present in high amounts in the nematocysts. SLL-2 was also detected on the surface of symbiotic dinoflagellate, Symbiodinium sp. cells irrespective whether they were surrounded with or without host cells. These observations suggest the presence of lectin-mediated interaction between symbiotic dinoflagellates and S. lochmodes.

  20. Purification and characterization of an N-acetylglucosamine specific lectin from marine bivalve Macoma birmanica.

    PubMed

    Adhya, Mausumi; Singha, Biswajit; Chatterjee, Bishnu P

    2009-07-01

    A calcium independent lectin of molecular mass 47kDa was isolated from the foot muscle of marine bivalve Macoma birmanica by ammonium sulphate precipitation followed by affinity chromatography on immobilized GlcNAc column and designated as M. birmanica agglutinin (MBA). The lectin agglutinated rabbit erythrocytes strongly compared to human erythrocytes over a wide pH range from 5 to 9 and up to 50 degrees C. MBA is a glycoprotein and consists of 7.63% sugar. Among the tested sugars for analysis of carbohydrate recognition properties, Me-betaGlcNAc was the most potent inhibitor followed by Me-alphaMan. Enzyme linked solid phase assay revealed that MBA interacted well with complex type N-linked glycans and moderately to high mannose type N-linked glycans. Fluorescence study of MBA indicated that tryptophan was present in a non-hydrophobic region and its binding to GlcNAc was neither quenched nor altered lambda(max) position. The denaturation of MBA induced by urea was a reversible process and urea could not significantly change the Trp environment. MBA interacted with both Gram-positive and Gram-negative bacteria by recognizing their surface exposed GlcNAc containing antigens.

  1. The bacteria binding glycoprotein salivary agglutinin (SAG/gp340) activates complement via the lectin pathway.

    PubMed

    Leito, Jelani T D; Ligtenberg, Antoon J M; van Houdt, Michel; van den Berg, Timo K; Wouters, Diana

    2011-10-01

    Salivary agglutinin (SAG), also known as gp-340 and Deleted in Malignant Brain Tumours 1, is a glycoprotein that is present in tears, lung fluid and mucosal surfaces along the gastrointestinal tract. It is encoded by the Deleted in Malignant Brain Tumours 1 gene, a member of the Scavenger Receptor Cysteine Rich group B protein superfamily. SAG aggregates bacteria thus promoting their clearance from the oral cavity and activates the complement system. Complement proteins may enter the oral cavity in case of serum leakage, which occurs after mucosal damage. The purpose of this study was to investigate the mode of complement activation. We showed a dose-dependent C4 deposition on SAG-coated microplates showing that either the classical or lectin pathway of complement was activated. Antibodies against mannose binding lectin inhibited C4 deposition and SAG induced no C4 deposition in MBL deficient sera showing SAG activated complement through the MBL pathway. Periodate treatment of SAG abolished MBL pathway activation consistent with an involvement of SAG glycans in complement activation. This provides the first evidence for a role of SAG in complement activation through the MBL pathway and suggests a potential role of SAG as a complement activating factor at the mucosal epithelia.

  2. Lectin histochemistry of gastrointestinal glycoconjugates in the greater horseshoe bat, Rhinolophus ferrumequinum (Schreber, 1774).

    PubMed

    Scillitani, Giovanni; Zizza, Sara; Liquori, Giuseppa Esterina; Ferri, Domenico

    2007-01-01

    Mucins in the gastrointestinal tract of Rhinolophus ferrumequinum were investigated by histochemistry and lectin histochemistry to evaluate morphofunctional variations of different regions and their possible physiological and evolutionary implications. Histochemical methods included periodic acid-Schiff (PAS), Alcian blue (AB) at pH 2.5 and 1.0 and high-iron-diamine AB pH 2.5. Binding of lectins Con A, DBA, WGA, LTA, LFA, PNA and SBA; LFA, PNA and SBA with prior sialidase treatment; and paradoxical Con A were evaluated. The oesophagus lacked glands. The stomach was divided into a short cardias, a wide fundus and a brief pylorus. The surface muciparous cells secreted sulpho- and sialomucins with N-acetylgalactosamine (GalNAc) residues, N-acetyllactosamine and (beta1,4 N-acetylglucosamine)(n) chains. Towards the pylorus, N-acetylgalactosamine residues disappeared and acidity decreased. Cardiac glands, neck cells in the fundic glands, pyloric and duodenal Brunner's glands all shared neutral, stable class-III mucins, mainly with N-acetylgalactosamine sequences. The intestine was divided into a duodenum, a jejuno-ileum and a short rectum. The goblet cells produced sulpho- and sialomucins with sialylated N-acetylgalactosamine sequences, (beta1,4 N-acetylglucosamine)(n) and N-acetyllactosamine, whose sialylation increased towards the rectum. The main features of the mucins are probably associated with the requirements of fast absorption and food passage and in protection against mechanical and pathogenic injuries.

  3. Lectin chromatography/mass spectrometry discovery workflow identifies putative biomarkers of aggressive breast cancers.

    PubMed

    Drake, Penelope M; Schilling, Birgit; Niles, Richard K; Prakobphol, Akraporn; Li, Bensheng; Jung, Kwanyoung; Cho, Wonryeon; Braten, Miles; Inerowicz, Halina D; Williams, Katherine; Albertolle, Matthew; Held, Jason M; Iacovides, Demetris; Sorensen, Dylan J; Griffith, Obi L; Johansen, Eric; Zawadzka, Anna M; Cusack, Michael P; Allen, Simon; Gormley, Matthew; Hall, Steven C; Witkowska, H Ewa; Gray, Joe W; Regnier, Fred; Gibson, Bradford W; Fisher, Susan J

    2012-04-06

    We used a lectin chromatography/MS-based approach to screen conditioned medium from a panel of luminal (less aggressive) and triple negative (more aggressive) breast cancer cell lines (n=5/subtype). The samples were fractionated using the lectins Aleuria aurantia (AAL) and Sambucus nigra agglutinin (SNA), which recognize fucose and sialic acid, respectively. The bound fractions were enzymatically N-deglycosylated and analyzed by LC-MS/MS. In total, we identified 533 glycoproteins, ∼90% of which were components of the cell surface or extracellular matrix. We observed 1011 glycosites, 100 of which were solely detected in ≥3 triple negative lines. Statistical analyses suggested that a number of these glycosites were triple negative-specific and thus potential biomarkers for this tumor subtype. An analysis of RNaseq data revealed that approximately half of the mRNAs encoding the protein scaffolds that carried potential biomarker glycosites were up-regulated in triple negative vs luminal cell lines, and that a number of genes encoding fucosyl- or sialyltransferases were differentially expressed between the two subtypes, suggesting that alterations in glycosylation may also drive candidate identification. Notably, the glycoproteins from which these putative biomarker candidates were derived are involved in cancer-related processes. Thus, they may represent novel therapeutic targets for this aggressive tumor subtype.

  4. Mutated Leguminous Lectin Containing a Heparin-Binding like Motif in a Carbohydrate-Binding Loop Specifically Binds to Heparin

    PubMed Central

    Abo, Hirohito; Soga, Keisuke; Tanaka, Atsuhiro; Tateno, Hiroaki; Hirabayashi, Jun; Yamamoto, Kazuo

    2015-01-01

    We previously introduced random mutations in the sugar-binding loops of a leguminous lectin and screened the resulting mutated lectins for novel specificities using cell surface display. Screening of a mutated peanut agglutinin (PNA), revealed a mutated PNA with a distinct preference for heparin. Glycan microarray analyses using the mutated lectin fused to the Fc region of human immunoglobulin, revealed that a particular sulfated glycosaminoglycan (GAG), heparin, had the highest binding affinity for mutated PNA among 97 glycans tested, although wild-type PNA showed affinity towards Galβ1-3GalNAc and similar galactosylated glycans. Further analyses of binding specificity using an enzyme-linked immunoadsorbent assay demonstrated that the mutated PNA specifically binds to heparin, and weakly to de-2-O-sulfated heparin, but not to other GAG chains including de-6-O-sulfated and de-N-sulfated heparins. The mutated PNA had six amino acid substitutions within the eight amino acid-long sugar-binding loop. In this loop, the heparin-binding like motif comprised three arginine residues at positions 124, 128, and 129, and a histidine at position 125 was present. Substitution of each arginine or histidine residue to alanine reduced heparin-binding ability, indicating that all of these basic amino acid residues contributed to heparin binding. Inhibition assay demonstrated that heparin and dextran sulfate strongly inhibited mutated PNA binding to heparin in dose-dependent manner. The mutated PNA could distinguish between CHO cells and proteoglycan-deficient mutant cells. This is the first report establishing a novel leguminous lectin that preferentially binds to highly sulfated heparin and may provide novel GAG-binding probes to distinguish between heterogeneous GAG repeating units. PMID:26714191

  5. A Rhizobium leguminosarum CHDL- (Cadherin-Like-) Lectin Participates in Assembly and Remodeling of the Biofilm Matrix

    PubMed Central

    Vozza, Nicolás F.; Abdian, Patricia L.; Russo, Daniela M.; Mongiardini, Elías J.; Lodeiro, Aníbal R.; Molin, Søren; Zorreguieta, Angeles

    2016-01-01

    In natural environments most bacteria live in multicellular structures called biofilms. These cell aggregates are enclosed in a self-produced polymeric extracellular matrix, which protects the cells, provides mechanical stability and mediates cellular cohesion and adhesion to surfaces. Although important advances were made in the identification of the genetic and extracellular factors required for biofilm formation, the mechanisms leading to biofilm matrix assembly, and the roles of extracellular proteins in these processes are still poorly understood. The symbiont Rhizobium leguminosarum requires the synthesis of the acidic exopolysaccharide and the PrsDE secretion system to develop a mature biofilm. PrsDE is responsible for the secretion of the Rap family of proteins that share one or two Ra/CHDL (cadherin-like-) domains. RapA2 is a calcium-dependent lectin with a cadherin-like β sheet structure that specifically recognizes the exopolysaccharide, either as a capsular polysaccharide (CPS) or in its released form [extracellular polysaccharide (EPS)]. In this study, using gain and loss of function approaches combined with phenotypic and microscopic studies we demonstrated that RapA lectins are involved in biofilm matrix development and cellular cohesion. While the absence of any RapA protein increased the compactness of bacterial aggregates, high levels of RapA1 expanded distances between cells and favored the production of a dense matrix network. Whereas endogenous RapA(s) are predominantly located at one bacterial pole, we found that under overproduction conditions, RapA1 surrounded the cell in a way that was reminiscent of the capsule. Accordingly, polysaccharide analyses showed that the RapA lectins promote CPS formation at the expense of lower EPS production. Besides, polysaccharide analysis suggests that RapA modulates the EPS size profile. Collectively, these results show that the interaction of RapA lectins with the polysaccharide is involved in rhizobial

  6. Ligand preference and orientation in b- and c-type heme-binding proteins

    PubMed Central

    Fufezan, Christian; Zhang, Jun; Gunner, M. R.

    2009-01-01

    Hemes are often incorporated into designed proteins. The importance of the heme ligand type and its orientation is still a matter of debate. Here, heme ligands and ligand orientation were investigated using a nonredundant (87 structures) and a redundant (1503 structures) set of structures to compare and contrast design features of natural b- and c-type heme-binding proteins. Histidine is the most common ligand. Marked differences in ligation motifs between b- and c-type hemes are higher occurrence of His-Met in c-type heme binding motifs (16.4% vs. 1.4%) and higher occurrence of exchangeable, small molecules in b-type heme binding motifs (67.6% vs. 9.9%). Histidine ligands that are part of the c-type CXXCH heme-binding motif show a distinct asymmetric distribution of orientation. They tend to point between either the heme propionates or between the NA and NB heme nitrogens. Molecular mechanics calculations show that this asymmetry is due to the bonded constraints of the covalent attachment between the heme and the protein. In contrast, the orientations of b-type hemes histidine ligands are found evenly distributed with no preference. Observed histidine heme ligand orientations show no dominating influence of electrostatic interactions between the heme propionates and the ligands. Furthermore, ligands in bis-His hemes are found more frequently perpendicular rather than parallel to each other. These correlations support energetic constraints on ligands that can be used in designing proteins. PMID:18491383

  7. Lectin-carbohydrate interactions on nanoporous gold monoliths.

    PubMed

    Tan, Yih Horng; Fujikawa, Kohki; Pornsuriyasak, Papapida; Alla, Allan J; Ganesh, N Vijaya; Demchenko, Alexei V; Stine, Keith J

    2013-07-01

    Monoliths of nanoporous gold (np-Au) were modified with self-assembled monolayers of octadecanethiol (C18-SH), 8-mercaptooctyl α-D-mannopyranoside (αMan-C8-SH), and 8-mercapto-3,6-dioxaoctanol (HO-PEG2-SH), and the loading was assessed using thermogravimetric analysis (TGA). Modification with mixed SAMs containing αMan-C8-SH (at a 0.20 mole fraction in the SAM forming solution) with either octanethiol or HO-PEG2-SH was also investigated. The np-Au monoliths modified with αMan-C8-SH bind the lectin Concanavalin A (Con A), and the additional mass due to bound protein was assessed using TGA analysis. A comparison of TGA traces measured before and after exposure of HO-PEG2-SH modified np-Au to Con A showed that the non-specific binding of Con A was minimal. In contrast, np-Au modified with octanethiol showed a significant mass loss due to non-specifically adsorbed Con A. A significant mass loss was also attributed to binding of Con A to bare np-Au monoliths. TGA revealed a mass loss due to the binding of Con A to np-Au monoliths modified with pure αMan-C8-SH. The use of mass losses determined by TGA to compare the binding of Con A to np-Au monoliths modified by mixed SAMs of αMan-C8-SH and either octanethiol or HO-PEG2-SH revealed that binding to mixed SAM modified surfaces is specific for the mixed SAMs with HO-PEG2-SH but shows a significant contribution from non-specific adsorption for the mixed SAMs with octanethiol. Minimal adsorption of immunoglobulin G (IgG) and peanut agglutinin (PNA) towards the mannoside modified np-Au monoliths was demonstrated. A greater mass loss was found for Con A bound onto the monolith than for either IgG or PNA, signifying that the mannose presenting SAMs in np-Au retain selectivity for Con A. TGA data also provide evidence that Con A bound to the αMan-C8-SH modified np-Au can be eluted by flowing a solution of methyl α-D-mannopyranoside through the structure. The presence of Con A proteins on the modified np-Au surface was

