Sample records for c1 inhibitor deficiency

  1. In pursuit of excellence: an integrated care pathway for C1 inhibitor deficiency

    PubMed Central

    Manson, A L; Price, A; Dempster, J; Clinton-Tarestad, P; Greening, C; Enti, R; Hill, S; Grigoriadou, S; Buckland, M S; Longhurst, H J

    2013-01-01

    There are estimated to be approximately 1500 people in the United Kingdom with C1 inhibitor (C1INH) deficiency. At BartsHealth National Health Service (NHS) Trust we manage 133 patients with this condition and we believe that this represents one of the largest cohorts in the United Kingdom. C1INH deficiency may be hereditary or acquired. It is characterized by unpredictable episodic swellings, which may affect any part of the body, but are potentially fatal if they involve the larynx and cause significant morbidity if they involve the viscera. The last few years have seen a revolution in the treatment options that are available for C1 inhibitor deficiency. However, this occurs at a time when there are increased spending restraints in the NHS and the commissioning structure is being overhauled. Integrated care pathways (ICP) are a tool for disseminating best practice, for facilitating clinical audit, enabling multi-disciplinary working and for reducing health-care costs. Here we present an ICP for managing C1 inhibitor deficiency. PMID:23607500

  2. [Acquired angioedema – clinical characteristic of the patients diagnosed in 2012-2016 with acquired C1 inhibitor deficiency].

    PubMed

    Stobiecki, Marcin; Czarnobilska, Ewa; Obtułowicz, Krystyna

    Acquired angioedema is a rare disease caused by a deficiency of C1 esterase inhibitor with recurrent swelling symptoms. It may occur in the course of lymphoproliferative disorders or autoimmune diseases. Symptoms resemble hereditary angioedema, and the only differentiating features is negative family history, late onset of symptoms and accompanying lymphoproliferative disorder. The aim of the study was to analyze the cases of acquired angioedema. The retrospective analysis of 341 patients from the registry of patients with C1 inhibitor deficiency. Results: We identified 4 patients among 119 with HAE (3.57%) diagnosed in this same period of time 2012-2016 who fulfilled the criteria of acquired edema. In two cases the primary reason of angioedema was lymphoproliferive disease, in two monoclonal gammapathy of unknown reason. We analyzed also the results of laboratory tests C4, C1 inhibitor, C1q. In all cases the face was dominated localization. After the treatment of primary lymphoproliferive disease, in two cases, we observed total remission of angioedema. Only one patient with gammapathy require treatment with C1 inhibitor during the attacks. In these case we observed both plasma deriver, and recombinant C1 inhibitor were effective.

  3. Diagnostic and therapeutic problems associated with hereditary deficiency of the C1 esterase inhibitor.

    PubMed

    Molina, C; Brun, J; Coulet, M; Betail, G; Wahl, D; Hartmann, L

    1977-03-01

    Six patients in a family with a history of hereditary angioedema reported swelling of the extremities and recurrent abdominal pain occurring spontaneously or after trauma. Attacks of oedema involving the airways, the greatest danger with this disorder, were present only in one case. This autosomal dominant disease is due to deficient activity of the inhibitor of the first component of complement. Low levels of C4, and absence of C1 esterase inhibitor confirm the diagnosis. Two asymptomatic cases with the appropriate biochemical abnormality are reported in this study. For short term prophylaxis of attacks (before surgery expecially), fresh frozen plasma is used, or better still, C1 esterase inhibitor. For long term prophylaxis of attacks antifibrinolytic and hormonal drugs are used: in two cases, the authors obtained good results with methyltestosterone after failure of tranexamic acid.

  4. International consensus on the diagnosis and management of pediatric patients with hereditary angioedema with C1 inhibitor deficiency.

    PubMed

    Farkas, H; Martinez-Saguer, I; Bork, K; Bowen, T; Craig, T; Frank, M; Germenis, A E; Grumach, A S; Luczay, A; Varga, L; Zanichelli, A

    2017-02-01

    The consensus documents published to date on hereditary angioedema with C1 inhibitor deficiency (C1-INH-HAE) have focused on adult patients. Many of the previous recommendations have not been adapted to pediatric patients. We intended to produce consensus recommendations for the diagnosis and management of pediatric patients with C1-INH-HAE. During an expert panel meeting that took place during the 9th C1 Inhibitor Deficiency Workshop in Budapest, 2015 (www.haenet.hu), pediatric data were presented and discussed and a consensus was developed by voting. The symptoms of C1-INH-HAE often present in childhood. Differential diagnosis can be difficult as abdominal pain is common in pediatric C1-INH-HAE, but also commonly occurs in the general pediatric population. The early onset of symptoms may predict a more severe subsequent course of the disease. Before the age of 1 year, C1-INH levels may be lower than in adults; therefore, it is advisable to confirm the diagnosis after the age of one year. All neonates/infants with an affected C1-INH-HAE family member should be screened for C1-INH deficiency. Pediatric patients should always carry a C1-INH-HAE information card and medicine for emergency use. The regulatory approval status of the drugs for prophylaxis and for acute treatment is different in each country. Plasma-derived C1-INH, recombinant C1-INH, and ecallantide are the only agents licensed for the acute treatment of pediatric patients. Clinical trials are underway with additional drugs. It is recommended to follow up patients in an HAE comprehensive care center. The pediatric-focused international consensus for the diagnosis and management of C1-INH-HAE patients was created. © 2016 The Authors. Allergy Published by John Wiley & Sons Ltd.

  5. Frequent life-threatening laryngeal attacks in two Croatian families with hereditary angioedema due to C1 inhibitor deficiency harbouring a novel frameshift mutation in SERPING1.

    PubMed

    Karadža-Lapić, Ljerka; Korošec, Peter; Šilar, Mira; Košnik, Mitja; Cikojević, Draško; Lozić, Bernarda; Rijavec, Matija

    2016-11-01

    Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare autosomal dominant disease caused by mutations in the SERPING1 gene. It can affect many regions in the body, but potentially life-threatening laryngeal oedemas are of concern. Twenty-three subjects from two families were recruited for clinical data evaluation and molecular analysis at General Hospital Šibenik, Croatia. Decreased levels of C1 inhibitor were detected in 12 adult patients and three young asymptomatic persons. The same novel deletion of two nucleotides on exon 3 (c.74_75delAT) was identified in all of them. A history of laryngeal oedema was present in 10 patients (83%), and all patients reported laryngeal attacks at least once a year. The delay in diagnosis decreased noticeably from the first to the last generation. We identified a novel causative mutation in SERPING1 in several affected members of two apparently unrelated families with a high frequency of laryngeal oedema. Molecular analysis of large C1-INH-HAE families will provide new insights on the genotype-phenotype relationship. Key messages Hereditary angioedema due to C1 inhibitor deficiency is a rare autosomal dominant disease caused by mutations in the SERPING1 gene, and laryngeal oedema is of concern because it can cause death by asphyxiation. A novel causative mutation in SERPING1, a deletion of two nucleotides on exon 3 (c.74_75delAT), was identified in several affected members of two apparently unrelated families with a high frequency of laryngeal oedema. Molecular analysis of large C1-INH-HAE families will provide new insights on the genotype-phenotype relationship because it appears that the mutation type may affect disease severity.

  6. International consensus and practical guidelines on the gynecologic and obstetric management of female patients with hereditary angioedema caused by C1 inhibitor deficiency.

    PubMed

    Caballero, Teresa; Farkas, Henriette; Bouillet, Laurence; Bowen, Tom; Gompel, Anne; Fagerberg, Christina; Bjökander, Janne; Bork, Konrad; Bygum, Anette; Cicardi, Marco; de Carolis, Caterina; Frank, Michael; Gooi, Jimmy H C; Longhurst, Hilary; Martínez-Saguer, Inmaculada; Nielsen, Erik Waage; Obtulowitz, Krystina; Perricone, Roberto; Prior, Nieves

    2012-02-01

    There are a limited number of publications on the management of gynecologic/obstetric events in female patients with hereditary angioedema caused by C1 inhibitor deficiency (HAE-C1-INH). We sought to elaborate guidelines for optimizing the management of gynecologic/obstetric events in female patients with HAE-C1-INH. A roundtable discussion took place at the 6th C1 Inhibitor Deficiency Workshop (May 2009, Budapest, Hungary). A review of related literature in English was performed. Contraception: Estrogens should be avoided. Barrier methods, intrauterine devices, and progestins can be used. Pregnancy: Attenuated androgens are contraindicated and should be discontinued before attempting conception. Plasma-derived human C1 inhibitor concentrate (pdhC1INH) is preferred for acute treatment, short-term prophylaxis, or long-term prophylaxis. Tranexamic acid or virally inactivated fresh frozen plasma can be used for long-term prophylaxis if human plasma-derived C1-INH is not available. No safety data are available on icatibant, ecallantide, or recombinant human C1-INH (rhC1INH). Parturition: Complications during vaginal delivery are rare. Prophylaxis before labor and delivery might not be clinically indicated, but pdhC1INH therapeutic doses (20 U/kg) should be available. Nevertheless, each case should be treated based on HAE-C1-INH symptoms during pregnancy and previous labors. pdhC1INH prophylaxis is advised before forceps or vacuum extraction or cesarean section. Regional anesthesia is preferred to endotracheal intubation. Breast cancer: Attenuated androgens should be avoided. Antiestrogens can worsen angioedema symptoms. In these cases anastrozole might be an alternative. Other issues addressed include special features of HAE-C1-INH treatment in female patients, genetic counseling, infertility, abortion, lactation, menopause treatment, and endometrial cancer. A consensus for the management of female patients with HAE-C1-INH is presented. Copyright © 2012 American

  7. Hereditary Angioedema Caused By C1-Esterase Inhibitor Deficiency: A Literature-Based Analysis and Clinical Commentary on Prophylaxis Treatment Strategies

    PubMed Central

    2011-01-01

    Hereditary angioedema (HAE) caused by C1-esterase inhibitor deficiency is an autosomal-dominant disease resulting from a mutation in the C1-inhibitor gene. HAE is characterized by recurrent attacks of intense, massive, localized subcutaneous edema involving the extremities, genitalia, face, or trunk, or submucosal edema of upper airway or bowels. These symptoms may be disabling, have a dramatic impact on quality of life, and can be life-threatening when affecting the upper airways. Because the manifestations and severity of HAE are highly variable and unpredictable, patients need individualized care to reduce the burden of HAE on daily life. Although effective therapy for the treatment of HAE attacks has been available in many countries for more than 30 years, until recently, there were no agents approved in the United States to treat HAE acutely. Therefore, prophylactic therapy is an integral part of HAE treatment in the United States and for selected patients worldwide. Routine long-term prophylaxis with either attenuated androgens or C1-esterase inhibitor has been shown to reduce the frequency and severity of HAE attacks. Therapy with attenuated androgens, a mainstay of treatment in the past, has been marked by concern about potential adverse effects. C1-esterase inhibitor works directly on the complement and contact plasma cascades to reduce bradykinin release, which is the primary pathologic mechanism in HAE. Different approaches to long-term prophylactic therapy can be used to successfully manage HAE when tailored to meet the needs of the individual patient. PMID:23283143

  8. PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction

    PubMed Central

    Knight, Walter E.; Chen, Si; Zhang, Yishuai; Oikawa, Masayoshi; Wu, Meiping; Zhou, Qian; Miller, Clint L.; Cai, Yujun; Mickelsen, Deanne M.; Moravec, Christine; Small, Eric M.; Abe, Junichi; Yan, Chen

    2016-01-01

    Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-β–stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance. PMID:27791092

  9. 53BP1 depletion causes PARP inhibitor resistance in ATM-deficient breast cancer cells.

    PubMed

    Hong, Ruoxi; Ma, Fei; Zhang, Weimin; Yu, Xiying; Li, Qing; Luo, Yang; Zhu, Changjun; Jiang, Wei; Xu, Binghe

    2016-09-09

    Mutations in DNA damage response factors BRCA1 and BRCA2 confer sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors in breast and ovarian cancers. BRCA1/BRCA2-defective tumors can exhibit resistance to PARP inhibitors via multiple mechanisms, one of which involves loss of 53BP1. Deficiency in the DNA damage response factor ataxia-telangiectasia mutated (ATM) can also sensitize tumors to PARP inhibitors, raising the question of whether the presence or absence of 53BP1 can predict sensitivity of ATM-deficient breast cancer to these inhibitors. Cytotoxicity of PARP inhibitor and ATM inhibitor in breast cancer cell lines was assessed by MTS, colony formation and apoptosis assays. ShRNA lentiviral vectors were used to knockdown 53BP1 expression in breast cancer cell lines. Phospho-ATM and 53BP1 protein expressions were determined in human breast cancer tissues by immunohistochemistry (IHC). We show that inhibiting ATM increased cytotoxicity of PARP inhibitor in triple-negative and non-triple-negative breast cancer cell lines, and depleting the cells of 53BP1 reduced this cytotoxicity. Inhibiting ATM abrogated homologous recombination induced by PARP inhibitor, and down-regulating 53BP1 partially reversed this effect. Further, overall survival was significantly better in triple-negative breast cancer patients with lower levels of phospho-ATM and tended to be better in patients with negative 53BP1. These results suggest that 53BP1 may be a predictor of PARP inhibitor resistance in patients with ATM-deficient tumors.

  10. Hereditary Angioedema Due to C1 Inhibitor Deficiency in Serbia: Two Novel Mutations and Evidence of Genotype-Phenotype Association

    PubMed Central

    Andrejević, Slađana; Korošec, Peter; Šilar, Mira; Košnik, Mitja; Mijanović, Radovan; Bonači-Nikolić, Branka; Rijavec, Matija

    2015-01-01

    Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare autosomal dominant disease characterized by recurrent life-threatening oedemas and/or abdominal pain and caused by mutations affecting the C1 inhibitor gene, SERPING1. We sought to investigate the spectrum of SERPING1 mutations in Serbia and the possible genotype-phenotype association. C1-INH-HAE was diagnosed on the basis of clinical and laboratory criteria in 40 patients from 27 families; four were asymptomatic. Mutational analysis of the SERPING1 gene was performed by sequencing and multiplex ligation-dependent probe amplification. Disease-causing mutations in SERPING1 were identified in all patients. In C1-INH-HAE type I, we identified 19 different mutations, including 6 missense mutations, 6 nonsense mutations, 2 small deletions, 1 small insertion, 2 splicing defects and 2 large deletions. Two of the mutations (c.300C>T and c.1184_1185insTA) are reported here for the first time. All C1-INH-HAE type II patients from three families harboured the same substitution (c.1396C>T). Based on the type of mutation identified in the SERPING1 gene, patients were divided into two groups: group 1 (nonsense, frameshift, large deletions/insertions, splicing defect, and mutations at Arg444) or group 2 (missense, excluding mutations at Arg444). Significant differences were found in the clinical severity score (P = 0.005), prevalence of laryngeal (P = 0.040) and facial (P = 0.013) oedema, and long-term prophylaxis (P = 0.023) between the groups with different types of mutations. Because our population consisted of related subjects, differences in the severity score between mutation groups were further confirmed using the generalized estimating equation (P = 0.038). Our study identified 20 different disease-causing mutations, including two novel mutations, in all C1-INH-HAE patients, highlighting the heterogeneity of mutations in the SERPING1 gene. Furthermore, it appears that mutations with a clear effect

  11. Hereditary Angioedema Due to C1 Inhibitor Deficiency in Serbia: Two Novel Mutations and Evidence of Genotype-Phenotype Association.

    PubMed

    Andrejević, Slađana; Korošec, Peter; Šilar, Mira; Košnik, Mitja; Mijanović, Radovan; Bonači-Nikolić, Branka; Rijavec, Matija

    2015-01-01

    Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare autosomal dominant disease characterized by recurrent life-threatening oedemas and/or abdominal pain and caused by mutations affecting the C1 inhibitor gene, SERPING1. We sought to investigate the spectrum of SERPING1 mutations in Serbia and the possible genotype-phenotype association. C1-INH-HAE was diagnosed on the basis of clinical and laboratory criteria in 40 patients from 27 families; four were asymptomatic. Mutational analysis of the SERPING1 gene was performed by sequencing and multiplex ligation-dependent probe amplification. Disease-causing mutations in SERPING1 were identified in all patients. In C1-INH-HAE type I, we identified 19 different mutations, including 6 missense mutations, 6 nonsense mutations, 2 small deletions, 1 small insertion, 2 splicing defects and 2 large deletions. Two of the mutations (c.300C>T and c.1184_1185insTA) are reported here for the first time. All C1-INH-HAE type II patients from three families harboured the same substitution (c.1396C>T). Based on the type of mutation identified in the SERPING1 gene, patients were divided into two groups: group 1 (nonsense, frameshift, large deletions/insertions, splicing defect, and mutations at Arg444) or group 2 (missense, excluding mutations at Arg444). Significant differences were found in the clinical severity score (P = 0.005), prevalence of laryngeal (P = 0.040) and facial (P = 0.013) oedema, and long-term prophylaxis (P = 0.023) between the groups with different types of mutations. Because our population consisted of related subjects, differences in the severity score between mutation groups were further confirmed using the generalized estimating equation (P = 0.038). Our study identified 20 different disease-causing mutations, including two novel mutations, in all C1-INH-HAE patients, highlighting the heterogeneity of mutations in the SERPING1 gene. Furthermore, it appears that mutations with a clear effect

  12. PARP1 inhibitor olaparib (Lynparza) exerts synthetic lethal effect against ligase 4-deficient melanomas

    PubMed Central

    Czyż, Małgorzata; Toma, Monika; Gajos-Michniewicz, Anna; Majchrzak, Kinga; Hoser, Grazyna; Szemraj, Janusz; Nieborowska-Skorska, Margaret; Cheng, Phil; Gritsyuk, Daniel; Levesque, Mitchell; Dummer, Reinhard; Sliwinski, Tomasz; Skorski, Tomasz

    2016-01-01

    Cancer including melanoma may be “addicted” to double strand break (DSB) repair and targeting this process could sensitize them to the lethal effect of DNA damage. PARP1 exerts an important impact on DSB repair as it binds to both single- and double- strand breaks. PARP1 inhibitors might be highly effective drugs triggering synthetic lethality in patients whose tumors have germline or somatic defects in DNA repair genes. We hypothesized that PARP1-dependent synthetic lethality could be induced in melanoma cells displaying downregulation of DSB repair genes. We observed that PARP1 inhibitor olaparib sensitized melanomas with reduced expression of DNA ligase 4 (LIG4) to an alkylatimg agent dacarbazine (DTIC) treatment in vitro, while normal melanocytes remained intact. PARP1 inhibition caused accumulation of DSBs, which was associated with apoptosis in LIG4 deficient melanoma cells. Our hypothesis that olaparib is synthetic lethal with LIG4 deficiency in melanoma cells was supported by selective anti-tumor effects of olaparib used either alone or in combination with dacarbazine (DTIC) in LIG4 deficient, but not LIG4 proficient cells. In addition, olaparib combined with DTIC inhibited the growth of LIG4 deficient human melanoma xenografts. This work for the first time demonstrates the effectiveness of a combination of PARP1 inhibitor olaparib and alkylating agent DTIC for treating LIG4 deficient melanomas. In addition, analysis of the TCGA and transcriptome microarray databases revealed numerous individual melanoma samples potentially displaying specific defects in DSB repair pathways, which may predispose them to synthetic lethality triggered by PARP1 inhibitor combined with a cytotoxic drug. PMID:27705909

  13. Effects of a high-fat diet on spontaneous metastasis of Lewis lung carcinoma in plasminogen activator inhibitor-1 deficient and wild-type mice

    USDA-ARS?s Scientific Manuscript database

    We investigated the effects of plasminogen activator inhibitor-1 (PAI-1) deficiency on spontaneous metastasis of Lewis lung carcinoma (LLC) in PAI-1 deficient (PAI-1-/-) and wildtype mice (C57BL/6J background) fed the AIN93G diet or that diet modified with 45% calories from fat. The high-fat diet i...

  14. Complement, Kinins, and Hereditary Angioedema: Mechanisms of Plasma Instability when C1 Inhibitor is Absent.

    PubMed

    Kaplan, Allen P; Joseph, Kusumam

    2016-10-01

    Plasma of patients with types I and II hereditary angioedema is unstable if incubated in a plastic (i.e., inert) vessel at 37 °C manifested by progressively increasing formation of bradykinin. There is also a persistent low level of C4 in 95 % of patients even when they are symptomatic. These phenomena are due to the properties of the C1r subcomponent of C1, factor XII, and the bimolecular complex of prekallikrein with high molecular weight kininogen (HK). Purified C1r auto-activates in physiologic buffers, activates C1s, which in turn depletes C4. This occurs when C1 inhibitor is deficient. The complex of prekallikrein-HK acquires an inducible active site not present in prekallikrein which in Tris-type buffers cleaves HK stoichiometrically to release bradykinin, or in phosphate buffer auto-activates to generate kallikrein and bradykinin. Thus immunologic depletion of C1 inhibitor from factor XII-deficient plasma (phosphate is the natural buffer) auto-activates on incubation to release bradykinin. Normal C1 inhibitor prevents this from occurring. During attacks of angioedema, if factor XII auto-activates on surfaces, the initial factor XIIa formed converts prekallikrein to kallikrein, and kallikrein cleaves HK to release bradykinin. Kallikrein also rapidly activates most remaining factor XII to factor XIIa. Additional cleavages convert factor XIIa to factor XIIf and factor XIIf activates C1r enzymatically so that C4 levels approach zero, and C2 is depleted. There is also a possibility that kallikrein is generated first as a result of activation of the prekallikrein-HK complex by heat shock protein 90 released from endothelial cells, followed by kallikrein activation of factor XII.

  15. Subcutaneous infusion of human C1 inhibitor in swine.

    PubMed

    Jiang, Haixiang; Zhang, Hua-Mei; Frank, Michael M

    2010-09-01

    Hereditary angioedema afflicts patients with unpredictable episodes of swelling that can be life threatening. Treatments approved by the Food and Drug Administration for routine prophylaxis include danazol given orally and the nanofiltered human C1 esterase inhibitor, CINRYZE, which is approved for intravenous administration. Approved for the treatment of acute attacks are the C1 esterase inhibitor, Berinert, given intravenously, and the kallikrein inhibitor, KALBITOR, given subcutaneously. C1 inhibitor has generally been non-toxic and neither pro-inflammatory nor pro-fibrotic, suggesting that it may be suitable for subcutaneous infusion. The current study used a swine model to compare blood levels of human C1 inhibitor following intravenous and subcutaneous infusion, and the effect of infusion route on heart and skin pathology. Levels of C1 inhibitor achieved with SC infusion compared favorably with levels achieved after IV infusion and were relatively more stable than those after IV infusion. Neither cardiac nor skin toxicity was observed. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Subcutaneous self-injections of C1 inhibitor: an effective and safe treatment in a patient with hereditary angio-oedema.

    PubMed

    Weller, K; Krüger, R; Maurer, M; Magerl, M

    2016-01-01

    A 25-year-old woman presented to our clinic with a history of recurrent swelling and abdominal symptoms for > 20 years. The patient's father was similarly affected. The patient was diagnosed with hereditary angio-oedema (HAE) due to C1 inhibitor deficiency. This was initially managed with systemic androgens, but the symptoms of hyperandrogenism eventually became intolerable. Treatment with icatibant (an antagonist of bradykinin B2 receptors) was partially successful. We changed the therapy to prophylactic treatment with C1 inhibitor. Although the patient became completely symptom-free under this regimen, she found the repeated intravenous injections unacceptable. Therefore, we changed the route of administration to subcutaneous injections of C1 inhibitor 1000 U in 10 mL twice weekly, using a subcutaneous infusion kit. Since that time (December 2013), she has remained completely free of symptoms under this regimen. To our knowledge, this is the first report documenting the efficacy and safety of subcutaneous injections of C1 inhibitor in a patient with HAE. © 2015 British Association of Dermatologists.

  17. Plasminogen activator inhibitor-1 deficiency ameliorates insulin resistance and hyperlipidemia but not bone loss in obese female mice.

    PubMed

    Tamura, Yukinori; Kawao, Naoyuki; Yano, Masato; Okada, Kiyotaka; Matsuo, Osamu; Kaji, Hiroshi

    2014-05-01

    We previously demonstrated that plasminogen activator inhibitor-1 (PAI-1), an inhibitor of fibrinolysis, is involved in type 1 diabetic bone loss in female mice. PAI-1 is well known as an adipogenic factor induced by obesity. We therefore examined the effects of PAI-1 deficiency on bone and glucose and lipid metabolism in high-fat and high-sucrose diet (HF/HSD)-induced obese female mice. Female wild-type (WT) and PAI-1-deficient mice were fed with HF/HSD or normal diet for 20 weeks from 10 weeks of age. HF/HSD increased the levels of plasma PAI-1 in WT mice. PAI-1 deficiency suppressed the levels of blood glucose, plasma insulin, and total cholesterol elevated by obesity. Moreover, PAI-1 deficiency improved glucose intolerance and insulin resistance induced by obesity. Bone mineral density (BMD) at trabecular bone as well as the levels of osterix, alkaline phosphatase, and receptor activator of nuclear factor κB ligand mRNA in tibia were decreased by HF/HSD in WT mice, and those changes by HF/HSD were not affected by PAI-1 deficiency. HF/HSD increased the levels of plasma TNF-α in both WT and PAI-1-deficient mice, and the levels of plasma TNF-α were negatively correlated with trabecular BMD in tibia of female mice. In conclusion, we revealed that PAI-1 deficiency does not affect the trabecular bone loss induced by obesity despite the amelioration of insulin resistance and hyperlipidemia in female mice. Our data suggest that the changes of BMD and bone metabolism by obesity might be independent of PAI-1 as well as glucose and lipid metabolism.

  18. Development of a disease-specific quality of life questionnaire for adult patients with hereditary angioedema due to C1 inhibitor deficiency (HAE-QoL): Spanish multi-centre research project.

    PubMed

    Prior, Nieves; Remor, Eduardo; Gómez-Traseira, Carmen; López-Serrano, Concepción; Cabañas, Rosario; Contreras, Javier; Campos, Ángel; Cardona, Victoria; Cimbollek, Stefan; González-Quevedo, Teresa; Guilarte, Mar; de Rojas, Dolores Hernández Fernández; Marcos, Carmen; Rubio, María; Tejedor-Alonso, Miguel Ángel; Caballero, Teresa

    2012-07-20

    There is a need for a disease-specific instrument for assessing health-related quality of life in adults with hereditary angioedema due to C1 inhibitor deficiency, a rare, disabling and life-threatening disease. In this paper we report the protocol for the development and validation of a specific questionnaire, with details on the results of the process of item generation, domain selection, and the expert and patient rating phase. Semi-structured interviews were completed by 45 patients with hereditary angioedema and 8 experts from 8 regions in Spain. A qualitative content analysis of the responses was carried out. Issues raised by respondents were grouped into categories. Content analysis identified 240 different responses, which were grouped into 10 conceptual domains. Sixty- four items were generated. A total of 8 experts and 16 patients assessed the items for clarity, relevance to the disease, and correct dimension assignment. The preliminary version of the specific health-related quality of life questionnaire for hereditary angioedema (HAE-QoL v 1.1) contained 44 items grouped into 9 domains. To the best of our knowledge, this is the first multi-centre research project that aims to develop a specific health-related quality of life questionnaire for adult patients with hereditary angioedema due to C1 inhibitor deficiency. A preliminary version of the specific HAE-QoL questionnaire was obtained. The qualitative analysis of interviews together with the expert and patient rating phase helped to ensure content validity. A pilot study will be performed to assess the psychometric properties of the questionnaire and to decide on the final version.

  19. NAD(P)H: Quinone Oxidoreductase 1 Deficiency Conjoint with Marginal Vitamin C Deficiency Causes Cigarette Smoke Induced Myelodysplastic Syndromes

    PubMed Central

    Das, Archita; Dey, Neekkan; Ghosh, Arunava; Das, Tanusree; Chatterjee, Indu B.

    2011-01-01

    Background The etiology of myelodysplastic syndromes (MDS) is largely unknown. Exposure to cigarette smoke (CS) is reported to be associated with MDS risk. There is inconsistent evidence that deficiency of NAD(P)H-quinone: oxidoreductase 1 (NQO1) increases the risk of MDS. Earlier we had shown that CS induces toxicity only in marginal vitamin C-deficient guinea pigs but not in vitamin C-sufficient ones. We therefore considered that NQO1 deficiency along with marginal vitamin C deficiency might produce MDS in CS-exposed guinea pigs. Methodology and Principal Findings Here we show that CS exposure for 21 days produces MDS in guinea pigs having deficiency of NQO1 (fed 3 mg dicoumarol/day) conjoint with marginal vitamin C deficiency (fed 0.5 mg vitamin C/day). As evidenced by morphology, histology and cytogenetics, MDS produced in the guinea pigs falls in the category of refractory cytopenia with unilineage dysplasia (RCUD): refractory anemia; refractory thrombocytopenia that is associated with ring sideroblasts, micromegakaryocytes, myeloid hyperplasia and aneuploidy. MDS is accompanied by increased CD34(+) cells and oxidative stress as shown by the formation of protein carbonyls and 8-oxodeoxyguanosine. Apoptosis precedes MDS but disappears later with marked decrease in the p53 protein. MDS produced in the guinea pigs are irreversible. MDS and all the aforesaid pathophysiological events do not occur in vitamin C-sufficient guinea pigs. However, after the onset of MDS vitamin C becomes ineffective. Conclusions and Significance CS exposure causes MDS in guinea pigs having deficiency of NQO1 conjoint with marginal vitamin C deficiency. The syndromes are not produced in singular deficiency of NQO1 or marginal vitamin C deficiency. Our results suggest that human smokers having NQO1 deficiency combined with marginal vitamin C deficiency are likely to be at high risk for developing MDS and that intake of a moderately large dose of vitamin C would prevent MDS. PMID:21655231

  20. Deficiency of cyclin-dependent kinase inhibitors p21{sup Cip1} and p27{sup Kip1} accelerates atherogenesis in apolipoprotein E-deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akyuerek, Levent M.; Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Goeteborg, SE-405 30; Boehm, Manfred

    2010-05-28

    Cyclin-dependent kinase inhibitors, p21{sup Cip1} and p27{sup Kip1}, are upregulated during vascular cell proliferation and negatively regulate growth of vascular cells. We hypothesized that absence of either p21{sup Cip1} or p27{sup Kip1} in apolipoprotein E (apoE)-deficiency may increase atherosclerotic plaque formation. Compared to apoE{sup -/-} aortae, both apoE{sup -/-}/p21{sup -/-} and apoE{sup -/-}/p27{sup -/-} aortae exhibited significantly more atherosclerotic plaque following a high-cholesterol regimen. This increase was particularly observed in the abdominal aortic regions. Deficiency of p27{sup Kip1} accelerated plaque formation significantly more than p21{sup -/-} in apoE{sup -/-} mice. This increased plaque formation was in parallel with increased intima/mediamore » area ratios. Deficiency of p21{sup Cip1} and p27{sup Kip1} accelerates atherogenesis in apoE{sup -/-} mice. These findings have significant implications for our understanding of the molecular basis of atherosclerosis associated with excessive proliferation of vascular cells.« less

  1. Repurposing of Proton Pump Inhibitors as first identified small molecule inhibitors of endo-β-N-acetylglucosaminidase (ENGase) for the treatment of NGLY1 deficiency, a rare genetic disease.

    PubMed

    Bi, Yiling; Might, Matthew; Vankayalapati, Hariprasad; Kuberan, Balagurunathan

    2017-07-01

    N-Glycanase deficiency, or NGLY1 deficiency, is an extremely rare human genetic disease. N-Glycanase, encoded by the gene NGLY1, is an important enzyme involved in protein deglycosylation of misfolded proteins. Deglycosylation of misfolded proteins precedes the endoplasmic reticulum (ER)-associated degradation (ERAD) process. NGLY1 patients produce little or no N-glycanase (Ngly1), and the symptoms include global developmental delay, frequent seizures, complex hyperkinetic movement disorder, difficulty in swallowing/aspiration, liver dysfunction, and a lack of tears. Unfortunately, there has not been any therapeutic option available for this rare disease so far. Recently, a proposed molecular mechanism for NGLY1 deficiency suggested that endo-β-N-acetylglucosaminidase (ENGase) inhibitors may be promising therapeutics for NGLY1 patients. Herein, we performed structure-based virtual screening utilizing FDA-approved drug database on this ENGase target to enable repurposing of existing drugs. Several Proton Pump Inhibitors (PPIs), a series of substituted 1H-benzo [d] imidazole, and 1H-imidazo [4,5-b] pyridines, among other scaffolds, have been identified as potent ENGase inhibitors. An electrophoretic mobility shift assay was employed to assess the inhibition of ENGase activity by these PPIs. Our efforts led to the discovery of Rabeprazole Sodium as the most promising hit with an IC 50 of 4.47±0.44μM. This is the first report that describes the discovery of small molecule ENGase inhibitors, which can potentially be used for the treatment of human NGLY1 deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Enhanced venous thrombus resolution in plasminogen activator inhibitor type-2 deficient mice.

    PubMed

    Siefert, S A; Chabasse, C; Mukhopadhyay, S; Hoofnagle, M H; Strickland, D K; Sarkar, R; Antalis, T M

    2014-10-01

    The resolution of deep vein thrombosis requires an inflammatory response and mobilization of proteases, such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), to degrade the thrombus and remodel the injured vein wall. Plasminogen activator inhibitor type 2 (PAI-2) is a serine protease inhibitor (serpin) with unique immunosuppressive and cell survival properties that was originally identified as an inhibitor of uPA. To investigate the role of PAI-2 in venous thrombus formation and resolution. Venous thrombus resolution was compared in wild-type C57BL/6, PAI-2(-/-) , and PAI-1(-/-) mice using the stasis model of deep vein thrombosis. Formed thrombi were harvested, thrombus weights were recorded, and tissue was analyzed for uPA and MMP activities, PAI-1 expression, and the nature of inflammatory cell infiltration. We found that the absence of PAI-2 enhanced venous thrombus resolution, while thrombus formation was unaffected. Enhanced venous thrombus resolution in PAI-2(-/-) mice was associated with increased uPA activity and reduced levels of PAI-1, with no significant effect on MMP-2 and -9 activities. PAI-1 deficiency resulted in an increase in thrombus resolution similar to PAI-2 deficiency, but additionally reduced venous thrombus formation and altered MMP activity. PAI-2-deficient thrombi had increased levels of the neutrophil chemoattractant CXCL2, which was associated with early enhanced neutrophil recruitment. These data identify PAI-2 as a novel regulator of venous thrombus resolution, which modulates several pathways involving both inflammatory and uPA activity mechanisms, distinct from PAI-1. Further examination of these pathways may lead to potential therapeutic prospects in accelerating thrombus resolution. © 2014 International Society on Thrombosis and Haemostasis.

  3. Immunosafety of recombinant human C1-inhibitor in hereditary angioedema: evaluation of ige antibodies.

    PubMed

    Hack, C Erik; Relan, Anurag; Baboeram, Aartie; Oortwijn, Beatrijs; Versteeg, Serge; van Ree, Ronald; Pijpstra, Rienk

    2013-04-01

    Recombinant human C1-inhibitor (rhC1INH) purified from milk of transgenic rabbits is used for the treatment of acute attacks in patients with hereditary angioedema (HAE) due to C1-inhibitor (C1INH) deficiency. The objective was to investigate the risk of rhC1INH inducing IgE antibodies or eliciting anaphylactic reactions. In subjects treated with rhC1INH, we retrospectively analysed the frequency and clinical relevance of pre-exposure and potentially newly induced IgE antibodies against rabbit and other animal allergens including cow's milk by the ImmunoCAP(®) Specific IgE blood test system. 130 HAE patients and 14 healthy subjects received 300 administrations of rhC1INH, 65 subjects (47.4 %) on one occasion; 72 (52.6 %) on at least two occasions (range 2-12; median 2). Five subjects had pre-existing anti-rabbit epithelium IgE; the subject with the highest levels and a previously undisclosed rabbit allergy developed an anaphylactic reaction upon first exposure to rhC1INH, whereas the other four subjects with lower pre-existing IgE levels (Class 1-3), did not. No other anaphylactic reactions were identified in any of the subjects exposed to rhC1INH. Analysis of post-exposure samples revealed that the risk of inducing new or boosting existing IgE responses to rabbit or cow's milk allergens was negligible. The propensity of rhC1INH to induce IgE antibodies following repeated administration of rhC1INH is low. Subjects with substantially elevated anti-rabbit epithelium IgE antibodies and/or clinical allergy to rabbits may have an increased risk for an allergic reaction. No other risk factors for allergic reactions to rhC1INH have been identified.

  4. Inhibitor development after liver transplantation in congenital factor VII deficiency.

    PubMed

    See, W-S Q; Chang, K-O; Cheuk, D K-L; Leung, Y-Y R; Chan, G C-F; Chan, S-C; Ha, S-Y

    2016-09-01

    Congenital factor VII (FVII) deficiency is the commonest type of the rare bleeding disorders. Very few cases of congenital FVII deficiency developed inhibitor and liver transplant is considered as definitive treatment. In the literature, twelve patients with congenital FVII deficiency developed inhibitors. Two had spontaneous resolution of inhibitors and one did not respond to high dose recombinant factor VIIa (rFVIIa) and died. Regarding liver transplant in congenital FVII patients, seven patients underwent liver transplant with good prognosis. We report a 5-year-old girl with confirmed severe congenital FVII deficiency since neonatal period. She suffered from recurrent intracranial bleeding despite rFVIIa replacement. After auxiliary liver transplant at the age of 4, she continued to show persistent deranged clotting profile and was found to have inhibitor towards FVII. Interestingly, she was still responsive to rFVIIa replacement. © 2016 John Wiley & Sons Ltd.

  5. cGMP/Protein Kinase G Signaling Suppresses Inositol 1,4,5-Trisphosphate Receptor Phosphorylation and Promotes Endoplasmic Reticulum Stress in Photoreceptors of Cyclic Nucleotide-gated Channel-deficient Mice*

    PubMed Central

    Ma, Hongwei; Butler, Michael R.; Thapa, Arjun; Belcher, Josh; Yang, Fan; Baehr, Wolfgang; Biel, Martin; Michalakis, Stylianos; Ding, Xi-Qin

    2015-01-01

    Photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. We have shown endoplasmic reticulum (ER) stress-associated apoptotic cone death and increased phosphorylation of the ER Ca2+ channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in CNG channel-deficient mice. We also presented a remarkable elevation of cGMP and an increased activity of the cGMP-dependent protein kinase (protein kinase G, PKG) in CNG channel deficiency. This work investigated whether cGMP/PKG signaling regulates ER stress and IP3R1 phosphorylation in CNG channel-deficient cones. Treatment with PKG inhibitor and deletion of guanylate cyclase-1 (GC1), the enzyme producing cGMP in cones, were used to suppress cGMP/PKG signaling in cone-dominant Cnga3−/−/Nrl−/− mice. We found that treatment with PKG inhibitor or deletion of GC1 effectively reduced apoptotic cone death, increased expression levels of cone proteins, and decreased activation of Müller glial cells. Furthermore, we observed significantly increased phosphorylation of IP3R1 and reduced ER stress. Our findings demonstrate a role of cGMP/PKG signaling in ER stress and ER Ca2+ channel regulation and provide insights into the mechanism of cone degeneration in CNG channel deficiency. PMID:26124274

  6. Prevention of Hereditary Angioedema Attacks with a Subcutaneous C1 Inhibitor.

    PubMed

    Longhurst, Hilary; Cicardi, Marco; Craig, Timothy; Bork, Konrad; Grattan, Clive; Baker, James; Li, Huamin H; Reshef, Avner; Bonner, James; Bernstein, Jonathan A; Anderson, John; Lumry, William R; Farkas, Henriette; Katelaris, Constance H; Sussman, Gordon L; Jacobs, Joshua; Riedl, Marc; Manning, Michael E; Hebert, Jacques; Keith, Paul K; Kivity, Shmuel; Neri, Sergio; Levy, Donald S; Baeza, Maria L; Nathan, Robert; Schwartz, Lawrence B; Caballero, Teresa; Yang, William; Crisan, Ioana; Hernandez, María D; Hussain, Iftikhar; Tarzi, Michael; Ritchie, Bruce; Králíčková, Pavlina; Guilarte, Mar; Rehman, Syed M; Banerji, Aleena; Gower, Richard G; Bensen-Kennedy, Debra; Edelman, Jonathan; Feuersenger, Henrike; Lawo, John-Philip; Machnig, Thomas; Pawaskar, Dipti; Pragst, Ingo; Zuraw, Bruce L

    2017-03-23

    Hereditary angioedema is a disabling, potentially fatal condition caused by deficiency (type I) or dysfunction (type II) of the C1 inhibitor protein. In a phase 2 trial, the use of CSL830, a nanofiltered C1 inhibitor preparation that is suitable for subcutaneous injection, resulted in functional levels of C1 inhibitor activity that would be expected to provide effective prophylaxis of attacks. We conducted an international, prospective, multicenter, randomized, double-blind, placebo-controlled, dose-ranging, phase 3 trial to evaluate the efficacy and safety of self-administered subcutaneous CSL830 in patients with type I or type II hereditary angioedema who had had four or more attacks in a consecutive 2-month period within 3 months before screening. We randomly assigned the patients to one of four treatment sequences in a crossover design, each involving two 16-week treatment periods: either 40 IU or 60 IU of CSL830 per kilogram of body weight twice weekly followed by placebo, or vice versa. The primary efficacy end point was the number of attacks of angioedema. Secondary efficacy end points were the proportion of patients who had a response (≥50% reduction in the number of attacks with CSL830 as compared with placebo) and the number of times that rescue medication was used. Of the 90 patients who underwent randomization, 79 completed the trial. Both doses of CSL830, as compared with placebo, reduced the rate of attacks of hereditary angioedema (mean difference with 40 IU, -2.42 attacks per month; 95% confidence interval [CI], -3.38 to -1.46; and mean difference with 60 IU, -3.51 attacks per month; 95% CI, -4.21 to -2.81; P<0.001 for both comparisons). Response rates were 76% (95% CI, 62 to 87) in the 40-IU group and 90% (95% CI, 77 to 96) in the 60-IU group. The need for rescue medication was reduced from 5.55 uses per month in the placebo group to 1.13 uses per month in the 40-IU group and from 3.89 uses in the placebo group to 0.32 uses per month in the 60-IU

  7. 26 CFR 1.381(c)(17)-1 - Deficiency dividend of personal holding company.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Deficiency dividend of personal holding company. 1.381(c)(17)-1 Section 1.381(c)(17)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Insolvency Reorganizations § 1.381(c)(17)-1...

  8. Enhanced Venous Thrombus Resolution in Plasminogen Activator Inhibitor Type-2 Deficient Mice

    PubMed Central

    Siefert, Suzanne A; Chabasse, Christine; Mukhopadhyay, Subhradip; Hoofnagle, Mark H; Strickland, Dudley K; Sarkar, Rajabrata; Antalis, Toni M

    2014-01-01

    Background The resolution of deep vein thrombosis (DVT) requires an inflammatory response and mobilization of proteases, such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), to degrade the thrombus and remodel the injured vein wall. PAI-2 is a serine protease inhibitor (serpin) with unique immunosuppressive and cell survival properties that was originally identified as an inhibitor of uPA. Objective To investigate the role of PAI-2 in venous thrombus formation and resolution. Methods Venous thrombus resolution was compared in wild type C57BL/6, PAI-2 -/- and PAI-1 -/- mice using the stasis model of DVT. Formed thrombi were harvested, thrombus weights were recorded, and tissue was analyzed for uPA, and MMP activities, PAI-1 expression, and the nature of inflammatory cell infiltration. Results We found that absence of PAI-2 enhanced venous thrombus resolution, while thrombus formation was unaffected. Enhanced venous thrombus resolution in PAI-2 -/- mice was associated with increased uPA activity and reduced levels of PAI-1, with no significant effect on MMP-2 and -9 activities. PAI-1 deficiency resulted in an increase in thrombus resolution similar to PAI-2 deficiency, but additionally reduced venous thrombus formation and altered MMP activity. PAI-2 deficient thrombi had increased levels of the neutrophil chemoattractant, CXCL2, which was associated with early enhanced neutrophil recruitment. Conclusions These data identify PAI-2 as a novel regulator of venous thrombus resolution, which modulates several pathways involving both inflammatory and uPA activity mechanisms, distinct from PAI-1. Further examination of these pathways may lead to potential therapeutic prospects in accelerating thrombus resolution. PMID:25041188

  9. Deficiency of the Cyclin-Dependent Kinase Inhibitor, CDKN1B, Results in Overgrowth and Neurodevelopmental Delay

    PubMed Central

    Grey, William; Izatt, Louise; Sahraoui, Wafa; Ng, Yiu-Ming; Ogilvie, Caroline; Hulse, Anthony; Tse, Eric; Holic, Roman; Yu, Veronica

    2013-01-01

    Germline mutations in the cyclin-dependent kinase inhibitor, CDKN1B, have been described in patients with multiple endocrine neoplasia (MEN), a cancer predisposition syndrome with adult onset neoplasia and no additional phenotypes. Here, we describe the first human case of CDKN1B deficiency, which recapitulates features of the murine CDKN1B knockout mouse model, including gigantism and neurodevelopmental defects. Decreased mRNA and protein expression of CDKN1B were confirmed in the proband's peripheral blood, which is not seen in MEN syndrome patients. We ascribed the decreased protein level to a maternally derived deletion on chromosome 12p13 encompassing the CDKN1B locus (which reduced mRNA expression) and a de novo allelic variant (c.-73G>A) in the CDKN1B promoter (which reduced protein translation). We propose a recessive model where decreased dosage of CDKN1B during development in humans results in a neuronal phenotype akin to that described in mice, placing CDKN1B as a candidate gene involved in developmental delay. PMID:23505216

  10. Bioequivalence of a Liquid Formulation of Alpha1-Proteinase Inhibitor Compared with Prolastin®-C (Lyophilized Alpha1-PI) in Alpha1-Antitrypsin Deficiency.

    PubMed

    Barker, Alan F; Campos, Michael A; Brantly, Mark L; Stocks, James M; Sandhaus, Robert A; Lee, Douglas; Steinmann, Kimberly; Lin, Jiang; Sorrells, Susan

    2017-12-01

    This study evaluated the bioequivalence, safety, and immunogenicity of a new liquid formulation of human plasma-derived alpha 1 -proteinase inhibitor, Liquid Alpha 1 -PI, compared with the Lyophilized Alpha 1 -PI formulation (Prolastin®-C), for augmentation therapy in patients with alpha 1 -antitrypsin deficiency (AATD). In this double-blind, randomized, 20-week crossover study, 32 subjects with AATD were randomized to receive 8 weekly infusions of 60 mg/kg of Liquid Alpha 1 -PI or Lyophilized Alpha 1 -PI. Serial blood samples were drawn for 7 days after the last dose followed by 8 weeks of the alternative treatment. The primary endpoint was bioequivalence at steady state, as measured by area under the concentration versus time curve from 0 to 7 days (AUC 0-7 days ) postdose using an antigenic content assay. Bioequivalence was defined as 90% confidence interval (CI) for the ratio of the geometric least squares (LS) mean of AUC 0-7 days for both products within the limits of 0.80 and 1.25. Safety and immunogenicity were assessed. Mean alpha 1 -PI concentration versus time curves for both formulations were superimposable. Mean AUC 0-7 days was 20 320 versus 19 838 mg × h/dl for Liquid Alpha 1 -PI and Lyophilized Alpha 1 -PI, respectively. The LS mean ratio of AUC 0-7 days (90% CI) for Liquid Alpha 1 -PI versus Lyophilized Alpha 1 -PI was 1.05 (1.03-1.08), indicating bioequivalence. Liquid Alpha 1 -PI was well tolerated and adverse events were consistent with Lyophilized Alpha 1 -PI. Immunogenicity to either product was not detected. In conclusion, Liquid Alpha 1 -PI is bioequivalent to Lyophilized Alpha 1 -PI, with a similar safety profile. The liquid formulation would eliminate the need for reconstitution and shorten preparation time for patients receiving augmentation therapy for AATD.

  11. 26 CFR 1.381(c)(25)-1 - Deficiency dividend of a qualified investment entity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Deficiency dividend of a qualified investment entity. 1.381(c)(25)-1 Section 1.381(c)(25)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Insolvency Reorganizations § 1.381(c)(25...

  12. LEDGF/p75 Deficiency Increases Deletions at the HIV-1 cDNA Ends.

    PubMed

    Bueno, Murilo T D; Reyes, Daniel; Llano, Manuel

    2017-09-15

    Processing of unintegrated linear HIV-1 cDNA by the host DNA repair system results in its degradation and/or circularization. As a consequence, deficient viral cDNA integration generally leads to an increase in the levels of HIV-1 cDNA circles containing one or two long terminal repeats (LTRs). Intriguingly, impaired HIV-1 integration in LEDGF/p75-deficient cells does not result in a correspondent increase in viral cDNA circles. We postulate that increased degradation of unintegrated linear viral cDNA in cells lacking the lens epithelium-derived growth factor (LEDGF/p75) account for this inconsistency. To evaluate this hypothesis, we characterized the nucleotide sequence spanning 2-LTR junctions isolated from LEDGF/p75-deficient and control cells. LEDGF/p75 deficiency resulted in a significant increase in the frequency of 2-LTRs harboring large deletions. Of note, these deletions were dependent on the 3' processing activity of integrase and were not originated by aberrant reverse transcription. Our findings suggest a novel role of LEDGF/p75 in protecting the unintegrated 3' processed linear HIV-1 cDNA from exonucleolytic degradation.

  13. High-fat diet enhances and plasminogen activator inhibitor-1 deficiency attenuates bone loss in mice with Lewis Lung carcinoma

    USDA-ARS?s Scientific Manuscript database

    This study determined the effects of a high-fat diet and plasminogen activator inhibitor-1 deficiency (PAI-1-/-) on bone structure in mice bearing Lewis lung carcinoma (LLC) in lungs. Reduction in bone volume fraction (BV/TV) by 22% and 21%, trabecular number (Tb.N) by 8% and 4% and bone mineral de...

  14. Identification of ATR-Chk1 pathway inhibitors that selectively target p53-deficient cells without directly suppressing ATR catalytic activity

    PubMed Central

    Kawasumi, Masaoki; Bradner, James E.; Tolliday, Nicola; Thibodeau, Renee; Sloan, Heather; Brummond, Kay M.; Nghiem, Paul

    2014-01-01

    Resistance to DNA-damaging chemotherapy is a barrier to effective treatment that appears to be augmented by p53 functional deficiency in many cancers. In p53-deficient cells where the G1/S checkpoint is compromised, cell viability after DNA damage relies upon intact intra-S and G2/M checkpoints mediated by the ATR and Chk1 kinases. Thus, a logical rationale to sensitize p53-deficient cancers to DNA-damaging chemotherapy is through the use of ATP-competitive inhibitors of ATR or Chk1. To discover small molecules that may act on uncharacterized components of the ATR pathway, we performed a phenotype-based screen of 9,195 compounds for their ability to inhibit hydroxyurea-induced phosphorylation of Ser345 on Chk1, known to be a critical ATR substrate. This effort led to the identification of four small-molecule compounds, three of which were derived from known bioactive library (anthothecol, dihydrocelastryl, and erysolin) and one of which was a novel synthetic compound termed MARPIN. These compounds all inhibited ATR-selective phosphorylation and sensitized p53-deficient cancer cells to DNA-damaging agents in vitro and in vivo. Notably, these compounds did not inhibit ATR catalytic activity in vitro, unlike typical ATP-competitive inhibitors, but acted in a mechanistically distinct manner to disable ATR-Chk1 function. Our results highlight a set of novel molecular probes to further elucidate druggable mechanisms to improve cancer therapeutic responses produced by DNA-damaging drugs. PMID:25336189

  15. Characterization of recombinant human C1 inhibitor secreted in milk of transgenic rabbits.

    PubMed

    van Veen, Harrie A; Koiter, Jaco; Vogelezang, Carla J M; van Wessel, Noucha; van Dam, Tijtje; Velterop, Ingeborg; van Houdt, Kristina; Kupers, Luc; Horbach, Danielle; Salaheddine, Mourad; Nuijens, Jan H; Mannesse, Maurice L M

    2012-12-31

    C1 inhibitor (C1INH) is a single-chain glycoprotein that inhibits activation of the contact system of coagulation and the complement system. C1INH isolated from human blood plasma (pd-hC1INH) is used for the management of hereditary angioedema (HAE), a disease caused by heterozygous deficiency of C1INH, and is a promise for treatment of ischemia-reperfusion injuries like acute myocardial or cerebral infarction. To obtain large quantities of C1INH, recombinant human C1INH (rhC1INH) was expressed in the milk of transgenic rabbits (12 g/l) harboring genomic human C1INH sequences fused to 5' bovine αS(1) casein promoter sequences. Recombinant hC1INH was isolated from milk to a specific activity of 6.1 U/mg and a purity of 99%; by size-exclusion chromatography the 1% impurities consisted of multimers and N-terminal cleaved C1INH species. Mass spectrometric analysis of purified rhC1INH revealed a relative molecular mass (M(r)) of 67,200. Differences in M(r) on SDS PAGE and mass spectrometric analysis between rhC1INH and pd-hC1INH are explained by differential glycosylation (calculated carbohydrate contents of 21% and 28%, respectively), since protein sequencing analysis of rhC1INH revealed intact N- and C-termini. Host-related impurity analysis by ELISA revealed trace amounts of rabbit protein (approximately 10 ppm) in purified batches, but not endogenous rabbit C1INH. The kinetics of inhibition of the target proteases C1s, Factor XIIa, kallikrein and Factor XIa by rhC1INH and pd-hC1INH, indicated comparable inhibitory potency and specificity. Recently, rhC1INH (Ruconest(®)) has been approved by the European Medicines Agency for the treatment of acute attacks of HAE. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Activation of c-Raf-1 kinase signal transduction pathway in alpha(7) integrin-deficient mice.

    PubMed

    Saher, G; Hildt, E

    1999-09-24

    Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.

  17. [Cytochrome c oxydase-deficient Leigh syndrome with homozygous mutation in SURF1 gene].

    PubMed

    Monnot, S; Chabrol, B; Cano, A; Pellissier, J F; Collignon, P; Montfort, M F; Paquis-Flucklinger, V

    2005-05-01

    Leigh syndrome is a heterogeneous disorder, usually due to a defect in oxidative metabolism. Mutations in SURF1 gene have been identified in patients with cytochrome c oxidase deficiency. We report a homozygous splice site deletion [516-2_516-1delAG] in a young girl presenting with cytochrome c oxidase-deficient Leigh syndrome. Identification of molecular defect is indispensable for genetic counselling and prenatal diagnosis.

  18. HAEdb: a novel interactive, locus-specific mutation database for the C1 inhibitor gene.

    PubMed

    Kalmár, Lajos; Hegedüs, Tamás; Farkas, Henriette; Nagy, Melinda; Tordai, Attila

    2005-01-01

    Hereditary angioneurotic edema (HAE) is an autosomal dominant disorder characterized by episodic local subcutaneous and submucosal edema and is caused by the deficiency of the activated C1 esterase inhibitor protein (C1-INH or C1INH; approved gene symbol SERPING1). Published C1-INH mutations are represented in large universal databases (e.g., OMIM, HGMD), but these databases update their data rather infrequently, they are not interactive, and they do not allow searches according to different criteria. The HAEdb, a C1-INH gene mutation database (http://hae.biomembrane.hu) was created to contribute to the following expectations: 1) help the comprehensive collection of information on genetic alterations of the C1-INH gene; 2) create a database in which data can be searched and compared according to several flexible criteria; and 3) provide additional help in new mutation identification. The website uses MySQL, an open-source, multithreaded, relational database management system. The user-friendly graphical interface was written in the PHP web programming language. The website consists of two main parts, the freely browsable search function, and the password-protected data deposition function. Mutations of the C1-INH gene are divided in two parts: gross mutations involving DNA fragments >1 kb, and micro mutations encompassing all non-gross mutations. Several attributes (e.g., affected exon, molecular consequence, family history) are collected for each mutation in a standardized form. This database may facilitate future comprehensive analyses of C1-INH mutations and also provide regular help for molecular diagnostic testing of HAE patients in different centers.

  19. Dipeptidyl peptidase IV deficiency increases susceptibility to angiotensin-converting enzyme inhibitor-induced peritracheal edema.

    PubMed

    Byrd, James Brian; Shreevatsa, Ajai; Putlur, Pradeep; Foretia, Denis; McAlexander, Laurie; Sinha, Tuhin; Does, Mark D; Brown, Nancy J

    2007-08-01

    Serum dipeptidyl peptidase IV (DPPIV) activity is decreased in some individuals with ACE inhibitor-associated angioedema. ACE and DPPIV degrade substance P, an edema-forming peptide. The contribution of impaired degradation of substance P by DPPIV to the pathogenesis of ACE inhibitor-associated angioedema is unknown. We sought to determine whether DPPIV deficiency results in increased edema formation during ACE inhibition. We also sought to develop an animal model using magnetic resonance imaging to quantify ACE inhibitor-induced edema. The effect of genetic DPPIV deficiency on peritracheal edema was assessed in F344 rats after treatment with saline, captopril (2.5 mg/kg), or captopril plus the neurokinin receptor antagonist spantide (100 mug/kg) by using serial T2-weighted magnetic resonance imaging. Serum dipeptidyl peptidase activity was dramatically decreased in DPPIV-deficient rats (P < .001). The volume of peritracheal edema was significantly greater in captopril-treated DPPIV-deficient rats than in saline-treated DPPIV-deficient rats (P = .001), saline-treated rats of the normal substrain (P < .001), or captopril-treated rats of the normal substrain (P = .001). Cotreatment with spantide attenuated peritracheal edema in captopril-treated DPPIV-deficient rats (P = .005 vs captopril-treated DPPIV-deficient rats and P = .57 vs saline-treated DPPIV-deficient rats). DPPIV deficiency predisposes to peritracheal edema formation when ACE is inhibited through a neurokinin receptor-dependent mechanism. Magnetic resonance imaging is useful for modeling ACE inhibitor-associated angioedema in rats. Genetic or environmental factors that decrease DPPIV activity might increase the risk of ACE inhibitor-associated angioedema.

  20. Therapeutic utility and medicinal chemistry of cathepsin C inhibitors.

    PubMed

    Guay, Daniel; Beaulieu, Christian; Percival, M David

    2010-01-01

    The lysosomal cysteine protease cathepsin C (Cat C), also known as dipeptidyl peptidase I, activates a number of granule-associated serine proteases with pro-inflammatory and immune functions by removal of their inhibitory N-terminal dipeptides. Thus, Cat C is a therapeutic target for the treatment of a number of inflammatory and autoimmune diseases. Cathepsin C null mice and humans with Cat C loss of function mutations (Papillon-Lefèvre syndrome) show deficiencies in disease-relevant proteases including neutrophil elastase, cathepsin G, chymases and granzymes and the Cat C mice are protected in a number of disease models. Several methodologies have been recently reported for assessing the effects of Cat C inhibitors on serine protease activities in cellular assays and prolonged treatment of rats with a reversible, selective Cat C inhibitor reduced the activity of three leukocyte serine proteases. Nearly all potent and selective Cat C inhibitors described are based on the preferred dipeptide substrates bearing either irreversible (e.g. diazomethylketone, acyloxymethyl ketone, o-acyl hydroxamic acid and vinyl sulfone) or reversible (e.g. semicarbazide, nitrile and cyanamide) electrophilic warheads. While potent and highly selective, the best inhibitors described to date still have poor stability and/or rodent pharmacokinetics, likely resulting from their peptidic nature. The lack of selective compounds with appropriate rodent pharmacokinetic properties has hampered the assessment of the effects of Cat C inhibitors on the activation of disease-relevant proteases in vivo and the full evaluation of the therapeutic utility of Cat C inhibitors.

  1. Identification of ATR-Chk1 pathway inhibitors that selectively target p53-deficient cells without directly suppressing ATR catalytic activity.

    PubMed

    Kawasumi, Masaoki; Bradner, James E; Tolliday, Nicola; Thibodeau, Renee; Sloan, Heather; Brummond, Kay M; Nghiem, Paul

    2014-12-15

    Resistance to DNA-damaging chemotherapy is a barrier to effective treatment that appears to be augmented by p53 functional deficiency in many cancers. In p53-deficient cells in which the G1-S checkpoint is compromised, cell viability after DNA damage relies upon intact intra-S and G2-M checkpoints mediated by the ATR (ataxia telangiectasia and Rad3 related) and Chk1 kinases. Thus, a logical rationale to sensitize p53-deficient cancers to DNA-damaging chemotherapy is through the use of ATP-competitive inhibitors of ATR or Chk1. To discover small molecules that may act on uncharacterized components of the ATR pathway, we performed a phenotype-based screen of 9,195 compounds for their ability to inhibit hydroxyurea-induced phosphorylation of Ser345 on Chk1, known to be a critical ATR substrate. This effort led to the identification of four small-molecule compounds, three of which were derived from known bioactive library (anthothecol, dihydrocelastryl, and erysolin) and one of which was a novel synthetic compound termed MARPIN. These compounds all inhibited ATR-selective phosphorylation and sensitized p53-deficient cancer cells to DNA-damaging agents in vitro and in vivo. Notably, these compounds did not inhibit ATR catalytic activity in vitro, unlike typical ATP-competitive inhibitors, but acted in a mechanistically distinct manner to disable ATR-Chk1 function. Our results highlight a set of novel molecular probes to further elucidate druggable mechanisms to improve cancer therapeutic responses produced by DNA-damaging drugs. ©2014 American Association for Cancer Research.

  2. BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to Polycomb Repressive Complex 2-inhibitor 3-deazaneplanocin A.

    PubMed

    Puppe, Julian; Drost, Rinske; Liu, Xiaoling; Joosse, Simon A; Evers, Bastiaan; Cornelissen-Steijger, Paulien; Nederlof, Petra; Yu, Qiang; Jonkers, Jos; van Lohuizen, Maarten; Pietersen, Alexandra M

    2009-01-01

    Treatment of breast cancer is becoming more individualized with the recognition of tumor subgroups that respond differently to available therapies. Breast cancer 1 gene (BRCA1)-deficient tumors are usually of the basal subtype and associated with poor survival rates, highlighting the need for more effective therapy. We investigated a mouse model that closely mimics breast cancer arising in BRCA1-mutation carriers to better understand the molecular mechanism of tumor progression and tested whether targeting of the Polycomb-group protein EZH2 would be a putative therapy for BRCA1-deficient tumors. Gene expression analysis demonstrated that EZH2 is overexpressed in BRCA1-deficient mouse mammary tumors. By immunohistochemistry we show that an increase in EZH2 protein levels is also evident in tumors from BRCA1-mutation carriers. EZH2 is responsible for repression of genes driving differentiation and could thus be involved in the undifferentiated phenotype of these tumors. Importantly, we show that BRCA1-deficient cancer cells are selectively dependent on their elevated EZH2 levels. In addition, a chemical inhibitor of EZH2, 3-deazaneplanocin A (DZNep), is about 20-fold more effective in killing BRCA1-deficient cells compared to BRCA1-proficient mammary tumor cells. We demonstrate by specific knock-down experiments that EZH2 overexpression is functionally relevant in BRCA1-deficient breast cancer cells. The effectiveness of a small molecule inhibitor indicates that EZH2 is a druggable target. The overexpression of EZH2 in all basal-like breast cancers warrants further investigation of the potential for targeting the genetic make-up of this particular breast cancer type.

  3. Proton Pump Inhibitor and Histamine-2 Receptor Antagonist Use and Iron Deficiency.

    PubMed

    Lam, Jameson R; Schneider, Jennifer L; Quesenberry, Charles P; Corley, Douglas A

    2017-03-01

    Proton pump inhibitors (PPIs) and histamine-2 receptor antagonists (H2RAs) suppress gastric acid production, which can inhibit iron absorption. However, few data exist regarding whether these medications increase the risk of clinical iron deficiency. A community-based case-control study evaluated the association between acid-suppressing medication use and the subsequent risk of iron deficiency. It contrasted 77,046 patients with new iron deficiency diagnoses (January 1999-December 2013), with 389,314 controls. Medication exposures, outcomes, and potential confounders used electronic databases. We excluded patients with pre-existing risk factors for iron deficiency. Associations were estimated using conditional logistic regression. Among cases, 2343 (3.0%) received a prior ≥2-year supply of PPIs and 1063 (1.4%) received H2RAs (without PPI use). Among controls, 3354 (0.9%) received a prior ≥2-year supply of PPIs and 2247 (0.6%) H2RAs. Both ≥2 years of PPIs (adjusted odds ratio, 2.49; 95% confidence interval, 2.35-2.64) and ≥2 years of H2RAs (odds ratio, 1.58; 95% CI, 1.46-1.71) were associated with an increased subsequent risk for iron deficiency. Among PPI users, the associations were stronger for higher daily doses (>1.5 vs <0.75 PPI pills/d; P value interaction = .004) and decreased after medication discontinuation (P-trend < .001). Some of the strongest associations were among persons taking >1.5 pills per day for at least 10 years (odds ratio, 4.27; 95% CI, 2.53-7.21). No similar strong associations were found for other commonly used prescription medications. Among patients without known risk factors for iron deficiency, gastric acid inhibitor use for ≥2 years was associated with an increased subsequent risk of iron deficiency. The risk increased with increasing potency of acid inhibition and decreased after medication discontinuation. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. Health-Related Quality of Life with Subcutaneous C1-Inhibitor for Prevention of Attacks of Hereditary Angioedema.

    PubMed

    Lumry, William R; Craig, Timothy; Zuraw, Bruce; Longhurst, Hilary; Baker, James; Li, H Henry; Bernstein, Jonathan A; Anderson, John; Riedl, Marc A; Manning, Michael E; Keith, Paul K; Levy, Donald S; Caballero, Teresa; Banerji, Aleena; Gower, Richard G; Farkas, Henriette; Lawo, John-Philip; Pragst, Ingo; Machnig, Thomas; Watson, Douglas J

    2018-01-31

    Hereditary angioedema with C1-inhibitor deficiency (C1-INH-HAE) impairs health-related quality of life (HRQoL). The objective of this study was to assess HRQoL outcomes in patients self-administering subcutaneous C1-INH (C1-INH[SC]; HAEGARDA) for routine prevention of HAE attacks. Post hoc analysis of data from the placebo-controlled, crossover phase III COMPACT study (Clinical Studies for Optimal Management of Preventing Angioedema with Low-Volume Subcutaneous C1-Inhibitor Replacement Therapy). Ninety patients with C1-INH-HAE were randomized to 1 of 4 treatment sequences: C1-INH(SC) 40 or 60 IU/kg twice weekly for 16 weeks, preceded or followed by 16 weeks of twice weekly placebo injections. All HAE attacks were treated with open-label on-demand treatment as necessary. HRQoL assessments at week 14 (last visit) included the European Quality of Life-5 Dimensions Questionnaire (EQ-5D-3L), the Hospital Anxiety and Depression Scale (HADS), the Work Productivity and Activity Impairment Questionnaire (WPAI), and the Treatment Satisfaction Questionnaire for Medication (TSQM). Compared with placebo (on-demand treatment alone), treatment with twice weekly C1-INH(SC) (both doses combined) was associated with better EQ-5D visual analog scale general health, less HADS anxiety, less WPAI presenteeism, work productivity loss, and activity impairment, and greater TSQM effectiveness and overall treatment satisfaction. More patients self-reported a "good/excellent" response during routine prevention with C1-INH(SC) compared with on-demand only (placebo prophylaxis) management. For each HRQoL measure, a greater proportion of patients had a clinically meaningful improvement during C1-INH(SC) treatment compared with placebo. In patients with frequent HAE attacks, a treatment strategy of routine prevention with self-administered twice weekly C1-INH(SC) had a greater impact on improving multiple HAE-related HRQoL impairments, most notably anxiety and work productivity, compared with on

  5. Antihistone Properties of C1 Esterase Inhibitor Protect against Lung Injury.

    PubMed

    Wygrecka, Malgorzata; Kosanovic, Djuro; Wujak, Lukasz; Reppe, Katrin; Henneke, Ingrid; Frey, Helena; Didiasova, Miroslava; Kwapiszewska, Grazyna; Marsh, Leigh M; Baal, Nelli; Hackstein, Holger; Zakrzewicz, Dariusz; Müller-Redetzky, Holger C; de Maat, Steven; Maas, Coen; Nolte, Marc W; Panousis, Con; Schermuly, Ralph T; Seeger, Werner; Witzenrath, Martin; Schaefer, Liliana; Markart, Philipp

    2017-07-15

    Acute respiratory distress syndrome is characterized by alveolar epithelial cell injury, edema formation, and intraalveolar contact phase activation. To explore whether C1 esterase inhibitor (C1INH), an endogenous inhibitor of the contact phase, may protect from lung injury in vivo and to decipher the possible underlying mechanisms mediating protection. The ability of C1INH to control the inflammatory processes was studied in vitro and in vivo. Here, we demonstrate that application of C1INH alleviates bleomycin-induced lung injury via direct interaction with extracellular histones. In vitro, C1INH was found to bind all histone types. Interaction with histones was independent of its protease inhibitory activity, as demonstrated by the use of reactive-center-cleaved C1INH, but dependent on its glycosylation status. C1INH sialylated-N- and -O-glycans were not only essential for its interaction with histones but also to protect against histone-induced cell death. In vivo, histone-C1INH complexes were detected in bronchoalveolar lavage fluid from patients with acute respiratory distress syndrome and multiple models of lung injury. Furthermore, reactive-center-cleaved C1INH attenuated pulmonary damage evoked by intravenous histone instillation. Collectively, C1INH administration provides a new therapeutic option for disorders associated with histone release.

  6. Heat Shock Protein B1-Deficient Mice Display Impaired Wound Healing

    PubMed Central

    McNamee, Kay; Przybycien, Paulina M.; Lu, Xin; Williams, Richard O.; Bou-Gharios, George; Saklatvala, Jeremy; Dean, Jonathan L. E.

    2013-01-01

    There is large literature describing in vitro experiments on heat shock protein (hsp)B1 but understanding of its function in vivo is limited to studies in mice overexpressing human hspB1 protein. Experiments in cells have shown that hspB1 has chaperone activity, a cytoprotective role, regulates inflammatory gene expression, and drives cell proliferation. To investigate the function of the protein in vivo we generated hspB1-deficient mice. HspB1-deficient fibroblasts display increased expression of the pro-inflammatory cytokine, interleukin-6, compared to wild-type cells, but reduced proliferation. HspB1-deficient fibroblasts exhibit reduced entry into S phase and increased expression of cyclin-dependent kinase inhibitors p27kip1 and p21waf1. The expression of hspB1 protein and mRNA is also controlled by the cell cycle. To investigate the physiological function of hspB1 in regulating inflammation and cell proliferation we used an excisional cutaneous wound healing model. There was a significant impairment in the rate of healing of wounds in hspB1-deficient mice, characterised by reduced re-epithelialisation and collagen deposition but also increased inflammation. HspB1 deficiency augments neutrophil infiltration in wounds, driven by increased chemokine (C-X-C motif) ligand 1 expression. This appears to be a general mechanism as similar results were obtained in the air-pouch and peritonitis models of acute inflammation. PMID:24143227

  7. Deficient Gene Expression in Protein Kinase Inhibitor α Null Mutant Mice

    PubMed Central

    Gangolli, Esha A.; Belyamani, Mouna; Muchinsky, Sara; Narula, Anita; Burton, Kimberly A.; McKnight, G. Stanley; Uhler, Michael D.; Idzerda, Rejean L.

    2000-01-01

    Protein kinase inhibitor (PKI) is a potent endogenous inhibitor of the cyclic AMP (cAMP)-dependent protein kinase (PKA). It functions by binding the free catalytic (C) subunit with a high affinity and is also known to export nuclear C subunit to the cytoplasm. The significance of these actions with respect to PKI's physiological role is not well understood. To address this, we have generated by homologous recombination mutant mice that are deficient in PKIα, one of the three isoforms of PKI. The mice completely lack PKI activity in skeletal muscle and, surprisingly, show decreased basal and isoproterenol-induced gene expression in muscle. Further examination revealed reduced levels of the phosphorylated (active) form of the transcription factor CREB (cAMP response element binding protein) in the knockouts. This phenomenon stems, at least in part, from lower basal PKA activity levels in the mutants, arising from a compensatory increase in the level of the RIα subunit of PKA. The deficit in gene induction, however, is not easily explained by current models of PKI function and suggests that PKI may play an as yet undescribed role in PKA signaling. PMID:10779334

  8. Identification of potent maturation inhibitors against HIV-1 clade C.

    PubMed

    Timilsina, Uddhav; Ghimire, Dibya; Timalsina, Bivek; Nitz, Theodore J; Wild, Carl T; Freed, Eric O; Gaur, Ritu

    2016-06-06

    Antiretroviral therapy has led to a profound improvement in the clinical care of HIV-infected patients. However, drug tolerability and the evolution of drug resistance have limited treatment options for many patients. Maturation inhibitors are a new class of antiretroviral agents for treatment of HIV-1. They act by interfering with the maturation of the virus by blocking the last step in Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA by the viral protease (PR). The first-in-class maturation inhibitor bevirimat (BVM) failed against a subset of HIV-1 isolates in clinical trials due to polymorphisms present in the CA-SP1 region of the Gag protein. Sequence analysis indicated that these polymorphisms are more common in non-clade B strains of HIV-1 such as HIV-1 clade C. Indeed, BVM was found to be ineffective against HIV-1 clade C molecular clones tested in this study. A number of BVM analogs were synthesized by chemical modifications at the C-28 position to improve its activity. The new BVM analogs displayed potent activity against HIV-1 clade B and C and also reduced infectivity of the virus. This study identifies novel and broadly active BVM analogs that may ultimately demonstrate efficacy in the clinic.

  9. Retinoic acid catabolizing enzyme CYP26C1 is a genetic modifier in SHOX deficiency.

    PubMed

    Montalbano, Antonino; Juergensen, Lonny; Roeth, Ralph; Weiss, Birgit; Fukami, Maki; Fricke-Otto, Susanne; Binder, Gerhard; Ogata, Tsutomu; Decker, Eva; Nuernberg, Gudrun; Hassel, David; Rappold, Gudrun A

    2016-12-01

    Mutations in the homeobox gene SHOX cause SHOX deficiency, a condition with clinical manifestations ranging from short stature without dysmorphic signs to severe mesomelic skeletal dysplasia. In rare cases, individuals with SHOX deficiency are asymptomatic. To elucidate the factors that modify disease severity/penetrance, we studied a three-generation family with SHOX deficiency. The variant p.Phe508Cys of the retinoic acid catabolizing enzyme CYP26C1 co-segregated with the SHOX variant p.Val161Ala in the affected individuals, while the SHOX mutant alone was present in asymptomatic individuals. Two further cases with SHOX deficiency and damaging CYP26C1 variants were identified in a cohort of 68 individuals with LWD The identified CYP26C1 variants affected its catabolic activity, leading to an increased level of retinoic acid. High levels of retinoic acid significantly decrease SHOX expression in human primary chondrocytes and zebrafish embryos. Individual morpholino knockdown of either gene shortens the pectoral fins, whereas depletion of both genes leads to a more severe phenotype. Together, our findings describe CYP26C1 as the first genetic modifier for SHOX deficiency. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  10. Alterations in protein kinase C activity and processing during zinc-deficiency-induced cell death.

    PubMed

    Chou, Susan S; Clegg, Michael S; Momma, Tony Y; Niles, Brad J; Duffy, Jodie Y; Daston, George P; Keen, Carl L

    2004-10-01

    Protein kinases C (PKCs) are a family of serine/threonine kinases that are critical for signal transduction pathways involved in growth, differentiation and cell death. All PKC isoforms have four conserved domains, C1-C4. The C1 domain contains cysteine-rich finger-like motifs, which bind two zinc atoms. The zinc-finger motifs modulate diacylglycerol binding; thus, intracellular zinc concentrations could influence the activity and localization of PKC family members. 3T3 cells were cultured in zinc-deficient or zinc-supplemented medium for up to 32 h. Cells cultured in zinc-deficient medium had decreased zinc content, lowered cytosolic classical PKC activity, increased caspase-3 processing and activity, and reduced cell number. Zinc-deficient cytosols had decreased activity and expression levels of PKC-alpha, whereas PKC-alpha phosphorylation was not altered. Inhibition of PKC-alpha with Gö6976 had no effect on cell number in the zinc-deficient group. Proteolysis of the novel PKC family member, PKC-delta, to its 40-kDa catalytic fragment occurred in cells cultured in the zinc-deficient medium. Occurrence of the PKC-delta fragment in mitochondria was co-incident with caspase-3 activation. Addition of the PKC-delta inhibitor, rottlerin, or zinc to deficient medium reduced or eliminated proteolysis of PKC-delta, activated caspase-3 and restored cell number. Inhibition of caspase-3 processing by Z-DQMD-FMK (Z-Asp-Gln-Met-Asp-fluoromethylketone) did not restore cell number in the zinc-deficient group, but resulted in processing of full-length PKC-delta to a 56-kDa fragment. These results support the concept that intracellular zinc concentrations influence PKC activity and processing, and that zinc-deficiency-induced apoptosis occurs in part through PKC-dependent pathways.

  11. Effects of Pharmacological Inhibition and Genetic Deficiency of Plasminogen Activator Inhibitor-1 in Radiation-Induced Intestinal Injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abderrahmani, Rym; Francois, Agnes; Buard, Valerie

    2009-07-01

    Purpose: To investigate effects of plasminogen activator inhibitor 1 (PAI-1) genetic deficiency and pharmacological PAI-1 inhibition with PAI-039 in a mouse model of radiation-induced enteropathy. Methods and Materials: Wild-type (Wt) and PAI-1{sup -/-} knockout mice received a single dose of 19 Gy to an exteriorized localized intestinal segment. Sham and irradiated Wt mice were treated orally with 1 mg/g of PAI-039. Histological modifications were quantified using a radiation injury score. Moreover, intestinal gene expression was monitored by real-time PCR. Results: At 3 days after irradiation, PAI-039 abolished the radiation-induced increase in the plasma active form of PAI-1 and limited themore » radiation-induced gene expression of transforming growth factor {beta}1 (TGF-{beta}1), CTGF, PAI-1, and COL1A2. Moreover, PAI-039 conferred temporary protection against early lethality. PAI-039 treatment limited the radiation-induced increase of CTGF and PAI-1 at 2 weeks after irradiation but had no effect at 6 weeks. Radiation injuries were less severe in PAI-1{sup -/-} mice than in Wt mice, and despite the beneficial effect, 3 days after irradiation, PAI-039 had no effects on microscopic radiation injuries compared to untreated Wt mice. Conclusions: A genetic deficiency of PAI-1 is associated with amelioration of late radiation enteropathy. Pharmacological inhibition of PAI-1 by PAI-039 positively impacts the early, acute phase increase in plasma PAI-1 and the associated radiation-induced gene expression of inflammatory/extracellular matrix proteins. Since PAI-039 has been shown to inhibit the active form of PAI-1, as opposed to the complete loss of PAI-1 in the knockout animals, these data suggest that a PAI-1 inhibitor could be beneficial in treating radiation-induced tissue injury in acute settings where PAI-1 is elevated.« less

  12. Insights into the activity of maturation inhibitor PF-46396 on HIV-1 clade C.

    PubMed

    Ghimire, Dibya; Timilsina, Uddhav; Srivastava, Tryambak Pratap; Gaur, Ritu

    2017-03-02

    HIV maturation inhibitors are an emerging class of anti-retroviral compounds that inhibit the viral protease-mediated cleavage of the Gag, CA-SP1 (capsid-spacer peptide 1) peptide to mature CA. The first-in-class maturation inhibitor bevirimat (BVM) displayed potent activity against HIV-1 clade B but was ineffective against other HIV-1 clades including clade C. Another pyridone-based maturation inhibitor, PF-46396 displayed potent activity against HIV-1 clade B. In this study, we aimed at determining the activity of PF-46396 against HIV-1 clade C. We employed various biochemical and virological assays to demonstrate that PF-46396 is effective against HIV-1 clade C. We observed a dose dependent accumulation of CA-SP1 intermediate in presence of the compound. We carried out mutagenesis in the CA- SP1 region of HIV-1 clade C Gag and observed that the mutations conferred resistance against the compound. Many mutations inhibited Gag processing thereby reducing virus release in the absence of the compound. However, presence of PF-46396 rescued these defects and enhanced virus release, replication capacity and infectivity of HIV-1 clade C. These results put together identify PF-46396 as a broadly active maturation inhibitor against HIV-1 clade B and C and help in rational designing of novel analogs with reduced toxicity and increased efficacy for its potential use in clinics.

  13. Immunogenicity assessment of recombinant human c1-inhibitor: an integrated analysis of clinical studies.

    PubMed

    Hack, C Erik; Mannesse, Maurice; Baboeram, Aartie; Oortwijn, Beatrijs; Relan, Anurag

    2012-10-01

    Recombinant human C1-inhibitor (rhC1INH) is used to treat acute angioedema attacks in hereditary angioedema (HAE) due to a genetic C1INH deficiency. Recombinant proteins in general may induce antibody responses and therefore evaluation of such responses in the target population is an essential step in the clinical development program of a recombinant protein. Here we report the assessment of the immunogenicity of rhC1INH in symptomatic HAE patients. Blood samples collected before and after administration of rhC1INH were tested for antibodies against plasma-derived (pd) or rhC1INH, or against host-related impurities (HRI). Above cut-off screening results were confirmed with displacement assays, and also tested for neutralizing anti-C1INH antibodies. Finally, the relation of antibodies to clinical efficacy and safety of rhC1INH was analyzed. Data from 155 HAE patients who received 424 treatments with rhC1INH were analyzed. 1.5% of all pre-exposure tests and 1.3% of all post-exposure tests were above the cut-off level in the screening assay for anti-C1INH antibodies. Six patients (3.9%) had anti-rhC1INH antibodies positive in the confirmatory assay. In two patients, confirmed antibodies were pre-existing with no increase post-exposure; in three patients, the antibodies occurred on a single occasion post-exposure; and in one patient, on subsequent occasions post-exposure. Neutralizing anti-pdC1INH antibodies were not found. Anti-HRI antibodies in the screening assay occurred in <0.7% of the tests before exposure to rhC1INH, in <1.9% after first exposure and in <3.1% after repeat treatment with rhC1INH. Five patients had anti-HRI antibodies positive in the confirmatory assay. In one patient, the antibodies were pre-existing, whereas in three of the 155 rhC1INH-treated patients (1.9%), confirmed anti-HRI antibodies occurred at more time points. Antibody findings were not associated with altered efficacy of rhC1INH or adverse events. These results indicate a reassuring

  14. Clinical features of patients with homozygous complement C4A or C4B deficiency.

    PubMed

    Liesmaa, Inka; Paakkanen, Riitta; Järvinen, Asko; Valtonen, Ville; Lokki, Marja-Liisa

    2018-01-01

    Homozygous deficiencies of complement C4A or C4B are detected in 1-10% of populations. In genome-wide association studies C4 deficiencies are missed because the genetic variation of C4 is complex. There are no studies where the clinical presentation of these patients is analyzed. This study was aimed to characterize the clinical features of patients with homozygous C4A or C4B deficiency. Thirty-two patients with no functional C4A, 87 patients with no C4B and 120 with normal amount of C4 genes were included. C4A and C4B numbers were assessed with genomic quantitative real-time PCR. Medical history was studied retrospectively from patients' files. Novel associations between homozygous C4A deficiency and lymphoma, coeliac disease and sarcoidosis were detected. These conditions were present in 12.5%, (4/32 in patients vs. 0.8%, 1/120, in controls, OR = 17.00, 95%CI = 1.83-158.04, p = 0.007), 12.5% (4/32 in patients vs. 0%, 0/120 in controls, OR = 1.14, 95%CI = 1.00-1.30, p = 0.002) and 12.5%, respectively (4/32 in patients vs. 2.5%, 3/120 in controls, OR = 5.571, 95%CI = 1.79-2.32, p = 0.036). In addition, C4A and C4B deficiencies were both associated with adverse drug reactions leading to drug discontinuation (34.4%, 11/32 in C4A-deficient patients vs. 14.2%, 17/120 in controls, OR = 3.174, 95%CI = 1.30-7.74, p = 0.009 and 28.7%, 25/87 in C4B-deficient patients, OR = 2.44, 95%CI = 1.22-4.88, p = 0.010). This reported cohort of homozygous deficiencies of C4A or C4B suggests that C4 deficiencies may have various unrecorded disease associations. C4 gene should be considered as a candidate gene in studying these selected disease associations.

  15. Sequential treatment with aurora B inhibitors enhances cisplatin-mediated apoptosis via c-Myc.

    PubMed

    Ma, Yaxi; Cao, Handi; Lou, Siyue; Shao, Xuejing; Lv, Wen; Qi, Xiaotian; Liu, Yujia; Ying, Meidan; He, Qiaojun; Yang, Xiaochun

    2015-04-01

    Platinum compound such as cisplatin is the first-line chemotherapy of choice in most patients with ovarian carcinoma. However, patients with inherent or acquired cisplatin resistance often experience relapse. Therefore, novel therapies are urgently required to treat drug-resistant ovarian carcinoma. Here, we showed that compared to the non-functional traditional simultaneous treatment, sequential combination of Aurora B inhibitors followed by cisplatin synergistically enhanced apoptotic response in cisplatin-resistant OVCAR-8 cells. This effect was accompanied by the induction of polyploidy in a c-Myc-dependent manner, as c-Myc knockdown reduced the efficacy of the combination by suppressing the expression of Aurora B and impairing cellular response to Aurora B inhibitor, as indicated by the decreased polyploidy and hyperphosphorylation of histone H1. In c-Myc-deficient SKOV3 cells, c-Myc overexpression restored Aurora B expression, induced polyploidy after inhibition of Aurora B, and sensitized cells to this combination therapy. Thus, our report reveals for the first time that sequential treatment of Aurora B inhibitors and cisplatin is essential to inhibit ovarian carcinoma by inducing polyploidy and downregulating c-Myc and that c-Myc is identified as a predictive biomarker to select cells responsive to chemotherapeutical combinations targeting Aurora B. Collectively, these studies provide novel approaches to overcoming cisplatin chemotherapy resistance in ovarian cancer. Pretreatment of Aurora B inhibitors augment apoptotic effects of cisplatin. The synergy of Aurora B inhibitor with cisplatin is dependent on c-Myc expression. c-Myc-dependent induction of polyploidy sensitizes cells to cisplatin.

  16. C1q deficiency: identification of a novel missense mutation and treatment with fresh frozen plasma.

    PubMed

    Topaloglu, Rezan; Taskiran, Ekim Z; Tan, Cagman; Erman, Baran; Ozaltin, Fatih; Sanal, Ozden

    2012-07-01

    A Turkish patient with C1q deficiency presented with a lupus-like disease, and a new missense mutation at A chain is presented. To characterize the genetic defect, all exons of the genes for the A, B, and C chains of C1q were sequenced in the patient. This revealed a missense mutation in the collagen-like domain of the A chain, p.Gly31 Arg. No other sequence variants, including the common silent mutations, were found in the three chains. Exon 1 of the C1q A chain was sequenced in 105 samples from healthy controls for this particular mutation. None of these carried the mutation. The C1q-deficient patient was treated with fresh frozen plasma infusions. Our findings showed that Turkish patients may have different mutations than the previously described common mutation, and once again, not only nonsense mutations but also missense mutations cause hereditary C1q deficiency. Regular fresh frozen plasma infusions to the patient have been clinically and therapeutically successful.

  17. Structure-Based Design of Orally Bioavailable 1H-Pyrrolo[3,2-c]pyridine Inhibitors of Mitotic Kinase Monopolar Spindle 1 (MPS1)

    PubMed Central

    2013-01-01

    The protein kinase MPS1 is a crucial component of the spindle assembly checkpoint signal and is aberrantly overexpressed in many human cancers. MPS1 is one of the top 25 genes overexpressed in tumors with chromosomal instability and aneuploidy. PTEN-deficient breast tumor cells are particularly dependent upon MPS1 for their survival, making it a target of significant interest in oncology. We report the discovery and optimization of potent and selective MPS1 inhibitors based on the 1H-pyrrolo[3,2-c]pyridine scaffold, guided by structure-based design and cellular characterization of MPS1 inhibition, leading to 65 (CCT251455). This potent and selective chemical tool stabilizes an inactive conformation of MPS1 with the activation loop ordered in a manner incompatible with ATP and substrate-peptide binding; it displays a favorable oral pharmacokinetic profile, shows dose-dependent inhibition of MPS1 in an HCT116 human tumor xenograft model, and is an attractive tool compound to elucidate further the therapeutic potential of MPS1 inhibition. PMID:24256217

  18. Structure-based design of orally bioavailable 1H-pyrrolo[3,2-c]pyridine inhibitors of mitotic kinase monopolar spindle 1 (MPS1).

    PubMed

    Naud, Sébastien; Westwood, Isaac M; Faisal, Amir; Sheldrake, Peter; Bavetsias, Vassilios; Atrash, Butrus; Cheung, Kwai-Ming J; Liu, Manjuan; Hayes, Angela; Schmitt, Jessica; Wood, Amy; Choi, Vanessa; Boxall, Kathy; Mak, Grace; Gurden, Mark; Valenti, Melanie; de Haven Brandon, Alexis; Henley, Alan; Baker, Ross; McAndrew, Craig; Matijssen, Berry; Burke, Rosemary; Hoelder, Swen; Eccles, Suzanne A; Raynaud, Florence I; Linardopoulos, Spiros; van Montfort, Rob L M; Blagg, Julian

    2013-12-27

    The protein kinase MPS1 is a crucial component of the spindle assembly checkpoint signal and is aberrantly overexpressed in many human cancers. MPS1 is one of the top 25 genes overexpressed in tumors with chromosomal instability and aneuploidy. PTEN-deficient breast tumor cells are particularly dependent upon MPS1 for their survival, making it a target of significant interest in oncology. We report the discovery and optimization of potent and selective MPS1 inhibitors based on the 1H-pyrrolo[3,2-c]pyridine scaffold, guided by structure-based design and cellular characterization of MPS1 inhibition, leading to 65 (CCT251455). This potent and selective chemical tool stabilizes an inactive conformation of MPS1 with the activation loop ordered in a manner incompatible with ATP and substrate-peptide binding; it displays a favorable oral pharmacokinetic profile, shows dose-dependent inhibition of MPS1 in an HCT116 human tumor xenograft model, and is an attractive tool compound to elucidate further the therapeutic potential of MPS1 inhibition.

  19. Genetics Home Reference: protein C deficiency

    MedlinePlus

    ... Twitter Home Health Conditions Protein C deficiency Protein C deficiency Printable PDF Open All Close All Enable ... to view the expand/collapse boxes. Description Protein C deficiency is a disorder that increases the risk ...

  20. THE INHIBITION OF PLASMIN, PLASMA KALLIKREIN, PLASMA PERMEABILITY FACTOR, AND THE C'1r SUBCOMPONENT OF THE FIRST COMPONENT OF COMPLEMENT BY SERUM C'1 ESTERASE INHIBITOR

    PubMed Central

    Ratnoff, Oscar D.; Pensky, Jack; Ogston, Derek; Naff, George B.

    1969-01-01

    The fraction of human serum designated as C'1 esterase inhibitor is known to inhibit the action of C'1 esterase, a plasma kallikrein, and PF/Dil, an enzyme in plasma enhancing cutaneous vascular permeability. In the present study, C'1 esterase inhibitor has been found to block the actions of plasmin and the C'1r subcomponent of the first component of complement, and to retard the generation of PF/Dil. No inhibition of blood clotting or of the generation of plasmin was demonstrable. PMID:4178758

  1. Targeting human apurinic/apyrimidinic endonuclease 1 (APE1) in phosphatase and tensin homolog (PTEN) deficient melanoma cells for personalized therapy.

    PubMed

    Abbotts, Rachel; Jewell, Rosalyn; Nsengimana, Jérémie; Maloney, David J; Simeonov, Anton; Seedhouse, Claire; Elliott, Faye; Laye, Jon; Walker, Christy; Jadhav, Ajit; Grabowska, Anna; Ball, Graham; Patel, Poulam M; Newton-Bishop, Julia; Wilson, David M; Madhusudan, Srinivasan

    2014-05-30

    Phosphatase and tensin homolog (PTEN) loss is associated with genomic instability. APE1 is a key player in DNA base excision repair (BER) and an emerging drug target in cancer. We have developed small molecule inhibitors against APE1 repair nuclease activity. In the current study we explored a synthetic lethal relationship between PTEN and APE1 in melanoma. Clinicopathological significance of PTEN mRNA and APE1 mRNA expression was investigated in 191 human melanomas. Preclinically, PTEN-deficient BRAF-mutated (UACC62, HT144, and SKMel28), PTEN-proficient BRAF-wildtype (MeWo), and doxycycline-inducible PTEN-knockout BRAF-wildtype MeWo melanoma cells were DNA repair expression profiled and investigated for synthetic lethality using a panel of four prototypical APE1 inhibitors. In human tumours, low PTEN mRNA and high APE1 mRNA was significantly associated with reduced relapse free and overall survival. Pre-clinically, compared to PTEN-proficient cells, PTEN-deficient cells displayed impaired expression of genes involved in DNA double strand break (DSB) repair. Synthetic lethality in PTEN-deficient cells was evidenced by increased sensitivity, accumulation of DSBs and induction of apoptosis following treatment with APE1 inhibitors. We conclude that PTEN deficiency is not only a promising biomarker in melanoma, but can also be targeted by a synthetic lethality strategy using inhibitors of BER, such as those targeting APE1.

