Sample records for c1 cathepsin l-like

  1. Cathepsin L and cystatin B gene expression discriminates immune cœlomic cells in the leech Theromyzon tessulatum

    PubMed Central

    Lefebvre, Christophe; Vandenbulcke, Franck; Bocquet, Béatrice; Tasiemski, Aurélie; Desmons, Annie; Verstraete, Mathilde; Salzet, Michel; Cocquerelle, Claude

    2009-01-01

    Previous studies evidenced that cystatin B-like gene is specifically expressed and induced in large circulating cœlomic cells following bacterial challenge in the leech Theromyzon tessulatum. In order to understand the role of that cysteine proteinase inhibitor during immune response, we investigated the existence of members of cathepsin family. We cloned a cathepsin L-like gene and studied its tissue distribution. Immunohistochemical studies using anti-cathepsin L and anti-cystatin B antibodies and ultrastructural results demonstrated the presence of three distinct cœlomic cell populations, (1) the chloragocytes which were initially defined as large cœlomocytes, (2) the granular amœbocytes, and (3) small cœlomic cells. Among those cells, while chloragocytes contain cystatin B and cathepsin L, granular amœbocytes do only contain cathepsin L and third cell population contains neither cathepsin nor inhibitor. Finally, results evidenced that cathepsin L immunopositive granular amœbocytes are chemoattracted to the site of injury and phagocyte bacteria. PMID:18177937

  2. A cathepsin L-like protease from Strongylus vulgaris: an orthologue of Caenorhabditis elegans CPL-1.

    PubMed

    Ultaigh, Sinéad Nic An; Carolan, James C; Britton, Collette; Murray, Linda; Ryan, Michael F

    2009-04-01

    Cathespin L-like proteases (CPLs), characterized from a wide range of helminths, are significant in helminth biology. For example, in Caenorhabditis elegans CPL is essential for embryogenesis. Here, we report a cathepsin L-like gene from three species of strongyles that parasitize the horse, and describe the isolation of a cpl gene (Sv-cpl-1) from Strongylus vulgaris, the first such from equine strongyles. It encodes a protein of 354 amino acids with high similarity to other parasitic Strongylida (90-91%), and C.elegans CPL-1 (87%), a member of the same Clade. As S.vulgaris cpl-1 rescued the embryonic lethal phenotype of the C.elegans cpl-1 mutant, these genes may be orthologues, sharing the same function in each species. Targeting Sv-CPL-1 might enable novel control strategies by decreasing parasite development and transmission.

  3. [Activity of tissue cathepsin-L-like proteinases of women with womb body oncopathology].

    PubMed

    Vovchuk, I L; Chernadchuk, S S

    2004-01-01

    Activity and optimal pH of cathepsin-L-like proteinases was studied in benign and malignant tumours of the womb body. In the benign tumors activity of cathepsin-L-like proteinases changes depending on the expansion and depth of extension benign tumour and is defined by proliferative potential of tumour cells of myometrium and endometrium. Activity of cathepsin-L-like proteinases in malignant epithelial tumour of endometrium--adenocarcinoma is inversely proportional to the level of differentiation of the tumour cells.

  4. Adult Schistosoma mansoni express cathepsin L proteinase activity.

    PubMed

    Smith, A M; Dalton, J P; Clough, K A; Kilbane, C L; Harrop, S A; Hole, N; Brindley, P J

    1994-09-01

    This report presents the deduced amino acid sequence of a novel cathepsin L proteinase from Schistosoma mansoni, and describes cathepsin L-like activity in extracts of adult schistosomes. Using consensus primers specific for cysteine proteinases, gene fragments were amplified from adult S. mansoni cDNA by PCR and cloned. One of these fragments showed marked identity to Sm31, the cathepsin B cysteine proteinase of adult S. mansoni, whereas another differed from Sm31 and was employed as a probe to isolate two cDNAs from an adult S. mansoni gene library. Together these cDNAs encoded a novel preprocathepsin L of 319 amino acids; this zymogen is predicted to be processed in vivo into a mature, active cathepsin L proteinase of 215 amino acids. Closest homologies were with cathepsins L from rat, mouse, and chicken (46-47% identity). Southern hybridization analysis suggested that only one or a few copies of the gene was present per genome, demonstrated that its locus was distinct from that of Sm31, and that a homologous sequence was present in Schistosoma japonicum. Because these results indicated that schistosomes expressed a cathepsin L proteinase, extracts of adult S. mansoni were examined for acidic, cysteine proteinase activity. Based on rates of cleavage of peptidyl substrates employed to discriminate between classes of cysteine proteinases, namely cathepsin L (Z-phe-arg-AMC), cathepsin B (Z-arg-arg-AMC) and cathepsin H (Bz-arg-AMC), the extracts were found to contain vigorous cathepsin L-like activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. The 3D structure and function of digestive cathepsin L-like proteinases of Tenebrio molitor larval midgut.

    PubMed

    Beton, Daniela; Guzzo, Cristiane R; Ribeiro, Alberto F; Farah, Chuck S; Terra, Walter R

    2012-09-01

    Cathepsin L-like proteinases (CAL) are major digestive proteinases in the beetle Tenebrio molitor. Procathepsin Ls 2 (pCAL2) and 3 (pCAL3) were expressed as recombinant proteins in Escherichia coli, purified and activated under acidic conditions. Immunoblot analyses of different T. molitor larval tissues demonstrated that a polyclonal antibody to pCAL3 recognized pCAL3 and cathepsin L 3 (CAL3) only in the anterior two-thirds of midgut tissue and midgut luminal contents of T. molitor larvae. Furthermore, immunocytolocalization data indicated that pCAL3 occurs in secretory vesicles and microvilli in anterior midgut. Therefore CAL3, like cathepsin L 2 (CAL2), is a digestive enzyme secreted by T. molitor anterior midgut. CAL3 hydrolyses Z-FR-MCA and Z-RR-MCA (typical cathepsin substrates), whereas CAL2 hydrolyses only Z-FR-MCA. Active site mutants (pCAL2C25S and pCAL3C26S) were constructed by replacing the catalytic cysteine with serine to prevent autocatalytic processing. Recombinant pCAL2 and pCAL3 mutants (pCAL2C25S and pCAL3C26S) were prepared, crystallized and their 3D structures determined at 1.85 and 2.1 Å, respectively. While the overall structure of these enzymes is similar to other members of the papain superfamily, structural differences in the S2 subsite explain their substrate specificities. The data also supported models for CAL trafficking to lysosomes and to secretory vesicles to be discharged into midgut contents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Novel cathepsin B and cathepsin B-like cysteine protease of Naegleria fowleri excretory-secretory proteins and their biochemical properties.

    PubMed

    Lee, Jinyoung; Kim, Jong-Hyun; Sohn, Hae-Jin; Yang, Hee-Jong; Na, Byoung-Kuk; Chwae, Yong-Joon; Park, Sun; Kim, Kyongmin; Shin, Ho-Joon

    2014-08-01

    Naegleria fowleri causes a lethal primary amoebic meningoencephalitis (PAM) in humans and experimental animals, which leads to death within 7-14 days. Cysteine proteases of parasites play key roles in nutrient uptake, excystment/encystment, host tissue invasion, and immune evasion. In this study, we cloned N. fowleri cathepsin B (nfcpb) and cathepsin B-like (nfcpb-L) genes from our cDNA library of N. fowleri. The full-length sequences of genes were 1,038 and 939 bp (encoded 345 and 313 amino acids), and molecular weights were 38.4 and 34 kDa, respectively. Also, nfcpb and nfcpb-L showed a 56 and 46 % identity to Naegleria gruberi cathepsin B and cathepsin B-like enzyme, respectively. Recombinant NfCPB (rNfCPB) and NfCPB-L (rNfCPB-L) proteins were expressed by the pEX5-NT/TOPO vector that was transformed into Escherichia coli BL21, and they showed 38.4 and 34 kDa bands on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis using their respective antibodies. Proteolytic activity of refolded rNfCPB and rNfCPB-L was maximum at a pH of 4.5, and the most effective substrate was Z-LR-MCA. rNfCPB and rNfCPB-L showed proteolytic activity for several proteins such as IgA, IgG, IgM, collagen, fibronectin, hemoglobin, and albumin. These results suggested that NfCPB and NfCPB-L cysteine protease are important components of the N. fowleri ESP, and they may play important roles in host tissue invasion and immune evasion as pathogens that cause N. fowleri PAM.

  7. Molecular Cloning and Sequencing of Channel Catfish, Ictalurus punctatus, Cathepsin H and L cDNA

    USDA-ARS?s Scientific Manuscript database

    Cathepsin H and L, a lysosomal cysteine endopeptidase of the papain family, are ubiquitously expressed and involve in antigen processing. In this communication, the channel catfish cathepsin H and L transcripts were sequenced and analyzed. Total RNA from tissues was extracted and cDNA libraries we...

  8. Molecular cloning and anti-invasive activity of cathepsin L propeptide-like protein from Calotropis procera R. Br. against cancer cells.

    PubMed

    Kwon, Chang Woo; Yang, Hee; Yeo, SuBin; Park, Kyung-Min; Jeong, Ae Jin; Lee, Ki Won; Ye, Sang-Kyu; Chang, Pahn-Shick

    2018-12-01

    Cathepsin L of cancer cells has been shown to play an important role in degradation of extracellular matrix for metastasis. In order to reduce cell invasion, cathepsin L propeptide-like proteins which are classified as the I29 family in the MEROPS peptidase database were characterized from Calotropis procera R. Br., rich in cysteine protease. Of 19 candidates, the cloned and expressed recombinant SnuCalCp03-propeptide (rSnuCalCp03-propeptide) showed a low nanomolar K i value of 2.3 ± 0.2 nM against cathepsin L. A significant inhibition of tumor cell invasion was observed with H1975, HT29, MDA-BM-231, PANC1, and PC3 with a 76, 67, 67, 63, and 79% reduction, respectively, in invasion observed in the presence of 400 nM of the rSnuCalCp03-propeptide. In addition, thermal and pH study showed rSnuCalCp03-propeptide consisting of secondary structures was stable at a broad range of temperatures (30-70 °C) and pH (2-10, except for 5 which is close to the isoelectric point of 5.2).

  9. Production and characterization of monoclonal antibodies against cathepsin B and cathepsin B-Like proteins of Naegleria fowleri.

    PubMed

    Seong, Gi-Sang; Sohn, Hae-Jin; Kang, Heekyoung; Seo, Ga-Eun; Kim, Jong-Hyun; Shin, Ho-Joon

    2017-12-01

    Naegleria fowleri causes fatal primary amoebic meningoencephalitis (PAM) in humans and experimental animals. In previous studies, cathepsin B (nfcpb) and cathepsin B-like (nfcpb-L) genes of N. fowleri were cloned, and it was suggested that refolding rNfCPB and rNfCPB-L proteins could play important roles in host tissue invasion, immune response evasion and nutrient uptake. In this study, we produced anti-NfCPB and anti-NfCPB-L monoclonal antibodies (McAb) using a cell fusion technique, and observed their immunological characteristics. Seven hybridoma cells secreting rNfCPB McAbs and three hybridoma cells secreting rNfCPB-L McAbs were produced. Among these, 2C9 (monoclone for rNfCPB) and 1C8 (monoclone for rNfCPB-L) McAb showed high antibody titres and were finally selected for use. As determined by western blotting, 2C9 McAb bound to N. fowleri lysates, specifically the rNfCPB protein, which had bands of 28 kDa and 38.4 kDa. 1C8 McAb reacted with N. fowleri lysates, specifically the rNfCPB-L protein, which had bands of 24 kDa and 34 kDa. 2C9 and 1C8 monoclonal antibodies did not bind to lysates of other amoebae, such as N. gruberi, Acanthamoeba castellanii and A. polyphaga in western blot analyses. Immuno-cytochemistry analysis detected NfCPB and NfCPB-L proteins in the cytoplasm of N. fowleri trophozoites, particularly in the pseudopodia and food-cup. These results suggest that monoclonal antibodies produced against rNfCPB and rNfCPB-L proteins may be useful for further immunological study of PAM. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Monoclonal antibody against recombinant Fasciola gigantica cathepsin L1H could detect juvenile and adult cathepsin Ls of Fasciola gigantica.

    PubMed

    Wongwairot, Sirima; Kueakhai, Pornanan; Changklungmoa, Narin; Jaikua, Wipaphorn; Sansri, Veerawat; Meemon, Krai; Songkoomkrong, Sineenart; Riengrojpitak, Suda; Sobhon, Prasert

    2015-01-01

    Cathepsin Ls (CatLs), the major cysteine protease secreted by Fasciola spp., are important for parasite digestion and tissue invasion. Fasciola gigantica cathepsin L1H (FgCatL1H) is the isotype expressed in the early stages for migration and invasion. In the present study, a monoclonal antibody (MoAb) against recombinant F. gigantica cathepsin L1H (rFgCatL1H) was produced by hybridoma technique using spleen cells from BALB/c mice immunized with recombinant proFgCatL1H (rproFgCatL1H). This MoAb is an immunoglobulin (Ig)G1 with κ light chain isotype. The MoAb reacted specifically with rproFgCatL1H, the native FgCatL1H at a molecular weight (MW) 38 to 48 kDa in the extract of whole body (WB) of metacercariae and newly excysted juvenile (NEJ) and cross-reacted with rFgCatL1 and native FgCatLs at MW 25 to 28 kDa in WB of 2- and 4-week-old juveniles, adult, and adult excretory-secretory (ES) fractions by immunoblotting and indirect ELISA. It did not cross-react with antigens in WB fractions from other parasites, including Gigantocotyle explanatum, Paramphistomum cervi, Gastrothylax crumenifer, Eurytrema pancreaticum, Setaria labiato-papillosa, and Fischoederius cobboldi. By immunolocalization, MoAb against rFgCatL1H reacted with the native protein in the gut of metacercariae and NEJ and also cross-reacted with CatL1 in 2- and 4-week-old juveniles and adult F. gigantica. Therefore, FgCatL1H and its MoAb may be used for immunodiagnosis of both early and late fasciolosis in ruminants and humans.

  11. K-ras mutation promotes ionizing radiation-induced invasion and migration of lung cancer in part via the Cathepsin L/CUX1 pathway.

    PubMed

    Wang, Long; Zhao, Yifan; Xiong, Yajie; Wang, Wenjuan; Fei, Yao; Tan, Caihong; Liang, Zhongqin

    2018-01-15

    K-ras mutation is involved in cancer progression including invasion and migration, but the underlying mechanism is not yet clear. Cathepsin L is a lysosomal cysteine protease and has recently been associated with invasion and migration in human cancers when it is overexpressed. Our recent studies have shown that ionizing radiation (IR) enhanced expression of cathepsin L and increased invasion and migration of tumor cells, but the molecular mechanism is still unclear. In the present study, the effects of K-ras mutation and IR induced invasion and migration of lung cancer as well as the underlying mechanisms were investigated both in vitro and in vivo. Firstly, the levels of cathepsin L and epithelial mesenchymal transition (EMT) marker proteins remarkably changed in A549 (K-ras mutant) after irradiation compared with H1299 (K-ras wild), thereby promoting invasion and migration. Additionally, cathepsin L and its downstream transcription factor CUX1/p110 were increased after irradiation in A549 transfected with CUX1/p200, and the proteolytic processing of CUX1 by cathepsin L was remarkably increased after co-transfection of CUX1/p200 and cathepsin L-lentivirus in H1299. In addition, delivery of a mutant K-ras (V12) into HEK 293 cells stimulated EMT after irradiation due to the accumulation of cathepsin L. Moreover, mutated K-ras was associated with IR-induced cathepsin L and EMT in BALB/c nude mice. Finally, the level of cathepsin L expression was higher in samples carrying a K-ras mutation than in wild-type K-ras samples and the mesenchymal markers were upregulated in the samples of mutant K-ras, whereas the epithelial marker E-cadherin was downregulated in non-small cell lung cancers tissues. In conclusion, the findings demonstrated that mutated K-ras promotes cathepsin L expression and plays a pivotal role in EMT of human lung cancer. The regulatory effect of IR-induced cathepsin L on lung cancer invasion and migration was partially attributed to the Cathepsin L

  12. Entamoeba histolytica cathepsin-like enzymes : interactions with the host gut.

    PubMed

    Kissoon-Singh, Vanessa; Mortimer, Leanne; Chadee, Kris

    2011-01-01

    Cysteine proteases of the protozoan parasite Entamoeba histolytica are key virulence factors involved in overcoming host defences. These proteases are cathepsin-like enzymes with a cathepsin-L like structure, but cathepsin-B substrate specificity. In the host intestine, amoeba cysteine proteases cleave colonic mucins and degrade secretory immunoglobulin (Ig) A and IgG rendering them ineffective. They also act on epithelial tight junctions and degrade the extracellular matrix to promote Cell death. They are involved in the destruction of red blood cells and the evasion of neutrophils and macrophages and they activate pro-inflammatory cytokines IL- 1β and IL-18. In short, amoeba cysteine proteases manipulate and destroy host defences to facilitate nutrient acquisition, parasite colonization and/or invasion. Strategies to inhibit the activity of amoeba cysteine proteases could contribute significantly to host protection against E. histolytica.

  13. Synthesis and biochemical evaluation of benzoylbenzophenone thiosemicarbazone analogues as potent and selective inhibitors of cathepsin L

    PubMed Central

    Parker, Erica N.; Song, Jiangli; Kumar, G. D. Kishore; Odutola, Samuel O.; Chavarria, Gustavo E.; Charlton-Sevcik, Amanda K.; Strecker, Tracy E.; Barnes, Ashleigh L.; Sudhan, Dhivya R.; Wittenborn, Thomas R.; Siemann, Dietmar W.; Horsman, Michael R.; Chaplin, David J.; Trawick, Mary Lynn; Pinney, Kevin G.

    2016-01-01

    Upregulation of cathepsin L in a variety of tumors and its ability to promote cancer cell invasion and migration through degradation of the extracellular matrix suggest that cathepsin L is a promising biological target for the development of anti-metastatic agents. Based on encouraging results from studies on benzophenone thiosemicarbazone cathepsin inhibitors, a series of fourteen benzoylbenzophenone thiosemicarbazone analogues were designed, synthesized, and evaluated for their inhibitory activity against cathepsins L and B. Thiosemicarbazone inhibitors 3-benzoylbenzophenone thiosemicarbazone 1, 1,3-bis(4-fluorobenzoyl)benzene thiosemicarbazone 8, and 1,3-bis(2-fluorobenzoyl)-5-bromobenzene thiosemicarbazone 32 displayed the greatest potency against cathepsin L with low IC50 values of 9.9 nM, 14.4 nM, and 8.1 nM, respectively. The benzoylbenzophenone thiosemicarbazone analogues evaluated were selective in their inhibition of cathepsin L compared to cathepsin B. Thiosemicarbazone analogue 32 inhibited invasion through Matrigel of MDA-MB-231 breast cancer cells by 70% at 10 μM. Thiosemicarbazone analogue 8 significantly inhibited the invasive potential of PC-3ML prostate cancer cells by 92% at 5 μM. The most active cathepsin L inhibitors from this benzoylbenzophenone thiosemicarbazone series (1, 8, and 32) displayed low cytotoxicity toward normal primary cells [in this case human umbilical vein endothelial cells (HUVECs)]. In an initial in vivo study, 3-benzoylbenzophenone thiosemicarbazone (1) was well-tolerated in a CDF1 mouse model bearing an implanted C3H mammary carcinoma, and showed efficacy in tumor growth delay. Low cytotoxicity, inhibition of cell invasion, and in vivo tolerability are desirable characteristics for anti-metastatic agents functioning through an inhibition of cathepsin L. Active members of this structurally diverse group of benzoylbenzophenone thiosemicarbazone cathepsin L inhibitors show promise as potential anti-metastatic, pre

  14. Synthesis and Biochemical Evaluation of Thiochromanone Thiosemicarbazone Analogues as Inhibitors of Cathepsin L

    PubMed Central

    2012-01-01

    A series of 36 thiosemicarbazone analogues containing the thiochromanone molecular scaffold functionalized primarily at the C-6 position were prepared by chemical synthesis and evaluated as inhibitors of cathepsins L and B. The most promising inhibitors from this group are selective for cathepsin L and demonstrate IC50 values in the low nanomolar range. In nearly all cases, the thiochromanone sulfide analogues show superior inhibition of cathepsin L as compared to their corresponding thiochromanone sulfone derivatives. Without exception, the compounds evaluated were inactive (IC50 > 10000 nM) against cathepsin B. The most potent inhibitor (IC50 = 46 nM) of cathepsin L proved to be the 6,7-difluoro analogue 4. This small library of compounds significantly expands the structure–activity relationship known for small molecule, nonpeptidic inhibitors of cathepsin L. PMID:24900494

  15. l-Homocysteine-induced cathepsin V mediates the vascular endothelial inflammation in hyperhomocysteinaemia.

    PubMed

    Leng, Yi-Ping; Ma, Ye-Shuo; Li, Xiao-Gang; Chen, Rui-Fang; Zeng, Ping-Yu; Li, Xiao-Hui; Qiu, Cheng-Feng; Li, Ya-Pei; Zhang, Zhen; Chen, Alex F

    2018-04-01

    Vascular inflammation, including the expression of inflammatory cytokines in endothelial cells, plays a critical role in hyperhomocysteinaemia-associated vascular diseases. Cathepsin V, specifically expressed in humans, is involved in vascular diseases through its elastolytic and collagenolytic activities. The aim of this study was to determine the effects of cathepsin V on l-homocysteine-induced vascular inflammation. A high methionine diet-induced hyperhomocysteinaemic mouse model was used to assess cathepsin V expression and vascular inflammation. Cultures of HUVECs were challenged with l-homocysteine and the cathepsin L/V inhibitor SID to assess the pro-inflammatory effects of cathepsin V. Transfection and antisense techniques were utilized to investigate the effects of cathepsin V on the dual-specificity protein phosphatases (DUSPs) and MAPK pathways. Cathepsin L (human cathepsin V homologous) was increased in the thoracic aorta endothelial cells of hyperhomocysteinaemic mice; l-homocysteine promoted cathepsin V expression in HUVECs. SID suppressed the activity of cathepsin V and reversed the up-regulation of inflammatory cytokines (IL-6, IL-8 and TNF-α), adhesion and chemotaxis of leukocytes and vascular inflammation induced by l-homocysteine in vivo and in vitro. Increased cathepsin V promoted the degradation of DUSP6 and DUSP7, phosphorylation and subsequent nuclear translocation of ERK1/2, phosphorylation of STAT1 and expression of IL-6, IL-8 and TNF-α. This study has identified a novel mechanism, which shows that l-homocysteine-induced upregulation of cathepsin V mediates vascular endothelial inflammation under high homocysteine condition partly via ERK 1/2 /STAT1 pathway. This mechanism could represent a potential therapeutic target in hyperaemia-associated vascular diseases. This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http

  16. Cathepsin L is an immune-related protein in Pacific abalone (Haliotis discus hannai)--Purification and characterization.

    PubMed

    Shen, Jian-Dong; Cai, Qiu-Feng; Yan, Long-Jie; Du, Cui-Hong; Liu, Guang-Ming; Su, Wen-Jin; Ke, Caihuan; Cao, Min-Jie

    2015-12-01

    Cathepsin L, an immune-related protein, was purified from the hepatopancreas of Pacific abalone (Haliotis discus hannai) by ammonium sulfate precipitation and column chromatographies of SP-Sepharose and Sephacryl S-200 HR. Purified cathepsin L appeared as two bands with molecular masses of 28.0 and 28.5 kDa (namely cathepsin La and Lb) on SDS-PAGE under reducing conditions, suggesting that it is a glycoprotein. Peptide mass fingerprinting (PMF) analysis revealed that peptide fragments of 95 amino acid residues was high similarity to cathepsin L of pearl oyster (Pinctada fucata). The optimal temperature and pH of cathepsin L were 35 °C and pH 5.5. Cathepsin L was particularly inhibited by cysteine proteinase inhibitors of E-64 and leupeptin, while it was activated by metalloproteinase inhibitors EDTA and EGTA. The full-length cathepsin L cDNA was further cloned from the hepatopancreas by rapid PCR amplification of cDNA ends (RACE). The open reading frame of the enzyme was 981 bp, encoding 327 amino acid residues, with a conserved catalytic triad (Cys134, His273 and Asn293), a potential N-glycosylation site and conserved ERFNIN, GNYD, and GCGG motifs, which are characteristics of cathepsin L. Western blot and proteinase activity analysis revealed that the expression and enzyme activity of cathepsin L were significantly up-regulated in hepatopancreas at 8 h following Vibrio parahaemolyticus infection, demonstrating that cathepsin L is involved in the innate immune system of abalone. Our present study for the first time reported the purification, characterization, molecular cloning, and tissue expression of cathepsin L in abalone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Structural Dynamics Investigation of Human Family 1 & 2 Cystatin-Cathepsin L1 Interaction: A Comparison of Binding Modes.

    PubMed

    Nandy, Suman Kumar; Seal, Alpana

    2016-01-01

    Cystatin superfamily is a large group of evolutionarily related proteins involved in numerous physiological activities through their inhibitory activity towards cysteine proteases. Despite sharing the same cystatin fold, and inhibiting cysteine proteases through the same tripartite edge involving highly conserved N-terminal region, L1 and L2 loop; cystatins differ widely in their inhibitory affinity towards C1 family of cysteine proteases and molecular details of these interactions are still elusive. In this study, inhibitory interactions of human family 1 & 2 cystatins with cathepsin L1 are predicted and their stability and viability are verified through protein docking & comparative molecular dynamics. An overall stabilization effect is observed in all cystatins on complex formation. Complexes are mostly dominated by van der Waals interaction but the relative participation of the conserved regions varied extensively. While van der Waals contacts prevail in L1 and L2 loop, N-terminal segment chiefly acts as electrostatic interaction site. In fact the comparative dynamics study points towards the instrumental role of L1 loop in directing the total interaction profile of the complex either towards electrostatic or van der Waals contacts. The key amino acid residues surfaced via interaction energy, hydrogen bonding and solvent accessible surface area analysis for each cystatin-cathepsin L1 complex influence the mode of binding and thus control the diverse inhibitory affinity of cystatins towards cysteine proteases.

  18. Structural Dynamics Investigation of Human Family 1 & 2 Cystatin-Cathepsin L1 Interaction: A Comparison of Binding Modes

    PubMed Central

    Nandy, Suman Kumar; Seal, Alpana

    2016-01-01

    Cystatin superfamily is a large group of evolutionarily related proteins involved in numerous physiological activities through their inhibitory activity towards cysteine proteases. Despite sharing the same cystatin fold, and inhibiting cysteine proteases through the same tripartite edge involving highly conserved N-terminal region, L1 and L2 loop; cystatins differ widely in their inhibitory affinity towards C1 family of cysteine proteases and molecular details of these interactions are still elusive. In this study, inhibitory interactions of human family 1 & 2 cystatins with cathepsin L1 are predicted and their stability and viability are verified through protein docking & comparative molecular dynamics. An overall stabilization effect is observed in all cystatins on complex formation. Complexes are mostly dominated by van der Waals interaction but the relative participation of the conserved regions varied extensively. While van der Waals contacts prevail in L1 and L2 loop, N-terminal segment chiefly acts as electrostatic interaction site. In fact the comparative dynamics study points towards the instrumental role of L1 loop in directing the total interaction profile of the complex either towards electrostatic or van der Waals contacts. The key amino acid residues surfaced via interaction energy, hydrogen bonding and solvent accessible surface area analysis for each cystatin-cathepsin L1 complex influence the mode of binding and thus control the diverse inhibitory affinity of cystatins towards cysteine proteases. PMID:27764212

  19. Molecular cloning, characterization and functional analysis of a novel juvenile-specific cathepsin L of Fasciola gigantica.

    PubMed

    Sansri, Veerawat; Changklungmoa, Narin; Chaichanasak, Pannigan; Sobhon, Prasert; Meemon, Krai

    2013-10-01

    Cathepsin L proteases are a major class of endopeptidases expressed at a high level in Fasciola parasites. Several isoforms of cathepsin L were detected and they may perform different functions during the parasite development. In this study, a complete cDNA encoding a cathepsin L protease was cloned from a newly excysted juvenile (NEJ) cDNA library of Fasciola gigantica and named FgCatL1H. It encoded a 326 amino acid preproenzyme which shared 62.8-83.1% and 39.5-42.9% identity to Fasciola spp. and mammalian cathepsins L, respectively. All functionally important residues previously described for cathepsin L were conserved in FgCatL1H. Phylogenetic analysis demonstrated that FgCatL1H belonged to a distinct group, clade 4, with respect to adult and other juvenile Fasciola cathepsin L genes. FgCatL1H expression was detected by RT-PCR, using gene specific primers, in metacercariae and NEJ, and the expression gradually decreased in advanced developmental stages. A recombinant proFgCatL1H (rproFgCatL1H) was expressed in the yeast Pichia pastoris, affinity purified, and found to migrate in SDS-PAGE at approximately 47.6 and 38.3kDa in glycosylated and deglycosylated forms, respectively. The molecular mass of the activated mature rFgCatL1H in glycosylated form was approximately 40.7kDa. Immunoblotting and immunohistochemistry using rabbit antibodies against rproFgCatL1H showed that FgCatL1H was predominantly expressed in epithelial cells of the digestive tract of metacercariae, NEJs and juveniles of F. gigantica. FgCatL1H could cleave the synthetic fluorogenic substrate Z-Phe-Arg-MCA preferentially over Z-Gly-Pro-Arg-MCA at an optimum pH of 6.5. It also showed hydrolytic activity against native substrates, including type I collagen, laminin, and immunoglobulin G (IgG) in vitro, suggesting possible roles in host tissue migration and immune evasion. Therefore, the FgCatL1H is a possible target for vaccine and chemotherapy for controlling F. gigantica infection. Copyright

  20. Subsite specificity of trypanosomal cathepsin L-like cysteine proteases. Probing the S2 pocket with phenylalanine-derived amino acids.

    PubMed

    Lecaille, F; Authié, E; Moreau, T; Serveau, C; Gauthier, F; Lalmanach, G

    2001-05-01

    The S2 subsite of mammalian cysteine proteinases of the papain family is essential for specificity. Among natural amino acids, all these enzymes prefer bulky hydrophobic residues such as phenylalanine at P2. This holds true for their trypanosomal counterparts: cruzain from Trypanosoma cruzi and congopain from T. congolense. A detailed analysis of the S2 specificity of parasitic proteases was performed to gain information that might be of interest for the design of more selective pseudopeptidyl inhibitors. Nonproteogenic phenylalanyl analogs (Xaa) have been introduced into position P2 of fluorogenic substrates dansyl-Xaa-Arg-Ala-Pro-Trp, and their kinetic constants (Km, kcat/Km) have been determined with congopain and cruzain, and related host cathepsins B and L. Trypanosomal cysteine proteases are poorly stereoselective towards D/L-Phe, the inversion of chirality modifying the efficiency of the reaction but not the Km. Congopain binds cyclohexylalanine better than aromatic Phe derivatives. Another characteristic feature of congopain compared to cruzain and cathepsins B and L was that it could accomodate a phenylglycyl residue (kcat/Km = 1300 mM-1.s-1), while lengthening of the side chain by a methylene group only slightly impaired the specificity constant towards trypanosomal cysteine proteases. Mono- and di-halogenation or nitration of Phe did not affect Km for cathepsin L-like enzymes, but the presence of constrained Phe derivatives prevented a correct fitting into the S2 subsite. A model of congopain has been built to study the fit of Phe analogs within the S2 pocket. Phe analogs adopted a positioning within the S2 pocket similar to that of the Tyr of the cruzain/Z-Tyr-Ala-fluoromethylketone complex. However, cyclohexylalanine has an energetically favorable chair-like conformation and can penetrate deeper into the subsite. Fitting of modeled Phe analogs were in good agreement with kinetic parameters. Furthermore, a linear relationship could be established with

  1. Cysteine Cathepsins in the Secretory Vesicle Produce Active Peptides: Cathepsin L Generates Peptide Neurotransmitters and Cathepsin B Produces Beta-Amyloid of Alzheimer’s Disease

    PubMed Central

    Hook, Vivian; Funkelstein, Lydiane; Wegrzyn, Jill; Bark, Steven; Kindy, Mark; Hook, Gregory

    2011-01-01

    Recent new findings indicate significant biological roles of cysteine cathepsin proteases in secretory vesicles for production of biologically active peptides. Notably, cathepsin L in secretory vesicles has been demonstrated as a key protease for proteolytic processing of proneuropeptides (and prohormones) into active neuropeptides that are released to mediate cell-cell communication in the nervous system for neurotransmission. Moreover, cathepsin B in secretory vesicles has been recently identified as a β-secretase for production of neurotoxic β-amyloid (Aβ) peptides that accumulate in Alzheimer’s disease (AD), participating as a notable factor in the severe memory loss in AD. These secretory vesicle functions of cathepsins L and B for production of biologically active peptides contrasts with the well-known role of cathepsin proteases in lysosomes for the degradation of proteins to result in their inactivation. The unique secretory vesicle proteome indicates proteins of distinct functional categories that provide the intravesicular environment for support of cysteine cathepsin function. Features of the secretory vesicle protein systems insure optimized intravesicular conditions that support the proteolytic activity of cathepsins. These new findings of recently discovered biological roles of cathepsins L and B indicate their significance in human health and disease. PMID:21925292

  2. Structural Basis for Reversible and Irreversible Inhibition of Human Cathepsin L by their Respective dipeptidyl glyoxal and diazomethylketone Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R Shenoy; J Sivaraman

    Cathepsin L plays a key role in many pathophysiological conditions including rheumatoid arthritis, tumor invasion and metastasis, bone resorption and remodeling. Here we report the crystal structures of two analogous dipeptidyl inhibitor complexes which inhibit human cathepsin L in reversible and irreversible modes, respectively. To-date, there are no crystal structure reports of complexes of proteases with their glyoxal inhibitors or complexes of cathepsin L and their diazomethylketone inhibitors. These two inhibitors - inhibitor 1, an {alpha}-keto-{beta}-aldehyde and inhibitor 2, a diazomethylketone, have different groups in the S1 subsite. Inhibitor 1 [Z-Phe-Tyr (OBut)-COCHO], with a Ki of 0.6 nM, is themore » most potent, reversible, synthetic peptidyl inhibitor of cathepsin L reported to-date. The structure of the inhibitor 1 complex was refined up to 2.2 {angstrom} resolution. The structure of the complex of the inhibitor 2 [Z-Phe-Tyr (t-Bu)-diazomethylketone], an irreversible inhibitor that can inactivate cathepsin L at {micro}M concentrations, was refined up to 1.76 {angstrom} resolution. These two inhibitors have substrate-like interactions with the active site cysteine (Cys25). Inhibitor 1 forms a tetrahedral hemithioacetal adduct, whereas the inhibitor 2 forms a thioester with Cys25. The inhibitor 1 {beta}-aldehyde group is shown to make a hydrogen bond with catalytic His163, whereas the ketone carbonyl oxygen of the inhibitor 2 interacts with the oxyanion hole. tert-Butyl groups of both inhibitors are found to make several non-polar contacts with S' subsite residues of cathepsin L. These studies, combined with other complex structures of cathepsin L, reveal the structural basis for their potency and selectivity.« less

  3. A possible alternative mechanism of kinin generation in vivo by cathepsin L.

    PubMed

    Puzer, Luciano; Vercesi, Juliana; Alves, Marcio F M; Barros, Nilana M T; Araujo, Mariana S; Aparecida Juliano, Maria; Reis, Marina L; Juliano, Luiz; Carmona, Adriana K

    2005-07-01

    We investigated the ability of cathepsin L to induce a hypotensive effect after intravenous injection in rats and correlated this decrease in blood pressure with kinin generation. Simultaneously with blood pressure decrease, we detected plasma kininogen depletion in the treated rats. The effect observed in vivo was abolished by pre-incubation of cathepsin L with the cysteine peptidase-specific inhibitor E-64 (1 microM) or by previous administration of the bradykinin B2 receptor antagonist JE049 (4 mg/kg). A potentiation of the hypotensive effect caused by cathepsin L was observed by previous administration of the angiotensin I-converting enzyme inhibitor captopril (5 mg/kg). In vitro studies indicated that cathepsin L excised bradykinin from the synthetic fluorogenic peptide Abz-MTSVIRRPPGFSPFRAPRV-NH2, based on the Met375-Val393 sequence of rat kininogen (Abz = o-aminobenzoic acid). In conclusion, our data indicate that in vivo cathepsin L releases a kinin-related peptide, and in vitro experiments suggest that the kinin generated is bradykinin. Although it is well known that cysteine proteases are strongly inhibited by kininogen, cathepsin L could represent an alternative pathway for kinin production in pathological processes.

  4. Assessment of cathepsin D and L-like proteinases of poultry red mite, Dermanyssus gallinae (De Geer), as potential vaccine antigens.

    PubMed

    Bartley, Kathryn; Huntley, John F; Wright, Harry W; Nath, Mintu; Nisbet, Alasdair J

    2012-05-01

    Vaccination is a feasible strategy for controlling the haematophagous poultry red mite Dermanyssus gallinae. A cDNA library enriched for genes upregulated after feeding was created to identify potential vaccine antigens. From this library, a gene (Dg-CatD-1) encoding a 383 amino acid protein (Dg-CatD-1) with homology to cathepsin D lysosomal aspartyl proteinases was identified as a potential vaccine candidate. A second gene (Dg-CatL-1) encoding a 341 amino acid protein (Dg-CatL-1) with homology to cathepsin L cysteine proteinases was also selected for further study. IgY obtained from naturally infested hens failed to detect Dg-CatD-1 suggesting that it is a concealed antigen. Conversely, Dg-CatL-1 was detected by IgY derived from natural-infestation, indicating that infested hens are exposed to Dg-CatL-1. Mortality rates 120 h after mites had been fed anti-Dg-CatD-1 were significantly higher than those fed control IgY (PF<0·01). In a survival analysis, fitting a proportional hazards model to the time of death of mites, anti-Dg-CatD-1 and anti-Dg-CatL-1 IgY had 4·42 and 2·13 times higher risks of dying compared with controls (PF<0·05). Dg-CatD-1 and L-1 both have potential as vaccine antigens as part of a multi-component vaccine and have the potential to be improved as vaccine antigens using alternative expression systems.

  5. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pager, Cara Theresia; Craft, Willie Warren; Patch, Jared

    2006-03-15

    The Nipah virus fusion (F) protein is proteolytically processed to F{sub 1} + F{sub 2} subunits. We demonstrate here that cathepsin L is involved in this important maturation event. Cathepsin inhibitors ablated cleavage of Nipah F. Proteolytic processing of Nipah F and fusion activity was dramatically reduced in cathepsin L shRNA-expressing Vero cells. Additionally, Nipah virus F-mediated fusion was inhibited in cathepsin L-deficient cells, but coexpression of cathepsin L restored fusion activity. Both purified cathepsin L and B could cleave immunopurified Nipah F protein, but only cathepsin L produced products of the correct size. Our results suggest that endosomal cathepsinsmore » can cleave Nipah F, but that cathepsin L specifically converts Nipah F to a mature and fusogenic form.« less

  6. Cathepsin L Inhibition Prevents Murine Autoimmune Diabetes via Suppression of CD8+ T Cell Activity

    PubMed Central

    Yamada, Akiko; Ishimaru, Naozumi; Arakaki, Rieko; Katunuma, Nobuhiko; Hayashi, Yoshio

    2010-01-01

    Background Type 1 diabetes (T1D) is an autoimmune disease resulting from defects in central and peripheral tolerance and characterized by T cell-mediated destruction of islet β cells. To determine whether specific lysosomal proteases might influence the outcome of a T cell–mediated autoimmune response, we examined the functional significance of cathepsin inhibition on autoimmune T1D-prone non-obese diabetic (NOD) mice. Methods and Findings Here it was found that specific inhibition of cathepsin L affords strong protection from cyclophosphamide (CY)-induced insulitis and diabetes of NOD mice at the advanced stage of CD8+ T cell infiltration via inhibiting granzyme activity. It was discovered that cathepsin L inhibition prevents cytotoxic activity of CD8+ T cells in the pancreatic islets through controlling dipeptidyl peptidase I activity. Moreover, the gene targeting for cathepsin L with application of in vivo siRNA administration successfully prevented CY-induced diabetes of NOD mice. Finally, cathepsin L mRNA expression of peripheral CD8+ T cells from NOD mice developing spontaneous T1D was significantly increased compared with that from control mice. Conclusions Our results identified a novel function of cathepsin L as an enzyme whose activity is essential for the progression of CD8+ T cell-mediated autoimmune diabetes, and inhibition of cathepsin L as a powerful therapeutic strategy for autoimmune diabetes. PMID:20877570

  7. Activity of aspargate (cathepsin D), cysteine proteases (cathepsins B, B + L, and H), and matrix metallopeptidase (collagenase) and their influence on protein and water-holding capacity of muscle in commercially farmed atlantic halibut (Hippoglossus hippoglossus L.).

    PubMed

    Hagen, Orjan; Solberg, Christel; Johnston, Ian A

    2008-07-23

    Atlantic halibut (Hippoglossus hippoglossus L.) were commercially farmed in Helgeland, Norway (May 2004-May 2005). The average weight (Mb) of fish increased over the 12 month production cycle by approximately 73% for females and approximately 50% for males, although during the winter months (November-early May) Mb was unchanged in females and declined by 18% in males because of sexual maturation and sperm release. Periods of zero or negative growth were associated with up to 5.7% (females) and 17.9% (males) decline in fast muscle protein content. The activities of cathepsins B, B + L, H, and D showed a reciprocal relationship and were highly correlated with the changes in protein content. Water-holding capacity was measured as the liquid loss increased from 3-5% in November to 11-13% in May. Two general additive models (GAMs) showed that cathepsin B + L, cathepsin D, and collagenase explained 73.1% of the total variance in protein content, while cathepsin H was the largest contributor to liquid loss, explaining approximately 48.8% of the total variance. The results indicate that to obtain the best flesh quality Atlantic halibut should be harvested in the fall or early winter when the liquid loss and cathepsin activities are low and less likely to cause problems during secondary processing and storage.

  8. Identification of interleukin-8 converting enzyme as cathepsin L.

    PubMed

    Ohashi, Kensaku; Naruto, Masanobu; Nakaki, Toshio; Sano, Emiko

    2003-06-26

    IL-8 is produced by various cells, and the NH(2)-terminal amino acid sequence of IL-8 displays heterogeneity among cell types. The mature form of IL-8 has 72 amino acids (72IL-8), while a precursor form (77IL-8) of IL-8 has five additional amino acids to the 72IL-8 NH(2)-terminal. However, it has been unclear how IL-8 is processed to yield the mature form. In this study, converting enzyme was purified as a single 31-kDa band on silver-stained polyacrylamide gel from 160 l of cultured fibroblast supernatant by sequential chromatography. NH(2)-terminal amino acid sequence analysis revealed a sequence, EAPRSVDWRE, which was identified as a partial sequence of cathepsin L. Polyclonal antibodies raised against cathepsin L recognized the purified converting enzyme on Western blot. Moreover, human hepatic cathepsin L cleaved 77IL-8 between Arg(5) and Ser(6), which is the same cleavage site as the putative converting enzyme, resulting in 72IL-8 formation. These data indicate that the converting enzyme of the partially purified fraction of the human fibroblast culture supernatant was cathepsin L. Furthermore, 72IL-8 was sevenfold more potent than 77IL-8 in a neutrophil chemotaxis assay. These results show that cathepsin L is secreted from human fibroblasts in response to external stimuli and plays an important role in IL-8 processing in inflammatory sites.

  9. The highly antigenic 53/25 kDa Taenia solium protein fraction with cathepsin-L like activity is present in the oncosphere/cysticercus and induces non-protective IgG antibodies in pigs

    PubMed Central

    Zimic, Mirko; Pajuelo, Mónica; Gilman, Robert H.; Gutiérrez, Andrés H.; Rueda, Luis D.; Flores, Myra; Chile, Nancy; Verástegui, Manuela; Gonzalez, Armando; García, Héctor H.; Sheen, Patricia

    2011-01-01

    Cathepsin L-like proteases are secreted by several parasites including Taenia solium. The mechanism used by T. solium oncospheres to degrade and penetrate the intestine and infect the host is incompletely understood. It is assumed that intestinal degradation is driven by the proteolytic activity of enzymes secreted by the oncosphere. Blocking the proteolytic activity by an antibody response would prevent the oncosphere penetration and further infection. Serine and cysteine proteases including chymotrypsin, trypsin, elastase, and cathepsin L, are secreted by T. solium and Taenia saginata oncospheres when cultured in vitro, being potential vaccine candidates. However, the purification of a sufficient quantity of proteases secreted by oncospheres to conduct a vaccine trial is costly and lengthy. A 53/25 kDa cathepsin L-like fraction partially purified from T. solium cyst fluid was described previously as an important antigen for immunodiagnostics. In this study we found that this antigen is present in the T. solium oncosphere and is also secreted by the cysticercus. This protein fraction was tested for its ability to protect pigs against an oral challenge with T. solium oncospheres in a vaccine trial. IgG antibodies against the 53/25 kDa cathepsin L-like protein fraction were elicited in the vaccinated animals but did not confer protection. PMID:22119017

  10. Structural Basis for Specificity of Propeptide-Enzyme Interaction in Barley C1A Cysteine Peptidases

    PubMed Central

    Cambra, Inés; Hernández, David; Diaz, Isabel; Martinez, Manuel

    2012-01-01

    C1A cysteine peptidases are synthesized as inactive proenzymes. Activation takes place by proteolysis cleaving off the inhibitory propeptide. The inhibitory capacity of propeptides from barley cathepsin L and B-like peptidases towards commercial and barley cathepsins has been characterized. Differences in selectivity have been found for propeptides from L-cathepsins against their cognate and non cognate enzymes. Besides, the propeptide from barley cathepsin B was not able to inhibit bovine cathepsin B. Modelling of their three-dimensional structures suggests that most propeptide inhibitory properties can be explained from the interaction between the propeptide and the mature cathepsin structures. Their potential use as biotechnological tools is discussed. PMID:22615948

  11. Inhibition of a cathepsin L-like cysteine protease by a chimeric propeptide-derived inhibitor.

    PubMed

    Godat, Emmanuel; Chowdhury, Shafinaz; Lecaille, Fabien; Belghazi, Maya; Purisima, Enrico O; Lalmanach, Gilles

    2005-08-09

    Like other papain-related cathepsins, congopain from Trypanosoma congolense is synthesized as a zymogen. We have previously identified a proregion-derived peptide (Pcp27), acting as a weak and reversible inhibitor of congopain. Pcp27 contains a 5-mer YHNGA motif, which is essential for selectivity in the inhibition of its mature form [Lalmanach, G., Lecaille, F., Chagas, J. R., Authié, E., Scharfstein, J., Juliano, M. A., and Gauthier, F. (1998) J. Biol. Chem. 273, 25112-25116]. In the work presented here, a homology model of procongopain was generated and subsequently used to model a chimeric 50-mer peptide (called H3-Pcp27) corresponding to the covalent linkage of an unrelated peptide (H3 helix from Antennapedia) to Pcp27. Molecular simulations suggested that H3-Pcp27 (pI = 9.99) maintains an N-terminal helical conformation, and establishes more complementary electrostatic interactions (E(coul) = -25.77 kcal/mol) than 16N-Pcp27, the 34-mer Pcp27 sequence plus the 16 native residues upstream from the proregion (E(coul) = 0.20 kcal/mol), with the acid catalytic domain (pI = 5.2) of the mature enzyme. In silico results correlated with the significant improvement of congopain inhibition by H3-Pcp27 (K(i) = 24 nM), compared to 16N-Pcp27 (K(i) = 1 microM). In addition, virtual alanine scanning of H3 and 16N identified the residues contributing most to binding affinity. Both peptides did not inhibit human cathepsins B and L. In conclusion, these data support the notion that the positively charged H3 helix favors binding, without modifying the selectivity of Pcp27 for congopain.

  12. Characterization of CAA0225, a novel inhibitor specific for cathepsin L, as a probe for autophagic proteolysis.

    PubMed

    Takahashi, Katsuyuki; Ueno, Takashi; Tanida, Isei; Minematsu-Ikeguchi, Naoko; Murata, Mitsuo; Kominami, Eiki

    2009-03-01

    We screened a series of new epoxysuccinyl peptides for the development of a lysosomal cathepsin L-specific inhibitor. Among the compounds tested, (2S,3S)-oxirane-2,3-dicarboxylic acid 2-[((S)-1-benzylcarbamoyl-2-phenyl-ethyl)-amide] 3-{[2-(4-hydroxy-phenyl)-ethyl]-amide} (compound CAA0225) was the most potent inhibitor of cathepsin L. CAA0225 inhibited rat liver cathepsin L with IC50 values of 1.9 nM, but not rat liver cathepsin B (IC50, >1000-5000 nM). To assess the contribution of cathepsin L to lysosomal proteolysis, we evaluated autophagy, which is the process of lysosomal self-degradation of cell constituents. In HeLa and Huh-7 cells cultured under nutrient-deprived conditions CAA0225 significantly inhibited degradation of long-lived proteins; however, the magnitude of inhibition was comparable to that in the presence of CA-074-OMe, which is a cathepsin B-specific inhibitor. Thus the contributions of cathepsin L and cathepsin B to autophagic protein degradation of cytoplasmic proteins are nearly equal. During autophagy, microtubule-associated protein IA/IB light chain 3-II (LC3-II) and gamma-aminobutyric acid (A) receptor-associated protein (GABARAP)-II, which are specific markers of autophagosomal membranes that engulf cytoplasmic components, also undergo degradation upon fusion of autophagosomes with lysosomes. CAA0225 effectively inhibited degradation of LC3-II and GABARAP, whereas CA-074-OMe had only a marginal effect on their levels. Therefore we conclude that cathepsin L does not play a general role in the degradation of proteins in the lumen of autophagosomes, but rather is involved specifically in the degradation of autophagosomal membrane markers.

  13. Therapeutic utility and medicinal chemistry of cathepsin C inhibitors.

    PubMed

    Guay, Daniel; Beaulieu, Christian; Percival, M David

    2010-01-01

    The lysosomal cysteine protease cathepsin C (Cat C), also known as dipeptidyl peptidase I, activates a number of granule-associated serine proteases with pro-inflammatory and immune functions by removal of their inhibitory N-terminal dipeptides. Thus, Cat C is a therapeutic target for the treatment of a number of inflammatory and autoimmune diseases. Cathepsin C null mice and humans with Cat C loss of function mutations (Papillon-Lefèvre syndrome) show deficiencies in disease-relevant proteases including neutrophil elastase, cathepsin G, chymases and granzymes and the Cat C mice are protected in a number of disease models. Several methodologies have been recently reported for assessing the effects of Cat C inhibitors on serine protease activities in cellular assays and prolonged treatment of rats with a reversible, selective Cat C inhibitor reduced the activity of three leukocyte serine proteases. Nearly all potent and selective Cat C inhibitors described are based on the preferred dipeptide substrates bearing either irreversible (e.g. diazomethylketone, acyloxymethyl ketone, o-acyl hydroxamic acid and vinyl sulfone) or reversible (e.g. semicarbazide, nitrile and cyanamide) electrophilic warheads. While potent and highly selective, the best inhibitors described to date still have poor stability and/or rodent pharmacokinetics, likely resulting from their peptidic nature. The lack of selective compounds with appropriate rodent pharmacokinetic properties has hampered the assessment of the effects of Cat C inhibitors on the activation of disease-relevant proteases in vivo and the full evaluation of the therapeutic utility of Cat C inhibitors.

  14. Upregulation of cathepsin C expression contributes to endothelial chymase activation in preeclampsia.

    PubMed

    Gu, Yang; Lewis, David F; Alexander, J Steven; Wang, Yuping

    2017-12-01

    Chymase is an ACE (angiotensin-converting enzyme)-independent angiotensin II-forming enzyme whose expression is increased in the maternal vascular endothelium in preeclampsia. However, mechanisms underlying chymase activation in preeclampsia remain unclear. Cathepsin C is a key enzyme in the activation of several serine proteases including chymase. In this study, we determined whether increased cathepsin C expression/activity might be responsible for the upregulation of chymase expression in preeclampsia. Maternal vascular cathepsin C, chymase and ACE expression were examined through immunohistochemical staining of subcutaneous fat tissue sections of normal and preeclamptic pregnant women. The role of cathepsin C in endothelial chymase and ACE expression was determined in cells treated with cathepsin C. Consequences of chymase activation were then determined by measurement of angiotensin II production in cells treated with the ACE inhibitor captopril and the chymase inhibitor chymostatin, separately and in combination. Expression of both cathepsin C and chymase, but not ACE expression, was markedly increased in the maternal vascular endothelium in subjects with preeclampsia compared with normal pregnant controls. Exogenous cathepsin C induced a dose-dependent increase in expression of mature cathepsin C and chymase, but not ACE, in endothelial cells. Moreover, angiotensin II production was significantly inhibited in cells treated with captopril or chymostatin alone and was further inhibited in cells treated with both inhibitors. These results suggest that cathepsin C upregulation induces chymase activation and subsequently promotes angiotensin II generation in endothelial cells. These data also provide evidence of upregulation of the cathepsin C-chymase-angiotensin signaling axis in maternal vasculature in preeclampsia.

  15. Activation of cathepsin L contributes to the irreversible depolarization induced by oxygen and glucose deprivation in rat hippocampal CA1 neurons.

    PubMed

    Kikuta, Shogo; Murai, Yoshinaka; Tanaka, Eiichiro

    2017-01-01

    Oxygen and glucose deprivation (OGD) elicits a rapid and irreversible depolarization with a latency of ∼5min in intracellular recordings of hippocampal CA1 neurons in rat slice preparations. In the present study, we examined the role of cathepsin L in the OGD-induced depolarization. OGD-induced depolarizations were irreversible as no recovery of membrane potential was observed. The membrane potential reached 0mV when oxygen and glucose were reintroduced immediately after the onset of the OGD-induced rapid depolarization. The OGD-induced depolarizations became reversible when the slice preparations were pre-incubated with cathepsin L inhibitors (types I and IV at 0.3-2nM and 0.3-30nM, respectively). Moreover, pre-incubation with these cathepsin inhibitors prevented the morphological changes, including swelling of the cell soma and fragmentation of dendrites, observed in control neurons after OGD. These findings suggest that the activation of cathepsin L contributes to the irreversible depolarization produced by OGD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Selective imaging of cathepsin L in breast cancer by fluorescent activity-based probes† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04303a

    PubMed Central

    Rut, Wioletta; Vizovisek, Matej; Groborz, Katarzyna; Kasperkiewicz, Paulina; Finlay, Darren; Vuori, Kristiina; Turk, Dusan; Turk, Boris; Salvesen, Guy S.

    2018-01-01

    Cysteine cathepsins normally function in the lysosomal degradation system where they are critical for the maintenance of cellular homeostasis and the MHC II immune response, and have been found to have major roles in several diseases and in tumor progression. Selective visualization of individual protease activity within a complex proteome is of major importance to establish their roles in both normal and tumor cells, thereby facilitating our understanding of the regulation of proteolytic networks. A generally accepted means to monitor protease activity is the use of small molecule substrates and activity-based probes. However, there are eleven human cysteine cathepsins, with a few of them displaying overlapping substrate specificity, making the development of small molecules that selectively target a single cathepsin very challenging. Here, we utilized HyCoSuL, a positional scanning substrate approach, to develop a highly-selective fluorogenic substrate and activity-based probe for monitoring cathepsin L activity in the breast cancer cell line MDA-MB-231. Use of this probe enabled us to distinguish the activity of cathepsin L from that of other cathepsins, particularly cathepsin B, which is abundant and ubiquitously expressed in normal and transformed cell types. We found that cathepsin L localization in MDA-MB-231 cells greatly overlaps with that of cathepsin B, however, several cathepsin L-rich lysosomes lacked cathepsin B activity. Overall, these studies demonstrate that HyCoSuL-derived small molecule probes are valuable tools to image cathepsin L activity in living cells. This approach thus enables evaluation of cathepsin L function in tumorigenesis and is applicable to other cysteine cathepsins. PMID:29719685

  17. Grassystatins A–C from Marine Cyanobacteria, Potent Cathepsin E Inhibitors that Reduce Antigen Presentation

    PubMed Central

    Kwan, Jason C.; Eksioglu, Erika A.; Liu, Chen; Paul, Valerie J.; Luesch, Hendrik

    2009-01-01

    In our efforts to explore marine cyanobacteria as a source of novel bioactive compounds we discovered a statine unit-containing linear decadepsipeptide, grassystatin A (1), which we screened against a diverse set of 59 proteases. We describe the structure determination of 1 and two natural analogs, grassystatins B (2) and C (3), using NMR, MS, and chiral HPLC techniques. Compound 1 selectively inhibited cathepsins D and E with IC50s of 26.5 nM and 886 pM, respectively. Compound 2 showed similar potency and selectivity against cathepsins D and E (IC50s 7.27 nM and 354 pM, respectively), whereas the truncated peptide analog grassystatin C (3), which consists of two fewer residues than 1 and 2, was less potent against both but still selective for cathepsin E. The selectivity of compounds 1–3 for cathepsin E over D (20- to 38-fold) suggests that these natural products may be useful tools to probe cathepsin E function. We investigated the structural basis of this selectivity using molecular docking. We also show that 1 can reduce antigen presentation by dendritic cells, a process thought to rely on cathepsin E. PMID:19715320

  18. A cathepsin F-like peptidase involved in barley grain protein mobilization, HvPap-1, is modulated by its own propeptide and by cystatins

    PubMed Central

    Diaz, Isabel

    2012-01-01

    Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described PMID:22791822

  19. C2K77 ELISA detects cleavage of type II collagen by cathepsin K in equine articular cartilage.

    PubMed

    Noé, B; Poole, A R; Mort, J S; Richard, H; Beauchamp, G; Laverty, S

    2017-12-01

    Develop a species-specific ELISA for a neo-epitope generated by cathepsin K cleavage of equine type II collagen to: (1) measure cartilage type II collagen degradation by cathepsin K in vitro, (2) identify cytokines that upregulate cathepsin K expression and (3) compare cathepsin K with matrix metalloproteinase (MMP) collagenase activity in stimulated cartilage explants and freshly isolated normal and osteoarthritic (OA) articular cartilages. A new ELISA (C2K77) was developed and tested by measuring the activity of exogenous cathepsin K on equine articular cartilage explants. The ELISA was then employed to measure endogenous cathepsin K activity in cultured cartilage explants with or without stimulation by interleukin-1 beta (IL-1β), tumour necrosis-alpha (TNF-α), oncostatin M (OSM) and lipopolysaccharide (LPS). Cathepsin K activity in cartilage explants (control and osteoarthritic-OA) and freshly harvested cartilage (control and OA) was compared to that of MMPs employing C2K77 and C1,2C immunoassays. The addition of Cathepsin K to normal cartilage caused a significant increase (P < 0.01) in the C2K77 epitope release. Whereas the content of C1,2C, that reflects MMP collagenase activity, was increased in media by the addition to cartilage explants of TNF-α and OSM (P < 0.0001) or IL-1β and OSM (P = 0.002), no change was observed in C2K77 which also unchanged in OA cartilages compared to normal. The ELISA C2K77 measured the activity of cathepsin K in equine cartilage which was unchanged in OA cartilage. Cytokines that upregulate MMP collagenase activity had no effect on endogenous cathepsin K activity, suggesting a different activation mechanism that requires further study. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  20. Effect of technological factors on the activity and losses of cathepsins B, D and L during the marinating of Atlantic and Baltic herrings.

    PubMed

    Szymczak, Mariusz

    2017-03-01

    This study analyzes the effect of salt and acetic acid concentration, time, temperature and fish freezing on the activity and losses of cathepsins during the marinating of Atlantic and Baltic herrings. The highest contribution to meat general proteolytic activity was found for cathepsin D-like activity. This contribution decreased during the marinating process as a result of, among other things, cathepsin losses to brine. The methods of marinating had a significant impact on cathepsin activity losses. The average ratio of cathepsin D-like activity to L and B in brine accounted for 15:3.5:1.5, respectively. Depending on the method of calculation, cathepsin activity in brine was similar (per gram of tissue/milliliter of brine) or multiply higher (per gram protein in tissue/brine) than in the marinated herring meat. Statistical analysis demonstrated that the extent and structure of cathepsin losses were significantly correlated with the quantitative and qualitative composition of protein hydrolysis products in marinades. The presented results depict new phenomena of cathepsin losses and explain their impact on the process of fish marinating. Results allow better optimization of the process of meat ripening. The high activity of aspartyl and cysteine cathepsins in brine indicates the real feasibility of their application in the food industry for novel food design. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Functional analysis of C1 family cysteine peptidases in the larval gut of Тenebrio molitor and Tribolium castaneum.

    PubMed

    Martynov, Alexander G; Elpidina, Elena N; Perkin, Lindsey; Oppert, Brenda

    2015-02-14

    Larvae of the tenebrionids Tenebrio molitor and Tribolium castaneum have highly compartmentalized guts, with primarily cysteine peptidases in the acidic anterior midgut that contribute to the early stages of protein digestion. High throughput sequencing was used to quantify and characterize transcripts encoding cysteine peptidases from the C1 papain family in the gut of tenebrionid larvae. For T. castaneum, 25 genes and one questionable pseudogene encoding cysteine peptidases were identified, including 11 cathepsin L or L-like, 11 cathepsin B or B-like, and one each F, K, and O. The majority of transcript expression was from two cathepsin L genes on chromosome 10 (LOC659441 and LOC659502). For cathepsin B, the major expression was from genes on chromosome 3 (LOC663145 and LOC663117). Some transcripts were expressed at lower levels or not at all in the larval gut, including cathepsins F, K, and O. For T. molitor, there were 29 predicted cysteine peptidase genes, including 14 cathepsin L or L-like, 13 cathepsin B or B-like, and one each cathepsin O and F. One cathepsin L and one cathepsin B were also highly expressed, orthologous to those in T. castaneum. Peptidases lacking conservation in active site residues were identified in both insects, and sequence analysis of orthologs indicated that changes in these residues occurred prior to evolutionary divergence. Sequences from both insects have a high degree of variability in the substrate binding regions, consistent with the ability of these enzymes to degrade a variety of cereal seed storage proteins and inhibitors. Predicted cathepsin B peptidases from both insects included some with a shortened occluding loop without active site residues in the middle, apparently lacking exopeptidase activity and unique to tenebrionid insects. Docking of specific substrates with models of T. molitor cysteine peptidases indicated that some insect cathepsins B and L bind substrates with affinities similar to human cathepsin L, while

  2. Reversible inhibition of cathepsin L-like proteases by 4-mer pseudopeptides.

    PubMed

    Lecaille, F; Cotton, J; McKerrow, J H; Ferrer-Di Martino, M; Boll-Bataillé, E; Gauthier, F; Lalmanach, G

    2001-11-02

    A library of 121 pseudopeptides was designed to develop reversible inhibitors of trypanosomal enzymes (cruzain from Trypanosoma cruzi and congopain from Trypanosoma congolense). The peptides share the framework: Cha-X1-X2-Pro (Cha=cyclohexyl-alanine, X1 and X2 were phenylalanyl analogs), based on a previous report [Lecaille, F., Authié, E., Moreau, T., Serveau, C., Gauthier, F. and Lalmanach, G. (2001) Eur. J. Biochem. 268, 2733-2741]. Five peptides containing a nitro-substituted aromatic residue (Tyr/Phe) and one a 4-chloro-phenylalanine at the X1 position, and 3-(2-naphthyl)-alanine, homocyclohexylalanine or 3-nitro-tyrosine (3-NO(2)-Tyr) at the X2 position, were selected. They inhibited congopain more effectively than cruzain, except Cha-4-NO(2)-Phe-3-NO(2)-Tyr-Pro which bound the two parasitic enzymes similarly. Among this series, Cha-3-NO(2)-Tyr-HoCha-Pro and Cha-4-NO(2)-Phe-3-NO(2)-Tyr-Pro are the most selective for congopain relative to host cathepsins. No hydrolysis occurred upon prolonged incubation time with purified enzymes. In addition introduction of non-proteogenic residues in the peptidyl backbone greatly enhanced resistance to proteolysis by mammalian sera.

  3. Protection against Fasciola gigantica infection in mice by vaccination with recombinant juvenile-specific cathepsin L.

    PubMed

    Sansri, Veerawat; Meemon, Krai; Changklungmoa, Narin; Kueakhai, Pornanan; Chantree, Pathanin; Chaichanasak, Pannigan; Lorsuwannarat, Natcha; Itagaki, Tadashi; Sobhon, Prasert

    2015-03-24

    Fasciola gigantica cathepsin L1H (FgCatL1H) is one of the major cathepsin L released by juveniles of F. gigantica to aid in the invasion of host's tissues. Due to its high sequence similarity with other cathepsin L (CatL) isoforms of late stage F. gigantica, it was considered to be a good vaccine candidate that can block all CatL-mediated protease activities and affect juveniles as well as adult parasites. In this study, recombinant proFgCatL1H protein expressed in yeast, Pichia pastoris, system was mixed with Freund's adjuvants and used to subcutaneously immunize mice that were later challenged with metacercariae of F. gigantica. The percentage of worm protection in the rproFgCatL1H-vaccinated mice compared to the non-immunized and adjuvant control mice were approximately 62.7% and 66.1%, respectively. Anti-rproFgCatL1H antisera collected from vaccinated mice reacted specifically with rproFgCatL1H and other cathepsin L isoforms of F. gigantica, but the antibodies did not cross react with antigens from other trematode and nematode parasites, including Eurytrema pancreaticum, Opisthorchis viverrini, Fischoederius cobboldi, Cotylophoron cotylophorum, Gigantocotyle explanatum, Paramphistomum cervi, and Setaria labiato-papillosa. The levels of IgG1 and IgG2a in mouse sera increased significantly at two weeks after immunization and were highest during the sixth to eighth weeks after immunization. The IgG1 level was higher than IgG2a at all periods of immunization, implicating the dominance of the Th2 response. The levels of IgG1 and IgG2a in the immune sera were shown to be strongly correlated with the numbers of worm recovery, and the correlation coefficient was higher for IgG1. The levels of serum aspartate aminotransferase and alanine transaminase were significantly lower in the sera of rproFgCatL1H-vaccinated mice than in the infected control mice indicating a lower degree of liver damage. This study demonstrated a high potential of FgCatL1H vaccine, and its

  4. Active subsite properties, subsite residues and targeting to lysosomes or midgut lumen of cathepsins L from the beetle Tenebrio molitor.

    PubMed

    Damasceno, Ticiane F; Dias, Renata O; de Oliveira, Juliana R; Salinas, Roberto K; Juliano, Maria A; Ferreira, Clelia; Terra, Walter R

    2017-10-01

    Cathepsins L are the major digestive peptidases in the beetle Tenebrio molitor. Two digestive cathepsins L (TmCAL2 and TmCAL3) from it had their 3D structures solved. The aim of this paper was to study in details TmCAL3 specificity and properties and relate them to its 3D structure. Recombinant TmCAL3 was assayed with 64 oligopeptides with different amino acid replacements in positions P2, P1, P1' and P2'. Results showed that TmCAL3 S2 specificity differs from the human enzyme and that its specificities also explain why on autoactivation two propeptide residues remain in the enzyme. Data on free energy of binding and of activation showed that S1 and S2' are mainly involved in substrate binding, S1' acts in substrate binding and catalysis, whereas S2 is implied mainly in catalysis. Enzyme subsite residues were identified by docking with the same oligopeptide used for kinetics. The subsite hydrophobicities were calculated from the efficiency of hydrolysis of different amino acid replacements in the peptide and from docking data. The results were closer for S1 and S2' than for S1' and S2, indicating that the residue subsites that were more involved in transition state binding are different from those binding the substrate seen in docking. Besides TmCAL1-3, there are nine other cathepsins L, most of them more expressed at midgut. They are supposed to be directed to lysosomes by a Drosophila-like Lerp receptor and/or motifs in their prodomains. The mannose 6-phosphate lysosomal sorting machinery is absent from T. molitor transcriptome. Cathepsin L direction to midgut contents seems to depend on overexpression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cathepsins L and Z Are Critical in Degrading Polyglutamine-containing Proteins within Lysosomes*

    PubMed Central

    Bhutani, Nidhi; Piccirillo, Rosanna; Hourez, Raphael; Venkatraman, Prasanna; Goldberg, Alfred L.

    2012-01-01

    In neurodegenerative diseases caused by extended polyglutamine (polyQ) sequences in proteins, aggregation-prone polyQ proteins accumulate in intraneuronal inclusions. PolyQ proteins can be degraded by lysosomes or proteasomes. Proteasomes are unable to hydrolyze polyQ repeat sequences, and during breakdown of polyQ proteins, they release polyQ repeat fragments for degradation by other cellular enzymes. This study was undertaken to identify the responsible proteases. Lysosomal extracts (unlike cytosolic enzymes) were found to rapidly hydrolyze polyQ sequences in peptides, proteins, or insoluble aggregates. Using specific inhibitors against lysosomal proteases, enzyme-deficient extracts, and pure cathepsins, we identified cathepsins L and Z as the lysosomal cysteine proteases that digest polyQ proteins and peptides. RNAi for cathepsins L and Z in different cell lines and adult mouse muscles confirmed that they are critical in degrading polyQ proteins (expanded huntingtin exon 1) but not other types of aggregation-prone proteins (e.g. mutant SOD1). Therefore, the activities of these two lysosomal cysteine proteases are important in host defense against toxic accumulation of polyQ proteins. PMID:22451661

  6. UVA Causes Dual Inactivation of Cathepsin B and L Underlying Lysosomal Dysfunction in Human Dermal Fibroblasts

    PubMed Central

    Lamore, Sarah D.; Wondrak, Georg T.

    2013-01-01

    Cutaneous exposure to chronic solar UVA-radiation is a causative factor in photocarcinogenesis and photoaging. Recently, we have identified the thiol-dependent cysteine-protease cathepsin B as a novel UVA-target undergoing photo-oxidative inactivation upstream of autophagic-lysosomal dysfunction in fibroblasts. In this study, we examined UVA effects on a wider range of cathepsins and explored the occurrence of UVA-induced cathepsin inactivation in other cultured skin cell types. In dermal fibroblasts, chronic exposure to non-cytotoxic doses of UVA caused pronounced inactivation of the lysosomal cysteine-proteases cathepsin B and L, effects not observed in primary keratinocytes and occurring only to a minor extent in primary melanocytes. In order to determine if UVA-induced lysosomal impairment requires single or dual inactivation of cathepsin B and/or L, we used a genetic approach (siRNA) to selectively downregulate enzymatic activity of these target cathepsins. Monitoring an established set of protein markers (including LAMP1, LC3-II, and p62) and cell ultrastructural changes detected by electron microscopy, we observed that only dual genetic antagonism (targeting both CTSB and CTSL expression) could mimic UVA-induced autophagic-lysosomal alterations, whereas single knockdown (targeting CTSB or CTSL only) did not display ‘UVA-mimetic’ effects failing to reproduce the UVA-induced phenotype. Taken together, our data demonstrate that chronic UVA inhibits both cathepsin B and L enzymatic activity and that dual inactivation of both enzymes is a causative factor underlying UVA-induced impairment of lysosomal function in dermal fibroblasts. PMID:23603447

  7. Nicotinamide Inhibits the Lysosomal Cathepsin b-like Protease and Kills African Trypanosomes*

    PubMed Central

    Unciti-Broceta, Juan D.; Maceira, José; Morales, Sonia; García-Pérez, Angélica; Muñóz-Torres, Manuel E.; Garcia-Salcedo, Jose A.

    2013-01-01

    Nicotinamide, a soluble compound of the vitamin B3 group, has antimicrobial activity against several microorganisms ranging from viruses to parasite protozoans. However, the mode of action of this antimicrobial activity is unknown. Here, we investigate the trypanocidal activity of nicotinamide on Trypanosoma brucei, the causative agent of African trypanosomiasis. Incubation of trypanosomes with nicotinamide causes deleterious defects in endocytic traffic, disruption of the lysosome, failure of cytokinesis, and, ultimately, cell death. At the same concentrations there was no effect on a cultured mammalian cell line. The effects on endocytosis and vesicle traffic were visible within 3 h and can be attributed to inhibition of lysosomal cathepsin b-like protease activity. The inhibitory effect of nicotinamide was confirmed by a direct activity assay of recombinant cathepsin b-like protein. Taken together, these data demonstrate that inhibition of the lysosomal protease cathepsin b-like blocks endocytosis, causing cell death. In addition, these results demonstrate for the first time the inhibitory effect of nicotinamide on a protease. PMID:23443665

  8. Gamma-interferon causes a selective induction of the lysosomal proteases, cathepsins B and L, in macrophages

    NASA Technical Reports Server (NTRS)

    Lah, T. T.; Hawley, M.; Rock, K. L.; Goldberg, A. L.

    1995-01-01

    Previous studies have indicated that acid-optimal cysteine proteinase(s) in the endosomal-lysosomal compartments, cathepsins, play a critical role in the proteolytic processing of endocytosed proteins to generate the antigenic peptides presented to the immune system on major histocompatibility complex (MHC) class II molecules. The presentation of these peptides and the expression of MHC class II molecules by macrophages and lymphocytes are stimulated by gamma-interferon (gamma-IFN). We found that treatment of human U-937 monocytes with gamma-IFN increased the activities and the content of the two major lysosomal cysteine proteinases, cathepsins B and L. Assays of protease activity, enzyme-linked immunosorbant assays (ELISA) and immunoblotting showed that this cytokine increased the amount of cathepsin B 5-fold and cathepsin L 3-fold in the lysosomal fraction. By contrast, the aspartic proteinase, cathepsin D, in this fraction was not significantly altered by gamma-IFN treatment. An induction of cathepsins B and L was also observed in mouse macrophages, but not in HeLa cells. These results suggest coordinate regulation in monocytes of the expression of cathepsins B and L and MHC class II molecules. Presumably, this induction of cysteine proteases contributes to the enhancement of antigen presentation by gamma-IFN.

  9. Cathepsin Gene Family Reveals Transcriptome Patterns Related to the Infective Stages of the Salmon Louse Caligus rogercresseyi

    PubMed Central

    Maldonado-Aguayo, Waleska; Chávez-Mardones, Jacqueline; Gonçalves, Ana Teresa; Gallardo-Escárate, Cristian

    2015-01-01

    Cathepsins are proteases involved in the ability of parasites to overcome and/or modulate host defenses so as to complete their own lifecycle. However, the mechanisms underlying this ability of cathepsins are still poorly understood. One excellent model for identifying and exploring the molecular functions of cathepsins is the marine ectoparasitic copepod Caligus rogercresseyi that currently affects the Chilean salmon industry. Using high-throughput transcriptome sequencing, 56 cathepsin-like sequences were found distributed in five cysteine protease groups (B, F, L, Z, and S) as well as in an aspartic protease group (D). Ontogenic transcriptome analysis evidenced that L cathepsins were the most abundant during the lifecycle, while cathepsins B and K were mostly expressed in the larval stages and adult females, thus suggesting participation in the molting processes and embryonic development, respectively. Interestingly, a variety of cathepsins from groups Z, L, D, B, K, and S were upregulated in the infective stage of copepodid, corroborating the complexity of the processes involved in the parasitic success of this copepod. Putative functional roles of cathepsins were conjectured based on the differential expressions found and on roles previously described in other phylogenetically related species. Moreover, 140 single nucleotide polymorphisms (SNP) were identified in transcripts annotated for cysteine and aspartic proteases located into untranslated regions, or the coding region. This study reports for the first time the presence of cathepsin-like genes and differential expressions throughout a copepod lifecycle. The identification of cathepsins together with functional validations represents a valuable strategy for pinpointing target molecules that could be used in the development of new delousing drugs or vaccines against C. rogercresseyi. PMID:25923525

  10. Cathepsin Gene Family Reveals Transcriptome Patterns Related to the Infective Stages of the Salmon Louse Caligus rogercresseyi.

    PubMed

    Maldonado-Aguayo, Waleska; Chávez-Mardones, Jacqueline; Gonçalves, Ana Teresa; Gallardo-Escárate, Cristian

    2015-01-01

    Cathepsins are proteases involved in the ability of parasites to overcome and/or modulate host defenses so as to complete their own lifecycle. However, the mechanisms underlying this ability of cathepsins are still poorly understood. One excellent model for identifying and exploring the molecular functions of cathepsins is the marine ectoparasitic copepod Caligus rogercresseyi that currently affects the Chilean salmon industry. Using high-throughput transcriptome sequencing, 56 cathepsin-like sequences were found distributed in five cysteine protease groups (B, F, L, Z, and S) as well as in an aspartic protease group (D). Ontogenic transcriptome analysis evidenced that L cathepsins were the most abundant during the lifecycle, while cathepsins B and K were mostly expressed in the larval stages and adult females, thus suggesting participation in the molting processes and embryonic development, respectively. Interestingly, a variety of cathepsins from groups Z, L, D, B, K, and S were upregulated in the infective stage of copepodid, corroborating the complexity of the processes involved in the parasitic success of this copepod. Putative functional roles of cathepsins were conjectured based on the differential expressions found and on roles previously described in other phylogenetically related species. Moreover, 140 single nucleotide polymorphisms (SNP) were identified in transcripts annotated for cysteine and aspartic proteases located into untranslated regions, or the coding region. This study reports for the first time the presence of cathepsin-like genes and differential expressions throughout a copepod lifecycle. The identification of cathepsins together with functional validations represents a valuable strategy for pinpointing target molecules that could be used in the development of new delousing drugs or vaccines against C. rogercresseyi.

  11. Cysteine Cathepsins Activate ELR Chemokines and Inactivate Non-ELR Chemokines*

    PubMed Central

    Repnik, Urska; Starr, Amanda E.; Overall, Christopher M.; Turk, Boris

    2015-01-01

    Cysteine cathepsins are primarily lysosomal proteases involved in general protein turnover, but they also have specific proteolytic functions in antigen presentation and bone remodeling. Cathepsins are most stable at acidic pH, although growing evidence indicates that they have physiologically relevant activity also at neutral pH. Post-translational proteolytic processing of mature chemokines is a key, yet underappreciated, level of chemokine regulation. Although the role of selected serine proteases and matrix metalloproteases in chemokine processing has long been known, little has been reported about the role of cysteine cathepsins. Here we evaluated cleavage of CXC ELR (CXCL1, -2, -3, -5, and -8) and non-ELR (CXCL9–12) chemokines by cysteine cathepsins B, K, L, and S at neutral pH by high resolution Tris-Tricine SDS-PAGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Whereas cathepsin B cleaved chemokines especially in the C-terminal region, cathepsins K, L, and S cleaved chemokines at the N terminus with glycosaminoglycans modulating cathepsin processing of chemokines. The functional consequences of the cleavages were determined by Ca2+ mobilization and chemotaxis assays. We show that cysteine cathepsins inactivate and in some cases degrade non-ELR CXC chemokines CXCL9–12. In contrast, cathepsins specifically process ELR CXC chemokines CXCL1, -2, -3, -5, and -8 N-terminally to the ELR motif, thereby generating agonist forms. This study suggests that cysteine cathepsins regulate chemokine activity and thereby leukocyte recruitment during protective or pathological inflammation. PMID:25833952

  12. Elastin Degradation by Cathepsin V Requires Two Exosites*

    PubMed Central

    Du, Xin; Chen, Nelson L. H.; Wong, Andre; Craik, Charles S.; Brömme, Dieter

    2013-01-01

    Cathepsin V is a highly effective elastase and has been implicated in physiological and pathological extracellular matrix degradation. However, its mechanism of action remains elusive. Whereas human cathepsin V exhibits a potent elastolytic activity, the structurally homologous cathepsin L, which shares a 78% amino acid sequence, has only a minimal proteolytic activity toward insoluble elastin. This suggests that there are distinct structural domains that play an important role in elastinolysis. In this study, a total of 11 chimeras of cathepsins V and L were generated to identify elastin-binding domains in cathepsin V. Evaluation of these chimeras revealed two exosites contributing to the elastolytic activity of cathepsin V that are distant from the active cleft of the protease and are located in surface loop regions. Replacement of exosite 1 or 2 with analogous residues from cathepsin L led to a 75 and 43% loss in the elastolytic activity, respectively. Replacement of both exosites yielded a non-elastase variant similar to that of cathepsin L. Identification of these exosites may contribute to the design of inhibitors that will only affect the elastolytic activity of cysteine cathepsins without interfering with other physiological protease functions. PMID:24121514

  13. KINETIC CHARACTERIZATION AND MOLECULAR DOCKING OF A NOVEL, POTENT, AND SELECTIVE SLOW-BINDING INHIBITOR OF HUMAN CATHEPSIN L

    PubMed Central

    Shah, Parag P.; Myers, Michael C.; Beavers, Mary Pat; Purvis, Jeremy E.; Jing, Huiyan; Grieser, Heather J.; Sharlow, Elizabeth R.; Napper, Andrew D.; Huryn, Donna M.; Cooperman, Barry S.; Smith, Amos B.; Diamond, Scott L.

    2008-01-01

    A novel small molecule thiocarbazate (PubChem SID 26681509), a potent inhibitor of human cathepsin L (EC 3.4.22.15) with an IC50 of 56 nM, was developed following a 57,821 compound screen of the NIH Molecular Libraries Small Molecule Repository. After a 4 hr preincubation with cathepsin L, this compound became even more potent, demonstrating an IC50 of 1.0 nM. The thiocarbazate was determined to be a slow-binding and slowly reversible competitive inhibitor. Through a transient kinetic analysis for single-step reversibility, inhibition rate constants were kon = 24,000 M-1s-1 and koff = 2.2 × 10-5 s-1 (Ki = 0.89 nM). Molecular docking studies were undertaken using the experimentally-derived X-ray crystal structure of papain/CLIK-148 (1cvz.pdb). These studies revealed critical hydrogen bonding patterns of the thiocarbazate with key active site residues in papain. The thiocarbazate displayed 7- to 151-fold greater selectivity toward cathepsin L than papain and cathepsins B, K, V, and S with no activity against cathepsin G. The inhibitor demonstrated a lack of toxicity in human aortic endothelial cells and zebrafish. Additionally, the thiocarbazate inhibited in vitro propagation of malaria parasite Plasmodium falciparum with an IC50 of 15.4 μM and inhibited Leishmania major with an IC50 of 12.5 μM. PMID:18403718

  14. Cathepsin S is associated with degradation of collagen I in abdominal aortic aneurysm.

    PubMed

    Klaus, Veronika; Schmies, Fadwa; Reeps, Christian; Trenner, Matthias; Geisbüsch, Sarah; Lohoefer, Fabian; Eckstein, Hans-Henning; Pelisek, Jaroslav

    2018-06-01

    Cathepsins have been described in the pathogenesis of abdominal aortic aneurysm (AAA), their exact role, especially in collagen degradation, is still unclear. The aim of the present study was therefore to analyse relevant cathepsins in human AAA tissue samples in relation to collagen I, III, and their degradation products. Samples from 37 AAA patients obtained from elective open surgical repair and eight healthy non-aneurysmatic aortas from kidney donors were included. Expression of cathepsins B, D, K, L, S, cystatin C, collagen I and III, their degraded products C-Telopeptide of type 1 and 3 collagen (CTX-I, CTX-III), cellular markers for leukocytes (CD45), T cells (CD3), macrophage scavenger receptor-1 (MSR-1), synthetic, and contractile smooth muscle cells (SMCs) (smoothelin: SMTH, collagen I and III, myosin heavy chain: MHC, embryonic smooth muscle myosin heavy chain: SMemb) were determined at messenger RNA (mRNA) level, using SYBRGreen-based quantitative PCR and at protein level using enzyme-linked immunosorbent assay (ELISA). Expression of cathepsins B, D, L, and S at mRNA level was significantly elevated in AAA compared to control aorta (1.7-fold, p = 0.025; 2.5-fold, p = 0.002; 2.6-fold, p = 0.034; and 7.0-fold, p = 0.003). Expression of cathepsin S correlated significantly with leukocytes and macrophages (ρ = 0.398, p = 0.033 and ρ = 0.422, p = 0.020), synthetic SMCs were significantly associated with cathepsins B, D, and L (ρ = 0.522, p = 0.003; ρ = 0.431, p = 0.015 and ρ = 0.467, p = 0.008). At protein level, cathepsins B and S were elevated in AAA compared to controls (5.4-fold, p = 0.001 and 7.3-fold, p < 0.001). Significant correlations were observed between collagen I, its degraded product, and cathepsin S (r = -0.350, p = 0.034 and r = +0.504, p < 0.001). Expression of cathepsin B was associated with SMCs, expression of cathepsin S with inflammatory cells. Particularly cathepsin S was associated with the degradation product of collagen I and

  15. Transient expression of progesterone receptor and cathepsin-l in human granulosa cells during the periovulatory period.

    PubMed

    García, Víctor; Kohen, Paulina; Maldonado, Carola; Sierralta, Walter; Muñoz, Alex; Villarroel, Claudio; Strauss, Jerome F; Devoto, Luigi

    2012-03-01

    To study in vivo the progesterone receptor (PR) expression levels in human granulosa cells (GCs) during the periovulatory period and the affect of the protein kinase A (PKA) pathway on PR expression and cathepsin-L expression-activation. Experimental study. University research unit. Twenty-five women of reproductive age. Follicular fluid and GCs obtained from spontaneous cycles before and during the normal luteinizing hormone surge, and samples obtained 36 hours after human chorionic gonadotropin (hCG) administration in patients undergoing in vitro fertilization. To determine PR, cathepsin-L messenger RNA (mRNA) analysis via real-time polymerase chain reaction, and protein of PR, cathepsin-L, and PKA in human GCs. The Western blot analysis revealed that bands of PR (isoform A) were the most abundant and that mRNA (PR-A and PR-B) have a temporal pattern of expression throughout the periovulatory period. The protein levels of PR and cathepsin-L were up-regulated by hCG. The abundance of PR was diminished in the presence of PKA inhibitor, and cathepsin-L with PR receptor antagonist. The transient expression of PR in human GCs of the preovulatory follicle suggests that PR and its ligand play a role in the activation of cathepsin-L, which is presumably involved in the degradation of the follicular extracellular matrix during human ovulation. Copyright © 2012 American Society for Reproductive Medicine. All rights reserved.

  16. Irreversible inhibition of human cathepsins B, L, S and K by hypervalent tellurium compounds.

    PubMed

    Cunha, Rodrigo L O R; Gouvêa, Iuri E; Feitosa, Geovana P V; Alves, Márcio F M; Brömme, Dieter; Comasseto, João V; Tersariol, Ivarne L S; Juliano, Luiz

    2009-11-01

    The inhibition of human cysteine cathepsins B, L, S and K was evaluated by a set of hypervalent tellurium compounds (telluranes) comprising both organic and inorganic derivatives. All telluranes studied showed a time- and concentration-dependent irreversible inhibition of the cathepsins, and their second-order inactivation rate constants were determined. The organic derivatives were potent inhibitors of the cathepsins and clear specificities were detected, which were parallel to their known substrate specificities. In all cases, the activity of the tellurane-inhibited cathepsins was recovered by treatment of the inactivated enzymes with reducing agents. The maximum stoichiometry of the reaction between cysteine residues and telluranes were also determined. The presented data indicate that it is possible to design organic compounds with a tellurium(IV) moiety as a novel warhead that covalently modifies the catalytic cysteine, and which also form strong interactions with subsites of cathepsins B, L, S and K, resulting in more specific inhibition.

  17. Endothelium-dependent relaxation induced by cathepsin G in porcine pulmonary arteries

    PubMed Central

    Glusa, Erika; Adam, Christine

    2001-01-01

    Serine proteinases elicit profound cellular effects in various tissues mediated by activation of proteinase-activated receptors (PAR). In the present study, we investigated the vascular effects of cathepsin G, a serine proteinase that is present in the azurophil granules of leukocytes and is known to activate several cells that express PARs. In prostaglandin F2α (3 μM)-precontracted rings from porcine pulmonary arteries with intact endothelium, cathepsin G caused concentration-dependent relaxant responses (pEC50=9.64±0.12). The endothelium-dependent relaxant effect of cathepsin G could also be demonstrated in porcine coronary arteries (pEC50=9.23±0.07). In pulmonary arteries the cathepsin G-induced relaxation was inhibited after blockade of nitric oxide synthesis by L-NAME (200 μM) and was absent in endothelium-denuded vessels. Bradykinin- and cathepsin G-induced relaxant effects were associated with a 5.7 fold and 2.4 fold increase in the concentration of cyclic GMP, respectively. Compared with thrombin and trypsin, which also produced an endothelium-dependent relaxation in pulmonary arteries, cathepsin G was 2.5 and four times more potent, respectively. Cathepsin G caused only small homologous desensitization. In cathepsin G-challenged vessels, thrombin was still able to elicit a relaxant effect. The effects of cathepsin G were blocked by soybean trypsin inhibitor (IC50=0.043 μg ml−1), suggesting that proteolytic activity is essential for induction of relaxation. Recombinant acetyl-eglin C proved to be a potent inhibitor (IC50=0.14 μg ml−1) of the cathepsin G effect, whereas neither indomethacin (3 μM) nor the thrombin inhibitor hirudin (5 ATU ml−1) elicited any inhibitory activity. Due to their polyanionic structure defibrotide (IC50=0.11 μg ml−1), heparin (IC50=0.48 μg ml−1) and suramin (IC50=1.85 μg ml−1) diminished significantly the relaxation in response to the basic protein cathepsin G. In conclusion, like

  18. Production and characterization of a monoclonal antibody against recombinant cathepsin L1 of Fasciola gigantica.

    PubMed

    Anuracpreeda, Panat; Srirakam, Thippawan; Pandonlan, Sudarat; Changklungmoa, Narin; Chotwiwatthanakun, Charoonroj; Tinikul, Yotsawan; Poljaroen, Jaruwan; Meemon, Krai; Sobhon, Prasert

    2014-08-01

    Monoclonal antibodies (MoAbs) against a recombinant cathepsin L1 of Fasciola gigantica (rFgCatL1) were produced in vitro by fusion of BALB/c mice spleen cells immunized with rFgCatL1 and mouse myeloma cells. Reactivity and specificity of these MoAbs were evaluated by indirect ELISA and immunoblotting techniques. Seven MoAb clones were selected from the stable hybridoma clones, namely 1E10, 1F5, 3D11, 4B10, 4D3, 4E3 and 5E7. Clones 1E10, 1F5 and 3D11 were IgM, whereas clones 4B10, 4D3, 4E3 and 5E7 were IgG1. All MoAbs had kappa light chain isotypes. All MoAbs reacted with rCatL1 at molecular weight (MW) 30kDa and with the native CatL1 at MW 27kDa in whole body (WB) extracts of metacercariae (Met), newly excysted juveniles (NEJ), 1, 3, 5-week-old juveniles (Ju), adult WB and adult excretory-secretory (ES) fractions, but not with adult tegumental antigens (TA). All of these MoAbs showed no cross-reactions with antigens of other parasites commonly found in ruminants and human, including Paramphistomum cervi, Eurytrema pancreaticum, Gigantocotyle explanatum, Schistosoma spindale, Schistosoma mansoni, Moniezia benedeni, Avitellina centripunctata, Trichuris sp., Haemonchus placei and Setaria labiato-papillosa. Localization of CatL1 in each developmental stages of F. gigantica by immunoperoxidase technique, using these MoAbs as probes, indicated that CatL1 was present at high concentration in the caecal epithelium and caecal lumen of metacercariae, NEJ, 1, 3, 5-week-old juveniles and adult fluke. This finding indicated that CatL1 is a copiously expressed parasite protein that is released into the ES, thus CatL1 and its MoAb could be a good candidate for immunodiagnosis of fasciolosis in ruminant and human. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Cathepsin L plays a major role in cholecystokinin production in mouse brain cortex and in pituitary AtT-20 cells: protease gene knockout and inhibitor studies.