  8. Identification and expression analysis of three c-type lysozymes in Oreochromis aureus.

    PubMed

    Gao, Feng-ying; Qu, Lan; Yu, Shao-guo; Ye, Xing; Tian, Yuan-yuan; Zhang, Li-li; Bai, Jun-jie; Lu, Maixin

    2012-05-01

    Lysozyme is an important molecule of innate immune system for the defense against bacterial infections. Three genes encoding chicken-type (c-type) lysozymes, C1-, C2-, C3-type, were obtained from tilapia Oreochromis aureus by RT-PCR and the RACE method. Catalytic and other conserved structure residues required for functionality were identified. The amino acid sequence identities between C1- and C2-type, C1- and C3-type, C2- and C3-type were 67.8%, 65.7% and 63.9%, respectively. Phylogenetic tree analyze indicated the three genes were firstly grouped to those of higher teleosteans, Pleuronectiformes and Tetraodontiformes fishes, and then clustered to those of lower teleosteans, Cypriniformes fishes. Bioinformatic analysis of mature peptide showed that the three genes possess typical sequence characteristics, secondary and tertiary structure of c-type lysozymes. The three tilapia c-type lysozymes mRNAs were mainly expressed in liver and muscle, and C1-type lysozyme also highly expressed in intestine. C1-type lysozyme mRNA was weakly expressed in stomach, C2- and C3-type mRNAs were weakly expressed in intestine. After bacterial challenge, up-regulation was obvious in kidney and spleen for C1-type lysozyme mRNA, while for C2- and C3-type lysozyme obvious increase were observed in stomach and liver, suggesting that C1-type lysozyme may mainly play roles in defense, while C2- and C3-type lysozyme mainly conduct digestive function against bacteria infection. All the three c-type recombinant lysozymes displayed lytic activity against Gram-negative and Gram-positive bacteria. These results indicated that three c-type lysozymes play important roles in the defense of O. aureus against bacteria infections.

  9. Properties of Lectins in the Root and Seed of Lotononis bainesii1

    PubMed Central

    Law, Ian J.; Strijdom, Barend W.

    1984-01-01

    A lectin was purified from the root of Lotononis bainesii Baker by affinity chromatography on Sepharose-blood group substance A + H. The molecular weight of the lectin was estimated by gel filtration to be 118,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the lectin was a tetramer composed of two slightly different subunits with respective molecular weights of 32,000 and 35,000. The lectin had a hexose content of 12% (w/w) and contained the sugars fucose, glucosamine, mannose, and xylose. Root lectin hemagglutination was preferentially inhibited by disaccharides with terminal nonreducing galactose residues. Antigens capable of cross-reaction with root lectin antibody were not detected in the seed of L. bainesii. A lectin from the seed of L. bainesii was partially purified by adsorption to pronase-treated rabbit erythrocytes. The lectin preparation had a molecular weight of approximately 200,000. Galactose and galactono-1,4-lactone inhibited seed lectin hemagglutination but lactose was ineffective. There was no evidence that the root of L. bainesii contained material antigenically related to the seed lectin. Images Fig. 2 Fig. 4 Fig. 5 PMID:16663508

  10. Isolation and partial characterization of a lectin from ground elder (Aegopodium podagraria) rhizomes.

    PubMed

    Peumans, W J; Nsimba-Lubaki, M; Peeters, B; Broekaert, W F

    1985-05-01

    A lectin has been isolated from rhizomes of ground elder (Aegopodium podagraria) using a combination of affinity chromatography on erythrocyte membrane proteins immobilized on cross-linked agarose and hydroxyapatite, and ion-exchange chromatography. The molecular structure of the lectin was determined by gelfiltration, sucrose density-gradient centrifugation and gel electrophoresis under denaturing conditions. It has an unusually high Mr (about 480000) and is most probably an octamer composed of two distinct types of subunits with slightly different Mr (about 60000). Hapten inhibition assays indicated that the Aegopodium lectin is preferentially inhibited by N-acetylgalactosamine. Nevertheless, it does not agglutinate preferentially blood-group-A erythrocytes. The ground-elder lectin is a typical non-seed lectin, which occurs virtually exclusively in the underground rhizomes. In this organ it is an abundant protein as it represents up to 5% of the total protein content. The lectin content of the rhizome tissue varies strongly according to its particular location along the organ. In addition, the lectin content changes dramatically as a function of the seasons. The ground-elder lectin differs from all other plant lectins by its unusually high molecular weight. In addition, it is the first lectin to be isolated from a species of the family Apiaceae.

  11. GRID3C: Computer program for generation of C type multilevel, three dimensional and boundary conforming periodic grids

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1982-01-01

    A fast computer program, GRID3C, was developed for accurately generating periodic, boundary conforming, three dimensional, consecutively refined computational grids applicable to realistic axial turbomachinery geometries. The method is based on using two functions to generate two dimensional grids on a number of coaxial axisymmetric surfaces positioned between the centerbody and the outer radial boundary. These boundary fitted grids are of the C type and are characterized by quasi-orthogonality and geometric periodicity. The built in nonorthogonal coordinate stretchings and shearings cause the grid clustering in the regions of interest. The stretching parameters are part of the input to GRID3C. In its present version GRID3C can generate and store a maximum of four consecutively refined three dimensional grids. The output grid coordinates can be calculated either in the Cartesian or in the cylindrical coordinate system.

  12. Crystal structure of an enzymatically inactive trans-sialidase-like lectin from Trypanosoma cruzi: the carbohydrate binding mechanism involves residual sialidase activity.

    PubMed

    Oppezzo, Pablo; Obal, Gonzalo; Baraibar, Martín A; Pritsch, Otto; Alzari, Pedro M; Buschiazzo, Alejandro

    2011-09-01

    Trans-sialidases are surface-located proteins in Trypanosoma cruzi that participate in key parasite-host interactions and parasite virulence. These proteins are encoded by a large multigenic family, with tandem-repeated and individual genes dispersed throughout the genome. While a large number of genes encode for catalytically active enzyme isoforms, many others display mutations that involve catalytic residues. The latter ultimately code for catalytically inactive proteins with very high similarity to their active paralogs. These inactive members have been shown to be lectins, able to bind sialic acid and galactose in vitro, although their cellular functions are yet to be fully established. We now report structural and biochemical evidence extending the current molecular understanding of these lectins. We have solved the crystal structure of one such catalytically inactive trans-sialidase-like protein, after soaking with a specific carbohydrate ligand, sialyl-α2,3-lactose. Instead of the expected trisaccharide, the binding pocket was observed occupied by α-lactose, strongly suggesting that the protein retains residual hydrolytic activity. This hypothesis was validated by enzyme kinetics assays, in comparison to fully active wild-type trans-sialidase. Surface plasmon resonance also confirmed that these trans-sialidase-like lectins are not only able to bind small oligosaccharides, but also sialylated glycoproteins, which is relevant in the physiologic scenario of parasite infection. Inactive trans-sialidase proteins appear thus to be β-methyl-galactosyl-specific lectins, evolved within an exo-sialidase scaffold, thus explaining why their lectin activity is triggered by the presence of terminal sialic acid.

  13. Evaluating the Equilibrium Association Constant between ArtinM Lectin and Myeloid Leukemia Cells by Impedimetric and Piezoelectric Label Free Approaches.

    PubMed

    Carvalho, Fernanda C; Martins, Denise C; Santos, Adriano; Roque-Barreira, Maria-Cristina; Bueno, Paulo R

    2014-12-01

    Label-free methods for evaluating lectin-cell binding have been developed to determine the lectin-carbohydrate interactions in the context of cell-surface oligosaccharides. In the present study, mass loading and electrochemical transducer signals were compared to characterize the interaction between lectin and cellular membranes by measuring the equilibrium association constant, Ka , between ArtinM lectin and the carbohydrate sites of NB4 leukemia cells. By functionalizing sensor interfaces with ArtinM, it was possible to determine Ka over a range of leukemia cell concentrations to construct analytical curves from impedimetric and/or mass-associated frequency shifts with analytical signals following a Langmuir pattern. Using the Langmuir isotherm-binding model, the Ka obtained were (8.9 ± 1.0) × 10(-5) mL/cell and (1.05 ± 0.09) × 10(-6) mL/cell with the electrochemical impedance spectroscopy (EIS) and quartz crystal microbalance (QCM) methods, respectively. The observed differences were attributed to the intrinsic characteristic sensitivity of each method in following Langmuir isotherm premises.

  14. Blocking of Pseudomonas aeruginosa and Chromobacterium violaceum lectins by diverse mammalian milks.

    PubMed

    Zinger-Yosovich, K D; Iluz, D; Sudakevitz, D; Gilboa-Garber, N

    2010-02-01

    Pseudomonas aeruginosa and Chromobacterium violaceum morbid and mortal infections are initiated by bacterial adherence to host-cell receptors via their adhesins, including lectins (which also contribute to bacterial biofilm formation). Pseudomonas aeruginosa produces a galactophilic lectin, PA-IL (LecA), and a fucophilic (Lewis-specific) lectin, PA-IIL (LecB), and C. violaceum produces a fucophilic (H-specific) lectin, CV-IIL. The antibiotic resistance of these bacteria prompted the search for glycosylated receptor-mimicking compounds that would function as glycodecoys for blocking lectin attachment to human cell receptors. Lectins PA-IL and PA-IIL have been shown to be useful for such glycodecoy probing, clearly differentiating between human and cow milks. This article describes their usage, together with CV-IIL and the plant lectin concanavalin A, for comparing the anti-lectin-dependent adhesion potential of diverse mammalian milks. The results show that the diverse milks differ in blocking (hemagglutination inhibition) and differential binding (Western blots) of these lectins. Human milk most strongly inhibited the 3 bacterial lectins (with PA-IIL superiority), followed by alpaca, giraffe, and monkey milks, whereas cow milk was a weak inhibitor. Lectin PA-IL was inhibited strongly by human, followed by alpaca, mare, giraffe, buffalo, and monkey milks, weakly by camel milk, and not at all by rabbit milk. Lectins PA-IIL and CV-IIL were also most sensitive to human milk, followed by alpaca, monkey, giraffe, rabbit, and camel milks but negligibly sensitive to buffalo and mare milks. Plant lectin concanavalinA, which was used as the reference, differed from them in that it was much less sensitive to human milk and was equally as sensitive to cow milk. These results have provided important information on the anti-lectin-dependent adhesion potential of the diverse milks examined. They showed that human followed by alpaca, giraffe, and Rhesus monkey milks efficiently

  15. Granule structure and distribution of allomorphs in C-type high-amylose rice starch granule modified by antisense RNA inhibition of starch branching enzyme.

    PubMed

    Wei, Cunxu; Qin, Fengling; Zhou, Weidong; Yu, Huaguang; Xu, Bin; Chen, Chong; Zhu, Lijia; Wang, Youping; Gu, Minghong; Liu, Qiaoquan

    2010-11-24

    C-type starch, which is a combination of both A-type and B-type crystal starch, is usually found in legumes and rhizomes. We have developed a high-amylose transgenic line of rice (TRS) by antisense RNA inhibition of starch branching enzymes. The starch in the endosperm of this TRS was identified as typical C-type crystalline starch, but its fine granular structure and allomorph distribution remained unclear. In this study, we conducted morphological and spectroscopic studies on this TRS starch during acid hydrolysis to determine the distribution of A- and B-type allomorphs. The morphology of starch granules after various durations of acid hydrolysis was compared by optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results showed that amorphous regions were located at the center part of TRS starch subgranules. During acid hydrolysis, starch was degraded from the interior of the subgranule to the outer surface, while the peripheral part of the subgranules and the surrounding band of the starch granule were highly resistant to acid hydrolysis. The spectroscopic changes detected by X-ray powder diffraction, 13C cross-polarization magic-angle spinning NMR, and attenuated total reflectance Fourier transform infrared showed that the A-type allomorph was hydrolyzed more rapidly than the B-type, and that the X-ray diffraction profile gradually changed from a native C-type to a CB-type with increasing hydrolysis time. Our results showed that, in TRS starch, the A-type allomorph was located around the amorphous region, and was surrounded by the B-type allomorph located in the peripheral region of the subgranules and the surrounding band of the starch granule. Thus, the positions of A- and B-type allomorphs in the TRS C-type starch granule differ markedly from those in C-type legume and rhizome starch.

  16. Histochemical characterization of the lectin-binding sites in the equine vomeronasal organ.

    PubMed

    Lee, Jee-young; Kang, Tae-young; Lee, Yong-duk; Shin, Tae-kyun

    2003-04-01

    The binding specificities of various lectins, such as the Dolichos biflorus agglutinin (DBA), soybean agglutinin (SBA), and the Bandeiraea simplicifolia BS-1 (Isolectin B4), Triticum vulgaris (WGA), Arachis hypogaea (PNA), and Ulex europaeus (UEA-I) lectins, were studied in the vomeronasal organ of the horse. The microvilli of the vomeronasal sensory epithelium were positive for DBA, SBA, Isolectin B4, WGA, PNA, and UEA-I. The receptor cells showed intense reactivity for DBA and WGA. Lectins were not detected in the supporting cells or basal cells. The Jacobson's glands were positive for WGA and UEA-I, but lectins were absent from the nerve bundles. From these results, we postulate that several lectin-binding carbohydrates on the microvilli and neurosensory cells are associated with chemoreception in the horse. In addition, the differential lectin-binding patterns in the horse suggest that the carbohydrates present in this particular sense organ are species-specific.