  2. The pathomechanism of cytochrome c oxidase deficiency includes nuclear DNA damage.

    PubMed

    Douiev, Liza; Saada, Ann

    2018-06-07

    Mitochondrial cytochrome c oxidase (COX, respiratory chain complex IV), contributes to ATP production via oxidative phosphorylation (OXPHOS). Clinical presentation of COX deficiency is heterogeneous ranging from mild to severe neuromuscular diseases. Anemia is among the symptoms and we have previously reported Fanconi anemia like features in COX4-1 deficiency, suggesting genomic instability and our preliminary results detected nuclear double stranded DNA breaks (DSB). We now quantified the DSB by phospho histone H2AX Ser139 staining of COX4-1 and COX6B1 deficient fibroblasts (225% and 215% of normal, respectively) and confirmed their occurrence by neutral comet assay. We further explored the mechanism of DNA damage by studying normal fibroblasts treated with micromolar concentrations of cyanide (KCN). Present results demonstrate elevated nuclear DSB in cells treated with 50 μM KCN for 24 h (170% of normal) in high-glucose medium conditions where ROS and ATP remain normal, although Glutathione content was partially decreased. In glucose-free and serum-free medium, where growth is hampered, DSB were not elevated. Additionally we demonstrate the benefit of nicotinamide riboside (NR) which ameliorated DSB in COX4-1, COX6B1 and KCN treated cells (130%, 154% and 87% of normal cells, respectively). Conversely a negative effect of a poly[ADP-ribose] polymerase (PARP) inhibitor was found. Although additional investigation is needed, our findings raise the possibility that the pathomechanism of COX deficiency and possibly also in other OXPHOS defects, include nuclear DNA damage resulting from nicotinamide adenine dinucleotide (NAD + ) deficit combined with a replicative state, rather than oxidative stress and energy depletion. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Discovery of a new series of imidazo[1,2-a]pyridine compounds as selective c-Met inhibitors.

    PubMed

    Liu, Tong-Chao; Peng, Xia; Ma, Yu-Chi; Ji, Yin-Chun; Chen, Dan-Qi; Zheng, Ming-Yue; Zhao, Dong-Mei; Cheng, Mao-Sheng; Geng, Mei-Yu; Shen, Jing-Kang; Ai, Jing; Xiong, Bing

    2016-05-01

    Aberrant c-Met activation plays a critical role in cancer formation, progression and dissemination, as well as in development of resistance to anticancer drugs. Therefore, c-Met has emerged as an attractive target for cancer therapy. The aim of this study was to develop new c-Met inhibitors and elaborate the structure-activity relationships of identified inhibitors. Based on the predicted binding modes of Compounds 5 and 14 in docking studies, a new series of c-Met inhibitor-harboring 3-((1H-pyrrolo[3,2-c]pyridin-1-yl)sulfonyl)imidazo[1,2-a]pyridine scaffolds was discovered. Potent inhibitors were identified through extensive optimizations combined with enzymatic and cellular assays. A promising compound was further investigated in regard to its selectivity, its effects on c-Met signaling, cell proliferation and cell scattering in vitro. The most potent Compound 31 inhibited c-Met kinase activity with an IC50 value of 12.8 nmol/L, which was >78-fold higher than those of a panel of 16 different tyrosine kinases. Compound 31 (8, 40, 200 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and ERK signaling cascades in c-Met aberrant human EBC-1 cancer cells. In 12 human cancer cell lines harboring different background levels of c-Met expression/activation, Compound 31 potently inhibited c-Met-driven cell proliferation. Furthermore, Compound 31 dose-dependently impaired c-Met-mediated cell scattering of MDCK cells. This series of c-Met inhibitors is a promising lead for development of novel anticancer drugs.

  4. Discovery of a new series of imidazo[1,2-a]pyridine compounds as selective c-Met inhibitors

    PubMed Central

    Liu, Tong-chao; Peng, Xia; Ma, Yu-chi; Ji, Yin-chun; Chen, Dan-qi; Zheng, Ming-yue; Zhao, Dong-mei; Cheng, Mao-sheng; Geng, Mei-yu; Shen, Jing-kang; Ai, Jing; Xiong, Bing

    2016-01-01

    Aim: Aberrant c-Met activation plays a critical role in cancer formation, progression and dissemination, as well as in development of resistance to anticancer drugs. Therefore, c-Met has emerged as an attractive target for cancer therapy. The aim of this study was to develop new c-Met inhibitors and elaborate the structure-activity relationships of identified inhibitors. Methods: Based on the predicted binding modes of Compounds 5 and 14 in docking studies, a new series of c-Met inhibitor-harboring 3-((1H-pyrrolo[3,2-c]pyridin-1-yl)sulfonyl)imidazo[1,2-a]pyridine scaffolds was discovered. Potent inhibitors were identified through extensive optimizations combined with enzymatic and cellular assays. A promising compound was further investigated in regard to its selectivity, its effects on c-Met signaling, cell proliferation and cell scattering in vitro. Results: The most potent Compound 31 inhibited c-Met kinase activity with an IC50 value of 12.8 nmol/L, which was >78-fold higher than those of a panel of 16 different tyrosine kinases. Compound 31 (8, 40, 200 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and ERK signaling cascades in c-Met aberrant human EBC-1 cancer cells. In 12 human cancer cell lines harboring different background levels of c-Met expression/activation, Compound 31 potently inhibited c-Met-driven cell proliferation. Furthermore, Compound 31 dose-dependently impaired c-Met-mediated cell scattering of MDCK cells. Conclusion: This series of c-Met inhibitors is a promising lead for development of novel anticancer drugs. PMID:27041462

  5. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haimou; Qin, Gangjian; Liang, Gang

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanismmore » of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.« less

  6. Hinnuliquinone, a C2-symmetric dimeric non-peptide fungal metabolite inhibitor of HIV-1 protease.

    PubMed

    Singh, Sheo B; Ondeyka, John G; Tsipouras, Nasios; Ruby, Carolyn; Sardana, Vinod; Schulman, Marvin; Sanchez, Manuel; Pelaez, Fernando; Stahlhut, Mark W; Munshi, Sanjeev; Olsen, David B; Lingham, Russell B

    2004-11-05

    HIV-1 protease is one of several key enzymes required for the replication and maturation of HIV-1 virus. An almost two-decade research effort by academic and pharmaceutical institutions resulted in the successful commercialization of seven drugs that are potent inhibitors of HIV-1 protease activity and which, if used correctly, are highly effective in managing viral load. However, identification of clinical viral isolates that are resistant to these drugs indicates that this is a significant problem and that new classes of inhibitors are continually needed. Screening of microbial extracts followed by bioassay-guided isolation led to the discovery of a natural hinnuliquinone, a C(2)-symmetric bis-indolyl quinone natural product that inhibited the wild-type and a clinically resistant (A44) strain of HIV-1 protease with K(i) values of 0.97 and 1.25microM, respectively. Crystallographic analysis of the inhibitor-bound HIV-1 protease helped explain the importance of the C(2)-symmetry of hinnuliquinone for activity. Details of the isolation, biological activity, and crystallographic analysis of the inhibitor-bound protease are herein described.

  7. Niemann-Pick C1-deficient mice lacking sterol O-acyltransferase 2 have less hepatic cholesterol entrapment and improved liver function.

    PubMed

    Lopez, Adam M; Jones, Ryan Dale; Repa, Joyce J; Turley, Stephen D

    2018-06-07

    Cholesteryl esters are generated at multiple sites in the body by sterol O-acyltransferase 1 (SOAT1) or sterol O-acyltransferase 2 (SOAT2) in various cell types, and lecithin cholesterol acyltransferase (LCAT) in plasma. Esterified cholesterol (EC) and triacylglycerol (TAG) contained in lipoproteins cleared from the circulation via receptor-mediated or bulk-phase endocytosis are hydrolyzed by lysosomal acid lipase (LAL) within the late endosomal/lysosomal (E/L) compartment. Then, through the successive actions of Niemann-Pick C2 (NPC2) and Niemann-Pick C1 (NPC1), unesterified cholesterol (UC) is exported from the E/L compartment to the cytosol. Mutations in either NPC1 or NPC2 lead to continuing entrapment of UC in all organs, resulting in multisystem disease which includes hepatic dysfunction and in some cases liver failure. These studies investigated primarily whether elimination of SOAT2 in NPC1-deficient mice impacted hepatic UC sequestration, inflammation, and transaminase activities. Measurements were made in 7 wk-old mice fed a low-cholesterol chow diet or one enriched with cholesterol starting 2 wk before study. In the chow-fed mice, NPC1:SOAT2 double knockouts, compared to their littermates lacking only NPC1, had 20% less liver mass, 28% lower hepatic UC concentrations, and plasma ALT and AST activities that were decreased by 48% and 36%, respectively. mRNA expression levels for several markers of inflammation were all significantly lower in the NPC1 mutants lacking SOAT2. The existence of a new class of potent and selective SOAT2 inhibitors provides an opportunity for exploring if suppression of this enzyme could potentially become an adjunctive therapy for liver disease in NPC1 deficiency.

  8. C1 inhibitor-mediated myocardial protection from chronic intermittent hypoxia-induced injury

    PubMed Central

    Fu, Jinrong; Guo, Furong; Chen, Cheng; Yu, Xiaoman; Hu, Ke; Li, Mingjiang

    2016-01-01

    The optimal treatment for chronic intermittent hypoxia (CIH)-induced cardiovascular injuries has yet to be determined. The aim of the current study was to explore the potential protective effect and mechanism of a C1 inhibitor in CIH in the myocardium. The present study used a rat model of CIH in which complement regulatory protein, known as C1 inhibitor (C1INH), was administered to the rats in the intervention groups. Cardiomyocyte apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. The expression of proteins associated with the apoptotic pathway, such as B-cell lymphoma 2 (Bcl-2), Bax and caspase-3 were detected by western blot analysis. The expression of complement C3 protein and RNA were also analyzed. C1INH was observed to improve the cardiac function in rats with CIH. Myocardial myeloperoxidase activity, a marker of neutrophil infiltration, was significantly decreased in the C1INH intervention group compared with the CIH control group, and cardiomyocyte apoptosis was significantly attenuated (P<0.05). Western blotting and reverse transcription-polymerase chain reaction analysis indicated that the protein expression levels of Bcl-2 were decreased and those of Bax were increased in the CIH group compared with the normal control group, but the protein expression levels of Bcl-2 were increased and those of Bax were decreased in the C1INH intervention group, as compared with the CIH group. Furthermore, the CIH-induced expression and synthesis of complement C3 in the myocardium were also reduced in the C1INH intervention group. C1INH, in addition to inhibiting complement activation and inflammation, preserved cardiac function in CIH-mediated myocardial cell injury through an anti-apoptotic mechanism. PMID:27698713

  9. Genetic basis of human complement C8[beta] deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufmann, T.; Rittner, C.; Schneider, P.M.

    1993-06-01

    The eighth component of human complement (c8) is a serum protein consisting of three chains ([alpha], [beta], and [gamma]) and encoded by three different genes, C8A, C8B, and C8G. C8A and C8B are closely linked on chromosome 1p, whereas C8G is located on chromosome 9q. In the serum the [beta] subunit is non-covalently bound to the disulfide-linked [alpha]-[gamma] subunit. Patients with C8[beta] deficiency suffer from recurrent neisserial infections such as meningitis. Exon-specific polymerase chain reaction (PCR) amplification with primer pairs from the flanking intron sequences was used to amplify all 12 C8B exons separately. No difference regarding the exon sizesmore » was observed in a C8[beta]-deficient patient compared with a normal person. Therefore, direct sequence analysis of all exon-specific PCR products from normal and C8[beta]-deficient individuals was carried out. As a cause for C8[beta] deficiency, we found a single C-T exchange in exon 9 leading to a stop codon. An allele-specific PCR system was designed to detect the normal and the deficiency allele simultaneously. Using this approach as well as PCR typing of the Taql polymorphism located in intron 11, five families with 7 C8[beta]-deficient members were investigated. The mutation was not found to be restricted to one of the two Taql RFLP alleles. The mutant allele was observed in all families investigated and can therefore be regarded as a major cause of C8[beta] deficiency in the Caucasian population. In addition, two C8[beta]-deficient patients were found to be heterozygous for the C-T exchange. The molecular basis of the alleles without this point mutation also causing deficiency has not yet been defined. 23 refs., 4 figs., 3 tabs.« less

  10. A case of hereditary angioneurotic oedema, successfully treated with ε-aminocaproic acid. Studies on C'1 esterase inhibitor, C'1 activation, plasminogen level and histamine metabolism

    PubMed Central

    Lundh, B.; Laurell, Anna-Brita; Wetterqvist, H.; White, T.; Granerus, G.

    1968-01-01

    A patient with clinical and laboratory findings characteristic of hereditary angioneurotic oedema was investigated. The patient was observed for a period of 5 weeks, during which he had four attacks. ε-Aminocaproic acid (EACA) was then given continuously for 5 months, during which time the patient had no attacks. Attacks reappeared on withdrawal of EACA. Trans-4-(aminomethyl) cyclohexane carboxylic acid (AMCA®) was found to be equally effective in later therapeutic trials. C'1 esterase inhibitor was found in low concentration in defibrinated plasma also during attacks. ε-Aminocaproic acid (EACA) produced no significant change of the inhibitor content. C'1 esterase inhibitor disappeared on incubation of defibrinated plasma from the patient at 37°C for 40 min, and C'1 esterase was generated. The generation time of C'1 esterase increased with increasing the concentration of EDTA in the test solution. The C'1 esterase inhibitor content of defibrinated plasma from the patient, varied with the C'1 esterase generation time, the coefficient of correlation being higher in plasma sampled before treatment with EACA. Plasminogen and α2-macroglobulin were within the normal ranges, also during attacks. EACA markedly depressed the plasminogen level, which rapidly returned to normal on withdrawal of the drug. The studies on histamine metabolism revealed no significant changes with the exception of the urinary excretion of histamine, which was moderately increased towards the end of the period studied. On the days the patient received EACA the urine never contained 1-methylimidazole-5-acetic acid which was present in all the other specimens of urine examined. The basal gastric acid secretion was increased. PMID:5701955

  11. Genome scan of clot lysis time and its association with thrombosis in a protein C deficient kindred

    PubMed Central

    Meltzer, M.E.; Hasstedt, S.J.; Vossen, C.Y.; Callas, P.W.; de Groot, Ph.G.; Rosendaal, F.R.; Lisman, T.; Bovill, E.G.

    2011-01-01

    Summary Background Previously we found increased clot lysis time (CLT), as measured with a plasma-based assay, to increase the risk of venous thrombosis in two population-based case-control studies. Genes influencing CLT are yet unknown. Objectives and Patients/Methods We tested CLT as risk factor for venous thrombosis in Kindred Vermont II (n=346), a pedigree suffering from a high thrombosis risk, partially attributable to a type I protein C deficiency. Furthermore we tested for quantitative trait loci (QTL) for CLT using variance component linkage analysis. Results Protein C deficient family members had shorter CLT than non-deficient members (median CLT 67 versus 75 minutes). One standard deviation increase in CLT increased risk of venous thrombosis 2.4-fold in non-deficient family members. Protein C deficiency without elevated CLT increased risk 6.9-fold. Combining both risk factors yielded a 27.8-fold increased risk. Heritability of CLT was 42-52%. We found suggestive evidence of linkage on chromosome 11 (62 cM), partly explained by the prothrombin 20210A mutation, and on chromosome 13 (52 cM). Thrombin Activatable Fibrinolysis Inhibitor genotypes did not explain the variation in CLT. Conclusion Hypofibrinolysis appears to increase thrombosis risk in this family especially in combination with protein C deficiency. Protein C deficiency is associated with short CLT. CLT is partly genetically regulated. Suggestive QTL were found on chromosome 11 and 13. PMID:21575129

  12. Enhanced susceptibility to acute pneumococcal otitis media in mice deficient in complement C1qa, factor B, and factor B/C2.

    PubMed

    Tong, Hua Hua; Li, Yong Xing; Stahl, Gregory L; Thurman, Joshua M

    2010-03-01

    To define the roles of specific complement activation pathways in host defense against Streptococcus pneumoniae in acute otitis media (AOM), we investigated the susceptibility to AOM in mice deficient in complement factor B and C2 (Bf/C2(-/)(-)), C1qa (C1qa(-/)(-)), and factor B (Bf(-)(/)(-)). Bacterial titers of both S. pneumoniae serotype 6A and 14 in the middle ear lavage fluid samples from Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice were significantly higher than in samples from wild-type mice 24 h after transtympanical infection (P < 0.05) and remained persistently higher in samples from Bf/C2(-/)(-) mice than in samples from wild-type mice. Bacteremia occurred in Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice infected with both strains, but not in wild-type mice. Recruitment of inflammatory cells was paralleled by enhanced production of inflammatory mediators in the middle ear lavage samples from Bf/C2(-/)(-) mice. C3b deposition on both strains was greatest for sera obtained from wild-type mice, followed by C1qa(-)(/)(-) and Bf(-)(/)(-) mice, and least for Bf/C2(-)(/)(-) mice. Opsonophagocytosis and whole-blood killing capacity of both strains were significantly decreased in the presence of sera or whole blood from complement-deficient mice compared to wild-type mice. These findings indicate that both the classical and alternative complement pathways are critical for middle ear immune defense against S. pneumoniae. The reduced capacity of complement-mediated opsonization and phagocytosis in the complement-deficient mice appears to be responsible for the impaired clearance of S. pneumoniae from the middle ear and dissemination to the bloodstream during AOM.

  13. Niemann-Pick Type C1 deficiency in microglia does not cause neuron death in vitro.

    PubMed

    Peake, Kyle B; Campenot, Robert B; Vance, Dennis E; Vance, Jean E

    2011-09-01

    Niemann-Pick Type C (NPC) disease is an autosomal recessive disorder that results in accumulation of cholesterol and other lipids in late endosomes/lysosomes and leads to progressive neurodegeneration and premature death. The mechanism by which lipid accumulation causes neurodegeneration remains unclear. Inappropriate activation of microglia, the resident immune cells of the central nervous system, has been implicated in several neurodegenerative disorders including NPC disease. Immunohistochemical analysis demonstrates that NPC1 deficiency in mouse brains alters microglial morphology and increases the number of microglia. In primary cultures of microglia from Npc1(-/-) mice cholesterol is sequestered intracellularly, as occurs in other NPC-deficient cells. Activated microglia secrete potentially neurotoxic molecules such as tumor necrosis factor-α (TNFα). However, NPC1 deficiency in isolated microglia did not increase TNFα mRNA or TNFα secretion in vitro. In addition, qPCR analysis shows that expression of pro-inflammatory and oxidative stress genes is the same in Npc1(+/+) and Npc1(-/-) microglia, whereas the mRNA encoding the anti-inflammatory cytokine, interleukin-10 in Npc1(-/-) microglia is ~60% lower than in Npc1(+/+) microglia. The survival of cultured neurons was not impaired by NPC1 deficiency, nor was death of Npc1(-/-) and Npc1(+/+) neurons in microglia-neuron co-cultures increased by NPC1 deficiency in microglia. However, a high concentration of Npc1(-/-) microglia appeared to promote neuron survival. Thus, although microglia exhibit an active morphology in NPC1-deficient brains, lack of NPC1 in microglia does not promote neuron death in vitro in microglia-neuron co-cultures, supporting the view that microglial NPC1 deficiency is not the primary cause of neuron death in NPC disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Calpain 1 inhibitor BDA-410 ameliorates α-klotho-deficiency phenotypes resembling human aging-related syndromes.

    PubMed

    Nabeshima, Yoko; Washida, Miwa; Tamura, Masaru; Maeno, Akiteru; Ohnishi, Mutsuko; Shiroishi, Toshihiko; Imura, Akihiro; Razzaque, M Shawkat; Nabeshima, Yo-ichi

    2014-08-01

    Taking good care of elderly is a major challenge of our society, and thus identification of potential drug targets to reduce age-associated disease burden is desirable. α-klotho(-/-) (α-kl) is a short-lived mouse model that displays multiple phenotypes resembling human aging-related syndromes. Such ageing phenotype of α-kl(-/-) mice is associated with activation of a proteolytic enzyme, Calpain-1. We hypothesized that uncontrolled activation of calpain-1 might be causing age-related phenotypes in α-kl-deficient mice. We found that daily administration of BDA-410, a calpain-1 inhibitor, strikingly ameliorated multiple aging-related phenotypes. Treated mice showed recovery of reproductive ability, increased body weight, reduced organ atrophy, and suppression of ectopic calcifications, bone mineral density reduction, pulmonary emphysema and senile atrophy of skin. We also observed ectopic expression of FGF23 in calcified arteries of α-kl(-/-) mice, which might account for the clinically observed association of increased FGF23 level with increased risk of cardiovascular mortality. These findings allow us to propose that modulation of calpain-1 activity is a potential therapeutic option for delaying age-associated organ pathology, particularly caused by the dysregulation of mineral ion homeostasis.

  15. Calpain 1 inhibitor BDA-410 ameliorates α-klotho-deficiency phenotypes resembling human aging-related syndromes

    PubMed Central

    Nabeshima, Yoko; Washida, Miwa; Tamura, Masaru; Maeno, Akiteru; Ohnishi, Mutsuko; Shiroishi, Toshihiko; Imura, Akihiro; Razzaque, M. Shawkat; Nabeshima, Yo-ichi

    2014-01-01

    Taking good care of elderly is a major challenge of our society, and thus identification of potential drug targets to reduce age-associated disease burden is desirable. α-klotho-/- (α-kl) is a short-lived mouse model that displays multiple phenotypes resembling human aging-related syndromes. Such ageing phenotype of α-kl-/- mice is associated with activation of a proteolytic enzyme, Calpain-1. We hypothesized that uncontrolled activation of calpain-1 might be causing age-related phenotypes in α-kl-deficient mice. We found that daily administration of BDA-410, a calpain-1 inhibitor, strikingly ameliorated multiple aging-related phenotypes. Treated mice showed recovery of reproductive ability, increased body weight, reduced organ atrophy, and suppression of ectopic calcifications, bone mineral density reduction, pulmonary emphysema and senile atrophy of skin. We also observed ectopic expression of FGF23 in calcified arteries of α-kl-/- mice, which might account for the clinically observed association of increased FGF23 level with increased risk of cardiovascular mortality. These findings allow us to propose that modulation of calpain-1 activity is a potential therapeutic option for delaying age-associated organ pathology, particularly caused by the dysregulation of mineral ion homeostasis. PMID:25080854

  16. Hereditary angioedema with normal C1 inhibitor in a French cohort: Clinical characteristics and response to treatment with icatibant.

    PubMed

    Bouillet, Laurence; Boccon-Gibod, Isabelle; Launay, David; Gompel, Anne; Kanny, Gisele; Fabien, Vincent; Fain, Oliver

    2017-03-01

    The clinical characteristics and icatibant-treatment outcomes of patients with hereditary angioedema with normal C1 inhibitor (HAE-nC1 INH) are limited. We retrospectively analyzed data from French HAE patients enrolled in the Icatibant Outcome Survey registry (from July 2009 to September 2013) to compare disease characteristics and the effectiveness and safety of acute icatibant-treated angioedema attacks in patients with HAE-nC1 INH, HAE with C1 INH deficiency (type I), or dysfunction (type II). One center in Grenoble contributed 22 patients with HAE-nC1 INH and a family history of HAE while 15 centers across France contributed 153 patients with HAE type I and seven patients with HAE type II. Patients with HAE-nC1 INH compared to HAE type I, respectively, were more likely to be female (88.1% vs. 63.4%), older at median age of disease onset (21 years vs. 15 years), and have a greater rate of abdominal (80% vs. 61%) and laryngeal (23% vs. 14%) attacks. Icatibant was effective in both groups though the median time to resolution of attack was significantly longer in the HAE-nC1 INH group (20.0 h, 37 attacks) versus the HAE type I group (14.0 h, 67 attacks). Icatibant was self-administered for 96.1% of attacks in patients with HAE-nC1 INH and 75.8% in patients with HAE type I. No serious adverse side effects related to icatibant were reported. These data help further define the disease characteristics of HAE-nC1 INH in the French population and extend the limited data reporting the safe and effective use of icatibant in acute treatment of angioedema in French patients diagnosed with HAE-nC1 INH.

  17. Hereditary angioedema with normal C1 inhibitor in a French cohort: Clinical characteristics and response to treatment with icatibant

    PubMed Central

    Boccon‐Gibod, Isabelle; Launay, David; Gompel, Anne; Kanny, Gisele; Fabien, Vincent; Fain, Oliver

    2017-01-01

    Abstract Introduction The clinical characteristics and icatibant‐treatment outcomes of patients with hereditary angioedema with normal C1 inhibitor (HAE‐nC1 INH) are limited. Methods We retrospectively analyzed data from French HAE patients enrolled in the Icatibant Outcome Survey registry (from July 2009 to September 2013) to compare disease characteristics and the effectiveness and safety of acute icatibant‐treated angioedema attacks in patients with HAE‐nC1 INH, HAE with C1 INH deficiency (type I), or dysfunction (type II). Results One center in Grenoble contributed 22 patients with HAE‐nC1 INH and a family history of HAE while 15 centers across France contributed 153 patients with HAE type I and seven patients with HAE type II. Patients with HAE‐nC1 INH compared to HAE type I, respectively, were more likely to be female (88.1% vs. 63.4%), older at median age of disease onset (21 years vs. 15 years), and have a greater rate of abdominal (80% vs. 61%) and laryngeal (23% vs. 14%) attacks. Icatibant was effective in both groups though the median time to resolution of attack was significantly longer in the HAE‐nC1 INH group (20.0 h, 37 attacks) versus the HAE type I group (14.0 h, 67 attacks). Icatibant was self‐administered for 96.1% of attacks in patients with HAE‐nC1 INH and 75.8% in patients with HAE type I. No serious adverse side effects related to icatibant were reported. Conclusions These data help further define the disease characteristics of HAE‐nC1 INH in the French population and extend the limited data reporting the safe and effective use of icatibant in acute treatment of angioedema in French patients diagnosed with HAE‐nC1 INH. PMID:28250922

  18. Discovery of potent 1H-imidazo[4,5-b]pyridine-based c-Met kinase inhibitors via mechanism-directed structural optimization.

    PubMed

    An, Xiao-De; Liu, Hongyan; Xu, Zhong-Liang; Jin, Yi; Peng, Xia; Yao, Ying-Ming; Geng, Meiyu; Long, Ya-Qiu

    2015-02-01

    Starting from our previously identified novel c-Met kinase inhibitors bearing 1H-imidazo[4,5-h][1,6]naphthyridin-2(3H)-one scaffold, a global structural exploration was conducted to furnish an optimal binding motif for further development, directed by the enzyme inhibitory mechanism. First round SAR study picked two imidazonaphthyridinone frameworks with 1,8- and 3,5-disubstitution pattern as class I and class II c-Met kinase inhibitors, respectively. Further structural optimization on type II inhibitors by truncation of the imidazonaphthyridinone core and incorporation of an N-phenyl cyclopropane-1,1-dicarboxamide pharmacophore led to the discovery of novel imidazopyridine-based c-Met kinase inhibitors, displaying nanomolar enzyme inhibitory activity and improved Met kinase selectivity. More significantly, the new chemotype c-Met kinase inhibitors effectively inhibited Met phosphorylation and its downstream signaling as well as the proliferation of Met-dependent EBC-1 human lung cancer cells at submicromolar concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Genome scan of clot lysis time and its association with thrombosis in a protein C-deficient kindred.

    PubMed

    Meltzer, M E; Hasstedt, S J; Vossen, C Y; Callas, P W; DE Groot, Ph G; Rosendaal, F R; Lisman, T; Bovill, E G

    2011-07-01

     Previously, we found increased clot-lysis time (CLT), as measured with a plasma-based assay, to increase the risk of venous thrombosis in two population-based case-control studies. The genes influencing CLT are as yet unknown.  We tested CLT as risk factor for venous thrombosis in Kindred Vermont II (n = 346), a pedigree suffering from a high thrombosis risk, partially attributable to a type I protein C deficiency. Furthermore, we tested for quantitative trait loci (QTLs) for CLT, using variance component linkage analysis.  Protein C-deficient family members had shorter CLTs than non-deficient members (median CLT 67 min vs. 75 min). One standard deviation increase in CLT increased the risk of venous thrombosis 2.4-fold in non-deficient family members. Protein C deficiency without elevated CLT increased the risk 6.9-fold. Combining both risk factors yielded a 27.8-fold increased risk. The heritability of CLT was 42-52%. We found suggestive evidence of linkage on chromosome 11 (62 cM), partly explained by the prothrombin 20210A mutation, and on chromosome 13 (52 cM). Thrombin-activatable fibrinolysis inhibitor genotypes did not explain the variation in CLT. Hypofibrinolysis appears to increase thrombosis risk in this family, especially in combination with protein C deficiency. Protein C deficiency is associated with short CLT. CLT is partly genetically regulated. Suggestive QTLs were found on chromosomes 11 and 13. © 2011 International Society on Thrombosis and Haemostasis.

  20. Nebulized C1-Esterase Inhibitor does not Reduce Pulmonary Complement Activation in Rats with Severe Streptococcus Pneumoniae Pneumonia.

    PubMed

    de Beer, Friso; Lagrand, Wim; Glas, Gerie J; Beurskens, Charlotte J P; van Mierlo, Gerard; Wouters, Diana; Zeerleder, Sacha; Roelofs, Joris J T H; Juffermans, Nicole P; Horn, Janneke; Schultz, Marcus J

    2016-12-01

    Complement activation plays an important role in the pathogenesis of pneumonia. We hypothesized that inhibition of the complement system in the lungs by repeated treatment with nebulized plasma-derived human C1-esterase inhibitor reduces pulmonary complement activation and subsequently attenuates lung injury and lung inflammation. This was investigated in a rat model of severe Streptococcus pneumoniae pneumonia. Rats were intra-tracheally challenged with S. pneumoniae to induce pneumonia. Nebulized C1-esterase inhibitor or saline (control animals) was repeatedly administered to rats, 30 min before induction of pneumonia and every 6 h thereafter. Rats were sacrificed 20 or 40 h after inoculation with bacteria. Brochoalveolar lavage fluid and lung tissue were obtained for measuring levels of complement activation (C4b/c), lung injury and inflammation. Induction of pneumonia was associated with pulmonary complement activation (C4b/c at 20 h 1.24 % [0.56-2.59] and at 40 h 2.08 % [0.98-5.12], compared to 0.50 % [0.07-0.59] and 0.03 % [0.03-0.03] in the healthy control animals). The functional fraction of C1-INH was detectable in BALF, but no effect was found on pulmonary complement activation (C4b/c at 20 h 0.73 % [0.16-1.93] and at 40 h 2.38 % [0.54-4.19]). Twenty hours after inoculation, nebulized C1-esterase inhibitor treatment reduced total histology score, but this effect was no longer seen at 40 h. Nebulized C1-esterase inhibitor did not affect other markers of lung injury or lung inflammation. In this negative experimental animal study, severe S. pneumoniae pneumonia in rats is associated with pulmonary complement activation. Repeated treatment with nebulized C1-esterase inhibitor, although successfully delivered to the lungs, does not affect pulmonary complement activation, lung inflammation or lung injury.

  1. Adaptation to HIF-1 deficiency by upregulation of the AMP/ATP ratio and phosphofructokinase activation in hepatomas.

    PubMed

    Golinska, Monika; Troy, Helen; Chung, Yuen-Li; McSheehy, Paul M; Mayr, Manuel; Yin, Xiaoke; Ly, Lucy; Williams, Kaye J; Airley, Rachel E; Harris, Adrian L; Latigo, John; Perumal, Meg; Aboagye, Eric O; Perrett, David; Stubbs, Marion; Griffiths, John R

    2011-05-25

    HIF-1 deficiency has marked effects on tumour glycolysis and growth. We therefore investigated the consequences of HIF-1 deficiency in mice, using the well established Hepa-1 wild-type (WT) and HIF-1β-deficient (c4) model. These mechanisms could be clinically relevant, since HIF-1 is now a therapeutic target. Hepa-1 WT and c4 tumours grown in vivo were analysed by 18FDG-PET and 19FDG Magnetic Resonance Spectroscopy for glucose uptake; by HPLC for adenine nucleotides; by immunohistochemistry for GLUTs; by immunoblotting and by DIGE followed by tandem mass spectrometry for protein expression; and by classical enzymatic methods for enzyme activity. HIF-1β deficient Hepa-1 c4 tumours grew significantly more slowly than WT tumours, and (as expected) showed significantly lower expression of many glycolytic enzymes. However, HIF-1β deficiency caused no significant change in the rate of glucose uptake in c4 tumours compared to WT when assessed in vivo by measuring fluoro-deoxyglucose (FDG) uptake. Immunohistochemistry demonstrated less GLUT-1 in c4 tumours, whereas GLUT-2 (liver type) was similar to WT. Factors that might upregulate glucose uptake independently of HIF-1 (phospho-Akt, c-Myc) were shown to have either lower or similar expression in c4 compared to WT tumours. However the AMP/ATP ratio was 4.5 fold higher (p < 0.01) in c4 tumours, and phosphofructokinase-1 (PFK-1) activity, measured at prevailing cellular ATP and AMP concentrations, was up to two-fold higher in homogenates of the deficient c4 cells and tumours compared to WT (p < 0.001), suggesting that allosteric PFK activation could explain their normal level of glycolysis. Phospho AMP-Kinase was also higher in the c4 tumours. Despite their defective HIF-1 and consequent down-regulation of glycolytic enzyme expression, Hepa-1 c4 tumours maintain glucose uptake and glycolysis because the resulting low [ATP] high [AMP] allosterically activate PFK-1. This mechanism of resistance would keep glycolysis

  2. C1q Protein Binds to the Apoptotic Nucleolus and Causes C1 Protease Degradation of Nucleolar Proteins*

    PubMed Central

    Cai, Yitian; Teo, Boon Heng Dennis; Yeo, Joo Guan; Lu, Jinhua

    2015-01-01

    In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus. PMID:26231209

  3. C1q protein binds to the apoptotic nucleolus and causes C1 protease degradation of nucleolar proteins.

    PubMed

    Cai, Yitian; Teo, Boon Heng Dennis; Yeo, Joo Guan; Lu, Jinhua

    2015-09-11

    In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. ATM-Deficient Colorectal Cancer Cells Are Sensitive to the PARP Inhibitor Olaparib.

    PubMed

    Wang, Chen; Jette, Nicholas; Moussienko, Daniel; Bebb, D Gwyn; Lees-Miller, Susan P

    2017-04-01

    The ataxia telangiectasia mutated (ATM) protein kinase plays a central role in the cellular response to DNA damage. Loss or inactivation of both copies of the ATM gene (ATM) leads to ataxia telangiectasia, a devastating childhood condition characterized by neurodegeneration, immune deficiencies, and cancer predisposition. ATM is also absent in approximately 40% of mantle cell lymphomas (MCLs), and we previously showed that MCL cell lines with loss of ATM are sensitive to poly-ADP ribose polymerase (PARP) inhibitors. Next-generation sequencing of patient tumors has revealed that ATM is altered in many human cancers including colorectal, lung, prostate, and breast. Here, we show that the colorectal cancer cell line SK-CO-1 lacks detectable ATM protein expression and is sensitive to the PARP inhibitor olaparib. Similarly, HCT116 colorectal cancer cells with shRNA depletion of ATM are sensitive to olaparib, and depletion of p53 enhances this sensitivity. Moreover, HCT116 cells are sensitive to olaparib in combination with the ATM inhibitor KU55933, and sensitivity is enhanced by deletion of p53. Together our studies suggest that PARP inhibitors may have potential for treating colorectal cancer with ATM dysfunction and/or colorectal cancer with mutation of p53 when combined with an ATM kinase inhibitor. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. BAX inhibitor-1 regulates autophagy by controlling the IRE1α branch of the unfolded protein response

    PubMed Central

    Castillo, Karen; Rojas-Rivera, Diego; Lisbona, Fernanda; Caballero, Benjamín; Nassif, Melissa; Court, Felipe A; Schuck, Sebastian; Ibar, Consuelo; Walter, Peter; Sierralta, Jimena; Glavic, Alvaro; Hetz, Claudio

    2011-01-01

    Both autophagy and apoptosis are tightly regulated processes playing a central role in tissue homeostasis. Bax inhibitor 1 (BI-1) is a highly conserved protein with a dual role in apoptosis and endoplasmic reticulum (ER) stress signalling through the regulation of the ER stress sensor inositol requiring kinase 1 α (IRE1α). Here, we describe a novel function of BI-1 in the modulation of autophagy. BI-1-deficient cells presented a faster and stronger induction of autophagy, increasing LC3 flux and autophagosome formation. These effects were associated with enhanced cell survival under nutrient deprivation. Repression of autophagy by BI-1 was dependent on cJun-N terminal kinase (JNK) and IRE1α expression, possibly due to a displacement of TNF-receptor associated factor-2 (TRAF2) from IRE1α. Targeting BI-1 expression in flies altered autophagy fluxes and salivary gland degradation. BI-1 deficiency increased flies survival under fasting conditions. Increased expression of autophagy indicators was observed in the liver and kidney of bi-1-deficient mice. In summary, we identify a novel function of BI-1 in multicellular organisms, and suggest a critical role of BI-1 as a stress integrator that modulates autophagy levels and other interconnected homeostatic processes. PMID:21926971

  6. BAX inhibitor-1 regulates autophagy by controlling the IRE1α branch of the unfolded protein response.

    PubMed

    Castillo, Karen; Rojas-Rivera, Diego; Lisbona, Fernanda; Caballero, Benjamín; Nassif, Melissa; Court, Felipe A; Schuck, Sebastian; Ibar, Consuelo; Walter, Peter; Sierralta, Jimena; Glavic, Alvaro; Hetz, Claudio

    2011-09-16

    Both autophagy and apoptosis are tightly regulated processes playing a central role in tissue homeostasis. Bax inhibitor 1 (BI-1) is a highly conserved protein with a dual role in apoptosis and endoplasmic reticulum (ER) stress signalling through the regulation of the ER stress sensor inositol requiring kinase 1 α (IRE1α). Here, we describe a novel function of BI-1 in the modulation of autophagy. BI-1-deficient cells presented a faster and stronger induction of autophagy, increasing LC3 flux and autophagosome formation. These effects were associated with enhanced cell survival under nutrient deprivation. Repression of autophagy by BI-1 was dependent on cJun-N terminal kinase (JNK) and IRE1α expression, possibly due to a displacement of TNF-receptor associated factor-2 (TRAF2) from IRE1α. Targeting BI-1 expression in flies altered autophagy fluxes and salivary gland degradation. BI-1 deficiency increased flies survival under fasting conditions. Increased expression of autophagy indicators was observed in the liver and kidney of bi-1-deficient mice. In summary, we identify a novel function of BI-1 in multicellular organisms, and suggest a critical role of BI-1 as a stress integrator that modulates autophagy levels and other interconnected homeostatic processes.

  7. Update on the Use of C1-Esterase Inhibitor Replacement Therapy in the Acute and Prophylactic Treatment of Hereditary Angioedema.

    PubMed

    Henry Li, H; Riedl, Marc; Kashkin, Jay

    2018-06-16

    In the vast majority of patients with hereditary angioedema (HAE), angioedema attacks are due to the quantitative or functional deficiency of C1-esterase inhibitor (C1-INH), which leads to increased vascular permeability and unregulated release of bradykinin. Exogenous administration of C1-INH is a rational way to restore the concentration and functional activity of this protein, regulate the release of bradykinin, and attenuate or prevent subcutaneous and submucosal edema associated with HAE. Recent international guidelines for the management of HAE include C1-INH as an option for acute treatment of HAE. In addition, these guidelines recommend C1-INH as first-line treatment for long-term prophylaxis and as the therapy of choice for short-term/preprocedural prophylaxis. Several C1-INH products are available, with approved indications varying across regions. For the acute treatment of HAE, both plasma-derived and recombinant C1-INH formulations have been shown to be effective and well tolerated in adolescents and adults with HAE, with onset of relief within 30 min to a few hours. Plasma-derived C1-INH is approved for use in children, and recombinant C1-INH is being evaluated in this population. Intravenous (IV) and subcutaneous (SC) formulations of C1-INH have been approved for routine prophylaxis to prevent HAE attacks in adolescents and adults. Both formulations when administered twice weekly have been shown to reduce the frequency and severity of HAE attacks. The SC formulation of C1-INH obviates the need for repeated venous access and may facilitate self-administration of HAE prophylaxis at home, as recommended in HAE treatment guidelines. As with most rare diseases, the costs of HAE treatment are high; however, the development of additional acute and prophylactic medications for HAE may result in competitive pricing and help drive down the costs of HAE treatment.

  8. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation.

    PubMed

    Jones, Robert A; Robinson, Tyler J; Liu, Jeff C; Shrestha, Mariusz; Voisin, Veronique; Ju, YoungJun; Chung, Philip E D; Pellecchia, Giovanna; Fell, Victoria L; Bae, SooIn; Muthuswamy, Lakshmi; Datti, Alessandro; Egan, Sean E; Jiang, Zhe; Leone, Gustavo; Bader, Gary D; Schimmer, Aaron; Zacksenhaus, Eldad

    2016-10-03

    Triple-negative breast cancer (TNBC) includes basal-like and claudin-low subtypes for which no specific treatment is currently available. Although the retinoblastoma tumor-suppressor gene (RB1) is frequently lost together with TP53 in TNBC, it is not directly targetable. There is thus great interest in identifying vulnerabilities downstream of RB1 that can be therapeutically exploited. Here, we determined that combined inactivation of murine Rb and p53 in diverse mammary epithelial cells induced claudin-low-like TNBC with Met, Birc2/3-Mmp13-Yap1, and Pvt1-Myc amplifications. Gene set enrichment analysis revealed that Rb/p53-deficient tumors showed elevated expression of the mitochondrial protein translation (MPT) gene pathway relative to tumors harboring p53 deletion alone. Accordingly, bioinformatic, functional, and biochemical analyses showed that RB1-E2F complexes bind to MPT gene promoters to regulate transcription and control MPT. Additionally, a screen of US Food and Drug Administration-approved (FDA-approved) drugs identified the MPT antagonist tigecycline (TIG) as a potent inhibitor of Rb/p53-deficient tumor cell proliferation. TIG preferentially suppressed RB1-deficient TNBC cell proliferation, targeted both the bulk and cancer stem cell fraction, and strongly attenuated xenograft growth. It also cooperated with sulfasalazine, an FDA-approved inhibitor of cystine xCT antiporter, in culture and xenograft assays. Our results suggest that RB1 deficiency promotes cancer cell proliferation in part by enhancing mitochondrial function and identify TIG as a clinically approved drug for RB1-deficient TNBC.

  9. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation

    PubMed Central

    Jones, Robert A.; Robinson, Tyler J.; Liu, Jeff C.; Shrestha, Mariusz; Voisin, Veronique; Ju, YoungJun; Chung, Philip E.D.; Pellecchia, Giovanna; Fell, Victoria L.; Bae, SooIn; Muthuswamy, Lakshmi; Egan, Sean E.; Jiang, Zhe; Leone, Gustavo; Bader, Gary D.; Schimmer, Aaron

    2016-01-01

    Triple-negative breast cancer (TNBC) includes basal-like and claudin-low subtypes for which no specific treatment is currently available. Although the retinoblastoma tumor-suppressor gene (RB1) is frequently lost together with TP53 in TNBC, it is not directly targetable. There is thus great interest in identifying vulnerabilities downstream of RB1 that can be therapeutically exploited. Here, we determined that combined inactivation of murine Rb and p53 in diverse mammary epithelial cells induced claudin-low–like TNBC with Met, Birc2/3-Mmp13-Yap1, and Pvt1-Myc amplifications. Gene set enrichment analysis revealed that Rb/p53-deficient tumors showed elevated expression of the mitochondrial protein translation (MPT) gene pathway relative to tumors harboring p53 deletion alone. Accordingly, bioinformatic, functional, and biochemical analyses showed that RB1-E2F complexes bind to MPT gene promoters to regulate transcription and control MPT. Additionally, a screen of US Food and Drug Administration–approved (FDA-approved) drugs identified the MPT antagonist tigecycline (TIG) as a potent inhibitor of Rb/p53-deficient tumor cell proliferation. TIG preferentially suppressed RB1-deficient TNBC cell proliferation, targeted both the bulk and cancer stem cell fraction, and strongly attenuated xenograft growth. It also cooperated with sulfasalazine, an FDA-approved inhibitor of cystine xCT antiporter, in culture and xenograft assays. Our results suggest that RB1 deficiency promotes cancer cell proliferation in part by enhancing mitochondrial function and identify TIG as a clinically approved drug for RB1-deficient TNBC. PMID:27571409

  10. Prevalence of hereditary properdin, C7 and C8 deficiencies in patients with meningococcal infections.

    PubMed

    Schlesinger, M; Nave, Z; Levy, Y; Slater, P E; Fishelson, Z

    1990-09-01

    High incidence of hereditary complement (C) deficiencies was found among 101 patients who had a meningococcal disease. This study revealed 11 non-related patients with complete C deficiency: five deficient in C7, three in C8, two in properdin and one in C2. Additional C-deficient individuals, most of them with no history of severe bacterial infections, were detected in family studies. The C8-deficient patients were found to have a selective deficiency of the C8-beta subunit and a reduced expression of the alpha/gamma subunit. Only a few families with properdin deficiency have been described so far. However, it is likely that frequent analysis of the activity of the alternative C pathway in survivors of severe bacterial infections will disclose numerous properdin-deficient patients. All our C7-, C8- and properdin-deficient patients are Sephardic Jews whose families originated from Morocco, Yemen (C7 and C8 deficient) or Tunisia (properdin deficient). This and other findings indicate that the type of complement abnormality found in association with meningococcal infections varies with the ethnic origin of the patient.

  11. Trafficking of cholesterol from cell bodies to distal axons in Niemann Pick C1-deficient neurons.

    PubMed

    Karten, Barbara; Vance, Dennis E; Campenot, Robert B; Vance, Jean E

    2003-02-07

    Niemann Pick type C (NPC) disease is a progressive neurodegenerative disorder. In cells lacking functional NPC1 protein, endocytosed cholesterol accumulates in late endosomes/lysosomes. We utilized primary neuronal cultures in which cell bodies and distal axons reside in separate compartments to investigate the requirement of NPC1 protein for transport of cholesterol from cell bodies to distal axons. We have recently observed that in NPC1-deficient neurons compared with wild-type neurons, cholesterol accumulates in cell bodies but is reduced in distal axons (Karten, B., Vance, D. E., Campenot, R. B., and Vance, J. E. (2002) J. Neurochem. 83, 1154-1163). We now show that NPC1 protein is expressed in both cell bodies and distal axons. In NPC1-deficient neurons, cholesterol delivered to cell bodies from low density lipoproteins (LDLs), high density lipoproteins, or cyclodextrin complexes was transported into axons in normal amounts, whereas transport of endogenously synthesized cholesterol was impaired. Inhibition of cholesterol synthesis with pravastatin in wild-type and NPC1-deficient neurons reduced axonal growth. However, LDLs restored a normal rate of growth to wild-type but not NPC1-deficient neurons treated with pravastatin. Thus, although LDL cholesterol is transported into axons of NPC1-deficient neurons, this source of cholesterol does not sustain normal axonal growth. Over the lifespan of NPC1-deficient neurons, these defects in cholesterol transport might be responsible for the observed altered distribution of cholesterol between cell bodies and axons and, consequently, might contribute to the neurological dysfunction in NPC disease.

  12. Inhibitor of Differentiation/DNA Binding 1 (ID1) Inhibits Etoposide-induced Apoptosis in a c-Jun/c-Fos-dependent Manner.

    PubMed

    Zhao, Yahui; Luo, Aiping; Li, Sheng; Zhang, Wei; Chen, Hongyan; Li, Yi; Ding, Fang; Huang, Furong; Liu, Zhihua

    2016-03-25

    ID1 (inhibitor of differentiation/DNA binding 1) acts an important role in metastasis, tumorigenesis, and maintenance of cell viability. It has been shown that the up-regulation of ID1 is correlated with poor prognosis and the resistance to chemotherapy of human cancers. However, the underlying molecular mechanism remains elusive. Here, we determined for the first time that up-regulating ID1 upon etoposide activation was mediated through AP-1 binding sites within theID1promoter and confirmed that ID1 enhanced cell resistance to DNA damage-induced apoptosis in esophageal squamous cell carcinoma cells. Ablation of c-Jun/c-Fos or ID1 expression enhanced etoposide-mediated apoptosis through increasing activity of caspase 3 and PARP cleavage. Moreover, c-Jun/c-Fos and ID1 were positively correlated in human cancers. More importantly, simultaneous high expression of ID1 and c-Jun or c-Fos was correlated with poor survival in cancer patients. Collectively, we demonstrate the importance of c-Jun/c-Fos-ID1 signaling pathway in chemoresistance of esophageal cancer cells and provide considerable insight into understanding the underlying molecular mechanisms in esophageal squamous cell carcinoma cell biology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Combined vitamin C and vitamin E deficiency worsens early atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Babaev, Vladimir R; Li, Liying; Shah, Sanket; Fazio, Sergio; Linton, MacRae F; May, James M

    2010-09-01

    To assess the role of combined deficiencies of vitamins C and E on the earliest stages of atherosclerosis (an inflammatory condition associated with oxidative stress), 4 combinations of vitamin supplementation (low C/low E, low C/high E, high C/low E, and high C/high E) were studied in atherosclerosis-prone apolipoprotein E-deficient mice also unable to synthesize their own vitamin C (gulonolactone oxidase(-/-)); and to evaluate the effect of a more severe depletion of vitamin C alone in a second experiment using gulonolactone oxidase(-/-) mice carrying the hemizygous deletion of SVCT2 (the vitamin C transporter). After 8 weeks of a high-fat diet (16% lard and 0.2% cholesterol), atherosclerosis developed in the aortic sinus areas of mice in all diet groups. Each vitamin-deficient diet significantly decreased liver and brain contents of the corresponding vitamin. Combined deficiency of both vitamins increased lipid peroxidation, doubled plaque size, and increased plaque macrophage content by 2- to 3-fold in male mice, although only plaque macrophage content was increased in female mice. A more severe deficiency of vitamin C in gulonolactone oxidase(-/-) mice with defective cellular uptake of vitamin C increased both oxidative stress and atherosclerosis in apolipoprotein E(-/-) mice compared with littermates receiving a diet replete in vitamin C, again most clearly in males. Combined deficiencies of vitamins E and C are required to worsen early atherosclerosis in an apolipoprotein E-deficient mouse model. However, a more severe cellular deficiency of vitamin C alone promotes atherosclerosis when vitamin E is replete.

  14. High-affinity, noninhibitory pathogenic C1 domain antibodies are present in patients with hemophilia A and inhibitors.

    PubMed

    Batsuli, Glaivy; Deng, Wei; Healey, John F; Parker, Ernest T; Baldwin, W Hunter; Cox, Courtney; Nguyen, Brenda; Kahle, Joerg; Königs, Christoph; Li, Renhao; Lollar, Pete; Meeks, Shannon L

    2016-10-20

    Inhibitor formation in hemophilia A is the most feared treatment-related complication of factor VIII (fVIII) therapy. Most inhibitor patients with hemophilia A develop antibodies against the fVIII A2 and C2 domains. Recent evidence demonstrates that the C1 domain contributes to the inhibitor response. Inhibitory anti-C1 monoclonal antibodies (mAbs) have been identified that bind to putative phospholipid and von Willebrand factor (VWF) binding epitopes and block endocytosis of fVIII by antigen presenting cells. We now demonstrate by competitive enzyme-linked immunosorbent assay and hydrogen-deuterium exchange mass spectrometry that 7 of 9 anti-human C1 mAbs tested recognize an epitope distinct from the C1 phospholipid binding site. These mAbs, designated group A, display high binding affinities for fVIII, weakly inhibit fVIII procoagulant activity, poorly inhibit fVIII binding to phospholipid, and exhibit heterogeneity with respect to blocking fVIII binding to VWF. Another mAb, designated group B, inhibits fVIII procoagulant activity, fVIII binding to VWF and phospholipid, fVIIIa incorporation into the intrinsic Xase complex, thrombin generation in plasma, and fVIII uptake by dendritic cells. Group A and B epitopes are distinct from the epitope recognized by the canonical, human-derived inhibitory anti-C1 mAb, KM33, whose epitope overlaps both groups A and B. Antibodies recognizing group A and B epitopes are present in inhibitor plasmas from patients with hemophilia A. Additionally, group A and B mAbs increase fVIII clearance and are pathogenic in a hemophilia A mouse tail snip bleeding model. Group A anti-C1 mAbs represent the first identification of pathogenic, weakly inhibitory antibodies that increase fVIII clearance. © 2016 by The American Society of Hematology.

  15. High-affinity, noninhibitory pathogenic C1 domain antibodies are present in patients with hemophilia A and inhibitors

    PubMed Central

    Batsuli, Glaivy; Deng, Wei; Healey, John F.; Parker, Ernest T.; Baldwin, W. Hunter; Cox, Courtney; Nguyen, Brenda; Kahle, Joerg; Königs, Christoph; Li, Renhao; Lollar, Pete

    2016-01-01

    Inhibitor formation in hemophilia A is the most feared treatment-related complication of factor VIII (fVIII) therapy. Most inhibitor patients with hemophilia A develop antibodies against the fVIII A2 and C2 domains. Recent evidence demonstrates that the C1 domain contributes to the inhibitor response. Inhibitory anti-C1 monoclonal antibodies (mAbs) have been identified that bind to putative phospholipid and von Willebrand factor (VWF) binding epitopes and block endocytosis of fVIII by antigen presenting cells. We now demonstrate by competitive enzyme-linked immunosorbent assay and hydrogen-deuterium exchange mass spectrometry that 7 of 9 anti-human C1 mAbs tested recognize an epitope distinct from the C1 phospholipid binding site. These mAbs, designated group A, display high binding affinities for fVIII, weakly inhibit fVIII procoagulant activity, poorly inhibit fVIII binding to phospholipid, and exhibit heterogeneity with respect to blocking fVIII binding to VWF. Another mAb, designated group B, inhibits fVIII procoagulant activity, fVIII binding to VWF and phospholipid, fVIIIa incorporation into the intrinsic Xase complex, thrombin generation in plasma, and fVIII uptake by dendritic cells. Group A and B epitopes are distinct from the epitope recognized by the canonical, human-derived inhibitory anti-C1 mAb, KM33, whose epitope overlaps both groups A and B. Antibodies recognizing group A and B epitopes are present in inhibitor plasmas from patients with hemophilia A. Additionally, group A and B mAbs increase fVIII clearance and are pathogenic in a hemophilia A mouse tail snip bleeding model. Group A anti-C1 mAbs represent the first identification of pathogenic, weakly inhibitory antibodies that increase fVIII clearance. PMID:27381905

  16. The effects of weekly augmentation therapy in patients with PiZZ α1-antitrypsin deficiency

    PubMed Central

    Schmid, ST; Koepke, J; Dresel, M; Hattesohl, A; Frenzel, E; Perez, J; Lomas, DA; Miranda, E; Greulich, T; Noeske, S; Wencker, M; Teschler, H; Vogelmeier, C; Janciauskiene, S; Koczulla, AR

    2012-01-01

    Background The major concept behind augmentation therapy with human α1-antitrypsin (AAT) is to raise the levels of AAT in patients with protease inhibitor phenotype ZZ (Glu342Lys)-inherited AAT deficiency and to protect lung tissues from proteolysis and progression of emphysema. Objective To evaluate the short-term effects of augmentation therapy (Prolastin®) on plasma levels of AAT, C-reactive protein, and chemokines/cytokines. Materials and methods Serum and exhaled breath condensate were collected from individuals with protease inhibitor phenotype ZZ AAT deficiency-related emphysema (n = 12) on the first, third, and seventh day after the infusion of intravenous Prolastin. Concentrations of total and polymeric AAT, interleukin-8 (IL-8), monocyte chemotactic protein-1, IL-6, tumor necrosis factor-α, vascular endothelial growth factor, and C-reactive protein were determined. Blood neutrophils and primary epithelial cells were also exposed to Prolastin (1 mg/mL). Results There were significant fluctuations in serum (but not in exhaled breath condensate) levels of AAT polymers, IL-8, monocyte chemotactic protein-1, IL-6, tumor necrosis factor-α, and vascular endothelial growth factor within a week of augmentation therapy. In general, augmented individuals had higher AAT and lower serum levels of IL-8 than nonaugmented subjects. Prolastin added for 3 hours to neutrophils from protease inhibitor phenotype ZZ individuals in vitro reduced IL-8 release but showed no effect on cytokine/chemokine release from human bronchial epithelial cells. Conclusion Within a week, augmentation with Prolastin induced fluctuations in serum levels of AAT polymers and cytokine/chemokines but specifically lowered IL-8 levels. It remains to be determined whether these effects are related to the Prolastin preparation per se or to the therapeutic efficacy of augmentation with AAT. PMID:23055718

  17. Combined Vitamin C and Vitamin E Deficiency Worsens Early Atherosclerosis in ApoE-Deficient Mice

    PubMed Central

    Babaev, Vladimir R.; Li, Liying; Shah, Sanket; Fazio, Sergio; Linton, MacRae F.; May, James M.

    2010-01-01

    Objective Atherosclerosis is an inflammatory condition associated with oxidative stress, but controversy persists regarding whether antioxidants such as vitamins C and E are preventative. To assess the role of combined deficiencies of vitamins C and E on the earliest stages of atherosclerosis, four combinations of vitamin supplementation (Low C/Low E, Low C/High E, High C/Low E, High C/High E) were studied in atherosclerosis-prone apolipoprotein E (apoE)-deficient mice also unable to synthesize their own vitamin C (gulo−/−). The effect of a more severe depletion of vitamin C alone was evaluated in a second experiment using gulo−/− mice carrying the hemizygous deletion of SVCT2, the vitamin C transporter. Methods and Results After 8 weeks on a high-fat diet (16% lard, 0.2% cholesterol), atherosclerosis developed in the aortic sinus areas of mice in all diet groups. Each vitamin-deficient diet significantly decreased liver and brain contents of the corresponding vitamin. Combined deficiency of both vitamins increased lipid peroxidation, doubled plaque size, and increased plaque macrophage content by 2-3-fold in males, although only plaque macrophage content was increased in females. A more severe deficiency of vitamin C in gulo−/− mice with defective cellular uptake of vitamin C increased both oxidative stress and atherosclerosis in apoE−/− mice compared to littermates on a diet replete in vitamin C, again most clearly in males. Conclusion Combined vitamin E and C deficiencies are required to worsen early atherosclerosis in an apoE-deficient mouse model. However, a more severe cellular deficiency of vitamin C alone promotes atherosclerosis when vitamin E is replete. PMID:20558818

  18. 21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  19. 21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  20. 21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  1. 21 CFR 866.5250 - Complement C 2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  2. 21 CFR 866.5250 - Complement C 2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  3. The combination of two Sle2 lupus-susceptibility loci and Cdkn2c deficiency leads to T cell-mediated pathology in B6.Faslpr mice

    PubMed Central

    Xu, Zhiwei; Croker, Byron P.; Morel, Laurence

    2013-01-01

    The NZM2410 Sle2c1 lupus susceptibility locus is responsible for the expansion of the B1a cell compartment and for the induction of T-cell induced renal and skin pathology on a CD95 deficient (Faslpr)-background. We have previously shown that deficiency in cyclin-dependent kinase inhibitor p18INK4c (p18) was responsible for the B1a cell expansion but was not sufficient to account for the pathology in B6.lpr mice. This study was designed to map the additional Sle2c1 loci responsible for autoimmune pathology when co-expressed with CD95 deficiency. The production, fine-mapping and phenotypic characterization of five recombinant intervals indicated that three interacting sub-loci were responsive for inducting autoimmune pathogenesis in B6.lpr mice. One of these sub-loci corresponds most likely to p18-deficiency. Another major locus mapping to a 2 Mb region at the telomeric end of Sle2c1 is necessary to both renal and skin pathology. Finally, a third locus centromeric to p18 enhances the severity of lupus nephritis. These results provide new insights into the genetic interactions leading to SLE disease presentation, and represent a major step towards the identification of novel susceptibility genes involved in T-cell mediated organ damage. PMID:23698709

  4. Dysfunctional C8 beta chain in patients with C8 deficiency.

    PubMed

    Tschopp, J; Penea, F; Schifferli, J; Späth, P

    1986-12-01

    Two sera from unrelated individuals, each lacking C8 activity, were examined by Western blot analysis. Using antisera raised against whole C8, the two sera are shown to lack the C8 beta chain, indicating a C8 beta deficiency, which is frequently observed in cases of dysfunctional C8. In contrast, by means of a specific anti-C8-beta antiserum, a C8 beta-like polypeptide chain of apparently identical molecular weight compared to normal C8 beta was detected. Digestion of normal and dysfunctional C8 beta with Staphylococcus aureus V8 protease revealed distinct differences in the enzymatic digestion pattern. We conclude that the dysfunction in the C8 protein in these two patients resides in the dysfunctional C8 beta chain, and that this form of C8 deficiency is distinct from C8 deficiencies previously reported, in which one or both C8 subunits are lacking.

  5. FAD286, an aldosterone synthase inhibitor, reduced atherosclerosis and inflammation in apolipoprotein E-deficient mice.

    PubMed

    Gamliel-Lazarovich, Aviva; Gantman, Anna; Coleman, Raymond; Jeng, Arco Y; Kaplan, Marielle; Keidar, Shlomo

    2010-09-01

    Aldosterone is known to be involved in atherosclerosis and cardiovascular disease and blockade of its receptor was shown to improve cardiovascular function. It was, therefore, hypothesized that inhibition of aldosterone synthesis would also reduce atherosclerosis development. To test this hypothesis, we examined the effect of FAD286 (FAD), an aldosterone synthase inhibitor, on the development of atherosclerosis in spontaneous atherosclerotic apolipoprotein E-deficient mice. Mice were divided into three treatment groups: normal diet, low-salt diet (LSD) and LSD treated with FAD at 30 mg/kg per day (LSD + FAD) for 10 weeks. Histomorphometry of the aortas obtained from these mice showed that atherosclerotic lesion area increased by three-fold under LSD compared with normal diet and FAD significantly reduced lesion area to values similar to normal diet. Changes in atherosclerosis were paralleled by changes in the expression of the inflammation markers (C-reactive protein, monocyte chemotactic protein-1, interleukin-6, nuclear factor kappa B and intercellular adhesion molecule-1) in peritoneal macrophages obtained from these mice. Surprisingly, whereas LSD increased serum or urine aldosterone levels, FAD did not alter these levels when evaluated at the end of the study. In J774A.1 macrophage-like cell line stimulated with lipopolysaccharide, FAD was shown to have a direct dose-dependent anti-inflammatory effect. In apolipoprotein E-deficient mice, FAD reduces atherosclerosis and inflammation. However, these actions appeared to be dissociated from its effect on inhibition of aldosterone synthesis.

  6. Allogeneic Hematopoietic Stem Cell Transplantation in the Treatment of Human C1q Deficiency: The Karolinska Experience.

    PubMed

    Olsson, Richard F; Hagelberg, Stefan; Schiller, Bodil; Ringdén, Olle; Truedsson, Lennart; Åhlin, Anders

    2016-06-01

    Human C1q deficiency is associated with systemic lupus erythematosus (SLE) and increased susceptibility to severe bacterial infections. These patients require extensive medical therapy and some develop treatment-resistant disease. Because C1q is produced by monocytes, it has been speculated that allogeneic hematopoietic stem cell transplantation (allo-HSCT) may cure this disorder. We have so far treated 5 patients with C1q deficiency. In 3 cases, SLE symptoms remained relatively mild after the start of medical therapy, but 2 patients developed treatment-resistant SLE, and we decided to pursue treatment with allo-HSCT. For this purpose, we chose a conditioning regimen composed of treosulfan (14 g/m) and fludarabine (30 mg/m) started on day -6 and given for 3 and 5 consecutive days, respectively. Thymoglobulin was given at a cumulative dose of 8 mg/kg, and graft-versus-host disease prophylaxis was composed of cyclosporine and methotrexate. A 9-year-old boy and a 12-year-old girl with refractory SLE restored C1q production after allo-HSCT. This resulted in normal functional properties of the classical complement pathway followed by reduced severity of SLE symptoms. The boy developed posttransplant lymphoproliferative disease, which resolved after treatment with rituximab and donor lymphocyte infusion. Unfortunately, donor lymphocyte infusion induced severe cortisone-resistant gastrointestinal graft-versus-host disease, and the patient died from multiple organ failure 4 months after transplantation. The girl is doing well 33 months after transplantation, and clinically, all signs of SLE have resolved. Allo-HSCT can cure SLE in human C1q deficiency and should be considered early in subjects resistant to medical therapy.

  7. Inherited human complement C5 deficiency: Nonsense mutations in exons 1 (Gln{sup 1} to Stop) and 36 (Arg{sup 1458} to Stop) and compound heterozygosity in three African-American families

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X.; Fleischer, D.T.; Whitehead, W.T.

    1995-05-15

    Hereditary C5 deficiency has been reported in several families of different ethnic backgrounds and from different geographic regions, but the molecular genetic defect causing C5 deficiency has not been delineated in any of them. To examine the molecular basis of C5 deficiency in the African-American population, the exons and intron/exon boundaries of the C5 structural genes from three C5-deficient (C5D) African-American families were sequenced, revealing two nonsense mutations. The nonsense mutations are located in exon 1 (C{sup 84}AG to TAG) in two of the C5D families (Rhode Island and North Carolina) and in exon 36 (C{sup 4521}GA to TGA) inmore » the third C5D family (New York). The exon 1 and 36 mutations are contained in codons that encode the first amino acid of the C5 {beta}-chain (Gln{sup 1} to Stop) and residue 1458 in the {alpha}-chain (Arg{sup 1458} to Stop), respectively. Allele-specific PCR and sequence analyses demonstrated that the exon 1 mutation is present in only one of the C5 null genes in both the Rhode Island and North Carolina families, and the exon 36 mutation is contained in only one C5 null gene in the New York family. Neither of the nonsense mutations was found in the European or Caucasian-American C5D individuals examined. Collectively, these data indicate that: (1) C5 deficiency is caused by several different molecular genetic defects, (2) C5 deficiency in the African-American population can be explained in part by two distinct nonsense mutations in exons 1 and 36, and (3) compound heterozygosity exists in all of the reported African-American C5D families. 44 refs., 5 figs., 1 tab.« less

  8. Simultaneous occurrence of hereditary C6 and C2 deficiency in a French-Canadian family.

    PubMed

    Delâge, J M; Lehner-Netsch, G; Lafleur, R; Simard, J; Brun, G; Prochazka, E

    1979-06-01

    The sera of four sisters were found to lack the sixth component of complement (C6) and the serum of one was also partially deficient in the second component (C2). Two other blood relatives were found to be heterozygous for both deficiencies, while only one sibling had normal values. The father of these eight siblings was heterozygous for C2D and C6D and in the third generation, six children were heterozygous for C6 deficiency was treated for chronic active brucel-transmitted; the C6 deficiency was not linked to the HLA system, while the C2-deficiency segregated with the haplotype A10,B18. The proband, homozygous for C6 deficiency was treated for chronic active Brucellosis and in another sibling with C6 deficiency, toxoplasmosis was diagnosed. Neither bleeding disorders nor a tendency to collagen diseases have been observed and the opsonic activity was normal in the sera of all family members.

  9. Simultaneous occurrence of hereditary C6 and C2 deficiency in a French-Canadian family.

    PubMed Central

    Delâge, J M; Lehner-Netsch, G; Lafleur, R; Simard, J; Brun, G; Prochazka, E

    1979-01-01

    The sera of four sisters were found to lack the sixth component of complement (C6) and the serum of one was also partially deficient in the second component (C2). Two other blood relatives were found to be heterozygous for both deficiencies, while only one sibling had normal values. The father of these eight siblings was heterozygous for C2D and C6D and in the third generation, six children were heterozygous for C6 deficiency was treated for chronic active brucel-transmitted; the C6 deficiency was not linked to the HLA system, while the C2-deficiency segregated with the haplotype A10,B18. The proband, homozygous for C6 deficiency was treated for chronic active Brucellosis and in another sibling with C6 deficiency, toxoplasmosis was diagnosed. Neither bleeding disorders nor a tendency to collagen diseases have been observed and the opsonic activity was normal in the sera of all family members. PMID:468307

  10. The thrombogenicity of C1 esterase inhibitor (human): review of the evidence.

    PubMed

    Crowther, Mark; Bauer, Kenneth A; Kaplan, Allen P

    2014-01-01

    Thromboembolic events associated with human plasma-derived C1 esterase inhibitor (C1-INH) use in patients with hereditary angioedema (HAE) have been reported in the U.S. Food and Drug Administration (FDA) Adverse Event Reporting System database. The purpose of this article is to review and assess the strength of available evidence regarding the thrombogenicity of human plasma-derived C1-INH. A PubMed search was conducted of English language articles from January 1990 to December 2013 reporting the thrombogenicity of C1-INH. Original research articles were selected if the following criteria were met: (1) C1-INH was the focus of the study and (2) the authors addressed the pro- or antithrombotic potential of C1-INH. Additional articles on the clinical use of C1-INH in disease states other than HAE were obtained using reference lists of selected articles. Pivotal studies and prescribing information for C1-INH products were also reviewed. Limited animal and clinical data suggest that C1-INH, particularly at high doses of up to 500 U/kg (compared with the U.S. FDA-approved 20-U/kg dose), may be prothrombotic. In contrast, C1-INH has been used in some patients with myocardial infarction, ischemic stroke, sepsis, and capillary leak syndrome at off-label supratherapeutic doses (up to 100 U/kg) without evidence of a thrombogenic effect. Based on our review, thromboembolic events reported with C1-INH use are rare and patients with HAE who experienced such events often have underlying thromboembolic risk factors.

  11. Novel mechanisms of PARP inhibitor resistance in BRCA1 deficient cancers

    DTIC Science & Technology

    2016-08-01

    cells isolated from a BRCA1-deficient ovarian cancer patient who progressed after Olaparib treatment. DNA fiber analysis revealed that HU- induced...treatment of the tumor cells increased fork degradation. In contrast, tumor cells isolated from a non-BRCA1/2 ovarian cancer patient did not display fork... cells were used. Circulating tumor cells (CTCs) derived from a breast cancer patient harboring a BRCA2 mutation, but shown to be resistant to PARPi

  12. Potentiation of C1-esterase inhibitor by heparin and interactions with C1s protease as assessed by surface plasmon resonance.

    PubMed

    Rajabi, Mohsen; Struble, Evi; Zhou, Zhaohua; Karnaukhova, Elena

    2012-01-01

    Human C1-esterase inhibitor (C1-INH) is a multifunctional plasma protein with a wide range of inhibitory and non-inhibitory properties, mainly recognized as a key down-regulator of the complement and contact cascades. The potentiation of C1-INH by heparin and other glycosaminoglycans (GAGs) regulates a broad spectrum of C1-INH activities in vivo both in normal and disease states. SCOPE OF RESEARCH: We have studied the potentiation of human C1-INH by heparin using Surface Plasmon Resonance (SPR), circular dichroism (CD) and a functional assay. To advance a SPR for multiple-unit interaction studies of C1-INH we have developed a novel (consecutive double capture) approach exploring different immobilization and layout. Our SPR experiments conducted in three different design versions showed marked acceleration in C1-INH interactions with complement protease C1s as a result of potentiation of C1-INH by heparin (from 5- to 11-fold increase of the association rate). Far-UV CD studies suggested that heparin binding did not alter C1-INH secondary structure. Functional assay using chromogenic substrate confirmed that heparin does not affect the amidolytic activity of C1s, but does accelerate its consumption due to C1-INH potentiation. This is the first report that directly demonstrates a significant acceleration of the C1-INH interactions with C1s due to heparin by using a consecutive double capture SPR approach. The results of this study may be useful for further C-INH therapeutic development, ultimately for the enhancement of current C1-INH replacement therapies. Published by Elsevier B.V.

  13. Combined total deficiency of C7 and C4B with systemic lupus erythematosus (SLE).

    PubMed Central

    Segurado, O G; Arnaiz-Villena, A A; Iglesias-Casarrubios, P; Martinez-Laso, J; Vicario, J L; Fontan, G; Lopez-Trascasa, M

    1992-01-01

    The first inherited combined total deficiency of C7 and C4B complement components associated with SLE is described in a young female. Functional C7 assays showed a homozygous C7 deficiency in the propositus and her sister, and an heterozygous one in their parents. C4 molecular analyses showed that both the propositus and her mother had two HLA haplotypes carrying only C4A-specific DNA sequences and a normal C4 gene number. Thus, only C4A proteins could be expressed, with resultant normal C4 serum levels. The coexistence of a combined complete C7 and C4B deficiency may therefore abrogate essential functions of the complement cascade presumably related to immune complex handling and solubilization despite an excess of circulating C4A. These findings challenge the putative pathophysiological roles of C4A and C4B and stress the need to perform both functional assays and C4 allotyping in patients with autoimmune pathology and low haemolytic activity without low serum levels of a classical pathway complement component. Images Fig. 1 Fig. 2 PMID:1347491

  14. A Novel SND1-BRAF Fusion Confers Resistance to c-Met Inhibitor PF-04217903 in GTL16 Cells though MAPK Activation

    PubMed Central

    Lee, Nathan V.; Lira, Maruja E.; Pavlicek, Adam; Ye, Jingjing; Buckman, Dana; Bagrodia, Shubha; Srinivasa, Sreesha P.; Zhao, Yongjun; Aparicio, Samuel; Rejto, Paul A.; Christensen, James G.; Ching, Keith A.

    2012-01-01

    Targeting cancers with amplified or abnormally activated c-Met (hepatocyte growth factor receptor) may have therapeutic benefit based on nonclinical and emerging clinical findings. However, the eventual emergence of drug resistant tumors motivates the pre-emptive identification of potential mechanisms of clinical resistance. We rendered a MET amplified gastric cancer cell line, GTL16, resistant to c-Met inhibition with prolonged exposure to a c-Met inhibitor, PF-04217903 (METi). Characterization of surviving cells identified an amplified chromosomal rearrangement between 7q32 and 7q34 which overexpresses a constitutively active SND1-BRAF fusion protein. In the resistant clones, hyperactivation of the downstream MAPK pathway via SND1-BRAF conferred resistance to c-Met receptor tyrosine kinase inhibition. Combination treatment with METi and a RAF inhibitor, PF-04880594 (RAFi) inhibited ERK activation and circumvented resistance to either single agent. Alternatively, treatment with a MEK inhibitor, PD-0325901 (MEKi) alone effectively blocked ERK phosphorylation and inhibited cell growth. Our results suggest that combination of a c-Met tyrosine kinase inhibitor with a BRAF or a MEK inhibitor may be effective in treating resistant tumors that use activated BRAF to escape suppression of c-Met signaling. PMID:22745804

  15. Pharmacological Characterization of a Novel Bifunctional Aldo-Keto Reductase 1C3 Inhibitor and Androgen Receptor Antagonist

    DTIC Science & Technology

    2013-10-01

    Novel Bifunctional Aldo -Keto Reductase 1C3 Inhibitor and Androgen Receptor Antagonist” PRINCIPAL INVESTIGATOR: ADEGOKE ADENIJI, Ph.D...therapeutic benefit relative to targeting either mechanism alone. Aldo -keto reductase 1C3 (AKR1C3) is highly upregulated in APC and is localized within...therapy of Abi with MDV3100 has been proposed as a way to reduce resistance. 14, 15 Aldo -keto reductase IC3 (AKR1C3, type 5 17β hydroxysteroid

  16. Regulation of T Cell Differentiation and Alloimmunity by the Cyclin-Dependent Kinase Inhibitor p18ink4c

    PubMed Central

    Rowell, Emily A.; Wang, Liqing; Chunder, Neelanjana; Hancock, Wayne W.; Wells, Andrew D.

    2014-01-01

    Cellular proliferation in response to mitogenic stimuli is negatively regulated by the Cip/Kip and the Ink4 families of cyclin-dependent kinase (CDK) inhibitors. Several of these proteins are elevated in anergic T cells, suggesting a potential role in the induction or maintenance of tolerance. Our previous studies showed that p27kip1 is required for the induction of T cell anergy and transplantation tolerance by costimulatory blockade, but a role for Ink4 proteins in these processes has not been established. Here we show that CD4+ T cells from mice genetically deficient for p18ink4c divide more rapidly than wild-type cells in response to antigenic, costimulatory and growth factor signals. However, this gain of proliferative function was accompanied by a moderate increase in the rate of cell death, and was accompanied by an overall defect in the generation of alloreactive IFNγ-producing effector cells. Consistent with this, p18ink4c-deficient T cells were unable to induce graft-vs-host disease in vivo, and p18ink4c deficiency cooperated with costimulatory blockade to significantly increase the survival of fully mismatched allografts in a cardiac transplantation model. While both p18ink4c and p27kip1 act to restrict T cell proliferation, p18ink4c exerts an opposite effect from p27kip1 on alloimmunity and organ transplant rejection, most likely by sustaining T cell survival and the development of effector function. Our studies point to additional important links between the cell cycle machinery and the processes of T cell differentiation, survival and tolerance. PMID:24614758

  17. Exposure-Response Model of Subcutaneous C1-Inhibitor Concentrate to Estimate the Risk of Attacks in Patients With Hereditary Angioedema.

    PubMed

    Zhang, Ying; Tortorici, Michael A; Pawaskar, Dipti; Pragst, Ingo; Machnig, Thomas; Hutmacher, Matthew; Zuraw, Bruce; Cicardi, Marco; Craig, Timothy; Longhurst, Hilary; Sidhu, Jagdev

    2018-03-01

    Subcutaneous C1-inhibitor (HAEGARDA, CSL Behring), is a US Food and Drug Administration (FDA)-approved, highly concentrated formulation of a plasma-derived C1-esterase inhibitor (C1-INH), which, in the phase III Clinical Studies for Optimal Management in Preventing Angioedema with Low-Volume Subcutaneous C1-inhibitor Replacement Therapy (COMPACT) trial, reduced the incidence of hereditary angioedema (HAE) attacks when given prophylactically. Data from the COMPACT trial were used to develop a repeated time-to-event model to characterize the timing and frequency of HAE attacks as a function of C1-INH activity, and then develop an exposure-response model to assess the relationship between C1-INH functional activity levels (C1-INH(f)) and the risk of an attack. The C1-INH(f) values of 33.1%, 40.3%, and 63.1% were predicted to correspond with 50%, 70%, and 90% reductions in the HAE attack risk, respectively, relative to no therapy. Based on trough C1-INH(f) values for the 40 IU/kg (40.2%) and 60 IU/kg (48.0%) C1-INH (SC) doses, the model predicted that 50% and 67% of the population, respectively, would see at least a 70% decrease in the risk of an attack. © 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  18. Targeting the disordered C-terminus of PTP1B with an allosteric inhibitor

    PubMed Central

    Krishnan, Navasona; Koveal, Dorothy; Miller, Daniel H.; Xue, Bin; Akshinthala, Sai Dipikaa; Kragelj, Jaka; Jensen, Malene Ringkjøbing; Gauss, Carla-Maria; Page, Rebecca; Blackledge, Martin; Muthuswamy, Senthil K.; Peti, Wolfgang; Tonks, Nicholas K.

    2014-01-01

    PTP1B, a validated therapeutic target for diabetes and obesity, plays a critical positive role in HER2 signaling in breast tumorigenesis. Efforts to develop therapeutic inhibitors of PTP1B have been frustrated by the chemical properties of the active site. We defined a novel mechanism of allosteric inhibition that targets the C-terminal, non-catalytic segment of PTP1B. We present the first ensemble structure of PTP1B containing this intrinsically disordered segment, within which we identified a binding site for the small molecule inhibitor, MSI-1436. We demonstrate binding to a second site close to the catalytic domain, with cooperative effects between the two sites locking PTP1B in an inactive state. MSI-1436 antagonized HER2 signaling, inhibited tumorigenesis in xenografts and abrogated metastasis in the NDL2 mouse model of breast cancer, validating inhibition of PTP1B as a therapeutic strategy in breast cancer. This new approach to inhibition of PTP1B emphasizes the potential of disordered segments of proteins as specific binding sites for therapeutic small molecules. PMID:24845231

  19. Alpha 1 antitrypsin to treat lung disease in alpha 1 antitrypsin deficiency: recent developments and clinical implications.

    PubMed

    Chapman, Kenneth R; Chorostowska-Wynimko, Joanna; Koczulla, A Rembert; Ferrarotti, Ilaria; McElvaney, Noel G

    2018-01-01

    Alpha 1 antitrypsin deficiency is a hereditary condition characterized by low alpha 1 proteinase inhibitor (also known as alpha 1 antitrypsin [AAT]) serum levels. Reduced levels of AAT allow abnormal degradation of lung tissue, which may ultimately lead to the development of early-onset emphysema. Intravenous infusion of AAT is the only therapeutic option that can be used to maintain levels above the protective threshold. Based on its biochemical efficacy, AAT replacement therapy was approved by the US Food and Drug administration in 1987. However, there remained considerable interest in selecting appropriate outcome measures that could confirm clinical efficacy in a randomized controlled trial setting. Using computed tomography as the primary measure of decline in lung density, the capacity for intravenously administered AAT replacement therapy to slow and modify the course of disease progression was demonstrated for the first time in the Randomized, Placebo-controlled Trial of Augmentation Therapy in Alpha-1 Proteinase Inhibitor Deficiency (RAPID) trial. Following these results, an expert review forum was held at the European Respiratory Society to discuss the findings of the RAPID trial program and how they may change the landscape of alpha 1 antitrypsin emphysema treatment. This review summarizes the results of the RAPID program and the implications for clinical considerations with respect to diagnosis, treatment and management of emphysema due to alpha 1 antitrypsin deficiency.

  20. Consensus Induced Fit Docking (cIFD): methodology, validation, and application to the discovery of novel Crm1 inhibitors

    NASA Astrophysics Data System (ADS)

    Kalid, Ori; Toledo Warshaviak, Dora; Shechter, Sharon; Sherman, Woody; Shacham, Sharon

    2012-11-01

    We present the Consensus Induced Fit Docking (cIFD) approach for adapting a protein binding site to accommodate multiple diverse ligands for virtual screening. This novel approach results in a single binding site structure that can bind diverse chemotypes and is thus highly useful for efficient structure-based virtual screening. We first describe the cIFD method and its validation on three targets that were previously shown to be challenging for docking programs (COX-2, estrogen receptor, and HIV reverse transcriptase). We then demonstrate the application of cIFD to the challenging discovery of irreversible Crm1 inhibitors. We report the identification of 33 novel Crm1 inhibitors, which resulted from the testing of 402 purchased compounds selected from a screening set containing 261,680 compounds. This corresponds to a hit rate of 8.2 %. The novel Crm1 inhibitors reveal diverse chemical structures, validating the utility of the cIFD method in a real-world drug discovery project. This approach offers a pragmatic way to implicitly account for protein flexibility without the additional computational costs of ensemble docking or including full protein flexibility during virtual screening.

  1. A Nampt inhibitor FK866 mimics vitamin B3 deficiency by causing senescence of human fibroblastic Hs68 cells via attenuation of NAD(+)-SIRT1 signaling.

    PubMed

    Song, Tuzz-Ying; Yeh, Shu-Lan; Hu, Miao-Lin; Chen, Mei-Yau; Yang, Nae-Cherng

    2015-12-01

    Vitamin B3 (niacin) deficiency can cause pellagra with symptoms of dermatitis, diarrhea and dementia. However, it is unclear whether the vitamin B3 deficiency causes human aging. FK866 (a Nampt inhibitor) can reduce intracellular NAD(+) level and induce senescence of human Hs68 cells. However, the mechanisms underlying FK866-induced senescence of Hs68 cells are unclear. In this study, we used FK866 to mimic the effects of vitamin B3 deficiency to reduce the NAD(+) level and investigated the mechanisms of FK866-induced senescence of Hs68 cells. We hypothesized that FK866 induced the senescence of Hs68 cells via an attenuation of NAD(+)-silent information regulator T1 (SIRT1) signaling. We found that FK866 induced cell senescence and diminished cellular NAD(+) levels and SIRT1 activity (detected by acetylation of p53), and these effects were dramatically antagonized by co-treatment with nicotinic acid, nicotinamide, or NAD(+). In contrast, the protein expression of SIRT1, AMP-activated protein kinase, mammalian target of rapamycin, and nicotinamide phosphoribosyltransferase (Nampt) was not affected by FK866. In addition, the role of GSH in the FK866-induced cells senescence may be limited, as N-acetylcysteine did not antagonize FK866-induced cell senescence. These results suggest that FK866 induces cell senescence via attenuation of NAD(+)-SIRT1 signaling. The effects of vitamin B3 deficiency on human aging warrant further investigation.

  2. Somatomedin C deficiency in Asian sisters.

    PubMed

    McGraw, M E; Price, D A; Hill, D J

    1986-12-01

    Two sisters of Asian origin showed typical clinical and biochemical features of primary somatomedin C (SM-C) deficiency (Laron dwarfism). Abnormalities of SM-C binding proteins were observed, one sister lacking the high molecular weight (150 Kd) protein.

  3. Exposure‐Response Model of Subcutaneous C1Inhibitor Concentrate to Estimate the Risk of Attacks in Patients With Hereditary Angioedema

    PubMed Central

    Tortorici, Michael A.; Pawaskar, Dipti; Pragst, Ingo; Machnig, Thomas; Hutmacher, Matthew; Zuraw, Bruce; Cicardi, Marco; Craig, Timothy; Longhurst, Hilary; Sidhu, Jagdev

    2018-01-01

    Subcutaneous C1inhibitor (HAEGARDA, CSL Behring), is a US Food and Drug Administration (FDA)‐approved, highly concentrated formulation of a plasma‐derived C1‐esterase inhibitor (C1‐INH), which, in the phase III Clinical Studies for Optimal Management in Preventing Angioedema with Low‐Volume Subcutaneous C1inhibitor Replacement Therapy (COMPACT) trial, reduced the incidence of hereditary angioedema (HAE) attacks when given prophylactically. Data from the COMPACT trial were used to develop a repeated time‐to‐event model to characterize the timing and frequency of HAE attacks as a function of C1‐INH activity, and then develop an exposure–response model to assess the relationship between C1‐INH functional activity levels (C1‐INH(f)) and the risk of an attack. The C1‐INH(f) values of 33.1%, 40.3%, and 63.1% were predicted to correspond with 50%, 70%, and 90% reductions in the HAE attack risk, respectively, relative to no therapy. Based on trough C1‐INH(f) values for the 40 IU/kg (40.2%) and 60 IU/kg (48.0%) C1‐INH (SC) doses, the model predicted that 50% and 67% of the population, respectively, would see at least a 70% decrease in the risk of an attack. PMID:29316335

  4. Chlamydia trachomatis can protect host cells against apoptosis in the absence of cellular Inhibitor of Apoptosis Proteins and Mcl-1.

    PubMed

    Ying, Songmin; Christian, Jan G; Paschen, Stefan A; Häcker, Georg

    2008-01-01

    Infection with Chlamydia protects mammalian host cells against apoptosis. Hypotheses have been proposed to explain this molecularly, including the up-regulation of host anti-apoptotic proteins such as cellular Inhibitor of Apoptosis Protein (IAP) 2 and the Bcl-2 protein Mcl-1. To test for the importance of these proteins, we used mouse embryonic fibroblasts from gene-targeted mice that were deficient in cIAP1, cIAP2, cIAP1/cIAP2, XIAP, or Mcl-1. Infection with Chlamydia trachomatis protected all cells equally well against apoptosis, which was induced either with tumour necrosis factor/cycloheximide (IAP-knock-out cells) or staurosporine (Mcl-1-knock-out). Therefore, these cellular anti-apoptotic proteins are not essential for apoptosis-protection by C. trachomatis.

  5. Plexin C1 deficiency permits synaptotagmin 7–mediated macrophage migration and enhances mammalian lung fibrosis

    PubMed Central

    Peng, Xueyan; Moore, Meagan; Mathur, Aditi; Zhou, Yang; Sun, Huanxing; Gan, Ye; Herazo-Maya, Jose D.; Kaminski, Naftali; Hu, Xinyuan; Pan, Hongyi; Ryu, Changwan; Osafo-Addo, Awo; Homer, Robert J.; Feghali-Bostwick, Carol; Fares, Wassim H.; Gulati, Mridu; Hu, Buqu; Lee, Chun-Geun; Elias, Jack A.; Herzog, Erica L.

    2016-01-01

    Pulmonary fibrosis is a progressive and often fatal condition that is believed to be partially orchestrated by macrophages. Mechanisms that control migration of these cells into and within the lung remain undefined. We evaluated the contributions of the semaphorin receptor, plexin C1 (PLXNC1), and the exocytic calcium sensor, synaptotagmin 7 (Syt7), in these processes. We evaluated the role of PLXNC1 in macrophage migration by using Boyden chambers and scratch tests, characterized its contribution to experimentally induced lung fibrosis in mice, and defined the mechanism for our observations. Our findings reveal that relative to control participants, patients with idiopathic pulmonary fibrosis demonstrate excessive monocyte migration and underexpression of PLXNC1 in the lungs and circulation, a finding that is recapitulated in the setting of scleroderma-related interstitial lung disease. Relative to wild type, PLXNC1−/− mouse macrophages are excessively migratory, and PLXNC1−/− mice show exacerbated collagen accumulation in response to either inhaled bleomycin or inducible lung targeted TGF-β1 overexpression. These findings are ameliorated by replacement of PLXNC1 on bone marrow–derived cells or by genetic deletion of Syt7. These data demonstrate the previously unrecognized observation that PLXNC1 deficiency permits Syt7-mediated macrophage migration and enhances mammalian lung fibrosis.—Peng, X., Moore, M., Mathur, A., Zhou, Y., Sun, H., Gan, Y., Herazo-Maya, J. D., Kaminski, N., Hu, X., Pan, H., Ryu, C., Osafo-Addo, A., Homer, R. J., Feghali-Bostwick, C., Fares, W. H., Gulati, M., Hu, B., Lee, C.-G., Elias, J. A., Herzog, E. L. Plexin C1 deficiency permits synaptotagmin 7–mediated macrophage migration and enhances mammalian lung fibrosis. PMID:27609773

  6. Molecular phylogeny of C1 inhibitor depicts two immunoglobulin-like domains fusion in fishes and ray-finned fishes specific intron insertion after separation from zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Abhishek, E-mail: akumar@bot.uni-kiel.de; Bhandari, Anita; Sarde, Sandeep J.

    Highlights: • C1 inhibitors of fishes have two Ig domains fused in the N-terminal end. • Spliceosomal introns gain in two Ig domains of selected ray-finned fishes. • C1 inhibitors gene is maintained from 450 MY on the same locus. • C1 inhibitors gene is missing in frog and lampreys. • C1 inhibitors of tetrapod and fishes differ in the RCL region. - Abstract: C1 inhibitor (C1IN) is a multi-facet serine protease inhibitor in the plasma cascades, inhibiting several proteases, notably, regulates both complement and contact system activation. Despite huge advancements in the understanding of C1IN based on biochemical propertiesmore » and its roles in the plasma cascades, the phylogenetic history of C1IN remains uncharacterized. To date, there is no comprehensive study illustrating the phylogenetic history of C1IN. Herein, we explored phylogenetic history of C1IN gene in vertebrates. Fishes have C1IN with two immunoglobulin like domains attached in the N-terminal region. The RCL regions of CIIN from fishes and tetrapod genomes have variations at the positions P2 and P1′. Gene structures of C1IN gene from selected ray-finned fishes varied in the Ig domain region with creation of novel intron splitting exon Im2 into Im2a and Im2b. This intron is limited to ray-finned fishes with genome size reduced below 1 Gb. Hence, we suggest that genome compaction and associated double-strand break repairs are behind this intron gain. This study reveals the evolutionary history of C1IN and confirmed that this gene remains the same locus for ∼450 MY in 52 vertebrates analysed, but it is not found in frogs and lampreys.« less

  7. Does Vitamin C Deficiency Affect Cognitive Development and Function?

    PubMed Central

    Hansen, Stine Normann; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2014-01-01

    Vitamin C is a pivotal antioxidant in the brain and has been reported to have numerous functions, including reactive oxygen species scavenging, neuromodulation, and involvement in angiogenesis. Absence of vitamin C in the brain has been shown to be detrimental to survival in newborn SVCT2(−/−) mice and perinatal deficiency have shown to reduce hippocampal volume and neuron number and cause decreased spatial cognition in guinea pigs, suggesting that maternal vitamin C deficiency could have severe consequences for the offspring. Furthermore, vitamin C deficiency has been proposed to play a role in age-related cognitive decline and in stroke risk and severity. The present review discusses the available literature on effects of vitamin C deficiency on the developing and aging brain with particular focus on in vivo experimentation and clinical studies. PMID:25244370

  8. Somatomedin C deficiency in Asian sisters.

    PubMed Central

    McGraw, M E; Price, D A; Hill, D J

    1986-01-01

    Two sisters of Asian origin showed typical clinical and biochemical features of primary somatomedin C (SM-C) deficiency (Laron dwarfism). Abnormalities of SM-C binding proteins were observed, one sister lacking the high molecular weight (150 Kd) protein. Images Figure PMID:2434036

  9. Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.