    PubMed

    Beinfeld, Margery C; Funkelstein, Lydiane; Foulon, Thierry; Cadel, Sandrine; Kitagawa, Kouki; Toneff, Thomas; Reinheckel, Thomas; Peters, Christoph; Hook, Vivian

    2009-10-01

    Cholecystokinin (CCK) is a peptide neurotransmitter whose production requires proteolytic processing of the proCCK precursor to generate active CCK8 neuropeptide in brain. This study demonstrates the significant role of the cysteine protease cathepsin L for CCK8 production. In cathepsin L knockout (KO) mice, CCK8 levels were substantially reduced in brain cortex by an average of 75%. To evaluate the role of cathepsin L in producing CCK in the regulated secretory pathway of neuroendocrine cells, pituitary AtT-20 cells that stably produce CCK were treated with the specific cathepsin L inhibitor, CLIK-148. CLIK-148 inhibitor treatment resulted in decreased amounts of CCK secreted from the regulated secretory pathway of AtT-20 cells. CLIK-148 also reduced cellular levels of CCK9 (Arg-CCK8), consistent with CCK9 as an intermediate product of cathepsin L, shown by the decreased ratio of CCK9/CCK8. The decreased CCK9/CCK8 ratio also suggests a shift in the production to CCK8 over CCK9 during inhibition of cathepsin L. During reduction of the PC1/3 processing enzyme by siRNA, the ratio of CCK9/CCK8 was increased, suggesting a shift to the cathepsin L pathway for the production of CCK9. The changes in ratios of CCK9 compared to CCK8 are consistent with dual roles of the cathepsin L protease pathway that includes aminopeptidase B to remove NH2-terminal Arg or Lys, and the PC1/3 protease pathway. These results suggest that cathepsin L functions as a major protease responsible for CCK8 production in mouse brain cortex, and participates with PC1/3 for CCK8 production in pituitary cells.

  20. Cathepsin H Functions as an Aminopeptidase in Secretory Vesicles for Production of Enkephalin and Galanin Peptide Neurotransmitters

    PubMed Central

    Lu, W. Douglas; Funkelstein, Lydiane; Toneff, Thomas; Reinheckel, Thomas; Peters, Christoph; Hook, Vivian

    2012-01-01

    Peptide neurotransmitters function as key intercellular signaling molecules in the nervous system. These peptides are generated in secretory vesicles from proneuropeptides by proteolytic processing at dibasic residues, followed by removal of N- and/or C-terminal basic residues to form active peptides. Enkephalin biosynthesis from proenkephalin utilizes the cysteine protease cathepsin L and the subtilisin-like prohormone convertase 2 (PC2). Cathepsin L generates peptide intermediates with N-terminal basic residue extensions, which must be removed by an aminopeptidase. In this study, we identified cathepsin H as an aminopeptidase in secretory vesicles that produces (Met)enkephalin (ME) by sequential removal of basic residues from KR-ME and KK-ME, supported by in vivo knockout of the cathepsin H gene. Localization of cathepsin H in secretory vesicles was demonstrated by immunoelectron microscopy and confocal immunofluorescence microscopy. Purified human cathepsin H sequentially removes N-terminal basic residues to generate ME, with peptide products characterized by nano-LC-MS/MS tandem mass spectrometry. Cathepsin H shows highest activities for cleaving N-terminal basic residues (Arg and Lys) among amino acid fluorogenic substrates. Notably, knockout of the cathepsin H gene results in reduction of ME in mouse brain. Cathepsin H deficient mice also show a substantial decrease in galanin peptide neurotransmitter levels in brain. These results illustrate a role for cathepsin H as an aminopeptidase for enkephalin and galanin peptide neurotransmitter production. PMID:22582844

  1. Azadirachtin-induced apoptosis involves lysosomal membrane permeabilization and cathepsin L release in Spodoptera frugiperda Sf9 cells.

    PubMed

    Wang, Zheng; Cheng, Xingan; Meng, Qianqian; Wang, Peidan; Shu, Benshui; Hu, Qiongbo; Hu, Meiying; Zhong, Guohua

    2015-07-01

    Azadirachtin as a kind of botanical insecticide has been widely used in pest control. We previously reported that azadirachtin could induce apoptosis of Spodoptera litura cultured cell line Sl-1, which involves in the up-regulation of P53 protein. However, the detailed mechanism of azadirachtin-induced apoptosis is not clearly understood in insect cultured cells. The aim of the present study was to address the involvement of lysosome and lysosomal protease in azadirachtin-induced apoptosis in Sf9 cells. The result confirmed that azadirachtin indeed inhibited proliferation and induced apoptosis. The lysosomes were divided into different types as time-dependent manner, which suggested that changes of lysosomes were necessarily physiological processes in azadirachtin-induced apoptosis in Sf9 cells. Interestingly, we noticed that azadirachtin could trigger lysosomal membrane permeabilization and cathepsin L releasing to cytosol. Z-FF-FMK (a cathepsin L inhibitor), but not CA-074me (a cathepsin B inhibitor), could effectively hinder the apoptosis induced by azadirachtin in Sf9 cells. Meanwhile, the activity of caspase-3 could also be inactivated by the inhibition of cathepsin L enzymatic activity induced by Z-FF-FMK. Taken together, our findings suggest that azadirachtin could induce apoptosis in Sf9 cells in a lysosomal pathway, and cathepsin L plays a pro-apoptosis role in this process through releasing to cytosol and activating caspase-3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Differential requirement for cathepsin D for processing of the full length and C-terminal fragment of the malaria antigen MSP1.

    PubMed

    Tulone, Calogero; Sponaas, Anne-Marit; Raiber, Eun-Ang; Tabor, Alethea B; Langhorne, Jean; Chain, Benny M

    2011-01-01

    Merozoite Surface Protein 1 is expressed on the surface of malaria merozoites and is important for invasion of the malaria parasite into erythrocytes. MSP1-specific CD4 T cell responses and antibody can confer protective immunity in experimental models of malaria. In this study we explore the contributions of cathepsins D and E, two aspartic proteinases previously implicated in antigen processing, to generating MSP1 CD4 T-cell epitopes for presentation. The absence of cathepsin D, a late endosome/lysosomal enzyme, is associated with a reduced presentation of MSP1 both following in vitro processing of the epitope MSP1 from infected erythrocytes by bone marrow-derived dendritic cells, and following in vivo processing by splenic CD11c+ dendritic cells. By contrast, processing and presentation of the soluble recombinant protein fragment of MSP1 is unaffected by the absence of cathepsin D, but is inhibited when both cathepsin D and E are absent. The role of different proteinases in generating the CD4 T cell repertoire, therefore, depends on the context in which an antigen is introduced to the immune system.

  3. Differential Requirement for Cathepsin D for Processing of the Full Length and C-Terminal Fragment of the Malaria Antigen MSP1

    PubMed Central

    Raiber, Eun-Ang; Tabor, Alethea B.; Langhorne, Jean; Chain, Benny M.

    2011-01-01

    Merozoite Surface Protein 1 is expressed on the surface of malaria merozoites and is important for invasion of the malaria parasite into erythrocytes. MSP1-specific CD4 T cell responses and antibody can confer protective immunity in experimental models of malaria. In this study we explore the contributions of cathepsins D and E, two aspartic proteinases previously implicated in antigen processing, to generating MSP1 CD4 T-cell epitopes for presentation. The absence of cathepsin D, a late endosome/lysosomal enzyme, is associated with a reduced presentation of MSP1 both following in vitro processing of the epitope MSP1 from infected erythrocytes by bone marrow-derived dendritic cells, and following in vivo processing by splenic CD11c+ dendritic cells. By contrast, processing and presentation of the soluble recombinant protein fragment of MSP1 is unaffected by the absence of cathepsin D, but is inhibited when both cathepsin D and E are absent. The role of different proteinases in generating the CD4 T cell repertoire, therefore, depends on the context in which an antigen is introduced to the immune system. PMID:22053177

  4. Histopathological analysis of cellular localization of cathepsins in abdominal aortic aneurysm wall.

    PubMed

    Lohoefer, Fabian; Reeps, Christian; Lipp, Christina; Rudelius, Martina; Zimmermann, Alexander; Ockert, Stefan; Eckstein, Hans-Henning; Pelisek, Jaroslav

    2012-08-01

    An important feature of abdominal aortic aneurysm (AAA) is the destruction of vessel wall, especially elastin and collagen. Besides matrix metalloproteinases, cathepsins are the most potent elastolytic enzymes. The expression of cathepsins with known elastolytic and collagenolytic activities in the individual cells within AAA has not yet been determined. The vessel wall of 32 AAA patients and 10 organ donors was analysed by immunohistochemistry for expression of cathepsins B, D, K, L and S, and cystatin C in all cells localized within AAA. Luminal endothelial cells (ECs) of AAA were positive for cathepsin D and partially for cathepsins B, K and S. Endothelial cells of the neovessels and smooth muscle cells in the media were positive for all cathepsins tested, especially for cathepsin B. In the inflammatory infiltrate all cathepsins were expressed in the following pattern: B > D = S > K = L. Macrophages showed the highest staining intensity for all cathepsins. Furthermore, weak overall expression of cystatin C was observed in all the cells localized in the AAA with the exception of the ECs. There is markedly increased expression of the various cathepsins within the AAA wall compared to healthy aorta. Our data are broadly consistent with a role for cathepsins in AAA; and demonstrate expression of cathepsins D, B and S in phagocytic cells in the inflammatory infiltrate; and also may reveal a role for cathepsin B in lymphocytes. © 2012 The Authors. International Journal of Experimental Pathology © 2012 International Journal of Experimental Pathology.

  5. Human cathepsin L rescues the neurodegeneration and lethality incathepsin B/L double deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevenich, Lisa; Pennacchio, Len A.; Peters, Christoph

    2006-01-09

    Cathepsin B (CTSB) and cathepsin L (CTSL) are two widelyexpressed cysteine proteases thought to predominantly reside withinlysosomes. Functional analysis of CTSL in humans is complicated by theexistence of two CTSL-like homologues (CTSL and CTSL2), in contrast tomice which contain only one CTSL enzyme. Thus transgenic expression ofhuman CTSL in CTSL deficient mice provides an opportunity to study the invivo functions of this human protease without interference by its highlyrelated homologue. While mice with single gene deficiencies for murineCTSB or CTSL survive without apparent neuromuscular impairment, murineCTSB/CTSL double deficient mice display degeneration of cerebellarPurkinje cells and neurons of the cerebral cortex,more » resulting in severehypotrophy, motility defects, and lethality during their third to fourthweek of life. Here we show that expression of human CTSL through agenomic transgene results in widespread expression of human CTSL in themouse which is capable of rescuing the lethality found in CTSB/CTSLdouble-deficient animals. Human CTSL is expressed in the brain of thesecompound mutants predominantly in neurons of the cerebral cortex and inPurkinje cells of the cerebellum, where it appears to prevent neuronalcell death.« less

  6. Changes in collagenous tissue microstructures and distributions of cathepsin L in body wall of autolytic sea cucumber (Stichopus japonicus).

    PubMed

    Liu, Yu-Xin; Zhou, Da-Yong; Ma, Dong-Dong; Liu, Yan-Fei; Li, Dong-Mei; Dong, Xiu-Ping; Tan, Ming-Qian; Du, Ming; Zhu, Bei-Wei

    2016-12-01

    The autolysis of sea cucumber (Stichopus japonicus) was induced by ultraviolet (UV) irradiation, and the changes of microstructures of collagenous tissues and distributions of cathepsin L were investigated using histological and histochemical techniques. Intact collagen fibers in fresh S. japonicus dermis were disaggregated into collagen fibrils after UV stimuli. Cathepsin L was identified inside the surface of vacuoles in the fresh S. japonicus dermis cells. After the UV stimuli, the membranes of vacuoles and cells were fused together, and cathepsin L was released from cells and diffused into tissues. The density of cathepsin L was positively correlated with the speed and degree of autolysis in different layers of body wall. Our results revealed that lysosomal cathepsin L was released from cells in response to UV stimuli, which contacts and degrades the extracellular substrates such as collagen fibers, and thus participates in the autolysis of S. japonicus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Cathepsin K: a cysteine protease with unique kinin-degrading properties

    PubMed Central

    2004-01-01

    Taking into account a previous report of an unidentified enzyme from macrophages acting as a kininase, the ability of cysteine proteases to degrade kinins has been investigated. Wild-type fibroblast lysates from mice, by contrast with cathepsin K-deficient lysates, hydrolysed BK (bradykinin), and released two metabolites, BK-(1–4) and BK-(5–9). Cathepsin K, but not cathepsins B, H, L and S, cleaved kinins at the Gly4–Phe5 bond and the bradykinin-mimicking substrate Abz (o-aminobenzoic acid)-RPPGFSPFR-3-NO2-Tyr (3-nitrotyrosine) more efficiently (pH 6.0: kcat/Km=12500 mM−1·s−1; pH 7.4: kcat/Km=6930 mM−1·s−1) than angiotensin-converting enzyme hydrolysed BK. Conversely Abz-RPPGFSPFR-3-NO2-Tyr was not cleaved by the Y67L (Tyr67→Leu)/L205A (Leu205→Ala) cathepsin K mutant, indicating that kinin degradation mostly depends on the S2 substrate specificity. Kininase activity was further evaluated on bronchial smooth muscles. BK, but not its metabolites BK(1-4) and BK(5-9), induced a dose-dependent contraction, which was abolished by Hoe140, a B2-type receptor antagonist. Cathepsin K impaired BK-dependent contraction of normal and chronic hypoxic rats, whereas cathepsins B and L did not. Taking together vasoactive properties of kinins and the potency of cathepsin K to modulate BK-dependent contraction of smooth muscles, the present data support the notion that cathepsin K may act as a kininase, a unique property among mammalian cysteine proteases. PMID:15265002

  8. Cathepsin O is involved in the innate immune response and metamorphosis of Antheraea pernyi.

    PubMed

    Sun, Yu-Xuan; Zhu, Bao-Jian; Tang, Lin; Sun, Yu; Chen, Chen; Nadeem Abbas, Muhammad; Wang, Lei; Qian, Cen; Wei, Guo-Qing; Liu, Chao-Liang

    2017-11-01

    Cathepsins are key members of mammalian papain-like cysteine proteases that play an important role in the immune response. In this study, a fragment of cDNA encoding cathepsin O proteinase (ApCathepsin O) was cloned from Antheraea pernyi. It contains an open reading frame of 1170bp and encodes a protein with 390 amino acid residues, including a conserved I29 inhibitor domain and a peptidase C1A (clan CA of cysteine proteases, papain family C1 subfamily) domain. Comparison with other previously reported cathepsin O proteins showed identity ranging from 45% to 79%. Quantitative real-time PCR (qRT-PCR) and Western blot analysis revealed that ApCathepsin O was highly expressed in the fat body; furthermore, the high expression during the pupal stage indicated that it might be involved during metamorphosis. After exposure to four different heat-killed pathogens (Escherichia coli, Beauveria bassiana, Micrococcus luteus, and A. pernyi nucleopolyhedrovirus), the expression levels of ApCathepsin O mRNA significantly increased and showed variable expression patterns. This indicates that ApCathepsin O is potentially involved in the innate immune system of A. pernyi. Interestingly, ApCathepsin O expression was upregulated after 20-hydroxyecdysone (20E) injection, which suggested that it might be regulated by 20E. In conclusion, ApCathepsin O is a protease that may play an important role in the innate immune response and metamorphosis of A. pernyi. Copyright © 2017. Published by Elsevier Inc.

  9. Channel catfish, Ictalurus punctatus, cysteine proteinases: Cloning, characterization and expression of cathepsin H and L

    USDA-ARS?s Scientific Manuscript database

    The antigen recognition by the host immune system is a complex biochemical process that requires a battery of enzymes. Cathepsins are one of the enzyme superfamilies involving in antigenic degradations. We observed the up-regulation of cathepsin H and L transcripts during the early stage of Edward...

  10. Identification, immunolocalization, and characterization analyses of an exopeptidase of papain superfamily, (cathepsin C) from Clonorchis sinensis.

    PubMed

    Liang, Pei; He, Lei; Xu, Yanquan; Chen, Xueqing; Huang, Yan; Ren, Mengyu; Liang, Chi; Li, Xuerong; Xu, Jin; Lu, Gang; Yu, Xinbing

    2014-10-01

    Cathepsin C is an important exopeptidase of papain superfamily and plays a number of great important roles during the parasitic life cycle. The amino acid sequence of cathepsin C from Clonorchis sinensis (C. sinensis) showed 54, 53, and 49% identities to that of Schistosoma japonicum, Schistosoma mansoni, and Homo sapiens, respectively. Phylogenetic analysis utilizing the sequences of papain superfamily of C. sinensis demonstrated that cathepsin C and cathepsin Bs came from a common ancestry. Cathepsin C of C. sinensis (Cscathepsin C) was identified as an excretory/secretory product by Western blot analysis. The results of transcriptional level and translational level of Cscathepsin C at metacercaria stage were higher than that at adult worms. Immunolocalization analysis indicated that Cscathepsin C was specifically distributed in the suckers (oral sucker and ventral sucker), eggs, vitellarium, intestines, and testis of adult worms. In the metacercaria, it was mainly detected on the cyst wall and excretory bladder. Combining with the results mentioned above, it implies that Cscathepsin C may be an essential proteolytic enzyme for proteins digestion of hosts, nutrition assimilation, and immune invasion of C. sinensis. Furthermore, it may be a potential diagnostic antigen and drug target against C. sinensis infection.

  11. Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption.

    PubMed

    Wilson, Susan R; Peters, Christoph; Saftig, Paul; Brömme, Dieter

    2009-01-23

    Cathepsin K is responsible for the degradation of type I collagen in osteoclast-mediated bone resorption. Collagen fragments are known to be biologically active in a number of cell types. Here, we investigate their potential to regulate osteoclast activity. Mature murine osteoclasts were seeded on type I collagen for actin ring assays or dentine discs for resorption assays. Cells were treated with cathepsins K-, L-, or MMP-1-predigested type I collagen or soluble bone fragments for 24 h. The presence of actin rings was determined fluorescently by staining for actin. We found that the percentage of osteoclasts displaying actin rings and the area of resorbed dentine decreased significantly on addition of cathepsin K-digested type I collagen or bone fragments, but not with cathepsin L or MMP-1 digests. Counterintuitively, actin ring formation was found to decrease in the presence of the cysteine proteinase inhibitor LHVS and in cathepsin K-deficient osteoclasts. However, cathepsin L deficiency or the general MMP inhibitor GM6001 had no effect on the presence of actin rings. Predigestion of the collagen matrix with cathepsin K, but not by cathepsin L or MMP-1 resulted in an increased actin ring presence in cathepsin K-deficient osteoclasts. These studies suggest that cathepsin K interaction with type I collagen is required for 1) the release of cryptic Arg-Gly-Asp motifs during the initial attachment of osteoclasts and 2) termination of resorption via the creation of autocrine signals originating from type I collagen degradation.

  12. Immunodiagnosis of Fasciola gigantica Infection Using Monoclonal Antibody-Based Sandwich ELISA and Immunochromatographic Assay for Detection of Circulating Cathepsin L1 Protease

    PubMed Central

    Anuracpreeda, Panat; Chawengkirttikul, Runglawan; Sobhon, Prasert

    2016-01-01

    Background Tropical fasciolosis caused by Fasciola gigantica infection is one of the major diseases infecting ruminants in the tropical regions of Africa and Asia including Thailand. Parasitological diagnosis of fasciolosis is often unreliable and possesses low sensitivity. Therefore, the detection of circulating parasite antigens is thought to be a better alternative for diagnosis of fasciolosis, as it reflects the real parasite burden. Methods In this study, we have produced a monoclonal antibody (MoAb) against recombinant F. gigantica cathepsin L1 (rFgCatL1), and developed both sandwich enzyme-linked immunosorbent assay (sandwich ELISA) and immunochromatographic (IC) test for rapid detection of circulating cathepsin L1 protease (CatL1) in the sera from mice experimentally and cattle naturally infected with Fasciola gigantica. MoAb 4E3 and biotinylated rabbit anti-recombinant CatL1 antibody were selected due to their high reactivities and specificities. Results The lower detection limits of sandwich ELISA and IC test were 3 pg/ml and 0.256 ng/ml, respectively. Sandwich ELISA and IC test could detect F. gigantica infection from day 1 to 35 post infection. In experimental mice, the sensitivity, specificity and accuracy were 95%, 100% and 98.6% (for sandwich ELISA), and 93%, 100% and 98.2% (for IC test), while in natural cattle they were 98.3%, 100% and 99.5% (for sandwich ELISA), and 96.7%, 100% and 99.1% (for IC test). Conclusions These two assay methods showed high efficiencies and precisions for diagnosis of fasciolosis by F. gigantica. PMID:26731402

  13. Immunodiagnosis of Fasciola gigantica Infection Using Monoclonal Antibody-Based Sandwich ELISA and Immunochromatographic Assay for Detection of Circulating Cathepsin L1 Protease.

    PubMed

    Anuracpreeda, Panat; Chawengkirttikul, Runglawan; Sobhon, Prasert

    2016-01-01

    Tropical fasciolosis caused by Fasciola gigantica infection is one of the major diseases infecting ruminants in the tropical regions of Africa and Asia including Thailand. Parasitological diagnosis of fasciolosis is often unreliable and possesses low sensitivity. Therefore, the detection of circulating parasite antigens is thought to be a better alternative for diagnosis of fasciolosis, as it reflects the real parasite burden. In this study, we have produced a monoclonal antibody (MoAb) against recombinant F. gigantica cathepsin L1 (rFgCatL1), and developed both sandwich enzyme-linked immunosorbent assay (sandwich ELISA) and immunochromatographic (IC) test for rapid detection of circulating cathepsin L1 protease (CatL1) in the sera from mice experimentally and cattle naturally infected with Fasciola gigantica. MoAb 4E3 and biotinylated rabbit anti-recombinant CatL1 antibody were selected due to their high reactivities and specificities. The lower detection limits of sandwich ELISA and IC test were 3 pg/ml and 0.256 ng/ml, respectively. Sandwich ELISA and IC test could detect F. gigantica infection from day 1 to 35 post infection. In experimental mice, the sensitivity, specificity and accuracy were 95%, 100% and 98.6% (for sandwich ELISA), and 93%, 100% and 98.2% (for IC test), while in natural cattle they were 98.3%, 100% and 99.5% (for sandwich ELISA), and 96.7%, 100% and 99.1% (for IC test). These two assay methods showed high efficiencies and precisions for diagnosis of fasciolosis by F. gigantica.

  14. Molecular and Biochemical Characterization of a Cathepsin B-Like Protease Family Unique to Trypanosoma congolense▿ †

    PubMed Central

    Mendoza-Palomares, Carlos; Biteau, Nicolas; Giroud, Christiane; Coustou, Virginie; Coetzer, Theresa; Authié, Edith; Boulangé, Alain; Baltz, Théo

    2008-01-01

    Cysteine proteases have been shown to be essential virulence factors and drug targets in trypanosomatids and an attractive antidisease vaccine candidate for Trypanosoma congolense. Here, we describe an important amplification of genes encoding cathepsin B-like proteases unique to T. congolense. More than 13 different genes were identified, whereas only one or two highly homologous genes have been identified in other trypanosomatids. These proteases grouped into three evolutionary clusters: TcoCBc1 to TcoCBc5 and TcoCBc6, which possess the classical catalytic triad (Cys, His, and Asn), and TcoCBs7 to TcoCBs13, which contains an unusual catalytic site (Ser, Xaa, and Asn). Expression profiles showed that members of the TcoCBc1 to TcoCBc5 and the TcoCBs7 to TcoCBs13 groups are expressed mainly in bloodstream forms and localize in the lysosomal compartment. The expression of recombinant representatives of each group (TcoCB1, TcoCB6, and TcoCB12) as proenzymes showed that TcoCBc1 and TcoCBc6 are able to autocatalyze their maturation 21 and 31 residues, respectively, upstream of the predicted start of the catalytic domain. Both displayed a carboxydipeptidase function, while only TcoCBc1 behaved as an endopeptidase. TcoCBc1 exhibited biochemical differences regarding inhibitor sensitivity compared to that of other cathepsin B-like proteases. Recombinant pro-TcoCBs12 did not automature in vitro, and the pepsin-matured enzyme was inactive in tests with cathepsin B fluorogenic substrates. In vivo inhibition studies using CA074Me (a cell-permeable cathepsin B-specific inhibitor) demonstrated that TcoCB are involved in lysosomal protein degradation essential for survival in bloodstream form. Furthermore, TcoCBc1 elicited an important immune response in experimentally infected cattle. We propose this family of proteins as a potential therapeutic target and as a plausible antigen for T. congolense diagnosis. PMID:18281598

  15. Sero-detection of Toxocara canis infection in human with T.canis recombinant arginine kinase, cathepsin L-1 and TES-26 antigens.

    PubMed

    Varghese, Anju; Raina, Opinder K; Chandra, Dinesh; Mirdha, Bijay R; Kelawala, Naresh H; Solanki, Jayesh B; Kumar, Niranjan; Ravindran, Reghu; Arun, Anandanarayanan; Rialch, Ajayta; Lalrinkima, Hniang; Kelawala, Rohan N; Samanta, Subhamoy

    2017-12-20

    Three recombinant antigens viz. arginine kinase, cathepsin L-1 and TES-26 of Toxocara canis were expressed in Escherichia coli and evaluated for their potential in the detection of T. canis larval infection in human in immunoglobulin G-enzyme linked immunosorbent assay (IgG-ELISA). Results of the IgG-ELISA with the above recombinant antigens were confirmed with commercially available IgG detection kit for T. canis infection used as a standard test. All three recombinant antigens were 100% sensitive in the detection of positive cases (n = 6) of T. canis infection in human and were screened for their cross-reactivity in human patients with history of Toxoplasma gondii, Plasmodium vivax, Entamoeba histolytica, hydatid and hookworm infections. The recombinant TES-26 antigen showed higher specificity and cross-reacted with T. gondii infection sera only. However, arginine kinase and cathepsin L-1 recombinant antigens showed cross-reactions with sera of patients infected with T. gondii, P. vivax and E. histolytica but not with the patient sera infected with hydatid and hookworm. These results show that recombinant TES-26 is a potential diagnostic candidate antigen for human toxocarosis caused by migrating T. canis larvae.

  16. Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression.

    PubMed

    Gnirss, Kerstin; Kühl, Annika; Karsten, Christina; Glowacka, Ilona; Bertram, Stephanie; Kaup, Franziska; Hofmann, Heike; Pöhlmann, Stefan

    2012-03-01

    Ebola (EBOV) and Marburg virus (MARV) cause severe hemorrhagic fever. The host cell proteases cathepsin B and L activate the Zaire ebolavirus glycoprotein (GP) for cellular entry and constitute potential targets for antiviral intervention. However, it is unclear if different EBOV species and MARV equally depend on cathepsin B/L activity for infection of cell lines and macrophages, important viral target cells. Here, we show that cathepsin B/L inhibitors markedly reduce 293T cell infection driven by the GPs of all EBOV species, independent of the type II transmembrane serine protease TMPRSS2, which cleaved but failed to activate EBOV-GPs. Similarly, a cathepsin B/L inhibitor blocked macrophage infection mediated by different EBOV-GPs. In contrast, MARV-GP-driven entry exhibited little dependence on cathepsin B/L activity. Still, MARV-GP-mediated entry was efficiently blocked by leupeptin. These results suggest that cathepsins B/L promote entry of EBOV while MARV might employ so far unidentified proteases for GP activation. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Probing cathepsin K activity with a selective substrate spanning its active site.

    PubMed

    Lecaille, Fabien; Weidauer, Enrico; Juliano, Maria A; Brömme, Dieter; Lalmanach, Gilles

    2003-10-15

    The limited availability of highly selective cathepsin substrates seriously impairs studies designed to monitor individual cathepsin activities in biological samples. Among mammalian cysteine proteases, cathepsin K has a unique preference for a proline residue at P2, the primary determinant of its substrate specificity. Interestingly, congopain from Trypanosoma congolense also accommodates a proline residue in its S2 subsite. Analysis of a congopain model showed that amino acids forming its S2 subsite are identical with those of cathepsin K, except Leu67 which is replaced by a tyrosine residue in cathepsin K. Furthermore, amino acid residues of the congopain S2' binding pocket, which accepts a proline residue, are strictly identical with those of cathepsin K. Abz-HPGGPQ-EDN2ph [where Abz represents o-aminobenzoic acid and EDN2ph (=EDDnp) represents N -(2,4-dinitrophenyl)-ethylenediamine], a substrate initially developed for trypanosomal enzymes, was efficiently cleaved at the Gly-Gly bond by cathepsin K (kcat/ K(m)=426000 M(-1) x s(-1)). On the other hand, Abz-HPGGPQ-EDN2ph was resistant to hydrolysis by cathepsins B, F, H, L, S and V (20 nM enzyme concentration) and the Y67L (Tyr67-->Leu)/L205A cathepsin K mutant (20 nM), but still acted as a competitive inhibitor. Taken together, the selectivity of Abz-HPGGPQ-EDN2ph to cathepsin K primarily depends on the S2 and S2' subsite specificities of cathepsin K and the ionization state of histidine at P3. Whereas Abz-HPGGPQ-EDN2ph was hydrolysed by wild-type mouse fibroblast lysates, its hydrolysis was completely abolished in the cathepsin K-deficient samples, indicating that Abz-HPGGPQ-EDN2ph can be used to monitor selectively cathepsin K activity in physiological fluids and cell lysates.

  18. Probing cathepsin K activity with a selective substrate spanning its active site.

    PubMed Central

    Lecaille, Fabien; Weidauer, Enrico; Juliano, Maria A; Brömme, Dieter; Lalmanach, Gilles

    2003-01-01

    The limited availability of highly selective cathepsin substrates seriously impairs studies designed to monitor individual cathepsin activities in biological samples. Among mammalian cysteine proteases, cathepsin K has a unique preference for a proline residue at P2, the primary determinant of its substrate specificity. Interestingly, congopain from Trypanosoma congolense also accommodates a proline residue in its S2 subsite. Analysis of a congopain model showed that amino acids forming its S2 subsite are identical with those of cathepsin K, except Leu67 which is replaced by a tyrosine residue in cathepsin K. Furthermore, amino acid residues of the congopain S2' binding pocket, which accepts a proline residue, are strictly identical with those of cathepsin K. Abz-HPGGPQ-EDN2ph [where Abz represents o-aminobenzoic acid and EDN2ph (=EDDnp) represents N -(2,4-dinitrophenyl)-ethylenediamine], a substrate initially developed for trypanosomal enzymes, was efficiently cleaved at the Gly-Gly bond by cathepsin K (kcat/ K(m)=426000 M(-1) x s(-1)). On the other hand, Abz-HPGGPQ-EDN2ph was resistant to hydrolysis by cathepsins B, F, H, L, S and V (20 nM enzyme concentration) and the Y67L (Tyr67-->Leu)/L205A cathepsin K mutant (20 nM), but still acted as a competitive inhibitor. Taken together, the selectivity of Abz-HPGGPQ-EDN2ph to cathepsin K primarily depends on the S2 and S2' subsite specificities of cathepsin K and the ionization state of histidine at P3. Whereas Abz-HPGGPQ-EDN2ph was hydrolysed by wild-type mouse fibroblast lysates, its hydrolysis was completely abolished in the cathepsin K-deficient samples, indicating that Abz-HPGGPQ-EDN2ph can be used to monitor selectively cathepsin K activity in physiological fluids and cell lysates. PMID:12837132

  19. The Potential Role of the Proteases Cathepsin D and Cathepsin L in the Progression and Metastasis of Epithelial Ovarian Cancer

    PubMed Central

    Pranjol, Md Zahidul Islam; Gutowski, Nicholas; Hannemann, Michael; Whatmore, Jacqueline

    2015-01-01

    Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancies and has a poor prognosis due to relatively unspecific early symptoms, and thus often advanced stage, metastasized cancer at presentation. Metastasis of EOC occurs primarily through the transcoelomic route whereby exfoliated tumor cells disseminate within the abdominal cavity, particularly to the omentum. Primary and metastatic tumor growth requires a pool of proangiogenic factors in the microenvironment which propagate new vasculature in the growing cancer. Recent evidence suggests that proangiogenic factors other than the widely known, potent angiogenic factor vascular endothelial growth factor may mediate growth and metastasis of ovarian cancer. In this review we examine the role of some of these alternative factors, specifically cathepsin D and cathepsin L. PMID:26610586

  20. The Potential Role of the Proteases Cathepsin D and Cathepsin L in the Progression and Metastasis of Epithelial Ovarian Cancer.

    PubMed

    Pranjol, Md Zahidul Islam; Gutowski, Nicholas; Hannemann, Michael; Whatmore, Jacqueline

    2015-11-20

    Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancies and has a poor prognosis due to relatively unspecific early symptoms, and thus often advanced stage, metastasized cancer at presentation. Metastasis of EOC occurs primarily through the transcoelomic route whereby exfoliated tumor cells disseminate within the abdominal cavity, particularly to the omentum. Primary and metastatic tumor growth requires a pool of proangiogenic factors in the microenvironment which propagate new vasculature in the growing cancer. Recent evidence suggests that proangiogenic factors other than the widely known, potent angiogenic factor vascular endothelial growth factor may mediate growth and metastasis of ovarian cancer. In this review we examine the role of some of these alternative factors, specifically cathepsin D and cathepsin L.

  1. Identification of Chalcones as Fasciola hepatica Cathepsin L Inhibitors Using a Comprehensive Experimental and Computational Approach

    PubMed Central

    Ferraro, Florencia; Merlino, Alicia; dell´Oca, Nicolás; Gil, Jorge; Tort, José F.; Gonzalez, Mercedes; Cerecetto, Hugo; Cabrera, Mauricio

    2016-01-01

    Background Increased reports of human infections have led fasciolosis, a widespread disease of cattle and sheep caused by the liver flukes Fasciola hepatica and Fasciola gigantica, to be considered an emerging zoonotic disease. Chemotherapy is the main control measure available, and triclabendazole is the preferred drug since is effective against both juvenile and mature parasites. However, resistance to triclabendazole has been reported in several countries urging the search of new chemical entities and target molecules to control fluke infections. Methodology/Principle Findings We searched a library of forty flavonoid derivatives for inhibitors of key stage specific Fasciola hepatica cysteine proteases (FhCL3 and FhCL1). Chalcones substituted with phenyl and naphtyl groups emerged as good cathepsin L inhibitors, interacting more frequently with two putative binding sites within the active site cleft of the enzymes. One of the compounds, C34, tightly bounds to juvenile specific FhCL3 with an IC50 of 5.6 μM. We demonstrated that C34 is a slow-reversible inhibitor that interacts with the Cys-His catalytic dyad and key S2 and S3 pocket residues, determinants of the substrate specificity of this family of cysteine proteases. Interestingly, C34 induces a reduction in NEJ ability to migrate through the gut wall and a loss of motility phenotype that leads to NEJ death within a week in vitro, while it is not cytotoxic to bovine cells. Conclusions/Significance Up to date there are no reports of in vitro screening for non-peptidic inhibitors of Fasciola hepatica cathepsins, while in general these are considered as the best strategy for in vivo inhibition. We have identified chalcones as novel inhibitors of the two main Cathepsins secreted by juvenile and adult liver flukes. Interestingly, one compound (C34) is highly active towards the juvenile enzyme reducing larval ability to penetrate the gut wall and decreasing NEJ´s viability in vitro. These findings open new avenues

  2. Synthesis and investigation of dihydroxychalcones as calpain and cathepsin inhibitors.

    PubMed

    Baek, Kyung Hye; Karki, Radha; Lee, Eung-Seok; Na, Younghwa; Kwon, Youngjoo

    2013-12-01

    In order to identify potential calpain and cathepsin inhibitors we prepared 12 dihydroxychalcone analogues and tested their ability to inhibit μ-calpain, m-calpain, cathepsins B and L. In the calpain inhibition test, compound 10 exhibited the most active inhibitory activity against m-calpain with an IC50 value of 25.25±0.901μM. With respect to inhibition of cathepsins B and L, compound 13 exhibited the most potent inhibitory activity on cathepsin L and moderate inhibitory activity on cathepsin B with IC50 values of 2.80±0.100 and 11.47±0.087μM, respectively. Our results suggest the possibility of developing dual calpain and cathepsin inhibitors by properly modulating structures and/or combining the essential aspects of the functional group effective for specific calpain and cathepsin inhibition. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Cathepsins limit macrophage necroptosis through cleavage of Rip1 kinase.

    PubMed

    McComb, Scott; Shutinoski, Bojan; Thurston, Susan; Cessford, Erin; Kumar, Kriti; Sad, Subash

    2014-06-15

    It has recently been shown that programmed necrosis, necroptosis, may play a key role in the development of inflammation. Deciphering the regulation of this pathway within immune cells may therefore have implications in pathology associated with inflammatory diseases. We show that treatment of macrophages with the pan caspase inhibitor (zVAD-FMK) results in both increased phosphorylation and decreased cleavage of receptor interacting protein kinase-1 (Rip1), leading to necroptosis that is dependent on autocrine TNF signaling. Stimulation of cells with TLR agonists such as LPS in the presence of zVAD-FMK also induced Rip1-phosphorylation via a TNFR-independent mechanism. Further examination of Rip1 expression under these stimulatory conditions revealed a regulatory cleavage of Rip1 in macrophages that is not apparently attributable to caspase-8. Instead, we provide novel evidence that cysteine family cathepsins, which are highly abundant in myeloid cells, can also cleave Rip1 kinase. Using small interfering RNA knockdown, specific cathepsin inhibitors, and cell-free cleavage assays, we demonstrate that cysteine cathepsins B and S can directly cleave Rip1. Finally, we demonstrate that only through combined inhibition of cathepsins and caspase-8 could a potent induction of macrophage necroptosis be achieved. These data reveal a novel mechanism of regulation of necroptosis by cathepsins within macrophage cells. Copyright © 2014 by The American Association of Immunologists, Inc.

  4. [Research progress on cathepsin F of parasitic helminths].

    PubMed

    Qu, Zi-Gang; Fu, Bao-Quan

    2013-10-01

    Cathepsin F is an important member of papain-like subfamily in cysteine protease family. Cathepsin F of helminth parasites can hydrolyze the specific substrate, degrade host protein such as hemoglobin for nutrition, and be involved in invasion into host tissue. Therefore, cathepsin F serves as a potential target for parasitic disease immunodiagnosis, vaccine design and anti-parasite drug screening. This article reviews the structural characteristics and mechanisms of cathepsin F, and research advances on cathepsin F of parasitic helminths.

  5. Role Of Cathepsin C During Breast Cancer Metastasis

    DTIC Science & Technology

    2010-09-01

    tumor histopathology is regulated by CSTC; however, in cathepsin C (Ctsc)-deficient mice, there is a significant reduction in the number of...hyaluronan. Glycobiology 14(11): 1108. 2. Ruffell B, Johnson P. (2006) Hyaluronan induces apoptosis through CD44 in activated lymphoma cells. EJC...tumors and lymphomas [16,17]. The ability of immune-deficient mice to reject and/or inhibit the growth of many, but not all cell lines is also impaired

  6. Optimization of dipeptidic inhibitors of cathepsin L for improved Toxoplasma gondii selectivity and CNS permeability.

    PubMed

    Zwicker, Jeffery D; Diaz, Nicolas A; Guerra, Alfredo J; Kirchhoff, Paul D; Wen, Bo; Sun, Duxin; Carruthers, Vern B; Larsen, Scott D

    2018-06-01

    The neurotropic protozoan Toxoplasma gondii is the second leading cause of death due to foodborne illness in the US, and has been designated as one of five neglected parasitic infections by the Center for Disease Control and Prevention. Currently, no treatment options exist for the chronic dormant-phase Toxoplasma infection in the central nervous system (CNS). T. gondii cathepsin L (TgCPL) has recently been implicated as a novel viable target for the treatment of chronic toxoplasmosis. In this study, we report the first body of SAR work aimed at developing potent inhibitors of TgCPL with selectivity vs the human cathepsin L. Starting from a known inhibitor of human cathepsin L, and guided by structure-based design, we were able to modulate the selectivity for Toxoplasma vs human CPL by nearly 50-fold while modifying physiochemical properties to be more favorable for metabolic stability and CNS penetrance. The overall potency of our inhibitors towards TgCPL was improved from 2 μM to as low as 110 nM and we successfully demonstrated that an optimized analog 18b is capable of crossing the BBB (0.5 brain/plasma). This work is an important first step toward development of a CNS-penetrant probe to validate TgCPL as a feasible target for the treatment of chronic toxoplasmosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Cathepsin L is required for endothelial progenitor cell-induced neovascularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urbich, Carmen; Heeschen, Christopher; Aicher, Alexandra

    Infusion of endothelial progenitor cells (EPCs), but not of mature endothelial cells (ECs), promotes neovascularization after ischemia. We performed a gene expression profiling of EPCs and ECs to identify genes, which might be important for the neovascularization capacity of EPCs. Intriguingly, the protease cathepsin L (CathL) was highly expressed in EPCs as opposed to ECs and is essential for matrix degradation and invasion by EPCs in vitro. CathL deficient mice showed impaired functional recovery after hind limb ischemia supporting the concept for an important role of CathL in postnatal neovascularization. Infused CathL deficient progenitor cells failed to home to sitesmore » of ischemia and to augment neovascularization. In contrast, over expression of CathL in mature ECs significantly enhanced their invasive activity and induced their neovascularization capacity in vivo. Taken together, CathL plays a crucial role for the integration of circulating EPCs into the ischemic tissue and is required for neovascularization mediated by EPCs.« less

  8. Late-onset Papillon-Lefèvre syndrome without alteration of the cathepsin C gene.

    PubMed

    Pilger, Ulrike; Hennies, Hans Christian; Truschnegg, Astrid; Aberer, Elisabeth

    2003-11-01

    Mutations in the cathepsin C gene have recently been detected in Papillon-Lefèvre syndrome (PLS). Until now, 5 cases with the late-onset variation of this disease have been reported in the literature. The genetic background of this type of PLS is still unknown. We describe a 46-year-old woman with late-onset transgredient palmar hyperkeratosis and a 10-year history of severe periodontal disease. Histology of skin biopsy specimens revealed a psoriasiform pattern. Dental examination showed severe gingival inflammation with loss of alveolar bone. Dental plaque investigated by a polymerase chain reaction method revealed DNA signals of 5 different dental bacteria. DNA from EDTA blood was investigated for mutations in the cathepsin C gene by polymerase chain reaction analysis and direct sequencing. A silent variation in the codon for proline-459 was detected but interpreted as a polymorphism of this gene. All genetic linkage and mutation studies for PLS performed so far have shown that PLS is genetically homogeneous. Our patient with late-onset variation of PLS, however, did not show a mutation in the cathepsin C gene. Thus, we suspect that there is another genetic cause for the late-onset forms of PLS.

  9. Effects of Chilling and Partial Freezing on Rigor Mortis Changes of Bighead Carp (Aristichthys nobilis) Fillets: Cathepsin Activity, Protein Degradation and Microstructure of Myofibrils.

    PubMed

    Lu, Han; Liu, Xiaochang; Zhang, Yuemei; Wang, Hang; Luo, Yongkang

    2015-12-01

    To investigate the effects of chilling and partial freezing on rigor mortis changes in bighead carp (Aristichthys nobilis), pH, cathepsin B, cathepsin B+L activities, SDS-PAGE of sarcoplasmic and myofibrillar proteins, texture, and changes in microstructure of fillets at 4 °C and -3 °C were determined at 0, 2, 4, 8, 12, 24, 48, and 72 h after slaughter. The results indicated that pH of fillets (6.50 to 6.80) was appropriate for cathepsin function during the rigor mortis. For fillets that were chilled and partially frozen, the cathepsin activity in lysosome increased consistently during the first 12 h, followed by a decrease from the 12 to 24 h, which paralleled an increase in activity in heavy mitochondria, myofibrils and sarcoplasm. There was no significant difference in cathepsin activity in lysosomes between fillets at 4 °C and -3 °C (P > 0.05). Partially frozen fillets had greater cathepsin activity in heavy mitochondria than chilled samples from the 48 to 72 h. In addition, partially frozen fillets showed higher cathepsin activity in sarcoplasm and lower cathepsin activity in myofibrils compared with chilled fillets. Correspondingly, we observed degradation of α-actinin (105 kDa) by cathepsin L in chilled fillets and degradation of creatine kinase (41 kDa) by cathepsin B in partially frozen fillets during the rigor mortis. The decline of hardness for both fillets might be attributed to the accumulation of cathepsin in myofibrils from the 8 to 24 h. The lower cathepsin activity in myofibrils for fillets that were partially frozen might induce a more intact cytoskeletal structure than fillets that were chilled. © 2015 Institute of Food Technologists®

  10. Purification and characterization of cathepsin L in arrowtooth flounder (Atheresthes stomias) muscle.

    PubMed

    Visessanguan, Wonnop; Benjakul, Soottawat; An, Haejung

    2003-03-01

    A predominant, heat-activated proteinase in muscle extract of arrowtooth flounder (Atheresthes stomias) was purified to 55-fold by heat treatment, followed by a series of chromatographic separations. The apparent molecular mass of the purified enzyme was 27 kDa by size exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The proteinase had high affinity and activity toward Z-Phe-Arg-NMec with K(m) and k(cat) values of 8.2 microM and 12.2/s, respectively. Activity was inhibited by sulfhydryl reagents and activated by reducing agents. The purified proteinase displayed optimal activity at pH 5.0-5.5 and 60 degrees C, respectively. Consistent with the properties of proteases from other species, the heat-activated proteinase in arrowtooth flounder can be identified as cathepsin L.

  11. Role of endocytosis and cathepsin-mediated activation in Nipah virus entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diederich, Sandra; Thiel, Lena; Maisner, Andrea

    The recent discovery that the Nipah virus (NiV) fusion protein (F) is activated by endosomal cathepsin L raised the question if NiV utilize pH- and protease-dependent mechanisms of entry. We show here that the NiV receptor ephrin B2, virus-like particles and infectious NiV are internalized from the cell surface. However, endocytosis, acidic pH and cathepsin-mediated cleavage are not necessary for the initiation of infection of new host cells. Our data clearly demonstrate that proteolytic activation of the NiV F protein is required before incorporation into budding virions but not after virus entry.

  12. Activation of cathepsins B and L in mouse lymphosarcoma tissue under the effect of cyclophosphamide is associated with apoptosis induction and infiltration by mononuclear phagocytes.

    PubMed

    Zhanaeva, S Ya; Mel'nikova, E V; Trufakin, V A; Korolenko, T A

    2013-11-01

    We analyzed activities of lysosomal cystein cathepsins B and L in mouse LS lymphosarcoma and its drug-resistant RLS 40 strain and their correlations with the dynamics of the percentage of cells with fragmented DNA and CD14 (+) phagocytes over 3 days after cyclophosphamide injection. LS regression and inhibition of RLS 40 growth after cyclophosphamide injection were paralleled by an increase in cathepsins B and L activities in tumor tissues. The antitumor effect of cyclophosphamide associated with apoptosis intensity and protease activities were significantly higher in LS. Positive correlations between activities of cathepsins B and L and the LS tissue content of cells with fragmented DNA and CD14 (+) phagocytes and negative correlations thereof with tumor weight were detected. It seems that the increase in cathepsins B and L activities in LS tissues was caused by cyclophosphamide induction of apoptosis and depended on the level of tumor cell infiltration with mononuclear phagocytes.

  13. Analysis of Cathepsin and Furin Proteolytic Enzymes Involved in Viral Fusion Protein Activation in Cells of the Bat Reservoir Host

    PubMed Central

    El Najjar, Farah; Lampe, Levi; Baker, Michelle L.; Wang, Lin-Fa; Dutch, Rebecca Ellis

    2015-01-01

    Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing. PMID:25706132

  14. Cathepsin-mediated Necrosis Controls the Adaptive Immune Response by Th2 (T helper type 2)-associated Adjuvants*

    PubMed Central

    Jacobson, Lee S.; Lima, Heriberto; Goldberg, Michael F.; Gocheva, Vasilena; Tsiperson, Vladislav; Sutterwala, Fayyaz S.; Joyce, Johanna A.; Gapp, Bianca V.; Blomen, Vincent A.; Chandran, Kartik; Brummelkamp, Thijn R.; Diaz-Griffero, Felipe; Brojatsch, Jürgen

    2013-01-01

    Immunologic adjuvants are critical components of vaccines, but it remains unclear how prototypical adjuvants enhance the adaptive immune response. Recent studies have shown that necrotic cells could trigger an immune response. Although most adjuvants have been shown to be cytotoxic, this activity has traditionally been considered a side effect. We set out to test the role of adjuvant-mediated cell death in immunity and found that alum, the most commonly used adjuvant worldwide, triggers a novel form of cell death in myeloid leukocytes characterized by cathepsin-dependent lysosome-disruption. We demonstrated that direct lysosome-permeabilization with a soluble peptide, Leu-Leu-OMe, mimics the alum-like form of necrotic cell death in terms of cathepsin dependence and cell-type specificity. Using a combination of a haploid genetic screen and cathepsin-deficient cells, we identified specific cathepsins that control lysosome-mediated necrosis. We identified cathepsin C as critical for Leu-Leu-OMe-induced cell death, whereas cathepsins B and S were required for alum-mediated necrosis. Consistent with a role of necrotic cell death in adjuvant effects, Leu-Leu-OMe replicated an alum-like immune response in vivo, characterized by dendritic cell activation, granulocyte recruitment, and production of Th2-associated antibodies. Strikingly, cathepsin C deficiency not only blocked Leu-Leu-OMe-mediated necrosis but also impaired Leu-Leu-OMe-enhanced immunity. Together our findings suggest that necrotic cell death is a powerful mediator of a Th2-associated immune response. PMID:23297415

  15. Proteolysis of serum amyloid A and AA amyloid proteins by cysteine proteases: cathepsin B generates AA amyloid proteins and cathepsin L may prevent their formation

    PubMed Central

    Rocken, C; Menard, R; Buhling, F; Vockler, S; Raynes, J; Stix, B; Kruger, S; Roessner, A; Kahne, T

    2005-01-01

    Background: AA amyloidosis develops in patients with chronic inflammatory diseases. The AA amyloid proteins are proteolytic fragments obtained from serum amyloid A (SAA). Previous studies have provided evidence that endosomes or lysosomes might be involved in the processing of SAA, and contribute to the pathology of AA amyloidosis. Objective: To investigate the anatomical distribution of cathepsin (Cath) B and CathL in AA amyloidosis and their ability to process SAA and AA amyloid proteins. Methods and results: CathB and CathL were found immunohistochemically in every patient with AA amyloidosis and displayed a spatial relationship with amyloid in all the cases studied. Both degraded SAA and AA amyloid proteins in vitro. With the help of mass spectrometry 27 fragments were identified after incubation of SAA with CathB, nine of which resembled AA amyloid proteins, and seven fragments after incubation with CathL. CathL did not generate AA amyloid-like peptides. When native human AA amyloid proteins were used as a substrate 26 fragments were identified after incubation with CathB and 18 after incubation with CathL. Conclusion: The two most abundant and ubiquitously expressed lysosomal proteases can cleave SAA and AA amyloid proteins. CathB generates nine AA amyloid-like proteins by its carboxypeptidase activity, whereas CathL may prevent the formation of AA amyloid proteins by endoproteolytic activity within the N-terminal region of SAA. This is particularly interesting, because AA amyloidosis is a systemic disease affecting many organs and tissue types, almost all of which express CathB and CathL. PMID:15897303

  16. Activated cathepsin L is associated with the switch from autophagy to apoptotic death of SH-SY5Y cells exposed to 6-hydroxydopamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lingyun, E-mail: lingyunlee@126.com; Experimental Center, The Second Affiliated Hospital of Soochow University, Suzhou 215004; Gao, Luyan

    Autophagy and apoptosis are common responses to pathological damage in the process of Parkinson's disease (PD), and lysosome dysfunction may contribute to the etiology of PD's neurodegenerative process. In this study, we demonstrated that the neurotoxin 6-hydroxydopamine (6-OHDA) increased autophagy in SH-SY5Y cells, as determined by detection of the lysosome marker lysosomal-associated membrane protein1, the autophagy protein light chain 3 (LC3)-II and the autophagy substrate P62 protein. Meanwhile, autophagy repression with 3-methyladenine accelerated the activation of caspase-3 and PARP and aggravated the cell apoptotic death induced by 6-OHDA. Furthermore, we found that 6-OHDA treatment resulted in a transient increase inmore » the intracellular and nuclear expression of cathepsin L (CTSL). The CTSL inhibitor, Z-FY-CHO, could promote autophagy, decrease accumulation of P62, and block activation of caspase-3 and PARP. Taken together, these results suggest that activation of autophagy may primarily be a protective process in SH-SY5Y cell death induced by 6-OHDA, and the nuclear translocation of CTSL could enhance the cell apoptotic cascade via disturbing autophagy-apoptotic systems in SH-SY5Y cells. Our findings highlight the potential role of CTSL in the cross talk between autophagy and apoptosis, which might be considered a therapeutic strategy for treatment of pathologic conditions associated with neurodegeneration. - Highlights: • Inhibition of autophagy aggravated the cell apoptotic death in SH-SY5Y cells. • Activation of cathepsin L impaired the autophagy pathway. • Activation of cathepsin L enhanced the cell apoptotic cascade. • Cathepsin L involves in the cross talk between autophagy and apoptosis.« less

  17. Internalization of exogenous cystatin F supresses cysteine proteases and induces the accumulation of single-chain cathepsin L by multiple mechanisms.

    PubMed

    Colbert, Jeff D; Matthews, Stephen P; Kos, Janko; Watts, Colin

    2011-12-09

    Cystatin F is an unusual member of the cystatin family of protease inhibitors, which is made as an inactive dimer and becomes activated by proteolysis in the endo/lysosome pathway of the immune cells that produce it. However a proportion is secreted and can be taken up and activated by other cells. We show here that cystatin F acquired in this way induces a dramatic accumulation of the single-chain form of cathepsin L (CatL). Cystatin F was observed in the same cellular compartments as CatL and was tightly complexed with CatL as determined by co-precipitation studies. The observed accumulation of single-chain CatL was partly due to cystatin F-mediated inhibition of the putative single-chain to two-chain CatL convertase AEP/legumain and partly to general suppression of cathepsin activity. Thus, cystatin F stabilizes CatL leading to the dramatic accumulation of an inactive complex composed either of the single-chain or two-chain form depending on the capacity of cystatin F to inhibit AEP. Cross-transfer of cystatin F from one cell to another may therefore attenuate potentially harmful effects of excessive CatL activity while paradoxically, inducing accumulation of CatL protein. Finally, we confirmed earlier data (Beers, C., Honey, K., Fink, S., Forbush, K., and Rudensky, A. (2003) J. Exp. Med. 197, 169-179) showing a loss of CatL activity, but not of CatL protein, in macrophages activated with IFNγ. However, we found equivalent loss of CatL activity in wild type and cystatin F-null macrophages suggesting that an inhibitory activity other than cystatin F quenches CatL activity in activated macrophages.

  18. Natural structural variation in enzymes as a tool in the study of mechanism exemplified by a comparison of the catalytic-site structure and characteristics of cathepsin B and papain. pH-dependent kinetics of the reactions of cathepsin B from bovine spleen and from rat liver with a thiol-specific two-protonic-state probe (2,2'-dipyridyl disulphide) and with a specific synthetic substrate (N-alpha-benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide).

    PubMed Central

    Willenbrock, F; Brocklehurst, K

    1984-01-01

    Cathepsin B (EC 3.4.22.1) from bovine spleen and the analogous enzyme from rat liver were investigated at 25 degrees C at I0.1 in acidic media by kinetic study of (a) the reactions of their catalytic-site thiol groups towards the two-protonic-state reactivity probe 2,2'-dipyridyl disulphide and (b) their catalysis of the hydrolysis of N-alpha-benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide. Reactivity-probe kinetics showed that nucleophilic character is generated in the sulphur atom of cathepsin B by protonic dissociation with pKa 3.4, presumably to form an S-/ImH+ ion-pair. Substrate-catalysis kinetics showed that ion-pair formation is not sufficient to generate catalytic competence in cathepsin B, because catalytic activity is not generated as the pH is raised across pKa 3.4 but rather as it is raised across pKa 5-6 (5.1 for kcat; 5.6 for kcat./Km for the bovine spleen enzyme and 5.8 for kcat./Km for the rat liver enzyme). The implications of these results and of known structural differences between the catalytic sites of the rat liver enzyme and papain (EC 3.4.22.2) for the mechanism of cysteine-proteinase-catalysed hydrolysis are discussed. PMID:6534384

  19. Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C.

    PubMed

    Poreba, Marcin; Mihelic, Marko; Krai, Priscilla; Rajkovic, Jelena; Krezel, Artur; Pawelczak, Malgorzata; Klemba, Michael; Turk, Dusan; Turk, Boris; Latajka, Rafal; Drag, Marcin

    2014-04-01

    Mammalian cathepsin C is primarily responsible for the removal of N-terminal dipeptides and activation of several serine proteases in inflammatory or immune cells, while its malarial parasite ortholog dipeptidyl aminopeptidase 1 plays a crucial role in catabolizing the hemoglobin of its host erythrocyte. In this report, we describe the systematic substrate specificity analysis of three cathepsin C orthologs from Homo sapiens (human), Bos taurus (bovine) and Plasmodium falciparum (malaria parasite). Here, we present a new approach with a tailored fluorogenic substrate library designed and synthesized to probe the S1 and S2 pocket preferences of these enzymes with both natural and a broad range of unnatural amino acids. Our approach identified very efficiently hydrolyzed substrates containing unnatural amino acids, which resulted in the design of significantly better substrates than those previously known. Additionally, in this study significant differences in terms of the structures of optimal substrates for human and malarial orthologs are important from the therapeutic point of view. These data can be also used for the design of specific inhibitors or activity-based probes.

  20. Proteomic analysis of rodent ribosomes revealed heterogeneity including ribosomal proteins L10-like, L22-like 1, and L39-like.

    PubMed

    Sugihara, Yoshihiko; Honda, Hiroki; Iida, Tomoharu; Morinaga, Takuma; Hino, Shingo; Okajima, Tetsuya; Matsuda, Tsukasa; Nadano, Daita

    2010-03-05

    Heterogeneity of ribosome structure, due to variations in ribosomal protein composition, has been shown to be of physiological significance in plants and yeast. Mammalian genomics have demonstrated numerous genes that are paralogous to genes encoding ribosomal proteins. Although the vast majority are considered to be pseudogenes, mRNA expression of a few paralogues, such as human ribosomal protein L39-like/L39-2, has been reported. In the present study, ribosomes from the liver, mammary gland, and testis of rodents were analyzed using a combination of two-dimensional gel electrophoresis under radical-free and highly reducing conditions, and mass spectrometry. This system allowed identification of 78 ribosomal proteins and Rack1 from a single gel. The degree of heterogeneity was far less than that reported for plant and yeast ribosomes, and was in accord with published biochemical and genetic data for mammalian ribosomes. Nevertheless, an uncharacterized paralogue of ribosomal protein L22, ribosomal protein L22-like 1, was identified as a minor ribosomal component. Ribosomal proteins L10-like and L39-like, paralogues of ribosomal proteins L10 and L39, respectively, were found in ribosomes only from the testis. Reverse transcription-polymerase chain reaction yielded supportive evidence for specific expression of L10-like and L39-like in the testis. Newly synthesized L39-like is likely to be transported to the nucleolus, where ribosome biosynthesis occurs, and then incorporated into translating ribosomes in the cytoplasm. Heterogeneity of mammalian testicular ribosomes is structurally non-negligible, and may offer valuable insights into the function of the customized ribosome.

  1. Synthetic cyclohexenyl chalcone natural products possess cytotoxic activities against prostate cancer cells and inhibit cysteine cathepsins in vitro.

    PubMed

    Deb Majumdar, Ishita; Devanabanda, Arvind; Fox, Benjamin; Schwartzman, Jacob; Cong, Huan; Porco, John A; Weber, Horst C

    2011-12-16

    A number of cyclohexenyl chalcone Diels-Alder natural products possess promising biological properties including strong cytotoxicity in various human cancer cells. Herein, we show that natural products in this class including panduratin A and nicolaioidesin C inhibit cysteine cathepsins as indicated by protease profiling assays and cell-free cathepsin L enzyme assays. Owing to the critical roles of cathepsins in the biology of human tumor progression, invasion, and metastasis, these findings should pave the way for development of novel antitumor agents for use in clinical settings. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Aspartic cathepsin D endopeptidase contributes to extracellular digestion in clawed lobsters Homarus americanus and Homarus gammarus.

    PubMed

    Rojo, Liliana; Muhlia-Almazan, Adriana; Saborowski, Reinhard; García-Carreño, Fernando

    2010-11-01

    Acid digestive proteinases were studied in the gastric fluids of two species of clawed lobster (Homarus americanus and Homarus gammarus). An active protein was identified in both species as aspartic proteinase by specific inhibition with pepstatin A. It was confirmed as cathepsin D by mass mapping, N-terminal, and full-length cDNA sequencing. Both lobster species transcribed two cathepsin D mRNAs: cathepsin D1 and cathepsin D2. Cathepsin D1 mRNA was detected only in the midgut gland, suggesting its function as a digestive enzyme. Cathepsin D2 mRNA was found in the midgut gland, gonads, and muscle. The deduced amino acid sequence of cathepsin D1 and cathepsin D2 possesses two catalytic DTG active-site motifs, the hallmark of aspartic proteinases. The putatively active cathepsin D1 has a molecular mass of 36.4 kDa and a calculated pI of 4.14 and possesses three potential glycosylation sites. The sequences showed highest similarities with cathepsin D from insects but also with another crustacean cathepsin D. Cathepsin D1 transcripts were quantified during a starvation period using real-time qPCR. In H. americanus, 15 days of starvation did not cause significant changes, but subsequent feeding caused a 2.5-fold increase. In H. gammarus, starvation caused a 40% reduction in cathepsin D1 mRNA, and no effect was observed with subsequent feeding.

  3. A Regulatory Pathway, Ecdysone-Transcription Factor Relish-Cathepsin L, Is Involved in Insect Fat Body Dissociation

    PubMed Central

    Zhang, Yao; Lu, Yu-Xuan; Liu, Jian; Yang, Cui; Feng, Qi-Li; Xu, Wei-Hua

    2013-01-01

    Insect fat body is the organ for intermediary metabolism, comparable to vertebrate liver and adipose tissue. Larval fat body is disintegrated to individual fat body cells and then adult fat body is remodeled at the pupal stage. However, little is known about the dissociation mechanism. We find that the moth Helicoverpa armigera cathepsin L (Har-CL) is expressed heavily in the fat body and is released from fat body cells into the extracellular matrix. The inhibitor and RNAi experiments demonstrate that Har-CL functions in the fat body dissociation in H. armigera. Further, a nuclear protein is identified to be transcription factor Har-Relish, which was found in insect immune response and specifically binds to the promoter of Har-CL gene to regulate its activity. Har-Relish also responds to the steroid hormone ecdysone. Thus, the dissociation of the larval fat body is involved in the hormone (ecdysone)-transcription factor (Relish)-target gene (cathepsin L) regulatory pathway. PMID:23459255

  4. Study of the expression of cathepsins in histological material from pancreatic lesions.

    PubMed

    Martínez, Juan F; Aparicio, José Ramón; Peiró, Gloria; Cabezas, Antonio; Roger, Manuela; Ruiz, Francisco; Compañy, Luís; Casellas, Juan Antonio

    2016-12-01

    To assess the expression levels of cathepsins in malignant and premalignant lesions. We retrospectively included patients who underwent pancreatic surgery on pancreatic solid or cystic masses. The expression of cathepsin H, L, B and S was determined in both types of samples. Lesions were divided into three categories: malignant (pancreatic adenocarcinoma and malignant mucinous neoplasms), premalignant (mucinous neoplasms) and benign (other lesions). Thirty-one surgical resection samples were studied. The expression of cathepsins was significantly higher in malignant lesions than in premalignant and benign lesions (H 75%, 27%, 37% p = 0.05; L 92%, 36%, 37% p = 0.011; B 83%, 36%, 62% p = 0.069; S 92%, 36%, 25% p = 0.004, respectively). Cathepsins are overexpressed in histological samples of malignant lesions compared to premalignant and benign lesions. However, the expression of cathepsins is similar in both premalignant and benign lesions.

  5. The cysteine protease inhibitor, E64d, reduces brain amyloid-β and improves memory deficits in Alzheimer’s disease animal models by inhibiting cathepsin B, but not BACE1, β-secretase activity

    PubMed Central

    Hook, Gregory; Hook, Vivian; Kindy, Mark

    2015-01-01

    The cysteine protease cathepsin B is a potential drug target for reducing brain amyloid-β peptides (Aβ) and improving memory in Alzheimer’s disease (AD), because reduction of cathepsin B in transgenic mice expressing human wild-type amyloid-β protein precursor (AβPP) results in significantly decreased brain Aβ. Cathepsin B cleaves the wild-type β-secretase site sequence in AβPP to produce Aβ and cathepsin B inhibitors administered to animal models expressing AβPP containing the wild-type β-secretase site sequence reduce brain Aβ in a manner consistent with β-secretase inhibition. But such inhibitors could act either by direct inhibition of cathepsin B β-secretase activity or by off-target inhibition of the other β-secretase, the aspartyl protease BACE1. To evaluate that issue, we orally administered a cysteine protease inhibitor, E64d, to normal guinea pigs or transgenic mice expressing human AβPP, both of which express the human wild-type β-secretase site sequence. In guinea pigs, oral E64d administration caused a dose-dependent reduction of up to 92% in brain, CSF and plasma of Aβ(40) and Aβ(42), a reduction of up to 50% in the C-terminal β-secretase fragment (CTFβ), and a 91% reduction in brain cathepsin B activity but increased brain BACE1 activity by 20%. In transgenic AD mice, oral E64d administration improved memory deficits and reduced brain Aβ(40) and Aβ(42), amyloid plaque, brain CTFβ, and brain cathepsin B activity but increased brain BACE1 activity. We conclude that E64d likely reduces brain Aβ by inhibiting cathepsin B and not BACE1 β-secretase activity and that E64d therefore may have potential for treating AD patients. PMID:21613740

  6. The control of neutrophil chemotaxis by inhibitors of cathepsin G and chymotrypsin.

    PubMed

    Lomas, D A; Stone, S R; Llewellyn-Jones, C; Keogan, M T; Wang, Z M; Rubin, H; Carrell, R W; Stockley, R A

    1995-10-06

    Neutrophil chemotaxis plays an important role in the inflammatory response and when excessive or persistent may augment tissue damage. The effects of inhibitors indicated the involvement of one or more serine proteinases in human neutrophil migration and shape change in response to a chemoattractant. Monospecific antibodies, chloromethylketone inhibitors, and reactive-site mutants of alpha 1-antitrypsin and alpha 1-antichymotrypsin were used to probe the specificity of the proteinases involved in chemotaxis. Antibodies specific for cathepsin G inhibited chemotaxis. Moreover, rapid inhibitors of cathepsin G and alpha-chymotrypsin suppressed neutrophil chemotaxis to the chemoattractants N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) and zymosan-activated serum in multiple blind well assays and to fMLP in migration assays under agarose. The concentrations of antichymotrypsin mutants that reduced chemotaxis by 50% would inactivate free cathepsin G with a half-life of 1.5-3 s, whereas the concentrations of chloromethylketones required to produce a similar inhibition of chemotaxis would inactivate cathepsin G with a half-life of 345 s. These data suggest different modes of action for these two classes of inhibitors. Indeed the chloromethylketone inhibitors of cathepsin G (Z-Gly-Leu-Phe-CMK) and to a lesser extent of chymotrypsin (Cbz-Gly-Gly-Phe-CMK) mediated their effect by preventing a shape change in the purified neutrophils exposed to fMLP. Antichymotrypsin did not affect shape change in response to fMLP even at concentrations that were able to reduce neutrophil chemotaxis by 50%. These results support the involvement of cell surface proteinases in the control of cell migration and show that antichymotrypsin and chloromethylketones have differing modes of action. This opens the possibility for the rational design of anti-inflammatory agents targeted at neutrophil membrane enzymes.

  7. Can quaternary ammonium methacrylates inhibit matrix MMPs and cathepsins?

    PubMed Central

    Tezvergil-Mutluay, Arzu; Agee, Kelli A.; Mazzoni, Annalisa; Carvalho, Ricardo M.; Carrilho, Marcela; Tersariol, Ivarne L.; Nascimento, Fabio D.; Imazato, Satoshi; Tjäderhane, Leo; Breschi, Lorenzo; Tay, Franklin R; Pashley, David H.

    2014-01-01

    Objective Dentin matrices release ICTP and CTX fragments during collagen degradation. ICTP fragments are known to be produced by MMPs. CTX fragments are thought to come from cathepsin K activity. The purpose of this study was to determine if quaternary methacrylates (QAMs) can inhibit matrix MMPs and cathepsins. Methods Dentin beams were demineralizated, and dried to constant weight. Beams were incubated with rh-cathepsin B, K, L or S for 24 h at pH 7.4 to identify which cathepsins release CTX at neutral pH. Beams were dipped in ATA, an antimicrobial QAM to determine if it can inhibit dentin matrix proteases. Other beams were dipped in another QAM (MDPB) to determine if it produced similar inhibition of dentin proteases. Results Only beams incubated with cathepsin K lost more dry mass than the controls and released CTX. Dentin beams dipped in ATA and incubated for 1 week at pH 7.4, showed a concentration-dependent reduction in weight-loss. There was no change in ICTP release from control values, meaning that ATA did not inhibit MMPs. Media concentrations of CTX fell significantly at 15 wt% ATA indicating that ATA inhibits capthesins. Beams dipped in increasing concentrations of MDPB lost progressively less mass, showing that MDPB is a protease-inhibitor. ICTP released from controls or beams exposed to low concentrations were the same, while 5 or 10% MDPB significantly lowered ICTP production. CTX levels were strongly inhibited by 2.5–10% MDPB, indicating that MDPB is a potent inhibitor of both MMPs and cathepsin K. Significance CTX seems to be released from dentin matrix only by cathepsin K. MMPs and cathepsin K and B may all contribute to matrix degradation. PMID:25467953

  8. uPAR and Cathepsin B Downregulation Induces Apoptosis by Targeting Calcineurin A to BAD via Bcl-2 in Glioma

    PubMed Central

    Malla, Rama Rao; Gopinath, Sreelatha; Gondi, Christopher S.; Alapati, Kiranmai; Dinh, Dzung H.; Tsung, Andrew J.; Rao, Jasti S.

    2011-01-01

    Cathepsin B and urokinase plasminogen activator receptor (uPAR) are postulated to play key roles in glioma invasion. Calcineurin is one of the key regulators of mitochondrial-dependent apoptosis, but its mechanism is poorly understood. Hence, we studied subcellular localization of calcineurin after transcriptional downregulation of uPAR and cathepsin B in glioma. In the present study, efficient downregulation of uPAR and cathepsin B increased the translocation of calcineurin A from the mitochondria to the cytosol, decreased pBAD (S136) expression and its interaction with 14-3-3ζ, and increased the interaction of BAD with Bcl-Xl. Co-depletion of uPAR and cathepsin B induced mitochondrial translocation of BAD and caspase 3 as well as PARP activation, cytochrome c and SMAC release. These effects were inhibited by FK506 (10 μM), a specific inhibitor of calcineurin. Calcineurin A was co-localized and also co-immunoprecipitated with Bcl-2. This interaction decreased with co-depletion of uPAR and cathepsin B and also with Bcl-2 inhibitor, HA 14-1 (20 μg/mL). Altered localization and interaction of calcineurin A with Bcl-2 was also observed in vivo when uPAR and cathepsin B were downregulated. In conclusion, downregulation of uPAR and cathepsin B induced apoptosis by targeting calcineurin A to BAD via Bcl-2 in glioma. PMID:21964739

  9. Cathepsin K Knockout Alleviates Pressure Overload–Induced Cardiac Hypertrophy

    PubMed Central

    Hua, Yinan; Xu, Xihui; Shi, Guo-Ping; Chicco, Adam J.; Ren, Jun; Nair, Sreejayan

    2014-01-01

    Evidence from human and animal studies has documented elevated levels of lysosomal cysteine protease cathepsin K in failing hearts. Here, we hypothesized that ablation of cathepsin K mitigates pressure overload–induced cardiac hypertrophy. Cathepsin K knockout mice and their wild-type littermates were subjected to abdominal aortic constriction, resulting in cardiac remodeling (heart weight, cardiomyocyte size, left ventricular wall thickness, and end diastolic and end systolic dimensions) and decreased fractional shortening, the effects of which were significantly attenuated or ablated by cathepsin K knockout. Pressure overload dampened cardiomyocyte contractile function along with decreased resting Ca2+ levels and delayed Ca2+ clearance, which were partly resolved by cathepsin K knockout. Cardiac mammalian target of rapamycin and extracellular signal-regulated kinases (ERK) signaling cascades were upregulated by pressure overload, the effects of which were attenuated by cathepsin K knockout. In cultured H9c2 myoblast cells, silencing of cathepsin K blunted, whereas cathepsin K transfection mimicked phenylephrine–induced hypertrophic response, along with elevated phosphorylation of mammalian target of rapamycin and ERK. In addition, cathepsin K protein levels were markedly elevated in human hearts of end-stage dilated cardiomyopathy. Collectively, our data suggest that cathepsin K ablation mitigates pressure overload–induced hypertrophy, possibly via inhibition of the mammalian target of rapamycin and ERK pathways. PMID:23529168

  10. Development of cathepsin-L cysteine proteinase based Dot-enzyme-linked immunosorbent assay for the diagnosis of Fasciola gigantica infection in buffaloes.

    PubMed

    Varghese, Anju; Raina, O K; Nagar, Gaurav; Garg, Rajat; Banerjee, P S; Maharana, B R; Kollannur, Justin D

    2012-02-10

    Native cathepsin-L cysteine proteinase (28 kDa) was purified from the excretory secretory products of Fasciola gigantica and was used for sero-diagnosis of F. gigantica infection in buffaloes by Dot-enzyme-linked immunosorbent assay (Dot-ELISA). The test detected F. gigantica field infection in these animals with a sensitivity of ∼ 90%. No specific IgG antibody binding was displayed by sera obtained from 76 buffaloes considered to be Fasciola and other parasite-free by microscopic examination of faeces and necropsy examination of liver, rumen and intestine. Additionally, sera from 156 Fasciola-free buffaloes, yet infected with Gigantocotyle explanatum, Paramphistomum epiclitum, Gastrothylax spp., Strongyloides papillosus and hydatid cyst were all negative, indicating that F. gigantica cathepsin-L cysteine proteinase does not cross-react with these helminth parasites in natural infection of the host. The data indicated that cathepsin-L cysteine proteinase based Dot-ELISA reached ∼ 90% sensitivity and 100% specificity with relation to above parasites in the detection of bubaline fasciolosis. The present Dot-ELISA diagnostic assay is relevant to the field diagnosis of F. gigantica infection in buffaloes. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. [Changes in active cysteine cathepsins in lysosomes from tissues thyroid papillary carcinomas with various biological characteristics].

    PubMed

    Kalinichenko, O V; Myshunina, T M; Tron'ko, M D

    2013-01-01

    To clarify possible role of cysteine cathepsin H, B and L in the proteolytic processes that contribute to the progression of tumor growth in the thyroid, we studied their activity in lysosomes isolated from the tissue of papillary carcinomas. It was shown that for these enzymes there is a dependence of the changes in their activity on a number of biological characteristics of the tumors. Thus, the sharp increase in the activity ofcathepsin H observed in lysosomes of tissue carcinomas category T2 and T3, with intra-and ekstrathyroid and lymphatic invasion of tumor cells. An increase in the activity of cathepsin B is set in the lysosomes of tissue heterogeneous follicular structure, especially in the presence of solid areas, in comparison with typical papillary tumors and in the lysosomes of tissue carcinomas in intrathyroid and cathepsin L-at extrathyroid invasion. A common feature of the enzymes is to increase the activity of cathepsins in lysosomes of tissue nonencapsulated papillary carcinomas. These enzymes probably do not take part in the invasion of tumor cells into blood vessels and in the mechanisms of tumor metastasis to regional lymph nodes. The latter shows no changes in the activity of cathepsins in lysosomes of tissue carcinomas category N1. The results indicate the different role of cathepsin H, B and L in thyroid carcinogenesis, where each enzyme has its specific function.

  12. Amniotic fluid cathepsin-G in pregnancies complicated by the preterm prelabor rupture of membranes.

    PubMed

    Musilova, Ivana; Andrys, Ctirad; Drahosova, Marcela; Soucek, Ondrej; Pliskova, Lenka; Stepan, Martin; Bestvina, Tomas; Maly, Jan; Jacobsson, Bo; Kacerovsky, Marian

    2017-09-01

    The aim of this study was to evaluate the amniotic fluid cathepsin-G concentrations in women with preterm prelabor rupture of membranes (PPROM) based on the presence of the microbial invasion of the amniotic cavity (MIAC) and/or intra-amniotic inflammation (IAI). A total of 154 women with singleton pregnancies complicated by PPROM were included in this study. Amniotic fluid samples were obtained by transabdominal amniocentesis. Amniotic fluid cathepsin-G concentrations were assessed by ELISA. MIAC was determined using a non-cultivation approach. IAI was defined as an amniotic fluid bedside interleukin-6 concentration ≥ 745 pg/mL. Women with MIAC had higher amniotic fluid cathepsin-G concentrations than women without MIAC (with MIAC: median 82.7 ng/mL, versus without MIAC: median 64.7 ng/mL; p = 0.0003). Women with IAI had higher amniotic fluid cathepsin-G concentrations than women without this complication (with IAI: median 103.0 ng/mL, versus without IAI: median 66.2 ng/mL; p < 0.0001). Women with microbial-associated (with both MIAC and IAI) IAI and sterile (IAI without MIAC) IAI had higher amniotic fluid cathepsin-G concentrations than women with colonization (MIAC without IAI) and women without both MIAC and IAI (p < 0.0001). The presence of either microbial-associated or sterile IAI was associated with increased amniotic fluid cathepsin-G concentrations in pregnancies complicated by PPROM. Amniotic fluid cathepsin-G appears to be a potential marker of IAI.

  13. Studies of Inhibitory Mechanisms of Propeptide-Like Cysteine Protease Inhibitors

    PubMed Central

    Nga, Bui T. T.; Takeshita, Yuki; Yamamoto, Misa; Yamamoto, Yoshimi

    2014-01-01

    Mouse cytotoxic T-lymphocyte antigen-2α (CTLA-2α), Drosophila CTLA-2-like protein (crammer), and Bombyx cysteine protease inhibitor (BCPI) belong to a novel family of cysteine protease inhibitors (I29). Their inhibitory mechanisms were studied comparatively. CTLA-2α contains a cysteine residue (C75), which is essential for its inhibitory potency. The CTLA-2α monomer was converted to a disulfide-bonded dimer in vitro and in vivo. The dimer was fully inhibitory, but the monomer, which possessed a free thiol residue, was not. A disulfide-bonded CTLA-2α/cathepsin L complex was isolated, and a cathepsin L subunit with a molecular weight of 24,000 was identified as the interactive enzyme protein. Crammer also contains a cysteine residue (C72). Both dimeric and monomeric forms of crammer were inhibitory. A crammer mutant with Cys72 to alanine (C72A) was fully inhibitory, while the replacement of Gly73 with alanine (G73A) caused a significant loss in inhibitory potency, which suggests a different inhibition mechanism from CTLA-2α. BCPI does not contain cysteine residue. C-terminal region (L77-R80) of BCPI was essential for its inhibitory potency. CTLA-2α was inhibitory in the acidic pH condition but stabilized cathepsin L under neutral pH conditions. The different inhibition mechanisms and functional considerations of these inhibitors are discussed. PMID:25045530

  14. Deletion of Cysteine Cathepsins B or L Yields Differential Impacts on Murine Skin Proteome and Degradome*

    PubMed Central

    Tholen, Stefan; Biniossek, Martin L.; Gansz, Martina; Gomez-Auli, Alejandro; Bengsch, Fee; Noel, Agnes; Kizhakkedathu, Jayachandran N.; Boerries, Melanie; Busch, Hauke; Reinheckel, Thomas; Schilling, Oliver

    2013-01-01

    Numerous studies highlight the fact that concerted proteolysis is essential for skin morphology and function. The cysteine protease cathepsin L (Ctsl) has been implicated in epidermal proliferation and desquamation, as well as in hair cycle regulation. In stark contrast, mice deficient in cathepsin B (Ctsb) do not display an overt skin phenotype. To understand the systematic consequences of deleting Ctsb or Ctsl, we determined the protein abundances of >1300 proteins and proteolytic cleavage events in skin samples of wild-type, Ctsb−/−, and Ctsl−/− mice via mass-spectrometry-based proteomics. Both protease deficiencies revealed distinct quantitative changes in proteome composition. Ctsl−/− skin revealed increased levels of the cysteine protease inhibitors cystatin B and cystatin M/E, increased cathepsin D, and an accumulation of the extracellular glycoprotein periostin. Immunohistochemistry located periostin predominantly in the hypodermal connective tissue of Ctsl−/− skin. The proteomic identification of proteolytic cleavage sites within skin proteins revealed numerous processing sites that are underrepresented in Ctsl−/− or Ctsb−/− samples. Notably, few of the affected cleavage sites shared the canonical Ctsl or Ctsb specificity, providing further evidence of a complex proteolytic network in the skin. Novel processing sites in proteins such as dermokine and Notch-1 were detected. Simultaneous analysis of acetylated protein N termini showed prototypical mammalian N-alpha acetylation. These results illustrate an influence of both Ctsb and Ctsl on the murine skin proteome and degradome, with the phenotypic consequences of the absence of either protease differing considerably. PMID:23233448

  15. Molecular characterisation and expression analysis of the cathepsin H gene from rock bream (Oplegnathus fasciatus).

    PubMed

    Kim, Ju-Won; Park, Chan-Il; Hwang, Seong Don; Jeong, Ji-Min; Kim, Ki-Hyuk; Kim, Do-Hyung; Shim, Sang Hee

    2013-07-01

    Cathepsins are lysosomal cysteine proteases belonging to the papain family, whose members play important roles in normal metabolism for the maintenance of cellular homeostasis. Rock bream (Oplegnathus fasciatus) cathepsin H (RbCTSH) cDNAs were identified by expressed sequence tag analysis of a lipopolysaccharide-stimulated rock bream liver cDNA library. The full-length RbCTSH cDNA (1326 bp) contained an open reading frame of 978 bp encoding 325 amino acids. The presence of an ERFNIN-like motif was predicted in the propeptide region of RbCTSH. Furthermore, multiple alignments showed that the EPQNCSAT region was well conserved among other cathepsin H sequences. Phylogenetic analysis revealed that RbCTSH is most closely related to Nile tilapia cathepsin H. RbCTSH was expressed significantly in the intestine, spleen, head kidney and stomach. RbCTSH mRNA expression was also examined in several tissues under conditions of bacterial and viral challenge. All examined tissues of fish infected with Edwardsiella tarda, Streptococcus iniae and red sea bream iridovirus (RSIV) showed significant increases in RbCTSH expression compared to the control. In the kidney and spleen, RbCTSH mRNA expression was upregulated markedly following infection with bacterial pathogens. These findings indicate that RbCTSH plays an important role in the innate immune response of rock bream. Furthermore, these results provide important information for the identification of other cathepsin H genes in various fish species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Amyloid β oligomers induce interleukin-1β production in primary microglia in a cathepsin B- and reactive oxygen species-dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taneo, Jun; Adachi, Takumi; Yoshida, Aiko

    2015-03-13

    Amyloid β (Aβ) peptide, a causative agent of Alzheimer's disease, forms two types of aggregates: oligomers and fibrils. These aggregates induce inflammatory responses, such as interleukin-1β (IL-1β) production by microglia, which are macrophage-like cells located in the brain. In this study, we examined the effect of the two forms of Aβ aggregates on IL-1β production in mouse primary microglia. We prepared Aβ oligomer and fibril from Aβ (1–42) peptide in vitro. We analyzed the characteristics of these oligomers and fibrils by electrophoresis and atomic force microscopy. Interestingly, Aβ oligomers but not Aβ monomers or fibrils induced robust IL-1β production in themore » presence of lipopolysaccharide. Moreover, Aβ oligomers induced endo/phagolysosome rupture, which released cathepsin B into the cytoplasm. Aβ oligomer-induced IL-1β production was inhibited not only by the cathepsin B inhibitor CA-074-Me but also by the reactive oxygen species (ROS) inhibitor N-acetylcysteine. Random chemical crosslinking abolished the ability of the oligomers to induce IL-1β. Thus, multimerization and fibrillization causes Aβ oligomers to lose the ability to induce IL-1β. These results indicate that Aβ oligomers, but not fibrils, induce IL-1β production in primary microglia in a cathepsin B- and ROS-dependent manner. - Highlights: • We prepared amyloid β (Aβ) fibrils with minimum contamination of Aβ oligomers. • Primary microglia (MG) produced IL-1β in response to Aβ oligomers, but not fibrils. • Only Aβ oligomers induced leakage of cathepsin B from endo/phagolysosomes. • IL-1β production in response to Aβ oligomers depended on both cathepsin B and ROS. • Crosslinking reduced the ability of the Aβ oligomers to induce IL-1β from MG.« less

  17. Is digestive cathepsin D the rule in decapod crustaceans?

    PubMed

    Martínez-Alarcón, Diana; Saborowski, Reinhard; Rojo-Arreola, Liliana; García-Carreño, Fernando

    2018-01-01

    Cathepsin D is an aspartic endopetidase with typical characteristics of lysosomal enzymes. Cathepsin D activity has been reported in the gastric fluid of clawed lobsters where it acts as an extracellular digestive enzyme. Here we investigate whether cathepsin D is unique in clawed lobsters or, instead, common in decapod crustaceans. Eleven species of decapods belonging to six infraorders were tested for cathepsin D activity in the midgut gland, the muscle tissue, the gills, and when technically possible, in the gastric fluid. Cathepsin D activity was present in the midgut gland of all 11 species and in the gastric fluid from the seven species from which samples could be taken. All sampled species showed higher activities in the midgut glands than in non-digestive organs and the activity was highest in the clawed lobster. Cathepsin D mRNA was obtained from tissue samples of midgut gland, muscle, and gills. Analyses of deduced amino acid sequence confirmed molecular features of lysosomal cathepsin D and revealed high similarity between the enzymes from Astacidea and Caridea on one side, and the enzymes from Penaeoidea, Anomura, and Brachyura on the other side. Our results support the presence of cathepsin D activity in the midgut glands and in the gastric fluids of several decapod species suggesting an extracellular function of this lysosomal enzyme. We discuss whether cathepsin D may derive from the lysosomal-like vacuoles of the midgut gland B-cells and is released into the gastric lumen upon secretion by these cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Cathepsin E Promotes Pulmonary Emphysema via Mitochondrial Fission

    PubMed Central

    Zhang, Xuchen; Shan, Peiying; Homer, Robert; Zhang, Yi; Petrache, Irina; Mannam, Praveen; Lee, Patty J.

    2015-01-01

    Emphysema is characterized by loss of lung elasticity and irreversible air space enlargement, usually in the later decades of life. The molecular mechanisms of emphysema remain poorly defined. We identified a role for a novel cathepsin, cathepsin E, in promoting emphysema by inducing mitochondrial fission. Unlike previously reported cysteine cathepsins, which have been implicated in cigarette smoke-induced lung disease, cathepsin E is a nonlysosomal intracellular aspartic protease whose function has been described only in antigen processing. We examined lung tissue sections of persons with chronic obstructive pulmonary disease, a clinical entity that includes emphysematous change. Human chronic obstructive pulmonary disease lungs had markedly increased cathepsin E protein in the lung epithelium. We generated lung epithelial-targeted transgenic cathepsin E mice and found that they develop emphysema. Overexpression of cathepsin E resulted in increased E3 ubiquitin ligase parkin, mitochondrial fission protein dynamin-related protein 1, caspase activation/apoptosis, and ultimately loss of lung parenchyma resembling emphysema. Inhibiting dynamin-related protein 1, using a small molecule inhibitor in vitro or in vivo, inhibited cathepsin E-induced apoptosis and emphysema. To the best of our knowledge, our study is the first to identify links between cathepsin E, mitochondrial fission, and caspase activation/apoptosis in the pathogenesis of pulmonary emphysema. Our data expand the current understanding of molecular mechanisms of emphysema development and may provide new therapeutic targets. PMID:25239563

  19. Modulation of cathepsin G expression in severe atopic dermatitis following medium-dose UVA1 phototherapy

    PubMed Central

    Breuckmann, Frank; von Kobyletzki, Gregor; Avermaete, Annelies; Kreuter, Alexander; Altmeyer, Peter; Gambichler, Thilo

    2002-01-01

    Background During the last decade, medium-dose UVA1 phototherapy (50 J/cm2) has achieved great value within the treatment of severe atopic dermatitis (AD). The purpose of our study was to investigate to what extent UVA1 irradiation is able to modulate the status of protease activity by the use of a monoclonal antibody labeling cathepsin G. Methods In order to further elucidate the mechanisms by which medium-dose UVA1 irradiation leads to an improvement of skin status in patients with AD, biopsy specimens from 15 patients before and after treatment were analyzed immunohistochemically for proteolytic activation. Results Compared to lesional skin of patients with AD before UVA1 irradiation, the number of cells positive for cathepsin G within the dermal infiltrate decreased significantly after treatment. The decrease of cathepsin G+ cells was closely linked to a substantial clinical improvement in skin condition. Conclusions In summary, our findings demonstrated that medium-dose UVA1 irradiation leads to a modulation of the expression of cathepsin G in the dermal inflammatory infiltrate in patients with severe AD. Cathepsin G may attack laminin, proteoglycans, collagen I and insoluble fibronectin, to provoke proinflammatory events, to degrade the basement membrane, to destroy the tissue inhibitor of metalloproteinases and to increase the endothelial permeability. Therefore, its down-regulation by UVA1 phototherapy may induce the reduction of skin inflammation as well as improvement of the skin condition. PMID:12204095

  20. Cathepsin K knockout alleviates aging-induced cardiac dysfunction

    PubMed Central

    Hua, Yinan; Robinson, Timothy J; Cao, Yongtao; Shi, Guo-Ping; Ren, Jun; Nair, Sreejayan

    2015-01-01

    Aging is a major risk factor for cardiovascular disease. It has previously been shown that protein levels of cathepsin K, a lysosomal cysteine protease, are elevated in the failing heart and that genetic ablation of cathepsin K protects against pressure overload-induced cardiac hypertrophy and contractile dysfunction. Here we test the hypothesis that cathepsin K knockout alleviates age-dependent decline in cardiac function. Cardiac geometry, contractile function, intracellular Ca2+ properties, and cardiomyocyte apoptosis were evaluated using echocardiography, fura-2 technique, immunohistochemistry, Western blot and TUNEL staining, respectively. Aged (24-month-old) mice exhibited significant cardiac remodeling (enlarged chamber size, wall thickness, myocyte cross-sectional area, and fibrosis), decreased cardiac contractility, prolonged relengthening along with compromised intracellular Ca2+ release compared to young (6-month-old) mice, which were attenuated in the cathepsin K knockout mice. Cellular markers of senescence, including cardiac lipofuscin, p21 and p16, were lower in the aged-cathepsin K knockout mice compared to their wild-type counterpart. Mechanistically, cathepsin K knockout mice attenuated an age-induced increase in cardiomyocyte apoptosis and nuclear translocation of mitochondrial apoptosis-inducing factor (AIF). In cultured H9c2 cells, doxorubicin stimulated premature senescence and apoptosis. Silencing of cathepsin K blocked the doxorubicin-induced translocation of AIF from the mitochondria to the nuclei. Collectively, these results suggest that cathepsin K knockout attenuates age-related decline in cardiac function via suppressing caspase-dependent and caspase-independent apoptosis. PMID:25692548

  1. Repurposing a Library of Human Cathepsin L Ligands: Identification of Macrocyclic Lactams as Potent Rhodesain and Trypanosoma brucei Inhibitors.