  17. Leguminous lectins as tools for studying the role of sugar residues in leukocyte recruitment.

    PubMed Central

    Alencar, N M; Teixeira, E H; Assreuy, A M; Cavada, B S; Flores, C A; Ribeiro, R A

    1999-01-01

    The natural physiological ligands for selectins are oligosaccharides found in glycoprotein or glycolipid molecules in cell membranes. In order to study the role of sugar residues in the in vivo lectin anti-inflammatory effect, we tested three leguminous lectins with different carbohydrate binding affinities in the peritonitis and paw oedema models induced by carrageenin in rats. L. sericeus lectin was more anti-inflammatory than D. virgata lectin, the effects being reversed by their specific binding sugars (N-acetylglucosamine and alpha-methylmannoside, respectively). However, V. macrocarpa, a galactose-specific lectin, was not anti-inflammatory. The proposed anti-inflammatory activity of lectins could be due to a blockage of neutrophil-selectin carbohydrate ligands. Thus, according to the present data, we suggest an important role for N-acetylglucosamine residue as the major ligand for selectins on rat neutrophil membranes. PMID:10704148

  18. A galactose-specific lectin from the hemolymph of the pearl oyster, Pinctada fucata martensii.

    PubMed

    Suzuki, T; Mori, K

    1989-01-01

    1. A lectin in the serum of Pinctada fucata martensii was purified by a combination of affinity chromatography on Sepharose 4B coupled with bovine submaxillary gland mucine, anion exchange chromatography on Mono Q and gel filtration on Superose 6. 2. The purified lectin was indicated to be homogeneous by polyacrylamide electrophoresis and rechromatography on Mono Q. 3. The purified lectin was approximately 440,000 in molecular weight and was composed of identical subunits with a molecular weight of approximately 20,000. 4. D-galactose and N-acetylgalactosamine gave a 50% inhibition of agglutination of horse erythrocytes by the lectin at 0.3 and 1.2 mM, respectively. 5. The antibody obtained from rabbit immunized with the purified lectin was monospecific to the lectin judged from the hemagglutination blocking test, immunoelectrophoresis and immunoblotting.

  19. Lectin Activation in Giardia lamblia by Host Protease: A Novel Host-Parasite Interaction

    NASA Astrophysics Data System (ADS)

    Lev, Boaz; Ward, Honorine; Keusch, Gerald T.; Pereira, Miercio E. A.

    1986-04-01

    A lectin in Giardia lamblia was activated by secretions from the human duodenum, the environment where the parasite lives. Incubation of the secretions with trypsin inhibitors prevented the appearance of lectin activity, implicating proteases as the activating agent. Accordingly, lectin activation was also produced by crystalline trypsin and Pronase; other proteases tested were ineffective. When activated, the lectin agglutinated intestinal cells to which the parasite adheres in vivo. The lectin was most specific to mannose-6-phosphate and apparently was bound to the plasma membrane. Activation of a parasite lectin by a host protease represents a novel mechanism of hostparasite interaction and may contribute to the affinity of Giardia lamblia to the infection site.

  20. Could plant lectins become promising anti-tumour drugs for causing autophagic cell death?

    PubMed

    Liu, Z; Luo, Y; Zhou, T-T; Zhang, W-Z

    2013-10-01

    Plant lectins, a group of highly diverse carbohydrate-binding proteins of non-immune origin, are ubiquitously distributed through a variety of plant species, and have recently drawn rising attention due to their remarkable ability to kill tumour cells using mechanisms implicated in autophagy. In this review, we provide a brief outline of structures of some representative plant lectins such as concanavalin A, Polygonatum cyrtonema lectin and mistletoe lectins. These can target autophagy by modulating BNIP-3, ROS-p38-p53, Ras-Raf and PI3KCI-Akt pathways, as well as Beclin-1, in many types of cancer cells. In addition, we further discuss how plant lectins are able to kill cancer cells by modulating autophagic death, for therapeutic purposes. Together, these findings provide a comprehensive perspective concerning plant lectins as promising new anti-tumour drugs, with respect to autophagic cell death in future cancer therapeutics.

  1. Large Scale Magnetic Separation of Solanum tuberosum Tuber Lectin from Potato Starch Waste Water

    NASA Astrophysics Data System (ADS)

    Safarik, Ivo; Horska, Katerina; Martinez, Lluis M.; Safarikova, Mirka

    2010-12-01

    A simple procedure for large scale isolation of Solanum tuberosum tuber lectin from potato starch industry waste water has been developed. The procedure employed magnetic chitosan microparticles as an affinity adsorbent. Magnetic separation was performed in a flow-through magnetic separation system. The adsorbed lectin was eluted with glycine/HCl buffer, pH 2.2. The specific activity of separated lectin increased approximately 27 times during the isolation process.

  2. Isolation and partial characterization of a lectin from a false brome grass (Brachypodium sylvaticum).

    PubMed Central

    Peumans, W J; Spaepen, C; Stinissen, H M; Carlier, A R

    1982-01-01

    A lectin has been isolated from embryos of a false brome grass species (Brachypodium sylvaticum) by affinity chromatography on immobilized N-acetylglucosamine. It is a dimeric protein of two identical subunits of mol.wt. 18 000. Although it resembles cereal lectins with respect to its biochemical and physicochemical properties, it differs structurally in several aspects from wheat-germ-agglutinin-like lectins. Images Fig. 1. Fig. 3. Fig. 4. PMID:6816219

  3. Parallel quantification of lectin-glycan interaction using ultrafiltration.

    PubMed

    Takeda, Yoichi; Seko, Akira; Sakono, Masafumi; Hachisu, Masakazu; Koizumi, Akihiko; Fujikawa, Kohki; Ito, Yukishige

    2013-06-28

    Using ultrafiltration membrane, a simple method for screening protein-ligand interaction was developed. The procedure comprises three steps: mixing ligand with protein, ultrafiltration of the solution, and quantification of unbound ligands by HPLC. By conducting analysis with variable protein concentrations, affinity constants were easily obtained. Multiple ligands can be analyzed simultaneously as a mixture, when concentration of ligands was controlled. Feasibility of this method for lectin-glycan interaction analysis was examined using fluorescently labeled high-mannose-type glycans and recombinant intracellular lectins or endo-α-mannosidase mutants. Estimated Ka values of malectin and VIP36 were in good agreement indeed with those evaluated by conventional methods such as isothermal titration calorimetry (ITC) or frontal affinity chromatography (FAC). Finally, several mutants of endo-α-mannosidase were produced and their affinities to monoglucosylated glycans were evaluated.

  4. Gliadins bind to reticulin in a lectin-like manner.

    PubMed

    Unsworth, D J; Leonard, J N; Hobday, C M; Griffiths, C E; Powles, A V; Haffenden, G P; Fry, L

    1987-01-01

    It has previously been reported that gliadins bind to reticulin in tissue sections. Three lines of evidence are reported in this study which indicate that the gliadins bind to reticulins because they are lectins which bind to sugars expressed on glycoproteins in reticulin and other sites. First, immunofluorescence studies on tissue sections showed that although gliadin binding is largely confined to areas rich in reticulin, it is, nonetheless, also seen in one or two other sites devoid of reticulin. Second, by using fluorescein-labelled lectins of known specificity, it has been shown that the areas to which gliadins bind in tissue sections (including those sites devoid of reticulin) are rich in particular sugars. Third, it has been shown that one of these sugars, alpha-D-mannose, partially inhibited gliadin binding to tissue sections.

  5. Purification and biological effects of Araucaria angustifolia (Araucariaceae) seed lectin

    SciTech Connect

    Santi-Gadelha, Tatiane; Almeida Gadelha, Carlos Alberto de; Aragao, Karoline Saboia; Gomes, Raphaela Cardoso; Freitas Pires, Alana de; Toyama, Marcos Hikari; Oliveira Toyama, Daniela de; Nunes de Alencar, Nylane Maria; Criddle, David Neil; Assreuy, Ana Maria Sampaio . E-mail: assreuy@uece.br; Cavada, Benildo Sousa . E-mail: bscavada@ufc.br

    2006-12-01

    This paper describes the purification and characterization of a new N-acetyl-D-glucosamine-specific lectin from Araucaria angustifolia (AaL) seeds (Araucariaceae) and its anti-inflammatory and antibacterial activities. AaL was purified using a combination of affinity chromatography on a chitin column and ion exchange chromatography on Sephacel-DEAE. The pure protein has 8.0 kDa (SDS-PAGE) and specifically agglutinates rabbit erythrocytes, effect that was independent of the presence of divalent cations and was inhibited after incubation with glucose and N-acetyl-D-glucosamine. AaL showed antibacterial activity against Gram-negative and Gram-positive strains, shown by scanning electron microscopy. AaL, intravenously injected into rats, showed anti-inflammatory effect, via carbohydrate site interaction, in the models of paw edema and peritonitis. This lectin can be used as a tool for studying bacterial infections and inflammatory processes.

  6. Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems?

    PubMed

    Allen, James W A; Jackson, Andrew P; Rigden, Daniel J; Willis, Antony C; Ferguson, Stuart J; Ginger, Michael L

    2008-05-01

    Mitochondrial cytochromes c and c(1) are present in all eukaryotes that use oxygen as the terminal electron acceptor in the respiratory chain. Maturation of c-type cytochromes requires covalent attachment of the heme cofactor to the protein, and there are at least five distinct biogenesis systems that catalyze this post-translational modification in different organisms and organelles. In this study, we use biochemical data, comparative genomic and structural bioinformatics investigations to provide a holistic view of mitochondrial c-type cytochrome biogenesis and its evolution. There are three pathways for mitochondrial c-type cytochrome maturation, only one of which is present in prokaryotes. We analyze the evolutionary distribution of these biogenesis systems, which include the Ccm system (System I) and the enzyme heme lyase (System III). We conclude that heme lyase evolved once and, in many lineages, replaced the multicomponent Ccm system (present in the proto-mitochondrial endosymbiont), probably as a consequence of lateral gene transfer. We find no evidence of a System III precursor in prokaryotes, and argue that System III is incompatible with multi-heme cytochromes common to bacteria, but absent from eukaryotes. The evolution of the eukaryotic-specific protein heme lyase is strikingly unusual, given that this protein provides a function (thioether bond formation) that is also ubiquitous in prokaryotes. The absence of any known c-type cytochrome biogenesis system from the sequenced genomes of various trypanosome species indicates the presence of a third distinct mitochondrial pathway. Interestingly, this system attaches heme to mitochondrial cytochromes c that contain only one cysteine residue, rather than the usual two, within the heme-binding motif. The isolation of single-cysteine-containing mitochondrial cytochromes c from free-living kinetoplastids, Euglena and the marine flagellate Diplonema papillatum suggests that this unique form of heme attachment

  7. Annotation and genetic diversity of the chicken collagenous lectins.

    PubMed

    Hamzić, Edin; Pinard-van der Laan, Marie-Hélène; Bed'Hom, Bertrand; Juul-Madsen, Helle Risdahl

    2015-06-01

    Collectins and ficolins are multimeric proteins present in various tissues and are actively involved in innate immune responses. In chickens, six different collagenous lectins have been characterized so far: mannose-binding lectin (MBL), surfactant protein A (SP-A), collectin 10 (COLEC10), collectin 11 (COLEC11), collectin 12 (COLEC12), lung lectin (LL) and one ficolin (FCN). However, the structural and functional features of the chicken collectins and ficolin are still not fully understood. Therefore, the aims of this study were: (i) to make an overview of the genetic structure and function of chicken collectins and the ficolin, (ii) to investigate the variation in the chicken collectins and the ficolin gene in different chicken populations, and (iii) to assess the presence of MBL gene variants in different chicken populations. We performed comparative genomic analysis using publically available data. The obtained results showed that collectins and ficolins have conserved protein sequences and gene structure across all vertebrate groups and this is especially notable for COLEC10, COLEC11 and COLEC12. For the purpose of studying the genetic variation, 179 animals from 14 populations were genotyped using 31 SNPs covering five genomic regions. The obtained results revealed low level of heterozygosity in the collagenous lectins except for the COLEC12 gene and the LL-SPA-MBL region compared to heterozygosity at neutral microsatellite markers. In addition, the MBL gene variants were assessed in different chicken populations based on the polymorphisms in the promoter region. We observed 10 previously identified MBL variants with A2/A8 and A4 as the most frequent alleles.

  8. Lectins as membrane components of mitochondria from Ricinus communis.

    PubMed

    Bowles, D J; Schnarrenberger, C; Kauss, H

    1976-11-15

    1. Mitochondria were isolated from developing endosperm of Ricinus communis and were fractionated into outer membrane and inner membrane. The relative purity of the two membrane fractions was determined by marker enzymes. The fractions were also examined by negative-stain electron microscopy. 2. Membrane fractions were sequentially extracted in the following way. (a) Suspension in 0.5M-potassium phosphate, pH7.1; (b)suspension in 0.1M-EDTA (disodium salt)/0.05M-potassium phosphate, pH7.1; (c) sonication in 0.05M-potassium phosphate, pH7.1;(d)sonication in aq. Triton X-100 (0.1%). The membranes were pelleted by centrifugation at 100 000g for 15 min, between each step. Agglutination activity in the extracts was investigated by using trypsin-treated rabbit erythrocytes. 3. The addition of lactose to inner mitochondrial membrane resulted in the solubilization of part of the lectin activity, indicating that the protein was attached to the membrane via its carbohydrate-binding site. Pretreatment of the membranes with lactose before tha usual extraction procedure showed that lactose could extract lectins that normally required more harsh treatment of the membrane for solubilization. 4. Lectins extracted from inner membranes were purified by affinity chromatography on agarose gel. Polyacrylamide-gel electrophoresis of purified samples in sodium dodecyl sulphate indicated that at least part of the lectin present in inner mitochondrial membrane was identical with the R. communis agglutinin of mol.wt. 120 000.