    PubMed

    Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L

    2008-05-02

    G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.

  10. Calpain-2 Compensation Promotes Angiotensin II-Induced Ascending and Abdominal Aortic Aneurysms in Calpain-1 Deficient Mice

    PubMed Central

    Subramanian, Venkateswaran; Moorleghen, Jessica J.; Balakrishnan, Anju; Howatt, Deborah A.; Chishti, Athar H.; Uchida, Haruhito A.

    2013-01-01

    Background and Objective Recently, we demonstrated that angiotensin II (AngII)-infusion profoundly increased both aortic protein and activity of calpains, calcium-activated cysteine proteases, in mice. In addition, pharmacological inhibition of calpain attenuated AngII-induced abdominal aortic aneurysm (AA) in mice. Recent studies have shown that AngII infusion into mice leads to aneurysmal formation localized to the ascending aorta. However, the precise functional contribution of calpain isoforms (-1 or -2) in AngII-induced abdominal AA formation is not known. Similarly, a functional role of calpain in AngII-induced ascending AA remains to be defined. Using BDA-410, an inhibitor of calpains, and calpain-1 genetic deficient mice, we examined the relative contribution of calpain isoforms in AngII-induced ascending and abdominal AA development. Methodology/Results To investigate the relative contribution of calpain-1 and -2 in development of AngII-induced AAs, male LDLr −/− mice that were either calpain-1 +/+ or −/− were fed a saturated fat-enriched diet and infused with AngII (1,000 ng/kg/min) for 4 weeks. Calpain-1 deficiency had no significant effect on body weight or blood pressure during AngII infusion. Moreover, calpain-1 deficiency showed no discernible effects on AngII-induced ascending and abdominal AAs. Interestingly, AngII infusion induced increased expression of calpain-2 protein, thus compensating for total calpain activity in aortas of calpain-1 deficient mice. Oral administration of BDA-410, a calpain inhibitor, along with AngII-infusion significantly attenuated AngII-induced ascending and abdominal AA formation in both calpain-1 +/+ and −/− mice as compared to vehicle administered mice. Furthermore, BDA-410 administration attenuated AngII-induced aortic medial hypertrophy and macrophage accumulation. Western blot and immunostaining analyses revealed BDA-410 administration attenuated AngII-induced C-terminal fragmentation of filamin A, an

  11. [Anaesthesic management of vaginal delivery in a parturient with C1 esterase deficiency].

    PubMed

    Libert, N; Schérier, S; Dubost, C; Franck, L; Rouquette, I; Tortosa, J-C; Rousseau, J-M

    2009-04-01

    Hereditary and acquired angioedema (HAE/AAE) are the clinical translation of a qualitative or a quantitative deficit of C1 esterase inhibitor (C1 INH). The frequency and severity of clinical manifestations vary greatly, ranging from a moderate swelling of the extremities to obstruction of upper airway. Anaesthesiologists and intensivists must be prepared to manage acute manifestations of this disease in case of life-threatening laryngeal edema. Surgery, physical trauma and labour are classical triggers of the disease. The anaesthesiologists should be aware of the drugs used as prophylaxis and treatment of acute attacks when considering labour and caesarean section. Androgens are contraindicated during pregnancy. If prophylaxis is required, tranexamic acid may be used with caution. The safest obstetric approach appears to be to administer a predelivery infusion of C1 INH concentrate. It is important to avoid manipulation of the airway as much as possible by relying on regional techniques. We report the case of a patient suffering from an HAE discovered during pregnancy. The management included administration of C1 INH during labor and early epidural analgesia for pain relief. A short review of the pathophysiology and therapeutic options follows.

  12. Missense mutations in SURF1 associated with deficient cytochrome c oxidase assembly in Leigh syndrome patients.

    PubMed

    Poyau, A; Buchet, K; Bouzidi, M F; Zabot, M T; Echenne, B; Yao, J; Shoubridge, E A; Godinot, C

    2000-02-01

    We have studied the fibroblasts of three patients suffering from Leigh syndrome associated with cytochrome c oxidase deficiency (LS-COX-). Their mitochondrial DNA was functional and all nuclear COX subunits had a normal sequence. The expression of transcripts encoding mitochondrial and nuclear COX subunits was normal or slightly increased. Similarly, the OXA1 transcript coding for a protein involved in COX assembly was increased. However, several COX-protein subunits were severely depressed, indicating deficient COX assembly. Surf1, a factor involved in COX biogenesis, was recently reported as mutated in LS-COX- patients, all mutations predicting a truncated protein. Sequence analysis of SURF1 gene in our three patients revealed seven heterozygous mutations, six of which were new : an insertion, a nonsense mutation, a splicing mutation of intron 7 in addition to three missense mutations. The mutation G385 A (Gly124-->Glu) changes a Gly that is strictly conserved in Surfl homologs of 12 species. The substitution G618 C (Asp202-->His), changing an Asp that is conserved only in mammals, appears to be a polymorphism. The mutation T751 C changes Ile246 to Thr, a position at which a hydrophobic amino acid is conserved in all eukaryotic and some bacterial species. Replacing Ile246 by Thr disrupts a predicted beta sheet structure present in all higher eukaryotes. COX activity could be restored in fibroblasts of the three patients by complementation with a retroviral vector containing normal SURF1 cDNA. These mutations identify domains essential to Surf1 protein structure and/or function.

  13. Insulin-Like Growth Factor-Type 1 Receptor Inhibitor NVP-AEW541 Enhances Radiosensitivity of PTEN Wild-Type but Not PTEN-Deficient Human Prostate Cancer Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isebaert, Sofie F., E-mail: sofie.isebaert@med.kuleuven.be; Swinnen, Johannes V.; McBride, William H.

    2011-09-01

    Purpose: During the past decade, many clinical trials with both monoclonal antibodies and small molecules that target the insulin-like growth factor-type 1 receptor (IGF-1R) have been launched. Despite the important role of IGF-1R signaling in radioresistance, studies of such agents in combination with radiotherapy are lagging behind. Therefore, the aim of this study was to investigate the effect of the small molecule IGF-1R kinase inhibitor NVP-AEW541 on the intrinsic radioresistance of prostate cancer cells. Methods and Materials: The effect of NVP-AEW541 on cell proliferation, cell viability, IGF-1R signaling, radiosensitivity, cell cycle distribution, and double strand break repair was determined inmore » three human prostate cancer cell lines (PC3, DU145, 22Rv1). Moreover, the importance of the PTEN pathway status was explored by means of transfection experiments with constitutively active Akt or inactive kinase-dead Akt. Results: NVP-AEW541 inhibited cell proliferation and decreased cell viability in a time-and dose-dependent manner in all three cell lines. Radiosensitization was observed in the PTEN wild-type cell lines DU145 and 22Rv1 but not in the PTEN-deficient PC3 cell line. NVP-AEW541-induced radiosensitization coincided with downregulation of phospho-Akt levels and high levels of residual double strand breaks. The importance of PTEN status in the radiosensitization effect was confirmed by transfection experiments with constitutively active Akt or inactive kinase-dead Akt. Conclusions: NVP-AEW541 enhances the effect of ionizing radiation in PTEN wild-type, but not in PTEN-deficient, prostate cancer cells. Proper patient selection based on the PTEN status of the tumor will be critical to the achievement of optimal results in clinical trials in which the combination of radiotherapy and this IGF-1R inhibitor is being explored.« less

  14. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition.

    PubMed

    Li, Bo; Ren, Hui; Yue, Ping; Chen, Mingwei; Khuri, Fadlo R; Sun, Shi-Yong

    2012-04-01

    API-1 (pyrido[2,3-d]pyrimidines) is a novel small-molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of cellular FLICE-inhibitory protein (c-FLIP) levels and TRAIL-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of death receptor 4 (DR4) or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1 but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Because other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity. 2012 AACR

  15. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition

    PubMed Central

    Li, Bo; Ren, Hui; Yue, Ping; Chen, Mingwei; Khuri, Fadlo R.; Sun, Shi-Yong

    2012-01-01

    API-1 is a novel small molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation, and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of c-FLIP levels and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of DR4 or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis, but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1, but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Since other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity. PMID:22345097

  16. Population pharmacokinetics of recombinant human C1 inhibitor in patients with hereditary angioedema.

    PubMed

    Farrell, Colm; Hayes, Siobhan; Relan, Anurag; van Amersfoort, Edwin S; Pijpstra, Rienk; Hack, C Erik

    2013-12-01

    To characterize the pharmacokinetics (PK) of recombinant human C1 inhibitor (rhC1INH) in healthy volunteers and hereditary angioedema (HAE) patients. Plasma levels of C1INH following 294 administrations of rhC1INH in 133 subjects were fitted using nonlinear mixed-effects modelling. The model was used to simulate maximal C1INH levels for the proposed dosing scheme. A one-compartment model with Michaelis-Menten elimination kinetics described the data. Baseline C1INH levels were 0.901 [95% confidence interval (CI): 0.839-0.968] and 0.176 U ml(-1) (95% CI: 0.154-0.200) in healthy volunteers and HAE patients, respectively. The volume of distribution of rhC1INH was 2.86 l (95% CI: 2.68-3.03). The maximal rate of elimination and the concentration corresponding to half this maximal rate were 1.63 U ml(-1) h(-1) (95% CI: 1.41-1.88) and 1.60 U ml(-1) (95% CI: 1.14-2.24), respectively, for healthy volunteers and symptomatic HAE patients. The maximal elimination rate was 36% lower in asymptomatic HAE patients. Peak C1INH levels did not change upon repeated administration of rhC1INH. Bodyweight was found to be an important predictor of the volume of distribution. Simulations of the proposed dosing scheme predicted peak C1INH concentrations above the lower level of the normal range (0.7 U ml(-1)) for at least 94% of all patients. The population PK model for C1INH supports a dosing scheme on a 50 U kg(-1) basis up to 84 kg, with a fixed dose of 4200 U above 84 kg. The PK of rhC1INH following repeat administration are consistent with the PK following the first administration. © 2013 The British Pharmacological Society.

  17. Exploring the Hypersensitivity of PTEN Deleted Prostate Cancer Stem Cells to WEE1 Tyrosine Kinase Inhibitors

    DTIC Science & Technology

    2015-12-01

    xenograft tumors. The results from these studies will reveal whether targeting PTEN-deficient human tumors with WEE1 inhibitors can induce specific... xenograft tumors formed by PTEN- PSAlo PCSCs in castrated male immunocompromised mice. What was accomplished under these goals? Aim 1. Examine...prostate cancer stem cells. Aim 3. Investigate the cytotoxicity of WEE1 inhibitors against recalcitrant xenograft tumors formed by PTEN- CSCs in

  18. C1 esterase inhibitor

    MedlinePlus

    ... important in testing for autoimmune diseases, especially systemic lupus erythematosus . Low levels of C1-INH can lead to a condition called angioedema . Angioedema results in sudden swelling of the tissues of the ...

  19. Visualizing Mutation-Specific Differences in the Trafficking-Deficient Phenotype of Kv11.1 Proteins Linked to Long QT Syndrome Type 2.

    PubMed

    Hall, Allison R; Anderson, Corey L; Smith, Jennifer L; Mirshahi, Tooraj; Elayi, Claude S; January, Craig T; Delisle, Brian P

    2018-01-01

    KCNH2 encodes the Kv11.1 α-subunit that underlies the rapidly activating delayed-rectifier K + current in the heart. Loss-of-function KCNH2 mutations cause long QT syndrome type 2 (LQT2), and most LQT2-linked missense mutations inhibit the trafficking of Kv11.1 channel protein to the cell surface membrane. Several trafficking-deficient LQT2 mutations (e.g., G601S) generate Kv11.1 proteins that are sequestered in a microtubule-dependent quality control (QC) compartment in the transitional endoplasmic reticulum (ER). We tested the hypothesis that the QC mechanisms that regulate LQT2-linked Kv11.1 protein trafficking are mutation-specific. Confocal imaging analyses of HEK293 cells stably expressing the trafficking-deficient LQT2 mutation F805C showed that, unlike G601S-Kv11.1 protein, F805C-Kv11.1 protein was concentrated in several transitional ER subcompartments. The microtubule depolymerizing drug nocodazole differentially affected G601S- and F805C-Kv11.1 protein immunostaining. Nocodazole caused G601S-Kv11.1 protein to distribute into peripheral reticular structures, and it increased the diffuse immunostaining of F805C-Kv11.1 protein around the transitional ER subcompartments. Proteasome inhibition also affected the immunostaining of G601S- and F805C-Kv11.1 protein differently. Incubating cells in MG132 minimally impacted G601S-Kv11.1 immunostaining, but it dramatically increased the diffuse immunostaining of F805C-Kv11.1 protein in the transitional ER. Similar results were seen after incubating cells in the proteasome inhibitor lactacystin. Differences in the cellular distribution of G601S-Kv11.1 and F805C-Kv11.1 protein persisted in transfected human inducible pluripotent stem cell derived cardiomyocytes. These are the first data to visually demonstrate mutation-specific differences in the trafficking-deficient LQT2 phenotype, and this study has identified a novel way to categorize trafficking-deficient LQT2 mutations based on differences in intracellular

  20. Selenium deficiency induced damages and altered expressions of metalloproteinases and their inhibitors (MMP1/3, TIMP1/3) in the kidneys of growing rats.

    PubMed

    Han, Jing; Liang, Hua; Yi, Jianhua; Tan, Wuhong; He, Shulan; Wu, Xiaofang; Shi, Xiaowei; Ma, Jing; Guo, Xiong

    2016-03-01

    Selenium is an essential trace element for the maintenance of structures and functions of kidney. To evaluate the effects of low selenium on the kidneys of growing rats, newborn rats were fed with selenium deficient and normal diets respectively for 109 days. As a result, rats fed with low selenium diets resulted in a decline in the body weight and the concentration of selenium in the kidney, especially the male rats from the low selenium groups. Moreover, the ultrastructure of glomerulus and tubules were damaged in low selenium group: the glomeruli were observed with hyperplasia of mesangial cells, fusion of podocyte foot processes and thickening of basement membrane; and the tubules were observed with vacuolar degenerated epithelial cells, increased edema fluid or protein solution between cells, microvilli edema, increased cell gaps and decreased cell links. Furthermore, the pathological changes in selenium deficient group included the increase of fibers around renal hilum aorta and in the renal collecting duct, and shed of cells in the proximal convoluted tubules. In addition, up-regulated expressions of matrix metalloproteinases (MMP1/3) and down-regulated expressions of their inhibitors (TIMP1/3) at the mRNA and protein levels were also appeared to be relevant to low selenium. The results suggested that low selenium in diet may cause low selenium concentration in the kidney of growing rat and lead to damages of the ultrastructure and extracellular matrix (ECM) of kidney. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. N- and O-glycosylation Analysis of Human C1-inhibitor Reveals Extensive Mucin-type O-Glycosylation.

    PubMed

    Stavenhagen, Kathrin; Kayili, H Mehmet; Holst, Stephanie; Koeleman, Carolien A M; Engel, Ruchira; Wouters, Diana; Zeerleder, Sacha; Salih, Bekir; Wuhrer, Manfred

    2018-06-01

    Human C1-inhibitor (C1-Inh) is a serine protease inhibitor and the major regulator of the contact activation pathway as well as the classical and lectin complement pathways. It is known to be a highly glycosylated plasma glycoprotein. However, both the structural features and biological role of C1-Inh glycosylation are largely unknown. Here, we performed for the first time an in-depth site-specific N - and O -glycosylation analysis of C1-Inh combining various mass spectrometric approaches, including C18-porous graphitized carbon (PGC)-LC-ESI-QTOF-MS/MS applying stepping-energy collision-induced dissociation (CID) and electron-transfer dissociation (ETD). Various proteases were applied, partly in combination with PNGase F and exoglycosidase treatment, in order to analyze the (glyco)peptides. The analysis revealed an extensively O -glycosylated N-terminal region. Five novel and five known O -glycosylation sites were identified, carrying mainly core1-type O -glycans. In addition, we detected a heavily O -glycosylated portion spanning from Thr 82 -Ser 121 with up to 16 O -glycans attached. Likewise, all known six N -glycosylation sites were covered and confirmed by this site-specific glycosylation analysis. The glycoforms were in accordance with results on released N -glycans by MALDI-TOF/TOF-MS/MS. The comprehensive characterization of C1-Inh glycosylation described in this study will form the basis for further functional studies on the role of these glycan modifications. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. DDAH1 deficiency attenuates endothelial cell cycle progression and angiogenesis.

    PubMed

    Zhang, Ping; Xu, Xin; Hu, Xinli; Wang, Huan; Fassett, John; Huo, Yuqing; Chen, Yingjie; Bache, Robert J

    2013-01-01

    Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide (NO) synthase (NOS). ADMA is eliminated largely by the action of dimethylarginine dimethylaminohydrolase1 (DDAH1). Decreased DDAH activity is found in several pathological conditions and is associated with increased risk of vascular disease. Overexpression of DDAH1 has been shown to augment endothelial proliferation and angiogenesis. To better understand the mechanism by which DDAH1 influences endothelial proliferation, this study examined the effect of DDAH1 deficiency on cell cycle progression and the expression of some cell cycle master regulatory proteins. DDAH1 KO decreased in vivo Matrigel angiogenesis and depressed endothelial repair in a mouse model of carotid artery wire injury. DDAH1 deficiency decreased VEGF expression in HUVEC and increased NF1 expression in both HUVEC and DDAH1 KO mice. The expression of active Ras could overcome the decreased VEGF expression caused by the DDAH1 depletion. The addition of VEGF and knockdown NF1 could both restore proliferation in cells with DDAH1 depletion. Flow cytometry analysis revealed that DDAH1 sRNAi knockdown in HUVEC caused G1 and G2/M arrest that was associated with decreased expression of CDC2, CDC25C, cyclin D1 and cyclin E. MEF cells from DDAH1 KO mice also demonstrated G2/M arrest that was associated with decreased cyclin D1 expression and Akt activity. Our findings indicate that DDAH1 exerts effects on cyclin D1 and cyclin E expression through multiple mechanisms, including VEGF, the NO/cGMP/PKG pathway, the Ras/PI3K/Akt pathway, and NF1 expression. Loss of DDAH1 effects on these pathways results in impaired endothelial cell proliferation and decreased angiogenesis. The findings provide background information that may be useful in the development of therapeutic strategies to manipulate DDAH1 expression in cardiovascular diseases or tumor angiogenesis.

  3. DDAH1 Deficiency Attenuates Endothelial Cell Cycle Progression and Angiogenesis

    PubMed Central

    Zhang, Ping; Xu, Xin; Hu, Xinli; Wang, Huan; Fassett, John; Huo, Yuqing; Chen, Yingjie; Bache, Robert J.

    2013-01-01

    Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide (NO) synthase (NOS). ADMA is eliminated largely by the action of dimethylarginine dimethylaminohydrolase1 (DDAH1). Decreased DDAH activity is found in several pathological conditions and is associated with increased risk of vascular disease. Overexpression of DDAH1 has been shown to augment endothelial proliferation and angiogenesis. To better understand the mechanism by which DDAH1 influences endothelial proliferation, this study examined the effect of DDAH1 deficiency on cell cycle progression and the expression of some cell cycle master regulatory proteins. DDAH1 KO decreased in vivo Matrigel angiogenesis and depressed endothelial repair in a mouse model of carotid artery wire injury. DDAH1 deficiency decreased VEGF expression in HUVEC and increased NF1 expression in both HUVEC and DDAH1 KO mice. The expression of active Ras could overcome the decreased VEGF expression caused by the DDAH1 depletion. The addition of VEGF and knockdown NF1 could both restore proliferation in cells with DDAH1 depletion. Flow cytometry analysis revealed that DDAH1 sRNAi knockdown in HUVEC caused G1 and G2/M arrest that was associated with decreased expression of CDC2, CDC25C, cyclin D1 and cyclin E. MEF cells from DDAH1 KO mice also demonstrated G2/M arrest that was associated with decreased cyclin D1 expression and Akt activity. Our findings indicate that DDAH1 exerts effects on cyclin D1 and cyclin E expression through multiple mechanisms, including VEGF, the NO/cGMP/PKG pathway, the Ras/PI3K/Akt pathway, and NF1 expression. Loss of DDAH1 effects on these pathways results in impaired endothelial cell proliferation and decreased angiogenesis. The findings provide background information that may be useful in the development of therapeutic strategies to manipulate DDAH1 expression in cardiovascular diseases or tumor angiogenesis. PMID:24260221

  4. Mutations in the SURF1 gene associated with Leigh syndrome and cytochrome C oxidase deficiency.

    PubMed

    Péquignot, M O; Dey, R; Zeviani, M; Tiranti, V; Godinot, C; Poyau, A; Sue, C; Di Mauro, S; Abitbol, M; Marsac, C

    2001-05-01

    Cytochrome c oxidase (COX) deficiency is one of the major causes of Leigh Syndrome (LS), a fatal encephalopathy of infancy or childhood, characterized by symmetrical lesions in the basal ganglia and brainstem. Mutations in the nuclear genes encoding COX subunits have not been found in patients with LS and COX deficiency, but mutations have been identified in SURF1. SURF1 encodes a factor involved in COX biogenesis. To date, 30 different mutations have been reported in 40 unrelated patients. We aim to provide an overview of all known mutations in SURF1, and to propose a common nomenclature. Twelve of the mutations were insertion/deletion mutations in exons 1, 4, 6, 8, and 9; 10 were missense/nonsense mutations in exons 2, 4, 5, 7, and 8; and eight were detected at splicing sites in introns 3 to 7. The most frequent mutation was 312_321del 311_312insAT which was found in 12 patients out of 40. Twenty mutations have been described only once. We also list all polymorphisms discovered to date. Copyright 2001 Wiley-Liss, Inc.

  5. Inhibitors of the alpha-ketoglutarate dehydrogenase complex alter [1-13C]glucose and [U-13C]glutamate metabolism in cerebellar granule neurons.

    PubMed

    Santos, Sónia Sá; Gibson, Gary E; Cooper, Arthur J L; Denton, Travis T; Thompson, Charles M; Bunik, Victoria I; Alves, Paula M; Sonnewald, Ursula

    2006-02-15

    Diminished activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), an important component of the tricarboxylic acid (TCA) cycle, occurs in several neurological diseases. The effect of specific KGDHC inhibitors [phosphonoethyl ester of succinyl phosphonate (PESP) and the carboxy ethyl ester of succinyl phosphonate (CESP)] on [1-13C]glucose and [U-13C]glutamate metabolism in intact cerebellar granule neurons was investigated. Both inhibitors decreased formation of [4-13C]glutamate from [1-13C]glucose, a reduction in label in glutamate derived from [1-13C]glucose/[U-13C]glutamate through a second turn of the TCA cycle and a decline in the amounts of gamma-aminobutyric acid (GABA), aspartate, and alanine. PESP decreased formation of [U-13C]aspartate and total glutathione, whereas CESP decreased concentrations of valine and leucine. The findings are consistent with decreased KGDHC activity; increased alpha-ketoglutarate formation; increased transamination of alpha-ketoglutarate with valine, leucine, and GABA; and new equilibrium position of the aspartate aminotransferase reaction. Overall, the findings also suggest that some carbon derived from alpha-ketoglutarate may bypass the block in the TCA cycle at KGDHC by means of the GABA shunt and/or conversion of valine to succinate. The results suggest the potential of succinyl phosphonate esters for modeling the biochemical and pathophysiological consequences of reduced KGDHC activity in brain diseases.

  6. Omapatrilat, a dual angiotensin-converting enzyme and neutral endopeptidase inhibitor, prevents fatty streak deposit in apolipoprotein E-deficient mice.

    PubMed

    Arnal, J F; Castano, C; Maupas, E; Mugniot, A; Darblade, B; Gourdy, P; Michel, J B; Bayard, F

    2001-04-01

    Angiotensin-converting enzyme (ACE) is mainly responsible for converting angiotensin I (AI) to angiotensin II (AII), and ACE inhibitors prevent atherosclerosis in animal models. Neutral endopeptidase 24.11 (NEP) degrades substance P, kinins and atrial natriuretic peptide (ANP), and aortic wall NEP activity was found to be increased in atherosclerosis. In the present study, we have evaluated the effect of candoxatril, a NEP inhibitor, and of omapatrilat, a dual ACE and NEP inhibitor, on the development of fatty streak in apolipoprotein E (apoE)-deficient mice. Groups of ten male apoE-deficient mice were given either placebo, candoxatril 50 mg/kg per day, or omapatrilat 10, or 100 mg/kg per day for 4 months. None of the treatments influenced body weight, serum total or HDL-cholesterol. Compared with the placebo, candoxatril did not protect the mice from fatty streak deposit. In contrast, omapatrilat dose dependently inhibited the constitution of fatty streak in apoE-deficient mice. The precise advantages of the dual ACE and NEP inhibition versus the inhibition of only ACE should now be considered in the prevention of atherosclerosis as well as in the occurrence of its complications.

  7. Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 translation.

    PubMed

    Chennupati, Vijaykumar; Veiga, Diogo Ft; Maslowski, Kendle M; Andina, Nicola; Tardivel, Aubry; Yu, Eric Chi-Wang; Stilinovic, Martina; Simillion, Cedric; Duchosal, Michel A; Quadroni, Manfredo; Roberts, Irene; Sankaran, Vijay G; MacDonald, H Robson; Fasel, Nicolas; Angelillo-Scherrer, Anne; Schneider, Pascal; Hoang, Trang; Allam, Ramanjaneyulu

    2018-04-02

    Ribosomal proteins (RP) regulate specific gene expression by selectively translating subsets of mRNAs. Indeed, in Diamond-Blackfan anemia and 5q- syndrome, mutations in RP genes lead to a specific defect in erythroid gene translation and cause anemia. Little is known about the molecular mechanisms of selective mRNA translation and involvement of ribosomal-associated factors in this process. Ribonuclease inhibitor 1 (RNH1) is a ubiquitously expressed protein that binds to and inhibits pancreatic-type ribonucleases. Here, we report that RNH1 binds to ribosomes and regulates erythropoiesis by controlling translation of the erythroid transcription factor GATA1. Rnh1-deficient mice die between embryonic days E8.5 and E10 due to impaired production of mature erythroid cells from progenitor cells. In Rnh1-deficient embryos, mRNA levels of Gata1 are normal, but GATA1 protein levels are decreased. At the molecular level, we found that RNH1 binds to the 40S subunit of ribosomes and facilitates polysome formation on Gata1 mRNA to confer transcript-specific translation. Further, RNH1 knockdown in human CD34+ progenitor cells decreased erythroid differentiation without affecting myelopoiesis. Our results reveal an unsuspected role for RNH1 in the control of GATA1 mRNA translation and erythropoiesis.

  8. Regulation of Complement and Contact System Activation via C1 Inhibitor Potentiation and Factor XIIa Activity Modulation by Sulfated Glycans – Structure-Activity Relationships

    PubMed Central

    Schoenfeld, Ann-Kathrin; Lahrsen, Eric; Alban, Susanne

    2016-01-01

    The serpin C1 inhibitor (C1-INH) is the only regulator of classical complement activation as well as the major regulator of the contact system. Its importance is demonstrated by hereditary angioedema (HAE), a severe disease with potentially life-threatening attacks due to deficiency or dysfunction of C1-INH. C1-INH replacement is the therapy of choice in HAE. In addition, C1-INH showed to have beneficial effects in other diseases characterized by inappropriate complement and contact system activation. Due to some limitations of its clinical application, there is a need for improving the efficacy of therapeutically applied C1-INH or to enhance the activity of endogenous C1-INH. Given the known potentiating effect of heparin on C1-INH, sulfated glycans (SG) may be such candidates. The aim of this study was to characterize suitable SG by evaluating structure-activity relationships. For this, more than 40 structurally distinct SG were examined for their effects on C1-INH, C1s and FXIIa. The SG turned out to potentiate the C1s inhibition by C1-INH without any direct influence on C1s. Their potentiating activity proved to depend on their degree of sulfation, molecular mass as well as glycan structure. In contrast, the SG had no effect on the FXIIa inhibition by C1-INH, but structure-dependently modulated the activity of FXIIa. Among the tested SG, β-1,3-glucan sulfates with a Mr ≤ 10 000 were identified as most promising lead candidates for the development of a glycan-based C1-INH amplifier. In conclusion, the obtained information on structural characteristics of SG favoring C1-INH potentiation represent an useful elementary basis for the development of compounds improving the potency of C1-INH in diseases and clinical situations characterized by inappropriate activation of complement and contact system. PMID:27783665

  9. Possible association of 3' UTR +357 A>G, IVS11-nt 93 T>C, c.1311 C>T polymorphism with G6PD deficiency.

    PubMed

    Sirdah, Mahmoud M; Shubair, Mohammad E; Al-Kahlout, Mustafa S; Al-Tayeb, Jamal M; Prchal, Josef T; Reading, N Scott

    2017-07-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked inherited enzymopathic disorder affecting more than 500 million people worldwide. It has so far been linked to 217 distinct genetic variants in the exons and exon-intron boundaries of the G6PD gene, giving rise to a wide range of biochemical heterogeneity and clinical manifestations. Reports from different settings suggested the association of intronic and other mutations outside the reading frame of the G6PD gene with reduced enzyme activity and presenting clinical symptoms. The present study aimed to investigate any association of other variations apart of the exonic or exonic intronic boundaries in the development of G6PD deficiency. Sixty-seven unrelated Palestinian children admitted to the pediatric hospital with hemolytic crises due to G6PD deficiency were studied. In our Palestinian cohort of 67 [59 males (M) and 8 females (F)] G6PD-deficient children, previously hospitalized for acute hemolytic anemia due to favism, molecular sequencing of the G6PD gene revealed four cases (3M and 1F) that did not have any of the variants known to cause G6PD deficiency, but the 3' UTR c.*+357A>G (rs1050757) polymorphism in association with IVS 11 (c.1365-13T>C; rs2071429), and c.1311C>T (rs2230037). We now provide an additional evidence form Palestinian G6PD-deficient subjects for a possible role of 3' UTR c.*+357 A>G, c.1365-13T>C, and/or c.1311C>T polymorphism for G6PD deficiency, suggesting that not only a single variation in the exonic or exonic intronic boundaries, but also a haplotype of G6PD should considered as a cause for G6PD deficiency.

  10. Mice deficient in LMAN1 exhibit FV and FVIII deficiencies and liver accumulation of α1-antitrypsin

    PubMed Central

    Zheng, Chunlei; Zhu, Min; Tao, Jiayi; Vasievich, Matthew P.; Baines, Andrea; Kim, Jinoh; Schekman, Randy; Kaufman, Randal J.; Ginsburg, David

    2011-01-01

    The type 1-transmembrane protein LMAN1 (ERGIC-53) forms a complex with the soluble protein MCFD2 and cycles between the endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment (ERGIC). Mutations in either LMAN1 or MCFD2 cause the combined deficiency of factor V (FV) and factor VIII (FVIII; F5F8D), suggesting an ER-to-Golgi cargo receptor function for the LMAN1-MCFD2 complex. Here we report the analysis of LMAN1-deficient mice. Levels of plasma FV and FVIII, and platelet FV, are all reduced to ∼ 50% of wild-type in Lman1−/− mice, compared with the 5%-30% levels typically observed in human F5F8D patients. Despite previous reports identifying cathepsin C, cathepsin Z, and α1-antitrypsin as additional potential cargoes for LMAN1, no differences were observed between wild-type and Lman1−/− mice in the levels of cathepsin C and cathepsin Z in liver lysates or α1-antitrypsin levels in plasma. LMAN1 deficiency had no apparent effect on COPII-coated vesicle formation in an in vitro assay. However, the ER in Lman1−/− hepatocytes is slightly distended, with significant accumulation of α1-antitrypsin and GRP78. An unexpected, partially penetrant, perinatal lethality was observed for Lman1−/− mice, dependent on the specific inbred strain genetic background, suggesting a potential role for other, as yet unidentified LMAN1-dependent cargo proteins. PMID:21795745

  11. Recent Developments of C-Aryl Glucoside SGLT2 Inhibitors.

    PubMed

    Zhang, Yang; Liu, Zhao-Peng

    2016-01-01

    Sodium-glucose cotransporter 2 (SGLT2) is almost exclusively expressed in the proximal renal tubules. It is responsible for about 90% of the glucose reabsorption from tubular fluid. Selective inhibition of SGLT2 is expected to favor in the normalization of plasma glucose levels in T2DM patients through the prevention of renal glucose reabsorption and the promotion of glucose excretion from urine. Selective SGLT2 inhibitors have the merits to minimize the gastrointestinal side effects associated with SGLT1 inhibition, and selective SGLT2 inhibition may have a low risk of hypoglycemia. Since the C-aryl glucosides are metabolically more stable than the O-glucosides, numerous efforts have been made in the development of potent and selective C-aryl glucoside SGLT2 inhibitors, and a number of them are now used as anti-diabetes drugs in clinic or at various stages of clinical developments. Based on their structural features, in this review, these SGLT2 inhibitors are classified as three types: the phenyl/arylmethylphenyl C-glucosides, with an emphasis on the modifications on the proximal and/or the distal phenyl ring, and the spacer; the heteroarylmethylphenyl Cglucosides, with a replacement of the distal phenyl ring by a heterocycle like pyridazine, pyrimidine, thiophene and benzothiophene, thiazole, 1,3,4-thiadiazole, and triazolopyridinone; and the glucose-modified Caryl glucosides, including the glucose C-1 derived O-spiroketals, C-4 gem-difluoro analogues, C-5 and C-6 modified derivatives, dioxa-bicyclo[3.2.1]octane bridged ketals, the thioglucosides, and carbasugars. The structure-activity relationships (SARs) of each type along with their inhibitory potency against human SGLT2 and selectivity over human SGLT1 are discussed.

  12. Novel Mechanisms of PARP Inhibitor Resistance in BRCA1-Deficient Breast Cancers

    DTIC Science & Technology

    2014-12-01

    Zou L Molecular Cell. 2014 Jan   23;53(2):235-­‐46.  PMID: 24332808     Inventions, Patents, and Licenses: Nothing to report Reportable... Carmichael , J. (2010). Oral poly(ADP-ribose) polymerase inhibitor olaparib in   11   patients with BRCA1 or BRCA2 mutations and advanced breast cancer

  13. Population pharmacokinetics of recombinant human C1 inhibitor in patients with hereditary angioedema

    PubMed Central

    Farrell, Colm; Hayes, Siobhan; Relan, Anurag; van Amersfoort, Edwin S; Pijpstra, Rienk; Hack, C Erik

    2013-01-01

    Aims To characterize the pharmacokinetics (PK) of recombinant human C1 inhibitor (rhC1INH) in healthy volunteers and hereditary angioedema (HAE) patients. Methods Plasma levels of C1INH following 294 administrations of rhC1INH in 133 subjects were fitted using nonlinear mixed-effects modelling. The model was used to simulate maximal C1INH levels for the proposed dosing scheme. Results A one-compartment model with Michaelis–Menten elimination kinetics described the data. Baseline C1INH levels were 0.901 [95% confidence interval (CI): 0.839–0.968] and 0.176 U ml−1 (95% CI: 0.154–0.200) in healthy volunteers and HAE patients, respectively. The volume of distribution of rhC1INH was 2.86 l (95% CI: 2.68–3.03). The maximal rate of elimination and the concentration corresponding to half this maximal rate were 1.63 U ml−1 h−1 (95% CI: 1.41–1.88) and 1.60 U ml−1 (95% CI: 1.14–2.24), respectively, for healthy volunteers and symptomatic HAE patients. The maximal elimination rate was 36% lower in asymptomatic HAE patients. Peak C1INH levels did not change upon repeated administration of rhC1INH. Bodyweight was found to be an important predictor of the volume of distribution. Simulations of the proposed dosing scheme predicted peak C1INH concentrations above the lower level of the normal range (0.7 U ml−1) for at least 94% of all patients. Conclusions The population PK model for C1INH supports a dosing scheme on a 50 U kg−1 basis up to 84 kg, with a fixed dose of 4200 U above 84 kg. The PK of rhC1INH following repeat administration are consistent with the PK following the first administration. PMID:23594263

  14. The c.301_302delAG PROP1 gene mutation in Romanian patients with multiple pituitary hormone deficiency.

    PubMed

    Lazea, Cecilia; Grigorescu-Sido, Paula; Popp, Radu; Legendre, Marie; Amselem, Serge; Al-Khzouz, Camelia; Bucerzan, Simona; Creţ, Victoria; Crişan, Mirela; Brad, Cristian

    2015-09-01

    To establish the frequency of the c.301_302 delAG mutation of the PROP1 gene in Romanian patients with multiple pituitary hormone deficiency (MPHD). Somatic assessment, hormonal test, bone age, magnetic resonance imaging of the pituitary gland, and molecular diagnosis were performed in 26 patients with MPHD (7 patients with familial form of MPHD and 19 patients with sporadic form of MPHD). The c.301_302delAG mutation was detected in the homozygous state in 10 patients belonging to 5 unrelated families (7 patients with familial history of MPHD and 3 patients with sporadic form of MPHD). Those 10 patients presented variable pituitary hormone deficiency and pituitary morphology. The c.301_302delAG homozygous genotype had a high frequency of 38% (10/26), reaching 100% (7/7) in group with familial cases of MPHD and 16% (3/19) in group with sporadic forms of MPHD.

  15. Plasminogen Activator Inhibitor-1 Deficiency Augments Visceral Mesothelial Organization, Intrapleural Coagulation, and Lung Restriction in Mice with Carbon Black/Bleomycin–Induced Pleural Injury

    PubMed Central

    Jeffers, Ann; Alvarez, Alexia; Owens, Shuzi; Koenig, Kathleen; Quaid, Brandon; Komissarov, Andrey A.; Florova, Galina; Kothari, Hema; Pendurthi, Usha; Mohan Rao, L. Vijaya; Idell, Steven

    2014-01-01

    Local derangements of fibrin turnover and plasminogen activator inhibitor (PAI)-1 have been implicated in the pathogenesis of pleural injury. However, their role in the control of pleural organization has been unclear. We found that a C57Bl/6j mouse model of carbon black/bleomycin (CBB) injury demonstrates pleural organization resulting in pleural rind formation (14 d). In transgenic mice overexpressing human PAI-1, intrapleural fibrin deposition was increased, but visceral pleural thickness, lung volumes, and compliance were comparable to wild type. CBB injury in PAI-1−/− mice significantly increased visceral pleural thickness (P < 0.001), elastance (P < 0.05), and total lung resistance (P < 0.05), while decreasing lung compliance (P < 0.01) and lung volumes (P < 0.05). Collagen, α-smooth muscle actin, and tissue factor were increased in the thickened visceral pleura of PAI-1−/− mice. Colocalization of α-smooth muscle actin and calretinin within pleural mesothelial cells was increased in CBB-injured PAI-1−/− mice. Thrombin, factor Xa, plasmin, and urokinase induced mesothelial–mesenchymal transition, tissue factor expression, and activity in primary human pleural mesothelial cells. In PAI-1−/− mice, D-dimer and thrombin–antithrombin complex concentrations were increased in pleural lavage fluids. The results demonstrate that PAI-1 regulates CBB-induced pleural injury severity via unrestricted fibrinolysis and cross-talk with coagulation proteases. Whereas overexpression of PAI-1 augments intrapleural fibrin deposition, PAI-1 deficiency promotes profibrogenic alterations of the mesothelium that exacerbate pleural organization and lung restriction. PMID:24024554

  16. Increased red cell turnover in a line of CD22-deficient mice is caused by Gpi1c: a model for hereditary haemolytic anaemia.

    PubMed

    Walker, Jennifer A; Hall, Andrew M; Kotsopoulou, Ekaterini; Espeli, Marion; Nitschke, Lars; Barker, Robert N; Lyons, Paul A; Smith, Kenneth G C

    2012-12-01

    CD22, an inhibitory co-receptor of the BCR, has been identified as a potential candidate gene for the development of autoimmune haemolytic anaemia in mice. In this study, we have examined Cd22(tm1Msn) CD22-deficient mice and identified an increase in RBC turnover and stress erythropoiesis, which might be consistent with haemolysis. We then, however, eliminated CD22 deficiency as the cause of accelerated RBC turnover and established that enhanced RBC turnover occurs independently of B cells and anti-RBC autoanti-bodies. Accelerated RBC turnover in this particular strain of CD22-deficient mice is red cell intrinsic and appears to be the consequence of a defective allele of glucose phosphate isomerase, Gpi1(c). This form of Gpi1 was originally derived from wild mice and results in a substantial reduction in enzyme activity. We have identified the polymorphism that causes impaired catalytic activity in the Gpi1(c) allele, and biochemically confirmed an approximate 75% reduction of GPI1 activity in Cd22(-/-) RBCs. The Cd22(-/-).Gpi1(c) congenic mouse provides a novel animal model of GPI1-deficiency, which is one of the most common causes of chronic non-spherocytic haemolytic anaemia in humans. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Human Immunodeficiency Virus Type 1 cDNA Integration: New Aromatic Hydroxylated Inhibitors and Studies of the Inhibition Mechanism

    PubMed Central

    Farnet, C. M.; Wang, B.; Hansen, M.; Lipford, J. R.; Zalkow, L.; Robinson, W. E.; Siegel, J.; Bushman, F.

    1998-01-01

    Integration of the human immunodeficiency virus type 1 (HIV-1) cDNA is a required step for viral replication. Integrase, the virus-encoded enzyme important for integration, has not yet been exploited as a target for clinically useful inhibitors. Here we report on the identification of new polyhydroxylated aromatic inhibitors of integrase including ellagic acid, purpurogallin, 4,8,12-trioxatricornan, and hypericin, the last of which is known to inhibit viral replication. These compounds and others were characterized in assays with subviral preintegration complexes (PICs) isolated from HIV-1-infected cells. Hypericin was found to inhibit PIC assays, while the other compounds tested were inactive. Counterscreening of these and other integrase inhibitors against additional DNA-modifying enzymes revealed that none of the polyhydroxylated aromatic compounds are active against enzymes that do not require metals (methylases, a pox virus topoisomerase). However, all were cross-reactive with metal-requiring enzymes (restriction enzymes, a reverse transcriptase), implicating metal atoms in the inhibitory mechanism. In mechanistic studies, we localized binding of some inhibitors to the catalytic domain of integrase by assaying competition of binding by labeled nucleotides. These findings help elucidate the mechanism of action of the polyhydroxylated aromatic inhibitors and provide practical guidance for further inhibitor development. PMID:9736543

  18. Relative adrenal insufficiency in mice deficient in 5α-reductase 1

    PubMed Central

    Livingstone, Dawn E W; Di Rollo, Emma M; Yang, Chenjing; Codrington, Lucy E; Mathews, John A; Kara, Madina; Hughes, Katherine A; Kenyon, Christopher J; Walker, Brian R; Andrew, Ruth

    2014-01-01

    Patients with critical illness or hepatic failure exhibit impaired cortisol responses to ACTH, a phenomenon known as ‘relative adrenal insufficiency’. A putative mechanism is that elevated bile acids inhibit inactivation of cortisol in liver by 5α-reductases type 1 and type 2 and 5β-reductase, resulting in compensatory downregulation of the hypothalamic–pituitary–adrenal axis and adrenocortical atrophy. To test the hypothesis that impaired glucocorticoid clearance can cause relative adrenal insufficiency, we investigated the consequences of 5α-reductase type 1 deficiency in mice. In adrenalectomised male mice with targeted disruption of 5α-reductase type 1, clearance of corticosterone was lower after acute or chronic (eightfold, P<0.05) administration, compared with WT control mice. In intact 5α-reductase-deficient male mice, although resting plasma corticosterone levels were maintained, corticosterone responses were impaired after ACTH administration (26% lower, P<0.05), handling stress (2.5-fold lower, P<0.05) and restraint stress (43% lower, P<0.05) compared with WT mice. mRNA levels of Nr3c1 (glucocorticoid receptor), Crh and Avp in pituitary or hypothalamus were altered, consistent with enhanced negative feedback. These findings confirm that impaired peripheral clearance of glucocorticoids can cause ‘relative adrenal insufficiency’ in mice, an observation with important implications for patients with critical illness or hepatic failure, and for patients receiving 5α-reductase inhibitors for prostatic disease. PMID:24872577

  19. Effects of ubiquitin C-terminal hydrolase L1 deficiency on mouse ova.

    PubMed

    Koyanagi, Sayaka; Hamasaki, Hiroko; Sekiguchi, Satoshi; Hara, Kenshiro; Ishii, Yoshiyuki; Kyuwa, Shigeru; Yoshikawa, Yasuhiro

    2012-03-01

    Maternal proteins are rapidly degraded by the ubiquitin-proteasome system during oocyte maturation in mice. Ubiquitin C-terminal hydrolase L1 (UCHL1) is highly and specifically expressed in mouse ova and is involved in the polyspermy block. However, the role of UCHL1 in the underlying mechanism of polyspermy block is poorly understood. To address this issue, we performed a comprehensive proteomic analysis to identify maternal proteins that were relevant to the role of UCHL1 in mouse ova using UCHL1-deficient gad. Furthermore, we assessed morphological features in gad mouse ova using transmission electron microscopy. NACHT, LRR, and PYD domain-containing (NALP) family proteins and endoplasmic reticulum (ER) chaperones were identified by proteomic analysis. We also found that the 'maternal antigen that embryos require' (NLRP5 (MATER)) protein level increased significantly in gad mouse ova compared with that in wild-type mice. In an ultrastructural study, gad mouse ova contained less ER in the cortex than in wild-type mice. These results provide new insights into the role of UCHL1 in the mechanism of polyspermy block in mouse ova.

  20. SKI-II--a sphingosine kinase 1 inhibitor--exacerbates atherosclerosis in low-density lipoprotein receptor-deficient (LDL-R-/-) mice on high cholesterol diet.

    PubMed

    Potì, Francesco; Ceglarek, Uta; Burkhardt, Ralph; Simoni, Manuela; Nofer, Jerzy-Roch

    2015-05-01

    Sphingosine 1-phosphate (S1P) is a lysosphingolipid associated with high-density lipoproteins (HDL) that contributes to their anti-atherogenic potential. We investigated whether a reduction in S1P plasma levels affects atherosclerosis in low-density lipoprotein receptor deficient (LDL-R-/-) mice. LDL-R-/- mice on Western diet containing low (0.25% w/w) or high (1.25% w/w) cholesterol were treated for 16 weeks with SKI-II, a sphingosine kinase 1 inhibitor that significantly reduced plasma S1P levels. SKI-II treatment increased atherosclerotic lesions in the thoracic aorta in mice on high but not low cholesterol diet. This compound did not affect body weight, blood cell counts and plasma total and HDL cholesterol, but decreased triglycerides. In addition, mice on high cholesterol diet receiving SKI-II showed elevated levels of tumor necrosis factor-α and endothelial adhesion molecules (sICAM-1, sVCAM-1). Prolonged lowering of plasma S1P produces pro-atherogenic effects in LDL-R-/- mice that are evident under condition of pronounced hypercholesterolemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. DCLRE1C (ARTEMIS) mutations causing phenotypes ranging from atypical severe combined immunodeficiency to mere antibody deficiency

    PubMed Central

    Volk, Timo; Pannicke, Ulrich; Reisli, Ismail; Bulashevska, Alla; Ritter, Julia; Björkman, Andrea; Schäffer, Alejandro A.; Fliegauf, Manfred; Sayar, Esra H.; Salzer, Ulrich; Fisch, Paul; Pfeifer, Dietmar; Di Virgilio, Michela; Cao, Hongzhi; Yang, Fang; Zimmermann, Karin; Keles, Sevgi; Caliskaner, Zafer; Güner, S¸ükrü; Schindler, Detlev; Hammarström, Lennart; Rizzi, Marta; Hummel, Michael; Pan-Hammarström, Qiang; Schwarz, Klaus; Grimbacher, Bodo

    2015-01-01

    Null mutations in genes involved in V(D)J recombination cause a block in B- and T-cell development, clinically presenting as severe combined immunodeficiency (SCID). Hypomorphic mutations in the non-homologous end-joining gene DCLRE1C (encoding ARTEMIS) have been described to cause atypical SCID, Omenn syndrome, Hyper IgM syndrome and inflammatory bowel disease—all with severely impaired T-cell immunity. By whole-exome sequencing, we investigated the molecular defect in a consanguineous family with three children clinically diagnosed with antibody deficiency. We identified perfectly segregating homozygous variants in DCLRE1C in three index patients with recurrent respiratory tract infections, very low B-cell numbers and serum IgA levels. In patients, decreased colony survival after irradiation, impaired proliferative response and reduced counts of naïve T cells were observed in addition to a restricted T-cell receptor repertoire, increased palindromic nucleotides in the complementarity determining regions 3 and long stretches of microhomology at switch junctions. Defective V(D)J recombination was complemented by wild-type ARTEMIS protein in vitro. Subsequently, homozygous or compound heterozygous DCLRE1C mutations were identified in nine patients from the same geographic region. We demonstrate that DCLRE1C mutations can cause a phenotype presenting as only antibody deficiency. This novel association broadens the clinical spectrum associated with ARTEMIS mutations. Clinicians should consider the possibility that an immunodeficiency with a clinically mild initial presentation could be a combined immunodeficiency, so as to provide appropriate care for affected patients. PMID:26476407

  2. A single polymorphism in HIV-1 subtype C SP1 is sufficient to confer natural resistance to the maturation inhibitor bevirimat.

    PubMed

    Lu, Wuxun; Salzwedel, Karl; Wang, Dan; Chakravarty, Suvobrata; Freed, Eric O; Wild, Carl T; Li, Feng

    2011-07-01

    3-O-(3',3'-Dimethylsuccinyl) betulinic acid (DSB), also known as PA-457, bevirimat (BVM), or MPC-4326, is a novel HIV-1 maturation inhibitor. Unlike protease inhibitors, BVM blocks the cleavage of the Gag capsid precursor (CA-SP1) to mature capsid (CA) protein, resulting in the release of immature, noninfectious viral particles. Despite the novel mechanism of action and initial progress made in small-scale clinical trials, further development of bevirimat has encountered unexpected challenges, because patients whose viruses contain genetic polymorphisms in the Gag SP1 (positions 6 to 8) protein do not generally respond well to BVM treatment. To better define the role of amino acid residues in the HIV-1 Gag SP1 protein that are involved in natural polymorphisms to confer resistance to the HIV-1 maturation inhibitor BVM, a series of Gag SP1 chimeras involving BVM-sensitive (subtype B) and BVM-resistant (subtype C) viruses was generated and characterized for sensitivity to BVM. We show that SP1 residue 7 of the Gag protein is a primary determinant of SP1 polymorphism-associated drug resistance to BVM.

  3. Lack of integrase inhibitors associated resistance mutations among HIV-1C isolates.

    PubMed

    Mulu, Andargachew; Maier, Melanie; Liebert, Uwe Gerd

    2015-12-01

    Although biochemical analysis of HIV-1 integrase enzyme suggested the use of integrase inhibitors (INIs) against HIV-1C, different viral subtypes may favor different mutational pathways potentially leading to varying levels of drug resistance. Thus, the aim of this study was to search for the occurrence and natural evolution of integrase polymorphisms and/or resistance mutations in HIV-1C Ethiopian clinical isolates prior to the introduction of INIs. Plasma samples from chronically infected drug naïve patients (N = 45), of whom the PR and RT sequence was determined previously, were used to generate population based sequences of HIV-1 integrase. HIV-1 subtype was determined using the REGA HIV-1 subtyping tool. Resistance mutations were interpreted according to the Stanford HIV drug resistance database ( http://hivdb.stanford.edu ) and the updated International Antiviral Society (IAS)-USA mutation lists. Moreover, rates of polymorphisms in the current isolates were compared with South African and global HIV-1C isolates. All subjects were infected with HIV-1C concordant to the protease (PR) and reverse transcriptase (RT) regions. Neither major resistance-associated IN mutations (T66I/A/K, E92Q/G, T97A, Y143HCR, S147G, Q148H/R/K, and N155H) nor silent mutations known to change the genetic barrier were observed. Moreover, the DDE-catalytic motif (D64G/D116G/E152 K) and signature HHCC zinc-binding motifs at codon 12, 16, 40 and 43 were found to be highly conserved. However, compared to other South African subtype C isolates, the rate of polymorphism was variable at various positions. Although the sample size is small, the findings suggest that this drug class could be effective in Ethiopia and other southern African countries where HIV-1C is predominantly circulating. The data will contribute to define the importance of integrase polymorphism and to improve resistance interpretation algorithms in HIV-1C isolates.

  4. Design and synthesis of 3,3'-biscoumarin-based c-Met inhibitors.

    PubMed

    Xu, Jimin; Ai, Jing; Liu, Sheng; Peng, Xia; Yu, Linqian; Geng, Meiyu; Nan, Fajun

    2014-06-14

    A library of biscoumarin-based c-Met inhibitors was synthesized, based on optimization of 3,3'-biscoumarin hit 3, which was identified as a non-ATP competitive inhibitor of c-Met from a diverse library of coumarin derivatives. Among these compounds, 38 and 40 not only showed potent enzyme activities with IC50 values of 107 nM and 30 nM, respectively, but also inhibited c-Met phosphorylation in BaF3/TPR-Met and EBC-1 cells.

  5. C/EBPα Expression is Partially Regulated by C/EBPβ in Response to DNA Damage and C/EBPα Deficient Fibroblasts Display an Impaired G1 Checkpoint

    PubMed Central

    Ranjan, Rakesh; Thompson, Elizabeth A.; Yoon, Kyungsil; Smart, Robert C.

    2009-01-01

    We observed that C/EBPα is highly inducible in primary fibroblasts by DNA damaging agents that induce strand breaks, alkylate and crosslink DNA as well as those that produce bulky DNA lesions. Fibroblasts deficient in C/EBPα (C/EBPα-/-) display an impaired G1 checkpoint as evidenced by inappropriate entry into S-phase in response to DNA damage and these cells also display an enhanced G1 to S transition in response to mitogens. The induction of C/EBPα by DNA damage in fibroblasts does not require p53. EMSA analysis of nuclear extracts prepared from UVB- and MNNG-treated fibroblasts revealed increased binding of C/EBPβ to a C/EBP consensus sequence and ChIP analysis revealed increased C/EBPβ binding to the C/EBPα promoter. To determine whether C/EBPβ has a role in the regulation of C/EBPα we treated C/EBPβ-/- fibroblasts with UVB or MNNG. We observed C/EBPα induction was impaired in both UVB- and MNNG- treated C/EBPβ-/- fibroblasts. Our study reveals a novel role for C/EBPβ in the regulation of C/EBPα in response to DNA damage and provides definitive genetic evidence that C/EBPα has a critical role in the DNA damage G1 checkpoint. PMID:19581927

  6. Proteasome inhibitor PS-341 limits macrophage necroptosis by promoting cIAPs-mediated inhibition of RIP1 and RIP3 activation.

    PubMed

    Zhang, Yuchen; Cheng, Junjun; Zhang, Junmeng; Wu, Xiaofan; Chen, Fang; Ren, Xuejun; Wang, Yunlong; Li, Quan; Li, Yu

    2016-09-02

    Apoptotic and necrotic macrophages have long been known for their existence in atherosclerotic lesions. However, the mechanisms underlying the choice of their death pattern have not been fully elucidated. Here, we report the effects of PS-341, a potent and specific proteasome inhibitor, on the cell death of primary bone marrow-derived macrophages (BMDMs) in vitro. The results showed that PS-341 could not induce macrophage apoptosis or promote TNF-induced macrophage apoptosis, on the other hand, PS-341 could significantly inhibit macrophage necroptosis induced by TNF and pan-caspase inhibitor z-VAD treatment. Remarkably, high-dose of PS-341 showed similar inhibitory effects on macrophage necroptosis comparable to that of kinase inhibition of RIP1 through specific inhibitor Nec-1 or inhibition of RIP3 via specific genetical ablation. Furthermore, the degradation of cellular inhibitor of apoptosis proteins (cIAPs) was suppressed by PS-341, which could antagonize the activation of RIP1 kinase via post-translational mechanism. Further evidences demonstrated reduced levels of both RIP1 and RIP 3 upon PS-341 treatment, concomitantly, a more strong association of RIP1 with cIAPs and less with RIP3 was found following PS-341 treatment, these findings suggested that PS-341 may disrupt the formation of RIP1-RIP3 complex (necrosome) through stabilizing cIAPs. Collectively, our results indicated that the proteasome-mediated degradation of cIAPs could be inhibited by PS-341 and followed by limited RIP1 and RIP3 kinase activities, which were indispensable for necroptosis, thus eliciting a significant necroptosis rescue in BMDMs in vitro. Overall, our study has identified a new role of PS-341 in the cell death of BMDMs and provided a novel insight into the atherosclerotic inflammation caused by proteasome-mediated macrophage necroptosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. DJ-1 deficiency in astrocytes selectively enhances mitochondrial Complex I inhibitor-induced neurotoxicity

    PubMed Central

    Mullett, Steven J.; Hinkle, David A.

    2011-01-01

    Parkinson’s disease (PD) brains show evidence of mitochondrial respiratory Complex I deficiency, oxidative stress, and neuronal death. Complex I-inhibiting neurotoxins, such as the pesticide rotenone, cause neuronal death and parkinsonism in animal models. We have previously shown that DJ-1 over-expression in astrocytes augments their capacity to protect neurons against rotenone, that DJ-1 knock-down impairs astrocyte-mediated neuroprotection against rotenone, and that each process involves astrocyte-released factors. To further investigate the mechanism behind these findings, we developed a high-throughput, plate-based bioassay that can be used to assess how genetic manipulations in astrocytes affect their ability to protect co-cultured neurons. We used this bioassay to show that DJ-1 deficiency-induced impairments in astrocyte-mediated neuroprotection occur solely in the presence of pesticides that inhibit Complex I (rotenone, pyridaben, fenazaquin, and fenpyroximate); not with agents that inhibit Complexes II-V, that primarily induce oxidative stress, or that inhibit the proteasome. This is a potentially PD-relevant finding because pesticide exposure is epidemiologically-linked with an increased risk for PD. Further investigations into our model suggested that astrocytic glutathione and heme oxygenase-1 anti-oxidant systems are not central to the neuroprotective mechanism. PMID:21219333

  8. Biallelic C1QBP Mutations Cause Severe Neonatal-, Childhood-, or Later-Onset Cardiomyopathy Associated with Combined Respiratory-Chain Deficiencies.

    PubMed

    Feichtinger, René G; Oláhová, Monika; Kishita, Yoshihito; Garone, Caterina; Kremer, Laura S; Yagi, Mikako; Uchiumi, Takeshi; Jourdain, Alexis A; Thompson, Kyle; D'Souza, Aaron R; Kopajtich, Robert; Alston, Charlotte L; Koch, Johannes; Sperl, Wolfgang; Mastantuono, Elisa; Strom, Tim M; Wortmann, Saskia B; Meitinger, Thomas; Pierre, Germaine; Chinnery, Patrick F; Chrzanowska-Lightowlers, Zofia M; Lightowlers, Robert N; DiMauro, Salvatore; Calvo, Sarah E; Mootha, Vamsi K; Moggio, Maurizio; Sciacco, Monica; Comi, Giacomo P; Ronchi, Dario; Murayama, Kei; Ohtake, Akira; Rebelo-Guiomar, Pedro; Kohda, Masakazu; Kang, Dongchon; Mayr, Johannes A; Taylor, Robert W; Okazaki, Yasushi; Minczuk, Michal; Prokisch, Holger

    2017-10-05

    Complement component 1 Q subcomponent-binding protein (C1QBP; also known as p32) is a multi-compartmental protein whose precise function remains unknown. It is an evolutionary conserved multifunctional protein localized primarily in the mitochondrial matrix and has roles in inflammation and infection processes, mitochondrial ribosome biogenesis, and regulation of apoptosis and nuclear transcription. It has an N-terminal mitochondrial targeting peptide that is proteolytically processed after import into the mitochondrial matrix, where it forms a homotrimeric complex organized in a doughnut-shaped structure. Although C1QBP has been reported to exert pleiotropic effects on many cellular processes, we report here four individuals from unrelated families where biallelic mutations in C1QBP cause a defect in mitochondrial energy metabolism. Infants presented with cardiomyopathy accompanied by multisystemic involvement (liver, kidney, and brain), and children and adults presented with myopathy and progressive external ophthalmoplegia. Multiple mitochondrial respiratory-chain defects, associated with the accumulation of multiple deletions of mitochondrial DNA in the later-onset myopathic cases, were identified in all affected individuals. Steady-state C1QBP levels were decreased in all individuals' samples, leading to combined respiratory-chain enzyme deficiency of complexes I, III, and IV. C1qbp -/- mouse embryonic fibroblasts (MEFs) resembled the human disease phenotype by showing multiple defects in oxidative phosphorylation (OXPHOS). Complementation with wild-type, but not mutagenized, C1qbp restored OXPHOS protein levels and mitochondrial enzyme activities in C1qbp -/- MEFs. C1QBP deficiency represents an important mitochondrial disorder associated with a clinical spectrum ranging from infantile lactic acidosis to childhood (cardio)myopathy and late-onset progressive external ophthalmoplegia. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Structure-based Design and In-Parallel Synthesis of Inhibitors of AmpC b-lactamase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tondi, D.; Powers, R.A.; Negri, M.C.

    2010-03-08

    Group I {beta}-lactamases are a major cause of antibiotic resistance to {beta}-lactams such as penicillins and cephalosporins. These enzymes are only modestly affected by classic {beta}-lactam-based inhibitors, such as clavulanic acid. Conversely, small arylboronic acids inhibit these enzymes at sub-micromolar concentrations. Structural studies suggest these inhibitors bind to a well-defined cleft in the group I {beta}-lactamase AmpC; this cleft binds the ubiquitous R1 side chain of {beta}-lactams. Intriguingly, much of this cleft is left unoccupied by the small arylboronic acids. To investigate if larger boronic acids might take advantage of this cleft, structure-guided in-parallel synthesis was used to explore newmore » inhibitors of AmpC. Twenty-eight derivatives of the lead compound, 3-aminophenylboronic acid, led to an inhibitor with 80-fold better binding (2; K{sub i} 83 nM). Molecular docking suggested orientations for this compound in the R1 cleft. Based on the docking results, 12 derivatives of 2 were synthesized, leading to inhibitors with K{sub i} values of 60 nM and with improved solubility. Several of these inhibitors reversed the resistance of nosocomial Gram-positive bacteria, though they showed little activity against Gram-negative bacteria. The X-ray crystal structure of compound 2 in complex with AmpC was subsequently determined to 2.1 {angstrom} resolution. The placement of the proximal two-thirds of the inhibitor in the experimental structure corresponds with the docked structure, but a bond rotation leads to a distinctly different placement of the distal part of the inhibitor. In the experimental structure, the inhibitor interacts with conserved residues in the R1 cleft whose role in recognition has not been previously explored. Combining structure-based design with in-parallel synthesis allowed for the rapid exploration of inhibitor functionality in the R1 cleft of AmpC. The resulting inhibitors differ considerably from {beta}-lactams but

  10. Characterization of Crohn disease in X-linked inhibitor of apoptosis-deficient male patients and female symptomatic carriers.

    PubMed

    Aguilar, Claire; Lenoir, Christelle; Lambert, Nathalie; Bègue, Bernadette; Brousse, Nicole; Canioni, Danielle; Berrebi, Dominique; Roy, Maryline; Gérart, Stéphane; Chapel, Helen; Schwerd, Tobias; Siproudhis, Laurent; Schäppi, Michela; Al-Ahmari, Ali; Mori, Masaaki; Yamaide, Akiko; Galicier, Lionel; Neven, Bénédicte; Routes, John; Uhlig, Holm H; Koletzko, Sibylle; Patel, Smita; Kanegane, Hirokazu; Picard, Capucine; Fischer, Alain; Bensussan, Nadine Cerf; Ruemmele, Frank; Hugot, Jean-Pierre; Latour, Sylvain

    2014-11-01

    Crohn disease is an inflammatory bowel disease (IBD) with a complex mode of inheritance. Although nucleotide binding and oligomerization domain containing 2 (NOD2) is the strongest risk factor, the cause of Crohn disease remains unknown in the majority of the cases. X-linked inhibitor of apoptosis (XIAP) deficiency causes X-linked lymphoproliferative syndrome type 2. IBD has been reported in some XIAP-deficient patients. We characterize the IBD affecting a large cohort of patients with mutations in XIAP and examine the possible pathophysiologic mechanisms. We performed a phenotypical and histologic analysis of the IBD affecting 17 patients with hemizygous mutations in XIAP, including 3 patients identified by screening 83 patients with pediatric-onset IBD. The X chromosome inactivation was analyzed in female carriers of heterozygous XIAP mutations, including 2 adults with IBD. The functional consequences of XIAP deficiency were analyzed. Clinical presentation and histology of IBD in patients with XIAP deficiency overlapped with those of patients with Crohn disease. The age at onset was variable (from 3 months to 41 years), and IBD was severe and difficult to treat. In 2 patients hematopoietic stem cell transplantation fully restored intestinal homeostasis. Monocytes of patients had impaired NOD2-mediated IL-8 and monocyte chemoattractant protein 1 (MCP-1) production, as well as IL-10, in response to NOD2 and Toll-like receptor 2/4 costimulation. Nucleotide binding and oligomerization domain containing 1 (NOD1)-mediated IL-6 and IL-8 production was defective in fibroblasts from XIAP-deficient patients. The 2 heterozygous female carriers of XIAP mutations with IBD displayed abnormal expression of the XIAP mutated allele, resulting in impaired activation of the NOD2 pathway. IBD in patients with XIAP deficiency is similar to Crohn disease and is associated with defective NOD2 function in monocytes. Importantly, we report that it is not restricted to male patients

  11. DCLRE1C (ARTEMIS) mutations causing phenotypes ranging from atypical severe combined immunodeficiency to mere antibody deficiency.

    PubMed

    Volk, Timo; Pannicke, Ulrich; Reisli, Ismail; Bulashevska, Alla; Ritter, Julia; Björkman, Andrea; Schäffer, Alejandro A; Fliegauf, Manfred; Sayar, Esra H; Salzer, Ulrich; Fisch, Paul; Pfeifer, Dietmar; Di Virgilio, Michela; Cao, Hongzhi; Yang, Fang; Zimmermann, Karin; Keles, Sevgi; Caliskaner, Zafer; Güner, S Ükrü; Schindler, Detlev; Hammarström, Lennart; Rizzi, Marta; Hummel, Michael; Pan-Hammarström, Qiang; Schwarz, Klaus; Grimbacher, Bodo

    2015-12-20

    Null mutations in genes involved in V(D)J recombination cause a block in B- and T-cell development, clinically presenting as severe combined immunodeficiency (SCID). Hypomorphic mutations in the non-homologous end-joining gene DCLRE1C (encoding ARTEMIS) have been described to cause atypical SCID, Omenn syndrome, Hyper IgM syndrome and inflammatory bowel disease-all with severely impaired T-cell immunity. By whole-exome sequencing, we investigated the molecular defect in a consanguineous family with three children clinically diagnosed with antibody deficiency. We identified perfectly segregating homozygous variants in DCLRE1C in three index patients with recurrent respiratory tract infections, very low B-cell numbers and serum IgA levels. In patients, decreased colony survival after irradiation, impaired proliferative response and reduced counts of naïve T cells were observed in addition to a restricted T-cell receptor repertoire, increased palindromic nucleotides in the complementarity determining regions 3 and long stretches of microhomology at switch junctions. Defective V(D)J recombination was complemented by wild-type ARTEMIS protein in vitro. Subsequently, homozygous or compound heterozygous DCLRE1C mutations were identified in nine patients from the same geographic region. We demonstrate that DCLRE1C mutations can cause a phenotype presenting as only antibody deficiency. This novel association broadens the clinical spectrum associated with ARTEMIS mutations. Clinicians should consider the possibility that an immunodeficiency with a clinically mild initial presentation could be a combined immunodeficiency, so as to provide appropriate care for affected patients. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Expression of PKA inhibitor (PKI) gene abolishes cAMP-mediated protection to endothelial barrier dysfunction.

    PubMed

    Lum, H; Jaffe, H A; Schulz, I T; Masood, A; RayChaudhury, A; Green, R D

    1999-09-01

    We investigated the hypothesis that cAMP-dependent protein kinase (PKA) protects against endothelial barrier dysfunction in response to proinflammatory mediators. An E1-, E3-, replication-deficient adenovirus (Ad) vector was constructed containing the complete sequence of PKA inhibitor (PKI) gene (AdPKI). Infection of human microvascular endothelial cells (HMEC) with AdPKI resulted in overexpression of PKI. Treatment with 0.5 microM thrombin increased transendothelial albumin clearance rate (0.012 +/- 0.003 and 0.035 +/- 0.005 microl/min for control and thrombin, respectively); the increase was prevented with forskolin + 3-isobutyl-1-methylxanthine (F + I) treatment. Overexpression of PKI resulted in abrogation of the F + I-induced inhibition of the permeability increase. However, with HMEC infected with ultraviolet-inactivated AdPKI, the F + I-induced inhibition was present. Also, F + I treatment of HMEC transfected with reporter plasmid containing the cAMP response element-directed transcription of the luciferase gene resulted in an almost threefold increase in luciferase activity. Overexpression of PKI inhibited this induction of luciferase activity. The results show that Ad-mediated overexpression of PKI in endothelial cells abrogated the cAMP-mediated protection against increased endothelial permeability, providing direct evidence that cAMP-dependent protein kinase promotes endothelial barrier function.

  13. Aged PROP1 Deficient Dwarf Mice Maintain ACTH Production

    PubMed Central

    Bavers, David L.; Beuschlein, Felix; Mortensen, Amanda H.; Keegan, Catherine E.; Hammer, Gary D.; Camper, Sally A.

    2011-01-01

    Humans with PROP1 mutations have multiple pituitary hormone deficiencies (MPHD) that typically advance from growth insufficiency diagnosed in infancy to include more severe growth hormone (GH) deficiency and progressive reduction in other anterior pituitary hormones, eventually including adrenocorticotropic hormone (ACTH) deficiency and hypocortisolism. Congenital deficiencies of GH, prolactin, and thyroid stimulating hormone have been reported in the Prop1null (Prop1-/-) and the Ames dwarf (Prop1df/df) mouse models, but corticotroph and pituitary adrenal axis function have not been thoroughly investigated. Here we report that the C57BL6 background sensitizes mutants to a wasting phenotype that causes approximately one third to die precipitously between weaning and adulthood, while remaining homozygotes live with no signs of illness. The wasting phenotype is associated with severe hypoglycemia. Circulating ACTH and corticosterone levels are elevated in juvenile and aged Prop1 mutants, indicating activation of the pituitary-adrenal axis. Despite this, young adult Prop1 deficient mice are capable of responding to restraint stress with further elevation of ACTH and corticosterone. Low blood glucose, an expected side effect of GH deficiency, is likely responsible for the elevated corticosterone level. These studies suggest that the mouse model differs from the human patients who display progressive hormone loss and hypocortisolism. PMID:22145038

  14. The GH-IGF1 axis and longevity. The paradigm of IGF1 deficiency.

    PubMed

    Laron, Zvi

    2008-01-01

    Primary or secondary IGF1 deficiency has been implicated in shortening of lifespan. This paper reviews available data on the influence of IGF1 deficiency on lifespan and longevity in animals and man. It has been shown that inactivation of the IGF1 gene or of the GH receptor in both invertebrates (C-elegans, flies-Drosphila) and rodents (mice and rats), leading to IGF1 deficiency, prolong life, particularly in females. In man, evaluation of the 2 largest cohorts of patients with Laron syndrome (inactive GH receptor resulting in IGF1 deficiency) in Israel and Ecuador revealed that despite their dwarfism and marked obesity, patients are alive at the ages of 75-78 years, with some having reached even more advanced ages. It is assumed that a major contributing factor is their protection from cancer, a major cause of death in the general population.

  15. In vivo vitamin C deficiency in guinea pigs increases ascorbate transporters in liver but not kidney and brain.

    PubMed

    Søgaard, Ditte; Lindblad, Maiken M; Paidi, Maya D; Hasselholt, Stine; Lykkesfeldt, Jens; Tveden-Nyborg, Pernille

    2014-07-01

    Moderate vitamin C (vitC) deficiency (plasma concentrations less than 23 μmol/L) affects as much as 10% of adults in the Western World and has been associated with an increased mortality in disease complexes such as cardiovascular disease and the metabolic syndrome. The distribution of vitC within the body is subjected to complex and nonlinear pharmacokinetics and largely depends on the sodium-dependent vitC-specific transporters, sodium-dependent vitamin C transporter 1 (SVCT1) and sodium-dependent vitamin C transporter 2 (SVCT2). Although currently not established, it is likely to expect that a state of deficiency may affect the expression of these transporters to preserve vitC concentrations in specific target tissues. We hypothesized that diet-induced states of vitC deficiency lead to alterations in the messenger RNA (mRNA) and/or protein expression of vitC transporters, thereby regulating vitC tissue distribution. Using guinea pigs as a validated model, this study investigated the effects of a diet-induced vitC deficiency (100 mg vitC/kg feed) or depletion (0 mg vitC/kg feed) on the expression of transporters SVCT1 and SVCT2 in selected tissues and the transport from plasma to cerebrospinal fluid (CSF). In deficient animals, SVCT1 was increased in the liver, whereas a decreased SVCT1 expression but increased SVCT2 mRNA in livers of depleted animals suggests a shift in transporter expression as response to the diet. In CSF, a constant plasma:CSF ratio shows unaltered vitC transport irrespective of dietary regime. The study adds novel information to the complex regulation maintaining vitC homeostasis in vivo during states of deficiency. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A BRCA1 deficient-like signature is enriched in breast cancer brain metastases and predicts DNA damage-induced poly (ADP-ribose) polymerase inhibitor sensitivity.

    PubMed

    McMullin, Ryan P; Wittner, Ben S; Yang, Chuanwei; Denton-Schneider, Benjamin R; Hicks, Daniel; Singavarapu, Raj; Moulis, Sharon; Lee, Jeongeun; Akbari, Mohammad R; Narod, Steven A; Aldape, Kenneth D; Steeg, Patricia S; Ramaswamy, Sridhar; Sgroi, Dennis C

    2014-03-14

    There is an unmet clinical need for biomarkers to identify breast cancer patients at an increased risk of developing brain metastases. The objective is to identify gene signatures and biological pathways associated with human epidermal growth factor receptor 2-positive (HER2+) brain metastasis. We combined laser capture microdissection and gene expression microarrays to analyze malignant epithelium from HER2+ breast cancer brain metastases with that from HER2+ nonmetastatic primary tumors. Differential gene expression was performed including gene set enrichment analysis (GSEA) using publicly available breast cancer gene expression data sets. In a cohort of HER2+ breast cancer brain metastases, we identified a gene expression signature that anti-correlates with overexpression of BRCA1. Sequence analysis of the HER2+ brain metastases revealed no pathogenic mutations of BRCA1, and therefore the aforementioned signature was designated BRCA1 Deficient-Like (BD-L). Evaluation of an independent cohort of breast cancer metastases demonstrated that BD-L values are significantly higher in brain metastases as compared to other metastatic sites. Although the BD-L signature is present in all subtypes of breast cancer, it is significantly higher in BRCA1 mutant primary tumors as compared with sporadic breast tumors. Additionally, BD-L signature values are significantly higher in HER2-/ER- primary tumors as compared with HER2+/ER + and HER2-/ER + tumors. The BD-L signature correlates with breast cancer cell line pharmacologic response to a combination of poly (ADP-ribose) polymerase (PARP) inhibitor and temozolomide, and the signature outperformed four published gene signatures of BRCA1/2 deficiency. A BD-L signature is enriched in HER2+ breast cancer brain metastases without pathogenic BRCA1 mutations. Unexpectedly, elevated BD-L values are found in a subset of primary tumors across all breast cancer subtypes. Evaluation of pharmacological sensitivity in breast cancer

  17. A BRCA1 deficient-like signature is enriched in breast cancer brain metastases and predicts DNA damage-induced poly (ADP-ribose) polymerase inhibitor sensitivity

    PubMed Central

    2014-01-01

    Introduction There is an unmet clinical need for biomarkers to identify breast cancer patients at an increased risk of developing brain metastases. The objective is to identify gene signatures and biological pathways associated with human epidermal growth factor receptor 2-positive (HER2+) brain metastasis. Methods We combined laser capture microdissection and gene expression microarrays to analyze malignant epithelium from HER2+ breast cancer brain metastases with that from HER2+ nonmetastatic primary tumors. Differential gene expression was performed including gene set enrichment analysis (GSEA) using publicly available breast cancer gene expression data sets. Results In a cohort of HER2+ breast cancer brain metastases, we identified a gene expression signature that anti-correlates with overexpression of BRCA1. Sequence analysis of the HER2+ brain metastases revealed no pathogenic mutations of BRCA1, and therefore the aforementioned signature was designated BRCA1 Deficient-Like (BD-L). Evaluation of an independent cohort of breast cancer metastases demonstrated that BD-L values are significantly higher in brain metastases as compared to other metastatic sites. Although the BD-L signature is present in all subtypes of breast cancer, it is significantly higher in BRCA1 mutant primary tumors as compared with sporadic breast tumors. Additionally, BD-L signature values are significantly higher in HER2-/ER- primary tumors as compared with HER2+/ER + and HER2-/ER + tumors. The BD-L signature correlates with breast cancer cell line pharmacologic response to a combination of poly (ADP-ribose) polymerase (PARP) inhibitor and temozolomide, and the signature outperformed four published gene signatures of BRCA1/2 deficiency. Conclusions A BD-L signature is enriched in HER2+ breast cancer brain metastases without pathogenic BRCA1 mutations. Unexpectedly, elevated BD-L values are found in a subset of primary tumors across all breast cancer subtypes. Evaluation of

  18. Combined selenium and vitamin C deficiency causes cell death in guinea pig skeletal muscle.

    PubMed

    Hill, Kristina E; Motley, Amy K; May, James M; Burk, Raymond F

    2009-03-01

    Combined antioxidant deficiencies of selenium and vitamin E or vitamin E and vitamin C in guinea pigs result in clinical illness. We hypothesized that combined selenium and vitamin C deficiency would have clinical consequences because in vitro interactions of these antioxidant nutrients have been reported. Because guinea pigs are dependent on dietary vitamin C, weanling male guinea pigs were fed selenium-deficient or control diet for 15 weeks before imposing vitamin C deficiency. Four dietary groups were formed and studied 3 weeks later: controls, vitamin C deficient, selenium deficient, and doubly deficient. Deficiencies were confirmed by determinations of glutathione peroxidase activity and vitamin C concentration in liver and skeletal muscle. Plasma creatine phosphokinase activity and liver, kidney, heart, and quadriceps histopathology were determined. Doubly deficient animals had moderately severe skeletal muscle cell death as judged by histopathology and plasma creatine phosphokinase activity of 6630 +/- 4400 IU/L (control, 70 + or - 5; vitamin C deficient, 95 + or - 110; selenium deficient, 280 + or - 250). Liver, kidney, and heart histology was normal in all groups. Muscle alpha-tocopherol levels were not depressed in the doubly deficient group, but muscle F2 isoprostane concentrations were elevated in them and correlated with markers of cell death. We conclude that combining selenium and vitamin C deficiencies in the guinea pig causes cell death in skeletal muscle that is more severe than the injury caused by selenium deficiency. The elevation of muscle F2 isoprostanes is compatible with the cell death being caused by oxidative stress.

  19. Two-track virtual screening approach to identify both competitive and allosteric inhibitors of human small C-terminal domain phosphatase 1

    NASA Astrophysics Data System (ADS)

    Park, Hwangseo; Lee, Hye Seon; Ku, Bonsu; Lee, Sang-Rae; Kim, Seung Jun

    2017-08-01

    Despite a wealth of persuasive evidence for the involvement of human small C-terminal domain phosphatase 1 (Scp1) in the impairment of neuronal differentiation and in Huntington's disease, small-molecule inhibitors of Scp1 have been rarely reported so far. This study aims to the discovery of both competitive and allosteric Scp1 inhibitors through the two-track virtual screening procedure. By virtue of the improvement of the scoring function by implementing a new molecular solvation energy term and by reoptimizing the atomic charges for the active-site Mg2+ ion cluster, we have been able to identify three allosteric and five competitive Scp1 inhibitors with low-micromolar inhibitory activity. Consistent with the results of kinetic studies on the inhibitory mechanisms, the allosteric inhibitors appear to be accommodated in the peripheral binding pocket through the hydrophobic interactions with the nonpolar residues whereas the competitive ones bind tightly in the active site with a direct coordination to the central Mg2+ ion. Some structural modifications to improve the biochemical potency of the newly identified inhibitors are proposed based on the binding modes estimated with docking simulations.

  20. Identification, characterization and subcellular localization of TcPDE1, a novel cAMP-specific phosphodiesterase from Trypanosoma cruzi.

    PubMed Central

    D'Angelo, Maximiliano A; Sanguineti, Santiago; Reece, Jeffrey M; Birnbaumer, Lutz; Torres, Héctor N; Flawiá, Mirtha M

    2004-01-01

    Compartmentalization of cAMP phosphodiesterases plays a key role in the regulation of cAMP signalling in mammals. In the present paper, we report the characterization and subcellular localization of TcPDE1, the first cAMP-specific phosphodiesterase to be identified from Trypanosoma cruzi. TcPDE1 is part of a small gene family and encodes a 929-amino-acid protein that can complement a heat-shock-sensitive yeast mutant deficient in phospho-diesterase genes. Recombinant TcPDE1 strongly associates with membranes and cannot be released with NaCl or sodium cholate, suggesting that it is an integral membrane protein. This enzyme is specific for cAMP and its activity is not affected by cGMP, Ca2+, calmodulin or fenotiazinic inhibitors. TcPDE1 is sensitive to the phosphodiesterase inhibitor dipyridamole but is resistant to 3-isobutyl-1-methylxanthine, theophylline, rolipram and zaprinast. Papaverine, erythro-9-(2-hydroxy-3-nonyl)-adenine hydrochloride, and vinpocetine are poor inhibitors of this enzyme. Confocal laser scanning of T. cruzi epimastigotes showed that TcPDE1 is associated with the plasma membrane and concentrated in the flagellum of the parasite. The association of TcPDE1 with this organelle was confirmed by subcellular fractionation and cell-disruption treatments. The localization of this enzyme is a unique feature that distinguishes it from all the trypanosomatid phosphodiesterases described so far and indicates that compartmentalization of cAMP phosphodiesterases could also be important in these parasites. PMID:14556647

  1. A synthetic lethal screen identifies ATR-inhibition as a novel therapeutic approach for POLD1-deficient cancers

    PubMed Central

    Hocke, Sandra; Guo, Yang; Job, Albert; Orth, Michael; Ziesch, Andreas; Lauber, Kirsten; De Toni, Enrico N; Gress, Thomas M.; Herbst, Andreas; Göke, Burkhard; Gallmeier, Eike

    2016-01-01

    The phosphoinositide 3-kinase-related kinase ATR represents a central checkpoint regulator and mediator of DNA-repair. Its inhibition selectively eliminates certain subsets of cancer cells in various tumor types, but the underlying genetic determinants remain enigmatic. Here, we applied a synthetic lethal screen directed against 288 DNA-repair genes using the well-defined ATR knock-in model of DLD1 colorectal cancer cells to identify potential DNA-repair defects mediating these effects. We identified a set of DNA-repair proteins, whose knockdown selectively killed ATR-deficient cancer cells. From this set, we further investigated the profound synthetic lethal interaction between ATR and POLD1. ATR-dependent POLD1 knockdown-induced cell killing was reproducible pharmacologically in POLD1-depleted DLD1 cells and a panel of other colorectal cancer cell lines by using chemical inhibitors of ATR or its major effector kinase CHK1. Mechanistically, POLD1 depletion in ATR-deficient cells caused caspase-dependent apoptosis without preceding cell cycle arrest and increased DNA-damage along with impaired DNA-repair. Our data could have clinical implications regarding tumor genotype-based cancer therapy, as inactivating POLD1 mutations have recently been identified in small subsets of colorectal and endometrial cancers. POLD1 deficiency might thus represent a predictive marker for treatment response towards ATR- or CHK1-inhibitors that are currently tested in clinical trials. PMID:26755646

  2. Mitochondrial deficiency impairs hypoxic induction of HIF-1 transcriptional activity and retards tumor growth

    PubMed Central

    Koido, Masaru; Haga, Naomi; Furuno, Aki; Tsukahara, Satomi; Sakurai, Junko; Tani, Yuri; Sato, Shigeo; Tomida, Akihiro

    2017-01-01

    Mitochondria can be involved in regulating cellular stress response to hypoxia and tumor growth, but little is known about that mechanistic relationship. Here, we show that mitochondrial deficiency severely retards tumor xenograft growth with impairing hypoxic induction of HIF-1 transcriptional activity. Using mtDNA-deficient ρ0 cells, we found that HIF-1 pathway activation was comparable in slow-growing ρ0 xenografts and rapid-growing parental xenografts. Interestingly, we found that ex vivo ρ0 cells derived from ρ0 xenografts exhibited slightly increased HIF-1α expression and modest HIF-1 pathway activation regardless of oxygen concentration. Surprisingly, ρ0 cells, as well as parental cells treated with oxidative phosphorylation inhibitors, were unable to boost HIF-1 transcriptional activity during hypoxia, although HIF-1α protein levels were ordinarily increased in these cells under hypoxic conditions. These findings indicate that mitochondrial deficiency causes loss of hypoxia-induced HIF-1 transcriptional activity and thereby might lead to a constitutive HIF-1 pathway activation as a cellular adaptation mechanism in tumor microenvironment. PMID:28060746

  3. Multimerized CHR-derived peptides as HIV-1 fusion inhibitors.

    PubMed

    Nomura, Wataru; Hashimoto, Chie; Suzuki, Takaharu; Ohashi, Nami; Fujino, Masayuki; Murakami, Tsutomu; Yamamoto, Naoki; Tamamura, Hirokazu

    2013-08-01

    To date, several HIV-1 fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of an HIV-1 envelope protein gp41 have been discovered. We have shown that a synthetic peptide mimetic of a trimer form of the CHR-derived peptide C34 has potent inhibitory activity against the HIV-1 fusion mechanism, compared to a monomer C34 peptide. The present study revealed that a dimeric form of C34 is evidently structurally critical for fusion inhibitors, and that the activity of multimerized CHR-derived peptides in fusion inhibition is affected by the properties of the unit peptides C34, SC34EK, and T20. The fluorescence-based study suggested that the N36-interactive sites of the C34 trimer, including hydrophobic residues, are exposed outside the trimer and that trimerization of C34 caused a remarkable increase in fusion inhibitory activity. The present results could be useful in the design of fusion inhibitors against viral infections which proceed via membrane fusion with host cells. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Deoxycytidine and deoxythymidine treatment for thymidine kinase 2 deficiency

    PubMed Central

    Lopez-Gomez, Carlos; Levy, Rebecca J; Sanchez-Quintero, Maria J; Juanola-Falgarona, Marti; Barca, Emanuele; Garcia-Diaz, Beatriz; Tadesse, Saba; Garone, Caterina; Hirano, Michio

    2017-01-01

    Objective Thymidine kinase 2 (TK2), a critical enzyme in the mitochondrial pyrimidine salvage pathway, is essential for mitochondrial DNA (mtDNA) maintenance. Mutations in the nuclear gene TK2 cause TK2 deficiency, which manifests predominantly in children as myopathy with mtDNA depletion. Molecular bypass therapy with the TK2 products, dCMP and dTMP, prolongs the lifespan of Tk2-deficient (Tk2-/-) mice by 2-3 fold. Because we observed rapid catabolism of the deoxynucleoside monophosphates to deoxythymidine (dT) and deoxycytidine (dC), we hypothesized that: 1) deoxynucleosides might be the major active agents and 2) inhibition of deoxycytidine deamination might enhance dTMP+dCMP therapy. Methods To test these hypotheses, we assessed two therapies in Tk2-/- mice: 1) dT+dC and 2) co-administration of the deaminase inhibitor, tetrahydrouridine (THU), with dTMP+dCMP. Results We observed that dC+dT delayed disease onset, prolonged lifespan of Tk2-deficient mice, and restored mtDNA copy number as well as respiratory chain enzyme activities and levels. In contrast, dCMP+dTMP+THU therapy decreased lifespan of Tk2-/- animals compared to dCMP+dTMP. Interpretation Our studies demonstrate that deoxynucleoside substrate enhancement is a novel therapy, which may ameliorate TK2 deficiency in patients. PMID:28318037

  5. Inhibition of the pentose phosphate shunt by 2,3-diphosphoglycerate in erythrocyte pyruvate kinase deficiency.

    PubMed

    Tomoda, A; Lachant, N A; Noble, N A; Tanaka, K R

    1983-07-01

    Pentose phosphate shunt activity was studied by the release of 14CO2 from 14C-1-glucose and 14C-2-glucose in the red cells of five patients with pyruvate kinase deficiency and found to be significantly decreased after new methylene blue stimulation when compared to high reticulocyte controls. Incubated Heinz body formation was increased and the ascorbate cyanide test was positive in blood from these patients. The activity of glucose-6-phosphate dehydrogenase (G6PD) as well as that of 6-phosphogluconate dehydrogenase (6PGD) was inhibited to 20% of baseline in normal red cell haemolysate by 4 mM 2,3-diphosphoglycerate at pH 7.1. 2,3-Diphosphoglycerate was a competitive inhibitor with 6-phosphogluconate (Ki=1.05 mM) and a noncompetitive inhibitor with NADP (Ki=3.3 mM) for 6PGD. Since the intracellular concentrations of glucose-6-phosphate, 6-phosphogluconate and NADP are below their Kms for G6PD and 6PGD, the kinetic data suggest that increased concentrations of 2,3-diphosphoglycerate in pyruvate kinase deficient red cells are sufficiently high to suppress pentose phosphate shunt activity. This suppression may be an additional factor contributing to the haemolytic anaemia of pyruvate kinase deficiency, particularly during periods of infection or metabolic stress.

  6. C/EBPα regulates CRL4Cdt2-mediated degradation of p21 in response to UVB-induced DNA damage to control the G1/S checkpoint

    PubMed Central

    Hall, Jonathan R; Bereman, Michael S; Nepomuceno, Angelito I; Thompson, Elizabeth A; Muddiman, David C; Smart, Robert C

    2014-01-01

    The bZIP transcription factor, C/EBPα is highly inducible by UVB and other DNA damaging agents in keratinocytes. C/EBPα-deficient keratinocytes fail to undergo cell cycle arrest in G1 in response to UVB-induced DNA damage and mice lacking epidermal C/EBPα are highly susceptible to UVB-induced skin cancer. The mechanism through which C/EBPα regulates the cell cycle checkpoint in response to DNA damage is unknown. Here we report untreated C/EBPα-deficient keratinocytes have normal levels of the cyclin-dependent kinase inhibitor, p21, however, UVB-treated C/EBPα-deficient keratinocytes fail to up-regulate nuclear p21 protein levels despite normal up-regulation of Cdkn1a mRNA levels. UVB-treated C/EBPα-deficient keratinocytes displayed a 4-fold decrease in nuclear p21 protein half-life due to the increased proteasomal degradation of p21 via the E3 ubiquitin ligase CRL4Cdt2. Cdt2 is the substrate recognition subunit of CRL4Cdt2 and Cdt2 mRNA and protein levels were up-regulated in UVB-treated C/EBPα-deficient keratinocytes. Knockdown of Cdt2 restored p21 protein levels in UVB-treated C/EBPα-deficient keratinocytes. Lastly, the failure to accumulate p21 in response to UVB in C/EBPα-deficient keratinocytes resulted in decreased p21 interactions with critical cell cycle regulatory proteins, increased CDK2 activity, and inappropriate entry into S-phase. These findings reveal C/EBPα regulates G1/S cell cycle arrest in response to DNA damage via the control of CRL4Cdt2 mediated degradation of p21. PMID:25483090

  7. Genetic analysis of fructose-1,6-bisphosphatase (FBPase) deficiency in nine consanguineous Pakistani families.

    PubMed

    Ijaz, Sadaqat; Zahoor, Muhammad Yasir; Imran, Muhammad; Ramzan, Khushnooda; Bhinder, Munir Ahmad; Shakeel, Hussain; Iqbal, Muhammad; Aslam, Asim; Shehzad, Wasim; Cheema, Huma Arshad; Rehman, Habib

    2017-10-26

    Fructose-1,6-bisphosphatase (FBPase) deficiency is a rare inherited metabolic disorder characterized by recurrent episodes of hypoglycemia, ketosis and lactic acidosis. FBPase is encoded by FBP1 gene and catalyzes the hydrolysis of fructose-1,6-bisphosphate to fructose-6-phosphate in the last step of gluconeogenesis. We report here FBP1 mutations in nine consanguineous Pakistani families affected with FBPase deficiency. Nine families having one or two individuals affected with FBPase deficiency were enrolled over a period of 3 years. All FBP1 exonic regions including splicing sites were PCR-amplified and sequenced bidirectionally. Familial cosegregation of mutations with disease was confirmed by direct sequencing and PCR-RFLP analysis. Three different FBP1 mutations were identified. Each of two previously reported mutations (c.472C>T (p.Arg158Trp) and c.841G>A (p.Glu281Lys)) was carried by four different families. The ninth family carried a novel 4-bp deletion (c.609_612delAAAA), which is predicted to result in frameshift (p.Lys204Argfs*72) and loss of FBPase function. The novel variant was not detected in any of 120 chromosomes from normal ethnically matched individuals. FBPase deficiency is often fatal in the infancy and early childhood. Early diagnosis and prompt treatment is therefore crucial to preventing early mortality. We recommend the use of c.472C>T and c.841G>A mutations as first choice genetic markers for molecular diagnosis of FBPase deficiency in Pakistan.