    PubMed

    Giroud, Maude; Dietzel, Uwe; Anselm, Lilli; Banner, David; Kuglstatter, Andreas; Benz, Jörg; Blanc, Jean-Baptiste; Gaufreteau, Delphine; Liu, Haixia; Lin, Xianfeng; Stich, August; Kuhn, Bernd; Schuler, Franz; Kaiser, Marcel; Brun, Reto; Schirmeister, Tanja; Kisker, Caroline; Diederich, François; Haap, Wolfgang

    2018-04-26

    Rhodesain (RD) is a parasitic, human cathepsin L (hCatL) like cysteine protease produced by Trypanosoma brucei ( T. b.) species and a potential drug target for the treatment of human African trypanosomiasis (HAT). A library of hCatL inhibitors was screened, and macrocyclic lactams were identified as potent RD inhibitors ( K i < 10 nM), preventing the cell-growth of Trypanosoma brucei rhodesiense (IC 50 < 400 nM). SARs addressing the S2 and S3 pockets of RD were established. Three cocrystal structures with RD revealed a noncovalent binding mode of this ligand class due to oxidation of the catalytic Cys25 to a sulfenic acid (Cys-SOH) during crystallization. The P-glycoprotein efflux ratio was measured and the in vivo brain penetration in rats determined. When tested in vivo in acute HAT model, the compounds permitted up to 16.25 (vs 13.0 for untreated controls) mean days of survival.

  2. The expression and function of cathepsin E in dendritic cells.

    PubMed

    Chain, Benjamin M; Free, Paul; Medd, Patrick; Swetman, Claire; Tabor, Alethea B; Terrazzini, Nadia

    2005-02-15

    Cathepsin E is an aspartic proteinase that has been implicated in Ag processing within the class II MHC pathway. In this study, we document the presence of cathepsin E message and protein in human myeloid dendritic cells, the preeminent APCs of the immune system. Cathepsin E is found in a perinuclear compartment, which is likely to form part of the endoplasmic reticulum, and also a peripheral compartment just beneath the cell membrane, with a similar distribution to that of Texas Red-dextran within 2 min of endocytosis. To investigate the function of cathepsin E in processing, a new soluble targeted inhibitor was synthesized by linking the microbial aspartic proteinase inhibitor pepstatin to mannosylated BSA via a cleavable disulfide linker. This inhibitor was shown to block cathepsin D/E activity in cell-free assays and within dendritic cells. The inhibitor blocked the ability of dendritic cells from wild-type as well as cathepsin D-deficient mice to present intact OVA, but not an OVA-derived peptide, to cognate T cells. The data therefore support the hypothesis that cathepsin E has an important nonredundant role in the class II MHC Ag processing pathway within dendritic cells.

  3. Cysteine cathepsin S processes leptin, inactivating its biological activity.

    PubMed

    Oliveira, Marcela; Assis, Diego M; Paschoalin, Thaysa; Miranda, Antonio; Ribeiro, Eliane B; Juliano, Maria A; Brömme, Dieter; Christoffolete, Marcelo Augusto; Barros, Nilana M T; Carmona, Adriana K

    2012-08-01

    Leptin is a 16  kDa hormone mainly produced by adipocytes that plays an important role in many biological events including the regulation of appetite and energy balance, atherosclerosis, osteogenesis, angiogenesis, the immune response, and inflammation. The search for proteolytic enzymes capable of processing leptin prompted us to investigate the action of cysteine cathepsins on human leptin degradation. In this study, we observed high cysteine peptidase expression and hydrolytic activity in white adipose tissue (WAT), which was capable of degrading leptin. Considering these results, we investigated whether recombinant human cysteine cathepsins B, K, L, and S were able to degrade human leptin. Mass spectrometry analysis revealed that among the tested enzymes, cathepsin S exhibited the highest catalytic activity on leptin. Furthermore, using a Matrigel assay, we observed that the leptin fragments generated by cathepsin S digestion did not exhibit angiogenic action on endothelial cells and were unable to inhibit food intake in Wistar rats after intracerebroventricular administration. Taken together, these results suggest that cysteine cathepsins may be putative leptin activity regulators in WAT.

  4. Cathepsin E promotes pulmonary emphysema via mitochondrial fission.

    PubMed

    Zhang, Xuchen; Shan, Peiying; Homer, Robert; Zhang, Yi; Petrache, Irina; Mannam, Praveen; Lee, Patty J

    2014-10-01

    Emphysema is characterized by loss of lung elasticity and irreversible air space enlargement, usually in the later decades of life. The molecular mechanisms of emphysema remain poorly defined. We identified a role for a novel cathepsin, cathepsin E, in promoting emphysema by inducing mitochondrial fission. Unlike previously reported cysteine cathepsins, which have been implicated in cigarette smoke-induced lung disease, cathepsin E is a nonlysosomal intracellular aspartic protease whose function has been described only in antigen processing. We examined lung tissue sections of persons with chronic obstructive pulmonary disease, a clinical entity that includes emphysematous change. Human chronic obstructive pulmonary disease lungs had markedly increased cathepsin E protein in the lung epithelium. We generated lung epithelial-targeted transgenic cathepsin E mice and found that they develop emphysema. Overexpression of cathepsin E resulted in increased E3 ubiquitin ligase parkin, mitochondrial fission protein dynamin-related protein 1, caspase activation/apoptosis, and ultimately loss of lung parenchyma resembling emphysema. Inhibiting dynamin-related protein 1, using a small molecule inhibitor in vitro or in vivo, inhibited cathepsin E-induced apoptosis and emphysema. To the best of our knowledge, our study is the first to identify links between cathepsin E, mitochondrial fission, and caspase activation/apoptosis in the pathogenesis of pulmonary emphysema. Our data expand the current understanding of molecular mechanisms of emphysema development and may provide new therapeutic targets. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Three-dimensional cultures modeling premalignant progression of human breast epithelial cells: role of cysteine cathepsins.

    PubMed

    Mullins, Stefanie R; Sameni, Mansoureth; Blum, Galia; Bogyo, Matthew; Sloane, Bonnie F; Moin, Kamiar

    2012-12-01

    The expression of the cysteine protease cathepsin B is increased in early stages of human breast cancer.To assess the potential role of cathepsin B in premalignant progression of breast epithelial cells, we employed a 3D reconstituted basement membrane overlay culture model of MCF10A human breast epithelial cells and isogenic variants that replicate the in vivo phenotypes of hyper plasia(MCF10AneoT) and atypical hyperplasia (MCF10AT1). MCF10A cells developed into polarized acinar structures with central lumens. In contrast, MCF10AneoT and MCF10AT1 cells form larger structures in which the lumens are filled with cells. CA074Me, a cell-permeable inhibitor selective for the cysteine cathepsins B and L,reduced proliferation and increased apoptosis of MCF10A, MCF10AneoT and MCF10AT1 cells in 3D culture. We detected active cysteine cathepsins in the isogenic MCF10 variants in 3D culture with GB111, a cell-permeable activity based probe, and established differential inhibition of cathepsin B in our 3D cultures. We conclude that cathepsin B promotes proliferation and premalignant progression of breast epithelial cells. These findings are consistent with studies by others showing that deletion of cathepsin B in the transgenic MMTV-PyMT mice, a murine model that is predisposed to development of mammary cancer, reduces malignant progression.

  6. Design and synthesis of a new peptide derived from Fasciola gigantica cathepsin L1 with potential application in serodiagnosis of fascioliasis.

    PubMed

    Meshgi, Behnam; Jalousian, Fatemeh; Fathi, Saeid; Jahani, Zahra

    2018-06-01

    Fascioliasis is a global parasitic disease that affects domestic animals and causes considerable economic losses in the process of domestic animal breeding in endemic regions. The cause of the disease involves a liver trematode of the genus Fasciola, which secretes materials into a host's body (mainly proteins) in order to protect it from the host's immune system. These materials can be involved in the migration, growth, and nutrition of the parasite. Among the expressive proteins of Fasciola, proteases have been introduced as the appropriate targets for diagnosis, treatment, and vaccination against parasites. Cathepsin L (CL) is a member of cysteine proteases; it is widely expressed in the Fasciola species. The aim of this study was to evaluate two synthetic peptides from F. gigantica CL1 for improving serological diagnosis of the Fasciola infection. Therefore, the potential diagnostic value of the surface epitopes of CL1 was assessed using ELISA. In the current study, bioinformatics tools were applied to select two appropriate epitopes of Fasciola Cathepsin L1 as synthetic antigens. Their diagnostic values were evaluated by two methods of indirect ELISA and dot blot analysis. The findings revealed that the first peptide at a dilution ratio of 1:400 and the second peptide at a dilution ratio of 1:100 had the best results and the best concentration of antigens was introduced at 4 μg/ml. Moreover, 191 sera samples were analyzed by both peptides by using the ELISA method, including fascioliasis sera, other parasitic sera and negative sera. The sensitivity of the peptides 1-ELISA and peptide 2-ELISA for the diagnosis of the various cases was 100%. The specificity of the first peptide was 87.3% and its efficacy was determined to be 93.65%. The specificity and the efficacy of the second peptide were 79% and 89.5%, respectively. The positive predictive values of the first and second peptides were obtained to be 86.27% and 79.27% respectively, and the negative

  7. Role of cathepsin S In periodontal wound healing-an in vitro study on human PDL cells.

    PubMed

    Memmert, Svenja; Nokhbehsaim, Marjan; Damanaki, Anna; Nogueira, Andressa V B; Papadopoulou, Alexandra K; Piperi, Christina; Basdra, Efthimia K; Rath-Deschner, Birgit; Götz, Werner; Cirelli, Joni A; Jäger, Andreas; Deschner, James

    2018-04-05

    Cathepsin S is a cysteine protease, which is expressed in human periodontal ligament (PDL) cells under inflammatory and infectious conditions. This in vitro study was established to investigate the effect of cathepsin S on PDL cell wound closure. An in vitro wound healing assay was used to monitor wound closure in wounded PDL cell monolayers for 72 h in the presence and absence of cathepsin S. In addition, the effects of cathepsin S on specific markers for apoptosis and proliferation were studied at transcriptional level. Changes in the proliferation rate due to cathepsin S stimulation were analyzed by an XTT assay, and the actions of cathepsin S on cell migration were investigated via live cell tracking. Additionally, PDL cell monolayers were treated with a toll-like receptor 2 agonist in the presence and absence of a cathepsin inhibitor to examine if periodontal bacteria can alter wound closure via cathepsins. Cathepsin S enhanced significantly the in vitro wound healing rate by inducing proliferation and by increasing the speed of cell migration, but had no effect on apoptosis. Moreover, the toll-like receptor 2 agonist enhanced significantly the wound closure and this stimulatory effect was dependent on cathepsins. Our findings provide original evidence that cathepsin S stimulates PDL cell proliferation and migration and, thereby, wound closure, suggesting that this cysteine protease might play a critical role in periodontal remodeling and healing. In addition, cathepsins might be exploited by periodontal bacteria to regulate critical PDL cell functions.

  8. HvPap-1 C1A Protease and HvCPI-2 Cystatin Contribute to Barley Grain Filling and Germination1

    PubMed Central

    Velasco-Arroyo, Blanca; Cambra, Ines; Gonzalez-Melendi, Pablo; Lopez-Gonzalvez, Angeles; Garcia, Antonia

    2016-01-01

    Proteolysis is an essential process throughout the mobilization of storage proteins in barley (Hordeum vulgare) grains during germination. It involves numerous types of enzymes, with C1A Cys proteases the most abundant key players. Manipulation of the proteolytic machinery is a potential way to enhance grain yield and quality, and it could influence the mobilization of storage compounds along germination. Transgenic barley plants silencing or over-expressing the cathepsin F-like HvPap-1 Cys protease show differential accumulation of storage molecules such as starch, proteins, and free amino acids in the grain. It is particularly striking that the HvPap-1 artificial microRNA lines phenotype show a drastic delay in the grain germination process. Alterations to the proteolytic activities in the over-expressing and knock-down grains associated with changes in the level of expression of several C1A peptidases were also detected. Similarly, down-regulating cystatin Icy-2, one of the proteinaceous inhibitors of the cathepsin F-like protease, also has important effects on grain filling. However, the ultimate physiological influence of manipulating a peptidase or an inhibitor cannot be always predicted, since the plant tries to compensate the modified proteolytic effects by modulating the expression of some other peptidases or their inhibitors. PMID:26912343

  9. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inami, Yoshihiro; Yamashina, Shunhei, E-mail: syamashi@juntendo.ac.jp; Izumi, Kousuke

    2011-09-09

    Highlights: {yields} Acidification of autophagosome was blunted in steatotic hepatocytes. {yields} Hepatic steatosis did not disturb fusion of isolated autophagosome and lysosome. {yields} Proteinase activity of cathepsin B and L in autolysosomes was inhibited by steatosis. {yields} Hepatic expression of cathepsin B and L was suppressed by steatosis. -- Abstract: Autophagy, one of protein degradation system, contributes to maintain cellular homeostasis and cell defense. Recently, some evidences indicated that autophagy and lipid metabolism are interrelated. Here, we demonstrate that hepatic steatosis impairs autophagic proteolysis. Though accumulation of autophagosome is observed in hepatocytes from ob/ob mice, expression of p62 was augmentedmore » in liver from ob/ob mice more than control mice. Moreover, degradation of the long-lived protein leucine was significantly suppressed in hepatocytes isolated from ob/ob mice. More than 80% of autophagosomes were stained by LysoTracker Red (LTR) in hepatocytes from control mice; however, rate of LTR-stained autophagosomes in hepatocytes were suppressed in ob/ob mice. On the other hand, clearance of autolysosomes loaded with LTR was blunted in hepatocytes from ob/ob mice. Although fusion of isolated autophagosome and lysosome was not disturbed, proteinase activity of cathepsin B and L in autolysosomes and cathepsin B and L expression of liver were suppressed in ob/ob mice. These results indicate that lipid accumulation blunts autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression.« less

  10. Cysteine Cathepsins in Human Carious Dentin

    PubMed Central

    Nascimento, F.D.; Minciotti, C.L.; Geraldeli, S.; Carrilho, M.R.; Pashley, D.H.; Tay, F.R.; Nader, H.B.; Salo, T.; Tjäderhane, L.; Tersariol, I.L.S.

    2011-01-01

    Matrix metalloproteinases (MMPs) are important in dentinal caries, and analysis of recent data demonstrates the presence of other collagen-degrading enzymes, cysteine cathepsins, in human dentin. This study aimed to examine the presence, source, and activity of cysteine cathepsins in human caries. Cathepsin B was detected with immunostaining. Saliva and dentin cysteine cathepsin and MMP activities on caries lesions were analyzed spectrofluorometrically. Immunostaining demonstrated stronger cathepsins B in carious than in healthy dentin. In carious dentin, cysteine cathepsin activity increased with increasing depth and age in chronic lesions, but decreased with age in active lesions. MMP activity decreased with age in both active and chronic lesions. Salivary MMP activities were higher in patients with active than chronic lesions and with increasing lesion depth, while cysteine cathepsin activities showed no differences. The results indicate that, along with MMPs, cysteine cathepsins are important, especially in active and deep caries. PMID:21248362

  11. Activation of the P2X₇ receptor induces migration of glial cells by inducing cathepsin B degradation of tissue inhibitor of metalloproteinase 1.

    PubMed

    Murphy, Niamh; Lynch, Marina A

    2012-12-01

    The P2X(7) receptor is an ion-gated channel, which is activated by high extracellular concentrations of adenosine triphosphate (ATP). Activation of P2X(7) receptors has been shown to induce neuroinflammatory changes associated with several neurological conditions. The matrix metalloproteinases (MMPs) are a family of endopeptidases that have several functions including degradation of the extracellular matrix, cell migration and modulation of bioactive molecules. The actions of MMPs are prevented by a family of protease inhibitors called tissue inhibitors of metalloproteinases (TIMPs). In this study, we show that ATP-treated glial cultures from neonatal C57BL/6 mice release and increase MMP-9 activity, which is coupled with a decrease in release of TIMP-1 and an increase in activated cathepsin B within the extracellular space. This process occurs independently of NLRP3-inflammasome formation. Treatment with a P2X(7) receptor antagonist prevents ATP-induced MMP-9 activity, inhibition of active cathepsin B release and allows for TIMP-1 to be released from the cell. We have shown that cathepsin B degrades TIMP-1, and inhibition of cathepsin B allows for release of TIMP-1 and inhibits MMP-9 activity. We also present data that indicate that ATP or cell damage induces glial cell migration, which is inhibited by P2X(7) antagonism, depletion of MMP-9 or inhibition of cathepsin B. © 2012 International Society for Neurochemistry.

  12. 6-Shogaol has anti-amyloidogenic activity and ameliorates Alzheimer's disease via CysLT1R-mediated inhibition of cathepsin B.

    PubMed

    Na, Ji-Young; Song, Kibbeum; Lee, Ju-Woon; Kim, Sokho; Kwon, Jungkee

    2016-08-12

    Although 6-shogaol, a constituent of ginger, has been reported to have anti-inflammatory and anti-oxidant effects on neuronal cells, the effects of 6-shogaol on Alzheimer's disease (AD) have not yet been investigated. Here we aimed to determine whether 6-shogaol exerts neuroprotective effects against AD. Specifically, we investigated the effects of 6-shogaol on the cysteinyl leukotriene 1 receptor (CysLT1R), a major factor in AD pathogenesis. Moreover, we clarified the relationship between CysLT1R and cathepsin B, a cysteine protease. We used in vitro and in vivo models to determine whether 6-shogaol inhibits CysLT1R/cathepsin B in an amyloid-beta (Aβ; 1-42)-induced model of neurotoxicity. We first confirmed that CysLT1R and cathepsin B are upregulated by Aβ (1-42) and that CysLT1R activation induces cathepsin B. In contrast, we found that 6-shogaol-mediated inhibition of CysLT1R downregulates cathepsin B in both in vitro and in vivo models. Furthermore, we found that 6-shogaol-mediated inhibition of CysLT1R/cathepsin B reduces Aβ deposition in the brain and ameliorates behavioral deficits in APPSw/PS1-dE9 Tg mice. Our results indicate that 6-shogaol is a CysLT1R/cathepsin B inhibitor and is a novel potential therapeutic agent for the treatment of various neurodegenerative diseases, including AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Localisation of a gene for prepubertal periodontitis to chromosome 11q14 and identification of a cathepsin C gene mutation

    PubMed Central

    Hart, T; Hart, P; Michalec, M; Zhang, Y; Marazita, M; Cooper, M; Yassin, O; Nusier, M; Walker, S

    2000-01-01

    Prepubertal periodontitis (PPP) is a rare and rapidly progressive disease of young children that results in destruction of the periodontal support of the primary dentition. The condition may occur as part of a recognised syndrome or may occur as an isolated finding. Both autosomal dominant and recessive forms of Mendelian transmission have been reported for PPP. We report a consanguineous Jordanian family with four members affected by PPP in two nuclear sibships. The parents of the affected subjects are first cousins. We have localised a gene of major effect for PPP in this kindred (Zmax=3.55 for D11S901 at θ=0.00) to a 14 cM genetic interval on chromosome 11q14 flanked by D11S916 and D11S1367. This PPP candidate interval overlaps the region of chromosome 11q14 that contains the cathepsin C gene responsible for Papillon-Lefèvre and Haim-Munk syndromes. Sequence analysis of the cathepsin C gene from PPP affected subjects from this Jordanian family indicated that all were homozygous for a missense mutation (1040A→G) that changes a tyrosine to a cysteine. All four parents were heterozygous carriers of this Tyr347Cys cathepsin C mutation. None of the family members who were heterozygous carriers for this mutation showed any clinical findings of PPP. None of the 50 controls tested were found to have this Tyr347Cys mutation. This is the first reported gene mutation for non-syndromic periodontitis and shows that non-syndromic PPP is an allelic variant of the type IV palmoplantar ectodermal dysplasias.


Keywords: prepubertal periodontitis; periodontal disease; cathepsin C; linkage PMID:10662808

  14. Effects of -1.5°C Super-chilling on quality of Atlantic salmon (Salmo salar) pre-rigor Fillets: Cathepsin activity, muscle histology, texture and liquid leakage.

    PubMed

    Bahuaud, D; Mørkøre, T; Langsrud, Ø; Sinnes, K; Veiseth, E; Ofstad, R; Thomassen, M S

    2008-11-15

    The aim of this study was to evaluate the impact of super-chilling on the quality of Atlantic salmon (Salmo salar) pre-rigor fillets. The fillets were kept for 45min in a super-chilling tunnel at -25°C with an air speed in the tunnel at 2.5m/s, to reach a fillet core temperature of -1.5°C, prior to ice storage in a cold room for 4 weeks. Super-chilling seemed to form intra- and extracellular ice crystals in the upper layer of the fillets and prevent myofibre contraction. Lysosome breakages followed by release of cathepsin B and L during storage and myofibre-myofibre detachments were accelerated in the super-chilled fillets. Super-chilling resulted in higher liquid leakage and increased myofibre breakages in the fillets, while texture values of fillets measured instrumentally were not affected by super-chilling one week after treatment. Optimisation of the super-chilling technique is needed to avoid the formation of ice crystals, which may cause irreversible destruction of the myofibres, in order to obtain high quality products. Copyright © 2008 Elsevier Ltd. All rights reserved.

  15. Characterization of an RNA aptamer against HPV-16 L1 virus-like particles.

    PubMed

    Leija-Montoya, Ana Gabriela; Benítez-Hess, María Luisa; Toscano-Garibay, Julia Dolores; Alvarez-Salas, Luis Marat

    2014-10-01

    The human papillomavirus (HPV) capsid is mainly composed of the L1 protein that can self-assemble into virus-like particles (VLPs) that are structurally and immunologically similar to the infectious virions. We report here the characterization of RNA aptamers that recognize baculovirus-produced HPV-16 L1 VLPs. Interaction and slot-blot binding assays showed that all isolated aptamers efficiently bound HPV-16 VLPs, although the Sc5-c3 aptamer showed the highest specificity and affinity (Kd=0.05 pM). Sc5-c3 secondary structure consisted of a hairpin with a symmetric bubble and an unstructured 3'end. Biochemical and genetic analyses showed that the Sc5-c3 main loop is directly involved on VLPs binding. In particular, binding specificity appeared mediated by five non-consecutive nucleotide positions. Experiments using bacterial-produced HPV-16 L1 resulted in low Sc5-c3 binding, suggesting that recognition of HPV-16 L1 VLPs relies on quaternary structure features not present in bacteria-produced L1 protein. Sc5-c3 produced specific and stable binding to HPV-16 L1 VLPs even in biofluid protein mixes and thus it may provide a potential diagnostic tool for active HPV infection.

  16. Characterization of an RNA Aptamer Against HPV-16 L1 Virus-Like Particles

    PubMed Central

    Leija-Montoya, Ana Gabriela; Benítez-Hess, María Luisa; Toscano-Garibay, Julia Dolores

    2014-01-01

    The human papillomavirus (HPV) capsid is mainly composed of the L1 protein that can self-assemble into virus-like particles (VLPs) that are structurally and immunologically similar to the infectious virions. We report here the characterization of RNA aptamers that recognize baculovirus-produced HPV-16 L1 VLPs. Interaction and slot-blot binding assays showed that all isolated aptamers efficiently bound HPV-16 VLPs, although the Sc5-c3 aptamer showed the highest specificity and affinity (Kd=0.05 pM). Sc5-c3 secondary structure consisted of a hairpin with a symmetric bubble and an unstructured 3′end. Biochemical and genetic analyses showed that the Sc5-c3 main loop is directly involved on VLPs binding. In particular, binding specificity appeared mediated by five non-consecutive nucleotide positions. Experiments using bacterial-produced HPV-16 L1 resulted in low Sc5-c3 binding, suggesting that recognition of HPV-16 L1 VLPs relies on quaternary structure features not present in bacteria-produced L1 protein. Sc5-c3 produced specific and stable binding to HPV-16 L1 VLPs even in biofluid protein mixes and thus it may provide a potential diagnostic tool for active HPV infection. PMID:25111024

  17. Cathepsin D in normal and neoplastic thyroid tissues.

    PubMed

    Kraimps, J L; Métayé, T; Millet, C; Margerit, D; Ingrand, P; Goujon, J M; Levillain, P; Babin, P; Begon, F; Barbier, J

    1995-12-01

    Cathepsin D is a widely distributed lysosomal acidic endopeptidase. It is an estrogen-regulated protein that is a prognostic factor in breast cancer. The aim of this study was to measure cathepsin D concentrations in thyroid tissues and to correlate these concentrations with clinical and pathologic parameters. Cathepsin D and thyroglobulin concentrations were measured in the cytosol of normal thyroid tissues (n = 14), benign nodules (n = 6), and thyroid carcinomas (n = 32) with an immunoradiometric assay. Statistical analysis was based on the Kruskal-Wallis and Wilcoxon tests and on the Spearman rank correlation coefficient. The mean level of cathepsin D, expressed as picomoles per milligram protein minus thyroglobulin, was higher in the 32 carcinomas, 29.1 +/- 15.5, than in the 14 normal thyroid tissues, 8.4 +/- 2.5 (p < 0.001) or in the 6 benign nodules, 11.2 +/- 7.3 (p = 0.003). Cathepsin D concentrations correlated with tumor size; Spearman rank correlation coefficient was rs = 0.44 (p = 0.012). No significant difference was found regarding histologic type. Cathepsin D concentrations were inversely correlated with the thyroglobulin level in the tumor; Spearman rank correlation coefficient was rs = -0.60 (p < 0.001). Cathepsin D concentration is higher in thyroid carcinoma than in normal thyroid tissue. Increased cathepsin D concentrations correlate with thyroid tumor size but not with histologic type. Further studies should be done to confirm the potential prognostic value of cathepsin D in patients with thyroid carcinomas.

  18. Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease.

    PubMed

    Fukuo, Yuka; Yamashina, Shunhei; Sonoue, Hiroshi; Arakawa, Atsushi; Nakadera, Eisuke; Aoyama, Tomonori; Uchiyama, Akira; Kon, Kazuyoshi; Ikejima, Kenichi; Watanabe, Sumio

    2014-09-01

    Recent evidences indicate that hepatic steatosis suppresses autophagic proteolysis. The present study evaluated the correlation between autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease (NAFLD). Liver biopsy specimens were obtained from patients with chronic liver diseases (chronic hepatitis C [CHC; n = 20], chronic hepatitis B [CHB; n = 16], primary biliary cirrhosis [PBC; n = 23], NAFLD [n = 22] and control [n = 14]). The number of autophagic vesicles in hepatocytes was counted by using transmission electron microscopy. Expression of cathepsin B, D, L and p62 in the liver section was analyzed by immunohistochemical staining. The histological severity of NAFLD is assessed by NAFLD activity score (NAS). The number of autophagic vesicles in hepatocytes was significantly increased in both CHC and NAFLD groups, but not CHB and PBC, more than control. Although hepatocytes with aggregation of p62 were observed in less than 15% of CHC, p62 aggregation was detected in approximately 65% of NAFLD. Cathepsin B, D and L expression was significantly suppressed in the liver from NAFLD patients. Suppression of cathepsin B, D and L expression was not observed in CHB, CHC and PBC. In NAFLD patients, p62 aggregation was correlated with serum alanine aminotransferase value and inflammatory activity by NAS. These results indicate that a decrease in hepatic cathepsin expression in NAFLD is associated with autophagic dysfunction. Hepatic inflammation correlates with autophagic dysfunction in NAFLD. These findings indicate that the suppression of autophagic proteolysis by hepatic steatosis is involved in the pathogenesis of NAFLD. © 2013 The Japan Society of Hepatology.

  19. Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor

    PubMed Central

    Sainz, Bruno; Barretto, Naina; Martin, Danyelle N.; Hiraga, Nobuhiko; Imamura, Michio; Hussain, Snawar; Marsh, Katherine A.; Yu, Xuemei; Chayama, Kazuaki; Alrefai, Waddah A.; Uprichard, Susan L.

    2011-01-01

    Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. With ~170 million individuals infected and current interferon-based treatment having toxic side-effects and marginal efficacy, more effective antivirals are critically needed1. Although HCV protease inhibitors were just FDA approved, analogous to HIV therapy, optimal HCV therapy likely will require a combination of antivirals targeting multiple aspects of the viral lifecycle. Viral entry represents a promising multi-faceted target for antiviral intervention; however, to date FDA-approved inhibitors of HCV cell entry are unavailable. Here we show that the cellular Niemann-Pick C1-Like 1 (NPC1L1) cholesterol uptake receptor is an HCV entry factor amendable to therapeutic intervention. Specifically, NPC1L1 expression is necessary for HCV infection as silencing or antibody-mediated blocking of NPC1L1 impairs cell-cultured-derived HCV (HCVcc) infection initiation. In addition, the clinically-available FDA-approved NPC1L1 antagonist ezetimibe2,3 potently blocks HCV uptake in vitro via a virion cholesterol-dependent step prior to virion-cell membrane fusion. Importantly, ezetimibe inhibits infection of all major HCV genotypes in vitro, and in vivo delays the establishment of HCV genotype 1b infection in mice with human liver grafts. Thus, we have not only identified NPC1L1 as an HCV cell entry factor, but also discovered a new antiviral target and potential therapeutic agent. PMID:22231557

  20. L1C signal design options

    USGS Publications Warehouse

    Betz, J.W.; Cahn, C.R.; Dafesh, P.A.; Hegarty, C.J.; Hudnut, K.W.; Jones, A.J.; Keegan, R.; Kovach, K.; Lenahan, L.S.; Ma, H.H.; Rushanan, J.J.; Stansell, T.A.; Wang, C.C.; Yi, S.K.

    2006-01-01

    Design activities for a new civil signal centered at 1575.42 MHz, called L1C, began in 2003, and the Phase 1 effort was completed in 2004. The L1C signal design has evolved and matured during a Phase 2 design activity that began in 2005. Phase 2 has built on the initial design activity, guided by responses to international user surveys conducted during Phase 1. A common core of signal characteristics has been developed to provide advances in robustness and performance. The Phase 2 activity produced five design options, all drawing upon the core signal characteristics, while representing different blends of characteristics and capabilities. A second round of international user surveys was completed to solicit advice concerning these design options. This paper provides an update of the L1C design process, and describes the current L1C design options. Initial performance estimates are presented for each design option, displaying trades between signal tracking robustness, the speed and robustness of clock and ephemeris data, and the rate and robustness of other data message contents. Planned remaining activities are summarized, leading to optimization of the L1C design.

  1. Cathepsin B & L are not required for ebola virus replication.

    PubMed

    Marzi, Andrea; Reinheckel, Thomas; Feldmann, Heinz

    2012-01-01

    Ebola virus (EBOV), family Filoviridae, emerged in 1976 on the African continent. Since then it caused several outbreaks of viral hemorrhagic fever in humans with case fatality rates up to 90% and remains a serious Public Health concern and biothreat pathogen. The most pathogenic and best-studied species is Zaire ebolavirus (ZEBOV). EBOV encodes one viral surface glycoprotein (GP), which is essential for replication, a determinant of pathogenicity and an important immunogen. GP mediates viral entry through interaction with cellular surface molecules, which results in the uptake of virus particles via macropinocytosis. Later in this pathway endosomal acidification activates the cysteine proteases Cathepsin B and L (CatB, CatL), which have been shown to cleave ZEBOV-GP leading to subsequent exposure of the putative receptor-binding and fusion domain and productive infection. We studied the effect of CatB and CatL on in vitro and in vivo replication of EBOV. Similar to previous findings, our results show an effect of CatB, but not CatL, on ZEBOV entry into cultured cells. Interestingly, cell entry by other EBOV species (Bundibugyo, Côte d'Ivoire, Reston and Sudan ebolavirus) was independent of CatB or CatL as was EBOV replication in general. To investigate whether CatB and CatL have a role in vivo during infection, we utilized the mouse model for ZEBOV. Wild-type (control), catB(-/-) and catL(-/-) mice were equally susceptible to lethal challenge with mouse-adapted ZEBOV with no difference in virus replication and time to death. In conclusion, our results show that CatB and CatL activity is not required for EBOV replication. Furthermore, EBOV glycoprotein cleavage seems to be mediated by an array of proteases making targeted therapeutic approaches difficult.

  2. Juvenile-specific cathepsin proteases in Fasciola spp.: their characteristics and vaccine efficacies.

    PubMed

    Meemon, Krai; Sobhon, Prasert

    2015-08-01

    Fasciolosis, caused by Fasciola hepatica and Fasciola gigantica, is one of the most neglected tropical zoonotic diseases. One sustainable control strategy against these infections is the employment of vaccines that target proteins essential for parasites' invasion and nutrition acquiring processes. Cathepsin proteases are the most abundantly expressed proteins in Fasciola spp. that have been tested successfully as vaccines against fasciolosis in experimental as well as large animals because of their important roles in digestion of nutrients, invasion, and migration. Specifically, juvenile-specific cathepsin proteases are the more effective vaccines because they could block the invasion and migration of juvenile parasites whose immune evasion mechanism has not yet been fully developed. Moreover, because of high sequence similarity and identity of cathepsins from juveniles with those of adults, the vaccines can attack both the juvenile and adult stages. In this article, the characteristics and vaccine potentials of juvenile-specific cathepsins, i.e., cathepsins L and B, of Fasciola spp. were reviewed.

  3. Efficient inhibition of cathepsin B by a secreted type 1 cystatin of Fasciola gigantica.

    PubMed

    Siricoon, Sinee; Grams, Suksiri Vichasri; Grams, Rudi

    2012-12-01

    Cysteine proteases are important antigens in the liver fluke genus Fasciola, essential for infection, protection and nutrition. While their biochemistry, biological roles and application as vaccines have been thoroughly studied there is a lack of data concerning their regulation. In the present study we have continued our investigation of cysteine protease inhibitors in Fasciola gigantica and demonstrate, in comparison with FgStefin-1 and human cystatin C, that a second type 1 cystatin of the parasite, FgStefin-2, has been evolutionary adapted to block cathepsin B. The protein, which unusually for a type 1 cystatin carries a signal peptide, is expressed from the metacercarial to adult stage and located in the epithelial cells of the intestinal tract in all stages and in the prostate gland cells in adults. Both cell types may contribute to the released FgStefin-2 observed in the ES product of the parasite. Distinct isoforms of cathepsin B are essential for host tissue penetration during the early infection process and FgStefin-2 may act as key regulator, required to protect the minute juvenile from autoproteolysis. Expression in the prostate gland in the adult stage suggests an additional regulative role of cysteine protease activity in the reproductive system. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. A double-headed cathepsin B inhibitor devoid of warhead

    PubMed Central

    Schenker, Patricia; Alfarano, Pietro; Kolb, Peter; Caflisch, Amedeo; Baici, Antonio

    2008-01-01

    Most synthetic inhibitors of peptidases have been targeted to the active site for inhibiting catalysis through reversible competition with the substrate or by covalent modification of catalytic groups. Cathepsin B is unique among the cysteine peptidase for the presence of a flexible segment, known as the occluding loop, which can block the primed subsites of the substrate binding cleft. With the occluding loop in the open conformation cathepsin B acts as an endopeptidase, and it acts as an exopeptidase when the loop is closed. We have targeted the occluding loop of human cathepsin B at its surface, outside the catalytic center, using a high-throughput docking procedure. The aim was to identify inhibitors that would interact with the occluding loop thereby modulating enzyme activity without the help of chemical warheads against catalytic residues. From a large library of compounds, the in silico approach identified [2-[2-(2,4-dioxo-1,3-thiazolidin-3-yl)ethylamino]-2-oxoethyl] 2-(furan-2-carbonylamino) acetate, which fulfills the working hypothesis. This molecule possesses two distinct binding moieties and behaves as a reversible, double-headed competitive inhibitor of cathepsin B by excluding synthetic and protein substrates from the active center. The kinetic mechanism of inhibition suggests that the occluding loop is stabilized in its closed conformation, mainly by hydrogen bonds with the inhibitor, thus decreasing endoproteolytic activity of the enzyme. Furthermore, the dioxothiazolidine head of the compound sterically hinders binding of the C-terminal residue of substrates resulting in inhibition of the exopeptidase activity of cathepsin B in a physiopathologically relevant pH range. PMID:18796695

  5. A broad survey of cathepsin K immunoreactivity in human neoplasms.

    PubMed

    Zheng, Gang; Martignoni, Guido; Antonescu, Cristina; Montgomery, Elizabeth; Eberhart, Charles; Netto, George; Taube, Janis; Westra, William; Epstein, Jonathan I; Lotan, Tamara; Maitra, Anirban; Gabrielson, Edward; Torbenson, Michael; Iacobuzio-Donahue, Christine; Demarzo, Angelo; Shih, Ie Ming; Illei, Peter; Wu, T C; Argani, Pedram

    2013-02-01

    Cathepsin K is consistently and diffusely expressed in alveolar soft part sarcoma (ASPS) and a subset of translocation renal cell carcinomas (RCCs). However, cathepsin K expression in human neoplasms has not been systematically analyzed. We constructed tissue microarrays (TMA) from a wide variety of human neoplasms, and performed cathepsin K immunohistochemistry (IHC). Only 2.7% of 1,140 carcinomas from various sites exhibited cathepsin K labeling, thus suggesting that among carcinomas, cathepsin K labeling is highly specific for translocation RCC. In contrast to carcinomas, cathepsin K labeling was relatively common (54.6%) in the 414 mesenchymal lesions studied, including granular cell tumor, melanoma, and histiocytic lesions, but not paraganglioma, all of which are in the morphologic differential diagnosis of ASPS. Cathepsin K IHC can be helpful in distinguishing ASPS and translocation RCC from some but not all of the lesions in their differential diagnosis.

  6. Vaccine potential of recombinant cathepsin B against Fasciola gigantica.

    PubMed

    Chantree, Pathanin; Phatsara, Manussabhorn; Meemon, Krai; Chaichanasak, Pannigan; Changklungmoa, Narin; Kueakhai, Pornanan; Lorsuwannarat, Natcha; Sangpairoj, Kant; Songkoomkrong, Sineenart; Wanichanon, Chaitip; Itagaki, Tadashi; Sobhon, Prasert

    2013-09-01

    In Fasciola gigantica, cathepsin Bs, especially cathepsin B2 and B3 are expressed in early juvenile stages, and are proposed to mediate the invasion of host tissues. Thus they are thought to be the target vaccine candidates that can block the invasion and migration of the juvenile parasite. To evaluate their vaccine potential, the recombinant cathepsin B2 (rFgCatB2) and cathepsin B3 (rFgCatB3) were expressed in yeast, Pichia pastoris, and used to immunize mice in combination with Freund's adjuvant to evaluate the protection against the infection by F. gigantica metacercariae, and the induction of immune responses. Mice immunized with both recombinant proteins exhibited high percent of parasite reduction at 60% for rFgCatB2 and 66% for rFgCatB3. Immunization by both antigens induced continuously increasing levels of IgG1 and IgG2a with a higher level of IgG1 isotype, indicating the mixed Th1/Th2 responses with Th2 predominating. When examined individually, the higher levels of IgG1 and IgG2a were correlated with the lower numbers of worm recoveries. Thus, both cathepsin B2 and cathepsin B3 are plausible vaccine candidates whose potential should be further tested in large economic animals. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Distribution of Cathepsin D Activity between Lysosomes and a Soluble Fraction of Marinating Brine.

    PubMed

    Szymczak, Mariusz

    2016-08-01

    This paper is the first ever to describe the phenomenon of bimodal distribution of cathepsin D in the lysosomal and soluble fractions of brine left after herring marinating. Up to 2 times higher cathepsin D activity was observed in the lysosome fraction. Activity of cathepsin D in brine increased according to the logarithmic function during low frequency-high power ultrasounds treatment or according to the linear function after multiple freezing-thawing of brine. Activity enhancement was achieved only in the brine devoid of lipids and suspension. Study results show also that measurement of lysosomal cathepsin D activity in the marinating brine requires also determining cathepsin E activity. Decreasing pore size of microfilter from 2.7 to 0.3 μm significantly reduced the lysosome content in the brine. The presence of lysosomes and the possibility of their separation as well as the likely release of cathepsins shall be considered during industrial application of the marinating brine, as new cathepsins preparations in fish and meat technology. © 2016 Institute of Food Technologists®

  8. Cysteine Cathepsin Activity Regulation by Glycosaminoglycans

    PubMed Central

    Lenarčič, Brigita

    2014-01-01

    Cysteine cathepsins are a group of enzymes normally found in the endolysosomes where they are primarily involved in intracellular protein turnover but also have a critical role in MHC II-mediated antigen processing and presentation. However, in a number of pathologies cysteine cathepsins were found to be heavily upregulated and secreted into extracellular milieu, where they were found to degrade a number of extracellular proteins. A major role in modulating cathepsin activities play glycosaminoglycans, which were found not only to facilitate their autocatalytic activation including at neutral pH, but also to critically modulate their activities such as in the case of the collagenolytic activity of cathepsin K. The interaction between cathepsins and glycosaminoglycans will be discussed in more detail. PMID:25587532

  9. Lysosomal enzyme cathepsin B enhances the aggregate forming activity of exogenous α-synuclein fibrils.

    PubMed

    Tsujimura, Atsushi; Taguchi, Katsutoshi; Watanabe, Yoshihisa; Tatebe, Harutsugu; Tokuda, Takahiko; Mizuno, Toshiki; Tanaka, Masaki

    2015-01-01

    The formation of intracellular aggregates containing α-synuclein (α-Syn) is one of the key steps in the progression of Parkinson's disease and dementia with Lewy bodies. Recently, it was reported that pathological α-Syn fibrils can undergo cell-to-cell transmission and form Lewy body-like aggregates. However, little is known about how they form α-Syn aggregates from fibril seeds. Here, we developed an assay to study the process of aggregate formation using fluorescent protein-tagged α-Syn-expressing cells and examined the aggregate forming activity of exogenous α-Syn fibrils. α-Syn fibril-induced formation of intracellular aggregates was suppressed by a cathepsin B specific inhibitor, but not by a cathepsin D inhibitor. α-Syn fibrils pretreated with cathepsin B in vitro enhanced seeding activity in cells. Knockdown of cathepsin B also reduced fibril-induced aggregate formation. Moreover, using LAMP-1 immunocytochemistry and live-cell imaging, we observed that these aggregates initially occurred in the lysosome. They then rapidly grew larger and moved outside the boundary of the lysosome within one day. These results suggest that the lysosomal protease cathepsin B is involved in triggering intracellular aggregate formation by α-Syn fibrils. Copyright © 2015. Published by Elsevier Inc.

  10. Cathepsin B-Deficient Mice Resolve Leishmania major Inflammation Faster in a T Cell-Dependent Manner

    PubMed Central

    Mériaux, Véronique; Khan, Erin M.; Borde, Chloé; Ciulean, Ioana S.; Fitting, Catherine; Manoury, Bénédicte; Cavaillon, Jean-Marc; Doyen, Noëlle

    2016-01-01

    A critical role for intracellular TLR9 has been described in recognition and host resistance to Leishmania parasites. As TLR9 requires endolysosomal proteolytic cleavage to achieve signaling functionality, we investigated the contribution of different proteases like asparagine endopeptidase (AEP) or cysteine protease cathepsins B (CatB), L (CatL) and S (CatS) to host resistance during Leishmania major (L. major) infection in C57BL/6 (WT) mice and whether they would impact on TLR9 signaling. Unlike TLR9-/-, which are more susceptible to infection, AEP-/-, CatL-/- and CatS-/- mice are as resistant to L. major infection as WT mice, suggesting that these proteases are not individually involved in TLR9 processing. Interestingly, we observed that CatB-/- mice resolve L. major lesions significantly faster than WT mice, however we did not find evidence for an involvement of CatB on either TLR9-dependent or independent cytokine responses of dendritic cells and macrophages or in the innate immune response to L. major infection. We also found no difference in antigen presenting capacity. We observed a more precocious development of T helper 1 responses accompanied by a faster decline of inflammation, resulting in resolution of footpad inflammation, reduced IFNγ levels and decreased parasite burden. Adoptive transfer experiments into alymphoid RAG2-/-γc-/- mice allowed us to identify CD3+ T cells as responsible for the immune advantage of CatB-/- mice towards L. major. In vitro data confirmed the T cell intrinsic differences between CatB-/- mice and WT. Our study brings forth a yet unappreciated role for CatB in regulating T cell responses during L. major infection. PMID:27182703

  11. Cathepsin B is involved in the heat shock induced cardiomyocytes apoptosis as well as the anti-apoptosis effect of HSP-70.

    PubMed

    Hsu, Shu-Fen; Hsu, Chuan-Chih; Cheng, Bor-Chih; Lin, Cheng-Hsien

    2014-11-01

    Cathepsin B is one of the major lysosomal cysteine proteases that plays an important role in apoptosis. Herein, we investigated whether Cathepsin B is involved in cardiomyocyte apoptosis caused by hyperthermic injury (HI) and heat shock protein (HSP)-70 protects these cells from HI-induced apoptosis mediated by Cathepsin. HI was produced in H9C2 cells by putting them in a circulating 43 °C water bath for 120 min, whereas preinduction of HSP-70 was produced in H9C2 cells by mild heat preconditioning (or putting them in 42 °C water bath for 30 min) 8 h before the start of HI. It was found that HI caused both cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. E-64-c, in addition to reducing Cathepsin B activity, significantly attenuated HI-induced cardiomyocyte apoptosis (evidenced by increased apoptotic cell numbers, increased tuncated Bid (t-Bid), increased cytochrome C, increased caspase-9/-3, and decreased Bcl-2/Bax) in H9C2 cells. In addition, preinduction of HSP-70 by mild heat preconditioning or inhibition of HSP-70 by Tripolide significantly attenuated or exacerbated respectively both the cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. Furthermore, the beneficial effects of pre-induction of HSP-70 by mild heat production in reducing both cardiomyocyte apoptosis and increased Cathepsin B activity caused by HI can be significantly reduced by Triptolide preconditioning. These results indicate that Cathepsin B is involved in HI-induced cardiomyocyte apoptosis in H9C2 cells and HSP-70 protects these cells from HI-induced cardiomyocyte apoptosis through Cathepsin B pathways.

  12. Loss of the Nuclear Pool of Ubiquitin Ligase CHIP/STUB1 in Breast Cancer Unleashes the MZF1-Cathepsin Pro-oncogenic Program.

    PubMed

    Luan, Haitao; Mohapatra, Bhopal; Bielecki, Timothy A; Mushtaq, Insha; Mirza, Sameer; Jennings, Tameka A; Clubb, Robert J; An, Wei; Ahmed, Dena; El-Ansari, Rokaya; Storck, Matthew D; Mishra, Nitish K; Guda, Chittibabu; Sheinin, Yuri M; Meza, Jane L; Raja, Srikumar; Rakha, Emad A; Band, Vimla; Band, Hamid

    2018-05-15

    CHIP/STUB1 ubiquitin ligase is a negative co-chaperone for HSP90/HSC70, and its expression is reduced or lost in several cancers, including breast cancer. Using an extensive and well-annotated breast cancer tissue collection, we identified the loss of nuclear but not cytoplasmic CHIP to predict more aggressive tumorigenesis and shorter patient survival, with loss of CHIP in two thirds of ErbB2 + and triple-negative breast cancers (TNBC) and in one third of ER + breast cancers. Reduced CHIP expression was seen in breast cancer patient-derived xenograft tumors and in ErbB2 + and TNBC cell lines. Ectopic CHIP expression in ErbB2 + lines suppressed in vitro oncogenic traits and in vivo xenograft tumor growth. An unbiased screen for CHIP-regulated nuclear transcription factors identified many candidates whose DNA-binding activity was up- or downregulated by CHIP. We characterized myeloid zinc finger 1 (MZF1) as a CHIP target, given its recently identified role as a positive regulator of cathepsin B/L (CTSB/L)-mediated tumor cell invasion downstream of ErbB2. We show that CHIP negatively regulates CTSB/L expression in ErbB2 + and other breast cancer cell lines. CTSB inhibition abrogates invasion and matrix degradation in vitro and halts ErbB2 + breast cancer cell line xenograft growth. We conclude that loss of CHIP remodels the cellular transcriptome to unleash critical pro-oncogenic pathways, such as the matrix-degrading enzymes of the cathepsin family, whose components can provide new therapeutic opportunities in breast and other cancers with loss of CHIP expression. Significance: These findings reveal a novel targetable pathway of breast oncogenesis unleashed by the loss of tumor suppressor ubiquitin ligase CHIP/STUB1. Cancer Res; 78(10); 2524-35. ©2018 AACR . ©2018 American Association for Cancer Research.

  13. The Future of Cysteine Cathepsins in Disease Management.

    PubMed

    Kramer, Lovro; Turk, Dušan; Turk, Boris

    2017-10-01

    Since the discovery of the key role of cathepsin K in bone resorption, cysteine cathepsins have been investigated by pharmaceutical companies as drug targets. The first clinical results from targeting cathepsins by activity-based probes and substrates are paving the way for the next generation of molecular diagnostic imaging, whereas the majority of antibody-drug conjugates currently in clinical trials depend on activation by cathepsins. Finally, cathepsins have emerged as suitable vehicles for targeted drug delivery. It is therefore timely to review the future of cathepsins in drug discovery. We focus here on inflammation-associated diseases because dysregulation of the immune system accompanied by elevated cathepsin activity is a common feature of these conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Insights into the Interactions of Fasciola hepatica Cathepsin L3 with a Substrate and Potential Novel Inhibitors through In Silico Approaches

    PubMed Central

    Hernández Alvarez, Lilian; Naranjo Feliciano, Dany; Hernández González, Jorge Enrique; de Oliveira Soares, Rosemberg; Barreto Gomes, Diego Enry; Pascutti, Pedro Geraldo

    2015-01-01

    Background Fasciola hepatica is the causative agent of fascioliasis, a disease affecting grazing animals, causing economic losses in global agriculture and currently being an important human zoonosis. Overuse of chemotherapeutics against fascioliasis has increased the populations of drug resistant parasites. F. hepatica cathepsin L3 is a protease that plays important roles during the life cycle of fluke. Due to its particular collagenolytic activity it is considered an attractive target against the infective phase of F. hepatica. Methodology/Principal Findings Starting with a three dimensional model of FhCL3 we performed a structure-based design of novel inhibitors through a computational study that combined virtual screening, molecular dynamics simulations, and binding free energy (ΔGbind) calculations. Virtual screening was carried out by docking inhibitors obtained from the MYBRIDGE-HitFinder database inside FhCL3 and human cathepsin L substrate-binding sites. On the basis of dock-scores, five compounds were predicted as selective inhibitors of FhCL3. Molecular dynamic simulations were performed and, subsequently, an end-point method was employed to predict ΔGbind values. Two compounds with the best ΔGbind values (-10.68 kcal/mol and -7.16 kcal/mol), comparable to that of the positive control (-10.55 kcal/mol), were identified. A similar approach was followed to structurally and energetically characterize the interface of FhCL3 in complex with a peptidic substrate. Finally, through pair-wise and per-residue free energy decomposition we identified residues that are critical for the substrate/ligand binding and for the enzyme specificity. Conclusions/Significance The present study is the first computer-aided drug design approach against F. hepatica cathepsins. Here we predict the principal determinants of binding of FhCL3 in complex with a natural substrate by detailed energetic characterization of protease interaction surface. We also propose novel compounds

  15. Insights into the Interactions of Fasciola hepatica Cathepsin L3 with a Substrate and Potential Novel Inhibitors through In Silico Approaches.

    PubMed

    Hernández Alvarez, Lilian; Naranjo Feliciano, Dany; Hernández González, Jorge Enrique; Soares, R O; Soares, Rosemberg de Oliveira; Barreto Gomes, Diego Enry; Pascutti, Pedro Geraldo

    2015-05-01

    Fasciola hepatica is the causative agent of fascioliasis, a disease affecting grazing animals, causing economic losses in global agriculture and currently being an important human zoonosis. Overuse of chemotherapeutics against fascioliasis has increased the populations of drug resistant parasites. F. hepatica cathepsin L3 is a protease that plays important roles during the life cycle of fluke. Due to its particular collagenolytic activity it is considered an attractive target against the infective phase of F. hepatica. Starting with a three dimensional model of FhCL3 we performed a structure-based design of novel inhibitors through a computational study that combined virtual screening, molecular dynamics simulations, and binding free energy (ΔGbind) calculations. Virtual screening was carried out by docking inhibitors obtained from the MYBRIDGE-HitFinder database inside FhCL3 and human cathepsin L substrate-binding sites. On the basis of dock-scores, five compounds were predicted as selective inhibitors of FhCL3. Molecular dynamic simulations were performed and, subsequently, an end-point method was employed to predict ΔGbind values. Two compounds with the best ΔGbind values (-10.68 kcal/mol and -7.16 kcal/mol), comparable to that of the positive control (-10.55 kcal/mol), were identified. A similar approach was followed to structurally and energetically characterize the interface of FhCL3 in complex with a peptidic substrate. Finally, through pair-wise and per-residue free energy decomposition we identified residues that are critical for the substrate/ligand binding and for the enzyme specificity. The present study is the first computer-aided drug design approach against F. hepatica cathepsins. Here we predict the principal determinants of binding of FhCL3 in complex with a natural substrate by detailed energetic characterization of protease interaction surface. We also propose novel compounds as FhCL3 inhibitors. Overall, these results will foster the future

  16. HvPap-1 C1A Protease and HvCPI-2 Cystatin Contribute to Barley Grain Filling and Germination.

    PubMed

    Diaz-Mendoza, Mercedes; Dominguez-Figueroa, Jose D; Velasco-Arroyo, Blanca; Cambra, Ines; Gonzalez-Melendi, Pablo; Lopez-Gonzalvez, Angeles; Garcia, Antonia; Hensel, Goetz; Kumlehn, Jochen; Diaz, Isabel; Martinez, Manuel

    2016-04-01

    Proteolysis is an essential process throughout the mobilization of storage proteins in barley (Hordeum vulgare) grains during germination. It involves numerous types of enzymes, with C1A Cys proteases the most abundant key players. Manipulation of the proteolytic machinery is a potential way to enhance grain yield and quality, and it could influence the mobilization of storage compounds along germination. Transgenic barley plants silencing or over-expressing the cathepsin F-like HvPap-1 Cys protease show differential accumulation of storage molecules such as starch, proteins, and free amino acids in the grain. It is particularly striking that the HvPap-1 artificial microRNA lines phenotype show a drastic delay in the grain germination process. Alterations to the proteolytic activities in the over-expressing and knock-down grains associated with changes in the level of expression of several C1A peptidases were also detected. Similarly, down-regulating cystatin Icy-2, one of the proteinaceous inhibitors of the cathepsin F-like protease, also has important effects on grain filling. However, the ultimate physiological influence of manipulating a peptidase or an inhibitor cannot be always predicted, since the plant tries to compensate the modified proteolytic effects by modulating the expression of some other peptidases or their inhibitors. © 2016 American Society of Plant Biologists. All Rights Reserved.

  17. Description of the L1C signal

    USGS Publications Warehouse

    Betz, J.W.; Blanco, M.A.; Cahn, C.R.; Dafesh, P.A.; Hegarty, C.J.; Hudnut, K.W.; Kasemsri, V.; Keegan, R.; Kovach, K.; Lenahan, L.S.; Ma, H.H.; Rushanan, J.J.; Sklar, D.; Stansell, T.A.; Wang, C.C.; Yi, S.K.

    2006-01-01

    Detailed design of the modernized LI civil signal (L1C) signal has been completed, and the resulting draft Interface Specification IS-GPS-800 was released in Spring 2006. The novel characteristics of the optimized L1C signal design provide advanced capabilities while offering to receiver designers considerable flexibility in how to use these capabilities. L1C provides a number of advanced features, including: 75% of power in a pilot component for enhanced signal tracking, advanced Weilbased spreading codes, an overlay code on the pilot that provides data message synchronization, support for improved reading of clock and ephemeris by combining message symbols across messages, advanced forward error control coding, and data symbol interleaving to combat fading. The resulting design offers receiver designers the opportunity to obtain unmatched performance in many ways. This paper describes the design of L1C. A summary of LIC's background and history is provided. The signal description then proceeds with the overall signal structure consisting of a pilot component and a carrier component. The new L1C spreading code family is described, along with the logic used for generating these spreading codes. Overlay codes on the pilot channel are also described, as is the logic used for generating the overlay codes. Spreading modulation characteristics are summarized. The data message structure is also presented, showing the format for providing time, ephemeris, and system data to users, along with features that enable receivers to perform code combining. Encoding of rapidly changing time bits is described, as are the Low Density Parity Check codes used for forward error control of slowly changing time bits, clock, ephemeris, and system data. The structure of the interleaver is also presented. A summary of L 1C's unique features and their benefits is provided, along with a discussion of the plan for L1C implementation.

  18. Neutral and ionic platinum compounds containing a cyclometallated chiral primary amine: synthesis, antitumor activity, DNA interaction and topoisomerase I-cathepsin B inhibition.

    PubMed

    Albert, Joan; Bosque, Ramon; Crespo, Margarita; Granell, Jaume; López, Concepción; Martín, Raquel; González, Asensio; Jayaraman, Anusha; Quirante, Josefina; Calvis, Carme; Badía, Josefa; Baldomà, Laura; Font-Bardia, Mercè; Cascante, Marta; Messeguer, Ramon

    2015-08-14

    The synthesis and preliminary biological evaluation of neutral and cationic platinum derivatives of chiral 1-(1-naphthyl)ethylamine are reported, namely cycloplatinated neutral complexes [PtCl{(R or S)-NH(2)CH(CH(3))C(10)H(6)}(L)] [L = SOMe(2) ( 1-R or 1-S ), L = PPh(3) (2-R or 2-S), L = P(4-FC(6)H(4))(3) (3-R), L = P(CH(2))(3)N(3)(CH(2))(3) (4-R)], cycloplatinated cationic complexes [Pt{(R)-NH(2)CH(CH(3))C(10)H(6)}{L}]Cl [L = Ph(2)PCH(2)CH(2)PPh(2) (5-R), L = (C(6)F(5))(2)PCH(2)CH(2)P(C(6)F(5))(2) (6-R)] and the Pt(ii) coordination compound trans-[PtCl(2){(R)-NH(2)CH(CH(3))C(10)H(6)}(2)] (7-R). The X-ray molecular structure of 7-R is reported. The cytotoxic activity against a panel of human adenocarcinoma cell lines (A-549 lung, MDA-MB-231 and MCF-7 breast, and HCT-116 colon), cell cycle arrest and apoptosis, DNA interaction, topoisomerase I and cathepsin B inhibition, and Pt cell uptake of the studied compounds are presented. Remarkable cytotoxicity was observed for most of the synthesized Pt(ii) compounds regardless of (i) the absolute configuration R or S, and (ii) the coordinated/cyclometallated (neutral or cationic) nature of the complexes. The most potent compound 2-R (IC(50) = 270 nM) showed a 148-fold increase in potency with regard to cisplatin in HCT-116 colon cancer cells. Preliminary biological results point out to different biomolecular targets for the investigated compounds. Neutral cyclometallated complexes 1-R and 2-R, modify the DNA migration as cisplatin, cationic platinacycle 5-R was able to inhibit topoisomerase I-promoted DNA supercoiling, and Pt(ii) coordination compound 7-R turned out to be the most potent inhibitor of cathepsin B. Induction of G-1 phase ( 2-R and 5-R ), and S and G-2 phases (6-R) arrests are related to the antiproliferative activity of some representative compounds upon A-549 cells. Induction of apoptosis is also observed for 2-R and 6-R.

  19. Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1.

    PubMed

    Cartier, Anna E; Djakovic, Stevan N; Salehi, Afshin; Wilson, Scott M; Masliah, Eliezer; Patrick, Gentry N

    2009-06-17

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We found that UCH-L1 activity is rapidly upregulated by NMDA receptor activation, which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of presynaptic and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1-inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling, most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner.

  20. Cathepsin B and uPAR regulate self-renewal of glioma-initiating cells through GLI-regulated Sox2 and Bmi1 expression

    PubMed Central

    Rao, Jasti S.

    2013-01-01

    Cancer-initiating cells comprise a heterogeneous population of undifferentiated cells with the capacity for self-renewal and high proliferative potential. We investigated the role of uPAR and cathepsin B in the maintenance of stem cell nature in glioma-initiating cells (GICs). Simultaneous knockdown of uPAR and cathepsin B significantly reduced the expression of CD133, Nestin, Sox2 and Bmi1 at the protein level and GLI1 and GLI2 at the messenger RNA level. Also, knockdown of uPAR and cathepsin B resulted in a reduction in the number of GICs as well as sphere size. These changes are mediated by Sox2 and Bmi1, downstream of hedgehog signaling. Addition of cyclopamine reduced the expression of Sox2 and Bmi1 along with GLI1 and GLI2 expression, induced differentiation and reduced subsphere formation of GICs thereby indicating that hedgehog signaling acts upstream of Sox2 and Bmi1. Further confirmation was obtained from increased luciferase expression under the control of a GLI-bound Sox2 and Bmi1 luciferase promoter. Simultaneous knockdown of uPAR and cathepsin B also reduced the expression of Nestin Sox2 and Bmi1 in vivo. Thus, our study highlights the importance of uPAR and cathepsin B in the regulation of malignant stem cell self-renewal through hedgehog components, Bmi1 and Sox2. PMID:23222817

  1. Lipotoxicity Mediated Cell Dysfunction and Death Involves Lysosomal Membrane Permeabilization and Cathepsin L Activity

    PubMed Central

    Almaguel, Frankis G.; Liu, Jo-Wen; Pacheco, Fabio J.; De Leon, Daisy; Casiano, Carlos A.; De Leon, Marino

    2010-01-01

    Lipotoxicity, which is triggered when cells are exposed to elevated levels of free fatty acids, involves cell dysfunction and apoptosis and is emerging as an underlying factor contributing to various pathological conditions including disorders of the central nervous system and diabetes. We have shown that palmitic acid (PA)-induced lipotoxicity (PA-LTx) in nerve growth factor-differentiated PC12 (NGFDPC12) cells is linked to an augmented state of cellular oxidative stress (ASCOS) and apoptosis, and that these events are inhibited by docosahexanoic acid (DHA). The mechanisms of PA-LTx in nerve cells are not well understood, but our previous findings indicate that it involves ROS generation, mitochondrial membrane permeabilization (MMP), and caspase activation. The present study used nerve growth factor differentiated PC12 cells (NGFDPC12 cells) and found that lysosomal membrane permeabilization (LMP) is an early event during PA-induced lipotoxicity that precedes MMP and apoptosis. Cathepsin L, but not cathepsin B, is an important contributor in this process since its pharmacological inhibition significantly attenuated LMP, MMP, and apoptosis. In addition, co-treatment of NGFDPC12 cells undergoing lipotoxicity with DHA significantly reduced LMP, suggesting that DHA acts by antagonizing upstream signals leading to lysosomal dysfunction. These results suggest that LMP is a key early mediator of lipotoxicity, and underscore the value of interventions targeting upstream signals leading to LMP for the treatment of pathological conditions associated with lipotoxicity. PMID:20043885

  2. Identification of cellular compartments involved in processing of cathepsin E in primary cultures of rat microglia.

    PubMed

    Sastradipura, D F; Nakanishi, H; Tsukuba, T; Nishishita, K; Sakai, H; Kato, Y; Gotow, T; Uchiyama, Y; Yamamoto, K

    1998-05-01

    Cathepsin E is a major nonlysosomal, intracellular aspartic proteinase that localizes in various cellular compartments such as the plasma membrane, endosome-like organelles, and the endoplasmic reticulum (ER). To learn the segregation mechanisms of cathepsin E into its appropriate cellular destinations, the present studies were initiated to define the biosynthesis, processing, and intracellular localization as well as the site of proteolytic maturation of the enzyme in primary cultures of rat brain microglia. Immunohistochemical and immunoblot analyses revealed that cathepsin E was the most abundant in microglia among various brain cell types, where the enzyme existed predominantly as the mature enzyme. Immunoelectron microscopy studies showed the presence of the enzyme predominantly in the endosome-like vacuoles and partly in the vesicles located in the trans-Golgi area and the lumen of ER. In the primary cultured microglial cells labeled with [35S]methionine, >95% of labeled cathepsin E were represented by a 46-kDa polypeptide (reduced form) after a 30-min pulse. Most of it was proteolytically processed via a 44-kDa intermediate to a 42-kDa mature form within 4 h of chase. This processing was completely inhibited by bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase. Brefeldin A, a blocker for the traffic of secretory proteins from the ER to the Golgi complex, also inhibited the processing of procathepsin E and enhanced its degradation. Procathepsin E, after pulse-labeling, showed complete susceptibility to endoglycosidase H, whereas the mature enzyme almost acquired resistance to endoglycosidases H as well as F. The present studies provide the first evidence that cathepsin E in microglia is first synthesized as the inactive precursor bearing high-mannose oligosaccharides and processed to the active mature enzyme with complex-type oligosaccharides via the intermediate form and that the final proteolytic maturation step occurs in endosome-like acidic

  3. Cathepsins in Rotator Cuff Tendinopathy: Identification in Human Chronic Tears and Temporal Induction in a Rat Model.

    PubMed

    Seto, Song P; Parks, Akia N; Qiu, Yongzhi; Soslowsky, Louis J; Karas, Spero; Platt, Manu O; Temenoff, Johnna S

    2015-09-01

    While overuse of the supraspinatus tendon is a leading factor in rotator cuff injury, the underlying biochemical changes have not been fully elucidated. In this study, torn human rotator cuff (supraspinatus) tendon tissue was analyzed for the presence of active cathepsin proteases with multiplex cysteine cathepsin zymography. In addition, an overuse injury to supraspinatus tendons was induced through downhill running in an established rat model. Histological analysis demonstrated that structural damage occurred by 8 weeks of overuse compared to control rats in the region of tendon insertion into bone. In both 4- and 8-week overuse groups, via zymography, there was approximately a 180% increase in cathepsin L activity at the insertion region compared to the controls, while no difference was found in the midsubstance area. Additionally, an over 400% increase in cathepsin K activity was observed for the insertion region of the 4-week overused tendons. More cathepsin K and L immunostaining was observed at the insertion region of the overuse groups compared to controls. These results provide important information on a yet unexplored mechanism for tendon degeneration that may operate alone or in conjunction with other proteases to contribute to chronic tendinopathy.

  4. Cathepsins in Rotator Cuff Tendinopathy: Identification in Human Chronic Tears and Temporal Induction in a Rat Model

    PubMed Central

    Seto, Song P.; Parks, Akia N.; Qiu, Yongzhi; Soslowsky, Louis J.; Karas, Spero; Platt, Manu O.; Temenoff, Johnna S.

    2015-01-01

    While overuse of the supraspinatus tendon is a leading factor in rotator cuff injury, the underlying biochemical changes have not been fully elucidated. In this study, torn human rotator cuff (supraspinatus) tendon tissue was analyzed for the presence of active cathepsin proteases with multiplex cysteine cathepsin zymography. In addition, an overuse injury to supraspinatus tendons was induced through downhill running in an established rat model. Histological analysis demonstrated that structural damage occurred by 8 weeks of overuse compared to control rats in the region of tendon insertion into bone. In both 4- and 8-week overuse groups, via zymography, there was approximately a 180% increase in cathepsin L activity at the insertion region compared to the controls, while no difference was found in the midsubstance area. Additionally, an over 400% increase in cathepsin K activity was observed for the insertion region of the 4-week overused tendons. More cathepsin K and L immunostaining was observed at the insertion region of the overuse groups compared to controls. These results provide important information on a yet unexplored mechanism for tendon degeneration that may operate alone or in conjunction with other proteases to contribute to chronic tendinopathy. PMID:25558848

  5. Cathepsin C Aggravates Neuroinflammation Involved in Disturbances of Behaviour and Neurochemistry in Acute and Chronic Stress-Induced Murine Model of Depression.

    PubMed

    Zhang, Yanli; Fan, Kai; Liu, Yanna; Liu, Gang; Yang, Xiaohan; Ma, Jianmei

    2018-01-01

    Major depression has been interpreted as an inflammatory disease characterized by cell-mediated immune activation, which is generally triggered by various stresses. Microglia has been thought to be the cellular link between inflammation and depression-like behavioural alterations. The expression of cathepsin C (Cat C), a lysosomal proteinase, is predominantly induced in microglia in neuroinflammation. However, little is known about the role of Cat C in pathophysiology of depression. In the present study, Cat C transgenic mice and wild type mice were subjected to an intraperitoneal injection of LPS (0.5 mg/kg) and 6-week unpredictable chronic mild stress (UCMS) exposure to establish acute and chronic stress-induced depression model. We examined and compared the behavioural and proinflammatory cytokine alterations in serum and depression-targeted brain areas of Cat C differentially expressed mice in stress, as well as indoleamine 2,3-dioxygenase (IDO) and 5-hydroxytryptamine (5HT) levels in brain. The results showed that Cat C overexpression (Cat C OE) promoted peripheral and central inflammatory response with significantly increased TNFα, IL-1β and IL-6 in serum, hippocampus and prefrontal cortex, and resultant upregulation of IDO and downregulation of 5HT expression in brain, and thereby aggravated depression-like behaviours accessed by open field test, forced swim test and tail suspension test. In contrast, Cat C knockdown (Cat C KD) partially prevented inflammation, which may help alleviate the symptoms of depression in mice. To the best of our knowledge, we are the first to demonstrate that Cat C aggravates neuroinflammation involved in disturbances of behaviour and neurochemistry in acute and chronic stress-induced murine model of depression.

  6. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, William J.; Public Health England, Porton Down, Salisbury SP4 0JG; Kirby, Jonathan M.

    2014-07-01

    The crystal structure of Cwp84, an S-layer protein from Clostridium difficile is presented for the first time. The cathepsin L-like fold of cysteine protease domain, a newly observed ‘lectin-like’ domain and several other features are described. Clostridium difficile is a major problem as an aetiological agent for antibiotic-associated diarrhoea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood, but undoubtedly involves a myriad of components present on the bacterial surface. The mechanism of C. difficile surface-layer (S-layer) biogenesis is also largely unknown but involves the post-translational cleavage of a single polypeptide (surface-layer protein A; SlpA)more » into low- and high-molecular-weight subunits by Cwp84, a surface-located cysteine protease. Here, the first crystal structure of the surface protein Cwp84 is described at 1.4 Å resolution and the key structural components are identified. The truncated Cwp84 active-site mutant (amino-acid residues 33–497; C116A) exhibits three regions: a cleavable propeptide and a cysteine protease domain which exhibits a cathepsin L-like fold followed by a newly identified putative carbohydrate-binding domain with a bound calcium ion, which is referred to here as a lectin-like domain. This study thus provides the first structural insights into Cwp84 and a strong base to elucidate its role in the C. difficile S-layer maturation mechanism.« less

  7. [Clinical significance of detection of cathepsin X and cystatin C in the sera of patients with lung cancer].

    PubMed

    Zhang, Xuede; Hou, Yanli; Niu, Zequn; Li, Wei; Meng, Xia; Zhang, Na; Yang, Shuanying

    2013-08-20

    Cathepsin X (Cat X) has been identified as a member of cathepsin family. Studies have shown that Cat X is involved in tumorigenesis and tumor development of various cancers. The aim of this study is to investigate the relationship between the clinicopathological prognosis and the levels of Cat X and cystatin C in the serum of patients with lung cancer. Blood samples were collected from 84 patients with lung cancer and 36 healthy control subjects. Cat X and cystatin C were determined by quantitative ELISA. Cat X and cystatin C levels were significantly higher in the patients with lung cancer than that in the healthy control subjects (P<0.01). Cat X level was correlated with the pathological types of lung cancer (P=0.076). Cystatin C was positively correlated with TNM stage (P=0.01). Furthermore, cystatin C/Cat X was correlated with lymph node metastasis (P=0.058). The patients with high Cat X levels experienced significantly shorter overall survival rates compared with those with low Cat X. Univariate analysis indicated that Cat X and TNM stage were related to overall survival. Multivariate Cox analysis indicated that TNM stage may be used as an independent prognostic variable in patients with lung cancer. Cat X and cystatin C levels were significantly higher in patients with lung cancer. Cat X and cystatin C detection in the sera may contribute to the diagnosis of lung cancer and may be used to evaluate the prognosis of patients with NSCLC.

  8. Prediction of Aggressive Human Prostate Cancer by Cathepsin B

    DTIC Science & Technology

    2008-03-01

    Cancer Res 2004;10(12 Pt 1):4118-4124. 28. Munoz E, Gomez F, Paz JI, Casado I, Silva JM, Corcuera MT, Alonso MJ. Ki-67 immunolabeling in pre...detected prostate cancer. J Pathol 2002;197(2):148-154. 34. Claudio PP, Zamparelli A, Garcia FU, Claudio L, Ammirati G, Farina A, Bovicelli A, Russo G...JA. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 2006;20(5):543-556. 47. Fernandez PL, Farre X, Nadal A

  9. A novel PKD2L1 C-terminal domain critical for trimerization and channel function.

    PubMed

    Zheng, Wang; Hussein, Shaimaa; Yang, JungWoo; Huang, Jun; Zhang, Fan; Hernandez-Anzaldo, Samuel; Fernandez-Patron, Carlos; Cao, Ying; Zeng, Hongbo; Tang, Jingfeng; Chen, Xing-Zhen

    2015-03-30

    As a transient receptor potential (TRP) superfamily member, polycystic kidney disease 2-like-1 (PKD2L1) is also called TRPP3 and has similar membrane topology as voltage-gated cation channels. PKD2L1 is involved in hedgehog signaling, intestinal development, and sour tasting. PKD2L1 and PKD1L3 form heterotetramers with 3:1 stoichiometry. C-terminal coiled-coil-2 (CC2) domain (G699-W743) of PKD2L1 was reported to be important for its trimerization but independent studies showed that CC2 does not affect PKD2L1 channel function. It thus remains unclear how PKD2L1 proteins oligomerize into a functional channel. By SDS-PAGE, blue native PAGE and mutagenesis we here identified a novel C-terminal domain called C1 (K575-T622) involved in stronger homotrimerization than the non-overlapping CC2, and found that the PKD2L1 N-terminus is critical for dimerization. By electrophysiology and Xenopus oocyte expression, we found that C1, but not CC2, is critical for PKD2L1 channel function. Our co-immunoprecipitation and dynamic light scattering experiments further supported involvement of C1 in trimerization. Further, C1 acted as a blocking peptide that inhibits PKD2L1 trimerization as well as PKD2L1 and PKD2L1/PKD1L3 channel function. Thus, our study identified C1 as the first PKD2L1 domain essential for both PKD2L1 trimerization and channel function, and suggest that PKD2L1 and PKD2L1/PKD1L3 channels share the PKD2L1 trimerization process.

  10. Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis.

    PubMed

    Ge, Y; Cai, Y-M; Bonneau, L; Rotari, V; Danon, A; McKenzie, E A; McLellan, H; Mach, L; Gallois, P

    2016-09-01

    Programmed cell death (PCD) is used by plants for development and survival to biotic and abiotic stresses. The role of caspases in PCD is well established in animal cells. Over the past 15 years, the importance of caspase-3-like enzymatic activity for plant PCD completion has been widely documented despite the absence of caspase orthologues. In particular, caspase-3 inhibitors blocked nearly all plant PCD tested. Here, we affinity-purified a plant caspase-3-like activity using a biotin-labelled caspase-3 inhibitor and identified Arabidopsis thaliana cathepsin B3 (AtCathB3) by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Consistent with this, recombinant AtCathB3 was found to have caspase-3-like activity and to be inhibited by caspase-3 inhibitors. AtCathepsin B triple-mutant lines showed reduced caspase-3-like enzymatic activity and reduced labelling with activity-based caspase-3 probes. Importantly, AtCathepsin B triple mutants showed a strong reduction in the PCD induced by ultraviolet (UV), oxidative stress (H2O2, methyl viologen) or endoplasmic reticulum stress. Our observations contribute to explain why caspase-3 inhibitors inhibit plant PCD and provide new tools to further plant PCD research. The fact that cathepsin B does regulate PCD in both animal and plant cells suggests that this protease may be part of an ancestral PCD pathway pre-existing the plant/animal divergence that needs further characterisation.

  11. TGF-ß Regulates Cathepsin Activation during Normal and Pathogenic Development.

    PubMed

    Flanagan-Steet, Heather; Christian, Courtney; Lu, Po-Nien; Aarnio-Peterson, Megan; Sanman, Laura; Archer-Hartmann, Stephanie; Azadi, Parastoo; Bogyo, Matthew; Steet, Richard A

    2018-03-13

    Cysteine cathepsins play roles during development and disease beyond their function in lysosomal protein turnover. Here, we leverage a fluorescent activity-based probe (ABP), BMV109, to track cysteine cathepsins in normal and diseased zebrafish embryos. Using this probe in a model of mucolipidosis II, we show that loss of carbohydrate-dependent lysosomal sorting alters the activity of several cathepsin proteases. The data support a pathogenic mechanism where TGF-ß signals enhance the proteolytic processing of pro-Ctsk by modulating the expression of chondroitin 4-sulfate (C4-S). In MLII, elevated C4-S corresponds with TGF-ß-mediated increases in chst11 expression. Inhibiting chst11 impairs the proteolytic activation of Ctsk and alleviates the MLII phenotypes. These findings uncover a regulatory loop between TGF-ß signaling and Ctsk activation that is altered in the context of lysosomal disease. This work highlights the power of ABPs to identify mechanisms underlying pathogenic development in living animals. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. The granulocyte-angiotensin system. Angiotensin I-converting activity of cathepsin G.

    PubMed

    Klickstein, L B; Kaempfer, C E; Wintroub, B U

    1982-12-25

    Cathepsin G, an Mr = 26,000-29,000 cationic human neutrophil lysosomal serine protease, releases angiotensin II from angiotensinogen and was, therefore, examined for angiotensin I-converting activity. Cathepsin G-dependent angiotensin I conversion was detected by a high performance liquid chromatography assay which permitted independent quantitation of angiotensin I and angiotensin II and detection of angiotensin degradation products. 1.8-5.0 X 10(-9) M cathepsin G converted angiotensin I (3.3 X 10(-4) M) to angiotensin II without further degradation of angiotensin II. The pH optimum for cathepsin G-catalyzed angiotensin I conversion was pH 7.0-7.5, and the Km and Kcat were 2.2 X 10(-4) M and 3.4 s-1, respectively. In contrast to dipeptidyl hydrolase-converting enzyme, cathepsin G did not inactivate bradykinin, did not cleave hippuryl-His-Leu, and was not inhibited by 10(-4) M Captopril or SQ 20881. Purified human neutrophils stimulated with 2.5 X 10(-6) M-10(-10) M fMet-Leu-Phe released angiotensin-converting activity with a Km of 3.3 X 10(-4) M. That the angiotensin-converting activity released from neutrophils was attributable to cathepsin G was indicated by similar susceptibility to inhibitors and adsorption by goat antibody to cathepsin G. The granulocyte-angiotensin system provides a mechanism for the local generation of angiotensin II at sites of neutrophil accumulation and may be of significance in regulation of blood flow in tissue microvasculature.

  13. The synthesis of a tritium, carbon-14, and stable isotope-labeled cathepsin C inhibitors.

    PubMed

    Allen, Paul; Bragg, Ryan A; Caffrey, Moya; Ericsson, Cecilia; Hickey, Michael J; Kingston, Lee P; Elmore, Charles S

    2017-02-01

    As part of a medicinal chemistry program aimed at developing a highly potent and selective cathepsin C inhibitor, tritium, carbon-14, and stable isotope-labeled materials were required. The synthesis of tritium-labeled methanesulfonate 5 was achieved via catalytic tritiolysis of a chloro precursor, albeit at a low radiochemical purity of 67%. Tritium-labeled AZD5248 was prepared via a 3-stage synthesis, utilizing amide-directed hydrogen isotope exchange. Carbon-14 and stable isotope-labeled AZD5248 were successfully prepared through modifications of the medicinal chemistry synthetic route, enabling the use of available labeled intermediates. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Ezetimibe inhibits hepatic Niemann-Pick C1-Like 1 to facilitate macrophage reverse cholesterol transport in mice.

    PubMed

    Xie, Ping; Jia, Lin; Ma, Yinyan; Ou, Juanjuan; Miao, Hongming; Wang, Nanping; Guo, Feng; Yazdanyar, Amirfarbod; Jiang, Xian-Cheng; Yu, Liqing

    2013-05-01

    Controversies have arisen from recent mouse studies about the essential role of biliary sterol secretion in reverse cholesterol transport (RCT). The objective of this study was to examine the role of biliary cholesterol secretion in modulating macrophage RCT in Niemann-Pick C1-Like 1 (NPC1L1) liver only (L1(LivOnly)) mice, an animal model that is defective in both biliary sterol secretion and intestinal sterol absorption, and determine whether NPC1L1 inhibitor ezetimibe facilitates macrophage RCT by inhibiting hepatic NPC1L1. L1(LivOnly) mice were generated by crossing NPC1L1 knockout (L1-KO) mice with transgenic mice overexpressing human NPC1L1 specifically in liver. Macrophage-to-feces RCT was assayed in L1-KO and L1(LivOnly) mice injected intraperitoneally with [(3)H]-cholesterol-labeled peritoneal macrophages isolated from C57BL/6 mice. Inhibition of biliary sterol secretion by hepatic overexpression of NPC1L1 substantially reduced transport of [(3)H]-cholesterol from primary peritoneal macrophages to the neutral sterol fraction in bile and feces in L1(LivOnly) mice without affecting tracer excretion in the bile acid fraction. Ezetimibe treatment for 2 weeks completely restored both biliary and fecal excretion of [(3)H]-tracer in the neutral sterol fraction in L1(LivOnly) mice. High-density lipoprotein kinetic studies showed that L1(LivOnly) mice compared with L1-KO mice had a significantly reduced fractional catabolic rate without altered hepatic and intestinal uptake of high-density lipoprotein-cholesterol ether. In mice lacking intestinal cholesterol absorption, macrophage-to-feces RCT depends on efficient biliary sterol secretion, and ezetimibe promotes macrophage RCT by inhibiting hepatic NPC1L1 function.

  15. The development and characterization of an ELISA specifically detecting the active form of cathepsin K.

    PubMed

    Sun, S; Karsdal, M A; Bay-Jensen, A C; Sørensen, M G; Zheng, Q; Dziegiel, M H; Maksymowych, W P; Henriksen, K

    2013-10-01

    Cathepsin K plays essential roles in bone resorption and is intensely investigated as a therapeutic target for the treatment of osteoporosis. Hence an assessment of the active form of cathepsin K may provide important biological information in metabolic bone diseases, such as osteoporosis or ankylosing spondylitis. Presently there are no robust assays for the assessment of active cathepsin K in serum, and therefore an ELISA specifically detecting the N-terminal of the active form of cathepsin K was developed. The assay was technically robust, with a lowest limit of detection (LOD) of 0.085 ng/mL. The average intra- and inter-assay CV% were 6.60% and 8.56% respectively. The dilution recovery and spike recovery tests in human serum were within 100±20% within the range of the assay. A comparison of latent and active cathepsin K confirmed specificity towards the active form. Quantification of the levels of active cathepsin K in supernatants of purified human osteoclasts compared to corresponding macrophages showed a 30-fold induction (p<0.001). In contrast, in serum samples from osteoporotic women on estrogen or bisphosphonate therapy and from ankylosing spondylitis patients no clinically relevant differences were observed. In summary, we have developed a robust and sensitive assay specifically detecting the active form of cathepsin K; however, while it monitors osteoclasts with high specificity in vitro, it appears that circulating levels of active cathepsin K do not reflect bone changes under these circumstances. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  16. Cathepsin B Activity Initiates Apoptosis via Digestive Protease Activation in Pancreatic Acinar Cells and Experimental Pancreatitis*

    PubMed Central

    Sendler, Matthias; Maertin, Sandrina; John, Daniel; Persike, Maria; Weiss, F. Ulrich; Krüger, Burkhard; Wartmann, Thomas; Wagh, Preshit; Halangk, Walter; Schaschke, Norbert; Mayerle, Julia; Lerch, Markus M.

    2016-01-01

    Pancreatitis is associated with premature activation of digestive proteases in the pancreas. The lysosomal hydrolase cathepsin B (CTSB) is a known activator of trypsinogen, and its deletion reduces disease severity in experimental pancreatitis. Here we studied the activation mechanism and subcellular compartment in which CTSB regulates protease activation and cellular injury. Cholecystokinin (CCK) increased the activity of CTSB, cathepsin L, trypsin, chymotrypsin, and caspase 3 in vivo and in vitro and induced redistribution of CTSB to a secretory vesicle-enriched fraction. Neither CTSB protein nor activity redistributed to the cytosol, where the CTSB inhibitors cystatin-B/C were abundantly present. Deletion of CTSB reduced and deletion of cathepsin L increased intracellular trypsin activation. CTSB deletion also abolished CCK-induced caspase 3 activation, apoptosis-inducing factor, as well as X-linked inhibitor of apoptosis protein degradation, but these depended on trypsinogen activation via CTSB. Raising the vesicular pH, but not trypsin inhibition, reduced CTSB activity. Trypsin inhibition did not affect apoptosis in hepatocytes. Deletion of CTSB affected apoptotic but not necrotic acinar cell death. In summary, CTSB in pancreatitis undergoes activation in a secretory, vesicular, and acidic compartment where it activates trypsinogen. Its deletion or inhibition regulates acinar cell apoptosis but not necrosis in two models of pancreatitis. Caspase 3-mediated apoptosis depends on intravesicular trypsinogen activation induced by CTSB, not CTSB activity directly, and this mechanism is pancreas-specific. PMID:27226576

  17. Cathepsin B Activity Initiates Apoptosis via Digestive Protease Activation in Pancreatic Acinar Cells and Experimental Pancreatitis.

    PubMed

    Sendler, Matthias; Maertin, Sandrina; John, Daniel; Persike, Maria; Weiss, F Ulrich; Krüger, Burkhard; Wartmann, Thomas; Wagh, Preshit; Halangk, Walter; Schaschke, Norbert; Mayerle, Julia; Lerch, Markus M

    2016-07-08

    Pancreatitis is associated with premature activation of digestive proteases in the pancreas. The lysosomal hydrolase cathepsin B (CTSB) is a known activator of trypsinogen, and its deletion reduces disease severity in experimental pancreatitis. Here we studied the activation mechanism and subcellular compartment in which CTSB regulates protease activation and cellular injury. Cholecystokinin (CCK) increased the activity of CTSB, cathepsin L, trypsin, chymotrypsin, and caspase 3 in vivo and in vitro and induced redistribution of CTSB to a secretory vesicle-enriched fraction. Neither CTSB protein nor activity redistributed to the cytosol, where the CTSB inhibitors cystatin-B/C were abundantly present. Deletion of CTSB reduced and deletion of cathepsin L increased intracellular trypsin activation. CTSB deletion also abolished CCK-induced caspase 3 activation, apoptosis-inducing factor, as well as X-linked inhibitor of apoptosis protein degradation, but these depended on trypsinogen activation via CTSB. Raising the vesicular pH, but not trypsin inhibition, reduced CTSB activity. Trypsin inhibition did not affect apoptosis in hepatocytes. Deletion of CTSB affected apoptotic but not necrotic acinar cell death. In summary, CTSB in pancreatitis undergoes activation in a secretory, vesicular, and acidic compartment where it activates trypsinogen. Its deletion or inhibition regulates acinar cell apoptosis but not necrosis in two models of pancreatitis. Caspase 3-mediated apoptosis depends on intravesicular trypsinogen activation induced by CTSB, not CTSB activity directly, and this mechanism is pancreas-specific. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Crystal structure of cathepsin A, a novel target for the treatment of cardiovascular diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreuder, Herman A., E-mail: herman.schreuder@sanofi.com; Liesum, Alexander, E-mail: alexander.liesum@sanofi.com; Kroll, Katja, E-mail: katja.kroll@sanofi.com

    2014-03-07

    Graphical abstract: - Highlights: • The structures of active cathepsin A and the inactive precursor are very similar. • The only major difference is the absence of a 40 residue activation domain. • The termini of the active catalytic core are held together by a disulfide bond. • Compound 1 reacts with the catalytic Ser150, building a tetrahedral intermediate. • Compound 2 is cleaved by the enzyme and a fragment remained bound. - Abstract: The lysosomal serine carboxypeptidase cathepsin A is involved in the breakdown of peptide hormones like endothelin and bradykinin. Recent pharmacological studies with cathepsin A inhibitors inmore » rodents showed a remarkable reduction in cardiac hypertrophy and atrial fibrillation, making cathepsin A a promising target for the treatment of heart failure. Here we describe the crystal structures of activated cathepsin A without inhibitor and with two compounds that mimic the tetrahedral intermediate and the reaction product, respectively. The structure of activated cathepsin A turned out to be very similar to the structure of the inactive precursor. The only difference was the removal of a 40 residue activation domain, partially due to proteolytic removal of the activation peptide, and partially by an order–disorder transition of the peptides flanking the removed activation peptide. The termini of the catalytic core are held together by the Cys253–Cys303 disulfide bond, just before and after the activation domain. One of the compounds we soaked in our crystals reacted covalently with the catalytic Ser150 and formed a tetrahedral intermediate. The other compound got cleaved by the enzyme and a fragment, resembling one of the natural reaction products, was found in the active site. These studies establish cathepsin A as a classical serine proteinase with a well-defined oxyanion hole. The carboxylate group of the cleavage product is bound by a hydrogen-bonding network involving one aspartate and two glutamate side

  19. UV radiation promotes melanoma dissemination mediated by the sequential reaction axis of cathepsins-TGF-β1-FAP-α.

    PubMed

    Wäster, Petra; Orfanidis, Kyriakos; Eriksson, Ida; Rosdahl, Inger; Seifert, Oliver; Öllinger, Karin

    2017-08-08

    Ultraviolet radiation (UVR) is the major risk factor for development of malignant melanoma. Fibroblast activation protein (FAP)-α is a serine protease expressed on the surface of activated fibroblasts, promoting tumour invasion through extracellular matrix (ECM) degradation. The signalling mechanism behind the upregulation of FAP-α is not yet completely revealed. Expression of FAP-α was analysed after UVR exposure in in vitro co-culture systems, gene expression arrays and artificial skin constructs. Cell migration and invasion was studied in relation to cathepsin activity and secretion of transforming growth factor (TGF)-β1. Fibroblast activation protein-α expression was induced by UVR in melanocytes of human skin. The FAP-α expression was regulated by UVR-induced release of TGF-β1 and cathepsin inhibitors prevented such secretion. In melanoma cell culture models and in a xenograft tumour model of zebrafish embryos, FAP-α mediated ECM degradation and facilitated tumour cell dissemination. Our results provide evidence for a sequential reaction axis from UVR via cathepsins, TGF-β1 and FAP-α expression, promoting cancer cell dissemination and melanoma metastatic spread.