  9. Factors affecting binding of galacto ligands to Actinomyces viscosus lectin.

    PubMed Central

    Heeb, M J; Marini, A M; Gabriel, O

    1985-01-01

    The specificity requirements for the binding of Actinomyces viscosus T14V were examined by testing simple sugars, oligopeptides, and glycoproteins as inhibitors of the aggregation of glycoprotein-coated latex beads and washed A. viscosus cells. Lactose was the most inhibitory simple sugar; D-fucose and D-galactose were equally inhibitory, methyl-alpha-D-fucoside was slightly less inhibitory, and L-fucose and raffinose were not inhibitory. The concentration of galactose residues required for 50% inhibition of aggregation was 15 times higher in the form of lactose than in the form of asialoglycoprotein, suggesting an enhancement of lectin binding when galactose residues are clustered. However, when the inhibitory power of bi-, tri-, and tetraantennary asialooligopeptides of alpha 1-acid glycoprotein was compared with that of equivalent concentrations of galactose in the form of lactose, the biantennary form was slightly less effective than lactose, the triantennary form was approximately as effective as lactose, and the tetraantennary form was slightly more effective than lactose. Steric interference may prevent this type of clustering from enhancing lectin binding. The O-linked asialooligopeptides of asialofetuin were 10 times more inhibitory than an equivalent concentration of galactose in the form of N-linked asialooligopeptides. Thus, galactose beta-1----3 linked to N-acetylgalactosamine exhibits greater specificity for the A. viscosus lectin than does galactose beta-1----4 linked to N-acetylglucosamine. These results, taken together with previously reported data, are consistent with a lectin of low affinity, binding enhanced by multivalency, and specificity for beta-linked galactose. PMID:2578122

  10. A lectin-mediated resistance of higher fungi against predators and parasites.

    PubMed

    Bleuler-Martínez, S; Butschi, A; Garbani, M; Wälti, M A; Wohlschlager, T; Potthoff, E; Sabotiĉ, J; Pohleven, J; Lüthy, P; Hengartner, M O; Aebi, M; Künzler, M

    2011-07-01

    Fruiting body lectins are ubiquitous in higher fungi and characterized by being synthesized in the cytoplasm and up-regulated during sexual development. The function of these lectins is unclear. A lack of phenotype in sexual development upon inactivation of the respective genes argues against a function in this process. We tested a series of characterized fruiting body lectins from different fungi for toxicity towards the nematode Caenorhabditis elegans, the mosquito Aedes aegypti and the amoeba Acanthamoeba castellanii. Most of the fungal lectins were found to be toxic towards at least one of the three target organisms. By altering either the fungal lectin or the glycans of the target organisms, or by including soluble carbohydrate ligands as competitors, we demonstrate that the observed toxicity is dependent on the interaction between the fungal lectins and specific glycans in the target organisms. The toxicity was found to be dose-dependent such that low levels of lectin were no longer toxic but still led to food avoidance by C. elegans. Finally, we show, in an ecologically more relevant scenario, that challenging the vegetative mycelium of Coprinopsis cinerea with the fungal-feeding nematode Aphelenchus avenae induces the expression of the nematotoxic fruiting body lectins CGL1 and CGL2. Based on these findings, we propose that filamentous fungi possess an inducible resistance against predators and parasites mediated by lectins that are specific for glycans of these antagonists.

  11. Parkia pendula seed lectin: potential use to treat cutaneous wounds in healthy and immunocompromised mice.

    PubMed

    Coriolano, Marília Cavalcanti; de Melo, Cristiane Moutinho Lagos; Silva, Flávio de Oliveira; Schirato, Giuliana Viegas; Porto, Camila Souza; dos Santos, Paulo Jorge Parreira; Correia, Maria Tereza dos Santos; Porto, Ana Lúcia Figueiredo; Carneiro-Leão, Ana Maria dos Anjos; Coelho, Luana Cassandra Breitenbach Barroso

    2014-03-01

    Parkia pendula seed lectin was used to treat cutaneous wounds of normal and immunocompromised mice, inducing cicatrization. Methotrexate (0.8 mg/kg/week) was used as immunosuppressive drug. Wounds were produced in the dorsal region (1 cm(2)) of female albino Swiss mice (Mus musculus), health and immunocompromised. Wounds were daily topically treated with 100 μL of the following solutions: (1) control (NaCl 0.15 M), (2) control Im (0.15 M NaCl), (3) P. pendula seed lectin (100 μg/mL), and (4) P. pendula seed lectin Im (100 μg/mL). Clinical evaluation was performed during 12 days. Biopsies for histopathology analysis and microbiological examinations were carried out in the second, seventh, and 12th days. The presence of edema and hyperemia was observed in all groups during inflammatory period. The first crust was detected from the second day, only in the groups treated with P. pendula seed lectin. Microbiological analysis of wounds from day 0 to day 2 did not show bacterium at P. pendula seed lectin group; however, Staphylococcus sp. was detected every day in the other groups. The lectin markedly induced a total wound closing at P. pendula seed lectin and P. pendula seed lectin Im groups on 11th day of evolution. The present study suggests that P. pendula seed lectin is a biomaterial potential to show pharmacological effect in the repair process of cutaneous wounds.

  12. Toxicity and binding profile of lectins from the Genus canavalia on brine shrimp.

    PubMed

    Arruda, Francisco Vassiliepe Sousa; Melo, Arthur Alves; Vasconcelos, Mayron Alves; Carneiro, Romulo Farias; Barroso-Neto, Ito Liberato; Silva, Suzete Roberta; Pereira-Junior, Francisco Nascimento; Nagano, Celso Shiniti; Nascimento, Kyria Santiago; Teixeira, Edson Holanda; Saker-Sampaio, Silvana; Sousa Cavada, Benildo; Sampaio, Alexandre Holanda

    2013-01-01

    Lectins are sugar-binding proteins widely distributed in nature with many biological functions. Although many lectins have a remarkable biotechnological potential, some of them can be cytotoxic. Thus, the aim of this study was to assess the toxicity of five lectins, purified from seeds of different species of Canavalia genus. In order to determine the toxicity, assays with Artemia nauplii were performed. In addition, a fluorescence assay was carried out to evaluate the binding of lectins to Artemia nauplii. In order to verify the relationship between the structure of lectins and their cytotoxic effect, structural analysis was carried out to evaluate the volume of the carbohydrate recognition domain (CRD) of each lectin. The results showed that all lectins exhibited different toxicities and bound to a similar area in the digestive tract of Artemia nauplii. Concerning the structural analysis, differences in spatial arrangement and volume of CRD may explain the variation of the toxicity exhibited by each lectin. To this date, this is the first study that establishes a link between toxicity and structure of CRD from Diocleinae lectins.

  13. Cloning and characterization of the lectin cDNA clones from onion, shallot and leek.

    PubMed

    Van Damme, E J; Smeets, K; Engelborghs, I; Aelbers, H; Balzarini, J; Pusztai, A; van Leuven, F; Goldstein, I J; Peumans, W J

    1993-10-01

    Characterization of the lectins from onion (Allium cepa), shallot (A. ascalonicum) and leek (A. porrum) has shown that these lectins differ from previously isolated Alliaceae lectins not only in their molecular structure but also in their ability to inhibit retrovirus infection of target cells. cDNA libraries constructed from poly(A)-rich RNA isolated from young shoots of onion, shallot and leek were screened for lectin cDNA clones using colony hybridization. Sequence analysis of the lectin cDNA clones from these three species revealed a high degree of sequence similarity both at the nucleotide and at the amino acid level. Apparently the onion, shallot and leek lectins are translated from mRNAs of ca. 800 nucleotides. The primary translation products are preproproteins (ca. 19 kDa) which are converted into the mature lectin polypeptides (12.5-13 kDa) after post-translational modifications. Southern blot analysis of genomic DNA has shown that the lectins are most probably encoded by a family of closely related genes which is in good agreement with the sequence heterogeneity found between different lectin cDNA clones of one species.

  14. A Lectin from the Mussel Mytilus galloprovincialis Has a Highly Novel Primary Structure and Induces Glycan-mediated Cytotoxicity of Globotriaosylceramide-expressing Lymphoma Cells*

    PubMed Central

    Fujii, Yuki; Dohmae, Naoshi; Takio, Koji; Kawsar, Sarkar M. A.; Matsumoto, Ryo; Hasan, Imtiaj; Koide, Yasuhiro; Kanaly, Robert A.; Yasumitsu, Hidetaro; Ogawa, Yukiko; Sugawara, Shigeki; Hosono, Masahiro; Nitta, Kazuo; Hamako, Jiharu; Matsui, Taei; Ozeki, Yasuhiro

    2012-01-01

    A novel lectin structure was found for a 17-kDa α-d-galactose-binding lectin (termed “MytiLec”) isolated from the Mediterranean mussel, Mytilus galloprovincialis. The complete primary structure of the lectin was determined by Edman degradation and mass spectrometric analysis. MytiLec was found to consist of 149 amino acids with a total molecular mass of 16,812.59 Da by Fourier transform-ion cyclotron resonance mass spectrometry, in good agreement with the calculated value of 16,823.22 Da. MytiLec had an N terminus of acetylthreonine and a primary structure that was highly novel in comparison with those of all known lectins in the structure database. The polypeptide structure consisted of three tandem-repeat domains of ∼50 amino acids each having 45–52% homology with each other. Frontal affinity chromatography technology indicated that MytiLec bound specifically to globotriose (Gb3; Galα1–4Galβ1–4Glc), the epitope of globotriaosylceramide. MytiLec showed a dose-dependent cytotoxic effect on human Burkitt lymphoma Raji cells (which have high surface expression of Gb3) but had no such effect on erythroleukemia K562 cells (which do not express Gb3). The cytotoxic effect of MytiLec was specifically blocked by the co-presence of an α-galactoside. MytiLec treatment of Raji cells caused increased binding of anti-annexin V antibody and incorporation of propidium iodide, which are indicators of cell membrane inversion and perforation. MytiLec is the first reported lectin having a primary structure with the highly novel triple tandem-repeat domain and showing transduction of apoptotic signaling against Burkitt lymphoma cells by interaction with a glycosphingolipid-enriched microdomain containing Gb3. PMID:23093409

  15. Characterisation of sugar residues in glycoconjugates of pig mandibular gland by traditional and lectin histochemistry.

    PubMed

    Pedini, V; Scocco, P; Dall'Aglio, C; Ceccarelli, P; Gargiulo, A M

    2000-10-01

    Sugar residues are important components of salivary gland secretion. Traditional histochemical methods and lectin histochemistry were used to characterise glycoconjugates present in the mandibular gland of normal adult pigs. Acinar cells contained abundant quantities of glycoconjugates with the terminal trisaccharide sialic acid - (alpha 2-->3, 6) galactosyl (beta 1-->3) N -acetylgalactosamine. Mandibular acinar cells also contained alpha and beta N -acetylgalactosamine and N -acetylglucosamine residues, whereas the demilunar cells contained glycoconjugates with fucose, mannose and N -acetylglucosamine residues. In the duct system a range of sugar residues were localised throughout the cell cytoplasm or limited to the apical surface. These results provide new knowledge concerning the structure of salivary glycoconjugates in normal adult pig and a basis for future pathological studies.

  16. Engineering a Therapeutic Lectin by Uncoupling Mitogenicity from Antiviral Activity

    PubMed Central

    Swanson, Michael D.; Boudreaux, Daniel M.; Salmon, Loïc; Chugh, Jeetender; Winter, Harry C.; Meagher, Jennifer L.; André, Sabine; Murphy, Paul V.; Oscarson, Stefan; Roy, René; King, Steven; Kaplan, Mark H.; Goldstein, Irwin J.; Tarbet, E. Bart; Hurst, Brett L.; Smee, Donald F.; de la Fuente, Cynthia; Hoffmann, Hans-Heinrich; Xue, Yi; Rice, Charles M.; Schols, Dominique; Garcia, J. Victor; Stuckey, Jeanne A.; Gabius, Hans-Joachim; Al-Hashimi, Hashim M.; Markovitz, David M.

    2015-01-01

    Summary A key effector route of the Sugar Code involves lectins that exert crucial regulatory controls by targeting distinct cellular glycans. We demonstrate that a single amino acid substitution in a banana lectin, replacing histidine 84 with a threonine, significantly reduces its mitogenicity while preserving its broad-spectrum antiviral potency. X-ray crystallography, NMR spectroscopy, and glycocluster assays reveal that loss of mitogenicity is strongly correlated with loss of pi-pi stacking between aromatic amino acids H84 and Y83, which removes a wall separating two carbohydrate binding sites, thus diminishing multivalent interactions. On the other hand, monovalent interactions and antiviral activity are preserved by retaining other wild-type conformational features and possibly through unique contacts involving the T84 side chain. Through such fine-tuning, target selection and downstream effects of a lectin can be modulated so as to knock down one activity while preserving another, thus providing tools for therapeutics and for understanding the Sugar Code. PMID:26496612

  17. Fluorescent lectins for local in vivo visualization of peripheral nerves.

    PubMed

    KleinJan, Gijs Hendrik; Buckle, Tessa; van Willigen, Danny Michel; van Oosterom, Matthias Nathanaël; Spa, Silvia Johara; Kloosterboer, Harmen Egbert; van Leeuwen, Fijs Willem Bernhard

    2014-07-08

    Damage to peripheral nerves caused during a surgical intervention often results in function loss. Fluorescence imaging has the potential to improve intraoperative identification and preservation of these structures. However, only very few nerve targeting agents are available. This study describes the in vivo nerve staining capabilities of locally administered fluorescent lectin-analogues. To this end WGA, PNA, PHA-L and LEL were functionalized with Cy5 (λex max 640 nm; λem max 680 nm). Transfer of these imaging agents along the sciatic nerve was evaluated in Thy1-YFP mice (n = 12) after intramuscular injection. Migration from the injection site was assessed in vivo using a laboratory fluorescence scanner and ex vivo via fluorescence confocal microscopy. All four lectins showed retrograde movement and staining of the epineurium with a signal-to-muscle ratio of around two. On average, the longest transfer distance was obtained with WGA-Cy5 (0.95 cm). Since WGA also gave minimal uptake in the lymphatic system, this lectin type revealed the highest potential as a migration imaging agent to visualize nerves.

  18. Ganoderma lucidum: a source for novel bioactive lectin.

    PubMed

    U Girjal, Vinay; Neelagund, Shivayogeeswar; Krishnappa, Madappa

    2011-11-01

    Ganoderma lucidum is known for its high medicinal value, clinically used in treatment for various diseases. We have selected this mushroom for isolation of novel bioactive lectin. The isolation procedure comprised of ion-exchange chromatography on DEAE- cellulose and affinity chromatography on Affi-gel blue gel. Purified lectin was monomer with a molecular mass of 15 kDa, determined by SDS-PAGE, Gel filtration, MALDI-ToF. It showed hemagglutinating activity against both human and animal erythrocytes. The hemagglutination activity was not inhibited by simple sugars but inhibited by glycoproteins. The activity was maximal at pH range 4.0-9.0 and at temperature up to 60° C. The hemagglutination activity was stable even in the presence of 10mM EDTA and other divalent metal cations such as CaCl2, MgCl2, ZnCl2, and MnCl2. Lectin was shown antifungal activity against following pathogens Fusarium oxysporium, Penicillium chrysogenum, Aspergillus Niger, Colletotrichum musae, Botrytis cinerea, Trichophyton rubrum, Trichophyton tonsurans, Trichophyton interdigitale, Epidermophyton floccosum and Microsporum canis.