  8. Maternal segmental disomy in Leigh syndrome with cytochrome c oxidase deficiency caused by homozygous SURF1 mutation.

    PubMed

    van Riesen, A K J; Antonicka, H; Ohlenbusch, A; Shoubridge, E A; Wilichowski, E K G

    2006-04-01

    Cytochrome c oxidase deficiency (COX) is the most frequent cause of Leigh syndrome (LS), a mitochondrial subacute necrotizing encephalomyelopathy. Most of these LS (COX-) patients show mutations in SURF1 on chromosome 9 (9q34), which encodes a protein essential for the assembly of the COX complex. We describe a family whose first-born boy developed characteristic features of LS. Severe COX deficiency in muscle was caused by a novel homozygous nonsense mutation in SURF1. Segregation analysis of this mutation in the family was incompatible with autosomal recessive inheritance but consistent with a maternal disomy. Haplotype analysis of microsatellite markers confirmed isodisomy involving nearly the complete long arm of chromosome 9 (9q21-9tel). No additional physical abnormalities were present in the boy, suggesting that there are no imprinted genes on the long arm of chromosome 9 which are crucial for developmental processes. This case of segmental isodisomy illustrates that genotyping of parents is crucial for correct genetic counseling.

  9. Arginase-1 deficiency.

    PubMed

    Sin, Yuan Yan; Baron, Garrett; Schulze, Andreas; Funk, Colin D

    2015-12-01

    Arginase-1 (ARG1) deficiency is a rare autosomal recessive disorder that affects the liver-based urea cycle, leading to impaired ureagenesis. This genetic disorder is caused by 40+ mutations found fairly uniformly spread throughout the ARG1 gene, resulting in partial or complete loss of enzyme function, which catalyzes the hydrolysis of arginine to ornithine and urea. ARG1-deficient patients exhibit hyperargininemia with spastic paraparesis, progressive neurological and intellectual impairment, persistent growth retardation, and infrequent episodes of hyperammonemia, a clinical pattern that differs strikingly from other urea cycle disorders. This review briefly highlights the current understanding of the etiology and pathophysiology of ARG1 deficiency derived from clinical case reports and therapeutic strategies stretching over several decades and reports on several exciting new developments regarding the pathophysiology of the disorder using ARG1 global and inducible knockout mouse models. Gene transfer studies in these mice are revealing potential therapeutic options that can be exploited in the future. However, caution is advised in extrapolating results since the lethal disease phenotype in mice is much more severe than in humans indicating that the mouse models may not precisely recapitulate human disease etiology. Finally, some of the functions and implications of ARG1 in non-urea cycle activities are considered. Lingering questions and future areas to be addressed relating to the clinical manifestations of ARG1 deficiency in liver and brain are also presented. Hopefully, this review will spark invigorated research efforts that lead to treatments with better clinical outcomes.

  10. Protein Phosphatase 1 Inhibitor-1 Deficiency Reduces Phosphorylation of Renal NaCl Cotransporter and Causes Arterial Hypotension

    PubMed Central

    Picard, Nicolas; Trompf, Katja; Yang, Chao-Ling; Miller, R. Lance; Carrel, Monique; Loffing-Cueni, Dominique; Fenton, Robert A.; Ellison, David H.

    2014-01-01

    The thiazide-sensitive NaCl cotransporter (NCC) of the renal distal convoluted tubule (DCT) controls ion homeostasis and arterial BP. Loss-of-function mutations of NCC cause renal salt wasting with arterial hypotension (Gitelman syndrome). Conversely, mutations in the NCC-regulating WNK kinases or kelch-like 3 protein cause familial hyperkalemic hypertension. Here, we performed automated sorting of mouse DCTs and microarray analysis for comprehensive identification of novel DCT-enriched gene products, which may potentially regulate DCT and NCC function. This approach identified protein phosphatase 1 inhibitor-1 (I-1) as a DCT-enriched transcript, and immunohistochemistry revealed I-1 expression in mouse and human DCTs and thick ascending limbs. In heterologous expression systems, coexpression of NCC with I-1 increased thiazide-dependent Na+ uptake, whereas RNAi-mediated knockdown of endogenous I-1 reduced NCC phosphorylation. Likewise, levels of phosphorylated NCC decreased by approximately 50% in I-1 (I-1−/−) knockout mice without changes in total NCC expression. The abundance and phosphorylation of other renal sodium-transporting proteins, including NaPi-IIa, NKCC2, and ENaC, did not change, although the abundance of pendrin increased in these mice. The abundance, phosphorylation, and subcellular localization of SPAK were similar in wild-type (WT) and I-1−/− mice. Compared with WT mice, I-1−/− mice exhibited significantly lower arterial BP but did not display other metabolic features of NCC dysregulation. Thus, I-1 is a DCT-enriched gene product that controls arterial BP, possibly through regulation of NCC activity. PMID:24231659

  11. Retarded protein folding of deficient human α1-antitrypsin D256V and L41P variants

    PubMed Central

    Jung, Chan-Hun; Na, Yu-Ran; Im, Hana

    2004-01-01

    α1-Antitrypsin is the most abundant protease inhibitor in plasma and is the archetype of the serine protease inhibitor superfamily. Genetic variants of human α1-antitrypsin are associated with early-onset emphysema and liver cirrhosis. However, the detailed molecular mechanism for the pathogenicity of most variant α1-antitrypsin molecules is not known. Here we examined the structural basis of a dozen deficient α1-antitrypsin variants. Unlike most α1-antitrypsin variants, which were unstable, D256V and L41P variants exhibited extremely retarded protein folding as compared with the wild-type molecule. Once folded, however, the stability and inhibitory activity of these variant proteins were comparable to those of the wild-type molecule. Retarded protein folding may promote protein aggregation by allowing the accumulation of aggregation-prone folding intermediates. Repeated observations of retarded protein folding indicate that it is an important mechanism causing α1-antitrypsin deficiency by variant molecules, which have to fold into the metastable native form to be functional. PMID:14767073

  12. C1 Inhibitor in Acute Antibody-Mediated Rejection Nonresponsive to Conventional Therapy in Kidney Transplant Recipients: A Pilot Study.

    PubMed

    Viglietti, D; Gosset, C; Loupy, A; Deville, L; Verine, J; Zeevi, A; Glotz, D; Lefaucheur, C

    2016-05-01

    Complement inhibitors have not been thoroughly evaluated in the treatment of acute antibody-mediated rejection (ABMR). We performed a prospective, single-arm pilot study to investigate the potential effects and safety of C1 inhibitor (C1-INH) Berinert added to high-dose intravenous immunoglobulin (IVIG) for the treatment of acute ABMR that is nonresponsive to conventional therapy. Kidney recipients with nonresponsive active ABMR and acute allograft dysfunction were enrolled between April 2013 and July 2014 and received C1-INH and IVIG for 6 months (six patients). The primary end point was the change in eGFR at 6 months after inclusion (M+6). Secondary end points included the changes in histology and DSA characteristics and adverse events as evaluated at M+6. All patients showed an improvement in eGFR between inclusion and M+6: from 38.7 ± 17.9 to 45.2 ± 21.3 mL/min/1.73 m(2) (p = 0.0277). There was no change in histological features, except a decrease in the C4d deposition rate from 5/6 to 1/6 (p = 0.0455). There was a change in DSA C1q status from 6/6 to 1/6 positive (p = 0.0253). One deep venous thrombosis was observed. In a secondary analysis, C1-INH patients were compared with a similar historical control group (21 patients). C1-INH added to IVIG is safe and may improve allograft function in kidney recipients with nonresponsive acute ABMR. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  13. Anxiolytic effects of phosphodiesterase-2 inhibitors associated with increased cGMP signaling.

    PubMed

    Masood, Anbrin; Huang, Ying; Hajjhussein, Hassan; Xiao, Lan; Li, Hao; Wang, Wei; Hamza, Adel; Zhan, Chang-Guo; O'Donnell, James M

    2009-11-01

    Phosphodiesterase (PDE)-2 is a component of the nitric-oxide synthase (NOS)/guanylyl cyclase signaling pathway in the brain. Given recent evidence that pharmacologically induced changes in NO-cGMP signaling can affect anxiety-related behaviors, the effects of the PDE2 inhibitors (2-(3,4-dimethoxybenzyl)-7-det-5-methylimidazo-[5,1-f][1,2,4]triazin-4(3H)-one) (Bay 60-7550) and 3-(8-methoxy-1-methyl-2-oxo-7-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-5-yl)benzamide (ND7001), as well as modulators of NO, were assessed on cGMP signaling in neurons and on the behavior of mice in the elevated plus-maze, hole-board, and open-field tests, well established procedures for the evaluation of anxiolytics. Bay 60-7550 (1 microM) and ND7001 (10 microM) increased basal and N-methyl-d-aspartate- or detanonoate-stimulated cGMP in primary cultures of rat cerebral cortical neurons; Bay 60-7550, but not ND7001, also increased cAMP. Increased cGMP signaling, either by administration of the PDE2 inhibitors Bay 60-7550 (0.5, 1, and 3 mg/kg) or ND7001 (1 mg/kg), or the NO donor detanonoate (0.5 mg/kg), antagonized the anxiogenic effects of restraint stress on behavior in the three tests. These drugs also produced anxiolytic effects on behavior in nonstressed mice in the elevated plus-maze and hole-board tests; these effects were antagonized by the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (20 mg/kg). By contrast, the NOS inhibitor N(omega)-nitro-l-arginine methyl ester (50 mg/kg), which reduces cGMP signaling, produced anxiogenic effects similar to restraint stress. Overall, the present behavioral and neurochemical data suggest that PDE2 may be a novel pharmacological target for the development of drugs for the treatment of anxiety disorders.

  14. Mutational signatures of DNA mismatch repair deficiency in C. elegans and human cancers.

    PubMed

    Meier, Bettina; Volkova, Nadezda V; Hong, Ye; Schofield, Pieta; Campbell, Peter J; Gerstung, Moritz; Gartner, Anton

    2018-05-01

    Throughout their lifetime, cells are subject to extrinsic and intrinsic mutational processes leaving behind characteristic signatures in the genome. DNA mismatch repair (MMR) deficiency leads to hypermutation and is found in different cancer types. Although it is possible to associate mutational signatures extracted from human cancers with possible mutational processes, the exact causation is often unknown. Here, we use C. elegans genome sequencing of pms-2 and mlh-1 knockouts to reveal the mutational patterns linked to C. elegans MMR deficiency and their dependency on endogenous replication errors and errors caused by deletion of the polymerase ε subunit pole-4 Signature extraction from 215 human colorectal and 289 gastric adenocarcinomas revealed three MMR-associated signatures, one of which closely resembles the C. elegans MMR spectrum and strongly discriminates microsatellite stable and unstable tumors (AUC = 98%). A characteristic difference between human and C. elegans MMR deficiency is the lack of elevated levels of N C G > NTG mutations in C. elegans, likely caused by the absence of cytosine (CpG) methylation in worms . The other two human MMR signatures may reflect the interaction between MMR deficiency and other mutagenic processes, but their exact cause remains unknown. In summary, combining information from genetically defined models and cancer samples allows for better aligning mutational signatures to causal mutagenic processes. © 2018 Meier et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Structural and functional aspects of C1-inhibitor.

    PubMed

    Bos, Ineke G A; Hack, C Erik; Abrahams, Jan Pieter

    2002-09-01

    C1-Inh is a serpin that inhibits serine proteases from the complement and the coagulation pathway. C1-Inh consists of a serpin domain and a unique N-terminal domain and is heavily glycosylated. Non-functional mutants of C1-Inh can give insight into the inhibitory mechanism of C1-Inh. This review describes a novel 3D model of C1-Inh, based on a newly developed homology modelling method. This model gives insight into a possible potentiation mechanism of C1-Inh and based on this model the essential residues for efficient inhibition by C1-Inh are discussed.

  16. [Determination of drug resistance mutations of NS3 inhibitors in chronic hepatitis C patients infected with genotype 1].

    PubMed

    Şanlıdağ, Tamer; Sayan, Murat; Akçalı, Sinem; Kasap, Elmas; Buran, Tahir; Arıkan, Ayşe

    2017-04-01

    Direct-acting antiviral agents (DAA) such as NS3 protease inhibitors is the first class of drugs used for chronic hepatitis C (CHC) treatment. NS3 inhibitors (PI) with low genetic barrier have been approved to be used in the CHC genotype 1 infections, and in the treatment of compensated liver disease including cirrhosis together with pegile interferon and ribavirin. Consequently, the development of drug resistance during DAA treatment of CHC is a major problem. NS3 resistant variants can be detected before treatment as they can occurnaturally. The aim of this study was to investigate new and old generation NS3 inhibitors resistance mutations before DAA treatment in hepatitis C virus (HCV) that were isolated from CHC. The present study was conducted in 2015 and included 97 naive DAA patients infected with HCV genotype 1, who were diagnosed in Manisa and Kocaeli cities of Turkey. Magnetic particle based HCV RNA extraction and than RNA detection and quantification were performed using commercial real-time PCR assay QIASypmhony + Rotorgene Q/ArtusHCV QS-RGQ and COBAS Ampliprep/COBAS TaqMan HCV Tests. HCV NS3 viral protease genome region was amplified with PCR and mutation analysis was performed by Sanger dideoxy sequencing technique of NS3 protease codons (codon 32-185). HCV NS3 protease inhibitors; asunaprevir, boceprevir, faldaprevir, grazoprevir, pariteprevir, simeprevir and telaprevir were analysed for resistant mutations by Geno2pheno-HCV resistance tool. HCV was genotyped in all patients and 88 patients (n= 88/97, 91%) had genotype 1. Eight (n= 8/97, 8.2%) and 80 (n= 80/97, 82.4%) HCC patients were subgenotyped as 1a and 1b, respectively. Many aminoacid substitutions and resistance mutations were determined in 39/88 (44%) patients in the study group. Q80L, S122C/N, S138W were defined as potential substitutions (6/88 patients; 7%); R109K, R117C, S122G, I132V, I170V, N174S were described as potential resistance (34/88 patients; 39%); V36L, T54S, V55A, Q80H were

  17. Tissue-specific expression and regulation by 1,25(OH)2D3 of chick protein kinase inhibitor (PKI) mRNA.

    PubMed

    Marchetto, G S; Henry, H L

    1997-02-01

    The heat-stable protein kinase inhibitor (PKI) protein is a specific and potent competitive inhibitor of the catalytic subunit of cAMP-dependent protein kinase (PKA). Previously, it has been shown that vitamin D status affects chick kidney PKI activity: a 5- to 10-fold increase in PKI activity was observed in kidneys of chronically vitamin D-deficient chicks and treatment with 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) in cultured kidney cells resulted in a 95% decrease in PKI activity. The authors have recently cloned the cDNA for chick kidney PKI and have used the coding sequence to study the regulation of PKI mRNA. Northern analysis showed the expression of two PKI messages, which are 2.7 and 3.3 kb in size. These mRNAs are expressed in brain, muscle, testis, and kidney, but not in pancreas, liver, or intestine. PKI mRNA steady-state levels are downregulated by 47% in kidneys from vitamin D-replete chicks as compared to vitamin D-deficient chicks. PKI mRNA levels in brain, muscle, and testis are not affected by vitamin D status. Treatment of primary chick kidney cultures treated with 10(-7) M 1,25(OH)2D3 for 24h resulted in a 20-30% decrease in PKI mRNA. 1,25(OH)2D3 treatment does not affect the stability of PKI mRNA as determined by treatment of cell cultures with actinomycin D. This study shows that 1,25(OH)2D3 directly and tissue-specifically downregulates PKI mRNA in the chick kidney.

  18. Vitamin C deficiency exerts paradoxical cardiovascular effects in osteogenic disorder Shionogi (ODS) rats.

    PubMed

    Vergely, Catherine; Goirand, Françoise; Ecarnot-Laubriet, Aline; Renard, Céline; Moreau, Daniel; Guilland, Jean-Claude; Dumas, Monique; Rochette, Luc

    2004-04-01

    Vitamin C is considered to be a very efficient water-soluble antioxidant, for which several new cardiovascular properties were recently described. The aim of this study was to determine in vivo the effects of a severe depletion of vitamin C on cardiac and vascular variables and reperfusion arrhythmias. For this purpose, we used a mutant strain of Wistar rats, osteogenic disorder Shionogi (ODS). After 15 d of consuming a vitamin C-deficient diet, ODS rats had a 90% decrease in plasma and tissue levels of ascorbate compared with ODS vitamin C-supplemented rats and normal Wistar rats. However, plasma antioxidant capacity, proteins, alpha-tocopherol, urate, catecholamines, lipids, and nitrate were not influenced by the vitamin C deficiency in ODS rats. Moreover, there was no difference between ODS vitamin C-deficient and -supplemented rats in heart rate and arterial pressure. After 5 min of an in vivo regional myocardial ischemia, various severe arrhythmias were observed, but their intensities were not modified by vitamin C in vitamin C-deficient ODS rats. The vascular reactivity, measured in vitro on thoracic arteries, was not altered by ascorbate deficiency in ODS rats. These unexpected results suggest that unidentified compensatory mechanisms play a role in maintaining normal cardiac function and vascular reactivity in vitamin C-deficient rats.

  19. Role of gemfibrozil as an inhibitor of CYP2C8 and membrane transporters.

    PubMed

    Tornio, Aleksi; Neuvonen, Pertti J; Niemi, Mikko; Backman, Janne T

    2017-01-01

    Cytochrome P450 (CYP) 2C8 is a drug metabolizing enzyme of major importance. The lipid-lowering drug gemfibrozil has been identified as a strong inhibitor of CYP2C8 in vivo. This effect is due to mechanism-based inhibition of CYP2C8 by gemfibrozil 1-O-β-glucuronide. In vivo, gemfibrozil is a fairly selective CYP2C8 inhibitor, which lacks significant inhibitory effect on other CYP enzymes. Gemfibrozil can, however, have a smaller but clinically meaningful inhibitory effect on membrane transporters, such as organic anion transporting polypeptide 1B1 and organic anion transporter 3. Areas covered: This review describes the inhibitory effects of gemfibrozil on CYP enzymes and membrane transporters. The clinical drug interactions caused by gemfibrozil and the different mechanisms contributing to the interactions are reviewed in detail. Expert opinion: Gemfibrozil is a useful probe inhibitor of CYP2C8 in vivo, but its effect on membrane transporters has to be taken into account in study design and interpretation. Moreover, gemfibrozil could be used to boost the pharmacokinetics of CYP2C8 substrate drugs. Identification of gemfibrozil 1-O-β-glucuronide as a potent mechanism-based inhibitor of CYP2C8 has led to recognition of glucuronide metabolites as perpetrators of drug-drug interactions. Recently, also acyl glucuronide metabolites of clopidogrel and deleobuvir have been shown to strongly inhibit CYP2C8.

  20. Protein Tyrosine Phosphatase 1B Inhibitors from the Stems of Akebia quinata.

    PubMed

    An, Jin-Pyo; Ha, Thi Kim Quy; Kim, Jinwoong; Cho, Tae Oh; Oh, Won Keun

    2016-08-19

    PTP1B deficiency in mouse mammary tumor virus (MMTV)-NeuNT transgenic mice inhibited the onset of MMTV-NeuNT-evoked breast cancer, while its overexpression was observed in breast cancer. Thus, PTP1B inhibitors are considered chemopreventative agents for breast cancer. As part of our program to find PTP1B inhibitors, one new diterpene glycoside (1) and 13 known compounds (2-14) were isolated from the methanol extract of the stems of Akebia quinata. All isolates were identified based on extensive spectroscopic data analysis, including UV, IR, NMR and MS. Compounds 2, 3, 6, 8 and 11 showed significant inhibitory effects on the PTP1B enzyme, with IC50 values ranging from 4.08 ± 1.09 to 21.80 ± 4.74 μM. PTP1B inhibitors also had concentration-dependent cytotoxic effects on breast cancer cell lines, such as MCF7, MDA-MB-231 and tamoxifen-resistant MCF7 (MCF7/TAMR) (IC50 values ranging from 0.84 ± 0.04 to 7.91 ± 0.39 μM). These results indicate that compounds 6 and 8 from Akebia quinata may be lead compounds acting as anti-breast cancer agents.

  1. WNK1 is an unexpected autophagy inhibitor.

    PubMed

    Gallolu Kankanamalage, Sachith; Lee, A-Young; Wichaidit, Chonlarat; Lorente-Rodriguez, Andres; Shah, Akansha M; Stippec, Steve; Whitehurst, Angelique W; Cobb, Melanie H

    2017-05-04

    Autophagy is a cellular degradation pathway that is essential to maintain cellular physiology, and deregulation of autophagy leads to multiple diseases in humans. In a recent study, we discovered that the protein kinase WNK1 (WNK lysine deficient protein kinase 1) is an inhibitor of autophagy. The loss of WNK1 increases both basal and starvation-induced autophagy. In addition, the depletion of WNK1 increases the activation of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex, which is required to induce autophagy. Moreover, the loss of WNK1 increases the expression of ULK1 (unc-51 like kinase 1), which is upstream of the PtdIns3K complex. It also increases the pro-autophagic phosphorylation of ULK1 at Ser555 and the activation of AMPK (AMP-activated protein kinase), which is responsible for that phosphorylation. The inhibition of AMPK by compound C decreases the magnitude of autophagy induction following WNK1 loss; however, it does not prevent autophagy induction. We found that the UVRAG (UV radiation resistance associated gene), which is a component of the PtdIns3K, binds to the N-terminal region of WNK1. Moreover, WNK1 partially colocalizes with UVRAG and this colocalization decreases when autophagy is stimulated in cells. The loss of WNK1 also alters the cellular distribution of UVRAG. The depletion of the downstream target of WNK1, OXSR1/OSR1 (oxidative-stress responsive 1) has no effect on autophagy, whereas the depletion of its relative STK39/SPAK (serine/threonine kinase 39) induces autophagy under nutrient-rich and starved conditions.

  2. Carnitine-acylcarnitine translocase deficiency with c.199-10 T>G and novel c.1A>G mutation

    PubMed Central

    Yan, Hui-ming; Hu, Hao; Ahmed, Aisha; Feng, Bing-bing; Liu, Jing; Jia, Zheng-jun; Wang, Hua

    2017-01-01

    Abstract Rationale: Carnitine-acylcarnitine translocate deficiency (CACTD) is a rare and life-threatening, autosomal recessive disorder of fatty acid β-oxidation characterized by hypoketotic hypoglycemia, hyperammonemia, cardiomyopathy, liver dysfunction, and muscle weakness; culminating in early death. To date, CACTD cases screened from the Chinese mainland population, especially patient with compound heterozygote with c.199-10T>G and a novel c.1A>G mutation in the SLC25A20 gene has never been described. Patient concerns: Herein, we report 2 neonatal cases of CACTD identified from the mainland China. These 2 patients were presented with severe metabolic crisis and their clinical conditions deteriorate rapidly and both died of cardiorespiratory collapse in the first week of life. We present the clinical and biochemical features of 2 probands and a brief literature review of previously reported CACTD cases with the c.199-10T>G mutation. Diagnoses: The acylcarnitine profiles by tandem-mass-spectrometry and the mutation analysis of SLC25A20 gene confirmed the diagnosis of CACTD in both patients. Mutation analysis demonstrated that patient No. 1 was homozygous for c.199-10T>G mutation, while patient No. 2 was a compound heterozygote for 2 mutations, a maternally-inherited c.199-10T>G and a paternally-inherited, novel c.1A>G mutation. Interventions: Both patients were treated with an aggressive treatment regimen include high glucose and arginine infusion, respiratory, and circulatory support. Outcomes: The first proband died 3 days after delivery due to sudden cardiac arrest. The second patient's clinical condition, at one time, was improved by high glucose infusion, intravenous arginine, and circulatory support. However, the patient failed to wean from mechanical ventilation. Unfortunately, her parents refused further treatment due to fear of financial burdens. The patient died of congestive heart failure in the 6th day of life. Lessons: We report the first 2 cases of

  3. Simple method to distinguish between primary and secondary C3 deficiencies.

    PubMed

    Pereira de Carvalho Florido, Marlene; Ferreira de Paula, Patrícia; Isaac, Lourdes

    2003-03-01

    Due to the increasing numbers of reported clinical cases of complement deficiency in medical centers, clinicians are now more aware of the role of the complement system in the protection against infections caused by microorganisms. Therefore, clinical laboratories are now prepared to perform a number of diagnostic tests of the complement system other than the standard 50% hemolytic component assay. Deficiencies of alternative complement pathway proteins are related to severe and recurrent infections; and the application of easy, reliable, and low-cost methods for their detection and distinction are always welcome, notably in developing countries. When activation of the alternative complement pathway is evaluated in hemolytic agarose plates, some but not all human sera cross-react to form a late linear lysis. Since the formation of this linear lysis is dependent on C3 and factor B, it is possible to use late linear lysis to routinely screen for the presence of deficiencies of alternative human complement pathway proteins such as factor B. Furthermore, since linear lysis is observed between normal human serum and primary C3-deficient serum but not between normal human serum and secondary C3-deficient serum caused by the lack of factor H or factor I, this assay may also be used to discriminate between primary and secondary C3 deficiencies.

  4. Accelerated Spirometric Decline in New York City Firefighters With α1-Antitrypsin Deficiency

    PubMed Central

    Brantly, Mark; Izbicki, Gabriel; Hall, Charles; Shanske, Alan; Chavko, Robert; Santhyadka, Ganesha; Christodoulou, Vasilios; Weiden, Michael D.; Prezant, David J.

    2010-01-01

    Background: On September 11, 2001, the World Trade Center (WTC) collapse caused massive air pollution, producing variable amounts of lung function reduction in the New York City Fire Department (FDNY) rescue workforce. α1-Antitrypsin (AAT) deficiency is a risk factor for obstructive airway disease. Methods: This prospective, longitudinal cohort study of the first 4 years post-September 11, 2001, investigated the influence of AAT deficiency on adjusted longitudinal spirometric change (FEV1) in 90 FDNY rescue workers with WTC exposure. Workers with protease inhibitor (Pi) Z heterozygosity were considered moderately AAT deficient. PiS homozygosity or PiS heterozygosity without concomitant PiZ heterozygosity was considered mild deficiency, and PiM homozygosity was considered normal. Alternately, workers had low AAT levels if serum AAT was ≤ 20 μmol/L. Results: In addition to normal aging-related decline (37 mL/y), significant FEV1 decline accelerations developed with increasing AAT deficiency severity (110 mL/y for moderate and 32 mL/y for mild) or with low AAT serum levels (49 mL/y). Spirometric rates pre-September 11, 2001, did not show accelerations with AAT deficiency. Among workers with low AAT levels, cough persisted in a significant number of participants at 4 years post-September 11, 2001. Conclusions: FDNY rescue workers with AAT deficiency had significant spirometric decline accelerations and persistent airway symptoms during the first 4 years after WTC exposure, representing a novel gene-by-environment interaction. Clinically meaningful decline acceleration occurred even with the mild serum AAT level reductions associated with PiS heterozygosity (without concomitant PiZ heterozygosity). PMID:20634282

  5. Serine Protease Inhibitor Kazal Type 1 (SPINK1) c.194+2T > C Mutation May Predict Long-term Outcome of Endoscopic Treatments in Idiopathic Chronic Pancreatitis.

    PubMed

    Sun, Chang; Liu, Mu-Yun; Liu, Xiao-Gang; Hu, Liang-Hao; Xia, Tian; Liao, Zhuan; Li, Zhao-Shen

    2015-11-01

    Endoscopic interventional is a commonly used treatment method for idiopathic chronic pancreatitis. Serine protease inhibitor Kazal type 1 (SPINK1) 194+2T>C mutation is most frequently observed in Chinese pancreatitis patients and influences the clinical course of idiopathic chronic pancreatitis patients. We conducted this study to determine the impacts of this mutation on the outcome of endoscopic treatments.In this study, we enrolled 423 patients. Among them, 101 idiopathic chronic pancreatitis patients without other relevant mutations had a successful endoscopic procedure and completed follow-up. Clinical characteristics including Izbicki pain score, exocrine and endocrine function, were evaluated. Genetic sequencing was conducted to detect SPINK1 194+2T>C mutations.The c.194+2T>C mutation was found in 58 (57.43%) patients. Factors relevant to pain relief are c.194+2T>C mutation (P = 0.011), severe pain before treatment (P = 0.005), and necessary subsequent endoscopic treatments (P < 0.001). More patients with the intronic mutation had deteriorated endocrine function (P = 0.001) relative to those patients without the mutation.Patients carrying the c.194+2T>C mutation were less likely to achieve pain relief through endoscopic treatments. They also have a higher risk of endocrine function deterioration. SPINK1 c.194+2T>C mutation may be applied as a pretreatment predictor in idiopathic chronic pancreatitis patients.

  6. Dietary vitamin C deficiency depressed the gill physical barriers and immune barriers referring to Nrf2, apoptosis, MLCK, NF-κB and TOR signaling in grass carp (Ctenopharyngodon idella) under infection of Flavobacterium columnare.

    PubMed

    Xu, Hui-Jun; Jiang, Wei-Dan; Feng, Lin; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2016-11-01

    This study explored the effects of vitamin C on the physical barriers and immune barriers, and relative mRNA levels of signaling molecules in the gill of grass carp (Ctenopharyngodon idella) under infection of Flavobacterium columnare. The results indicated that compared with optimal vitamin C supplementation, vitamin C deficiency (2.9 mg/kg diet) (1) increased reactive oxygen species, malondialdehyde and protein carbonyl (PC) contents (P < 0.05), decreased the copper/zinc superoxide dismutase, manganese superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities and mRNA levels (P < 0.05), and glutathione and vitamin C contents (P < 0.05), down-regulated NF-E2-related factor 2 mRNA level (P < 0.05), and up-regulated Kelch-like ECH-associating protein (Keap) 1a (rather than Keap1b) mRNA level (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency induced oxidative injury in fish gill; (2) up-regulated caspase-3, -7, -8, -9, Fas ligand, B-cell lymphoma protein 2 associated X protein, apoptotic protease activating factor-1 mRNA levels (P < 0.05), and down-regulated inhibitor of apoptosis protein and B-cell lymphoma-2 (rather than myeloid cell leukemia-1) mRNA level (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency aggravated cell apoptosis in fish gill; (3) up-regulated pore-forming TJs Claudin-12, 15a, -15b, and related signaling molecules myosin light chain kinase, p38 mitogen-activated protein kinase (rather than c-Jun N-terminal kinases) mRNA levels (P < 0.05), and down-regulated barrier-forming TJs Occludin, zonula occludens (ZO) 1, ZO-2, Claudin-c, -3c, -7a, -7b mRNA levels (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency disrupted tight junctional complexes in fish gill; (4) decreased lysozyme and acid phosphatase (ACP) activities, and

  7. The food dye FD&C Blue No. 1 is a selective inhibitor of the ATP release channel Panx1.

    PubMed

    Wang, Junjie; Jackson, David George; Dahl, Gerhard

    2013-05-01

    The food dye FD&C Blue No. 1 (Brilliant Blue FCF [BB FCF]) is structurally similar to the purinergic receptor antagonist Brilliant Blue G (BBG), which is a well-known inhibitor of the ionotropic P2X7 receptor (P2X7R). The P2X7R functionally interacts with the membrane channel protein pannexin 1 (Panx1) in inflammasome signaling. Intriguingly, ligands to the P2X7R, regardless of whether they are acting as agonists or antagonists at the receptor, inhibit Panx1 channels. Thus, because both P2X7R and Panx1 are inhibited by BBG, the diagnostic value of the drug is limited. Here, we show that the food dye BB FCF is a selective inhibitor of Panx1 channels, with an IC50 of 0.27 µM. No significant effect was observed with concentrations as high as 100 µM of BB FCF on P2X7R. Differing by just one hydroxyl group from BB FCF, the food dye FD&C Green No. 3 exhibited similar selective inhibition of Panx1 channels. A reverse selectivity was observed for the P2X7R antagonist, oxidized ATP, which in contrast to other P2X7R antagonists had no significant inhibitory effect on Panx1 channels. Based on its selective action, BB FCF can be added to the repertoire of drugs to study the physiology of Panx1 channels. Furthermore, because Panx1 channels appear to be involved directly or indirectly through P2X7Rs in several disorders, BB FCF and derivatives of this "safe" food dye should be given serious consideration for pharmacological intervention of conditions such as acute Crohn's disease, stroke, and injuries to the central nervous system.

  8. Inhibitors of HIV-1 maturation: Development of structure-activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids.

    PubMed

    Swidorski, Jacob J; Liu, Zheng; Sit, Sing-Yuen; Chen, Jie; Chen, Yan; Sin, Ny; Venables, Brian L; Parker, Dawn D; Nowicka-Sans, Beata; Terry, Brian J; Protack, Tricia; Rahematpura, Sandhya; Hanumegowda, Umesh; Jenkins, Susan; Krystal, Mark; Dicker, Ira B; Meanwell, Nicholas A; Regueiro-Ren, Alicia

    2016-04-15

    We have recently reported on the discovery of a C-3 benzoic acid (1) as a suitable replacement for the dimethyl succinate side chain of bevirimat (2), an HIV-1 maturation inhibitor that reached Phase II clinical trials before being discontinued. Recent SAR studies aimed at improving the antiviral properties of 2 have shown that the benzoic acid moiety conferred topographical constraint to the pharmacophore and was associated with a lower shift in potency in the presence of human serum albumin. In this manuscript, we describe efforts to improve the polymorphic coverage of the C-3 benzoic acid chemotype through modifications at the C-28 position of the triterpenoid core. The dimethylaminoethyl amides 17 and 23 delivered improved potency toward bevirimat-resistant viruses while increasing C24 in rat oral PK studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. YCZ-18 Is a New Brassinosteroid Biosynthesis Inhibitor

    PubMed Central

    Oh, Keimei; Matsumoto, Tadashi; Yamagami, Ayumi; Ogawa, Atushi; Yamada, Kazuhiro; Suzuki, Ryuichiro; Sawada, Takayuki; Fujioka, Shozo; Yoshizawa, Yuko; Nakano, Takeshi

    2015-01-01

    Plant hormone brassinosteroids (BRs) are a group of polyhydroxylated steroids that play critical roles in regulating broad aspects of plant growth and development. The structural diversity of BRs is generated by the action of several groups of P450s. Brassinazole is a specific inhibitor of C-22 hydroxylase (CYP90B1) in BR biosynthesis, and the application use of brassinazole has emerged as an effective way of complementing BR-deficient mutants to elucidate the functions of BRs. In this article, we report a new triazole-type BR biosynthesis inhibitor, YCZ-18. Quantitative analysis the endogenous levels of BRs in Arabidopsis indicated that YCZ-18 significantly decreased the BR contents in plant tissues. Assessment of the binding affinity of YCZ-18to purified recombinant CYP90D1 indicated that YCZ-18 induced a typical type II binding spectrum with a Kd value of approximately 0.79 μM. Analysis of the mechanisms underlying the dwarf phenotype associated with YCZ-18 treatment of Arabidopsis indicated that the chemically induced dwarf phenotype was caused by a failure of cell elongation. Moreover, dissecting the effect of YCZ-18 on the induction or down regulation of genes responsive to BRs indicated that YCZ-18 regulated the expression of genes responsible for BRs deficiency in Arabidopsis. These findings indicate that YCZ-18 is a potent BR biosynthesis inhibitor and has a new target site, C23-hydroxylation in BR biosynthesis. Application of YCZ-18 will be a good starting point for further elucidation of the detailed mechanism of BR biosynthesis and its regulation. PMID:25793645

  10. Discovery of amido-benzisoxazoles as potent c-Kit inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunz, Roxanne K.; Rumfelt, Shannon; Chen, Ning

    2010-01-12

    Deregulation of the receptor tyrosine kinase c-Kit is associated with an increasing number of human diseases, including certain cancers and mast cell diseases. Interference of c-Kit signaling with multi-kinase inhibitors has been shown clinically to successfully treat gastrointestinal stromal tumors and mastocytosis. Targeted therapy of c-Kit activity may provide therapeutic advantages against off-target effects for non-oncology applications. A new structural class of c-Kit inhibitors is described, including in vitro c-Kit potency, kinase selectivity, and the observed binding mode.

  11. Acquisition of C1 inhibitor by Bordetella pertussis virulence associated gene 8 results in C2 and C4 consumption away from the bacterial surface

    PubMed Central

    Hovingh, Elise S.; Kuipers, Betsy; Pinelli, Elena; Rooijakkers, Suzan H. M.

    2017-01-01

    Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis. PMID:28742139

  12. Acquisition of C1 inhibitor by Bordetella pertussis virulence associated gene 8 results in C2 and C4 consumption away from the bacterial surface.

    PubMed

    Hovingh, Elise S; van den Broek, Bryan; Kuipers, Betsy; Pinelli, Elena; Rooijakkers, Suzan H M; Jongerius, Ilse

    2017-07-01

    Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis.

  13. C1-inhibitor concentrate home therapy for hereditary angioedema: a viable, effective treatment option

    PubMed Central

    Longhurst, H J; Carr, S; Khair, K

    2007-01-01

    Economic and political factors have led to the increased use of home therapy programmes for patients who have traditionally been treated in hospital. Many patients with hereditary angioedema (HAE) experience intermittent severe attacks that affect their quality of life and may be life-threatening. These attacks are treated with C1-inhibitor concentrate which, for most patients, is infused at the local hospital. Home therapy programmes for HAE are currently being established. This paper reviews the extent of use of these programmes and summarizes the advantages and potential disadvantages of the concept so far. PMID:17177958

  14. Deoxycytidine and Deoxythymidine Treatment for Thymidine Kinase 2 Deficiency.

    PubMed

    Lopez-Gomez, Carlos; Levy, Rebecca J; Sanchez-Quintero, Maria J; Juanola-Falgarona, Martí; Barca, Emanuele; Garcia-Diaz, Beatriz; Tadesse, Saba; Garone, Caterina; Hirano, Michio

    2017-05-01

    Thymidine kinase 2 (TK2), a critical enzyme in the mitochondrial pyrimidine salvage pathway, is essential for mitochondrial DNA (mtDNA) maintenance. Mutations in the nuclear gene, TK2, cause TK2 deficiency, which manifests predominantly in children as myopathy with mtDNA depletion. Molecular bypass therapy with the TK2 products, deoxycytidine monophosphate (dCMP) and deoxythymidine monophosphate (dTMP), prolongs the life span of Tk2-deficient (Tk2 -/- ) mice by 2- to 3-fold. Because we observed rapid catabolism of the deoxynucleoside monophosphates to deoxythymidine (dT) and deoxycytidine (dC), we hypothesized that: (1) deoxynucleosides might be the major active agents and (2) inhibition of deoxycytidine deamination might enhance dTMP+dCMP therapy. To test these hypotheses, we assessed two therapies in Tk2 -/- mice: (1) dT+dC and (2) coadministration of the deaminase inhibitor, tetrahydrouridine (THU), with dTMP+dCMP. We observed that dC+dT delayed disease onset, prolonged life span of Tk2-deficient mice and restored mtDNA copy number as well as respiratory chain enzyme activities and levels. In contrast, dCMP+dTMP+THU therapy decreased life span of Tk2 -/- animals compared to dCMP+dTMP. Our studies demonstrate that deoxynucleoside substrate enhancement is a novel therapy, which may ameliorate TK2 deficiency in patients. Ann Neurol 2017;81:641-652. © 2017 American Neurological Association.

  15. Diet Treatment Glucose Transporter Type 1 Deficiency (G1D)

    ClinicalTrials.gov

    2018-06-20

    GLUT1DS1; Epilepsy; Glut1 Deficiency Syndrome 1, Autosomal Recessive; Glucose Metabolism Disorders; Glucose Transport Defect; Glucose Transporter Type 1 Deficiency Syndrome; Glucose Transporter Protein Type 1 Deficiency Syndrome

  16. Impact of PACAP and PAC1 Receptor Deficiency on the Neurochemical and Behavioral Effects of Acute and Chronic Restraint Stress in Male C57BL/6 Mice

    PubMed Central

    Mustafa, Tomris; Jiang, Sunny Zhihong; Eiden, Adrian M.; Weihe, Eberhard; Thistlethwaite, Ian; Eiden, Lee E.

    2016-01-01

    Acute restraint stress (ARS) for 3 hours causes CORT elevation in venous blood, which is accompanied by Fos up-regulation in the paraventricular nucleus (PVN) of male C57BL/6 mice. CORT elevation by ARS is attenuated in PACAP-deficient mice, but unaffected in PAC1-deficient mice. Correspondingly, Fos up-regulation by ARS is greatly attenuated in PACAP-deficient mice, but much less so in PAC1-deficient animals. We noted that both PACAP- and PAC1-deficiency greatly attenuate CORT elevation after ARS when CORT measurements are performed on trunk blood following euthanasia by abrupt cervical separation: this latter observation is of critical importance in assessing the role of PACAP neurotransmission in ARS, based on previous reports in which serum CORT was sampled from trunk blood. Seven days of chronic restraint stress (CRS) induces non-habituating CORT elevation, and weight loss consequent to hypophagia, in wild-type male C57BL/6 mice. Both CORT elevation and weight loss following seven day CRS are severely blunted in PACAP-deficient mice, but only slightly in PAC1 deficient mice. However, longer periods of daily restraint (14–21 days) resulted in sustained weight loss and elevated CORT in wild-type mice, and these effects of long-term chronic stress were attenuated or abolished in both PACAP- and PAC1-deficient mice. We conclude that while a PACAP receptor in addition to PAC1 may mediate some of the PACAP-dependent central effects of acute restraint stress and short-term (<7 days) chronic restraint stress on the HPA axis, the PAC1 receptor plays a prominent role in mediating PACAP-dependent HPA axis activation, and hypophagia, during long-term (>7 days) chronic restraint stress. PMID:25853791

  17. Impact of PACAP and PAC1 receptor deficiency on the neurochemical and behavioral effects of acute and chronic restraint stress in male C57BL/6 mice.

    PubMed

    Mustafa, Tomris; Jiang, Sunny Zhihong; Eiden, Adrian M; Weihe, Eberhard; Thistlethwaite, Ian; Eiden, Lee E

    2015-01-01

    Acute restraint stress (ARS) for 3 h causes corticosterone (CORT) elevation in venous blood, which is accompanied by Fos up-regulation in the paraventricular nucleus (PVN) of male C57BL/6 mice. CORT elevation by ARS is attenuated in PACAP-deficient mice, but unaffected in PAC1-deficient mice. Correspondingly, Fos up-regulation by ARS is greatly attenuated in PACAP-deficient mice, but much less so in PAC1-deficient animals. We noted that both PACAP- and PAC1-deficiency greatly attenuate CORT elevation after ARS when CORT measurements are performed on trunk blood following euthanasia by abrupt cervical separation: this latter observation is of critical importance in assessing the role of PACAP neurotransmission in ARS, based on previous reports in which serum CORT was sampled from trunk blood. Seven days of chronic restraint stress (CRS) induces non-habituating CORT elevation, and weight loss consequent to hypophagia, in wild-type male C57BL/6 mice. Both CORT elevation and weight loss following 7-day CRS are severely blunted in PACAP-deficient mice, but only slightly in PAC1-deficient mice. However, longer periods of daily restraint (14-21 days) resulted in sustained weight loss and elevated CORT in wild-type mice, and these effects of long-term chronic stress were attenuated or abolished in both PACAP- and PAC1-deficient mice. We conclude that while a PACAP receptor in addition to PAC1 may mediate some of the PACAP-dependent central effects of ARS and short-term (<7 days) CRS on the hypothalamo-pituitary-adrenal (HPA) axis, the PAC1 receptor plays a prominent role in mediating PACAP-dependent HPA axis activation, and hypophagia, during long-term (>7 days) CRS.

  18. Pathophysiological roles of aldo-keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers.

    PubMed

    Matsunaga, Toshiyuki; Hojo, Aki; Yamane, Yumi; Endo, Satoshi; El-Kabbani, Ossama; Hara, Akira

    2013-02-25

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is widely used for treatment of patients with solid tumors formed in various organs including the lung, prostate and cervix, but is much less sensitive in colon and breast cancers. One major factor implicated in the ineffectiveness has been suggested to be acquisition of the CDDP resistance. Here, we established the CDDP-resistant phenotypes of human colon HCT15 cells by continuously exposing them to incremental concentrations of the drug, and monitored expressions of aldo-keto reductases (AKRs) 1A1, 1B1, 1B10, 1C1, 1C2 and 1C3. Among the six AKRs, AKR1C1 and AKR1C3 are highly induced with the CDDP resistance. The resistance lowered the sensitivity toward cellular damages evoked by oxidative stress-derived aldehydes, 4-hydroxy-2-nonenal and 4-oxo-2-nonenal that are detoxified by AKR1C1 and AKR1C3. Overexpression of AKR1C1 or AKR1C3 in the parental HCT15 cells mitigated the cytotoxicity of the aldehydes and CDDP. Knockdown of both AKR1C1 and AKR1C3 in the resistant cells or treatment of the cells with specific inhibitors of the AKRs increased the sensitivity to CDDP toxicity. Thus, the two AKRs participate in the mechanism underlying the CDDP resistance probably via detoxification of the aldehydes resulting from enhanced oxidative stress. The resistant cells also showed an enhancement in proteolytic activity of proteasome accompanied by overexpression of its catalytic subunits (PSMβ9 and PSMβ10). Pretreatment of the resistant cells with a potent proteasome inhibitor Z-Leu-Leu-Leu-al augmented the CDDP sensitization elicited by the AKR inhibitors. Additionally, the treatment of the cells with Z-Leu-Leu-Leu-al and the AKR inhibitors induced the expressions of the two AKRs and proteasome subunits. Collectively, these results suggest the involvement of up-regulated AKR1C1, AKR1C3 and proteasome in CDDP resistance of colon cancers and support a chemotherapeutic role for their inhibitors. Copyright © 2012 Elsevier Ireland

  19. Strain Background Modifies Phenotypes in the ATP8B1-Deficient Mouse

    PubMed Central

    Vargas, Julie C.; Xu, Hongmei; Groen, Annamiek; Paulusma, Coen C.; Grenert, James P.; Pawlikowska, Ludmila; Sen, Saunak; Elferink, Ronald P. J. Oude; Bull, Laura N.

    2010-01-01

    Background Mutations in ATP8B1 (FIC1) underlie cases of cholestatic disease, ranging from chronic and progressive (progressive familial intrahepatic cholestasis) to intermittent (benign recurrent intrahepatic cholestasis). The ATP8B1-deficient mouse serves as an animal model of human ATP8B1 deficiency. Methodology/Principal Findings We investigated the effect of genetic background on phenotypes of ATP8B1-deficient and wild-type mice, using C57Bl/6 (B6), 129, and (B6-129) F1 strain backgrounds. B6 background resulted in greater abnormalities in ATP8B1-deficient mice than did 129 and/or F1 background. ATP8B1-deficient pups of B6 background gained less weight. In adult ATP8B1-deficient mice at baseline, those of B6 background had lower serum cholesterol levels, higher serum alkaline phosphatase levels, and larger livers. After challenge with cholate-supplemented diet, these mice exhibited higher serum alkaline phosphatase and bilirubin levels, greater weight loss and larger livers. ATP8B1-deficient phenotypes in mice of F1 and 129 backgrounds are usually similar, suggesting that susceptibility to manifestations of ATP8B1 deficiency may be recessive. We also detected differences in hepatobiliary phenotypes between wild-type mice of differing strains. Conclusions/Significance Our results indicate that the ATP8B1-deficient mouse in a B6 background may be a better model of human ATP8B1 deficiency and highlight the importance of informed background strain selection for mouse models of liver disease. PMID:20126555

  20. Late-onset Parkinsonism in NFκB/c-Rel-deficient mice

    PubMed Central

    Baiguera, Cristina; Alghisi, Manuela; Pinna, Annalisa; Bellucci, Arianna; De Luca, Maria Antonietta; Frau, Lucia; Morelli, Micaela; Ingrassia, Rosaria; Benarese, Marina; Porrini, Vanessa; Pellitteri, Michele; Bertini, Giuseppe; Fabene, Paolo Francesco; Sigala, Sandra; Spillantini, Maria Grazia; Liou, Hsiou-Chi; Spano, Pier Franco

    2012-01-01

    Activation of the nuclear factor κB/c-Rel can increase neuronal resilience to pathological noxae by regulating the expression of pro-survival manganese superoxide dismutase (MnSOD, now known as SOD2) and Bcl-xL genes. We show here that c-Rel-deficient (c-rel−/−) mice developed a Parkinson’s disease-like neuropathology with ageing. At 18 months of age, c-rel−/− mice exhibited a significant loss of dopaminergic neurons in the substantia nigra pars compacta, as assessed by tyrosine hydroxylase-immunoreactivity and Nissl staining. Nigral degeneration was accompanied by a significant loss of dopaminergic terminals and a significant reduction of dopamine and homovanillic acid levels in the striatum. Mice deficient of the c-Rel factor exhibited a marked immunoreactivity for fibrillary α-synuclein in the substantia nigra pars compacta as well as increased expression of divalent metal transporter 1 (DMT1) and iron staining in both the substantia nigra pars compacta and striatum. Aged c-rel−/− mouse brain were characterized by increased microglial reactivity in the basal ganglia, but no astrocytic reaction. In addition, c-rel−/− mice showed age-dependent deficits in locomotor and total activity and various gait-related deficits during a catwalk analysis that were reminiscent of bradykinesia and muscle rigidity. Both locomotor and gait-related deficits recovered in c-rel−/− mice treated with l-3,4-dihydroxyphenylalanine. These data suggest that c-Rel may act as a regulator of the substantia nigra pars compacta resilience to ageing and that aged c-rel−/− mice may be a suitable model of Parkinson’s disease. PMID:22915735

  1. Loss of MLH1 sensitizes colon cancer cells to DNA-PKcs inhibitor KU60648.

    PubMed

    Hinrichsen, Inga; Ackermann, Anne; Düding, Tonja; Graband, Annika; Filmann, Natalie; Plotz, Guido; Zeuzem, Stefan; Brieger, Angela

    2017-07-01

    Germline mutations of MLH1 are responsible for tumor generation in nearly 50% of patients with Lynch Syndrome, and around 15% of sporadic colorectal cancers show MLH1-deficiency due to promotor hypermethylation. Although these tumors are of lower aggressiveness the benefit for these patients from standard chemotherapy is still under discussion. Recently, it was shown that the sensitivity to the DNA-PKcs inhibitor KU60648 is linked to loss of the MMR protein MSH3. However, loss of MSH3 is rather secondary, as a consequence of MMR-deficiency, and frequently detectable in MLH1-deficient tumors. Therefore, we examined the expression of MLH1, MSH2, MSH6, and MSH3 in different MMR-deficient and proficient cell lines and determined their sensitivity to KU60648 by analyzing cell viability and survival. MLH1-dependent ability of double strand break (DSB) repair was monitored after irradiation via γH2AX detection. A panel of 12 colon cancer cell lines, two pairs of cells, where MLH1 knock down was compared to controls with the same genetic background, and one MLH1-deficient cell line where MLH1 was overexpressed, were included. In summary, we found that MLH1 and/or MSH3-deficient cells exhibited a significantly higher sensitivity to KU60648 than MMR-proficient cells and that overexpression of MLH1 in MLH1-deficient cells resulted in a decrease of cell sensitivity. KU60648 efficiency seems to be associated with reduced DSB repair capacity. Since the molecular testing of colon tumors for MLH1 expression is a clinical standard we believe that MLH1 is a much better marker and a greater number of patients would benefit from KU60648 treatment. © 2017 Wiley Periodicals, Inc.

  2. Evaluation of six proton pump inhibitors as inhibitors of various human cytochromes P450: focus on cytochrome P450 2C19.

    PubMed

    Zvyaga, Tatyana; Chang, Shu-Ying; Chen, Cliff; Yang, Zheng; Vuppugalla, Ragini; Hurley, Jeremy; Thorndike, Denise; Wagner, Andrew; Chimalakonda, Anjaneya; Rodrigues, A David

    2012-09-01

    Six proton pump inhibitors (PPIs), omeprazole, lansoprazole, esomeprazole, dexlansoprazole, pantoprazole, and rabeprazole, were shown to be weak inhibitors of cytochromes P450 (CYP3A4, -2B6, -2D6, -2C9, -2C8, and -1A2) in human liver microsomes. In most cases, IC₅₀ values were greater than 40 μM, except for dexlansoprazole and lansoprazole with CYP1A2 (IC₅₀ = ∼8 μM) and esomeprazole with CYP2C8 (IC₅₀ = 31 μM). With the exception of CYP2C19 inhibition by omeprazole and esomeprazole (IC₅₀ ratio, 2.5 to 5.9), there was no evidence for a marked time-dependent shift in IC₅₀ (IC₅₀ ratio, ≤ 2) after a 30-min preincubation with NADPH. In the absence of preincubation, lansoprazole (IC₅₀ = 0.73 μM) and esomeprazole (IC₅₀ = 3.7 μM) were the most potent CYP2C19 inhibitors, followed by dexlansoprazole and omeprazole (IC₅₀ = ∼7.0 μM). Rabeprazole and pantoprazole (IC₅₀ = ≥ 25 μM) were the weakest. A similar ranking was obtained with recombinant CYP2C19. Despite the IC₅₀ ranking, after consideration of plasma levels (static and dynamic), protein binding, and metabolism-dependent inhibition, it is concluded that omeprazole and esomeprazole are the most potent CYP2C19 inhibitors. This was confirmed after the incubation of the individual PPIs with human primary hepatocytes (in the presence of human serum) and by monitoring their impact on diazepam N-demethylase activity at a low concentration of diazepam (2 μM). Data described herein are consistent with reports that PPIs are mostly weak inhibitors of cytochromes P450 in vivo. However, two members of the PPI class (esomeprazole and omeprazole) are more likely to serve as clinically relevant inhibitors of CYP2C19.

  3. Human G109E-Inhibitor-1 Impairs Cardiac Function and Promotes Arrhythmias

    PubMed Central

    Haghighi, Kobra; Pritchard, Tracy J.; Liu, Guan-Sheng; Singh, Vivek P.; Bidwell, Philip; Lam, Chi Keung; Vafiadaki, Elizabeth; Das, Parthib; Ma, Jianyong; Kunduri, Swati; Sanoudou, Despina; Florea, Stela; Vanderbilt, Erica; Wang, Hong-Shang; Rubinstein, Jack; Hajjar, Roger J.; Kranias, Evangelia G.

    2015-01-01

    A hallmark of human and experimental heart failure is deficient sarcoplasmic reticulum (SR) Ca-uptake reflecting impaired contractile function. This is at least partially attributed to dephosphorylation of phospholamban by increased protein phosphatase 1 (PP1) activity. Indeed inhibition of PP1 by transgenic overexpression or gene-transfer of constitutively active inhibitor-1 improved Ca-cycling, preserved function and decreased fibrosis in small and large animal models of heart failure, suggesting that inhibitor-1 may represent a potential therapeutic target. We recently identified a novel human polymorphism (G109E) in the inhibitor-1 gene with a frequency of 7% in either normal or heart failure patients. Transgenic mice, harboring cardiac-specific expression of G109E inhibitor-1, exhibited decreases in contractility, Ca-kinetics and SR Ca-load. These depressive effects were relieved by isoproterenol stimulation. Furthermore, stress conditions (2 Hz +/− Iso) induced increases in Ca-sparks, Ca-waves (60% of G109E versus 20% in wild types) and after-contractions (76% of G109E versus 23% of wild types) in mutant cardiomyocytes. Similar findings were obtained by acute expression of the G109E variant in adult cardiomyocytes in the absence or presence of endogenous inhibitor-1. The underlying mechanisms included reduced binding of mutant inhibitor-1 to PP1, increased PP1 activity, and dephosphorylation of phospholamban at Ser16 and Thr17. However, phosphorylation of the ryanodine receptor at Ser2808 was not altered while phosphorylation at Ser2814 was increased, consistent with increased activation of Ca/calmodulin-dependent protein kinase II (CaMKII), promoting aberrant SR Ca-release. Parallel in vivo studies revealed that mutant mice developed ventricular ectopy and complex ventricular arrhythmias (including bigeminy, trigeminy and ventricular tachycardia), when challenged with isoproterenol. Inhibition of CaMKII activity by KN-93 prevented the increased propensity

  4. Cellular inhibitor of apoptosis proteins prevent clearance of hepatitis B virus.

    PubMed

    Ebert, Gregor; Preston, Simon; Allison, Cody; Cooney, James; Toe, Jesse G; Stutz, Michael D; Ojaimi, Samar; Scott, Hamish W; Baschuk, Nikola; Nachbur, Ueli; Torresi, Joseph; Chin, Ruth; Colledge, Danielle; Li, Xin; Warner, Nadia; Revill, Peter; Bowden, Scott; Silke, John; Begley, C Glenn; Pellegrini, Marc

    2015-05-05

    Hepatitis B virus (HBV) infection can result in a spectrum of outcomes from immune-mediated control to disease progression, cirrhosis, and liver cancer. The host molecular pathways that influence and contribute to these outcomes need to be defined. Using an immunocompetent mouse model of chronic HBV infection, we identified some of the host cellular and molecular factors that impact on infection outcomes. Here, we show that cellular inhibitor of apoptosis proteins (cIAPs) attenuate TNF signaling during hepatitis B infection, and they restrict the death of infected hepatocytes, thus allowing viral persistence. Animals with a liver-specific cIAP1 and total cIAP2 deficiency efficiently control HBV infection compared with WT mice. This phenotype was partly recapitulated in mice that were deficient in cIAP2 alone. These results indicate that antagonizing the function of cIAPs may promote the clearance of HBV infection.

  5. Cell type-specific deficiency of c-kit gene expression in mutant mice of mi/mi genotype.

    PubMed Central

    Isozaki, K.; Tsujimura, T.; Nomura, S.; Morii, E.; Koshimizu, U.; Nishimune, Y.; Kitamura, Y.

    1994-01-01

    The mi locus of mice encodes a novel member of the basic-helix-loop-helix-leucine zipper protein family of transcription factors (hereafter called mi factor). In addition to microphthalmus, osteopetrosis, and lack of melanocytes, mice of mi/mi genotype are deficient in mast cells. Since the c-kit receptor tyrosine kinase plays an important role in the development of mast cells, and since the c-kit expression by cultured mast cells from mi/mi mice is deficient in both mRNA and protein levels, the mast cell deficiency of mi/mi mice has been attributed at least in part to the deficient expression of c-kit. However, it remained to be examined whether the c-kit expression was also deficient in tissues of mi/mi mice. In the present study, we examined the c-kit expression by mi/mi skin mast cells using in situ hybridization and immunohistochemistry. Moreover, we examined the c-kit expression by various cells other than mast cells in tissues of mi/mi mice. We found that the c-kit expression was deficient in mast cells but not in erythroid precursors, testicular germ cells, and neurons of mi/mi mice. This suggested that the regulation of the c-kit transcription by the mi factor was dependent on cell types. Mice of mi/mi genotype appeared to be a useful model to analyze the function of transcription factors in the whole-animal level. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7524330

  6. Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair.

    PubMed

    Löser, Dana A; Shibata, Atsushi; Shibata, Akiko K; Woodbine, Lisa J; Jeggo, Penny A; Chalmers, Anthony J

    2010-06-01

    As single agents, chemical inhibitors of poly(ADP-ribose) polymerase (PARP) are nontoxic and have clinical efficacy against BRCA1- and BRCA2-deficient tumors. PARP inhibitors also enhance the cytotoxicity of ionizing radiation and alkylating agents but will only improve clinical outcomes if tumor sensitization exceeds effects on normal tissues. It is unclear how tumor DNA repair proficiency affects the degree of sensitization. We have previously shown that the radiosensitizing effect of PARP inhibition requires DNA replication and will therefore affect rapidly proliferating tumors more than normal tissues. Because many tumors exhibit defective DNA repair, we investigated the impact of double-strand break (DSB) repair integrity on the sensitizing effects of the PARP inhibitor olaparib. Sensitization to ionizing radiation and the alkylating agent methylmethane sulfonate was enhanced in DSB repair-deficient cells. In Artemis(-/-) and ATM(-/-) mouse embryo fibroblasts, sensitization was replication dependent and associated with defective repair of replication-associated damage. Radiosensitization of Ligase IV(-/-) mouse embryo fibroblasts was independent of DNA replication and is explained by inhibition of "alternative" end joining. After methylmethane sulfonate treatment, PARP inhibition promoted replication-independent accumulation of DSB, repair of which required Ligase IV. Our findings predict that the sensitizing effects of PARP inhibitors will be more pronounced in rapidly dividing and/or DNA repair defective tumors than normal tissues and show their potential to enhance the therapeutic ratio achieved by conventional DNA-damaging agents.

  7. Thrombotic events associated with C1 esterase inhibitor products in patients with hereditary angioedema: investigation from the United States Food and Drug Administration adverse event reporting system database.

    PubMed

    Gandhi, Pranav K; Gentry, William M; Bottorff, Michael B

    2012-10-01

    To investigate reports of thrombotic events associated with the use of C1 esterase inhibitor products in patients with hereditary angioedema in the United States. Retrospective data mining analysis. The United States Food and Drug Administration (FDA) adverse event reporting system (AERS) database. Case reports of C1 esterase inhibitor products, thrombotic events, and C1 esterase inhibitor product-associated thrombotic events (i.e., combination cases) were extracted from the AERS database, using the time frames of each respective product's FDA approval date through the second quarter of 2011. Bayesian statistical methodology within the neural network architecture was implemented to identify potential signals of a drug-associated adverse event. A potential signal is generated when the lower limit of the 95% 2-sided confidence interval of the information component, denoted by IC₀₂₅ , is greater than zero. This suggests that the particular drug-associated adverse event was reported to the database more often than statistically expected from reports available in the database. Ten combination cases of thrombotic events associated with the use of one C1 esterase inhibitor product (Cinryze) were identified in patients with hereditary angioedema. A potential signal demonstrated by an IC₀₂₅ value greater than zero (IC₀₂₅ = 2.91) was generated for these combination cases. The extracted cases from the AERS indicate continuing reports of thrombotic events associated with the use of one C1 esterase inhibitor product among patients with hereditary angioedema. The AERS is incapable of establishing a causal link and detecting the true frequency of an adverse event associated with a drug; however, potential signals of C1 esterase inhibitor product-associated thrombotic events among patients with hereditary angioedema were identified in the extracted combination cases. © 2012 Pharmacotherapy Publications, Inc.

  8. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection.

    PubMed

    Guo, Yuanyuan; Xun, Zhe; Coffman, Stephanie R; Chen, Feng

    2017-01-01

    The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host-virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 ( ne219 ) strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 ( ne219 ) mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 ( ne219 ) mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response.

  9. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection

    PubMed Central

    Guo, Yuanyuan; Xun, Zhe; Coffman, Stephanie R.; Chen, Feng

    2017-01-01

    The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host–virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 (ne219) strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 (ne219) mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 (ne219) mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response. PMID:28611740

  10. Pharmacokinetic evaluation of lisinopril-tryptophan, a novel C-domain ACE inhibitor.

    PubMed

    Denti, Paolo; Sharp, Sarah-Kate; Kröger, Wendy L; Schwager, Sylva L; Mahajan, Aman; Njoroge, Mathew; Gibhard, Liezl; Smit, Ian; Chibale, Kelly; Wiesner, Lubbe; Sturrock, Edward D; Davies, Neil H

    2014-06-02

    Angiotensin-converting enzyme (ACE, EC 3.4.15.1) is a metallopeptidase comprised of two homologous catalytic domains (N- and C-domains). The C-domain cleaves the vasoactive angiotensin II precursor, angiotensin I, more efficiently than the N-domain. Thus, C-domain-selective ACE inhibitors have been designed to investigate the pharmacological effects of blocking the C-terminal catalytic site of the enzyme and improve the side effect profile of current ACE inhibitors. Lisinopril-tryptophan (LisW-S), an analogue of the ACE inhibitor lisinopril, is highly selective for the C-domain. In this study, we have analysed the ex vivo domain selectivity and pharmacokinetic profile of LisW-S. The IC50 value of LisW-S was 38.5 nM in rat plasma using the fluorogenic substrate Abz-FRKP(Dnp)P-OH. For the pharmacokinetics analysis of LisW-S, a sensitive and selective LC-MS/MS method was developed and validated to determine the concentration of LisW-S in rat plasma. LisW-S was administered to Wistar rats at a dose of 1 mg/kg bodyweight intravenously, 5 mg/kg bodyweight orally. The Cmax obtained following oral administration of the drug was 0.082 μM and LisW-S had an apparent terminal elimination half-life of around 3.1 h. The pharmacokinetic data indicate that the oral bioavailability of LisW-S was approximately 5.4%. These data provide a basis for better understanding the absorption mechanism of LisW-S and evaluating its clinical application. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. 26 CFR 1.860-1 - Deficiency dividends.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) INCOME TAXES (CONTINUED) Real Estate Investment Trusts § 1.860-1 Deficiency dividends. Section 860 allows a qualified investment entity to be relieved from the payment of a deficiency in (or to be allowed a credit or refund of) certain taxes. “Qualified investment entity” is defined in section 860(b). The taxes...

  12. 26 CFR 1.860-1 - Deficiency dividends.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) INCOME TAXES (CONTINUED) Real Estate Investment Trusts § 1.860-1 Deficiency dividends. Section 860 allows a qualified investment entity to be relieved from the payment of a deficiency in (or to be allowed a credit or refund of) certain taxes. “Qualified investment entity” is defined in section 860(b). The taxes...

  13. 26 CFR 1.860-1 - Deficiency dividends.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) INCOME TAXES (CONTINUED) Real Estate Investment Trusts § 1.860-1 Deficiency dividends. Section 860 allows a qualified investment entity to be relieved from the payment of a deficiency in (or to be allowed a credit or refund of) certain taxes. “Qualified investment entity” is defined in section 860(b). The taxes...

  14. 26 CFR 1.860-1 - Deficiency dividends.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) INCOME TAXES (CONTINUED) Real Estate Investment Trusts § 1.860-1 Deficiency dividends. Section 860 allows a qualified investment entity to be relieved from the payment of a deficiency in (or to be allowed a credit or refund of) certain taxes. “Qualified investment entity” is defined in section 860(b). The taxes...

  15. Mini-dystrophin Expression Down-regulates IP3-mediated Calcium Release Events in Resting Dystrophin-deficient Muscle Cells

    PubMed Central

    Balghi, Haouaria; Sebille, Stéphane; Mondin, Ludivine; Cantereau, Anne; Constantin, Bruno; Raymond, Guy; Cognard, Christian

    2006-01-01

    We present here evidence for the enhancement, at rest, of an inositol 1,4,5-trisphosphate (IP3)–mediated calcium signaling pathway in myotubes from dystrophin-deficient cell lines (SolC1(−)) as compared to a cell line from the same origin but transfected with mini-dystrophin (SolD(+)). With confocal microscopy, the number of sites discharging calcium (release site density [RSD]) was quantified and found more elevated in SolC1(−) than in SolD(+) myotubes. Variations of membrane potential had no significant effect on this difference, and higher resting [Ca2+]i in SolC1(−) (Marchand, E., B. Constantin, H. Balghi, M.C. Claudepierre, A. Cantereau, C. Magaud, A. Mouzou, G. Raymond, S. Braun, and C. Cognard. 2004. Exp. Cell Res. 297:363–379) cannot explain alone higher RSD. The exposure with SR Ca2+ channel inhibitors (ryanodine and 2-APB) and phospholipase C inhibitor (U73122) significantly reduced RSD in both cell types but with a stronger effect in dystrophin-deficient SolC1(−) myotubes. Immunocytochemistry allowed us to localize ryanodine receptors (RyRs) as well as IP3 receptors (IP3Rs), IP3R-1 and IP3R-2 isoforms, indicating the presence of both RyRs-dependent and IP3-dependent release systems in both cells. We previously reported evidence for the enhancement, through a Gi protein, of the IP3-mediated calcium signaling pathway in SolC1(−) as compared to SolD(+) myotubes during a high K+ stimulation (Balghi, H., S. Sebille, B. Constantin, S. Patri, V. Thoreau, L. Mondin, E. Mok, A. Kitzis, G. Raymond, and C. Cognard. 2006. J. Gen. Physiol. 127:171–182). Here we show that, at rest, these regulation mechanisms are also involved in the modulation of calcium release activities. The enhancement of resting release activity may participate in the calcium overload observed in dystrophin-deficient myotubes, and our findings support the hypothesis of the regulatory role of mini-dystrophin on intracellular signaling. PMID:16847098

  16. NHE1 deficiency in liver: Implications for non-alcoholic fatty liver disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, Vikram, E-mail: prasadvm@ucmail.uc.edu; Chirra, Shivani; Kohli, Rohit

    Highlights: • FXR, PGC1α and PPARγ levels are upregulated in NHE1 deficient livers. • NHE1 deficiency downregulates expression of pro-lipogenic genes in liver. • Chronic exposure to high-fat diet upregulates hepatic NHE1 expression. • Loss of NHE1 better preserves hepatic insulin signaling in high-fat diet-fed mice. - Abstract: Non-alcoholic fatty liver disease NAFLD is closely associated with the dysregulation of lipid homeostasis. Diet-induced hepatic steatosis, which can initiate NAFLD progression, has been shown to be dramatically reduced in mice lacking the electroneutral Na{sup +}/H{sup +} exchanger NHE1 (Slc9a1). In this study, we investigated if NHE1 deficiency had effects in livermore » that could contribute to the apparent protection against aberrant lipid accumulation. RT-PCR and immunoblot analyses of wild-type and NHE1-null livers revealed an expression profile that strongly suggested attenuation of both de novo lipogenesis and hepatic stellate cell activation, which is implicated in liver fibrosis. This included upregulation of the farnesoid X receptor FXR, peroxisome proliferator-activated receptor PPARγ, its co-activator PGC1α, and sestrin 2, an antioxidant protein involved in hepatic metabolic homeostasis. Furthermore, expression levels of the pro-lipogenic liver X receptor LXRα, and acetyl CoA carboxylases 1 and 2 were downregulated. These changes were associated with evidence of reduced cellular stress, which persisted even upon exposure to a high-fat diet, and the better preservation of insulin signaling, as evidenced by protein kinase B/Akt phosphorylation (Ser473). These results indicate that NHE1 deficiency may protect against NAFLD pathogenesis, which is significant given the availability of highly specific NHE1 inhibitors.« less

  17. Genetic Analysis of 13 Iranian Families With Leukocyte Adhesion Deficiency Type 1.

    PubMed

    Teimourian, Shahram; De Boer, Martin; Roos, Dirk; Isaian, Anna; Bemanian, Mohammad Hassan; Lashkary, Sharhzad; Nabavi, Mohammad; Arshi, Saba; Nateghian, Alireza; Sayyahfar, Shirin; Sazgara, Faezeh; Taheripak, Gholamreza; Alipour Fayez, Elham

    2018-05-10

    Leukocyte adhesion deficiency type 1 is a rare, autosomal recessive disorder that results from mutations in the ITGB2 gene. This gene encodes the CD18 subunit of β2 integrin leukocyte adhesion cell molecules. Leukocyte adhesion deficiency type 1 is characterized by recurrent bacterial infections, impaired wound healing, inadequate pus formation, and delayed separation of the umbilical cord. Blood samples were taken from 13 patients after written consent had been obtained. Genomic DNA was extracted, and ITGB2 exons and exon-intron boundaries were amplified by polymerase chain reaction. The products were examined by Sanger sequencing. In this study, 8 different previously reported mutations (intron7+1G>A, c.715G>A, c.1777 C>T, c.843del C, c.1768T>C, c.1821C>A, Intron7+1G>A, c.1885G>A) and 2 novel mutations (c.1821C>A; p.Tyr607Ter and c.1822C>T; p.Gln608Ter) were found. c.1821C>A (p.Tyr607Ter) and c.1822C>T (p.Gln608Ter) mutations should be included in the panel of carrier detection and prenatal diagnosis.

  18. Cobalamin C Deficiency in an Adolescent With Altered Mental Status and Anorexia

    PubMed Central

    Bawcom, Amanda; Romano, Mary E.

    2014-01-01

    Although cobalamin (cbl) C deficiency is the most common inherited disorder of vitamin B12 metabolism, the late-onset form of the disease can be difficult to recognize because it has a broad phenotypic spectrum. In this report, we describe an adolescent female exposed to unknown illicit substances and sexual abuse who presented with psychosis, anorexia, seizures, and ataxia. The patient’s diagnosis was delayed until a metabolic workup was initiated, revealing hyperhomocysteinemia, low normal plasma methionine, and methylmalonic aciduria. Ultimately, cblC deficiency was confirmed when molecular testing showed compound heterozygosity for mutations (c.271dupA and c.482G>A) in the MMACHC gene. This diagnosis led to appropriate treatment with hydroxocobalamin, betaine, and folate, which resulted in improvement of her clinical symptoms and laboratory values. This patient demonstrates a previously unrecognized presentation of late-onset cblC deficiency. Although neuropsychiatric symptoms are common in late-onset disease, seizures and cerebellar involvement are not. Furthermore, anorexia has not been previously described in these patients. This case emphasizes that inborn errors of metabolism should be part of the differential diagnosis for a teenager presenting with altered mental status, especially when the diagnosis is challenging or neurologic symptoms are unexplained. Correct diagnosis of this condition is important because treatment is available and can result in clinical improvement.1 PMID:25367534

  19. Cobalamin C deficiency in an adolescent with altered mental status and anorexia.

    PubMed

    Rahmandar, Maria H; Bawcom, Amanda; Romano, Mary E; Hamid, Rizwan

    2014-12-01

    Although cobalamin (cbl) C deficiency is the most common inherited disorder of vitamin B12 metabolism, the late-onset form of the disease can be difficult to recognize because it has a broad phenotypic spectrum. In this report, we describe an adolescent female exposed to unknown illicit substances and sexual abuse who presented with psychosis, anorexia, seizures, and ataxia. The patient's diagnosis was delayed until a metabolic workup was initiated, revealing hyperhomocysteinemia, low normal plasma methionine, and methylmalonic aciduria. Ultimately, cblC deficiency was confirmed when molecular testing showed compound heterozygosity for mutations (c.271dupA and c.482G>A) in the MMACHC gene. This diagnosis led to appropriate treatment with hydroxocobalamin, betaine, and folate, which resulted in improvement of her clinical symptoms and laboratory values. This patient demonstrates a previously unrecognized presentation of late-onset cblC deficiency. Although neuropsychiatric symptoms are common in late-onset disease, seizures and cerebellar involvement are not. Furthermore, anorexia has not been previously described in these patients. This case emphasizes that inborn errors of metabolism should be part of the differential diagnosis for a teenager presenting with altered mental status, especially when the diagnosis is challenging or neurologic symptoms are unexplained. Correct diagnosis of this condition is important because treatment is available and can result in clinical improvement.(1.) Copyright © 2014 by the American Academy of Pediatrics.

  20. Genetics Home Reference: cytochrome c oxidase deficiency

    MedlinePlus

    ... are caused by mutations in genes found within nuclear DNA; however, in some rare instances, mutations in genes located within mtDNA cause this condition. The genes associated with cytochrome c oxidase deficiency are involved in energy production in mitochondria through a process called oxidative ...

  1. Delayed Adrenarche may be an Additional Feature of Immunoglobulin Super Family Member 1 Deficiency Syndrome.

    PubMed

    Van Hulle, Severine; Craen, Margarita; Callewaert, Bert; Joustra, Sjoerd; Oostdijk, Wilma; Losekoot, Monique; Wit, Jan Maarten; Turgeon, Marc Olivier; Bernard, Daniel J; De Schepper, Jean

    2016-03-05

    Immunoglobulin super family member 1 (IGSF1) deficiency syndrome is characterized by central hypothyroidism, delayed surge in testosterone during puberty, macro-orchidism, and in some cases, hypoprolactinemia and/or transient growth hormone (GH) deficiency. Our patient was a 19-year-old male adolescent who had been treated since the age of 9 years with GH and thyroxine for an idiopathic combined GH, thyroid-stimulating hormone (TSH), and prolactin (PRL) deficiency. His GH deficiency proved to be transient, but deficiencies of TSH and PRL persisted, and he had developed macro-orchidism since the end of puberty. Brain magnetic resonance imaging and PROP1 and POU1F1 sequencing were normal. A disharmonious puberty (delayed genital and pubic hair development, bone maturation, and pubertal growth spurt, despite normal testicular growth) was observed as well as a delayed adrenarche, as reflected by very low dehydroepiandrosterone sulfate and delayed pubarche. Direct sequencing of the IGSF1 gene revealed a novel hemizygous mutation, c.3127T>C, p.Cys1043Arg. Pathogenicity of the mutation was demonstrated in vitro. Male children with an idiopathic combined GH, PRL, and TSH deficiency, showing persistent central hypothyroidism but transient GH deficiency upon retesting at adult height, should be screened for mutations in the IGSF1 gene, especially when macro-orchidism and/or hypoprolactinemia are present. We suspect that delayed adrenarche, as a consequence of PRL deficiency, might be part of the clinical phenotype of patients with IGSF1 deficiency.

  2. Delayed Adrenarche may be an Additional Feature of Immunoglobulin Super Family Member 1 Deficiency Syndrome

    PubMed Central

    Hulle, Severine Van; Craen, Margarita; Callewaert, Bert; Joustra, Sjoerd; Oostdijk, Wilma; Losekoot, Monique; Wit, Jan Maarten; Turgeon, Marc Olivier; Bernard, Daniel J.; Schepper, Jean De

    2016-01-01

    Immunoglobulin super family member 1 (IGSF1) deficiency syndrome is characterized by central hypothyroidism, delayed surge in testosterone during puberty, macro-orchidism, and in some cases, hypoprolactinemia and/or transient growth hormone (GH) deficiency. Our patient was a 19-year-old male adolescent who had been treated since the age of 9 years with GH and thyroxine for an idiopathic combined GH, thyroid-stimulating hormone (TSH), and prolactin (PRL) deficiency. His GH deficiency proved to be transient, but deficiencies of TSH and PRL persisted, and he had developed macro-orchidism since the end of puberty. Brain magnetic resonance imaging and PROP1 and POU1F1 sequencing were normal. A disharmonious puberty (delayed genital and pubic hair development, bone maturation, and pubertal growth spurt, despite normal testicular growth) was observed as well as a delayed adrenarche, as reflected by very low dehydroepiandrosterone sulfate and delayed pubarche. Direct sequencing of the IGSF1 gene revealed a novel hemizygous mutation, c.3127T>C, p.Cys1043Arg. Pathogenicity of the mutation was demonstrated in vitro. Male children with an idiopathic combined GH, PRL, and TSH deficiency, showing persistent central hypothyroidism but transient GH deficiency upon retesting at adult height, should be screened for mutations in the IGSF1 gene, especially when macro-orchidism and/or hypoprolactinemia are present. We suspect that delayed adrenarche, as a consequence of PRL deficiency, might be part of the clinical phenotype of patients with IGSF1 deficiency. PMID:26757742

  3. Complement C4 deficiency--a plausible risk factor for non-tuberculous mycobacteria (NTM) infection in apparently immunocompetent patients.

    PubMed

    Kotilainen, Hannele; Lokki, Marja-Liisa; Paakkanen, Riitta; Seppänen, Mikko; Tukiainen, Pentti; Meri, Seppo; Poussa, Tuija; Eskola, Jussi; Valtonen, Ville; Järvinen, Asko

    2014-01-01

    Non-tuberculous mycobacteria (NTM) are ubiquitous in the environment and they infect mainly persons with underlying pulmonary diseases but also previously healthy elderly women. Defects in host resistance that lead to pulmonary infections by NTM are relatively unknown. A few genetic defects have been associated with both pulmonary and disseminated mycobacterial infections. Rare disseminated NTM infections have been associated with genetic defects in T-cell mediated immunity and in cytokine signaling in families. We investigated whether there was an association between NTM infections and deficiencies of complement components C4A or C4B that are encoded by major histocompatibility complex (MHC). 50 adult patients with a positive NTM culture with symptoms and findings of a NTM disease were recruited. Patients' clinical history was collected and symptoms and clinical findings were categorized according to 2007 diagnostic criteria of The American Thoracic Society (ATS). To investigate the deficiencies of complement, C4A and C4B gene copy numbers and phenotype frequencies of the C4 allotypes were analyzed. Unselected, healthy, 149 Finnish adults were used as controls. NTM patients had more often C4 deficiencies (C4A or C4B) than controls (36/50 [72%] vs 83/149 [56%], OR = 2.05, 95%CI = 1.019-4.105, p = 0.042). C4 deficiencies for female NTM patients were more common than for controls (29/36 [81%] vs 55/100 [55%], OR = 3.39, 95% CI = 1.358-8.460, p = 0.007). C4 deficiences seemed not to be related to any specific underlying disease or C4 phenotype. C4 deficiency may be a risk factor for NTM infection in especially elderly female patients.

  4. Vitamin C deficiency increases basal exploratory activity but decreases scopolamine-induced activity in APP/PSEN1 transgenic mice

    PubMed Central

    Harrison, F. E.; May, J. M.; McDonald, M. P.

    2010-01-01

    Vitamin C is a powerful antioxidant and its levels are decreased in Alzheimer's patients. Even sub-clinical vitamin C deficiency could impact disease development. To investigate this principle we crossed APP/PSEN1 transgenic mice with Gulo knockout mice unable to synthesize their own vitamin C. Experimental mice were maintained from 6 weeks of age on standard (0.33 g/L) or reduced (0.099 g/L) levels of vitamin C and then assessed for changes in behavior and neuropathology. APP/PSEN1 mice showed impaired spatial learning in the Barnes maze and water maze that was not further impacted by vitamin C level. However, long-term decreased vitamin C levels led to hyperactivity in transgenic mice, with altered locomotor habituation and increased omission errors in the Barnes maze. Decreased vitamin C also led to increased oxidative stress. Transgenic mice were more susceptible to the activity-enhancing effects of scopolamine and low vitamin C attenuated these effects in both genotypes. These data indicate an interaction between the cholinergic system and vitamin C that could be important given the cholinergic degeneration associated with Alzheimer's disease. PMID:19941887

  5. Chronic Vitamin C Deficiency Promotes Redox Imbalance in the Brain but Does Not Alter Sodium-Dependent Vitamin C Transporter 2 Expression

    PubMed Central

    Paidi, Maya D.; Schjoldager, Janne G.; Lykkesfeldt, Jens; Tveden-Nyborg, Pernille

    2014-01-01

    Vitamin C (VitC) has several roles in the brain acting both as a specific and non-specific antioxidant. The brain upholds a very high VitC concentration and is able to preferentially retain VitC even during deficiency. The accumulation of brain VitC levels much higher than in blood is primarily achieved by the sodium dependent VitC transporter (SVCT2). This study investigated the effects of chronic pre-and postnatal VitC deficiency as well as the effects of postnatal VitC repletion, on brain SVCT2 expression and markers of oxidative stress in young guinea pigs. Biochemical analyses demonstrated significantly decreased total VitC and an increased percentage of dehydroascorbic acid, as well as increased lipid oxidation (malondialdehyde), in the brains of VitC deficient animals (p < 0.0001) compared to controls. VitC repleted animals were not significantly different from controls. No significant changes were detected in either gene or protein expression of SVCT2 between groups or brain regions. In conclusion, chronic pre-and postnatal VitC deficiency increased brain redox imbalance but did not increase SVCT2 expression. Our findings show potential implications for VitC deficiency induced negative effects of redox imbalance in the brain and provide novel insight to the regulation of VitC in the brain during deficiency. PMID:24787032

  6. [2 cases of recurrent deep venous thrombosis with protein C deficiency].

    PubMed

    Reinharez, D

    1985-01-01

    Because of their gravity and the complications involved, repeated deep venous thromboses require everything to be done to produce an aetiological diagnosis, for only this will make a preventive treatment possible. Amongst causes of phlebitis, haemostatic disorders and coagulation factor anomaly should be systematically looked for, as these can sometimes be corrected. Following the discovery of the Antithrombin III deficiency, the protein C deficiency shows clear progress along these lines. The author here describes two cases of the protein C deficiency in patients who have suffered repeated deep and superficial venous thrombosis, with thromboembolic family antecedents.

  7. Hsp90 C-Terminal Inhibitors Exhibit Antimigratory Activity by Disrupting the Hsp90α/Aha1 Complex in PC3-MM2 Cells

    PubMed Central

    2015-01-01

    Human Hsp90 isoforms are molecular chaperones that are often up-regulated in malignances and represent a primary target for Hsp90 inhibitors undergoing clinical evaluation. Hsp90α is a stress-inducible isoform of Hsp90 that plays a significant role in apoptosis and metastasis. Though Hsp90α is secreted into the extracellular space under metastatic conditions, its role in cancer biology is poorly understood. We report that Hsp90α associates with the Aha1 co-chaperone and found this complex to localize in secretory vesicles and at the leading edge of migrating cells. Knockdown of Hsp90α resulted in a defect in cell migration. The functional role of Hsp90α/Aha1 was studied by treating the cells with various novobiocin-based Hsp90 C-terminal inhibitors. These inhibitors disrupted the Hsp90α/Aha1 complex, caused a cytoplasmic redistribution of Hsp90α and Aha1, and decreased cell migration. Structure–function studies determined that disruption of Hsp90α/Aha1 association and inhibition of cell migration correlated with the presence of a benzamide side chain, since an acetamide substituted analog was less effective. Our results show that disruption of Hsp90α/Aha1 interactions with novobiocin-based Hsp90 C-terminal inhibitors may limit the metastatic potential of tumors. PMID:25402753

  8. The NZM2410-derived lupus susceptibility locus Sle2c1 increases TH17 polarization and induces nephritis in Fas-deficient mice

    PubMed Central

    Xu, Zhiwei; Cuda, Carla M.; Croker, Byron P.; Morel, Laurence

    2010-01-01

    Objective Sle2 is a lupus susceptibility locus that has been linked toglomerulonephritis in the NZM2410mouse. Byitself, Sle2 does not induce any autoimmune pathology, but results into the accumulation of B1a cells. This study was designed to assess the contribution of Sle2 to autoimmune pathogenesis. Methods Sle2 or its sub-congenic intervals (Sle2a, Sle2b and Sle2c) were bred to Fas-deficient B6.lpr mice. Lymphoid phenotypes, focused on T cells, were assessed by flow cytometry, and histopathology was compared between cohorts of B6.Sle2.lpr congenics and B6.lpr mice aged up to 6 mo old. Results Sle2 synergized with lpr, resulting in a greatly accelerated lymphadenopathy that largely targeted T cells, and mapped to the Sle2c1 locus. This locus has been identified as the main contributor to B1a cell expansion. Further analyses showed that Sle2c1 expression skewed the differentiation and polarization of Fas-deficient T cells, with a reduction of the CD4+ CD25+ Foxp3+ regulatory T cell subset and an expansion of the TH17 cells. This was associated with a high level of T cell infiltrates that promoted severe nephritis and dermatitis in the B6.Sle2c1.lpr mice. Conclusion These results show that Sle2c1 contributes to lupus pathogenesis by affecting T cell differentiation in combination with other susceptibility loci such as lpr. The significance of the co-segregation of this phenotype and B1a cell expansion in Sle2c1-expressing mice for lupus pathogenesis is discussed. PMID:21360506

  9. 26 CFR 1.860-1 - Deficiency dividends.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) INCOME TAXES Real Estate Investment Trusts § 1.860-1 Deficiency dividends. Section 860 allows a qualified investment entity to be relieved from the payment of a deficiency in (or to be allowed a credit or refund of) certain taxes. “Qualified investment entity” is defined in section 860(b). The taxes referred to are those...

  10. [Alpha-1 antitrypsin deficiency. The experience of Pulido Valente Hospital with augmentation therapy].

    PubMed

    Alves Costa, Carla; Santos, Cristina

    2009-01-01

    Alpha-1 antitrypsin (AAT) is synthesised in the liver and has half-life of 4-5 days. AAT has antiprotease activity, with particular affinity for neutrophil elastase. Its deficiency leads to a lack of effective lung protection against activated neutrophil enzymes. Deficiency of AAT is a genetic disorder that occurs as a result of the inheritance of two protease inhibitor deficient alleles. Of the deficient alleles, Pi*Z is the most common, and the homozygous form Pi*ZZ results in the lowest serum levels, usually below 50 mg/ dl. The "protective threshold" is 80 mg/dl. Smoking increases the risk of emphysema. The current goal of augmentation therapy is to raise the plasma levels, above protective threshold and slow disease progression. The authors present the experience of the Day Care Hospital of the Pulido Valente Hospital with five male patients presenting emphysema due to AAT deficiency, receiving weekly intravenous treatment with Prolastin. We performed a clinical, respiratory functional and radiological evaluation between 2003 and 2007. The results point to a slower progression of the disease, with clinical and radiological stability and a reduced rate of FEV1 decline. Augmentation therapy is an expensive treatment and its use is lacking supportive evidence of efficacy by randomized controlled clinical trials. Evidence that it confers benefits is based on observational studies. Our experience is positive, showing clinical, radiological and functional benefits. The literature available points to a decrease in mortality, but we could not affirm so in our small population.

  11. BTB and CNC homolog 1 (Bach1) deficiency ameliorates TNBS colitis in mice: role of M2 macrophages and heme oxygenase-1.

    PubMed

    Harusato, Akihito; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Hirai, Yasuko; Higashimura, Yasuki; Katada, Kazuhiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Muto, Akihiko; Igarashi, Kazuhiko; Yoshikawa, Toshikazu

    2013-01-01

    BTB and CNC homolog 1 (Bach1) is a transcriptional repressor of heme oxygenase-1 (HO-1), which plays an important role in the protection of cells and tissues against acute and chronic inflammation. However, the role of Bach1 in the gastrointestinal mucosal defense system remains little understood. HO-1 supports the suppression of experimental colitis and localizes mainly in macrophages in colonic mucosa. This study was undertaken to elucidate the Bach1/HO-1 system's effects on the pathogenesis of experimental colitis. This study used C57BL/6 (wild-type) and homozygous Bach1-deficient C57BL/6 mice in which colonic damage was induced by the administration of an enema of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Subsequently, they were evaluated macroscopically, histologically, and biochemically. Peritoneal macrophages from the respective mice were isolated and analyzed. Then, wild-type mice were injected with peritoneal macrophages from the respective mice. Acute colitis was induced similarly. TNBS-induced colitis was inhibited in Bach1-deficient mice. TNBS administration increased the expression of HO-1 messenger RNA and protein in colonic mucosa in Bach1-deficient mice. The expression of HO-1 mainly localized in F4/80-immunopositive and CD11b-immunopositive macrophages. Isolated peritoneal macrophages from Bach1-deficient mice highly expressed HO-1 and also manifested M2 macrophage markers, such as Arginase-1, Fizz-1, Ym1, and MRC1. Furthermore, TNBS-induced colitis was inhibited by the transfer of Bach1-deficient macrophages into wild-type mice. Deficiency of Bach1 ameliorated TNBS-induced colitis. Bach1-deficient macrophages played a key role in protection against colitis. Targeting of this mechanism is applicable to cell therapy for human inflammatory bowel disease.

  12. Growth factor independence-1 (Gfi-1) plays a role in mediating specific granule deficiency (SGD) in a patient lacking a gene-inactivating mutation in the C/EBPϵ gene

    PubMed Central

    Khanna-Gupta, Arati; Sun, Hong; Zibello, Theresa; Lee, Han Myung; Dahl, Richard; Boxer, Laurence A.