  20. Potent Inhibition of Feline Coronaviruses with Peptidyl Compounds Targeting Coronavirus 3C-like Protease

    PubMed Central

    Kim, Yunjeong; Mandadapu, Sivakoteswara Rao; Groutas, William C.; Chang, Kyeong-Ok

    2012-01-01

    Feline coronavirus infection is common among domestic and exotic felid species and usually associated with mild or asymptomatic enteritis; however, feline infectious peritonitis (FIP) is a fatal disease of cats that is caused by systemic infection with a feline infectious peritonitis virus (FIPV), a variant of feline enteric coronavirus (FECV). Currently, there is no specific treatment approved for FIP despite the importance of FIP as the leading infectious cause of death in young cats. During the replication process, coronavirus produces viral polyproteins that are processed into mature proteins by viral proteases, the main protease (3C-like [3CL] protease) and the papain-like protease. Since the cleavages of viral polyproteins are an essential step for virus replication, blockage of viral protease is an attractive target for therapeutic intervention. Previously, we reported the generation of broad-spectrum peptidyl inhibitors against viruses that possess a 3C or 3CL protease. In this study, we further evaluated the antiviral effects of the peptidyl inhibitors against feline coronaviruses, and investigated the interaction between our protease inhibitor and a cathepsin B inhibitor, an entry blocker, against feline coronaviruses in cell culture. Herein we report that our compounds behave as reversible, competitive inhibitors of 3CL protease, potently inhibited the replication of feline coronaviruses (EC50 in a nanomolar range) and, furthermore, the combination of cathepsin B and 3CL protease inhibitors led to a strong synergistic interaction against feline coronaviruses in cell culture systems. PMID:23219425

  1. Up-regulation of microglial cathepsin C expression and activity in lipopolysaccharide-induced neuroinflammation.

    PubMed

    Fan, Kai; Wu, Xuefei; Fan, Bin; Li, Ning; Lin, Yongzhong; Yao, Yiwen; Ma, Jianmei

    2012-05-20

    Cathepsin C (Cat C) functions as a central coordinator for activation of many serine proteases in inflammatory cells. It has been recognized that Cat C is responsible for neutrophil recruitment and production of chemokines and cytokines in many inflammatory diseases. However, Cat C expression and its functional role in the brain under normal conditions or in neuroinflammatory processes remain unclear. Our previous study showed that Cat C promoted the progress of brain demyelination in cuprizone-treated mice. The present study further investigated the Cat C expression and activity in lipopolysaccharide (LPS)-induced neuroinflammation in vivo and in vitro. C57BL/6 J mice were intraperitoneally injected with either 0.9% saline or lipopolysaccharide (LPS, 5 mg/kg). Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to analyze microglial activation, TNF-α, IL-1β, IL-6, iNOS mRNAs expressions and cellular localization of Cat C in the brain. Nitrite assay was used to examine microglial activation in vitro; RT-PCR and ELISA were used to determine the expression and release of Cat C. Cat C activity was analyzed by cellular Cat C assay kit. Data were evaluated for statistical significance with paired t test. Cat C was predominantly expressed in hippocampal CA2 neurons in C57BL/6 J mice under normal conditions. Six hours after LPS injection, Cat C expression was detected in cerebral cortical neurons; whereas, twenty-four hours later, Cat C expression was captured in activated microglial cells throughout the entire brain. The duration of induced Cat C expression in neurons and in microglial cells was ten days and three days, respectively. In vitro, LPS, IL-1β and IL-6 treatments increased microglial Cat C expression in a dose-dependent manner and upregulated Cat C secretion and its activity. Taken together, these data indicate that LPS and proinflammatory cytokines IL-1β, IL-6 induce the expression, release and upregulate enzymatic activity of Cat C in

  2. Up-regulation of microglial cathepsin C expression and activity in lipopolysaccharide-induced neuroinflammation

    PubMed Central

    2012-01-01

    Background Cathepsin C (Cat C) functions as a central coordinator for activation of many serine proteases in inflammatory cells. It has been recognized that Cat C is responsible for neutrophil recruitment and production of chemokines and cytokines in many inflammatory diseases. However, Cat C expression and its functional role in the brain under normal conditions or in neuroinflammatory processes remain unclear. Our previous study showed that Cat C promoted the progress of brain demyelination in cuprizone-treated mice. The present study further investigated the Cat C expression and activity in lipopolysaccharide (LPS)-induced neuroinflammation in vivo and in vitro. Methods C57BL/6 J mice were intraperitoneally injected with either 0.9% saline or lipopolysaccharide (LPS, 5 mg/kg). Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to analyze microglial activation, TNF-α, IL-1β, IL-6, iNOS mRNAs expressions and cellular localization of Cat C in the brain. Nitrite assay was used to examine microglial activation in vitro; RT-PCR and ELISA were used to determine the expression and release of Cat C. Cat C activity was analyzed by cellular Cat C assay kit. Data were evaluated for statistical significance with paired t test. Results Cat C was predominantly expressed in hippocampal CA2 neurons in C57BL/6 J mice under normal conditions. Six hours after LPS injection, Cat C expression was detected in cerebral cortical neurons; whereas, twenty-four hours later, Cat C expression was captured in activated microglial cells throughout the entire brain. The duration of induced Cat C expression in neurons and in microglial cells was ten days and three days, respectively. In vitro, LPS, IL-1β and IL-6 treatments increased microglial Cat C expression in a dose-dependent manner and upregulated Cat C secretion and its activity. Conclusions Taken together, these data indicate that LPS and proinflammatory cytokines IL-1β, IL-6 induce the expression, release and

  3. Haematopoietic development and immunological function in the absence of cathepsin D

    PubMed Central

    Tulone, Calogero; Uchiyama, Yasuo; Novelli, Marco; Grosvenor, Nicholas; Saftig, Paul; Chain, Benjamin M

    2007-01-01

    Background Cathepsin D is a well-characterized aspartic protease expressed ubiquitously in lysosomes. Cathepsin D deficiency is associated with a spectrum of pathologies leading ultimately to death. Cathepsin D is expressed at high levels in many cells of the immune system, but its role in immune function is not well understood. This study examines the reconstitution and function of the immune system in the absence of cathepsin D, using bone marrow radiation chimaeras in which all haematopoietic cells are derived from cathepsin D deficient mice. Results Cathepsin D deficient bone marrow cells fully reconstitute the major cellular components of both the adaptive and innate immune systems. Spleen cells from cathepsin D deficient chimaeric mice contained an increased number of autofluorescent granules characteristic of lipofuscin positive lysosomal storage diseases. Biochemical and ultrastructural changes in cathepsin D deficient spleen are consistent with increased autolysosomal activity. Chimaeric mice were immunised with either soluble (dinitrophenylated bovine gamma globulin) or particulate (sheep red blood cells) antigens. Both antigens induced equivalent immune responses in wild type or cathepsin D deficient chimaeras. Conclusion All the parameters of haematopoietic reconstitution and adaptive immunity which were measured in this study were found to be normal in the absence of cathepsin D, even though cathepsin D deficiency leads to dysregulation of lysosomal function. PMID:17897442

  4. Interacting partners of macrophage-secreted cathepsin B contribute to HIV-induced neuronal apoptosis

    PubMed Central

    CANTRES-ROSARIO, Yisel M.; HERNANDEZ, Natalia; NEGRON, Karla; PEREZ-LASPIUR, Juliana; LESZYK, John; SHAFFER, Scott A.; MELENDEZ, Loyda M.

    2015-01-01

    Objective HIV-1 infection of macrophages increases cathepsin B secretion and induces neuronal apoptosis, but the molecular mechanism remains unclear. Design We identified macrophage secreted cathepsin B protein interactions extracellularly and their contribution to neuronal death in vitro. Methods Cathepsin B was immunoprecipitated from monocyte-derived macrophage supernatants after 12 days post-infection. The cathepsin B interactome was quantified by label-free tandem mass spectrometry and compared to uninfected supernatants. Proteins identified were validated by western blot. Neurons were exposed to macrophage-conditioned media in presence or absence of antibodies against cathepsin B and interacting proteins. Apoptosis was measured using TUNEL labeling. Immunohistochemistry of post-mortem brain tissue samples from healthy, HIV-infected, and Alzheimer’s disease patients was performed to observe the ex vivo expression of the proteins identified. Results Nine proteins co-immunoprecipitated differentially with cathepsin B between uninfected and HIV-infected macrophages. Serum amyloid p component (SAPC) -cathepsin B interaction increased in HIV-infected macrophage supernatants, while matrix metalloprotease 9 (MMP-9) -cathepsin B interaction decreased. Pre-treatment of HIV-infected macrophage-conditioned media with antibodies against cathepsin B and SAPC decreased neuronal apoptosis. The addition of MMP-9 antibodies was not protective. SAPC was over-expressed in post-mortem brain tissue from HIV-positive neurocognitive impaired patients compared to HIV positive with normal cognition and healthy controls, while MMP-9 expression was similar in all tissues. Conclusions Inhibiting SAPC-cathepsin B interaction protects against HIV–induced neuronal death and may help to find alternative treatments for HIV-associated neurocognitive disorders. PMID:26208400

  5. Biosynthesis and processing of cathepsin G and neutrophil elastase in the leukemic myeloid cell line U-937.

    PubMed

    Lindmark, A; Persson, A M; Olsson, I

    1990-12-01

    The processing of the neutral proteases cathepsin G and neutrophil elastase, normally synthesized in myeloid precursor cells and stored in azurophil granules, were investigated by biosynthetic labeling with 14C-leucine of the monoblastic cell line U-937. The proteases were precipitated with specific antibodies and the immunoprecipitates were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by fluorography. The transfer to lysosomes of newly synthesized proteases was demonstrated in pulse-chase labeling experiments followed by centrifugation of cell homogenates in a Percoll gradient. The presence of a closely spaced polypeptide band-doublet at intermediate gradient density suggested cleavage of the specific aminoterminal pro dipeptide extension before storage in lysosomes. The molecular heterogeneity observed for cathepsin G and neutrophil elastase seemed to be due to modifications occurring after sorting into lysosomes, most likely because of C-terminal processing. Modifications of the secreted enzymes were not detectable by SDS-PAGE. In contrast to other lysosomal enzymes, no phosphorylation was demonstrated. Newly synthesized cathepsin G and neutrophil elastase rapidly became resistant to endoglycosidase H, indicating transport through the medial and trans cisternae of the Golgi complex and conversion to "complex" oligosaccharide side chains. This conversion was inhibited by an agent swainsonine, but translocation from the Golgi complex and secretion were unaffected. The processing described may play a role in activation of the proteases.

  6. Disinhibition of Cathepsin C Caused by Cystatin F Deficiency Aggravates the Demyelination in a Cuprizone Model.

    PubMed

    Liang, Junjie; Li, Ning; Zhang, Yanli; Hou, Changyi; Yang, Xiaohan; Shimizu, Takahiro; Wang, Xiaoyu; Ikenaka, Kazuhiro; Fan, Kai; Ma, Jianmei

    2016-01-01

    Although the precise mechanism underlying initial lesion development in multiple sclerosis (MS) remains unclear, CNS inflammation has long been associated with demyelination, and axonal degeneration. The activation of microglia/macrophages, which serve as innate immune cells in the CNS, is the first reaction to even minor pathologic changes in the CNS and is considered an initial pathogenic event in MS. Microglial activation accompanies a variety of gene expressions, including cystatin F (Cys F), which belongs to the cystatin superfamily and is one of the cathepsin inhibitors. In our previous study we showed that Cys F has a unique expression pattern in microglia/macrophages in the demyelination process. Specifically, the timing of Cys F induction correlated with ongoing demyelination, and the sites of Cys F expression overlapped with areas of remyelination. Cys F induction ceased in chronic demyelination when remyelination capacity was lost, suggesting that Cys F expressed by microglia/macrophages may play an important role in demyelination and/or remyelination. The functional role of Cys F in demyelinating disease of the CNS, however, is unclear. Cys F gene knockout mice were used in the current study to clarify the functional role of Cys F in the demyelination process in a cuprizone-induced demyelination animal model. We demonstrated that absence of the Cys F gene and the resulting disinhibition of cathepsin C (Cat C) aggravates the demyelination, and this finding may be related to the increased expression of the glia-derived chemokine, CXCL2, which may attract inflammatory cells to sites of myelin sheath damage. This effect was reversed by knock down of the Cat C gene. The findings gain further insight to function of Cat C in pathophysiology of MS, which may have implications for therapeutics for the prevention of neuroinflammation-involved neurological disorders in the future.

  7. Disinhibition of Cathepsin C Caused by Cystatin F Deficiency Aggravates the Demyelination in a Cuprizone Model

    PubMed Central

    Liang, Junjie; Li, Ning; Zhang, Yanli; Hou, Changyi; Yang, Xiaohan; Shimizu, Takahiro; Wang, Xiaoyu; Ikenaka, Kazuhiro; Fan, Kai; Ma, Jianmei

    2016-01-01

    Although the precise mechanism underlying initial lesion development in multiple sclerosis (MS) remains unclear, CNS inflammation has long been associated with demyelination, and axonal degeneration. The activation of microglia/macrophages, which serve as innate immune cells in the CNS, is the first reaction to even minor pathologic changes in the CNS and is considered an initial pathogenic event in MS. Microglial activation accompanies a variety of gene expressions, including cystatin F (Cys F), which belongs to the cystatin superfamily and is one of the cathepsin inhibitors. In our previous study we showed that Cys F has a unique expression pattern in microglia/macrophages in the demyelination process. Specifically, the timing of Cys F induction correlated with ongoing demyelination, and the sites of Cys F expression overlapped with areas of remyelination. Cys F induction ceased in chronic demyelination when remyelination capacity was lost, suggesting that Cys F expressed by microglia/macrophages may play an important role in demyelination and/or remyelination. The functional role of Cys F in demyelinating disease of the CNS, however, is unclear. Cys F gene knockout mice were used in the current study to clarify the functional role of Cys F in the demyelination process in a cuprizone-induced demyelination animal model. We demonstrated that absence of the Cys F gene and the resulting disinhibition of cathepsin C (Cat C) aggravates the demyelination, and this finding may be related to the increased expression of the glia-derived chemokine, CXCL2, which may attract inflammatory cells to sites of myelin sheath damage. This effect was reversed by knock down of the Cat C gene. The findings gain further insight to function of Cat C in pathophysiology of MS, which may have implications for therapeutics for the prevention of neuroinflammation-involved neurological disorders in the future. PMID:28066178

  8. MUC1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer.

    PubMed

    Bouillez, A; Rajabi, H; Jin, C; Samur, M; Tagde, A; Alam, M; Hiraki, M; Maeda, T; Hu, X; Adeegbe, D; Kharbanda, S; Wong, K-K; Kufe, D

    2017-07-13

    Immunotherapeutic approaches, particularly programmed death 1/programmed death ligand 1 (PD-1/PD-L1) blockade, have improved the treatment of non-small-cell lung cancer (NSCLC), supporting the premise that evasion of immune destruction is of importance for NSCLC progression. However, the signals responsible for upregulation of PD-L1 in NSCLC cells and whether they are integrated with the regulation of other immune-related genes are not known. Mucin 1 (MUC1) is aberrantly overexpressed in NSCLC, activates the nuclear factor-κB (NF-κB) p65→︀ZEB1 pathway and confers a poor prognosis. The present studies demonstrate that MUC1-C activates PD-L1 expression in NSCLC cells. We show that MUC1-C increases NF-κB p65 occupancy on the CD274/PD-L1 promoter and thereby drives CD274 transcription. Moreover, we demonstrate that MUC1-C-induced activation of NF-κB→︀ZEB1 signaling represses the TLR9 (toll-like receptor 9), IFNG, MCP-1 (monocyte chemoattractant protein-1) and GM-CSF genes, and that this signature is associated with decreases in overall survival. In concert with these results, targeting MUC1-C in NSCLC tumors suppresses PD-L1 and induces these effectors of innate and adaptive immunity. These findings support a previously unrecognized central role for MUC1-C in integrating PD-L1 activation with suppression of immune effectors and poor clinical outcome.

  9. Follicular thyroglobulin induces cathepsin H expression and activity in thyrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, Kenzaburo; Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002; Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University, 5-21-16 Omorinishi, Ota, Tokyo 143-8540

    Thyroglobulin (Tg) stored in thyroid follicles exerts a potent negative-feedback effect on each step of pre-hormone biosynthesis, including Tg gene transcription and iodine uptake and organification, by suppressing the expression of specific transcription factors that regulate these steps. Pre-hormones are stored in the follicular colloid before being reabsorbed. Following lysosomal proteolysis of its precursor, thyroid hormone (TH) is released from thyroid follicles. Although the suppressive effects of follicular Tg on each step of pre-hormone biosynthesis have been extensively characterized, whether follicular Tg accumulation also affects hormone reabsorption, proteolysis, and secretion is unclear. In this study we explored whether follicular Tgmore » can regulate the expression and function of the lysosomal endopeptidases cathepsins. We found that in the rat thyroid cell line FRTL-5 follicular Tg induced cathepsin H mRNA and protein expression, as well as cathepsin H enzyme activity. Double immunofluorescence staining showed that Tg endocytosis promoted cathepsin H translocalization into lysosomes where it co-localized with internalized Tg. These results suggest that cathepsin H is an active participant in lysosome-mediated pre-hormone degradation, and that follicular Tg stimulates mobilization of pre-hormones by activating cathepsin H-associated proteolysis pathways. - Highlights: • Follicular Tg increases cathepsin H mRNA and protein levels in rat thyroid cells. • Follicular Tg increases cathepsin H enzyme activity in rat thyroid cells. • After Tg stimulation cathepsin H co-localizes to lysosomes with follicular Tg. • Cathepsin H promotes hormone secretion by lysosome-mediated mechanisms.« less

  10. Vaccine potential of recombinant cathepsinL1G against Fasciola gigantica in mice.

    PubMed

    Changklungmoa, Narin; Phoinok, Natthacha; Yencham, Chonthicha; Sobhon, Prasert; Kueakhai, Pornanan

    2016-08-15

    In this study, we characterized and investigated the vaccine potential of FgCatL1G against Fasciola gigantica infection in mice. Recombinant mature FgCatL1G (rmFgCatL1G) was expressed in Escherichia coli BL21. The vaccination was performed in Imprinting Control Region (ICR) mice (n=10) by subcutaneous injection with 50μg of rmFgCatL1G combined with Freund's adjuvant. Two weeks after the second boost, mice were infected with 15 metacercariae by the oral route. The percents of protection of rmFgCatL1G vaccine were estimated to be 56.5% and 58.3% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. Antibodies in the immune sera of vaccinated mice were shown by immunoblot to react with the native FgCatL1s in the extract of all stages of parasites and rmFgCatL1H, recombinant pro - FgCatL1 (rpFgCatL1). By immunohistochemistry, the immune sera also reacted with FgCatL1s in the caecal epithelial cells of the parasites. The levels of IgG1 and IgG2a in the immune sera, which are indicative of Th2 and Th1 immune responses, were also increased with IgG1 predominating. The levels of serum glutamic oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) in rmFgCatL1G-immunized group showed no significant difference from the control groups, but pathological lesions of livers in rmFgCatL1G-immunized group showed significant decrease when compared to the control groups. This study indicates that rmFgCatL1G has a vaccine potential against F. gigantica in mice, and this potential will be tested in larger livestock animals. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. JiangTang XiaoKe granule attenuates cathepsin K expression and improves IGF-1 expression in the bone of high fat diet induced KK-Ay diabetic mice.

    PubMed

    Guo, Yubo; Wang, Lili; Ma, Rufeng; Mu, Qianqian; Yu, Na; Zhang, Yi; Tang, Yuqing; Li, Yu; Jiang, Guangjian; Zhao, Dandan; Mo, Fangfang; Gao, Sihua; Yang, Meijuan; Kan, Feifei; Ma, Qun; Fu, Min; Zhang, Dongwei

    2016-03-01

    To assess the beneficial effects of JiangTang XiaoKe (JTXK) granule on the bone metabolism in high fat diet (HFD) fed KK-Ay diabetic mice. The KK-Ay mice were used as a diabetic model, while C57BL/6 mice were utilized as the non-diabetic control. The left tibia was used for determining bone mineral density (BMD) and bone ash coefficient. The HE and alizarin red S staining of femur were employed to evaluate bone pathology and calcium deposition. The expressions of alkaline phosphatase (ALP), insulin growth factor 1 (IGF-1) and cathepsin K were assessed by western blotting and immunohistochemical staining. JTXK granule significantly improved the bone ash coefficient, the distribution of trabecular bone and the calcification nodules deposition in KK-Ay mice with diabetes. IGF-1 and ALP expressions were significantly decreased, and cathepsin K expression was dramatically increased in the HFD fed KK-Ay diabetic model mice, which can be reversed by JTXK granule treatment. JTXK granule at medium or high dosage was more efficient in improving diabetic bone quality when compared with that in mice with a low dosage. However, the BMD values in each group of KK-Ay diabetic mice were not significantly different. We demonstrate that cathepsin K expression is increased in KK-Ay diabetic mouse model. JTXK granule treatment inhibits osteoclastic bone resorption and promotes the new bone formation by decreasing cathepsin K activity and increasing IGF-1 and ALP levels. These changes may contribute to the increase of bone strength and thus reducing the risk of bone fractures. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Pyrazole-based cathepsin S inhibitors with arylalkynes as P1 binding elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ameriks, Michael K.; Axe, Frank U.; Bembenek, Scott D.

    A crystal structure of 1 bound to a Cys25Ser mutant of cathepsin S helped to elucidate the binding mode of a previously disclosed series of pyrazole-based CatS inhibitors and facilitated the design of a new class of arylalkyne analogs. Optimization of the alkyne and tetrahydropyridine portions of the pharmacophore provided potent CatS inhibitors (IC{sub 50} = 40-300 nM), and an X-ray structure of 32 revealed that the arylalkyne moiety binds in the S1 pocket of the enzyme.

  13. Deoxycholic Acid-Mediated Sphingosine-1-Phosphate Receptor 2 Signaling Exacerbates DSS-Induced Colitis through Promoting Cathepsin B Release.

    PubMed

    Zhao, Shengnan; Gong, Zizhen; Du, Xixi; Tian, Chunyan; Wang, Lingyu; Zhou, Jiefei; Xu, Congfeng; Chen, Yingwei; Cai, Wei; Wu, Jin

    2018-01-01

    We recently have proved that excessive fecal DCA caused by high-fat diet may serve as an endogenous danger-associated molecular pattern to activate NLRP3 inflammasome and thus contributes to the development of inflammatory bowel disease (IBD). Moreover, the effect of DCA on inflammasome activation is mainly mediated through bile acid receptor sphingosine-1-phosphate receptor 2 (S1PR2); however, the intermediate process remains unclear. Here, we sought to explore the detailed molecular mechanism involved and examine the effect of S1PR2 blockage in a colitis mouse model. In this study, we found that DCA could dose dependently upregulate S1PR2 expression. Meanwhile, DCA-induced NLRP3 inflammasome activation is at least partially achieved through stimulating extracellular regulated protein kinases (ERK) signaling pathway downstream of S1PR2 followed by promoting of lysosomal cathepsin B release. DCA enema significantly aggravated DSS-induced colitis in mice and S1PR2 inhibitor as well as inflammasome inhibition by cathepsin B antagonist substantially reducing the mature IL-1 β production and alleviated colonic inflammation superimposed by DCA. Therefore, our findings suggest that S1PR2/ERK1/2/cathepsin B signaling plays a critical role in triggering inflammasome activation by DCA and S1PR2 may represent a new potential therapeutic target for the management of intestinal inflammation in individuals on a high-fat diet.

  14. Gene profiling of cathepsin K deficiency in atherogenesis: profibrotic but lipogenic.

    PubMed

    Lutgens, S P M; Kisters, N; Lutgens, E; van Haaften, R I M; Evelo, C T A; de Winther, M P J; Saftig, P; Daemen, M J A P; Heeneman, S; Cleutjens, K B J M

    2006-11-01

    Recently, we showed that cathepsin K deficiency reduces atherosclerotic plaque progression, induces plaque fibrosis, but aggravates macrophage foam cell formation in the ApoE -/- mouse. To obtain more insight into the molecular mechanisms by which cathepsin K disruption evokes the observed phenotypic changes, we used microarray analysis for gene expression profiling of aortic arches of CatK -/-/ApoE -/- and ApoE -/- mice on a mouse oligo microarray. Out of 20 280 reporters, 444 were significantly differentially expressed (p-value of < 0.05, fold change of > or = 1.4 or < or = - 1.4, and intensity value of > 2.5 times background in at least one channel). Ingenuity Pathway Analysis and GenMAPP revealed upregulation of genes involved in lipid uptake, trafficking, and intracellular storage, including caveolin - 1, - 2, - 3 and CD36, and profibrotic genes involved in transforming growth factor beta (TGFbeta) signalling, including TGFbeta2, latent TGFbeta binding protein-1 (LTBP1), and secreted protein, acidic and rich in cysteine (SPARC), in CatK -/-/ApoE -/- mice. Differential gene expression was confirmed at the mRNA and protein levels. In vitro modified low density lipoprotein (LDL) uptake assays, using bone marrow derived macrophages preincubated with caveolae and scavenger receptor inhibitors, confirmed the importance of caveolins and CD36 in increasing modified LDL uptake in the absence of cathepsin K. In conclusion, we suggest that cathepsin K deficiency alters plaque phenotype not only by decreasing proteolytic activity, but also by stimulating TGFbeta signalling. Besides this profibrotic effect, cathepsin K deficiency has a lipogenic effect owing to increased lipid uptake mediated by CD36 and caveolins. Copyright 2006 Pathological Society of Great Britain and Ireland.

  15. Overexpression of cystatin C in synovium does not reduce synovitis or cartilage degradation in established osteoarthritis.

    PubMed

    Kyostio-Moore, Sirkka; Piraino, Susan; Berthelette, Patricia; Moran, Nance; Serriello, Joseph; Bendele, Alison; Sookdeo, Cathleen; Nambiar, Bindu; Ewing, Patty; Armentano, Donna; Matthews, Gloria L

    2015-01-16

    Cathepsin K (catK) expression is increased in cartilage, bone and synovium during osteoarthritis (OA). To study the role of catK expression and elevated cathepsin activity in the synovium on cartilage destruction in established OA, we overexpressed cystatin C (cysC), a natural cysteine protease inhibitor, in the synovium of rabbit OA joints. The ability of cysC to inhibit activity of cathepsins in rabbit OA synovium lysates was tested in vitro using protease activity assay. In vivo, the tissue localization of recombinant adeno-associated virus (rAAV) with LacZ gene after intra-articular injection was determined by β-galactosidase staining of rabbit joints 4 weeks later. To inhibit cathepsin activity in the synovium, a rAAV2-encoding cysC was delivered intra-articularly into rabbit joints 4 weeks after OA was induced by anterior cruciate ligament transection (ACLT). Seven weeks postinjection, endogenous catK and cysC levels as well as the vector-derived cysC expression in the synovium of normal and OA joints were examined by RNA quantification. Synovial cathepsin activity and catK, catB and catL protein levels were determined by activity and Western blot analyses, respectively. Synovitis and cartilage degradation were evaluated by histopathological scoring. In vitro, the ability of cysC to efficiently inhibit activity of purified catK and OA-induced cathepsins in rabbit synovial lysates was demonstrated. In vivo, the intra-articular delivery of rAAV2/LacZ showed transduction of mostly synovium. Induction of OA in rabbit joints resulted in fourfold increase in catK mRNA compared to sham controls while no change was detected in endogenous cysC mRNA levels in the synovium. Protein levels for catK, catB and catL were also increased in the synovium with a concomitant fourfold increase in cathepsin activity. Joints treated with rAAV2/cysC showed both detection of vector genomes and vector-derived cysC transcripts in the synovium. Production of functional cysC by the

  16. Trichomonas vaginalis cathepsin D-like aspartic proteinase (Tv-CatD) is positively regulated by glucose and degrades human hemoglobin.

    PubMed

    Mancilla-Olea, Maria Inocente; Ortega-López, Jaime; Figueroa-Angulo, Elisa E; Avila-González, Leticia; Cárdenas-Guerra, Rosa Elena; Miranda-Ozuna, Jesús F T; González-Robles, Arturo; Hernández-García, Mar Saraí; Sánchez-Ayala, Lizbeth; Arroyo, Rossana

    2018-04-01

    Trichomonas vaginalis genome encodes ∼440 proteases, six of which are aspartic proteases (APs). However, only one belongs to a clan AA (EC 3.4.23.5), family A1 (pepsin A), cathepsin D-like protease. This AP is encoded by an 1113-bp gene (tv-catd), which translates into a 370-aa residues zymogen of 40.7-kDa and a theoretical pI of 4.6, generating a ∼35 kDa active enzyme after maturation (Tv-CatD). The goal of this study was to identify and analyze the effect of glucose on the expression of Tv-CatD at the transcript and protein levels, subcellular localization, and proteolytic activity. The qRT-PCR assays showed a ∼2-fold increase in tv-catd mRNA under high-glucose (HG) conditions compared to glucose-restriction (GR) conditions. We amplified, cloned, and expressed the tv-catd gene, and purified the recombinant precursor enzyme (Tv-CatDr) to generate a polyclonal antibody (anti-Tv-CatDr). Western blot (WB) and immunolocalization assays showed that glucose increases the amount of Tv-CatD in different subcellular localizations and in in vitro secretions. Additionally, Tv-CatD proteolytic activity was detected in protease-resistant extracts (PREs) using a synthetic fluorogenic peptide specific for cathepsin D/E APs at different pHs and in the presence of AP inhibitors. In a two-dimensional (2-DE) WB analysis of a PRE from parasites grown under GR and HG conditions, an anti-Tv-CatDr antibody detected a 35-kDa protein spot at pI 5.0 identified as the mature Tv-CatD form by mass spectrometry that showed proteolytic activity in 2-DE zymograms copolymerized with hemoglobin under both glucose conditions. Thus, Tv-CatD could be involved in trichomonal hemolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Characterization of cathepsin B gene from orange-spotted grouper, Epinephelus coioides involved in SGIV infection.

    PubMed

    Wei, Shina; Huang, Youhua; Huang, Xiaohong; Cai, Jia; Yan, Yang; Guo, Chuanyu; Qin, Qiwei

    2014-01-01

    The lysosomal cysteine protease cathepsin B of papain family is a key regulator and signaling molecule that involves in various biological processes, such as the regulation of apoptosis and activation of virus. In the present study, cathepsin B gene (Ec-CB) was cloned and characterized from orange-spotted grouper, Epinephelus coioides. The full-length Ec-CB cDNA was composed of 1918 bp and encoded a polypeptide of 330 amino acids with higher identities to cathepsin B of teleosts and mammalians. Ec-CB possessed typical cathepsin B structural features including an N-terminal signal peptide, the propeptide region and the cysteine protease domain which were conserved in other cathepsin B sequences. Phylogenetic analysis revealed that Ec-CB was most closely related to Lutjanus argentimaculatus. RT-PCR analysis showed that Ec-CB transcript was expressed in all the examined tissues which abundant in spleen, kidney and gill. After challenged with Singapore grouper iridovirus (SGIV) stimulation, the mRNA expression of cathepsin B in E. coioides was up-regulated at 24 h post-infection. Subcellular localization analysis revealed that Ec-CB was distributed predominantly in the cytoplasm. When the fish cells (GS or FHM) were treated with the cathepsin B specific inhibitor CA-074Me, the occurrence of CPE induced by SGIV was delayed, and the viral gene transcription was significantly inhibited. Additionally, SGIV-induced typical apoptosis was also inhibited by CA-074Me in FHM cells. Taken together, our results demonstrated that the Ec-CB might play a functional role in SGIV infection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Estrogen receptors and cathepsin D in human thyroid tissue.

    PubMed

    Métayé, T; Millet, C; Kraimps, J L; Aubouin, B; Barbier, J; Bégon, F

    1993-09-15

    To investigate the significance of estrogen receptors (ER) in the pathogenesis of thyroid dysplasia, the authors analyzed, by analogy with breast cancers, ER and three estrogen-regulated proteins: progesterone receptor (PR), cathepsin D, and pS2 protein, in cytosols of 42 human thyroid tissues. ER and PR were measured by an immunoenzymatic assay and cathepsin D and pS2 by an immunoradiometric assay. Tissue specimens included 7 normal tissues, 6 benign nodules, 8 toxic adenomas, 7 from patients with Graves disease, and 14 carcinomas. ER was present at very low concentrations, with no statistical difference between neoplastic and nonneoplastic tissues. The mean levels of cathepsin D, expressed as pmol/mg protein minus thyroglobulin, were higher in the 14 carcinomas (P = 0.0003), the 7 specimens from patients with Graves disease (P = 0.006), and the 8 toxic adenomas (P = 0.04) than in the 7 normal thyroid tissues. A significant difference also was observed between the carcinomas (P = 0.003) and six benign nodules. Compared to TNM parameters, cathepsin D concentrations correlated with tumor size: higher cathepsin D levels were found in pT4 than in pT2 and pT3 carcinomas. All the tissues tested were negative for PR and pS2 protein. The results clearly indicate a significant difference between neoplastic and normal thyroid tissue in terms of the amount of cathepsin D, but not that of ER. This suggests that cathepsin D probably is not regulated by estrogen but simply is a marker of protease activity during invasion by thyroid carcinomas.

  19. Broad Cross-Protection Is Induced in Preclinical Models by a Human Papillomavirus Vaccine Composed of L1/L2 Chimeric Virus-Like Particles

    PubMed Central

    Boxus, Mathieu; Fochesato, Michel; Miseur, Agnès; Mertens, Emmanuel; Dendouga, Najoua; Brendle, Sarah; Balogh, Karla K.; Christensen, Neil D.

    2016-01-01

    ABSTRACT At least 15 high-risk human papillomaviruses (HPVs) are linked to anogenital preneoplastic lesions and cancer. Currently, there are three licensed prophylactic HPV vaccines based on virus-like particles (VLPs) of the L1 major capsid protein from HPV-2, -4, or -9, including the AS04-adjuvanted HPV-16/18 L1 vaccine. The L2 minor capsid protein contains HPV-neutralizing epitopes that are well conserved across numerous high-risk HPVs. Therefore, the objective of our study was to assess the capacity to broaden vaccine-mediated protection using AS04-adjuvanted vaccines based on VLP chimeras of L1 with one or two L2 epitopes. Several chimeric VLPs were constructed by inserting L2 epitopes within the DE loop and/or C terminus of L1. Based on the shape, yield, size, and immunogenicity, one of seven chimeras was selected for further evaluation in mouse and rabbit challenge models. The chimeric VLP consisted of HPV-18 L1 with insertions of HPV-33 L2 (amino acid residues 17 to 36; L1 DE loop) and HPV-58 L2 (amino acid residues 56 to 75; L1 C terminus). This chimeric L1/L2 VLP vaccine induced persistent immune responses and protected against all of the different HPVs evaluated (HPV-6, -11, -16, -31, -35, -39, -45, -58, and -59 as pseudovirions or quasivirions) in both mouse and rabbit challenge models. The degree and breadth of protection in the rabbit were further enhanced when the chimeric L1/L2 VLP was formulated with the L1 VLPs from the HPV-16/18 L1 vaccine. Therefore, the novel HPV-18 L1/L2 chimeric VLP (alone or in combination with HPV-16 and HPV-18 L1 VLPs) formulated with AS04 has the potential to provide broad protective efficacy in human subjects. IMPORTANCE From evaluations in human papillomavirus (HPV) protection models in rabbits and mice, our study has identified a prophylactic vaccine with the potential to target a wide range of HPVs linked to anogenital cancer. The three currently licensed vaccines contain virus-like particles (VLPs) of the L1 major

  20. Effect of SI-591, a new class of cathepsin K inhibitor with peptidomimetic structure, on bone metabolism in vitro and in vivo.

    PubMed

    Fujii, Toshiaki; Ishikawa, Mizuho; Kubo, Akiko; Tanaka, Yoshitaka

    2015-12-01

    SI-591[N-[1-[[[(1S)-3-[[(3S)-hexahydro-2-oxo-1H-azepin-3-yl]amino]-1-(1-methylethyl)-2,3-dioxopropyl]amino]carbonyl]cyclohexyl]-2-furancarboxamide] is an orally bioavailable compound that was synthesized as one of several unique peptidomimetic compounds without a basic group. This compound was found to have the ability to inhibit cathepsin K, a lysosomal cysteine protease. Cathepsin K is known to be expressed in osteoclasts and involved in bone loss processes. In this study, SI-591 was shown to inhibit the activity of various purified cathepsin molecules at nanomolar concentrations but had high selectivity for cathepsin K over other subtypes including B and L. SI-591 also decreased the level of CTX-I, a bone resorption marker, which was released from osteoclasts in vitro in a dose-dependent manner. The mobilization of calcium from the bones to the blood stream is known to increase in rats fed with a low calcium diet; SI-591 inhibited this increase in serum calcium level at an oral dose of 3mg/kg. Furthermore, SI-591 significantly decreased the level of CTX-I and DPD, bone resorption markers, at oral doses of 10mg/kg or less in ovariectomized rats, while it did not affect the level of BGP, a bone formation marker. In addition, SI-591 prevented bone mineral density loss in the lumber vertebrae and femurs in ovariectomized rats. These results suggest that SI-591 inhibits bone resorption without affecting osteoblast maturation. Therefore, SI-591, a novel cathepsin K inhibitor, could be a promising agent for the treatment of postmenopausal osteoporosis. Copyright © 2015. Published by Elsevier Inc.

  1. Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)*

    PubMed Central

    Zhou, Nan; Pan, Ting; Zhang, Junsong; Li, Qianwen; Zhang, Xue; Bai, Chuan; Huang, Feng; Peng, Tao; Zhang, Jianhua; Liu, Chao; Tao, Liang; Zhang, Hui

    2016-01-01

    Ebola virus infection can cause severe hemorrhagic fever with a high mortality in humans. The outbreaks of Ebola viruses in 2014 represented the most serious Ebola epidemics in history and greatly threatened public health worldwide. The development of additional effective anti-Ebola therapeutic agents is therefore quite urgent. In this study, via high throughput screening of Food and Drug Administration-approved drugs, we identified that teicoplanin, a glycopeptide antibiotic, potently prevents the entry of Ebola envelope pseudotyped viruses into the cytoplasm. Furthermore, teicoplanin also has an inhibitory effect on transcription- and replication-competent virus-like particles, with an IC50 as low as 330 nm. Comparative analysis further demonstrated that teicoplanin is able to block the entry of Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) envelope pseudotyped viruses as well. Teicoplanin derivatives such as dalbavancin, oritavancin, and telavancin can also inhibit the entry of Ebola, MERS, and SARS viruses. Mechanistic studies showed that teicoplanin blocks Ebola virus entry by specifically inhibiting the activity of cathepsin L, opening a novel avenue for the development of additional glycopeptides as potential inhibitors of cathepsin L-dependent viruses. Notably, given that teicoplanin has routinely been used in the clinic with low toxicity, our work provides a promising prospect for the prophylaxis and treatment of Ebola, MERS, and SARS virus infection. PMID:26953343

  2. Stress-resistant Translation of Cathepsin L mRNA in Breast Cancer Progression*

    PubMed Central

    Tholen, Martina; Wolanski, Julia; Stolze, Britta; Chiabudini, Marco; Gajda, Mieczyslaw; Bronsert, Peter; Stickeler, Elmar; Rospert, Sabine; Reinheckel, Thomas

    2015-01-01

    The cysteine protease cathepsin L (CTSL) is often thought to act as a tumor promoter by enhancing tumor progression and metastasis. This goes along with increased CTSL activity in various tumor entities; however, the mechanisms leading to high CTSL levels are incompletely understood. With the help of the polyoma middle T oncogene driven breast cancer mouse model expressing a human CTSL genomic transgene, we show that CTSL indeed promotes breast cancer metastasis to the lung. During tumor formation and progression high expression levels of CTSL are maintained by enduring translation of CTSL mRNA. Interestingly, human breast cancer specimens expressed the same pattern of 5′ untranslated region (UTR) splice variants as the transgenic mice and the human cancer cell line MDA-MB 321. By polyribosome profiling of tumor tissues and human breast cancer cells, we observe an intrinsic resistance of CTSL to stress-induced shutdown of translation. This ability can be attributed to all 5′ UTR variants of CTSL and is not dependent on a previously described internal ribosomal entry site motif. In conclusion, we provide in vivo functional evidence for overexpressed CTSL as a promoter of lung metastasis, whereas high CTSL levels are maintained during tumor progression due to stress-resistant mRNA translation. PMID:25957406

  3. Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases

    PubMed Central

    Turk, Dušan; Janjić, Vojko; Štern, Igor; Podobnik, Marjetka; Lamba, Doriano; Weis Dahl, Søren; Lauritzen, Connie; Pedersen, John; Turk, Vito; Turk, Boris

    2001-01-01

    Dipeptidyl peptidase I (DPPI) or cathepsin C is the physiological activator of groups of serine proteases from immune and inflammatory cells vital for defense of an organism. The structure presented shows how an additional domain transforms the framework of a papain-like endopeptidase into a robust oligomeric protease-processing enzyme. The tetrahedral arrangement of the active sites exposed to solvent allows approach of proteins in their native state; the massive body of the exclusion domain fastened within the tetrahedral framework excludes approach of a polypeptide chain apart from its termini; and the carboxylic group of Asp1 positions the N-terminal amino group of the substrate. Based on a structural comparison and interactions within the active site cleft, it is suggested that the exclusion domain originates from a metallo-protease inhibitor. The location of missense mutations, characterized in people suffering from Haim–Munk and Papillon–Lefevre syndromes, suggests how they disrupt the fold and function of the enzyme. PMID:11726493

  4. Cathepsin G-Dependent Modulation of Platelet Thrombus Formation In Vivo by Blood Neutrophils

    PubMed Central

    Faraday, Nauder; Schunke, Kathryn; Saleem, Sofiyan; Fu, Juan; Wang, Bing; Zhang, Jian; Morrell, Craig; Dore, Sylvain

    2013-01-01

    Neutrophils are consistently associated with arterial thrombotic morbidity in human clinical studies but the causal basis for this association is unclear. We tested the hypothesis that neutrophils modulate platelet activation and thrombus formation in vivo in a cathepsin G-dependent manner. Neutrophils enhanced aggregation of human platelets in vitro in dose-dependent fashion and this effect was diminished by pharmacologic inhibition of cathepsin G activity and knockdown of cathepsin G expression. Tail bleeding time in the mouse was prolonged by a cathepsin G inhibitor and in cathepsin G knockout mice, and formation of neutrophil-platelet conjugates in blood that was shed from transected tails was reduced in the absence of cathepsin G. Bleeding time was highly correlated with blood neutrophil count in wildtype but not cathepsin G deficient mice. In the presence of elevated blood neutrophil counts, the anti-thrombotic effect of cathepsin G inhibition was greater than that of aspirin and additive to it when administered in combination. Both pharmacologic inhibition of cathepsin G and its congenital absence prolonged the time for platelet thrombus to form in ferric chloride-injured mouse mesenteric arterioles. In a vaso-occlusive model of ischemic stroke, inhibition of cathepsin G and its congenital absence improved cerebral blood flow, reduced histologic brain injury, and improved neurobehavioral outcome. These experiments demonstrate that neutrophil cathepsin G is a physiologic modulator of platelet thrombus formation in vivo and has potential as a target for novel anti-thrombotic therapies. PMID:23940756

  5. Integrative function of adrenaline receptors for glucagon-like peptide-1 exocytosis in enteroendocrine L cell line GLUTag.

    PubMed

    Harada, Kazuki; Kitaguchi, Tetsuya; Tsuboi, Takashi

    2015-05-15

    Adrenaline reacts with three types of adrenergic receptors, α1, α2 and β-adrenergic receptors (ARs), inducing many physiological events including exocytosis. Although adrenaline has been shown to induce glucagon-like peptide-1 (GLP-1) secretion from intestinal L cells, the precise molecular mechanism by which adrenaline regulates GLP-1 secretion remains unknown. Here we show by live cell imaging that all types of adrenergic receptors are stimulated by adrenaline in enteroendocrine L cell line GLUTag cells and are involved in GLP-1 exocytosis. We performed RT-PCR analysis and found that α1B-, α2A-, α2B-, and β1-ARs were expressed in GLUTag cells. Application of adrenaline induced a significant increase of intracellular Ca(2+) and cAMP concentration ([Ca(2+)]i and [cAMP]i, respectively), and GLP-1 exocytosis in GLUTag cells. Blockade of α1-AR inhibited adrenaline-induced [Ca(2+)]i increase and exocytosis but not [cAMP]i increase, while blockade of β1-AR inhibited adrenaline-induced [cAMP]i increase and exocytosis but not [Ca(2+)]i increase. Furthermore, overexpression of α2A-AR suppressed the adrenaline-induced [cAMP]i increase and exocytosis. These results suggest that the fine-turning of GLP-1 secretion from enteroendocrine L cells is established by the balance between α1-, α2-, and β-ARs activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Human Cathepsin V Protease Participates in Production of Enkephalin and NPY Neuropeptide Neurotransmitters*

    PubMed Central

    Funkelstein, Lydiane; Lu, W. Douglas; Koch, Britta; Mosier, Charles; Toneff, Thomas; Taupenot, Laurent; O'Connor, Daniel T.; Reinheckel, Thomas; Peters, Christoph; Hook, Vivian

    2012-01-01

    Proteases are required for processing precursors into active neuropeptides that function as neurotransmitters for cell-cell communication. This study demonstrates the novel function of human cathepsin V protease for producing the neuropeptides enkephalin and neuropeptide Y (NPY). Cathepsin V is a human-specific cysteine protease gene. Findings here show that expression of cathepsin V in neuroendocrine PC12 cells and human neuronal SK-N-MC cells results in production of (Met)enkephalin from proenkephalin. Gene silencing of cathepsin V by siRNA in human SK-N-MC cells results in reduction of (Met)enkephalin by more than 80%, illustrating the prominent role of cathepsin V for neuropeptide production. In vitro processing of proenkephalin by cathepsin V occurs at dibasic residue sites to generate enkephalin-containing peptides and an ∼24-kDa intermediate present in human brain. Cathepsin V is present in human brain cortex and hippocampus where enkephalin and NPY are produced and is present in purified human neuropeptide secretory vesicles. Colocalization of cathepsin V with enkephalin and NPY in secretory vesicles of human neuroblastoma cells was illustrated by confocal microscopy. Furthermore, expression of cathepsin V with proNPY results in NPY production. These findings indicate the unique function of human cathepsin V for producing enkephalin and NPY neuropeptides required for neurotransmission in health and neurological diseases. PMID:22393040

  7. Keeping data continuous when analyzing the prognostic impact of a tumor marker: an example with cathepsin D in breast cancer.

    PubMed

    Bossard, N; Descotes, F; Bremond, A G; Bobin, Y; De Saint Hilaire, P; Golfier, F; Awada, A; Mathevet, P M; Berrerd, L; Barbier, Y; Estève, J

    2003-11-01

    The prognostic value of cathepsin D has been recently recognized, but as many quantitative tumor markers, its clinical use remains unclear partly because of methodological issues in defining cut-off values. Guidelines have been proposed for analyzing quantitative prognostic factors, underlining the need for keeping data continuous, instead of categorizing them. Flexible approaches, parametric and non-parametric, have been proposed in order to improve the knowledge of the functional form relating a continuous factor to the risk. We studied the prognostic value of cathepsin D in a retrospective hospital cohort of 771 patients with breast cancer, and focused our overall survival analysis, based on the Cox regression, on two flexible approaches: smoothing splines and fractional polynomials. We also determined a cut-off value from the maximum likelihood estimate of a threshold model. These different approaches complemented each other for (1) identifying the functional form relating cathepsin D to the risk, and obtaining a cut-off value and (2) optimizing the adjustment for complex covariate like age at diagnosis in the final multivariate Cox model. We found a significant increase in the death rate, reaching 70% with a doubling of the level of cathepsin D, after the threshold of 37.5 pmol mg(-1). The proper prognostic impact of this marker could be confirmed and a methodology providing appropriate ways to use markers in clinical practice was proposed.

  8. Pharmacogenetic Features of Inhibitors to Cathepsin B that Improve Memory Deficit and Reduce Beta-Amyloid Related to Alzheimer’s Disease

    PubMed Central

    Hook, Vivian; Hook, Gregory; Kindy, Mark

    2015-01-01

    Beta-amyloid (Aβ) in brain is a major factor involved in Alzheimer’s disease (AD) that results in severe memory deficit. Our recent studies demonstrate pharmacogenetic differences in the effects of inhibitors of cathepsin B to improve memory and reduce Aβ in different mouse models of AD. The inhibitors improve memory and reduce brain Aβ in mice expressing the wild-type (WT) β-secretase site of human APP, expressed in most AD patients. However, these inhibitors have no effect in mice expressing the rare Swedish (Swe) mutant APP. Knockout of the cathepsin B decreased brain Aβ in mice expressing WT APP, validating cathepsin B as the target. The specificity of cathepsin B to cleave the WT β-secretase site, but not the Swe mutant site, of APP for Aβ production explains the distinct inhibitor responses in the different AD mouse models. In contrast to cathepsin B, the BACE1 β-secretase prefers to cleave the Swe mutant site. Discussion of BACE1 data in the field indicate that they do not preclude cathepsin B as also being a β-secretase. Cathepsin B and BACE1 may participate jointly as β-secretases. Significantly, the majority of AD patients express WT APP and, therefore, inhibitors of cathepsin B represent candidate drugs for AD. PMID:20536395

  9. Activation mechanism of erythrocyte cathepsin E. evidence for the occurrence of the membrane-associated active enzyme.

    PubMed

    Ueno, E; Sakai, H; Kato, Y; Yamamoto, K

    1989-06-01

    Activation of the erythrocyte cathepsin E located on the cytoplasmic surface of the membrane in a latent form was studied in stripped inside-out membrane vesicles prepared from human erythrocyte membranes. Incubation of the vesicles at 40 degrees C at pH 4 resulted in increased degradation of the membrane proteins, especially band 3. This proteolysis was selectively inhibited by the inclusion of pepstatin (isovaleryl-Val-Val-statyl-Ala-statine) or H 297 [Pro-Thr-Glu-Phe(CH2-NH)Nle-Arg-Leu] in the incubation mixtures, indicating that cathepsin E, as the only aspartic proteinase in erythrocytes, is responsible for the proteolysis. Two potential active-site-directed inhibitors of aspartic proteinases, pepstatin and H 297, were used to prove the occurrence of the membrane-associated active enzyme. To minimize potential errors arising from non-specific binding, the concentrations of the inhibitors used in the binding assay (pepstatin, 5 x 10(-8) M; H 297, 1 x 10(-5) M) were determined by calibration for purified and membrane-associated cathepsin E. The inhibition of the membrane-associated cathepsin E by each inhibitor, which showed the binding of the inhibitor to the activated enzyme, was temperature- and time-dependent. The binding of each inhibitor to the enzyme on the exposed surface of the membrane at pH 4 was highly specific, saturable, and reversible. The present study thus provides the first evidence that cathepsin E tightly bound to the membrane is converted to the active enzyme in the membrane-associated form, and suggests that this enzyme may be responsible for the degradation of band 3.

  10. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A Putative Target for Control of Citrus Huanglongbing.

    PubMed

    Ferrara, Taíse Fernanda da Silva; Schneider, Vanessa Karine; Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea

    2015-01-01

    Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control.

  11. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A Putative Target for Control of Citrus Huanglongbing

    PubMed Central

    Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea

    2015-01-01

    Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (K m = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (K m = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control. PMID:26717484

  12. Identification of an IgG CDR sequence contributing to co-purification of the host cell protease cathepsin D.

    PubMed

    Bee, Jared S; Machiesky, LeeAnn M; Peng, Li; Jusino, Kristin C; Dickson, Matthew; Gill, Jeffrey; Johnson, Douglas; Lin, Hung-Yu; Miller, Kenneth; Heidbrink Thompson, Jenny; Remmele, Richard L

    2017-01-01

    Recombinant therapeutic monoclonal antibodies (mAbs) must be purified from host cell proteins (HCPs), DNA, and other impurities present in Chinese hamster ovary (CHO) cell culture media. HCPs can potentially result in adverse clinical responses in patients and, in specific cases, have caused degradation of the final mAb product. As reported previously, residual traces of cathepsin D caused particle formation in the final product of mAb-1. The current work was focused on identification of a primary sequence in mAb-1 responsible for the binding and consequent co-purification of trace levels of CHO cathepsin D. Surface plasmon resonance (SPR) was used to detect binding between immobilized CHO cathepsin D and a panel of mAbs. Out of 13 mAbs tested, only mAb-1 and mAb-6 bound to cathepsin D. An LYY motif in the HC CDR2 was common, yet unique, to only these two mAbs. Mutation of LYY to AAA eliminated binding of mAb-1 to cathepsin D providing confirmation that this sequence motif was involved in the binding to CHO cathepsin D. Interestingly, the binding between mAb-1 and cathepsin D was weaker than that of mAb-6, which may be related to the fact that two aspartic acid residues near the LYY motif in mAb-1 are replaced with neutral serine residues in mAb-6. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:140-145, 2017. © 2016 American Institute of Chemical Engineers.

  13. Cathepsin B Cleavage of vcMMAE-Based Antibody-Drug Conjugate Is Not Drug Location or Monoclonal Antibody Carrier Specific.

    PubMed

    Gikanga, Benson; Adeniji, Nia S; Patapoff, Thomas W; Chih, Hung-Wei; Yi, Li

    2016-04-20

    Antibody-drug conjugates (ADCs) require thorough characterization and understanding of product quality attributes. The framework of many ADCs comprises one molecule of antibody that is usually conjugated with multiple drug molecules at various locations. It is unknown whether the drug release rate from the ADC is dependent on drug location, and/or local environment, dictated by the sequence and structure of the antibody carrier. This study addresses these issues with valine-citrulline-monomethylauristatin E (vc-MMAE)-based ADC molecules conjugated at reduced disulfide bonds, by evaluating the cathepsin B catalyzed drug release rate of ADC molecules with different drug distributions or antibody carriers. MMAE drug release rates at different locations on ADC I were compared to evaluate the impact of drug location. No difference in rates was observed for drug released from the V(H), V(L), or C(H)2 domains of ADC I. Furthermore, four vc-MMAE ADC molecules were chosen as substrates for cathepsin B for evaluation of Michaelis-Menten parameters. There was no significant difference in K(M) or k(cat) values, suggesting that different sequences of the antibody carrier do not result in different drug release rates. Comparison between ADCs and small molecules containing vc-MMAE moieties as substrates for cathepsin B suggests that the presence of IgG1 antibody carrier, regardless of its bulkiness, does not impact drug release rate. Finally, a molecular dynamics simulation on ADC II revealed that the val-cit moiety at each of the eight possible conjugation sites was, on average, solvent accessible over 50% of its maximum solvent accessible surface area (SASA) during a 500 ns trajectory. Combined, these results suggest that the cathepsin cleavage sites for conjugated drugs are exposed enough for the enzyme to access and that the drug release rate is rather independent of drug location or monoclonal antibody carrier. Therefore, the distribution of drug conjugation at different

  14. Reduction of VLDL secretion decreases cholesterol excretion in niemann-pick C1-like 1 hepatic transgenic mice.

    PubMed

    Marshall, Stephanie M; Kelley, Kathryn L; Davis, Matthew A; Wilson, Martha D; McDaniel, Allison L; Lee, Richard G; Crooke, Rosanne M; Graham, Mark J; Rudel, Lawrence L; Brown, J Mark; Temel, Ryan E

    2014-01-01

    An effective way to reduce LDL cholesterol, the primary risk factor of atherosclerotic cardiovascular disease, is to increase cholesterol excretion from the body. Our group and others have recently found that cholesterol excretion can be facilitated by both hepatobiliary and transintestinal pathways. However, the lipoprotein that moves cholesterol through the plasma to the small intestine for transintestinal cholesterol efflux (TICE) is unknown. To test the hypothesis that hepatic very low-density lipoproteins (VLDL) support TICE, antisense oligonucleotides (ASO) were used to knockdown hepatic expression of microsomal triglyceride transfer protein (MTP), which is necessary for VLDL assembly. While maintained on a high cholesterol diet, Niemann-Pick C1-like 1 hepatic transgenic (L1Tg) mice, which predominantly excrete cholesterol via TICE, and wild type (WT) littermates were treated with control ASO or MTP ASO. In both WT and L1Tg mice, MTP ASO decreased VLDL triglyceride (TG) and cholesterol secretion. Regardless of treatment, L1Tg mice had reduced biliary cholesterol compared to WT mice. However, only L1Tg mice treated with MTP ASO had reduced fecal cholesterol excretion. Based upon these findings, we conclude that VLDL or a byproduct such as LDL can move cholesterol from the liver to the small intestine for TICE.

  15. Monoterpene limonene induces brown fat-like phenotype in 3T3-L1 white adipocytes.

    PubMed

    Lone, Jameel; Yun, Jong Won

    2016-05-15

    Several dietary compounds that are able to induce the brown fat-like phenotype in white adipocytes have been considered for treatment of obesity due to their ability to increase energy expenditure. Here, we report that limonene induces the brown fat-like phenotype in 3T3-L1 adipocytes by increasing expression of brown adipocyte-specific genes and proteins. Limonene-induced browning in white adipocytes was investigated by determining expression levels of brown fat-specific genes and proteins by real-time RT-PCR, immunoblot analysis, and immunocytochemical staining. Limonene enhanced mitochondrial biogenesis, as evidenced by increased mitochondrial content and immunofluorescent intensity. Limonene also significantly elevated protein levels of HSL, PLIN, p-AMPK, p-ACC, ACO, COX4, CPT1, and CYT C, suggesting its possible role in enhancement of lipolysis and lipid catabolism. Increased expression of PRDM16, UCP1, C/EBPβ, and other brown fat-specific markers by limonene was possibly mediated by activation of β3-adnergenic receptor (β3-AR), as inhibition of β3-AR inhibited up-regulation of brown fat-specific markers. Similarly, limonene-mediated activation of ERK and up-regulation of key brown adipocyte specific markers were eliminated by treatment with ERK antagonist. Taken together, these results suggest that limonene induces browning of 3T3-L1 adipocytes via activation of β3-AR and the ERK signaling pathway. In conclusion, our findings suggest that limonene plays a dual modulatory role in induction of the brown adipocyte-like phenotype as well as promotion of lipid metabolism and thus may have potential therapeutic implications for treatment of obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. GENETIC CATHEPSIN B DEFICIENCY REDUCES β-AMYLOID IN TRANSGENIC MICE EXPRESSING HUMAN WILD-TYPE AMYLOID PRECURSOR PROTEIN

    PubMed Central

    Hook, Vivian Y. H.; Kindy, Mark; Reinheckel, Thomas; Peters, Christoph; Hook, Gregory

    2009-01-01

    Neurotoxic β-amyloid (Aβ) peptides participate in Alzheimer’s disease (AD); therefore, reduction of Aβ generated from APP may provide a therapeutic approach for AD. Gene knockout studies in transgenic mice producing human Aβ may identify targets for reducing Aβ. This study shows that knockout of the cathepsin B gene in mice expressing human wild-type APP (hAPPwt) results in substantial decrease of Aβ40 and Aβ42 by 67% in brain, and decreases levels of the C-terminal β-secretase fragment (CTFβ) derived from APP. In contrast, knockout of cathepsin B in mice expressing hAPP with the rare Swedish (Swe) and Indiana (Ind) mutations had no effect on Aβ. The difference in reduction of Aβ in hAPPwt mice, but not in hAPPSwe/Ind mice, shows that the transgenic model can affect cathepsin B gene knockout results. Since most AD patients express hAPPwt, these data validate cathepsin B as a target for development of inhibitors to lower Aβ in AD. PMID:19501042

  17. Genetic cathepsin B deficiency reduces beta-amyloid in transgenic mice expressing human wild-type amyloid precursor protein.

    PubMed

    Hook, Vivian Y H; Kindy, Mark; Reinheckel, Thomas; Peters, Christoph; Hook, Gregory

    2009-08-21

    Neurotoxic beta-amyloid (Abeta) peptides participate in Alzheimer's disease (AD); therefore, reduction of Abeta generated from APP may provide a therapeutic approach for AD. Gene knockout studies in transgenic mice producing human Abeta may identify targets for reducing Abeta. This study shows that knockout of the cathepsin B gene in mice expressing human wild-type APP (hAPPwt) results in substantial decreases in brain Abeta40 and Abeta42 by 67% and decreases in levels of the C-terminal beta-secretase fragment (CTFbeta) derived from APP. In contrast, knockout of cathepsin B in mice expressing hAPP with the rare Swedish (Swe) and Indiana (Ind) mutations had no effect on Abeta. The difference in reduction of Abeta in hAPPwt mice, but not in hAPPSwe/Ind mice, shows that the transgenic model can affect cathepsin B gene knockout results. Since most AD patients express hAPPwt, these data validate cathepsin B as a target for development of inhibitors to lower Abeta in AD.

  18. Lycopene reduces cholesterol absorption through the downregulation of Niemann-Pick C1-like 1 in Caco-2 cells.

    PubMed

    Zou, Jun; Feng, Dan

    2015-11-01

    Elevated blood cholesterol is an important risk factor associated with atherosclerosis and coronary heart disease. Tomato lycopene has been found to have a hypocholesterolemic effect, and the effect was considered to be related to inhibition of cholesterol synthesis. However, since plasma cholesterol levels are also influenced by the absorption of cholesterol in the gut, the present study is to investigate whether lycopene affects cholesterol absorption in the intestinal Caco-2 cells. The Caco-2 cells were pretreated with lycopene at different concentrations for 24 h and then incubated with radioactive micellar cholesterol for 2 h. The absorption of radioactive cholesterol was quantified by liquid scintillation. The expression of Niemann-Pick C1-like 1 (NPC1L1) and liver X receptor α (LXRα) was analyzed by Western blot and qPCR. We found that lycopene dose dependently inhibited cholesterol absorption and the expression of NPC1L1 protein and NPC1L1 mRNA. The inhibitory effects of lycopene on cholesterol absorption and NPC1L1 expression could be prevented by blockade of the LXRα pathway. This study provides the first evidence that lycopene inhibits cholesterol absorption in the intestinal cells and this inhibitory effect of lycopene is mediated, at least in part, by LXRα-NPC1L1 signaling pathway. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The roles of MCP-1 and protein kinase C delta activation in human eosinophilic leukemia EoL-1 cells.

    PubMed

    Lee, Ji-Sook; Yang, Eun Ju; Kim, In Sik

    2009-12-01

    Idiopathic hypereosinophilc syndrome is a disorder associated with clonally eosinophilic proliferation. The importance of FIP1-like-1-platelet-derived growth factor receptor-alpha (FIP1L1-PDGFRA) in the pathogenesis and classification of HES has been recently reported. In this study, we investigated the contribution of monocyte chemoattractant protein-1 (MCP-1)/CCL2 to chemotactic activity and protein kinase C delta (PKC delta in the human eosinophilic leukemia cell line EoL-1. These cells express CCR2 protein among the CC chemokine receptors (CCR1-5). MCP-1 induces strong migration of EoL-1 cells and the chemotaxis signal in response to MCP-1 involves a G(i)/G(o) protein, phospholipase C (PLC), PKC delta, p38 MAPK and NF-kappaB. MCP-1 activates p38 MAPK via G(i)/G(o) protein, PLC and PKC delta cascade. MCP-1 also induces NF-kappaB translocation and the activation is inhibited by PKC delta activation. The increase in the basal expression and activity of PKC delta in EoL-1 cells, compared to normal eosinophils, inhibits apoptosis in EoL-1 cells. Anti-apoptotic mechanism of PKC delta is related to inhibition of caspase 3 and caspase 9, but not to FIP1L1-PDGFRA. PKC delta functions as an anti-apoptotic molecule, and is involved in EoL-1 cell movement stimulated by MCP-1. This study contributes to an understanding of MCP-1 in eosinophil biology and pathogenic mechanism of eosinophilic disorders.

  20. Circulating programmed death ligand-1 (cPD-L1) in non-small-cell lung cancer (NSCLC)

    PubMed Central

    Vecchiarelli, Silvia; Passiglia, Francesco; D’Incecco, Armida; Gallo, Marianna; De Luca, Antonella; Rossi, Elisa; D’Incà, Federica; Minuti, Gabriele; Landi, Lorenza; Bennati, Chiara; Spreafico, Michela; D’Arcangelo, Manolo; Mazza, Valentina; Normanno, Nicola; Cappuzzo, Federico

    2018-01-01

    Background This study aimed at investigating feasibility of programmed death ligand-1 (PD-L1) testing in plasma samples of advanced NSCLC patients receiving first-line treatment, assessing whether circulating (c)PD-L1 levels were modified by the therapy and whether baseline cPD-L1 levels were associated with patients’ clinical responses and survival outcome. Methods Peripheral blood samples were collected from 16 healthy volunteers and 56 newly diagnosed NSCLC patients before and at 12th week during the course of first-line therapy. The level of PD-L1 was measured in plasma samples using the human (PD-L1/CD274) ELISA kit (CUSABIO, MD, USA). The Mann Whitney test or Fisher’s test were used for comparisons. Survival analysis was performed using Kaplan Meyer method, providing median and p-value. Results Baseline median cPD-L1 was 42.21 pg/ml (range 12.00-143.49) in NSCLC patients and 37.81 pg/ml (range 9.73-90.21) in healthy control cohort (p = 0.78). Median cPD-L1 increased in patients treated with first-line chemotherapy (63.20 pg/ml vs 39.34 pg/ml; p = 0.002), with no changes in patients exposed to non-chemotherapy drugs (42.39 pg/ml vs 50.67 pg/ml; p = 0.398). Time to progression and overall survival were 4.4 vs 6.9 months (p = 0.062) and 8.8 vs 9.3 months (p = 0.216) in cPD-L1 positive vs cPD-L1 negative patients. Baseline cPD-L1 levels increased with the ascending number of metastatic sites, even if the association was not statistically significant (p = 0.063). Conclusions This study showed that cPD-L1 testing is feasible, with chemotherapy influencing PD-L1 plasma levels. The possibility of using such test for predicting or monitoring the effect of immunotherapy or combination of chemotherapy and immunotherapy warrant further investigations. PMID:29707129

  1. Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease

    PubMed Central

    1992-01-01

    Serum mannose-binding protein (MBP) is a C-type lectin that binds to terminal mannose and N-acetylglucosamine moieties present on surfaces of certain pathogens and activates the classical complement pathway. In the present study, we describe the mechanism underlying the activation triggered by MBP. The human serum MBP fraction was obtained by sequential affinity chromatography on mannan-Sepharose, anti-IgM- Sepharose and anti-MBP-Sepharose in the presence of calcium ions. This fraction contained a C1s-like serine protease as assessed by C4 consumption. The C1s-like serine protease, designated MBP-associated serine protease (MASP), was separated from MBP by rechromatography on anti-MBP-Sepharose in the presence of ethylenediaminetetraacetic acid. MASP exhibited both C4- and C2-consuming activities. The molecular mass of MASP was estimated to be 83 kD with two polypeptides of heavy (66 kD) and light (L) (31 kD) chains linked by disulfide bonds. The serine residue responsible for protease activity is located on the L chain. Reconstitution experiments using MASP and MBP revealed that combination of the two components restores C4- and C2-activating capacity on mannan. Based on analyses of molecular size, antigenicity, and 11 NH2- terminal amino acid sequences of the L chain, we conclude that MASP is a novel protein different from C1r or C1s. Our findings are not in accord with a proposed mechanism by which MBP utilizes the C1r2-C1s2 complex to initiate the classical complement pathway. PMID:1460414

  2. Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV).

    PubMed

    Zhou, Nan; Pan, Ting; Zhang, Junsong; Li, Qianwen; Zhang, Xue; Bai, Chuan; Huang, Feng; Peng, Tao; Zhang, Jianhua; Liu, Chao; Tao, Liang; Zhang, Hui

    2016-04-22

    Ebola virus infection can cause severe hemorrhagic fever with a high mortality in humans. The outbreaks of Ebola viruses in 2014 represented the most serious Ebola epidemics in history and greatly threatened public health worldwide. The development of additional effective anti-Ebola therapeutic agents is therefore quite urgent. In this study, via high throughput screening of Food and Drug Administration-approved drugs, we identified that teicoplanin, a glycopeptide antibiotic, potently prevents the entry of Ebola envelope pseudotyped viruses into the cytoplasm. Furthermore, teicoplanin also has an inhibitory effect on transcription- and replication-competent virus-like particles, with an IC50 as low as 330 nm Comparative analysis further demonstrated that teicoplanin is able to block the entry of Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) envelope pseudotyped viruses as well. Teicoplanin derivatives such as dalbavancin, oritavancin, and telavancin can also inhibit the entry of Ebola, MERS, and SARS viruses. Mechanistic studies showed that teicoplanin blocks Ebola virus entry by specifically inhibiting the activity of cathepsin L, opening a novel avenue for the development of additional glycopeptides as potential inhibitors of cathepsin L-dependent viruses. Notably, given that teicoplanin has routinely been used in the clinic with low toxicity, our work provides a promising prospect for the prophylaxis and treatment of Ebola, MERS, and SARS virus infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Cathepsin S-cleavable, multi-block HPMA copolymers for improved SPECT/CT imaging of pancreatic cancer.

    PubMed

    Fan, Wei; Shi, Wen; Zhang, Wenting; Jia, Yinnong; Zhou, Zhengyuan; Brusnahan, Susan K; Garrison, Jered C

    2016-10-01

    This work continues our efforts to improve the diagnostic and radiotherapeutic effectiveness of nanomedicine platforms by developing approaches to reduce the non-target accumulation of these agents. Herein, we developed multi-block HPMA copolymers with backbones that are susceptible to cleavage by cathepsin S, a protease that is abundantly expressed in tissues of the mononuclear phagocyte system (MPS). Specifically, a bis-thiol terminated HPMA telechelic copolymer containing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Three maleimide modified linkers with different sequences, including cathepsin S degradable oligopeptide, scramble oligopeptide and oligo ethylene glycol, were subsequently synthesized and used for the extension of the HPMA copolymers by thiol-maleimide click chemistry. All multi-block HPMA copolymers could be labeled by (177)Lu with high labeling efficiency and exhibited high serum stability. In vitro cleavage studies demonstrated highly selective and efficient cathepsin S mediated cleavage of the cathepsin S-susceptible multi-block HPMA copolymer. A modified multi-block HPMA copolymer series capable of Förster Resonance Energy Transfer (FRET) was utilized to investigate the rate of cleavage of the multi-block HPMA copolymers in monocyte-derived macrophages. Confocal imaging and flow cytometry studies revealed substantially higher rates of cleavage for the multi-block HPMA copolymers containing the cathepsin S-susceptible linker. The efficacy of the cathepsin S-cleavable multi-block HPMA copolymer was further examined using an in vivo model of pancreatic ductal adenocarcinoma. Based on the biodistribution and SPECT/CT studies, the copolymer extended with the cathepsin S susceptible linker exhibited significantly faster clearance and lower non-target retention without compromising tumor targeting. Overall, these results indicate that

  4. Autophagic-lysosomal dysregulation downstream of cathepsin B inactivation in human skin fibroblasts exposed to UVA

    PubMed Central

    Lamore, Sarah D.; Wondrak, Georg T.

    2014-01-01

    Recently, using 2D-DIGE proteomics we have identified cathepsin B as a novel target of UVA in human Hs27 skin fibroblasts. In response to chronic exposure to noncytotoxic doses of UVA (9.9 J/cm2, twice a week, 3 weeks), photooxidative impairment of cathepsin B enzymatic activity occurred with accumulation of autofluorescent aggregates colocalizing with lysosomes, an effect mimicked by pharmacological antagonism of cathepsin B using the selective inhibitor CA074Me. Here, we have further explored the mechanistic involvement of cathepsin B inactivation in UVA-induced autophagic-lysosomal alterations using autophagy-directed PCR expression array analysis as a discovery tool. Consistent with lysosomal expansion, UVA upregulated cellular protein levels of the lysosomal marker glycoprotein Lamp-1, and increased levels of the lipidated autophagosomal membrane constituent LC3-II were detected. UVA did not alter expression of beclin 1 (BECN1), an essential factor for initiation of autophagy, but upregulation of p62 (sequestosome 1, SQSTM1), a selective autophagy substrate, and α-synuclein (SNCA), an autophagic protein substrate and aggresome component, was observed at the mRNA and protein level. Moreover, UVA downregulated transglutaminase-2 (TGM2), an essential enzyme involved in autophagolysosome maturation. Strikingly, UVA effects on Lamp-1, LC3-II, beclin 1, p62, α-synuclein, and transglutaminase-2 were mimicked by CA074Me treatment. Taken together, our data suggest that UVA-induced autophagic-lysosomal alterations occur as a consequence of impaired autophagic flux downstream of cathepsin B inactivation, a novel molecular mechanism potentially involved in UVA-induced skin photodamage. PMID:21773629

  5. Tegument Glycoproteins and Cathepsins of Newly Excysted Juvenile Fasciola hepatica Carry Mannosidic and Paucimannosidic N-glycans

    PubMed Central

    Garcia-Campos, Andres; Cwiklinski, Krystyna; Dalton, John P.; Hokke, Cornelis H.; O’Neill, Sandra; Mulcahy, Grace

    2016-01-01

    Recently, the prevalence of Fasciola hepatica in some areas has increased considerably and the availability of a vaccine to protect livestock from infection would represent a major advance in tools available for controlling this disease. To date, most vaccine-target discovery research on this parasite has concentrated on proteomic and transcriptomic approaches whereas little work has been carried out on glycosylation. As the F. hepatica tegument (Teg) may contain glycans potentially relevant to vaccine development and the Newly Excysted Juvenile (NEJ) is the first lifecycle stage in contact with the definitive host, our work has focused on assessing the glycosylation of the NEJTeg and identifying the NEJTeg glycoprotein repertoire. After in vitro excystation, NEJ were fixed and NEJTeg was extracted. Matrix-assisted laser desorption ionisation-time of flight-mass spectrometry (MALDI-TOF-MS) analysis of released N-glycans revealed that oligomannose and core-fucosylated truncated N-glycans were the most dominant glycan types. By lectin binding studies these glycans were identified mainly on the NEJ surface, together with the oral and ventral suckers. NEJTeg glycoproteins were affinity purified after targeted biotinylation of the glycans and identified using liquid chromatography and tandem mass spectrometry (LC-MS/MS). From the total set of proteins previously identified in NEJTeg, eighteen were also detected in the glycosylated fraction, including the F. hepatica Cathepsin B3 (FhCB3) and two of the Cathepsin L3 (FhCL3) proteins, among others. To confirm glycosylation of cathepsins, analysis at the glycopeptide level by LC-ESI-ion-trap-MS/MS with collision-induced dissociation (CID) and electron-transfer dissociation (ETD) was carried out. We established that cathepsin B1 (FhCB1) on position N80, and FhCL3 (BN1106_s10139B000014, scaffold10139) on position N153, carry unusual paucimannosidic Man2GlcNAc2 glycans. To our knowledge, this is the first description of F

  6. Gene trapping in differentiating cell lines: regulation of the lysosomal protease cathepsin B in skeletal myoblast growth and fusion.

    PubMed

    Gogos, J A; Thompson, R; Lowry, W; Sloane, B F; Weintraub, H; Horwitz, M

    1996-08-01

    To identify genes regulated during skeletal muscle differentiation, we have infected mouse C2C12 myoblasts with retroviral gene trap vectors, containing a promoterless marker gene with a 5' splice acceptor signal. Integration of the vector adjacent to an actively transcribed gene places the marker under the transcriptional control of the endogenous gene, while the adjacent vector sequences facilitate cloning. The vector insertionally mutates the trapped locus and may also form fusion proteins with the endogenous gene product. We have screened several hundred clones, each containing a trapping vector integrated into a different endogenous gene. In agreement with previous estimates based on hybridization kinetics, we find that a large proportion of all genes expressed in myoblasts are regulated during differentiation. Many of these genes undergo unique temporal patterns of activation or repression during cell growth and myotube formation, and some show specific patterns of subcellular localization. The first gene we have identified with this strategy is the lysosomal cysteine protease cathepsin B. Expression from the trapped allele is upregulated during early myoblast fusion and downregulated in myotubes. A direct role for cathepsin B in myoblast growth and fusion is suggested by the observation that the trapped cells deficient in cathepsin B activity have an unusual morphology and reduced survival in low-serum media and undergo differentiation with impaired cellular fusion. The phenotype is reproduced by antisense cathepsin B expression in parental C2C12 myoblasts. The cellular phenotype is similar to that observed in cultured myoblasts from patients with I cell disease, in which there is diminished accumulation of lysosomal enzymes. This suggests that a specific deficiency of cathepsin B could contribute to the myopathic component of this illness.

  7. Extracellular cystatin SN and cathepsin B prevent cellular senescence by inhibiting abnormal glycogen accumulation.

    PubMed

    Oh, Sang-Seok; Park, Soojong; Lee, Ki-Won; Madhi, Hamadi; Park, Sae Gwang; Lee, Hee Gu; Cho, Yong-Yeon; Yoo, Jiyun; Dong Kim, Kwang

    2017-04-06

    Cystatin SN (CST1), a known inhibitor of cathepsin B (CatB), has important roles in tumor development. Paradoxically, CatB is a member of the cysteine cathepsin family that acts in cellular processes, such as tumor development and invasion. However, the relationship between CST1 and CatB, and their roles in tumor development are poorly understood. In this study, we observed that the knockdown of CST1 induced the activity of senescence-associated β-galactosidase, a marker of cellular senescence, and expression of senescence-associated secretory phenotype genes, including interleukin-6 and chemokine (C-C motif) ligand 20, in MDA-MB-231 and SW480 cancer cells. Furthermore, CST1 knockdown decreased extracellular CatB activity, and direct CatB inhibition, using specific inhibitors or shCatB, induced cellular senescence. Reconstitution of CST1 restored CatB activity and inhibited cellular senescence in CST1 knockdown cells. CST1 knockdown or CatB inhibition increased glycogen synthase (GS) kinase 3β phosphorylation at serine 9, resulting in the activation of GS and the induction of glycogen accumulation associated with cellular senescence. Importantly, CST1 knockdown suppressed cancer cell proliferation, soft agar colony growth and tumor growth in a xenograft model. These results indicate that CST1-mediated extracellular CatB activity enhances tumor development by preventing cellular senescence. Our findings suggest that antagonists of CST1 or inhibitors of CatB are potential anticancer agents.

  8. Extracellular cathepsin K exerts antimicrobial activity and is protective against chronic intestinal inflammation in mice.

    PubMed

    Sina, Christian; Lipinski, Simone; Gavrilova, Olga; Aden, Konrad; Rehman, Ateequr; Till, Andreas; Rittger, Andrea; Podschun, Rainer; Meyer-Hoffert, Ulf; Haesler, Robert; Midtling, Emilie; Pütsep, Katrin; McGuckin, Michael A; Schreiber, Stefan; Saftig, Paul; Rosenstiel, Philip

    2013-04-01

    Cathepsin K is a lysosomal cysteine protease that has pleiotropic roles in bone resorption, arthritis, atherosclerosis, blood pressure regulation, obesity and cancer. Recently, it was demonstrated that cathepsin K-deficient (Ctsk(-/-) ) mice are less susceptible to experimental autoimmune arthritis and encephalomyelitis, which implies a functional role for cathepsin K in chronic inflammatory responses. Here, the authors address the relevance of cathepsin K in the intestinal immune response during chronic intestinal inflammation. Chronic colitis was induced by administration of 2% dextran sodium sulphate (DSS) in distilled water. Mice were assessed for disease severity, histopathology and endoscopic appearance. Furthermore, DSS-exposed Ctsk(-/-) mice were treated by rectal administration of recombinant cathepsin K. Intestinal microflora was assessed by real-time PCR and 16srDNA molecular fingerprinting of ileal and colonic mucosal and faecal samples. Using Ctsk(-/-) mice, the authors demonstrate a protective role of cathepsin K against chronic DSS colitis. Dissecting the underlying mechanisms the authors found cathepsin K to be present in intestinal goblet cells and the mucin layer. Furthermore, a direct cathepsin K-mediated bactericidal activity against intestinal bacteria was demonstrated, which potentially explains the alteration of intestinal microbiota observed in Ctsk(-/-) mice. Rectal administration of recombinant cathepsin K in DSS-treated Ctsk(-/-) mice ameliorates the severity of intestinal inflammation. These data identify extracellular cathepsin K as an intestinal antibacterial factor with anti-inflammatory potential and suggest that topical administration of cathepsin K might provide a therapeutic option for patients with inflammatory bowel disease.

  9. Involvement of cathepsin B in mitochondrial apoptosis by p-phenylenediamine under ambient UV radiation.

    PubMed

    Goyal, Shruti; Amar, Saroj Kumar; Dubey, Divya; Pal, Manish Kumar; Singh, Jyoti; Verma, Ankit; Kushwaha, Hari Narayan; Ray, Ratan Singh

    2015-12-30

    Paraphenylenediamine (PPD), a derivative of paranitroaniline has been most commonly used as an ingredient of oxidative hair dye and permanent tattoos. We have studied the phototoxic potential of PPD under ambient ultraviolet radiation. PPD is photodegraded and form a novel photoproduct under UV A exposure. PPD shows a concentration dependent decrease in cell viability of human Keratinocyte cells (HaCaT) through MTT and NRU test. Significant intracellular ROS generation was measured by DCFDA assay. It caused an oxidative DNA damage via single stranded DNA breaks, micronuclei and CPD formation. Both lysosome and mitochondria is main target for PPD induced apoptosis which was proved through lysosomal destabilization and release of cathepsin B by immunofluorescence, real time PCR and western blot analysis. Cathepsin B process BID to active tBID which induces the release of cytochrome C from mitochondria. Mitochondrial depolarization was reported through transmission electron microscopy. The cathepsin inhibitor reduced the release of cytochrome C in PPD treated cells. Thus study suggests that PPD leads to apoptosis via the involvement of lysosome and mitochondria both under ambient UV radiation. Therefore, photosensitizing nature of hair dye ingredients should be tested before coming to market as a cosmetic product for the safety of human beings. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. MUC1-C Induces PD-L1 and Immune Evasion in Triple-Negative Breast Cancer.

    PubMed

    Maeda, Takahiro; Hiraki, Masayuki; Jin, Caining; Rajabi, Hasan; Tagde, Ashujit; Alam, Maroof; Bouillez, Audrey; Hu, Xiufeng; Suzuki, Yozo; Miyo, Masaaki; Hata, Tsuyoshi; Hinohara, Kunihiko; Kufe, Donald

    2018-01-01

    The immune checkpoint ligand PD-L1 and the transmembrane mucin MUC1 are upregulated in triple-negative breast cancer (TNBC), where they contribute to its aggressive pathogenesis. Here, we report that genetic or pharmacological targeting of the oncogenic MUC1 subunit MUC1-C is sufficient to suppress PD-L1 expression in TNBC cells. Mechanistic investigations showed that MUC1-C acted to elevate PD-L1 transcription by recruitment of MYC and NF-κB p65 to the PD-L1 promoter. In an immunocompetent model of TNBC in which Eo771/MUC1-C cells were engrafted into MUC1 transgenic mice, we showed that targeting MUC1-C associated with PD-L1 suppression, increases in tumor-infiltrating CD8 + T cells and tumor cell killing. MUC1 expression in TNBCs also correlated inversely with CD8, CD69, and GZMB, and downregulation of these markers associated with decreased survival. Taken together, our findings show how MUC1 contributes to immune escape in TNBC, and they offer a rationale to target MUC1-C as a novel immunotherapeutic approach for TNBC treatment. Significance: These findings show how upregulation of the transmembrane mucin MUC1 contributes to immune escape in an aggressive form of breast cancer, with potential implications for a novel immunotherapeutic approach. Cancer Res; 78(1); 205-15. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Cystatin C Properties Crucial for Uptake and Inhibition of Intracellular Target Enzymes*

    PubMed Central

    Wallin, Hanna; Abrahamson, Magnus; Ekström, Ulf

    2013-01-01

    To elucidate the molecular requirements for cancer cell internalization of the extracellular cysteine protease inhibitor cystatin C, 12 variants of the protein were produced and used for uptake experiments in MCF-7 cells. Variants with alterations in the cysteine cathepsin binding region ((Δ1–10)-, K5A-, R8G-, (R8G,L9G,V10G)-, (R8G,L9G,V10G,W106G)-, and W106G-cystatin C) were internalized to a very low extent compared with the wild-type inhibitor. Substitutions of N39 in the legumain binding region (N39K- and N39A-cystatin C) decreased the internalization and (R24A,R25A)-cystatin C, with substitutions of charged residues not involved in enzyme inhibition, was not taken up at all. Two variants, W106F- and K75A-cystatin C, showed that the internalization can be positively affected by engineering of the cystatin molecule. Microscopy revealed vesicular co-localization of internalized cystatin C with the lysosomal marker proteins cathepsin D and legumain. Activities of both cysteine cathepsins and legumain, possible target enzymes associated with cancer cell invasion and metastasis, were down-regulated in cell homogenates following cystatin C uptake. A positive effect on regulation of intracellular enzyme activity by a cystatin variant selected from uptake properties was illustrated by incubating cells with W106F-cystatin C. This resulted in more efficient down-regulation of intracellular legumain activity than when cells were incubated with wild-type cystatin C. Uptake experiments in prostate cancer cells corroborated that the cystatin C internalization is generally relevant and confirmed an increased uptake of W106F-cystatin C, in PC3 cells. Thus, intracellular cysteine proteases involved in cancer-promoting processes might be controled by cystatin uptake. PMID:23629651

  12. Identification of a novel splice variant of human PD-L1 mRNA encoding an isoform-lacking Igv-like domain.

    PubMed

    He, Xian-hui; Xu, Li-hui; Liu, Yi

    2005-04-01

    To investigate the expression and regulation of PD-1 ligand 1 (PD-L1) in peripheral blood mononuclear cells (PBMC). The cDNA encoding human PD-L1 precursor was cloned from the total RNA extracted from the resting and phorbol dibutyrate plus ionomycin- or phytohemagglutinin-activated PBMC, by reverse transcription polymerase chain reaction (RT-PCR), and independent clones were sequenced and analyzed. The expression and subcellular localization were examined in transiently transfected cells. The PD-L1 gene expression in different PBMC was also analyzed by RT-PCR. A novel human PD-L1 splice variant was identified from the activated PBMC. It was generated by splicing out exon? encoding an immunoglobulin variable domain (Igv)-like domain but retaining all other exons without a frame-shift. Consequently, the putative translated protein contained all other domains including the transmembrane region except for the Igv-like domain. Furthermore, the conventional isoform was expressed on the plasma surface whereas the novel isoform showed a pattern of intracellular membrane distribution in transiently transfected K562 cells. In addition, the expression pattern of the PD-L1 splice variant was variable in different individuals and in different cellular status. PD-L1 expression may be regulated at the posttranscriptional level through alternative splicing, and modulation of the PD-L1 isoform expression may influence the outcome of specific immune responses in the peripheral tissues.

  13. Cloning and sequence analysis of Hemonchus contortus HC58cDNA.

    PubMed

    Muleke, Charles I; Ruofeng, Yan; Lixin, Xu; Xinwen, Bo; Xiangrui, Li

    2007-06-01

    The complete coding sequence of Hemonchus contortus HC58cDNA was generated by rapid amplification of cDNA ends and polymerase chain reaction using primers based on the 5' and 3' ends of the parasite mRNA, accession no. AF305964. The HC58cDNA gene was 851 bp long, with open reading frame of 717 bp, precursors to 239 amino acids coding for approximately 27 kDa protein. Analysis of amino acid sequence revealed conserved residues of cysteine, histidine, asparagine, occluding loop pattern, hemoglobinase motif and glutamine of the oxyanion hole characteristic of cathepsin B like proteases (CBL). Comparison of the predicted amino acid sequences showed the protein shared 33.5-58.7% identity to cathepsin B homologues in the papain clan CA family (family C1). Phylogenetic analysis revealed close evolutionary proximity of the protein sequence to counterpart sequences in the CBL, suggesting that HC58cDNA was a member of the papain family.