  19. The mannose-specific lectins from ramsons (Allium ursinum L.) are encoded by three sets of genes.

    PubMed

    Van Damme, J M; Smeets, K; Torrekens, S; Van Leuven, F; Peumans, W J

    1993-10-01

    Lectin cDNA clones encoding the two mannose-binding lectins from ramsons (allium ursinum L.) bulbs, AUAI and AUAII (AUA, Allium ursinum agglutinin), were isolated and characterized. Sequence comparison of the different cDNA clones isolated revealed three types of lectin clones called LECAUAG0, LECAUAG1 and LECAUAG2, which besides the obvious differences in their sequences also differ from each other in the number of potential glycosylation sites within the C-terminal peptide of the lectin precursor. In vivo biosynthesis studies of the ramson lectins have shown that glycosylated lectin precursors occur in the organelle fraction of radioactively labeled ramson bulbs. Despite the similarities between the A. ursinum and the A. sativum (garlic) lectins at the protein level, molecular cloning of the two ramson lectins has shown that the lectin genes in A. ursinum are organized differently. Whereas in A. sativum the lectin polypeptides of the heterodimeric ASAI are encoded by one large precursor, those of the heterodimeric AUAI lectin are derived from two different precursors. These results are confirmed by Northern blot hybridization of A. ursinum RNA which, after hybridization with a labeled lectin cDNA, reveals only one band of 800 nucleotides in contrast to A. sativum RNA which yields two bands of 1400 and 800 nucleotides. Furthermore it is shown that the two mannose-binding lectins are differentially expressed.

  20. A Recombinant Fungal Lectin for Labeling Truncated Glycans on Human Cancer Cells

    PubMed Central

    Hurbin, Amandine; Boos, Irene; Unverzagt, Carlo; Bouras, Mourad; Lantuejoul, Sylvie; Coll, Jean-Luc; Varrot, Annabelle; Le Pendu, Jacques; Busser, Benoit; Imberty, Anne

    2015-01-01

    Cell surface glycoconjugates present alterations of their structures in chronic diseases and distinct oligosaccharide epitopes have been associated with cancer. Among them, truncated glycans present terminal non-reducing β-N-acetylglucosamine (GlcNAc) residues that are rare on healthy tissues. Lectins from unconventional sources such as fungi or algi provide novel markers that bind specifically to such epitopes, but their availability may be challenging. A GlcNAc-binding lectin from the fruiting body of the fungus Psathyrella velutina (PVL) has been produced in good yield in bacterial culture. A strong specificity for terminal GlcNAc residues was evidenced by glycan array. Affinity values obtained by microcalorimetry and surface plasmon resonance demonstrated a micromolar affinity for GlcNAcβ1-3Gal epitopes and for biantennary N-glycans with GlcNAcβ1-2Man capped branches. Crystal structure of PVL complexed with GlcNAcβ1-3Gal established the structural basis of the specificity. Labeling of several types of cancer cells and use of inhibitors of glycan metabolism indicated that rPVL binds to terminal GlcNAc but also to sialic acid (Neu5Ac). Analysis of glycosyltransferase expression confirmed the higher amount of GlcNAc present on cancer cells. rPVL binding is specific to cancer tissue and weak or no labeling is observed for healthy ones, except for stomach glands that present unique αGlcNAc-presenting mucins. In lung, breast and colon carcinomas, a clear delineation could be observed between cancer regions and surrounding healthy tissues. PVL is therefore a useful tool for labeling agalacto-glycans in cancer or other diseases. PMID:26042789

  1. Neutrophil cell surface receptors and their intracellular signal transduction pathways☆

    PubMed Central

    Futosi, Krisztina; Fodor, Szabina; Mócsai, Attila

    2013-01-01

    Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca2 + signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases. PMID:23994464

  2. Interaction of linear manno-oligosaccharides with three mannose-specific bulb lectins. Comparison with mannose/glucose-binding lectins.

    PubMed

    Kaku, H; Goldstein, I J

    1992-05-22

    Three new mannose-binding lectins, isolated from daffodil (NPA), amaryllis (HHA), and snowdrop (GNA) bulbs, are capable of precipitating with a linear mannopentaose (Man alpha 1-3Man alpha 1-3Man alpha 1-3Man alpha 1-2Man). NPA and HHA reacted strongly with the mannopentaose whereas GNA gave a precipitate only at concentrations greater than 500 microM. A phosphate group at C-6 of the nonreducing terminal mannosyl group prevented precipitation in all three cases. The reduced (NaBH4) mannopentaose, Man4Man-ol, did not precipitate with GNA or NPA, but was active with HHA. This activity was lost when Man4Man-ol was converted (NaIO4 then NaBH4; mild acid hydrolysis of the reduced product) into trisaccharide derivatives. With alpha-D-Manp-OMe the three lectins gave UV difference spectra having large positive peaks at 292-293 and 283-284 nm, and a small positive peak at 275 nm, characteristic of tryptophanyl and tyrosyl residues. The association constants for the interaction with alpha-D-Manp-OMe were very low (NPA, 86; HHA, 66; and GNA, 41 M-1), but the lectins bound methyl (1----3)-alpha-mannobioside with increased affinity (K for NPA 540, for HHA 2400, and for GNA 200 M-1). The bulb lectins lack binding sites for hydrophobic ligands, as judged by their failure to interact with the fluorescent probes 8-anilino-1-napthalenesulfonic acid (ANS) and 6-p-toluidino-2-naphthalenesulfonic acid (TNS).

  3. Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism

    PubMed Central

    1990-01-01

    A soluble lactose-binding lectin with subunit Mr of 14,500 is believed to function by interacting with extracellular glycoconjugates, because it has been detected extracellularly by immunohistochemistry. This localization has been questioned, however, since the lectin lacks a secretion signal sequence, which challenges the contention that it is secreted. We have demonstrated externalization of this lectin from C2 mouse muscle cells by both immunoprecipitation of metabolically labeled protein and immunohistochemical localization. We further show that externalization of the lectin is a developmentally regulated process that accompanies myoblast differentiation and that the lectin codistributes with laminin in myotube extracellular matrix. Immunohistochemical localization during intermediate stages of externalization suggests that the lectin becomes concentrated in evaginations of plasma membrane, which pinch off to form labile lectin- rich extracellular vesicles. This suggests a possible mechanism for lectin export from the cytosol to the extracellular matrix. PMID:2335567

  4. Targeted delivery of antigen to hamster nasal lymphoid tissue with M-cell-directed lectins.

    PubMed Central

    Giannasca, P J; Boden, J A; Monath, T P

    1997-01-01

    The nasal cavity of a rodent is lined by an epithelium organized into distinct regional domains responsible for specific physiological functions. Aggregates of nasal lymphoid tissue (NALT) located at the base of the nasal cavity are believed to be sites of induction of mucosal immune responses to airborne antigens. The epithelium overlying NALT contains M cells which are specialized for the transcytosis of immunogens, as demonstrated in other mucosal tissues. We hypothesized that NALT M cells are characterized by distinct glycoconjugate receptors which influence antigen uptake and immune responses to transcytosed antigens. To identify glycoconjugates that may distinguish NALT M cells from other cells of the respiratory epithelium (RE), we performed lectin histochemistry on sections of the hamster nasal cavity with a panel of lectins. Many classes of glycoconjugates were found on epithelial cells in this region. While most lectins bound to sites on both the RE and M cells, probes capable of recognizing alpha-linked galactose were found to label the follicle-associated epithelium (FAE) almost exclusively. By morphological criteria, the FAE contains >90% M cells. To determine if apical glycoconjugates on M cells were accessible from the nasal cavity, an M-cell-selective lectin and a control lectin in parallel were administered intranasally to hamsters. The M-cell-selective lectin was found to specifically target the FAE, while the control lectin did not. Lectin bound to M cells in vivo was efficiently endocytosed, consistent with the role of M cells in antigen transport. Intranasal immunization with lectin-test antigen conjugates without adjuvant stimulated induction of specific serum immunoglobulin G, whereas antigen alone or admixed with lectin did not. The selective recognition of NALT M cells by a lectin in vivo provides a model for microbial adhesin-host cell receptor interactions on M cells and the targeted delivery of immunogens to NALT following intranasal

  5. Specificity of lectin-immobilized fluorescent nanospheres for colorectal tumors in a mouse model which more resembles the clinical disease

    PubMed Central

    Kitamura, Tokio; Sakuma, Shinji; Shimosato, Moe; Higashino, Haruki; Masaoka, Yoshie; Kataoka, Makoto; Yamashita, Shinji; Hiwatari, Ken-ichiro; Kumagai, Hironori; Morimoto, Naoki; Koike, Seiji; Tobita, Etsuo; Hoffman, Robert M.; Gore, John C.; Pham, Wellington

    2014-01-01

    We are investigating an imaging agent that enables real-time and accurate diagnosis of early colorectal cancer at the intestinal mucosa by colonoscopy. The imaging agent is peanut agglutinin-immobilized polystyrene nanospheres with surface poly(N-vinylacetamide) chains encapsulating coumarin 6. Intracolonically-administered lectin-immobilized fluorescent nanospheres detect tumor-derived changes through molecular recognition of lectin for the terminal sugar of cancer-specific antigens on the mucosal surface. The focus of this study was to evaluate imaging abilities of the nanospheres in animal models that reflect clinical environments. We previously developed an orthotopic mouse model with human colorectal tumors growing on the mucosa of the descending colon to more resemble the clinical disease. The entire colon of the mice in the exposed abdomen was monitored in real-time with an in vivo imaging apparatus. Fluorescence from the nanospheres was observed along the entire descending colon after intracolonical administration of them from the anus. When the luminal side of the colon was washed with PBS, most of the nanospheres drained away. However, fluorescence persisted in areas where the cancer cells were implanted. Histological evaluation demonstrated that tumors were present in the mucosal epithelia where the nanospheres fluoresced. In contrast, no fluorescence was observed when control mice without tumors were tested. The lectin-immobilized fluorescent nanospheres were tumor specific and bound to tumors even after vigorously washing. The nanospheres non-specifically bound to normal mucosa were easily removed through mild washing. Results indicate that the nanospheres accompanied by colonoscopy will be a clinically-valuable diagnostic tool for the early stage primary colon carcinoma. PMID:24976331

  6. Effect of surface modifiers on an ectoenzyme: granulocyte 5'-nucleotidase.

    PubMed

    Smolen, J E; Karnovsky, M L

    1980-05-01

    Several agents that react with plasma membranes, namely the native lectins concanavalin A, Ricinus communis agglutinin, and wheat germ agglutinin, the modified lectin succinyl concanavalin A, and sodium meta-periodate, inhibited the ecto-5'-nucleotidase of intact guinea pig granulocytes. Stimulation of the enzyme was not observed at any lectin concentration. Inhibition by native lectins could be blocked or reversed by appropriate competing hapten sugars. In the case of concanavalin A, reversal could be achieved at 37 degrees C, but not at 5 degrees C. When lectins were used in combination with each other, the effects were found to be largely independent. However, when concanavalin A and R. communis agglutinin were applied together, complications arose because the former lectin binds to the latter as well as to the cell surface. To avoid some of the complexities inherent in studying intact cell 5'-nucleotidase and to gain additional information about the system, two broken cell enzyme preparations were also examined. The enzyme of plasma membrane-enriched fractions was inhibited by all five agents mentioned above. 5'-Nucleotidase solubilized in sodium deoxycholate was inhibited by the four lectins but stimulated by periodate. The effects of the surface modifiers on kinetic data for all three enzyme preparations are consistent with the hypothesis that direct interactions with the enzyme molecule give rise to changes in Vmax; interactions at membrane sites other than 5'-nucleotidase itself could cause increases in apparent Km values. Effects of interactions of ectoenzymes with plant lectins may serve as models for phenomena that result from cell-cell interactions or from interactions of animal cells with lectin-like components of the cellular environment.

  7. Improvements on the purification of mannan-binding lectin and demonstration of its Ca(2+)-independent association with a C1s-like serine protease.

    PubMed Central

    Tan, S M; Chung, M C; Kon, O L; Thiel, S; Lee, S H; Lu, J

    1996-01-01

    Mannan-binding lectin (MBL), previously called 'mannan-binding protein' or MBP, is a plasma C-type lectin which, upon binding to carbohydrate structures on micro-organisms, activates the classical pathway of complement. Purification of MBL relies on its Ca(2+)-dependent affinity for carbohydrate, but existing methods are susceptible to contamination by anti-carbohydrate antibodies. In the present study a sequential-sugar-elution method has been developed which can achieve a preparation of virtually pure MBL and its associated serine protease (MBL-associated serine protease, MASP) by two steps of affinity chromatography. In further separation of MASP from MBL, it was found that activated MASP was associated with MBL independent of Ca2+. Since MBL was found to bind to underivatized Sepharose 4B, the MBL-MASP complex was purified using Sepharose 4B and protease inhibitors were included to purify the complex with MASP in its proenzyme form. Analysis of thus-purified MBL-MASP complex by gel filtration on a Sephacryl S-300 column at pH 7.8 showed that the proenzyme MASP was also associated with MBL independently of Ca2+, but that the complex could be disrupted at a low pH (5.0). Therefore the mechanism of MBL-MASP-mediated complement activation appears to be significantly different from the C1-mediated classical pathway. PMID:8912663

  8. The macrophage galactose-type lectin-1 (MGL1) recognizes Taenia crassiceps antigens, triggers intracellular signaling, and is critical for resistance to this infection.