    2007-01-01

    Neutrophil-specific granule deficiency (SGD) is a rare congenital disorder marked by recurrent bacterial infections. Neutrophils from SGD patients lack secondary and tertiary granules and their content proteins and lack normal neutrophil functions. Gene-inactivating mutations in the C/EBPϵ gene have been identified in 2 SGD patients. Our studies on a third SGD patient revealed a heterozygous mutation in the C/EBPϵ gene. However, we demonstrate elevated levels of C/EBPϵ and PU.1 proteins in the patient's peripheral blood neutrophils. The expression of the transcription factor growth factor independence-1 (Gfi-1), however, was found to be markedly reduced in our SGD patient despite the absence of an obvious mutation in this gene. This may explain the elevated levels of both C/EBPϵ and PU.1, which are targets of Gfi-1 transcriptional repression. We have generated a growth factor–dependent EML cell line from the bone marrow of Gfi-1+/− and Gfi-1+/+ mice as a model for Gfi-1deficient SGD, and demonstrate that lower levels of Gfi-1 expression in the Gfi-1+/− EML cells is associated with reduced levels of secondary granule protein (SGP) gene expression. Furthermore, we demonstrate a positive role for Gfi-1 in SGP expression, in that Gfi-1 binds to and up-regulates the promoter of neutrophil collagenase (an SGP gene), in cooperation with wild-type but not with mutant C/EBPϵ. We hypothesize that decreased Gfi-1 levels in our SGD patient, together with the mutant C/EBPϵ, block SGP expression, thereby contributing to the underlying etiology of the disease in our patient. PMID:17244686

  13. Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E-/- Mice.

    PubMed

    Rinne, Petteri; Kadiri, James J; Velasco-Delgado, Mauricio; Nuutinen, Salla; Viitala, Miro; Hollmén, Maija; Rami, Martina; Savontaus, Eriika; Steffens, Sabine

    2018-02-01

    The MC1-R (melanocortin 1 receptor) is expressed by monocytes and macrophages where it mediates anti-inflammatory actions. MC1-R also protects against macrophage foam cell formation primarily by promoting cholesterol efflux through the ABCA1 (ATP-binding cassette transporter subfamily A member 1) and ABCG1 (ATP-binding cassette transporter subfamily G member 1). In this study, we aimed to investigate whether global deficiency in MC1-R signaling affects the development of atherosclerosis. Apoe -/- (apolipoprotein E deficient) mice were crossed with recessive yellow (Mc1r e/e ) mice carrying dysfunctional MC1-R and fed a high-fat diet to induce atherosclerosis. Apoe -/- Mc1r e/e mice developed significantly larger atherosclerotic lesions in the aortic sinus and in the whole aorta compared with Apoe -/- controls. In terms of plaque composition, MC1-R deficiency was associated with less collagen and smooth muscle cells and increased necrotic core, indicative of more vulnerable lesions. These changes were accompanied by reduced Abca1 and Abcg1 expression in the aorta. Furthermore, Apoe -/- Mc1r e/e mice showed a defect in bile acid metabolism that aggravated high-fat diet-induced hypercholesterolemia and hepatic lipid accumulation. Flow cytometric analysis of leukocyte profile revealed that dysfunctional MC1-R enhanced arterial accumulation of classical Ly6C high monocytes and macrophages, effects that were evident in mice fed a normal chow diet but not under high-fat diet conditions. In support of enhanced arterial recruitment of Ly6C high monocytes, these cells had increased expression of L-selectin and P-selectin glycoprotein ligand 1. The present study highlights the importance of MC1-R in the development of atherosclerosis. Deficiency in MC1-R signaling exacerbates atherosclerosis by disturbing cholesterol handling and by increasing arterial monocyte accumulation. © 2017 The Authors.

  14. Diminished pheromone-induced sexual behavior in neurokinin-1 receptor deficient (TACR1(-/-)) mice.

    PubMed

    Berger, A; Tran, A H; Dida, J; Minkin, S; Gerard, N P; Yeomans, J; Paige, C J

    2012-07-01

    Studies in mice with targeted deletions of tachykinin genes suggest that tachykinins and their receptors influence emotional behaviors such as aggression, depression and anxiety. Here, we investigated whether TAC1- and TAC4-encoded peptides (substance P and hemokinin-1, respectively) and the neurokinin-1 receptor (NK-1R) are involved in the modulation of sexual behaviors. Male mice deficient for the NK-1R (TACR1 (-/-)) exhibited decreased exploration of female urine in contrast to C57BL/6 control mice and mice deficient for NK-1R ligands such as TAC1 (-/-), TAC4 (-/-) and the newly generated TAC1 (-/-) /TAC4 (-/-) mice. In comparison to C57BL/6 mice, mounting frequency and duration were decreased in male TACR1 (-/-) mice, while mounting latency was increased. Decreased preference for sexual pheromones was also seen in female TACR1 (-/-) mice. Furthermore, administration of the NK-1R-antagonist L-703,606 decreased investigation of female urine by male C57BL/6 mice, suggesting an involvement of NK-1R in urine sniffing behavior. Our results provide evidence for the NK-1R in facilitating sexual approach behavior, as male TACR1 (-/-) mice exhibited blunted approach behavior toward females following the initial interaction compared with C57BL/6 mice. NK-1R signaling may therefore play an important role in pheromone-induced sexual behavior. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  15. Covalent Allosteric Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) by an Inhibitor-Electrophile Conjugate.

    PubMed

    Punthasee, Puminan; Laciak, Adrian R; Cummings, Andrea H; Ruddraraju, Kasi Viswanatharaju; Lewis, Sarah M; Hillebrand, Roman; Singh, Harkewal; Tanner, John J; Gates, Kent S

    2017-04-11

    Protein tyrosine phosphatase 1B (PTP1B) is a validated drug target, but it has proven difficult to develop medicinally useful, reversible inhibitors of this enzyme. Here we explored covalent strategies for the inactivation of PTP1B using a conjugate composed of an active site-directed 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxide inhibitor connected via a short linker to an electrophilic α-bromoacetamide moiety. Inhibitor-electrophile conjugate 5a caused time-dependent loss of PTP1B activity consistent with a covalent inactivation mechanism. The inactivation occurred with a second-order rate constant of (1.7 ± 0.3) × 10 2 M -1 min -1 . Mass spectrometric analysis of the inactivated enzyme indicated that the primary site of modification was C121, a residue distant from the active site. Previous work provided evidence that covalent modification of the allosteric residue C121 can cause inactivation of PTP1B [Hansen, S. K., Cancilla, M. T., Shiau, T. P., Kung, J., Chen, T., and Erlanson, D. A. (2005) Biochemistry 44, 7704-7712]. Overall, our results are consistent with an unusual enzyme inactivation process in which noncovalent binding of the inhibitor-electrophile conjugate to the active site of PTP1B protects the nucleophilic catalytic C215 residue from covalent modification, thus allowing inactivation of the enzyme via selective modification of allosteric residue C121.

  16. Deficiency of the Chemotactic Factor Inactivator in Human Sera with α1-Antitrypsin Deficiency

    PubMed Central

    Ward, Peter A.; Talamo, Richard C.

    1973-01-01

    As revealed by appropriate fractionation procedures, human serum deficient in α1-antitrypsin (α1-AT) is also deficient in the naturally occurring chemotactic factor inactivator. These serum donors had severe pulmonary emphysema. Serum from patients with clinically similar pulmonary disease, but with presence of α1-AT in the serum, showed no such deficiency of the chemotactic factor inactivator. When normal human serum and α1-AT-deficient human sera are chemotactically activated by incubation with immune precipitates, substantially more chemotactic activity is generated in α1-AT-deficient serum. These data indicate that in α1-AT-deficient serum there is an imbalance in the generation and control of chemotactic factors. It is suggested that the theory regarding development of pulmonary emphysema in patients lacking the α1-antitrypsin in their serum should be modified to take into account a deficiency of the chemotactic factor inactivator. PMID:4683887

  17. 1α,25(OH)2-Vitamin D3 Inhibits C2C12 Cell Differentiation by Activating c-Src and ERK1/2.

    PubMed

    Wang, Zhonghua; Jiang, Aijun; Mei, Jingwei; Zhang, Xinyan

    2018-05-01

    The steroid hormone 1α,25(OH)2-vitamin D3 (1,25-D3) induced some biological responses through activation of MAPK cascades in various cell types. It seems that 1,25-D3 plays different roles at different stages of proliferating, differentiating, and differentiated C2C12 cells. We wanted to detect the effect of 1,25-D3 on myogenic differentiation and the role of ERK1/2 in differentiating stage induced by 2% horse serum with 1,25-D3. In this study, cells were induced to differentiate with 2% horse serum until the 7th day (with addition of 1,25-D3 every two days). The protein level of MHC (myosin heavy chain) and phosphorylation level of Src and ERK1/2 were determined with western blot. U0126 (MEK inhibitor) and PP2 (Src specific inhibitor) were used to confirm the relationship between 1,25-D3, MHC, Src, and ERK1/2. 1,25-D3 inhibited differentiation of C2C12 cells and fusion of myotubes by phosphorylating and activating Src and ERK1/2. Phosphorylation of ERK1/2 was inhibited, not only by U0126 but also by PP2 (a Src specific inhibitor) which led to the promotion of differentiation of C2C12 cells; however, U0126 did not inhibit Src phosphorylation. These results suggested that 1,25-D3 possibly inhibited C2C12 differentiation through Src and ERK1/2, and Src played an upstream role in this signaling pathway.

  18. Simm530, a novel and highly selective c-Met inhibitor, blocks c-Met-stimulated signaling and neoplastic activities

    PubMed Central

    Peng, Xia; Shen, Yanyan; Chen, Fang; Ji, Yinchun; Liu, Weiren; Shi, Yinghong; Duan, Wenhu; Ding, Jian; Ai, Jing; Geng, Meiyu

    2016-01-01

    The aberrant c-Met activation has been implicated in a variety of human cancers for its critical role in tumor growth, metastasis and tumor angiogenesis. Thus, c-Met axis presents as an attractive therapeutic target. Notably, most of these c-Met inhibitors currently being evaluated in clinical trials lack selectivity and target multiple kinases, often accounting for the undesirable toxicities. Here we described Simm530 as a potent and selective c-Met inhibitor. Simm530 demonstrated >2,000 fold selectivity for c-Met compared with other 282 kinases, making it one of the most selective c-Met inhibitors described to date. This inhibitor significantly blocked c-Met signaling pathways regardless of mechanistic complexity implicated in c-Met activation. As a result, Simm530 led to substantial inhibition of c-Met-promoted cell proliferation, migration, invasion, ECM degradation, cell scattering and invasive growth. In addition, Simm530 inhibited primary human umbilical vascular endothelial cell (HUVEC) proliferation, decreased intratumoral CD31 expression and plasma pro-angiogenic factor interleukin-8 secretion, suggesting its significant anti-angiogenic properties. Simm530 resulted in dose-dependent inhibition of c-Met phosphorylation and tumor growth in c-Met-driven lung and gastric cancer xenografts. And, the inhibitor is well tolerated even at doses that achieve complete tumor regression. Together, Simm530 is a potent and highly selective c-Met kinase inhibitor that may have promising therapeutic potential in c-Met-driven cancer treatment. PMID:27191264

  19. Impact of Glutathione Peroxidase-1 Deficiency on Macrophage Foam Cell Formation and Proliferation: Implications for Atherogenesis

    PubMed Central

    Degreif, Adriana; Rossmann, Heidi; Canisius, Antje; Lackner, Karl J.

    2013-01-01

    Clinical and experimental evidence suggests a protective role for the antioxidant enzyme glutathione peroxidase-1 (GPx-1) in the atherogenic process. GPx-1 deficiency accelerates atherosclerosis and increases lesion cellularity in ApoE−/− mice. However, the distribution of GPx-1 within the atherosclerotic lesion as well as the mechanisms leading to increased macrophage numbers in lesions is still unknown. Accordingly, the aims of the present study were (1) to analyze which cells express GPx-1 within atherosclerotic lesions and (2) to determine whether a lack of GPx-1 affects macrophage foam cell formation and cellular proliferation. Both in situ-hybridization and immunohistochemistry of lesions of the aortic sinus of ApoE−/− mice after 12 weeks on a Western type diet revealed that both macrophages and – even though to a less extent – smooth muscle cells contribute to GPx-1 expression within atherosclerotic lesions. In isolated mouse peritoneal macrophages differentiated for 3 days with macrophage-colony-stimulating factor (MCSF), GPx-1 deficiency increased oxidized low density-lipoprotein (oxLDL) induced foam cell formation and led to increased proliferative activity of peritoneal macrophages. The MCSF- and oxLDL-induced proliferation of peritoneal macrophages from GPx-1−/−ApoE−/− mice was mediated by the p44/42 MAPK (p44/42 mitogen-activated protein kinase), namely ERK1/2 (extracellular-signal regulated kinase 1/2), signaling pathway as demonstrated by ERK1/2 signaling pathways inhibitors, Western blots on cell lysates with primary antibodies against total and phosphorylated ERK1/2, MEK1/2 (mitogen-activated protein kinase kinase 1/2), p90RSK (p90 ribosomal s6 kinase), p38 MAPK and SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase), and immunohistochemistry of mice atherosclerotic lesions with antibodies against phosphorylated ERK1/2, MEK1/2 and p90RSK. Representative effects of GPx-1 deficiency on both macrophage proliferation

  20. Gene Copy-Number Variations (CNVs) of Complement C4 and C4A Deficiency in Genetic Risk and Pathogenesis of Juvenile Dermatomyositis

    PubMed Central

    Lintner, Katherine E.; Patwardhan, Anjali; Rider, Lisa G.; Abdul-Aziz, Rabheh; Wu, Yee Ling; Lundström, Emeli; Padyukov, Leonid; Zhou, Bi; Alhomosh, Alaaedin; Newsom, David; White, Peter; Jones, Karla B.; O’Hanlon, Terrance P.; Miller, Frederick W.; Spencer, Charles H.; Yu, C. Yung

    2017-01-01

    Objective Complement-mediated vasculopathy of muscle and skin are clinical features of juvenile dermatomyositis (JDM). We assess gene copy-number variations (CNVs) for complement C4 and its isotypes, C4A and C4B, in genetic risks and pathogenesis of JDM. Methods The study population included 105 JDM patients and 500 healthy European Americans. Gene copy-numbers (GCNs) for total C4, C4A, C4B and HLA-DRB1 genotypes were determined by Southern blots and PCRs. Processed activation product C4d bound to erythrocytes (E-C4d) was measured by flow cytometry. Global gene-expression microarrays were performed in 19 JDM and 7 controls using PAXgene-blood RNA. Differential expression levels for selected genes were validated by qPCR. Results Significantly lower GCNs and differences in distribution of GCN groups for total C4 and C4A were observed between JDM and controls. Lower GCN of C4A in JDM remained among HLA DR3-positive subjects (p=0.015). Homozygous or heterozygous C4A-deficiency was present in 40.0% of JDM compared to 18.2% of controls [odds ratio (OR)=3.00 (1.87–4.79), p=8.2x10−6]. JDM had higher levels of E-C4d than controls (p=0.004). In JDM, C4A-deficient subjects had higher levels of E-C4d (p=0.0003) and higher frequency of elevated levels of multiple serum muscle enzymes at diagnosis (p=0.004). Microarray profiling of blood RNA revealed upregulation of type I Interferon-stimulated genes and lower abundance of transcripts for T-cell and chemokine function genes in JDM, but this was less prominent among C4A-deficient or DR3-positive patients. Conclusions Complement C4A-deficiency appears to be an important factor for the genetic risk and pathogenesis of JDM, particularly in patients with a DR3-positive background. PMID:26493816

  1. Inhibitors of the bacterial cell wall biosynthesis enzyme MurC.

    PubMed

    Reck, F; Marmor, S; Fisher, S; Wuonola, M A

    2001-06-04

    A series of phosphinate transition-state analogues of the L-alanine adding enzyme (MurC) of bacterial peptidoglycan biosynthesis was prepared and tested as inhibitors of the Escherichia coli enzyme. Compound 4 was identified as a potent inhibitor of MurC from Escherichia coli with an IC(50) of 49nM.

  2. Angio-oedema in dentistry: management of two cases using C1 esterase inhibitor.

    PubMed

    Socker, Michal; Boyle, Carole; Burke, Mary

    2005-01-01

    Angio-oedema is a rare condition; it may be a hereditary or acquired form. It results from biochemical defects which cause excessive activation of the complement cascade and result in deep swellings in the skin and alimentary tract, called angio-oedema. These swellings are painful rather than itchy and not associated with urticaria, which helps to differentiate angio-oedema from allergic reactions. Even mild trauma can give rise to swelling, which may be life-threatening in the oral region. Management of two cases, one hereditary and the other acquired angio-oedema, are reported to demonstrate the use of C1 esterase inhibitor prophylaxis. It is important that patients giving a history of angio-oedema are thoroughly investigated and, in discussion with the patient's medical team, appropriate prophylactic measures are taken to prevent swelling.

  3. Combinations of PARP Inhibitors with Temozolomide Drive PARP1 Trapping and Apoptosis in Ewing's Sarcoma.

    PubMed

    Gill, Sonja J; Travers, Jon; Pshenichnaya, Irina; Kogera, Fiona A; Barthorpe, Syd; Mironenko, Tatiana; Richardson, Laura; Benes, Cyril H; Stratton, Michael R; McDermott, Ultan; Jackson, Stephen P; Garnett, Mathew J

    2015-01-01

    Ewing's sarcoma is a malignant pediatric bone tumor with a poor prognosis for patients with metastatic or recurrent disease. Ewing's sarcoma cells are acutely hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibition and this is being evaluated in clinical trials, although the mechanism of hypersensitivity has not been directly addressed. PARP inhibitors have efficacy in tumors with BRCA1/2 mutations, which confer deficiency in DNA double-strand break (DSB) repair by homologous recombination (HR). This drives dependence on PARP1/2 due to their function in DNA single-strand break (SSB) repair. PARP inhibitors are also cytotoxic through inhibiting PARP1/2 auto-PARylation, blocking PARP1/2 release from substrate DNA. Here, we show that PARP inhibitor sensitivity in Ewing's sarcoma cells is not through an apparent defect in DNA repair by HR, but through hypersensitivity to trapped PARP1-DNA complexes. This drives accumulation of DNA damage during replication, ultimately leading to apoptosis. We also show that the activity of PARP inhibitors is potentiated by temozolomide in Ewing's sarcoma cells and is associated with enhanced trapping of PARP1-DNA complexes. Furthermore, through mining of large-scale drug sensitivity datasets, we identify a subset of glioma, neuroblastoma and melanoma cell lines as hypersensitive to the combination of temozolomide and PARP inhibition, potentially identifying new avenues for therapeutic intervention. These data provide insights into the anti-cancer activity of PARP inhibitors with implications for the design of treatment for Ewing's sarcoma patients with PARP inhibitors.

  4. Influence of MLH1 on colon cancer sensitivity to poly(ADP-ribose) polymerase inhibitor combined with irinotecan.

    PubMed

    Tentori, Lucio; Leonetti, Carlo; Muzi, Alessia; Dorio, Annalisa Susanna; Porru, Manuela; Dolci, Susanna; Campolo, Federica; Vernole, Patrizia; Lacal, Pedro Miguel; Praz, Françoise; Graziani, Grazia

    2013-07-01

    Poly(ADP-ribose) polymerase inhibitors (PARPi) are currently evaluated in clinical trials in combination with topoisomerase I (Top1) inhibitors against a variety of cancers, including colon carcinoma. Since the mismatch repair component MLH1 is defective in 10-15% of colorectal cancers we have investigated whether MLH1 affects response to the Top1 inhibitor irinotecan, alone or in combination with PARPi. To this end, the colon cancer cell lines HCT116, carrying MLH1 mutations on chromosome 3 and HCT116 in which the wild-type MLH1 gene was replaced via chromosomal transfer (HCT116+3) or by transfection of the corresponding MLH1 cDNA (HCT116 1-2) were used. HCT116 cells or HCT116+3 cells stably silenced for PARP-1 expression were also analysed. The results of in vitro and in vivo experiments indicated that MLH1, together with low levels of Top1, contributed to colon cancer resistance to irinotecan. In the MLH1-proficient cells SN-38, the active metabolite of irinotecan, induced lower levels of DNA damage than in MLH1-deficient cells, as shown by the weaker induction of γ-H2AX and p53 phosphorylation. The presence of MLH1 contributed to induce of prompt Chk1 phosphorylation, restoring G2/M cell cycle checkpoint and repair of DNA damage. On the contrary, in the absence of MLH1, HCT116 cells showed minor Chk1 phosphorylation and underwent apoptosis. Remarkably, inhibition of PARP function by PARPi or by PARP-1 gene silencing always increased the antitumor activity of irinotecan, even in the presence of low PARP-1 expression.

  5. A nomogram to estimate the HbA1c response to different DPP-4 inhibitors in type 2 diabetes: a systematic review and meta-analysis of 98 trials with 24 163 patients

    PubMed Central

    Esposito, Katherine; Chiodini, Paolo; Maiorino, Maria Ida; Capuano, Annalisa; Cozzolino, Domenico; Petrizzo, Michela; Bellastella, Giuseppe; Giugliano, Dario

    2015-01-01

    Objectives To develop a nomogram for estimating the glycated haemoglobin (HbA1c) response to different dipeptidyl peptidase-4 (DPP-4) inhibitors in type 2 diabetes. Design A systematic review and meta-analysis of randomised controlled trials (RCTs) of DPP-4 inhibitors (vildagliptin, sitagliptin, saxagliptin, linagliptin and alogliptin) on HbA1c were conducted. Electronic searches were carried out up to December 2013. Trials were included if they were carried out on participants with type 2 diabetes, lasted at least 12 weeks, included at least 30 participants and had a final assessment of HbA1c. A random effect model was used to pool data. A nomogram was used to represent results of the metaregression model. Participants Adults with type 2 diabetes. Interventions Any DPP-4 inhibitor (vildagliptin, sitagliptin, saxagliptin, linagliptin or alogliptin). Outcome measures The HbA1c response to each DPP-4 inhibitor within 1 year of therapy. Results We screened 928 citations and reviewed 98 articles reporting 98 RCTs with 100 arms in 24 163 participants. There were 26 arms with vildagliptin, 37 with sitagliptin, 13 with saxagliptin, 13 with linagliptin and 11 with alogliptin. For all 100 arms, the mean baseline HbA1c value was 8.05% (64 mmol/mol); the decrease of HbA1c from baseline was −0.77% (95% CI −0.82 to −0.72%), with high heterogeneity (I2=96%). Multivariable metaregression model that included baseline HbA1c, type of DPP-4 inhibitor and fasting glucose explained 58% of variance between studies, with no significant interaction between them. Other factors, including age, previous diabetes drugs and duration of treatment added low predictive power (<1%). The nomogram estimates the absolute HbA1c reduction from baseline using the type of DPP-4 inhibitor, baseline values of HbA1c and fasting glucose. Conclusions Baseline HbA1c level and fasting glucose explain most of the variance in HbA1c change in response to DPP-4 inhibitors: each increase of 1.0% units

  6. Familial discoid lupus erythematosus associated with heterozygote C2 deficiency.

    PubMed

    Belin, D C; Bordwell, B J; Einarson, M E; McLean, R H; Weinstein, A; Yunis, E J; Rothfield, N F

    1980-08-01

    Two siblings with chronic discoid lupus erythematosus and several family members were found with heterozygous C2 deficiency. An association with histocompatibility markers HLA-B18 and HLA-Dw2 was demonstrated, and the slow allotype of factor B was present. Linkage studies in this family suggested a close linkage between the C2 deficiency gene and genes coding for B18, Dw2, and BfS antigens. One HLA-ACB/DBf recombinant was observed showing closer linkage between HLA-D and Bf than between HLA-B and Bf.

  7. Thalassiolins A-C: new marine-derived inhibitors of HIV cDNA integrase.

    PubMed

    Rowley, David C; Hansen, Mark S T; Rhodes, Denise; Sotriffer, Christoph A; Ni, Haihong; McCammon, J Andrew; Bushman, Frederic D; Fenical, William

    2002-11-01

    Human immunodeficiency virus (HIV) replication requires integration of viral cDNA into the host genome, a process mediated by the viral enzyme integrase. We describe a new series of HIV integrase inhibitors, thalassiolins A-C (1-3), isolated from the Caribbean sea grass Thalassia testudinum. The thalassiolins are distinguished from other flavones previously studied by the substitution of a sulfated beta-D-glucose at the 7-position, a substituent that imparts increased potency against integrase in biochemical assays. The most active of these molecules, thalassiolin A (1), displays in vitro inhibition of the integrase catalyzed strand transfer reaction (IC50=0.4 microM) and an antiviral IC50 of 30 microM. Molecular modeling studies indicate a favorable binding mode is probable at the catalytic core domain of HIV-1 integrase.

  8. Human G109E-inhibitor-1 impairs cardiac function and promotes arrhythmias.

    PubMed

    Haghighi, Kobra; Pritchard, Tracy J; Liu, Guan-Sheng; Singh, Vivek P; Bidwell, Philip; Lam, Chi Keung; Vafiadaki, Elizabeth; Das, Parthib; Ma, Jianyong; Kunduri, Swati; Sanoudou, Despina; Florea, Stela; Vanderbilt, Erica; Wang, Hong-Shang; Rubinstein, Jack; Hajjar, Roger J; Kranias, Evangelia G

    2015-12-01

    A hallmark of human and experimental heart failure is deficient sarcoplasmic reticulum (SR) Ca-uptake reflecting impaired contractile function. This is at least partially attributed to dephosphorylation of phospholamban by increased protein phosphatase 1 (PP1) activity. Indeed inhibition of PP1 by transgenic overexpression or gene-transfer of constitutively active inhibitor-1 improved Ca-cycling, preserved function and decreased fibrosis in small and large animal models of heart failure, suggesting that inhibitor-1 may represent a potential therapeutic target. We recently identified a novel human polymorphism (G109E) in the inhibitor-1 gene with a frequency of 7% in either normal or heart failure patients. Transgenic mice, harboring cardiac-specific expression of G109E inhibitor-1, exhibited decreases in contractility, Ca-kinetics and SR Ca-load. These depressive effects were relieved by isoproterenol stimulation. Furthermore, stress conditions (2Hz +/- Iso) induced increases in Ca-sparks, Ca-waves (60% of G109E versus 20% in wild types) and after-contractions (76% of G109E versus 23% of wild types) in mutant cardiomyocytes. Similar findings were obtained by acute expression of the G109E variant in adult cardiomyocytes in the absence or presence of endogenous inhibitor-1. The underlying mechanisms included reduced binding of mutant inhibitor-1 to PP1, increased PP1 activity, and dephosphorylation of phospholamban at Ser16 and Thr17. However, phosphorylation of the ryanodine receptor at Ser2808 was not altered while phosphorylation at Ser2814 was increased, consistent with increased activation of Ca/calmodulin-dependent protein kinase II (CaMKII), promoting aberrant SR Ca-release. Parallel in vivo studies revealed that mutant mice developed ventricular ectopy and complex ventricular arrhythmias (including bigeminy, trigeminy and ventricular tachycardia), when challenged with isoproterenol. Inhibition of CaMKII activity by KN-93 prevented the increased propensity to

  9. Sequence conservation from human to prokaryotes of Surf1, a protein involved in cytochrome c oxidase assembly, deficient in Leigh syndrome.

    PubMed

    Poyau, A; Buchet, K; Godinot, C

    1999-12-03

    The human SURF1 gene encoding a protein involved in cytochrome c oxidase (COX) assembly, is mutated in most patients presenting Leigh syndrome associated with COX deficiency. Proteins homologous to the human Surf1 have been identified in nine eukaryotes and six prokaryotes using database alignment tools, structure prediction and/or cDNA sequencing. Their sequence comparison revealed a remarkable Surf1 conservation during evolution and put forward at least four highly conserved domains that should be essential for Surf1 function. In Paracoccus denitrificans, the Surf1 homologue is found in the quinol oxidase operon, suggesting that Surf1 is associated with a primitive quinol oxidase which belongs to the same superfamily as cytochrome oxidase.

  10. Transcriptional profiling, molecular cloning, and functional analysis of C1 inhibitor, the main regulator of the complement system in black rockfish, Sebastes schlegelii.

    PubMed

    Nilojan, Jehanathan; Bathige, S D N K; Thulasitha, W S; Kwon, Hyukjae; Jung, Sumi; Kim, Myoung-Jin; Nam, Bo-Hye; Lee, Jehee

    2018-04-01

    C1-inhibitor (C1inh) plays a crucial role in assuring homeostasis and is the central regulator of the complement activation involved in immunity and inflammation. A C1-inhibitor gene from Sebastes schlegelii was identified and designated as SsC1inh. The identified genomic DNA and cDNA sequences were 6837 bp and 2161 bp, respectively. The genomic DNA possessed 11 exons, interrupted by 10 introns. The amino acid sequence possessed two immunoglobulin-like domains and a serpin domain. Multiple sequence alignment revealed that the serpin domain of SsC1inh was highly conserved among analyzed species where the two immunoglobulin-like domains showed divergence. The distinctiveness of teleost C1inh from other homologs was indicated by the phylogenetic analysis, genomic DNA organization, and their extended N-terminal amino acid sequences. Under normal physiological conditions, SsC1inh mRNA was most expressed in the liver, followed by the gills. The involvement of SsC1inh in homeostasis was demonstrated by modulated transcription profiles in the liver and spleen upon pathogenic stress by different immune stimulants. The protease inhibitory potential of recombinant SsC1inh (rSsC1inh) and the potentiation effect of heparin on rSsC1inh was demonstrated against C1esterase and thrombin. For the first time, the anti-protease activity of the teleost C1inh against its natural substrates C1r and C1s was proved in this study. The protease assay conducted with recombinant black rockfish C1r and C1s proteins in the presence or absence of rSsC1inh showed that the activities of both proteases were significantly diminished by rSsC1inh. Taken together, results from the present study indicate that SsC1inh actively plays a significant role in maintaining homeostasis in the immune system of black rock fish. Copyright © 2018. Published by Elsevier Ltd.

  11. Deficiency in Serine Protease Inhibitor Neuroserpin Exacerbates Ischemic Brain Injury by Increased Postischemic Inflammation

    PubMed Central

    Ludewig, Peter; Bernreuther, Christian; Krasemann, Susanne; Arunachalam, Priyadharshini; Gerloff, Christian; Glatzel, Markus; Magnus, Tim

    2013-01-01

    The only approved pharmacological treatment for ischemic stroke is intravenous administration of plasminogen activator (tPA) to re-canalize the occluded cerebral vessel. Not only reperfusion but also tPA itself can induce an inflammatory response. Microglia are the innate immune cells of the central nervous system and the first immune cells to become activated in stroke. Neuroserpin, an endogenous inhibitor of tPA, is up-regulated following cerebral ischemia. To examine neuroserpin-dependent mechanisms of neuroprotection in stroke, we studied neuroserpin deficient (Ns−/−) mice in an animal model of temporal focal ischemic stroke. Infarct size and neurological outcome were worse in neuroserpin deficient mice even though the fibrinolytic activity in the ischemic brain was increased. The increased infarct size was paralleled by a selective increase in proinflammatory microglia activation in Ns−/− mice. Our results show excessive microglial activation in Ns−/− mice mediated by an increased activity of tPA. This activation results in a worse outcome further underscoring the potential detrimental proinflammatory effects of tPA. PMID:23658802

  12. The Biofilm Inhibitor Carolacton Enters Gram-Negative Cells: Studies Using a TolC-Deficient Strain of Escherichia coli

    PubMed Central

    Reck, Michael; Bunk, Boyke; Jarek, Michael; App, Constantin Benjamin; Meier-Kolthoff, Jan P.; Overmann, Jörg; Müller, Rolf; Kirschning, Andreas; Wagner-Döbler, Irene

    2017-01-01

    ABSTRACT The myxobacterial secondary metabolite carolacton inhibits growth of Streptococcus pneumoniae and kills biofilm cells of the caries- and endocarditis-associated pathogen Streptococcus mutans at nanomolar concentrations. Here, we studied the response to carolacton of an Escherichia coli strain that lacked the outer membrane protein TolC. Whole-genome sequencing of the laboratory E. coli strain TolC revealed the integration of an insertion element, IS5, at the tolC locus and a close phylogenetic relationship to the ancient E. coli K-12. We demonstrated via transcriptome sequencing (RNA-seq) and determination of MIC values that carolacton penetrates the phospholipid bilayer of the Gram-negative cell envelope and inhibits growth of E. coli TolC at similar concentrations as for streptococci. This inhibition is completely lost for a C-9 (R) epimer of carolacton, a derivative with an inverted stereocenter at carbon atom 9 [(S) → (R)] as the sole difference from the native molecule, which is also inactive in S. pneumoniae and S. mutans, suggesting a specific interaction of native carolacton with a conserved cellular target present in bacterial phyla as distantly related as Firmicutes and Proteobacteria. The efflux pump inhibitor (EPI) phenylalanine arginine β-naphthylamide (PAβN), which specifically inhibits AcrAB-TolC, renders E. coli susceptible to carolacton. Our data indicate that carolacton has potential for use in antimicrobial chemotherapy against Gram-negative bacteria, as a single drug or in combination with EPIs. Strain E. coli TolC has been deposited at the DSMZ; together with the associated RNA-seq data and MIC values, it can be used as a reference during future screenings for novel bioactive compounds. IMPORTANCE The emergence of pathogens resistant against most or all of the antibiotics currently used in human therapy is a global threat, and therefore the search for antimicrobials with novel targets and modes of action is of utmost

  13. cGMP accumulation causes photoreceptor degeneration in CNG channel deficiency: evidence of cGMP cytotoxicity independently of enhanced CNG channel function.

    PubMed

    Xu, Jianhua; Morris, Lynsie; Thapa, Arjun; Ma, Hongwei; Michalakis, Stylianos; Biel, Martin; Baehr, Wolfgang; Peshenko, Igor V; Dizhoor, Alexander M; Ding, Xi-Qin

    2013-09-11

    Photoreceptor cyclic nucleotide-gated (CNG) channels regulate Ca(2+) influx in rod and cone photoreceptors. cGMP, the native ligand of the photoreceptor CNG channels, has been associated with cytotoxicity when its levels rise above normal due to defects in photoreceptor phosphodiesterase (PDE6) or regulation of retinal guanylyl cyclase (retGC). We found a massive accumulation of cGMP in CNGA3-deficient retina and investigated whether cGMP accumulation plays a role in cone degeneration in CNG channel deficiency. The time course study showed that the retinal cGMP level in Cnga3(-/-);Nrl(-/-) mice with CNGA3 deficiency on a cone-dominant background was sharply increased at postnatal day 8 (P8), peaked around P10-P15, remained high through P30-P60, and returned to near control level at P90. This elevation pattern correlated with photoreceptor apoptotic death, which peaked around P15-P20. In Cnga3(-/-);Gucy2e(-/-) mice lacking retGC1, cone density and expression levels of cone-specific proteins were significantly increased compared with Cnga3(-/-), consistent with a role of cGMP accumulation as the major contributor to cone death caused by CNG channel deficiency. The activity and expression levels of cGMP-dependent protein kinase G (PKG) were significantly increased in Cnga3(-/-);Nrl(-/-) retina compared with Nrl(-/-), suggesting an involvement of PKG regulation in cell death. Our results indicate that cGMP accumulation in photoreceptors can itself exert cytotoxic effect in cones, independently of CNG channel activity and Ca(2+) influx.

  14. Cherubism Mice Also Deficient in c-Fos Exhibit Inflammatory Bone Destruction Executed by Macrophages That Express MMP14 Despite the Absence of TRAP+ Osteoclasts.

    PubMed

    Kittaka, Mizuho; Mayahara, Kotoe; Mukai, Tomoyuki; Yoshimoto, Tetsuya; Yoshitaka, Teruhito; Gorski, Jeffrey P; Ueki, Yasuyoshi

    2018-01-01

    Currently, it is believed that osteoclasts positive for tartrate-resistant acid phosphatase (TRAP+) are the exclusive bone-resorbing cells responsible for focal bone destruction in inflammatory arthritis. Recently, a mouse model of cherubism (Sh3bp2 KI/KI ) with a homozygous gain-of-function mutation in the SH3-domain binding protein 2 (SH3BP2) was shown to develop auto-inflammatory joint destruction. Here, we demonstrate that Sh3bp2 KI/KI mice also deficient in the FBJ osteosarcoma oncogene (c-Fos) still exhibit noticeable bone erosion at the distal tibia even in the absence of osteoclasts at 12 weeks old. Levels of serum collagen I C-terminal telopeptide (ICTP), a marker of bone resorption generated by matrix metalloproteinases (MMPs), were elevated, whereas levels of serum cross-linked C-telopeptide (CTX), another resorption marker produced by cathepsin K, were not increased. Collagenolytic MMP levels were increased in the inflamed joints of the Sh3bp2 KI/KI mice deficient in c-Fos. Resorption pits contained a large number of F4/80+ macrophages and genetic depletion of macrophages rescued these erosive changes. Importantly, administration of NSC405020, an MMP14 inhibitor targeted to the hemopexin (PEX) domain, suppressed bone erosion in c-Fos-deficient Sh3bp2 KI/KI mice. After activation of the NF-κB pathway, macrophage colony-stimulating factor (M-CSF)-dependent macrophages from c-Fos-deficient Sh3bp2 KI/KI mice expressed increased amounts of MMP14 compared with wild-type macrophages. Interestingly, receptor activator of NF-κB ligand (RANKL)-deficient Sh3bp2 KI/KI mice failed to show notable bone erosion, whereas c-Fos deletion did restore bone erosion to the RANKL-deficient Sh3bp2 KI/KI mice, suggesting that osteolytic transformation of macrophages requires both loss-of-function of c-Fos and gain-of-function of SH3BP2 in this model. These data provide the first genetic evidence that cells other than osteoclasts can cause focal bone destruction in

  15. Efficacy and safety of an intravenous C1-inhibitor concentrate for long-term prophylaxis in hereditary angioedema

    PubMed Central

    Craig, Timothy; Shapiro, Ralph; Vegh, Arthur; Baker, James W.; Bernstein, Jonathan A.; Busse, Paula; Magerl, Markus; Martinez-Saguer, Inmaculada; Riedl, Marc A.; Lumry, William; Williams-Herman, Debora; Edelman, Jonathan; Feuersenger, Henrike; Machnig, Thomas

    2017-01-01

    Background: The plasma-derived, pasteurized, nanofiltered C1-inhibitor concentrate (pnfC1-INH) is approved in the United States as an intravenous (IV) on-demand treatment for hereditary angioedema (HAE) attacks, and, in Europe, as on demand and short-term prophylaxis. Objective: This analysis evaluated Berinert Patient Registry data regarding IV pnfC1-INH used as long-term prophylaxis (LTP). Methods: The international registry (2010–2014) collected prospective and retrospective usage, dosing, and safety data on individuals who used pnfC1-INH for any reason. Results: The registry included data on 47 subjects (80.9% female subjects; mean age, 44.8 years), which reflected 4082 infusions categorized as LTP and a total of 430.2 months of LTP administration. The median absolute dose of pnfC1-INH given for LTP was 1000 IU (range, 500–3000 IU), with a median time interval between infusion and a subsequent pnfC1-INH–treated attack of 72.0 hours (range, 0.0–166.4 hours). Fifteen subjects (31.9%) had no pnfC1-INH–treated HAE attacks within 7 days after pnfC1-INH infusion for LTP; 32 subjects (68.1%) experienced 246 attacks, with rates of 0.06 attacks per infusion and 0.57 attacks per month. A total of 81 adverse events were reported in 16 subjects (34.0%) (0.02 events per infusion; 0.19 events per month); only 3 adverse events were considered related to pnfC1-INH (noncardiac chest pain, postinfusion headache, deep vein thrombosis in a subject with an IV port). Conclusion: In this international registry, IV pnf-C1-INH given as LTP for HAE was safe and efficacious, with a low rate of attacks that required pnfC1-INH treatment, particularly within the first several days after LTP administration. PMID:28381322

  16. Adult vitamin D deficiency exacerbates impairments caused by social stress in BALB/c and C57BL/6 mice.

    PubMed

    Groves, Natalie J; Zhou, Mei; Jhaveri, Dhanisha J; McGrath, John J; Burne, Thomas H J

    2017-12-01

    Vitamin D deficiency is prevalent in adults throughout the world. Epidemiological studies have shown significant associations between vitamin D deficiency and an increased risk of various neuropsychiatric and neurodegenerative disorders, such as schizophrenia, depression, Alzheimer's disease and cognitive impairment. However, studies based on observational epidemiology cannot address questions of causality; they cannot determine if vitamin D deficiency is a causal factor leading to the adverse health outcome. The main aim of this study was to determine if AVD deficiency would exacerbate the effects of a secondary exposure, in this case social stress, in BALB/c mice and in the more resilient C57BL/6 mice. Ten-week old male BALB/c and C57BL/6 mice were fed a control or vitamin D deficient diet for 10 weeks, and the mice were further separated into one of two groups for social treatment, either Separated (SEP) or Social Defeat (DEF). SEP mice were placed two per cage with a perforated Plexiglas divider, whereas the DEF mice underwent 10days of social defeat prior to behavioural testing. We found that AVD-deficient mice were more vulnerable to the effects of social stress using a social avoidance test, and this was dependent on strain. These results support the hypothesis that vitamin D deficiency may exacerbate behavioural outcomes in mice vulnerable to stress, a finding that can help guide future studies. Importantly, these discoveries support the epidemiological link between vitamin D deficiency and neuropsychiatric and neurodegenerative disorders; and has provided clues that can guide future studies related to unravelling the mechanisms of action linking adult vitamin D deficiency and adverse brain related outcomes. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  17. Transcriptomic profiling and quantitative high-throughput (qHTS) drug screening of CDH1 deficient hereditary diffuse gastric cancer (HDGC) cells identify treatment leads for familial gastric cancer.

    PubMed

    Chen, Ina; Mathews-Greiner, Lesley; Li, Dandan; Abisoye-Ogunniyan, Abisola; Ray, Satyajit; Bian, Yansong; Shukla, Vivek; Zhang, Xiaohu; Guha, Raj; Thomas, Craig; Gryder, Berkley; Zacharia, Athina; Beane, Joal D; Ravichandran, Sarangan; Ferrer, Marc; Rudloff, Udo

    2017-05-01

    Patients with hereditary diffuse gastric cancer (HDGC), a cancer predisposition syndrome associated with germline mutations of the CDH1 (E-cadherin) gene, have few effective treatment options. Despite marked differences in natural history, histopathology, and genetic profile to patients afflicted by sporadic gastric cancer, patients with HDGC receive, in large, identical systemic regimens. The lack of a robust preclinical in vitro system suitable for effective drug screening has been one of the obstacles to date which has hampered therapeutic advances in this rare disease. In order to identify therapeutic leads selective for the HDGC subtype of gastric cancer, we compared gene expression profiles and drug phenotype derived from an oncology library of 1912 compounds between gastric cancer cells established from a patient with metastatic HDGC harboring a c.1380delA CDH1 germline variant and sporadic gastric cancer cells. Unsupervised hierarchical cluster analysis shows select gene expression alterations in c.1380delA CDH1 SB.mhdgc-1 cells compared to a panel of sporadic gastric cancer cell lines with enrichment of ERK1-ERK2 (extracellular signal regulated kinase) and IP3 (inositol trisphosphate)/DAG (diacylglycerol) signaling as the top networks in c.1380delA SB.mhdgc-1 cells. Intracellular phosphatidylinositol intermediaries were increased upon direct measure in c.1380delA CDH1 SB.mhdgc-1 cells. Differential high-throughput drug screening of c.1380delA CDH1 SB.mhdgc-1 versus sporadic gastric cancer cells identified several compound classes with enriched activity in c.1380 CDH1 SB.mhdgc-1 cells including mTOR (Mammalian Target Of Rapamycin), MEK (Mitogen-Activated Protein Kinase), c-Src kinase, FAK (Focal Adhesion Kinase), PKC (Protein Kinase C), or TOPO2 (Topoisomerase II) inhibitors. Upon additional drug response testing, dual PI3K (Phosphatidylinositol 3-Kinase)/mTOR and topoisomerase 2A inhibitors displayed up to >100-fold increased activity in hereditary c.1380

  18. Synthesis of betulinic acid derivatives as entry inhibitors against HIV-1 and bevirimat-resistant HIV-1 variants.

    PubMed

    Dang, Zhao; Qian, Keduo; Ho, Phong; Zhu, Lei; Lee, Kuo-Hsiung; Huang, Li; Chen, Chin-Ho

    2012-08-15

    Betulinic acid derivatives modified at the C28 position are HIV-1entry inhibitors such as compound A43D; however, modified at the C3 position instead of C28 give HIV-1 maturation inhibitor such as bevirimat. Bevirimat exhibited promising pharmacokinetic profiles in clinical trials, but its effectiveness was compromised by the high baseline drug resistance of HIV-1 variants with polymorphism in the putative drug binding site. In an effort to determine whether the viruses with bevirimat resistant polymorphism also altered their sensitivities to the betulinic acid derivatives that inhibit HIV-1 entry, a series of new betulinic acid entry inhibitors were synthesized and tested for their activities against HIV-1 NL4-3 and NL4-3 variants resistant to bevirimat. The results show that the bevirimat resistant viruses were approximately 5- to10-fold more sensitive to three new glutamine ester derivatives (13, 15 and 38) and A43D in an HIV-1 multi-cycle replication assay. In contrast, the wild type NL4-3 and the bevirimat resistant variants were equally sensitive to the HIV-1 RT inhibitor AZT. In addition, these three new compounds markedly improved microsomal stability compared to A43D. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Design and optimization of a series of 1-sulfonylpyrazolo[4,3-b]pyridines as selective c-Met inhibitors.

    PubMed

    Ma, Yuchi; Sun, Guangqiang; Chen, Danqi; Peng, Xia; Chen, Yue-Lei; Su, Yi; Ji, Yinchun; Liang, Jin; Wang, Xin; Chen, Lin; Ding, Jian; Xiong, Bing; Ai, Jing; Geng, Meiyu; Shen, Jingkang

    2015-03-12

    c-Met has emerged as an attractive target for targeted cancer therapy because of its abnormal activation in many cancer cells. To identify high potent and selective c-Met inhibitors, we started with profiling the potency and in vitro metabolic stability of a reported hit 7. By rational design, a novel sulfonylpyrazolo[4,3-b]pyridine 9 with improved DMPK properties was discovered. Further elaboration of π-π stacking interactions and solvent accessible polar moieties led to a series of highly potent and selective type I c-Met inhibitors. On the basis of in vitro and in vivo pharmacological and pharmacokinetics studies, compound 46 was selected as a preclinical candidate for further anticancer drug development.

  20. HbA1c and Glycated Albumin Levels Are High in Gastrectomized Subjects with Iron-Deficiency Anemia.

    PubMed

    Inada, Shinya; Koga, Masafumi

    2017-01-01

    We report that glycated albumin (GA) is higher relative to HbA1c in non-diabetic, gastrectomized subjects without anemia, and thus is a sign of oxyhyperglycemia. It is known that gastrectomized subjects are prone to iron-deficiency anemia (IDA), and that the HbA1c levels of subjects with IDA are falsely high. In the present study, the HbA1c and GA levels of gastrectomized subjects with IDA were compared with gastrectomized subjects without anemia. Seven non-diabetic gastrectomized subjects with IDA were enrolled in the present study. Twenty-eight non-diabetic gastrectomized subjects without anemia matched with the subjects with IDA in terms of age, gender, and body mass index were used as the controls. Although there were no significant differences in fasting plasma glucose and OGTT 2-hour plasma glucose (2-h PG) between the two groups, the HbA1c and GA levels in gastrectomized subjects with IDA were significantly higher than the controls. For all of the gastrectomized subjects (n=35), ferritin exhibited a significant negative correlation with HbA1c and GA, and a significant positive correlation with 2-h PG. In addition, the HbA1c and GA levels exhibited a significant negative correlation with the mean corpuscular hemoglobin and hemoglobin. The HbA1c and GA levels in gastrectomized subjects with IDA were significantly higher than those in controls. The high GA levels are attributed to a tendency in which patients with total gastrectomy, who are prone to IDA, are susceptible to postprandial hyperglycemia and reactive hypoglycemia, which in turn leads to large fluctuations in plasma glucose. © 2017 by the Association of Clinical Scientists, Inc.

  1. The design, synthesis and structure-activity relationships associated with C28 amine-based betulinic acid derivatives as inhibitors of HIV-1 maturation.

    PubMed

    Chen, Yan; Sit, Sing-Yuen; Chen, Jie; Swidorski, Jacob J; Liu, Zheng; Sin, Ny; Venables, Brian L; Parker, Dawn D; Nowicka-Sans, Beata; Lin, Zeyu; Li, Zhufang; Terry, Brian J; Protack, Tricia; Rahematpura, Sandhya; Hanumegowda, Umesh; Jenkins, Susan; Krystal, Mark; Dicker, Ira D; Meanwell, Nicholas A; Regueiro-Ren, Alicia

    2018-05-15

    The design and synthesis of a series of C28 amine-based betulinic acid derivatives as HIV-1 maturation inhibitors is described. This series represents a continuation of efforts following on from previous studies of C-3 benzoic acid-substituted betulinic acid derivatives as HIV-1 maturation inhibitors (MIs) that were explored in the context of C-28 amide substituents. Compared to the C-28 amide series, the C-28 amine derivatives exhibited further improvements in HIV-1 inhibitory activity toward polymorphisms in the Gag polyprotein as well as improved activity in the presence of human serum. However, plasma exposure of basic amines following oral administration to rats was generally low, leading to a focus on moderating the basicity of the amine moiety distal from the triterpene core. The thiomorpholine dioxide (TMD) 20 emerged from this study as a compound with the optimal antiviral activity and an acceptable pharmacokinetic profile in the C-28 amine series. Compared to the C-28 amide 3, 20 offers a 2- to 4-fold improvement in potency towards the screening viruses, exhibits low shifts in the EC 50 values toward the V370A and ΔV370 viruses in the presence of human serum or human serum albumin, and demonstrates improved potency towards the polymorphic T371A and V362I virus variants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Circadian rhythms and food anticipatory behavior in Wfs1-deficient mice.

    PubMed

    Luuk, Hendrik; Fahrenkrug, Jan; Hannibal, Jens

    2012-08-10

    The dorsomedial hypothalamic nucleus (DMH) has been proposed as a candidate for the neural substrate of a food-entrainable oscillator. The existence of a food-entrainable oscillator in the mammalian nervous system was inferred previously from restricted feeding-induced behavioral rhythmicity in rodents with suprachiasmatic nucleus lesions. In the present study, we have characterized the circadian rhythmicity of behavior in Wfs1-deficient mice during ad libitum and restricted feeding. Based on the expression of Wfs1 protein in the DMH it was hypothesized that Wfs1-deficient mice will display reduced or otherwise altered food anticipatory activity. Wfs1 immunoreactivity in DMH was found almost exclusively in the compact part. Restricted feeding induced c-Fos immunoreactivity primarily in the ventral and lateral aspects of DMH and it was similar in both genotypes. Wfs1-deficiency resulted in significantly lower body weight and reduced wheel-running activity. Circadian rhythmicity of behavior was normal in Wfs1-deficient mice under ad libitum feeding apart from elongated free-running period in constant light. The amount of food anticipatory activity induced by restricted feeding was not significantly different between the genotypes. Present results indicate that the effects of Wfs1-deficiency on behavioral rhythmicity are subtle suggesting that Wfs1 is not a major player in the neural networks responsible for circadian rhythmicity of behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency in Greek newborns: the Mediterranean C563T mutation screening.

    PubMed

    Molou, Elina; Schulpis, Kleopatra H; Thodi, Georgia; Georgiou, Vassiliki; Dotsikas, Yannis; Papadopoulos, Konstantinos; Biti, Sofia; Loukas, Yannis L

    2014-04-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) gene is located at the X-chromosome at Xq28 and the disease is recessively inherited predominantly in males. More than 400 variants have been proposed based on clinical and enzymatic studies. The aim of the current study was to identify C563T mutation in G6PD-deficient newborns and to correlate the enzyme residual activity with the presence of the mutation. Some 1189 full-term neonates aged 3-5 days old were tested for G6PD activity in dried blood spots from Guthrie cards using a commercial kit. DNA extraction from Guthrie cards and mutation identification among the deficient samples were performed with current techniques. A total of 92 (7.7%) newborns were G6PD-deficient. In 46 (50%), the mutation C563T was identified. The residual activity in C563T hemizygote males (n = 28) was statistically significantly lower (1.23 ± 0.93 U/g Hb) than that in non-C563T G6PD-deficient males (n = 25) (4.01 ± 1.20 U/g Hb, p < 0.0001) and in controls (13.6 ± 2.9 U/g Hb, p < 0.0001). In C563T heterozygote females, the estimated enzyme activity was lower than that determined in non-C563T females. Male C563T hemizygotes suffer from G6PD deficiency and severe neonatal jaundice. G6PD activity showed statistically significant correlation with total bilirubin blood levels.

  4. Altered transition metal homeostasis in Niemann-Pick disease, Type C1

    PubMed Central

    Hung, Ya Hui; Faux, Noel G.; Killilea, David W.; Yanjanin, Nicole; Firnkes, Sally; Volitakis, Irene; Ganio, George; Walterfang, Mark; Hastings, Caroline; Porter, Forbes D.; Ory, Daniel S.; Bush, Ashley I.

    2014-01-01

    The loss of NPC1 protein function is the predominant cause of Niemann-Pick type C1 disease (NP-C1), a systemic and neurodegenerative disorder characterized by late-endosomal/lysosomal accumulation of cholesterol and other lipids. Limited evidence from post-mortem human tissues, an Npc1−/− mouse model, and cell culture studies also suggest failure of metal homeostasis in NP-C1. To investigate these findings, we performed a comprehensive transition metal analysis of cerebrospinal fluid (CSF), plasma and tissue samples from human NP-C1 patients and an Npc1−/− mouse model. NPC1 deficiency in the Npc1−/− mouse model resulted in a perturbation of transition metal homeostasis in the plasma and key organs (brain, liver, spleen, heart, lungs, and kidneys). Analysis of human patient CSF, plasma and post-mortem brain tissues also indicated disrupted metal homeostasis. There was a disparity in the direction of metal changes between the human and the Npc1−/− mouse samples, which may reflect species-specific metal metabolism. Nevertheless, common to both species is brain zinc accumulation. Furthermore, treatment with the glucosylceramide synthase inhibitor miglustat, the only drug shown in a controlled clinical trial to have some efficacy for NP-C1, did not correct the alterations in CSF and plasma transition metal and ceruloplasmin (CP) metabolism in NP-C1 patients. These findings highlight the importance of NPC1 function in metal homeostasis, and indicate that metal-targeting therapy may be of value as a treatment for NP-C. PMID:24343124

  5. Antithrombin deficiency and decreased protein C activity in a young man with venous thromboembolism: a case report.

    PubMed

    Wang, Dong; Tian, Min; Cui, Guanglin; Wang, Dao Wen

    2018-06-01

    Antithrombin and protein C are two crucial members in the anticoagulant system and play important roles in hemostasis. Mutations in SERPINC1 and PROC lead to deficiency or dysfunction of the two proteins, which could result in venous thromboembolism (VTE). Here, we report a Chinese 22-year-old young man who developed recurrent and serious VTE in cerebral veins, visceral veins, and deep veins of the lower extremity. Laboratory tests and direct sequencing of PROC and SERPINC1 were conducted for the patient and his family members. Coagulation tests revealed that the patient presented type I antithrombin deficiency combined with decreased protein C activity resulting from a small insertion mutation c.848_849insGATGT in SERPINC1 and a short deletion variant c.572_574delAGA in PROC. This combination of the two mutations was absent in 400 healthy subjects each from southern and northern China. Then, we summarized all the mutations of the SERPINC1 and PROC gene reported in the Chinese Han population. This study demonstrates that the combination of antithrombin deficiency and decreased protein C activity can result in severe VTE and that the coexistence of different genetic factors may increase the risk of VTE.

  6. AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7-10.

    PubMed

    Ovens, Matthew J; Davies, Andrew J; Wilson, Marieangela C; Murray, Clare M; Halestrap, Andrew P

    2010-01-15

    In the present study we characterize the properties of the potent MCT1 (monocarboxylate transporter 1) inhibitor AR-C155858. Inhibitor titrations of L-lactate transport by MCT1 in rat erythrocytes were used to determine the Ki value and number of AR-C155858-binding sites (Et) on MCT1 and the turnover number of the transporter (kcat). Derived values were 2.3+/-1.4 nM, 1.29+/-0.09 nmol per ml of packed cells and 12.2+/-1.1 s-1 respectively. When expressed in Xenopus laevis oocytes, MCT1 and MCT2 were potently inhibited by AR-C155858, whereas MCT4 was not. Inhibition of MCT1 was shown to be time-dependent, and the compound was also active when microinjected, suggesting that AR-C155858 probably enters the cell before binding to an intracellular site on MCT1. Measurement of the inhibitor sensitivity of several chimaeric transporters combining different domains of MCT1 and MCT4 revealed that the binding site for AR-C155858 is contained within the C-terminal half of MCT1, and involves TM (transmembrane) domains 7-10. This is consistent with previous data identifying Phe360 (in TM10) and Asp302 plus Arg306 (TM8) as key residues in substrate binding and translocation by MCT1. Measurement of the Km values of the chimaeras for L-lactate and pyruvate demonstrate that both the C- and N-terminal halves of the molecule influence transport kinetics consistent with our proposed molecular model of MCT1 and its translocation mechanism that requires Lys38 in TM1 in addition to Asp302 and Arg306 in TM8 [Wilson, Meredith, Bunnun, Sessions and Halestrap (2009) J. Biol. Chem. 284, 20011-20021].

  7. Cited1 Deficiency Suppresses Intestinal Tumorigenesis

    PubMed Central

    Young, Madeleine; Poetz, Oliver; Parry, Lee; Jenkins, John R.; Williams, Geraint T.; Dunwoodie, Sally L.; Watson, Alastair; Clarke, Alan R.

    2013-01-01

    Conditional deletion of Apc in the murine intestine alters crypt-villus architecture and function. This process is accompanied by multiple changes in gene expression, including upregulation of Cited1, whose role in colorectal carcinogenesis is unknown. Here we explore the relevance of Cited1 to intestinal tumorigenesis. We crossed Cited1 null mice with ApcMin/+ and AhCre+Apcfl/fl mice and determined the impact of Cited1 deficiency on tumour growth/initiation including tumour multiplicity, cell proliferation, apoptosis and the transcriptome. We show that Cited1 is up-regulated in both human and murine tumours, and that constitutive deficiency of Cited1 increases survival in ApcMin/+ mice from 230.5 to 515 days. However, paradoxically, Cited1 deficiency accentuated nearly all aspects of the immediate phenotype 4 days after conditional deletion of Apc, including an increase in cell death and enhanced perturbation of differentiation, including of the stem cell compartment. Transcriptome analysis revealed multiple pathway changes, including p53, PI3K and Wnt. The activation of Wnt through Cited1 deficiency correlated with increased transcription of β-catenin and increased levels of dephosphorylated β-catenin. Hence, immediately following deletion of Apc, Cited1 normally restrains the Wnt pathway at the level of β-catenin. Thus deficiency of Cited1 leads to hyper-activation of Wnt signaling and an exaggerated Wnt phenotype including elevated cell death. Cited1 deficiency decreases intestinal tumourigenesis in ApcMin/+ mice and impacts upon a number of oncogenic signaling pathways, including Wnt. This restraint imposed by Cited1 is consistent with a requirement for Cited1 to constrain Wnt activity to a level commensurate with optimal adenoma formation and maintenance, and provides one mechanism for tumour repression in the absence of Cited1. PMID:23935526

  8. Effect of iron deficiency anemia and iron supplementation on HbA1c levels - Implications for diagnosis of prediabetes and diabetes mellitus in Asian Indians.

    PubMed

    Madhu, S V; Raj, Abhishek; Gupta, Stuti; Giri, S; Rusia, Usha

    2017-05-01

    We investigated the effect of iron deficiency anemia (IDA) on levels of glycated hemoglobin (HbA1c) and to compare its levels before and after iron supplementations. Age and sex matched subjects were enrolled and clustered in 2 groups: IDA (n=62) and healthy controls (HC; n=60). HbA1c levels were estimated by HPLC. Hemogram were estimated by hematology analyser. Serum ferritin (ELISA) and other parameters of iron profile were measured by standard guidelines of ICSH. HbA1c values and iron studies were repeated after 3months of iron supplementation to determine the effect of iron therapy on HbA1c levels. Significantly higher HbA1c levels were observed in IDA subjects compared to HC (5.51±0.696 v/s 4.85±0.461%, p<0.001). A significant negative correlation was observed between HbA1c and hemoglobin, hematocrit, RBC count, MCH, MCHC and serum ferritin in IDA subjects (r=-0.632, -0.652, -0.384, -0.236, -0.192 and -0.441). Significant decline was noticed in HbA1c levels in IDA subjects after iron supplementation (5.51±0.696 before treatment v/s 5.044±0.603 post-treatment; p<0.001). Post treatment, 70% subjects (14/20) with HbA1c in pre-diabetes range normalised to normal glucose tolerance (NGT) range and out of 6 patients with pre-treatment HbA1c in diabetes range, 5 reverted to pre-diabetes range while 1 of them reverted to the NGT range. Caution must be exercised in interpreting the results of HbA1c in patients of IDA and iron deficiency must be corrected before diagnosing diabetes and pre-diabetes solely on the basis of HbA1c criteria. Copyright © 2016. Published by Elsevier B.V.

  9. Phospholipid Binding Protein C Inhibitor (PCI) Is Present on Microparticles Generated In Vitro and In Vivo

    PubMed Central

    Einfinger, Katrin; Badrnya, Sigrun; Furtmüller, Margareta; Handschuh, Daniela; Lindner, Herbert; Geiger, Margarethe

    2015-01-01

    Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles. PMID:26580551

  10. Genetics Home Reference: leukocyte adhesion deficiency type 1

    MedlinePlus

    ... adhesion deficiency type 1 Leukocyte adhesion deficiency type 1 Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Leukocyte adhesion deficiency type 1 is a ...

  11. Plasticity of the Arabidopsis Root System under Nutrient Deficiencies1[C][W][OPEN

    PubMed Central

    Gruber, Benjamin D.; Giehl, Ricardo F.H.; Friedel, Swetlana; von Wirén, Nicolaus

    2013-01-01

    Plant roots show a particularly high variation in their morphological response to different nutrient deficiencies. Although such changes often determine the nutrient efficiency or stress tolerance of plants, it is surprising that a comprehensive and comparative analysis of root morphological responses to different nutrient deficiencies has not yet been conducted. Since one reason for this is an inherent difficulty in obtaining nutrient-deficient conditions in agar culture, we first identified conditions appropriate for producing nutrient-deficient plants on agar plates. Based on a careful selection of agar specifically for each nutrient being considered, we grew Arabidopsis (Arabidopsis thaliana) plants at four levels of deficiency for 12 nutrients and quantified seven root traits. In combination with measurements of biomass and elemental concentrations, we observed that the nutritional status and type of nutrient determined the extent and type of changes in root system architecture (RSA). The independent regulation of individual root traits further pointed to a differential sensitivity of root tissues to nutrient limitations. To capture the variation in RSA under different nutrient supplies, we used principal component analysis and developed a root plasticity chart representing the overall modulations in RSA under a given treatment. This systematic comparison of RSA responses to nutrient deficiencies provides a comprehensive view of the overall changes in root plasticity induced by the deficiency of single nutrients and provides a solid basis for the identification of nutrient-sensitive steps in the root developmental program. PMID:23852440

  12. 1-Nitropyrene (1-NP) induces apoptosis and apparently a non-apoptotic programmed cell death (paraptosis) in Hepa1c1c7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asare, Nana; Landvik, Nina E.; Lagadic-Gossmann, Dominique

    2008-07-15

    Mechanistic studies of nitro-PAHs (polycyclic aromatic hydrocarbons) of interest might help elucidate which chemical characteristics are most important in eliciting toxic effects. 1-Nitropyrene (1-NP) is the predominant nitrated PAH emitted in diesel exhaust. 1-NP-exposed Hepa1c1c7 cells exhibited marked changes in cellular morphology, decreased proliferation and different forms of cell death. A dramatic increase in cytoplasmic vacuolization was observed already after 6 h of exposure and the cells started to round up at 12 h. The rate of cell proliferation was markedly reduced at 24 h and apoptotic as well as propidium iodide (PI)-positive cells appeared. Electron microscopic examination revealed thatmore » the vacuolization was partly due to mitochondria swelling. The caspase inhibitor Z-VAD-FMK inhibited only the apoptotic cell death and Nec-1 (an inhibitor of necroptosis) exhibited no inhibitory effects on either cell death or vacuolization. In contrast, cycloheximide markedly reduced both the number of apoptotic and PI-positive cells as well as the cytoplasmic vacuolization, suggesting that 1-NP induced paraptotic cell death. All the MAPKs; ERK1/2, p38 and JNK, appear to be involved in the death process since marked activation was observed upon 1-NP exposure, and their inhibitors partly reduced the induced cell death. The ERK1/2 inhibitor PD 98057 completely blocked the induced vacuolization, whereas the other MAPKs inhibitors only had minor effects on this process. These findings suggest that 1-NP may cause apoptosis and paraptosis. In contrast, the corresponding amine (1-aminopyrene) elicited only minor apoptotic and necrotic cell death, and cells with characteristics typical of paraptosis were absent.« less

  13. A Cause of Permanent Ketosis: GLUT-1 Deficiency.

    PubMed

    Chenouard, Alexis; Vuillaumier-Barrot, Sandrine; Seta, Nathalie; Kuster, Alice

    2015-01-01

    GLUT-1-deficiency syndrome (GLUT1-DS; OMIM 606777) is a treatable metabolic disorder caused by a mutation of SLC2A1 gene. The functional deficiency of the GLUT1 protein leads to an impaired glucose transport into the brain, resulting in neurologic disorders.We report on a 6-month-old boy with preprandial malaises who was treated monthly by a sorcerer because of a permanent acetonemic odor. He subsequently developed pharmaco-resistant seizures with microcephaly and motor abnormalities. Metabolic explorations were unremarkable except for a fasting glucose test which revealed an abnormal increase of blood ketone bodies. At the age of 35 months, GLUT1-DS was diagnosed based on hypoglycorrhachia with a decreased CSF to blood glucose ratio, and subsequent direct sequencing of the SLC2A1 gene revealed a de novo heterozygous mutation, c.349A>T (p.Lys117X) on exon 4. It was noteworthy that the patient adapted to the deficient cerebral glucose transport by permanent ketone body production since early life. Excessive ketone body production in this patient provided an alternative energy substrate for his brain. We suggest a cerebral metabolic adaptation with upregulation of monocarboxylic acid transporter proteins (MCT1) at the blood-brain barrier provoked by neuroglycopenia and allowing ketone body utilization by the brain. This case illustrates that GLUT1-DS should be considered in the differential diagnosis of permanent ketosis.

  14. Absolute configuration of acremoxanthone C, a potent calmodulin inhibitor from Purpureocillium lilacinum

    USDA-ARS?s Scientific Manuscript database

    Bioassay-guided fractionation of an extract prepared from the culture medium and mycelium of Purpureocillium lilacinum allowed the isolation of two calmodulin (CaM) inhibitors, namely, acremoxanthone C (1) and acremonidin A (2). The absolute configuration of 1 was established as 2R, 3R, 1'S, 11'S, ...

  15. Discovery of natural mouse serum derived HIV-1 entry inhibitor(s).

    PubMed

    Wei, M; Chen, Y; Xi, J; Ru, S; Ji, M; Zhang, D; Fang, Q; Tang, B

    Among rationally designed human immunodeficiency virus 1 (HIV-1) inhibitors, diverse natural factors have showed as potent anti-HIV activity in human blood. We have discovered that the boiled supernatant of healthy mouse serum could suppress HIV-1 entry, and exhibited reduced inhibitory activity after trypsin digestion. Further analysis demonstrated that only the fraction containing 10-25 K proteins could inhibit HIV-1 mediated cell-cell fusion. These results suggest that the 10-25 K protein(s) is novel natural HIV-1 entry inhibitor(s). Our findings provide important information about novel natural HIV entry inhibitors in mouse serum.

  16. Anti-inflammatory properties of Gö 6850: a selective inhibitor of protein kinase C.

    PubMed

    Jacobson, P B; Kuchera, S L; Metz, A; Schächtele, C; Imre, K; Schrier, D J

    1995-11-01

    Protein kinase C (PKC) regulates a variety of signal transduction events implicated in the pathogenesis of inflammation, including the biosynthesis of inflammatory cytokines and superoxide and the activation of phospholipase A2. Because of the significant role of PKC in these inflammatory processes, we evaluated a specific and potent inhibitor of C kinase for efficacy in several in vitro and in vivo murine models of inflammation. Unlike the relatively nonspecific kinase inhibitor staurosporine, the bisindolylmaleimide 3-[1-[-3-(dimethylaminopropyl]-1H-indol-3-yl]- 4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione monohydrochloride (Gö 6850) demonstrated increased selectivity for C kinase in purified enzyme assays (respective IC50 values (microM) for Gö 6850 and staurosporine: protein kinase C (0.032, 0.009); myosin light-chain kinase (0.6, 0.01); protein kinase G (4.6, 0.018); protein kinase A (33, 0.04); tyrosine kinase1 (94, 0.4); tyrosine kinase2 (> 100, > 1)). Topically applied Gö 6850 inhibited phorbol myristate acetate-induced edema, neutrophil influx and vascular permeability in murine epidermis in a dose- and time-dependent manner at levels comparable to indomethacin. In a murine model of delayed type hypersensitivity, Gö 6850 inhibited dinitrofluorobenzene-induced contact dermatitis with and ID50 value of 150 micrograms/ear. Cellular studies in mouse peritoneal macrophages demonstrated that Gö 6850 was a potent inhibitor of phorbol myristate acetate-induced prostaglandin E2 production. Superoxide production in phorbol myristate acetate-stimulated murine neutrophils was also inhibited by Gö 6850 (IC50 = 88 nM).(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Influence of class I and II HLA alleles on inhibitor development in severe haemophilia A patients from the south of Brazil.

    PubMed

    De Barros, M F; Herrero, J C M; Sell, A M; De Melo, F C; Braga, M A; Pelissari, C B; Machado, J; De Souza Schiller, S; De Souza Hirle, L; Visentainer, J E L

    2012-05-01

    Congenital haemophilia A is a chromosome-linked recessive disorder caused by the deficiency or reduction of factor VIII (FVIII) pro-coagulant activity. During treatment, some patients develop alloantibodies (FVIII inhibitors) that neutralize the action of exogenously administered FVIII. Currently, the presence of these inhibitors is the most serious adverse event found in replacement therapy. Some studies have suggested that genetic factors influence the development of the FVIII coagulation inhibitors. To identify the class I and II alleles that may be influencing the formation of inhibitors in severe haemophilic patients. Genotyping of the class I (HLA-A, -B and -C) and class II (HLA-DRB1, -DQA1 and -DQB1) alleles of 122 patients with severe haemophilia A, including 36 who had developed antibodies to factor VIII, was performed. After the comparison of the group without inhibitors and the group with inhibitors, HLA-C*16 [Odds ratio (OR) = 7.73; P = 0.0092] and HLA-DRB1*14 (OR = 4.52; P = 0.0174) were found to be positively associated with the formation of the inhibitors. These results confirm that HLA alleles are involved in inhibitor production and could be used as a tool for recognition of groups at high risk of possible inhibitor development in Southern Brazilian haemophilic patients. © 2011 Blackwell Publishing Ltd.

  18. Quantitative MRI establishes the efficacy of PI3K inhibitor (GDC-0941) multi-treatments in PTEN-deficient mice lymphoma.

    PubMed

    Wullschleger, Stephan; García-Martínez, Juan M; Duce, Suzanne L

    2012-02-01

    To assess the efficacy of multiple treatment of phosphatidylinositol-3-kinase (PI3K) inhibitor on autochthonous tumours in phosphatase and tensin homologue (Pten)-deficient genetically engineered mouse cancer models using a longitudinal magnetic resonance imaging (MRI) protocol. Using 3D MRI, B-cell follicular lymphoma growth was quantified in a Pten(+/-)Lkb1(+/hypo) mouse line, before, during and after repeated treatments with a PI3K inhibitor GDC-0941 (75 mg/kg). Mean pre-treatment linear tumour growth rate was 16.5±12.8 mm(3)/week. Repeated 28-day GDC-0941 administration, with 21 days 'off-treatment', induced average tumour regression of 41±7%. Upon cessation of the second treatment (which was not permanently cytocidal), tumours re-grew with an average linear growth rate of 40.1±15.5 mm(3)/week. There was no evidence of chemoresistance. This protocol can accommodate complex dosing schedules, as well as combine different cancer therapies. It reduces biological variability problems and resulted in a 10-fold reduction in mouse numbers compared with terminal assessment methods. It is ideal for preclinical efficacy studies and for phenotyping molecularly characterized mouse models when investigating gene function.

  19. Cyclin-dependent kinase inhibitor Cdkn2c regulates B cell homeostasis and function in the NZM2410-derived murine lupus susceptibility locus Sle2c1

    PubMed Central

    Xu, Zhiwei; Potula, Hari-Hara SK; Vallurupalli, Anusha; Perry, Daniel; Baker, Henry; Croker, Byron P.; Dozmorov, Igor; Morel, Laurence

    2013-01-01

    Sle2c1 is an NZM2410 and NZB-derived lupus susceptibility locus that induces an expansion of the B1a cell compartment. B1a cells have a repertoire enriched for autoreactivity, and an expansion of this B cell subset occurs in several mouse models of lupus. A combination of genetic mapping and candidate gene analysis presents Cdkn2c, a gene encoding for cyclin-dependent kinase inhibitor p18INK4c (p18), as the top candidate gene for inducing the Slec2c1 associated expansion of B1a cells. A novel SNP in the NZB allele of the Cdkn2c promoter is associated with a significantly reduced Cdkn2c expression in the splenic B cells and Pc B1a cells from Sle2c1-carrying mice, which leads to a defective G1 cell cycle arrest in splenic B cells and increased proliferation of Pc B1a cells. As cell cycle is differentially regulated in B1a and B2 cells, these results suggest that Cdkn2c plays a critical role in B1a cell self-renewal, and that its impaired expression leads to an accumulation of these cells with high autoreactive potential. PMID:21543644

  20. Expanding the phenotype in aminoacylase 1 (ACY1) deficiency: characterization of the molecular defect in a 63-year-old woman with generalized dystonia.

    PubMed

    Sass, Jörn Oliver; Vaithilingam, Jathana; Gemperle-Britschgi, Corinne; Delnooz, Cathérine C S; Kluijtmans, Leo A J; van de Warrenburg, Bart P C; Wevers, Ron A

    2016-06-01

    Aminoacylase 1 (ACY1) deficiency is an organic aciduria due to mutations in the ACY1 gene. It is considered much underdiagnosed. Most individuals known to be affected by ACY1 deficiency have presented with neurologic symptoms. We report here a cognitively normal 63-year-old woman who around the age of 12 years had developed dystonic symptoms that gradually evolved into generalized dystonia. Extensive investigations, including metabolic diagnostics and diagnostic exome sequencing, were performed to elucidate the cause of dystonia. Findings were only compatible with a diagnosis of ACY1 deficiency: the urinary metabolite pattern with N-acetylated amino acids was characteristic, there was decreased ACY1 activity in immortalized lymphocytes, and two compound heterozygous ACY1 mutations were detected, one well-characterized c.1057C>T (p.Arg353Cys) and the other novel c.325A>G (p.Arg109Gly). Expression analysis in HEK293 cells revealed high residual activity of the enzyme with the latter mutation. However, following co-transfection of cells with stable expression of the c.1057C>T variant with either wild-type ACY1 or the c.325A>G mutant, only the wild-type enhanced ACY1 activity and ACY1 presence in the Western blot, suggesting an inhibiting interference between the two variants. Our report extends the clinical spectrum of ACY1 deficiency to include dystonia and indicates that screening for organic acidurias deserves consideration in patients with unexplained generalized dystonia.

  1. C1QTNF1 attenuates angiotensin II-induced cardiac hypertrophy via activation of the AMPKa pathway.

    PubMed

    Wu, Leiming; Gao, Lu; Zhang, Dianhong; Yao, Rui; Huang, Zhen; Du, Binbin; Wang, Zheng; Xiao, Lili; Li, Pengcheng; Li, Yapeng; Liang, Cui; Zhang, Yanzhou

    2018-06-01

    Complement C1q tumor necrosis factor related proteins (C1QTNFs) have been reported to have diverse biological influence on the cardiovascular system. C1QTNF1 is a member of the CTRP superfamily. C1QTNF1 is expressed in the myocardium; however, its function in myocytes has not yet been investigated. To systematically investigate the roles of C1QTNF1 in angiotensin II (Ang II)-induced cardiac hypertrophy. C1QTNF1 knock-out mice were used with the aim of determining the role of C1QTNF1 in cardiac hypertrophy in the adult heart. Data from experiments showed that C1QTNF1 was up-regulated during cardiac hypertrophic processes, which were triggered by increased reactive oxygen species. C1QTNF1 deficiency accelerated cardiac hypertrophy, fibrosis, inflammation responses, and oxidative stress with deteriorating cardiac dysfunction in the Ang II-induced cardiac hypertrophy mouse model. We identified C1QTNF1 as a negative regulator of cardiomyocyte hypertrophy in Ang II-stimulated neonatal rat cardiomyocytes using the recombinant human globular domain of C1QTNF1 and C1QTNF1 siRNA. Injection of the recombinant human globular domain of C1QTNF1 also suppressed the Ang II-induced cardiac hypertrophic response in vivo. The anti-hypertrophic effects of C1QTNF1 rely on AMPKa activation, which inhibits mTOR P70S6K phosphorylation. An AMPKa inhibitor abrogated the anti-hypertrophic effects of the recombinant human globular domain of C1QTNF1 both in vivo and vitro. Moreover, C1QTNF1-mediated AMPKa activation was triggered by the inhibition of PDE1-4, which subsequently activated the cAMP/PKA/LKB1 pathway. Our results demonstrated that C1QTNF1 improves cardiac function and inhibits cardiac hypertrophy and fibrosis by increasing and activating AMPKa, suggesting that C1QTNF1 could be a therapeutic target for cardiac hypertrophy and heart failure. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Norepinephrine-deficient mice lack responses to antidepressant drugs, including selective serotonin reuptake inhibitors

    PubMed Central

    Cryan, John F.; O'Leary, Olivia F.; Jin, Sung-Ha; Friedland, Julie C.; Ouyang, Ming; Hirsch, Bradford R.; Page, Michelle E.; Dalvi, Ashutosh; Thomas, Steven A.; Lucki, Irwin

    2004-01-01

    Mice unable to synthesize norepinephrine (NE) and epinephrine due to targeted disruption of the dopamine β-hydroxylase gene, Dbh, were used to critically test roles for NE in mediating acute behavioral changes elicited by different classes of antidepressants. To this end, we used the tail suspension test, one of the most widely used paradigms for assessing antidepressant activity and depression-related behaviors in normal and genetically modified mice. Dbh–/– mice failed to respond to the behavioral effects of various antidepressants, including the NE reuptake inhibitors desipramine and reboxetine, the monoamine oxidase inhibitor pargyline, and the atypical antidepressant bupropion, even though they did not differ in baseline immobility from Dbh+/– mice, which have normal levels of NE. Surprisingly, the effects of the selective serotonin reuptake inhibitors (SSRIs) fluoxetine, sertraline, and paroxetine were also absent or severely attenuated in the Dbh–/– mice. In contrast, citalopram (the most selective SSRI) was equally effective at reducing immobility in mice with and without NE. Restoration of NE by using l-threo-3,4-dihydroxyphenylserine reinstated the behavioral effects of both desipramine and paroxetine in Dbh–/– mice, thus demonstrating that the reduced sensitivity to antidepressants is related to NE function, as opposed to developmental abnormalities resulting from chronic NE deficiency. Microdialysis studies demonstrated that the ability of fluoxetine to increase hippocampal serotonin was blocked in Dbh–/– mice, whereas citalopram's effect was only partially attenuated. These data show that NE plays an important role in mediating acute behavioral and neurochemical actions of many antidepressants, including most SSRIs. PMID:15148402

  3. [Skin necrosis during long-term fluindione treatment revealing protein C deficiency].

    PubMed

    Merklen-Djafri, C; Mazurier, I; Samama, M-M; Alhenc-Gelas, M; Tortel, M-C; Cribier, B; Roth, B; Batard, M-L

    2012-03-01

    Cutaneous necrosis is a rare complication of vitamin K antagonist therapy. It presents as cutaneous hemorrhagic necrosis and usually occurs at the start of treatment. We describe an atypical case of recurrent skin necrosis after two years of treatment with fluindione. A 70-year old woman with a history of venous thromboembolism and obesity presented with a large haemorrhagic necrosis of the abdominal wall. She had been treated with fluindione for two years. Genetic protein C deficiency was discovered. Resumption of vitamin K antagonist therapy was followed by recurrence of skin necrosis despite concomitant administration of heparin. Treatment with vitamin K antagonists could not be continued. This observation is unusual due to the late onset of skin necrosis. The condition usually begins shortly after initiation of vitamin K antagonist therapy, generally between the third and the sixth day of treatment. It is due to a transient hypercoagulable state in patients with protein C deficiency or, in rare cases, protein S deficiency. This late-onset skin necrosis, occurring many years after initiation of anticoagulant therapy, may be explained by a sudden worsening of pre-existing protein C deficiency due to infectious and iatrogenic factors. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. Tissue Inhibitor of Matrix Metalloproteinase-1 Promotes Myocardial Fibrosis by Mediating CD63-Integrin β1 Interaction.

    PubMed

    Takawale, Abhijit; Zhang, Pu; Patel, Vaibhav B; Wang, Xiuhua; Oudit, Gavin; Kassiri, Zamaneh

    2017-06-01

    Myocardial fibrosis is excess accumulation of the extracellular matrix fibrillar collagens. Fibrosis is a key feature of various cardiomyopathies and compromises cardiac systolic and diastolic performance. TIMP1 (tissue inhibitor of metalloproteinase-1) is consistently upregulated in myocardial fibrosis and is used as a marker of fibrosis. However, it remains to be determined whether TIMP1 promotes tissue fibrosis by inhibiting extracellular matrix degradation by matrix metalloproteinases or via an matrix metalloproteinase-independent pathway. We examined the function of TIMP1 in myocardial fibrosis using Timp1 -deficient mice and 2 in vivo models of myocardial fibrosis (angiotensin II infusion and cardiac pressure overload), in vitro analysis of adult cardiac fibroblasts, and fibrotic myocardium from patients with dilated cardiomyopathy (DCM). Timp1 deficiency significantly reduced myocardial fibrosis in both in vivo models of cardiomyopathy. We identified a novel mechanism for TIMP1 action whereby, independent from its matrix metalloproteinase-inhibitory function, it mediates an association between CD63 (cell surface receptor for TIMP1) and integrin β1 on cardiac fibroblasts, initiates activation and nuclear translocation of Smad2/3 and β-catenin, leading to de novo collagen synthesis. This mechanism was consistently observed in vivo, in cultured cardiac fibroblasts, and in human fibrotic myocardium. In addition, after long-term pressure overload, Timp1 deficiency persistently reduced myocardial fibrosis and ameliorated diastolic dysfunction. This study defines a novel matrix metalloproteinase-independent function of TIMP1 in promoting myocardial fibrosis. As such targeting TIMP1 could prove to be a valuable approach in developing antifibrosis therapies. © 2017 American Heart Association, Inc.

  5. The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays.

    PubMed

    Pieters, Marlien; Barnard, Sunelle A; Loots, Du Toit; Rijken, Dingeman C

    2017-01-01

    Due to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable) on various plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays. Blood samples were collected from 151 individuals and centrifuged at 352 and 1500 g to obtain plasma with varying numbers of platelet. In a follow-up study, blood samples were collected from an additional 23 individuals, from whom platelet-poor (2000 g), platelet-containing (352 g) and platelet-rich plasma (200 g) were prepared and analysed as fresh-frozen and after five defrost-refreeze cycles (to determine the contribution of in vitro platelet degradation). Plasminogen activator inhibitor-1 activity, plasminogen activator inhibitor-1 antigen, tissue plasminogen activator/plasminogen activator inhibitor-1 complex, plasma clot lysis time, β-thromboglobulin and plasma platelet count were analysed. Platelet α-granule release (plasma β-thromboglobulin) showed a significant association with plasminogen activator inhibitor-1 antigen levels but weak associations with plasminogen activator inhibitor-1 activity and a functional marker of fibrinolysis, clot lysis time. Upon dividing the study population into quartiles based on β-thromboglobulin levels, plasminogen activator inhibitor-1 antigen increased significantly across the quartiles while plasminogen activator inhibitor-1 activity and clot lysis time tended to increase in the 4th quartile only. In the follow-up study, plasma plasminogen activator inhibitor-1 antigen was also significantly influenced by platelet count in a concentration-dependent manner. Plasma plasminogen activator inhibitor-1 antigen levels increased further after complete platelet degradation. Residual platelets in plasma significantly influence plasma plasminogen activator inhibitor-1 antigen levels mainly through release of

  6. Some aromatic hydrazone derivatives as inhibitors for the corrosion of C-steel in phosphoric acid solution.

    PubMed

    Fouda, Abd El-Aziz S; Al-Sarawy, Ahmed A; Radwan, Mohamed S

    2006-01-01

    The effect of furfural benzoylhydrazone and its derivatives (I-VII) as corrosion inhibitors for C-steel in 1M phosphoric acid solution has been studied by weight-loss and galvanostatic polarization techniques. A significant decrease in the corrosion rate of C-steel was observed in the presence of the investigated inhibitors. This study revealed that, the inhibition efficiency increases with increasing the inhibitor concentration, and the addition of iodide ions enhances it to a considerable extent. The effect of temperature on the inhibition efficiency of these compounds was studied using weight-loss method. Activation energy (E(a)*) and other thermodynamic parameters for the corrosion process were calculated and discussed. The galvanostatic polarization data indicated that, the inhibitors were of mixed-type, but the cathode is more polarized than the anode. The adsorption of these compounds on C-steel surface has been found to obey Frumkin's adsorption isotherm. The mechanism of inhibition was discussed in the light of the chemical structure of the undertaken inhibitors.

  7. Quantitative disease progression model of α‐1 proteinase inhibitor therapy on computed tomography lung density in patients with α‐1 antitrypsin deficiency

    PubMed Central

    Rogers, James A.; Vit, Oliver; Bexon, Martin; Sandhaus, Robert A.; Burdon, Jonathan; Chorostowska‐Wynimko, Joanna; Thompson, Philip; Stocks, James; McElvaney, Noel G.; Chapman, Kenneth R.; Edelman, Jonathan M.

    2017-01-01

    Aims Early‐onset emphysema attributed to α‐1 antitrypsin deficiency (AATD) is frequently overlooked and undertreated. RAPID‐RCT/RAPID‐OLE, the largest clinical trials of purified human α‐1 proteinase inhibitor (A1‐PI; 60 mg kg–1 week–1) therapy completed to date, demonstrated for the first time that A1‐PI is clinically effective in slowing lung tissue loss in AATD. A posthoc pharmacometric analysis was undertaken to further explore dose, exposure and response. Methods A disease progression model was constructed, utilizing observed A1‐PI exposure and lung density decline rates (measured by computed tomography) from RAPID‐RCT/RAPID‐OLE, to predict effects of population variability and higher doses on A1‐PI exposure and clinical response. Dose–exposure and exposure–response relationships were characterized using nonlinear and linear mixed effects models, respectively. The dose–exposure model predicts summary exposures and not individual concentration kinetics; covariates included baseline serum A1‐PI, forced expiratory volume in 1 s and body weight. The exposure–response model relates A1‐PI exposure to lung density decline rate at varying exposure levels. Results A dose of 60 mg kg–1 week–1 achieved trough serum levels >11 μmol l–1 (putative ‘protective threshold’) in ≥98% patients. Dose–exposure–response simulations revealed increasing separation between A1‐PI and placebo in the proportions of patients achieving higher reductions in lung density decline rate; improvements in decline rates ≥0.5 g l–1 year–1 occurred more often in patients receiving A1‐PI: 63 vs. 12%. Conclusion Weight‐based A1‐PI dosing reliably raises serum levels above the 11 μmol l–1 threshold. However, our exposure–response simulations question whether this is the maximal, clinically effective threshold for A1‐PI therapy in AATD. The model suggested higher doses of A1‐PI would yield greater clinical

  8. Loss of mutL homolog-1 (MLH1) expression promotes acquisition of oncogenic and inhibitor-resistant point mutations in tyrosine kinases.

    PubMed

    Springuel, Lorraine; Losdyck, Elisabeth; Saussoy, Pascale; Turcq, Béatrice; Mahon, François-Xavier; Knoops, Laurent; Renauld, Jean-Christophe

    2016-12-01

    Genomic instability drives cancer progression by promoting genetic abnormalities that allow for the multi-step clonal selection of cells with growth advantages. We previously reported that the IL-9-dependent TS1 cell line sequentially acquired activating substitutions in JAK1 and JAK3 upon successive selections for growth factor independent and JAK inhibitor-resistant cells, suggestive of a defect in mutation avoidance mechanisms. In the first part of this paper, we discovered that the gene encoding mutL homolog-1 (MLH1), a key component of the DNA mismatch repair system, is silenced by promoter methylation in TS1 cells. By means of stable ectopic expression and RNA interference methods, we showed that the high frequencies of growth factor-independent and inhibitor-resistant cells with activating JAK mutations can be attributed to the absence of MLH1 expression. In the second part of this paper, we confirm the clinical relevance of our findings by showing that chronic myeloid leukemia relapses upon ABL-targeted therapy correlated with a lower expression of MLH1 messenger RNA. Interestingly, the mutational profile observed in our TS1 model, characterized by a strong predominance of T:A>C:G transitions, was identical to the one described in the literature for primitive cells derived from chronic myeloid leukemia patients. Taken together, our observations demonstrate for the first time a causal relationship between MLH1-deficiency and incidence of oncogenic point mutations in tyrosine kinases driving cell transformation and acquired resistance to kinase-targeted cancer therapies.

  9. Insulin signalling in hepatocytes of humans with type 2 diabetes: excessive production and activity of protein kinase C-ι (PKC-ι) and dependent processes and reversal by PKC-ι inhibitors.

    PubMed

    Sajan, M P; Farese, R V

    2012-05-01

    We examined the role of protein kinase C-ι (PKC-ι) in mediating alterations in the abundance of enzymes in hepatocytes of type 2 diabetic humans that contribute importantly to the development of lipid and carbohydrate abnormalities in type 2 diabetes. We examined (1) insulin signalling in isolated hepatocytes of non-diabetic and type 2 diabetic humans and (2) the effects of two newly developed small molecule PKC-ι inhibitors on aberrant signalling and downstream processes. In contrast with PKC-ι deficiency in diabetic muscle, which diminishes glucose transport, PKC-ι in diabetic hepatocytes was overproduced and overactive, basally and after insulin treatment, and, moreover, was accompanied by increased abundance of PKC-ι-dependent lipogenic, proinflammatory and gluconeogenic enzymes. Heightened PKC-ι activity most likely reflected heightened activity of IRS-2-dependent phosphatidylinositol 3-kinase (PI3K), as IRS-1 levels and IRS-1/PI3K activity were markedly diminished. Importantly, insulin-stimulated PKC-ι abundance and its overabundance in diabetic hepatocytes was reversed in vitro by both insulin deprivation and PKC-ι inhibitors; this suggested operation of an insulin-driven, feed-forward/positive-feedback mechanism. In contrast with PKC-ι, protein kinase B (Akt2) activity and activation by insulin was diminished, apparently reflecting IRS-1 deficiency. Treatment of diabetic hepatocytes with PKC-ι/λ inhibitors diminished abundance of lipogenic, proinflammatory and gluconeogenic enzymes. Our findings suggest that a vicious cycle of PKC-ι overactivity and overproduction exists in hepatocytes of humans with type 2 diabetes and contributes importantly to maintaining overactivity of lipogenic, proinflammatory and gluconeogenic pathways, which underlies the lipid and carbohydrate abnormalities in type 2 diabetes.

  10. Discovery of novel high potent and cellular active ADC type PTP1B inhibitors with selectivity over TC-PTP via modification interacting with C site.

    PubMed

    Du, Yongli; Zhang, Yanhui; Ling, Hao; Li, Qunyi; Shen, Jingkang

    2018-01-20

    PTP1B serving as a key negative regulator of insulin signaling is a novel target for type 2 diabetes and obesity. Modification at ring B of N-{4-[(3-Phenyl-ureido)-methyl]-phenyl}-methane-sulfonamide template to interact with residues Arg47 and Lys41 in the C site of PTP1B by molecular docking aided design resulted in the discovery of a series of novel high potent and selective inhibitors of PTP1B. The structure activity relationship interacting with the C site of PTP1B was well illustrated. Compounds 8 and 18 were shown to be the high potent and most promising PTP1B inhibitors with cellular activity and great selectivity over the highly homologous TCPTP and other PTPs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Design, facile synthesis, and evaluation of novel spiro- and pyrazolo[1,5-c]quinazolines as cholinesterase inhibitors: Molecular docking and MM/GBSA studies.