  14. An AC-5 cathepsin B-like protease purified from Haemonchus contortus excretory secretory products shows protective antigen potential for lambs

    PubMed Central

    De Vries, Erik; Bakker, Nicole; Krijgsveld, Jeroen; Knox, Dave P.; Heck, Albert J.R.; Yatsuda, Ana Patricia

    2009-01-01

    The immunogenic properties of cysteine proteases obtained from excretory/secretory products (ES) of Haemonchus contortus were investigated with a fraction purified with a recombinant H. contortus cystatin affinity column. The enrichment of H. contortus ES for cysteine protease was confirmed with substrate SDS-PAGE gels since the cystatin-binding fraction activity was three times higher than total ES, despite representing only 3% of total ES. This activity was inhibited by a specific cysteine protease inhibitor (E64) and by recombinant cystatin. The one-dimensional profile of the cystatin-binding fraction displayed a single band with a molecular mass of 43 kDa. Mass spectrometry showed this to be AC-5, a cathepsin B-like cysteine protease which had not been identified in ES products of H. contortus before. The cystatin binding fraction was tested as an immunogen in lambs which were vaccinated three times (week 0, 2.5 and 5), challenged with 10 000 L3 H. contortus (week 6) before necropsy and compared to unvaccinated challenge controls and another group given total ES (n = 10 per group). The group vaccinated with cystatin-binding proteins showed 36% and 32% mean worm burden and eggs per gram of faeces (EPG) reductions, respectively, compared to the controls but total ES was almost without effect. After challenge the cystatin-binding proteins induced significantly higher local and systemic ES specific IgA and IgG responses. PMID:19401141

  15. Reevaluating cathepsin D as a biomarker for breast cancer: serum activity levels versus histopathology.

    PubMed

    Abbott, Daniel E; Margaryan, Naira V; Jeruss, Jacqueline S; Khan, Seema; Kaklamani, Virginia; Winchester, David J; Hansen, Nora; Rademaker, Alfred; Khalkhali-Ellis, Zhila; Hendrix, Mary J C

    2010-01-01

    Cathepsin D is a lysosomal hydrolase involved in intra- and extracellular proteolysis. This enzyme is aberrantly produced and processed in malignancy, and most notably is over-secreted into the tumor cell microenvironment. This hyper-secretion may lead to excessive degradation of the extracellular matrix, and contribute to tumor progression and metastases. These phenomena have been established in vitro, and there is evidence that Cathepsin D is similarly dysregulated in human breast cancer patients. Because breast cancer lacks an effective screening or surveillance biomarker, here we address the hypothesis that serum Cathepsin D activity may be useful to assess the presence or progression of breast cancer in females. While representative histologic sections from various disease-specific cohorts confirm previous findings that increased Cathepsin D production and secretion correlate with tumor progression, we report no difference in serum Cathepsin D activity between patients who are disease free, patients with pre-invasive or limited invasive disease, and patients with metastatic disease. Furthermore, in patients with known metastatic disease, there were no clinical variables associated with significantly different serum Cathepsin D activity. However, the immunohistochemical localization of Cathepsin D expression in histopathologic sections from breast cancer patients correlates with disease progression. Based on the serum results, and in contradistinction to Cathepsin D localization in breast cancer tissues, our findings support using Cathepsin D as a reliable histopathology biomarker for disease progression, but not for serum screening.

  16. Use of the 22C3 anti-PD-L1 antibody to determine PD-L1 expression in multiple automated immunohistochemistry platforms.

    PubMed

    Ilie, Marius; Khambata-Ford, Shirin; Copie-Bergman, Christiane; Huang, Lingkang; Juco, Jonathan; Hofman, Veronique; Hofman, Paul

    2017-01-01

    For non-small cell lung cancer (NSCLC), treatment with pembrolizumab is limited to patients with tumours expressing PD-L1 assessed by immunohistochemistry (IHC) using the PD-L1 IHC 22C3 pharmDx (Dako, Inc.) companion diagnostic test, on the Dako Autostainer Link 48 (ASL48) platform. Optimised protocols are urgently needed for use of the 22C3 antibody concentrate to test PD-L1 expression on more widely available IHC autostainers. We evaluated PD-L1 expression using the 22C3 antibody concentrate in the three main commercially available autostainers Dako ASL48, BenchMark ULTRA (Ventana Medical Systems, Inc.), and Bond-III (Leica Biosystems) and compared the staining results with the PD-L1 IHC 22C3 pharmDx kit on the Dako ASL48 platform. Several technical conditions for laboratory-developed tests (LDTs) were evaluated in tonsil specimens and a training set of three NSCLC samples. Optimised protocols were then validated in 120 NSCLC specimens. Optimised protocols were obtained on both the VENTANA BenchMark ULTRA and Dako ASL48 platforms. Significant expression of PD-L1 was obtained on tissue controls with the Leica Bond-III autostainer when high concentrations of the 22C3 antibody were used. It therefore was not tested on the 120 NSCLC specimens. An almost 100% concordance rate for dichotomized tumour proportion score (TPS) results was observed between TPS ratings using the 22C3 antibody concentrate on the Dako ASL48 and VENTANA BenchMark ULTRA platforms relative to the PD-L1 IHC 22C3 pharmDx kit on the Dako ASL48 platform. Interpathologist agreement was high on both LDTs and the PD-L1 IHC 22C3 pharmDx kit on the Dako ASL48 platform. Availability of standardized protocols for determining PD-L1 expression using the 22C3 antibody concentrate on the widely available Dako ASL48 and VENTANA BenchMark ULTRA IHC platforms will expand the number of laboratories able to determine eligibility of patients with NSCLC for treatment with pembrolizumab in a reliable and concordant

  17. Linagliptin potentiates the effect of l-dopa on the behavioural, biochemical and immunohistochemical changes in experimentally-induced Parkinsonism: Role of toll-like receptor 4, TGF-β1, NF-κB and glucagon-like peptide 1.

    PubMed

    Kabel, Ahmed M; Omar, Mohamed S; Alhadhrami, A; Alharthi, Salman S; Alrobaian, Majed M

    2018-05-01

    Our aim was to assess the effect of different doses of linagliptin with or without l-dopa/Carbidopa on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in mice. Eighty Balb/c mice were divided into 8 equal groups: Control; MPTP; MPTP + l-dopa/Carbidopa; MPTP + linagliptin 3 mg/kg/day; MPTP + linagliptin 10 mg/kg/day; MPTP + Carboxymethyl cellulose; MPTP + l-dopa/Carbidopa + linagliptin 3 mg/kg/day and MPTP + l-dopa/Carbidopa + linagliptin 10 mg/kg/day. Striatal dopamine, tumor necrosis factor alpha (TNF-α), interleukin 10 (IL-10), transforming growth factor beta 1 (TGF-β1), toll-like receptor 4 (TLR4), antioxidant enzymes, adenosine triphosphate (ATP), glucagon-like peptide-1 (GLP-1), receptors of advanced glycation end products (RAGE), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase-1 (HO-1), mitochondrial complex I activity, catalepsy and total swim scores were measured. Also, the substantia nigra was subjected to immunohistochemical examination. The combination of l-dopa/Carbidopa and linagliptin in a dose-dependent manner resulted in significant improvement of the behavioural changes, striatal dopamine, antioxidant parameters, Nrf2/HO-1 content, GLP-1, ATP and mitochondrial complex I activity with significant decrease in striatal RAGE, TGF-β1, TNF-α, IL-10, TLR4 and alleviated the immunohistochemical changes better than the groups that received either l-dopa/Carbidopa or linagliptin alone. The combination of l-dopa/Carbidopa and linagliptin might represent a promising therapeutic modality for management of parkinsonism. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. NPC1L1 and Cholesterol Transport

    PubMed Central

    Betters, Jenna L.; Yu, Liqing

    2010-01-01

    The polytopic transmembrane protein, Niemann-Pick C1-Like 1 (NPC1L1), is enriched in the apical membrane of small intestine absorptive enterocytes where it mediates extracellular sterol transport across the brush border membrane. It is essential for intestinal sterol absorption and is the molecular target of ezetimibe, a potent cholesterol absorption inhibitor that lowers blood cholesterol in humans. NPC1L1 is also highly expressed in human liver. The hepatic function of NPC1L1 may be to limit excessive biliary cholesterol loss. NPC1L1-dependent sterol uptake seems to be a clathrin-mediated endocytic process and is regulated by cellular cholesterol content. Recently, NPC1L1 inhibition has been shown to have beneficial effects on components of the metabolic syndrome, such as obesity, insulin resistance, fatty liver, in addition to atherosclerosis. PMID:20307540

  19. Targeting the Nuclear Cathepsin L CCAAT Displacement Protein/Cut Homeobox Transcription Factor-Epithelial Mesenchymal Transition Pathway in Prostate and Breast Cancer Cells with the Z-FY-CHO Inhibitor

    PubMed Central

    Burton, Liza J.; Dougan, Jodi; Jones, Jasmine; Smith, Bethany N.; Randle, Diandra; Henderson, Veronica

    2016-01-01

    ABSTRACT The epithelial mesenchymal transition (EMT) promotes tumor migration and invasion by downregulating epithelial markers such as E-cadherin and upregulating mesenchymal markers such as vimentin. Cathepsin L (Cat L) is a cysteine protease that can proteolytically activate CCAAT displacement protein/cut homeobox transcription factor (CUX1). We hypothesized that nuclear Cat L may promote EMT via CUX1 and that this could be antagonized with the Cat L-specific inhibitor Z-FY-CHO. Mesenchymal prostate (ARCaP-M and ARCaP-E overexpressing Snail) and breast (MDA-MB-468, MDA-MB-231, and MCF-7 overexpressing Snail) cancer cells expressed lower E-cadherin activity, higher Snail, vimentin, and Cat L activity, and a p110/p90 active CUX1 form, compared to epithelial prostate (ARCaP-E and ARCaP-Neo) and breast (MCF-7 and MCF-7 Neo) cancer cells. There was increased binding of CUX1 to Snail and the E-cadherin promoter in mesenchymal cells compared to epithelial prostate and breast cells. Treatment of mesenchymal cells with the Cat L inhibitor Z-FY-CHO led to nuclear-to-cytoplasmic relocalization of Cat L, decreased binding of CUX1 to Snail and the E-cadherin promoter, reversed EMT, and decreased cell migration/invasion. Overall, our novel data suggest that a positive feedback loop between Snail-nuclear Cat L-CUX1 drives EMT, which can be antagonized by Z-FY-CHO. Therefore, Z-FY-CHO may be an important therapeutic tool to antagonize EMT and cancer progression. PMID:27956696

  20. Targeting the Nuclear Cathepsin L CCAAT Displacement Protein/Cut Homeobox Transcription Factor-Epithelial Mesenchymal Transition Pathway in Prostate and Breast Cancer Cells with the Z-FY-CHO Inhibitor.

    PubMed

    Burton, Liza J; Dougan, Jodi; Jones, Jasmine; Smith, Bethany N; Randle, Diandra; Henderson, Veronica; Odero-Marah, Valerie A

    2017-03-01

    The epithelial mesenchymal transition (EMT) promotes tumor migration and invasion by downregulating epithelial markers such as E-cadherin and upregulating mesenchymal markers such as vimentin. Cathepsin L (Cat L) is a cysteine protease that can proteolytically activate CCAAT displacement protein/cut homeobox transcription factor (CUX1). We hypothesized that nuclear Cat L may promote EMT via CUX1 and that this could be antagonized with the Cat L-specific inhibitor Z-FY-CHO. Mesenchymal prostate (ARCaP-M and ARCaP-E overexpressing Snail) and breast (MDA-MB-468, MDA-MB-231, and MCF-7 overexpressing Snail) cancer cells expressed lower E-cadherin activity, higher Snail, vimentin, and Cat L activity, and a p110/p90 active CUX1 form, compared to epithelial prostate (ARCaP-E and ARCaP-Neo) and breast (MCF-7 and MCF-7 Neo) cancer cells. There was increased binding of CUX1 to Snail and the E-cadherin promoter in mesenchymal cells compared to epithelial prostate and breast cells. Treatment of mesenchymal cells with the Cat L inhibitor Z-FY-CHO led to nuclear-to-cytoplasmic relocalization of Cat L, decreased binding of CUX1 to Snail and the E-cadherin promoter, reversed EMT, and decreased cell migration/invasion. Overall, our novel data suggest that a positive feedback loop between Snail-nuclear Cat L-CUX1 drives EMT, which can be antagonized by Z-FY-CHO. Therefore, Z-FY-CHO may be an important therapeutic tool to antagonize EMT and cancer progression. Copyright © 2017 American Society for Microbiology.

  1. Nonclinical and clinical pharmacological characterization of the potent and selective cathepsin K inhibitor MIV-711.

    PubMed

    Lindström, Erik; Rizoska, Biljana; Henderson, Ian; Terelius, Ylva; Jerling, Markus; Edenius, Charlotte; Grabowska, Urszula

    2018-05-09

    Cathepsin K is an attractive therapeutic target for diseases in which bone resorption is excessive such as osteoporosis and osteoarthritis (OA). The current paper characterized the pharmacological profile of the potent and selective cathepsin K inhibitor, MIV-711, in vitro and in cynomolgus monkeys, and assessed translation to human based on a single dose clinical study in man. The potency and selectivity of MIV-711 were assessed in vitro using recombinant enzyme assays and differentiated human osteoclasts. MIV-711 was administered to healthy cynomolgus monkeys (3-30 µmol/kg, p.o.). Plasma levels of MIV-711 and the bone resorption biomarker CTX-I were measured after single dose experiments, and urine levels of CTX-I, NTX-I and CTX-II biomarkers were measured after repeat dose experiments. The safety, pharmacokinetics and pharmacodynamics (serum CTX-I) of MIV-711 were assessed in human healthy subjects after single ascending doses from 20 to 600 mg. MIV-711 was a potent inhibitor of human cathepsin K (K i : 0.98 nmol/L) with > 1300-fold selectivity towards other human cathepsins. MIV-711 inhibited human osteoclast-mediated bone resorption with an IC 50 value of 43 nmol/L. Single oral doses of MIV-711 to monkeys reduced plasma levels of CTX-I in a dose-dependent fashion by up to 57% at trough. The effect on CTX-I was linearly correlated to the plasma exposure of MIV-711, while the efficacy duration outlasted plasma exposure. Repeat oral dosing with MIV-711 also reduced urinary levels of the bone resorption biomarkers CTX-I (by 93%) and NTX-I (by 71%) and the cartilage degradation biomarker CTX-II (by 71%). MIV-711 was safe and well-tolerated when given as single ascending doses to healthy subjects. MIV-711 reduced serum CTX-I levels in a dose-dependent manner by up to 79% at trough. The relationship between MIV-711 exposure and effects on these biomarkers in humans was virtually identical when compared to the corresponding monkey data. MIV-711 is a potent

  2. Imaging Primary Mouse Sarcomas After Radiation Therapy Using Cathepsin-Activatable Fluorescent Imaging Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, Kyle C.; Mito, Jeffrey K.; Javid, Melodi P.

    2013-05-01

    Purpose: Cathepsin-activated fluorescent probes can detect tumors in mice and in canine patients. We previously showed that these probes can detect microscopic residual sarcoma in the tumor bed of mice during gross total resection. Many patients with soft tissue sarcoma (STS) and other tumors undergo radiation therapy (RT) before surgery. This study assesses the effect of RT on the ability of cathepsin-activated probes to differentiate between normal and cancerous tissue. Methods and Materials: A genetically engineered mouse model of STS was used to generate primary hind limb sarcomas that were treated with hypofractionated RT. Mice were injected intravenously with cathepsin-activatedmore » fluorescent probes, and various tissues, including the tumor, were imaged using a hand-held imaging device. Resected tumor and normal muscle samples were harvested to assess cathepsin expression by Western blot. Uptake of activated probe was analyzed by flow cytometry and confocal microscopy. Parallel in vitro studies using mouse sarcoma cells were performed. Results: RT of primary STS in mice and mouse sarcoma cell lines caused no change in probe activation or cathepsin protease expression. Increasing radiation dose resulted in an upward trend in probe activation. Flow cytometry and immunofluorescence showed that a substantial proportion of probe-labeled cells were CD11b-positive tumor-associated immune cells. Conclusions: In this primary murine model of STS, RT did not affect the ability of cathepsin-activated probes to differentiate between tumor and normal muscle. Cathepsin-activated probes labeled tumor cells and tumor-associated macrophages. Our results suggest that it would be feasible to include patients who have received preoperative RT in clinical studies evaluating cathepsin-activated imaging probes.« less

  3. Hyperspectral IASI L1C Data Compression.

    PubMed

    García-Sobrino, Joaquín; Serra-Sagristà, Joan; Bartrina-Rapesta, Joan

    2017-06-16

    The Infrared Atmospheric Sounding Interferometer (IASI), implemented on the MetOp satellite series, represents a significant step forward in atmospheric forecast and weather understanding. The instrument provides infrared soundings of unprecedented accuracy and spectral resolution to derive humidity and atmospheric temperature profiles, as well as some of the chemical components playing a key role in climate monitoring. IASI collects rich spectral information, which results in large amounts of data (about 16 Gigabytes per day). Efficient compression techniques are requested for both transmission and storage of such huge data. This study reviews the performance of several state of the art coding standards and techniques for IASI L1C data compression. Discussion embraces lossless, near-lossless and lossy compression. Several spectral transforms, essential to achieve improved coding performance due to the high spectral redundancy inherent to IASI products, are also discussed. Illustrative results are reported for a set of 96 IASI L1C orbits acquired over a full year (4 orbits per month for each IASI-A and IASI-B from July 2013 to June 2014) . Further, this survey provides organized data and facts to assist future research and the atmospheric scientific community.

  4. Sildenafil Decreases BACE1 and Cathepsin B Levels and Reduces APP Amyloidogenic Processing in the SAMP8 Mouse.

    PubMed

    Orejana, Lourdes; Barros-Miñones, Lucía; Jordan, Joaquin; Cedazo-Minguez, Angel; Tordera, Rosa M; Aguirre, Norberto; Puerta, Elena

    2015-06-01

    The senescence-accelerated mouse-prone 8 (SAMP8), used as a model of aging, displays many established pathological features of Alzheimer's disease. Cognitive impairments and increased levels of hyperphosphorylated tau are found in the hippocampus of SAMP8 mice along with an increased β-secretase activity and amyloid-β (Aβ) depositions that increase in number and extent with age. Based on a previous study from our laboratory showing an amelioration of cognitive impairments and tau pathology by sildenafil, in this study we tested whether this drug could also modulate the amyloid precursor protein amyloidogenic processing in this mouse model. Our results show that the protein levels of the β-secretases β-site amyloid precursor protein cleaving enzyme 1 and cathepsin B are higher in the hippocampus of 9-month-old SAMP8 mice than those of age-matched senescence-resistant-1. Sildenafil (7.5mg/kg for 4 weeks) attenuated learning and memory impairments shown by SAMP8 mice in the passive avoidance test. The increased expression of β-site amyloid precursor protein cleaving enzyme 1 was also reduced by sildenafil, an effect paralleled to decreases in the activities of two β-site amyloid precursor protein cleaving enzyme 1 modulators, calpain and cyclin-dependent kinase 5 protein. Interestingly, sildenafil enhanced both Akt and glycogen synthase kinase-3β (ser9) phosphorylation, which could be mediating the reduction in cathepsin B levels found in the hippocampus of sildenafil-treated SAMP8 mice. Sildenafil-induced reduction in β-site amyloid precursor protein cleaving enzyme 1 and cathepsin B expression in SAMP8 mice was associated with a decrease in hippocampal Aβ42 levels which, in turn, could mediate the parallel decline in glial fibrillary acidic protein expression observed in these animals. These findings highlight the therapeutic potential of sildenafil in Alzheimer's disease pathogenesis. © The Author 2014. Published by Oxford University Press on behalf of

  5. Increased plasma cathepsin S and trombospondin-1 in patients with acute ST segment elevation myocardial infarction.

    PubMed

    Befekadu, Rahel; Christiansen, Kjeld; Larsson, Anders; Grenegård, Magnus

    2018-04-03

    The role of cathepsins in the pathological progression of atherosclerotic lesions in ischemic heart disease have been defined in detail more than numerous times. This investigation examined the platelet-specific biomarker trombospondin-1 (TSP-1) and platelet function ex vivo, and compared this with cathepsin S (Cat-S; a biomarker unrelated to platelet activation but also associated this with increased mortality risk) in patients with ST segment elevation myocardial infarction (STEMI). The STEMI patients were divided into two groups depending on the degree of coronary vessel occlusion: those with closed (n = 90) and open culprit vessel (n = 40). Cat-S and TSP-1 were analyzed before, 1-3 days after and 3 months after percutanous coronary intervention (PCI). During acute STEMI, plasma TSP-1 was significantly elevated in patients with closed culprit lesions, but rapidly declined after PCI. In fact, TSP-1 after PCI was significantly lower inpatient samples compared to healthy individuals. In comparison, plasma Cat-S was significantly elevated both before and after PCI. In patients with closed culprit lesions, Cat-S was significantly higher compared to patients with open culprit lesions 3 months after PCI. Although troponin-I were higher (p < 0.01) in patients with closed culprit lesion, there was no correlation with Cat-S and TSP-1. Cat-S but not TSP-1 may be a useful risk biomarker in relation to the severity of STEMI. However, the causality of Cat-S as a predictor for long-term mortality in STEMI remains to be ascertained in future studies.

  6. SMOS L1C and L2 Validation in Australia

    NASA Technical Reports Server (NTRS)

    Rudiger, Christoph; Walker, Jeffrey P.; Kerr, Yann H.; Mialon, Arnaud; Merlin, Olivier; Kim, Edward J.

    2012-01-01

    Extensive airborne field campaigns (Australian Airborne Cal/val Experiments for SMOS - AACES) were undertaken during the 2010 summer and winter seasons of the southern hemisphere. The purpose of those campaigns was the validation of the Level 1c (brightness temperature) and Level 2 (soil moisture) products of the ESA-led Soil Moisture and Ocean Salinity (SMOS) mission. As SMOS is the first satellite to globally map L-band (1.4GHz) emissions from the Earth?s surface, and the first 2-dimensional interferometric microwave radiometer used for Earth observation, large scale and long-term validation campaigns have been conducted world-wide, of which AACES is the most extensive. AACES combined large scale medium-resolution airborne L-band and spectral observations, along with high-resolution in-situ measurements of soil moisture across a 50,000km2 area of the Murrumbidgee River catchment, located in south-eastern Australia. This paper presents a qualitative assessment of the SMOS brightness temperature and soil moisture products.

  7. Characterization of the secreted cathepsin B cysteine proteases family of the carcinogenic liver fluke Clonorchis sinensis.

    PubMed

    Chen, Wenjun; Wang, Xiaoyun; Lv, Xiaoli; Tian, Yanli; Xu, Yanquan; Mao, Qiang; Shang, Mei; Li, Xuerong; Huang, Yan; Yu, Xinbing

    2014-09-01

    Clonorchis sinensis excretory/secretory products (ESP) have gained high attentions because of their potential to be vaccine candidates and drug targets in C. sinensis prevention. In this study, we extensively profiled the characteristics of four C. sinensis cathepsin B cysteine proteases (CsCB1, CsCB2, CsCB3, and CsCB4). Bioinformatics analysis showed all CsCBs contained signal peptides at the N-terminal. Functional domains and residues were found in CsCB sequences. We expressed four CsCBs and profiled immune responses followed by vaccine trials. Recombinant CsCBs could induce high IgG titers, indicating high immunogenicity of CsCB family. Additionally, ELISA results showed that both IgG1 and IgG2a levels apparently increased post-immunization with all four CsCBs, showing that combined Th1/Th2 immune responses were triggered by CsCB family. Both Real-time polymerase chain reaction (RT-PCR) and Western blotting confirmed that four CsCBs have distinct expression patterns in C. sinensis life stages. More importantly, we validated our hypothesis that CsCBs were C. sinensis excretory/secretory products. CsCBs could be recognized by C. sinensis-infected sera throughout the infection period, indicating that secreted CsCBs are immune triggers during C. sinensis infection. The protective effect was assessed by comparing the worm burden and egg per gram (EPG) between CsCB group and control group, showing that worm burden (P < 0.01) and EPG (P < 0.01) in CsCB2 and CsCB3 groups were significantly lower than in control group. In conclusion, we profiled secreted cathepsin B cysteine proteases family for the first time and demonstrated that all CsCB family were C. sinensis excretory/secretory products that may regulate host immune responses.

  8. An integrated genomic analysis of Tudor domain-containing proteins identifies PHD finger protein 20-like 1 (PHF20L1) as a candidate oncogene in breast cancer.

    PubMed

    Jiang, Yuanyuan; Liu, Lanxin; Shan, Wenqi; Yang, Zeng-Quan

    2016-02-01

    Tudor domain-containing proteins (TDRDs), which recognize and bind to methyl-lysine/arginine residues on histones and non-histone proteins, play critical roles in regulating chromatin architecture, transcription, genomic stability, and RNA metabolism. Dysregulation of several TDRDs have been observed in various types of cancer. However, neither the genomic landscape nor clinical significance of TDRDs in breast cancer has been explored comprehensively. Here, we performed an integrated genomic and transcriptomic analysis of 41 TDRD genes in breast cancer (TCGA and METABRIC datasets) and identified associations among recurrent copy number alterations, gene expressions, clinicopathological features, and survival of patients. Among seven TDRDs that had the highest frequency (>10%) of gene amplification, the plant homeodomain finger protein 20-like 1 (PHF20L1) was the most commonly amplified (17.62%) TDRD gene in TCGA breast cancers. Different subtypes of breast cancer had different patterns of copy number and expression for each TDRD. Notably, amplification and overexpression of PHF20L1 were more prevalent in aggressive basal-like and Luminal B subtypes and were significantly associated with shorter survival of breast cancer patients. Furthermore, knockdown of PHF20L1 inhibited cell proliferation in PHF20L1-amplified breast cancer cell lines. PHF20L1 protein contains N-terminal Tudor and C-terminal plant homeodomain domains. Detailed characterization of PHF20L1 in breast cancer revealed that the Tudor domain likely plays a critical role in promoting cancer. Mechanistically, PHF20L1 might participate in regulating DNA methylation by stabilizing DNA methyltransferase 1 (DNMT1) protein in breast cancer. Thus, our results demonstrated the oncogenic potential of PHF20L1 and its association with poor prognostic parameters in breast cancer. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Evaluation of serum cathepsin B and D in relation to clinicopathological staging of colorectal cancer

    PubMed Central

    Skrzydlewska, Elzbieta; Sulkowska, Mariola; Wincewicz, Andrzej; Koda, Mariusz; Sulkowski, Stanislaw

    2005-01-01

    AIM: Proteolytic degradation of the extracellular matrix facilitates cancer invasion and promotes metastasis. The study aims at evaluation of preoperative and postoperative serum cathepsins B and D levels in correlation with selected anatomoclinical features of colorectal cancer. METHODS: Blood samples were collected from 63 colorectal cancer patients before curative operation of the tumor 10 d later. Blood that was obtained from 20 healthy volunteers, served as a control. The activity of cathepsin B was measured with Bz-DL-arginine-pNA as a substrate at pH 6.0, while cathepsin D activity was determined with urea-denatured hemoglobin (pH 4.0). RESULTS: The preoperative and postoperative activities of cathepsin B were significantly (P < 0.00001) lower in serum of colorectal cancer patients than in control group. However, postoperative values of this protease were significantly increased in comparison with preoperative ones (P = 0.031). Activity of cathepsin D appeared to be significantly higher in colorectal cancer sera (P < 0.00001) compared with controls. No statistically significant differences between preoperative and postoperative activity of cathepsin D were noted (P = 0.09). We revealed a strong linkage of cathepsins’ levels with lymph node status and pT stage of colorectal cancer. CONCLUSION: Blood serum activities of cathepsin B and D depend on the time of sampling, tumor size and lymph node involvement. Significantly, increased activity of cathepsin D could indicate a malignant condition of the large intestine. In our work, the serum postoperative decrease of cathepsin B activity appears as an obvious concomitant of local lymph node metastasis-the well-known clinicopathological feature of poor prognosis. PMID:16015694

  10. Highly Conserved Arg Residue of ERFNIN Motif of Pro-Domain is Important for pH-Induced Zymogen Activation Process in Cysteine Cathepsins K and L.

    PubMed

    Aich, Pulakesh; Biswas, Sampa

    2018-06-01

    Pro-domain of a cysteine cathepsin contains a highly conserved Ex 2 Rx 2 Fx 2 Nx 3 Ix 3 N (ERFNIN) motif. The zymogen structure of cathepsins revealed that the Arg(R) residue of the motif is a central residue of a salt-bridge/H-bond network, stabilizing the scaffold of the pro-domain. Importance of the arginine is also demonstrated in studies where a single mutation (Arg → Trp) in human lysosomal cathepsin K (hCTSK) is linked to a bone-related genetic disorder "Pycnodysostosis". In the present study, we have characterized in vitro Arg → Trp mutant of hCTSK and the same mutant of hCTSL. The R → W mutant of hCTSK revealed that this mutation leads to an unstable zymogen that is spontaneously activated and auto-proteolytically degraded rapidly. In contrast, the same mutant of hCTSL is sufficiently stable and has proteolytic activity almost like its wild-type counterpart; however it shows an altered zymogen activation condition in terms of pH, temperature and time. Far and near UV circular dichroism and intrinsic tryptophan fluorescence experiments have revealed that the mutation has minimal effect on structure of the protease hCTSL. Molecular modeling studies shows that the mutated Trp31 in hCTSL forms an aromatic cluster with Tyr23 and Trp30 leading to a local stabilization of pro-domain and supplements the loss of salt-bridge interaction mediated by Arg31 in wild-type. In hCTSK-R31W mutant, due to presence of a non-aromatic Ser30 residue such interaction is not possible and may be responsible for local instability. These differences may cause detrimental effects of R31W mutation on the regulation of hCTSK auto-activation process compared to altered activation process in hCTSL.

  11. Cloning and characterization of a basic Cysteine-like protease (Cathespsin L1) expressed in the gut of larval Diaprepes abbreviatus L. (Coleoptera: Curculionidae)

    USDA-ARS?s Scientific Manuscript database

    Diaprepes abbreviatus is an important pest that causes extensive damage to citrus in the USA. Analysis of an expressed sequence tag (EST) library from the digestive tract of larvae and adult D. abbreviatus identified cathepsins as major putative digestive enzymes. One class, sharing amino acid seque...

  12. Immunohistochemical assessment of the diagnostic utility of PD-L1: a preliminary analysis of anti-PD-L1 antibody (SP142) for lymphoproliferative diseases with tumour and non-malignant Hodgkin-Reed-Sternberg (HRS)-like cells.

    PubMed

    Sakakibara, Ayako; Kohno, Kei; Eladl, Ahmed E; Klaisuwan, Teerada; Ishikawa, Eri; Suzuki, Yuka; Shimada, Satoko; Nakaguro, Masato; Shimoyama, Yoshie; Takahara, Taishi; Kato, Seiichi; Asano, Naoko; Nakamura, Shigeo; Satou, Akira

    2018-06-01

    The programmed death 1 (PD1)/PD1 ligand (PD-L1) axis plays an important role in tumour cells escape from immune control. PD-L1 immunohistochemistry is a useful predictor of immunotherapy response, but is still not used widely in the diagnostic setting. Here we describe results using PD-L1 immunohistochemistry during routine diagnostics in lymphoma. Ninety-one lymphoproliferative disease cases sharing tumour and non-malignant Hodgkin-Reed-Sternberg (HRS)-like cells with and without Epstein-Barr virus (EBV) association were investigated by immunohistochemistry for PD-L1 (clone SP142). PD-L1 expression was present in more than 5% of tumour or non-malignant HRS-like cells in 100% of EBV + classical (C) Hodgkin lymphoma (HL) (n = 10) and EBV-negative nodular sclerosis CHL (n = 8); 40% of EBV + diffuse large B cell lymphoma, not otherwise specified (DLBCL-NOS) (n = 20); and 4% of nodal peripheral T cell lymphoma of follicular helper T cell type (PTCL-TFH) (n = 22). In contrast, nodular lymphocyte-predominant HL (n = 4), lymphocyte-rich CHL (n = 6), EBV + hyperplasia (n = 8), plasmablastic lymphoma (n = 3) and anaplastic lymphoma kinase-negative anaplastic large cell lymphoma (n = 5) seldom exhibited PD-L1 in their large cells. Assessing PD-L1 positivity in tumour and non-malignant large cells was helpful in differentiating between CHL versus nodal PTCL-TFH (P < 0.0001) or EBV + DLBCL-NOS (P = 0.0052) and between EBV + DLBCL-NOS versus nodal PTCL-TFH (P = 0.0052), with PD-L1 expression indicating the first diagnosis in each of those sets. Immunohistochemical evaluation of PD-L1 expression in tumour and non-malignant HRS-like large cells may be useful for assessing either immune escape or immunodeficiency in their pathogenesis. © 2018 John Wiley & Sons Ltd.

  13. Bitter tastant quinine modulates glucagon-like peptide-1 exocytosis from clonal GLUTag enteroendocrine L cells via actin reorganization.

    PubMed

    Harada, Kazuki; Sakaguchi, Hidekazu; Sada, Shoko; Ishida, Rika; Hayasaka, Yuki; Tsuboi, Takashi

    2018-06-07

    Enteroendocrine L cells in the gastrointestinal tract secrete glucagon-like peptide-1 (GLP-1), which plays an important role in glucose homeostasis. Here we investigated the effect of bitter tastant quinine on GLP-1 secretion using clonal GLUTag mouse enteroendocrine L cells. We found that GLUTag cells expressed putative quinine receptors at mRNA levels. Although application of quinine resulted in an increase of intracellular Ca 2+ levels, which was mediated by Ca 2+ release from the endoplasmic reticulum and Ca 2+ influx through voltage-sensitive Ca 2+ channels, quinine had little effect on GLP-1 secretion. Total internal reflection fluorescence microscopy and immunocytochemistry revealed that GLP-1-containing vesicles remained unfused with the plasma membrane and facilitated actin polymerization beneath the plasma membrane after application of quinine, respectively. Interestingly, application of forskolin together with quinine induced GLP-1 exocytosis from the cells. These results suggest that quinine does not induce GLP-1 secretion because it facilitates Ca 2+ increase and actin reorganization but not cAMP increase, and both Ca 2+ and cAMP are essential for GLP-1 secretion. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. On helium-like 1s2l-1snl prime transitions in solar flare spectra

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Neupert, W. M.; Swartz, M.

    1974-01-01

    Expected wavelengths and intensities are computed for 1s2l-1snl prime transitions in helium-like ions of the abundant elements from oxygen to iron under coronal conditions. Probable observations of some of these lines in the spectra of solar flares are discussed, and attention is called to a possible reversal of singlet and triplet intensities as compared to laboratory observations.

  15. Cathepsin B-sensitive polymers for compartment-specific degradation and nucleic acid release

    PubMed Central

    Chu, David S.H.; Johnson, Russell N.; Pun, Suzie H.

    2011-01-01

    Degradable cationic polymers are desirable for in vivo nucleic acid delivery because they offer significantly decreased toxicity over non-degradable counterparts. Peptide linkers provide chemical stability and high specificity for particular endopeptidases but have not been extensively studied for nucleic acid delivery applications. In this work, enzymatically degradable peptide-HPMA copolymers were synthesized by RAFT polymerization of HPMA with methacrylated peptide macromonomers, resulting in polymers with low polydispersity and near quantitative incorporation of peptides. Three peptide-HPMA copolymers were evaluated: (i) pHCathK10, containing peptides composed of the linker phe-lys-phe-leu (FKFL), a substrate of the endosomal/lysosomal endopeptidase cathepsin B, connected to oligo-(l)-lysine for nucleic acid binding, (ii) pHCath(d)K10, containing the FKFL linker with oligo-(d)-lysine, and (iii) pH(d)Cath(d)K10, containing all (d) amino acids. Cathepsin B degraded copolymers pHCathK10 and pHCath(d)K10 within one hour while no degradation of pH(d)Cath(d)K10 was observed. Polyplexes formed with pHCathK10 copolymers show DNA release by 4 hrs of treatment with cathepsin B; comparatively, polyplexes formed with pHCath(d)K10 and pH(d)Cath(d)K10 show no DNA release within 8 hrs. Transfection efficiency in HeLa and NIH/3T3 cells were comparable between the copolymers but pHCathK10 was less toxic. This work demonstrates the successful application of peptide linkers for degradable cationic polymers and DNA release. PMID:22036879

  16. Molecular cloning and functional characterization of cathepsin D from sea cucumber Apostichopus japonicus.

    PubMed

    Yu, Cuiping; Cha, Yue; Wu, Fan; Xu, Xianbing; Qin, Lei; Du, Ming

    2017-11-01

    Cathepsin D (CTSD, EC 3.4.23.5) belongs to aspartic protease family, which is located in lysosomes and is distributed in diverse tissues and cells. CTSD has a wide variety of physiological functions, owing to its proteolytic activity in degradating proteins and peptides. In the current study, the full length cDNA of sea cucumber (Apostichopus japonicus) cathepsin D (AjCTSD) was firstly cloned, then the association between AjCTSD and sea cucumber autolysis was investigated. The full length cDNA of AjCTSD was 2896 bp, with an open reading frame (ORF) for 391 amino acids. AjCTSD was widely expressed in body wall, muscle and intestine; the expression level was the highest in intestine, followed by muscle and body wall. Compared to fresh tissues, AjCTSD expression levels were significantly increased in all examined autolytic tissues. The purified recombinant AjCTSD promoted the degradation of sea cucumber muscle. In conclusion, AjCTSD contributed to sea cucumber muscle autolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Cathepsin K in Lymphangioleiomyomatosis: LAM Cell-Fibroblast Interactions Enhance Protease Activity by Extracellular Acidification.

    PubMed

    Dongre, Arundhati; Clements, Debbie; Fisher, Andrew J; Johnson, Simon R

    2017-08-01

    Lymphangioleiomyomatosis (LAM) is a rare disease in which LAM cells and fibroblasts form lung nodules and it is hypothesized that LAM nodule-derived proteases cause cyst formation and tissue damage. On protease gene expression profiling in whole lung tissue, cathepsin K gene expression was 40-fold overexpressed in LAM compared with control lung tissue (P ≤ 0.0001). Immunohistochemistry confirmed cathepsin K protein was expressed in LAM but not control lungs. Cathepsin K gene expression and protein and protease activity were detected in LAM-associated fibroblasts but not the LAM cell line 621-101. In lung nodules, cathepsin K immunoreactivity predominantly co-localized with LAM-associated fibroblasts. In vitro, fibroblast extracellular cathepsin K activity was minimal at pH 7.5 but significantly enhanced at pH 7 and 6. 621-101 cells reduced extracellular pH with acidification dependent on 621-101 mechanistic target of rapamycin activity and net hydrogen ion exporters, particularly sodium bicarbonate co-transporters and carbonic anhydrases, which were also expressed in LAM lung tissue. In LAM cell-fibroblast co-cultures, acidification paralleled cathepsin K activity, and both were reduced by sodium bicarbonate co-transporter (P ≤ 0.0001) and carbonic anhydrase inhibitors (P = 0.0021). Our findings suggest that cathepsin K activity is dependent on LAM cell-fibroblast interactions, and inhibitors of extracellular acidification may be potential therapies for LAM. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Cathepsin B is a New Drug Target for Traumatic Brain Injury Therapeutics: Evidence for E64d as a Promising Lead Drug Candidate

    PubMed Central

    Hook, Gregory; Jacobsen, J. Steven; Grabstein, Kenneth; Kindy, Mark; Hook, Vivian

    2015-01-01

    There is currently no therapeutic drug treatment for traumatic brain injury (TBI) despite decades of experimental clinical trials. This may be because the mechanistic pathways for improving TBI outcomes have yet to be identified and exploited. As such, there remains a need to seek out new molecular targets and their drug candidates to find new treatments for TBI. This review presents supporting evidence for cathepsin B, a cysteine protease, as a potentially important drug target for TBI. Cathepsin B expression is greatly up-regulated in TBI animal models, as well as in trauma patients. Importantly, knockout of the cathepsin B gene in TBI mice results in substantial improvements of TBI-caused deficits in behavior, pathology, and biomarkers, as well as improvements in related injury models. During the process of TBI-induced injury, cathepsin B likely escapes the lysosome, its normal subcellular location, into the cytoplasm or extracellular matrix (ECM) where the unleashed proteolytic power causes destruction via necrotic, apoptotic, autophagic, and activated glia-induced cell death, together with ECM breakdown and inflammation. Significantly, chemical inhibitors of cathepsin B are effective for improving deficits in TBI and related injuries including ischemia, cerebral bleeding, cerebral aneurysm, edema, pain, infection, rheumatoid arthritis, epilepsy, Huntington’s disease, multiple sclerosis, and Alzheimer’s disease. The inhibitor E64d is unique among cathepsin B inhibitors in being the only compound to have demonstrated oral efficacy in a TBI model and prior safe use in man and as such it is an excellent tool compound for preclinical testing and clinical compound development. These data support the conclusion that drug development of cathepsin B inhibitors for TBI treatment should be accelerated. PMID:26388830

  19. Effects of acid etching and adhesive treatments on host-derived cysteine cathepsin activity in dentin.

    PubMed

    Zhang, Wenhao; Yang, Weixiang; Wu, Shuyi; Zheng, Kaibin; Liao, Weili; Chen, Boli; Yao, Ke; Liang, Guobin; Li, Yan

    2014-10-01

    To analyze the effects of different processes during bonding on endogenous cysteine cathepsin activity in dentin. Dentin powder, prepared from extracted human third molars, was divided into 10 groups. Two lots of dentin powder were used to detect the effects of the procedure of protein extraction on endogenous cathepsin activity. The others were used to study effects of different acid-etching or adhesive treatments on enzyme activity. Concentrations of 37% phosphoric acid or 10% phosphoric acid, two etch-and-rinse adhesive systems, and two self-etching adhesive systems were used as dentin powder treatments. The untreated mineralized dentin powder was set as the control. After treatment, the proteins of each group were extracted. The total cathepsin activity in the extracts of each group was monitored with a fluorescence reader. In the control group, there were no significant differences in cathepsin activity between the protein extract before EDTA treatment and the protein extract after EDTA treatment (p > 0.05). The cathepsin activities of the three different extracts in the 37% phosphoric acid-treated group were different from each other (p < 0.05). The two acid-etching groups and two etch-and-rinse groups showed significant enzyme activity reduction vs the control group (p < 0.05). There were no significant differences between those four groups (p > 0.05). Treating the dentin powder with any of the two self-etching adhesives resulted in an increase in cathepsin activity (p < 0.05). The activity of cysteine cathepsins can be detected in dentin powder. Treatment with EDTA during protein extraction exerted an influence on cathepsin activity. Acid etching or etch-and-rinse adhesive systems may reduce the activity of endogenous cathepsins in dentin. Self-etching adhesive systems may increase the enzyme activity.

  20. Cathepsin K expression and activity in canine osteosarcoma.

    PubMed

    Schmit, J M; Pondenis, H C; Barger, A M; Borst, L B; Garrett, L D; Wypij, J M; Neumann, Z L; Fan, T M

    2012-01-01

    Cathepsin K (CatK) is a lysosomal protease with collagenolytic activity, and its secretion by osteoclasts is responsible for degrading organic bone matrix. People with pathologic bone resorption have higher circulating CatK concentrations. Canine osteosarcoma (OS) cells will possess CatK, and its secretion will be cytokine inducible. Circulating CatK concentrations will be increased in dogs with OS, and will be a surrogate marker of bone resorption. Fifty-one dogs with appendicular OS and 18 age- and weight-matched healthy control dogs. In a prospective study, expressions of CatK mRNA and protein were investigated in OS cells. The inducible secretion and proteolytic activity of CatK from OS cells was assessed in vitro. Serum CatK concentrations were quantified in normal dogs and dogs with OS and its utility as a bone resorption marker was evaluated in dogs with OS treated with palliative radiation and antiresorptive agents. Canine OS cells contain preformed CatK within cytoplasmic vesicles. In OS cells, TGFβ1 induced the secretion of CatK, which degraded bone-derived type I collagen in vitro. CatK concentrations were higher in dogs with OS than healthy dogs (11.3 ± 5.2 pmol/L versus 8.1 ± 5.0 pmol/L, P = .03). In a subset of dogs with OS, pretreatment CatK concentrations gradually decreased after palliative radiation and antiresorptive treatment, from 9.3 ± 3.2 pmol/L to 5.0 ± 3.1 pmol/L, P = .03. Canine OS is associated with pathologic bone resorption, and CatK inhibitors might aid in the management of canine OS-related malignant osteolysis. Copyright © 2011 by the American College of Veterinary Internal Medicine.

  1. 75 FR 70104 - Airworthiness Directives; Eurocopter France (ECF) Model SA330F, G, and J; and AS332C, L, L1, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Airworthiness Directives; Eurocopter France (ECF) Model SA330F, G, and J; and AS332C, L, L1, and L2 Helicopters... (ASB) No. 52.13 for the SA330F, G, and J helicopters, and 52.00.38 for the AS332C, C1, L, L1, and L2... authority citation for part 39 continues to read as follows: Authority: 49 U.S.C. 106(g), 40113, 44701. Sec...

  2. C&S Enterprise, L.L.C.

    EPA Pesticide Factsheets

    The EPA is providing notice of a proposed Administrative Penalty Assessment against C & S Enterprise, L.L.C. (“Respondent”), a business located at 2454 480th Ave, Deep River, IA 52222, for alleged violations of the Clean Water Act at property owned by Resp

  3. Ubiquitin C-Terminal Hydrolase L1 (UCH-L1) Promotes Hippocampus-Dependent Memory via Its Deubiquitinating Effect on TrkB.

    PubMed

    Guo, Yun-Yun; Lu, Yi; Zheng, Yuan; Chen, Xiao-Rong; Dong, Jun-Lu; Yuan, Rong-Rong; Huang, Shu-Hong; Yu, Hui; Wang, Yue; Chen, Zhe-Yu; Su, Bo

    2017-06-21

    Multiple studies have established that brain-derived neurotrophic factor (BDNF) plays a critical role in the regulation of synaptic plasticity via its receptor, TrkB. In addition to being phosphorylated, TrkB has also been demonstrated to be ubiquitinated. However, the mechanisms of TrkB ubiquitination and its biological functions remain poorly understood. In this study, we demonstrate that ubiquitin C-terminal hydrolase L1 (UCH-L1) promotes contextual fear conditioning learning and memory via the regulation of ubiquitination of TrkB. We provide evidence that UCH-L1 can deubiquitinate TrkB directly. K460 in the juxtamembane domain of TrkB is the primary ubiquitination site and is regulated by UCH-L1. By using a peptide that competitively inhibits the association between UCH-L1 and TrkB, we show that the blockade of UCH-L1-regulated TrkB deubiquitination leads to increased BDNF-induced TrkB internalization and consequently directs the internalized TrkB to the degradation pathway, resulting in increased degradation of surface TrkB and attenuation of TrkB activation and its downstream signaling pathways. Moreover, injection of the peptide into the DG region of mice impairs hippocampus-dependent memory. Together, our results suggest that the ubiquitination of TrkB is a mechanism that controls its downstream signaling pathways via the regulation of its endocytosis and postendocytic trafficking and that UCH-L1 mediates the deubiquitination of TrkB and could be a potential target for the modulation of hippocampus-dependent memory. SIGNIFICANCE STATEMENT Ubiquitin C-terminal hydrolase L1 (UCH-L1) has been demonstrated to play important roles in the regulation of synaptic plasticity and learning and memory. TrkB, the receptor for brain-derived neurotrophic factor, has also been shown to be a potent regulator of synaptic plasticity. In this study, we demonstrate that UCH-L1 functions as a deubiquitinase for TrkB. The blockage of UCH-L1-regulated deubiquitination of Trk

  4. 75 FR 40815 - PJM Interconnection, L.L.C.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... Interconnection, L.L.C.; Notice of Filing July 7, 2010. Take notice that on July 1, 2010, PJM Interconnection, L.L.C. (PJM) filed revised sheets to Schedule 1 of the Amended and Restated Operating Agreement of PJM Interconnection, L.L.C. (Operating Agreement) and the parallel provisions of Attachment K--Appendix of the PJM...

  5. Functional Properties of a Newly Identified C-terminal Splice Variant of Cav1.3 L-type Ca2+ Channels*

    PubMed Central

    Bock, Gabriella; Gebhart, Mathias; Scharinger, Anja; Jangsangthong, Wanchana; Busquet, Perrine; Poggiani, Chiara; Sartori, Simone; Mangoni, Matteo E.; Sinnegger-Brauns, Martina J.; Herzig, Stefan; Striessnig, Jörg; Koschak, Alexandra

    2011-01-01

    An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Cav1.3 L-type Ca2+ channels (Cav1.3L) is a major determinant of their voltage- and Ca2+-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Cav1.342A channels that activate at a more negative voltage range and exhibit more pronounced Ca2+-dependent inactivation. Here we describe the discovery of a novel short splice variant (Cav1.343S) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Cav1.342A, still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Cav1.343S also activated at more negative voltages like Cav1.342A but Ca2+-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Cav1.3L. The presence of the proximal C terminus in Cav1.343S channels preserved their modulation by distal C terminus-containing Cav1.3- and Cav1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca2+ influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Cav1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca2+ channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca2+ accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca2+-induced neurodegenerative processes. PMID:21998310

  6. The Tick Salivary Protein Sialostatin L2 Inhibits Caspase-1-Mediated Inflammation during Anaplasma phagocytophilum Infection

    PubMed Central

    Chen, Gang; Wang, Xiaowei; Severo, Maiara S.; Sakhon, Olivia S.; Sohail, Mohammad; Brown, Lindsey J.; Sircar, Mayukh; Snyder, Greg A.; Sundberg, Eric J.; Ulland, Tyler K.; Olivier, Alicia K.; Andersen, John F.; Zhou, Yi; Shi, Guo-Ping; Sutterwala, Fayyaz S.; Kotsyfakis, Michail

    2014-01-01

    Saliva from arthropod vectors facilitates blood feeding by altering host inflammation. Whether arthropod saliva counters inflammasome signaling, a protein scaffold that regulates the activity of caspase-1 and cleavage of interleukin-1β (IL-1β) and IL-18 into mature molecules, remains elusive. In this study, we provide evidence that a tick salivary protein, sialostatin L2, inhibits inflammasome formation during pathogen infection. We show that sialostatin L2 targets caspase-1 activity during host stimulation with the rickettsial agent Anaplasma phagocytophilum. A. phagocytophilum causes macrophage activation and hemophagocytic syndrome features. The effect of sialostatin L2 in macrophages was not due to direct caspase-1 enzymatic inhibition, and it did not rely on nuclear factor κB or cathepsin L signaling. Reactive oxygen species from NADPH oxidase and the Loop2 domain of sialostatin L2 were important for the regulatory process. Altogether, our data expand the knowledge of immunoregulatory pathways of tick salivary proteins and unveil an important finding in inflammasome biology. PMID:24686067

  7. Molecular Dynamics Simulations of Ligand-Induced Flap Conformational Changes in Cathepsin-D-A Comparative Study.

    PubMed

    Arodola, Olayide A; Soliman, Mahmoud E S

    2016-11-01

    The flap region in aspartic proteases is a unique structural feature to this class of enzymes, and found to have a profound impact on protein overall structure, function, and dynamics. Understanding the structure and dynamic behavior of the flap regions is crucial in the design of selective inhibitors against aspartic proteases. Cathepsin-D, an aspartic protease enzyme, has been implicated in a long list of degenerative diseases as well as breast cancer progression. Presented herein, for the first time, is a comprehensive description of the conformational flap dynamics of cathepsin-D using a comparative 50 ns "multiple" molecular dynamics simulations. Diverse collective metrics were proposed to accurately define flap dynamics. These are distance d1 between the flap tips residues (Gly79 and Met301); dihedral angle ϕ; in addition to TriCα angles Gly79-Asp33-Asp223, θ1 , and Gly79-Asp223-Met301, θ2 . The maximum distance attained throughout the simulation was 17.42 and 11.47 Å for apo and bound cathepsin-D, respectively, while the minimum distance observed was 8.75 and 6.32 Å for apo and bound cathepsin-D, respectively. The movement of the flap as well as the twist of the active pocket can properly be explained by measuring the angle, θ1 , between Gly79-Asp33-Met301 and correlating it with the distance Cα of the flap tip residues. The asymmetrical opening of the binding cavity was best described by the large shift of -6.26° to +20.94° in the dihedral angle, ϕ, corresponding to the full opening of the flap at a range of 31-33 ns. A wide-range of post-dynamic analyses was also applied in this report to supplement our findings. We believe that this report would augment current efforts in designing potent structure-based inhibitors against cathepsin-D in the treatment of breast cancer and other degenerative diseases. J. Cell. Biochem. 117: 2643-2657, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Altered Ca2+ homeostasis induces Calpain-Cathepsin axis activation in sporadic Creutzfeldt-Jakob disease.

    PubMed

    Llorens, Franc; Thüne, Katrin; Sikorska, Beata; Schmitz, Matthias; Tahir, Waqas; Fernández-Borges, Natalia; Cramm, Maria; Gotzmann, Nadine; Carmona, Margarita; Streichenberger, Nathalie; Michel, Uwe; Zafar, Saima; Schuetz, Anna-Lena; Rajput, Ashish; Andréoletti, Olivier; Bonn, Stefan; Fischer, Andre; Liberski, Pawel P; Torres, Juan Maria; Ferrer, Isidre; Zerr, Inga

    2017-04-27

    Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent form of human prion disease and it is characterized by the presence of neuronal loss, spongiform degeneration, chronic inflammation and the accumulation of misfolded and pathogenic prion protein (PrP Sc ). The molecular mechanisms underlying these alterations are largely unknown, but the presence of intracellular neuronal calcium (Ca 2+ ) overload, a general feature in models of prion diseases, is suggested to play a key role in prion pathogenesis.Here we describe the presence of massive regulation of Ca 2+ responsive genes in sCJD brain tissue, accompanied by two Ca 2+ -dependent processes: endoplasmic reticulum stress and the activation of the cysteine proteases Calpains 1/2. Pathogenic Calpain proteins activation in sCJD is linked to the cleavage of their cellular substrates, impaired autophagy and lysosomal damage, which is partially reversed by Calpain inhibition in a cellular prion model. Additionally, Calpain 1 treatment enhances seeding activity of PrP Sc in a prion conversion assay. Neuronal lysosomal impairment caused by Calpain over activation leads to the release of the lysosomal protease Cathepsin S that in sCJD mainly localises in axons, although massive Cathepsin S overexpression is detected in microglial cells. Alterations in Ca 2+ homeostasis and activation of Calpain-Cathepsin axis already occur at pre-clinical stages of the disease as detected in a humanized sCJD mouse model.Altogether our work indicates that unbalanced Calpain-Cathepsin activation is a relevant contributor to the pathogenesis of sCJD at multiple molecular levels and a potential target for therapeutic intervention.

  9. Acquisition of T regulatory function in cathepsin L-inhibited T cells by eye-derived CTLA-2alpha during inflammatory conditions.

    PubMed

    Sugita, Sunao; Horie, Shintaro; Nakamura, Orie; Maruyama, Kazuichi; Takase, Hiroshi; Usui, Yoshihiko; Takeuchi, Masaru; Ishidoh, Kazumi; Koike, Masato; Uchiyama, Yasuo; Peters, Christoph; Yamamoto, Yoshimi; Mochizuki, Manabu

    2009-10-15

    Pigment epithelium isolated from the eye possesses immunosuppressive properties such as regulatory T (Treg) cell induction; e.g., cultured retinal pigment epithelium (RPE) converts CD4(+) T cells into Treg cells in vitro. RPE constitutively expresses a novel immunosuppressive factor, CTLA-2alpha, which is a cathepsin L (CathL) inhibitor, and this molecule acts via RPE to induce Treg cells. To clarify CTLA-2alpha's role in the T cell response to RPE in ocular inflammation, we used the experimental autoimmune uveitis (EAU) animal model to examine this new immunosuppressive property of RPE. In EAU models, TGF-beta, but not IFN-gamma inflammatory cytokines, promotes the up-regulation of the expression of CTLA-2alpha in RPE. Similarly, CTLA-2alpha via RPE was able to promote TGF-beta production by the CD4(+) T cells. The RPE-exposed T cells (RPE-induced Treg cells) greatly produced TGF-beta and suppressed bystander effector T cells. There was less expression of CathL by the RPE-exposed T cells, and CathL-inhibited T cells were able to acquire the Treg phenotype. Moreover, CathL-deficient mice spontaneously produced Treg cells, with the increase in T cells potentially providing protection against ocular inflammation. More importantly, CD4(+) T cells from EAU in CathL knockout mice or rCTLA-2alpha from EAU animals were found to contain a high population of forkhead box p3(+) T cells. In both EAU models, there was significant suppression of the ocular inflammation. These results indicate that RPE secretes CTLA-2alpha, thereby enabling the bystander T cells to be converted into Treg cells via TGF-beta promotion.

  10. Genetic variation at the NPC1L1 gene locus, plasma lipoproteins, and heart disease risk in the elderly

    USDA-ARS?s Scientific Manuscript database

    Niemann-Pick C1-like 1 protein (NPC1L1) plays a critical role in intestinal cholesterol absorption. Our objective was to examine whether five variants (-133A>G, -18A>C, L272L, V1296V, and U3_28650A>G) at the NPC1L1 gene have effects on lipid levels, prevalence, and incidence of coronary heart diseas...

  11. Virtual screening of cathepsin k inhibitors using docking and pharmacophore models.

    PubMed

    Ravikumar, Muttineni; Pavan, S; Bairy, Santhosh; Pramod, A B; Sumakanth, M; Kishore, Madala; Sumithra, Tirunagaram

    2008-07-01

    Cathepsin K is a lysosomal cysteine protease that is highly and selectively expressed in osteoclasts, the cells which degrade bone during the continuous cycle of bone degradation and formation. Inhibition of cathepsin K represents a potential therapeutic approach for diseases characterized by excessive bone resorption such as osteoporosis. In order to elucidate the essential structural features for cathepsin K, a three-dimensional pharmacophore hypotheses were built on the basis of a set of known cathepsin K inhibitors selected from the literature using catalyst program. Several methods are used in validation of pharmacophore hypothesis were presented, and the fourth hypothesis (Hypo4) was considered to be the best pharmacophore hypothesis which has a correlation coefficient of 0.944 with training set and has high prediction of activity for a set of 30 test molecules with correlation of 0.909. The model (Hypo4) was then employed as 3D search query to screen the Maybridge database containing 59,000 compounds, to discover novel and highly potent ligands. For analyzing intermolecular interactions between protein and ligand, all the molecules were docked using Glide software. The result showed that the type and spatial location of chemical features encoded in the pharmacophore are in full agreement with the enzyme inhibitor interaction pattern identified from molecular docking.

  12. 1. Historical American Buildings Survey L. C. Durette, Photographer May ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historical American Buildings Survey L. C. Durette, Photographer May 15, 1936. SECOND NEW HAMPSHIRE TURNPIKE BRIDGE AT FULLERS TANNERY ROAD ON BRIDGE LOOKING SOUTH EAST - Second New Hampshire Turnpike Bridge, Fullers Tannery, Hillsboro, Hillsborough County, NH

  13. Dopamine D2-like receptor signaling suppresses human osteoclastogenesis.

    PubMed

    Hanami, Kentaro; Nakano, Kazuhisa; Saito, Kazuyoshi; Okada, Yosuke; Yamaoka, Kunihiro; Kubo, Satoshi; Kondo, Masahiro; Tanaka, Yoshiya

    2013-09-01

    Dopamine, a major neurotransmitter, transmits signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. Although the relevance of neuroendocrine system to bone metabolism has been emerging, the precise effects of dopaminergic signaling upon osteoclastogenesis remain unknown. Here, we demonstrate that human monocyte-derived osteoclast precursor cells express all dopamine-receptor subtypes. Dopamine and dopamine D2-like receptor agonists such as pramipexole and quinpirole reduced the formation of TRAP-positive multi-nucleated cells, cathepsin K mRNA expression, and pit formation area in vitro. These inhibitory effects were reversed by pre-treatment with a D2-like receptor antagonist haloperidol or a Gαi inhibitor pertussis toxin, but not with the D1-like receptor antagonist SCH-23390. Dopamine and dopamine D2-like receptor agonists, but not a D1-like receptor agonist, suppressed intracellular cAMP concentration as well as RANKL-meditated induction of c-Fos and NFATc1 mRNA expression in human osteoclast precursor cells. Finally, the dopamine D2-like receptor agonist suppressed LPS-induced osteoclast formation in murine bone marrow culture ex vivo. These findings indicate that dopaminergic signaling plays an important role in bone homeostasis via direct effects upon osteoclast differentiation and further suggest that the clinical use of neuroleptics is likely to affect bone mass. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. 77 FR 34378 - PJM Interconnection, L.L.C.; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... Interconnection, L.L.C.; Notice of Complaint Take notice that on June 1, 2012, pursuant to section 206 of the Federal Power Act (FPA), 16 U.S.C. 824(e), PJM Interconnection, L.L.C. (PJM) filed proposed revisions to the Amended and Restated Operating Agreement of PJM Interconnection L.L.C. (Operating Agreement) to...

  15. Isolation and sequence of partial cDNA clones of human L1: homology of human and rodent L1 in the cytoplasmic region.

    PubMed

    Harper, J R; Prince, J T; Healy, P A; Stuart, J K; Nauman, S J; Stallcup, W B

    1991-03-01

    We have isolated cDNA clones coding for the human homologue of the neuronal cell adhesion molecule L1. The nucleotide sequence of the cDNA clones and the deduced primary amino acid sequence of the carboxy terminal portion of the human L1 are homologous to the corresponding sequences of mouse L1 and rat NILE glycoprotein, with an especially high sequences identity in the cytoplasmic regions of the proteins. There is also protein sequence homology with the cytoplasmic region of the Drosophila cell adhesion molecule, neuroglian. The conservation of the cytoplasmic domain argues for an important functional role for this portion of the molecule.

  16. Regulation of Synaptic Structure by the Ubiquitin C-terminal Hydrolase UCH-L1

    PubMed Central

    Cartier, Anna E.; Djakovic, Stevan N.; Salehi, Afshin; Wilson, Scott M.; Masliah, Eliezer; Patrick, Gentry N.

    2009-01-01

    UCH-L1 is a de-ubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We have found that UCH-L1 activity is rapidly up-regulated by NMDA receptor activation which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of pre and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1 inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner. PMID:19535597

  17. Lysosomal ceramide generated by acid sphingomyelinase triggers cytosolic cathepsin B-mediated degradation of X-linked inhibitor of apoptosis protein in natural killer/T lymphoma cell apoptosis.

    PubMed

    Taniguchi, M; Ogiso, H; Takeuchi, T; Kitatani, K; Umehara, H; Okazaki, T

    2015-04-09

    We previously reported that IL-2 deprivation induced acid sphingomyelinase-mediated (ASM-mediated) ceramide elevation and apoptosis in an NK/T lymphoma cell line KHYG-1. However, the molecular mechanism of ASM-ceramide-mediated apoptosis during IL-2 deprivation is poorly understood. Here, we showed that IL-2 deprivation induces caspase-dependent apoptosis characterized by phosphatidylserine externalization, caspase-8, -9, and -3 cleavage, and degradation of X-linked inhibitor of apoptosis protein (XIAP). IL-2 re-supplementation rescued apoptosis via inhibition of XIAP degradation without affecting caspase cleavage. However, IL-2 deprivation induced ceramide elevation via ASM in lysosomes and activated lysosomal cathepsin B (CTSB) but not cathepsin D. A CTSB inhibitor CA-074 Me and knockdown of CTSB inhibited ceramide-mediated XIAP degradation and apoptosis. Inhibition of ceramide accumulation in lysosomes using an ASM inhibitor, desipramine, decreased cytosolic activation of CTSB by inhibiting its transfer into cytosol from the lysosome. Knockdown of ASM also inhibited XIAP degradation and apoptosis. Furthermore, cell permeable N-acetyl sphingosine (C2-ceramide), which increases mainly endogenous d18:1/16:0 and d18:1/24:1 ceramide-like IL-2 deprivation, induced caspase-dependent apoptosis with XIAP degradation through CTSB. These findings suggest that lysosomal ceramide produced by ASM mediates XIAP degradation by activation of cytosolic CTSB and caspase-dependent apoptosis. The ASM-ceramide-CTSB signaling axis is a novel pathway of ceramide-mediated apoptosis in IL-2-deprived NK/T lymphoma cells.

  18. Lysosomal ceramide generated by acid sphingomyelinase triggers cytosolic cathepsin B-mediated degradation of X-linked inhibitor of apoptosis protein in natural killer/T lymphoma cell apoptosis

    PubMed Central

    Taniguchi, M; Ogiso, H; Takeuchi, T; Kitatani, K; Umehara, H; Okazaki, T

    2015-01-01

    We previously reported that IL-2 deprivation induced acid sphingomyelinase-mediated (ASM-mediated) ceramide elevation and apoptosis in an NK/T lymphoma cell line KHYG-1. However, the molecular mechanism of ASM–ceramide-mediated apoptosis during IL-2 deprivation is poorly understood. Here, we showed that IL-2 deprivation induces caspase-dependent apoptosis characterized by phosphatidylserine externalization, caspase-8, -9, and -3 cleavage, and degradation of X-linked inhibitor of apoptosis protein (XIAP). IL-2 re-supplementation rescued apoptosis via inhibition of XIAP degradation without affecting caspase cleavage. However, IL-2 deprivation induced ceramide elevation via ASM in lysosomes and activated lysosomal cathepsin B (CTSB) but not cathepsin D. A CTSB inhibitor CA-074 Me and knockdown of CTSB inhibited ceramide-mediated XIAP degradation and apoptosis. Inhibition of ceramide accumulation in lysosomes using an ASM inhibitor, desipramine, decreased cytosolic activation of CTSB by inhibiting its transfer into cytosol from the lysosome. Knockdown of ASM also inhibited XIAP degradation and apoptosis. Furthermore, cell permeable N-acetyl sphingosine (C2-ceramide), which increases mainly endogenous d18:1/16:0 and d18:1/24:1 ceramide-like IL-2 deprivation, induced caspase-dependent apoptosis with XIAP degradation through CTSB. These findings suggest that lysosomal ceramide produced by ASM mediates XIAP degradation by activation of cytosolic CTSB and caspase-dependent apoptosis. The ASM–ceramide–CTSB signaling axis is a novel pathway of ceramide-mediated apoptosis in IL-2-deprived NK/T lymphoma cells. PMID:25855965

  19. Structural features of a close homologue of L1 (CHL1) in the mouse: a new member of the L1 family of neural recognition molecules.

    PubMed

    Holm, J; Hillenbrand, R; Steuber, V; Bartsch, U; Moos, M; Lübbert, H; Montag, D; Schachner, M

    1996-08-01

    We have identified a close homologue of L1 (CHL1) in the mouse. CHL1 comprises an N-terminal signal sequence, six immunoglobulin (Ig)-like domains, 4.5 fibronectin type III (FN)-like repeats, a transmembrane domain and a C-terminal, most likely intracellular domain of approximately 100 amino acids. CHL1 is most similar in its extracellular domain to chicken Ng-CAM (approximately 40% amino acid identity), followed by mouse L1, chicken neurofascin, chicken Nr-CAM, Drosophila neuroglian and zebrafish L1.1 (37-28% amino acid identity), and mouse F3, rat TAG-1 and rat BIG-1 (approximately 27% amino acid identity). The similarity with other members of the Ig superfamily [e.g. neural cell adhesion molecule (N-CAM), DCC, HLAR, rse] is 16-11%. The intracellular domain is most similar to mouse and chicken Nr-CAM, mouse and rat neurofascin (approximately 60% amino acid identity) followed by chicken neurofascin and Ng-CAM, Drosophila neuroglian and zebrafish L1.1 and L1.2 (approximately 40% amino acid identity). Besides the high overall homology and conserved modular structure among previously recognized members of the L1 family (mouse/human L1/rat NILE; chicken Ng-CAM; chicken/mouse Nr-CAM; Drosophila neuroglian; zebrafish L1.1 and L1.2; chicken/mouse neurofascin/rat ankyrin-binding glycoprotein), criteria characteristic of L1 were identified with regard to the number of amino acids between positions of conserved amino acid residues defining distances within and between two adjacent Ig-like domains and FN-like repeats. These show a collinearity in the six Ig-like domains and four adjacent FN-like repeats that is remarkably conserved between L1 and molecules containing these modules (designated the L1 family cassette), including the GPI-linked forms of the F3 subgroup (mouse F3/chicken F11/human CNTN1; rat BIG-1/mouse PANG; rat TAG-1/mouse TAX-1/chicken axonin-1). The colorectal cancer molecule (DCC), previously introduced as an N-CAM-like molecule, conforms to the L1 family

  20. Functional properties of a newly identified C-terminal splice variant of Cav1.3 L-type Ca2+ channels.

    PubMed

    Bock, Gabriella; Gebhart, Mathias; Scharinger, Anja; Jangsangthong, Wanchana; Busquet, Perrine; Poggiani, Chiara; Sartori, Simone; Mangoni, Matteo E; Sinnegger-Brauns, Martina J; Herzig, Stefan; Striessnig, Jörg; Koschak, Alexandra

    2011-12-09

    An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Ca(v)1.3 L-type Ca(2+) channels (Ca(v)1.3(L)) is a major determinant of their voltage- and Ca(2+)-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Ca(v)1.3(42A) channels that activate at a more negative voltage range and exhibit more pronounced Ca(2+)-dependent inactivation. Here we describe the discovery of a novel short splice variant (Ca(v)1.3(43S)) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Ca(v)1.3(42A), still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Ca(v)1.3(43S) also activated at more negative voltages like Ca(v)1.3(42A) but Ca(2+)-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Ca(v)1.3(L). The presence of the proximal C terminus in Ca(v)1.3(43S) channels preserved their modulation by distal C terminus-containing Ca(v)1.3- and Ca(v)1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca(2+) influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Ca(v)1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca(2+) channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca(2+) accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca(2+)-induced neurodegenerative processes.

  1. Cathepsin K expression in a wide spectrum of perivascular epithelioid cell neoplasms (PEComas): a clinicopathological study emphasizing extrarenal PEComas.

    PubMed

    Rao, Qiu; Cheng, Liang; Xia, Qiu-yuan; Liu, Biao; Li, Li; Shi, Qun-li; Shi, Shan-shan; Yu, Bo; Zhang, Ru-song; Ma, Heng-hui; Lu, Zhen-feng; Tu, Pin; Zhou, Xiao-jun

    2013-03-01

    Recent studies have demonstrated that cathepsin K seems to be a powerful marker in identifying renal perivascular epithelioid cell neoplasms (PEComas). However, the expression in extrarenal PEComas has not been well characterized due to their rare incidence. Our aim was to investigate the expression of cathepsin K in a wide spectrum of extrarenal PEComas and evaluate its potential diagnostic usefulness in comparison with other commonly used markers. Twenty-three cases of PEComa (liver, n = 9; lung, n = 1; broad ligament of uterus, n = 1; vertex subcutaneous soft tissue, n = 1; abdominal wall, n = 1; and kidney, n = 10) were selected for study. All displayed a high percentage of cells with moderately to strongly positive reactions for cathepsin K (mean 91%; range 80-100%). HMB45, Melan-A and smooth muscle actin (SMA) were expressed in 78, 87 and 87% of cases, respectively, with various percentages of positive cells (mean, 34, 40 and 38%; range 0-80, 0-90 and 0-90%). Transcription factor E3 (TFE3) was expressed strongly in only three cases; none exhibited evidence of TFE3 gene fusion or amplification. Cathepsin K appears to be more powerful than other commonly used markers in diagnosing a wide spectrum of PEComas and distinguishing them from the majority of human cancers. © 2012 Blackwell Publishing Ltd.

  2. The proteases HtrA2/Omi and UCH-L1 regulate TNF-induced necroptosis

    PubMed Central

    2013-01-01

    Background In apoptosis, proteolysis by caspases is the primary mechanism for both initiation and execution of programmed cell death (PCD). In contrast, the impact of proteolysis on the regulation and execution of caspase-independent forms of PCD (programmed necrosis, necroptosis) is only marginally understood. Likewise, the identity of the involved proteases has remained largely obscure. Here, we have investigated the impact of proteases in TNF-induced necroptosis. Results The serine protease inhibitor TPKC protected from TNF-induced necroptosis in multiple murine and human cells systems whereas inhibitors of metalloproteinases or calpain/cysteine and cathepsin proteases had no effect. A screen for proteins labeled by a fluorescent TPCK derivative in necroptotic cells identified HtrA2/Omi (a serine protease previously implicated in PCD) as a promising candidate. Demonstrating its functional impact, pharmacological inhibition or genetic deletion of HtrA2/Omi protected from TNF-induced necroptosis. Unlike in apoptosis, HtrA2/Omi did not cleave another protease, ubiquitin C-terminal hydrolase (UCH-L1) during TNF-induced necroptosis, but rather induced monoubiquitination indicative for UCH-L1 activation. Correspondingly, pharmacologic or RNA interference-mediated inhibition of UCH-L1 protected from TNF-induced necroptosis. We found that UCH-L1 is a mediator of caspase-independent, non-apoptotic cell death also in diseased kidney podocytes by measuring cleavage of the protein PARP-1, caspase activity, cell death and cell morphology. Indicating a role of TNF in this process, podocytes with stably downregulated UCH-L1 proved resistant to TNF-induced necroptosis. Conclusions The proteases HtrA2/Omi and UCH-L1 represent two key components of TNF-induced necroptosis, validating the relevance of proteolysis not only for apoptosis, but also for caspase-independent PCD. Since UCH-L1 clearly contributes to the non-apoptotic death of podocytes, interference with the necroptotic

  3. 75 FR 22773 - PJM Interconnection, L.L.C.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... Interconnection, L.L.C.; Notice of Filing April 23, 2010. Take notice that on April 22, 2010, PJM Interconnection, L.L.C. (PJM) filed revised tariff sheets to its Schedule 1 of the Amended and Restated Operating... (Commission) March 23, 2010 Order on Compliance Filing, PJM Interconnection, L.L.C., 130 FERC ] 61,230 (2010...

  4. Difference in glucagon-like peptide-1 concentrations between C-peptide negative type 1 diabetes mellitus patients and healthy controls.

    PubMed

    Zibar, Karin; Ćuća, Jadranka Knežević; Blaslov, Kristina; Bulum, Tomislav; Smirčić-Duvnjak, Lea

    2015-03-01

    The role of glucagon-like peptide-1 (GLP-1) has become a new scientific interest in the field of pathophysiology of type 1 diabetes mellitus (T1DM), but the results of the published studies were contradictory. The aim of our study was therefore to measure fasting and postprandial GLP-1 concentrations in T1DM patients and in healthy controls and to examine the difference in those concentrations between the two groups of subjects. The cross-sectional study included 30 C-peptide negative T1DM patients, median age 37 years (20-59), with disease duration 22 years (3-45), and 10 healthy controls, median age 30 years (27-47). Fasting and postprandial total and active GLP-1 concentrations were measured by ELISA (ALPCO, USA). The data were statistically analysed by SPSS, and significance level was accepted at P < 0.05. Both fasting total and active GLP-1 concentrations were significantly lower in T1DM patients (total 0.4 pmol/L, 0-6.4 and active 0.2 pmol/L, 0-1.9) compared with healthy controls (total 3.23 pmol/L, 0.2-5.5 and active 0.8 pmol/L, 0.2-3.6), P = 0.008 for total GLP-1 and P = 0.001 for active GLP-1. After adjustment for age, sex and body mass index, binary logistic regression showed that both fasting total and active GLP-1 remained significantly independently lower in T1DM patients (total GLP-1: OR 2.43, 95% CI 1.203-4.909 and active GLP-1: OR 8.73, 95% CI 1.472-51.787). T1DM patients had independently lower total and active GLP-1 fasting concentrations in comparison with healthy people, which supports the potential therapeutic role of incretin therapy, along with insulin therapy, in T1DM patients. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. 77 FR 34031 - Petal Gas Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Application Take notice that on May 21, 2012, Petal Gas Storage, L.L.C. (Petal) and Hattiesburg Industrial Gas Sales, L.L.C. (Hattiesburg... pursuant to sections 7(c) and 7(b) of the Natural Gas Act (NGA), for authorization for Petal to acquire the...

  6. 26 CFR 1.501(c)(12)-1 - Local benevolent life insurance associations, mutual irrigation and telephone companies, and like...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 7 2010-04-01 2010-04-01 true Local benevolent life insurance associations, mutual irrigation and telephone companies, and like organizations. 1.501(c)(12)-1 Section 1.501(c)(12)-1...) INCOME TAXES (CONTINUED) Exempt Organizations § 1.501(c)(12)-1 Local benevolent life insurance...

  7. 26 CFR 1.501(c)(12)-1 - Local benevolent life insurance associations, mutual irrigation and telephone companies, and like...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 7 2011-04-01 2009-04-01 true Local benevolent life insurance associations, mutual irrigation and telephone companies, and like organizations. 1.501(c)(12)-1 Section 1.501(c)(12)-1...) INCOME TAXES (CONTINUED) Exempt Organizations § 1.501(c)(12)-1 Local benevolent life insurance...

  8. Inhibition of cathepsin K reduces cartilage degeneration in the anterior cruciate ligament transection rabbit and murine models of osteoarthritis.

    PubMed

    Hayami, Tadashi; Zhuo, Ya; Wesolowski, Gregg A; Pickarski, Maureen; Duong, Le T

    2012-06-01

    To investigate the disease modifying effects of cathepsin K (CatK) inhibitor L-006235 compared to alendronate (ALN) in two preclinical models of osteoarthritis (OA). Skeletally mature rabbits underwent sham or anterior cruciate ligament transection (ACLT)-surgery and were treated with L-006235 (L-235, 10 mg/kg or 50 mg/kg, p.o., daily) or ALN (0.6 mg/kg, s.c., weekly) for 8-weeks. ACLT joint instability was also induced in CatK(-/-) versus wild type (wt) mice and treated for 16-weeks. Changes in cartilage degeneration, subchondral bone volume and osteophyte area were determined by histology and μ-CT. Collagen type I helical peptide (HP-I), a bone resorption marker and collagen type II C-telopeptide (CTX-II), a cartilage degradation marker were measured. L-235 (50 mg/kg) and ALN treatment resulted in significant chondroprotective effects, reducing CTX-II by 60% and the histological Mankin score for cartilage damage by 46% in the ACLT-rabbits. Both doses of L-235 were more potent than ALN in protecting against focal subchondral bone loss, and reducing HP-I by 70% compared to vehicle. L-235 (50 mg/kg) and ALN significantly reduced osteophyte formation in histomorphometric analysis by 55%. The Mankin score in ACLT-CatK(-/-) mice was ~2.5-fold lower than the ACLT-wt mice and was not different from sham-CatK(-/-). Osteophyte development was not different among the groups. Inhibition of CatK provides significant benefits in ACLT-model of OA, including: 1) protection of subchondral bone integrity, 2) protection against cartilage degradation and 3) reduced osteophytosis. Preclinical evidence supports the role of CatK as a potential therapeutic target for the treatment of OA. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Analysis of tumor- and stroma-supplied proteolytic networks reveals a brain metastasis-promoting role for cathepsin S

    PubMed Central

    Sevenich, Lisa; Bowman, Robert L.; Mason, Steven D.; Quail, Daniela F.; Rapaport, Franck; Elie, Benelita T.; Brogi, Edi; Brastianos, Priscilla K.; Hahn, William C.; Holsinger, Leslie J.; Massagué, Joan; Leslie, Christina S.; Joyce, Johanna A.

    2014-01-01

    Metastasis remains the most common cause of death in most cancers, with limited therapies for combating disseminated disease. While the primary tumor microenvironment is an important regulator of cancer progression, it is less well understood how different tissue environments influence metastasis. We analyzed tumor-stroma interactions that modulate organ tropism of brain, bone and lung metastasis in xenograft models. We identified a number of potential modulators of site-specific metastasis, including cathepsin S as a regulator of breast-to-brain metastasis. High cathepsin S expression at the primary site correlated with decreased brain metastasis-free survival in breast cancer patients. Both macrophages and tumor cells produce cathepsin S, and only the combined depletion significantly reduced brain metastasis in vivo. Cathepsin S specifically mediates blood-brain barrier transmigration via proteolytic processing of the junctional adhesion molecule (JAM)-B. Pharmacological inhibition of cathepsin S significantly reduced experimental brain metastasis, supporting its consideration as a therapeutic target for this disease. PMID:25086747

  10. 77 FR 29753 - CaterParrott Railnet, L.L.C.-Sublease and Operation Exemption-Georgia & Florida Railway, L.L.C.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... Railnet, L.L.C.--Sublease and Operation Exemption-- Georgia & Florida Railway, L.L.C. CaterParrott Railnet, L.L.C. (CPR), a noncarrier, has filed a verified notice of exemption under 49 CFR 1150.31 to sublease from Georgia & Florida Railway, L.L.C. (GRF) and operate approximately 43.2 miles of rail line...

  11. sghC1q, a novel C1q family member from half-smooth tongue sole (Cynoglossus semilaevis): identification, expression and analysis of antibacterial and antiviral activities.

    PubMed

    Zeng, Yan; Xiang, Jinsong; Lu, Yang; Chen, Yadong; Wang, Tianzi; Gong, Guangye; Wang, Lei; Li, Xihong; Chen, Songlin; Sha, Zhenxia

    2015-01-01

    The C1q family includes many proteins that contain a globular (gC1q) domain, and this family is widely conserved from bacteria to mammals. The family is divided into three subgroups: C1q, C1q-like and ghC1q. In this study, a novel C1q family member, sghC1q, was cloned and identified from Cynoglossus semilaevis (named CssghC1q). The full-length CssghC1q cDNA spans 905 bp, including an open reading frame (ORF) of 768 bp, a 5'-untranslated region (UTR) of 25 bp and a 3'-UTR of 112 bp. The ORF encodes a putative protein of 255 amino acids (aa) with a deduced molecular weight of 28 kDa. The predicted protein contains a signal peptide (aa 1-19), a coiled-coil region (aa 61-102) and a globular C1q (gC1q) domain (aa 117-255). Protein sequence alignment indicated that the C-terminus of CssghC1q is highly conserved across several species. Phylogenetic analysis indicated that CssghC1q is most closely related to Maylandia zebra C1q-like-2-like. The CssghC1q genomic sequence spanned 1562 bp, with three exons and two introns. CssghC1q is constitutively expressed in all evaluated tissues, with the highest expression in the liver and the weakest in the heart. After a challenge with Vibrio anguillarum, CssghC1q transcript levels exhibited distinct time-dependent response patterns in the blood, head kidney, skin, spleen, intestine and liver. Recombinant CssghC1q protein exhibited antimicrobial activities against Gram-negative bacteria, Gram-positive bacteria and viruses. The minimum inhibitory concentration (MIC) values against Vibrio harveyi, Vibrio anguillarum, Pseudomonas aeruginosa and Staphylococcus aureus were 0.043 mg/mL, 0.087 mg/mL, 0.174 mg/mL and 0.025 mg/mL, respectively. A low concentration (0.06 mg/mL) of CssghC1q showed significant antiviral activity in vitro against nervous necrosis virus (NNV). These results suggest that CssghC1q plays a vital role in immune defense against bacteria and viruses. Copyright © 2014 Elsevier Ltd. All rights

  12. The diagnosis of human fascioliasis by enzyme-linked immunosorbent assay (ELISA) using recombinant cathepsin L protease.

    PubMed

    Gonzales Santana, Bibiana; Dalton, John P; Vasquez Camargo, Fabio; Parkinson, Michael; Ndao, Momar

    2013-01-01

    Fascioliasis is a worldwide parasitic disease of domestic animals caused by helminths of the genus Fasciola. In many parts of the world, particularly in poor rural areas where animal disease is endemic, the parasite also infects humans. Adult parasites reside in the bile ducts of the host and therefore diagnosis of human fascioliasis is usually achieved by coprological examinations that search for parasite eggs that are carried into the intestine with the bile juices. However, these methods are insensitive due to the fact that eggs are released sporadically and may be missed in low-level infections, and fasciola eggs may be misclassified as other parasites, leading to problems with specificity. Furthermore, acute clinical symptoms as a result of parasites migrating to the bile ducts appear before the parasite matures and begins egg laying. A human immune response to Fasciola antigens occurs early in infection. Therefore, an immunological method such as ELISA may be a more reliable, easy and cheap means to diagnose human fascioliasis than coprological analysis. Using a panel of serum from Fasciola hepatica-infected patients and from uninfected controls we have optimized an enzyme-linked immunosorbent assay (ELISA) which employs a recombinant form of the major F. hepatica cathepsin L1 as the antigen for the diagnosis of human fascioliasis. We examined the ability of the ELISA test to discern fascioliasis from various other helminth and non-helminth parasitic diseases. A sensitive and specific fascioliasis ELISA test has been developed. This test is rapid and easy to use and can discriminate fasciola-infected individuals from patients harbouring other parasites with at least 99.9% sensitivity and 99.9% specificity. This test will be a useful standardized method not only for testing individual samples but also in mass screening programs to assess the extent of human fascioliasis in regions where this zoonosis is suspected.

  13. 76 FR 45248 - PJM Interconnection, L.L.C., PJM Power Providers Group v. PJM Interconnection, L.L.C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ...-002; Docket No. EL11-20-001] PJM Interconnection, L.L.C., PJM Power Providers Group v. PJM Interconnection, L.L.C.; Supplemental Notice of Staff Technical Conference On June 13, 2011, the Commission issued... Resources Services, Inc., Maryland Public Service Commission, Monitoring Analytics, L.L.C., National Rural...

  14. Putative Digenic Inheritance of Heterozygous RP1L1 and C2orf71 Null Mutations in Syndromic Retinal Dystrophy

    PubMed Central

    Liu, Yangfan P.; Bosch, Daniëlle G.M.; Siemiatkowska, Anna M.; Rendtorff, Nanna Dahl; Boonstra, F. Nienke; Möller, Claes; Tranebjærg, Lisbeth; Katsanis, Nicholas; Cremers, Frans P.M.

    2018-01-01

    Background Retinitis pigmentosa (RP) is the most common cause of inherited retinal degeneration and can occur in non-syndromic and syndromic forms. Syndromic RP is accompanied by other symptoms such as intellectual disability, hearing loss, or congenital abnormalities. Both forms are known to exhibit complex genetic interactions that can modulate the penetrance and expressivity of the phenotype. Materials and methods In an individual with atypical RP, hearing loss, ataxia and cerebellar atrophy whole exome sequencing was performed. The candidate pathogenic variants were tested by developing an in vivo zebrafish model and assaying for retinal and cerebellar integrity. Results Exome sequencing revealed a complex heterozygous protein-truncating mutation in RP1L1, p.[(Lys111Glnfs*27; Q2373*)], and a heterozygous nonsense mutation in C2orf71, p.(Ser512*). Mutations in both genes have previously been implicated in autosomal recessive non-syndromic RP, raising the possibility of a digenic model in this family. Functional testing in a zebrafish model for two key phenotypes of the affected person showed that the combinatorial suppression of rp1l1 and c2orf71l induced discrete pathology in terms of reduction of eye size with concomitant loss of rhodopsin in the photoreceptors, and disorganization of the cerebellum. Conclusions We propose that the combination of heterozygous loss-of-function mutations in these genes drives syndromic retinal dystrophy, likely through the genetic interaction of at least two loci. Haploinsufficiency at each of these loci is insufficient to induce overt pathology. PMID:27029556

  15. 77 FR 68115 - Millennium Pipeline Company, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ...] Millennium Pipeline Company, L.L.C.; Notice of Application Take notice that on November 1, 2012, Millennium Pipeline Company, L.L.C. (Millennium), One Blue Hill Plaza, Seventh Floor, P.O. Box 1565, Pearl River, New... system to the existing interconnection with Algonquin Gas Transmission, L.L.C. in Ramapo, New York and...

  16. High fat diet impairs the function of glucagon-like peptide-1 producing L-cells.

    PubMed

    Richards, Paul; Pais, Ramona; Habib, Abdella M; Brighton, Cheryl A; Yeo, Giles S H; Reimann, Frank; Gribble, Fiona M

    2016-03-01

    Glucagon-like peptide-1 (GLP-1) acts as a satiety signal and enhances insulin release. This study examined how GLP-1 production from intestinal L-cells is modified by dietary changes. Transgenic mouse models were utilized in which L-cells could be purified by cell specific expression of a yellow fluorescent protein, Venus. Mice were fed on chow or 60% high fat diet (HFD) for 2 or 16 weeks. L-cells were purified by flow cytometry and analysed by microarray and quantitative RT-PCR. Enteroendocrine cell populations were examined by FACS analysis, and GLP-1 secretion was assessed in primary intestinal cultures. Two weeks HFD reduced the numbers of GLP-1 positive cells in the colon, and of GIP positive cells in the small intestine. Purified small intestinal L-cells showed major shifts in their gene expression profiles. In mice on HFD for 16 weeks, significant reductions were observed in the expression of L-cell specific genes, including those encoding gut hormones (Gip, Cck, Sct, Nts), prohormone processing enzymes (Pcsk1, Cpe), granins (Chgb, Scg2), nutrient sensing machinery (Slc5a1, Slc15a1, Abcc8, Gpr120) and enteroendocrine-specific transcription factors (Etv1, Isl1, Mlxipl, Nkx2.2 and Rfx6). A corresponding reduction in the GLP-1 secretory responsiveness to nutrient stimuli was observed in primary small intestinal cultures. Mice fed on HFD exhibited reduced expression in L-cells of many L-cell specific genes, suggesting an impairment of enteroendocrine cell function. Our results suggest that a western style diet may detrimentally affect the secretion of gut hormones and normal post-prandial signaling, which could impact on insulin secretion and satiety. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Effect of calcium ions on structure and stability of the C1q-like domain of otolin-1 from human and zebrafish.

    PubMed

    Hołubowicz, Rafał; Wojtas, Magdalena; Taube, Michał; Kozak, Maciej; Ożyhar, Andrzej; Dobryszycki, Piotr

    2017-12-01

    Otolin-1 is a collagen-like protein expressed in the inner ear of vertebrates. It provides an organic scaffold for otoliths in fish and otoconia in land vertebrates. In this study, the expression and purification procedure of C1q-like domain of otolin-1 from human and zebrafish was developed. The structure and stability of the proteins were investigated. The results of sedimentation velocity analytical ultracentrifugation and small-angle X-ray scattering indicated that the C1q-like domain of otolin-1 forms stable trimers in solution in the presence of calcium ions. It was also observed that calcium ions influenced the secondary structure of the proteins. C1q-like domains were stabilized by the calcium ions. The human variant was especially affected by the calcium ions. The results indicate the importance of the C1q-like domain for the assembly of the organic matrix of otoliths and otoconia. © 2017 Federation of European Biochemical Societies.

  18. The Paraoxonase 1 Gene c.-108C>T SNP in the Promoter Is Associated with Risk for Glioma in Mexican Patients, but Not the p.L55M or p.Q192R Polymorphisms in the Coding Region.

    PubMed

    González-Herrera, Lizbeth; Gamas-Trujillo, Pablo Alejandro; Medina-Escobedo, Gilberto; Oaxaca-Castillo, David; Pérez-Mendoza, Gerardo; Williams-Jacquez, Dayana; Canto-Cetina, Thelma; Vargas-García, Rubén Darío

    2015-09-01

    To evaluate the association of the paraoxonase 1 (PON1) gene polymorphisms c.-108C>T, p.L55M, and p.Q192R with the risk of glioma in Southeast Mexico. Decreased PON1 activity caused by polymorphisms has been observed in gliomas, thus supporting the theory that PON1 is involved in tumorigenesis in the brain. Sixty-seven glioma patients and 58 control individuals were included. Three PON1 polymorphisms were genotyped by real-time PCR allelic discrimination using TaqMan probes: c.-108C>T in the promoter region, p.Q192R and p.L55M, both of which were in the coding region. Allele, genotype, and haplotype frequencies were assessed in cases and controls to test for statistical associations (STATA 10.2 package). Significant differences were found for the PON1 c.-108C>T polymorphism between the cases and controls. Compared to the controls the cases were more likely to be CT heterozygous (p =  0.002) or TT homozygous (p = 0.036); similarly cases were more likely to possess a T allele (p = 0.032). In contrast, the p.L55M and p.Q192R polymorphisms did not show significant differences between the glioma cases and controls (p > 0.05). The PON1 c.-108C>T polymorphism in the promoter region is associated with genetic risk for glioma. Conversely, p.L55M and p.Q192R polymorphisms in the coding region do not seem to have an influence in this population.