    PubMed

    Montero-Barrera, Daniel; Valderrama-Carvajal, Héctor; Terrazas, César A; Rojas-Hernández, Saúl; Ledesma-Soto, Yadira; Vera-Arias, Laura; Carrasco-Yépez, Maricela; Gómez-García, Lorena; Martínez-Saucedo, Diana; Becerra-Díaz, Mireya; Terrazas, Luis I

    2015-01-01

    C-type lectins are multifunctional sugar-binding molecules expressed on dendritic cells (DCs) and macrophages that internalize antigens for processing and presentation. Macrophage galactose-type lectin 1 (MGL1) recognizes glycoconjugates expressing Lewis X structures which contain galactose residues, and it is selectively expressed on immature DCs and macrophages. Helminth parasites contain large amounts of glycosylated components, which play a role in the immune regulation induced by such infections. Macrophages from MGL1(-/-) mice showed less binding ability toward parasite antigens than their wild-type (WT) counterparts. Exposure of WT macrophages to T. crassiceps antigens triggered tyrosine phosphorylation signaling activity, which was diminished in MGL1(-/-) macrophages. Following T. crassiceps infection, MGL1(-/-) mice failed to produce significant levels of inflammatory cytokines early in the infection compared to WT mice. In contrast, MGL1(-/-) mice developed a Th2-dominant immune response that was associated with significantly higher parasite loads, whereas WT mice were resistant. Flow cytometry and RT-PCR analyses showed overexpression of the mannose receptors, IL-4Rα, PDL2, arginase-1, Ym1, and RELM-α on MGL1(-/-) macrophages. These studies indicate that MGL1 is involved in T. crassiceps recognition and subsequent innate immune activation and resistance.

  9. The Macrophage Galactose-Type Lectin-1 (MGL1) Recognizes Taenia crassiceps Antigens, Triggers Intracellular Signaling, and Is Critical for Resistance to This Infection

    PubMed Central

    Montero-Barrera, Daniel; Valderrama-Carvajal, Héctor; Terrazas, César A.; Rojas-Hernández, Saúl; Ledesma-Soto, Yadira; Vera-Arias, Laura; Carrasco-Yépez, Maricela; Gómez-García, Lorena; Martínez-Saucedo, Diana; Becerra-Díaz, Mireya; Terrazas, Luis I.

    2015-01-01

    C-type lectins are multifunctional sugar-binding molecules expressed on dendritic cells (DCs) and macrophages that internalize antigens for processing and presentation. Macrophage galactose-type lectin 1 (MGL1) recognizes glycoconjugates expressing Lewis X structures which contain galactose residues, and it is selectively expressed on immature DCs and macrophages. Helminth parasites contain large amounts of glycosylated components, which play a role in the immune regulation induced by such infections. Macrophages from MGL1−/− mice showed less binding ability toward parasite antigens than their wild-type (WT) counterparts. Exposure of WT macrophages to T. crassiceps antigens triggered tyrosine phosphorylation signaling activity, which was diminished in MGL1−/− macrophages. Following T. crassiceps infection, MGL1−/− mice failed to produce significant levels of inflammatory cytokines early in the infection compared to WT mice. In contrast, MGL1−/− mice developed a Th2-dominant immune response that was associated with significantly higher parasite loads, whereas WT mice were resistant. Flow cytometry and RT-PCR analyses showed overexpression of the mannose receptors, IL-4Rα, PDL2, arginase-1, Ym1, and RELM-α on MGL1−/− macrophages. These studies indicate that MGL1 is involved in T. crassiceps recognition and subsequent innate immune activation and resistance. PMID:25664320

  10. Binding of the wheat germ lectin to Cryptococcus neoformans chitooligomers affects multiple mechanisms required for fungal pathogenesis

    PubMed Central

    Fonseca, Fernanda L.; Guimarães, Allan J.; Kmetzsch, Lívia; Dutra, Fabianno F.; Silva, Fernanda D.; Taborda, Carlos P.; Araujo, Glauber de S.; Frases, Susana; Staats, Charley C.; Bozza, Marcelo T.; Schrank, Augusto; Vainstein, Marilene H.; Nimrichter, Leonardo; Casadevall, Arturo; Rodrigues, Marcio L.

    2015-01-01

    The principal capsular component of Cryptococcus neoformans, glucuronoxylomannan (GXM), interacts with surface glycans, including chitin-like oligomers. Although the role of GXM in cryptococcal infection has been well explored, there is no information on how chitooligomers affect fungal pathogenesis. In this study, surface chitooligomers of C. neoformans were blocked through the use of the wheat germ lectin (WGA) and the effects on animal pathogenesis, interaction with host cells, fungal growth and capsule formation were analyzed. Treatment of C. neoformans cells with WGA followed by infection of mice delayed mortality relative to animals infected with untreated fungal cells. This observation was associated with reduced brain colonization by lectin-treated cryptococci. Blocking chitooligomers also rendered yeast cells less efficient in their ability to associate with phagocytes. WGA did not affect fungal viability, but inhibited GXM release to the extracellular space and capsule formation. In WGA-treated yeast cells, genes that are involved in capsule formation and GXM traffic had their transcription levels decreased in comparison with untreated cells. Our results suggest that cellular pathways required for capsule formation and pathogenic mechanisms are affected by blocking chitin-derived structures at the cell surface of C. neoformans. Targeting chitooligomers with specific ligands may reveal new therapeutic alternatives to control cryptococcosis. PMID:23608320

  11. Spectropolarimetry of B-type and C-type asteroids: Phase Curves and Wavelength Dependence

    NASA Astrophysics Data System (ADS)

    Maleszewski, C.; McMillan, R. S.; Smith, P. S.

    2014-12-01

    We present recent spectropolarimetric observations of eleven B- and C-type asteroids using SPOL (http://james.as.arizona.edu/~psmith/SPOL/) at the 2.3-m Bok and 1.6-m Kuiper telescopes. Our primary goal is to further constrain our understanding of the wavelength dependence of linear polarization. For each object, we produced polarimetric phase curves (linear polarization vs. phase angle) and measure the wavelength dependence in each observation by calculating the slope of each polarization spectrum. Previous analysis by Belskaya et al. (2009) shows that the slope of the polarization spectrum increases as the wavelength increases. No analysis of the wavelength dependence in B-types has occurred previously to our knowledge. For the five C-type (3 Ch- and 2 C-) objects observed, those of the Ch-type have larger minimum polarizations than of the C- subtype. This is consistent with polarimetric phase curves of similar asteroids by Gil-Hutton and Cañada-Assandri (2012). With respect to the wavelength dependence, our observed targets show an increase in polarization slope with wavelength, confirming the Belskaya (2009) result. After dividing the data by group, C- subtype objects have relatively flat polarization spectra, as opposed to the Ch- subtypes that have more rapidly changing slopes as phase angle increases. A mineralogical basis for the variety of wavelength dependences observed is most likely. Additional observations of the other C- subtypes will aid to distinguish how mineralogical variation affects polarization. It may also explain the wide range of polarization slopes measured near a phase angle of ten degrees in the Belskaya (2009) analysis. Six B-type asteroids were observed in a similar manner. As with the C-types, the polarimetric phase curves vary in shape, suggesting differences in albedo. Also, the wavelength dependence increases with wavelength, as shown for the C-types. On the other hand, all of the B-type objects have a similar wavelength dependence

  12. Mechanism of entomotoxicity of the plant lectin from Hippeastrum hybrid (Amaryllis) in Spodoptera littoralis larvae.

    PubMed

    Caccia, Silvia; Van Damme, Els J M; De Vos, Winnok H; Smagghe, Guy

    2012-09-01

    Plant lectins have received a lot of attention because of their insecticidal properties. When orally administered in artificial diet or in transgenic plants, lectins provoke a wide range of detrimental effects, including alteration of the digestive enzyme machinery, fecundity drop, reduced feeding, changes in oviposition behavior, growth and development inhibition and mortality. Although many studies reported the entomotoxicity of lectins, only a few of them investigated the mode of action by which lectins exert toxicity. In the present paper we have studied for the first time the insecticidal potential of the plant lectin from Hippeastrum hybrid (Amaryllis) (HHA) bulbs against the larvae of the cotton leafworm (Spodoptera littoralis). Bioassays on neonate larvae showed that this mannose-specific lectin affected larval growth, causing a development retardation and larval weight decrease. Using primary cell cultures from S. littoralis midguts and confocal microscopy we have elucidated FITC-HHA binding and internalization mechanisms. We found that HHA did not exert a toxic effect on S. littoralis midgut cells, but HHA interaction with the brush border of midgut cells interfered with normal nutrient absorption in the S. littoralis midgut, thereby affecting normal larval growth in vivo. This study thus confirms the potential of mannose-specific lectins as pest control agents and sheds light on the mechanism underlying lectin entomotoxicity.

  13. Preparation and biological properties of a melibiose binding lectin from Bauhinia variegata seeds.

    PubMed

    Lin, Peng; Ng, Tzi Bun

    2008-11-26

    A dimeric 64-kDa melibiose-binding lectin was isolated from the seeds of Bauhinia variegata. The isolation procedure comprised affinity chromatography on Affi-gel blue gel, ion exchange chromatography on Mono Q, and gel filtration on Superdex 75. The lectin was adsorbed on the first two chromatographic media. Its hemagglutinating activity was stable after 30-min exposure to temperatures up to 70 degrees C. Since lectins may demonstrate biological activities such as antiproliferative, immunomodulatory, antifungal, antiviral, and HIV-1 reverse transcriptase inhibitory activities, the isolated lectin was tested for these activities. It was found that the lectin inhibited proliferation in hepatoma HepG2 cells and breast cancer MCF7 cells with an IC(50) of 1.4 microM and 0.18 microM, respectively. HIV-1 reverse transcriptase activity was inhibited with an IC(50) of 1.02 microM. The lectin and concanavalin A (Con A) evoked maximal mitogenic response from mouse splenocytes at similar concentrations, but the maximal response to B. variegata lectin was only 1/5 of that induced by Con A in magnitude. B. variegata lectin was devoid of antifungal activity.

  14. Purification, crystallization and preliminary X-ray structure analysis of the banana lectin from Musa paradisiaca.

    PubMed

    Singh, D D; Saikrishnan, K; Kumar, Prashant; Dauter, Z; Sekar, K; Surolia, A; Vijayan, M

    2004-11-01

    The banana lectin from Musa paradisiaca, MW 29.4 kDa, has been isolated, purified and crystallized. The trigonal crystals contain one dimeric molecule in the asymmetric unit. The structure has been solved using molecular replacement to a resolution of 3 A. The structure of the subunit is similar to that of jacalin-like lectins.

  15. Architecture of Deinococcus geothermalis biofilms on glass and steel: a lectin study.

    PubMed

    Peltola, Minna; Neu, Thomas R; Raulio, Mari; Kolari, Marko; Salkinoja-Salonen, Mirja S

    2008-07-01

    Deinococcus geothermalis is resistant to chemical and physical stressors and forms tenuous biofilms in paper industry. The architecture of its biofilms growing on glass and on stainless acid proof steel was studied with confocal laser scanning microscopy and fluorescent lectins and nanobeads as in situ probes. Hydrophobic nanobeads adhered to the biofilms but did not penetrate to biofilm interior. In contrast, the biofilms were readily permeable towards many different lectins. A skeletal network of glycoconjugates, reactive with Dolichos biflorus and Maclura pomifera lectins, was prominent in the space inside the biofilm colony core but absent on the exterior. Cells in the core space of the biofilm were interconnected by a network of adhesion structures, reactive with Amaranthus caudatus lectin but with none of the 65 other tested lectins. The glycoconjugates connecting the individual cells to steel reacted with Phaseolus vulgaris lectin whereas those connecting to glass mainly reacted with A. caudatus lectin. Envelopes of all cells in the D. geothermalis biofilm reacted with several other lectins, with many different specificities. We conclude that numerous different glycoconjugates are involved in the adhesion and biofilm formation of D. geothermalis, possibly contributing its unique survival capacity when exposed to dehydration, biocidal chemicals and other extreme conditions.

  16. Isolation and Characterization of Messenger RNAs for Seed Lectin and Kunitz Trypsin Inhibitor in Soybeans

    PubMed Central

    Vodkin, Lila O.