    PubMed

    Gálvez, Jaime; Polo, Stivens; Insuasty, Braulio; Gutiérrez, Margarita; Cáceres, Daniela; Alzate-Morales, Jans H; De-la-Torre, Pedro; Quiroga, Jairo

    2018-03-07

    Given the wide spectrum of biological uses of pyrazolo[1,5-c]quinazoline and spiro-quinazoline derivatives as anticancer, anti-inflammatory analgesic agents, and their therapeutic applications in neurodegenerative disorders, it is compulsory to find easy, efficient, and simple methods to obtain and chemically diversify these families of compounds, thereby improving their biological applications. In this paper, we report the design and eco-friendly two-step synthesis of novel, fused spiro-pyrazolo[1,5-c]quinazoline derivatives as cholinesterase inhibitors. In addition, we studied their protein-ligand interactions via molecular docking and MM/GBSA calculations for a further rational design of more potent inhibitors. In first step, 2-(1H-pyrazol-5-yl)anilines were obtained through microwave (MW) assisted solvent-free/catalyst-free conditions and the second step involved the synthesis of the spiro-pyrazolo[1,5-c]quinazolines by a cyclocondensation reaction between 2-(1H-pyrazol-5-yl)anilines and cyclic ketones, or acetophenones, using stirring at room temperature. The compounds were obtained in high purity, good yields (50-97%), and at varying reaction times. The spiro-compounds were evaluated as acetylcholinesterase and butyrylcholinesterase inhibitors (AChEIs/BuChEIs) respectively, and the most potent compound exhibited a moderate AChE inhibitory activity (5f: IC 50  = 84 μM). Molecular docking studies indicated that the binding mode of the compound 5f share common characteristics with the galantamine/donepezil-AChE complexes. Moreover, free binding energy (ΔG) calculations showed a good agreement with the experimental biological activity values. Our theoretical results indicated that halogen bond interactions could be involved with differential potency of these compounds and provide a new starting point to design novel pyrazolo[1,5-c]quinazolines as new anti-Alzheimer agents. Copyright © 2018. Published by Elsevier Ltd.

  12. Association Between the Presence of Iron Deficiency Anemia and Hemoglobin A1c in Korean Adults

    PubMed Central

    Hong, Jae W.; Ku, Cheol R.; Noh, Jung H.; Ko, Kyung S.; Rhee, Byoung D.; Kim, Dong-Jun

    2015-01-01

    Abstract Few studies have investigated the clinical effect of iron deficiency anemia (IDA) on the use of the Hemoglobin A1c (HbA1c) as a screening parameter for diabetes or prediabetes. We investigated the association between IDA and HbA1c levels in Korean adults. Among the 11,472 adults (≥19 years of age) who participated in the 2011–2012 Korea National Health and Nutrition Examination Survey (a cross-sectional and nationally representative survey conducted by the Korean Center for Disease Control for Health Statistics), 807 patients with diabetes currently taking anti-diabetes medications were excluded from this study. We compared the weighted HbA1c levels and weighted proportion (%) of HbA1c levels of ≥5.7%, ≥6.1%, and ≥6.5% according to the range of fasting plasma glucose (FPG) levels and the presence of IDA. Among 10,665 participants (weighted n = 35,229,108), the prevalence of anemia and IDA was 7.3% and 4.3%, respectively. The HbA1c levels were higher in participants with IDA (5.70% ± 0.02%) than in normal participants (5.59% ± 0.01%; P < 0.001), whereas there was no significant difference in FPG levels. In participants with an FPG level of <100 mg/dL and 100 to 125 mg/dL, the weighted HbA1c level was higher in those with IDA (5.59% ± 0.02% and 6.00% ± 0.05%) than in normal participants (5.44% ± 0.01% and 5.82% ± 0.01%) after adjusting for confounders such as age, sex, FPG level, heavy alcohol drinking, waist circumference, and smoking status as well as after exclusion of an estimated glomerular filtration rate of <60 mL/min/1.73 m2 (P < 0.001, <0.01). The weighted proportions (%) of an HbA1c level of ≥5.7% and ≥6.1% were also higher in participants with IDA than in normal participants (P < 0.001, <0.05). However, the weighted HbA1c levels in individuals with an FPG level ≥126 mg/dL and a weighted proportion (%) of an HbA1c level of ≥6.5% showed no significant differences according to

  13. Phosphoglucomutase-1 deficiency: Intrafamilial clinical variability and common secondary adrenal insufficiency.

    PubMed

    Loewenthal, Neta; Haim, Alon; Parvari, Ruti; Hershkovitz, Eli

    2015-12-01

    Phosphoglucomutase 1 (PGM1, EC 5.4.2.2) plays a critical role in glucose homeostasis and is also essential for protein N-glycosylation. The main clinical manifestations of PGM1 deficiency (MIM 614921) reported in 19 patients from different ethnic backgrounds include the following: cleft uvula/palate, Pierre Robin sequence, muscle weakness, dilated cardiomyopathy, growth retardation, elevated serum transaminases, hypoglycemia, and various endocrine abnormalities. We report the variable clinical picture of seven patients with PGM1 deficiency from a consanguineous family. Medical records of the patients were reviewed for clinical details and endocrine evaluation. Whole exome sequencing (WES) was performed. Seven patients aged 2-29 years were included, one patient died at 13 years old when getting off the school bus. All patients have an abnormal palatine structure (cleft palate, bifid uvula) and elevated serum transaminases, 4/7 have short stature (<-2 SDS) and one was diagnosed with growth hormone deficiency. Recurrent episodes of ketotic hypoglycemia were present in 6/7 patients. In two patients, hypoglycemic episodes have spontaneously resolved later on. Four out of seven patients have deteriorating adrenal function with abnormally low cortisol and ACTH levels during hypoglycemia and subnormal response of cortisol to low dose ACTH test . Serum electrolytes were within normal range. Hydrocortisone replacement therapy improved, but not entirely eliminated hypoglycemic episodes. WES revealed a previously described homozygous mutation c.112A>T, p.Asn38Tyr in the PGM1 gene. The clinical picture of PGM1 deficiency is variable among patients with the same mutation and genetic background. ACTH deficiency should be considered in any PGM1 deficient patient with hypoglycemia. © 2015 Wiley Periodicals, Inc.

  14. PDH E1β deficiency with novel mutations in two patients with Leigh syndrome.

    PubMed

    Quintana, E; Mayr, J A; García Silva, M T; Font, A; Tortoledo, M A; Moliner, S; Ozaez, L; Lluch, M; Cabello, A; Ricoy, J R; Koch, J; Ribes, A; Sperl, W; Briones, P

    2009-12-01

    Most cases of pyruvate dehydrogenase complex (PDHc) deficiency are attributable to mutations in the PDHA1 gene which encodes the E(1)α subunit, with few cases of mutations in the genes for E(3), E3BP (E(3) binding protein), E(2) and E(1)-phosphatase being reported. Only seven patients with deficiency of the E(1)β subunit have been described, with mutations in the PDHB gene in six of them. Clinically they presented with a non-specific encephalomyopathy. We report two patients with new mutations in PDHB and Leigh syndrome. Patient 1 was a boy with neonatal onset of hyperlactataemia, corpus callosum hypoplasia and a convulsive encephalopathy. After neurological deterioration, he died at age 5 months. Autopsy revealed the characteristic features of Leigh syndrome. Patient 2, also a boy, presented a milder clinical course. First symptoms were noticed at age 16 months with muscular hypotonia, lactic acidosis and recurrent episodes of somnolence and transient tetraparesis. MRI revealed bilateral signal hyperintensities in the globus pallidus, midbrain and crura cerebri. PDHc and E(1) activities were deficient in fibroblasts in patient 1; in patient 2 PDHc deficiency was found in skeletal muscle. Mutations in PDHA1 were excluded. Sequencing of PDHB revealed a homozygous point mutation (c.302T>C), causing a predicted amino acid change (p.M101T) in patient 1. Patient 2 is compound heterozygote for mutations c.301A>G (p.M101V) and c.313G>A (p.R105Q). All three mutations appear to destabilize the E(1) enzyme with a decrease of both E(1)α and E(1)β subunits in immunoblot analysis. To our knowledge, these patients with novel PDHB mutations are the first reported with Leigh syndrome.

  15. Vitamin C deficiency aggravates tumor necrosis factor α-induced insulin resistance.

    PubMed

    Qing, Zhou; Xiao-Hui, Wu; Xi-Mei, Wu; Chao-Chun, Zou

    2018-06-15

    Chronic low-grade inflammation plays a major role in the development of insulin resistance. The potential role and underlying mechanism of vitamin C, an antioxidant and anti-inflammatory agent, was investigated in tumor necrosis factor-α (TNF-α)-induced insulin resistance. Gulonolactone oxidase knockout (Gulo -/- ) mice genetically unable to synthesize vitamin C were used to induce insulin resistance by continuously pumping small doses of TNF-α for seven days, and human liver hepatocellular carcinoma cells (HepG2 cells) were used to induce insulin resistance by treatment with TNF-α. Vitamin C deficiency aggravated TNF-α-induced insulin resistance in Gulo -/- mice, resulting in worse glucose tolerance test (GTT) results, higher fasting plasma insulin level, and the inactivation of the protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β) pathway in the liver. Vitamin C deficiency also worsened liver lipid accumulation and inflammation in TNF-α-treated Gulo -/- mice. In HepG2 cells, vitamin C reversed the TNF-α-induced reduction of glucose uptake and glycogen synthesis, which were mediated by increasing GLUT2 levels and the activation of the insulin receptor substrate (IRS-1)/AKT/GSK3β pathway. Furthermore, vitamin C inhibited the TNF-α-induced activation of not only the mitogen-activated protein kinase (MAPKs), but also nuclear factor-kappa B (NF-κB) signaling. Taken together, vitamin C is essential for preventing and improving insulin resistance, and the supplementing with vitamin C may be an effective therapeutic intervention for metabolic disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Long-Term Selenium-Deficient Diet Induces Liver Damage by Altering Hepatocyte Ultrastructure and MMP1/3 and TIMP1/3 Expression in Growing Rats.

    PubMed

    Han, Jing; Liang, Hua; Yi, Jianhua; Tan, Wuhong; He, Shulan; Wang, Sen; Li, Feng; Wu, Xiaofang; Ma, Jing; Shi, Xiaowei; Guo, Xiong; Bai, Chuanyi

    2017-02-01

    The effects of selenium (Se)-deficient diet on the liver were evaluated by using growing rats which were fed with normal and Se-deficient diets, respectively, for 109 days. The results showed that rats fed with Se-deficient diet led to a decrease in Se concentration in the liver, particularly among male rats from the low-Se group. This causes alterations to the ultrastructure of hepatocytes with condensed chromatin and swelling mitochondria observed after low Se intake. Meanwhile, pathological changes and increased fibrosis in hepatic periportal were detected by hematoxylin and eosin and Masson's trichrome staining in low-Se group. Furthermore, through immunohistochemistry (IHC) staining, higher expressions of metalloproteinases (MMP1/3) and their tissue inhibitors of metalloproteinases (TIMP1/3) were observed in the hepatic periportal of rats from the low-Se group. However, higher expressions of MMP1/3 and lower expressions of TIMP1/3 were detected in hepatic central vein and hepatic sinusoid. In addition, upregulated expressions of MMP1/3 and downregulated expressions of TIMP1/3 at the messenger RNA (mRNA) and protein levels also appeared to be relevant to low Se intake. In conclusion, Se-deficient diet could cause low Se concentration in the liver, alterations of hepatocyte ultrastructure, differential expressions of MMP1/3 and TIMP1/3 as well as fibrosis in the liver hepatic periportal.

  17. Combinations of PARP Inhibitors with Temozolomide Drive PARP1 Trapping and Apoptosis in Ewing’s Sarcoma

    PubMed Central

    Pshenichnaya, Irina; Kogera, Fiona A.; Barthorpe, Syd; Mironenko, Tatiana; Richardson, Laura; Benes, Cyril H.; Stratton, Michael R.; McDermott, Ultan; Jackson, Stephen P.; Garnett, Mathew J.

    2015-01-01

    Ewing’s sarcoma is a malignant pediatric bone tumor with a poor prognosis for patients with metastatic or recurrent disease. Ewing’s sarcoma cells are acutely hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibition and this is being evaluated in clinical trials, although the mechanism of hypersensitivity has not been directly addressed. PARP inhibitors have efficacy in tumors with BRCA1/2 mutations, which confer deficiency in DNA double-strand break (DSB) repair by homologous recombination (HR). This drives dependence on PARP1/2 due to their function in DNA single-strand break (SSB) repair. PARP inhibitors are also cytotoxic through inhibiting PARP1/2 auto-PARylation, blocking PARP1/2 release from substrate DNA. Here, we show that PARP inhibitor sensitivity in Ewing’s sarcoma cells is not through an apparent defect in DNA repair by HR, but through hypersensitivity to trapped PARP1-DNA complexes. This drives accumulation of DNA damage during replication, ultimately leading to apoptosis. We also show that the activity of PARP inhibitors is potentiated by temozolomide in Ewing’s sarcoma cells and is associated with enhanced trapping of PARP1-DNA complexes. Furthermore, through mining of large-scale drug sensitivity datasets, we identify a subset of glioma, neuroblastoma and melanoma cell lines as hypersensitive to the combination of temozolomide and PARP inhibition, potentially identifying new avenues for therapeutic intervention. These data provide insights into the anti-cancer activity of PARP inhibitors with implications for the design of treatment for Ewing’s sarcoma patients with PARP inhibitors. PMID:26505995

  18. Rescue of impaired sociability and anxiety-like behavior in adult cacna1c-deficient mice by pharmacologically targeting eIF2α

    PubMed Central

    Kabir, ZD; Che, A; Fischer, DK; Rice, RC; Rizzo, BK; Byrne, M; Glass, MJ; De Marco Garcia, NV; Rajadhyaksha, AM

    2018-01-01

    CACNA1C, encoding the Cav1.2 subunit of L-type Ca2+ channels, has emerged as one of the most prominent and highly replicable susceptibility genes for several neuropsychiatric disorders. Cav1.2 channels play a crucial role in calcium-mediated processes involved in brain development and neuronal function. Within the CACNA1C gene, disease-associated single-nucleotide polymorphisms have been associated with impaired social and cognitive processing and altered prefrontal cortical (PFC) structure and activity. These findings suggest that aberrant Cav1.2 signaling may contribute to neuropsychiatric-related disease symptoms via impaired PFC function. Here, we show that mice harboring loss of cacna1c in excitatory glutamatergic neurons of the forebrain (fbKO) that we have previously reported to exhibit anxiety-like behavior, displayed a social behavioral deficit and impaired learning and memory. Furthermore, focal knockdown of cacna1c in the adult PFC recapitulated the social deficit and elevated anxiety-like behavior, but not the deficits in learning and memory. Electrophysiological and molecular studies in the PFC of cacna1c fbKO mice revealed higher E/I ratio in layer 5 pyramidal neurons and lower general protein synthesis. This was concurrent with reduced activity of mTORC1 and its downstream mRNA translation initiation factors eIF4B and 4EBP1, as well as elevated phosphorylation of eIF2α, an inhibitor of mRNA translation. Remarkably, systemic treatment with ISRIB, a small molecule inhibitor that suppresses the effects of phosphorylated eIF2α on mRNA translation, was sufficient to reverse the social deficit and elevated anxiety-like behavior in adult cacna1c fbKO mice. ISRIB additionally normalized the lower protein synthesis and higher E/I ratio in the PFC. Thus this study identifies a novel Cav1.2 mechanism in neuropsychiatric-related endophenotypes and a potential future therapeutic target to explore. PMID:28584287

  19. The downregulation of Wnt/β-catenin signaling pathway is associated with zinc deficiency-induced proliferative deficit of C17.2 neural stem cells.

    PubMed

    Zhao, Jianya; Han, Jingling; Jiang, Junkang; Shi, Shangshi; Ma, Xia; Liu, Xinhang; Wang, Cheng; Nie, Xiaoke; He, Yunhua; Jiang, Shengyang; Wan, Chunhua

    2015-07-30

    Zinc is an essential nutrient that is important for normal brain development. Zinc deficiency has been linked to aberrant neurological development and functioning. However, the molecular mechanisms underlying Zinc deficiency-induced neurological disorders remain largely elusive. In the present study, we showed that the proliferation of C17.2 neural stem cells (NSCs) was evidently impaired after exposed to low levels of Zinc chelator, N,N,N',N'-tetrakis-(2-pyridylmethy) ethylenediamine (TPEN). In addition, we found that TPEN-induced proliferative deficit of NSCs was related with significant downregulation of Wnt/β-catenin signaling. Zinc deficiency impaired the proliferation of neural stem cells in dose- and time-dependent manners. Western blot revealed that the levels of p-Ser9-glycogensynthase kinase-3β (p-GSK-3β) and β-catenin were remarkably downregulated during TPEN-induced C17.2 proliferative impairment. Moreover, immunofluorescent analysis indicated that the level of nuclear β-catenin was apparently decreased following TPEN exposure. Furthermore, application with GSK-3β inhibitor lithium chloride (LiCl) reversed TPEN-induced downregulation of β-catenin and impairment of cell proliferation. Flow cytometry analysis also showed that TPEN-induced impairment of NSC proliferation could be reversed by LiCl. Taken together, these findings suggested that the disturbance of canonical Wnt/β-catenin signaling pathway partially accounted for Zinc deficiency-induced proliferative impairment of NSCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Anti-cancer effect of novel PAK1 inhibitor via induction of PUMA-mediated cell death and p21-mediated cell cycle arrest.

    PubMed

    Woo, Tae-Gyun; Yoon, Min-Ho; Hong, Shin-Deok; Choi, Jiyun; Ha, Nam-Chul; Sun, Hokeun; Park, Bum-Joon

    2017-04-04

    Hyper-activation of PAK1 (p21-activated kinase 1) is frequently observed in human cancer and speculated as a target of novel anti-tumor drug. In previous, we also showed that PAK1 is highly activated in the Smad4-deficient condition and suppresses PUMA (p53 upregulated modulator of apoptosis) through direct binding and phosphorylation. On the basis of this result, we have tried to find novel PAK1-PUMA binding inhibitors. Through ELISA-based blind chemical library screening, we isolated single compound, IPP-14 (IPP; Inhibitor of PAK1-PUMA), which selectively blocks the PAK1-PUMA binding and also suppresses cell proliferation via PUMA-dependent manner. Indeed, in PUMA-deficient cells, this chemical did not show anti-proliferating effect. This chemical possessed very strong PAK1 inhibition activity that it suppressed BAD (Bcl-2-asoociated death promoter) phosphorylation and meta-phase arrest via Aurora kinase inactivation in lower concentration than that of previous PAK1 kinase, FRAX486 and AG879. Moreover, our chemical obviously induced p21/WAF1/CIP1 (Cyclin-dependent kinase inhibitor 1A) expression by releasing from Bcl-2 (B-cell lymphoma-2) and by inhibition of AKT-mediated p21 suppression. Considering our result, IPP-14 and its derivatives would be possible candidates for PAK1 and p21 induction targeted anti-cancer drug.

  1. Anti-cancer effect of novel PAK1 inhibitor via induction of PUMA-mediated cell death and p21-mediated cell cycle arrest

    PubMed Central

    Woo, Tae-Gyun; Yoon, Min-Ho; Hong, Shin-Deok; Choi, Jiyun; Ha, Nam-Chul; Sun, Hokeun; Park, Bum-Joon

    2017-01-01

    Hyper-activation of PAK1 (p21-activated kinase 1) is frequently observed in human cancer and speculated as a target of novel anti-tumor drug. In previous, we also showed that PAK1 is highly activated in the Smad4-deficient condition and suppresses PUMA (p53 upregulated modulator of apoptosis) through direct binding and phosphorylation. On the basis of this result, we have tried to find novel PAK1-PUMA binding inhibitors. Through ELISA-based blind chemical library screening, we isolated single compound, IPP-14 (IPP; Inhibitor of PAK1-PUMA), which selectively blocks the PAK1-PUMA binding and also suppresses cell proliferation via PUMA-dependent manner. Indeed, in PUMA-deficient cells, this chemical did not show anti-proliferating effect. This chemical possessed very strong PAK1 inhibition activity that it suppressed BAD (Bcl-2-asoociated death promoter) phosphorylation and meta-phase arrest via Aurora kinase inactivation in lower concentration than that of previous PAK1 kinase, FRAX486 and AG879. Moreover, our chemical obviously induced p21/WAF1/CIP1 (Cyclin-dependent kinase inhibitor 1A) expression by releasing from Bcl-2 (B-cell lymphoma-2) and by inhibition of AKT-mediated p21 suppression. Considering our result, IPP-14 and its derivatives would be possible candidates for PAK1 and p21 induction targeted anti-cancer drug. PMID:28423593

  2. [Neonatal purpura fulminans without sepsis due to a severe congenital protein C deficiency].

    PubMed

    Hmami, F; Cherrabi, H; Oulmaati, A; Bouabdallah, Y; Bouharrou, A

    2015-10-01

    Severe congenital protein C deficiency is a rare life-threatening coagulopathy. In the early hours of life, the neonate presents with extensive purpura fulminans and substantial skin necrosis contrasting with a preserved general state and a negative infectious exam. Disseminated intravascular coagulation sets in secondarily. Prenatal outset of thrombotic events is a rare situation that worsens the prognosis, especially protein C replacement in utero is not available. We report a case of a male newborn of consanguineous parents who were asymptomatic carriers of heterozygous protein C deficiency. This infant presented prenatal ventricular hemorrhage with hydrocephalus and rapidly extensive postnatal skin necrosis that was not regressive in spite of fresh frozen plasma administrated after 24h of life. Prenatal diagnosis, early recognition, and urgent therapy with protein C replacement and anticoagulant treatment are crucial to improve the prognosis, avoid further damage after delivery, and prevent the devastating consequences of severe protein C deficiency. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives as multiple inhibitors of bacterial Mur ligases (MurC-MurF).

    PubMed

    Perdih, Andrej; Hrast, Martina; Barreteau, Hélène; Gobec, Stanislav; Wolber, Gerhard; Solmajer, Tom

    2014-08-01

    Enzymes catalyzing the biosynthesis of bacterial peptidoglycan represent traditionally a collection of highly selective targets for novel antibacterial drug design. Four members of the bacterial Mur ligase family-MurC, MurD, MurE and MurF-are involved in the intracellular steps of peptidoglycan biosynthesis, catalyzing the synthesis of the peptide moiety of the Park's nucleotide. In our previous virtual screening campaign, a chemical class of benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives exhibiting dual MurD/MurE inhibition properties was discovered. In the present study we further investigated this class of compounds by performing inhibition assays on all four Mur ligases (MurC-MurF). Furthermore, molecular dynamics (MD) simulation studies of one of the initially discovered compound 1 were performed to explore its geometry as well as its energetic behavior based on the Linear Interaction Energy (LIE) method. Further in silico virtual screening (VS) experiments based on the parent active compound 1 were conducted to optimize the discovered series. Selected hits were assayed against all Escherichia coli MurC-MurF enzymes in biochemical inhibition assays and molecules 10-14 containing benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole coupled with five member-ring rhodanine moiety were found to be multiple inhibitors of the whole MurC-MurF cascade of bacterial enzymes in the micromolar range. Steady-state kinetics studies suggested this class to act as competitive inhibitors of the MurD enzyme towards d-Glu. These compounds represent novel valuable starting point in the development of novel antibacterial agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The oleocanthal-based homovanillyl sinapate as a novel c-Met inhibitor

    PubMed Central

    Mohyeldin, Mohamed M.; Akl, Mohamed R.; Ebrahim, Hassan Y.; Dragoi, Ana Maria; Dykes, Samantha; Cardelli, James A.; El Sayed, Khalid A.

    2016-01-01

    The hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (c-Met) signaling axis has gained considerable attention as an attractive molecular target for therapeutic blockade of cancer. Inspired by the chemical structure of S (−)-oleocanthal, a natural secoiridoid from extra-virgin olive oil with documented anticancer activity against c-Met-dependent malignancies, the research presented herein reports on the discovery of the novel olive-derived homovanillyl sinapate (HVS) as a promising c-Met inhibitor. HVS was distinguished for its remarkable potency against wild-type c-Met and its oncogenic variant in cell-free assays and confirmed by in silico docking studies. Furthermore, HVS substantially impaired the c-Met-mediated growth across a broad spectrum of breast cancer cells, while similar treatment doses had no effect on the non-tumorigenic mammary epithelial cell growth. In addition, HVS caused a dose-dependent inhibition of HGF-induced, but not epidermal growth factor (EGF)-induced, cell scattering in addition to HGF-mediated migration, invasion, and 3-dimensional (3D) proliferation of tumor cell spheroids. HVS treatment effects were mediated via inhibition of ligand-mediated c-Met activation and its downstream mitogenic signaling and blocking molecular mediators involved in cellular motility across different cellular contexts. An interesting feature of HVS is its good selectivity for c-Met and Abelson murine leukemia viral oncogene homolog 1 (ABL1) when profiled against a panel of kinases. Docking studies revealed interactions likely to impart high dual affinity for both ABL1 and c-Met kinases. HVS markedly reduced tumor growth, showed excellent pharmacodynamics, and suppressed cell proliferation and microvessel density in an orthotopic model of triple negative breast cancer. Collectively, the present findings suggested that the oleocanthal-based HVS is a promising c-Met inhibitor lead entity with excellent therapeutic potential to control

  5. Heterozygous Monocarboxylate Transporter 1 (MCT1, SLC16A1) Deficiency as a Cause of Recurrent Ketoacidosis.

    PubMed

    Balasubramaniam, Shanti; Lewis, Barry; Greed, Lawrence; Meili, David; Flier, Annegret; Yamamoto, Raina; Bilić, Karmen; Till, Claudia; Sass, Jörn Oliver

    2016-01-01

    We describe two half-siblings with monocarboxylate transporter 1 (MCT1, SLC16A1) deficiency, a defect on ketone body utilization, that has only recently been identified (van Hasselt et al., N Engl J Med, 371:1900-1907, 2014) as a cause for recurrent ketoacidoses. Our index patient is a boy with non-consanguineous parents who had presented acutely with impaired consciousness and severe metabolic ketoacidosis following a 3-day history of gastroenteritis at age 5 years. A 12.5-year-old half-brother who shared the proband's mother also had a previous history of recurrent ketoacidoses. Results of mutation and enzyme activity analyses in proband samples advocated against methylacetoacetyl-coenzyme A thiolase ("beta-ketothiolase") and succinyl-coenzyme A: 3-oxoacyl coenzyme A transferase (SCOT) deficiencies. A single heterozygous c.982C>T transition in the SLC16A1 gene resulting in a stop mutation (p.Arg328Ter) was detected in both boys. It was shared by their healthy mother and by the proband's half-sister, but was absent in the proband's father. MCT1 deficiency may be more prevalent than is apparent, as clinical manifestations can occur both in individuals with bi- and monoallelic mutations. It may be an important differential diagnosis in recurrent ketoacidosis with or without hypoglycemia, particularly in the absence of any specific metabolic profiles in blood and urine. Early diagnosis may enable improved disease management. Careful identification of potential triggers of metabolic decompensations in individuals even with single heterozygous mutations in the SLC16A1 gene is indicated.

  6. C1q Deficiency Promotes Pulmonary Vascular Inflammation and Enhances the Susceptibility of the Lung Endothelium to Injury.

    PubMed

    Shah, Dilip; Romero, Freddy; Zhu, Ying; Duong, Michelle; Sun, Jianxin; Walsh, Kenneth; Summer, Ross

    2015-12-04

    The collectin proteins are innate immune molecules found in high concentrations on the epithelial and endothelial surfaces of the lung. While these proteins are known to have important anti-inflammatory actions in the airways of the lung little is known of their functional importance in the pulmonary circulation. We recently demonstrated that the circulating collectin protein adiponectin has potent anti-inflammatory effects on the lung endothelium, leading us to reason that other structurally related proteins might have similar effects. To test this hypothesis, we investigated the anti-inflammatory actions of C1q in lung endothelial homeostasis and the pulmonary vascular response to LPS or HCl injury. We show that lung endothelium from C1q-deficient (C1q(-/-)) mice expresses higher baseline levels of the vascular adhesion markers ICAM-1, VCAM-1, and E-selectin when compared with wild-type mice. Further, we demonstrate that these changes are associated with enhanced susceptibility of the lung to injury as evident by increased expression of adhesion markers, enhanced production of pro-inflammatory cytokines, and augmented neutrophil recruitment. Additionally, we found that C1q(-/-) mice also exhibited enhanced endothelial barrier dysfunction after injury as manifested by decreased expression of junctional adherens proteins and enhanced vascular leakage. Mechanistically, C1q appears to mediate its effects by inhibiting phosphorylation of p38 mitogen-activated protein kinase (MAPK) and blocking nuclear translocation of the P65 subunit of nuclear factor (NF)-κB. In summary, our findings indicate a previously unrecognized role for C1q in pulmonary vascular homeostasis and provide added support for the hypothesis that circulating collectin proteins have protective effects on the lung endothelium. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. C1q Deficiency Promotes Pulmonary Vascular Inflammation and Enhances the Susceptibility of the Lung Endothelium to Injury*

    PubMed Central

    Shah, Dilip; Romero, Freddy; Zhu, Ying; Duong, Michelle; Sun, Jianxin; Walsh, Kenneth; Summer, Ross

    2015-01-01

    The collectin proteins are innate immune molecules found in high concentrations on the epithelial and endothelial surfaces of the lung. While these proteins are known to have important anti-inflammatory actions in the airways of the lung little is known of their functional importance in the pulmonary circulation. We recently demonstrated that the circulating collectin protein adiponectin has potent anti-inflammatory effects on the lung endothelium, leading us to reason that other structurally related proteins might have similar effects. To test this hypothesis, we investigated the anti-inflammatory actions of C1q in lung endothelial homeostasis and the pulmonary vascular response to LPS or HCl injury. We show that lung endothelium from C1q-deficient (C1q−/−) mice expresses higher baseline levels of the vascular adhesion markers ICAM-1, VCAM-1, and E-selectin when compared with wild-type mice. Further, we demonstrate that these changes are associated with enhanced susceptibility of the lung to injury as evident by increased expression of adhesion markers, enhanced production of pro-inflammatory cytokines, and augmented neutrophil recruitment. Additionally, we found that C1q−/− mice also exhibited enhanced endothelial barrier dysfunction after injury as manifested by decreased expression of junctional adherens proteins and enhanced vascular leakage. Mechanistically, C1q appears to mediate its effects by inhibiting phosphorylation of p38 mitogen-activated protein kinase (MAPK) and blocking nuclear translocation of the P65 subunit of nuclear factor (NF)-κB. In summary, our findings indicate a previously unrecognized role for C1q in pulmonary vascular homeostasis and provide added support for the hypothesis that circulating collectin proteins have protective effects on the lung endothelium. PMID:26487714

  8. Pathogenicity of missense mutations in SURF1 deficiency inducing the Leigh syndrome. Importance in diagnosis.

    PubMed

    Dubot, A; Hervouet, E; Mandon, G; Zabot, M T; Godinot, C

    2004-06-01

    Leigh syndrome with cytochrome oxidase (COX) deficiency has been associated with SURF1 mutations. For patient diagnosis, distinction between neutral polymorphisms and pathogenic missense SURF1 mutations in Leigh syndrome is essential. We show that several missense SURF1 mutations did not allow a stable protein to be expressed. Absence of immunologically reactive SURF1 is, therefore, helpful to demonstrate their pathogenicity. In addition, we show that out of two previously described missense mutations housed by the same allele, only one, the T737 C was pathogenic. Indeed, transfection of T737 C mutated SURF1 in SURF1-deficient cells did not restore normal SURF1 stability and COX activity. On the contrary, the G604 C-mutated SURF1 did it and, hence, is a neutral variant.

  9. Novel Mutations Causing C5 Deficiency in Three North-African Families.

    PubMed

    Colobran, Roger; Franco-Jarava, Clara; Martín-Nalda, Andrea; Baena, Neus; Gabau, Elisabeth; Padilla, Natàlia; de la Cruz, Xavier; Pujol-Borrell, Ricardo; Comas, David; Soler-Palacín, Pere; Hernández-González, Manuel

    2016-05-01

    The complement system plays a central role in defense to encapsulated bacteria through opsonization and membrane attack complex (MAC) dependent lysis. The three activation pathways (classical, lectin, and alternative) converge in the cleavage of C5, which initiates MAC formation and target lysis. C5 deficiency is associated to recurrent infections by Neisseria spp. In the present study, complement deficiency was suspected in three families of North-African origin after one episode of invasive meningitis due to a non-groupable and two uncommon Meningococcal serotypes (E29, Y). Activity of alternative and classical pathways of complement were markedly reduced and the measurement of terminal complement components revealed total C5 absence. C5 gene analysis revealed two novel mutations as causative of the deficiency: Family A propositus carried a homozygous deletion of two adenines in the exon 21 of C5 gene, resulting in a frameshift and a truncated protein (c.2607_2608del/p.Ser870ProfsX3 mutation). Families B and C probands carried the same homozygous deletion of three consecutive nucleotides (CAA) in exon 9 of the C5 gene, leading to the deletion of asparagine 320 (c.960_962del/p.Asn320del mutation). Family studies confirmed an autosomal recessive inheritance pattern. Although sharing the same geographical origin, families B and C were unrelated. This prompted us to investigate this mutation prevalence in a cohort of 768 North-African healthy individuals. We identified one heterozygous carrier of the p.Asn320del mutation (allelic frequency = 0.065 %), indicating that this mutation is present at low frequency in North-African population.

  10. Pharmacodynamic effects of C-domain-specific ACE inhibitors on the renin-angiotensin system in myocardial infarcted rats.

    PubMed

    Sharp, Sarah; Poglitsch, Marko; Zilla, Peter; Davies, Neil H; Sturrock, Edward D

    2015-12-01

    The renin-angiotensin system (RAS) is a dynamic network that plays a critical role in blood pressure regulation and fluid and electrolyte homeostasis. Modulators of the RAS, such as angiotensin-converting enzyme (ACE) inhibitors, are widely used to treat hypertension, heart failure and myocardial infarction. The effect of ACE inhibitors (lisinopril and C-domain-selective LisW-S) on the constituent peptides of the RAS following myocardial infarction was examined in rats. Ten angiotensin peptides were analysed using a sensitive LC-MS/MS-based assay to examine both the circulating and equilibrium levels of these peptides. Administration of lisinopril or LisW-S caused a significant decrease in Ang 1-8/Ang 1-10 ratios as determined by circulating and equilibrium peptide level analysis. Furthermore, Ang 1-7 levels were elevated by both ACE inhibitors, but only lisinopril decreased the Ang 1-5/Ang 1-7 ratio. This indicates LisW-S C-domain specificity as Ang 1-5 is generated by hydrolysis of Ang 1-7 by the N-domain. Further corroboration of LisW-S C-domain specificity is that only lisinopril increased the circulating levels of the N-domain ACE substrate Ac-SDKP. LisW-S is able to effectively block ACE in vivo by C-domain-selective inhibition. The LC-MS/MS-based assay allows the evaluation of the pharmacologic impact of RAS inhibitors in different pathophysiological conditions. © The Author(s) 2015.

  11. High dietary fat and cholesterol exacerbates chronic vitamin C deficiency in guinea pigs.

    PubMed

    Frikke-Schmidt, Henriette; Tveden-Nyborg, Pernille; Birck, Malene Muusfeldt; Lykkesfeldt, Jens

    2011-01-01

    Vitamin C deficiency - or hypovitaminosis C defined as a plasma concentration below 23 μm - is estimated to affect hundreds of millions of people in the Western world, in particular subpopulations of low socio-economic status that tend to eat diets of poor nutritional value. Recent studies by us have shown that vitamin C deficiency may result in impaired brain development. Thus, the aim of the present study was to investigate if a poor diet high in fat and cholesterol affects the vitamin C status of guinea pigs kept on either sufficient or deficient levels of dietary ascorbate (Asc) for up to 6 months with particular emphasis on the brain. The present results show that a high-fat and cholesterol diet significantly decreased the vitamin C concentrations in the brain, irrespective of the vitamin C status of the animal (P < 0·001). The brain Asc oxidation ratio only depended on vitamin C status (P < 0·0001) and not on the dietary lipid content. In plasma, the levels of Asc significantly decreased when vitamin C in the diet was low or when the fat/cholesterol content was high (P < 0·0001 for both). The Asc oxidation ratio increased both with low vitamin C and with high fat and cholesterol content (P < 0·0001 for both). We show here for the first time that vitamin C homoeostasis of brain is affected by a diet rich in fat and cholesterol. The present findings suggest that this type of diet increases the turnover of Asc; hence, individuals consuming high-lipid diets may be at increased risk of vitamin C deficiency.

  12. Regular Article Macroautophagy is Defective in Mucolipin 1-Deficient Mouse Neurons

    PubMed Central

    Curcio-Morelli, Cyntia; Charles, Florie A.; Micsenyi, Matthew C.; Cao, Yi; Venugopal, Bhuvarahamurthy; Browning, Marsha F.; Dobrenis, Kostantin; Cotman, Susan L.; Walkley, Steven U.; Slaugenhaupt, Susan A.

    2013-01-01

    Mucolipidosis Type IV is a neurodegenerative lysosomal disease clinically characterized by psychomotor retardation, visual impairment, and achlorhydria. In this study we report the development of a neuronal cell model generated from cerebrum of Mcoln1-/- embryos. Prior functional characterization of MLIV cells has been limited to fibroblast cultures gleaned from patients. The current availability of the mucolipin-1 knockout mouse model Mcoln1-/- allows the study of mucolipin1-defective neurons, which is important since the disease is characterized by severe neurological impairment. Electron microscopy studies reveal significant membranous intracytoplasmic storage bodies, which correlate with the storage morphology observed in cerebral cortex of Mcoln1-/- P7 pups and E17 embryos. The Mcoln1-/- neuronal cultures show an increase in size of LysoTracker and Lamp1 positive-vesicles. Using this neuronal model system, we show that macroautophagy is defective in mucolipin-1 deficient neurons and that LC3-II levels are significantly elevated. Treatment with rapamycin plus protease inhibitors did not increase levels of LC3-II in Mcoln1-/- neuronal cultures, indicating that the lack of mucolipin-1 affects LC3-II clearance. P62/SQSTM1 and ubiquitin levels were also increased in Mcoln1-/- neuronal cultures, suggesting an accumulation of protein aggregates and a defect in macroautophagy which could help explain the neurodegeneration observed in MLIV. This study describes, for the first time, a defect in macroautophagy in mucolipin-1 deficient neurons, which corroborates recent findings in MLIV fibroblasts and provides new insight into the neuronal pathogenesis of this disease. PMID:20600908

  13. Synthesis and SAR of piperazine amides as novel c-jun N-terminal kinase (JNK) inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Youseung; Chen, Weiming; Habel, Jeff

    2009-09-14

    A novel series of c-jun N-terminal kinase (JNK) inhibitors were designed and developed from a high-throughput-screening hit. Through the optimization of the piperazine amide 1, several potent compounds were discovered. The X-ray crystal structure of 4g showed a unique binding mode different from other well known JNK3 inhibitors.

  14. A combined deficiency of vitamins E and C causes severe central nervous system damage in guinea pigs.

    PubMed

    Burk, Raymond F; Christensen, Joani M; Maguire, Mark J; Austin, Lori M; Whetsell, William O; May, James M; Hill, Kristina E; Ebner, Ford F

    2006-06-01

    A short period of combined deficiency of vitamins E and C causes profound central nervous system (CNS) dysfunction in guinea pigs. For this report, CNS histopathology was studied to define the nature and extent of injury caused by this double deficiency. Weanling guinea pigs were fed a vitamin E-deficient or -replete diet for 14 d. Then vitamin C was withdrawn from the diet of some guinea pigs. Four diet groups were thus formed: replete, vitamin E deficient, vitamin C deficient, and both vitamin E and C deficient. From 5 to 11 d after institution of the doubly deficient diet, 9 of 12 guinea pigs developed paralysis, and 2 more were found dead. The remaining guinea pig in the doubly deficient group and all animals in the other 3 groups survived without clinical impairment until the experiment was terminated at 13-15 d. Brains and spinal cords were serially sectioned and stained for examination. Only the combined deficiency produced damage in the CNS. The damage consisted mainly of nerve cell death, axonal degeneration, vascular injury, and associated glial cell responses. The spinal cord and the ventral pons in the brainstem were most severely affected, often exhibiting asymmetric cystic lesions. Several features of the lesions suggest that the primary damage was to blood vessels. These results indicate that the paralysis and death caused by combined deficiency of vitamins E and C in guinea pigs is caused by severe damage in the brainstem and spinal cord.

  15. Absolute configuration of acremoxanthone C, a potent calmodulin inhibitor from Purpureocillium lilacinum.

    PubMed

    Madariaga-Mazón, Abraham; González-Andrade, Martín; González, María Del Carmen; Glenn, Anthony E; Cerda-García-Rojas, Carlos M; Mata, Rachel

    2013-08-23

    Bioassay-guided fractionation of an extract prepared from the culture medium and mycelium of Purpureocillium lilacinum allowed the isolation of two calmodulin (CaM) inhibitors, namely, acremoxanthone C (1) and acremonidin A (2). The absolute configuration of 1 was established as 2R, 3R, 1'S, 11'S, and 14'R through extensive NMR spectroscopy and molecular modeling calculations at the DFT B3LYP/DGDZVP level, which included the comparison between theoretical and experimental specific rotation, ³J(C,H), and ³J(H,H) values. Compounds 1 and 2 bind to the human calmodulin (hCaM) biosensor hCaM M124C-mBBr, with dissociation constants (Kd) of 18.25 and 19.40 nM, respectively, 70-fold higher than that of chlorpromazine (Kd = 1.24 μM), used as positive control. Docking analysis using AutoDock 4.2 predicted that 1 and 2 bind to CaM at a similar site to that which KAR-2 binds, which is unusual. Furthermore, a novel, sensible, and specific fluorescent biosensor of hCaM, i.e., hCaM T110C-mBBr, was constructed; this device is labeled at a site where classical inhibitors do not interact and was successfully applied to measure the interaction of 1 with CaM. This is the first report of xanthone-anthraquinone heterodimers in species of Paecilomyces or Purpureocillium genera.

  16. Accumulation of Free Oligosaccharides and Tissue Damage in Cytosolic α-Mannosidase (Man2c1)-deficient Mice

    PubMed Central

    Paciotti, Silvia; Persichetti, Emanuele; Klein, Katharina; Tasegian, Anna; Duvet, Sandrine; Hartmann, Dieter; Gieselmann, Volkmar; Beccari, Tommaso

    2014-01-01

    Free Man7–9GlcNAc2 is released during the biosynthesis pathway of N-linked glycans or from misfolded glycoproteins during the endoplasmic reticulum-associated degradation process and are reduced to Man5GlcNAc in the cytosol. In this form, free oligosaccharides can be transferred into the lysosomes to be degraded completely. α-Mannosidase (MAN2C1) is the enzyme responsible for the partial demannosylation occurring in the cytosol. It has been demonstrated that the inhibition of MAN2C1 expression induces accumulation of Man8–9GlcNAc oligosaccharides and apoptosis in vitro. We investigated the consequences caused by the lack of cytosolic α-mannosidase activity in vivo by the generation of Man2c1-deficient mice. Increased amounts of Man8–9GlcNAc oligosaccharides were recognized in all analyzed KO tissues. Histological analysis of the CNS revealed neuronal and glial degeneration with formation of multiple vacuoles in deep neocortical layers and major telencephalic white matter tracts. Enterocytes of the small intestine accumulate mannose-containing saccharides and glycogen particles in their apical cytoplasm as well as large clear vacuoles in retronuclear position. Liver tissue is characterized by groups of hepatocytes with increased content of mannosyl compounds and glycogen, some of them undergoing degeneration by hydropic swelling. In addition, lectin screening showed the presence of mannose-containing saccharides in the epithelium of proximal kidney tubules, whereas scattered glomeruli appeared collapsed or featured signs of fibrosis along Bowman's capsule. Except for a moderate enrichment of mannosyl compounds and glycogen, heterozygous mice were normal, arguing against possible toxic effects of truncated Man2c1. These findings confirm the key role played by Man2c1 in the catabolism of free oligosaccharides. PMID:24550399

  17. Hepatitis C virus inhibitor synergism suggests multistep interactions between heat-shock protein 90 and hepatitis C virus replication

    PubMed Central

    Kubota, Naoko; Nomoto, Masataka; Hwang, Gi-Wook; Watanabe, Toshihiko; Kohara, Michinori; Wakita, Takaji; Naganuma, Akira; Kuge, Shusuke

    2016-01-01

    AIM: To address the effect of heat-shock protein 90 (HSP90) inhibitors on the release of the hepatitis C virus (HCV), a cell culture-derived HCV (JFH1/HCVcc) from Huh-7 cells was examined. METHODS: We quantified both the intracellular and extracellular (culture medium) levels of the components (RNA and core) of JFH-1/HCVcc. The intracellular HCV RNA and core levels were determined after the JFH1/HCVcc-infected Huh-7 cells were treated with radicicol for 36 h. The extracellular HCV RNA and core protein levels were determined from the medium of the last 24 h of radicicol treatment. To determine the possible role of the HSP90 inhibitor in HCV release, we examined the effect of a combined application of low doses of the HSP90 inhibitor radicicol and the RNA replication inhibitors cyclosporin A (CsA) or interferon. Finally, we statistically examined the combined effect of radicicol and CsA using the combination index (CI) and graphical representation proposed by Chou and Talalay. RESULTS: We found that the HSP90 inhibitors had greater inhibitory effects on the HCV RNA and core protein levels measured in the medium than inside the cells. This inhibitory effect was observed in the presence of a low level of a known RNA replication inhibitor (CsA or interferon-α). Treating the cells with a combination of radicicol and cyclosporin A for 24 h resulted in significant synergy (CI < 1) that affected the release of both the viral RNA and the core protein. CONCLUSION: In addition to having an inhibitory effect on RNA replication, HSP90 inhibitors may interfere with an HCV replication step that occurs after the synthesis of viral RNA, such as assembly and release. PMID:26925202

  18. Cortical metabolism in pyruvate dehydrogenase deficiency revealed by ex vivo multiplet 13C-NMR of the adult mouse brain

    PubMed Central

    Marin-Valencia, Isaac; Good, Levi B.; Ma, Qian; Malloy, Craig R.; Patel, Mulchand S.; Pascual, Juan M.

    2013-01-01

    The pyruvate dehydrogenase complex (PDC), required for complete glucose oxidation, is essential for brain development. Although PDC deficiency is associated with a severe clinical syndrome, little is known about its effects on either substrate oxidation or synthesis of key metabolites such as glutamate and glutamine. Computational simulations of brain metabolism indicated that a 25% reduction in flux through PDC and a corresponding increase in flux from an alternative source of acetyl-CoA would substantially alter the 13C NMR spectrum obtained from brain tissue. Therefore, we evaluated metabolism of [1,6-13C2]glucose (oxidized by both neurons and glia) and [1,2-13C2]acetate (an energy source that bypasses PDC) in the cerebral cortex of adult mice mildly and selectively deficient in brain PDC activity, a viable model that recapitulates the human disorder. Intravenous infusions were performed in conscious mice and extracts of brain tissue were studied by 13C NMR. We hypothesized that mice deficient in PDC must increase the proportion of energy derived from acetate metabolism in the brain. Unexpectedly, the distribution of 13C in glutamate and glutamine, a measure of the relative flux of acetate and glucose into the citric acid cycle, was not altered. The 13C labeling pattern in glutamate differed significantly from glutamine, indicating preferential oxidation of [1,2-13C]acetate relative to [1,6-13C]glucose by a readily discernible metabolic domain of the brain of both normal and mutant mice, presumably glia. These findings illustrate that metabolic compartmentation is preserved in the PDC-deficient cerebral cortex, probably reflecting intact neuron-glia metabolic interactions, and that a reduction in brain PDC activity sufficient to induce cerebral dysgenesis during development does not appreciably disrupt energy metabolism in the mature brain. PMID:22884585

  19. Quantitative MRI Establishes the Efficacy of PI3K Inhibitor (GDC-0941) Multi-Treatments in PTEN-deficient Mice Lymphoma

    PubMed Central

    WULLSCHLEGER, STEPHAN; GARCÍA-MARTÍNEZ, JUAN M.; DUCE, SUZANNE L.

    2012-01-01

    Aim To assess the efficacy of multiple treatment of phosphatidylinositol-3-kinase (PI3K) inhibitor on autochthonous tumours in phosphatase and tensin homologue (Pten)-deficient genetically engineered mouse cancer models using a longitudinal magnetic resonance imaging (MRI) protocol. Materials and Methods Using 3D MRI, B-cell follicular lymphoma growth was quantified in a Pten+/−Lkb1+/hypo mouse line, before, during and after repeated treatments with a PI3K inhibitor GDC-0941 (75 mg/kg). Results Mean pre-treatment linear tumour growth rate was 16.5±12.8 mm3/week. Repeated 28-day GDC-0941 administration, with 21 days “off-treatment”, induced average tumour regression of 41±7%. Upon cessation of the second treatment (which was not permanently cytocidal), tumours re-grew with an average linear growth rate of 40.1±15.5 mm3/week. There was no evidence of chemoresistance. Conclusion This protocol can accommodate complex dosing schedules, as well as combine different cancer therapies. It reduces biological variability problems and resulted in a 10-fold reduction in mouse numbers compared with terminal assessment methods. It is ideal for preclinical efficacy studies and for phenotyping molecularly characterized mouse models when investigating gene function. PMID:22287727

  20. Combined deficiency of vitamins E and C causes paralysis and death in guinea pigs.

    PubMed

    Hill, Kristina E; Montine, Thomas J; Motley, Amy K; Li, Xia; May, James M; Burk, Raymond F

    2003-06-01

    On the basis of in vitro studies, the antioxidant nutrients vitamins E and C are postulated to interact in vivo. We developed a guinea pig model to evaluate the combined deficiency of vitamins E and C in vivo. Weanling guinea pigs were fed a control diet or a vitamin E-deficient diet for 14 d, after which one-half of each group had vitamin C removed from their diet, thus creating 4 diet groups. Some animals were observed for clinical signs. Others were killed for evaluation. Of 21 guinea pigs that were observed after being fed the diet deficient in both vitamins, 8 died 9 +/- 2 d (x +/- SD) after starting the diet. Eight additional guinea pigs developed a characteristic syndrome at 11 +/- 3 d. First, they became paralyzed in the hind limbs. Within a few hours, the paralysis progressed to include all 4 limbs and caused difficulty in breathing, which would have caused death had the animals not been euthanized. Histopathologic evaluation did not identify a lesion in the muscles or nervous system that could account for the paralysis. Biochemical measurements confirmed the deficiencies and indicated that the double deficiency caused lipid peroxidation in the central nervous system. A distinct clinical syndrome of combined vitamin E and vitamin C deficiency occurs in guinea pigs. This syndrome indicates that these antioxidant vitamins are related in vivo. We speculate that acute oxidative injury in the central nervous system underlies the clinical syndrome.

  1. The M-T Hook Structure Is Critical for Design of HIV-1 Fusion Inhibitors*

    PubMed Central

    Chong, Huihui; Yao, Xue; Sun, Jianping; Qiu, Zonglin; Zhang, Meng; Waltersperger, Sandro; Wang, Meitian; Cui, Sheng; He, Yuxian

    2012-01-01

    CP621-652 is a potent HIV-1 fusion inhibitor peptide derived from the C-terminal heptad repeat of gp41. We recently identified that its N-terminal residues Met-626 and Thr-627 adopt a unique hook-like structure (termed M-T hook) thus stabilizing the interaction of the inhibitor with the deep pocket on the N-terminal heptad repeat. In this study, we further demonstrated that the M-T hook structure is a key determinant of CP621-652 in terms of its thermostability and anti-HIV activity. To directly define the structure and function of the M-T hook, we generated the peptide MT-C34 by incorporating Met-626 and Thr-627 into the N terminus of the C-terminal heptad repeat-derived peptide C34. The high resolution crystal structure (1.9 Å) of MT-C34 complexed by an N-terminal heptad repeat-derived peptide reveals that the M-T hook conformation is well preserved at the N-terminal extreme of the inhibitor. Strikingly, addition of two hook residues could dramatically enhance the binding affinity and thermostability of 6-helix bundle core. Compared with C34, MT-C34 exhibited significantly increased activity to inhibit HIV-1 envelope-mediated cell fusion (6.6-fold), virus entry (4.5-fold), and replication (6-fold). Mechanistically, MT-C34 had a 10.5-fold higher increase than C34 in blocking 6-helix bundle formation. We further showed that MT-C34 possessed higher potency against T20 (Enfuvirtide, Fuzeon)-resistant HIV-1 variants. Therefore, this study provides convincing data for our proposed concept that the M-T hook structure is critical for designing HIV-1 fusion inhibitors. PMID:22879603

  2. Exome sequencing identifies NFS1 deficiency in a novel Fe-S cluster disease, infantile mitochondrial complex II/III deficiency.

    PubMed

    Farhan, Sali M K; Wang, Jian; Robinson, John F; Lahiry, Piya; Siu, Victoria M; Prasad, Chitra; Kronick, Jonathan B; Ramsay, David A; Rupar, C Anthony; Hegele, Robert A

    2014-01-01

    Iron-sulfur (Fe-S) clusters are a class of highly conserved and ubiquitous prosthetic groups with unique chemical properties that allow the proteins that contain them, Fe-S proteins, to assist in various key biochemical pathways. Mutations in Fe-S proteins often disrupt Fe-S cluster assembly leading to a spectrum of severe disorders such as Friedreich's ataxia or iron-sulfur cluster assembly enzyme (ISCU) myopathy. Herein, we describe infantile mitochondrial complex II/III deficiency, a novel autosomal recessive mitochondrial disease characterized by lactic acidemia, hypotonia, respiratory chain complex II and III deficiency, multisystem organ failure and abnormal mitochondria. Through autozygosity mapping, exome sequencing, in silico analyses, population studies and functional tests, we identified c.215G>A, p.Arg72Gln in NFS1 as the likely causative mutation. We describe the first disease in man likely caused by deficiency in NFS1, a cysteine desulfurase that is implicated in respiratory chain function and iron maintenance by initiating Fe-S cluster biosynthesis. Our results further demonstrate the importance of sufficient NFS1 expression in human physiology.

  3. Anti-hepatitis C virus activity and toxicity of type III phosphatidylinositol-4-kinase beta inhibitors.

    PubMed

    Lamarche, M J; Borawski, J; Bose, A; Capacci-Daniel, C; Colvin, R; Dennehy, M; Ding, J; Dobler, M; Drumm, J; Gaither, L A; Gao, J; Jiang, X; Lin, K; McKeever, U; Puyang, X; Raman, P; Thohan, S; Tommasi, R; Wagner, K; Xiong, X; Zabawa, T; Zhu, S; Wiedmann, B

    2012-10-01

    Type III phosphatidylinositol-4-kinase beta (PI4KIIIβ) was previously implicated in hepatitis C virus (HCV) replication by small interfering RNA (siRNA) depletion and was therefore proposed as a novel cellular target for the treatment of hepatitis C. Medicinal chemistry efforts identified highly selective PI4KIIIβ inhibitors that potently inhibited the replication of genotype 1a and 1b HCV replicons and genotype 2a virus in vitro. Replicon cells required more than 5 weeks to reach low levels of 3- to 5-fold resistance, suggesting a high resistance barrier to these cellular targets. Extensive in vitro profiling of the compounds revealed a role of PI4KIIIβ in lymphocyte proliferation. Previously proposed functions of PI4KIIIβ in insulin secretion and the regulation of several ion channels were not perturbed with these inhibitors. Moreover, PI4KIIIβ inhibitors were not generally cytotoxic as demonstrated across hundreds of cell lines and primary cells. However, an unexpected antiproliferative effect in lymphocytes precluded their further development for the treatment of hepatitis C.

  4. Anti-Hepatitis C Virus Activity and Toxicity of Type III Phosphatidylinositol-4-Kinase Beta Inhibitors

    PubMed Central

    LaMarche, M. J.; Borawski, J.; Bose, A.; Capacci-Daniel, C.; Colvin, R.; Dennehy, M.; Ding, J.; Dobler, M.; Drumm, J.; Gaither, L. A.; Gao, J.; Jiang, X.; Lin, K.; McKeever, U.; Puyang, X.; Raman, P.; Thohan, S.; Tommasi, R.; Wagner, K.; Xiong, X.; Zabawa, T.; Zhu, S.

    2012-01-01

    Type III phosphatidylinositol-4-kinase beta (PI4KIIIβ) was previously implicated in hepatitis C virus (HCV) replication by small interfering RNA (siRNA) depletion and was therefore proposed as a novel cellular target for the treatment of hepatitis C. Medicinal chemistry efforts identified highly selective PI4KIIIβ inhibitors that potently inhibited the replication of genotype 1a and 1b HCV replicons and genotype 2a virus in vitro. Replicon cells required more than 5 weeks to reach low levels of 3- to 5-fold resistance, suggesting a high resistance barrier to these cellular targets. Extensive in vitro profiling of the compounds revealed a role of PI4KIIIβ in lymphocyte proliferation. Previously proposed functions of PI4KIIIβ in insulin secretion and the regulation of several ion channels were not perturbed with these inhibitors. Moreover, PI4KIIIβ inhibitors were not generally cytotoxic as demonstrated across hundreds of cell lines and primary cells. However, an unexpected antiproliferative effect in lymphocytes precluded their further development for the treatment of hepatitis C. PMID:22825118

  5. Synthesis, biological evaluation and docking analysis of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones as potential cyclooxygenase-2 (COX-2) inhibitors.

    PubMed

    Grover, Jagdeep; Kumar, Vivek; Sobhia, M Elizabeth; Jachak, Sanjay M

    2014-10-01

    As a part of our continued efforts to discover new COX inhibitors, a series of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones were synthesized and evaluated for in vitro COX inhibitory potential. Within this series, seven compounds (3a-d, 3h, 3k and 3q) were identified as potential and selective COX-2 inhibitors (COX-2 IC50's in 1.79-4.35μM range; COX-2 selectivity index (SI)=6.8-16.7 range). Compound 3b emerged as most potent (COX-2 IC50=1.79μM; COX-1 IC50 >30μM) and selective COX-2 inhibitor (SI >16.7). Further, compound 3b displayed superior anti-inflammatory activity (59.86% inhibition of edema at 5h) in comparison to celecoxib (51.44% inhibition of edema at 5h) in carrageenan-induced rat paw edema assay. Structure-activity relationship studies suggested that N-phenyl ring substituted with p-CF3 substituent (3b, 3k and 3q) leads to more selective inhibition of COX-2. To corroborate obtained experimental biological data, molecular docking study was carried out which revealed that compound 3b showed stronger binding interaction with COX-2 as compared to COX-1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Activities of the human immunodeficiency virus type 1 (HIV-1) protease inhibitor nelfinavir mesylate in combination with reverse transcriptase and protease inhibitors against acute HIV-1 infection in vitro.

    PubMed

    Patick, A K; Boritzki, T J; Bloom, L A

    1997-10-01

    Nelfinavir mesylate (formerly AG1343) is a potent and selective, nonpeptidic inhibitor of human immunodeficiency virus type 1 (HIV-1) protease that was discovered by protein structure-based design methodologies. We evaluated the antiviral and cytotoxic effects of two-drug combinations of nelfinavir with the clinically approved antiretroviral therapeutics zidovudine (ZDV), lamivudine (3TC), dideoxycytidine (ddC; zalcitabine), stavudine (d4T), didanosine (ddI), indinavir, saquinavir, and ritonavir and a three-drug combination of nelfinavir with ZDV and 3TC against an acute HIV-1 strain RF infection of CEM-SS cells in vitro. Quantitative assessment of drug interaction was evaluated by a universal response surface approach (W. R. Greco, G. Bravo, and J. C. Parsons, Pharm. Rev. 47:331-385, 1995) and by the method of M. N. Prichard and C. Shipman (Antiviral Res. 14:181-206, 1990). Both analytical methods yielded similar results and showed that the two-drug combinations of nelfinavir with the reverse transcriptase inhibitors ZDV, 3TC, ddI, d4T, and ddC and the three-drug combination with ZDV and 3TC resulted in additive to statistically significant synergistic interactions. In a similar manner, the combination of nelfinavir with the three protease inhibitors resulted in additive (ritonavir and saquinavir) to slightly antagonistic (indinavir) interactions. In all combinations, minimal cellular cytotoxicity was observed with any drug alone and in combination. These results suggest that administration of combinations of the appropriate doses of nelfinavir with other currently approved antiretroviral therapeutic agents in vivo may result in enhanced antiviral activity with no associated increase in cellular cytotoxicity.

  7. Iron and Vitamin C Co-Supplementation Increased Serum Vitamin C Without Adverse Effect on Zinc Level in Iron Deficient Female Youth

    PubMed Central

    Khoshfetrat, Mohammad Reza; Mortazavi, Sima; Neyestani, Tirang; Mahmoodi, Mohammad Reza; Zerafati-Shoae, Nahid; Mohammadi-Nasrabadi, Fatemeh

    2014-01-01

    Background: Iron supplementation can decrease the absorption of zinc and influence other antioxidants levels such as vitamin C. This study aimed to investigate the effect of iron supplements alone and in combination with vitamin C on zinc and vitamin C status in iron deficient female students. Methods: In a double-blind randomized clinical trail, 60 iron deficient students were selected from 289 volunteers residing in dormitory. After matching, subjects were randomly assigned into two groups: Group I (50 mg elemental iron supplements) and Group II (50 mg elemental iron + 500 mg ascorbic acid). Serum ferritin, iron, serum zinc, and plasma vitamin C concentrations were measured by using enzyme-linked immunosorbent assay, spectrophotometer, atomic absorption spectrometer, and colorimeter, respectively after 6 and 12 weeks supplementation. Student's t-test and repeated measures analysis of variance were applied to analyze the data using SPSS software. Results: Serum zinc levels had no significant differences between 2 groups at the baseline; however, its concentration decreased from 80.9 ± 4.2-68.9 ± 2.7 μg/dl to 81.2 ± 4.5-66.1 ± 2.9 μg/dl (P < 0.001) in Groups I and II, respectively after 6 weeks of supplementation. Continuous supplementation increased serum zinc concentration to baseline levels (79.0 ± 2.9 μg/dl; P < 0.01) in Group I and 70.5 ± 3.1 μg/dl in Group II following 12 weeks of supplementation. Plasma vitamin C increased from 3 ± 0/1-3.3 ± 0.2 mg/dl to 2.7 ± 0. 1-4.2 ± 0.2 mg/dl (P < 0.01) in Groups I and II, respectively. At the end of study, plasma vitamin C significantly increased from 3.3 ± 0.3-4.7 ± 0.3 (P < 0.01) to 4.2 ± 0.2-7.1 ± 0.2 (P < 0.001) in Groups I and II, respectively. Conclusions: Iron supplementation with and without vitamin C led to reduction in serum Zn in iron-deficient female students after 6 weeks. However, the decreasing trend stops after repletion of iron stores and Zn levels returned to the approximately

  8. A serine palmitoyltransferase inhibitor blocks hepatitis C virus replication in human hepatocytes.

    PubMed

    Katsume, Asao; Tokunaga, Yuko; Hirata, Yuichi; Munakata, Tsubasa; Saito, Makoto; Hayashi, Hitohisa; Okamoto, Koichi; Ohmori, Yusuke; Kusanagi, Isamu; Fujiwara, Shinya; Tsukuda, Takuo; Aoki, Yuko; Klumpp, Klaus; Tsukiyama-Kohara, Kyoko; El-Gohary, Ahmed; Sudoh, Masayuki; Kohara, Michinori

    2013-10-01

    Host cell lipid rafts form a scaffold required for replication of hepatitis C virus (HCV). Serine palmitoyltransferases (SPTs) produce sphingolipids, which are essential components of the lipid rafts that associate with HCV nonstructural proteins. Prevention of the de novo synthesis of sphingolipids by an SPT inhibitor disrupts the HCV replication complex and thereby inhibits HCV replication. We investigated the ability of the SPT inhibitor NA808 to prevent HCV replication in cells and mice. We tested the ability of NA808 to inhibit SPT's enzymatic activity in FLR3-1 replicon cells. We used a replicon system to select for HCV variants that became resistant to NA808 at concentrations 4- to 6-fold the 50% inhibitory concentration, after 14 rounds of cell passage. We assessed the ability of NA808 or telaprevir to inhibit replication of HCV genotypes 1a, 1b, 2a, 3a, and 4a in mice with humanized livers (transplanted with human hepatocytes). NA808 was injected intravenously, with or without pegylated interferon alfa-2a and HCV polymerase and/or protease inhibitors. NA808 prevented HCV replication via noncompetitive inhibition of SPT; no resistance mutations developed. NA808 prevented replication of all HCV genotypes tested in mice with humanized livers. Intravenous NA808 significantly reduced viral load in the mice and had synergistic effects with pegylated interferon alfa-2a and HCV polymerase and protease inhibitors. The SPT inhibitor NA808 prevents replication of HCV genotypes 1a, 1b, 2a, 3a, and 4a in cultured hepatocytes and in mice with humanized livers. It might be developed for treatment of HCV infection or used in combination with pegylated interferon alfa-2a or HCV polymerase or protease inhibitors. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Have Clinical Trials Properly Assessed c-Met Inhibitors?

    PubMed

    Hughes, Veronica S; Siemann, Dietmar W

    2018-02-01

    The c-Met/HGF pathway is implicated in cancer progression and dissemination. Many inhibitors have been developed to target this pathway. Unfortunately, most trials have failed to demonstrate efficacy. However, clinical trials have not adequately tested the concept of c-Met pathway inhibition due to the lack of appropriate patient selection criteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Synthesis and biological evaluation of di-aryl urea derivatives as c-Kit inhibitors.

    PubMed

    Ravez, Séverine; Arsenlis, Stéphane; Barczyk, Amélie; Dupont, Anthony; Frédérick, Raphaël; Hesse, Stéphanie; Kirsch, Gilbert; Depreux, Patrick; Goossens, Laurence

    2015-11-15

    Inhibition of receptor tyrosine kinases (RTKs) continued to be a successful approach for the treatment of many types of human cancers and many potent small molecules kinase inhibitors have been discovered the last decade. In the present study, we describe the synthesis of thienopyrimidine derivatives and their pharmacological evaluation against nine kinases (EGFR, PDGFR-ß, c-Kit, c-Met, Src, Raf, VEGFR-1, -2 and -3). Most of the synthesized compounds showed from moderate to potent activities against c-Kit with IC50 values in the nanomolar range. Among them, 4-anilino(urea)thienopyrimidine analogs showed selectivity and potent c-Kit inhibition with IC50 values less than 6 nM. Docking simulation was performed for the most promising compound 9 into the c-Kit active site to determine the potential binding mode. This study reveal that the 4-anilino(urea)thienopyrimidine is an interesting scaffold to design novel potent and selective c-Kit inhibitors which may make promising candidates for cancers where c-Kit receptors are overexpressed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Target identification, lead optimization and antitumor evaluation of some new 1,2,4-triazines as c-Met kinase inhibitors.

    PubMed

    El-Wakil, Marwa H; Ashour, Hayam M; Saudi, Manal N; Hassan, Ahmed M; Labouta, Ibrahim M

    2017-08-01

    In silico target fishing approach using PharmMapper server identified c-Met kinase as the selective target for our previously synthesized compound NCI 748494/1. This approach was validated by in vitro kinase assay which showed that NCI 748494/1 possessed promising inhibitory activity against c-Met kinase (IC 50 =31.70μM). Assessment of ADMET profiling, drug-likeness, drug score as well as docking simulation for the binding pose of that compound in the active site of c-Met kinase domain revealed that NCI 748494/1 could be considered as a promising drug lead. Based on target identification and validation, it was observed that there is structure similarity between NCI 748494/1 and the reported type II c-Met kinase inhibitor BMS-777607. Optimization of our lead NCI 748494/1 furnished newly synthesized 1,2,4-triazine derivatives based on well-established structure-activity relationships, whereas three compounds namely; 4d, 7a and 8c displayed excellent in vitro cytotoxicity against three c-Met addicted cancer cell lines; A549 (lung adenocarcinoma), HT-29 (colon cancer) and MKN-45 (gastric carcinoma); with IC 50 values in the range 0.01-1.86µM. In vitro c-Met kinase assay showed 8c to possess the highest c-Met kinase inhibition profile (IC 50 =4.31µM). Docking of the active compounds in c-Met kinase active site revealed strong binding interactions comparable to the lead NCI 748494/1 and BMS-777607, suggesting that c-Met inhibition is very likely to be the mechanism of the antitumor effect of these derivatives. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The contribution of the SPINK1 c.194+2T>C mutation to the clinical course of idiopathic chronic pancreatitis in Chinese patients.

    PubMed

    Sun, Chang; Liao, Zhuan; Jiang, Lili; Yang, Fu; Xue, Geng; Zhou, Qi; Chen, Ruiwen; Sun, Shuhan; Li, Zhaoshen

    2013-01-01

    Recent data suggest that the serine protease inhibitor Kazal type 1 (SPINK1) gene mutation is associated with idiopathic chronic pancreatitis. However, few studies have focused on the serine protease inhibitor Kazal type 1 c.194+2T>C mutation. Therefore, our goal was to study the prevalence and impact of serine protease inhibitor Kazal type 1 mutations on the clinical profile of idiopathic chronic pancreatitis patients in China. A retrospective-cohort study of 118 Chinese patients with idiopathic chronic pancreatitis was performed, and genetic tests were carried out to detect SPINK1 mutations. Subjects without pancreatitis were used as controls. In total, 118 idiopathic chronic pancreatitis patients and 100 control subjects were evaluated. The serine protease inhibitor Kazal type 1 c.194+2T>C variant was present in 44.9% of patients with idiopathic chronic pancreatitis. The frequency of diabetes in idiopathic chronic pancreatitis patients with the serine protease inhibitor Kazal type 1 c.194+2T>C mutation (39.6%) was higher than that of patients without the mutation (9.2%). The time to occurrence of diabetes mellitus after idiopathic chronic pancreatitis symptom onset is significantly influenced by the c.194+2T>C mutation (p<0.001). In addition, the mean age of diabetes onset in patients with the serine protease inhibitor Kazal type 1 c.194+2T>C mutation (38.33 ± 9.50) was significantly younger than that of patients without this mutation (49.67 ± 6.74). The presence of the serine protease inhibitor Kazal type 1 c.194+2T>C mutation seems to be associated with idiopathic chronic pancreatitis and could predispose individuals to pancreatic diabetes onset at an earlier age. Copyright © 2012 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  13. Fhit-deficient normal and cancer cells are mitomycin C and UVC resistant

    PubMed Central

    Ottey, M; Han, S-Y; Druck, T; Barnoski, B L; McCorkell, K A; Croce, C M; Raventos-Suarez, C; Fairchild, C R; Wang, Y; Huebner, K

    2004-01-01

    To identify functions of the fragile tumour suppressor gene, FHIT, matched pairs of Fhit-negative and -positive human cancer cell clones, and normal cell lines established from Fhit −/− and +/+ mice, were stressed and examined for differences in cell cycle kinetics and survival. A larger fraction of Fhit-negative human cancer cells and murine kidney cells survived treatment with mitomycin C or UVC light compared to matched Fhit-positive cells; ∼10-fold more colonies of Fhit-deficient cells survived high UVC doses in clonigenic assays. The human cancer cells were synchronised in G1, released into S and treated with UVC or mitomycin C. At 18 h post mitomycin C treatment ∼6-fold more Fhit-positive than -negative cells had died, and 18 h post UVC treatment 3.5-fold more Fhit-positive cells were dead. Similar results were obtained for the murine −/− cells. After low UVC doses, the rate of DNA synthesis in −/− cells decreased more rapidly and steeply than in +/+ cells, although the Atr–Chk1 pathway appeared intact in both cell types. UVC surviving Fhit −/− cells appear transformed and exhibit >5-fold increased mutation frequency. This increased mutation burden could explain the susceptibility of Fhit-deficient cells in vivo to malignant transformation. PMID:15494723

  14. Determinants of activity of the HIV-1 maturation inhibitor PA-457.

    PubMed

    Li, Feng; Zoumplis, Dorian; Matallana, Claudia; Kilgore, Nicole R; Reddick, Mary; Yunus, Abdul S; Adamson, Catherine S; Salzwedel, Karl; Martin, David E; Allaway, Graham P; Freed, Eric O; Wild, Carl T

    3-O-(3',3'-dimethylsuccinyl) betulinic acid, also termed PA-457 or DSB, is a novel HIV-1 inhibitor that blocks virus maturation by disrupting cleavage of the capsid precursor, CA-SP1. To better define the molecular target for PA-457, we prepared a panel of mutant viruses with point deletions spanning the CA-SP1 cleavage domain and characterized each of these viruses for PA-457 sensitivity. Our results indicate that amino acid residues in the N-terminal half of SP1 serve as determinants of PA-457 activity, while residues in the C-terminal half of SP1 were not involved in compound activity. These findings support and extend previous observations that PA-457 is a specific inhibitor of CA-SP1 cleavage and identify the CA-SP1 domain as the primary viral determinant for this novel inhibitor of HIV-1 replication.

  15. Bortezomib partially improves laminin α2 chain-deficient muscular dystrophy.

    PubMed

    Körner, Zandra; Fontes-Oliveira, Cibely C; Holmberg, Johan; Carmignac, Virginie; Durbeej, Madeleine

    2014-05-01

    Congenital muscular dystrophy, caused by mutations in LAMA2 (the gene encoding laminin α2 chain), is a severe and incapacitating disease for which no therapy is yet available. We have recently demonstrated that proteasome activity is increased in laminin α2 chain-deficient muscle and that treatment with the nonpharmaceutical proteasome inhibitor MG-132 reduces muscle pathology in laminin α2 chain-deficient dy(3K)/dy(3K) mice. Here, we explore the use of the selective and therapeutic proteasome inhibitor bortezomib (currently used for treatment of relapsed multiple myeloma and mantle cell lymphoma) in dy(3K)/dy(3K) mice and in congenital muscular dystrophy type 1A muscle cells. Outcome measures included quantitative muscle morphology, gene and miRNA expression analyses, proteasome activity, motor activity, and survival. Bortezomib improved several histological hallmarks of disease, partially normalized miRNA expression (miR-1 and miR-133a), and enhanced body weight, locomotion, and survival of dy(3K)/dy(3K) mice. In addition, bortezomib reduced proteasome activity in congenital muscular dystrophy type 1A myoblasts and myotubes. These findings provide evidence that the proteasome inhibitor bortezomib partially reduces laminin α2 chain-deficient muscular dystrophy. Investigation of the clinical efficacy of bortezomib administration in congenital muscular dystrophy type 1A clinical trials may be warranted. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Manganese Deficiency Leads to Genotype-Specific Changes in Fluorescence Induction Kinetics and State Transitions1[C][OA

    PubMed Central

    Husted, Søren; Laursen, Kristian H.; Hebbern, Christopher A.; Schmidt, Sidsel B.; Pedas, Pai; Haldrup, Anna; Jensen, Poul E.

    2009-01-01

    Barley (Hordeum vulgare) genotypes display a marked difference in their ability to tolerate growth at low manganese (Mn) concentrations, a phenomenon designated as differential Mn efficiency. Induction of Mn deficiency in two genotypes differing in Mn efficiency led to a decline in the quantum yield efficiency for both, although faster in the Mn-inefficient genotype. Leaf tissue and thylakoid Mn concentrations were reduced under Mn deficiency, but no difference between genotypes was observed and no visual Mn deficiency symptoms were developed. Analysis of the fluorescence induction kinetics revealed that in addition to the usual O-J-I-P steps, clear K and D steps were developed in the Mn-inefficient genotype under Mn deficiency. These marked changes indicated damages to photosystem II (PSII). This was further substantiated by state transition measurements, indicating that the ability of plants to redistribute excitation energy was reduced. The percentage change in state transitions for control plants with normal Mn supply of both genotypes was 9% to 11%. However, in Mn-deficient leaves of the Mn-inefficient genotypes, state transitions were reduced to less than 1%, whereas no change was observed for the Mn-efficient genotypes. Immunoblotting and the chlorophyll a/b ratio confirmed that Mn deficiency in general resulted in a significant reduction in abundance of PSII reaction centers relative to the peripheral antenna. In addition, PSII appeared to be significantly more affected by Mn limitation than PSI. However, the striking genotypic differences observed in Mn-deficient plants, when analyzing state transitions and fluorescence induction kinetics, could not be correlated with specific changes in photosystem proteins. Thus, there is no simple linkage between protein expression and the differential reduction in state transition and fluorescence induction kinetics observed for the genotypes under Mn deficiency. PMID:19369593

  17. Biliary excretion of technetium-99m-sestamibi in wild-type dogs and in dogs with intrinsic (ABCB1-1Delta mutation) and extrinsic (ketoconazole treated) P-glycoprotein deficiency.

    PubMed

    Coelho, J C; Tucker, R; Mattoon, J; Roberts, G; Waiting, D K; Mealey, K L

    2009-10-01

    P-glycoprotein (P-gp), the product of ABCB1 gene, is thought to play a role in the biliary excretion of a variety of drugs, but specific studies in dogs have not been performed. Because a number of endogenous (ABCB1 polymorphisms) and exogenous (pharmacological P-gp inhibition) factors can interfere with normal P-gp function, a better understanding of P-gp's role in biliary drug excretion is crucial in preventing adverse drug reactions and drug-drug interactions in dogs. The objectives of this study were to compare biliary excretion of technetium-99m-sestamibi ((99m)Tc-MIBI), a radio-labelled P-gp substrate, in wild-type dogs (ABCB1 wild/wild), and dogs with intrinsic and extrinsic deficiencies in P-gp function. Dogs with intrinsic P-gp deficiency included ABCB1 mut/mut dogs, and dogs with presumed intermediate P-gp phenotype (ABCB1 mut/wild). Dogs with extrinsic P-gp deficiency were considered to be ABCB1 wild/wild dogs treated with the P-gp inhibitor ketoconazole (5 mg/kg PO q12h x 9 doses). Results from this study indicate that ABCB1 mut/mut dogs have significantly decreased biliary excretion of (99m)Tc-MIBI compared with ABCB1 wild/wild dogs. Treatment with ketoconazole significantly decreased biliary excretion of (99m)Tc-MIBI in ABCB1 wild/wild dogs. P-gp appears to play an important role in the biliary excretion of (99m)Tc-MIBI in dogs. It is likely that concurrent administration of a P-gp inhibitor such as ketoconazole will decrease P-gp-mediated biliary excretion of other substrate drugs as well.

  18. Novel Mechanisms of PARP Inhibitor Resistance in BRCA1-Deficient Breast Cancers

    DTIC Science & Technology

    2015-12-01

    lifetime risk for breast cancer (King, Marks, & Mandell, 2003). PARP inhibitors (PARPi) have been tested with promising results for the treatment of...for Rad51 loading following PARPi treatment (Figure 5I-J). Additionally, this Rad51 loading in the PARPi resistant lines is necessary for resistance...as knockdown of either PALB2 or BRCA2 results in restored sensitivity to PARPi treatment (Figure 6A and B). b) Confirmation of targets with

  19. Characterization of Novel Missense Variants of SERPINA1 Gene Causing Alpha-1 Antitrypsin Deficiency.

    PubMed

    Matamala, Nerea; Lara, Beatriz; Gomez-Mariano, Gema; Martínez, Selene; Retana, Diana; Fernandez, Taiomara; Silvestre, Ramona Angeles; Belmonte, Irene; Rodriguez-Frias, Francisco; Vilar, Marçal; Sáez, Raquel; Iturbe, Igor; Castillo, Silvia; Molina-Molina, María; Texido, Anna; Tirado-Conde, Gema; Lopez-Campos, Jose Luis; Posada, Manuel; Blanco, Ignacio; Janciauskiene, Sabina; Martinez-Delgado, Beatriz

    2018-06-01

    The SERPINA1 gene is highly polymorphic, with more than 100 variants described in databases. SERPINA1 encodes the alpha-1 antitrypsin (AAT) protein, and severe deficiency of AAT is a major contributor to pulmonary emphysema and liver diseases. In Spanish patients with AAT deficiency, we identified seven new variants of the SERPINA1 gene involving amino acid substitutions in different exons: PiSDonosti (S+Ser14Phe), PiTijarafe (Ile50Asn), PiSevilla (Ala58Asp), PiCadiz (Glu151Lys), PiTarragona (Phe227Cys), PiPuerto Real (Thr249Ala), and PiValencia (Lys328Glu). We examined the characteristics of these variants and the putative association with the disease. Mutant proteins were overexpressed in HEK293T cells, and AAT expression, polymerization, degradation, and secretion, as well as antielastase activity, were analyzed by periodic acid-Schiff staining, Western blotting, pulse-chase, and elastase inhibition assays. When overexpressed, S+S14F, I50N, A58D, F227C, and T249A variants formed intracellular polymers and did not secrete AAT protein. Both the E151K and K328E variants secreted AAT protein and did not form polymers, although K328E showed intracellular retention and reduced antielastase activity. We conclude that deficient variants may be more frequent than previously thought and that their discovery is possible only by the complete sequencing of the gene and subsequent functional characterization. Better knowledge of SERPINA1 variants would improve diagnosis and management of individuals with AAT deficiency.

  20. The AMPK inhibitor Compound C is a potent AMPK-independent anti-glioma agent

    PubMed Central

    Liu, Xiaona; Chhipa, Rishi Raj; Nakano, Ichiro; Dasgupta, Biplab

    2014-01-01

    AMPK is an evolutionarily conserved energy sensor important for cell growth, proliferation, survival and metabolic regulation. Active AMPK inhibits biosynthetic enzymes like mTOR and acetyl CoA carboxylase (required for protein and lipid synthesis, respectively) to ensure that cells maintain essential nutrients and energy during metabolic crisis. Despite our knowledge about this incredibly important kinase, no specific chemical inhibitors are available to examine its function. However, one small molecule known as Compound C (also called dorsomorphin) has been widely used in cell-based, biochemical and in vivo assays as a selective AMPK inhibitor. In nearly all these reports including a recent study in glioma, the biochemical and cellular effects of Compound C has been attributed to its inhibitory action towards AMPK. While examining the status of AMPK activation in human gliomas, we observed that glioblastomas (GBMs) express copious amount of active AMPK. Compound C effectively reduced glioma viability in vitro both by inhibiting proliferation and inducing cell death. As expected, Compound C inhibited AMPK; however, all the antiproliferative effects of this compound were AMPK-independent. Instead, Compound C killed glioma cells by multiple mechanisms including activation of the Calpain/Cathepsin pathway, inhibition of AKT, mTORC1/C2, cell cycle block at G2M and induction of necroptosis and autophagy. Importantly, normal astrocytes were significantly less susceptible to Compound C. In summary, Compound C is an extremely potent anti-glioma agent but we suggest that caution should be taken in interpreting results when this compound is used as an AMPK inhibitor. PMID:24419061

  1. Synthesis and evaluation of "AZT-HEPT", "AZT-pyridinone", and "ddC-HEPT" conjugates as inhibitors of HIV reverse transcriptase.

    PubMed

    Pontikis, R; Dollé, V; Guillaumel, J; Dechaux, E; Note, R; Nguyen, C H; Legraverend, M; Bisagni, E; Aubertin, A M; Grierson, D S; Monneret, C

    2000-05-18

    To test the concept that HIV reverse transcriptase could be effectively inhibited by "mixed site inhibitors", a series of seven conjugates containing both a nucleoside analogue component (AZT 1, ddC 2) and a nonnucleoside type inhibitor (HEPT analogue 12, pyridinone 27) were synthesized and evaluated for their ability to block HIV replication. The (N-3 and C-5)AZT-HEPT conjugates 15, 22, and 23 displayed 2-5 microM anti-HIV activity, but they had no effect on the replication of HIV-2 or the HIV-1 strain with the Y181C mutation. The (C-5)AZT-pyridinone conjugates 34-37 were found to be inactive. In marked contrast, the ddC-HEPT molecule 26 displayed the same potency (EC(50) = 0.45 microM) against HIV-1 (wild type and the Y181C nevirapine-resistant strain) and HIV-2 in cell culture. No synergistic effect was observed for these bis-substrate inhibitors, suggesting that the two individual inhibitor components in these molecules do not bind simultaneously in their respective sites. Interestingly, however, the results indicate that the AZT-HEPT conjugates and the ddC-HEPT derivative 26 inhibit reverse transcriptase (RT) in an opposite manner. One explanation for this difference is that the former compounds interact preferentially with the hydrophobic pocket in RT, whereas 26 (after supposed triphosphorylation) inhibits RT through binding in the catalytic site.

  2. Neurofibromin Deficiency-Associated Transcriptional Dysregulation Suggests a Novel Therapy for Tibial Pseudoarthrosis in NF1

    PubMed Central

    Paria, Nandina; Cho, Tae-Joon; Choi, In Ho; Kamiya, Nobuhiro; Kayembe, Kay; Mao, Rong; Margraf, Rebecca L.; Obermosser, Gerlinde; Oxendine, Ila; Sant, David W.; Song, Mi Hyun; Stevenson, David A.; Viskochil, David H.; Wise, Carol A.; Kim, Harry K.W.; Rios, Jonathan J

    2014-01-01

    Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by mutations in NF1. Among the earliest manifestations is tibial pseudoarthrosis and persistent nonunion after fracture. To further understand the pathogenesis of pseudoarthrosis and the underlying bone remodeling defect, pseudoarthrosis tissue and cells cultured from surgically resected pseudoarthrosis tissue from NF1 individuals were analyzed using whole-exome and whole-transcriptome sequencing as well as genomewide microarray analysis. Genomewide analysis identified multiple genetic mechanisms resulting in somatic bi-allelic NF1 inactivation; no other genes with recurring somatic mutations were identified. Gene expression profiling identified dysregulated pathways associated with neurofibromin deficiency, including phosphoinosital-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways. Unlike aggressive NF1-associated malignancies, tibial pseudoarthrosis tissue does not harbor a high frequency of somatic mutations in oncogenes or other tumor-suppressor genes, such as p53. However, gene expression profiling indicates pseudoarthrosis tissue has a tumor-promoting transcriptional pattern, despite lacking tumorigenic somatic mutations. Significant over-expression of specific cancer-associated genes in pseudoarthrosis highlights a potential for receptor tyrosine kinase inhibitors to target neurofibromin-deficient pseudoarthrosis and promote proper bone remodeling and fracture healing. PMID:24932921

  3. c-Jun N-terminal kinase inhibitors: a patent review (2010 - 2014).

    PubMed

    Gehringer, Matthias; Muth, Felix; Koch, Pierre; Laufer, Stefan A

    2015-01-01

    c-Jun N-terminal kinases (JNKs) are involved in the emergence and progression of diverse pathologies such as neurodegenerative, cardiovascular and metabolic disorders as well as inflammation and cancer. In recent years, several highly selective pan-JNK inhibitors have been characterized and three chemical entities targeting JNKs have been investigated in clinical trials. This review summarizes patents claiming inhibitors of all JNK isoforms published between 2010 and 2014. Although primarily focusing on the patent literature, relevant peer-reviewed publications related to the covered patents have also been included. Moreover, key patents claiming novel applications of previously published chemical entities are reviewed. The article highlights a total of 28 patents from nine pharmaceutical companies and academic research groups. Although some selective pan-JNK inhibitors with reasonable in vivo profiles are now available, little is known about the isoform selectivity required for each particular indication and the development of isoform-selective JNK inhibitors still represents a challenge in JNK drug discovery. Moreover, isoform-selective tool compounds are a prerequisite to a comprehensive understanding of the biology of each JNK isoform. Potential approaches towards such compounds include the design of type-II and type-I(1)/2 binders, which are absent in the current JNK inhibitor portfolios, as well as the design of novel allosteric inhibitors. Furthermore, covalent inhibition, which already led to the first high-quality probe for JNKs, might be further exploited for gaining selectivity and in vivo efficacy. With regard to a potential therapeutic application, the recently proposed concept of covalent reversible inhibitors is expected to be attractive.

  4. Nitric oxide acts upstream of ethylene in cell wall phosphorus reutilization in phosphorus-deficient rice.

    PubMed

    Zhu, Xiao Fang; Zhu, Chun Quan; Wang, Chao; Dong, Xiao Ying; Shen, Ren Fang

    2017-01-01

    Nitric oxide (NO) and ethylene are both involved in cell wall phosphorus (P) reutilization in P-deficient rice; however, the crosstalk between them remains unclear. In the present study using P-deficient 'Nipponbare' (Nip), root NO accumulation significantly increased after 1 h and reached a maximum at 3 h, while ethylene production significantly increased after 3 h and reached a maximum at 6 h, indicating NO responded more quickly than ethylene. Irrespective of P status, addition of the NO donor sodium nitroprusside (SNP) significantly increased while the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) significantly decreased the production of ethylene, while neither the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) nor the ethylene inhibitor aminoethoxyvinylglycine (AVG) had any influence on NO accumulation, suggesting NO acted upstream of ethylene. Under P-deficient conditions, SNP and ACC alone significantly increased root soluble P content through increasing pectin content, and c-PTIO addition to the ACC treatment still showed the same tendency; however, AVG+SNP treatment had no effect, further indicating that ethylene was the downstream signal affecting pectin content. The expression of the phosphate transporter gene OsPT2 showed the same tendency as the NO-ethylene-pectin pathway. Taken together, we conclude that ethylene functions downstream of NO in cell wall P reutilization in P-deficient rice. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Dietary vitamin C deficiency depresses the growth, head kidney and spleen immunity and structural integrity by regulating NF-κB, TOR, Nrf2, apoptosis and MLCK signaling in young grass carp (Ctenopharyngodon idella).

    PubMed

    Xu, Hui-Jun; Jiang, Wei-Dan; Feng, Lin; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2016-05-01

    This study investigated the effects of dietary vitamin C on the growth, and head kidney, spleen and skin immunity, structural integrity and related signaling molecules mRNA expression levels of young grass carp (Ctenopharyngodon idella). A total of 540 grass carp (264.37 ± 0.66 g) were fed six diets with graded levels of vitamin C (2.9, 44.2, 89.1, 133.8, 179.4 and 224.5 mg/kg diet) for 10 weeks. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila and the survival rate recorded for 14 days. The results indicated that compared with optimal vitamin C supplementation, vitamin C deficiency (2.9 mg/kg diet) decreased lysozyme (LA) and acid phosphatase (ACP) activities, and complement 3 and complement 4 (C4) contents (P < 0.05), down-regulated the mRNA levels of antimicrobial peptides [liver expressed antimicrobial peptide (LEAP) 2A, LEAP-2B, hepcidin, β-defensin] and anti-inflammatory cytokines-related factors, interleukin (IL) 4/13A, IL-4/13B (only in head kidney), IL-10, IL-11, transforming growth factor (TGF) β1, TGF-β2, inhibitor of κBα and eIF4E-binding protein 1 (P < 0.05), and up-regulated pro-inflammatory cytokines-related factors, tumor necrosis factor α, interferon γ2, IL-1β, IL-6, IL-8, IL-12 P35 (only in spleen), IL-12 P40, IL-15, IL-17D, nuclear factor κB p65, IκB kinases (IKKα, IKKβ, IKKγ), target of rapamycin and ribosomal protein S6 kinase 1 mRNA levels (P < 0.05) in the head kidney and spleen under injection fish of A. hydrophila, suggesting that vitamin C deficiency could decrease fish head kidney and spleen immunity and cause inflammation. Meanwhile, compared with optimal vitamin C supplementation, vitamin C deficiency decreased the activities and mRNA levels of copper/zinc superoxide dismutase, manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase, glutathione S-transferases and glutathione reductase (P < 0.05), and down-regulated zonula occludens (ZO) 1, ZO-2, Claudin-b, -c, -3c, -7a, -7

  6. Regulatory role of NADPH oxidase in glycated LDL-induced upregulation of plasminogen activator inhibitor-1 and heat shock factor-1 in mouse embryo fibroblasts and diabetic mice.