  19. Molecular Cloning, Sequencing and Characterization of Channel Catfish (Ictalurus punctatus, Rafinesque 1818) Cathepsin S Gene

    USDA-ARS?s Scientific Manuscript database

    Cathepsin S is a lysosomal cysteine endopeptidase of the papain family. Our preliminary results showed the up-regulation of cathepsin S (CTSS) transcript during the early stage of Edwardsiella ictaluri infection. This prompted us to speculate that the CTSS may play a role in infection. In this re...

  20. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Weiwei; Wei, Wei; Yu, Shigang

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1more » preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes. - Highlights: • C2C12 myotubes inhibited proliferation and differentiation of 3T3-L1 preadipocytes. • C2C12 myotubes arrested cell cycle of 3T3-L1 preadipocytes. • C2C12 myotubes induced apoptosis of 3T3-L1 preadipocytes. • C2C12 inhibit 3T3-L1 cells by reducing the expression of glucocorticoid receptor gene.« less

  1. Relationship between bcl-2, bax, beclin-1, and cathepsin-D proteins during postovulatory follicular regression in fish ovary.

    PubMed

    Morais, Roberto D V S; Thomé, Ralph G; Santos, Hélio B; Bazzoli, Nilo; Rizzo, Elizete

    2016-04-01

    In fish ovaries, postovulatory follicles (POFs) are key biomarkers of breeding and provide an interesting model for studying the relationship between autophagy and apoptosis. In this study, we investigated the immunohistochemical expression of autophagic and apoptotic proteins to improve the knowledge on the mechanisms regulating ovarian remodeling after spawning. Females from three neotropical fish species kept in captivity were submitted to hormonal induction. After ova stripping, ovarian sections were sampled daily until 5 days postspawning (dps). Similar events of POF regression were detected by histology, terminal transferase-mediated dUTP nick-end labeling (TUNEL), and electron microscopy in the three species: follicular cells hypertrophy, progressive disintegration of the basement membrane, gradual closing of the follicular lumen, theca thickening, and formation of large autophagic vacuoles preceding apoptosis of the follicular cells. Autophagic and apoptotic proteins were assessed by immunohistochemistry. Morphometric analysis of the immunolabeling revealed a more intense reaction for bcl-2 and beclin-1 (BECN1) in POFs at 0 to 1 dps and for bax at 2 to 3 dps (P < 0.001), the later period being the peak of apoptosis of the follicular cells. The immunostaining for cathepsin-D was more elevated until 2 to 3 dps and decreased significantly at 4 to 5 dps, when the POFs were in late stage of regression. Double labeling for BECN1 and caspase-3 indicated a shift in the relationship between autophagy and apoptosis at 2 to 3 dps, a critical period in determining the fate of follicular cells in POFs. Together, these results indicate that the bcl-2 family, BECN1, and cathepsin-D can be involved in the regulation of ovarian remodeling in teleost fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Cathepsin D immobilized capillary reactors for on-flow screening assays.

    PubMed

    Cornelio, Vivian Estevam; de Moraes, Marcela Cristina; Domingues, Vanessa de Cassia; Fernandes, João Batista; da Silva, Maria Fátima das Gracas Fernandes; Cass, Quezia Bezerra; Vieira, Paulo Cezar

    2018-03-20

    The treatment of diseases using enzymes as targets has called for the development of new and reliable methods for screening. The protease cathepsin D is one such target involved in several diseases such as tumors, degenerative processes, and vital processes of parasites causing schistosomiasis. Herein, we describe the preparation of a fused silica capillary, cathepsin D (CatD)-immobilized enzyme reactor (IMER) using in a multidimensional High Performance Liquid Chromatography-based method (2D-HPLC) and zonal affinity chromatography as an alternative in the search for new ligands. The activity and kinetic parameters of CatD-IMER were evaluated by monitoring the product MOCAc-Gly-Lys-Pro-Ile-Leu-Phe (P-MOCAc) (K M  = 81.9 ± 7.49 μmol/L) generated by cleavage of the fluorogenic substrate MOCAc-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys(DNP)-d-Arg-NH2 (S-MOCAc). Stability studies have indicated that CatD-IMER retained 20% of activity after 5 months, a relevant result, because proteases are susceptible to autoproteolysis in solution assays with free enzyme. In the search for inhibitors, 12 crude natural product extracts were analyzed using CatD-IMER as the target, resulting in the isolation of different classes of natural products. In addition, 26 compounds obtained from different species of plants were also screened, demonstrating the efficiency and reproducibility of the herein reported assay even in the case of complex matrices such as plant crude extracts. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Lu, Xiang; Yang, Lei; Yu, Mengyuan; Lai, Jianbin; Wang, Chao; McNeil, David; Zhou, Meixue; Yang, Chengwei

    2017-04-01

    The annual Zea mays ssp. mexicana L., a member of the teosinte group, is a close wild relative of maize and thus can be effectively used in maize improvement. In this study, an ICE-like gene, ZmmICE1, was isolated from a cDNA library of RNA-Seq from cold-treated seedling tissues of Zea mays ssp. mexicana L. The deduced protein of ZmmICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE-like proteins. The ZmmICE1 protein localizes to the nucleus and shows sumoylation when expressed in an Escherichia coli reconstitution system. In addition, yeast one hybrid assays indicated that ZmmICE1 has transactivation activities. Moreover, ectopic expression of ZmmICE1 in the Arabidopsis ice1-2 mutant increased freezing tolerance. The ZmmICE1 overexpressed plants showed lower electrolyte leakage (EL), reduced contents of malondialdehyde (MDA). The expression of downstream cold related genes of Arabidopsis C-repeat-binding factors (AtCBF1, AtCBF2 and AtCBF3), cold-responsive genes (AtCOR15A and AtCOR47), kinesin-1 member gene (AtKIN1) and responsive to desiccation gene (AtRD29A) was significantly induced when compared with wild type under low temperature treatment. Taken together, these results indicated that ZmmICE1 is the homolog of Arabidopsis inducer of CBF expression genes (AtICE1/2) and plays an important role in the regulation of freezing stress response. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Decoding the network of Trypanosoma brucei proteins that determines sensitivity to apolipoprotein-L1

    PubMed Central

    MacLeod, Annette

    2018-01-01

    In contrast to Trypanosoma brucei gambiense and T. b. rhodesiense (the causative agents of human African trypanosomiasis), T. b. brucei is lysed by apolipoprotein-L1 (apoL1)-containing human serum trypanolytic factors (TLF), rendering it non-infectious to humans. While the mechanisms of TLF1 uptake, apoL1 membrane integration, and T. b. gambiense and T. b. rhodesiense apoL1-resistance have been extensively characterised, our understanding of the range of factors that drive apoL1 action in T. b. brucei is limited. Selecting our bloodstream-form T. b. brucei RNAi library with recombinant apoL1 identified an array of factors that supports the trypanocidal action of apoL1, including six putative ubiquitin modifiers and several proteins putatively involved in membrane trafficking; we also identified the known apoL1 sensitivity determinants, TbKIFC1 and the V-ATPase. Most prominent amongst the novel apoL1 sensitivity determinants was a putative ubiquitin ligase. Intriguingly, while loss of this ubiquitin ligase reduces parasite sensitivity to apoL1, its loss enhances parasite sensitivity to TLF1-dominated normal human serum, indicating that free and TLF1-bound apoL1 have contrasting modes-of-action. Indeed, loss of the known human serum sensitivity determinants, p67 (lysosomal associated membrane protein) and the cathepsin-L regulator, ‘inhibitor of cysteine peptidase’, had no effect on sensitivity to free apoL1. Our findings highlight a complex network of proteins that influences apoL1 action, with implications for our understanding of the anti-trypanosomal action of human serum. PMID:29346416

  5. Comparative Analysis of Dibutyric cAMP and Butyric Acid on the Differentiation of Human Eosinophilic Leukemia EoL-1 Cells.

    PubMed

    Jung, YunJae

    2015-12-01

    Purification of enough numbers of circulating eosinophils is difficult because eosinophils account for less than 5% peripheral blood leukocytes. Human eosinophilic leukemia EoL-1 cells have been considered an in vitro source of eosinophils as they can differentiate into mature eosinophil-like cells when incubated with dibutyryl cAMP (dbcAMP) or butyric acid. In this study, the viability and phenotypic maturation of EoL-1 cells stimulated by either dbcAMP or butyric acid were comparatively analyzed. After treatment with 100 µM dbcAMP or 0.5 µM butyric acid, EoL-1 cells showed morphological signs of differentiation, although the number of nonviable EoL-1 cells was significantly increased following butyric acid treatment. Stimulation of EoL-1 cells with 0.5 µM butyric acid more effectively induced the expression of mature eosinophil markers than stimulation with dbcAMP. These results suggest that treatment of EoL-1 cells with 0.5 µM butyric acid for limited duration could be an effective strategy for inducing their differentiation. Considering that expression of CCR3 was not sufficient in EoL-1 cells stimulated with 0.5 µM butyric acid, treatment of the chemically stimulated EoL-1 cells with cytokines, which primarily support eosinophil maturation, would help to obtain differentiated EoL-1 cells with greater functional maturity.

  6. Comparative Analysis of Dibutyric cAMP and Butyric Acid on the Differentiation of Human Eosinophilic Leukemia EoL-1 Cells

    PubMed Central

    2015-01-01

    Purification of enough numbers of circulating eosinophils is difficult because eosinophils account for less than 5% peripheral blood leukocytes. Human eosinophilic leukemia EoL-1 cells have been considered an in vitro source of eosinophils as they can differentiate into mature eosinophil-like cells when incubated with dibutyryl cAMP (dbcAMP) or butyric acid. In this study, the viability and phenotypic maturation of EoL-1 cells stimulated by either dbcAMP or butyric acid were comparatively analyzed. After treatment with 100 µM dbcAMP or 0.5 µM butyric acid, EoL-1 cells showed morphological signs of differentiation, although the number of nonviable EoL-1 cells was significantly increased following butyric acid treatment. Stimulation of EoL-1 cells with 0.5 µM butyric acid more effectively induced the expression of mature eosinophil markers than stimulation with dbcAMP. These results suggest that treatment of EoL-1 cells with 0.5 µM butyric acid for limited duration could be an effective strategy for inducing their differentiation. Considering that expression of CCR3 was not sufficient in EoL-1 cells stimulated with 0.5 µM butyric acid, treatment of the chemically stimulated EoL-1 cells with cytokines, which primarily support eosinophil maturation, would help to obtain differentiated EoL-1 cells with greater functional maturity. PMID:26770185

  7. Expansion of cytochrome P450 and cathepsin genes in the generalist herbivore brown marmorated stink bug.

    PubMed

    Bansal, Raman; Michel, Andy

    2018-01-18

    The brown marmorated stink bug (Halyomorpha halys) is an invasive pest in North America which causes severe economic losses on tree fruits, ornamentals, vegetables, and field crops. The H. halys is an extreme generalist and this feeding behaviour may have been a major contributor behind its establishment and successful adaptation in invasive habitats of North America. To develop an understanding into the mechanism of H. halys' generalist herbivory, here we specifically focused on genes putatively facilitating its adaptation on diverse host plants. We generated over 142 million reads via sequencing eight RNA-Seq libraries, each representing an individual H. halys adult. The de novo assembly contained 79,855 high quality transcripts, totalling 39,600,178 bases. Following a comprehensive transcriptome analysis, H. halys had an expanded suite of cytochrome P450 and cathepsin-L genes compared to other insects. Detailed characterization of P450 genes from the CYP6 family, known for herbivore adaptation on host plants, strongly hinted towards H. halys-specific expansions involving gene duplications. In subsequent RT-PCR experiments, both P450 and cathepsin genes exhibited tissue-specific or distinct expression patterns which supported their principal roles of detoxification and/or digestion in a particular tissue. Our analysis into P450 and cathepsin genes in H. halys offers new insights into potential mechanisms for understanding generalist herbivory and adaptation success in invasive habitats. Additionally, the large-scale transcriptomic resource developed here provides highly useful data for gene discovery; functional, population and comparative genomics as well as efforts to assemble and annotate the H. halys genome.

  8. Conserved Loop Cysteines of Vitamin K Epoxide Reductase Complex Subunit 1-like 1 (VKORC1L1) Are Involved in Its Active Site Regeneration*

    PubMed Central

    Tie, Jian-Ke; Jin, Da-Yun; Stafford, Darrel W.

    2014-01-01

    Vitamin K epoxide reductase complex subunit 1 (VKORC1) reduces vitamin K epoxide in the vitamin K cycle for post-translational modification of proteins that are involved in a variety of biological functions. However, the physiological function of VKORC1-like 1 (VKORC1L1), a paralogous enzyme sharing about 50% protein identity with VKORC1, is unknown. Here we determined the structural and functional differences of these two enzymes using fluorescence protease protection (FPP) assay and an in vivo cell-based activity assay. We show that in vivo VKORC1L1 reduces vitamin K epoxide to support vitamin K-dependent carboxylation as efficiently as does VKORC1. However, FPP assays show that unlike VKORC1, VKORC1L1 is a four-transmembrane domain protein with both its termini located in the cytoplasm. Moreover, the conserved loop cysteines, which are not required for VKORC1 activity, are essential for VKORC1L1's active site regeneration. Results from domain exchanges between VKORC1L1 and VKORC1 suggest that it is VKORC1L1's overall structure that uniquely allows for active site regeneration by the conserved loop cysteines. Intermediate disulfide trapping results confirmed an intra-molecular electron transfer pathway for VKORC1L1's active site reduction. Our results allow us to propose a concerted action of the four conserved cysteines of VKORC1L1 for active site regeneration; the second loop cysteine, Cys-58, attacks the active site disulfide, forming an intermediate disulfide with Cys-139; the first loop cysteine, Cys-50, attacks the intermediate disulfide resulting in active site reduction. The different membrane topologies and reaction mechanisms between VKORC1L1 and VKORC1 suggest that these two proteins might have different physiological functions. PMID:24532791

  9. Conserved loop cysteines of vitamin K epoxide reductase complex subunit 1-like 1 (VKORC1L1) are involved in its active site regeneration.

    PubMed

    Tie, Jian-Ke; Jin, Da-Yun; Stafford, Darrel W

    2014-03-28

    Vitamin K epoxide reductase complex subunit 1 (VKORC1) reduces vitamin K epoxide in the vitamin K cycle for post-translational modification of proteins that are involved in a variety of biological functions. However, the physiological function of VKORC1-like 1 (VKORC1L1), a paralogous enzyme sharing about 50% protein identity with VKORC1, is unknown. Here we determined the structural and functional differences of these two enzymes using fluorescence protease protection (FPP) assay and an in vivo cell-based activity assay. We show that in vivo VKORC1L1 reduces vitamin K epoxide to support vitamin K-dependent carboxylation as efficiently as does VKORC1. However, FPP assays show that unlike VKORC1, VKORC1L1 is a four-transmembrane domain protein with both its termini located in the cytoplasm. Moreover, the conserved loop cysteines, which are not required for VKORC1 activity, are essential for VKORC1L1's active site regeneration. Results from domain exchanges between VKORC1L1 and VKORC1 suggest that it is VKORC1L1's overall structure that uniquely allows for active site regeneration by the conserved loop cysteines. Intermediate disulfide trapping results confirmed an intra-molecular electron transfer pathway for VKORC1L1's active site reduction. Our results allow us to propose a concerted action of the four conserved cysteines of VKORC1L1 for active site regeneration; the second loop cysteine, Cys-58, attacks the active site disulfide, forming an intermediate disulfide with Cys-139; the first loop cysteine, Cys-50, attacks the intermediate disulfide resulting in active site reduction. The different membrane topologies and reaction mechanisms between VKORC1L1 and VKORC1 suggest that these two proteins might have different physiological functions.

  10. Cathepsin B is the driving force of esophageal cell invasion in a fibroblast-dependent manner.

    PubMed

    Andl, Claudia D; McCowan, Kelsey M; Allison, Gillian L; Rustgi, Anil K

    2010-06-01

    Esophageal cancer, which frequently exhibits coordinated loss of E-cadherin (Ecad) and transforming growth factor beta (TGFbeta) receptor II (TbetaRII), has a high mortality rate. In a three-dimensional organotypic culture model system, esophageal keratinocytes expressing dominant-negative mutant versions of both Ecad and TbetaRII (ECdnT) invade into the underlying matrix embedded with fibroblasts. We also find that cathepsin B induction is necessary for fibroblast-mediated invasion. Furthermore, the ECdnT cells in this physiological context activate fibroblasts through the secretion of TGFbeta1, which, in turn, is activated by cathepsin B. These results suggest that the interplay between the epithelial compartment and the surrounding microenvironment is crucial to invasion into the extracellular matrix.

  11. 76 FR 46793 - PJM Interconnection, L.L.C.; PJM Power Providers Group v. PJM Interconnection, L.L.C.; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ...-002; Docket No. EL11-20-001] PJM Interconnection, L.L.C.; PJM Power Providers Group v. PJM Interconnection, L.L.C.; Notice Establishing Post-Technical Comment Period As indicated in the June 29, 2011... issues related to PJM Interconnection, L.L.C. (PJM)'s Minimum Offer Price Rule (MOPR) and resources...

  12. Sub-lethal oxidative stress induces lysosome biogenesis via a lysosomal membrane permeabilization-cathepsin-caspase 3-transcription factor EB-dependent pathway.

    PubMed

    Leow, San Min; Chua, Shu Xian Serene; Venkatachalam, Gireedhar; Shen, Liang; Luo, Le; Clement, Marie-Veronique

    2017-03-07

    Here we provide evidence to link sub-lethal oxidative stress to lysosome biogenesis. Exposure of cells to sub-lethal concentrations of exogenously added hydrogen peroxide resulted in cytosol to nuclear translocation of the Transcription Factor EB (TFEB), the master controller of lysosome biogenesis and function. Nuclear translocation of TFEB was dependent upon the activation of a cathepsin-caspase 3 signaling pathway, downstream of lysosomal membrane permeabilization and accompanied by a significant increase in lysosome numbers as well as induction of TFEB-dependent lysosome-associated genes expression such as Ctsl, Lamp2 and its spliced variant Lamp2a, Neu1and Ctsb and Sqstm1 and Atg9b. The effects of sub-lethal oxidative stress on lysosomal gene expression and biogenesis were rescued upon gene silencing of caspase 3 and TFEB. Notably, caspase 3 activation was not associated with phenotypic hallmarks of apoptosis, evidenced by the absence of caspase 3 substrate cleavage, such as PARP, Lamin A/C or gelsolin. Taken together, these data demonstrate for the first time an unexpected and non-canonical role of a cathepsin-caspase 3 axis in the nuclear translocation of TFEB leading to lysosome biogenesis under conditions of sub-lethal oxidative stress.

  13. Protective mechanisms of CA074-me (other than cathepsin-B inhibition) against programmed necrosis induced by global cerebral ischemia/reperfusion injury in rats.

    PubMed

    Xu, Yang; Wang, Jingye; Song, Xinghui; Wei, Ruili; He, Fangping; Peng, Guoping; Luo, Benyan

    2016-01-01

    Many studies have demonstrated the key role of lysosomes in ischemic cell death in the brain and have led to the "lysosomocentric" hypothesis. In this hypothesis, the release of cathepsin-B due to a change of lysosomal membrane permeabilization (LMP) or rupture is critical, and this can be prevented by its inhibitors CA074 and CA074-me. However, the role of CA074-me in neuronal death and its effect on the change of lysosomal membrane integrity after global cerebral ischemia/reperfusion (I/R) injury is not clear, so we investigated this here. Rat hippocampal CA1 neuronal death was evaluated after 20-min global cerebral I/R injury. CA074-me (1 μg, 10 μg) were given intracerebroventricularly 1h before ischemia or 1h post reperfusion. The changes of heat shock protein 70 (Hsp70), cathepsin-B, lysosomal-associated membrane protein 1 (LAMP-1), receptor-interacting protein 3 (RIP3), and the change of lysosomal pH were evaluated respectively. Hippocampal CA1 neuronal programmed necrosis induced by global cerebral I/R injury was prevented by CA074-me both pre-treatment and post-treatment. Diffuse cytoplasmic cathepsin-B and LAMP-1 immunostaining synchronized with the pyknotic nuclear changes 2 days post reperfusion, and a rise of lysosomal pH with the leakage of DND-153, a dye of lysosomes, after oxygen-glucose deprivation (OGD) was detected. Both of these changes demonstrated the rupture of lysosomal membrane and the leakage of cathepsin-B, and this was strongly inhibited by CA074-me pre-treatment. The overexpression and nuclear translocation of RIP3 and the reduction of NAD(+) level after I/R injury were also inhibited, while the upregulation of Hsp70 was strengthened by CA074-me pre-treatment. Delayed fulminant leakage of cathepsin-B due to lysosomal rupture is a critical harmful factor in neuronal programmed necrosis induced by 20-min global I/R injury. In addition to being an inhibitor of cathepsin-B, CA074-me may have an indirect neuroprotective effect by

  14. 77 FR 70434 - Petal Gas Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Offer of Settlement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-464-000] Petal Gas Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Offer of Settlement Take notice that on November 8, 2012, Petal Gas Storage, L.L.C. (Petal) and Hattiesburg Industrial Gas Sales, L.L.C...

  15. Design of a highly selective quenched activity-based probe and its application in dual color imaging studies of cathepsin S activity localization.

    PubMed

    Oresic Bender, Kristina; Ofori, Leslie; van der Linden, Wouter A; Mock, Elliot D; Datta, Gopal K; Chowdhury, Somenath; Li, Hao; Segal, Ehud; Sanchez Lopez, Mateo; Ellman, Jonathan A; Figdor, Carl G; Bogyo, Matthew; Verdoes, Martijn

    2015-04-15

    The cysteine cathepsins are a group of 11 proteases whose function was originally believed to be the degradation of endocytosed material with a high degree of redundancy. However, it has become clear that these enzymes are also important regulators of both health and disease. Thus, selective tools that can discriminate between members of this highly related class of enzymes will be critical to further delineate the unique biological functions of individual cathepsins. Here we present the design and synthesis of a near-infrared quenched activity-based probe (qABP) that selectively targets cathepsin S which is highly expressed in immune cells. Importantly, this high degree of selectivity is retained both in vitro and in vivo. In combination with a new green-fluorescent pan-reactive cysteine cathepsin qABP we performed dual color labeling studies in bone marrow-derived immune cells and identified vesicles containing exclusively cathepsin S activity. This observation demonstrates the value of our complementary cathepsin probes and provides evidence for the existence of specific localization of cathepsin S activity in dendritic cells.

  16. Bi-allelic Mutations in PKD1L1 Are Associated with Laterality Defects in Humans.

    PubMed

    Vetrini, Francesco; D'Alessandro, Lisa C A; Akdemir, Zeynep C; Braxton, Alicia; Azamian, Mahshid S; Eldomery, Mohammad K; Miller, Kathryn; Kois, Chelsea; Sack, Virginia; Shur, Natasha; Rijhsinghani, Asha; Chandarana, Jignesh; Ding, Yan; Holtzman, Judy; Jhangiani, Shalini N; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Hanchard, Neil A; Harel, Tamar; Rosenfeld, Jill A; Belmont, John W; Lupski, James R; Yang, Yaping

    2016-10-06

    Disruption of the establishment of left-right (L-R) asymmetry leads to situs anomalies ranging from situs inversus totalis (SIT) to situs ambiguus (heterotaxy). The genetic causes of laterality defects in humans are highly heterogeneous. Via whole-exome sequencing (WES), we identified homozygous mutations in PKD1L1 from three affected individuals in two unrelated families. PKD1L1 encodes a polycystin-1-like protein and its loss of function is known to cause laterality defects in mouse and medaka fish models. Family 1 had one fetus and one deceased child with heterotaxy and complex congenital heart malformations. WES identified a homozygous splicing mutation, c.6473+2_6473+3delTG, which disrupts the invariant splice donor site in intron 42, in both affected individuals. In the second family, a homozygous c.5072G>C (p.Cys1691Ser) missense mutation was detected in an individual with SIT and congenital heart disease. The p.Cys1691Ser substitution affects a highly conserved cysteine residue and is predicted by molecular modeling to disrupt a disulfide bridge essential for the proper folding of the G protein-coupled receptor proteolytic site (GPS) motif. Damaging effects associated with substitutions of this conserved cysteine residue in the GPS motif have also been reported in other genes, namely GPR56, BAI3, and PKD1 in human and lat-1 in C. elegans, further supporting the likely pathogenicity of p.Cys1691Ser in PKD1L1. The identification of bi-allelic PKD1L1 mutations recapitulates previous findings regarding phenotypic consequences of loss of function of the orthologous genes in mice and medaka fish and further expands our understanding of genetic contributions to laterality defects in humans. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Mucin-like Region of Herpes Simplex Virus Type 1 Attachment Protein Glycoprotein C (gC) Modulates the Virus-Glycosaminoglycan Interaction*

    PubMed Central

    Altgärde, Noomi; Eriksson, Charlotta; Peerboom, Nadia; Phan-Xuan, Tuan; Moeller, Stephanie; Schnabelrauch, Matthias; Svedhem, Sofia; Trybala, Edward; Bergström, Tomas; Bally, Marta

    2015-01-01

    Glycoprotein C (gC) mediates the attachment of HSV-1 to susceptible host cells by interacting with glycosaminoglycans (GAGs) on the cell surface. gC contains a mucin-like region located near the GAG-binding site, which may affect the binding activity. Here, we address this issue by studying a HSV-1 mutant lacking the mucin-like domain in gC and the corresponding purified mutant protein (gCΔmuc) in cell culture and GAG-binding assays, respectively. The mutant virus exhibited two functional alterations as compared with native HSV-1 (i.e. decreased sensitivity to GAG-based inhibitors of virus attachment to cells and reduced release of viral particles from the surface of infected cells). Kinetic and equilibrium binding characteristics of purified gC were assessed using surface plasmon resonance-based sensing together with a surface platform consisting of end-on immobilized GAGs. Both native gC and gCΔmuc bound via the expected binding region to chondroitin sulfate and sulfated hyaluronan but not to the non-sulfated hyaluronan, confirming binding specificity. In contrast to native gC, gCΔmuc exhibited a decreased affinity for GAGs and a slower dissociation, indicating that once formed, the gCΔmuc-GAG complex is more stable. It was also found that a larger number of gCΔmuc bound to a single GAG chain, compared with native gC. Taken together, our data suggest that the mucin-like region of HSV-1 gC is involved in the modulation of the GAG-binding activity, a feature of importance both for unrestricted virus entry into the cells and release of newly produced viral particles from infected cells. PMID:26160171

  18. Sequestration of CDH1 by MAD2L2 prevents premature APC/C activation prior to anaphase onset

    PubMed Central

    Listovsky, Tamar

    2013-01-01

    The switch from activation of the anaphase-promoting complex/cyclosome (APC/C) by CDC20 to CDH1 during anaphase is crucial for accurate mitosis. APC/CCDC20 ubiquitinates a limited set of substrates for subsequent degradation, including Cyclin B1 and Securin, whereas APC/CCDH1 has a broader specificity. This switch depends on dephosphorylation of CDH1 and the APC/C, and on the degradation of CDC20. Here we show, in human cells, that the APC/C inhibitor MAD2L2 also contributes to ensuring the sequential activation of the APC/C by CDC20 and CDH1. In prometaphase, MAD2L2 sequestered free CDH1 away from the APC/C. At the onset of anaphase, MAD2L2 was rapidly degraded by APC/CCDC20, releasing CDH1 to activate the dephosphorylated APC/C. Loss of MAD2L2 led to premature association of CDH1 with the APC/C, early destruction of APC/CCDH1 substrates, and accelerated mitosis with frequent mitotic aberrations. Thus, MAD2L2 helps to ensure a robustly bistable switch between APC/CCDC20 and APC/CCDH1 during the metaphase-to-anaphase transition, thereby contributing to mitotic fidelity. PMID:24100295

  19. Biochemical analysis of a papain-like protease isolated from the latex of Asclepias curassavica L.

    PubMed

    Liggieri, Constanza; Obregon, Walter; Trejo, Sebastian; Priolo, Nora

    2009-02-01

    Most of the species belonging to Asclepiadaceae family usually secrete an endogenous milk-like fluid in a network of laticifer cells in which sub-cellular organelles intensively synthesize proteins and secondary metabolites. A new papain-like endopeptidase (asclepain c-II) has been isolated and characterized from the latex extracted from petioles of Asclepias curassavica L. (Asclepiadaceae). Asclepain c-II was the minor proteolytic component in the latex, but showed higher specific activity than asclepain c-I, the main active fraction previously studied. Both enzymes displayed quite distinct biochemical characteristics, confirming that they are different enzymes. Crude extract was purified by cation exchange chromatography (FPLC). Two active fractions, homogeneous by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and mass spectrometry, were isolated. Asclepain c-II displayed a molecular mass of 23,590 Da, a pI higher than 9.3, maximum proteolytic activity at pH 9.4-10.2, and showed poor thermostability. The activity of asclepain c-II is inhibited by cysteine proteases inhibitors like E-64, but not by any other protease inhibitors such as 1,10-phenantroline, phenylmethanesulfonyl fluoride, and pepstatine. The Nterminal sequence (LPSFVDWRQKGVVFPIRNQGQCGSCWTFSA) showed a high similarity with those of other plant cysteine proteinases. When assayed on N-alpha-CBZ-amino acid-p-nitrophenyl esters, the enzyme exhibited higher preference for the glutamine derivative. Determinations of kinetic parameters were performed with N-alpha-CBZ-L-Gln-p-nitrophenyl ester as substrate: K(m)=0.1634 mM, k(cat)=121.48 s(-1), and k(cat)/K(m)=7.4 x 10(5) s(-1)/mM.

  20. 77 FR 3766 - PJM Interconnection, L.L.C.; Notice of Staff Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... Interconnection, L.L.C.; Notice of Staff Technical Conference On December 14, 2011, the Commission issued an order... Interconnection, L.L.C.'s (PJM) filing.\\1\\ Take notice that the technical conference will be held on February 14...\\ PJM Interconnection, L.L.C., 137 FERC ] 61,204 (2011) (December 14 Order). All interested parties are...

  1. Bean peptides have higher in silico binding affinities than ezetimibe for the N-terminal domain of cholesterol receptor Niemann-Pick C1 Like-1.

    PubMed

    Real Hernandez, Luis M; Gonzalez de Mejia, Elvira

    2017-04-01

    Niemann-Pick C1 like-1 (NPC1L1) mediates cholesterol absorption at the apical membrane of enterocytes through a yet unknown mechanism. Bean, pea, and lentil proteins are naturally hydrolyzed during digestion to produce peptides. The potential for pulse peptides to have high binding affinities for NPC1L1 has not been determined. In this study , in silico binding affinities and interactions were determined between the N-terminal domain of NPC1L1 and 14 pulse peptides (5≥ amino acids) derived through pepsin-pancreatin digestion. Peptides were docked in triplicate to the N-terminal domain using docking program AutoDock Vina, and results were compared to those of ezetimibe, a prescribed NPC1L1 inhibitor. Three black bean peptides (-7.2 to -7.0kcal/mol) and the cowpea bean dipeptide Lys-Asp (-7.0kcal/mol) had higher binding affinities than ezetimibe (-6.6kcal/mol) for the N-terminal domain of NPC1L1. Lentil and pea peptides studied did not have high binding affinities. The common bean peptide Tyr-Ala-Ala-Ala-Thr (-7.2kcal/mol), which can be produced from black or navy bean proteins, had the highest binding affinity. Ezetimibe and peptides with high binding affinities for the N-terminal domain are expected to interact at different locations of the N-terminal domain. All high affinity black bean peptides are expected to have van der Waals interactions with SER130, PHE136, and LEU236 and a conventional hydrogen bond with GLU238 of NPC1L1. Due to their high affinity for the N-terminal domain of NPC1L1, black and cowpea bean peptides produced in the digestive track have the potential to disrupt interactions between NPC1L1 and membrane proteins that lead to cholesterol absorption. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cathepsins: Proteases that are vital for survival but can also be fatal.

    PubMed

    Patel, Seema; Homaei, Ahmad; El-Seedi, Hesham R; Akhtar, Nadeem

    2018-06-06

    The state of enzymes in the human body determines the normal physiology or pathology, so all the six classes of enzymes are crucial. Proteases, the hydrolases, can be of several types based on the nucleophilic amino acid or the metal cofactor needed for their activity. Cathepsins are proteases with serine, cysteine, or aspartic acid residues as the nucleophiles, which are vital for digestion, coagulation, immune response, adipogenesis, hormone liberation, peptide synthesis, among a litany of other functions. But inflammatory state radically affects their normal roles. Released from the lysosomes, they degrade extracellular matrix proteins such as collagen and elastin, mediating parasite infection, autoimmune diseases, tumor metastasis, cardiovascular issues, and neural degeneration, among other health hazards. Over the years, the different types and isoforms of cathepsin, their optimal pH and functions have been studied, yet much information is still elusive. By taming and harnessing cathepsins, by inhibitors and judicious lifestyle, a gamut of malignancies can be resolved. This review discusses these aspects, which can be of clinical relevance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Methamphetamine induces autophagy and apoptosis in a mesencephalic dopaminergic neuronal culture model: role of cathepsin-D in methamphetamine-induced apoptotic cell death.

    PubMed

    Kanthasamy, Arthi; Anantharam, V; Ali, Syed F; Kanthasamy, A G

    2006-08-01

    -D activation by pepstatin-A, cathepsin-D inhibitor, failed to alter METH-induced DNA fragmentation. Collectively, these results demonstrate that N27 dopaminergic neuronal cell model may serve as an excellent in vitro model to study the mechanisms of METH-induced autophagy and apoptosis. Furthermore, it is less likely that cathepsin-D may serve as a trigger for the induction of apoptosis subsequent to exposure of N27 dopaminergic neuronal cells to METH.

  4. Up-regulation of 5-lipoxygenase by inhibition of cathepsin G enhances TRAIL-induced apoptosis through down-regulation of survivin

    PubMed Central

    Woo, Seon Min; Min, Kyoung-Jin; Seo, Seung Un; Kim, Shin; Park, Jong-Wook; Song, Dae Kyu; Lee, Hyun-Shik; Kim, Sang Hyun; Kwon, Taeg Kyu

    2017-01-01

    Cathepsin G is a serine protease secreted from activated neutrophils, it has important roles in inflammation and immune response. Moreover, cathepsin G promotes tumor cell-cell adhesion and migration in cancer cells. In this study, we investigated whether inhibition of cathepsin G could sensitize TRAIL-mediated apoptosis in cancer cells. An inhibitor of cathepsin G [Cathepsin G inhibitor I (Cat GI); CAS 429676-93-7] markedly induced TRAIL-mediated apoptosis in human renal carcinoma (Caki, ACHN, and A498), lung cancer (A549) and cervical cancer (Hela) cells. In contrast, combined treatment with Cat GI and TRAIL had no effect on apoptosis in normal cells [mesangial cell (MC) and human skin fibroblast (HSF)]. Cat GI induced down-regulation of survivin expression at the post-translational level, and overexpression of survivin markedly blocked apoptosis induced by combined treatment with Cat GI plus TRAIL. Interestingly, Cat GI induced down-regulation of survivin via 5-lipoxygenase (5-LOX)-mediated reactive oxygen species (ROS) production. Inhibition of 5-LOX by gene silencing (siRNA) or a pharmacological inhibitor of 5-LOX (zileuton) markedly attenuated combined treatment-induced apoptosis. Taken together, our results indicate that inhibition of cathepsin G sensitizes TRAIL-induced apoptosis through 5-LOX-mediated down-regulation of survivin expression. PMID:29290980

  5. Serum concentration of ubiquitin c-terminal hydrolase-L1 in detecting severity of traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Siahaan, A. M. P.; Japardi, I.; Hakim, A. A.

    2018-03-01

    One of the main problems with ahead injury is assessing the severity. While physical examination and imaging had limitations, neuronal damage markers, ubiquitin C-terminal hydrolase-L1 (UCH-L1), released in theblood may provide valuable information about diagnosis the traumatic brain injury (TBI).Analyzing the concentrations of serum ubiquitin C-terminal hydrolase-L1 (UCH-L1), there must have a neuronal injury biomarker, in theTBI patients serum and their association with clinical characteristics and outcome. There were 80 TBI subjects, and there are mild, moderate, and severe involved in this study of case- control. By using ELISA, we studied the profile of serum UCH-L1 levels for TBI patients. TheUCH-L1 serum level of moderate and severe head injury is higher than in mild head injury (p<.001), but we didn’t find aspecific difference between moderate and severe head injury patients. There is no particular correlation found between serum UCH-L1 level and outcome. Serum levels of UCH-L1 appear to have potential clinical utility in diagnosing TBI but do not correlate with outcome.

  6. Genetic variations of the NPC1L1 gene associated with hepatitis C virus (HCV) infection and biochemical characteristics of HCV patients in China.

    PubMed

    Zhang, A-Mei; Zhang, Cheng-Lin; Song, Yuzhu; Zhao, Ping; Feng, Yue; Wang, Binghui; Li, Zheng; Liu, Li; Xia, Xueshan

    2016-12-01

    About 2% of the world population is infected with hepatitis C virus (HCV), a leading cause of hepatic cirrhosis and hepatocellular carcinoma. The Niemann-Pick C1-like 1 cholesterol absorption receptor (NPC1L1) was recently identified to be an important factor for HCV entry into host cells. Whether genetic variations of the NPC1L1 gene are associated with HCV infection is unknown. In this study, five single nucleotide polymorphisms (SNPs) of the NPC1L1 gene were analyzed in 261 HCV-infected individuals and 265 general controls from Yunnan Province, China. No significant differences were identified in genotypes or alleles of the SNPs between the two groups. After constructing haplotypes based on the five SNPs, a significant difference between HCV-infected individuals and general controls was shown for two haplotypes. Haplotype GCCTT appeared to be a protective factor and haplotype GCCCT was a risk factor for HCV-infected individuals. Genotypes of four SNPs correlated with biochemical characteristics of HCV-infected persons. Genotypes of SNPs rs799444 and rs2070607 were correlated with total bilirubin. Genotype TT of rs917098 was a risk factor for the gamma-glutamyltransferase level. Furthermore, HCV-infected individuals carrying genotype GG of rs41279633 showed statistically higher gamma-glutamyltransferase levels than HCV-infected persons with GT and TT. The results of this study identified the association between genetic susceptibility of the NPC1L1 gene and HCV infection, as well as biochemical characteristics of HCV-infected persons in Yunnan, China. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. An NPC1L1 gene promoter variant is associated with autosomal dominant hypercholesterolemia.

    PubMed

    Martín, B; Solanas-Barca, M; García-Otín, A-L; Pampín, S; Cofán, M; Ros, E; Rodríguez-Rey, J-C; Pocoví, M; Civeira, F

    2010-05-01

    A substantial number of subjects with autosomal dominant hypercholesterolemia (ADH) do not have LDL receptor (LDLR) or apolipoprotein B (APOB) mutations. Some ADH subjects appear to hyperabsorb sterols from the intestine, thus we hypothesized that they could have variants of the Niemann-Pick C1-Like 1 gene (NPC1L1). NPC1L1 encodes a crucial protein involved in intestinal sterol absorption. Four NPC1L1 variants (-133A>G, -18C>A, 1679C>G, 28650A>G) were analyzed in 271 (155 women and 116 men) ADH bearers without mutations in LDLR or APOB aged 30-70years and 274 (180 women and 94 men) control subjects aged 25-65years. The AC haplotype determined by the -133A>G and -18C>A variants was underrepresented in ADH subjects compared to controls (p=0.01). In the ADH group, cholesterol absorption/synthesis markers were significantly lower in AC homozygotes that in all others haplotypes. Electrophoretic mobility shift assay (EMSA) results revealed that the -133A-specific oligonucleotide produced a retarded band stronger than the -133G allele. Luciferase activity with NPC1L1 -133G variant was 2.5-fold higher than with the -133A variant. The -133A>G polymorphism exerts a significant effect on NPC1L1 promoter activity. NPC1L1 promoter variants might explain in part the hypercholesterolemic phenotype of some subjects with nonLDLR/nonAPOB ADH. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Functional characterization of single-domain cystatin-like cysteine proteinase inhibitors expressed by the trematode Fasciola hepatica.

    PubMed

    Cancela, Martín; Corvo, Ileana; DA Silva, Edileuza; Teichmann, Aline; Roche, Leda; Díaz, Alvaro; Tort, José Fransisco; Ferreira, Henrique B; Zaha, Arnaldo

    2017-11-01

    Cystatins are small, phylogenetically conserved proteins that are tight-binding inhibitors of cysteine proteinases. The liver fluke Fasciola hepatica uses a diverse set of cysteine proteinases of the papain superfamily for host invasion, immune evasion and nutrition, but little is known about the regulation of these enzymes. The aim of this work is to characterize the cystatin repertoire of F. hepatica. For this purpose, we first surveyed the available sequence databases, identifying three different F. hepatica single-domain cystatins. In agreement with the in silico predictions, at least three small proteins with cysteine proteinase binding activity were identified. Phylogenetic analyses showed that the three cystatins (named FhStf-1, -2 and -3) are members of the I25A subfamily (stefins). Whereas FhStf-1 grouped with classical stefins, FhStf-2 and 3 fell in a divergent stefin subgroup unusually featuring signal peptides. Recombinant rFhStf-1, -2 and -3 had potent inhibitory activity against F. hepatica cathepsin L cysteine proteinases but differed in their capacity to inhibit mammalian cathepsin B, L and C. FhStf-1 was localized in the F. hepatica reproductive organs (testes and ovary), and at the surface lamella of the adult gut, where it may regulate cysteine proteinases related with reproduction and digestion, respectively. FhStf-1 was also detected among F. hepatica excretion-secretion (E/S) products of adult flukes. This suggests that it is secreted by non-classical secretory pathway and that it may interact with host lysosomal cysteine proteinases.

  9. CaV1.3 L-type Ca2+ channels modulate depression-like behaviour in mice independent of deaf phenotype.

    PubMed

    Busquet, Perrine; Nguyen, Ngoc Khoi; Schmid, Eduard; Tanimoto, Naoyuki; Seeliger, Mathias W; Ben-Yosef, Tamar; Mizuno, Fengxia; Akopian, Abram; Striessnig, Jörg; Singewald, Nicolas

    2010-05-01

    Mounting evidence suggests that voltage-gated L-type Ca2+ channels can modulate affective behaviour. We therefore explored the role of CaV1.3 L-type Ca2+ channels in depression- and anxiety-like behaviours using CaV1.3-deficient mice (CaV1.3-/-). We showed that CaV1.3-/- mice displayed less immobility in the forced swim test as well as in the tail suspension test, indicating an antidepressant-like phenotype. Locomotor activity in the home cage or a novel open-field test was not influenced. In the elevated plus maze (EPM), CaV1.3-/- mice entered the open arms more frequently and spent more time there indicating an anxiolytic-like phenotype which was, however, not supported in the stress-induced hyperthermia test. By performing parallel experiments in Claudin 14 knockout mice (Cldn14-/-), which like CaV1.3-/- mice are congenitally deaf, an influence of deafness on the antidepressant-like phenotype could be ruled out. On the other hand, a similar EPM behaviour indicative of an anxiolytic phenotype was also found in the Cldn14-/- animals. Using electroretinography and visual behavioural tasks we demonstrated that at least in mice, CaV1.3 channels do not significantly contribute to visual function. However, marked morphological changes were revealed in synaptic ribbons in the outer plexiform layer of CaV1.3-/- retinas by immunohistochemistry suggesting a possible role of this channel type in structural plasticity at the ribbon synapse. Taken together, our findings indicate that CaV1.3 L-type Ca2+ channels modulate depression-like behaviour but are not essential for visual function. The findings raise the possibility that selective modulation of CaV1.3 channels could be a promising new therapeutic concept for the treatment of mood disorders.

  10. Mice heterozygous for cathepsin D deficiency exhibit mania-related behavior and stress-induced depression.

    PubMed

    Zhou, Rui; Lu, Yi; Han, Yong; Li, Xia; Lou, Huifang; Zhu, Liya; Zhen, Xuechu; Duan, Shumin

    2015-12-03

    Mutations in cathepsin D (CTSD), an aspartic protease in the endosomal-lysosomal system, underlie congenital neuronal ceroid-lipofuscinosis (cNCL, also known as CLN10), a devastating neurodegenerative disease. CLN10 patients die within the first few days of life, and in the few patients who live into adulthood psychopathological symptoms have not been reported. Extensive neuropathology and altered neurotransmission have been reported in CTSD-deficient mice; however signs of neuropsychiatric behavior in these mice are not well characterized due to the severe movement disorder and premature death of the animal. In the present study, we show that heterozygous CTSD-deficient (CTSD HET) mice display an overall behavioral profile that is similar to human mania, including hyperlocomotion, d-amphetamine-induced hyperactivity, sleep-disturbance, and reduced anxiety-like behavior. However, under stressful conditions CTSD HET mice manifest depressive-like behavior, including anhedonia, behavioral despair, and enhanced learned helplessness. Chronic administration of lithium chloride or valproic acid, two clinically effective mood stabilizers, reverses the majority of these behavioral abnormalities. In addition, CTSD HET mice display stress-induced hypersecretion of corticosterone. These findings suggest an important role for CTSD in the regulation of mood stabilization. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. In Vitro Selective Anti-Proliferative Effect of Zinc Oxide Nanoparticles Against Co-Cultured C2C12 Myoblastoma Cancer and 3T3-L1 Normal Cells.

    PubMed

    Chandrasekaran, Murugesan; Pandurangan, Muthuraman

    2016-07-01

    The zinc oxide (ZnO) nanoparticle has been widely used in biomedical applications and cancer therapy and has been reported to induce a selective cytotoxic effect on cancer cell proliferation. The present study investigated the cytotoxicity of ZnO nanoparticles against co-cultured C2C12 myoblastoma cancer cells and 3T3-L1 adipocytes. Our results showed that the ZnO nanoparticles could be cytotoxic to C2C12 myoblastoma cancer cells than 3T3-L1 cells. The messenger RNA (mRNA) expressions of p53 and bax were significantly increased 114.3 and 118.2 % in the C2C12 cells, whereas 42.5 and 40 % were increased in 3T3-L1 cells, respectively. The mRNA expression of bcl-2 was reduced 38.2 and 28.5 % in the C2C12 and 3T3-L1 cells, respectively, whereas the mRNA expression of caspase-3 was increased 80.7 and 51.6 % in the C2C12 and 3T3-L1 cells, respectively. The protein expressions of p53, bax, and caspase-3 were significantly increased 40, 81.8, and 80 % in C2C12 cells, whereas 20.3, 28.2, and 37.9 % were increased in 3T3-L1 cells, respectively. The mRNA expression of bcl-2 was significantly reduced 32.2 and 22.7 % in C2C12 and 3T3-L1 cells, respectively. Caspase-3 enzyme activity and reactive oxygen species (ROS) were increased in co-cultured C2C12 cells compared to 3T3-L1 cells. Taking all these data together, it may suggest that ZnO nanoparticles severely induce apoptosis in C2C12 myoblastoma cancer cells than 3T3-L1 cells.

  12. Foot-and-Mouth Disease (FMD) Virus 3C Protease Mutant L127P: Implications for FMD Vaccine Development.

    PubMed

    Puckette, Michael; Clark, Benjamin A; Smith, Justin D; Turecek, Traci; Martel, Erica; Gabbert, Lindsay; Pisano, Melia; Hurtle, William; Pacheco, Juan M; Barrera, José; Neilan, John G; Rasmussen, Max

    2017-11-15

    The foot-and-mouth disease virus (FMDV) afflicts livestock in more than 80 countries, limiting food production and global trade. Production of foot-and-mouth disease (FMD) vaccines requires cytosolic expression of the FMDV 3C protease to cleave the P1 polyprotein into mature capsid proteins, but the FMDV 3C protease is toxic to host cells. To identify less-toxic isoforms of the FMDV 3C protease, we screened 3C mutants for increased transgene output in comparison to wild-type 3C using a Gaussia luciferase reporter system. The novel point mutation 3C(L127P) increased yields of recombinant FMDV subunit proteins in mammalian and bacterial cells expressing P1-3C transgenes and retained the ability to process P1 polyproteins from multiple FMDV serotypes. The 3C(L127P) mutant produced crystalline arrays of FMDV-like particles in mammalian and bacterial cells, potentially providing a practical method of rapid, inexpensive FMD vaccine production in bacteria. IMPORTANCE The mutant FMDV 3C protease L127P significantly increased yields of recombinant FMDV subunit antigens and produced virus-like particles in mammalian and bacterial cells. The L127P mutation represents a novel advancement for economical FMD vaccine production. Copyright © 2017 Puckette et al.

  13. Expression of Osmotin-Like Genes in the Halophyte Atriplex nummularia L. 1

    PubMed Central

    Casas, Ana M.; Nelson, Donald E.; Raghothama, Kashchandra G.; D'Urzo, Matilde Paino; Singh, Narendra K.; Bressan, Ray A.; Hasegawa, Paul M.

    1992-01-01

    A peptide (molecular mass 50 kilodaltons) that is immunologically related to tobacco osmotin was detected in cells of the halophyte Atriplex nummularia. This protein was constitutively expressed in both unadapted and NaCl-adapted cells. A predominant osmotin-like peptide (molecular mass 24 kilodaltons) was also found in culture media after cell growth. Two unique A. nummularia cDNA clones, pA8 and pA9, encoding osmotin-like proteins have been isolated. The pA8 and pA9 inserts are 952 and 792 base pairs and encode peptides of 222 and 224 amino acids, respectively. The peptide deduced from pA8 has a molecular mass of 23,808 daltons and theoretical isoelectric point of 8.31, whereas the peptide derived from pA9 has a molecular mass of 23,827 daltons and an isoelectric point of 6.88. Unique transcripts were detected by the inserts of the cDNA clones, two (1.2 and 1.0 kilobases) by pA8 and one (0.9 kilobase) by pA9. The pA8 transcripts were constitutively accumulated in unadapted and NaCl-adapted cells, whereas the mRNA levels were up-regulated by abscisic acid treatment. The level of pA9 mRNA was induced by NaCl treatment and increased in cells as a function of NaCl adaptation. Southern analysis of the genomic DNA indicated the presence of osmotin-like multigene families in A. nummularia. ImagesFigure 1Figure 2Figure 3Figure 4Figure 6Figure 7Figure 8Figure 9 PMID:16668870

  14. (-) Epicatechin prevents alterations in lysosomal glycohydrolases, cathepsins and reduces myocardial infarct size in isoproterenol-induced myocardial infarcted rats.

    PubMed

    Prince, Ponnian Stanely Mainzen

    2013-04-15

    The preventive effects of (-) epicatechin on oxidative stress, cardiac mitochondrial damage, altered membrane bound adenosine triphosphatases and minerals were reported previously in isoproterenol-induced myocardial infarction model. Leakage of lysosomal glycohydrolases and cathepsins play an important role in the pathology of myocardial infarction. This study was aimed to evaluate the preventive effects of (-) epicatechin on alterations in lysosomal glycohydrolases, cathepsins and myocardial infarct size in isoproterenol-induced myocardial infarcted rats. Male albino Wistar rats were pretreated with (-) epicatechin (20mg/kg body weight) daily for a period of 21 days. After the pretreatment period, isoproterenol (100mg/kg body weight) was injected subcutaneously into the rats at an interval of 24h for two days to induce myocardial infarction. The levels of serum cardiac troponin-I and the activities of serum and heart lysosomal enzymes (β-glucuronidase, β-N-acetyl glucosaminidase, β-galactosidase, cathepsin-B and cathepsin-D) were increased significantly (P<0.05) and the activities of β-glucuronidase and cathepsin-D in the heart lysosomal fractions were significantly (P<0.05) decreased in isoproterenol-induced myocardial infarcted rats. The in vitro study revealed the potent antioxidant action of (-) epicatechin. Pretreatment with (-) epicatechin daily for a period of 21 days prevented the leakage of cardiac marker, lysosomal glycohydrolases, cathepsins, and reduced infarct size, thereby protecting the lysosomal membranes in isoproterenol-induced myocardial infarcted rats, by virtue of its membrane stabilizing property. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Rescue of impaired sociability and anxiety-like behavior in adult cacna1c-deficient mice by pharmacologically targeting eIF2α

    PubMed Central

    Kabir, ZD; Che, A; Fischer, DK; Rice, RC; Rizzo, BK; Byrne, M; Glass, MJ; De Marco Garcia, NV; Rajadhyaksha, AM

    2018-01-01

    CACNA1C, encoding the Cav1.2 subunit of L-type Ca2+ channels, has emerged as one of the most prominent and highly replicable susceptibility genes for several neuropsychiatric disorders. Cav1.2 channels play a crucial role in calcium-mediated processes involved in brain development and neuronal function. Within the CACNA1C gene, disease-associated single-nucleotide polymorphisms have been associated with impaired social and cognitive processing and altered prefrontal cortical (PFC) structure and activity. These findings suggest that aberrant Cav1.2 signaling may contribute to neuropsychiatric-related disease symptoms via impaired PFC function. Here, we show that mice harboring loss of cacna1c in excitatory glutamatergic neurons of the forebrain (fbKO) that we have previously reported to exhibit anxiety-like behavior, displayed a social behavioral deficit and impaired learning and memory. Furthermore, focal knockdown of cacna1c in the adult PFC recapitulated the social deficit and elevated anxiety-like behavior, but not the deficits in learning and memory. Electrophysiological and molecular studies in the PFC of cacna1c fbKO mice revealed higher E/I ratio in layer 5 pyramidal neurons and lower general protein synthesis. This was concurrent with reduced activity of mTORC1 and its downstream mRNA translation initiation factors eIF4B and 4EBP1, as well as elevated phosphorylation of eIF2α, an inhibitor of mRNA translation. Remarkably, systemic treatment with ISRIB, a small molecule inhibitor that suppresses the effects of phosphorylated eIF2α on mRNA translation, was sufficient to reverse the social deficit and elevated anxiety-like behavior in adult cacna1c fbKO mice. ISRIB additionally normalized the lower protein synthesis and higher E/I ratio in the PFC. Thus this study identifies a novel Cav1.2 mechanism in neuropsychiatric-related endophenotypes and a potential future therapeutic target to explore. PMID:28584287

  16. Impact of a high-cholesterol diet on expression levels of Niemann-Pick C1-like 1 and intestinal transporters in rats and mice.

    PubMed

    Kawase, Atsushi; Araki, Yasuha; Ueda, Yukiko; Nakazaki, Sayaka; Iwaki, Masahiro

    2016-08-01

    Niemann-Pick C1-like 1 (NPC1L1), ATP-binding cassette (ABC)G5, and ABCG8 are all involved in intestinal cholesterol absorption. It is unclear whether a high-cholesterol (HC) diet affects the expression of these transporters in rats and mice as well as humans. We examined the effects of an HC diet on their expression in small intestine and the differences between rats and mice in the responsive of this expression to an HC diet. In addition to these transporters, alterations in six representative drug and nutrient transporters (multidrug resistance-associated protein, breast cancer resistance protein, peptide transporter, sodium-glucose linked transporter, glucose transporter, and L-type amino acid transporter) and transcriptional factors such as hepatocyte nuclear factor (HNF)4α, sterol regulatory element-binding protein (SREBP)2, and liver X receptor (LXR)α were determined. In rats and mice fed an HC diet for 7 days, the mRNA and protein levels of NPC1L1 in the small intestine were determined by real-time reverse transcription polymerase chain reaction and western blotting, respectively. The mRNA levels of ABCG5 and ABCG8, six representative transporters, and transcriptional factors such as HNF4α, SREBP2, and LXR were examined. Significant decreases in the expression levels of NPC1L1 were observed in mice, but not rats, fed the HC diet. The mRNA levels of ABCG5 and ABCG8 were significantly increased in HC rats but not in mice. Only minor changes in the mRNA levels of the other transporters were seen in HC rats and mice. Decreased mRNA levels of HNF4α and SREBP2 in mice could be involved in the reduction in NPC1L1 expression observed upon the introduction of an HC diet. These results indicate that the effects of an HC diet on the expression levels of NPC1L1, ABCG5, and ABCG8 differ between mice and rats.

  17. Inhibitory assay for degradation of collagen IV by cathepsin B with a surface plasmon resonance sensor.

    PubMed

    Shoji, Atsushi; Suenaga, Yumiko; Hosaka, Atsushi; Ishida, Yuuki; Yanagida, Akio; Sugawara, Masao

    2017-10-25

    We describe a simple method for evaluating the inhibition of collagen IV degradation by cathepsin B with a surface plasmon resonance (SPR) biosensor. The change in the SPR signal decreased with an increase in the concentration of cathepsin B inhibitors. The order of the inhibitory constant (Ki) obtained by the SPR method was CA074Me≈Z-Phe-Phe-FMK < leupeptin. This order was different from that obtained by benzyloxycarbonyl-Phe-Phe-Fluoromethylketone (Z-Phe-Phe-FMK) as a peptide substrate. The comparison of Ki suggested that CA074 and Z-Phe-Phe-FMK inhibited exopeptidase activity, and leupeptin inhibited the endopeptidase activity of cathepsin B more strongly. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The Diagnosis of Human Fascioliasis by Enzyme-Linked Immunosorbent Assay (ELISA) Using Recombinant Cathepsin L Protease

    PubMed Central

    Gonzales Santana, Bibiana; Vasquez Camargo, Fabio; Parkinson, Michael

    2013-01-01

    Background Fascioliasis is a worldwide parasitic disease of domestic animals caused by helminths of the genus Fasciola. In many parts of the world, particularly in poor rural areas where animal disease is endemic, the parasite also infects humans. Adult parasites reside in the bile ducts of the host and therefore diagnosis of human fascioliasis is usually achieved by coprological examinations that search for parasite eggs that are carried into the intestine with the bile juices. However, these methods are insensitive due to the fact that eggs are released sporadically and may be missed in low-level infections, and fasciola eggs may be misclassified as other parasites, leading to problems with specificity. Furthermore, acute clinical symptoms as a result of parasites migrating to the bile ducts appear before the parasite matures and begins egg laying. A human immune response to Fasciola antigens occurs early in infection. Therefore, an immunological method such as ELISA may be a more reliable, easy and cheap means to diagnose human fascioliasis than coprological analysis. Methodology/Principal findings Using a panel of serum from Fasciola hepatica-infected patients and from uninfected controls we have optimized an enzyme-linked immunosorbent assay (ELISA) which employs a recombinant form of the major F. hepatica cathepsin L1 as the antigen for the diagnosis of human fascioliasis. We examined the ability of the ELISA test to discern fascioliasis from various other helminth and non-helminth parasitic diseases. Conclusions/Significance A sensitive and specific fascioliasis ELISA test has been developed. This test is rapid and easy to use and can discriminate fasciola-infected individuals from patients harbouring other parasites with at least 99.9% sensitivity and 99.9% specificity. This test will be a useful standardized method not only for testing individual samples but also in mass screening programs to assess the extent of human fascioliasis in regions where this

  19. Insulin-like growth factor-1 enhances rat skeletal muscle charge movement and L-type Ca2+ channel gene expression

    PubMed Central

    Wang, Zhong-Min; Laura Messi, María; Renganathan, Muthukrishnan; Delbono, Osvaldo

    1999-01-01

    We investigated whether insulin-like growth factor-1 (IGF-1), an endogenous potent activator of skeletal muscle proliferation and differentiation, enhances L-type Ca2+ channel gene expression resulting in increased functional voltage sensors in single skeletal muscle cells. Charge movement and inward Ca2+ current were recorded in primary cultured rat myoballs using the whole-cell configuration of the patch-clamp technique. Ca2+ current and maximum charge movement (Qmax) were potentiated in cells treated with IGF-1 without significant changes in their voltage dependence. Peak Ca2+ current in control and IGF-1-treated cells was -7·8 ± 0·44 and -10·5 ± 0·37 pA pF−1, respectively (P < 0·01), whilst Qmax was 12·9 ± 0·4 and 22·0 ± 0·3 nC μF−1, respectively (P < 0·01). The number of L-type Ca2+ channels was found to increase in the same preparation. The maximum binding capacity (Bmax) of the high-affinity radioligand [3H]PN200-110 in control and IGF-1-treated cells was 1·21 ± 0·25 and 3·15 ± 0·5 pmol (mg protein)−1, respectively (P < 0·01). No significant change in the dissociation constant for [3H]PN200-110 was found. Antisense RNA amplification showed a significant increase in the level of mRNA encoding the L-type Ca2+ channel α1-subunit in IGF-1-treated cells. This study demonstrates that IGF-1 regulates charge movement and the level of L-type Ca2+ channel α1-subunits through activation of gene expression in skeletal muscle cells. PMID:10087334

  20. Characterization of the honeybee venom proteins C1q-like protein and PVF1 and their allergenic potential.

    PubMed

    Russkamp, Dennis; Van Vaerenbergh, Matthias; Etzold, Stefanie; Eberlein, Bernadette; Darsow, Ulf; Schiener, Maximilian; De Smet, Lina; Absmaier, Magdalena; Biedermann, Tilo; Spillner, Edzard; Ollert, Markus; Jakob, Thilo; Schmidt-Weber, Carsten B; de Graaf, Dirk C; Blank, Simon

    2018-05-26

    Honeybee (Apis mellifera) venom (HBV) represents an ideal model to study the role of particular venom components in allergic reactions in sensitized individuals as well as in the eusociality of Hymenoptera species. The aim of this study was to further characterize the HBV components C1q-like protein (C1q) and PDGF/VEGF-like factor 1 (PVF1). C1q and PVF1 were produced as recombinant proteins in insect cells. Their allergenic properties were examined by determining the level of specific IgE antibodies in the sera of HBV-allergic patients (n = 26) as well as by their capacity to activate patients' basophils (n = 11). Moreover, the transcript heterogeneity of PVF1 was analyzed. It could be demonstrated that at least three PVF1 variants are present in the venom gland, which all result from alternative splicing of one transcript. Additionally, recombinant C1q and PVF1 from Spodoptera frugiperda insect cells exhibited specific IgE reactivity with approximately 38.5% of sera of HBV-allergic patients. Interestingly, both proteins were unable to activate basophils of the patients, questioning their role in the context of clinically relevant sensitization. Recombinant C1q and PVF1 can build the basis for a deeper understanding of the molecular mechanisms of Hymenoptera venoms. Moreover, the conflicting results between IgE sensitization and lack of basophil activation, might in the future contribute to the identification of factors that determine the allergenic potential of proteins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Substrate Specificity of Cysteine Proteases Beyond the S2 Pocket: Mutagenesis and Molecular Dynamics Investigation of Fasciola hepatica Cathepsins L

    PubMed Central

    Corvo, Ileana; Ferraro, Florencia; Merlino, Alicia; Zuberbühler, Kathrin; O'Donoghue, Anthony J.; Pastro, Lucía; Pi-Denis, Natalia; Basika, Tatiana; Roche, Leda; McKerrow, James H.; Craik, Charles S.; Caffrey, Conor R.; Tort, José F.

    2018-01-01

    Cysteine proteases are widespread in all life kingdoms, being central to diverse physiological processes based on a broad range of substrate specificity. Paralogous Fasciola hepatica cathepsin L proteases are essential to parasite invasion, tissue migration and reproduction. In spite of similarities in their overall sequence and structure, these enzymes often exhibit different substrate specificity. These preferences are principally determined by the amino acid composition of the active site's S2 subsite (pocket) of the enzyme that interacts with the substrate P2 residue (Schetcher and Berger nomenclature). Although secreted FhCL1 accommodates aliphatic residues in the S2 pocket, FhCL2 is also efficient in cleaving proline in that position. To understand these differences, we engineered the FhCL1 S2 subsite at three amino acid positions to render it identical to that present in FhCL2. The substitutions did not produce the expected increment in proline accommodation in P2. Rather, they decreased the enzyme's catalytic efficiency toward synthetic peptides. Nonetheless, a change in the P3 specificity was associated with the mutation of Leu67 to Tyr, a hinge residue between the S2 and S3 subsites that contributes to the accommodation of Gly in S3. Molecular dynamic simulations highlighted changes in the spatial distribution and secondary structure of the S2 and S3 pockets of the mutant FhCL1 enzymes. The reduced affinity and catalytic efficiency of the mutant enzymes may be due to a narrowing of the active site cleft that hinders the accommodation of substrates. Because the variations in the enzymatic activity measured could not be exclusively allocated to those residues lining the active site, other more external positions might modulate enzyme conformation, and, therefore, catalytic activity. PMID:29725596

  2. Modification of ubiquitin-C-terminal hydrolase-L1 by cyclopentenone prostaglandins exacerbates hypoxic injury

    PubMed Central

    Liu, Hao; Li, Wenjin; Ahmad, Muzamil; Miller, Tricia M.; Rose, Marie E.; Poloyac, Samuel M.; Uechi, Guy; Balasubramani, Manimalha; Hickey, Robert W.; Graham, Steven H.

    2010-01-01

    Cyclopentenone prostaglandins (CyPGs), such as 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), are active prostaglandin metabolites exerting a variety of biological effects that may be important in the pathogenesis of neurological diseases. Ubiquitin-C-terminal hydrolase L1 (UCH-L1) is a brain specific deubiquitinating enzyme whose aberrant function has been linked to neurodegenerative disorders. We report that [15d-PGJ2] detected by quadrapole mass spectrometry (MS) increases in rat brain after temporary focal ischemia, and that treatment with 15d-PGJ2 induces accumulation of ubiquitinated proteins and exacerbates cell death in normoxic and hypoxic primary neurons. 15d-PGJ2 covalently modifies UCH-L1 and inhibits its hydrolase activity. Pharmacologic inhibition of UCH-L1 exacerbates hypoxic neuronal death while transduction with a TAT-UCH-L1 fusion protein protects neurons from hypoxia. These studies indicate UCH-L1 function is important in hypoxic neuronal death and excessive production of CyPGs after stroke may exacerbate ischemic injury by modification and inhibition of UCH-L1. PMID:20933087

  3. N- and C-terminal degradation of ecdysteroid receptor isoforms, when transiently expressed in mammalian CHO cells, is regulated by the proteasome and cysteine and threonine proteases.

    PubMed

    Schauer, S; Burster, T; Spindler-Barth, M

    2012-06-01

    Transcriptional activity of nuclear receptors is the result of transactivation capability and the concentration of the receptor protein. The concentration of ecdysteroid receptor (EcR) isoforms, constitutively expressed in mammalian CHO cells, is dependent on a number of factors. As shown previously, ligand binding stabilizes receptor protein concentration. In this paper, we investigate the degradation of EcR isoforms and provide evidence that N-terminal degradation is modulated by isoform-specific ubiquitination sites present in the A/B domains of EcR-A and -B1. This was demonstrated by the increase in EcR concentration by treatment with carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132), an inhibitor of ubiquitin-mediated proteasomal degradation and by deletion of ubiquitination sites. In addition, EcR is degraded by the peptidyl-dipeptidase cathepsin B (CatB) and the endopeptidase cathepsin S (CatS) at the C-terminus in an isoform-specific manner, despite identical C-termini. Ubiquitin-proteasome-mediated degradation and the proteolytic action are modulated by heterodimerization with Ultraspiracle (USP). The complex regulation of receptor protein concentration offers an additional opportunity to regulate transcriptional activity in an isoform- and target cell-specific way and allows the temporal limitation of hormone action. © 2012 The Authors. Insect Molecular Biology © 2012 The Royal Entomological Society.

  4. Collagen degradation by interleukin-1beta-stimulated gingival fibroblasts is accompanied by release and activation of multiple matrix metalloproteinases and cysteine proteinases.

    PubMed

    Cox, S W; Eley, B M; Kiili, M; Asikainen, A; Tervahartiala, T; Sorsa, T

    2006-01-01

    Several collagenolytic matrix metalloproteinases (MMPs) have recently been identified in gingival fibroblasts, while secreted cysteine proteinases could also participate in connective tissue destruction in periodontitis. To clarify their involvement, we examined enzyme release during collagen breakdown by cultured cytokine-stimulated fibroblasts. Gingival fibroblasts were derived from four chronic periodontitis patients and cultured on collagen gels in serum-free medium for 1-4 days. Collagenolysis was measured by hydroxyproline release into the medium. Proteinases were assessed by electrophoresis and immunoblotting. Adding interleukin-1beta resulted in progressive gel breakdown. This was associated particularly with a shift in MMP-1 band position from proenzyme to active enzyme and the appearance of active as well as proenzyme forms of cathepsin B. There was also partial processing of pro-MMP-13 and increased immunoreactivity for active cathepsin L. In addition, both pro-forms and active forms of MMP-8, membrane-type-1-MMP and MMP-2 were present in control and treated cultures. Fibroblast MMP-1 was most likely responsible for collagen dissolution in the culture model, while cathepsin B may have been part of an activation pathway. All studied proteinases contribute to extracellular matrix destruction in inflamed gingival tissue, where they probably activate each other in proteolytic cascades.

  5. Relevance of calpain and calpastatin activity for texture in super-chilled and ice-stored Atlantic salmon (Salmo salar L.) fillets.

    PubMed

    Gaarder, M Ø; Bahuaud, D; Veiseth-Kent, E; Mørkøre, T; Thomassen, M S

    2012-05-01

    The aim of the present experiment was to measure the protease activities in ice-stored and super-chilled Atlantic salmon (Salmo salar) fillets, and the effect on texture. Pre-rigour fillets of Atlantic salmon were either super-chilled to a core temperature of -1.5°C or directly chilled on ice prior to 144h of ice storage. A significantly higher calpain activity was detected in the super-chilled fillets at 6h post-treatment compared to the ice-stored fillets and followed by a significant decrease below its initial level, while the calpastatin activity was significantly lower for the super-chilled fillets at all time points. The cathepsin B+L and B activities increased significantly with time post-treatment; however, no significant differences were observed at any time points between the two treatments. For the ice stored fillets, the cathepsin L activity decreased significantly from 6 to 24h post-treatment and thereafter increased significantly to 144h post-treatment. There was also a significantly lower cathepsin L activity in the super-chilled fillets at 0h post-treatment. No significant difference in breaking force was detected; however, a significant difference in maximum compression (Fmax) was detected at 24h post-treatment with lower Fmax in the super-chilled fillets. This experiment showed that super-chilling had a significant effect on the protease activities and the ATP degradation in salmon fillets. The observed difference in Fmax may be a result of these observed differences, and may indicate a softening of the super-chilled salmon muscle at 24h post-treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. 77 FR 28874 - ONEOK Rockies Midstream, L.L.C.; Notice of Redesignation of Proceeding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-449-000] ONEOK Rockies Midstream, L.L.C.; Notice of Redesignation of Proceeding On April 11, 2012, ONEOK Rockies Midstream, L.L.C... Docket No. CP96-684- 001 \\1\\ to Bear Paw Energy, L.L.C. (BPE). Specifically, ORM states that its name was...

  7. Mice deficient in LMAN1 exhibit FV and FVIII deficiencies and liver accumulation of α1-antitrypsin

    PubMed Central

    Zheng, Chunlei; Zhu, Min; Tao, Jiayi; Vasievich, Matthew P.; Baines, Andrea; Kim, Jinoh; Schekman, Randy; Kaufman, Randal J.; Ginsburg, David

    2011-01-01

    The type 1-transmembrane protein LMAN1 (ERGIC-53) forms a complex with the soluble protein MCFD2 and cycles between the endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment (ERGIC). Mutations in either LMAN1 or MCFD2 cause the combined deficiency of factor V (FV) and factor VIII (FVIII; F5F8D), suggesting an ER-to-Golgi cargo receptor function for the LMAN1-MCFD2 complex. Here we report the analysis of LMAN1-deficient mice. Levels of plasma FV and FVIII, and platelet FV, are all reduced to ∼ 50% of wild-type in Lman1−/− mice, compared with the 5%-30% levels typically observed in human F5F8D patients. Despite previous reports identifying cathepsin C, cathepsin Z, and α1-antitrypsin as additional potential cargoes for LMAN1, no differences were observed between wild-type and Lman1−/− mice in the levels of cathepsin C and cathepsin Z in liver lysates or α1-antitrypsin levels in plasma. LMAN1 deficiency had no apparent effect on COPII-coated vesicle formation in an in vitro assay. However, the ER in Lman1−/− hepatocytes is slightly distended, with significant accumulation of α1-antitrypsin and GRP78. An unexpected, partially penetrant, perinatal lethality was observed for Lman1−/− mice, dependent on the specific inbred strain genetic background, suggesting a potential role for other, as yet unidentified LMAN1-dependent cargo proteins. PMID:21795745

  8. Functional characterization of two secreted SEL1L isoforms capable of exporting unassembled substrate.

    PubMed

    Cattaneo, Monica; Lotti, Lavinia Vittoria; Martino, Simone; Cardano, Marina; Orlandi, Rosaria; Mariani-Costantini, Renato; Biunno, Ida

    2009-04-24

    SEL1L-A, a transmembrane glycoprotein residing in the endoplasmic reticulum (ER), is a component of the ER-associated degradation (ERAD) pathway. Alternative splicing generates two smaller SEL1L isoforms, -B and -C, that lack the SEL1L-A membrane-spanning region but retain some sel-1-like repeats, known to be involved in multi-protein interactions and signal transduction. In this study the functional characteristics of SEL1L-B and -C were investigated in human cell models. We show that these two isoforms are induced upon ER stress and activation of the unfolded protein response, together with SEL1L-A. Using transient transfection experiments (based on wild-type and mutant SEL1L constructs) combined with several biochemical tests we show that SEL1L-B and, more prominently, SEL1L-C are secreted glycoproteins. Although SEL1L-C is in monomeric form, SEL1L-B is engaged in intramolecular/intermolecular disulfide bonds. Both isoforms localize in secretory and degradative cellular compartments and in areas of cell-cell contact. However, whereas SEL1L-B is mainly associated with membranes, SEL1L-C shows the typical intralumenal localization of soluble proteins and is present in intercellular spaces. Furthermore, because of its peroxisomal domain, SEL1L-C localizes to peroxisomes. Both SEL1L-B and -C are involved in sorting and exporting unassembled Ig-mu(s) but do not affect two other ERAD substrates, the null Hong Kong variant of alpha(1)-antitrypsin, and mutant alpha(1)-AT Z. Overall these findings suggest that SEL1L-B and -C participate to novel molecular pathways that, in parallel with ERAD, contribute to the disposure of misfolded/unfolded or orphan proteins through degradation or secretion.

  9. Three cases with L1 syndrome and two novel mutations in the L1CAM gene.

    PubMed

    Marín, Rosario; Ley-Martos, Miriam; Gutiérrez, Gema; Rodríguez-Sánchez, Felicidad; Arroyo, Diego; Mora-López, Francisco

    2015-11-01

    Mutations in the L1CAM gene have been identified in the following various X-linked neurological disorders: congenital hydrocephalus; mental retardation, aphasia, shuffling gait, and adducted thumbs (MASA) syndrome; spastic paraplegia; and agenesis of the corpus callosum. These conditions are currently considered different phenotypes of a single entity known as L1 syndrome. We present three families with L1 syndrome. Sequencing of the L1CAM gene allowed the identification of the following mutations involved: a known splicing mutation (c.3531-12G>A) and two novel ones: a missense mutation (c.1754A>C; p.Asp585Ala) and a nonsense mutation (c.3478C>T; p.Gln1160Stop). The number of affected males and carrier females identified in a relatively small population suggests that L1 syndrome may be under-diagnosed. L1 syndrome should be considered in the differential diagnosis of intellectual disability or mental retardation in children, especially when other signs such as hydrocephalus or adducted thumbs are present.

  10. Serum Levels of a Cathepsin-K Generated Periostin Fragment Predict Incident Low-Trauma Fractures in Postmenopausal Women Independently of BMD and FRAX.

    PubMed

    Bonnet, Nicolas; Biver, Emmanuel; Chevalley, Thierry; Rizzoli, René; Garnero, Patrick; Ferrari, Serge L

    2017-11-01

    Periostin is a matricellular protein involved in bone formation and bone matrix organization, but it is also produced by other tissues. Its circulating levels have been weakly associated with bone microstructure and prevalent fractures, possibly because periostin measured by the current commercial assays does not specifically reflect bone metabolism. In this context, we developed a new ELISA for a periostin fragment resulting from cathepsin K digestion (K-Postn). We hypothesized that circulating K-Postn levels could be associated with bone fragility. A total of 695 women (age 65.0 ± 1.5 years), enrolled in the Geneva Retirees Cohort (GERICO), were prospectively evaluated over 4.7 ± 1.9 years for the occurrence of low-trauma fractures. At baseline, we measured serum periostin, K-Postn, and bone turnover markers (BTMs), distal radius and tibia microstructure by HR-pQCT, hip and lumbar spine aBMD by DXA, and estimated fracture probability using the Fracture Risk Assessment Tool (FRAX). Sixty-six women sustained a low-trauma clinical fracture during the follow-up. Total periostin was not associated with fractures (HR [95% CI] per SD: 1.19 [0.89 to 1.59], p = 0.24). In contrast, K-Postn was significantly higher in the fracture versus nonfracture group (57.5 ± 36.6 ng/mL versus 42.5 ± 23.4 ng/mL, p < 0.001) and associated with fracture risk (HR [95%CI] per SD: 2.14 [1.54 to 2.97], p < 0.001). After adjustment for aBMD, FRAX, bone microstructure, or BTMs, K-Postn remained significantly associated with fracture risk. The performance of the fracture prediction models was improved by adding K-Postn to aBMD or FRAX (Harrell C index for fracture: 0.70 for aBMD + K-Post versus 0.58 for aBMD alone, p = 0.001; 0.73 for FRAX + K-Postn versus 0.65 for FRAX alone, p = 0.005). Circulating K-Postn predicts incident fractures independently of BMD, BTMs, and FRAX in postmenopausal women. Hence measurement of a periostin fragment

  11. Cathepsin B Contributes to Autophagy-related 7 (Atg7)-induced Nod-like Receptor 3 (NLRP3)-dependent Proinflammatory Response and Aggravates Lipotoxicity in Rat Insulinoma Cell Line

    PubMed Central

    Li, Shali; Du, Leilei; Zhang, Lu; Hu, Yue; Xia, Wenchun; Wu, Jia; Zhu, Jing; Chen, Lingling; Zhu, Fengqi; Li, Chunxian; Yang, SiJun

    2013-01-01

    Impairment of glucose-stimulated insulin secretion caused by the lipotoxicity of palmitate was found in β-cells. Recent studies have indicated that defects in autophagy contribute to pathogenesis in type 2 diabetes. Here, we report that autophagy-related 7 (Atg7) induced excessive autophagic activation in INS-1(823/13) cells exposed to saturated fatty acids. Atg7-induced cathepsin B (CTSB) overexpression resulted in an unexpected significant increase in proinflammatory chemokine and cytokine production levels of IL-1β, monocyte chemotactic protein-1, IL-6, and TNF-α. Inhibition of receptor-interacting protein did not affect the inflammatory response, ruling out involvement of necrosis. CTSB siRNA suppressed the inflammatory response but did not affect apoptosis significantly, suggesting that CTSB was a molecular linker between autophagy and the proinflammatory response. Blocking caspase-3 suppressed apoptosis but did not affect the inflammatory response, suggesting that CTSB induced inflammatory effects independently of apoptosis. Silencing of Nod-like receptor 3 (NLRP3) completely abolished both IL-1β secretion and the down-regulation effects of Atg7-induced CTSB overexpression on glucose-stimulated insulin secretion impairment, thus identifying the NLRP3 inflammasome as an autophagy-responsive element in the pancreatic INS-1(823/13) cell line. Combined together, our results indicate that CTSB contributed to the Atg7-induced NLRP3-dependent proinflammatory response, resulting in aggravation of lipotoxicity, independently of apoptosis in the pancreatic INS-1(823/13) cell line. PMID:23986436

  12. A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods

    NASA Astrophysics Data System (ADS)

    Novinec, Marko; Korenč, Matevž; Caflisch, Amedeo; Ranganathan, Rama; Lenarčič, Brigita; Baici, Antonio

    2014-02-01

    Allosteric modifiers have the potential to fine-tune enzyme activity. Therefore, targeting allosteric sites is gaining increasing recognition as a strategy in drug design. Here we report the use of computational methods for the discovery of the first small-molecule allosteric inhibitor of the collagenolytic cysteine peptidase cathepsin K, a major target for the treatment of osteoporosis. The molecule NSC13345 is identified by high-throughput docking of compound libraries to surface sites on the peptidase that are connected to the active site by an evolutionarily conserved network of residues (protein sector). The crystal structure of the complex shows that NSC13345 binds to a novel allosteric site on cathepsin K. The compound acts as a hyperbolic mixed modifier in the presence of a synthetic substrate, it completely inhibits collagen degradation and has good selectivity for cathepsin K over related enzymes. Altogether, these properties qualify our methodology and NSC13345 as promising candidates for allosteric drug design.

  13. Expression and regulation of glycoprotein C gene of herpes simplex virus 1 resident in a clonal L-cell line.

    PubMed Central

    Arsenakis, M; Tomasi, L F; Speziali, V; Roizman, B; Campadelli-Fiume, G

    1986-01-01

    Ltk- cells were transfected with a plasmid containing the entire domain of glycoprotein C (gC), a true gamma or gamma 2 gene of herpes simplex virus 1 (HSV-1) and the methotrexate-resistant mouse dihydrofolate reductase mutant gene. The resulting methotrexate-resistant cell line was cloned; of the 39 clonal lines tested only 1, L3153(28), expressed gC after infection with HSV-1(MP), a gC- mutant, and none expressed gC constitutively. The induction of gC was optimal at multiplicities ranging between 0.5 and 2 PFU per cell, and the quantities produced were equivalent to or higher than those made by methotrexate-resistant gC- L cells infected with wild-type (gC+) virus. The gC gene resident in the L3153(28) cells was regulated as a beta gene inasmuch as the amounts of gC made in infected L3153(28) cells exposed to concentrations of phosphonoacetate that inhibited viral DNA synthesis were higher than those made in the absence of the drug, gC was induced at both permissive and nonpermissive temperatures by the DNA- mutant tsHA1 carrying a lesion in the gene specifying the major DNA-binding protein and which does not express gamma 2 genes at the nonpermissive temperature, and gC was induced only at the permissive temperature in cells infected with ts502 containing a mutation in the alpha 4 gene. The gC induced in L3153(28) cells was made earlier and processed faster to the mature form than that induced in a gC- clone of methotrexate-resistant cells infected with wild-type virus. Unlike virus stocks made in gC- cells, HSV-1(MP) made in L3153(28) cells was susceptible to neutralization by anti-gC monoclonal antibody. Images PMID:3009854

  14. LMI1-like genes involved in leaf margin development of Brassica napus.

    PubMed

    Ni, Xiyuan; Liu, Han; Huang, Jixiang; Zhao, Jianyi

    2017-06-01

    In rapeseed (Brassica napus L.), leaf margins are variable and can be entire, serrate, or lobed. In our previous study, the lobed-leaf gene (LOBED-LEAF 1, BnLL1) was mapped to a 32.1 kb section of B. napus A10. Two LMI1-like genes, BnaA10g26320D and BnaA10g26330D, were considered the potential genes that controlled the lobed-leaf trait in rapeseed. In the present study, these two genes and another homologous gene (BnaC04g00850D) were transformed into Arabidopsis thaliana (L.) Heynh. plants to identify their functions. All three LMI1-like genes of B. napus produced serrate leaf margins. The expression analysis indicated that the expression level of BnaA10g26320D determined the difference between lobed- and entire-leaved lines in rapeseed. Therefore, it is likely that BnaA10g26320D corresponds to BnLL1.

  15. Drug-to-antibody determination for an antibody-drug-conjugate utilizing cathepsin B digestion coupled with reversed-phase high-pressure liquid chromatography analysis.

    PubMed

    Adamo, Michael; Sun, Guoyong; Qiu, Difei; Valente, Joseph; Lan, Wenkui; Song, Hangtian; Bolgar, Mark; Katiyar, Amit; Krishnamurthy, Girija

    2017-01-20

    Antibody drug conjugates or ADCs are currently being evaluated for their effectiveness as targeted chemotherapeutic agents across the pharmaceutical industry. Due to the complexity arising from the choice of antibody, drug and linker; analytical methods for release and stability testing are required to provide a detailed understanding of both the antibody and the drug during manufacturing and storage. The ADC analyzed in this work consists of a tubulysin drug analogue that is randomly conjugated to lysine residues in a human IgG1 antibody. The drug is attached to the lysine residue through a peptidic, hydrolytically stable, cathepsin B cleavable linker. The random lysine conjugation produces a heterogeneous mixture of conjugated species with a variable drug-to-antibody ratio (DAR), therefore, the average amount of drug attached to the antibody is a critical parameter that needs to be monitored. In this work we have developed a universal method for determining DAR in ADCs that employ a cathepsin B cleavable linker. The ADC is first cleaved at the hinge region and then mildly reduced prior to treatment with the cathepsin B enzyme to release the drug from the antibody fragments. This pre-treatment allows the cathepsin B enzyme unrestricted access to the cleavage sites and ensures optimal conditions for the cathepsin B to cleave all the drug from the ADC molecule. The cleaved drug is then separated from the protein components by reversed phase high performance liquid chromatography (RP-HPLC) and quantitated using UV absorbance. This method affords superior cleavage efficiency to other methods that only employ a cathepsin digestion step as confirmed by mass spectrometry analysis. This method was shown to be accurate and precise for the quantitation of the DAR for two different random lysine conjugated ADC molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. XCTK1: A Xenopus C-terminal Kinesin-like Protein

    NASA Technical Reports Server (NTRS)

    Winfree, Seth; Wilhelm, Heike; Sawyer, Alan; Karsenti, Eric; Mitchison, Tim; Walczak, Claire; Reinsch, Sigrid; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    XCTK1 is 97kDa kinesin-like protein homologous to FKIF2 and KIFC3. XCTK1 is present at picomolar levels in eggs, embryos and cultured cells in a soluble high-molecular weight complex that is not associated with membranes. XCKT1 localizes to centrosomes in Xenopus A6 cells. Anti-XCTK1 antibodies also localize to spindle poles when injected into A6 cells or when added to extracts during in vitro spindle assembly reactions. XCTK1 is associated with the center of taxol-induced microtubule asters in extracts. Therefore its localization to poles is dependent on microtubule minus-ends and not on centrosomes per se. Overexpression of XCTK1 leads to centrosome destruction in cultured cells. XCTK1 was tagged at either the N- or C-terminus and transfected into Xenopus A6 cells At low expression levels, XCTK1 associated with centrosomes. At higher levels, the protein localized to insoluble cytoplasmic structures. Gamma-tubulin staining was dramatically decreased from centrosomes or altogether absent. The centrosomal SPJ antigen colocalized with XCTK1-containing structures. Upon nocodozole treatment, microtubules failed to regrow from the centrosomes indicating that overexpression of XCTK1 severely compromises centrosomal function. Current studies are aimed at determining whether XCTK1 interacts directly with centrosomal proteins and to determine the effects of XCTK1 depletion on oocyte maturation and embryogenesis.

  17. 78 FR 21929 - Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR13-46-000] Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Filing Take notice that on April 1, 2013, Hattiesburg Industrial Gas Sales, L.L.C. (Hattiesburg) filed to cancel its Statement of Operating Conditions including its Tariff...

  18. 75 FR 56092 - Hattiesburg Industrial Gas Sales, L.L.C; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-96-000] Hattiesburg Industrial Gas Sales, L.L.C; Notice of Filing September 8, 2010. Take notice that on September 1, 2010, Hattiesburg Industrial Gas Sales, L.L.C. (Hattiesburg) filed a revised Statement of Operating Conditions (SOC...

  19. 76 FR 20657 - Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-102-001] Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Filing Take notice that on April 1, 2011, Hattiesburg Industrial Gas Sales, L.L.C. (Hattiesburg) filed a revised Statement of Operating Conditions to comply with a...

  20. Antidepressant-like effect of folic acid: Involvement of NMDA receptors and L-arginine-nitric oxide-cyclic guanosine monophosphate pathway.

    PubMed

    Brocardo, Patrícia de Souza; Budni, Josiane; Lobato, Kelly Ribas; Kaster, Manuella Pinto; Rodrigues, Ana Lúcia S

    2008-11-19

    Antidepressant-like activity of folic acid in forced swimming test and in the tail suspension test was demonstrated previously by our group. In this study we investigated the involvement of N-methyl-d-aspartate (NMDA) receptors and l-arginine-nitric oxide (NO)-cyclic guanosine monophosphate pathway in its antidepressant-like effect in the forced swimming test in mice. The antidepressant-like effect of folic acid (10 nmol/site, i.c.v.) was prevented by the pretreatment of mice with NMDA (0.1 pmol/site, i.c.v.), l-arginine (750 mg/kg, i.p., substrate for nitric oxide synthase), S-nitroso-N-acetyl-penicillamine (SNAP, 25 microg/site, i.c.v, a NO donor) or sildenafil (5 mg/kg, i.p., phosphodiesterase 5 inhibitor). The administration of 7-nitroindazole (25 and 50 mg/kg, i.p., a specific neuronal nitric oxide synthase (nNOS) inhibitor) or methylene blue (20 mg/kg, i.p., direct inhibitor of both nitric oxide synthase and soluble guanylate cyclase) in combination with a sub-effective dose of folic acid (1 nmol/site, i.c.v.) reduced the immobility time in the FST as compared with either drug alone. Together the results suggest that the antidepressant-like effect of folic acid in the forced swimming test is dependent on an inhibition of either NMDA receptors or NO and cGMP synthesis.

  1. Localization and role of NPC1L1 in cholesterol absorption in human intestine.

    PubMed

    Sané, Alain Théophile; Sinnett, Daniel; Delvin, Edgard; Bendayan, Moise; Marcil, Valérie; Ménard, Daniel; Beaulieu, Jean-François; Levy, Emile

    2006-10-01

    Recent studies have documented the presence of Niemann-Pick C1-Like 1 (NPC1L1) in the small intestine and its capacity to transport cholesterol in mice and rats. The current investigation was undertaken to explore the localization and function of NPC1L1 in human enterocytes. Cell fractionation experiments revealed an NPC1L1 association with apical membrane of the enterocyte in human jejunum. Signal was also detected in lysosomes, endosomes, and mitochondria. Confirmation of cellular NPC1L1 distribution was obtained by immunocytochemistry. Knockdown of NPC1L1 caused a decline in the ability of Caco-2 cells to capture micellar [(14)C]free cholesterol. Furthermore, this NPC1L1 suppression resulted in increased and decreased mRNA levels and activity of HMG-CoA reductase, the rate-limiting step in cholesterol synthesis, and of ACAT, the key enzyme in cholesterol esterification, respectively. An increase was also noted in the transcriptional factor sterol-regulatory element binding protein that modulates cholesterol homeostasis. Efforts were devoted to define the impact of NPC1L1 knockdown on other mediators of cholesterol uptake. RT-PCR evidence is presented to show the significant decrease in the levels of scavenger receptor class B type I (SR-BI) with no changes in ABCA1, ABCG5, and cluster determinant 36 in NPC1L1-deficient Caco-2 cells. Together, our data suggest that NPC1L1 contributes to intestinal cholesterol homeostasis and possibly cooperates with SR-BI to mediate cholesterol absorption in humans.