    1981-01-01

    The mRNAs for seed lectin and Kunitz trypsin inhibitor of soybean have been highly enriched by immunoadsorption of the polysomes synthesizing these proteins. Polysomes isolated from developing seed of variety Williams were incubated with monospecific rabbit antibodies produced against lectin subunits or trypsin inhibitor protein. The polysomal mixture was passed over a column containing goat anti-rabbit antibodies bound to Sepharose. Bound polysomes were eluted and the mRNA was selected by passage over oligo(dT)-cellulose. Lectin complementary DNA hybridized to an 1150-nucleotide message and trypsin inhibitor complementary DNA hybridized to a 770-nucleotide message in blotting experiments using total poly(A) RNA. Translation of soybean lectin mRNA using a rabbit reticulocyte lysate yielded a major polypeptide of 32,300 whereas the molecular weight for purified lectin subunits was 30,000. Trypsin inhibitor mRNA directed the synthesis of a 23,800-dalton polypeptide as compared to 21,500 daltons for trypsin inhibitor marker protein. Lectin specific polysomes could not be obtained from a soybean variety which lacks detectable lectin protein whereas trypsin inhibitor-specific polysomes were bound by immunoselection. These results confirmed the specificity of the immunoadsorption procedure and strongly indicated that the lectinless variety was deficient or substantially reduced in functional lectin mRNA. Images PMID:16661996

  17. Translational control of discoidin lectin expression in drsA suppressor mutants of Dictyostelium discoideum.

    PubMed Central

    Alexander, S; Leone, S; Ostermeyer, E

    1991-01-01

    Genetic analysis in Dictyostelium discoideum has identified regulatory genes which control the developmental expression of the discoidin lectin multigene family. Among these, the drsA mutation is a dominant second-site suppressor of another mutation, disB, which has the discoidinless phenotype. We now demonstrate a novel mechanism by which the drsA allele exerts its suppressive effect on the disB mutation. Interestingly, drsA does not merely bypass the disB mutation and restore the wild-type pattern of lectin expression. Rather, drsA mutant cells have high levels of discoidin lectin synthesis during growth but do not express lectins during aggregation. In contrast, wild-type cells only express lectin protein during the aggregation period of development. Phenocopies of the drsA mutation show a pattern of discoidin expression similar to that seen in the bona fide mutant. These data suggest that there may be a mechanism of negative feedback, resulting from the high levels of discoidin lectin made during growth, which inhibits further discoidin lectin expression during development. Northern (RNA) analysis of developing drsA mutant cells shows that these cells contain high levels of discoidin mRNA, although no discoidin lectin protein is being translated from these messages. Therefore, expression of the discoidin gene family can be controlled at the level of translation as well as transcription. Images PMID:2038325

  18. Carbohydrate Recognition Specificity of Trans-sialidase Lectin Domain from Trypanosoma congolense

    PubMed Central

    Waespy, Mario; Gbem, Thaddeus T.; Elenschneider, Leroy; Jeck, André-Philippe; Day, Christopher J.; Hartley-Tassell, Lauren; Bovin, Nicolai; Tiralongo, Joe; Haselhorst, Thomas; Kelm, Sørge

    2015-01-01

    Fourteen different active Trypanosoma congolense trans-sialidases (TconTS), 11 variants of TconTS1 besides TconTS2, TconTS3 and TconTS4, have been described. Notably, the specific transfer and sialidase activities of these TconTS differ by orders of magnitude. Surprisingly, phylogenetic analysis of the catalytic domains (CD) grouped each of the highly active TconTS together with the less active enzymes. In contrast, when aligning lectin-like domains (LD), the highly active TconTS grouped together, leading to the hypothesis that the LD of TconTS modulates its enzymatic activity. So far, little is known about the function and ligand specificity of these LDs. To explore their carbohydrate-binding potential, glycan array analysis was performed on the LD of TconTS1, TconTS2, TconTS3 and TconTS4. In addition, Saturation Transfer Difference (STD) NMR experiments were done on TconTS2-LD for a more detailed analysis of its lectin activity. Several mannose-containing oligosaccharides, such as mannobiose, mannotriose and higher mannosylated glycans, as well as Gal, GalNAc and LacNAc containing oligosaccharides were confirmed as binding partners of TconTS1-LD and TconTS2-LD. Interestingly, terminal mannose residues are not acceptor substrates for TconTS activity. This indicates a different, yet unknown biological function for TconTS-LD, including specific interactions with oligomannose-containing glycans on glycoproteins and GPI anchors found on the surface of the parasite, including the TconTS itself. Experimental evidence for such a scenario is presented. PMID:26474304

  19. Effect of granule size on the properties of lotus rhizome C-type starch.

    PubMed

    Lin, Lingshang; Huang, Jun; Zhao, Lingxiao; Wang, Juan; Wang, Zhifeng; Wei, Cunxu

    2015-12-10

    Lotus rhizome C-type starch was separated into different size fractions. Starch morphologies changed from irregular to elongated, ellipsoid, oval, and spherical with decreasing granule size. The small- and very-small-sized fractions had a centric hilum, and the other size fractions had an eccentric hilum. The different size fractions all showed C-type crystallinity, pseudoplasticity and shear-thinning rheological properties. The range of amylose content was 25.6 to 26.6%, that of relative crystallinity was 23.9 to 25.8%, that of swelling power was 29.0 to 31.4 g/g, and that of gelatinization enthalpy was 12.4 to 14.2J/g. The very-small-sized fraction had a significantly lower short-range ordered degree and flow behavior index and higher scattering peak intensity, water solubility, gelatinization peak temperature, gelatinization conclusion temperature, consistency coefficient, hydrolysis degrees, and digestion rate than the large-sized fraction. Granule size significantly positively influenced short-range ordered structure and swelling power and negatively influenced scattering peak intensity, water solubility, hydrolysis and digestion of starch (p<0.01).

  20. Allomorph distribution and granule structure of lotus rhizome C-type starch during gelatinization.

    PubMed

    Cai, Canhui; Cai, Jinwen; Man, Jianmin; Yang, Yang; Wang, Zhifeng; Wei, Cunxu

    2014-01-01

    The allomorph distribution and granule structure of C-type starch from lotus rhizomes were investigated using a combination of techniques during gelatinization. The disruption of crystallinity during gelatinization began from the end distant from the eccentric hilum and then propagated into the center of granule. The periphery of hilum end was finally gelatinized, accompanied by high swelling. The crystallinity changed from C-type to A-type via CA-type during gelatinization, and finally became amorphous structure. The amylose content, crystal degree, helix content, ratio of 1045/1022cm(-1), and peak intensity of crystalline lamellae of gelatinizing starch significantly decreased after 70°C. The amorphous content and ratio of 1022/995cm(-1) increased after 70°C. This study elucidated that B-type allomorph was mainly arranged in the distal region of eccentric hilum, A-type allomorph was mainly located in the periphery of hilum end, and the center of granule was a mixed distribution of A- and B-type allomorphs.

  1. Small unilamellar vesicles as reagents: a chemically defined, quantitative assay for lectins

    SciTech Connect

    Rando, R.R.

    1981-01-01

    Samll unilamellar vesicles containing synthetic glycolipids can be prepared. These vesicles are aggregated by the appropriate lectin (Orr et al., 1979; Rando and Bangerter, 1979; Slama and Rando, 1980). It is shown here that extent of aggregation of these vesicles as measured by light scattering at 360 nm, is, under certain conditions, linear with amount of lectin added. This forms the basis of a rapid and simple quantitative assay for lectins using the modified vesicles as a defined chemical substrate. The assay is sensitive to lectin concentrations in the low ..mu..g range. The assay is applied here to studies on concanavalin A, Ricinus communis agglutinin and the ..cap alpha..-fucosyl binding lectin from Ulex europaeus (Type I).

  2. Deterrent activity of plant lectins on cowpea weevil Callosobruchus maculatus (F.) oviposition.

    PubMed

    Sadeghi, Amin; Van Damme, Els J M; Peumans, Willy J; Smagghe, Guy

    2006-09-01

    A set of 14 plant lectins was screened in a binary choice bioassay for inhibitory activity on cowpea weevil Callosobruchus maculatus (F.) oviposition. Coating of chickpea seeds (Cicer arietinum L.) with a 0.05% (w/v) solution of plant lectins caused a significant reduction in egg laying. Control experiments with heat inactivated lectin and BSA indicated that the observed deterrent effects are specific and require carbohydrate-binding activity. However, no clear correlation could be established between deterrent activity and sugar-binding specificity/molecular structure of the lectins. Increasing the insect density reduced the inhibitory effect of the lectins confirming that female insects are capable of adjusting their oviposition rates as a function of host availability.

  3. High-resolution crystal structures of Colocasia esculenta tarin lectin.

    PubMed

    Pereira, Patricia R; Meagher, Jennifer L; Winter, Harry C; Goldstein, Irwin J; Paschoalin, Vânia M F; Silva, Joab T; Stuckey, Jeanne A

    2017-01-01

    Tarin, the Colocasia esculenta lectin from the superfamily of α-d-mannose-specific plant bulb lectins, is a tetramer of 47 kDa composed of two heterodimers. Each heterodimer possesses homologous monomers of ~11.9 (A chain) and ~12.7 (B chain) kDa. The structures of apo and carbohydrate-bound tarin were solved to 1.7 Å and 1.91 Å, respectively. Each tarin monomer forms a canonical β-prism II fold, common to all members of Galanthus nivalis agglutinin (GNA) family, which is partially stabilized by a disulfide bond and a conserved hydrophobic core. The heterodimer is formed through domain swapping involving the C-terminal β-strand and the β-sheet on face I of the prism. The tetramer is assembled through the dimerization of the B chains from heterodimers involving face II of each prism. The 1.91 Å crystal structure of tarin bound to Manα(1,3)Manα(1,6)Man reveals an expanded carbohydrate-binding sequence (QxDxNxVxYx4/6WX) on face III of the β-prism. Both monomers possess a similar fold, except for the length of the loop, which begins after the conserved tyrosine and creates the binding pocket for the α(1,6)-terminal mannose. This loop differs in size and amino-acid composition from 10 other β-prism II domain proteins, and may confer carbohydrate-binding specificity among members of the GNA-related lectin family.

  4. Dietary garlic (Allium sativum) lectins, ASA I and ASA II, are highly stable and immunogenic.

    PubMed

    Clement, Fatima; Venkatesh, Yeldur P

    2010-10-01

    The immunomodulatory proteins present in garlic have recently been shown to be identical to the garlic lectins ASA I and ASA II [Clement F, Pramod SN, Venkatesh YP. Int. Immunopharmacol. 2010; 10: 316-324]. In this study, the stability of garlic lectins as a function of pH, temperature and denaturants has been examined in relation to biological activity (hemagglutination and hagocytosis). Stability of garlic lectins in simulated gastric fluid (SGF) was assessed by their hemagglutination activity, immunoreactivity, and intactness by SDS-PAGE. Garlic lectins were moderately stable in SGF for up to 30 min; while they retained hemagglutination activities, immunoreactivity with the respective rabbit antiserum decreased immediately (0.5 min) to 10-30%. ASA I retained ~80% hemagglutination activity in the pH range 2-12; however, ASA II retained only 40% in the pH ranges 2-4 and 10-12. Garlic lectins exposed to 60 °C (30 min) and pepsin (1 and 2 min) retained hemagglutination and phagocytic activities. Urea (4M) and Gdn.HCl (2M) did not affect hemagglutination. The immunogenicity of garlic lectins upon oral feeding in BALB/c mice was examined. A lectin-specific serum IgG response was seen in mice comparable to the oral immunogen, phytohemagglutinin. The recovered lectin in feces of mice administered with garlic lectins showed antigenicity identical to that of the administered proteins. The stabilities of the garlic lectins, their ability to withstand the gastrointestinal passage, and their recognition by the immune system upon oral feeding reinforce the reported presence of natural antibodies to garlic proteins in normal human sera.

  5. Adaptive evolution of a novel Drosophila lectin induced by parasitic wasp attack.

    PubMed

    Keebaugh, Erin S; Schlenke, Todd A

    2012-02-01

    Drosophila melanogaster has long been used as a model for the molecular genetics of innate immunity. Such work has uncovered several immune receptors that recognize bacterial and fungal pathogens by binding unique components of their cell walls and membranes. Drosophila also act as hosts to metazoan pathogens such as parasitic wasps, which can infect a majority of individuals in natural populations, but many aspects of their immune responses against these more closely related pathogens are poorly understood. Here, we present data describing the transcriptional induction and molecular evolution of a candidate Drosophila anti-wasp immunity gene, lectin-24A. Lectin-24A has a secretion signal sequence and its lectin domain suggests a function in sugar group binding. Transcript levels of lectin-24A were induced significantly stronger and faster following wasp attack than following wounding or bacterial infection, demonstrating lectin-24A is not a general stress response or defense response gene but is instead part of a specific response against wasps. The major site of lectin-24A transcript production is the fat body, the main humoral immune tissue of flies. Interestingly, lectin-24A is a new gene of the D. melanogaster/Drosophila simulans clade, displaying very little homology to any other Drosophila lectins. Population genetic analyses of lectin-24A DNA sequence data from African and North American populations of D. melanogaster and D. simulans revealed gene length polymorphisms segregating at high frequencies as well as strong evidence of repeated and recent selective sweeps. Thus, lectin-24A is a rapidly evolving new gene that has seemingly developed functional importance for fly resistance against infection by parasitic wasps.

  6. Probing lectin and sperm with carbohydrate-modified quantum dots.

    PubMed

    Robinson, Anandakathir; Fang, Jim-Min; Chou, Pi-Tai; Liao, Kuang-Wen; Chu, Rea-Min; Lee, Shyh-Jye

    2005-10-01

    We report the encapsulation of quantum dots with biologically important beta-N-acetylglucosamine (GlcNAc) in different ratios, together with studies of their specific/sensitive multivalent interactions with lectins and sperm by fluorimetry, transmission electron microscopy, dynamic light scattering microscopy, confocal imaging techniques, and flow cytometry. These GlcNAc-encapsulated quantum dots (QDGLNs) specifically bind to wheat germ agglutinin, and cause fluorescence quenching and aggregation. Further studies of QDGLNs and the mannose-encapsulated QDs (QDMANs) with sperm revealed site-specific interactions, in which QDGLNs bind to the head of the sperm, while QDMANs spread over the whole sperm body.

  7. Polypropylene non-woven meshes with conformal glycosylated layer for lectin affinity adsorption: the effect of side chain length.

    PubMed

    Ye, Xiang-Yu; Huang, Xiao-Jun; Xu, Zhi-Kang

    2014-03-01

    The unique characteristics of polypropylene non-woven meshes (PPNWMs), like random network of overlapped fibers, multiple connected pores and overall high porosity, make them high potentials for use as separation or adsorption media. Meanwhile, carbohydrates can specifically recognize certain lectin through multivalent interactions. Therefore glycosylated PPNWMs, combing the merits of both, can be regarded as superior affinity membranes for lectin adsorption and purification. Here, we describe a versatile strategy for the glycosylation of PPNWMs. Two hydrophilic polymers with different side chain length, poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(oligo(ethylene glycol) methacrylate) (POEGMA), were first conformally tethered on the polypropylene fiber surface by a modified plasma pretreatment and benzophenone (BP) entrapment UV irradiation process. Then glucose ligands were bound through the reaction between the hydroxyl group and acetyl glucose. Chemical changes of the PPNWMs surface were monitored by FT-IR/ATR. SEM pictures show that conformal glucose ligands can be achieved through the modified process. After deprotection, the glycosylated PPNWMs became superhydrophilic and had high specific recognition capability toward Concanavalin A (Con A). Static Con A adsorption experiments were further performed and the results indicate that fast adsorption kinetics and high binding capacity can be accomplished at the same time. We also found that increasing the side chain length of polymer brushes had positive effect on protein binding capacity due to improved chain mobility. Model studies suggest a multilayer adsorption behavior of Con A.