    PubMed

    Zhao, Ruozhi; Le, Khuong; Moghadasian, Mohammed H; Shen, Garry X

    2013-08-01

    Cardiovascular disease is the predominant cause of death in diabetic patients. Fibroblasts are one of the major types of cells in the heart or vascular wall. Increased levels of glycated low-density lipoprotein (glyLDL) were detected in diabetic patients. Previous studies in our group demonstrated that oxidized LDL increased the amounts of NADPH oxidase (NOX), plasminogen activator inhibitor-1 (PAI-1), and heat shock factor-1 (HSF1) in fibroblasts. This study examined the expression of NOX, PAI-1, and HSF1 in glyLDL-treated wild-type or HSF1-deficient mouse embryo fibroblasts (MEFs) and in leptin receptor-knockout (db/db) diabetic mice. Treatment with physiologically relevant levels of glyLDL increased superoxide and H2O2 release and the levels of NOX4 and p22phox (an essential component of multiple NOX complexes) in wild-type or HSF1-deficient MEFs. The levels of HSF1 and PAI-1 were increased by glyLDL in wild-type MEFs, but not in HSF1-deficient MEFs. Diphenyleneiodonium (a nonspecific NOX inhibitor) or small interfering RNA for p22phox prevented glyLDL-induced increases in the levels of NOX4, HSF1, or PAI-1 in MEFs. The amounts of NOX4, HSF1, and PAI-1 were elevated in hearts of db/db diabetic mice compared to wild-type mice. The results suggest that glyLDL increased the abundance of NOX4 or p22phox via an HSF1-independent pathway, but that of PAI-1 via an HSF1-dependent manner. NOX4 plays a crucial role in glyLDL-induced expression of HSF1 and PAI-1 in mouse fibroblasts. Increased expression of NOX4, HSF1, and PAI-1 was detected in cardiovascular tissue of diabetic mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Protein Phosphatase-1 Inhibitor-2 Is a Novel Memory Suppressor.

    PubMed

    Yang, Hongtian; Hou, Hailong; Pahng, Amanda; Gu, Hua; Nairn, Angus C; Tang, Ya-Ping; Colombo, Paul J; Xia, Houhui

    2015-11-11

    Reversible phosphorylation, a fundamental regulatory mechanism required for many biological processes including memory formation, is coordinated by the opposing actions of protein kinases and phosphatases. Type I protein phosphatase (PP1), in particular, has been shown to constrain learning and memory formation. However, how PP1 might be regulated in memory is still not clear. Our previous work has elucidated that PP1 inhibitor-2 (I-2) is an endogenous regulator of PP1 in hippocampal and cortical neurons (Hou et al., 2013). Contrary to expectation, our studies of contextual fear conditioning and novel object recognition in I-2 heterozygous mice suggest that I-2 is a memory suppressor. In addition, lentiviral knock-down of I-2 in the rat dorsal hippocampus facilitated memory for tasks dependent on the hippocampus. Our data indicate that I-2 suppresses memory formation, probably via negatively regulating the phosphorylation of cAMP/calcium response element-binding protein (CREB) at serine 133 and CREB-mediated gene expression in dorsal hippocampus. Surprisingly, the data from both biochemical and behavioral studies suggest that I-2, despite its assumed action as a PP1 inhibitor, is a positive regulator of PP1 function in memory formation. We found that inhibitor-2 acts as a memory suppressor through its positive functional influence on type I protein phosphatase (PP1), likely resulting in negative regulation of cAMP/calcium response element-binding protein (CREB) and CREB-activated gene expression. Our studies thus provide an interesting example of a molecule with an in vivo function that is opposite to its in vitro function. PP1 plays critical roles in many essential physiological functions such as cell mitosis and glucose metabolism in addition to its known role in memory formation. PP1 pharmacological inhibitors would thus not be able to serve as good therapeutic reagents because of its many targets. However, identification of PP1 inhibitor-2 as a critical

  8. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection.

    PubMed

    Côté, Marceline; Misasi, John; Ren, Tao; Bruchez, Anna; Lee, Kyungae; Filone, Claire Marie; Hensley, Lisa; Li, Qi; Ory, Daniel; Chandran, Kartik; Cunningham, James

    2011-08-24

    Ebola virus (EboV) is a highly pathogenic enveloped virus that causes outbreaks of zoonotic infection in Africa. The clinical symptoms are manifestations of the massive production of pro-inflammatory cytokines in response to infection and in many outbreaks, mortality exceeds 75%. The unpredictable onset, ease of transmission, rapid progression of disease, high mortality and lack of effective vaccine or therapy have created a high level of public concern about EboV. Here we report the identification of a novel benzylpiperazine adamantane diamide-derived compound that inhibits EboV infection. Using mutant cell lines and informative derivatives of the lead compound, we show that the target of the inhibitor is the endosomal membrane protein Niemann-Pick C1 (NPC1). We find that NPC1 is essential for infection, that it binds to the virus glycoprotein (GP), and that antiviral compounds interfere with GP binding to NPC1. Combined with the results of previous studies of GP structure and function, our findings support a model of EboV infection in which cleavage of the GP1 subunit by endosomal cathepsin proteases removes heavily glycosylated domains to expose the amino-terminal domain, which is a ligand for NPC1 and regulates membrane fusion by the GP2 subunit. Thus, NPC1 is essential for EboV entry and a target for antiviral therapy.

  9. The frequency of CYP2C19 genetic polymorphisms in Russian patients with peptic ulcers treated with proton pump inhibitors.

    PubMed

    Sychev, D A; Denisenko, N P; Sizova, Z M; Grachev, A V; Velikolug, K A

    2015-01-01

    Proton pump inhibitors, which are widely used as acid-inhibitory agents for the treatment of peptic ulcers, are mainly metabolized by 2C19 isoenzyme of cytochrome P450 (CYP2C19). CYP2C19 has genetic polymorphisms, associated with extensive, poor, intermediate or ultra-rapid metabolism of proton pump inhibitors. Genetic polymorphisms of CYP2C19 could be of clinical concern in the treatment of peptic ulcers with proton pump inhibitors. To investigate the frequencies of CYP2C19*2, CYP2C19*3, and CYP2C19*17 alleles and genotypes in Russian patients with peptic ulcers. We retrospectively reviewed the cases of 971 patients of Caucasian origin with Russian nationality from Moscow region with endoscopically and histologically proven ulcers, 428 males (44%) and 543 females (56%). The mean age was 44.6±11.9 years (range: 15-88 years). DNA was extracted from ethylenediaminetetraacetic acid whole blood samples (10 mL). The polymorphisms CYP2C19 681G.A (CYP2C19*2, rs4244285), CYP2C19 636 G.A (CYP2C19*3, rs4986893) and CYP2C19 -806 C.T (CYP2C19*17, rs12248560) were evaluated using real-time polymerase chain reaction. Regarding CYP2C19 genotype, 317 patients (32.65%) out of 971 were CYP2C19*1/*1 carriers classified as extensive metabolizers. Three hundred and eighty-six (39.75%) with CYP2C19*1/*17 or CYP2C19*17/*17 genotype were ultra-rapid metabolizers. Two hundred and fifty-one people (25.85%) were intermediate metabolizers with CYP2C19*1/*2, CYP2C19*2/*17, CYP2C19*1/*3, CYP2C19*3/*17 genotypes. Seventeen patients (1.75%) with CYP2C19*2/*2, CYP2C19*3/*3, CYP2C19*2/*3 genotypes were poor metabolizers. The allele frequencies were the following: CYP2C19*2 - 0.140, CYP2C19*3 - 0.006, CYP2C19*17 - 0.274. There is a high frequency of CYP2C19 genotypes associated with modified response to proton pump inhibitors in Russian patients with peptic ulcers. Genotyping for CYP2C19 polymorphisms is suggested to be a useful tool for personalized dosing of proton pump inhibitors.

  10. Activities of the human immunodeficiency virus type 1 (HIV-1) protease inhibitor nelfinavir mesylate in combination with reverse transcriptase and protease inhibitors against acute HIV-1 infection in vitro.

    PubMed Central

    Patick, A K; Boritzki, T J; Bloom, L A

    1997-01-01

    Nelfinavir mesylate (formerly AG1343) is a potent and selective, nonpeptidic inhibitor of human immunodeficiency virus type 1 (HIV-1) protease that was discovered by protein structure-based design methodologies. We evaluated the antiviral and cytotoxic effects of two-drug combinations of nelfinavir with the clinically approved antiretroviral therapeutics zidovudine (ZDV), lamivudine (3TC), dideoxycytidine (ddC; zalcitabine), stavudine (d4T), didanosine (ddI), indinavir, saquinavir, and ritonavir and a three-drug combination of nelfinavir with ZDV and 3TC against an acute HIV-1 strain RF infection of CEM-SS cells in vitro. Quantitative assessment of drug interaction was evaluated by a universal response surface approach (W. R. Greco, G. Bravo, and J. C. Parsons, Pharm. Rev. 47:331-385, 1995) and by the method of M. N. Prichard and C. Shipman (Antiviral Res. 14:181-206, 1990). Both analytical methods yielded similar results and showed that the two-drug combinations of nelfinavir with the reverse transcriptase inhibitors ZDV, 3TC, ddI, d4T, and ddC and the three-drug combination with ZDV and 3TC resulted in additive to statistically significant synergistic interactions. In a similar manner, the combination of nelfinavir with the three protease inhibitors resulted in additive (ritonavir and saquinavir) to slightly antagonistic (indinavir) interactions. In all combinations, minimal cellular cytotoxicity was observed with any drug alone and in combination. These results suggest that administration of combinations of the appropriate doses of nelfinavir with other currently approved antiretroviral therapeutic agents in vivo may result in enhanced antiviral activity with no associated increase in cellular cytotoxicity. PMID:9333041

  11. Synthesis and preliminary PET imaging of 11C and 18F isotopologues of the ROS1/ALK inhibitor lorlatinib

    NASA Astrophysics Data System (ADS)

    Collier, Thomas Lee; Normandin, Marc D.; Stephenson, Nickeisha A.; Livni, Eli; Liang, Steven H.; Wooten, Dustin W.; Esfahani, Shadi A.; Stabin, Michael G.; Mahmood, Umar; Chen, Jianqing; Wang, Wei; Maresca, Kevin; Waterhouse, Rikki N.; El Fakhri, Georges; Richardson, Paul; Vasdev, Neil

    2017-06-01

    Lorlatinib (PF-06463922) is a next-generation small-molecule inhibitor of the orphan receptor tyrosine kinase c-ros oncogene 1 (ROS1), which has a kinase domain that is physiologically related to anaplastic lymphoma kinase (ALK), and is undergoing Phase I/II clinical trial investigations for non-small cell lung cancers. An early goal is to measure the concentrations of this drug in brain tumour lesions of lung cancer patients, as penetration of the blood-brain barrier is important for optimal therapeutic outcomes. Here we prepare both 11C- and 18F-isotopologues of lorlatinib to determine the biodistribution and whole-body dosimetry assessments by positron emission tomography (PET). Non-traditional radiolabelling strategies are employed to enable an automated multistep 11C-labelling process and an iodonium ylide-based radiofluorination. Carbon-11-labelled lorlatinib is routinely prepared with good radiochemical yields and shows reasonable tumour uptake in rodents. PET imaging in non-human primates confirms that this radiotracer has high brain permeability.

  12. AZD6738, A Novel Oral Inhibitor of ATR, Induces Synthetic Lethality with ATM Deficiency in Gastric Cancer Cells.

    PubMed

    Min, Ahrum; Im, Seock-Ah; Jang, Hyemin; Kim, Seongyeong; Lee, Miso; Kim, Debora Keunyoung; Yang, Yaewon; Kim, Hee-Jun; Lee, Kyung-Hun; Kim, Jin Won; Kim, Tae-Yong; Oh, Do-Youn; Brown, Jeff; Lau, Alan; O'Connor, Mark J; Bang, Yung-Jue

    2017-04-01

    Ataxia telangiectasia and Rad3-related (ATR) can be considered an attractive target for cancer treatment due to its deleterious effect on cancer cells harboring a homologous recombination defect. The aim of this study was to investigate the potential use of the ATR inhibitor, AZD6738, to treat gastric cancer.In SNU-601 cells with dysfunctional ATM, AZD6738 treatment led to an accumulation of DNA damage due to dysfunctional RAD51 foci formation, S phase arrest, and caspase 3-dependent apoptosis. In contrast, SNU-484 cells with functional ATM were not sensitive to AZD6738. Inhibition of ATM in SNU-484 cells enhanced AZD6738 sensitivity to a level comparable with that observed in SNU-601 cells, showing that activation of the ATM-Chk2 signaling pathway attenuates AZD6738 sensitivity. In addition, decreased HDAC1 expression was found to be associated with ATM inactivation in SNU-601 cells, demonstrating the interaction between HDAC1 and ATM can affect sensitivity to AZD6738. Furthermore, in an in vivo tumor xenograft mouse model, AZD6738 significantly suppressed tumor growth and increased apoptosis.These findings suggest synthetic lethality between ATR inhibition and ATM deficiency in gastric cancer cells. Further clinical studies on the interaction between AZD 6738 and ATM deficiency are warranted to develop novel treatment strategies for gastric cancer. Mol Cancer Ther; 16(4); 566-77. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. Losartan and captopril treatment rescue normal thrombus formation in microfibril associated glycoprotein-1 (MAGP1) deficient mice.

    PubMed

    Vassequi-Silva, Tallita; Pereira, Danielle Sousa; Nery Diez, Ana Cláudia C; Braga, Guilherme G; Godoy, Juliana A; Mendes, Camila B; Dos Santos, Leonardo; Krieger, José E; Antunes, Edson; Costa, Fábio T M; Vicente, Cristina P; Werneck, Claudio C

    2016-02-01

    MAGP1 is a glycoprotein present in the elastic fibers and is a part of the microfibrils components. MAGP1 interacts with von Willebrand factor and the active form of TGF-β and BMP. In mice lacking MAGP1, thrombus formation is delayed, increasing the occlusion time of carotid artery despite presenting normal blood coagulation in vitro. MAGP1-containing microfibrils may play a role in hemostasis and thrombosis. In this work, we evaluated the function of MAGP1 and its relation to TGF-β in the arterial thrombosis process. We analyzed thrombus formation time in wild type and MAGP1-deficient mice comparing Rose Bengal and Ferric Chloride induced arterial lesion. The potential participation of TGF-β in this process was accessed when we treated both wild type and MAGP1-deficient mice with losartan (an antihypertensive drug that decreases TGF-β activity) or captopril (an angiotensin converting enzyme inhibitor that was used as a control antihypertensive drug). Besides, we evaluated thrombus embolization and the gelatinolytic activity in the arterial walls in vitro and ex vivo. Losartan and captopril were able to recover the thrombus formation time without changing blood pressure, activated partial thromboplastin time (aPTT), PT (prothrombin time), platelet aggregation and adhesion, but decreased gelatinase activity. Our results suggest that both treatments are effective in the prevention of the sub-endothelial ECM degradation, allowing the recovery of normal thrombus formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Revealing the drug-resistant mechanism for diarylpyrimidine analogue inhibitors of HIV-1 reverse transcriptase.

    PubMed

    Zhang, Hao; Qin, Fang; Ye, Wei; Li, Zeng; Ma, Songyao; Xia, Yan; Jiang, Yi; Zhu, Jiayi; Li, Yixue; Zhang, Jian; Chen, Hai-Feng

    2011-09-01

    Diaryltriazine (DATA) and diarylpyrimidine (DAPY) were two category inhibitors with highly potent activity for wild type (wt) and four principal mutant types (L100I, K103N, Y181C and Y188L) of HIV-1 reverse transcriptase (RT). We had revealed the drug-resistant mechanism of DATA analogue inhibitors with molecular dynamics simulation and three-dimensional quantitative structure-activity relationship (3D-QSAR) methods. In this work, we investigated the drug-resistant mechanism of DAPY analogue inhibitors. It was found that DAPY analogue inhibitors form more hydrogen bonds and hydrophobic contacts with wild type and mutants of HIV-1 RT than DATA inhibitors. This could explain that DAPY analogue inhibitors are more potent than DATA for the wild type and mutants of HIV-1 RT. Then, 3D-QSAR models were constructed for these inhibitors of wild type and four principal mutant types HIV-1 RT and evaluated by test set compounds. These combined models can be used to design new chemical entities and make quantitative prediction of the bioactivities for HIV-1 RT inhibitors before resorting to in vitro and in vivo experiment. © 2011 John Wiley & Sons A/S.

  15. Decreased erythrocyte nucleoside transport and hENT1 transporter expression in glucose 6-phosphate dehydrogenase deficiency.

    PubMed

    Al-Ansari, Mohammad; Craik, James D

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with erythrocyte sensitivity to oxidative damage and hemolytic crises. In β-thalassemia major, where hemoglobin instability imposes oxidative stress, erythrocytes show reduced hENT1 nucleoside transporter expression and decreased nucleoside uptake. This study investigated hENT1 expression and nucleoside transport in G6PD-deficient erythrocytes to determine if decreased hENT1 activity might be a contributory feature in the variable pathology of this enzymopathy. Uptake of (3)H-uridine was measured at room temperature using an inhibitor-oil stop protocol and 5-s incubations. Erythrocyte membranes were analyzed by SDS-PAGE and nucleoside (hENT1), glucose (GLUT-1), and anion exchange (Band 3) transporter polypeptides quantitated on immunoblots. In G6PD-deficient cells, uridine uptake (mean 8.18, 95 % CI 5.6-10.7 vs controls mean 12.35, 95 % CI 9.2-15.5, pmol uridine/gHb/min; P = 0.031) and expression of hENT1 (mean 50.4 %, 95 % CI 38.1-62.7 %, arbitrary units n = 11 vs controls mean 95.23 %, 95 % CI 88.38-102.1 % arbitrary units, n = 8; P < 0.001) were significantly lower; expression of GLUT-1 (mean 106.9 %, vs control mean 99.75 %; P = 0.308) and Band 3 polypeptides (mean 100.1 %, vs control mean 102.84 %; P = 0.329) were unchanged. Nucleoside transporter activity in human erythrocytes sustains intracellular purine nucleotide levels and assists in control of plasma adenosine levels; decreased hENT1 expression and activity in G6PD-deficiency could affect red metabolism and influence a wide spectrum of responses mediated by adenosine receptors.

  16. Biological and Structural Characterization of Rotamers of C-C Chemokine Receptor Type 5 (CCR5) Inhibitor GSK214096.

    PubMed

    Kazmierski, Wieslaw M; Danehower, Susan; Duan, Maosheng; Ferris, Robert G; Elitzin, Vassil; Minick, Douglas; Sharp, Matthew; Stewart, Eugene; Villeneuve, Manon

    2014-12-11

    We recently reported the discovery of preclinical CCR5 inhibitor GSK214096, 1 (J. Med. Chem. 2011, 54, 756). Detailed characterization of 1 revealed that it exists as a mixture of four separable atropisomers A-D. The two slow-interconverting pairs of rotamers A + B and C + D were separated and further characterized. HIV and CCR5-mediated chemotaxis data strongly suggest that the antiviral potency of 1 is due to rotamers A + B and not C + D. Furthermore, integrated UV, vibrational circular dichroism VCD and computational approach allowed to determine the M chirality in C + D (and P chirality in A + B). These findings imply additional avenues to be pursued toward new CCR5 antagonists.

  17. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells

    PubMed Central

    Lafaille, Fabien G; Pessach, Itai M.; Zhang, Shen-Ying; Ciancanelli, Michael J.; Herman, Melina; Abhyankar, Avinash; Ying, Shui-Wang; Keros, Sotirios; Goldstein, Peter A.; Mostoslavsky, Gustavo; Ordovas-Montanes, Jose; Jouanguy, Emmanuelle; Plancoulaine, Sabine; Tu, Edmund; Elkabetz, Yechiel; Al-Muhsen, Saleh; Tardieu, Marc; Schlaeger, Thorsten M.; Daley, George Q.; Abel, Laurent; Casanova, Jean-Laurent; Studer, Lorenz; Notarangelo, Luigi D.

    2012-01-01

    In the course of primary infection with herpes simplex virus 1 (HSV-1), children with inborn errors of TLR3 immunity are prone to HSV-1 encephalitis (HSE) 1–3. We tested the hypothesis that the pathogenesis of HSE involves non hematopoietic central nervous system (CNS)-resident cells. We derived induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of TLR3- and UNC-93B-deficient patients and from controls. These iPSCs were differentiated into highly purified populations of neural stem cells (NSCs), neurons, astrocytes and oligodendrocytes. The induction of IFN-β and/or IFN-γ1 in response to poly(I:C) stimulation was dependent on TLR3 and UNC-93B in all cells tested. However, the induction of IFN-β and IFN-γ1 in response to HSV-1 infection was impaired selectively in UNC-93B-deficient neurons and oligodendrocytes. These cells were also much more susceptible to HSV-1 infection than control cells, whereas UNC-93B-deficient NSCs and astrocytes were not. TLR3-deficient neurons were also found to be susceptible to HSV-1 infection. The rescue of UNC-93B- and TLR3-deficient cells with the corresponding wild-type allele demonstrated that the genetic defect was the cause of the poly(I:C) and HSV-1 phenotypes. The viral infection phenotype was further rescued by treatment with exogenous IFN-α/β, but not IFN-γ1.Thus, impaired TLR3- and UNC-93B-dependent IFN-α/β intrinsic immunity to HSV-1 in the CNS, in neurons and oligodendrocytes in particular, may underlie the pathogenesis of HSE in children with TLR3 pathway deficiencies. PMID:23103873

  18. Discovery of Selective Phosphodiesterase 1 Inhibitors with Memory Enhancing Properties.

    PubMed

    Dyck, Brian; Branstetter, Bryan; Gharbaoui, Tawfik; Hudson, Andrew R; Breitenbucher, J Guy; Gomez, Laurent; Botrous, Iriny; Marrone, Tami; Barido, Richard; Allerston, Charles K; Cedervall, E Peder; Xu, Rui; Sridhar, Vandana; Barker, Ryan; Aertgeerts, Kathleen; Schmelzer, Kara; Neul, David; Lee, Dong; Massari, Mark Eben; Andersen, Carsten B; Sebring, Kristen; Zhou, Xianbo; Petroski, Robert; Limberis, James; Augustin, Martin; Chun, Lawrence E; Edwards, Thomas E; Peters, Marco; Tabatabaei, Ali

    2017-04-27

    A series of potent thienotriazolopyrimidinone-based PDE1 inhibitors was discovered. X-ray crystal structures of example compounds from this series in complex with the catalytic domain of PDE1B and PDE10A were determined, allowing optimization of PDE1B potency and PDE selectivity. Reduction of hERG affinity led to greater than a 3000-fold selectivity for PDE1B over hERG. 6-(4-Methoxybenzyl)-9-((tetrahydro-2H-pyran-4-yl)methyl)-8,9,10,11-tetrahydropyrido[4',3':4,5]thieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidin-5(6H)-one was identified as an orally bioavailable and brain penetrating PDE1B enzyme inhibitor with potent memory-enhancing effects in a rat model of object recognition memory.

  19. Virtual screening for potential inhibitors of bacterial MurC and MurD ligases.

    PubMed

    Tomašić, Tihomir; Kovač, Andreja; Klebe, Gerhard; Blanot, Didier; Gobec, Stanislav; Kikelj, Danijel; Mašič, Lucija Peterlin

    2012-03-01

    Mur ligases are bacterial enzymes involved in the cytoplasmic steps of peptidoglycan biosynthesis and are viable targets for antibacterial drug discovery. We have performed virtual screening for potential ATP-competitive inhibitors targeting MurC and MurD ligases, using a protocol of consecutive hierarchical filters. Selected compounds were evaluated for inhibition of MurC and MurD ligases, and weak inhibitors possessing dual inhibitory activity have been identified. These compounds represent new scaffolds for further optimisation towards multiple Mur ligase inhibitors with improved inhibitory potency.

  20. Deficiencies in acetyl-CoA carboxylase and fatty acid synthase 1 differentially affect eggshell formation and blood meal digestion in Aedes aegypti

    PubMed Central

    Alabaster, Amy; Isoe, Jun; Zhou, Guoli; Lee, Ada; Murphy, Ashleigh; Day, W. Anthony; Miesfeld, Roger L.

    2011-01-01

    To better understand the mechanism of de novo lipid biosynthesis in blood fed Ae. aegypti mosquitoes, we quantitated acetyl-CoA carboxylase (ACC) and fatty acid synthase 1 (FAS1) transcript levels in blood fed mosquitoes, and used RNAi methods to generate ACC and FAS1 deficient mosquitoes. Using the ketogenic amino acid 14C-leucine as a metabolic precursor of 14C-acetyl-CoA, we found that 14C-triacylglycerol and 14C-phospholipid levels were significantly reduced in both ACC and FAS1 deficient mosquitoes, confirming that ACC and FAS1 are required for de novo lipid biosynthesis after blood feeding. Surprisingly however, we also found that ACC deficient mosquitoes, but not FAS1 deficient mosquitoes, produced defective oocytes, which lacked an intact eggshell and gave rise to inviable eggs. This severe phenotype was restricted to the 1st gonotrophic cycle, suggesting that the eggshell defect was due to ACC deficiencies in the follicular epithelial cells, which are replaced after each gonotrophic cycle. Consistent with lower amounts of de novo lipid biosynthesis, both ACC and FAS1 deficient mosquitoes produced significantly fewer eggs than control mosquitoes in both the 1st and 2nd gonotrophic cycles. Lastly, FAS1 deficient mosquitoes, but not ACC deficient mosquitoes, showed delayed blood meal digestion, suggesting that a feedback control mechanism may coordinate rates of fat body lipid biosynthesis and midgut digestion during feeding. We propose that decreased ACC and FAS1 enzyme levels lead to reduced lipid biosynthesis and lower fecundity, whereas altered levels of the regulatory metabolites acetyl-CoA and malonyl-CoA account for the observed defects in eggshell formation and blood meal digestion, respectively. PMID:21971482

  1. Deficiencies in acetyl-CoA carboxylase and fatty acid synthase 1 differentially affect eggshell formation and blood meal digestion in Aedes aegypti.

    PubMed

    Alabaster, Amy; Isoe, Jun; Zhou, Guoli; Lee, Ada; Murphy, Ashleigh; Day, W Anthony; Miesfeld, Roger L

    2011-12-01

    To better understand the mechanism of de novo lipid biosynthesis in blood fed Aedes aegypti mosquitoes, we quantitated acetyl-CoA carboxylase (ACC) and fatty acid synthase 1 (FAS1) transcript levels in blood fed mosquitoes, and used RNAi methods to generate ACC and FAS1 deficient mosquitoes. Using the ketogenic amino acid (14)C-leucine as a metabolic precursor of (14)C-acetyl-CoA, we found that (14)C-triacylglycerol and (14)C-phospholipid levels were significantly reduced in both ACC and FAS1 deficient mosquitoes, confirming that ACC and FAS1 are required for de novo lipid biosynthesis after blood feeding. Surprisingly however, we also found that ACC deficient mosquitoes, but not FAS1 deficient mosquitoes, produced defective oocytes, which lacked an intact eggshell and gave rise to inviable eggs. This severe phenotype was restricted to the 1st gonotrophic cycle, suggesting that the eggshell defect was due to ACC deficiencies in the follicular epithelial cells, which are replaced after each gonotrophic cycle. Consistent with lower amounts of de novo lipid biosynthesis, both ACC and FAS1 deficient mosquitoes produced significantly fewer eggs than control mosquitoes in both the 1st and 2nd gonotrophic cycles. Lastly, FAS1 deficient mosquitoes, but not ACC deficient mosquitoes, showed delayed blood meal digestion, suggesting that a feedback control mechanism may coordinate rates of fat body lipid biosynthesis and midgut digestion during feeding. We propose that decreased ACC and FAS1 enzyme levels lead to reduced lipid biosynthesis and lower fecundity, whereas altered levels of the regulatory metabolites acetyl-CoA and malonyl-CoA account for the observed defects in eggshell formation and blood meal digestion, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Complete Remission Following Pembrolizumab in a Woman with Mismatch Repair-Deficient Endometrial Cancer and a Germline BRCA1 Mutation.

    PubMed

    Dizon, Don S; Dias-Santagata, Dora; Bregar, Amy; Sullivan, Laura; Filipi, Jennifer; DiTavi, Elizabeth; Miller, Lucy; Ellisen, Leif; Birrer, Michael; DelCarmen, Marcela

    2018-02-22

    Endometrial cancer is the most common gynecologic malignancy in the U.S. and, although the majority of cases present at an early stage and can be treated with curative intent, those who present with advanced disease, or develop metastatic or recurrent disease, have a poorer prognosis. A subset of endometrial cancers exhibit mismatch repair (MMR) deficiency. It is now recognized that MMR-deficient cancers are particularly susceptible to programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors, and in a landmark judgement in 2017, the U.S. Food and Drug Administration granted accelerated approval to pembrolizumab for these tumors, the first tumor-agnostic approval of a drug. However, less is known about the sensitivity to PD-1 blockade among patients with known mutations in double-strand break DNA repair pathways involving homologous recombination, such as those in BRCA1 or BRCA2 . Here we report a case of a patient with an aggressive somatic MMR-deficient endometrial cancer and a germline BRCA1 who experienced a rapid complete remission to pembrolizumab. Endometrial cancers, and in particular endometrioid carcinomas, should undergo immunohistochemical testing for mismatch repair proteins.Uterine cancers with documented mismatch repair deficiency are candidates for treatment with programmed cell death protein 1 inhibition.Genomic testing of recurrent, advanced, or metastatic tumors may be useful to determine whether patients are candidates for precision therapies. © AlphaMed Press 2018.

  3. A20-binding inhibitor of NF-κB (ABIN1) controls Toll-like receptor-mediated CCAAT/enhancer-binding protein β activation and protects from inflammatory disease.

    PubMed

    Zhou, Jingran; Wu, Ruiqiong; High, Anthony A; Slaughter, Clive A; Finkelstein, David; Rehg, Jerold E; Redecke, Vanessa; Häcker, Hans

    2011-11-01

    Toll-like receptors (TLRs) are expressed on innate immune cells and trigger inflammation upon detection of pathogens and host tissue injury. TLR-mediated proinflammatory-signaling pathways are counteracted by partially characterized anti-inflammatory mechanisms that prevent exaggerated inflammation and host tissue damage as manifested in inflammatory diseases. We biochemically identified a component of TLR-signaling pathways, A20-binding inhibitor of NF-κB (ABIN1), which recently has been linked by genome-wide association studies to the inflammatory diseases systemic lupus erythematosus and psoriasis. We generated ABIN1-deficient mice to study the function of ABIN1 in vivo and during TLR activation. Here we show that ABIN1-deficient mice develop a progressive, lupus-like inflammatory disease characterized by expansion of myeloid cells, leukocyte infiltrations in different parenchymatous organs, activated T and B lymphocytes, elevated serum Ig levels, and the appearance of autoreactive antibodies. Kidneys develop glomerulonephritis and proteinuria, reflecting tissue injury. Surprisingly, ABIN1-deficient macrophages exhibit normal regulation of major proinflammatory signaling pathways and mediators but show selective deregulation of the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) and its target genes, such as colony-stimulating factor 3 (Csf3), nitric oxide synthase, inducible (Nos2), and S100 calcium-binding protein A8 (S100a8). Their gene products, which are intimately linked to innate immune cell expansion (granulocyte colony-stimulating factor), cytotoxicity (inducible nitric oxide synthase), and host factor-derived inflammation (S100A8), may explain, at least in part, the inflammatory phenotype observed. Together, our data reveal ABIN1 as an essential anti-inflammatory component of TLR-signaling pathways that controls C/EBPβ activity.

  4. Differential Muscle Hypertrophy Is Associated with Satellite Cell Numbers and Akt Pathway Activation Following Activin Type IIB Receptor Inhibition in Mtm1 p.R69C Mice

    PubMed Central

    Lawlor, Michael W.; Viola, Marissa G.; Meng, Hui; Edelstein, Rachel V.; Liu, Fujun; Yan, Ke; Luna, Elizabeth J.; Lerch-Gaggl, Alexandra; Hoffmann, Raymond G.; Pierson, Christopher R.; Buj-Bello, Anna; Lachey, Jennifer L.; Pearsall, Scott; Yang, Lin; Hillard, Cecilia J.; Beggs, Alan H.

    2015-01-01

    X-linked myotubular myopathy is a congenital myopathy caused by deficiency of myotubularin. Patients often present with severe perinatal weakness, requiring mechanical ventilation to prevent death from respiratory failure. We recently reported that an activin receptor type IIB inhibitor produced hypertrophy of type 2b myofibers and modest increases of strength and life span in the severely myopathic Mtm1δ4 mouse model of X-linked myotubular myopathy. We have now performed a similar study in the less severely symptomatic Mtm1 p.R69C mouse in hopes of finding greater treatment efficacy. Activin receptor type IIB inhibitor treatment of Mtm1 p.R69C animals produced behavioral and histological evidence of hypertrophy in gastrocnemius muscles but not in quadriceps or triceps. The ability of the muscles to respond to activin receptor type IIB inhibitor treatment correlated with treatment-induced increases in satellite cell number and several muscle-specific abnormalities of hypertrophic signaling. Treatment-responsive Mtm1 p.R69C gastrocnemius muscles displayed lower levels of phosphorylated ribosomal protein S6 and higher levels of phosphorylated eukaryotic elongation factor 2 kinase than were observed in Mtm1 p.R69C quadriceps muscle or in muscles from wild-type littermates. Hypertrophy in the Mtm1 p.R69C gastrocnemius muscle was associated with increased levels of phosphorylated ribosomal protein S6. Our findings indicate that muscle-, fiber type-, and mutation-specific factors affect the response to hypertrophic therapies that will be important to assess in future therapeutic trials. PMID:24726641

  5. Rarity of PIT1 involvement in children from Russia with combined pituitary hormone deficiency.

    PubMed

    Fofanova, O V; Takamura, N; Kinoshita, E; Yoshimoto, M; Tsuji, Y; Peterkova, V A; Evgrafov, O V; Dedov, I I; Goncharov, N P; Yamashita, S

    1998-06-05

    To ascertain the molecular background of combined pituitary hormone deficiency, screening for mutations in the pituitary-specific transcription factor (Pit-1/GHF-1) gene (PIT1) was performed on a cohort of 15 children from Russia with combined growth hormone (GH)/prolactin (Prl)/thyroid-stimulating hormone (TSH) deficiency. The group of patients, suspected of PIT1 mutations, consisted of four familial cases (seven patients) and eight sporadic cases. All had complete GH deficiency and complete or partial Prl and TSH deficiency. Direct sequencing of all six exons of PIT1 and its promoter region showed a C to T transition mutation at codon 14 of exon 1 in a 3 8/12-year-old girl. This novel PIT1 mutation results in a proline to leucine substitution (P14L). The patient was heterozygous for mutant and normal alleles. The heterozygous P14L mutation was also present in her mother as well as in her maternal aunt and grandmother, all of whom were phenotypically normal. There was no mutation in the father's DNA, suggesting the need for reevaluation of genomic imprinting. In other children of our series, no mutation in PIT1 or in its promotor region was identified. This is the first report on the analysis of PIT1 and its promoter region in Russian children with GH/Prl/TSH deficiency. However, as the involvement of PIT1 mutation is rare in Russia, the other negative cases need to be analyzed for another candidate gene responsible for combined GH/Pr/TSH deficiency.

  6. PELI1 functions as a dual modulator of necroptosis and apoptosis by regulating ubiquitination of RIPK1 and mRNA levels of c-FLIP.

    PubMed

    Wang, Huibing; Meng, Huyan; Li, Xingyan; Zhu, Kezhou; Dong, Kangyun; Mookhtiar, Adnan K; Wei, Huiting; Li, Ying; Sun, Shao-Cong; Yuan, Junying

    2017-11-07

    Apoptosis and necroptosis are two distinct cell death mechanisms that may be activated in cells on stimulation by TNFα. It is still unclear, however, how apoptosis and necroptosis may be differentially regulated. Here we screened for E3 ubiquitin ligases that could mediate necroptosis. We found that deficiency of Pellino 1 (PELI1), an E3 ubiquitin ligase, blocked necroptosis. We show that PELI1 mediates K63 ubiquitination on K115 of RIPK1 in a kinase-dependent manner during necroptosis. Ubiquitination of RIPK1 by PELI1 promotes the formation of necrosome and execution of necroptosis. Although PELI1 is not directly involved in mediating the activation of RIPK1, it is indispensable for promoting the binding of activated RIPK1 with its downstream mediator RIPK3 to promote the activation of RIPK3 and MLKL. Inhibition of RIPK1 kinase activity blocks PELI1-mediated ubiquitination of RIPK1 in necroptosis. However, we show that PELI1 deficiency sensitizes cells to both RIPK1-dependent and RIPK1-independent apoptosis as a result of down-regulated expression of c-FLIP, an inhibitor of caspase-8. Finally, we show that Peli1 -/- mice are sensitized to TNFα-induced apoptosis. Thus, PELI1 is a key modulator of RIPK1 that differentially controls the activation of necroptosis and apoptosis. Published under the PNAS license.

  7. Postnatal changes of gene expression for tissue inhibitors of metalloproteinase-1 and -2 and cystatins S and C, in rat submandibular gland demonstrated by quantitative reverse transcription-polymerase chain reaction.

    PubMed

    Nishiura, T; Abe, K

    1999-01-01

    The rat submandibular gland is not fully developed at birth and definitive differentiation takes place postnatally. The steady-state mRNA expression for the four proteinase inhibitor molecules, tissue inhibitors of metalloproteinase (TIMP)-1 and -2, and cystatins S and C, and for a housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (G3PDH), in rat submandibular glands was measured by quantitative competitive reverse transcription-polymerase chain reaction (RT-PCR) at different stages of postnatal development. The gene-expression patterns of TIMP-1 and -2 relative to G3PDH were similar to each other. The TIMP-2 and cystatin C genes were more highly expressed than those of TIMP-1 and cystatin S at all stages. Moreover, the gene expressions of TIMP-1 and -2, and of cystatins S and C, were predominant between 1 and 7, and 7 and 12 weeks of age, respectively, and coincided developmentally with the regression of terminal tubule cells and the differentiation of granular convoluted tubule cells, respectively. Quantitative competitive RT-PCR allowed accurate measurement of small changes in the steady-state concentrations of these proteinase-inhibitor mRNA molecules.

  8. 11β-hydroxysteroid dehydrogenase-1 deficiency alters the gut microbiome response to Western diet.

    PubMed

    Johnson, Jethro S; Opiyo, Monica N; Thomson, Marian; Gharbi, Karim; Seckl, Jonathan R; Heger, Andreas; Chapman, Karen E

    2017-02-01

    The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) interconverts active glucocorticoids and their intrinsically inert 11-keto forms. The type 1 isozyme, 11β-HSD1, predominantly reactivates glucocorticoids in vivo and can also metabolise bile acids. 11β-HSD1-deficient mice show altered inflammatory responses and are protected against the adverse metabolic effects of a high-fat diet. However, the impact of 11β-HSD1 on the composition of the gut microbiome has not previously been investigated. We used high-throughput 16S rDNA amplicon sequencing to characterise the gut microbiome of 11β-HSD1-deficient and C57Bl/6 control mice, fed either a standard chow diet or a cholesterol- and fat-enriched 'Western' diet. 11β-HSD1 deficiency significantly altered the composition of the gut microbiome, and did so in a diet-specific manner. On a Western diet, 11β-HSD1 deficiency increased the relative abundance of the family Bacteroidaceae, and on a chow diet, it altered relative abundance of the family Prevotellaceae Our results demonstrate that (i) genetic effects on host-microbiome interactions can depend upon diet and (ii) that alterations in the composition of the gut microbiome may contribute to the aspects of the metabolic and/or inflammatory phenotype observed with 11β-HSD1 deficiency. © 2017 The authors.

  9. 11β-hydroxysteroid dehydrogenase-1 deficiency alters the gut microbiome response to Western diet

    PubMed Central

    Johnson, Jethro S; Opiyo, Monica N; Thomson, Marian; Gharbi, Karim; Seckl, Jonathan R; Heger, Andreas

    2016-01-01

    The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) interconverts active glucocorticoids and their intrinsically inert 11-keto forms. The type 1 isozyme, 11β-HSD1, predominantly reactivates glucocorticoids in vivo and can also metabolise bile acids. 11β-HSD1-deficient mice show altered inflammatory responses and are protected against the adverse metabolic effects of a high-fat diet. However, the impact of 11β-HSD1 on the composition of the gut microbiome has not previously been investigated. We used high-throughput 16S rDNA amplicon sequencing to characterise the gut microbiome of 11β-HSD1-deficient and C57Bl/6 control mice, fed either a standard chow diet or a cholesterol- and fat-enriched ‘Western’ diet. 11β-HSD1 deficiency significantly altered the composition of the gut microbiome, and did so in a diet-specific manner. On a Western diet, 11β-HSD1 deficiency increased the relative abundance of the family Bacteroidaceae, and on a chow diet, it altered relative abundance of the family Prevotellaceae. Our results demonstrate that (i) genetic effects on host–microbiome interactions can depend upon diet and (ii) that alterations in the composition of the gut microbiome may contribute to the aspects of the metabolic and/or inflammatory phenotype observed with 11β-HSD1 deficiency. PMID:27885053

  10. HIV-1 protease inhibitor mutations affect the development of HIV-1 resistance to the maturation inhibitor bevirimat.

    PubMed

    Fun, Axel; van Maarseveen, Noortje M; Pokorná, Jana; Maas, Renée Em; Schipper, Pauline J; Konvalinka, Jan; Nijhuis, Monique

    2011-08-24

    Maturation inhibitors are an experimental class of antiretrovirals that inhibit Human Immunodeficiency Virus (HIV) particle maturation, the structural rearrangement required to form infectious virus particles. This rearrangement is triggered by the ordered cleavage of the precursor Gag polyproteins into their functional counterparts by the viral enzyme protease. In contrast to protease inhibitors, maturation inhibitors impede particle maturation by targeting the substrate of protease (Gag) instead of the protease enzyme itself. Direct cross-resistance between protease and maturation inhibitors may seem unlikely, but the co-evolution of protease and its substrate, Gag, during protease inhibitor therapy, could potentially affect future maturation inhibitor therapy. Previous studies showed that there might also be an effect of protease inhibitor resistance mutations on the development of maturation inhibitor resistance, but the exact mechanism remains unclear. We used wild-type and protease inhibitor resistant viruses to determine the impact of protease inhibitor resistance mutations on the development of maturation inhibitor resistance. Our resistance selection studies demonstrated that the resistance profiles for the maturation inhibitor bevirimat are more diverse for viruses with a mutated protease compared to viruses with a wild-type protease. Viral replication did not appear to be a major factor during emergence of bevirimat resistance. In all in vitro selections, one of four mutations was selected: Gag V362I, A364V, S368N or V370A. The impact of these mutations on maturation inhibitor resistance and viral replication was analyzed in different protease backgrounds. The data suggest that the protease background affects development of HIV-1 resistance to bevirimat and the replication profiles of bevirimat-selected HIV-1. The protease-dependent bevirimat resistance and replication levels can be explained by differences in CA/p2 cleavage processing by the different

  11. Sustained Release Talazoparib Implants for Localized Treatment of BRCA1-deficient Breast Cancer

    PubMed Central

    Belz, Jodi E.; Kumar, Rajiv; Baldwin, Paige; Ojo, Noelle Castilla; Leal, Ana S.; Royce, Darlene B.; Zhang, Di; van de Ven, Anne L.; Liby, Karen T.; Sridhar, Srinivas

    2017-01-01

    Talazoparib, a potent PARP inhibitor, has shown promising clinical and pre-clinical activity by inducing synthetic lethality in cancers with germline Brca1/2 mutations. Conventional oral delivery of Talazoparib is associated with significant off-target effects, therefore we sought to develop new delivery systems in the form of an implant loaded with Talazoparib for localized, slow and sustained release of the drug at the tumor site in Brca1-deficient breast cancer. Poly(lactic-co-glycolic acid) (PLGA) implants (0.8 mm diameter) loaded with subclinical dose (25 or 50 µg) Talazoparib were fabricated and characterized. In vitro studies with Brca1-deficient W780 and W0069 breast cancer cells were conducted to test sensitivity to PARP inhibition. The in vivo therapeutic efficacy of Talazoparib implants was assessed following a one-time intratumoral injection in Brca1Co/Co;MMTV-Cre;p53+/- mice and compared to drug-free implants and oral gavage. Immunohistochemistry studies were performed on tumor sections using PCNA and γ-H2AX staining. Sustained release of Talazoparib was observed over 28 days in vitro. Mice treated with Talazoparib implants showed statistically significant tumor growth inhibition compared to those receiving drug-free implants or free Talazoparib orally. Talazoparib implants were well-tolerated at both drug doses and resulted in less weight loss than oral gavage. PARP inhibition in mice treated with Talazoparib implants significantly increased double-stranded DNA damage and decreased tumor cell proliferation as shown by PCNA and γ-H2AX staining as compared to controls. These results demonstrate that localized and sustained delivery of Talazoparib via implants has potential to provide superior treatment outcomes at sub-clinical doses with minimal toxicity in patients with BRCA1 deficient tumors. PMID:29158830

  12. Sustained Release Talazoparib Implants for Localized Treatment of BRCA1-deficient Breast Cancer.

    PubMed

    Belz, Jodi E; Kumar, Rajiv; Baldwin, Paige; Ojo, Noelle Castilla; Leal, Ana S; Royce, Darlene B; Zhang, Di; van de Ven, Anne L; Liby, Karen T; Sridhar, Srinivas

    2017-01-01

    Talazoparib, a potent PARP inhibitor, has shown promising clinical and pre-clinical activity by inducing synthetic lethality in cancers with germline Brca1/2 mutations. Conventional oral delivery of Talazoparib is associated with significant off-target effects, therefore we sought to develop new delivery systems in the form of an implant loaded with Talazoparib for localized, slow and sustained release of the drug at the tumor site in Brca1 -deficient breast cancer. Poly(lactic-co-glycolic acid) (PLGA) implants (0.8 mm diameter) loaded with subclinical dose (25 or 50 µg) Talazoparib were fabricated and characterized. In vitro studies with Brca1 -deficient W780 and W0069 breast cancer cells were conducted to test sensitivity to PARP inhibition. The in vivo therapeutic efficacy of Talazoparib implants was assessed following a one-time intratumoral injection in Brca1 Co/Co ;MMTV-Cre;p53 +/- mice and compared to drug-free implants and oral gavage. Immunohistochemistry studies were performed on tumor sections using PCNA and γ-H2AX staining. Sustained release of Talazoparib was observed over 28 days in vitro . Mice treated with Talazoparib implants showed statistically significant tumor growth inhibition compared to those receiving drug-free implants or free Talazoparib orally. Talazoparib implants were well-tolerated at both drug doses and resulted in less weight loss than oral gavage. PARP inhibition in mice treated with Talazoparib implants significantly increased double-stranded DNA damage and decreased tumor cell proliferation as shown by PCNA and γ-H2AX staining as compared to controls. These results demonstrate that localized and sustained delivery of Talazoparib via implants has potential to provide superior treatment outcomes at sub-clinical doses with minimal toxicity in patients with BRCA1 deficient tumors.

  13. Impact of CD1d deficiency on metabolism.

    PubMed

    Kotas, Maya E; Lee, Hui-Young; Gillum, Matthew P; Annicelli, Charles; Guigni, Blas A; Shulman, Gerald I; Medzhitov, Ruslan

    2011-01-01

    Invariant natural killer T cells (iNKTs) are innate-like T cells that are highly concentrated in the liver and recognize lipids presented on the MHC-like molecule CD1d. Although capable of a myriad of responses, few essential functions have been described for iNKTs. Among the many cell types of the immune system implicated in metabolic control and disease, iNKTs seem ideally poised for such a role, yet little has been done to elucidate such a possible function. We hypothesized that lipid presentation by CD1d could report on metabolic status and engage iNKTs to regulate cellular lipid content through their various effector mechanisms. To test this hypothesis, we examined CD1d deficient mice in a variety of metabolically stressed paradigms including high fat feeding, choline-deficient feeding, fasting, and acute inflammation. CD1d deficiency led to a mild exacerbation of steatosis during high fat or choline-deficient feeding, accompanied by impaired hepatic glucose tolerance. Surprisingly, however, this phenotype was not observed in Jα18⁻/⁻ mice, which are deficient in iNKTs but express CD1d. Thus, CD1d appears to modulate some metabolic functions through an iNKT-independent mechanism.

  14. Ebselen, a Small-Molecule Capsid Inhibitor of HIV-1 Replication.

    PubMed

    Thenin-Houssier, Suzie; de Vera, Ian Mitchelle S; Pedro-Rosa, Laura; Brady, Angela; Richard, Audrey; Konnick, Briana; Opp, Silvana; Buffone, Cindy; Fuhrmann, Jakob; Kota, Smitha; Billack, Blase; Pietka-Ottlik, Magdalena; Tellinghuisen, Timothy; Choe, Hyeryun; Spicer, Timothy; Scampavia, Louis; Diaz-Griffero, Felipe; Kojetin, Douglas J; Valente, Susana T

    2016-04-01

    The human immunodeficiency virus type 1 (HIV-1) capsid plays crucial roles in HIV-1 replication and thus represents an excellent drug target. We developed a high-throughput screening method based on a time-resolved fluorescence resonance energy transfer (HTS-TR-FRET) assay, using the C-terminal domain (CTD) of HIV-1 capsid to identify inhibitors of capsid dimerization. This assay was used to screen a library of pharmacologically active compounds, composed of 1,280in vivo-active drugs, and identified ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an organoselenium compound, as an inhibitor of HIV-1 capsid CTD dimerization. Nuclear magnetic resonance (NMR) spectroscopic analysis confirmed the direct interaction of ebselen with the HIV-1 capsid CTD and dimer dissociation when ebselen is in 2-fold molar excess. Electrospray ionization mass spectrometry revealed that ebselen covalently binds the HIV-1 capsid CTD, likely via a selenylsulfide linkage with Cys198 and Cys218. This compound presents anti-HIV activity in single and multiple rounds of infection in permissive cell lines as well as in primary peripheral blood mononuclear cells. Ebselen inhibits early viral postentry events of the HIV-1 life cycle by impairing the incoming capsid uncoating process. This compound also blocks infection of other retroviruses, such as Moloney murine leukemia virus and simian immunodeficiency virus, but displays no inhibitory activity against hepatitis C and influenza viruses. This study reports the use of TR-FRET screening to successfully identify a novel capsid inhibitor, ebselen, validating HIV-1 capsid as a promising target for drug development. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Deficient dietary iron intakes among women and children in Russia: evidence from the Russian Longitudinal Monitoring Survey.

    PubMed Central

    Kohlmeier, L; Mendez, M; Shalnova, S; Martinchik, A; Chakraborty, H; Kohlmeier, M

    1998-01-01

    OBJECTIVES: This study evaluated the iron sufficiency of the Russian diet. METHODS: Data were obtained from 24-hour dietary recalls conducted in 4 rounds (1992 through 1994) of a nationally representative longitudinal survey of 10,548 women and children. Iron bioavailability was estimated via algorithms adjusting for enhancers (heme, vitamin C) and inhibitors (tannins in tea, phytates in grains) consumed at the same meal. RESULTS: Dietary iron intakes were deficient in the most vulnerable groups: young children and women of reproductive age. Poverty status was strongly associated with deficiency. After adjustment for enhancers and inhibitors, estimated bioavailable iron intakes at 3% to 4% of total iron were inadequate in all women and children. CONCLUSIONS: These dietary data suggest that Russian women and children are at high risk of iron deficiency. Grain products rich in phytates, which inhibit absorption, were the major food source of iron in Russia. High intakes of tea and low consumption of vitamin C also inhibited iron bioavailability. Since changes in eating behavior could potentially double iron bioavailability, educational programs should be explored as a strategy for improving iron nutriture. PMID:9550997

  16. C75, a fatty acid synthase inhibitor, modulates AMP-activated protein kinase to alter neuronal energy metabolism.

    PubMed

    Landree, Leslie E; Hanlon, Andrea L; Strong, David W; Rumbaugh, Gavin; Miller, Ian M; Thupari, Jagan N; Connolly, Erin C; Huganir, Richard L; Richardson, Christine; Witters, Lee A; Kuhajda, Francis P; Ronnett, Gabriele V

    2004-01-30

    C75, a synthetic inhibitor of fatty acid synthase (FAS), is hypothesized to alter the metabolism of neurons in the hypothalamus that regulate feeding behavior to contribute to the decreased food intake and profound weight loss seen with C75 treatment. In the present study, we characterize the suitability of primary cultures of cortical neurons for studies designed to investigate the consequences of C75 treatment and the alteration of fatty acid metabolism in neurons. We demonstrate that in primary cortical neurons, C75 inhibits FAS activity and stimulates carnitine palmitoyltransferase-1 (CPT-1), consistent with its effects in peripheral tissues. C75 alters neuronal ATP levels and AMP-activated protein kinase (AMPK) activity. Neuronal ATP levels are affected in a biphasic manner with C75 treatment, decreasing initially, followed by a prolonged increase above control levels. Cerulenin, a FAS inhibitor, causes a similar biphasic change in ATP levels, although levels do not exceed control. C75 and cerulenin modulate AMPK phosphorylation and activity. TOFA, an inhibitor of acetyl-CoA carboxylase, increases ATP levels, but does not affect AMPK activity. Several downstream pathways are affected by C75 treatment, including glucose metabolism and acetyl-CoA carboxylase (ACC) phosphorylation. These data demonstrate that C75 modulates the levels of energy intermediates, thus, affecting the energy sensor AMPK. Similar effects in hypothalamic neurons could form the basis for the effects of C75 on feeding behavior.

  17. Dysregulation of C/EBPalpha by mutant Huntingtin causes the urea cycle deficiency in Huntington's disease.

    PubMed

    Chiang, Ming-Chang; Chen, Hui-Mei; Lee, Yi-Hsin; Chang, Hao-Hung; Wu, Yi-Chih; Soong, Bing-Wen; Chen, Chiung-Mei; Wu, Yih-Ru; Liu, Chin-San; Niu, Dau-Ming; Wu, Jer-Yuarn; Chen, Yuan-Tsong; Chern, Yijuang

    2007-03-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in the Huntingtin (Htt) gene. Using two mouse models of HD, we demonstrate that the urea cycle deficiency characterized by hyperammonemia, high blood citrulline and suppression of urea cycle enzymes is a prominent feature of HD. The resultant ammonia toxicity might exacerbate the neurological deficits of HD. Suppression of C/EBPalpha, a crucial transcription factor for the transcription of urea cycle enzymes, appears to mediate the urea cycle deficiency in HD. We found that in the presence of mutant Htt, C/EBPalpha loses its ability to interact with an important cofactor (CREB-binding protein). Moreover, mutant Htt recruited C/EBPalpha into aggregates, as well as suppressed expression of the C/EBPalpha gene. Consumption of protein-restricted diets not only led to the restoration of C/EBPalpha's activity, and repair of the urea cycle deficiency and hyperammonemia, but also ameliorated the formation of Htt aggregates, the motor deterioration, the suppression of striatal brain-derived neurotrophic factor and the normalization of three protein chaperones (Hsp27, Hsp70 and Hsp90). Treatments aimed at repairing the urea cycle deficiency may provide a new strategy for dealing with HD.

  18. Allergenicity and safety of recombinant human C1 esterase inhibitor in patients with allergy to rabbit or cow's milk.

    PubMed

    van den Elzen, Mignon T; van Os-Medendorp, Harmieke; Röckmann-Helmbach, Heike; van Hoffen, Els; Lebens, Ans F M; van Doorn, Helma; Klemans, Rob J B; Bruijnzeel-Koomen, Carla A F M; Hack, C Erik; Kaufman, Leonard; Relan, Anurag; Knulst, André C

    2016-08-01

    Recombinant human C1 inhibitor (rhC1INH) for on-demand treatment of hereditary angioedema is purified from milk of transgenic rabbits. It contains low amounts (<0.002%) of host-related impurities, which could trigger hypersensitivity reactions in patients with rabbit allergy (RA) and/or cow's milk allergy (CMA). This study is an assessment of allergenicity and safety of rhC1INH in patients with RA and/or CMA. Patients with CMA and/or RA underwent skin prick test (SPT), intracutaneous test (ICT), and, when results for both were negative, subcutaneous (SC) challenge with up to 2100U (14 mL) rhC1INH. The negative predictive value of the skin test protocol was calculated, defined as the ratio of patients without systemic symptoms of hypersensitivity following SC challenge, over the number of patients having tested negative for both the SPT and the ICT. Adverse events after exposure to rhC1INH were recorded. Twenty-six patients with RA and/or CMA were enrolled. Twenty-four had negative SPT and ICT results for rhC1INH, whereas 2 had negative SPT result but positive ICT result to rhC1INH (only the highest concentration). Twenty-two patients with negative SPT and ICT results underwent SC challenge. None developed allergic symptoms. Local treatment-emergent adverse events occurred in 7 patients (32%) after SC challenge. In 5 these were considered drug related. All were mild. None of the patients with negative SPT and ICT results for rhC1INH had allergic symptoms during rhC1INH challenge. The negative predictive value of the combination of SPT and ICT for the outcome of the SC challenge was 100% (95% CI, 84.6%-100%). SC administration of rhC1INH was well tolerated. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  19. ASIC1a Deficient Mice Show Unaltered Neurodegeneration in the Subacute MPTP Model of Parkinson Disease.

    PubMed

    Komnig, Daniel; Imgrund, Silke; Reich, Arno; Gründer, Stefan; Falkenburger, Björn H

    2016-01-01

    Inflammation contributes to the death of dopaminergic neurons in Parkinson disease and can be accompanied by acidification of extracellular pH, which may activate acid-sensing ion channels (ASIC). Accordingly, amiloride, a non-selective inhibitor of ASIC, was protective in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson disease. To complement these findings we determined MPTP toxicity in mice deficient for ASIC1a, the most common ASIC isoform in neurons. MPTP was applied i.p. in doses of 30 mg per kg on five consecutive days. We determined the number of dopaminergic neurons in the substantia nigra, assayed by stereological counting 14 days after the last MPTP injection, the number of Nissl positive neurons in the substantia nigra, and the concentration of catecholamines in the striatum. There was no difference between ASIC1a-deficient mice and wildtype controls. We are therefore not able to confirm that ASIC1a are involved in MPTP toxicity. The difference might relate to the subacute MPTP model we used, which more closely resembles the pathogenesis of Parkinson disease, or to further targets of amiloride.

  20. Indazole-based potent and cell-active Mps1 kinase inhibitors: rational design from pan-kinase inhibitor anthrapyrazolone (SP600125).

    PubMed

    Kusakabe, Ken-ichi; Ide, Nobuyuki; Daigo, Yataro; Tachibana, Yuki; Itoh, Takeshi; Yamamoto, Takahiko; Hashizume, Hiroshi; Hato, Yoshio; Higashino, Kenichi; Okano, Yousuke; Sato, Yuji; Inoue, Makiko; Iguchi, Motofumi; Kanazawa, Takayuki; Ishioka, Yukichi; Dohi, Keiji; Kido, Yasuto; Sakamoto, Shingo; Yasuo, Kazuya; Maeda, Masahiro; Higaki, Masayo; Ueda, Kazuo; Yoshizawa, Hidenori; Baba, Yoshiyasu; Shiota, Takeshi; Murai, Hitoshi; Nakamura, Yusuke

    2013-06-13

    Monopolar spindle 1 (Mps1) is essential for centrosome duplication, the spindle assembly check point, and the maintenance of chromosomal instability. Mps1 is highly expressed in cancer cells, and its expression levels correlate with the histological grades of cancers. Thus, selective Mps1 inhibitors offer an attractive opportunity for the development of novel cancer therapies. To design novel Mps1 inhibitors, we utilized the pan-kinase inhibitor anthrapyrazolone (4, SP600125) and its crystal structure bound to JNK1. Our design efforts led to the identification of indazole-based lead 6 with an Mps1 IC50 value of 498 nM. Optimization of the 3- and 6-positions on the indazole core of 6 resulted in 23c with improved Mps1 activity (IC50 = 3.06 nM). Finally, application of structure-based design using the X-ray structure of 23d bound to Mps1 culminated in the discovery of 32a and 32b with improved potency for cellular Mps1 and A549 lung cancer cells. Moreover, 32a and 32b exhibited reasonable selectivities over 120 and 166 kinases, respectively.

  1. Pretreatment resistance to hepatitis C virus protease inhibitors boceprevir/telaprevir in hepatitis C virus subgenotype 1a-infected patients from Manitoba.

    PubMed

    Andonov, Anton; Kadkhoda, Kamran; Osiowy, Carla; Kaita, Kelly

    2013-07-01

    Traditional therapy with pegylated interferon and ribavirin combined with the new protease inhibitors boceprevir or telaprevir has demonstrated improved outcomes in hepatitis C virus (HCV)-infected patients. Prevalence data regarding pre-existing drug-resistant variants to these two new virus inhibitors in the Canadian population are not available. To detect pre-existing mutations conferring resistance to boceprevir and⁄or telaprevir in Canadian patients infected with HCV genotype 1a. Resistance-associated mutations (RAMs) were evaluated in 85 patients infected with HCV genotype 1a who had not yet received antiviral therapy. The NS3 protease gene was sequenced and common RAMs were identified based on a recently published list. The overall prevalence of pre-existing RAMs to boceprevir and telaprevir was higher compared with other similar studies. All of the observed RAMs were associated with a low level of resistance. A surprisingly high proportion of patients had the V55A RAM (10.6%). None of the mutations associated with a high level of resistance were observed. The simultaneous presence of two low-level resistance mutations (V36L and V55A) was observed in only one patient. Three other patients had both T54S RAM and V55I mutations, which may require a higher concentration of the protease drugs. The prevalence of various mutations in Aboriginal Canadian patients was higher (37.5%) compared with Caucasians (16.39%) (P=0.038). The present study was the first to investigate pre-existing drug resistance to boceprevir⁄telaprevir in Canadian HCV-infected patients. A relatively high proportion of untreated HCV genotype 1a patients in Manitoba harbour low-level RAMs, especially patients of Aboriginal descent, which may contribute to an increased risk of treatment failure.

  2. Hepatitis C virus protease inhibitor-resistance mutations: our experience and review.

    PubMed

    Wu, Shuang; Kanda, Tatsuo; Nakamoto, Shingo; Imazeki, Fumio; Yokosuka, Osamu

    2013-12-21

    Direct-acting antiviral agents (DAAs) for hepatitis C virus (HCV) infection are one of the major advances in its medical treatment. The HCV protease inhibitors boceprevir and telaprevir were the first approved DAAs in the United States, Europe, and Japan. When combined with peginterferon plus ribavirin, these agents increase sustained virologic response rates to 70%-80% in treatment-naïve patients and previous-treatment relapsers with chronic HCV genotype 1 infection. Without peginterferon plus ribavirin, DAA mono-therapies increased DAA-resistance mutations. Several new DAAs for HCV are now in clinical development and are likely to be approved in the near future. However, it has been reported that the use of these drugs also led to the emergence of DAA-resistance mutations in certain cases. Furthermore, these mutations exhibit cross-resistance to multiple drugs. The prevalence of DAA-resistance mutations in HCV-infected patients who were not treated with DAAs is unknown, and it is as yet uncertain whether such variants are sensitive to DAAs. We performed a population sequence analysis to assess the frequency of such variants in the sera of HCV genotype 1-infected patients not treated with HCV protease inhibitors. Here, we reviewed the literature on resistance variants of HCV protease inhibitors in treatment naïve patients with chronic HCV genotype 1, as well as our experience.

  3. TOND1 confers tolerance to nitrogen deficiency in rice

    PubMed Central

    Zhang, Yangjun; Tan, Lubin; Zhu, Zuofeng; Yuan, Lixing; Xie, Daoxin; Sun, Chuanqing

    2015-01-01

    Nitrogen (N), the most important mineral nutrient for plants, is critical to agricultural production systems. N deficiency severely affects rice growth and decreases rice yields. However, excessive use of N fertilizer has caused severe pollution to agricultural and ecological environments. The necessity of breeding of crops that require lower input of N fertilizer has been recognized. Here we identified a major quantitative trait locus on chromosome 12, Tolerance Of Nitrogen Deficiency 1 (TOND1), that confers tolerance to N deficiency in the indica cultivar Teqing. Sequence verification of 75 indica and 75 japonica cultivars from 18 countries and regions demonstrated that only 27.3% of cultivars (41 indica cultivars) contain TOND1, whereas 72.7% of cultivars, including the remaining 34 indica cultivars and all 75 japonica cultivars, do not harbor the TOND1 allele. Over-expression of TOND1 increased the tolerance to N deficiency in the TOND1-deficient rice cultivars. The identification of TOND1 provides a molecular basis for breeding rice varieties with improved grain yield despite decreased input of N fertilizers. PMID:25439309

  4. Streptococcal inhibitor of complement promotes innate immune resistance phenotypes of invasive M1T1 group A Streptococcus.

    PubMed

    Pence, Morgan A; Rooijakkers, Suzan H M; Cogen, Anna L; Cole, Jason N; Hollands, Andrew; Gallo, Richard L; Nizet, Victor

    2010-01-01

    Streptococcal inhibitor of complement (SIC) is a highly polymorphic extracellular protein and putative virulence factor secreted by M1 and M57 strains of group A Streptococcus (GAS). The sic gene is highly upregulated in invasive M1T1 GAS isolates following selection of mutations in the covR/S regulatory locus in vivo. Previous work has shown that SIC (allelic form 1.01) binds to and inactivates complement C5b67 and human cathelicidin LL-37. We examined the contribution of SIC to innate immune resistance phenotypes of GAS in the intact organism, using (1) targeted deletion of sic in wild-type and animal-passaged (covS mutant) M1T1 GAS harboring the sic 1.84 allele and (2) heterologous expression of sic in M49 GAS, which does not possess the sic genein its genome. We find that M1T1 SIC production is strongly upregulated upon covS mutation but that the sic gene is not required for generation and selection of covS mutants in vivo. SIC 1.84 bound both human and murine cathelicidins and was necessary and sufficient to promote covS mutant M1T1 GAS resistance to LL-37, growth in human whole blood and virulence in a murine model of systemic infection. Finally, the sic knockout mutant M1T1 GAS strain was deficient in growth in human serum and intracellular macrophage survival. We conclude that SIC contributes to M1T1 GAS immune resistance and virulence phenotypes. Copyright © 2010 S. Karger AG, Basel.

  5. Biochemical characterization of a phosphinate inhibitor of Escherichia coli MurC.

    PubMed

    Marmor, S; Petersen, C P; Reck, F; Yang, W; Gao, N; Fisher, S L

    2001-10-09

    The bacterial UDP-N-acetylmuramyl-L-alanine ligase (MurC) from Escherichia coli, an essential, cytoplasmic peptidoglycan biosynthetic enzyme, catalyzes the ATP-dependent ligation of L-alanine (Ala) and UDP-N-acetylmuramic acid (UNAM) to form UDP-N-acetylmuramyl-L-alanine (UNAM-Ala). The phosphinate inhibitor 1 was designed and prepared as a multisubstrate/transition state analogue. The compound exhibits mixed-type inhibition with respect to all three enzyme substrates (ATP, UNAM, Ala), suggesting that this compound forms dead-end complexes with multiple enzyme states. Results from isothermal titration calorimetry (ITC) studies supported these findings as exothermic binding was observed under conditions with free enzyme (K(d) = 1.80-2.79 microM, 95% CI), enzyme saturated with ATP (K(d) = 0.097-0.108 microM, 95% CI), and enzyme saturated with the reaction product ADP (K(d) = 0.371-0.751 microM, 95% CI). Titrations run under conditions of saturating UNAM or the product UNAM-Ala did not show heat effects consistent with competitive compound binding to the active site. The potent binding affinity observed in the presence of ATP is consistent with the inhibitor design and the proposed Ordered Ter-Ter mechanism for this enzyme; however, the additional binding pathways suggest that the inhibitor can also serve as a product analogue.

  6. Design, synthesis and biological evaluation of uncharged catechol derivatives as selective inhibitors of PTP1B.

    PubMed

    Li, Xiang-Qian; Xu, Qi; Luo, Jiao; Wang, Li-Jun; Jiang, Bo; Zhang, Ren-Shuai; Shi, Da-Yong

    2017-08-18

    Protein tyrosine phosphatases 1B (PTP1B) is a promising and validated therapeutic target to effectively treat T2DM and obesity. However, the development of charged PTP1B inhibitors was restricted due to their low cell permeability and poor bioavailability. Based on active natural products, two series of uncharged catechol derivatives were identified as PTP1B inhibitors by targeting a secondary aryl phosphate-binding site as well as the catalytic site. The most potent inhibitor 22 showed an IC 50 of 0.487 μM against PTP1B and strong selectivity (27-fold) over TCPTP. Kinetic studies were also performed that 22 act as a competitive PTP1B inhibitor. The treatment of C2C12 myotubes with 22 markedly increased the phosphorylation levels of IRβ, Akt and IRS1 phosphorylation. The similarity of its action profiling with that produced by insulin suggested its potential as a new non-insulin-dependent drug candidate. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Development of α-glucosidase inhibitors by room temperature C-C cross couplings of quinazolinones.

    PubMed

    Garlapati, Ramesh; Pottabathini, Narender; Gurram, Venkateshwarlu; Kasani, Kumara Swamy; Gundla, Rambabu; Thulluri, Chiranjeevi; Machiraju, Pavan Kumar; Chaudhary, Avinash B; Addepally, Uma; Dayam, Raveendra; Chunduri, Venkata Rao; Patro, Balaram

    2013-08-07

    Novel quinazolinone based α-glucosidase inhibitors have been developed. For this purpose a virtual screening model has been generated and validated utilizing acarbose as a α-glucosidase inhibitor. Homology modeling, docking, and virtual screening were successfully employed to discover a set of structurally diverse compounds active against α-glucosidase. A search of a 3D database containing 22,500 small molecules using the structure based virtual model yielded ten possible candidates. All ten candidates were N-3-pyridyl-2-cyclopropyl quinazolinone-4-one derivatives, varying at the 6 position. This position was modified by Suzuki-Miyaura cross coupling with aryl, heteroaryl, and alkyl boronic acids. A catalyst screen was performed, and using the best optimal conditions, a series of twenty five compounds was synthesized. Notably, the C-C cross coupling reactions of the 6-bromo-2-cyclopropyl-3-(pyridyl-3-ylmethyl)quinazolin-4(3H)-one precursor have been accomplished at room temperature. A comparison of the relative reactivities of 6-bromo and 6-chloro-2,3-disubstituted quinazolinones with phenyl boronic acid was conducted. An investigation of pre-catalyst loading for the reaction of the 6-bromo-2-cyclopropyl-3-(pyridyl-3-ylmethyl)quinazolin-4(3H)-one substrate was also carried out. Finally, we submitted our compounds to biological assays against α-glucosidase inhibitors. Of these, three hits (compounds 4a, 4t and 4r) were potentially active as α-glucosidase inhibitors and showed activity with IC50 values <20 μM. Based on structural novelty and desirable drug-like properties, 4a was selected for structure-activity relationship study, and thirteen analogs were synthesized. Nine out of thirteen analogs acted as α-glucosidase inhibitors with IC50 values <10 μM. These lead compounds have desirable physicochemical properties and are excellent candidates for further optimization.

  8. Hereditary alpha-1-antitrypsin deficiency and its clinical consequences.

    PubMed

    Fregonese, Laura; Stolk, Jan

    2008-06-19

    Alpha-1-antitrypsin deficiency (AATD) is a genetic disorder that manifests as pulmonary emphysema, liver cirrhosis and, rarely, as the skin disease panniculitis, and is characterized by low serum levels of AAT, the main protease inhibitor (PI) in human serum. The prevalence in Western Europe and in the USA is estimated at approximately 1 in 2,500 and 1 : 5,000 newborns, and is highly dependent on the Scandinavian descent within the population. The most common deficiency alleles in North Europe are PI Z and PI S, and the majority of individuals with severe AATD are PI type ZZ. The clinical manifestations may widely vary between patients, ranging from asymptomatic in some to fatal liver or lung disease in others. Type ZZ and SZ AATD are risk factors for the development of respiratory symptoms (dyspnoea, coughing), early onset emphysema, and airflow obstruction early in adult life. Environmental factors such as cigarette smoking, and dust exposure are additional risk factors and have been linked to an accelerated progression of this condition. Type ZZ AATD may also lead to the development of acute or chronic liver disease in childhood or adulthood: prolonged jaundice after birth with conjugated hyperbilirubinemia and abnormal liver enzymes are characteristic clinical signs. Cirrhotic liver failure may occur around age 50. In very rare cases, necrotizing panniculitis and secondary vasculitis may occur. AATD is caused by mutations in the SERPINA1 gene encoding AAT, and is inherited as an autosomal recessive trait. The diagnosis can be established by detection of low serum levels of AAT and isoelectric focusing. Differential diagnoses should exclude bleeding disorders or jaundice, viral infection, hemochromatosis, Wilson's disease and autoimmune hepatitis. For treatment of lung disease, intravenous alpha-1-antitrypsin augmentation therapy, annual flu vaccination and a pneumococcal vaccine every 5 years are recommended. Relief of breathlessness may be obtained with long

  9. 26 CFR 1.963-6 - Deficiency distribution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) INCOME TAXES Controlled Foreign Corporations § 1.963-6 Deficiency distribution. (a) In general... the election under section 963 applied, but only if the subsequent deficiency distribution meets the... to which such election relates does not apply for such taxable year because of the failure of such...

  10. Negative Impact of Testosterone Deficiency and 5α-Reductase Inhibitors Therapy on Metabolic and Sexual Function in Men.

    PubMed

    Traish, Abdulmaged M

    2017-01-01

    elevated activities of liver function enzymes concomitant with reduction in circulating T levels, worsening erectile dysfunction (ED), and reduced quality of life.Although we have attempted to summarize the current literature pertaining to this critical topic "androgen deficiency" and its impact on men's health and quality of life, there remain many gaps in the knowledge regarding the biochemical pathways that are involved in the pathophysiology of androgen deficiency. We wish to clearly state that there are areas of controversies, including whether age-related androgen deficiency (functional hypogonadism) merits treatment and whether T therapy provided real proven benefits. Finally, considerable debate exists with respect to the potential and purported cardiovascular (CV) risks of treating TD with exogenous T. For brevity sake, we will not discuss in detail the benefits of T therapy in men with TD since this topic is comprehensively covered by Dr. F. Saad's chapter in this book, entitled "Testosterone Therapy and Glucose Homeostasis in Men with Testosterone Deficiency (Hypogonadism)."We have made a concerted effort to address the controversy of T therapy in men with TD in the discussion. However, we wish to acknowledge that these issues will remain a matter of debate for some time to come. Only with advances in fundamental basic science and clinical research, some of these controversial issues may be laid to rest. Nevertheless, we believe that there is considerable body of credible evidence to suggest that T therapy of men with TD is safe and effective and provides a host of health benefits and therefore merits considerations in men with TD, irrespective of the underlying cause or etiology. An additional aspect of androgen deficiency is the drug-induced reduction in 5α-DHT levels by the use of 5α-reductase inhibitors. We also believe that physicians prescribing 5α-reductase inhibitors (i.e., finasteride or dutasteride) for relief of BPH symptoms or treatment of

  11. Mechanism of Inhibition of Hsp90 Dimerization by Gyrase B Inhibitor Coumermycin A1 (C-A1) Revealed by Molecular Dynamics Simulations and Thermodynamic Calculations.

    PubMed

    Cele, Favourite N; Kumalo, Hezekiel; Soliman, Mahmoud E S

    2016-09-01

    Heat shock protein (Hsp) 90 an emerging and attracting target in the anti-HIV drug discovery process due to the key role it plays in the pathogenicity of HIV-1 virus. In this research study, long-range all-atom molecular dynamics simulations were engaged for the bound and the unbound proteins to enhance the understanding of the molecular mechanisms of the Hsp90 dimerization and inhibition. Results evidently showed that coumermycin A1 (C-A1), a recently discovered Hsp90 inhibitor, binds at the dimer's active site of the Hsp90 protein and leads to a substantial parting between dimeric opposed residues, which include Arg591.B, Lys594.A, Ser663.A, Thr653.B, Ala665.A, Thr649.B, Leu646.B and Asn669.A. Significant differences in magnitudes were observed in radius of gyration, root-mean-square deviation and root-mean-square fluctuation, which confirms a reasonably more flexible state in the apo conformation associated with it dimerization. In contrast, the bound conformer of Hsp90 showed less flexibility. This visibly highpoints the inhibition process resulting from the binding of the ligand. These findings were further validated by principal component analysis. We believe that the detailed dynamic analyses of Hsp90 presented in this study, would give an imperative insight and better understanding to the function and mechanisms of inhibition. Furthermore, information obtained from the binding mode of the inhibitor would be of great assistance in the design of more potent inhibitors against the HIV target Hsp90.

  12. CD22 x Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity.

    PubMed

    Jellusova, Julia; Wellmann, Ute; Amann, Kerstin; Winkler, Thomas H; Nitschke, Lars

    2010-04-01

    CD22 and Siglec-G are inhibitory coreceptors for BCR-mediated signaling. Although CD22-deficient mice show increased calcium signaling in their conventional B2 cells and a quite normal B cell maturation, Siglec-G-deficient mice have increased calcium mobilization just in B1 cells and show a large expansion of the B1 cell population. Neither CD22-deficient, nor Siglec-G-deficient mice on a pure C57BL/6 or BALB/c background, respectively, develop autoimmunity. Using Siglec-G x CD22 double-deficient mice, we addressed whether Siglec-G and CD22 have redundant functions. Siglec-G x CD22 double-deficient mice show elevated calcium responses in both B1 cells and B2 cells, increased serum IgM levels and an enlarged population of B1 cells. The enlargement of B1 cell numbers is even higher than in Siglecg(-/-) mice. This expansion seems to happen at the expense of B2 cells, which are reduced in absolute cell numbers, but show an activated phenotype. Furthermore, Siglec-G x CD22 double-deficient mice show a diminished immune response to both thymus-dependent and thymus-independent type II Ags. In contrast, B cells from Siglec-G x CD22 double-deficient mice exhibit a hyperproliferative response to stimulation with several TLR ligands. Aged Siglec-G x CD22 double-deficient mice spontaneously develop anti-DNA and antinuclear autoantibodies. These resulted in a moderate form of immune complex glomerulonephritis. These results show that Siglec-G and CD22 have partly compensatory functions and together are crucial in maintaining the B cell tolerance.

  13. HLA DQB1*06:02 Negative Narcolepsy with Hypocretin/Orexin Deficiency

    PubMed Central

    Han, Fang; Lin, Ling; Schormair, Barbara; Pizza, Fabio; Plazzi, Giuseppe; Ollila, Hanna M.; Nevsimalova, Sona; Jennum, Poul; Knudsen, Stine; Winkelmann, Juliane; Coquillard, Cristin; Babrzadeh, Farbod; Strom, Tim M.; Wang, Chunlin; Mindrinos, Michael; Vina, Marcelo Fernandez; Mignot, Emmanuel

    2014-01-01

    Study Objectives: To identify rare allelic variants and HLA alleles in narcolepsy patients with hypocretin (orexin, HCRT) deficiency but lacking DQB1*06:02. Settings: China (Peking University People's Hospital), Czech Republic (Charles University), Denmark (Golstrup Hospital), Italy (University of Bologna), Korea (Catholic University), and USA (Stanford University). Design: CSF hypocretin-1, DQB1*06:02, clinical and polysomnographic data were collected in narcolepsy patients (552 with and 144 without cataplexy) from 6 sites. Numbers of cases with and without DQB1*06:02 and low CSF hypocretin-1 were compiled. HLA class I (A, B, C), class II (DRBs, DQA1, DQB1, DPA1, and DPB1), and whole exome sequencing were conducted in 9 DQB1*06:02 negative cases with low CSF hypocretin-1. Sanger sequencing of selected exons in DNMT1, HCRT, and MOG was performed to exclude mutations in known narcolepsy-associated genes. Measurements and Results: Classic narcolepsy markers DQB1*06:02 and low CSF hypocretin-1 were found in 87.4% of cases with cataplexy, and in 20.0% without cataplexy. Nine cases (all with cataplexy) were DQB1*06:02 negative with low CSF hypocretin-1, constituting 1.7% [0.8%-3.4%] of all cases with cataplexy and 1.8% [0.8%-3.4%] of cases with low CSF hypocretin independent of cataplexy across sites. Five HLA negative subjects had severe cataplexy, often occurring without clear triggers. Subjects had diverse ethnic backgrounds and HLA alleles at all loci, suggesting no single secondary HLA association. The rare subtype DPB1*0901, and homologous DPB1*10:01 subtype, were present in 5 subjects, suggesting a secondary association with HLA-DP. Preprohypocretin sequencing revealed no mutations beyond one previously reported in a very early onset case. No new MOG or DNMT1 mutations were found, nor were suspicious or private variants in novel genes identified through exome sequencing. Conclusions: Hypocretin, MOG, or DNMT1 mutations are exceptional findings in DQB1

  14. Inhibition of colony-stimulating-factor-1 signaling in vivo with the orally bioavailable cFMS kinase inhibitor GW2580.

    PubMed

    Conway, James G; McDonald, Brad; Parham, Janet; Keith, Barry; Rusnak, David W; Shaw, Eva; Jansen, Marilyn; Lin, Peiyuan; Payne, Alan; Crosby, Renae M; Johnson, Jennifer H; Frick, Lloyd; Lin, Min-Hwa Jasmine; Depee, Scott; Tadepalli, Sarva; Votta, Bart; James, Ian; Fuller, Karen; Chambers, Timothy J; Kull, Frederick C; Chamberlain, Stanley D; Hutchins, Jeff T

    2005-11-01

    Colony-stimulating-factor-1 (CSF-1) signaling through cFMS receptor kinase is increased in several diseases. To help investigate the role of cFMS kinase in disease, we identified GW2580, an orally bioavailable inhibitor of cFMS kinase. GW2580 completely inhibited human cFMS kinase in vitro at 0.06 microM and was inactive against 26 other kinases. GW2580 at 1 microM completely inhibited CSF-1-induced growth of mouse M-NFS-60 myeloid cells and human monocytes and completely inhibited bone degradation in cultures of human osteoclasts, rat calvaria, and rat fetal long bone. In contrast, GW2580 did not affect the growth of mouse NS0 lymphoblastoid cells, human endothelial cells, human fibroblasts, or five human tumor cell lines. GW2580 also did not affect lipopolysaccharide (LPS)-induced TNF, IL-6, and prostaglandin E2 production in freshly isolated human monocytes and mouse macrophages. After oral administration, GW2580 blocked the ability of exogenous CSF-1 to increase LPS-induced IL-6 production in mice, inhibited the growth of CSF-1-dependent M-NFS-60 tumor cells in the peritoneal cavity, and diminished the accumulation of macrophages in the peritoneal cavity after thioglycolate injection. Unexpectedly, GW2580 inhibited LPS-induced TNF production in mice, in contrast to effects on monocytes and macrophages in vitro. In conclusion, GW2580's selective inhibition of monocyte growth and bone degradation is consistent with cFMS kinase inhibition. The ability of GW2580 to chronically inhibit CSF-1 signaling through cFMS kinase in normal and tumor cells in vivo makes GW2580 a useful tool in assessing the role of cFMS kinase in normal and disease processes.

  15. Discovery of potent 2,4-difluoro-linker poly(ADP-ribose) polymerase 1 inhibitors with enhanced water solubility and in vivo anticancer efficacy.

    PubMed

    Chen, Wen-Hua; Song, Shan-Shan; Qi, Ming-Hui; Huan, Xia-Juan; Wang, Ying-Qing; Jiang, Hualiang; Ding, Jian; Ren, Guo-Bin; Miao, Ze-Hong; Li, Jian

    2017-11-01

    Poly (ADP-ribose) polymerase 1 (PARP1) is overexpressed in a variety of cancers, especially in breast and ovarian cancers; tumor cells that are deficient in breast cancer gene 1/2 (BRCA1/2) are highly sensitive to PARP1 inhibition. In this study, we identified a series of 2,4-difluorophenyl-linker analogs (15-55) derived from olaparib as novel PARP1 inhibitors. Four potent analogs 17, 43, 47, and 50 (IC 50 =2.2-4.4 nmol/L) effectively inhibited the proliferation of Chinese hamster lung fibroblast V-C8 cells (IC 50 =3.2-37.6 nmol/L) in vitro, and showed specificity toward BRCA-deficient cells (SI=40-510). The corresponding hydrochloride salts 56 and 57 (based on 43 and 47) were highly water soluble in pH=1.0 buffered salt solutions (1628.2 μg/mL, 2652.5 μg/mL). In a BRCA1-mutated xenograft model, oral administration of compound 56 (30 mg·kg -1 ·d -1 , for 21 d) exhibited more prominent tumor growth inhibition (96.6%) compared with the same dose of olaparib (56.3%); in a BRCA2-mutated xenograft model, oral administration of analog 43 (10 mg·kg -1 ·d -1 , for 28 d) significantly inhibited tumor growth (69.0%) and had no negative effects on the body weights. Additionally, compound 56 exhibited good oral bioavailability (F=32.2%), similar to that of olaparib (F=45.4%). Furthermore, the free base 43 of the hydrochloride salt 56 exhibited minimal hERG inhibition activity (IC 50 =6.64 μmol/L). Collectively, these data demonstrate that compound 56 may be an excellent drug candidate for the treatment of cancer, particularly BRCA-deficient tumors.

  16. Identification and Characterization of a Novel Class of c-Jun N-terminal Kinase Inhibitors

    PubMed Central

    Schepetkin, Igor A.; Kirpotina, Liliya N.; Khlebnikov, Andrei I.; Hanks, Tracey S.; Kochetkova, Irina; Pascual, David W.; Jutila, Mark A.

    2012-01-01

    In efforts to identify novel small molecules with anti-inflammatory properties, we discovered a unique series of tetracyclic indenoquinoxaline derivatives that inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 activation. Compound IQ-1 (11H-indeno[1,2-b]quinoxalin-11-one oxime) was found to be a potent, noncytotoxic inhibitor of pro-inflammatory cytokine [interleukin (IL)-1α, IL-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, interferon-γ, and granulocyte-macrophage colony-stimulating factor] and nitric oxide production by human and murine monocyte/macrophages. Three additional potent inhibitors of cytokine production were identified through further screening of IQ-1 analogs. The sodium salt of IQ-1 inhibited LPS-induced TNF-α and IL-6 production in MonoMac-6 cells with IC50 values of 0.25 and 0.61 μM, respectively. Screening of 131 protein kinases revealed that derivative IQ-3 [11H-indeno[1,2-b]quinoxalin-11-one-O-(2-furoyl)oxime]was a specific inhibitor of the c-Jun N-terminal kinase (JNK) family, with preference for JNK3. This compound, as well as IQ-1 and three additional oxime indenoquinoxalines, were found to be high-affinity JNK inhibitors with nanomolar binding affinity and ability to inhibit c-Jun phosphorylation. Furthermore, docking studies showed that hydrogen bonding interactions of the active indenoquinoxalines with Asn152, Gln155, and Met149 of JNK3 played an important role in enzyme binding activity. Finally, we showed that the sodium salt of IQ-1 had favorable pharmacokinetics and inhibited the ovalbumin-induced CD4+ T-cell immune response in a murine delayed-type hypersensitivity model in vivo. We conclude that compounds with an indenoquinoxaline nucleus can serve as specific small-molecule modulators for mechanistic studies of JNKs as well as a potential leads for the development of anti-inflammatory drugs. PMID:22434859

  17. Identification of an inhibitor of the MurC enzyme, which catalyzes an essential step in the peptidoglycan precursor synthesis pathway.

    PubMed

    Zawadzke, Laura E; Norcia, Michael; Desbonnet, Charlene R; Wang, Hong; Freeman-Cook, Kevin; Dougherty, Thomas J

    2008-02-01

    The pathway for synthesis of the peptidoglycan precursor UDP-N-acetylmuramyl pentapeptide is essential in Gram-positive and Gram-negative bacteria. This pathway has been exploited in the recent past to identify potential new antibiotics as inhibitors of one or more of the Mur enzymes. In the present study, a high-throughput screen was employed to identify potential inhibitors of the Escherichia coli MurC (UDP-N-acetylmuramic acid:L-alanine ligase), the first of four paralogous amino acid-adding enzymes. Inhibition of ATP consumed during the MurC reaction, using an adaptation of a kinase assay format, identified a number of potential inhibitory chemotypes. After nonspecific inhibition testing and chemical attractiveness were assessed, C-1 emerged as a compound for further characterization. The inhibition of MurC by this compound was confirmed in both a kinetic-coupled enzyme assay and a direct nuclear magnetic resonance product detection assay. C-1 was found to be a low micromolar inhibitor of the E. coli MurC reaction, with preferential inhibition by one of two enantiomeric forms. Experiments indicated that it was a competitive inhibitor of ATP binding to the MurC enzyme. Further work with MurC enzymes from several bacterial sources revealed that while the compound was equally effective at inhibiting MurC from genera (Proteus mirabilis and Klebsiella pneumoniae) closely related to E. coli, MurC enzymes from more distant Gram-negative species such as Haemophilus influenzae, Acinetobacter baylyi, and Pseudomonas aeruginosa were not inhibited.

  18. Deficiency of Gpr1 improves steroid hormone abnormality in hyperandrogenized mice.

    PubMed

    Yang, Ya-Li; Sun, Li-Feng; Yu, Yan; Xiao, Tian-Xia; Wang, Bao-Bei; Ren, Pei-Gen; Tang, Hui-Ru; Zhang, Jian V

    2018-05-24

    Polycystic ovary syndrome (PCOS) is a complex genetic disease with multifarious phenotypes. Many researches use dehydroepiandrosterone (DHEA) to induce PCOS in pubertal mouse models. The aim of this study was to investigate the role of GPR1 in dehydroepiandrosterone (DHEA)-induced hyperandrogenized mice. Prepubertal C57BL/6 mice (25 days of age) and Gpr1-deficient mice were each divided into two groups and injected daily with sesame oil with or without DHEA (6 mg/100 g) for 21 consecutive days. Hematoxylin and eosin (H&E) staining was performed to determine the characteristics of the DHEA-treated ovaries. Real-time PCR was used to examine steroid synthesis enzymes gene expression. Granulosa cell was cultured to explore the mechanism of DHEA-induced, GPR1-mediated estradiol secretion. DHEA treatment induced some aspects of PCOS in wild-type mice, such as increased body weight, elevated serum testosterone, increased number of small, cystic, atretic follicles, and absence of corpus luteum in ovaries. However, Gpr1 deficiency significantly attenuated the DHEA-induced weight gain and ovarian phenotype, improving steroidogenesis in ovaries and estradiol synthesis in cultured granulosa cells, partially through mTOR signaling. In conclusion, Gpr1 deficiency leads to the improvement of steroid synthesis in mice hyperandrogenized with DHEA, indicating that GPR1 may be a therapeutic target for DHEA-induced hyperandrogenism.

  19. Cerebral protein kinase C and its mRNA level in apolipoprotein E-deficient mice.

    PubMed

    Hung, M C; Hayase, K; Yoshida, R; Sato, M; Imaizumi, K

    2001-08-10

    It is known that protein kinase C (PKC) activity may be one of the fundamental cellular changes associated with memory function. Apolipoprotein E (apoE) deficiency causes cholinergic deficits and memory impairment. ApoE-deficient mouse has been employed as a serviceable model for studying the relation between apoE and the memory deficit induced by cholinergic impairment. Brain-fatty acid binding protein (b-FABP) might be functional during development of the nervous system. Peroxisome proliferator-activated receptor (PPAR) is involved in the early change in lipid metabolism. We investigated the alterations not only in cerebral PKC activity, but also in the gene expressions of PKC-beta, brain-FABP and PPAR-alpha in apoE-deficient mice. The results showed that there was a lower cerebral membrane-bound PKC activity in the apoE-deficient mice than in its wild type strain (C57BL/6). But there were no significant differences in cytosolic PKC activity. PKC-beta, b-FABP and PPAR-alpha mRNA expressions in cerebrum were lowered in apoE-deficient mice. These findings may be involved in the dysfunction of the brain neurotransmission system in apoE-deficient mouse. Alternatively, these results also suggest that cerebral apoE plays an important role in brain PKC activation by maintaining an appropriate expression of b-FABP and PPAR-alpha mRNAs.

  20. Normalization of Hepatic Homeostasis in the Npc1nmf164 Mouse Model of Niemann-Pick Type C Disease Treated with the Histone Deacetylase Inhibitor Vorinostat.