  2. Tangeritin inhibits adipogenesis by down-regulating C/EBPα, C/EBPβ, and PPARγ expression in 3T3-L1 fat cells.

    PubMed

    He, Y F; Liu, F Y; Zhang, W X

    2015-10-29

    The treatment of obese patients is a topic investigated by an increasing number of researchers. This study aimed to elucidate the possible inhibitory effect of tangeritin on the development and function of fat cells. 3T3-L1 fat cells were grown to confluence and subjected to different concentrations of tangeritin. The most effective tangeritin inhibition concentration was determined by the MTT assay. The treated cells were subjected to real-time reverse transcriptase PCR and western blot analysis, to detect changes in the CCAAT/enhancer binding protein (C/EBP)α, C/EBPβ, and peroxisome proliferator activated receptor (PPAR)γ expression levels. The MTT assay revealed that the fat cell growth was inhibited at a 20 ng/mL concentration of tangeritin. The results of real-time PCR revealed a significant decrease in the expression of C/EBPα, C/EBPβ, and PPARγ mRNA, following the treatment with tangeritin. Western blot analysis also presented similar results at a protein level. Therefore, we concluded that tangeritin inhibits adipogenesis via the down-regulation of C/EBPα, C/EBPβ, and PPARγ mRNA and protein expression in 3T3-L1 cells.

  3. A novel approach for reliable detection of cathepsin S activities in mouse antigen presenting cells.

    PubMed

    Steimle, Alex; Kalbacher, Hubert; Maurer, Andreas; Beifuss, Brigitte; Bender, Annika; Schäfer, Andrea; Müller, Ricarda; Autenrieth, Ingo B; Frick, Julia-Stefanie

    2016-05-01

    Cathepsin S (CTSS) is a eukaryotic protease mostly expressed in professional antigen presenting cells (APCs). Since CTSS activity regulation plays a role in the pathogenesis of various autoimmune diseases like multiple sclerosis, atherosclerosis, Sjögren's syndrome and psoriasis as well as in cancer progression, there is an ongoing interest in the reliable detection of cathepsin S activity. Various applications have been invented for specific detection of this enzyme. However, most of them have only been shown to be suitable for human samples, do not deliver quantitative results or the experimental procedure requires technical equipment that is not commonly available in a standard laboratory. We have tested a fluorogen substrate, Mca-GRWPPMGLPWE-Lys(Dnp)-DArg-NH2, that has been described to specifically detect CTSS activities in human APCs for its potential use for mouse samples. We have modified the protocol and thereby offer a cheap, easy, reproducible and quick activity assay to detect CTSS activities in mouse APCs. Since most of basic research on CTSS is performed in mice, this method closes a gap and offers a possibility for reliable and quantitative CTSS activity detection that can be performed in almost every laboratory. Copyright © 2016. Published by Elsevier B.V.

  4. 6-Shogaol inhibits chondrocytes' innate immune responses and cathepsin-K activity.

    PubMed

    Villalvilla, Amanda; da Silva, Jame's A; Largo, Raquel; Gualillo, Oreste; Vieira, Paulo Cezar; Herrero-Beaumont, Gabriel; Gómez, Rodolfo

    2014-02-01

    Ginger has long been used in traditional Asian medicine to treat osteoarthritis. Indeed, scientific research has reported that ginger derivatives (GDs) have the potential to control innate immune responses. Given the widespread use and demonstrated properties of GDs, we set out to study their anti-inflammatory and anticatabolic properties in chondrocytes. 6-shogaol (6-S), the most active GD, was obtained from ginger. 6-S was not toxic as measured by MTT assay, and inhibited NO production and IL-6 and MCP-1 induced gene expression in LPSbut not in IL-1β-stimulated chondrocytes. 6-S also inhibited LPS-mediated ERK1/2 activation as well as NOS2 and MyD88 induced expression as determined by Western blot. Moreover, zymography revealed that 6-S inhibited matrix metalloproteinases (MMP) 2/9 induction in LPS-treated cells. Hydrated 6-S was modified to obtain a compound (SSi6) without 6-S potential anti-inflammatory properties. Both 6-S and SSi6 inhibited cathepsin-K activity. 6-S blocked TLR4-mediated innate immune responses and MMP induction in chondrocytes. These results, together with GDs-mediated cathepsin-K inhibition, suggest the potential for GDs use against cartilage and bone degradation. Therefore, considering that clinical trials involving oral administration of ginger achieved relevant nontoxic GDs serum concentrations, we suggest that a ginger-supplemented diet might reduce OA symptoms. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 75 FR 41855 - Enogex L.L.C.; Notice of Petition for Rate Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-52-000] Enogex L.L.C.; Notice of Petition for Rate Approval July 13, 2010. Take notice that on July 1, 2010, Enogex L.L.C. (Enogex) filed pursuant to section 284.123(b)(2) of the Commission's regulations, filed a petition...

  6. 75 FR 63452 - ONEOK Gas Storage, L.L.C.; Notice of Baseline Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR11-67-001] ONEOK Gas Storage, L.L.C.; Notice of Baseline Filing October 7, 2010. Take notice that on October 1, 2010, ONEOK Gas Storage, L.L.C. submitted a revised baseline filing of its Statement of Operating Conditions for services...

  7. Fasciola gigantica cathepsin B5 is an acidic endo- and exopeptidase of the immature and mature parasite.

    PubMed

    Siricoon, Sinee; Vichasri Grams, Suksiri; Lertwongvisarn, Kittisak; Abdullohfakeeyah, Muntana; Smooker, Peter M; Grams, Rudi

    2015-12-01

    Cysteine proteases of the liver fluke Fasciola have been described as essential molecules in the infection process of the mammalian host. Destinct cathepsin Bs, which are already expressed in the metacercarial stage and released by the newly excysted juvenile are major actors in this process. Following infection their expression is stopped and the proteins will not be detectable any longer after the first month of development. On the contrary, the novel cathepsin B5 of Fasciola gigantica (FgCB5) described in this work was also found expressed in later juvenile stages and the mature worm. Like all previously described Fasciola family members it was located in the cecal epithelium of the parasite. Western blot analysis of adult antigen preparations detected procathepsin B5 in crude worm extract and in small amounts in the ES product. In support of these data, the sera of infected rabbits and mice were reactive with recombinant FgCB5 in Western blot and ELISA. Biochemical analysis of yeast-expressed FgCB5 revealed that it has properties of a lysosomal hydrolase optimized for activity at acid pH and that it is able to efficiently digest a broad spectrum of host proteins. Unlike previously characterized Fasciola family members FgCB5 carries a histidine doublet in the occluding loop equivalent to residues His110 and His111 of human mature cathepsin B and consequently showed substantial carboxydipeptidyl activity which depends on these two residues. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. Cathepsin B Cysteine Proteinase is Essential for the Development and Pathogenesis of the Plant Parasitic Nematode Radopholus similis

    PubMed Central

    Li, Yu; Wang, Ke; Xie, Hui; Wang, Dong-Wei; Xu, Chun-Ling; Huang, Xin; Wu, Wen-Jia; Li, Dan-Lei

    2015-01-01

    Radopholus similis is an important plant parasitic nematode which severely harms many crops. Cathepsin B is present in a wide variety of organisms, and plays an important role in many parasites. Understanding cathepsin B of R. similis would allow us to find new targets and approaches for its control. In this study, we found that Rs-cb-1 mRNA was expressed in esophageal glands, intestines and gonads of females, testes of males, juveniles and eggs in R. similis. Rs-cb-1 expression was the highest in females, followed by juveniles and eggs, and was the lowest in males. The maximal enzyme activity of Rs-CB-1 was detected at pH 6.0 and 40 °C. Silencing of Rs-cb-1 using in vitro RNAi (Soaking with dsRNA in vitro) not only significantly inhibited the development and hatching of R. similis, but also greatly reduced its pathogenicity. Using in planta RNAi, we confirmed that Rs-cb-1 expression in nematodes were significantly suppressed and the resistance to R. similis was significantly improved in T2 generation transgenic tobacco plants expressing Rs-cb-1 dsRNA. The genetic effects of in planta RNAi-induced gene silencing could be maintained in the absence of dsRNA for at least two generations before being lost, which was not the case for the effects induced by in vitro RNAi. Overall, our results first indicate that Rs-cb-1 plays key roles in the development, hatching and pathogenesis of R. similis, and that in planta RNAi is an effective tool in studying gene function and genetic engineering of plant resistance to migratory plant parasitic nematodes. PMID:26221074

  9. Functional Characterization of Two Secreted SEL1L Isoforms Capable of Exporting Unassembled Substrate*S⃞

    PubMed Central

    Cattaneo, Monica; Lotti, Lavinia Vittoria; Martino, Simone; Cardano, Marina; Orlandi, Rosaria; Mariani-Costantini, Renato; Biunno, Ida

    2009-01-01

    SEL1L-A, a transmembrane glycoprotein residing in the endoplasmic reticulum (ER), is a component of the ER-associated degradation (ERAD) pathway. Alternative splicing generates two smaller SEL1L isoforms, -B and -C, that lack the SEL1L-A membrane-spanning region but retain some sel-1-like repeats, known to be involved in multi-protein interactions and signal transduction. In this study the functional characteristics of SEL1L-B and -C were investigated in human cell models. We show that these two isoforms are induced upon ER stress and activation of the unfolded protein response, together with SEL1L-A. Using transient transfection experiments (based on wild-type and mutant SEL1L constructs) combined with several biochemical tests we show that SEL1L-B and, more prominently, SEL1L-C are secreted glycoproteins. Although SEL1L-C is in monomeric form, SEL1L-B is engaged in intramolecular/intermolecular disulfide bonds. Both isoforms localize in secretory and degradative cellular compartments and in areas of cell-cell contact. However, whereas SEL1L-B is mainly associated with membranes, SEL1L-C shows the typical intralumenal localization of soluble proteins and is present in intercellular spaces. Furthermore, because of its peroxisomal domain, SEL1L-C localizes to peroxisomes. Both SEL1L-B and -C are involved in sorting and exporting unassembled Ig-μs but do not affect two other ERAD substrates, the null Hong Kong variant of α1-antitrypsin, and mutant α1-AT Z. Overall these findings suggest that SEL1L-B and -C participate to novel molecular pathways that, in parallel with ERAD, contribute to the disposure of misfolded/unfolded or orphan proteins through degradation or secretion. PMID:19204006

  10. Differential regulation of ATP binding cassette protein A1 expression and ApoA-I lipidation by Niemann-Pick type C1 in murine hepatocytes and macrophages.

    PubMed

    Wang, Ming-Dong; Franklin, Vivian; Sundaram, Meenakshi; Kiss, Robert S; Ho, Kenneth; Gallant, Michel; Marcel, Yves L

    2007-08-03

    Niemann-Pick type C1 (Npc1) protein inactivation results in lipid accumulation in late endosomes and lysosomes, leading to a defect of ATP binding cassette protein A1 (Abca1)-mediated lipid efflux to apolipoprotein A-I (apoA-I) in macrophages and fibroblasts. However, the role of Npc1 in Abca1-mediated lipid efflux to apoA-I in hepatocytes, the major cells contributing to HDL formation, is still unknown. Here we show that, whereas lipid efflux to apoA-I in Npc1-null macrophages is impaired, the lipidation of endogenously synthesized apoA-I by low density lipoprotein-derived cholesterol or de novo synthesized cholesterol or phospholipids in Npc1-null hepatocytes is significantly increased by about 1-, 3-, and 8-fold, respectively. The increased cholesterol efflux reflects a major increase of Abca1 protein in Npc1-null hepatocytes, which contrasts with the decrease observed in Npc1-null macrophages. The increased Abca1 expression is largely post-transcriptional, because Abca1 mRNA is only slightly increased and Lxr alpha mRNA is not changed, and Lxr alpha target genes are reduced. This differs from the regulation of Abcg1 expression, which is up-regulated at both mRNA and protein levels in Npc1-null cells. Abca1 protein translation rate is higher in Npc1-null hepatocytes, compared with wild type hepatocytes as measured by [(35)S]methionine incorporation, whereas there is no difference for the degradation of newly synthesized Abca1 in these two types of hepatocytes. Cathepsin D, which we recently identified as a positive modulator of Abca1, is markedly increased at both mRNA and protein levels by Npc1 inactivation in hepatocytes but not in macrophages. Consistent with this, inhibition of cathepsin D with pepstatin A reduced the Abca1 protein level in both Npc1-inactivated and WT hepatocytes. Therefore, Abca1 expression is specifically regulated in hepatocytes, where Npc1 activity modulates cathepsin D expression and Abca1 protein translation rate.

  11. Evolution, expression analysis, and functional verification of Catharanthus roseus RLK1-like kinase (CrRLK1L) family proteins in pear (Pyrus bretchneideri).

    PubMed

    Kou, Xiaobing; Qi, Kaijie; Qiao, Xin; Yin, Hao; Liu, Xing; Zhang, Shaoling; Wu, Juyou

    2017-07-01

    The Catharanthus roseus RLK1-like kinase (CrRLK1L) family is involved in multiple processes during plant growth. However, little is known about CrRLK1L in the wood of the pear fruit tree Pyrus bretchneideri. In this study, 26 CrRLK1L gene members were identified in pear and were grouped into six subfamilies according to phylogenetic analyses. Evolutionary analysis indicated that recent whole genome duplication (WGD) and dispersed gene duplications may contribute to the expansion of the CrRLK1L gene family in pear. Moreover, tissue-specific expression analyses suggested that CrRLK1Ls are involved in the development of various pear tissues. Subsequent qRT-PCR analyses indicated that CrRLK1Ls might play important roles in pollen tube growth. Finally, experiments with antisense oligonucleotides (ASO) demonstrated that PbrCrRLK1L26 have functions in pollen tube elongation and that PbrCrRLK1L3 regulates pollen tube rupture. These results will be useful for elaborating the biological roles of CrRLK1Ls in pear growth and development. Copyright © 2017. Published by Elsevier Inc.

  12. C&S Enterprise, L.L.C. - Clean Water Act Public Notice

    EPA Pesticide Factsheets

    The EPA is providing notice of a proposed Administrative Penalty Assessment against C & S Enterprise, L.L.C. (“Respondent”), a business located at 2454 480th Ave, Deep River, IA 52222, for alleged violations of the Clean Water Act at property owned by Resp

  13. 78 FR 69155 - Altegris Advisors, L.L.C., et al.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ... Advisors, L.L.C., et al.; Notice of Application November 12, 2013. AGENCY: Securities and Exchange..., under sections 6(c) and 17(b) of the Act for an exemption from sections 17(a)(1) and (2) of the Act, and under section 6(c) of the Act for an exemption from rule 12d1- 2(a) under the Act. Summary of...

  14. Thoracic and cutaneous sarcoid-like reaction associated with anti-PD-1 therapy: longitudinal monitoring of PD-1 and PD-L1 expression after stopping treatment.

    PubMed

    Paolini, Léa; Poli, Caroline; Blanchard, Simon; Urban, Thierry; Croué, Anne; Rousselet, Marie-Christine; Le Roux, Sarah; Labarrière, Nathalie; Jeannin, Pascale; Hureaux, José

    2018-06-13

    Immune checkpoint inhibitors (ICI) target T cell inhibitory pathways that are responsible for cancer tolerance by down-modulating immune functions. ICI have revolutionized patients care with lung cancer. Nevertheless, restoring endogenous antitumor T-cell responses can induce immune related adverse events, such as sarcoidosis. We report here the first case of a thoracic and cutaneous sarcoid-like reaction in a patient with a relapsing unresectable non-small cell lung cancer (NSCLC) treated with nivolumab, an anti-PD-1 mAb. The expression of PD-1 and its ligands, PD-L1 and PD-L2, was assessed by flow cytometry on peripheral blood mononuclear cells (PBMC) and compared to patients who had discontinued nivolumab therapy without having developed any immune related adverse events. PD-L1 expression was transiently increased on B cells, T cells and monocytes, whereas PD-L2 expression was not modulated. PD-1 was transiently undetectable when PD-L1 was maximal, before returning to basal level. Sarcoidosis spontaneously resolved, without corticotherapy. This case sheds the light on a complex regulation of PD-L1 expression in vivo on PBMC after nivolumab arrest and triggers the question of monitoring the expression of immune checkpoint on immune cells during and after treatment with ICI.

  15. Fall in C-Peptide During First 4 Years From Diagnosis of Type 1 Diabetes: Variable Relation to Age, HbA1c, and Insulin Dose.

    PubMed

    Hao, Wei; Gitelman, Steven; DiMeglio, Linda A; Boulware, David; Greenbaum, Carla J

    2016-10-01

    We aimed to describe the natural history of residual insulin secretion in Type 1 Diabetes TrialNet participants over 4 years from diagnosis and relate this to previously reported alternative clinical measures reflecting β-cell secretory function. Data from 407 subjects from 5 TrialNet intervention studies were analyzed. All subjects had baseline stimulated C-peptide values of ≥0.2 nmol/L from mixed-meal tolerance tests (MMTTs). During semiannual visits, C-peptide values from MMTTs, HbA1c, and insulin doses were obtained. The percentage of individuals with stimulated C-peptide of ≥0.2 nmol/L or detectable C-peptide of ≥0.017 nmol/L continued to diminish over 4 years; this was markedly influenced by age. At 4 years, only 5% maintained their baseline C-peptide secretion. The expected inverse relationships between C-peptide and HbA1c or insulin doses varied over time and with age. Combined clinical variables, such as insulin-dose adjusted HbA1c (IDAA1C) and the relationship of IDAA1C to C-peptide, also were influenced by age and time from diagnosis. Models using these clinical measures did not fully predict C-peptide responses. IDAA1C ≤9 underestimated the number of individuals with stimulated C-peptide ≥0.2 nmol/L, especially in children. Current trials of disease-modifying therapy for type 1 diabetes should continue to use C-peptide as a primary end point of β-cell secretory function. Longer duration of follow-up is likely to provide stronger evidence of the effect of disease-modifying therapy on preservation of β-cell function. © 2016 by the American Diabetes Association.

  16. Multistage ordering and critical singularities in C o1 -xZ nxA l2O4(0 ≤x ≤1 ) : Dilution and pressure effects in a magnetically frustrated system

    NASA Astrophysics Data System (ADS)

    Naka, Takashi; Sato, Koichi; Matsushita, Yoshitaka; Terada, Noriki; Ishii, Satoshi; Nakane, Takayuki; Taguchi, Minori; Nakayama, Minako; Hashishin, Takeshi; Ohara, Satoshi; Takami, Seiichi; Matsushita, Akiyuki

    2015-06-01

    We report comprehensive studies of the crystallographic, magnetic, and thermal properties of a spinel-type magnetically frustrated compound, CoA l2O4 , and a magnetically diluted system, C o1- xZ nxA l2O4 . These studies revealed the effects of dilution and disorder when the tetrahedral magnetic Co ion was replaced by the nonmagnetic Zn ion. Low-temperature anomalies were observed in magnetic susceptibility at x <0.6 . A multicritical point was apparent at T =3.4 K and x =0.12 , where the antiferromagnetic, spin-glass-like, and paramagnetic phases met. At that point, the quenched ferromagnetic component induced by a magnetic field during cooling was sharply enhanced and was observable below x =0.6 . At x ˜0.6 , magnetic susceptibility and specific heat were described by temperature power laws, χ ˜C /T ˜T-δ , in accord with the site percolation threshold of the diamond lattice. This behavior is reminiscent of a quantum critical singularity. We propose an x -temperature phase diagram in the range 0 ≤x ≤1 for C o1- xZ nxA l2O4 . The transition temperature of CoA l2O4 determined from magnetic susceptibility measured under hydrostatic pressure increased with increasing pressure.

  17. C3-Luc Cells Are an Excellent Model for Evaluation of Cellular Immunity following HPV16L1 Vaccination.

    PubMed

    Li, Li-Li; Wang, He-Rong; Zhou, Zhi-Yi; Luo, Jing; Wang, Xiao-Li; Xiao, Xiang-Qian; Zhou, Yu-Bai; Zeng, Yi

    2016-01-01

    C3 and TC-1 are the two model cell lines most commonly used in studies of vaccines and drugs against human papillomavirus (HPV) infection. Because C3 cells contain both the HPV16 E and L genes, but TC-1 cells contain only the HPV16 E genes, C3 cells are usually used as the model cell line in studies targeting the HPV16 L protein. However, expression of the L1 protein is difficult to detect in C3 cells using common methods. In our study, Short tandem repeat analysis (STR) was used to demonstrate that C3 cells are indeed derived from mice, PCR results show that HPV16 L1, E6 and E7 genes were detected in C3 genomic DNA, and RT-PCR results demonstrated that L1 transcription had occurred in C3 cells. However, the expression of C3 protein was not found in the results of western blot and immunohistochemistry (IHC). Growth and proliferation of C3 were inhibited by mice spleen lymphocytes that had been immunized with a vaccine against HPV16L1. The luciferase gene was integrated into C3 cells, and it was confirmed that addition of the exogenous gene had no effect on C3 cells by comparing cell growth and tumor formation with untransformed cells. Cells stably expressing luciferase (C3-luc) were screened and subcutaneously injected into the mice. Tumors became established and were observed using a Spectrum Pre-clinical in Vivo Imaging System. Tumor size of mice in the different groups at various time points was calculated by counting photons. The sensitivity of the animals to the vaccine was quantified by statistical comparison. Ten or 30 days following injection of the C3-luc cells, tumor size differed significantly between the PBS and vaccine groups, indicating that C3 cells were susceptible to vaccination even after tumors were formed in vivo.

  18. A major cathepsin B protease from the liver fluke Fasciola hepatica has atypical active site features and a potential role in the digestive tract of newly excysted juvenile parasites

    PubMed Central

    Beckham, Simone A.; Piedrafita, David; Phillips, Carolyn I.; Samarawickrema, Nirma; Law, Ruby H.P.; Smooker, Peter M.; Quinsey, Noelene S.; Irving, James A.; Greenwood, Deanne; Verhelst, Steven H. L.; Bogyo, Matthew; Turk, Boris; Coetzer, Theresa H.; Wijeyewickrema, Lakshmi C.; Spithill, Terry W.; Pike, Robert N.

    2012-01-01

    The newly excysted juvenile (NEJ) stage of the Fasciola hepatica lifecycle occurs just prior to invasion into the wall of the gut of the host, rendering it an important target for drug development. The cathepsin B enzymes from NEJ flukes have recently been demonstrated to be crucial to invasion and migration by the parasite. Here we characterize one of the cathepsin B enzymes (recombinant FhcatB1) from NEJ flukes. FhcatB1 has biochemical properties distinct from mammalian cathepsin B enzymes, with an atypical preference for Ile over Leu or Arg residues at the P2 substrate position and an inability to act as an exopeptidase. FhcatB1 was active across a broad pH range (optimal activity at pH 5.5–7.0) and resistant to inhibition by cystatin family inhibitors from sheep and humans, suggesting that this enzyme would be able to function in extracellular environments in its mammalian hosts. It appears, however, that the FhcatB1 protease functions largely as a digestive enzyme in the gut of the parasite, due to the localization of a specific, fluorescently labeled inhibitor with an Ile at the P2 position. Molecular modelling and dynamics were used to predict the basis for the unusual substrate specificity: a P2 Ile residue positions the substrate optimally for interaction with catalytic residues of the enzyme, and the enzyme lacks an occluding loop His residue crucial for exopeptidase activity. The unique features of the enzyme, particularly with regard to its specificity and likely importance to a vital stage of the parasite’s life cycle, make it an excellent target for therapeutic inhibitors or vaccination. PMID:19401154

  19. Chitinase-3-like 1 protein (CHI3L1) locus influences cerebrospinal fluid levels of YKL-40.

    PubMed

    Deming, Yuetiva; Black, Kathleen; Carrell, David; Cai, Yefei; Del-Aguila, Jorge L; Fernandez, Maria Victoria; Budde, John; Ma, ShengMei; Saef, Benjamin; Howells, Bill; Bertelsen, Sarah; Huang, Kuan-Lin; Sutphen, Courtney L; Tarawneh, Rawan; Fagan, Anne M; Holtzman, David M; Morris, John C; Goate, Alison M; Dougherty, Joseph D; Cruchaga, Carlos

    2016-11-10

    Alzheimer's disease (AD) pathology appears several years before clinical symptoms, so identifying ways to detect individuals in the preclinical stage is imperative. The cerebrospinal fluid (CSF) Tau/Aβ 42 ratio is currently the best known predictor of AD status and cognitive decline, and the ratio of CSF levels of chitinase-3-like 1 protein (CHI3L1, YKL-40) and amyloid beta (Aβ 42 ) were reported as predictive, but individual variability and group overlap inhibits their utility for individual diagnosis making it necessary to find ways to improve sensitivity of these biomarkers. We used linear regression to identify genetic loci associated with CSF YKL-40 levels in 379 individuals (80 cognitively impaired and 299 cognitively normal) from the Charles F and Joanne Knight Alzheimer's Disease Research Center. We tested correlations between YKL-40 and CSF Tau/Aβ 42 ratio, Aβ 42 , tau, and phosphorylated tau (ptau 181 ). We used studentized residuals from a linear regression model of the log-transformed, standardized protein levels and the additive reference allele counts from the most significant locus to adjust YKL-40 values and tested the differences in correlations with CSF Tau/Aβ 42 ratio, Aβ 42 , tau, and ptau 181 . We found that genetic variants on the CH13L1 locus were significantly associated with CSF YKL-40 levels, but not AD risk, age at onset, or disease progression. The most significant variant is a reported expression quantitative trait locus for CHI3L1, the gene which encodes YKL-40, and explained 12.74 % of the variance in CSF YKL-40 in our study. YKL-40 was positively correlated with ptau 181 (r = 0.521) and the strength of the correlation significantly increased with the addition of genetic information (r = 0.573, p = 0.006). CSF YKL-40 levels are likely a biomarker for AD, but we found no evidence that they are an AD endophenotype. YKL-40 levels are highly regulated by genetic variation, and by including genetic information the

  20. Cysteine proteases and cell differentiation: excystment of the ciliated protist Sterkiella histriomuscorum.

    PubMed

    Villalobo, Eduardo; Moch, Clara; Fryd-Versavel, Ghislaine; Fleury-Aubusson, Anne; Morin, Loïc

    2003-12-01

    The process of excystment of Sterkiella histriomuscorum (Ciliophora, Oxytrichidae) leads in a few hours, through a massive influx of water and the resorption of the cyst wall, from an undifferentiated resting cyst to a highly differentiated and dividing vegetative cell. While studying the nature of the genes involved in this process, we isolated three different cysteine proteases genes, namely, a cathepsin B gene, a cathepsin L-like gene, and a calpain-like gene. Excystation was selectively inhibited at a precise differentiating stage by cysteine proteases inhibitors, suggesting that these proteins are specifically required during the excystment process. Reverse transcription-PCR experiments showed that both genes display differential expression between the cyst and the vegetative cells. A phylogenetic analysis showed for the first time that the cathepsin B tree is paraphyletic and that the diverging S. histriomuscorum cathepsin B is closely related to its Giardia homologues, which take part in the cyst wall breakdown process. The deduced cathepsin L-like protein sequence displays the structural signatures and phylogenetic relationships of cathepsin H, a protein that is known only in plants and animals and that is involved in the degradation of extracellular matrix components in cancer diseases. The deduced calpain-like protein sequence does not display the calcium-binding domain of conventional calpains; it belongs to a diverging phylogenetic cluster that includes Aspergillus palB, a protein which is involved in a signal transduction pathway that is sensitive to ambient pH.

  1. 77 FR 23321 - Kiamichi Railroad L.L.C.-Trackage Rights Exemption-WFEC Railroad Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ...)] Kiamichi Railroad L.L.C.--Trackage Rights Exemption--WFEC Railroad Company Pursuant to a written joint facility agreement dated January 1, 2012, WFEC Railroad Company (WFECR) has agreed to grant limited nonexclusive overhead trackage rights to Kiamichi Railroad L.L.C. (KRR), over its entire line (the Line...

  2. The Anatomy of A.L.I.C.E.

    NASA Astrophysics Data System (ADS)

    Wallace, Richard S.

    This paper is a technical presentation of Artificial Linguistic Internet Computer Entity (A.L.I.C.E.) and Artificial Intelligence Markup Language (AIML), set in context by historical and philosophical ruminations on human consciousness. A.L.I.C.E., the first AIML-based personality program, won the Loebner Prize as "the most human computer" at the annual Turing Test contests in 2000, 2001, and 2004. The program, and the organization that develops it, is a product of the world of free software. More than 500 volunteers from around the world have contributed to her development. This paper describes the history of A.L.I.C.E. and AIML-free software since 1995, noting that the theme and strategy of deception and pretense upon which AIML is based can be traced through the history of Artificial Intelligence research. This paper goes on to show how to use AIML to create robot personalities like A.L.I.C.E. that pretend to be intelligent and selfaware. The paper winds up with a survey of some of the philosophical literature on the question of consciousness. We consider Searle's Chinese Room, and the view that natural language understanding by a computer is impossible. We note that the proposition "consciousness is an illusion" may be undermined by the paradoxes it apparently implies. We conclude that A.L.I.C.E. does pass the Turing Test, at least, to paraphrase Abraham Lincoln, for some of the people some of the time.

  3. Andrographolide inhibits adipogenesis of 3T3-L1 cells by suppressing C/EBPβ expression and activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ching-Chu

    Andrographolide, a diterpenoid, is the most abundant terpenoid in Andrographis paniculata, a popular Chinese herbal medicine. Andrographolide displays diverse biological activities including hypoglycemia, hypolipidemia, anti-inflammation, and anti-tumorigenesis. Recent evidence indicates that andrographolide displays anti-obesity property by inhibiting lipogenic gene expression, however, the underlying mechanisms remain to be elucidated. In this study, the effects of andrographolide on transcription factor cascade and mitotic clonal expansion in 3T3-L1 preadipocyte differentiation into adipocyte were determined. Andrographolide dose-dependently (0–15 μM) inhibited CCAAT/enhancer-binding protein α (C/EBPα) and C/EBPβ mRNA and protein expression as well as peroxisome proliferator-activated receptor γ (PPARγ) protein level during the adipogenesis ofmore » 3T3-L1 cells. Concomitantly, fatty acid synthase and stearoyl-CoA desaturase expression and lipid accumulation were attenuated by andrographolide. Oil-red O staining further showed that the first 48 h after the initiation of differentiation was critical for andrographolide inhibition of adipocyte formation. Andrographolide inhibited the phosphorylation of PKA and the activation of cAMP response element-binding protein (CREB) in response to a differentiation cocktail, which led to attenuated C/EBPβ expression. In addition, ERK and GSK3β-dependent C/EBPβ phosphorylation was attenuated by andrographolide. Moreover, andrographolide suppressed cyclin A, cyclin E, and CDK2 expression and impaired the progression of mitotic clonal expansion (MCE) by arresting the cell cycle at the Go/G1 phase. Taken together, these results indicate that andrographolide has a potent anti-obesity action by inhibiting PKA-CREB-mediated C/EBPβ expression as well as C/EBPβ transcriptional activity, which halts MCE progression and attenuates C/EBPα and PPARγ expression. - Highlights: • Andrographolide is a diterpenoid

  4. Experimental hyperthyroidism in rats increases the expression of the ubiquitin ligases atrogin-1 and MuRF1 and stimulates multiple proteolytic pathways in skeletal muscle.

    PubMed

    O'Neal, Patrick; Alamdari, Nima; Smith, Ira; Poylin, Vitaliy; Menconi, Michael; Hasselgren, Per-Olof

    2009-11-01

    Muscle wasting is commonly seen in patients with hyperthyroidism and is mainly caused by stimulated muscle proteolysis. Loss of muscle mass in several catabolic conditions is associated with increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF1 but it is not known if atrogin-1 and MuRF1 are upregulated in hyperthyroidism. In addition, it is not known if thyroid hormone increases the activity of proteolytic mechanisms other than the ubiquitin-proteasome pathway. We tested the hypotheses that experimental hyperthyroidism in rats, induced by daily intraperitoneal injections of 100 microg/100 g body weight of triiodothyronine (T3), upregulates the expression of atrogin-1 and MuRF1 in skeletal muscle and stimulates lysosomal, including cathepsin L, calpain-, and caspase-3-dependent protein breakdown in addition to proteasome-dependent protein breakdown. Treatment of rats with T3 for 3 days resulted in an approximately twofold increase in atrogin-1 and MuRF1 mRNA levels. The same treatment increased proteasome-, cathepsin L-, and calpain-dependent proteolytic rates by approximately 40% but did not influence caspase-3-dependent proteolysis. The expression of atrogin-1 and MuRF1 remained elevated during a more prolonged period (7 days) of T3 treatment. The results provide support for a role of the ubiquitin-proteasome pathway in muscle wasting during hyperthyroidism and suggest that other proteolytic pathways as well may be activated in the hyperthyroid state. (c) 2009 Wiley-Liss, Inc.

  5. Reduction of mutant huntingtin accumulation and toxicity by lysosomal cathepsins D and B in neurons

    PubMed Central

    2011-01-01

    Background Huntington's disease is caused by aggregation of mutant huntingtin (mHtt) protein containing more than a 36 polyQ repeat. Upregulation of macroautophagy was suggested as a neuroprotective strategy to degrade mutant huntingtin. However, macroautophagy initiation has been shown to be highly efficient in neurons whereas lysosomal activities are rate limiting. The role of the lysosomal and other proteases in Huntington is not clear. Some studies suggest that certain protease activities may contribute to toxicity whereas others are consistent with protection. These discrepancies may be due to a number of mechanisms including distinct effects of the specific intermediate digestion products of mutant huntingtin generated by different proteases. These observations suggested a critical need to investigate the consequence of upregulation of individual lysosomal enzyme in mutant huntingtin accumulation and toxicity. Results In this study, we used molecular approaches to enhance lysosomal protease activities and examined their effects on mutant huntingtin level and toxicity. We found that enhanced expression of lysosomal cathepsins D and B resulted in their increased enzymatic activities and reduced both full-length and fragmented huntingtin in transfected HEK cells. Furthermore, enhanced expression of cathepsin D or B protected against mutant huntingtin toxicity in primary neurons, and their neuroprotection is dependent on macroautophagy. Conclusions These observations demonstrate a neuroprotective effect of enhancing lysosomal cathepsins in reducing mutant huntingtin level and toxicity in transfected cells. They highlight the potential importance of neuroprotection mediated by cathepsin D or B through macroautophagy. PMID:21631942

  6. Cloning a Chymotrypsin-Like 1 (CTRL-1) Protease cDNA from the Jellyfish Nemopilema nomurai

    PubMed Central

    Heo, Yunwi; Kwon, Young Chul; Bae, Seong Kyeong; Hwang, Duhyeon; Yang, Hye Ryeon; Choudhary, Indu; Lee, Hyunkyoung; Yum, Seungshic; Shin, Kyoungsoon; Yoon, Won Duk; Kang, Changkeun; Kim, Euikyung

    2016-01-01

    An enzyme in a nematocyst extract of the Nemopilema nomurai jellyfish, caught off the coast of the Republic of Korea, catalyzed the cleavage of chymotrypsin substrate in an amidolytic kinetic assay, and this activity was inhibited by the serine protease inhibitor, phenylmethanesulfonyl fluoride. We isolated the full-length cDNA sequence of this enzyme, which contains 850 nucleotides, with an open reading frame of 801 encoding 266 amino acids. A blast analysis of the deduced amino acid sequence showed 41% identity with human chymotrypsin-like (CTRL) and the CTRL-1 precursor. Therefore, we designated this enzyme N. nomurai CTRL-1. The primary structure of N. nomurai CTRL-1 includes a leader peptide and a highly conserved catalytic triad of His69, Asp117, and Ser216. The disulfide bonds of chymotrypsin and the substrate-binding sites are highly conserved compared with the CTRLs of other species, including mammalian species. Nemopilema nomurai CTRL-1 is evolutionarily more closely related to Actinopterygii than to Scyphozoan (Aurelia aurita) or Hydrozoan (Hydra vulgaris). The N. nomurai CTRL1 was amplified from the genomic DNA with PCR using specific primers designed based on the full-length cDNA, and then sequenced. The N. nomurai CTRL1 gene contains 2434 nucleotides and four distinct exons. The 5′ donor splice (GT) and 3′ acceptor splice sequences (AG) are wholly conserved. This is the first report of the CTRL1 gene and cDNA structures in the jellyfish N. nomurai. PMID:27399771

  7. Cloning a Chymotrypsin-Like 1 (CTRL-1) Protease cDNA from the Jellyfish Nemopilema nomurai.

    PubMed

    Heo, Yunwi; Kwon, Young Chul; Bae, Seong Kyeong; Hwang, Duhyeon; Yang, Hye Ryeon; Choudhary, Indu; Lee, Hyunkyoung; Yum, Seungshic; Shin, Kyoungsoon; Yoon, Won Duk; Kang, Changkeun; Kim, Euikyung

    2016-07-05

    An enzyme in a nematocyst extract of the Nemopilema nomurai jellyfish, caught off the coast of the Republic of Korea, catalyzed the cleavage of chymotrypsin substrate in an amidolytic kinetic assay, and this activity was inhibited by the serine protease inhibitor, phenylmethanesulfonyl fluoride. We isolated the full-length cDNA sequence of this enzyme, which contains 850 nucleotides, with an open reading frame of 801 encoding 266 amino acids. A blast analysis of the deduced amino acid sequence showed 41% identity with human chymotrypsin-like (CTRL) and the CTRL-1 precursor. Therefore, we designated this enzyme N. nomurai CTRL-1. The primary structure of N. nomurai CTRL-1 includes a leader peptide and a highly conserved catalytic triad of His(69), Asp(117), and Ser(216). The disulfide bonds of chymotrypsin and the substrate-binding sites are highly conserved compared with the CTRLs of other species, including mammalian species. Nemopilema nomurai CTRL-1 is evolutionarily more closely related to Actinopterygii than to Scyphozoan (Aurelia aurita) or Hydrozoan (Hydra vulgaris). The N. nomurai CTRL1 was amplified from the genomic DNA with PCR using specific primers designed based on the full-length cDNA, and then sequenced. The N. nomurai CTRL1 gene contains 2434 nucleotides and four distinct exons. The 5' donor splice (GT) and 3' acceptor splice sequences (AG) are wholly conserved. This is the first report of the CTRL1 gene and cDNA structures in the jellyfish N. nomurai.

  8. Mitochondrial dysfunction in H9c2 cells during ischemia and amelioration with Tribulus terrestris L.

    PubMed

    Reshma, P L; Sainu, Neethu S; Mathew, Anil K; Raghu, K G

    2016-05-01

    The present study investigates the protective effect of partially characterized Tribulus terrestris L. fruit methanol extract against mitochondrial dysfunction in cell based (H9c2) myocardial ischemia model. To induce ischemia, the cells were maintained in an ischemic buffer (composition in mM -137 NaCl, 12 KCl, 0.5 MgCl2, 0.9 CaCl2, 20 HEPES, 20 2-deoxy-d-glucose, pH-6.2) at 37°C with 0.1% O2, 5% CO2, and 95% N2 in a hypoxia incubator for 1h. Cells were pretreated with various concentrations of T. terrestris L. fruit methanol extract (10 and 25μg/ml) and Cyclosporin A (1μM) for 24h prior to the induction of ischemia. Different parameters like lactate dehydrogenase release, total antioxidant capacity, glutathione content and antioxidant enzymes were investigated. Studies were conducted on mitochondria by analyzing alterations in mitochondrial membrane potential, integrity, and dynamics (fission and fusion proteins - Mfn1, Mfn2, OPA1, Drp1 and Fis1). Various biochemical processes in mitochondria like activity of electron transport chain (ETC) complexes, oxygen consumption and ATP production was measured. Ischemia for 1h caused a significant (p≤0.05) increase in LDH leakage, decrease in antioxidant activity and caused mitochondrial dysfunction. T. terrestris L. fruit methanol extract pretreatment was found effective in safeguarding mitochondria via its antioxidant potential, mediated through various bioactives. HPLC of T. terrestris L. fruit methanol extract revealed the presence of ferulic acid, phloridzin and diosgenin. T. terrestris L. fruit ameliorate ischemic insult in H9c2 cells by safeguarding mitochondrial function. This validates the use of T. terrestris L. against heart disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Sorafenib induces cathepsin B-mediated apoptosis of bladder cancer cells by regulating the Akt/PTEN pathway. The Akt inhibitor, perifosine, enhances the sorafenib-induced cytotoxicity against bladder cancer cells

    PubMed Central

    Amantini, Consuelo; Morelli, Maria Beatrice; Santoni, Matteo; Soriani, Alessandra; Cardinali, Claudio; Farfariello, Valerio; Eleuteri, Anna Maria; Bonfili, Laura; Mozzicafreddo, Matteo; Nabissi, Massimo; Cascinu, Stefano; Santoni, Giorgio

    2015-01-01

    Sorafenib, a tyrosine kinase inhibitor, has been demonstrated to exert anti-tumor effects. However, the molecular mechanisms underlying its effects on bladder cancer remain unknown. Here, we evaluated the mechanisms responsible for the sorafenib-induced anti-tumor effects on 5637 and T24 bladder cancer cells. We demonstrated that sorafenib reduces cell viability, stimulates lysosome permeabilization and induces apoptosis of bladder cancer cells. These effects are dependent by the activation of cathepsin B released from lysosomes. The sorafenib-increased cathepsin B activity induced the proteolysis of Bid into tBid that stimulates the intrinsic pathway of apoptosis characterized by mitochondrial membrane depolarization, oxygen radical generation and cytochrome c release. Moreover, we found that cathepsin B enzymatic activity, induced by sorafenib, is dependent on its dephosphorylation via PTEN activation and Akt inactivation. Pretreatment with orthovanadate rescued bladder cancer cells from apoptosis. In addition, the Akt inhibitor perifosine increased the sensitivity of bladder cancer cells to sorafenib-induced cytotoxicity. Overall, our results show that apoptotic cell death induced by sorafenib in bladder cancer cells is dependent on cathepsin B activity and involved PTEN and Akt signaling pathways. The Akt inhibitor perifosine increased the cytotoxic effects of sorafenib in bladder cancer cells. PMID:26097873

  10. Fall in C-Peptide During First 4 Years From Diagnosis of Type 1 Diabetes: Variable Relation to Age, HbA1c, and Insulin Dose

    PubMed Central

    Gitelman, Steven; DiMeglio, Linda A.; Boulware, David; Greenbaum, Carla J.

    2016-01-01

    OBJECTIVE We aimed to describe the natural history of residual insulin secretion in Type 1 Diabetes TrialNet participants over 4 years from diagnosis and relate this to previously reported alternative clinical measures reflecting β-cell secretory function. RESEARCH DESIGN AND METHODS Data from 407 subjects from 5 TrialNet intervention studies were analyzed. All subjects had baseline stimulated C-peptide values of ≥0.2 nmol/L from mixed-meal tolerance tests (MMTTs). During semiannual visits, C-peptide values from MMTTs, HbA1c, and insulin doses were obtained. RESULTS The percentage of individuals with stimulated C-peptide of ≥0.2 nmol/L or detectable C-peptide of ≥0.017 nmol/L continued to diminish over 4 years; this was markedly influenced by age. At 4 years, only 5% maintained their baseline C-peptide secretion. The expected inverse relationships between C-peptide and HbA1c or insulin doses varied over time and with age. Combined clinical variables, such as insulin-dose adjusted HbA1c (IDAA1C) and the relationship of IDAA1C to C-peptide, also were influenced by age and time from diagnosis. Models using these clinical measures did not fully predict C-peptide responses. IDAA1C ≤9 underestimated the number of individuals with stimulated C-peptide ≥0.2 nmol/L, especially in children. CONCLUSIONS Current trials of disease-modifying therapy for type 1 diabetes should continue to use C-peptide as a primary end point of β-cell secretory function. Longer duration of follow-up is likely to provide stronger evidence of the effect of disease-modifying therapy on preservation of β-cell function. PMID:27422577

  11. Lysophosphatidylinositol-induced activation of the cation channel TRPV2 triggers glucagon-like peptide-1 secretion in enteroendocrine L cells.

    PubMed

    Harada, Kazuki; Kitaguchi, Tetsuya; Kamiya, Taichi; Aung, Kyaw Htet; Nakamura, Kazuaki; Ohta, Kunihiro; Tsuboi, Takashi

    2017-06-30

    The lysophosphatidylinositol (LPI) has crucial roles in multiple physiological processes, including insulin exocytosis from pancreatic islets. However, the role of LPI in secretion of glucagon-like peptide-1 (GLP-1), a hormone that enhances glucose-induced insulin secretion, is unclear. Here, we used the murine enteroendocrine L cell line GLUTag and primary murine small intestinal cells to elucidate the mechanism of LPI-induced GLP-1 secretion. Exogenous LPI addition increased intracellular Ca 2+ concentrations ([Ca 2+ ] i ) in GLUTag cells and induced GLP-1 secretion from both GLUTag and acutely prepared primary intestinal cells. The [Ca 2+ ] i increase was suppressed by an antagonist for G protein-coupled receptor 55 (GPR55) and by silencing of GPR55 expression, indicating involvement of G q and G 12/13 signaling pathways in the LPI-induced increased [Ca 2+ ] i levels and GLP-1 secretion. However, GPR55 agonists did not mimic many of the effects of LPI. We also found that phospholipase C inhibitor and Rho-associated kinase inhibitor suppressed the [Ca 2+ ] i increase and that LPI increased the number of focal adhesions, indicating actin reorganization. Of note, blockage or silencing of transient receptor potential cation channel subfamily V member 2 (TRPV2) channels suppressed both the LPI-induced [Ca 2+ ] i increase and GLP-1 secretion. Furthermore, LPI accelerated TRPV2 translocation to the plasma membrane, which was significantly suppressed by a GPR55 antagonist. These findings suggest that TRPV2 activation via actin reorganization induced by G q and G 12/13 signaling is involved in LPI-stimulated GLP-1 secretion in enteroendocrine L cells. Because GPR55 agonists largely failed to mimic the effects of LPI, its actions on L cells are at least partially independent of GPR55 activation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. X-linked lymphocyte regulated gene 5c-like (Xlr5c-like) Is a Novel Target of Progesterone Action in Granulosa Cells of Periovulatory Rat Ovaries

    PubMed Central

    Mishra, Birendra; Park, Ji Yeon; Wilson, Kalin; Jo, Misung

    2015-01-01

    Progesterone (P4), acting through its nuclear receptor (PGR), plays an essential role in ovulation by mediating the expression of genes involved in ovulation and/or luteal formation. To identify ovulatory specific PGR-regulated genes, a preliminary microarray analysis was performed using rat granulosa cells treated with hCG ± RU486 (PGR antagonist). The transcript most highly down-regulated by RU486 was an EST (Expressed Sequence Tag) sequence (gb: BI289578.1) that matches with predicted sequence for Xlr5c-like mRNA. Since nothing is known about Xlr5c-like, we first characterized the expression pattern of Xlr5c-like mRNA in the rat ovary. The level of mRNA for Xlr5c-like is transiently up-regulated in granulosa cells of periovulatory follicles after hCG stimulation in PMSG-primed rat ovaries. The transient induction of Xlr5c-like mRNA was mimicked by hCG treatment in cultured granulosa cells from preovulatory ovaries. We further demonstrated that the LH-activated PKA, MEK, PI3K, and p38 signaling is involved in the increase in Xlr5c-like mRNA. The increase in Xlr5c-like mRNA was abolished by RU486. The inhibitory effect of RU486 was reversed by MPA (synthetic progestin), but not by dexamethasone (synthetic glucocorticoid). Furthermore, mutation of SP1/SP3 and PGR response element sites in the promoter region of Xlr5c-like decreased Xlr5c-like reporter activity. RU486 also inhibited Xlr5c-like reporter activity. ChIP assay verified the binding of PGR and SP3 to the Xlr5c-like promoter in periovulatory granulosa cells. Functionally, siRNA-mediated Xlr5c-like knockdown in granulosa cell cultures resulted in reduced levels of mRNA for Snap25, Cxcr4, and Adamts1. Recombinant Xlr5c-like protein expressed using an adenoviral approach was localized predominantly to the nucleus and to a lesser extent to the cytoplasm of rat granulosa cells. In conclusion, this is the first report showing the spatiotemporally regulated expression of Xlr5c-like mRNA by hCG in rat

  13. A novel zinc finger protein 219-like (ZNF219L) is involved in the regulation of collagen type 2 alpha 1a (col2a1a) gene expression in zebrafish notochord.

    PubMed

    Lien, Huang-Wei; Yang, Chung-Hsiang; Cheng, Chia-Hsiung; Hung, Chin-Chun; Liao, Wei-Hao; Hwang, Pung-Pung; Han, Yu-San; Huang, Chang-Jen

    2013-01-01

    The notochord is required for body plan patterning in vertebrates, and defects in notochord development during embryogenesis can lead to diseases affecting the adult. It is therefore important to elucidate the gene regulatory mechanism underlying notochord formation. In this study, we cloned the zebrafish zinc finger 219-like (ZNF219L) based on mammalian ZNF219, which contains nine C2H2-type zinc finger domains. Through whole-mount in situ hybridization, we found that znf219L mRNA is mainly expressed in the zebrafish midbrain-hindbrain boundary, hindbrain, and notochord during development. The znf219L morpholino knockdown caused partial abnormal notochord phenotype and reduced expression of endogenous col2a1a in the notochord specifically. In addition, ZNF219L could recognize binding sites with GGGGG motifs and trigger augmented activity of the col2a1a promoter in a luciferase assay. Furthermore, in vitro binding experiments revealed that ZNF219L recognizes the GGGGG motifs in the promoter region of the zebrafish col2a1a gene through its sixth and ninth zinc finger domains. Taken together, our results reveal that ZNF219L is involved in regulating the expression of col2a1a in zebrafish notochord specifically.

  14. A Novel Zinc Finger Protein 219-like (ZNF219L) is Involved in the Regulation of Collagen Type 2 Alpha 1a (col2a1a) Gene Expression in Zebrafish Notochord

    PubMed Central

    Lien, Huang-Wei; Yang, Chung-Hsiang; Cheng, Chia-Hsiung; Hung, Chin-Chun; Liao, Wei-Hao; Hwang, Pung-Pung; Han, Yu-San; Huang, Chang-Jen

    2013-01-01

    The notochord is required for body plan patterning in vertebrates, and defects in notochord development during embryogenesis can lead to diseases affecting the adult. It is therefore important to elucidate the gene regulatory mechanism underlying notochord formation. In this study, we cloned the zebrafish zinc finger 219-like (ZNF219L) based on mammalian ZNF219, which contains nine C2H2-type zinc finger domains. Through whole-mount in situ hybridization, we found that znf219L mRNA is mainly expressed in the zebrafish midbrain-hindbrain boundary, hindbrain, and notochord during development. The znf219L morpholino knockdown caused partial abnormal notochord phenotype and reduced expression of endogenous col2a1a in the notochord specifically. In addition, ZNF219L could recognize binding sites with GGGGG motifs and trigger augmented activity of the col2a1a promoter in a luciferase assay. Furthermore, in vitro binding experiments revealed that ZNF219L recognizes the GGGGG motifs in the promoter region of the zebrafish col2a1a gene through its sixth and ninth zinc finger domains. Taken together, our results reveal that ZNF219L is involved in regulating the expression of col2a1a in zebrafish notochord specifically. PMID:24155663

  15. Titanium-Beta Zeolites Catalyze the Stereospecific Isomerization of D-Glucose to L-Sorbose via Intramolecular C5-C1 Hydride Shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gounder, Rajamani; Davis, Mark E.

    Pure-silica zeolite beta containing Lewis acidic framework Ti 4+ centers (Ti-Beta) is shown to catalyze the isomerization of D-glucose to L-sorbose via an intramolecular C5–C1 hydride shift. Glucose–sorbose isomerization occurs in parallel to glucose–fructose isomerization on Ti-Beta in both water and methanol solvents, with fructose formed as the predominant product in water and sorbose as the predominant product in methanol (at 373 K) at initial times and over the course of >10 turnovers. Isotopic tracer studies demonstrate that 13C and D labels placed respectively at the C1 and C2 positions of glucose are retained respectively at the C6 and C5more » positions of sorbose, consistent with its formation via an intramolecular C5–C1 hydride shift isomerization mechanism. This direct Lewis acid-mediated pathway for glucose–sorbose isomerization appears to be unprecedented among heterogeneous or biological catalysts and sharply contrasts indirect base-mediated glucose–sorbose isomerization via 3,4-enediol intermediates or via retro-aldol fragmentation and recombination of sugar fragments. Measured first-order glucose–sorbose isomerization rate constants (per total Ti; 373 K) for Ti-Beta in methanol are similar for glucose and glucose deuterated at the C2 position (within a factor of ~1.1), but are a factor of ~2.3 lower for glucose deuterated at each carbon position, leading to H/D kinetic isotope effects expected for kinetically relevant intramolecular C5–C1 hydride shift steps. Optical rotation measurements show that isomerization of D-(+)-glucose (92% enantiomeric purity) with Ti-Beta in water (373 K) led to the formation of L-(-)-sorbose (73% enantiomeric purity) and D-(-)-fructose (87% enantiomeric purity) as the predominant stereoisomers, indicating that stereochemistry is preserved at carbon centers not directly involved in intramolecular C5–C1 or C2–C1 hydride shift steps, respectively. This new Lewis acid-mediated rearrangement of glucose

  16. 2',3-dihydroxy-5-methoxybiphenyl suppresses fMLP-induced superoxide anion production and cathepsin G release by targeting the β-subunit of G-protein in human neutrophils.

    PubMed

    Liao, Hsiang-Ruei; Chen, Ih-Sheng; Liu, Fu-Chao; Lin, Shinn-Zhi; Tseng, Ching-Ping

    2018-06-15

    This study investigates the effect and the underlying mechanism of 2',3-dihydroxy-5-methoxybiphenyl (RIR-2), a lignan extracted from the roots of Rhaphiolepis indica (L.) Lindl. ex Ker var. tashiroi Hayata ex Matsum. & Hayata (Rosaceae), on N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced respiratory burst and cathepsin G in human neutrophils. Signaling pathways regulated by RIR-2 which modulated fMLP-induced respiratory burst were evaluated by an interaction between β subunit of G-protein (Gβ) with downstream signaling induced by fMLP and by immunoblotting analysis of the downstream targets of Gβ-protein. RIR-2 inhibited fMLP-induced superoxide anion production (IC 50 :2.57 ± 0.22 μM), cathepsin G release (IC 50 :18.72 ± 3.76 μM) and migration in a concentration dependent manner. RIR-2 specifically suppresses fMLP-induced Src family kinases phosphorylation by inhibiting the interaction between Gβ-protein with Src kinases without inhibiting Src kinases activities, therefore, RIR-2 attenuated the downstream targets of Src kinase, such as phosphorylation of Raf/ERK, AKT, P38, PLCγ2, PKC and translocation Tec, p47 ph ° x and P40 ph ° x from the cytosol to the inner leaflet of the plasma membrane. Furthermore, RIR-2 attenuated fMLP-induced intracellular calcium mobilization by inhibiting the interaction between Gβ-protein with PLCβ2. RIR-2 was not a competitive or allosteric antagonist of fMLP. On the contrary, phorbol 12-myristate 13-acetate (PMA)-induced phosphorylation of Src, AKT, P38, PKC and membrane localization of p47 ph ° x and P40 ph ° x remained unaffected. RIR-2 specifically modulates fMLP-mediated neutrophil superoxide anion production and cathepsin G release by inhibiting the interaction between Gβ-protein with downstream signaling which subsequently interferes with the activation of intracellular calcium, PLCγ2, AKT, p38, PKC, ERK, p47 ph ° x and p40 phox . Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Advances in the discovery of cathepsin K inhibitors on bone resorption.

    PubMed

    Lu, Jun; Wang, Maolin; Wang, Ziyue; Fu, Zhongqi; Lu, Aiping; Zhang, Ge

    2018-12-01

    Cathepsin K (Cat K), highly expressed in osteoclasts, is a cysteine protease member of the cathepsin lysosomal protease family and has been of increasing interest as a target of medicinal chemistry efforts for its role in bone matrix degradation. Inhibition of the Cat K enzyme reduces bone resorption and thus, has rendered the enzyme as an attractive target for anti-resorptive osteoporosis therapy. Over the past decades, considerable efforts have been made to design and develop highly potent, excellently selective and orally applicable Cat K inhibitors. These inhibitors are derived from synthetic compounds or natural products, some of which have passed preclinical studies and are presently in clinical trials at different stages of advancement. In this review, we briefly summarised the historic development of Cat K inhibitors and discussed the relationship between structures of inhibitors and active sites in Cat K for the purpose of guiding future development of inhibitors.

  18. 76 FR 77890 - Swan Ranch Railroad, L.L.C.-Operation Exemption-Swan Industrial Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35574] Swan Ranch Railroad, L.L.C.--Operation Exemption--Swan Industrial Park Swan Ranch Railroad, L.L.C. (SRR),\\1\\ a noncarrier, has filed a verified notice of exemption under 49 CFR 1150.31 to operate, pursuant to an agreement with Cheyenne Logistics Hub, LLC (CLH), all...

  19. 76 FR 20655 - American Electric Power Service Corporation v. PJM Interconnection, L.L.C.; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Electric Power Service Corporation v. PJM Interconnection, L.L.C.; Notice of Complaint Take notice that on... complaint against PJM Interconnection, L.L.C. (Respondent), alleging that Schedule 8.1, section D.8 to the PJM Interconnection, L.L.C. Reliability Assurance Agreement is unjust, unreasonable, and unduly...

  20. 78 FR 338 - Buckeye Hammond Railroad, L.L.C.; Acquisition and Operation Exemption; Buckeye Partners, L.P.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-03

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35697] Buckeye Hammond Railroad, L.L.C.; Acquisition and Operation Exemption; Buckeye Partners, L.P. Buckeye Hammond Railroad, L.L... acquire from Buckeye Partners, L.P., a noncarrier, and to operate approximately 6,797 feet (1.29 miles) of...

  1. L-rhamnose induces browning in 3T3-L1 white adipocytes and activates HIB1B brown adipocytes.

    PubMed

    Choi, Minji; Mukherjee, Sulagna; Kang, Nam Hyeon; Barkat, Jameel Lone; Parray, Hilal Ahmad; Yun, Jong Won

    2018-06-01

    Induction of the brown adipocyte-like phenotype in white adipocytes (browning) is considered as a novel strategy to fight obesity due to the ability of brown adipocytes to increase energy expenditure. Here, we report that L-rhamnose induced browning by elevating expression levels of beige-specific marker genes, including Cd137, Cited1, Tbx1, Prdm16, Tmem26, and Ucp1, in 3T3-L1 adipocytes. Moreover, L-rhamnose markedly elevated expression levels of proteins involved in thermogenesis both in 3T3-L1 white and HIB1B brown adipocytes. L-rhamnose treatment in 3T3-L1 adipocytes also significantly elevated protein levels of p-HSL, p-AMPK, ACOX, and CPT1 as well as reduced levels of ACC, FAS, C/EBPα, and PPARγ, suggesting its possible role in enhancement of lipolysis and lipid catabolism as well as reduced adipogenesis and lipogenesis, respectively. The quick technique of efficient molecular docking provided insight into the strong binding of L-rhamnose to the fat-digesting glycine residue of β 3 -adrenergic receptor (AR), indicating strong involvement of L-rhamnose in fat metabolism. Further examination of the molecular mechanism of L-rhamnose revealed that it induced browning of 3T3-L1 adipocytes via coordination of multiple signaling pathways through β 3 -AR, SIRT1, PKA, and p-38. To the best of our knowledge, this is the first study to demonstrate that L-rhamnose plays multiple modulatory roles in the induction of white fat browning, activation of brown adipocytes, as well as promotion of lipid metabolism, thereby demonstrating its therapeutic potential for treatment of obesity. © 2018 IUBMB Life, 70(6):563-573, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  2. Deficiency of Suppressor Enhancer Lin12 1 Like (SEL1L) in Mice Leads to Systemic Endoplasmic Reticulum Stress and Embryonic Lethality*

    PubMed Central

    Francisco, Adam B.; Singh, Rajni; Li, Shuai; Vani, Anish K.; Yang, Liu; Munroe, Robert J.; Diaferia, Giuseppe; Cardano, Marina; Biunno, Ida; Qi, Ling; Schimenti, John C.; Long, Qiaoming

    2010-01-01

    Stress in the endoplasmic reticulum (ER) plays an important causal role in the pathogenesis of several chronic diseases such as Alzheimer, Parkinson, and diabetes mellitus. Insight into the genetic determinants responsible for ER homeostasis will greatly facilitate the development of therapeutic strategies for the treatment of these debilitating diseases. Suppressor enhancer Lin12 1 like (SEL1L) is an ER membrane protein and was thought to be involved in the quality control of secreted proteins. Here we show that the mice homozygous mutant for SEL1L were embryonic lethal. Electron microscopy studies revealed a severely dilated ER in the fetal liver of mutant embryos, indicative of alteration in ER homeostasis. Consistent with this, several ER stress responsive genes were significantly up-regulated in the mutant embryos. Mouse embryonic fibroblast cells deficient in SEL1L exhibited activated unfolded protein response at the basal state, impaired ER-associated protein degradation, and reduced protein secretion. Furthermore, markedly increased apoptosis was observed in the forebrain and dorsal root ganglions of mutant embryos. Taken together, our results demonstrate an essential role for SEL1L in protein quality control during mouse embryonic development. PMID:20197277

  3. Deficiency of suppressor enhancer Lin12 1 like (SEL1L) in mice leads to systemic endoplasmic reticulum stress and embryonic lethality.

    PubMed

    Francisco, Adam B; Singh, Rajni; Li, Shuai; Vani, Anish K; Yang, Liu; Munroe, Robert J; Diaferia, Giuseppe; Cardano, Marina; Biunno, Ida; Qi, Ling; Schimenti, John C; Long, Qiaoming

    2010-04-30

    Stress in the endoplasmic reticulum (ER) plays an important causal role in the pathogenesis of several chronic diseases such as Alzheimer, Parkinson, and diabetes mellitus. Insight into the genetic determinants responsible for ER homeostasis will greatly facilitate the development of therapeutic strategies for the treatment of these debilitating diseases. Suppressor enhancer Lin12 1 like (SEL1L) is an ER membrane protein and was thought to be involved in the quality control of secreted proteins. Here we show that the mice homozygous mutant for SEL1L were embryonic lethal. Electron microscopy studies revealed a severely dilated ER in the fetal liver of mutant embryos, indicative of alteration in ER homeostasis. Consistent with this, several ER stress responsive genes were significantly up-regulated in the mutant embryos. Mouse embryonic fibroblast cells deficient in SEL1L exhibited activated unfolded protein response at the basal state, impaired ER-associated protein degradation, and reduced protein secretion. Furthermore, markedly increased apoptosis was observed in the forebrain and dorsal root ganglions of mutant embryos. Taken together, our results demonstrate an essential role for SEL1L in protein quality control during mouse embryonic development.

  4. The primary structure of L37--a rat ribosomal protein with a zinc finger-like motif.

    PubMed

    Chan, Y L; Paz, V; Olvera, J; Wool, I G

    1993-04-30

    The amino acid sequence of the rat 60S ribosomal subunit protein L37 was deduced from the sequence of nucleotides in a recombinant cDNA. Ribosomal protein L37 has 96 amino acids, the NH2-terminal methionine is removed after translation of the mRNA, and has a molecular weight of 10,939. Ribosomal protein L37 has a single zinc finger-like motif of the C2-C2 type. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 13 or 14 copies of the L37 gene. The mRNA for the protein is about 500 nucleotides in length. Rat L37 is related to Saccharomyces cerevisiae ribosomal protein YL35 and to Caenorhabditis elegans L37. We have identified in the data base a DNA sequence that encodes the chicken homolog of rat L37.

  5. A comparative study of diploid versus triploid Atlantic salmon (Salmo salar L.). The effects of rearing temperatures (5, 10 and 15°C) on raw material characteristics and storage quality.

    PubMed

    Lerfall, Jørgen; Hasli, Pål Rune; Skare, Even Flønes; Olsen, Rolf Erik; Rotabakk, Bjørn Tore; Roth, Bjørn; Slinde, Erik; Egelandsdal, Bjørg

    2017-06-15

    Several major market operators argue that the current level of knowledge about quality is too scant to justify a switch to a large-scale production of triploid salmon. The aim of the present study was, therefore, to elucidate how rearing conditions (5, 10 and 15°C) affect the flesh quality of triploid Atlantic salmon (Salmo salar L., 1.6±0.3kg). As a reference, diploid salmon kept under equal conditions and with equal genetics were used. The main design discriminant was the holding temperature; increased temperature gave increased blood lactate, rigor index (I r ), drip loss (DL), content of astaxanthin and intensity of redness, but reduced muscle pH, cathepsin activity and fillet lightness. Salmon kept at 10°C grew the fastest. It is concluded that ploidy gave less variation than temperature. Triploids were characterized by lower blood haematocrit (Hct) and I r , higher DL and collagenase activity, and on average, paler and less yellowish fillets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Industri-Plex, OU-1, Master Cover Certification Report: Industri-Plex Site: September 30, 2008: Appendix C, C.1-C.2

    EPA Pesticide Factsheets

    2012-04-22

    ... Sincerely, \\ -/) I iJ/;5.~~.k. -r--7~.~~- ... 2.i:<c 0l.-'v<.. ';Q -v.....e. +r, f' ;; 0 J:'. \\- C\\. ~., S V"o€. n:: VcO-T :; I,....Ai'lZ G"'. .\\k (-lL0'-"- ,1....0L '\\0 ...

  7. Transferability of microsatellite markers of Capsicum annuum L. to C. frutescens L. and C. chinense Jacq.

    PubMed

    Carvalho, S I C; Ragassi, C F; Oliveira, I B; Amaral, Z P S; Reifschneider, F J B; Faleiro, F G; Buso, G S C

    2015-07-17

    In order to support further genetic, diversity, and phylogeny studies of Capsicum species, the transferability of a Capsicum annuum L. simple sequence repeat (SSR) microsatellite set was analyzed for C. frutescens L. ("malagueta" and "tabasco" peppers) and C. chinense Jacq. (smell peppers, among other types). A total of 185 SSR primers were evaluated in 12 accessions from 115 C. frutescens L. and 480 C. chinense Jacq, representing different types within each species. Transferability to C. frutescens L. and C. chinense Jacq. occurred for 116 primers (62.7%). Nineteen (16.37%) were polymorphic in C. frutescens L. and 36 (31.03%) in C. chinense Jacq., 17 of which were coincident and could be used to analyze samples obtained for the 2 species. Among these primers, CA49 showed a different amplitude range of alleles between the 2 species (130-132 base pairs for C. frutescens L. and 120-128 base pairs for C. chinense Jacq.), and could differentiate the species. A total of 55 alleles were identified among the 19 polymorphic SSR loci among accessions of C. frutescens L., with the number of alleles per locus ranging from 2 to 5, a mean of 2.89, and the polymorphic information content ranging from 0.30 to 0.65. The number of alleles identified in C. chinense Jacq. was 119, ranging from 2 to 5 alleles per locus, an average of 3.30, and polymorphic information content from 0.19 to 0.68. The C. annuum L. SSR primers were most often transfer-able and polymorphic for C. frutescens L. and C. chinense Jacq., and we present a set of SSR for each species.

  8. Knockdown of CkrL by shRNA deteriorates hypoxia/reoxygenation-induced H9C2 cardiomyocyte apoptosis and survival inhibition Via Bax and downregulation of P-Erk1/2.

    PubMed

    Zhang, Zhi-Sheng; Yang, Dong-Yan; Fu, Yan-Bo; Zhang, Lei; Zhao, Qian-Ping; Li, Gang

    2015-03-01

    Integrin β1 subunit and its downstream molecule integrin-linked kinase and focal adhesion kinase have been confirmed to be essential to cell survival and inhibition of apoptosis and hypoxia/reoxygenation (H/R)-induced injuries in cardiomyocytes. However, it is still unclear whether CrkL [v-crk avian sarcoma virus CT-10 oncogene homolog (Crk)-like], which acts also as a component of the integrin pathway, could also affect H/R-induced injuries in the cardiomyocytes. The rat-derived H9C2 cardiomyocytes were infected with a CrkL small hairpin RNA interference recombinant lentivirus, which knockdowns the endogenous CrkL expression in the cardiomyocytes. Apoptosis, cell proliferation and survival were examined in the H9C2 cardiomyocytes treated with either H/R or not. Results showed that knockdown of CrkL could significantly increase apoptosis and inhibition of the cell proliferation and survival and deteriorate the previously mentioned injuries induced by H/R. In contrast, overexpression of human CrkL could relieve the exacerbation of the previously mentioned injuries induced by CrkL knockdown in the H9C2 cardiomyocytes via regulation of Bax and extracellular signal-regulated kinase1/2 (p-ERK1/2). In conclusion, these results confirmed that knockdown of CrkL could deteriorate H/R-induced apoptosis and cell survival inhibition in rat-derived H9C2 cardiomyocytes via Bax and downregulation of p-ERK1/2. It implies that CrkL could mitigate H/R-induced injuries in the cardiomyocytes. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Citrus aurantium L. dry extracts promote C/ebpβ expression and improve adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Raciti, Gregory Alexander; Fiory, Francesca; Campitelli, Michele; Desiderio, Antonella; Spinelli, Rosa; Longo, Michele; Nigro, Cecilia; Pepe, Giacomo; Sommella, Eduardo; Campiglia, Pietro; Formisano, Pietro; Beguinot, Francesco; Miele, Claudia

    2018-01-01

    Metabolic and/or endocrine dysfunction of the white adipose tissue (WAT) contribute to the development of metabolic disorders, such as Type 2 Diabetes (T2D). Therefore, the identification of products able to improve adipose tissue function represents a valuable strategy for the prevention and/or treatment of T2D. In the current study, we investigated the potential effects of dry extracts obtained from Citrus aurantium L. fruit juice (CAde) on the regulation of 3T3-L1 cells adipocyte differentiation and function in vitro. We found that CAde enhances terminal adipocyte differentiation of 3T3-L1 cells raising the expression of CCAAT/enhancer binding protein beta (C/Ebpβ), peroxisome proliferator activated receptor gamma (Pparγ), glucose transporter type 4 (Glut4) and fatty acid binding protein 4 (Fabp4). CAde improves insulin-induced glucose uptake of 3T3-L1 adipocytes, as well. A focused analysis of the phases occurring in the pre-adipocytes differentiation to mature adipocytes furthermore revealed that CAde promotes the early differentiation stage by up-regulating C/ebpβ expression at 2, 4 and 8 h post the adipogenic induction and anticipating the 3T3-L1 cell cycle entry and progression during mitotic clonal expansion (MCE). These findings provide evidence that the exposure to CAde enhances in vitro fat cell differentiation of pre-adipocytes and functional capacity of mature adipocytes, and pave the way to the development of products derived from Citrus aurantium L. fruit juice, which may improve WAT functional capacity and may be effective for the prevention and/or treatment of T2D.

  10. The left end of rat L1 (L1Rn, long interspersed repeated) DNA which is a CpG island can function as a promoter.

    PubMed Central

    Nur, I; Pascale, E; Furano, A V

    1988-01-01

    Here we report that the 600 bp promoter-like region at the left end of a newly isolated and characterized rat L1 DNA element can activate the prokaryotic chloramphenicol acyltransferase gene in a rat cell line. Activation only occurs when the promoter region is oriented to the transferase gene as it is to the L1 protein encoding sequences and is 75% inhibited by methylation of just 5 of the 22 CpGs present in the promoter. The G + C rich promoter contains enough CpGs to qualify it as a CpG island, but in contrast to other CpG islands, genomic L1 promoters are fully methylated in both somatic cell and sperm DNA as judged by restriction enzyme analysis. Partial demethylation of the genomic promoters by treatment with 5-azacytidine failed to produce discrete L1 transcripts. The relationship of methylation to the evolutionary history and fate of the rat L1 promoter is discussed. Images PMID:2459662

  11. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Lei, E-mail: anleim@yahoo.com.cn; Pang, Yun-Wei, E-mail: yunweipang@126.com; Gao, Hong-Mei, E-mail: Gaohongmei_123@yahoo.cn

    Highlights: Black-Right-Pointing-Pointer Expression of C. elegans fat-1 reduces the n-6/n-3 PUFA ratio in 3T3-L1 cells. Black-Right-Pointing-Pointer fat-1 inhibits the proliferation and differentiation of 3T3-L1 preadipocytes. Black-Right-Pointing-Pointer fat-1 reduces lipid deposition in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer The lower n-6/n-3 ratio induces apoptosis in 3T3-L1 adipocytes. -- Abstract: In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlledmore » experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.« less

  12. Expression, purification, and C-terminal site-specific PEGylation of cysteine-mutated glucagon-like peptide-1.

    PubMed

    Gao, Mingming; Tian, Hong; Ma, Chen; Gao, Xiangdong; Guo, Wei; Yao, Wenbing

    2010-09-01

    Glucagon-like peptide-1 (GLP-1) is attracting increasing interest on account of its prominent benefits in type 2 diabetes. However, its clinical application is limited because of short biological half-life. This study was designed to produce a C-terminal site-specific PEGylated analog of cysteine-mutated GLP-1 (cGLP-1) to prolong its action. The gene of cGLP-1 was inserted into pET32a to construct a thioredoxinA fusion protein. After expression in BL21 (DE3) strain, the fusion protein was purified with Ni-affinity chromatography and then was PEGylated with methoxy-polyethylene glycol-maleimide (mPEG(10K)-MAL). The PEGylated fusion protein was purified with anion exchange chromatography and then was cleaved by enterokinase. The digested product was further purified with reverse-phase chromatography. Finally, 8.7 mg mPEG(10K)-cGLP-1 with a purity of up to 98% was obtained from the original 500 ml culture. The circular dichroism spectra indicated that mPEG(10K)-cGLP-1 maintained the secondary structure of native GLP-1. As compared with that of native GLP-1, the plasma glucose lowering activity of mPEG(10K)-cGLP-1 was significantly extended. These results suggest that our method will be useful in obtaining a large quantity of mPEG(10K)-cGLP-1 for further study and mPEG(10K)-cGLP-1 might find a role in the therapy of type 2 diabetes through C-terminal site-specific PEGylation.

  13. [C II] emission from L1630 in the Orion B molecular cloud

    NASA Astrophysics Data System (ADS)

    Pabst, C. H. M.; Goicoechea, J. R.; Teyssier, D.; Berné, O.; Ochsendorf, B. B.; Wolfire, M. G.; Higgins, R. D.; Riquelme, D.; Risacher, C.; Pety, J.; Le Petit, F.; Roueff, E.; Bron, E.; Tielens, A. G. G. M.

    2017-10-01

    Context. L1630 in the Orion B molecular cloud, which includes the iconic Horsehead Nebula, illuminated by the star system σ Ori, is an example of a photodissociation region (PDR). In PDRs, stellar radiation impinges on the surface of dense material, often a molecular cloud, thereby inducing a complex network of chemical reactions and physical processes. Aims: Observations toward L1630 allow us to study the interplay between stellar radiation and a molecular cloud under relatively benign conditions, that is, intermediate densities and an intermediate UV radiation field. Contrary to the well-studied Orion Molecular Cloud 1 (OMC1), which hosts much harsher conditions, L1630 has little star formation. Our goal is to relate the [C II] fine-structure line emission to the physical conditions predominant in L1630 and compare it to studies of OMC1. Methods: The [C II] 158 μm line emission of L1630 around the Horsehead Nebula, an area of 12' × 17', was observed using the upgraded German Receiver for Astronomy at Terahertz Frequencies (upGREAT) onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). Results: Of the [C II] emission from the mapped area 95%, 13 L⊙, originates from the molecular cloud; the adjacent H II region contributes only 5%, that is, 1 L⊙. From comparison with other data (CO (1 - 0)-line emission, far-infrared (FIR) continuum studies, emission from polycyclic aromatic hydrocarbons (PAHs)), we infer a gas density of the molecular cloud of nH 3 × 103 cm-3, with surface layers, including the Horsehead Nebula, having a density of up to nH 4 × 104 cm-3. The temperature of the surface gas is T 100 K. The average [C II] cooling efficiency within the molecular cloud is 1.3 × 10-2. The fraction of the mass of the molecular cloud within the studied area that is traced by [C II] is only 8%. Our PDR models are able to reproduce the FIR-[C II] correlations and also the CO (1 - 0)-[C II] correlations. Finally, we compare our results on the

  14. Quasi-two-dimensional fluctuations in the magnetization of L a 1.9 C a 1.1 C u 2 O 6 + δ superconductors

    DOE PAGES

    Shi, Xiaoya; Dimitrov, I. K.; Ozaki, Toshinori; ...

    2017-11-01

    We report the results of magnetization measurements with the magnetic field applied along the c axis on superconducting La 1.9Ca 1.1Cu 2O 6+δ single crystals processed under ultrahigh oxygen pressure. Strong fluctuation effects were found in both low- and high-field regimes. Scaling analysis of the high-field magnetization data near the critical temperature (T c = 53.5K) region reveals the characteristics of critical fluctuation behavior of quasi-two-dimensional (2D) superconductivity, described by Ginzburg-Landau theory using the lowest Landau level approximation. Low-field magnetic susceptibility data can be successfully explained by the Lawrence-Doniach model for a quasi-2D superconductor, from which we obtained the amore » b plane Ginzburg-Landau coherence length of this system, ξ ab(0) = 11.8 ± 0.9 Å . The coherence length along the c axis, ξ c(0), is estimated to be about 1.65 Å, which is in between those of 2D cuprate systems, such as Bi 2Sr 2Ca 2Cu 3O 10 and Bi 2Sr 2CaCu 2O 8, and quasi-three-dimensional (3D) cuprate systems, such as overdoped La 2-xSr xCuO 4 and YBa 2Cu 3O 7-δ. Our studies suggest a strong interplay among the fluctuation effects, dimensionalities, and the ratios of the interlayer Cu-O plane spacing, s , to the c-axis coherence lengths. A high s/ξ c(0) was observed in the high-pressure oxygenated La 1.9Ca 1.1Cu 2O 6+δ, and that apparently drives this system to behave more like a quasi-2D superconductor.« less

  15. Quasi-two-dimensional fluctuations in the magnetization of L a 1.9 C a 1.1 C u 2 O 6 + δ superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaoya; Dimitrov, I. K.; Ozaki, Toshinori

    We report the results of magnetization measurements with the magnetic field applied along the c axis on superconducting La 1.9Ca 1.1Cu 2O 6+δ single crystals processed under ultrahigh oxygen pressure. Strong fluctuation effects were found in both low- and high-field regimes. Scaling analysis of the high-field magnetization data near the critical temperature (T c = 53.5K) region reveals the characteristics of critical fluctuation behavior of quasi-two-dimensional (2D) superconductivity, described by Ginzburg-Landau theory using the lowest Landau level approximation. Low-field magnetic susceptibility data can be successfully explained by the Lawrence-Doniach model for a quasi-2D superconductor, from which we obtained the amore » b plane Ginzburg-Landau coherence length of this system, ξ ab(0) = 11.8 ± 0.9 Å . The coherence length along the c axis, ξ c(0), is estimated to be about 1.65 Å, which is in between those of 2D cuprate systems, such as Bi 2Sr 2Ca 2Cu 3O 10 and Bi 2Sr 2CaCu 2O 8, and quasi-three-dimensional (3D) cuprate systems, such as overdoped La 2-xSr xCuO 4 and YBa 2Cu 3O 7-δ. Our studies suggest a strong interplay among the fluctuation effects, dimensionalities, and the ratios of the interlayer Cu-O plane spacing, s , to the c-axis coherence lengths. A high s/ξ c(0) was observed in the high-pressure oxygenated La 1.9Ca 1.1Cu 2O 6+δ, and that apparently drives this system to behave more like a quasi-2D superconductor.« less

  16. Averrhoa carambola L. peel extract suppresses adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Rashid, Asyifah Mohamed; Lu, Kaihui; Yip, Yew Mun; Zhang, Dawei

    2016-02-01

    Obesity is associated with an increased risk of many chronic diseases. Recently, a growing body of evidence has shown that phytochemicals may inhibit adipogenesis and obesity. In this study, we report for the first time, the ability of Averrhoa carambola L. peel extract commonly known as star fruit (SFP) to effectively suppress adipocyte differentiation in 3T3-L1 preadipocytes and therefore, address it as a potential candidate to treat obesity and its related diseases. (-)-Epicatechin was identified as a bioactive compound likely responsible for this suppression. As the genetic expression studies revealed that the adipogenic activity of SFP extract was due to the simultaneous downregulation of the C/EBPα and PPARγ as well as the upregulation of PPARα receptor genes, a detailed computational docking study was also elucidated to reveal the likely binding mode of (-)-epicatechin to the receptor of interest, accounting for the likely mechanism that results in the overall suppression of adipocyte differentiation.

  17. Restricted L1 Estimators and Their Covariances,

    DTIC Science & Technology

    1980-06-01

    CD22 w =e 1-.< l’ -- I -M Ce -=, -2 C 22 CD -. 00 CD LJ L":v, wD .-C >-C CD U., -D -a 22J CD: CD. Vt. U.1 . CD* 31- a UOC CD I" -J zI == CŖ - 1- InCC.J...C 22 CC:.: 2 15Cb In0’C C 4 t’ 3 CD.2-cm I- I.- iC2 CD-3SJ U. cc CDam CC 22 0.-J~ I- iD C Me CC .JJ . A.2 Dt-2C. 2. D ~ 2 CD, Z-i- C -J 2Cn LI CD22 ...22 "I.- bII CD 0.-..CW I -- k- -o. CDCD-c =DDCCC-ce CDI- 22eCCDC.C I-L- 5 2wI-CDUct. I4.CDgCD Ci L., 2=9 E Mm t,2 cm CD22 ,,- D.-.2RCC Ce:CD .Cc n 9

  18. Shark class II invariant chain reveals ancient conserved relationships with cathepsins and MHC class II.

    PubMed

    Criscitiello, Michael F; Ohta, Yuko; Graham, Matthew D; Eubanks, Jeannine O; Chen, Patricia L; Flajnik, Martin F

    2012-03-01

    The invariant chain (Ii) is the critical third chain required for the MHC class II heterodimer to be properly guided through the cell, loaded with peptide, and expressed on the surface of antigen presenting cells. Here, we report the isolation of the nurse shark Ii gene, and the comparative analysis of Ii splice variants, expression, genomic organization, predicted structure, and function throughout vertebrate evolution. Alternative splicing to yield Ii with and without the putative protease-protective, thyroglobulin-like domain is as ancient as the MHC-based adaptive immune system, as our analyses in shark and lizard further show conservation of this mechanism in all vertebrate classes except bony fish. Remarkable coordinate expression of Ii and class II was found in shark tissues. Conserved Ii residues and cathepsin L orthologs suggest their long co-evolution in the antigen presentation pathway, and genomic analyses suggest 450 million years of conserved Ii exon/intron structure. Other than an extended linker preceding the thyroglobulin-like domain in cartilaginous fish, the Ii gene and protein are predicted to have largely similar physiology from shark to man. Duplicated Ii genes found only in teleosts appear to have become sub-functionalized, as one form is predicted to play the same role as that mediated by Ii mRNA alternative splicing in all other vertebrate classes. No Ii homologs or potential ancestors of any of the functional Ii domains were found in the jawless fish or lower chordates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Phagolysosome acidification is required for silica and engineered nanoparticle-induced lysosome membrane permeabilization and resultant NLRP3 inflammasome activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessop, Forrest; Hamilton, Raymond F.; Rhoderick,

    NLRP3 inflammasome activation occurs in response to hazardous particle exposures and is critical for the development of particle-induced lung disease. Mechanisms of Lysosome Membrane Permeabilization (LMP), a central pathway for activation of the NLRP3 inflammasome by inhaled particles, are not fully understood. We demonstrate that the lysosomal vATPases inhibitor Bafilomycin A1 blocked LMP in vitro and ex vivo in primary murine macrophages following exposure to silica, multi-walled carbon nanotubes, and titanium nanobelts. Bafilomycin A1 treatment of particle-exposed macrophages also resulted in decreased active cathepsin L in the cytosol, a surrogate measure for leaked cathepsin B, which was associated with lessmore » NLRP3 inflammasome activity. Silica-induced LMP was partially dependent upon lysosomal cathepsins B and L, whereas nanoparticle-induced LMP occurred independent of cathepsin activity. Furthermore, inhibition of lysosomal cathepsin activity with CA-074-Me decreased the release of High Mobility Group Box 1. Together, these data support the notion that lysosome acidification is a prerequisite for particle-induced LMP, and the resultant leak of lysosome cathepsins is a primary regulator of ongoing NLRP3 inflammasome activity and release of HMGB1. - Highlights: • Silica and nanoparticles cause LMP in macrophages in vitro and in vivo. • Phagolysosome acidification is required for particle-induced LMP. • Cathepsin B and L are not required for nanoparticle-induced LMP. • Cathepsin B/L regulate the secretion of HMGB1 with particle exposure.« less

  20. String Scale Gauge Coupling Unification with Vector-Like Exotics and Noncanonical U(1)Y Normalization

    NASA Astrophysics Data System (ADS)

    Barger, V.; Jiang, Jing; Langacker, Paul; Li, Tianjun

    We use a new approach to study string scale gauge coupling unification systematically, allowing both the possibility of noncanonical U(1)Y normalization and the existence of vector-like particles whose quantum numbers are the same as those of the Standard Model (SM) fermions and their Hermitian conjugates and the SM adjoint particles. We first give all the independent sets (Yi) of particles that can be employed to achieve SU(3)C and SU(2)L string scale gauge coupling unification and calculate their masses. Second, for a noncanonical U(1)Y normalization, we obtain string scale SU(3)C ×SU(2)L ×U(1)Y gauge coupling unification by choosing suitable U(1)Y normalizations for each of the Yi sets. Alternatively, for the canonical U(1)Y normalization, we achieve string scale gauge coupling unification by considering suitable combinations of the Yi sets or by introducing additional independent sets (Zi), that do not affect the SU(3)C ×SU(2)L unification at tree level, and then choosing suitable combinations, one from the Yi sets and one from the Zi sets. We also briefly discuss string scale gauge coupling unification in models with higher Kac-Moody levels for SU(2)L or SU(3)C.

  1. 75 FR 12230 - Black Oak Energy, L.L.C., EPIC Merchant Energy, LP, SESCO Enterprises, LLC v. PJM Interconnection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... Energy, L.L.C., EPIC Merchant Energy, LP, SESCO Enterprises, LLC v. PJM Interconnection, L.L.C.; Notice of Filing March 8, 2010. Take notice that on March 1, 2010, PJM Interconnection, L.L.C. filed a..., Order Accepting Compliance filing issued in this proceeding, Black Oak Energy, L.L.C., et al. v. PJM...

  2. 76 FR 14652 - Port Barre Investments, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... Investments, L.L.C.; Notice of Application Take notice that on March 4, 2011, Port Barre Investments, L.L.C. (Bobcat) filed in Docket No. CP11-124-000 an application pursuant to section 7(c) of the Natural Gas Act... Investments, L.L.C., 126 FERC ] 61,240 (2009). \\2\\ Port Barre Investments, L.L.C., 130 FERC ] 62,272 (2010...

  3. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway

    PubMed Central

    Cervantes, Christopher; Liu, Juan; He, Sijia; Zhou, Haiyan; Zhang, Bilin; Cai, Huan; Yin, Dongqing; Hu, Derong; Li, Zhi; Chen, Hongzhi; Gao, Xiaoli; Wang, Fang; O’Connor, Jason C.; Xu, Yong; Liu, Meilian; Dong, Lily Q.

    2017-01-01

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction. PMID:29087318

  4. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway.

    PubMed

    Bai, Juli; Cervantes, Christopher; Liu, Juan; He, Sijia; Zhou, Haiyan; Zhang, Bilin; Cai, Huan; Yin, Dongqing; Hu, Derong; Li, Zhi; Chen, Hongzhi; Gao, Xiaoli; Wang, Fang; O'Connor, Jason C; Xu, Yong; Liu, Meilian; Dong, Lily Q; Liu, Feng

    2017-11-14

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction.

  5. Comparison of recombinant cathepsins L1, L2, and L5 as ELISA targets for serodiagnosis of bovine and ovine fascioliasis.

    PubMed

    Martínez-Sernández, Victoria; Perteguer, María J; Hernández-González, Ana; Mezo, Mercedes; González-Warleta, Marta; Orbegozo-Medina, Ricardo A; Romarís, Fernanda; Paniagua, Esperanza; Gárate, Teresa; Ubeira, Florencio M

    2018-05-01

    Infections caused by Fasciola hepatica are of great importance in the veterinary field, as they cause important economic losses to livestock producers. Serodiagnostic methods, typically ELISA (with either native or recombinant antigens), are often used for early diagnosis. The use of native antigens, as in the MM3-SERO ELISA (commercialized as BIO K 211, BIO-X Diagnostics), continues to be beneficial in terms of sensitivity and specificity; however, there is interest in developing ELISA tests based on recombinant antigens to avoid the need to culture parasites. Of the antigens secreted by adult flukes, recombinant procathepsin L1 (rFhpCL1) is the most commonly tested in ELISA to date. However, although adult flukes produce three different clades of CLs (FhCL1, FhCL2, and FhCL5), to our knowledge, the diagnostic value of recombinant FhCL2 and FhCL5 has not yet been investigated. In the present study, we developed and tested three indirect ELISAs using rFhpCL1, rFhpCL2, and rFhpCL5 and evaluated their recognition by sera from sheep and cattle naturally infected with F. hepatica. Although the overall antibody response to these three rFhpCLs was similar, some animals displayed preferential recognition for particular rFhpCLs. Moreover, for cattle sera, the highest sensitivity was obtained using rFhpCL2 (97%), being equal for both rFhpCL1 and rFhpCL5 (87.9%), after adjusting cut-offs for maximum specificity. By contrast, for sheep sera, the sensitivity was 100% for the three rFhpCLs. Finally, the presence of truncated and/or partially unfolded molecules in antigen preparations is postulated as a possible source of cross-reactivity.

  6. The Pekin duck programmed death-ligand 1: cDNA cloning, genomic structure, molecular characterization and mRNA expression analysis.