  8. Fungal lectin of Peltigera canina induces chemotropism of compatible Nostoc cells by constriction-relaxation pulses of cyanobiont cytoskeleton

    PubMed Central

    Díaz, Eva Maria; Vicente-Manzanares, Miguel; Sacristan, Mara; Legaz, Maria-Estrella

    2011-01-01

    A glycosylated arginase acting as a fungal lectin from Peltigera canina is able to produce recruitment of cyanobiont Nostoc cells and their adhesion to the hyphal surface. This implies that the cyanobiont would develop organelles to motility toward the chemoattractant. However when visualized by transmission electron microscopy, Nostoc cells recently isolated from P. canina thallus do not reveal any motile, superficial organelles, although their surface was covered by small spindles and serrated layer related to gliding. The use of S-(3,4-dichlorobenzyl)isothiourea, blebbistatin, phalloidin and latrunculin A provide circumstantial evidence that actin microfilaments rather than MreB, the actin-like protein from prokaryota, and probably, an ATPase which develops contractile function similar to that of myosin II, are involved in cell motility. These experimental facts, the absence of superficial elements (fimbriae, pili or flagellum) related to cell movement, and the appearance of sunken cells during of after movement verified by scanning electron microscopy, support the hypothesis that the motility of lichen cyanobionts could be achieved by contraction-relaxation episodes of the cytoskeleton induced by fungal lectin act as a chemoattractant. PMID:21897128

  9. Fungal lectin of Peltigera canina induces chemotropism of compatible Nostoc cells by constriction-relaxation pulses of cyanobiont cytoskeleton.

    PubMed

    Díaz, Eva Maria; Vicente-Manzanares, Miguel; Sacristan, Mara; Vicente, Carlos; Legaz, Maria-Estrella

    2011-10-01

    A glycosylated arginase acting as a fungal lectin from Peltigera canina is able to produce recruitment of cyanobiont Nostoc cells and their adhesion to the hyphal surface. This implies that the cyanobiont would develop organelles to motility towards the chemoattractant. However when visualized by transmission electron microscopy, Nostoc cells recently isolated from P. canina thallus do not reveal any motile, superficial organelles, although their surface was covered by small spindles and serrated layer related to gliding. The use of S-(3,4-dichlorobenzyl)isothiourea, blebbistatin, phalloidin and latrunculin A provide circumstantial evidence that actin microfilaments rather than MreB, the actin-like protein from prokaryota, and, probably, an ATPase which develops contractile function similar to that of myosin II, are involved in cell motility. These experimental facts, the absence of superficial elements (fimbriae, pili or flagellum) related to cell movement, and the appearance of sunken cells during of after movement verified by scanning electron microscopy, support the hypothesis that the motility of lichen cyanobionts could be achieved by contraction-relaxation episodes of the cytoskeleton induced by fungal lectin act as a chemoattractant.

  10. Extraction and purification of a lectin from red kidney bean and preliminary immune function studies of the lectin and four Chinese herbal polysaccharides.

    PubMed

    Hou, Yufang; Hou, Yubao; Yanyan, Liu; Qin, Guang; Li, Jichang

    2010-01-01

    Reversed micelles were used to extract lectin from red kidney beans and factors affecting reverse micellar systems (pH value, ionic strength and extraction time) were studied. The optimal conditions were extraction at pH 4-6, back extraction at pH 9-11, ion strength at 0.15 M NaCl, extraction for 4-6 minutes and back extraction for 8 minutes. The reverse micellar system was compared with traditional extraction methods and demonstrated to be a time-saving method for the extraction of red kidney bean lectin. Mitogenic activity of the lectin was reasonably good compared with commercial phytohemagglutinin (extracted from Phaseolus vulgaris) Mitogenic properties of the lectin were enhanced when four Chinese herbal polysaccharides were applied concurrently, among which 50 μg/mL Astragalus mongholicus polysaccharides (APS) with 12.5 μg/mL red kidney bean lectin yielded the highest mitogenic activity and 100 mg/kg/bw APS with 12.5 mg/kg/bw red kidney bean lectin elevated mouse nonspecific immunity.

  11. Characterization of functional domains of the hemolytic lectin CEL-III from the marine invertebrate Cucumaria echinata.

    PubMed

    Kouzuma, Yoshiaki; Suzuki, Yota; Nakano, Masahiro; Matsuyama, Kayo; Tojo, Sumiki; Kimura, Makoto; Yamasaki, Takayuki; Aoyagi, Haruhiko; Hatakeyama, Tomomitsu

    2003-09-01

    CEL-III is a Ca(2+)-dependent, galactose/N-acetylgalactosamine (GalNAc)-specific lectin isolated from the marine invertebrate Cucumaria echinata. This lectin exhibits strong hemolytic activity and cytotoxicity through pore formation in target cell membranes. The amino acid sequence of CEL-III revealed the N-terminal two-thirds to have homology to the B-chains of ricin and abrin, which are galactose-specific plant toxic lectins; the C-terminal one-third shows no homology to any known proteins. To examine the carbohydrate-binding ability of the N-terminal region of CEL-III, the protein comprising Pyr1-Phe283 was expressed in Escherichia coli cells. The expressed protein showed both the ability to bind to a GalNAc-immobilized column as well as hemagglutinating activity for rabbit erythrocytes, confirming that the N-terminal region has binding activity for specific carbohydrates. Since the C-terminal region could not be expressed in E. coli cells, a fragment containing this region was produced by limited proteolysis of the native protein by trypsin. The resulting C-terminal 15 kDa fragment of CEL-III exhibited a tendency to self-associate, forming an oligomer. When mixed with erythrocytes, the oligomer of the C-terminal fragment caused hemagglutination, probably due to hydrophobic interaction with cell membranes, while the monomeric fragment did not. Chymotryptic digestion of the preformed CEL-III oligomer induced upon lactose binding also yielded an oligomer of the C-terminal fragment comprising six molecules of the 16 kDa fragment. These results suggest that after binding to cell surface carbohydrate chains, CEL-III oligomerizes through C-terminal domains, leading to the formation of ion-permeable pores by hydrophobic interaction with the cell membrane.

  12. Lectin Receptor Kinases Participate in Protein-Protein Interactions to Mediate Plasma Membrane-Cell Wall Adhesions in Arabidopsis1

    PubMed Central

    Gouget, Anne; Senchou, Virginie; Govers, Francine; Sanson, Arnaud; Barre, Annick; Rougé, Pierre; Pont-Lezica, Rafael; Canut, Hervé

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces. PMID:16361528

  13. Mutational analysis of the pumpkin (Cucurbita maxima) phloem exudate lectin, PP2 reveals Ser-104 is crucial for carbohydrate binding.

    PubMed

    Bobbili, Kishore Babu; Bandari, Shyam; Grobe, Kay; Swamy, Musti J

    2014-07-18

    The pumpkin phloem lectin (PP2) is an RNA-binding, defense-related, chitooligosaccharide-specific, homodimeric lectin of Mr 48 kDa expressed at high concentrations in the sieve elements and companion cells of pumpkin (Cucurbita maxima). In the present study, PP2 was expressed in the methylotrophic yeast Pichia pastoris with the Saccharomyces α-factor sequence to direct the recombinant protein into the secretory pathway as a prerequisite for unimpaired folding and posttranslational glycosylation of recombinant PP2. Previous computational modeling and ligand docking studies predicted a putative chitooligosaccharide-binding site on the PP2 surface, which was divided into three subsites, with two amino acid residues in each subsite identified as possible candidates for interaction with chitooligosaccharides (CHOs). In this work, mutational analysis and hemagglutination assays were employed to verify the role of the predicted residues in the carbohydrate binding activity of the protein. The results obtained revealed that mutation of Ser-104 to Ala (S104A) at subsite-2 resulted in about 90% loss of agglutination activity of the protein, indicating that Ser-104 is crucial for the binding of CHOs to PP2. Also, L100A (at subsite-1) and K200A (at subsite-3) independently decreased the lectin activity by about 40%, indicating that these two residues also contribute significantly to sugar binding by PP2. Together, these findings confirm that all the three subsites contribute to varying degrees toward PP2-carbohydrate interaction, and confirm the validity of the computational model, as proposed earlier.

  14. Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis.

    PubMed

    Gouget, Anne; Senchou, Virginie; Govers, Francine; Sanson, Arnaud; Barre, Annick; Rougé, Pierre; Pont-Lezica, Rafael; Canut, Hervé

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces.

  15. Dietary Plant Lectins Appear to Be Transported from the Gut to Gain Access to and Alter Dopaminergic Neurons of Caenorhabditis elegans, a Potential Etiology of Parkinson’s Disease

    PubMed Central

    Zheng, Jolene; Wang, Mingming; Wei, Wenqian; Keller, Jeffrey N.; Adhikari, Binita; King, Jason F.; King, Michael L.; Peng, Nan; Laine, Roger A.

    2016-01-01

    Lectins from dietary plants have been shown to enhance drug absorption in the gastrointestinal tract of rats, be transported trans-synaptically as shown by tracing of axonal and dendritic paths, and enhance gene delivery. Other carbohydrate-binding protein toxins are known to traverse the gut intact in dogs. Post-feeding rhodamine- or TRITC-tagged dietary lectins, the lectins were tracked from gut to dopaminergic neurons (DAergic-N) in transgenic Caenorhabditis elegans (C. elegans) [egIs1(Pdat-1:GFP)] where the mutant has the green fluorescent protein (GFP) gene fused to a dopamine transport protein gene labeling DAergic-N. The lectins were supplemented along with the food organism Escherichia coli (OP50). Among nine tested rhodamine/TRITC-tagged lectins, four, including Phaseolus vulgaris erythroagglutinin (PHA-E), Bandeiraea simplicifolia (BS-I), Dolichos biflorus agglutinin (DBA), and Arachis hypogaea agglutinin (PNA), appeared to be transported from gut to the GFP-DAergic-N. Griffonia Simplicifolia and PHA-E, reduced the number of GFP-DAergic-N, suggesting a toxic activity. PHA-E, BS-I, Pisum sativum (PSA), and Triticum vulgaris agglutinin (Succinylated) reduced fluorescent intensity of GFP-DAergic-N. PHA-E, PSA, Concanavalin A, and Triticum vulgaris agglutinin decreased the size of GFP-DAergic-N, while BS-I increased neuron size. These observations suggest that dietary plant lectins are transported to and affect DAergic-N in C. elegans, which support Braak and Hawkes’ hypothesis, suggesting one alternate potential dietary etiology of Parkinson’s disease (PD). A recent Danish study showed that vagotomy resulted in 40% lower incidence of PD over 20 years. Differences in inherited sugar structures of gut and neuronal cell surfaces may make some individuals more susceptible in this conceptual disease etiology model. PMID:27014695

  16. A novel lectin domain-containing protein (LvCTLD) associated with response of the whiteleg shrimp Penaeus (Litopenaeus) vannamei to yellow head virus (YHV).

    PubMed

    Junkunlo, Kingkamon; Prachumwat, Anuphap; Tangprasittipap, Amornrat; Senapin, Saengchan; Borwornpinyo, Suparerk; Flegel, Timothy W; Sritunyalucksana, Kallaya

    2012-07-01

    When using mRNA from gills of normal whiteleg shrimp Penaeus (Litopenaeus) vannamei as the tester and mRNA from yellow head virus (YHV)-infected shrimp as the driver, subtractive suppression hybridization (SSH) revealed that a novel EST clone of 198 bp with a putative C-type lectin-like domain (CTLD) was downregulated in YHV-infected shrimp. The clone nucleotide sequence had 99% identity with one contig MGID1052359 (1,380 bp) reported in an EST database of P. vannamei, and the presence of this target in normal shrimp was confirmed by RT-PCR using primers designed from the MGID1052359 sequence. Analysis of the primary structure of the deduced amino acid (a.a.) sequence of the contig revealed a short portion (40 a.a. residues) at its N-terminus with high similarity to a low density lipoprotein receptor (LDLR) class A domain and another 152 a.a. residues at its C-terminus with high similarity to a C-type lectin domain. Thus, the clone was named LvCTLD and three recombinant proteins (LvCTLD, the LDLR domain and the CTLD domain) were synthesized in a bacterial system based on its sequence. An in vitro encapsulation assay revealed that Sepharose 4B beads coated with rLvCTLD were encapsulated by shrimp hemocytes and that melanization followed by 24 h post-encapsulation. The encapsulation activity of rLvCTLD was inhibited by 100 mM galactose, but not mannose or EDTA. In vivo injection of rLvCTLD or rLvCTLD plus YHV resulted in a significant elevation of PO activity in the hemolymph of the challenged shrimp when compared to shrimp injected with buffer, suggesting that rLvCTLD could activate the proPO system. An ELISA test revealed that rLvCTLD could bind to YHV particles in the presence of shrimp hemolymph. Phylogenetic analysis suggested that the LvCTLD sequence was more closely related to an antiviral gene found in Penaeus monodon (PmAV) than to other reported shrimp lectins. Taken together, we conclude that a novel shrimp LvCTLD is a host recognition molecule involved in

  17. Glycodendrimersomes from Sequence-Defined Janus Glycodendrimers Reveal High Activity and Sensor Capacity for the Agglutination by Natural Variants of Human Lectins.

    PubMed

    Zhang, Shaodong; Xiao, Qi; Sherman, Samuel E; Muncan, Adam; Ramos Vicente, Andrea D M; Wang, Zhichun; Hammer, Daniel A; Williams, Dewight; Chen, Yingchao; Pochan, Darrin J; Vértesy, Sabine; André, Sabine; Klein, Michael L; Gabius, Hans-Joachim; Percec, Virgil

    2015-10-21

    A library of eight amphiphilic Janus glycodendrimers (Janus-GDs) presenting D-lactose (Lac) and a combination of Lac with up to eight methoxytriethoxy (3EO) units in a sequence-defined arrangement was synthesized via an iterative modular methodology. The length of the linker between Lac and the hydrophobic part of the Janus-GDs was also varied. Self-assembly by injection from THF solution into phosphate-buffered saline led to unilamellar, monodisperse glycodendrimersomes (GDSs) with dimensions predicted by Janus-GD concentration. These GDSs provided a toolbox to measure bioactivity profiles in agglutination assays with sugar-binding proteins (lectins). Three naturally occurring forms of the human adhesion/growth-regulatory lectin galectin-8, Gal-8S and Gal-8L, which differ by the length of linker connect