    PubMed

    Yao, Q; Fischer, K P; Tyrrell, D L; Gutfreund, K S

    2015-04-01

    Programmed death ligand-1 (PD-L1) plays an important role in the attenuation of adaptive immune responses in higher vertebrates. Here, we describe the identification of the Pekin duck PD-L1 orthologue (duPD-L1) and its gene structure. The duPD-L1 cDNA encodes a 311-amino acid protein that has an amino acid identity of 78% and 42% with chicken and human PD-L1, respectively. Mapping of the duPD-L1 cDNA with duck genomic sequences revealed an exonic structure of its coding sequence similar to those of other vertebrates but lacked a noncoding exon 1. Homology modelling of the duPD-L1 extracellular domain was compatible with the tandem IgV-like and IgC-like IgSF domain structure of human PD-L1 (PDB ID: 3BIS). Residues known to be important for receptor binding of human PD-L1 were mostly conserved in duPD-L1 within the N-terminus and the G sheet, and partially conserved within the F sheet but not within sheets C and C'. DuPD-L1 mRNA was constitutively expressed in all tissues examined with highest expression levels in lung and spleen and very low levels of expression in muscle, kidney and brain. Mitogen stimulation of duck peripheral blood mononuclear cells transiently increased duPD-L1 mRNA expression. Our observations demonstrate evolutionary conservation of the exonic structure of its coding sequence, the extracellular domain structure and residues implicated in receptor binding, but the role of the longer cytoplasmic tail in avian PD-L1 proteins remains to be determined. © 2014 John Wiley & Sons Ltd.

  7. Direct and remote modulation of L-channels in chromaffin cells: distinct actions on alpha1C and alpha1D subunits?

    PubMed

    Baldelli, Pietro; Hernández-Guijo, Jesus Miguel; Carabelli, Valentina; Novara, Monica; Cesetti, Tiziana; Andrés-Mateos, Eva; Montiel, Carmen; Carbone, Emilio

    2004-02-01

    Understanding precisely the functioning of voltage-gated Ca2+ channels and their modulation by signaling molecules will help clarifying the Ca(2+)-dependent mechanisms controlling exocytosis in chromaffin cells. In recent years, we have learned more about the various pathways through which Ca2+ channels can be up- or down-modulated by hormones and neurotransmitters and how these changes may condition chromaffin cell activity and catecolamine release. Recently, the attention has been focused on the modulation of L-channels (CaV 1), which represent the major Ca2+ current component in rat and human chromaffin cells. L-channels are effectively inhibited by the released content of secretory granules or by applying mixtures of exogenous ATP, opioids, and adrenaline through the activation of receptor-coupled G proteins. This unusual inhibition persists in a wide range of potentials and results from a direct (membrane-delimited) interaction of G protein subunits with the L-channels co-localized in membrane microareas. Inhibition of L-channels can be reversed when the cAMP/PKA pathway is activated by membrane permeable cAMP analog or when cells are exposed to isoprenaline (remote action), suggesting the existence of parallel and opposite effects on L-channel gating by distinctly activated membrane autoreceptors. Here, the authors review the molecular components underlying these two opposing signaling pathways and present new evidence supporting the presence of two L-channel types in rat chromaffin cells (alpha1C and alpha1D), which open new interesting issues concerning Ca(2+)-channel modulation. In light of recent findings on the regulation of exocytosis by Ca(2+)-channel modulation, the authors explore the possible role of L-channels in the autocontrol of catecholamine release.

  8. Differential expression of c-Met between primary and metastatic sites in clear-cell renal cell carcinoma and its association with PD-L1 expression.

    PubMed

    Lalani, Aly-Khan A; Gray, Kathryn P; Albiges, Laurence; Callea, Marcella; Pignon, Jean-Christophe; Pal, Soumitro; Gupta, Mamta; Bhatt, Rupal S; McDermott, David F; Atkins, Michael B; Woude, G F Vande; Harshman, Lauren C; Choueiri, Toni K; Signoretti, Sabina

    2017-11-28

    In preclinical models, c-Met promotes survival of renal cancer cells through the regulation of programmed death-ligand 1 (PD-L1). However, this relationship in human clear cell renal cell carcinoma (ccRCC) is not well characterized. We evaluated c-Met expression in ccRCC patients using paired primary and metastatic samples and assessed the association with PD-L1 expression and other clinical features. Areas with predominant and highest Fuhrman nuclear grade (FNG) were selected. c-Met expression was evaluated by IHC using an anti-Met monoclonal antibody (MET4 Ab) and calculated by a combined score (CS, 0-300): intensity of c-Met staining (0-3) x % of positive cells (0-100). PD-L1 expression in tumor cells was previously assessed by IHC and PD-L1+ was defined as PD-L1 > 0% positive cells. Our cohort consisted of 45 pairs of primary and metastatic ccRCC samples. Overall, c-Met expression was higher in metastatic sites compared to primary sites (average c-Met CS: 55 vs. 28, p = 0.0003). Higher c-Met expression was associated with higher FNG (4 vs. 3) in primary tumors (average c-Met CS: 52 vs. 20, p = 0.04). c-Met expression was numerically greater in PD-L1+ vs. PD-L1- tumors. Higher c-Met expression in metastatic sites compared to primary tumors suggests that testing for biomarkers of response to c-Met inhibitors should be conducted in metastases. While higher c-Met expression in PD-L1+ tumors requires further investigation, it supports exploring these targets in combination clinical trials.

  9. Toll-like Receptor 2 Signalling and the Lysosomal Machinery in Barrett's Esophagus.

    PubMed

    Verbeek, Romy E; Siersema, Peter D; Vleggaar, Frank P; Ten Kate, Fiebo J; Posthuma, George; Souza, Rhonda F; de Haan, Judith; van Baal, Jantine W P M

    2016-09-01

    Inflammation plays an important role in the development of esophageal adenocarcinoma and its metaplastic precursor lesion, Barrett's esophagus. Toll-like receptor (TLR) 2 signalling and lysosomal function have been linked to inflammation-associated carcinogenesis. We examined the expression of TLR2 in the esophagus and the effect of long-term TLR2 activation on morphological changes and expression of factors involved in lysosomal function in a Barrett's esophagus epithelium cell line. TLR2 expression in normal squamous esophagus, reflux esophagitis, Barrett's esophagus and esophageal adenocarcinoma biopsies was assessed with Q-RT-PCR, in situ hybridization and immunohistochemistry. Barrett's esophagus epithelium cells (BAR-T) were incubated with acid and bile salts in the presence or absence of the TLR2 agonist Pam3CSK4 for a period up to 4 weeks. Morphological changes were assessed with electron microscopy, while Q-RT-PCR was used to determine the expression of lysosomal enzymes (Cathepsin B and C) and factors involved in endocytosis (LAMP-1 and M6PR) and autophagy (LC3 and Rab7). TLR2 was expressed in normal squamous esophagus, reflux esophagitis, Barrett's esophagus but was most prominent in esophageal adenocarcinoma. Long-term TLR2 activation in acid and bile salts exposed BAR-T cells resulted in more and larger lysosomes, more mitochondria and increased expression of LAMP-1, M6PR, Cathepsin B and C when compared to BAR-T cells incubated with acid and bile salts but no TLR2 agonist. Factors associated with autophagy (LC3 and Rab7) expression remained largely unchanged. Activation of TLR2 in acid and bile salts exposed Barrett epithelium cells resulted in an increased number of mitochondria and lysosomes and increased expression of lysosomal enzymes and factors involved in endocytosis.

  10. The structure of the regulatory region of the rat L1 (L1Rn, long interspersed repeated) DNA family of transposable elements.

    PubMed Central

    Furano, A V; Robb, S M; Robb, F T

    1988-01-01

    Here we report the DNA structure of the left 1.5 kb of two newly isolated full length members of the rat L1 DNA family (L1Rn, long interspersed repeated DNA). In contrast to earlier isolated rat L1 members, both of these contain promoter-like regions that are most likely full length. In addition, the promoter-like region of both members has undergone a partial tandem duplication. A second internal region of the left end of one of the reported members is also tandemly duplicated. The propensity of the left end of rat L1 elements to undergo this form of genetic rearrangement, as well as other structural features revealed by the present work, is discussed in light of the fact that during evolution the otherwise conserved mammalian L1 DNA families have each acquired completely different promoter-like regions. In an accompanying paper [Nur, I., Pascale, E., and Furano, A. V. (1988) Nucleic Acids Res. 16, submitted], we report that one of the rat promoter-like regions can function as a promoter in rat cells when fused to the Escherichia coli chloramphenicol acyltransferase gene. PMID:2845369

  11. Deleterious effects of plant cystatins against the banana weevil Cosmopolites sordidus.

    PubMed

    Kiggundu, Andrew; Muchwezi, Josephine; Van der Vyver, Christell; Viljoen, Altus; Vorster, Juan; Schlüter, Urte; Kunert, Karl; Michaud, Dominique

    2010-02-01

    The general potential of plant cystatins for the development of insect-resistant transgenic plants still remains to be established given the natural ability of several insects to compensate for the loss of digestive cysteine protease activities. Here we assessed the potential of cystatins for the development of banana lines resistant to the banana weevil Cosmopolites sordidus, a major pest of banana and plantain in Africa. Protease inhibitory assays were conducted with protein and methylcoumarin (MCA) peptide substrates to measure the inhibitory efficiency of different cystatins in vitro, followed by a diet assay with cystatin-infiltrated banana stem disks to monitor the impact of two plant cystatins, oryzacystatin I (OC-I, or OsCYS1) and papaya cystatin (CpCYS1), on the overall growth rate of weevil larvae. As observed earlier for other Coleoptera, banana weevils produce a variety of proteases for dietary protein digestion, including in particular Z-Phe-Arg-MCA-hydrolyzing (cathepsin L-like) and Z-Arg-Arg-MCA-hydrolyzing (cathepsin B-like) proteases active in mildly acidic conditions. Both enzyme populations were sensitive to the cysteine protease inhibitor E-64 and to different plant cystatins including OsCYS1. In line with the broad inhibitory effects of cystatins, OsCYS1 and CpCYS1 caused an important growth delay in young larvae developing for 10 days in cystatin-infiltrated banana stem disks. These promising results, which illustrate the susceptibility of C. sordidus to plant cystatins, are discussed in the light of recent hypotheses suggesting a key role for cathepsin B-like enzymes as a determinant for resistance or susceptibility to plant cystatins in Coleoptera. 2009 Wiley Periodicals, Inc.

  12. GhL1L1 affects cell fate specification by regulating GhPIN1-mediated auxin distribution.

    PubMed

    Xu, Jiao; Yang, Xiyan; Li, Baoqi; Chen, Lin; Min, Ling; Zhang, Xianlong

    2018-05-13

    Auxin is as an efficient initiator and regulator of cell fate during somatic embryogenesis (SE), but the molecular mechanisms and regulating networks of this process are not well understood. In this report, we analysed SE process induced by Leafy cotyledon1-like 1 (GhL1L1), a NF-YB subfamily gene specifically expressed in embryonic tissues in cotton. We also identified the target gene of GhL1L1, and its role in auxin distribution and cell fate specification during embryonic development was analysed. Overexpression of GhL1L1 accelerated embryonic cell formation, associated with an increased concentration of IAA in embryogenic calluses (ECs) and in the shoot apical meristem (SAM), corresponding to altered expression of the auxin transport gene GhPIN1. By contrast, GhL1L1-deficient explants showed retarded embryonic cell formation, and the concentration of IAA was decreased in GhL1L1-deficient ECs. Disruption of auxin distribution accelerated the specification of embryonic cell fate together with regulation of GhPIN1. Furthermore, we showed that PHOSPHATASE 2AA2 (GhPP2AA2) was activated by GhL1L1 through targeting the G-box of its promoter, hence regulating the activity of GhPIN1 protein. Our results indicate that GhL1L1 functions as a key regulator in auxin distribution to regulate cell fate specification in cotton and contribute to the understanding of the complex process of SE in plant species. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. An observational investigation of the identity of B11244 (l-C{sub 3}H{sup +}/C{sub 3}H{sup -})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, Brett A.; Carroll, P. Brandon; Gratier, Pierre

    Pety et al. have reported the detection of eight transitions of a closed-shell, linear molecule (B11244) in observations toward the Horsehead photodissociation region (PDR), which they attribute to the l-C{sub 3}H{sup +} cation. Recent high-level ab initio calculations have called this assignment into question; the anionic C{sub 3}H{sup –} molecule has been suggested as a more likely candidate. Here, we examine observations of the Horsehead PDR, Sgr B2(N), TMC-1, and IRC+10216 in the context of both l-C{sub 3}H{sup +} and C{sub 3}H{sup –}. We find no observational evidence of K{sub a} = 1 lines, which should be present were themore » carrier indeed C{sub 3}H{sup –}. Additionally, we find a strong anticorrelation between the presence of known molecular anions and B11244 in these regions. Finally, we discuss the formation and destruction chemistry of C{sub 3}H{sup –} in the context of the physical conditions in the regions. Based on these results, we conclude there is little evidence to support the claim that the carrier is C{sub 3}H{sup –}.« less

  14. A heterogeneous Pd-Bi/C catalyst in the synthesis of L-lyxose and L-ribose from naturally occurring D-sugars.

    PubMed

    Fan, Ao; Jaenicke, Stephan; Chuah, Gaik-Khuan

    2011-10-26

    A critical step in the synthesis of the rare sugars, L-lyxose and L-ribose, from the corresponding D-sugars is the oxidation to the lactone. Instead of conventional oxidizing agents like bromine or pyridinium dichromate, it was found that a heterogeneous catalyst, Pd-Bi/C, could be used for the direct oxidation with molecular oxygen. The composition of the catalyst was optimized and the best results were obtained with 5 : 1 atomic ratio of Pd : Bi. The overall yields of the five-step procedure to L-ribose and L-lyxose were 47% and 50%, respectively. The synthetic procedure is advantageous from the viewpoint of overall yield, reduced number of steps, and mild reaction conditions. Furthermore, the heterogeneous oxidation catalyst can be easily separated from the reaction mixture and reused with no loss of activity.

  15. Mucin1 shifts Smad3 signaling from the tumor-suppressive pSmad3C/p21(WAF1) pathway to the oncogenic pSmad3L/c-Myc pathway by activating JNK in human hepatocellular carcinoma cells.

    PubMed

    Li, Qiongshu; Liu, Guomu; Yuan, Hongyan; Wang, Juan; Guo, Yingying; Chen, Tanxiu; Zhai, Ruiping; Shao, Dan; Ni, Weihua; Tai, Guixiang

    2015-02-28

    Mucin1 (MUC1) is a transmembrane glycoprotein that acts as an oncogene in human hepatic tumorigenesis. Hepatocellular carcinoma (HCC) cells often gain advantage by reducing the tumor-suppressive activity of transforming growth factor beta (TGF-β) together with stimulation of its oncogenic activity as in MUC1 expressing HCC cells; however, molecular mechanisms remain largely unknown. Type I TGF-β receptor (TβRI) and c-Jun NH2-terminal kinase (JNK) differentially phosphorylate Smad3 mediator to create 2 phosphorylated forms: COOH-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). Here, we report that MUC1 overexpression in HCC cell lines suppresses TβRI-mediated pSmad3C signaling which involves growth inhibition by up-regulating p21(WAF1). Instead, MUC1 directly activates JNK to stimulate oncogenic pSmad3L signaling, which fosters cell proliferation by up-regulating c-Myc. Conversely, MUC1 gene silencing in MUC1 expressing HCC cells results in preserved tumor-suppressive function via pSmad3C, while eliminating pSmad3L-mediated oncogenic activity both in vitro and in vivo. In addition, high correlation between MUC1 and pSmad3L/c-Myc but not pSmad3C/p21(WAF1) expression was observed in HCC tissues from patients. Collectively, these results indicate that MUC1 shifts Smad3 signaling from a tumor-suppressive pSmad3C/p21(WAF1) to an oncogenic pSmad3L/c-Myc pathway by directly activating JNK in HCC cells, suggesting that MUC1 is an important target for HCC therapy.

  16. Cathepsin B-degradable, NIR-responsive nanoparticulate platform for target-specific cancer therapy

    NASA Astrophysics Data System (ADS)

    Tarassoli, Sam P.; Martinez de Pinillos Bayona, Alejandra; Pye, Hayley; Mosse, C. Alexander; Callan, John F.; MacRobert, Alexander; McHale, Anthony P.; Nomikou, Nikolitsa

    2017-02-01

    Stimuli-responsive anticancer formulations can promote drug release and activation within the target tumour, facilitate cellular uptake, as well as improve the therapeutic efficacy of drugs and reduce off-target effects. In the present work, indocyanine green (ICG)-containing polyglutamate (PGA) nanoparticles were developed and characterized. Digestion of nanoparticles with cathepsin B, a matrix metalloproteinase overexpressed in the microenvironment of advanced tumours, decreased particle size and increased ICG cellular uptake. Incorporation of ICG in PGA nanoparticles provided the NIR-absorbing agent with time-dependent altered optical properties in the presence of cathepsin B. Having minimal dark toxicity, the formulation exhibited significant cytotoxicity upon NIR exposure. Combined use of the formulation with saporin, a ribosome-inactivating protein, resulted in synergistically enhanced cytotoxicity attributed to the photo-induced release of saporin from endo/lysosomes. The results suggest that this therapeutic approach can offer significant therapeutic benefit in the treatment of superficial malignancies, such as head and neck tumours.

  17. C- and L-band space-borne SAR incidence angle normalization for efficient Arctic sea ice monitoring

    NASA Astrophysics Data System (ADS)

    Mahmud, M. S.; Geldsetzer, T.; Howell, S.; Yackel, J.; Nandan, V.

    2017-12-01

    C-band Synthetic Aperture Radar (SAR) has been widely used effectively for operational sea ice monitoring, owing to its greater seperability between snow-covered first-year (FYI) and multi-year (MYI) ice types, during winter. However, during the melt season, C-band SAR backscatter contrast reduces between FYI and MYI. To overcome the limitations of C-band, several studies have recommended utlizing L-band SAR, as it has the potential to significantly improve sea ice classification. Given its longer wavelength, L-band can efficiently separate FYI and MYI types, especially during melt season. Therefore, the combination of C- and L-band SAR is an optimal solution for efficient seasonal sea ice monitoring. As SAR acquires images over a range of incidence angles from near-range to far-range, SAR backscatter varies substantially. To compensate this variation in SAR backscatter, incidence angle dependency of C- and L-band SAR backscatter for different FYI and MYI types is crucial to quantify, which is the objective of this study. Time-series SAR imagery from C-band RADARSAT-2 and L-band ALOS PALSAR during winter months of 2010 across 60 sites over the Canadian Arctic was acquired. Utilizing 15 images for each sites during February-March for both C- and L-band SAR, incidence angle dependency was calculated. Our study reveals that L- and C-band backscatter from FYI and MYI decreases with increasing incidence angle. The mean incidence angle dependency for FYI and MYI were estimated to be -0.21 dB/1° and -0.30 dB/1° respectively from L-band SAR, and -0.22 dB/1° and -0.16 dB/1° from C-band SAR, respectively. While the incidence angle dependency for FYI was found to be similar in both frequencies, it doubled in case of MYI from L-band, compared to C-band. After applying the incidence angle normalization method to both C- and L-band SAR images, preliminary results indicate improved sea ice type seperability between FYI and MYI types, with substantially lower number of mixed

  18. Association of C5L2 genetic polymorphisms with coronary artery disease in a Han population in Xinjiang, China.

    PubMed

    Zheng, Ying-Ying; Xie, Xiang; Ma, Yi-Tong; Fu, Zhen-Yan; Ma, Xiang; Yang, Yi-Ning; Li, Xiao-Mei; Pan, Shuo; Adi, Dilare; Chen, Bang-Dang; Liu, Fen

    2017-01-31

    C5aR-like receptor 2 (C5L2) has been identified as a receptor for the inflammatory factor Complement 5a (C5a) and acylation-stimulating protein (ASP). ASP binding to C5L2 leading to a net accumulation of TG stores and glucose transporter. The aim of the present study is to evaluate the association of the SNPs of C5L2 gene with coronary artery disease (CAD) in a Chinese population. We examined the role of the tagging single nucleotide polymorphisms (SNPs) of C5L2 gene for CAD using a case-control design. We determined the prevalence of C5L2 genotypes in 505 CAD patients and 469 age and sex-matched healthy control subjects of Han population. There was significant difference in genotype distributions of rs2972607 and rs8112962 between CAD patients and control subjects. The rs2972607 was found to be associated with CAD in a dominant model (AA vs. AG + GG, P<0.001). Similarly, the rs8112962 was found to be associated with CAD in a dominant model (TT vs CT + CC, P=0.016). The difference remained statistically significant after multivariate adjustment (OR =1.401, 95% confidence interval [CI]:1.026~1.914, P=0.034; OR = 1.541, 95%CI:1.093~ 2.172, P=0.014; respectively). The results of this study indicate that both rs2972607 and rs8112962 of C5L2 gene are associated with CAD in a Han population of China.

  19. Cathepsin D in Podocytes Is Important in the Pathogenesis of Proteinuria and CKD

    PubMed Central

    Yamamoto-Nonaka, Kanae; Koike, Masato; Asanuma, Katsuhiko; Takagi, Miyuki; Oliva Trejo, Juan Alejandro; Seki, Takuto; Hidaka, Teruo; Ichimura, Koichiro; Sakai, Tatsuo; Tada, Norihiro; Ueno, Takashi; Uchiyama, Yasuo

    2016-01-01

    Studies have revealed many analogies between podocytes and neurons, and these analogies may be key to elucidating the pathogenesis of podocyte injury. Cathepsin D (CD) is a representative aspartic proteinase in lysosomes. Central nervous system neurons in CD-deficient mice exhibit a form of lysosomal storage disease with a phenotype resembling neuronal ceroid lipofuscinoses. In the kidney, the role of CD in podocytes has not been fully explored. Herein, we generated podocyte–specific CD–knockout mice that developed proteinuria at 5 months of age and ESRD by 20–22 months of age. Immunohistochemical analysis of these mice showed apoptotic podocyte death followed by proteinuria and glomerulosclerosis with aging. Using electron microscopy, we identified, in podocytes, granular osmiophilic deposits (GRODs), autophagosome/autolysosome-like bodies, and fingerprint profiles, typical hallmarks of CD-deficient neurons. CD deficiency in podocytes also led to the cessation of autolysosomal degradation and accumulation of proteins indicative of autophagy impairment and the mitochondrial ATP synthase subunit c accumulation in the GRODs, again similar to changes reported in CD-deficient neurons. Furthermore, both podocin and nephrin, two essential components of the slit diaphragm, translocated to Rab7– and lysosome–associated membrane glycoprotein 1–positive amphisomes/autolysosomes that accumulated in podocyte cell bodies in podocyte–specific CD–knockout mice. We hypothesize that defective lysosomal activity resulting in foot process effacement caused this accumulation of podocin and nephrin. Overall, our results suggest that loss of CD in podocytes causes autophagy impairment, triggering the accumulation of toxic subunit c–positive lipofuscins as well as slit diaphragm proteins followed by apoptotic cell death. PMID:26823550

  20. [PD-L1 expression and PD-1/PD-L1 inhibitors in breast cancer].

    PubMed

    Monneur, Audrey; Gonçalves, Anthony; Bertucci, François

    2018-03-01

    The development of immune checkpoints inhibitors represents one of the major recent advances in oncology. Monoclonal antibodies directed against the programmed cell death protein 1 (PD-1) or its ligand (PD-L1) provides durable disease control, particularly in melanoma, lung, kidney, bladder and head and neck cancers. The purpose of this review is to synthesize current data on the expression of PD-L1 in breast cancer and on the preliminary clinical results of PD-1/PD-L1 inhibitors in breast cancer patients. In breast cancer, PD-L1 expression is heterogeneous and is generally associated with the presence of tumor-infiltrating lymphocytes as well as the presence of poor-prognosis factors, such as young age, high grade, ER-negativity, PR-negativity, and HER-2 overexpression, high proliferative index, and aggressive molecular subtypes (triple negative, basal-like, HER-2-overexpressing). Its prognostic value remains controversial when assessed with immunohistochemistry, whereas it seems favorable in triple-negative cancers when assessed at the mRNA level. Early clinical trials with PD-1/PD-L1 inhibitors in breast cancer have shown efficacy in terms of tumor response and/or disease control in refractory metastatic breast cancers, notably in the triple-negative subtype. Many trials are currently underway, both in the metastatic and neo-adjuvant setting. A crucial issue is identification of biomarkers predictive of response to PD-1/PD-L1 inhibitors. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  1. Quantitative expression and localization of cysteine and aspartic proteases in human abdominal aortic aneurysms

    PubMed Central

    Lohoefer, Fabian; Reeps, Christian; Lipp, Christina; Rudelius, Martina; Haertl, Felix; Matevossian, Edouard; Zernecke, Alma; Eckstein, Hans-Henning; Pelisek, Jaroslav

    2014-01-01

    Cysteine and aspartic proteases possess high elastolytic activity and might contribute to the degradation of the abdominal aortic aneurysm (AAA) wall. The aim of this study was to analyze, in detail, the proteases (cathepsins B, D, K, L and S, and inhibitor cystatin C) found in human AAA and healthy aortic tissue samples. The vessel walls from AAA patients (n=36) and nonaneurysmal aortae (n=10) were retrieved using conventional surgical repair and autopsy methods. Serum samples from the same AAA patients and 10 healthy volunteers were also collected. Quantitative expression analyses were performed at the mRNA level using real-time reverse transcriptase-PCR (RT–PCR). Furthermore, analyses at the protein level included western blot and immunoprecipitation analyses. Cellular sources of cysteine/aspartic proteases and cystatin C were identified by immunohistochemistry (IHC). All cysteine/aspartic proteases and cystatin C were detected in the AAA and control samples. Using quantitative RT–PCR, a significant increase in expression was observed for cathepsins B (P=0.021) and L (P=0.018), compared with the controls. Cathepsin B and cystatin C were also detected in the serum of AAA patients. Using IHC, smooth muscle cells (SMCs) and macrophages were positive for all of the tested cathepsins, as well as cystatin C; in addition, the lymphocytes were mainly positive for cathepsin B, followed by cathepsins D and S. All cysteine/aspartic proteases analyzed in our study were detected in the AAA and healthy aorta. The highest expression was found in macrophages and SMCs. Consequently, cysteine/aspartic proteases might play a substantial role in AAA. PMID:24833013

  2. Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1.

    PubMed

    Wang, Ming-Yang; Chen, Pai-Sheng; Prakash, Ekambaranellore; Hsu, Hsing-Chih; Huang, Hsin-Yi; Lin, Ming-Tsan; Chang, King-Jen; Kuo, Min-Liang

    2009-04-15

    Connective tissue growth factor (CTGF) expression is elevated in advanced breast cancer and promotes metastasis. Chemotherapy response is only transient in most metastatic diseases. In the present study, we examined whether CTGF expression could confer drug resistance in human breast cancer. In breast cancer patients who received neoadjuvant chemotherapy, CTGF expression was inversely associated with chemotherapy response. Overexpression of CTGF in MCF7 cells (MCF7/CTGF) enhanced clonogenic ability, cell viability, and resistance to apoptosis on exposure to doxorubicin and paclitaxel. Reducing the CTGF level in MDA-MB-231 (MDA231) cells by antisense CTGF cDNA (MDA231/AS cells) mitigated this drug resistance capacity. CTGF overexpression resulted in resistance to doxorubicin- and paclitaxel-induced apoptosis by up-regulation of Bcl-xL and cellular inhibitor of apoptosis protein 1 (cIAP1). Knockdown of Bcl-xL or cIAP1 with specific small interfering RNAs abolished the CTGF-mediated resistance to apoptosis induced by the chemotherapeutic agents in MCF7/CTGF cells. Inhibition of extracellular signal-regulated kinase (ERK)-1/2 effectively reversed the resistance to apoptosis as well as the up-regulation of Bcl-xL and cIAP1 in MCF7/CTGF cells. A neutralizing antibody against integrin alpha(v)beta(3) significantly attenuated CTGF-mediated ERK1/2 activation and up-regulation of Bcl-xL and cIAP1, indicating that the integrin alpha(v)beta(3)/ERK1/2 signaling pathway is essential for CTGF functions. The Bcl-xL level also correlated with the CTGF level in breast cancer patients. We also found that a COOH-terminal domain peptide from CTGF could exert activities similar to full-length CTGF, in activation of ERK1/2, up-regulation of Bcl-xL/cIAP1, and resistance to apoptosis. We conclude that CTGF expression could confer resistance to chemotherapeutic agents through augmenting a survival pathway through ERK1/2-dependent Bcl-xL/cIAP1 up-regulation.

  3. 77 FR 74179 - Stingray Pipeline Company, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... Pipeline Company, L.L.C.; Notice of Application Take notice that on November 26, 2012, Stingray Pipeline Company, L.L.C. (Stingray), 1100 Louisiana, Suite 3300, Houston, Texas 77002, filed in the above... Roney, Manager--Regulatory Affairs, Stingray Pipeline Company, L.L.C., 1100 Louisiana, Suite 3300...

  4. N-Terminal Truncated UCH-L1 Prevents Parkinson's Disease Associated Damage

    PubMed Central

    Kim, Hee-Jung; Kim, Hyun Jung; Jeong, Jae-Eun; Baek, Jeong Yeob; Jeong, Jaeho; Kim, Sun; Kim, Young-Mee; Kim, Youhwa; Nam, Jin Han; Huh, Sue Hee; Seo, Jawon; Jin, Byung Kwan; Lee, Kong-Joo

    2014-01-01

    Ubiquitin C-terminal hydrolase-L1 (UCH-L1) has been proposed as one of the Parkinson's disease (PD) related genes, but the possible molecular connection between UCH-L1 and PD is not well understood. In this study, we discovered an N-terminal 11 amino acid truncated variant UCH-L1 that we called NT-UCH-L1, in mouse brain tissue as well as in NCI-H157 lung cancer and SH-SY5Y neuroblastoma cell lines. In vivo experiments and hydrogen-deuterium exchange (HDX) with tandem mass spectrometry (MS) studies showed that NT-UCH-L1 is readily aggregated and degraded, and has more flexible structure than UCH-L1. Post-translational modifications including monoubiquitination and disulfide crosslinking regulate the stability and cellular localization of NT-UCH-L1, as confirmed by mutational and proteomic studies. Stable expression of NT-UCH-L1 decreases cellular ROS levels and protects cells from H2O2, rotenone and CCCP-induced cell death. NT-UCH-L1-expressing transgenic mice are less susceptible to degeneration of nigrostriatal dopaminergic neurons seen in the MPTP mouse model of PD, in comparison to control animals. These results suggest that NT-UCH-L1 may have the potential to prevent neural damage in diseases like PD. PMID:24959670

  5. L1CAM in human cancer.

    PubMed

    Altevogt, Peter; Doberstein, Kai; Fogel, Mina

    2016-04-01

    L1 cell adhesion molecule (L1CAM) is one of the first neural adhesion molecules described with important functions in the development of the nervous system. Subsequent work discovered that L1CAM is expressed in many human cancers and is often associated with bad prognosis. This is most likely due to the motility and invasion promoting function of L1CAM. Here, we describe the path L1CAM has taken from a neural adhesion molecule to a recognized tumor antigen. We summarize the literature on L1CAM expression in cancers and pre-cancerous lesions. We focus on the genetic elements required for its re-expression and highlight preclinical studies for targeted therapy. The data suggest that L1CAM is a valuable diagnostic/prognostic marker and an attractive target for the therapy of several human cancers. © 2015 UICC.

  6. 76 FR 12949 - Stingray Pipeline Company, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-97-000] Stingray Pipeline Company, L.L.C.; Notice of Application On February 22, 2011, Stingray Pipeline Company, L.L.C...--Regulatory Affairs, Stingray Pipeline Company, L.L.C., 1100 Louisiana, Suite 3300, Houston, Texas 77002, by...

  7. A squalene synthase-like enzyme initiates production of tetraterpenoid hydrocarbons in Botryococcus braunii Race L

    PubMed Central

    Thapa, Hem R.; Naik, Mandar T.; Okada, Shigeru; Takada, Kentaro; Molnár, István; Xu, Yuquan; Devarenne, Timothy P.

    2016-01-01

    The green microalga Botryococcus braunii is considered a promising biofuel feedstock producer due to its prodigious accumulation of hydrocarbon oils that can be converted into fuels. B. braunii Race L produces the C40 tetraterpenoid hydrocarbon lycopadiene via an uncharacterized biosynthetic pathway. Structural similarities suggest this pathway follows a biosynthetic mechanism analogous to that of C30 squalene. Confirming this hypothesis, the current study identifies C20 geranylgeranyl diphosphate (GGPP) as a precursor for lycopaoctaene biosynthesis, the first committed intermediate in the production of lycopadiene. Two squalene synthase (SS)-like complementary DNAs are identified in race L with one encoding a true SS and the other encoding an enzyme with lycopaoctaene synthase (LOS) activity. Interestingly, LOS uses alternative C15 and C20 prenyl diphosphate substrates to produce combinatorial hybrid hydrocarbons, but almost exclusively uses GGPP in vivo. This discovery highlights how SS enzyme diversification results in the production of specialized tetraterpenoid oils in race L of B. braunii. PMID:27050299

  8. A squalene synthase-like enzyme initiates production of tetraterpenoid hydrocarbons in Botryococcus braunii Race L

    DOE PAGES

    Thapa, Hem R.; Naik, Mandar T.; Okada, Shigeru; ...

    2016-04-06

    Here, the green microalga Botryococcus braunii is considered a promising biofuel feedstock producer due to its prodigious accumulation of hydrocarbon oils that can be converted into fuels. B. braunii Race L produces the C 40 tetraterpenoid hydrocarbon lycopadiene via an uncharacterized biosynthetic pathway. Structural similarities suggest this pathway follows a biosynthetic mechanism analogous to that of C 30 squalene. Confirming this hypothesis, the current study identifies C 20 geranylgeranyl diphosphate (GGPP) as a precursor for lycopaoctaene biosynthesis, the first committed intermediate in the production of lycopadiene. Two squalene synthase (SS)-like complementary DNAs are identified in race L with one encodingmore » a true SS and the other encoding an enzyme with lycopaoctaene synthase (LOS) activity. Interestingly, LOS uses alternative C 15 and C 20 prenyl diphosphate substrates to produce combinatorial hybrid hydrocarbons, but almost exclusively uses GGPP in vivo. In conclusion, this discovery highlights how SS enzyme diversification results in the production of specialized tetraterpenoid oils in race L of B. braunii.« less

  9. C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia.

    PubMed

    Aoki, Yoshitsugu; Manzano, Raquel; Lee, Yi; Dafinca, Ruxandra; Aoki, Misako; Douglas, Andrew G L; Varela, Miguel A; Sathyaprakash, Chaitra; Scaber, Jakub; Barbagallo, Paola; Vader, Pieter; Mäger, Imre; Ezzat, Kariem; Turner, Martin R; Ito, Naoki; Gasco, Samanta; Ohbayashi, Norihiko; El Andaloussi, Samir; Takeda, Shin'ichi; Fukuda, Mitsunori; Talbot, Kevin; Wood, Matthew J A

    2017-04-01

    A non-coding hexanucleotide repeat expansion in intron 1 of the C9orf72 gene is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), however, the precise molecular mechanism by which the C9orf72 hexanucleotide repeat expansion directs C9ALS/FTD pathogenesis remains unclear. Here, we report a novel disease mechanism arising due to the interaction of C9ORF72 with the RAB7L1 GTPase to regulate vesicle trafficking. Endogenous interaction between C9ORF72 and RAB7L1 was confirmed in human SH-SY5Y neuroblastoma cells. The C9orf72 hexanucleotide repeat expansion led to haploinsufficiency resulting in severely defective intracellular and extracellular vesicle trafficking and a dysfunctional trans-Golgi network phenotype in patient-derived fibroblasts and induced pluripotent stem cell-derived motor neurons. Genetic ablation of RAB7L1or C9orf72 in SH-SY5Y cells recapitulated the findings in C9ALS/FTD fibroblasts and induced pluripotent stem cell neurons. When C9ORF72 was overexpressed or antisense oligonucleotides were targeted to the C9orf72 hexanucleotide repeat expansion to upregulate normal variant 1 transcript levels, the defective vesicle trafficking and dysfunctional trans-Golgi network phenotypes were reversed, suggesting that both loss- and gain-of-function mechanisms play a role in disease pathogenesis. In conclusion, we have identified a novel mechanism for C9ALS/FTD pathogenesis highlighting the molecular regulation of intracellular and extracellular vesicle trafficking as an important pathway in C9ALS/FTD pathogenesis. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. 76 FR 16405 - Notice of Attendance at PJM INterconnection, L.L.C., Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... INterconnection, L.L.C., Meetings The Federal Energy Regulatory Commission (Commission) hereby gives notice that members of the Commission and Commission staff may attend upcoming PJM Interconnection, L.L.C., (PJM...: Docket No. EL05-121, PJM Interconnection, L.L.C. Docket No. ER06-456, PJM Interconnection, L.L.C. Docket...

  11. 77 FR 788 - Southern LNG Company, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-31-000] Southern LNG Company, L.L.C.; Notice of Application Take notice that on December 15, 2011, Southern LNG Company, L.L.C... Affairs, Southern LNG Company, L.L.C., 569 Brookwood Village, Suite 501, Birmingham, Alabama 35209, by...

  12. 76 FR 71961 - Elba Express Company, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-11-000] Elba Express Company, L.L.C.; Notice of Application Take notice that on October 31, 2011, Elba Express Company, L.L.C... directed to Glenn A. Sheffield, Director, Rates & Regulatory Affairs, Elba Express Company, L.L.C., 569...

  13. 76 FR 50724 - Sawgrass Storage, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. CP11-523-000; PF10-20-000] Sawgrass Storage, L.L.C.; Notice of Application Take notice that on July 27, 2011, Sawgrass Storage, L.L.C..., filed an application in Docket No. CP11-523-000 pursuant to Section 7(c) of the Natural Gas Act (NGA...

  14. 78 FR 62323 - MarkWest Liberty Ethane Pipeline L.L.C.; Notice of Petition for Declaratory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR14-1-000] MarkWest Liberty Ethane Pipeline L.L.C.; Notice of Petition for Declaratory Order Take notice that on October 3, 2013...), MarkWest Liberty Ethane Pipeline L.L.C. (MarkWest) filed a petition requesting a declaratory order...

  15. 75 FR 51989 - Southern LNG Company, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... Company, L.L.C.; Notice of Application August 16, 2010. Take notice that on August 4, 2010, Southern LNG Company, L.L.C. (Southern LNG), Post Office Box 2563, Birmingham, Alabama 35202-2563, filed in the above.... Sheffield, Director--Rates and Regulatory, Southern LNG Company, L.L.C., 569 Brookwood Village, Suite 501...

  16. Novel functions for the endocytic regulatory proteins MICAL-L1 and EHD1 in mitosis.

    PubMed

    Reinecke, James B; Katafiasz, Dawn; Naslavsky, Naava; Caplan, Steve

    2015-01-01

    During interphase, recycling endosomes mediate the transport of internalized cargo back to the plasma membrane. However, in mitotic cells, recycling endosomes are essential for the completion of cytokinesis, the last phase of mitosis that promotes the physical separation the two daughter cells. Despite recent advances, our understanding of the molecular determinants that regulate recycling endosome dynamics during cytokinesis remains incomplete. We have previously demonstrated that Molecule Interacting with CasL Like-1 (MICAL-L1) and C-terminal Eps15 Homology Domain protein 1 (EHD1) coordinately regulate receptor transport from tubular recycling endosomes during interphase. However, their potential roles in controlling cytokinesis had not been addressed. In this study, we show that MICAL-L1 and EHD1 regulate mitosis. Depletion of either protein resulted in increased numbers of bi-nucleated cells. We provide evidence that bi-nucleation in MICAL-L1- and EHD1-depleted cells is a consequence of impaired recycling endosome transport during late cytokinesis. However, depletion of MICAL-L1, but not EHD1, resulted in aberrant chromosome alignment and lagging chromosomes, suggesting an EHD1-independent function for MICAL-L1 earlier in mitosis. Moreover, we provide evidence that MICAL-L1 and EHD1 differentially influence microtubule dynamics during early and late mitosis. Collectively, our new data suggest several unanticipated roles for MICAL-L1 and EHD1 during the cell cycle. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Regulation of Drosophila transient receptor potential-like (TrpL) channels by phospholipase C-dependent mechanisms.

    PubMed

    Estacion, M; Sinkins, W G; Schilling, W P

    2001-01-01

    Patch clamp and fura-2 fluorescence were employed to characterize receptor-mediated activation of recombinant Drosophila TrpL channels expressed in Sf9 insect cells. TrpL was activated by receptor stimulation and by exogenous application of diacylglycerol (DAG) or poly-unsaturated fatty acids (PUFAs). Activation of TrpL was blocked more than 70% by U73122, suggesting that the effect of these agents was dependent upon phospholipase C (PLC). In fura-2 assays, extracellular application of bacterial phosphatidylinositol (PI)-PLC or phosphatidylcholine (PC)-PLC caused a transient increase in TrpL channel activity, the magnitude of which was significantly less than that observed following receptor stimulation. TrpL channels were also activated in excised inside-out patches by cytoplasmic application of mammalian PLC-b2, bacterial PI-PLC and PC-PLC, but not by phospholipase D (PLD). The phospholipases had little or no effect when examined in either whole-cell or cell-attached configurations.TrpL activity was inhibited by addition of phosphatidylinositol-4,5-bisphosphate (PIP2) to excised inside-out membrane patches exhibiting spontaneous channel activity or to patches pre-activated by treatment with PLC. The effect was reversible, specific for PIP2, and was not observed with phosphatidylethanolamine (PE), PI, PC or phosphatidylserine (PS). However, antibodies against PIP2 consistently failed to activate TrpL in inside-out patches. It is concluded that both the hydrolysis of PIP2 and the generation of DAG are required to rapidly activate TrpL following receptor stimulation, or that some other PLC-dependent mechanism plays a crucial role in the activation process.

  18. [Intracellular Protein Degradation in Growth of Atlantic Salmon, Salmo salar L].

    PubMed

    Lysenko, L A; Kantserova, N P; Krupnova, M Yu; Veselov, A E; Nemova, N N

    2015-01-01

    A brief review on the common characteristics and specific features of proteolytic machinery in fish skeletal muscles (based on Atlantic salmon, Salmo salar L., Salmonidae) has been given. Among a variety of proteases in the muscle tissue, those determining protein degradation level in developing and intensively growing muscles in salmon young and by this way regulating protein retention intensity and growth at all namely lysosomal cathepsins B and D and calcium-dependent proteases (calpains) were comprehensively studied. Revealed age-related differences in intracellular protease activity in salmon skeletal muscles indicate the role of proteolysis regulation in growth in general and a specific role of the individual proteolytic enzymes in particular. The data on negative correlation of cathepsin D and calpain activity levels in muscles and the rate of weight increase in juvenile salmon were obtained. A revealed positive correlation of cathepsin B activity and morphometric parameters in fish young presumably indicates its primary contribution to non-myofibrillar protein turnover.

  19. Comparative study of cathepsins D and S in rat IPE and RPE cells.

    PubMed

    Sugano, Eriko; Tomita, Hiroshi; Abe, Toshiaki; Yamashita, Asahi; Tamai, Makoto

    2003-08-01

    To investigate differences between activities related to phagocytosis in iris pigment epithelial (IPE) and retinal pigment epithelial (RPE) cells, an aspartic protease, cathepsin D (cat D), and a cysteine protease, cathepsin S (cat S), of IPE and RPE were studied. IPE and RPE cells were isolated from Long Evans rat eyes. The origin of the isolated cells was determined by pigmentation and cytokeratin labelling. The mRNA expressions of cat D and cat S in cultured IPE or RPE cells were investigated by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). Enzyme activities of cat D and cat S in IPE or RPE cells were measured by using specific fluorogenic substrates, MOCAc-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys-(Dnp)D-Arg-NH2 and Z-Val-Val-Arg-MCA, respectively. Western blot analysis of both proteins was also performed. The cultured cells, both of IPE and RPE cells were pigmented and showed positive labelling with an anti-cytokeratin monoclonal antibody. The cat D activity in RPE cells was 37 times that in IPE cells. The cat S activity in RPE cells was four times that in IPE cells. On the other hand, mRNA expression levels of cat D in RPE cells were at the same level with IPE cells, cat S mRNA expression in RPE cells were 10 times that in IPE cells. These results were also correlated with the Western blot analysis. In this study, we measured the characteristic expressions of cat D and S in IPE and RPE cells for the first time to compare their lysosomal activities. IPE cells have the lysosomal activities like RPE cells, however, the function of lysosomal activity in IPE cells is beneath RPE's. These results indicated that the ability of ROS digestion in IPE cells was not same as RPE cells.

  20. Effect of alcohol consumption on the liver detoxication capacity as measured by [13C2]aminopyrine and L-[1-13C]phenylalanine breath tests.

    PubMed

    Wutzke, Klaus D; Wigger, Marianne

    2009-09-01

    The aim of this study was to investigate the hepatic microsomal and cytosolic functions by using the 13CO2 breath test in healthy subjects either before or after consumption of red wine. Twelve adults received [13C2]aminopyrine and L-[1-13C]phenylalanine together with a standardised dinner. Expired air samples were taken over 6 h. After a wash-out period, the subjects consumed 0.4 ml ethanol per kg per day together with dinner over a 7.5-day period on average. Thereafter, 13C-tracer administration was repeated under identical conditions. The 13CO2 enrichments were measured by isotope ratio mass spectrometry. The mean cumulative percentage 13C-dose recovery after administration of [13C2]aminopyrine and L-[1-13C]phenylalanine either without or with red wine consumption amounted to 17.0+/-4.4 vs. 14.7+/-3.1% (p=0.170) and 14.0+/-2.8 vs. 11.5+/-3.9% (p=0.084), respectively. Moderate alcohol consumption does not induce significant short-term changes of the microsomal and the cytosolic function of the human liver in healthy subjects.

  1. Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1.

    PubMed

    Su, Qiang; Hu, Feizhuo; Liu, Yuxia; Ge, Xiaofei; Mei, Changlin; Yu, Shengqiang; Shen, Aiwen; Zhou, Qiang; Yan, Chuangye; Lei, Jianlin; Zhang, Yanqing; Liu, Xiaodong; Wang, Tingliang

    2018-03-22

    PKD2L1, also termed TRPP3 from the TRPP subfamily (polycystic TRP channels), is involved in the sour sensation and other pH-dependent processes. PKD2L1 is believed to be a nonselective cation channel that can be regulated by voltage, protons, and calcium. Despite its considerable importance, the molecular mechanisms underlying PKD2L1 regulations are largely unknown. Here, we determine the PKD2L1 atomic structure at 3.38 Å resolution by cryo-electron microscopy, whereby side chains of nearly all residues are assigned. Unlike its ortholog PKD2, the pore helix (PH) and transmembrane segment 6 (S6) of PKD2L1, which are involved in upper and lower-gate opening, adopt an open conformation. Structural comparisons of PKD2L1 with a PKD2-based homologous model indicate that the pore domain dilation is coupled to conformational changes of voltage-sensing domains (VSDs) via a series of π-π interactions, suggesting a potential PKD2L1 gating mechanism.

  2. Characterization of the NPC1L1 gene and proteome from an exceptional responder to ezetimibe.

    PubMed

    Schweitzer, Morris; Makhoul, Sandra; Paliouras, Miltiadis; Beitel, Lenore K; Gottlieb, Bruce; Trifiro, Mark; Chowdhury, Shafinaz F; Zaman, Naif M; Wang, Edwin; Davis, Harry; Chalifour, Lorraine E

    2016-03-01

    Strategies to reduce LDL-cholesterol involve reductions in cholesterol synthesis or absorption. We identified a familial hypercholesterolemia patient with an exceptional response to the cholesterol absorption inhibitor, ezetimibe. Niemann-Pick C 1-like 1 (NPC1L1) is the molecular target of ezetimibe. Sequencing identified nucleotide changes predicted to change amino acids 52 (L52P), 300 (I300T) and 489 (S489G) in exceptional NPC1L1. In silico analyses identified increased stability and cholesterol binding affinity in L52P-NPC1L1 versus WT-NPC1L1. HEK293 cells overexpressing WT-NPC1L1 or NPC1L1 harboring amino acid changes singly or in combination (Comb-NPC1L1) had reduced cholesterol uptake in Comb-NPC1L1 when ezetimibe was present. Cholesterol uptake was reduced by ezetimibe in L52P-NPC1L1, I300T-NPC1L1, but increased in S489G-NPC1L1 overexpressing cells. Immunolocalization studies found preferential plasma membrane localization of mutant NPC1L1 independent of ezetimibe. Flotillin 1 and 2 expression was reduced and binding to Comb-NPC1L1 was reduced independent of ezetimibe exposure. Proteomic analyses identified increased association with proteins that modulate intermediate filament proteins in Comb-NPC1L1 versus WT-NPC1L1 treated with ezetimibe. This is the first detailed analysis of the role of NPC1L1 mutations in an exceptional responder to ezetimibe. The results point to a complex set of events in which the combined mutations were shown to affect cholesterol uptake in the presence of ezetimibe. Proteomic analysis suggests that the exceptional response may also lie in the nature of interactions with cytosolic proteins. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Azilsartan Increases Levels of IL-10, Down-Regulates MMP-2, MMP-9, RANKL/RANK, Cathepsin K and Up-Regulates OPG in an Experimental Periodontitis Model

    PubMed Central

    Brito, Gerly Anne de Castro; de Medeiros, Caroline Addison Carvalho Xavier; Araújo, Lorena de Souza; do Nascimento, José Heriberto Oliveira; de Araújo Júnior, Raimundo Fernandes

    2014-01-01

    Aims The aim of this study was to evaluate the effects of azilsartan (AZT) on bone loss, inflammation, and the expression of matrix metallo proteinases (MMPs), receptor activator of nuclear factor κB ligand (RANKL), receptor activator of nuclear factor κB (RANK), osteoprotegerin (OPG), cyclooxygenase-2 (COX-2), and cathepsin K in periodontal tissue in a rat model of ligature-induced periodontitis. Materials and Methods Male Wistar albino rats were randomly divided into 5 groups of 10 rats each: (1) nonligated, water; (2) ligated, water; (3) ligated, 1 mg/kg AZT; (4) ligated, 5 mg/kg AZT; and (5) ligated, 10 mg/kg AZT. All groups were treated with saline or AZT for 10 days. Periodontal tissues were analyzed by histopathology and immunohistochemical detection of MMP-2, MMP-9, COX-2, RANKL, RANK, OPG, and cathepsin K. Levels of IL-1β, IL-10, TNF-α, myeloperoxidase (MPO), and glutathione (GSH) were determined by ELISA. Results Treatment with 5 mg/kg AZT resulted in reduced MPO (p<0.05) and IL-1β (p<0.05), increased levels of IL-10 (p<0.05), and reduced expression of MMP-2, MMP-9, COX-2, RANK, RANKL, cathepsin K, and increased expression of OPG. Conclusions These findings reveal that AZT increases anti-inflammatory cytokines and GSH and decreases bone loss in ligature-induced periodontitis in rats. PMID:24819928

  4. Azilsartan increases levels of IL-10, down-regulates MMP-2, MMP-9, RANKL/RANK, Cathepsin K and up-regulates OPG in an experimental periodontitis model.

    PubMed

    Araújo, Aurigena Antunes de; Varela, Hugo; Brito, Gerly Anne de Castro; Medeiros, Caroline Addison Carvalho Xavier de; Araújo, Lorena de Souza; do Nascimento, José Heriberto Oliveira; de Araújo Júnior, Raimundo Fernandes

    2014-01-01

    The aim of this study was to evaluate the effects of azilsartan (AZT) on bone loss, inflammation, and the expression of matrix metallo proteinases (MMPs), receptor activator of nuclear factor κB ligand (RANKL), receptor activator of nuclear factor κB (RANK), osteoprotegerin (OPG), cyclooxygenase-2 (COX-2), and cathepsin K in periodontal tissue in a rat model of ligature-induced periodontitis. Male Wistar albino rats were randomly divided into 5 groups of 10 rats each: (1) nonligated, water; (2) ligated, water; (3) ligated, 1 mg/kg AZT; (4) ligated, 5 mg/kg AZT; and (5) ligated, 10 mg/kg AZT. All groups were treated with saline or AZT for 10 days. Periodontal tissues were analyzed by histopathology and immunohistochemical detection of MMP-2, MMP-9, COX-2, RANKL, RANK, OPG, and cathepsin K. Levels of IL-1β, IL-10, TNF-α, myeloperoxidase (MPO), and glutathione (GSH) were determined by ELISA. Treatment with 5 mg/kg AZT resulted in reduced MPO (p<0.05) and IL-1β (p<0.05), increased levels of IL-10 (p<0.05), and reduced expression of MMP-2, MMP-9, COX-2, RANK, RANKL, cathepsin K, and increased expression of OPG. These findings reveal that AZT increases anti-inflammatory cytokines and GSH and decreases bone loss in ligature-induced periodontitis in rats.

  5. Trans Ova Genetics, L.C.

    EPA Pesticide Factsheets

    The EPA is providing notice of a proposed Administrative Penalty Assessment against Trans Ova Genetics, L.C., a business located at 2938 380th Street Sioux Center, IA 51250, for alleged violations at the Trans Ova Genetics, L.C.’s facility located in 12425

  6. BCoR-L1 variation and breast cancer.

    PubMed

    Lose, Felicity; Arnold, Jeremy; Young, David B; Brown, Carolyn J; Mann, Graham J; Pupo, Gulietta M; Khanna, Kum Kum; Chenevix-Trench, Georgia; Spurdle, Amanda B

    2007-01-01

    BRCA1 is involved in numerous essential processes in the cell, and the effects of BRCA1 dysfunction in breast cancer carcinogenesis are well described. Many of the breast cancer susceptibility genes such as BRCA2, p53, ATM, CHEK2, and BRIP1 encode proteins that interact with BRCA1. BCL6 corepressor-like 1 (BCoR-L1) is a newly described BRCA1-interacting protein that displays high homology to several proteins known to be involved in the fundamental processes of DNA damage repair and transcription regulation. BCoR-L1 has been shown to play a role in transcription corepression, and expression of the X-linked BCoR-L1 gene has been reported to be dysregulated in breast cancer subjects. BCoR-L1 is located on the X chromosome and is subject to X inactivation. We performed mutation analysis of 38 BRCA1/2 mutation-negative breast cancer families with male breast cancer, prostate cancer, and/or haplotype sharing around BCoR-L1 to determine whether there is a role for BCoR-L1 as a high-risk breast cancer predisposition gene. In addition, we conducted quantitative real-time PCR (qRT-PCR) on lymphoblastoid cell lines (LCLs) from the index cases from these families and a number of cancer cell lines to assess the role of BCoR-L1 dysregulation in cancer and cancer families. Very little variation was detected in the coding region, and qRT-PCR analysis revealed that BCoR-L1 expression is highly variable in cancer-free subjects, high-risk breast cancer patients, and cancer cell lines. We also report the investigation of a new expression control, DIDO1 (death inducer-obliterator 1), that is superior to GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and UBC (ubiquitin C) for analysis of expression in LCLs. Our results suggest that BCoR-L1 expression does not play a large role in predisposition to familial breast cancer.

  7. Decreased cathepsin K levels in human atherosclerotic plaques are associated with plaque instability.

    PubMed

    Zhao, Huiying; Qin, Xiujiao; Wang, Shuai; Sun, Xiwei; Dong, Bin

    2017-10-01

    Investigating the determinants and dynamics of atherosclerotic plaque instability is a key area of current cardiovascular research. Extracellular matrix degradation from excessive proteolysis induced by enzymes such as cathepsin K (Cat K) is implicated in the pathogenesis of unstable plaques. The current study assessed the expression of Cat K in human unstable atherosclerotic plaques. Specimens of popliteal arteries with atherosclerotic plaques were classified as stable (<40% lipid core plaque area; n=6) or unstable (≥40% lipid core plaque area; n=14) based on histopathological examinations of hematoxylin and eosin stained sections. The expression of Cat K and cystatin C (Cys C) were assessed by immunohistochemical examination and levels of Cat K mRNA were detected by semi-quantitative reverse transcriptase polymerase chain reaction. Morphological changes including a larger lipid core, endothelial proliferation with foam cells and destruction of internal elastic lamina were observed in unstable atherosclerotic plaques. In unstable plaques, the expression of Cat K protein and mRNA was upregulated, whereas Cys C protein expression was downregulated. The interplay between Cat K and Cys C may underlie the progression of plaques from stable to unstable and the current study indicated that Cat K and Cys C are potential targets for preventing and treating vulnerable atherosclerotic plaque ruptures.

  8. Co-distribution of cysteine cathepsins and matrix metalloproteases in human dentin.

    PubMed

    Scaffa, Polliana Mendes Candia; Breschi, Lorenzo; Mazzoni, Annalisa; Vidal, Cristina de Mattos Pimenta; Curci, Rosa; Apolonio, Fabianni; Gobbi, Pietro; Pashley, David; Tjäderhane, Leo; Tersariol, Ivarne Luis Dos Santos; Nascimento, Fábio Dupart; Carrilho, Marcela Rocha

    2017-02-01

    It has been hypothesized that cysteine cathepsins (CTs) along with matrix metalloproteases (MMPs) may work in conjunction in the proteolysis of mature dentin matrix. The aim of this study was to verify simultaneously the distribution and presence of cathepsins B (CT-B) and K (CT-K) in partially demineralized dentin; and further to evaluate the activity of CTs and MMPs in the same tissue. The distribution of CT-B and CT-K in sound human dentin was assessed by immunohistochemistry. A double-immunolabeling technique was used to identify, at once, the occurrence of those enzymes in dentin. Activities of CTs and MMPs in dentin extracts were evaluated spectrofluorometrically. In addition, in situ gelatinolytic activity of dentin was assayed by zymography. The results revealed the distribution of CT-B and CT-K along the dentin organic matrix and also indicated co-occurrence of MMPs and CTs in that tissue. The enzyme kinetics studies showed proteolytic activity in dentin extracts for both classes of proteases. Furthermore, it was observed that, at least for sound human dentin matrices, the activity of MMPs seems to be predominant over the CTs one. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. 76 FR 79673 - Tennessee Gas Pipeline Company, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... Pipeline Company, L.L.C.; Notice of Application On December 9, 2011, Tennessee Gas Pipeline Company, L.L.C... (Commission) an application under section 7(c) of the Natural Gas Act (NGA), as amended, and part 157 of the... Rocan, Senior Counsel, Tennessee Gas Pipeline Company, L.L.C., 1001 Louisiana Street, Houston, Texas...

  10. Identification of Fat Mass and Obesity Associated (FTO) Protein Expression in Cardiomyocytes: Regulation by Leptin and Its Contribution to Leptin-Induced Hypertrophy

    PubMed Central

    Gan, Xiaohong Tracey; Zhao, Ganjian; Huang, Cathy X.; Rowe, Adrianna C.; Purdham, Daniel M.; Karmazyn, Morris

    2013-01-01

    The recently-identified fat mass and obesity-associated (FTO) protein is associated with various physiological functions including energy and body weight regulation. Ubiquitously expressed, FTO was identified in heart homogenates although its function is unknown. We studied whether FTO is specifically expressed within the cardiac myocyte and its potential role pertaining to the hypertrophic effect of the adipokine leptin. Most experiments were performed using cultured neonatal rat cardiomyocytes which showed nuclei-specific FTO expression. Leptin significantly increased FTO expression which was associated with myocyte hypertrophy although both events were abrogated by FTO knockdown with siRNA. Administration of a leptin receptor antibody to either normal or obese rats significant reduced myocardial FTO protein expression. Responses in cardiomyocytes were accompanied by JAK2/STAT3 activation whereas JAK2/STAT3 inhibition abolished these effects. Expression of the cut-like homeobox 1(CUX1) transcriptional factor was significantly increased by leptin although this was restricted to the cathepsin L-dependent, proteolytically-derived shorter p110CUX1 isoform whereas the longer p200CUX1 protein was not significantly affected. Cathepsin L expression and activity were both significantly increased by leptin whereas a cathepsin L peptide inhibitor or siRNA specific for CUX1 completely prevented the leptin-induced increase in FTO expression. The cathepsin L peptide inhibitor or siRNA-induced knockdown of either CUX1 or FTO abrogated the hypertrophic response to leptin. Two other pro-hypertrophic factors, endothelin-1 or angiotensin II had no effect on FTO expression and FTO knockdown did not alter the hypertrophic response to either agent. This study demonstrates leptin-induced FTO upregulation in cardiomyocytes via JAK2/STAT3- dependent CUX1 upregulation and suggests an FTO regulatory function of leptin. It also demonstrates for the first time a functional role of FTO in the

  11. Identification of fat mass and obesity associated (FTO) protein expression in cardiomyocytes: regulation by leptin and its contribution to leptin-induced hypertrophy.

    PubMed

    Gan, Xiaohong Tracey; Zhao, Ganjian; Huang, Cathy X; Rowe, Adrianna C; Purdham, Daniel M; Karmazyn, Morris

    2013-01-01

    The recently-identified fat mass and obesity-associated (FTO) protein is associated with various physiological functions including energy and body weight regulation. Ubiquitously expressed, FTO was identified in heart homogenates although its function is unknown. We studied whether FTO is specifically expressed within the cardiac myocyte and its potential role pertaining to the hypertrophic effect of the adipokine leptin. Most experiments were performed using cultured neonatal rat cardiomyocytes which showed nuclei-specific FTO expression. Leptin significantly increased FTO expression which was associated with myocyte hypertrophy although both events were abrogated by FTO knockdown with siRNA. Administration of a leptin receptor antibody to either normal or obese rats significant reduced myocardial FTO protein expression. Responses in cardiomyocytes were accompanied by JAK2/STAT3 activation whereas JAK2/STAT3 inhibition abolished these effects. Expression of the cut-like homeobox 1(CUX1) transcriptional factor was significantly increased by leptin although this was restricted to the cathepsin L-dependent, proteolytically-derived shorter p110CUX1 isoform whereas the longer p200CUX1 protein was not significantly affected. Cathepsin L expression and activity were both significantly increased by leptin whereas a cathepsin L peptide inhibitor or siRNA specific for CUX1 completely prevented the leptin-induced increase in FTO expression. The cathepsin L peptide inhibitor or siRNA-induced knockdown of either CUX1 or FTO abrogated the hypertrophic response to leptin. Two other pro-hypertrophic factors, endothelin-1 or angiotensin II had no effect on FTO expression and FTO knockdown did not alter the hypertrophic response to either agent. This study demonstrates leptin-induced FTO upregulation in cardiomyocytes via JAK2/STAT3- dependent CUX1 upregulation and suggests an FTO regulatory function of leptin. It also demonstrates for the first time a functional role of FTO in the

  12. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.).

    PubMed

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-03-01

    The Gram-positive bacterium Bacillus thuringiensis (Bt) produces Cry toxins that have been used to control important agricultural pests. Evolution of resistance in target pests threatens the effectiveness of these toxins when used either in sprayed biopesticides or in Bt transgenic crops. Although alterations of the midgut cadherin-like receptor can lead to Bt Cry toxin resistance in many insects, whether the cadherin gene is involved in Cry1Ac resistance of Plutella xylostella (L.) remains unclear. Here, we present experimental evidence that resistance to Cry1Ac or Bt var. kurstaki (Btk) in P. xylostella is not due to alterations of the cadherin gene. The bona fide P. xylostella cadherin cDNA sequence was cloned and analyzed, and comparisons of the cadherin cDNA sequence among susceptible and resistant P. xylostella strains confirmed that Cry1Ac resistance was independent of mutations in this gene. In addition, real-time quantitative PCR (qPCR) indicated that cadherin transcript levels did not significantly differ among susceptible and resistant P. xylostella strains. RNA interference (RNAi)-mediated suppression of cadherin gene expression did not affect larval susceptibility to Cry1Ac toxin. Furthermore, genetic linkage assays using four cadherin gDNA allelic biomarkers confirmed that the cadherin gene is not linked to resistance against Cry1Ac in P. xylostella. Taken together, our findings demonstrate that Cry1Ac resistance of P. xylostella is independent of the cadherin gene. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Generation of C3- and C2-deuterated L-lactic acid by human erythrocytes exposed to D-[1-13C]glucose, D-[2-13C]glucose and D-[6-13C]glucose in the presence of D2O.

    PubMed

    Malaisse, W J; Biesemans, M; Willem, R

    1994-05-01

    1. The generation of C2- and C3-deuterated L-lactate was monitored by 13C NMR in human erythrocytes exposed to D-[1-13C]glucose, D-[2-13C]glucose or D-[6-13C]glucose and incubated in a medium prepared in D2O. 2. The results suggested that the deuteration of the C1 of D-fructose 6-phosphate in the phosphoglucoisomerase reaction, the deuteration of the C1 of D-glyceraldehyde-3-phosphate in the sequence of reactions catalyzed by triose phosphate isomerase and aldolase and the deuteration of the C3 of pyruvate in the reaction catalyzed by pyruvate kinase were all lower than expected from equilibration with D2O. 3. Moreover, about 40% of the molecules of pyruvate generated by glycolysis apparently underwent deuteration on their C3 during interconversion of the 2-keto acid and L-alanine in the reaction catalyzed by glutamate-pyruvate transaminase. 4. The occurrence of the latter process was also documented in cells exposed to exogenous [3-13C]pyruvate. 5. This methodological approach is proposed to provide a new tool to assess in intact cells the extent of back-and-forth interconversion of selected metabolic intermediates.

  14. Hadronic production of the P-wave excited B{sub c} states (B{sub cJ,L=1}*)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.-H.; Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080; Wang, J.-X.

    2004-12-01

    Adopting the complete {alpha}{sub s}{sup 4} approach of the perturbative QCD and the updated parton distribution functions, we have estimated the hadronic production of the P-wave excited B{sub c} states (B{sub cJ,L=1}*). In the estimate, special care has been paid to the dependence of the production amplitude on the derivative of the wave function at origin which is obtained by the potential model. For experimental references, main theoretical uncertainties are discussed, and the total cross section as well as the distributions of the production with reasonable cuts at the energies of Tevatron and CERN LHC are computed and presented properly.more » The results show that the P-wave production may contribute to the B{sub c}-meson production indirectly by a factor of about 0.5 of the direct production, and according to the estimated cross section, it is further worthwhile to study the possibility of observing the P-wave production itself experimentally.« less

  15. Revisiting Fluctuations in L2 Article Choice in L1-Korean L2-English Learners.

    PubMed

    Sarker, Bijon K; Baek, Seunghyun

    2017-04-01

    The current study investigated the distinction of L2 (second language) English article choice sensitivity in fifty-three L1-Korean L2-English learners in semantic contexts. In the context of English as a foreign language, the participants were divided into two groups based on grammatical ability as determined by their performance on a cloze test. In addition, a forced-choice elicitation test and a writing production test were administered to assess, respectively, the participants' receptive and productive article choice abilities. Regardless of grammatical ability, the results disclosed the overuse of the indefinite a in the [[Formula: see text]definite, -specific] context and the definite the in the [-definite, [Formula: see text]specific] context on the forced-choice elicitation test. In the [[Formula: see text]definite, [Formula: see text]specific] and [-definite, -specific] contexts, however, the overuse of either the indefinite a or the definite the, respectively, was less likely. Furthermore, it was revealed on the writing test that the participants more accurately used the definite the than the indefinite a, and they were also found to unreasonably omit more articles than to add or substitute articles on the writing production test. The findings across the two tests indicate that L1-Korean L2-English learners are more likely to have intrinsic difficulties transferring their L1 noun phrase (NP) knowledge to L2 NP knowledge owing to structural discrepancies and complex interfaces between L1 NPs and L2 NPs with respect to syntactic, semantic and pragmatic/discourse language subsystems.

  16. 77 FR 63806 - Southern LNG Company, L.L.C.; Application for Long-Term Authorization To Export Liquefied Natural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ... pipelines of Southern Natural Gas Company, L.L.C., Elba Express Company, L.L.C., Carolina Gas Transmission Corporation, and the indirect connects with interstate pipelines of Transcontinental Gas Pipe Line Company... permit gas to be (1) received by pipeline at the Elba Island Terminal, with these pipelines having...

  17. 78 FR 21928 - Demand Response Coalition v. PJM Interconnection, L.L.C.; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL13-57-000] Demand Response Coalition v. PJM Interconnection, L.L.C.; Notice of Complaint Take notice that on April 3, 2013, pursuant to... Demand Response Coalition \\1\\ (Complainant) filed a formal complaint against the PJM Interconnection, L.L...

  18. Expression of cholecystokinin2-receptor in rat and human L cells and the stimulation of glucagon-like peptide-1 secretion by gastrin treatment.

    PubMed

    Cao, Yang; Cao, Xun; Liu, Xiao-Min

    2015-03-01

    Gastrin is a gastrointestinal hormone secreted by G cells. Hypergastrinemia can improve blood glucose and glycosylated hemoglobin levels. These positive effects are primarily due to the trophic effects of gastrin on β-cells. In recent years, many receptors that regulate secretion of glucagon-like peptide 1 (GLP-1) have been identified in enteroendocrine L cell lines. This led us to hypothesize that, in addition to the trophic effects of gastrin on β-cells, L cells also express cholecystokinin2-receptor (CCK2R), which may regulate GLP-1 secretion and have synergistic effects on glucose homeostasis. Our research provides a preliminary analysis of CCK2R expression and the stimulating effect of gastrin treatment on GLP-1 secretion in a human endocrine L cell line, using RT-PCR, Western blot, immunocytochemistry, and ELISA analyses. The expression of proglucagon and prohormone convertase 3, which regulate GLP-1 biosynthesis, were also analyzed by real-time PCR. Double immunofluorescence labeling was utilized to assess the intracellular localization of CCK2R and GLP-1 in L cells harvested from rat colon tissue. Our results showed that CCK2R was expressed in both the human L cell line and the rat L cells. We also showed that treatment with gastrin, a CCK2R agonist, stimulated the secretion of GLP-1, and that this effect was likely due to increased expression of proglucagon and PCSK1 (also known as prohormone convertase 3 (PC3 gene)). These results not only provide a basis for the role gastrin may play in intestinal L cells, and may also provide the basis for the development of a method of gastrin-mediated glycemic regulation. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Excessive L-cysteine induces vacuole-like cell death by activating endoplasmic reticulum stress and mitogen-activated protein kinase signaling in intestinal porcine epithelial cells.

    PubMed

    Ji, Yun; Wu, Zhenlong; Dai, Zhaolai; Sun, Kaiji; Zhang, Qing; Wu, Guoyao

    2016-01-01

    High intake of dietary cysteine is extremely toxic to animals and the underlying mechanism remains largely unknown. This study was conducted to test the hypothesis that excessive L-cysteine induces cell death by activating endoplasmic reticulum (ER) stress and mitogen-activated protein kinase (MAPK) signaling in intestinal porcine epithelial cells. Jejunal enterocytes were cultured in the presence of 0-10 mmol/L L-cysteine. Cell viability, morphologic alterations, mRNA levels for genes involved in ER stress, protein abundances for glucose-regulated protein 78, C/EBP homologous protein (CHOP), alpha subunit of eukaryotic initiation factor-2 (eIF2α), extracellular signal-regulated kinase (ERK1/2), p38 MAPK, and c-Jun N-terminal protein kinase (JNK1/2) were determined. The results showed that L-cysteine (5-10 mmol/L) reduced cell viability (P < 0.05) and led to vacuole-like cell death in intestinal porcine epithelial cells. These adverse effects of L-cysteine were not affected by the autophagy inhibitor 3-methyladenine. The protein abundances for CHOP, phosphorylated (p)-eIF2α, p-JNK1/2, p-p38 MAPK, and the spliced form of XBP-1 mRNA were enhanced (P < 0.05), whereas those for p-ERK1/2 were reduced (P < 0.05). Collectively, excessive L-cysteine induces vacuole-like cell death via the activation of ER stress and MAPK signaling in small intestinal epithelial cells. These signaling pathways may be potential targets for developing effective strategies to prevent the toxicity of dietary cysteine.

  20. GRAF1 forms a complex with MICAL-L1 and EHD1 to cooperate in tubular recycling endosome vesiculation

    PubMed Central

    Cai, Bishuang; Xie, Shuwei; Caplan, Steve; Naslavsky, Naava

    2014-01-01

    The biogenesis of tubular recycling endosomes (TREs) and their subsequent vesiculation after cargo-sorting has occurred, is essential for receptor and lipid recycling to the plasma membrane. Although recent studies have implicated the C-terminal Eps15 Homology Domain (EHD) protein, EHD1, as a key regulator of TRE vesiculation, additional proteins involved in this process have been largely uncharacterized. In the present study, we identify the GTPase Regulator Associated with Focal adhesion kinase-1 (GRAF1) protein in a complex with EHD1 and the TRE hub protein, Molecules Interacting with CasL-Like1 (MICAL-L1). Over-expression of GRAF1 caused vesiculation of MICAL-L1-containing TRE, whereas GRAF1-depletion led to impaired TRE vesiculation and delayed receptor recycling. Moreover, co-addition of purified EHD1 and GRAF1 in a semi-permeabilized cell vesiculation assay produced synergistic TRE vesiculation. Overall, based on our data, we suggest that in addition to its roles in clathrin-independent endocytosis, GRAF1 synergizes with EHD1 to support TRE vesiculation. PMID:25364729

  1. 77 FR 23472 - Tennessee Gas Pipeline Company, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... Pipeline Company, L.L.C.; Notice of Application Take notice that on April 4, 2012, Tennessee Gas Pipeline Company, L.L.C. (Tennessee), 1001 Louisiana Street, Houston, Texas 77002, filed an application in the..., Manager, Certificates, Tennessee Gas Pipeline Company, L.L.C., 1001 Louisiana Street, Houston, Texas 77002...

  2. 78 FR 6313 - Tennessee Gas Pipeline Company, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Pipeline Company, L.L.C.; Notice of Application Take notice that on January 14, 2013, Tennessee Gas Pipeline Company, L.L.C. (Tennessee), 1001 Louisiana Street, Houston, Texas 77002, filed an application in... directed to Thomas G. Joyce, Manager, Certificates, Tennessee Gas Pipeline Company, L.L.C. 1001 Louisiana...

  3. 75 FR 8051 - Petal Gas Storage, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Storage, L.L.C.; Notice of Application February 12, 2010. Take notice that on January 29, 2010, Petal Gas Storage, L.L.C. (Petal), 1100 Louisiana Street, Houston, Texas, 77002, filed with the Federal Energy Regulatory Commission an abbreviated application pursuant to section 7(c) of the Natural Gas Act (NGA), as...

  4. Disruptor of telomeric silencing 1-like (DOT1L): disclosing a new class of non-nucleoside inhibitors by means of ligand-based and structure-based approaches.

    PubMed

    Sabatino, Manuela; Rotili, Dante; Patsilinakos, Alexandros; Forgione, Mariantonietta; Tomaselli, Daniela; Alby, Fréderic; Arimondo, Paola B; Mai, Antonello; Ragno, Rino

    2018-03-01

    Chemical inhibition of chromatin-mediated signaling involved proteins is an established strategy to drive expression networks and alter disease progression. Protein methyltransferases are among the most studied proteins in epigenetics and, in particular, disruptor of telomeric silencing 1-like (DOT1L) lysine methyltransferase plays a key role in MLL-rearranged acute leukemia Selective inhibition of DOT1L is an established attractive strategy to breakdown aberrant H3K79 methylation and thus overexpression of leukemia genes, and leukemogenesis. Although numerous DOT1L inhibitors have been several structural data published no pronounced computational efforts have been yet reported. In these studies a first tentative of multi-stage and LB/SB combined approach is reported in order to maximize the use of available data. Using co-crystallized ligand/DOT1L complexes, predictive 3-D QSAR and COMBINE models were built through a python implementation of previously reported methodologies. The models, validated by either modeled or experimental external test sets, proved to have good predictive abilities. The application of these models to an internal library led to the selection of two unreported compounds that were found able to inhibit DOT1L at micromolar level. To the best of our knowledge this is the first report of quantitative LB and SB DOT1L inhibitors models and their application to disclose new potential epigenetic modulators.

  5. Disruptor of telomeric silencing 1-like (DOT1L): disclosing a new class of non-nucleoside inhibitors by means of ligand-based and structure-based approaches

    NASA Astrophysics Data System (ADS)

    Sabatino, Manuela; Rotili, Dante; Patsilinakos, Alexandros; Forgione, Mariantonietta; Tomaselli, Daniela; Alby, Fréderic; Arimondo, Paola B.; Mai, Antonello; Ragno, Rino

    2018-03-01

    Chemical inhibition of chromatin-mediated signaling involved proteins is an established strategy to drive expression networks and alter disease progression. Protein methyltransferases are among the most studied proteins in epigenetics and, in particular, disruptor of telomeric silencing 1-like (DOT1L) lysine methyltransferase plays a key role in MLL-rearranged acute leukemia Selective inhibition of DOT1L is an established attractive strategy to breakdown aberrant H3K79 methylation and thus overexpression of leukemia genes, and leukemogenesis. Although numerous DOT1L inhibitors have been several structural data published no pronounced computational efforts have been yet reported. In these studies a first tentative of multi-stage and LB/SB combined approach is reported in order to maximize the use of available data. Using co-crystallized ligand/DOT1L complexes, predictive 3-D QSAR and COMBINE models were built through a python implementation of previously reported methodologies. The models, validated by either modeled or experimental external test sets, proved to have good predictive abilities. The application of these models to an internal library led to the selection of two unreported compounds that were found able to inhibit DOT1L at micromolar level. To the best of our knowledge this is the first report of quantitative LB and SB DOT1L inhibitors models and their application to disclose new potential epigenetic modulators.

  6. Identification and characterization of Clonorchis sinensis cathepsin B proteases in the pathogenesis of clonorchiasis.

    PubMed

    Chen, Wenjun; Ning, Dan; Wang, Xiaoyun; Chen, Tingjin; Lv, Xiaoli; Sun, Jiufeng; Wu, De; Huang, Yan; Xu, Jin; Yu, Xinbing

    2015-12-21

    Human clonorchiasis is a prevailing food-borne disease caused by Clonorchis sinensis infection. Functional characterizations of key molecules from C. sinensis could facilitate the intervention of C. sinensis associated diseases. In this study, immunolocalization of C. sinensis cathepsin B proteases (CsCBs) in C. sinensis worms was investigated. Four CsCBs were expressed in Pichia pastoris yeast cells. Purified yCsCBs were measured for enzymatic and hydrolase activities in the presence of various host proteins. Cell proliferation, wound-healing and transwell assays were performed to show the effect of CsCBs on human cells. CsCBs were localized in the excretory vesicle, oral sucker and intestinal tract of C. sinensis. Recombinant yCsCBs from yeast showed active enzymatic activity at pH 5.0-5.5 and at 37-42 °C. yCsCBs can degrade various host proteins including human serum albumin, human fibronectin, human hemoglobin and human IgG. CsCBs were detected in liver tissues of mice and cancer patients afflicted with clonorchiasis. Various bioassays collectively demonstrated that CsCBs could promote cell proliferation, migration and invasion of human cancer cells. Our results demonstrated that CsCBs can degrade various human proteins and we proved that the secreted CsCBs are involved in the pathogenesis of clonorchiasis.

  7. 49 CFR 1248.3 - Carload and L.C.L. traffic defined.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Carload and L.C.L. traffic defined. 1248.3 Section 1248.3 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION... STATISTICS § 1248.3 Carload and L.C.L. traffic defined. (a) Commodity codes 01 through 422 and 44 through 462...

  8. 77 FR 8247 - Tennessee Gas Pipeline Company, L.L.C. Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... Pipeline Company, L.L.C. Notice of Application Take notice that on February 2, 2012, Tennessee Gas Pipeline Company, L.L.C. (Tennessee), 1001 Louisiana Street, Houston, Texas 77002, filed an application in Docket... Gas Pipeline Company, L.L.C., 1001 Louisiana Street, Houston, Texas 77002, by telephone at (713) 420...

  9. 77 FR 43277 - Tennessee Gas Pipeline Company, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... Pipeline Company, L.L.C.; Notice of Application Take notice that on July 6, Tennessee Gas Pipeline Company, L.L.C. (Tennessee), 1001 Louisiana Street, Houston, Texas 77002, filed in the above referenced... Company, L.L.C. 1001 Louisiana Street, Houston, Texas 77002, or telephone (713) 420- 3299, or facsimile...

  10. Rheumatoid Factor Positivity Is Associated with Increased Joint Destruction and Upregulation of Matrix Metalloproteinase 9 and Cathepsin K Gene Expression in the Peripheral Blood in Rheumatoid Arthritic Patients Treated with Methotrexate

    PubMed Central

    Tchetina, Elena V.; Demidova, Natalia V.; Karateev, Dmitry E.; Nasonov, Eugeny L.

    2013-01-01

    We evaluated changes in gene expression of mTOR, p21, caspase-3, ULK1, TNFα, matrix metalloproteinase (MMP)-9, and cathepsin K in the whole blood of rheumatoid arthritic (RA) patients treated with methotrexate (MTX) in relation to their rheumatoid factor status, clinical, immunological, and radiological parameters, and therapeutic response after a 24-month follow-up. The study group consisted of 35 control subjects and 33 RA patients without previous history of MTX treatment. Gene expression was measured using real-time RT-PCR. Decreased disease activity in patients at the end of the study was associated with significant downregulation of TNFα expression. Downregulation of mTOR was observed in seronegative patients, while no significant changes in the expression of p21, ULK1, or caspase-3 were noted in any RA patients at the end of the study. The increase in erosion numbers observed in the seropositive patients at the end of the follow-up was accompanied by upregulation of MMP-9 and cathepsin K, while seronegative patients demonstrated an absence of significant changes in MMP-9 and cathepsin K expression and no increase in the erosion score. Our results suggest that increased expression of MMP-9 and cathepsin K genes in the peripheral blood might indicate higher bone tissue destruction activity in RA patients treated with methotrexate. The clinical study registration number is 0120.0810610. PMID:24348567

  11. 78 FR 19259 - Notice of Attendance at PJM Interconnection, L.L.C. Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... Interconnection, L.L.C. Meetings The Federal Energy Regulatory Commission (Commission) hereby gives notice that members of the Commission and Commission staff may attend upcoming PJM Interconnection, L.L.C. (PJM... proceedings: Docket No. EL05-121, PJM Interconnection, L.L.C. Docket No. EL08-14, Black Oak Energy LLC, et al...

  12. Systemic L-Kynurenine sulfate administration disrupts object recognition memory, alters open field behavior and decreases c-Fos immunopositivity in C57Bl/6 mice.

    PubMed

    Varga, Dániel; Herédi, Judit; Kánvási, Zita; Ruszka, Marian; Kis, Zsolt; Ono, Etsuro; Iwamori, Naoki; Iwamori, Tokuko; Takakuwa, Hiroki; Vécsei, László; Toldi, József; Gellért, Levente

    2015-01-01

    L-Kynurenine (L-KYN) is a central metabolite of tryptophan degradation through the kynurenine pathway (KP). The systemic administration of L-KYN sulfate (L-KYNs) leads to a rapid elevation of the neuroactive KP metabolite kynurenic acid (KYNA). An elevated level of KYNA may have multiple effects on the synaptic transmission, resulting in complex behavioral changes, such as hypoactivity or spatial working memory deficits. These results emerged from studies that focused on rats, after low-dose L-KYNs treatment. However, in several studies neuroprotection was achieved through the administration of high-dose L-KYNs. In the present study, our aim was to investigate whether the systemic administration of a high dose of L-KYNs (300 mg/bwkg; i.p.) would produce alterations in behavioral tasks (open field or object recognition) in C57Bl/6j mice. To evaluate the changes in neuronal activity after L-KYNs treatment, in a separate group of animals we estimated c-Fos expression levels in the corresponding subcortical brain areas. The L-KYNs treatment did not affect the general ambulatory activity of C57Bl/6j mice, whereas it altered their moving patterns, elevating the movement velocity and resting time. Additionally, it seemed to increase anxiety-like behavior, as peripheral zone preference of the open field arena emerged and the rearing activity was attenuated. The treatment also completely abolished the formation of object recognition memory and resulted in decreases in the number of c-Fos-immunopositive-cells in the dorsal part of the striatum and in the CA1 pyramidal cell layer of the hippocampus. We conclude that a single exposure to L-KYNs leads to behavioral disturbances, which might be related to the altered basal c-Fos protein expression in C57Bl/6j mice.

  13. Novel roles for LIX1L in promoting cancer cell proliferation through ROS1-mediated LIX1L phosphorylation

    PubMed Central

    Nakamura, Satoki; Kahyo, Tomoaki; Tao, Hong; Shibata, Kiyoshi; Kurabe, Nobuya; Yamada, Hidetaka; Shinmura, Kazuya; Ohnishi, Kazunori; Sugimura, Haruhiko

    2015-01-01

    Herein, we report the characterization of Limb expression 1-like, (LIX1L), a putative RNA-binding protein (RBP) containing a double-stranded RNA binding motif, which is highly expressed in various cancer tissues. Analysis of MALDI-TOF/TOF mass spectrometry and RNA immunoprecipitation-sequencing of interacting proteins and the microRNAs (miRNAs) bound to LIX1L revealed that LIX1L interacts with proteins (RIOK1, nucleolin and PABPC4) and miRNAs (has-miRNA-520a-5p, −300, −216b, −326, −190a, −548b-3p, −7–5p and −1296) in HEK-293 cells. Moreover, the reduction of phosphorylated Tyr136 (pTyr136) in LIX1L through the homeodomain peptide, PY136, inhibited LIX1L-induced cell proliferation in vitro, and PY136 inhibited MKN45 cell proliferation in vivo. We also determined the miRNA-targeted genes and showed that was apoptosis induced through the reduction of pTyr136. Moreover, ROS1, HCK, ABL1, ABL2, JAK3, LCK and TYR03 were identified as candidate kinases responsible for the phosphorylation of Tyr136 of LIX1L. These data provide novel insights into the biological significance of LIX1L, suggesting that this protein might be an RBP, with implications for therapeutic approaches for targeting LIX1L in LIX1L-expressing cancer cells. PMID:26310847

  14. 75 FR 4547 - High Island Offshore System, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... Offshore System, L.L.C.; Notice of Application January 21, 2010. Take notice that on January 12, 2010, High Island Offshore System, L.L.C. (HIOS), 1100 Louisiana St., Houston, Texas 77002, filed in Docket No. CP10... directed to Jeff Molinaro, High Island Offshore System, L.L.C., 1100 Louisiana St., Houston, Texas 77002...

  15. An rbcL mRNA-binding protein is associated with C3 to C4 evolution and light-induced production of Rubisco in Flaveria.

    PubMed

    Yerramsetty, Pradeep; Agar, Erin M; Yim, Won C; Cushman, John C; Berry, James O

    2017-07-20

    Nuclear-encoded RLSB protein binds chloroplastic rbcL mRNA encoding the Rubisco large subunit. RLSB is highly conserved across all groups of land plants and is associated with positive post-transcriptional regulation of rbcL expression. In C3 leaves, RLSB and Rubisco occur in all chlorenchyma cell chloroplasts, while in C4 leaves these accumulate only within bundle sheath (BS) chloroplasts. RLSB's role in rbcL expression makes modification of its localization a likely prerequisite for the evolutionary restriction of Rubisco to BS cells. Taking advantage of evolutionarily conserved RLSB orthologs in several C3, C3-C4, C4-like, and C4 photosynthetic types within the genus Flaveria, we show that low level RLSB sequence divergence and modification to BS specificity coincided with ontogeny of Rubisco specificity and Kranz anatomy during C3 to C4 evolution. In both C3 and C4 species, Rubisco production reflected RLSB production in all cell types, tissues, and conditions examined. Co-localization occurred only in photosynthetic tissues, and both proteins were co-ordinately induced by light at post-transcriptional levels. RLSB is currently the only mRNA-binding protein to be associated with rbcL gene regulation in any plant, with variations in sequence and acquisition of cell type specificity reflecting the progression of C4 evolution within the genus Flaveria. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Regulation of L-type CaV1.3 channel activity and insulin secretion by the cGMP-PKG signaling pathway

    PubMed Central

    Sandoval, Alejandro; Duran, Paz; Gandini, María A.; Andrade, Arturo; Almanza, Angélica; Kaja, Simon; Felix, Ricardo

    2018-01-01

    cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca2+ currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated CaV1.3L-type Ca2+ channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant CaV1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the CaVα1 ion-conducting subunit of the CaV1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca2+ macroscopic currents and impair insulin release stimulated with high K+. In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for CaV1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the CaVα1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate CaV1.3 channels and contribute to regulate insulin secretion. PMID:28807144

  17. The Role of Stromally Produced Cathepsin D in Promoting Prostate Tumorigenesis

    DTIC Science & Technology

    2014-11-01

    was related to TGF-β activity. It has been previously shown in in vitro experiments that CathD can liberate TGF-β from the latency inhibitor complex...was performed fol- lowing a protocol that was described previously [31]. CathepsinDandProstateCancer 3 The Prostate Tissue slides were then incubated... low grade and high grade malignant prostate tissue. P-values less than 0.05 were consid- ered statistically significant. RESULTS

  18. 76 FR 35200 - High Island Offshore System, L.L.C.; Notice of Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... Offshore System, L.L.C.; Notice of Amendment Take notice that on June 6, 2011, High Island Offshore System, L.L.C. (HIOS), 1100 Louisiana St., Houston, Texas 77002, filed in Docket No. CP10-43-001, to amend... System, L.L.C., 1100 Louisiana St., Houston, Texas 77002, or (telephone) 713-381-2526, or [email protected

  19. 77 FR 10505 - Notice of Attendance at PJM Interconnection, L.L.C. Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... Interconnection, L.L.C. Meetings The Federal Energy Regulatory Commission (Commission) hereby gives notice that members of the Commission and Commission staff may attend upcoming PJM Interconnection, L.L.C. (PJM..., PJM Interconnection, L.L.C. Docket Nos. ER06-456, ER06-880, ER06-954, ER06-1271, EL07-57, ER07-424...

  20. Cathepsin B inhibitory activities of three new phthalate derivatives isolated from seahorse, Hippocampus Kuda Bleeler.

    PubMed

    Li, Yong; Qian, Zhong-Ji; Kim, Se-Kwon

    2008-12-01

    Three new phthalate acid derivatives, 2,12-diethyl-11-methylhexadecyl 2-ethyl-11-methylhexadecyl phthalate (1), 2-ethyldecyl 2-ethylundecyl phthalate (2), and bis(2-ethyldodecyl) phthalate (3), were isolated from seahorse, Hippocampus Kuda Bleeler, together with a known natural analog bis(2-ethylheptyl) phthalate (4). The structures of these compounds were elucidated mainly by means of the comprehensive analysis of their NMR spectroscopic data. The four phthalate derivatives showed dose-dependent cathepsin B inhibitions activities with IC(50) values of 0.13 mM (1), 0.21 mM (2), 0.18 mM (3), and 0.29 mM (4), respectively.