    PubMed

    Munkacsi, Andrew B; Hammond, Natalie; Schneider, Remy T; Senanayake, Dinindu S; Higaki, Katsumi; Lagutin, Kirill; Bloor, Stephen J; Ory, Daniel S; Maue, Robert A; Chen, Fannie W; Hernandez-Ono, Antonio; Dahlson, Nicole; Repa, Joyce J; Ginsberg, Henry N; Ioannou, Yiannis A; Sturley, Stephen L

    2017-03-17

    Niemann-Pick type C (NP-C) disease is a fatal genetic lipidosis for which there is no Food and Drug Administration (FDA)-approved therapy. Vorinostat, an FDA-approved inhibitor of histone deacetylases, ameliorates lysosomal lipid accumulation in cultured NP-C patient fibroblasts. To assess the therapeutic potential of histone deacetylase inhibition, we pursued these in vitro observations in two murine models of NP-C disease. Npc1 nmf164 mice, which express a missense mutation in the Npc1 gene, were treated intraperitoneally, from weaning, with the maximum tolerated dose of vorinostat (150 mg/kg, 5 days/week). Disease progression was measured via gene expression, liver function and pathology, serum and tissue lipid levels, body weight, and life span. Transcriptome analyses of treated livers indicated multiple changes consistent with reversal of liver dysfunction that typifies NP-C disease. Significant improvements in liver pathology and function were achieved by this treatment regimen; however, NPC1 protein maturation and levels, disease progression, weight loss, and animal morbidity were not detectably altered. Vorinostat concentrations were >200 μm in the plasma compartment of treated animals but were almost 100-fold lower in brain tissue. Apolipoprotein B metabolism and the expression of key components of lipid homeostasis in primary hepatocytes from null ( Npc1 -/- ) and missense ( Npc1 nmf164 ) mutant mice were altered by vorinostat treatment, consistent with a response by these cells independent of the status of the Npc1 locus. These results suggest that HDAC inhibitors have utility to treat visceral NP-C disease. However, it is clear that improved blood-brain barrier penetration will be required to alleviate the neurological symptoms of human NP-C disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Normalization of Hepatic Homeostasis in the Npc1nmf164 Mouse Model of Niemann-Pick Type C Disease Treated with the Histone Deacetylase Inhibitor Vorinostat*

    PubMed Central

    Munkacsi, Andrew B.; Hammond, Natalie; Schneider, Remy T.; Senanayake, Dinindu S.; Higaki, Katsumi; Lagutin, Kirill; Bloor, Stephen J.; Ory, Daniel S.; Maue, Robert A.; Chen, Fannie W.; Hernandez-Ono, Antonio; Dahlson, Nicole; Repa, Joyce J.; Ginsberg, Henry N.; Ioannou, Yiannis A.; Sturley, Stephen L.

    2017-01-01

    Niemann-Pick type C (NP-C) disease is a fatal genetic lipidosis for which there is no Food and Drug Administration (FDA)-approved therapy. Vorinostat, an FDA-approved inhibitor of histone deacetylases, ameliorates lysosomal lipid accumulation in cultured NP-C patient fibroblasts. To assess the therapeutic potential of histone deacetylase inhibition, we pursued these in vitro observations in two murine models of NP-C disease. Npc1nmf164 mice, which express a missense mutation in the Npc1 gene, were treated intraperitoneally, from weaning, with the maximum tolerated dose of vorinostat (150 mg/kg, 5 days/week). Disease progression was measured via gene expression, liver function and pathology, serum and tissue lipid levels, body weight, and life span. Transcriptome analyses of treated livers indicated multiple changes consistent with reversal of liver dysfunction that typifies NP-C disease. Significant improvements in liver pathology and function were achieved by this treatment regimen; however, NPC1 protein maturation and levels, disease progression, weight loss, and animal morbidity were not detectably altered. Vorinostat concentrations were >200 μm in the plasma compartment of treated animals but were almost 100-fold lower in brain tissue. Apolipoprotein B metabolism and the expression of key components of lipid homeostasis in primary hepatocytes from null (Npc1−/−) and missense (Npc1nmf164) mutant mice were altered by vorinostat treatment, consistent with a response by these cells independent of the status of the Npc1 locus. These results suggest that HDAC inhibitors have utility to treat visceral NP-C disease. However, it is clear that improved blood-brain barrier penetration will be required to alleviate the neurological symptoms of human NP-C disease. PMID:28031458

  2. Ketone Bodies as a Possible Adjuvant to Ketogenic Diet in PDHc Deficiency but Not in GLUT1 Deficiency.

    PubMed

    Habarou, F; Bahi-Buisson, N; Lebigot, E; Pontoizeau, C; Abi-Warde, M T; Brassier, A; Le Quan Sang, K H; Broissand, C; Vuillaumier-Barrot, S; Roubertie, A; Boutron, A; Ottolenghi, C; de Lonlay, P

    2018-01-01

    Ketogenic diet is the first line therapy for neurological symptoms associated with pyruvate dehydrogenase deficiency (PDHD) and intractable seizures in a number of disorders, including GLUT1 deficiency syndrome (GLUT1-DS). Because high-fat diet raises serious compliance issues, we investigated if oral L,D-3-hydroxybutyrate administration could be as effective as ketogenic diet in PDHD and GLUT1-DS. We designed a partial or total progressive substitution of KD with L,D-3-hydroxybutyrate in three GLUT1-DS and two PDHD patients. In GLUT1-DS patients, we observed clinical deterioration including increased frequency of seizures and myoclonus. In parallel, ketone bodies in CSF decreased after introducing 3-hydroxybutyrate. By contrast, two patients with PDHD showed clinical improvement as dystonic crises and fatigability decreased under basal metabolic conditions. In one of the two PDHD children, 3-hydroxybutyrate has largely replaced the ketogenic diet, with the latter that is mostly resumed only during febrile illness. Positive direct effects on energy metabolism in PDHD patients were suggested by negative correlation between ketonemia and lactatemia (r 2  = 0.59). Moreover, in cultured PDHc-deficient fibroblasts, the increase of CO 2 production after 14 C-labeled 3-hydroxybutyrate supplementation was consistent with improved Krebs cycle activity. However, except in one patient, ketonemia tended to be lower with 3-hydroxybutyrate administration compared to ketogenic diet. 3-hydroxybutyrate may be an adjuvant treatment to ketogenic diet in PDHD but not in GLUT1-DS under basal metabolic conditions. Nevertheless, ketogenic diet is still necessary in PDHD patients during febrile illness.

  3. Prevalence and Risk Factors for Vitamin C Deficiency in North and South India: A Two Centre Population Based Study in People Aged 60 Years and Over

    PubMed Central

    Ravindran, Ravilla D.; Vashist, Praveen; K. Gupta, Sanjeev; S. Young, Ian; Maraini, Giovanni; Camparini, Monica; Jayanthi, R.; John, Neena; Fitzpatrick, Kathryn E.; Chakravarthy, Usha; Ravilla, Thulasiraj D.; Fletcher, Astrid E.

    2011-01-01

    Background Studies from the UK and North America have reported vitamin C deficiency in around 1 in 5 men and 1 in 9 women in low income groups. There are few data on vitamin C deficiency in resource poor countries. Objectives To investigate the prevalence of vitamin C deficiency in India. Design We carried out a population-based cross-sectional survey in two areas of north and south India. Randomly sampled clusters were enumerated to identify people aged 60 and over. Participants (75% response rate) were interviewed for tobacco, alcohol, cooking fuel use, 24 hour diet recall and underwent anthropometry and blood collection. Vitamin C was measured using an enzyme-based assay in plasma stabilized with metaphosphoric acid. We categorised vitamin C status as deficient (<11 µmol/L), sub-optimal (11–28 µmol/L) and adequate (>28 µmol/L). We investigated factors associated with vitamin C deficiency using multivariable Poisson regression. Results The age, sex and season standardized prevalence of vitamin C deficiency was 73.9% (95% confidence Interval, CI 70.4,77.5) in 2668 people in north India and 45.7% (95% CI 42.5,48.9) in 2970 from south India. Only 10.8% in the north and 25.9% in the south met the criteria for adequate levels. Vitamin C deficiency varied by season, and was more prevalent in men, with increasing age, users of tobacco and biomass fuels, in those with anthropometric indicators of poor nutrition and with lower intakes of dietary vitamin C. Conclusions In poor communities, such as in our study, consideration needs to be given to measures to improve the consumption of vitamin C rich foods and to discourage the use of tobacco. PMID:22163038

  4. Inherited MST1 deficiency underlies susceptibility to EV-HPV infections.

    PubMed

    Crequer, Amandine; Picard, Capucine; Patin, Etienne; D'Amico, Aurelia; Abhyankar, Avinash; Munzer, Martine; Debré, Marianne; Zhang, Shen-Ying; de Saint-Basile, Geneviève; Fischer, Alain; Abel, Laurent; Orth, Gérard; Casanova, Jean-Laurent; Jouanguy, Emmanuelle

    2012-01-01

    Epidermodysplasia verruciformis (EV) is characterized by persistent cutaneous lesions caused by a specific group of related human papillomavirus genotypes (EV-HPVs) in otherwise healthy individuals. Autosomal recessive (AR) EVER1 and EVER2 deficiencies account for two thirds of known cases of EV. AR RHOH deficiency has recently been described in two siblings with EV-HPV infections as well as other infectious and tumoral manifestations. We report here the whole-exome based discovery of AR MST1 deficiency in a 19-year-old patient with a T-cell deficiency associated with EV-HPV, bacterial and fungal infections. MST1 deficiency has recently been described in seven patients from three unrelated kindreds with profound T-cell deficiency and various viral and bacterial infections. The patient was also homozygous for a rare ERCC3 variation. Our findings broaden the clinical range of infections seen in MST1 deficiency and provide a new genetic etiology of susceptibility to EV-HPV infections. Together with the recent discovery of RHOH deficiency, they suggest that T cells are involved in the control of EV-HPVs, at least in some individuals.

  5. Inherited MST1 Deficiency Underlies Susceptibility to EV-HPV Infections

    PubMed Central

    Crequer, Amandine; Picard, Capucine; Patin, Etienne; D’Amico, Aurelia; Abhyankar, Avinash; Munzer, Martine; Debré, Marianne; Zhang, Shen-Ying; de Saint-Basile, Geneviève; Fischer, Alain

    2012-01-01

    Epidermodysplasia verruciformis (EV) is characterized by persistent cutaneous lesions caused by a specific group of related human papillomavirus genotypes (EV-HPVs) in otherwise healthy individuals. Autosomal recessive (AR) EVER1 and EVER2 deficiencies account for two thirds of known cases of EV. AR RHOH deficiency has recently been described in two siblings with EV-HPV infections as well as other infectious and tumoral manifestations. We report here the whole-exome based discovery of AR MST1 deficiency in a 19-year-old patient with a T-cell deficiency associated with EV-HPV, bacterial and fungal infections. MST1 deficiency has recently been described in seven patients from three unrelated kindreds with profound T-cell deficiency and various viral and bacterial infections. The patient was also homozygous for a rare ERCC3 variation. Our findings broaden the clinical range of infections seen in MST1 deficiency and provide a new genetic etiology of susceptibility to EV-HPV infections. Together with the recent discovery of RHOH deficiency, they suggest that T cells are involved in the control of EV-HPVs, at least in some individuals. PMID:22952854

  6. Nuclear Lamin A/C Deficiency Induces Defects in Cell Mechanics, Polarization, and Migration

    PubMed Central

    Lee, Jerry S. H.; Hale, Christopher M.; Panorchan, Porntula; Khatau, Shyam B.; George, Jerry P.; Tseng, Yiider; Stewart, Colin L.; Hodzic, Didier; Wirtz, Denis

    2007-01-01

    Lamin A/C is a major constituent of the nuclear lamina, a thin filamentous protein layer that lies beneath the nuclear envelope. Here we show that lamin A/C deficiency in mouse embryonic fibroblasts (Lmna−/− MEFs) diminishes the ability of these cells to polarize at the edge of a wound and significantly reduces cell migration speed into the wound. Moreover, lamin A/C deficiency induces significant separation of the microtubule organizing center (MTOC) from the nuclear envelope. Investigations using ballistic intracellular nanorheology reveal that lamin A/C deficiency also dramatically affects the micromechanical properties of the cytoplasm. Both the elasticity (stretchiness) and the viscosity (propensity of a material to flow) of the cytoplasm in Lmna−/− MEFs are significantly reduced. Disassembly of either the actin filament or microtubule networks in Lmna+/+ MEFs results in decrease of cytoplasmic elasticity and viscosity down to levels found in Lmna−/− MEFs. Together these results show that both the mechanical properties of the cytoskeleton and cytoskeleton-based processes, including cell motility, coupled MTOC and nucleus dynamics, and cell polarization, depend critically on the integrity of the nuclear lamina, which suggest the existence of a functional mechanical connection between the nucleus and the cytoskeleton. These results also suggest that cell polarization during cell migration requires tight mechanical coupling between MTOC and nucleus, which is mediated by lamin A/C. PMID:17631533

  7. PAI-1 (Plasminogen Activator Inhibitor-1) Expression Renders Alternatively Activated Human Macrophages Proteolytically Quiescent

    PubMed Central

    Hohensinner, Philipp J.; Baumgartner, Johanna; Kral-Pointner, Julia B.; Uhrin, Pavel; Ebenbauer, Benjamin; Thaler, Barbara; Doberer, Konstantin; Stojkovic, Stefan; Demyanets, Svitlana; Fischer, Michael B.; Huber, Kurt; Schabbauer, Gernot; Speidl, Walter S.

    2017-01-01

    Objective— Macrophages are versatile immune cells capable of polarizing into functional subsets depending on environmental stimulation. In atherosclerotic lesions, proinflammatory polarized macrophages are associated with symptomatic plaques, whereas Th2 (T-helper cell type 2) cytokine–polarized macrophages are inversely related with disease progression. To establish a functional cause for these observations, we analyzed extracellular matrix degradation phenotypes in polarized macrophages. Approach and Results— We provide evidence that proinflammatory polarized macrophages rely on membrane-bound proteases including MMP-14 (matrix metalloproteinase-14) and the serine protease uPA (urokinase plasminogen activator) together with its receptor uPAR for extracellular matrix degradation. In contrast, Th2 cytokine alternatively primed macrophages do not show different proteolytic activity in comparison to unpolarized macrophages and lack increased localization of MMP-14 and uPA receptor to the cell membrane. Nonetheless, they express the highest amount of the serine protease uPA. However, uPA activity is blocked by similarly increased expression of its inhibitor PAI-1 (plasminogen activator inhibitor 1). When inhibiting PAI-1 or when analyzing macrophages deficient in PAI-1, Th2 cytokine–polarized macrophages display the same matrix degradation capability as proinflammatory-primed macrophages. Within atherosclerotic lesions, macrophages positive for the alternative activation marker CD206 express high levels of PAI-1. In addition, to test changed tissue remodeling capacities of alternatively activated macrophages, we used a bleomycin lung injury model in mice reconstituted with PAI-1−/− bone marrow. These results supported an enhanced remodeling phenotype displayed by increased fibrosis and elevated MMP activity in the lung after PAI-1 loss. Conclusions— We were able to demonstrate matrix degradation dependent on membrane-bound proteases in proinflammatory

  8. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    PubMed

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  9. Type 1 diabetes in NOD mice unaffected by mast cell deficiency.

    PubMed

    Gutierrez, Dario A; Fu, Wenxian; Schonefeldt, Susann; Feyerabend, Thorsten B; Ortiz-Lopez, Adriana; Lampi, Yulia; Liston, Adrian; Mathis, Diane; Rodewald, Hans-Reimer

    2014-11-01

    Mast cells have been invoked as important players in immune responses associated with autoimmune diseases. Based on in vitro studies, or in vivo through the use of Kit mutant mice, mast cells have been suggested to play immunological roles in direct antigen presentation to both CD4(+) and CD8(+) T cells, in the regulation of T-cell and dendritic cell migration to lymph nodes, and in Th1 versus Th2 polarization, all of which could significantly impact the immune response against self-antigens in autoimmune disease, including type 1 diabetes (T1D). Until now, the role of mast cells in the onset and incidence of T1D has only been indirectly tested through the use of low-specificity mast cell inhibitors and activators, and published studies reported contrasting results. Our three laboratories have generated independently two strains of mast cell-deficient nonobese diabetic (NOD) mice, NOD.Cpa3(Cre/+) (Heidelberg) and NOD.Kit(W-sh/W-sh) (Leuven and Boston), to address the effects of mast cell deficiency on the development of T1D in the NOD strain. Our collective data demonstrate that both incidence and progression of T1D in NOD mice are independent of mast cells. Moreover, analysis of pancreatic lymph node cells indicated that lack of mast cells has no discernible effect on the autoimmune response, which involves both innate and adaptive immune components. Our results demonstrate that mast cells are not involved in T1D in the NOD strain, making their role in this process nonessential and excluding them as potential therapeutic targets. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. Identification of novel inhibitors of Pseudomonas aeruginosa MurC enzyme derived from phage-displayed peptide libraries.

    PubMed

    El Zoeiby, Ahmed; Sanschagrin, François; Darveau, André; Brisson, Jean-Robert; Levesque, Roger C

    2003-03-01

    The machinery of peptidoglycan biosynthesis is an ideal site at which to look for novel antimicrobial targets. Phage display was used to develop novel peptide inhibitors for MurC, an essential enzyme involved in the early steps of biosynthesis of peptidoglycan monomer. We cloned and overexpressed the murA, -B and -C genes from Pseudomonas aeruginosa in the pET expression vector, adding a His-tag to their C termini. The three proteins were overproduced in Escherichia coli and purified to homogeneity in milligram quantities. MurA and -B were combinatorially used to synthesize the MurC substrate UDP-N-acetylmuramate, the identity of which was confirmed by mass spectrometry and nuclear magnetic resonance analysis. Two phage-display libraries were screened against MurC in order to identify peptide ligands to the enzyme. Three rounds of biopanning were carried out, successively increasing elution specificity from round 1 to 3. The third round was accomplished with both non-specific elution and competitive elution with each of the three MurC substrates, UDP-N-acetylmuramic acid (UNAM), ATP and L-alanine. The DNA of 10 phage, selected randomly from each group, was extracted and sequenced, and consensus peptide sequences were elucidated. Peptides were synthesized and tested for inhibition of the MurC-catalysed reaction, and two peptides were shown to be inhibitors of MurC activity with IC(50)s of 1.5 and 0.9 mM, respectively. The powerful selection technique of phage display allowed us to identify two peptide inhibitors of the essential bacterial enzyme MurC. The peptide sequences represent the basis for the synthesis of inhibitory peptidomimetic molecules.

  11. Development of a novel non-radioactive cell-based method for the screening of SGLT1 and SGLT2 inhibitors using 1-NBDG.

    PubMed

    Chang, Hung-Chi; Yang, Su-Fu; Huang, Ching-Chun; Lin, Tzung-Sheng; Liang, Pi-Hui; Lin, Chun-Jung; Hsu, Lih-Ching

    2013-08-01

    Sodium-coupled glucose co-transporters SGLT1 and SGLT2 play important roles in intestinal absorption and renal reabsorption of glucose, respectively. Blocking SGLT2 is a novel mechanism for lowering the blood glucose level by inhibiting renal glucose reabsorption and selective SGLT2 inhibitors are under development for treatment of type 2 diabetes. Furthermore, it has been reported that perturbation of SGLT1 is associated with cardiomyopathy and cancer. Therefore, both SGLT1 and SGLT2 are potential therapeutic targets. Here we report the development of a non-radioactive cell-based method for the screening of SGLT inhibitors using COS-7 cells transiently expressing human SGLT1 (hSGLT1), CHO-K1 cells stably expressing human SGLT2 (hSGLT2), and a novel fluorescent d-glucose analogue 1-NBDG as a substrate. Our data indicate that 1-NBDG can be a good replacement for the currently used isotope-labeled SGLT substrate, (14)C-AMG. The Michaelis constant of 1-NBDG transport (0.55 mM) is similar to that of d-glucose (0.51 mM) and AMG (0.40 mM) transport through hSGLT1. The IC50 values of a SGLT inhibitor phlorizin for hSGLT1 obtained using 1-NBDG and (14)C-AMG were identical (0.11 μM) in our cell-based system. The IC50 values of dapagliflozin, a well-known selective SGLT2 inhibitor, for hSGLT2 and hSGLT1 determined using 1-NBDG were 1.86 nM and 880 nM, respectively, which are comparable to the published results obtained using (14)C-AMG. Compared to (14)C-AMG, the use of 1-NBDG is cost-effective, convenient and potentially more sensitive. Taken together, a non-radioactive system using 1-NBDG has been validated as a rapid and reliable method for the screening of SGLT1 and SGLT2 inhibitors.

  12. Genomic Analysis of Storage Protein Deficiency in Genetically Related Lines of Common Bean (Phaseolus vulgaris)

    PubMed Central

    Pandurangan, Sudhakar; Diapari, Marwan; Yin, Fuqiang; Munholland, Seth; Perry, Gregory E.; Chapman, B. Patrick; Huang, Shangzhi; Sparvoli, Francesca; Bollini, Roberto; Crosby, William L.; Pauls, Karl P.; Marsolais, Frédéric

    2016-01-01

    A series of genetically related lines of common bean (Phaseolus vulgaris L.) integrate a progressive deficiency in major storage proteins, the 7S globulin phaseolin and lectins. SARC1 integrates a lectin-like protein, arcelin-1 from a wild common bean accession. SMARC1N-PN1 is deficient in major lectins, including erythroagglutinating phytohemagglutinin (PHA-E) but not α-amylase inhibitor, and incorporates also a deficiency in phaseolin. SMARC1-PN1 is intermediate and shares the phaseolin deficiency. Sanilac is the parental background. To understand the genomic basis for variations in protein profiles previously determined by proteomics, the genotypes were submitted to short-fragment genome sequencing using an Illumina HiSeq 2000/2500 platform. Reads were aligned to reference sequences and subjected to de novo assembly. The results of the analyses identified polymorphisms responsible for the lack of specific storage proteins, as well as those associated with large differences in storage protein expression. SMARC1N-PN1 lacks the lectin genes pha-E and lec4-B17, and has the pseudogene pdlec1 in place of the functional pha-L gene. While the α-phaseolin gene appears absent, an approximately 20-fold decrease in β-phaseolin accumulation is associated with a single nucleotide polymorphism converting a G-box to an ACGT motif in the proximal promoter. Among residual lectins compensating for storage protein deficiency, mannose lectin FRIL and α-amylase inhibitor 1 genes are uniquely present in SMARC1N-PN1. An approximately 50-fold increase in α-amylase inhibitor like protein accumulation is associated with multiple polymorphisms introducing up to eight potential positive cis-regulatory elements in the proximal promoter specific to SMARC1N-PN1. An approximately 7-fold increase in accumulation of 11S globulin legumin is not associated with variation in proximal promoter sequence, suggesting that the identity of individual proteins involved in proteome rebalancing might

  13. Biophysical Mode-of-Action and Selectivity Analysis of Allosteric Inhibitors of Hepatitis C Virus (HCV) Polymerase.

    PubMed

    Abdurakhmanov, Eldar; Øie Solbak, Sara; Danielson, U Helena

    2017-06-16

    Allosteric inhibitors of hepatitis C virus (HCV) non-structural protein 5B (NS5B) polymerase are effective for treatment of genotype 1, although their mode of action and potential to inhibit other isolates and genotypes are not well established. We have used biophysical techniques and a novel biosensor-based real-time polymerase assay to investigate the mode-of-action and selectivity of four inhibitors against enzyme from genotypes 1b (BK and Con1) and 3a. Two thumb inhibitors (lomibuvir and filibuvir) interacted with all three NS5B variants, although the affinities for the 3a enzyme were low. Of the two tested palm inhibitors (dasabuvir and nesbuvir), only dasabuvir interacted with the 1b variant, and nesbuvir interacted with NS5B 3a. Lomibuvir, filibuvir and dasabuvir stabilized the structure of the two 1b variants, but not the 3a enzyme. The thumb compounds interfered with the interaction between the enzyme and RNA and blocked the transition from initiation to elongation. The two allosteric inhibitor types have different inhibition mechanisms. Sequence and structure analysis revealed differences in the binding sites for 1b and 3a variants, explaining the poor effect against genotype 3a NS5B. The indirect mode-of-action needs to be considered when designing allosteric compounds. The current approach provides an efficient strategy for identifying and optimizing allosteric inhibitors targeting HCV genotype 3a.

  14. Differential muscle hypertrophy is associated with satellite cell numbers and Akt pathway activation following activin type IIB receptor inhibition in Mtm1 p.R69C mice.

    PubMed

    Lawlor, Michael W; Viola, Marissa G; Meng, Hui; Edelstein, Rachel V; Liu, Fujun; Yan, Ke; Luna, Elizabeth J; Lerch-Gaggl, Alexandra; Hoffmann, Raymond G; Pierson, Christopher R; Buj-Bello, Anna; Lachey, Jennifer L; Pearsall, Scott; Yang, Lin; Hillard, Cecilia J; Beggs, Alan H

    2014-06-01

    X-linked myotubular myopathy is a congenital myopathy caused by deficiency of myotubularin. Patients often present with severe perinatal weakness, requiring mechanical ventilation to prevent death from respiratory failure. We recently reported that an activin receptor type IIB inhibitor produced hypertrophy of type 2b myofibers and modest increases of strength and life span in the severely myopathic Mtm1δ4 mouse model of X-linked myotubular myopathy. We have now performed a similar study in the less severely symptomatic Mtm1 p.R69C mouse in hopes of finding greater treatment efficacy. Activin receptor type IIB inhibitor treatment of Mtm1 p.R69C animals produced behavioral and histological evidence of hypertrophy in gastrocnemius muscles but not in quadriceps or triceps. The ability of the muscles to respond to activin receptor type IIB inhibitor treatment correlated with treatment-induced increases in satellite cell number and several muscle-specific abnormalities of hypertrophic signaling. Treatment-responsive Mtm1 p.R69C gastrocnemius muscles displayed lower levels of phosphorylated ribosomal protein S6 and higher levels of phosphorylated eukaryotic elongation factor 2 kinase than were observed in Mtm1 p.R69C quadriceps muscle or in muscles from wild-type littermates. Hypertrophy in the Mtm1 p.R69C gastrocnemius muscle was associated with increased levels of phosphorylated ribosomal protein S6. Our findings indicate that muscle-, fiber type-, and mutation-specific factors affect the response to hypertrophic therapies that will be important to assess in future therapeutic trials. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. DNA repair deficiency sensitizes lung cancer cells to NAD+ biosynthesis blockade.

    PubMed

    Touat, Mehdi; Sourisseau, Tony; Dorvault, Nicolas; Chabanon, Roman M; Garrido, Marlène; Morel, Daphné; Krastev, Dragomir B; Bigot, Ludovic; Adam, Julien; Frankum, Jessica R; Durand, Sylvère; Pontoizeau, Clement; Souquère, Sylvie; Kuo, Mei-Shiue; Sauvaigo, Sylvie; Mardakheh, Faraz; Sarasin, Alain; Olaussen, Ken A; Friboulet, Luc; Bouillaud, Frédéric; Pierron, Gérard; Ashworth, Alan; Lombès, Anne; Lord, Christopher J; Soria, Jean-Charles; Postel-Vinay, Sophie

    2018-04-02

    Synthetic lethality is an efficient mechanism-based approach to selectively target DNA repair defects. Excision repair cross-complementation group 1 (ERCC1) deficiency is frequently found in non-small-cell lung cancer (NSCLC), making this DNA repair protein an attractive target for exploiting synthetic lethal approaches in the disease. Using unbiased proteomic and metabolic high-throughput profiling on a unique in-house-generated isogenic model of ERCC1 deficiency, we found marked metabolic rewiring of ERCC1-deficient populations, including decreased levels of the metabolite NAD+ and reduced expression of the rate-limiting NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT). We also found reduced NAMPT expression in NSCLC samples with low levels of ERCC1. These metabolic alterations were a primary effect of ERCC1 deficiency, and caused selective exquisite sensitivity to small-molecule NAMPT inhibitors, both in vitro - ERCC1-deficient cells being approximately 1,000 times more sensitive than ERCC1-WT cells - and in vivo. Using transmission electronic microscopy and functional metabolic studies, we found that ERCC1-deficient cells harbor mitochondrial defects. We propose a model where NAD+ acts as a regulator of ERCC1-deficient NSCLC cell fitness. These findings open therapeutic opportunities that exploit a yet-undescribed nuclear-mitochondrial synthetic lethal relationship in NSCLC models, and highlight the potential for targeting DNA repair/metabolic crosstalks for cancer therapy.

  16. A novel transmembrane Ser/Thr kinase complexes with protein phosphatase-1 and inhibitor-2.

    PubMed

    Wang, Hong; Brautigan, David L

    2002-12-20

    Protein kinases and protein phosphatases exert coordinated control over many essential cellular processes. Here, we describe the cloning and characterization of a novel human transmembrane protein KPI-2 (Kinase/Phosphatase/Inhibitor-2) that was identified by yeast two-hybrid using protein phosphatase inhibitor-2 (Inh2) as bait. KPI-2 mRNA was predominantly expressed in skeletal muscle. KPI-2 is a 1503-residue protein with two predicted transmembrane helices at the N terminus, a kinase domain, followed by a C-terminal domain. The transmembrane helices were sufficient for targeting proteins to the membrane. KPI-2 kinase domain has about 60% identity with its closest relative, a tyrosine kinase. However, it only exhibited serine/threonine kinase activity in autophosphorylation reactions or with added substrates. KPI-2 kinase domain phosphorylated protein phosphatase-1 (PP1C) at Thr(320), which attenuated PP1C activity. KPI-2 C-terminal domain directly associated with PP1C, and this required a VTF motif. Inh2 associated with KPI-2 C-terminal domain with and without PP1C. Thus, KPI-2 is a kinase with sites to associate with PP1C and Inh2 to form a regulatory complex that is localized to membranes.

  17. Betaine Deficiency in Maize 1

    PubMed Central

    Lerma, Claudia; Rich, Patrick J.; Ju, Grace C.; Yang, Wen-Ju; Hanson, Andrew D.; Rhodes, David

    1991-01-01

    Maize (Zea mays L.) is a betaine-accumulating species, but certain maize genotypes lack betaine almost completely; a single recessive gene has been implicated as the cause of this deficiency (D Rhodes, PJ Rich [1988] Plant Physiol 88: 102-108). This study was undertaken to determine whether betaine deficiency in diverse maize germplasm is conditioned by the same genetic locus, and to define the biochemical lesion(s) involved. Complementation tests indicated that all 13 deficient genotypes tested shared a common locus. One maize population (P77) was found to be segregating for betaine deficiency, and true breeding individuals were used to produce related lines with and without betaine. Leaf tissue of both betaine-positive and betaine-deficient lines readily converted supplied betaine aldehyde to betaine, but only the betaine-containing line was able to oxidize supplied choline to betaine. This locates the lesion in betaine-deficient plants at the choline → betaine aldehyde step of betaine synthesis. Consistent with this location, betaine-deficient plants were shown to have no detectable endogenous pool of betaine aldehyde. PMID:16668098

  18. Effects of MK-886, a 5-lipoxygenase activating protein (FLAP) inhibitor, and 5-lipoxygenase deficiency on the forced swimming behavior of mice

    PubMed Central

    Uz, Tolga; Dimitrijevic, Nikola; Imbesi, Marta; Manev, Hari; Manev, Radmila

    2008-01-01

    A common biological pathway may contribute to the comorbidity of atherosclerosis and depression. Increased activity of the enzymatic 5-lipoxygenase (5-LOX; 5LO) pathway is a contributing factor in atherosclerosis and a 5-LOX inhibitor, MK-886, is beneficial in animal models of atherosclerosis. In the brain, MK-886 increases phosphorylation of the glutamate receptor subunit GluR1, and the increased phosphorylation of this receptor has been associated with antidepressant treatment. In this work, we evaluated the behavioral effects of MK-886 in an automated assay of mouse forced swimming, which identifies antidepressant activity as increased climbing behavior and/or decreased rest time. Whereas a single injection of MK-886 (3 and 10 mg/kg) did not affect forced swimming behaviors assayed 30 min later, 6 daily injections of 3 mg/kg MK-886 slightly increased climbing and significantly reduced rest time in wild-type mice but not in 5-LOX-deficient mice. A diet delivery of MK-886, 4 μg per 100 mg body-weight per day, required three weeks to affect forced swimming; it increased climbing behavior. Climbing behavior was also increased in naive 5-LOX-deficient mice compared to naive wild-type controls. These results suggest that 5-LOX inhibition and deficiency may be associated with antidepressant activity. Increased climbing in a forced swimming assay is a typical outcome of antidepressants that increase noradrenergic and dopaminergic activity. Interestingly, 5-LOX deficiency and MK-886 treatment have been shown to be capable of increasing the behavioral effects of a noradrenaline/dopamine-potentiating drug, cocaine. Future research is needed to evaluate the clinical relevance of our findings. PMID:18403121

  19. COX-1 Inhibitors: Beyond Structure Toward Therapy.

    PubMed

    Vitale, Paola; Panella, Andrea; Scilimati, Antonio; Perrone, Maria Grazia

    2016-07-01

    Biosynthesis of prostaglandins from arachidonic acid (AA) is catalyzed by cyclooxygenase (COX), which exists as COX-1 and COX-2. AA is in turn released from the cell membrane upon neopathological stimuli. COX inhibitors interfere in this catalytic and disease onset process. The recent prominent discovery involvements of COX-1 are mainly in cancer and inflammation. Five classes of COX-1 inhibitors are known up to now and this classification is based on chemical features of both synthetic compounds and substances from natural sources. Physicochemical interactions identification between such molecules and COX-1 active site was achieved through X-ray, mutagenesis experiments, specific assays and docking investigations, as well as through a pharmacometric predictive model building. All these insights allowed the design of new highly selective COX-1 inhibitors to be tested into those disease models in which COX-1 is involved. Particularly, COX-1 is expressed at high levels in the early to advanced stages of human epithelial ovarian cancer, and it also seems to play a pivotal role in cancer progression. The refinement of COX-1 selective inhibitor structure has progressed to the stage that some of the inhibitors described in this review could be considered as promising active principle ingredients of drugs and hence part of specific therapeutic protocols. This review aims to outline achievements, in the last 5 years, dealing with the identification of highly selective synthetic and from plant extracts COX-1 inhibitors and their theranostic use in neuroinflammation and ovarian cancer. Their gastrotoxic effect is also discussed. © 2016 Wiley Periodicals, Inc.

  20. Structure of the metal-dependent deacetylase LpxC from Yersinia enterocolitica complexed with the potent inhibitor CHIR-090 .

    PubMed

    Cole, Kathryn E; Gattis, Samuel G; Angell, Heather D; Fierke, Carol A; Christianson, David W

    2011-01-18

    The first committed step of lipid A biosynthesis is catalyzed by UDP-(3-O-((R)-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase, a metal-dependent deacetylase also known as LpxC. Because lipid A is essential for bacterial viability, the inhibition of LpxC is an appealing therapeutic strategy for the treatment of Gram-negative bacterial infections. Here we report the 1.79 Å resolution X-ray crystal structure of LpxC from Yersinia enterocolitica (YeLpxC) complexed with the potent hydroxamate inhibitor CHIR-090. This enzyme is a nearly identical orthologue of LpxC from Yersinia pestis (99.7% sequence identity), the pathogen that causes bubonic plague. Similar to the inhibition of LpxC from Escherichia coli, CHIR-090 inhibits YeLpxC via a two-step slow, tight-binding mechanism with an apparent K(i) of 0.54 ± 0.14 nM followed by conversion of the E·I to E·I* species with a rate constant of 0.11 ± 0.01 min(-1). The structure of the LpxC complex with CHIR-090 shows that the inhibitor hydroxamate group chelates the active site zinc ion, and the "tail" of the inhibitor binds in the hydrophobic tunnel in the active site. This hydrophobic tunnel is framed by a βαβ subdomain that exhibits significant conformational flexibility as it accommodates inhibitor binding. CHIR-090 displays a 27 mm zone of inhibition against Y. enterocolitica in a Kirby-Bauer antibiotic assay, which is comparable to its reported activity against other Gram-negative species including E. coli and Pseudomonas aeruginosa. This study demonstrates that the inhibition of LpxC should be explored as a potential therapeutic and/or prophylatic response to infection by weaponized Yersinia species.

  1. Downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes

    PubMed Central

    Huang, Shujuan; Huang, Suling; Wang, Xi; Zhang, Qingli; Liu, Jia; Leng, Ying

    2017-01-01

    Dysregulation of lipid metabolism in skeletal muscle is involved in the development of insulin resistance. Mutations in lipin-1, a key lipid metabolism regulator leads to significant systemic insulin resistance in fld mice. However, the function of lipin-1 on lipid metabolism and insulin sensitivity in skeletal muscle is still unclear. Herein we demonstrated that downregulation of lipin-1 in C2C12 myotubes by siRNA transfection suppressed insulin action, characterized by reduced insulin stimulated Akt phosphorylation and glucose uptake. Correspondingly, decreased lipin-1 expression was observed in palmitate-induced insulin resistance in C2C12 myotubes, suggested that lipin-1 might play a role in the etiology of insulin resistance in skeletal muscle. The insulin resistance induced by lipin-1 downregulation was related to the disturbance of lipid homeostasis. Lipin-1 silencing reduced intracellular DAG and TAG levels, but elevated ceramide accumulation in C2C12 myotubes. Moreover, the impaired insulin stimulated Akt phosphorylation and glucose uptake caused by lipin-1 silencing could be blocked by the pretreatment with SPT inhibitor myriocin, ceramide synthase inhibitor FB1, or PP2A inhibitor okadaic acid, suggested that the increased ceramide accumulation might be responsible for the development of insulin resistance induced by lipin-1 silencing in C2C12 myotubes. Meanwhile, decreased lipin-1 expression also impaired mitochondrial function in C2C12 myotubes. Therefore, our study suggests that lipin-1 plays an important role in lipid metabolism and downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes. These results offer a molecular insight into the role of lipin-1 in the development of insulin resistance in skeletal muscle. PMID:28123341

  2. Downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes.

    PubMed

    Huang, Shujuan; Huang, Suling; Wang, Xi; Zhang, Qingli; Liu, Jia; Leng, Ying

    2017-01-01

    Dysregulation of lipid metabolism in skeletal muscle is involved in the development of insulin resistance. Mutations in lipin-1, a key lipid metabolism regulator leads to significant systemic insulin resistance in fld mice. However, the function of lipin-1 on lipid metabolism and insulin sensitivity in skeletal muscle is still unclear. Herein we demonstrated that downregulation of lipin-1 in C2C12 myotubes by siRNA transfection suppressed insulin action, characterized by reduced insulin stimulated Akt phosphorylation and glucose uptake. Correspondingly, decreased lipin-1 expression was observed in palmitate-induced insulin resistance in C2C12 myotubes, suggested that lipin-1 might play a role in the etiology of insulin resistance in skeletal muscle. The insulin resistance induced by lipin-1 downregulation was related to the disturbance of lipid homeostasis. Lipin-1 silencing reduced intracellular DAG and TAG levels, but elevated ceramide accumulation in C2C12 myotubes. Moreover, the impaired insulin stimulated Akt phosphorylation and glucose uptake caused by lipin-1 silencing could be blocked by the pretreatment with SPT inhibitor myriocin, ceramide synthase inhibitor FB1, or PP2A inhibitor okadaic acid, suggested that the increased ceramide accumulation might be responsible for the development of insulin resistance induced by lipin-1 silencing in C2C12 myotubes. Meanwhile, decreased lipin-1 expression also impaired mitochondrial function in C2C12 myotubes. Therefore, our study suggests that lipin-1 plays an important role in lipid metabolism and downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes. These results offer a molecular insight into the role of lipin-1 in the development of insulin resistance in skeletal muscle.

  3. Bruton's Tyrosine Kinase (BTK) and Vav1 Contribute to Dectin1-Dependent Phagocytosis of Candida albicans in Macrophages

    PubMed Central

    Strijbis, Karin; Tafesse, Fikadu G.; Fairn, Gregory D.; Witte, Martin D.; Dougan, Stephanie K.; Watson, Nicki; Spooner, Eric; Esteban, Alexandre; Vyas, Valmik K.; Fink, Gerald R.; Grinstein, Sergio; Ploegh, Hidde L.

    2013-01-01

    Phagocytosis of the opportunistic fungal pathogen Candida albicans by cells of the innate immune system is vital to prevent infection. Dectin-1 is the major phagocytic receptor involved in anti-fungal immunity. We identify two new interacting proteins of Dectin-1 in macrophages, Bruton's Tyrosine Kinase (BTK) and Vav1. BTK and Vav1 are recruited to phagocytic cups containing C. albicans yeasts or hyphae but are absent from mature phagosomes. BTK and Vav1 localize to cuff regions surrounding the hyphae, while Dectin-1 lines the full length of the phagosome. BTK and Vav1 colocalize with the lipid PI(3,4,5)P3 and F-actin at the phagocytic cup, but not with diacylglycerol (DAG) which marks more mature phagosomal membranes. Using a selective BTK inhibitor, we show that BTK contributes to DAG synthesis at the phagocytic cup and the subsequent recruitment of PKCε. BTK- or Vav1-deficient peritoneal macrophages display a defect in both zymosan and C. albicans phagocytosis. Bone marrow-derived macrophages that lack BTK or Vav1 show reduced uptake of C. albicans, comparable to Dectin1-deficient cells. BTK- or Vav1-deficient mice are more susceptible to systemic C. albicans infection than wild type mice. This work identifies an important role for BTK and Vav1 in immune responses against C. albicans. PMID:23825946

  4. Bruton's Tyrosine Kinase (BTK) and Vav1 contribute to Dectin1-dependent phagocytosis of Candida albicans in macrophages.

    PubMed

    Strijbis, Karin; Tafesse, Fikadu G; Fairn, Gregory D; Witte, Martin D; Dougan, Stephanie K; Watson, Nicki; Spooner, Eric; Esteban, Alexandre; Vyas, Valmik K; Fink, Gerald R; Grinstein, Sergio; Ploegh, Hidde L

    2013-01-01

    Phagocytosis of the opportunistic fungal pathogen Candida albicans by cells of the innate immune system is vital to prevent infection. Dectin-1 is the major phagocytic receptor involved in anti-fungal immunity. We identify two new interacting proteins of Dectin-1 in macrophages, Bruton's Tyrosine Kinase (BTK) and Vav1. BTK and Vav1 are recruited to phagocytic cups containing C. albicans yeasts or hyphae but are absent from mature phagosomes. BTK and Vav1 localize to cuff regions surrounding the hyphae, while Dectin-1 lines the full length of the phagosome. BTK and Vav1 colocalize with the lipid PI(3,4,5)P3 and F-actin at the phagocytic cup, but not with diacylglycerol (DAG) which marks more mature phagosomal membranes. Using a selective BTK inhibitor, we show that BTK contributes to DAG synthesis at the phagocytic cup and the subsequent recruitment of PKCε. BTK- or Vav1-deficient peritoneal macrophages display a defect in both zymosan and C. albicans phagocytosis. Bone marrow-derived macrophages that lack BTK or Vav1 show reduced uptake of C. albicans, comparable to Dectin1-deficient cells. BTK- or Vav1-deficient mice are more susceptible to systemic C. albicans infection than wild type mice. This work identifies an important role for BTK and Vav1 in immune responses against C. albicans.

  5. Testing the hypothesis that vitamin C deficiency is a risk factor for clozapine-induced agranulocytosis using guinea pigs and ODS rats.

    PubMed

    Ip, Julia; Wilson, John X; Uetrecht, Jack P

    2008-04-01

    The use of clozapine is limited by a relatively high incidence of drug-induced agranulocytosis. Clozapine is oxidized by bone marrow cells to a reactive nitrenium ion. Although many idiosyncratic drug reactions are immune-mediated, the fact that patients with a history of clozapine-induced agranulocytosis do not immediately develop agranulocytosis on rechallenge suggests that some other factor may be responsible for the idiosyncratic nature of this reaction. The reactive nitrenium ion is very rapidly reduced back to clozapine by vitamin C, and many schizophrenic patients are vitamin C deficient. We set out to test the hypothesis that vitamin C deficiency is a major risk factor for clozapine-induced agranulocytosis using a vitamin C deficient guinea pig model. Although the vitamin C deficient guinea pigs did not develop agranulocytosis, the amount of clozapine covalent binding in these animals was less than we had previously observed in samples from rats and humans. Therefore, we studied ODS rats that also cannot synthesize vitamin C. Vitamin C deficient ODS rats also did not develop agranulocytosis, and furthermore, although covalent binding in the bone marrow was greater than that in the guinea pig, it was not increased in the vitamin C deficient ODS rats relative to ODS rats that had adequate vitamin C in their diet. Therefore, it is very unlikely that vitamin C deficiency is a major risk factor for clozapine-induced agranulocytosis.

  6. Autism and Folate Deficiency

    DTIC Science & Technology

    2010-05-01

    social interaction that remains to be characterized more fully. Conclusion Ablation of genes in the folate pathway may result in abnormal adult...W81XWH-09-1-0246 TITLE: Autism and Folate Deficiency PRINCIPAL INVESTIGATOR: Richard H. Finnell, Ph.D...5a. CONTRACT NUMBER W81XWH-09-1-0246 Autism and Folate Deficiency 5b. GRANT NUMBER AR080064-Concept Award 5c. PROGRAM ELEMENT NUMBER

  7. Early Clinical Diagnosis of PC1/3 Deficiency in a Patient With a Novel Homozygous PCSK1 Splice-Site Mutation.

    PubMed

    Härter, Bettina; Fuchs, Irene; Müller, Thomas; Akbulut, Ulas Emre; Cakir, Murat; Janecke, Andreas R

    2016-04-01

    Autosomal recessive proprotein convertase 1/3 (PC1/3) deficiency, caused by mutations in the PCSK1 gene, is characterized by severe congenital malabsorptive diarrhea, early-onset obesity, and certain endocrine abnormalities. We suspected PC1/3 deficiency in a 4-month-old girl based on the presence of congenital diarrhea and polyuria. Sequencing the whole coding region and splice sites detected a novel homozygous PCSK1 splice-site mutation, c.544-2A>G, in the patient. The mutation resulted in the skipping of exon 5, the generation of a premature termination codon, and nonsense-mediated PCSK1 messenger ribonucleic acid decay, which was demonstrated in complementary DNA derived from fibroblasts.

  8. Reduced migration of MLH1 deficient colon cancer cells depends on SPTAN1.

    PubMed

    Hinrichsen, Inga; Ernst, Benjamin Philipp; Nuber, Franziska; Passmann, Sandra; Schäfer, Dieter; Steinke, Verena; Friedrichs, Nicolaus; Plotz, Guido; Zeuzem, Stefan; Brieger, Angela

    2014-01-24

    Defects in the DNA mismatch repair (MMR) protein MLH1 are frequently observed in sporadic and hereditary colorectal cancers (CRC). Affected tumors generate much less metastatic potential than the MLH1 proficient forms. Although MLH1 has been shown to be not only involved in postreplicative MMR but also in several MMR independent processes like cytoskeletal organization, the connection between MLH1 and metastasis remains unclear. We recently identified non-erythroid spectrin αII (SPTAN1), a scaffolding protein involved in cell adhesion and motility, to interact with MLH1. In the current study, the interaction of MLH1 and SPTAN1 and its potential consequences for CRC metastasis was evaluated. Nine cancer cell lines as well as fresh and paraffin embedded colon cancer tissue from 12 patients were used in gene expression studies of SPTAN1 and MLH1. Co-expression of SPTAN1 and MLH1 was analyzed by siRNA knock down of MLH1 in HeLa, HEK293, MLH1 positive HCT116, SW480 and LoVo cells. Effects on cellular motility were determined in MLH1 deficient HCT116 and MLH1 deficient HEK293T compared to their MLH1 proficient sister cells, respectively. MLH1 deficiency is clearly associated with SPTAN1 reduction. Moreover, siRNA knock down of MLH1 decreased the mRNA level of SPTAN1 in HeLa, HEK293 as well as in MLH1 positive HCT116 cells, which indicates a co-expression of SPTAN1 by MLH1. In addition, cellular motility of MLH1 deficient HCT116 and MLH1 deficient HEK293T cells was impaired compared to the MLH1 proficient sister clones. Consequently, overexpression of SPTAN1 increased migration of MLH1 deficient cells while knock down of SPTAN1 decreased cellular mobility of MLH1 proficient cells, indicating SPTAN1-dependent migration ability. These data suggest that SPTAN1 levels decreased in concordance with MLH1 reduction and impaired cellular mobility in MLH1 deficient colon cancer cells. Therefore, aggressiveness of MLH1-positive CRC might be related to SPTAN1.

  9. Reduced migration of MLH1 deficient colon cancer cells depends on SPTAN1

    PubMed Central

    2014-01-01

    Introduction Defects in the DNA mismatch repair (MMR) protein MLH1 are frequently observed in sporadic and hereditary colorectal cancers (CRC). Affected tumors generate much less metastatic potential than the MLH1 proficient forms. Although MLH1 has been shown to be not only involved in postreplicative MMR but also in several MMR independent processes like cytoskeletal organization, the connection between MLH1 and metastasis remains unclear. We recently identified non-erythroid spectrin αII (SPTAN1), a scaffolding protein involved in cell adhesion and motility, to interact with MLH1. In the current study, the interaction of MLH1 and SPTAN1 and its potential consequences for CRC metastasis was evaluated. Methods Nine cancer cell lines as well as fresh and paraffin embedded colon cancer tissue from 12 patients were used in gene expression studies of SPTAN1 and MLH1. Co-expression of SPTAN1 and MLH1 was analyzed by siRNA knock down of MLH1 in HeLa, HEK293, MLH1 positive HCT116, SW480 and LoVo cells. Effects on cellular motility were determined in MLH1 deficient HCT116 and MLH1 deficient HEK293T compared to their MLH1 proficient sister cells, respectively. Results MLH1 deficiency is clearly associated with SPTAN1 reduction. Moreover, siRNA knock down of MLH1 decreased the mRNA level of SPTAN1 in HeLa, HEK293 as well as in MLH1 positive HCT116 cells, which indicates a co-expression of SPTAN1 by MLH1. In addition, cellular motility of MLH1 deficient HCT116 and MLH1 deficient HEK293T cells was impaired compared to the MLH1 proficient sister clones. Consequently, overexpression of SPTAN1 increased migration of MLH1 deficient cells while knock down of SPTAN1 decreased cellular mobility of MLH1 proficient cells, indicating SPTAN1-dependent migration ability. Conclusions These data suggest that SPTAN1 levels decreased in concordance with MLH1 reduction and impaired cellular mobility in MLH1 deficient colon cancer cells. Therefore, aggressiveness of MLH1-positive CRC might be

  10. Maternal vitamin C deficiency does not reduce hippocampal volume and β-tubulin III intensity in prenatal Guinea pigs.

    PubMed

    Hansen, Stine N; Schjoldager, Janne G; Paidi, Maya D; Lykkesfeldt, Jens; Tveden-Nyborg, Pernille

    2016-07-01

    Marginal vitamin C (vitC) deficiency affects 5% to 10% of adults including subpopulations such as pregnant women and newborns. Animal studies link vitC deficiency to deleterious effects on the developing brain, but exactly how the brain adapts to vitC deficiency and the mechanisms behind the observed deficits remain largely unknown. We hypothesized that vitC deficiency in utero may lead to a decreased neuronal maturation and increased cellular death giving rise to alterations of the hippocampal morphology in a guinea pig model. Brains from prenatal guinea pig pups (n=9-10 in each group) subjected to either a sufficient (918mg vitC/kg feed) or deficient (100mg vitC/kg feed) maternal dietary regimen were assessed with regards to hippocampal volume and β-tubulin isotype III staining intensity at 2 gestational time points (45 and 56). We found a distinct differential regional growth pattern of the hippocampus with a clear effect of gestational age, whereas vitC status did not affect either investigated parameters. Within hippocampal subdivisions, the overall expansion of the hippocampus from gestational day 45 to 56 was found to reside in the dentate gyrus. In conclusion, the present study found that hippocampal volume and β-tubulin isotype III intensity in the prenatal guinea pig were influenced by gestational day but not by maternal vitC intake. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Therapeutics: Gene Therapy for Alpha-1 Antitrypsin Deficiency.

    PubMed

    Gruntman, Alisha M; Flotte, Terence R

    2017-01-01

    This review seeks to give an overview of alpha-1 antitrypsin deficiency, including the different disease phenotypes that it encompasses. We then describe the different therapeutic endeavors that have been undertaken to address these different phenotypes. Lastly we discuss future potential therapeutics, such as genome editing, and how they may play a role in treating alpha-1 antitrypsin deficiency.

  12. Tofacitinib and analogs as inhibitors of the histone kinase PRK1 (PKN1).

    PubMed

    Ostrovskyi, Dmytro; Rumpf, Tobias; Eib, Julia; Lumbroso, Alexandre; Slynko, Inna; Klaeger, Susan; Heinzlmeir, Stephanie; Forster, Michael; Gehringer, Matthias; Pfaffenrot, Ellen; Bauer, Silke Mona; Schmidtkunz, Karin; Wenzler, Sandra; Metzger, Eric; Kuster, Bernhard; Laufer, Stefan; Schüle, Roland; Sippl, Wolfgang; Breit, Bernhard; Jung, Manfred

    2016-09-01

    The histone kinase PRK1 has been identified as a potential target to combat prostate cancer but selective PRK1 inhibitors are lacking. The US FDA -approved JAK1-3 inhibitor tofacitinib also potently inhibits PRK1 in vitro. We show that tofacitinib also inhibits PRK1 in a cellular setting. Using tofacitinib as a starting point for structure-activity relationship studies, we identified a more potent and another more selective PRK1 inhibitor compared with tofacitinib. Furthermore, we found two potential PRK1/JAK3-selectivity hotspots. The identified inhibitors and the selectivity hotspots lay the basis for the development of selective PRK1 inhibitors. The identification of PRK1, but also of other cellular tofacitinib targets, has implications on its clinical use and on future development of tofacitinib-like JAK inhibitors. [Formula: see text].

  13. Alcohol and B1 vitamin deficiency-related stillbirths.

    PubMed

    Bâ, Abdoulaye

    2009-05-01

    The present study attempts to determine whether prenatal thiamine (B1 vitamin) deficiency and prenatal alcohol exposure are risk factors for stillbirths. From conception to parturition, Wistar rat dams were exposed to the following treatments: (1) Rat dams consuming a thiamine-deficient diet; (2) 12% alcohol/water drinking mothers; (3) mothers drinking 12% alcohol/water + thiamine hydrochloride mixture. Appropriate pair-fed controls and ad libitum controls were assessed. Gestation outcome and fetal parameters, including spontaneous abortion, still-born fetuses, litter size and birth weight, were assessed from the dams of each experimental group. Both alcohol and thiamine deficiency during pregnancy increased fetal death (48.26%vs. 84.47%), reduced litter size (44.54%vs. 72.7%), respectively, and lowered birth weight. Thiamine administration reversed the effects of alcohol-induced fetal death, suggesting that a part of deleterious actions of alcohol on fetal death was mediated by thiamine deficiency. Prenatal thiamine deficiency increased singularly spontaneous abortion with abundant bleeding (40%), rising the occurrence of stillbirth. Such a pathology was not observed in alcohol group. The results indexed thiamine deficiency as a potent risk factor for stillbirths. The vitamin supply during pregnancy prevents stillbirths related to chronic alcoholism and different facets of malnutrition.

  14. 13C-Labeled-Starch Breath Test in Congenital Sucrase-isomaltase Deficiency.

    PubMed

    Robayo-Torres, Claudia C; Diaz-Sotomayor, Marisela; Hamaker, Bruce R; Baker, Susan S; Chumpitazi, Bruno P; Opekun, Antone R; Nichols, Buford L

    2018-06-01

    Human starch digestion is a multienzyme process involving 6 different enzymes: salivary and pancreatic α-amylase; sucrase and isomaltase (from sucrose-isomaltase [SI]), and maltase and glucoamylase (from maltase-glucoamylase [MGAM]). Together these enzymes cleave starch to smaller molecules ultimately resulting in the absorbable monosaccharide glucose. Approximately 80% of all mucosal maltase activity is accounted for by SI and the reminder by MGAM. Clinical studies suggest that starch may be poorly digested in those with congenital sucrase-isomaltase deficiency (CSID). Poor starch digestion occurs in individuals with CSID and can be documented using a noninvasive C-breath test (BT). C-Labled starch was used as a test BT substrate in children with CSID. Sucrase deficiency was previously documented in study subjects by both duodenal biopsy enzyme assays and C-sucrose BT. Breath CO2 was quantitated at intervals before and after serial C-substrate loads (glucose followed 75 minutes later by starch). Variations in metabolism were normalized against C-glucose BT (coefficient of glucose absorption). Control subjects consisted of healthy family members and a group of children with functional abdominal pain with biopsy-proven sucrase sufficiency. Children with CSID had a significant reduction of C-starch digestion mirroring that of their duodenal sucrase and maltase activity and C-sucrase BT. In children with CSID, starch digestion may be impaired. In children with CSID, starch digestion correlates well with measures of sucrase activity.

  15. Molecular basis underlying resistance to Mps1/TTK inhibitors

    PubMed Central

    Koch, A; Maia, A; Janssen, A; Medema, R H

    2016-01-01

    Mps1/TTK is a dual-specificity kinase, with an essential role in mitotic checkpoint signaling, which has emerged as a potential target in cancer therapy. Several Mps1/TTK small-molecule inhibitors have been described that exhibit promising activity in cell culture and xenograft models. Here, we investigated whether cancer cells can develop resistance to these drugs. To this end, we treated various cancer cell lines with sublethal concentrations of a potent Mps1/TTK inhibitor in order to isolate inhibitor-resistant monoclonal cell lines. We identified four point mutations in the catalytic domain of Mps1/TTK that gave rise to inhibitor resistance but retained wild-type catalytic activity. Interestingly, cross-resistance of the identified mutations to other Mps1/TTK inhibitors is limited. Our studies predict that Mps1/TTK inhibitor-resistant tumor cells can arise through the acquisition of mutations in the adenosine triphosphate-binding pocket of the kinase that prevent stable binding of the inhibitors. In addition, our results suggest that combinations of inhibitors could be used to prevent acquisition of drug resistance. Interestingly, cross-resistance seems nonspecific for inhibitor scaffolds, a notion that can be exploited in future drug design to evict possible resistance mutations during clinical treatment. PMID:26364596

  16. Molecular basis underlying resistance to Mps1/TTK inhibitors.

    PubMed

    Koch, A; Maia, A; Janssen, A; Medema, R H

    2016-05-12

    Mps1/TTK is a dual-specificity kinase, with an essential role in mitotic checkpoint signaling, which has emerged as a potential target in cancer therapy. Several Mps1/TTK small-molecule inhibitors have been described that exhibit promising activity in cell culture and xenograft models. Here, we investigated whether cancer cells can develop resistance to these drugs. To this end, we treated various cancer cell lines with sublethal concentrations of a potent Mps1/TTK inhibitor in order to isolate inhibitor-resistant monoclonal cell lines. We identified four point mutations in the catalytic domain of Mps1/TTK that gave rise to inhibitor resistance but retained wild-type catalytic activity. Interestingly, cross-resistance of the identified mutations to other Mps1/TTK inhibitors is limited. Our studies predict that Mps1/TTK inhibitor-resistant tumor cells can arise through the acquisition of mutations in the adenosine triphosphate-binding pocket of the kinase that prevent stable binding of the inhibitors. In addition, our results suggest that combinations of inhibitors could be used to prevent acquisition of drug resistance. Interestingly, cross-resistance seems nonspecific for inhibitor scaffolds, a notion that can be exploited in future drug design to evict possible resistance mutations during clinical treatment.

  17. α1-Proteinase inhibitor (human) in the treatment of hereditary emphysema secondary to α1-antitrypsin deficiency: number and costs of years of life gained.

    PubMed

    Sclar, David Alexander; Evans, Marc A; Robison, Linda M; Skaer, Tracy L

    2012-05-01

    α(1)-Antitrypsin deficiency (α-ATD) is a disorder inherited in an autosomal recessive pattern, with co-dominant alleles known as the protease inhibitor system (Pi). The main function of α(1)-antitrypsin (α-AT) is to protect the lungs against a powerful elastase released from neutrophil leucocytes. α-ATD typically presents with a serum α-AT level of <50 mg/dL. In severe α-ATD, phenotype PiZZ, protection of the lungs is compromised, leading to an accelerated decline in forced expiratory volume in 1 second (FEV(1)). As a result, a patient may develop pulmonary emphysema of the panacinar type at a young age (third to fourth decades of life), with cigarette smoking being the most significant additional risk factor. It has been shown that weekly or monthly infusion of human α-AT is effective in raising serum α-AT levels to desired levels (>80 mg/dL), with few, if any, adverse effects. The present study was designed to discern the number of years of life gained, and the expense per year of life gained, associated with use of α-AT augmentation therapy (α(1)-proteinase inhibitor [human]), relative to 'no therapeutic intervention' in persons with α-ATD. Monte Carlo simulation (MCS) was used to: (i) estimate the number of years of life gained; and (ii) estimate the health service expenditures per year of life gained for persons receiving, or not receiving, α-AT augmentation therapy. MCS afforded a decision-analytical framework parameterized with both stochastic (random) and deterministic (fixed) components, and yielded a fiscal risk-profile for each simulated cohort of interest (eight total: by sex, smoking status [non-smoker; or past use (smoker)]; and use of α-AT augmentation therapy). The stochastic components employed in the present inquiry were: (i) age-specific body weight, and height; (ii) age-specific mortality; and (iii) the probability distribution for receipt of a lung transplant, as a function of FEV(1). The deterministic components employed in

  18. Toxoplasma gondii infection inhibits Th17-mediated spontaneous development of arthritis in interleukin-1 receptor antagonist-deficient mice.

    PubMed

    Washino, Takuya; Moroda, Masataka; Iwakura, Yoichiro; Aosai, Fumie

    2012-04-01

    Interleukin 1 receptor antagonist (IL-1Ra)-deficient BALB/c mice develop spontaneous arthritis resembling human rheumatoid arthritis. We herein report that infection with Toxoplasma gondii, an intracellular protozoan, is capable of ameliorating the spontaneous development of arthritis in IL-1Ra-deficient mice. The onset of arthritis development was delayed and the severity score of arthritis was significantly suppressed in T. gondii-infected mice. Expression of IL-12p40 mRNA from CD11c(+) cells of mesenteric lymph nodes (mLN) and spleen markedly increased at 1 week after peroral infection. While CD11c(+) cells also produced IL-10, IL-1β, and IL-6, CD4(+) T cells from T. gondii-infected mice expressed significantly high levels of T-bet and gamma interferon (IFN-γ) mRNA in both mLN and spleen. Levels of GATA-3/IL-4 mRNA or RORγt/IL-17 mRNA decreased in the infected mice, indicating Th1 cell polarization and the reduction of Th2 and Th17 cell polarization. The severity of arthritis was related to Th1 cell polarization accompanied by Th17 cell reduction, demonstrating the protective role of the T. gondii-derived Th1 response against Th17 cell-mediated arthritis in IL-1Ra-deficient mice.

  19. Design and evaluation of 1,7-naphthyridones as novel KDM5 inhibitors.

    PubMed

    Labadie, Sharada S; Dragovich, Peter S; Cummings, Richard T; Deshmukh, Gauri; Gustafson, Amy; Han, Ning; Harmange, Jean-Christophe; Kiefer, James R; Li, Yue; Liang, Jun; Liederer, Bianca M; Liu, Yichin; Manieri, Wanda; Mao, Wiefeng; Murray, Lesley; Ortwine, Daniel F; Trojer, Patrick; VanderPorten, Erica; Vinogradova, Maia; Wen, Li

    2016-09-15

    Features from a high throughput screening (HTS) hit and a previously reported scaffold were combined to generate 1,7-naphthyridones as novel KDM5 enzyme inhibitors with nanomolar potencies. These molecules exhibited high selectivity over the related KDM4C and KDM2B isoforms. An X-ray co-crystal structure of a representative molecule bound to KDM5A showed that these inhibitors are competitive with the co-substrate (2-oxoglutarate or 2-OG). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Mixture-based combinatorial libraries from small individual peptide libraries: a case study on α1-antitrypsin deficiency.

    PubMed

    Chang, Yi-Pin; Chu, Yen-Ho

    2014-05-16

    The design, synthesis and screening of diversity-oriented peptide libraries using a "libraries from libraries" strategy for the development of inhibitors of α1-antitrypsin deficiency are described. The major buttress of the biochemical approach presented here is the use of well-established solid-phase split-and-mix method for the generation of mixture-based libraries. The combinatorial technique iterative deconvolution was employed for library screening. While molecular diversity is the general consideration of combinatorial libraries, exquisite design through systematic screening of small individual libraries is a prerequisite for effective library screening and can avoid potential problems in some cases. This review will also illustrate how large peptide libraries were designed, as well as how a conformation-sensitive assay was developed based on the mechanism of the conformational disease. Finally, the combinatorially selected peptide inhibitor capable of blocking abnormal protein aggregation will be characterized by biophysical, cellular and computational methods.

  1. Evaluation of protein C and protein S levels in patients with diabetes mellitus receiving therapy with statins and ACE inhibitors or angiotensin II receptor blockers.

    PubMed

    Aktaş, Şerife; Uçak, Sema; Kurt, Fatma; Taşdemir, Mehmet; Kutlu, Orkide; Eker, Pınar

    2018-01-01

    To evaluate protein C, protein S level in patients with diabetes mellitus receiving statin and ACE inhibitor/ARB therapy. 95 patients were included in the study and divided into four groups depending on the use of statin and ACE inhibitor/ARB therapy. Group 1 comprised of patients receiving statin therapy (n = 15), Group 2 comprised of patients receiving ACE inhibitor/ARB therapy (n = 31), Group 3 comprised of patients receiving statin and ACE inhibitor/ARB therapy (n = 23), and Group 4 comprised of patients who did not receive either statin or ACE inhibitor/ARB therapy (n = 26). These four groups were compared with respect to protein C, protein S, fibrinogen, D-dimer, INR, and aPTT levels. There were statistically significant differences with respect to protein C levels. Group 1 and group 2 had higher protein C levels compared with group 4. (p < .01). Similarly, Group 3 had higher protein C levels compared with group 4. (p < .01). There was no significant difference between the groups with respect to protein S, INR, aPTT, and D-dimer levels. Diabetic patients receiving statin or ACE inhibitor/ARB therapy had higher protein C levels. Use of statin and ACE inhibitor/ARB therapy in diabetic patients decrease hypercoagulability and therefore could reduce the occurrence of cardiovascular events. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. BCM-95 and (2-hydroxypropyl)-β-cyclodextrin reverse autophagy dysfunction and deplete stored lipids in Sap C-deficient fibroblasts.

    PubMed

    Tatti, Massimo; Motta, Marialetizia; Scarpa, Susanna; Di Bartolomeo, Sabrina; Cianfanelli, Valentina; Tartaglia, Marco; Salvioli, Rosa

    2015-08-01

    Saposin (Sap) C deficiency is a rare variant form of Gaucher disease caused by impaired Sap C expression or accelerated degradation, and associated with accumulation of glucosylceramide and other lipids in the endo/lysosomal compartment. No effective therapies are currently available for the treatment of Sap C deficiency. We previously reported that a reduced amount and enzymatic activity of cathepsin (Cath) B and Cath D, and defective autophagy occur in Sap C-deficient fibroblasts. Here, we explored the use of two compounds, BCM-95, a curcumin derivative, and (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), to improve lysosomal function of Sap C-deficient fibroblasts. Immunofluorescence and biochemical studies documented that each compound promotes an increase of the expression levels and activities of Cath B and Cath D, and efficient clearance of cholesterol (Chol) and ceramide (Cer) in lysosomes. We provide evidence that BCM-95 and HP-β-CD enhance lysosomal function promoting autophagic clearance capacity and lysosome reformation. Our findings suggest a novel pharmacological approach to Sap C deficiency directed to treat major secondary pathological aspects in this disorder. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Cyclooxygenase-2 mediates the febrile response of mice to interleukin-1beta.

    PubMed

    Li, S; Ballou, L R; Morham, S G; Blatteis, C M

    2001-08-10

    Various lines of evidence have implicated cyclooxygenase (COX)-2 as a modulator of the fever induced by the exogenous pyrogen lipopolysaccharide (LPS). Thus, treatment with specific inhibitors of COX-2 suppresses the febrile response without affecting basal body (core) temperature (T(c)). Furthermore, COX-2 gene-ablated mice are unable to develop a febrile response to intraperitoneal (i.p.) LPS, whereas their COX-1-deficient counterparts produce fevers not different from their wild-type (WT) controls. To extend the apparently critical role of COX-2 for LPS-induced fevers to fevers produced by endogenous pyrogens, we studied the thermal responses of COX-1- and COX-2 congenitally deficient mice to i.p. and intracerebroventricular (i.c.v.) injections of recombinant murine (rm) interleukin (IL)-1beta. We also assessed the effects of one selective COX-1 inhibitor, SC-560, and two selective COX-2 inhibitors, nimesulide (NIM) and dimethylfuranone (DFU), on the febrile responses of WT and COX-1(-/-) mice to LPS and rmIL-1beta, i.p. Finally, we verified the integrity of the animals' responses to PGE2, i.c.v. I.p. and i.c.v. rmIL-1beta induced similar fevers in WT and COX-1 knockout mice, but provoked no rise in the T(c)s of COX-2 null mutants. The fever produced in WT mice by i.p. LPS was not affected by SC-560, but it was attenuated and abolished by NIM and DFU, respectively, while that caused by i.p. rmIL-1beta was converted into a T(c) fall by DFU. There were no differences in the responses to i.c.v. PGE2 among the WT and COX knockout mice. These results, therefore, further support the notion that the production of PGE2 in response to pyrogens is critically dependent on COX-2 expression.

  4. Identification of 1H-indene-(1,3,5,6)-tetrol derivatives as potent pancreatic lipase inhibitors using molecular docking and molecular dynamics approach.

    PubMed

    Kalathiya, Umesh; Padariya, M; Baginski, M

    2016-11-01

    Pancreatic lipase is a potential therapeutic target to treat diet-induced obesity in humans, as obesity-related diseases continue to be a global problem. Despite intensive research on finding potential inhibitors, very few compounds have been introduced to clinical studies. In this work, new chemical scaffold 1H-indene-(1,3,5,6)-tetrol was proposed using knowledge-based approach, and 36 inhibitors were derived by modifying its functional groups at different positions in scaffold. To explore binding affinity and interactions of ligands with protein, CDOCKER and AutoDock programs were used for molecular docking studies. Analyzing results of rigid and flexible docking algorithms, inhibitors C_12, C_24, and C_36 were selected based on different properties and high predicted binding affinities for further analysis. These three inhibitors have different moieties placed at different functional groups in scaffold, and to characterize structural rationales for inhibitory activities of compounds, molecular dynamics simulations were performed (500 nSec). It has been shown through simulations that two structural fragments (indene and indole) in inhibitor can be treated as isosteric structures and their position at binding cleft can be replaced by each other. Taking into account these information, two lines of inhibitors can further be developed, each line based on a different core scaffold, that is, indene/indole. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  5. Indole-3-Carbonitriles as DYRK1A Inhibitors by Fragment-Based Drug Design.

    PubMed

    Meine, Rosanna; Becker, Walter; Falke, Hannes; Preu, Lutz; Loaëc, Nadège; Meijer, Laurent; Kunick, Conrad

    2018-01-24

    Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a potential drug target because of its role in the development of Down syndrome and Alzheimer's disease. The selective DYRK1A inhibitor 10-iodo-11 H -indolo[3,2- c ]quinoline-6-carboxylic acid (KuFal194), a large, flat and lipophilic molecule, suffers from poor water solubility, limiting its use as chemical probe in cellular assays and animal models. Based on the structure of KuFal194, 7-chloro-1 H -indole-3-carbonitrile was selected as fragment template for the development of smaller and less lipophilic DYRK1A inhibitors. By modification of this fragment, a series of indole-3-carbonitriles was designed and evaluated as potential DYRK1A ligands by molecular docking studies. Synthesis and in vitro assays on DYRK1A and related protein kinases identified novel double-digit nanomolar inhibitors with submicromolar activity in cell culture assays.

  6. Carnitine-acylcarnitine translocase deficiency with c.199-10 T>G and novel c.1A>G mutation: Two case reports and brief literature review.

    PubMed

    Yan, Hui-Ming; Hu, Hao; Ahmed, Aisha; Feng, Bing-Bing; Liu, Jing; Jia, Zheng-Jun; Wang, Hua

    2017-11-01

    Carnitine-acylcarnitine translocate deficiency (CACTD) is a rare and life-threatening, autosomal recessive disorder of fatty acid β-oxidation characterized by hypoketotic hypoglycemia, hyperammonemia, cardiomyopathy, liver dysfunction, and muscle weakness; culminating in early death. To date, CACTD cases screened from the Chinese mainland population, especially patient with compound heterozygote with c.199-10T>G and a novel c.1A>G mutation in the SLC25A20 gene has never been described. Herein, we report 2 neonatal cases of CACTD identified from the mainland China. These 2 patients were presented with severe metabolic crisis and their clinical conditions deteriorate rapidly and both died of cardiorespiratory collapse in the first week of life. We present the clinical and biochemical features of 2 probands and a brief literature review of previously reported CACTD cases with the c.199-10T>G mutation. The acylcarnitine profiles by tandem-mass-spectrometry and the mutation analysis of SLC25A20 gene confirmed the diagnosis of CACTD in both patients. Mutation analysis demonstrated that patient No. 1 was homozygous for c.199-10T>G mutation, while patient No. 2 was a compound heterozygote for 2 mutations, a maternally-inherited c.199-10T>G and a paternally-inherited, novel c.1A>G mutation. Both patients were treated with an aggressive treatment regimen include high glucose and arginine infusion, respiratory, and circulatory support. The first proband died 3 days after delivery due to sudden cardiac arrest. The second patient's clinical condition, at one time, was improved by high glucose infusion, intravenous arginine, and circulatory support. However, the patient failed to wean from mechanical ventilation. Unfortunately, her parents refused further treatment due to fear of financial burdens. The patient died of congestive heart failure in the 6th day of life. We report the first 2 cases of CACTD identified from the mainland China. Apart from a founder mutation c.199-10T

  7. Plasminogen-induced aggregation of PANC-1 cells requires conversion to plasmin and is inhibited by endogenous plasminogen activator inhibitor-1.

    PubMed

    Deshet, Naamit; Lupu-Meiri, Monica; Espinoza, Ingrid; Fili, Oded; Shapira, Yuval; Lupu, Ruth; Gershengorn, Marvin C; Oron, Yoram

    2008-09-01

    PANC-1 cells express proteinase-activated receptors (PARs)-1, -2, and respond to their activation by transient elevation of cytosolic [Ca(2+)] and accelerated aggregation (Wei et al., 2006, J Cell Physiol 206:322-328). We studied the effect of plasminogen (PGN), an inactive precursor of the PAR-1-activating protease, plasmin (PN) on aggregation of pancreatic adenocarcinoma (PDAC) cells. A single dose of PGN time- and dose-dependently promoted PANC-1 cells aggregation in serum-free medium, while PN did not. PANC-1 cells express urokinase plasminogen activator (uPA), which continuously converted PGN to PN. This activity and PGN-induced aggregation were inhibited by the uPA inhibitor amiloride. PGN-induced aggregation was also inhibited by alpha-antiplasmin and by the PN inhibitor epsilon-aminocaproic acid (EACA). Direct assay of uPA activity revealed very low rate, markedly enhanced in the presence of PGN. Moreover, in PGN activator inhibitor 1-deficient PANC-1 cells, uPA activity and PGN-induced aggregation were markedly potentiated. Two additional human PDAC cell lines, MiaPaCa and Colo347, were assayed for PGN-induced aggregation. Both cell lines responded by aggregation and exhibited PGN-enhanced uPA activity. We hypothesized that the continuous conversion of PGN to PN by endogenous uPA is limited by PN's degradation and negatively controlled by endogenously produced PAI-1. Indeed, we found that PANC-1 cells inactivate PN with t1/2 of approximately 7 h, while the continuous addition of PN promoted aggregation. Our data suggest that PANC-1 cells possess intrinsic, PAI-1-sensitive mechanism for promotion of aggregation and differentiation by prolonged exposure to PGN and, possibly, additional precursors of PARs agonists.

  8. Impact of combined C1 esterase inhibitor/coagulation factor XIII or N-acetylcysteine/tirilazad mesylate administration on leucocyte adherence and cytokine release in experimental endotoxaemia.

    PubMed

    Birnbaum, J; Klotz, E; Spies, C D; Mueller, J; Vargas Hein, O; Feller, J; Lehmann, C

    2008-01-01

    We determined the effects of combinations of C1 esterase inhibitor (C1-INH) with factor XIII and of N-acetylcysteine (NAC) with tirilazad mesylate (TM) during lipo-polysaccharide (LPS)-induced endotoxaemia in rats. Forty Wistar rats were divided into four groups: the control (CON) group received no LPS; the LPS, C1-INH + factor XIII and NAC + TM groups received endotoxin infusions (5 mg/kg per h). After 30 min of endotoxaemia, 100 U/kg C1-INH + 50 U/kg factor XIII was administered to the C1-INH + factor XIII group, and 150 mg/kg NAC + 10 mg/kg TM was administered in the NAC + TM group. Administration of C1-INH + factor XIII and NAC + TM both resulted in reduced leucocyte adherence and reduced levels of interleukin-1beta (IL-1beta). The LPS-induced increase in IL-6 levels was amplified by both drug combinations. There was no significant effect on mesenteric plasma extravasation. In conclusion, the administration of C1-INH + factor XIII and NAC + TM reduced endothelial leucocyte adherence and IL-1beta plasma levels, but increased IL-6 levels.

  9. Potassium deficiency affects the carbon-nitrogen balance in cotton leaves.

    PubMed

    Hu, Wei; Coomer, Taylor D; Loka, Dimitra A; Oosterhuis, Derrick M; Zhou, Zhiguo

    2017-06-01

    Potassium (K) plays important roles in the metabolism of carbon (C) and nitrogen (N), but studies of K deficiency affecting C-N balance are lacking. This study explored the influence of K deficiency on C-N interaction in cotton leaves by conducting a field experiment with cotton cultivar DP0912 under two K rates (K0: 0 kg K 2 O ha -1 and K67: 67 kg K 2 O ha -1 ) and a controlled environment experiment with K-deficient solution (K1: 0 mM K + ) and K-sufficient solution (K2: 6 mM K + ). The results showed that leaf K content, leaf number, leaf area, boll number, reproductive dry weight and total dry weight were significant lower under K deficiency (K0 or K1). Lower total chlorophyll content and Chl a/b ratio, and decreased Pn along with lower Gs and higher Ci were measured under K deficiency, suggesting that the decrease in Pn was resulted from non-stomatal limitation. Leaf glucose, fructose, sucrose and starch contents were higher under K deficiency, because lower sucrose export was detected in phloem. Although leaf nitrate and ammonium contents significantly decreased, free amino acid content was increased by 40-63% under K deficiency, since lower amino acid export was also measured in phloem. K deficiency also induced lower soluble protein content in leaves. Leaf ATP level was significantly increased under K deficiency, indicating ATP utilization was lower, so that less energy was supplied to C and N metabolism. The ratio of soluble sugar to free amino acid and the C/N ratio markedly increased under K deficiency, and one reason was that the phloem export reduced more prominent for sucrose (54.6-78.0%) than amino acid (36.7-85.4%) under K deficiency. In addition, lower phosphoenolpyruvate carboxylase activity limited malate and citrate biosynthesis under K deficiency, causing a decrease of C flux into the amino acids, which was not beneficial for maintaining C-N balance. Sucrose phosphate synthase and nitrate reductase activities were lower under K deficiency

  10. Sirtuin 1 promotes the proliferation of C2C12 myoblast cells via the myostatin signaling pathway.

    PubMed

    Wang, Liang; Zhang, Ting; Xi, Yongyong; Yang, Cuili; Sun, Chengcao; Li, Dejia

    2016-08-01

    Accumulating evidence suggests that Sirtuin (Sirt)1 serves a significant role in proliferation and differentiation of myoblast cells; however the signaling mechanisms involved remain to be established. Myostatin (MSTN), a member of transforming growth factor‑β family, is an vital regulator of myoblast, fibroblast growth and differentiation. To determine if MSTN is involved in the regulation of myoblast cell proliferation by Sirt1, the present study administrated the Sirt1 activator resveratrol, inhibitor nicotinamide (NAM) and MSTN inhibitor SB431542 to C2C12 myoblast cells. It was demonstrated that the Sirt1 activator, resveratrol, repressed, whereas the Sirt1 inhibitor, NAM, enhanced C2C12 myoblast cells proliferation in a Sirt1‑dependent manner. SB431542 promoted the proliferation of C2C12 myoblast cells and reversed the inhibition effect of NAM on C2C12 myoblast cell proliferation. Additionally, resveratrol upregulated the mRNA expression of MyoD, but inhibited the expression of MSTN. Additionally, NAM significantly repressed the expression of MyoD and the phosphorylation of P107 (p‑P107), but enhanced the expression of MSTN and the protein expression of P107. SB431542 significantly mitigated the effect of NAM on the expression of MyoD, P107 and p‑P107. Taken together, these results indicated that Sirt1 promotes the proliferation of C2C12 myoblast cells via the MSTN signaling pathway.

  11. Anxiety and depression with neurogenesis defects in exchange protein directly activated by cAMP 2-deficient mice are ameliorated by a selective serotonin reuptake inhibitor, Prozac

    PubMed Central

    Zhou, L; Ma, S L; Yeung, P K K; Wong, Y H; Tsim, K W K; So, K F; Lam, L C W; Chung, S K

    2016-01-01

    Intracellular cAMP and serotonin are important modulators of anxiety and depression. Fluoxetine, a selective serotonin reuptake inhibitor (SSRI) also known as Prozac, is widely used against depression, potentially by activating cAMP response element-binding protein (CREB) and increasing brain-derived neurotrophic factor (BDNF) through protein kinase A (PKA). However, the role of Epac1 and Epac2 (Rap guanine nucleotide exchange factors, RAPGEF3 and RAPGEF4, respectively) as potential downstream targets of SSRI/cAMP in mood regulations is not yet clear. Here, we investigated the phenotypes of Epac1 (Epac1−/−) or Epac2 (Epac2−/−) knockout mice by comparing them with their wild-type counterparts. Surprisingly, Epac2−/− mice exhibited a wide range of mood disorders, including anxiety and depression with learning and memory deficits in contextual and cued fear-conditioning tests without affecting Epac1 expression or PKA activity. Interestingly, rs17746510, one of the three single-nucleotide polymorphisms (SNPs) in RAPGEF4 associated with cognitive decline in Chinese Alzheimer's disease (AD) patients, was significantly correlated with apathy and mood disturbance, whereas no significant association was observed between RAPGEF3 SNPs and the risk of AD or neuropsychiatric inventory scores. To further determine the detailed role of Epac2 in SSRI/serotonin/cAMP-involved mood disorders, we treated Epac2−/− mice with a SSRI, Prozac. The alteration in open field behavior and impaired hippocampal cell proliferation in Epac2−/− mice were alleviated by Prozac. Taken together, Epac2 gene polymorphism is a putative risk factor for mood disorders in AD patients in part by affecting the hippocampal neurogenesis. PMID:27598965

  12. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, C. K.; Mazumder, B.; Fox, P. L.

    2000-01-01

    A role of the copper protein ceruloplasmin (Cp) in iron metabolism is suggested by its ferroxidase activity and by the tissue iron overload in hereditary Cp deficiency patients. In addition, plasma Cp increases markedly in several conditions of anemia, e.g. iron deficiency, hemorrhage, renal failure, sickle cell disease, pregnancy, and inflammation. However, little is known about the cellular and molecular mechanism(s) involved. We have reported that iron chelators increase Cp mRNA expression and protein synthesis in human hepatocarcinoma HepG2 cells. Furthermore, we have shown that the increase in Cp mRNA is due to increased rate of transcription. We here report the results of new studies designed to elucidate the molecular mechanism underlying transcriptional activation of Cp by iron deficiency. The 5'-flanking region of the Cp gene was cloned from a human genomic library. A 4774-base pair segment of the Cp promoter/enhancer driving a luciferase reporter was transfected into HepG2 or Hep3B cells. Iron deficiency or hypoxia increased luciferase activity by 5-10-fold compared with untreated cells. Examination of the sequence showed three pairs of consensus hypoxia-responsive elements (HREs). Deletion and mutation analysis showed that a single HRE was necessary and sufficient for gene activation. The involvement of hypoxia-inducible factor-1 (HIF-1) was shown by gel-shift and supershift experiments that showed HIF-1alpha and HIF-1beta binding to a radiolabeled oligonucleotide containing the Cp promoter HRE. Furthermore, iron deficiency (and hypoxia) did not activate Cp gene expression in Hepa c4 hepatoma cells deficient in HIF-1beta, as shown functionally by the inactivity of a transfected Cp promoter-luciferase construct and by the failure of HIF-1 to bind the Cp HRE in nuclear extracts from these cells. These results are consistent with in vivo findings that iron deficiency increases plasma Cp and provides a molecular mechanism that may help to understand these

  13. Characterization of a Novel Class of Polyphenolic Inhibitors of Plasminogen Activator Inhibitor-1*

    PubMed Central

    Cale, Jacqueline M.; Li, Shih-Hon; Warnock, Mark; Su, Enming J.; North, Paul R.; Sanders, Karen L.; Puscau, Maria M.; Emal, Cory D.; Lawrence, Daniel A.

    2010-01-01

    Plasminogen activator inhibitor type 1, (PAI-1) the primary inhibitor of the tissue-type (tPA) and urokinase-type (uPA) plasminogen activators, has been implicated in a wide range of pathological processes, making it an attractive target for pharmacologic inhibition. Currently available small-molecule inhibitors of PAI-1 bind with relatively low affinity and do not inactivate PAI-1 in the presence of its cofactor, vitronectin. To search for novel PAI-1 inhibitors with improved potencies and new mechanisms of action, we screened a library selected to provide a range of biological activities and structural diversity. Five potential PAI-1 inhibitors were identified, and all were polyphenolic compounds including two related, naturally occurring plant polyphenols that were structurally similar to compounds previously shown to provide cardiovascular benefit in vivo. Unique second generation compounds were synthesized and characterized, and several showed IC50 values for PAI-1 between 10 and 200 nm. This represents an enhanced potency of 10–1000-fold over previously reported PAI-1 inactivators. Inhibition of PAI-1 by these compounds was reversible, and their primary mechanism of action was to block the initial association of PAI-1 with a protease. Consistent with this mechanism and in contrast to previously described PAI-1 inactivators, these compounds inactivate PAI-1 in the presence of vitronectin. Two of the compounds showed efficacy in ex vivo plasma and one blocked PAI-1 activity in vivo in mice. These data describe a novel family of high affinity PAI-1-inactivating compounds with improved characteristics and in vivo efficacy, and suggest that the known cardiovascular benefits of dietary polyphenols may derive in part from their inactivation of PAI-1. PMID:20061381

  14. Chalcone-based Selective Inhibitors of a C4 Plant Key Enzyme as Novel Potential Herbicides

    NASA Astrophysics Data System (ADS)

    Nguyen, G. T. T.; Erlenkamp, G.; Jäck, O.; Küberl, A.; Bott, M.; Fiorani, F.; Gohlke, H.; Groth, G.

    2016-06-01

    Weeds are a challenge for global food production due to their rapidly evolving resistance against herbicides. We have identified chalcones as selective inhibitors of phosphoenolpyruvate carboxylase (PEPC), a key enzyme for carbon fixation and biomass increase in the C4 photosynthetic pathway of many of the world’s most damaging weeds. In contrast, many of the most important crop plants use C3 photosynthesis. Here, we show that 2‧,3‧,4‧,3,4-Pentahydroxychalcone (IC50 = 600 nM) and 2‧,3‧,4‧-Trihydroxychalcone (IC50 = 4.2 μM) are potent inhibitors of C4 PEPC but do not affect C3 PEPC at a same concentration range (selectivity factor: 15-45). Binding and modeling studies indicate that the active compounds bind at the same site as malate/aspartate, the natural feedback inhibitors of the C4 pathway. At the whole plant level, both substances showed pronounced growth-inhibitory effects on the C4 weed Amaranthus retroflexus, while there were no measurable effects on oilseed rape, a C3 plant. Growth of selected soil bacteria was not affected by these substances. Our chalcone compounds are the most potent and selective C4 PEPC inhibitors known to date. They offer a novel approach to combat C4 weeds based on a hitherto unexplored mode of allosteric inhibition of a C4 plant key enzyme.

  15. Chalcone-based Selective Inhibitors of a C4 Plant Key Enzyme as Novel Potential Herbicides

    PubMed Central

    Nguyen, G. T. T.; Erlenkamp, G.; Jäck, O.; Küberl, A.; Bott, M.; Fiorani, F.; Gohlke, H.; Groth, G.

    2016-01-01

    Weeds are a challenge for global food production due to their rapidly evolving resistance against herbicides. We have identified chalcones as selective inhibitors of phosphoenolpyruvate carboxylase (PEPC), a key enzyme for carbon fixation and biomass increase in the C4 photosynthetic pathway of many of the world’s most damaging weeds. In contrast, many of the most important crop plants use C3 photosynthesis. Here, we show that 2′,3′,4′,3,4-Pentahydroxychalcone (IC50 = 600 nM) and 2′,3′,4′-Trihydroxychalcone (IC50 = 4.2 μM) are potent inhibitors of C4 PEPC but do not affect C3 PEPC at a same concentration range (selectivity factor: 15–45). Binding and modeling studies indicate that the active compounds bind at the same site as malate/aspartate, the natural feedback inhibitors of the C4 pathway. At the whole plant level, both substances showed pronounced growth-inhibitory effects on the C4 weed Amaranthus retroflexus, while there were no measurable effects on oilseed rape, a C3 plant. Growth of selected soil bacteria was not affected by these substances. Our chalcone compounds are the most potent and selective C4 PEPC inhibitors known to date. They offer a novel approach to combat C4 weeds based on a hitherto unexplored mode of allosteric inhibition of a C4 plant key enzyme. PMID:27263468

  16. Isolation and Characterization of a High Affinity Peptide Inhibitor of ClC-2 Chloride Channels*

    PubMed Central

    Thompson, Christopher H.; Olivetti, Pedro R.; Fuller, Matthew D.; Freeman, Cody S.; McMaster, Denis; French, Robert J.; Pohl, Jan; Kubanek, Julia; McCarty, Nael A.

    2009-01-01

    The ClC protein family includes voltage-gated chloride channels and chloride/proton exchangers. In eukaryotes, ClC proteins regulate membrane potential of excitable cells, contribute to epithelial transport, and aid in lysosomal acidification. Although structure/function studies of ClC proteins have been aided greatly by the available crystal structures of a bacterial ClC chloride/proton exchanger, the availability of useful pharmacological tools, such as peptide toxin inhibitors, has lagged far behind that of their cation channel counterparts. Here we report the isolation, from Leiurus quinquestriatus hebraeus venom, of a peptide toxin inhibitor of the ClC-2 chloride channel. This toxin, GaTx2, inhibits ClC-2 channels with a voltage-dependent apparent KD of ∼20 pm, making it the highest affinity inhibitor of any chloride channel. GaTx2 slows ClC-2 activation by increasing the latency to first opening by nearly 8-fold but is unable to inhibit open channels, suggesting that this toxin inhibits channel activation gating. Finally, GaTx2 specifically inhibits ClC-2 channels, showing no inhibitory effect on a battery of other major classes of chloride channels and voltage-gated potassium channels. GaTx2 is the first peptide toxin inhibitor of any ClC protein. The high affinity and specificity displayed by this toxin will make it a very powerful pharmacological tool to probe ClC-2 structure/function. PMID:19574231

  17. Riboflavin transporter deficiency mimicking mitochondrial myopathy caused by complex II deficiency.

    PubMed

    Nimmo, Graeme A M; Ejaz, Resham; Cordeiro, Dawn; Kannu, Peter; Mercimek-Andrews, Saadet

    2018-02-01

    Biallelic likely pathogenic variants in SLC52A2 and SLC52A3 cause riboflavin transporter deficiency. It is characterized by muscle weakness, ataxia, progressive ponto-bulbar palsy, amyotrophy, and sensorineural hearing loss. Oral riboflavin halts disease progression and may reverse symptoms. We report two new patients whose clinical and biochemical features were mimicking mitochondrial myopathy. Patient 1 is an 8-year-old male with global developmental delay, axial and appendicular hypotonia, ataxia, and sensorineural hearing loss. His muscle biopsy showed complex II deficiency and ragged red fibers consistent with mitochondrial myopathy. Whole exome sequencing revealed a homozygous likely pathogenic variant in SLC52A2 (c.917G>A; p.Gly306Glu). Patient 2 is a 14-month-old boy with global developmental delay, respiratory insufficiency requiring ventilator support within the first year of life. His muscle biopsy revealed combined complex II + III deficiency and ragged red fibers consistent with mitochondrial myopathy. Whole exome sequencing identified a homozygous likely pathogenic variant in SCL52A3 (c.1223G>A; p.Gly408Asp). We report two new patients with riboflavin transporter deficiency, caused by mutations in two different riboflavin transporter genes. Both patients presented with complex II deficiency. This treatable neurometabolic disorder can mimic mitochondrial myopathy. In patients with complex II deficiency, riboflavin transporter deficiency should be included in the differential diagnosis to allow early treatment and improve neurodevelopmental outcome. © 2017 Wiley Periodicals, Inc.

  18. Energetic factors determining the binding of type I inhibitors to c-Met kinase: experimental studies and quantum mechanical calculations.

    PubMed

    Yu, Zhe; Ma, Yu-chi; Ai, Jing; Chen, Dan-qi; Zhao, Dong-mei; Wang, Xin; Chen, Yue-lei; Geng, Mei-yu; Xiong, Bing; Cheng, Mao-sheng; Shen, Jing-Kang

    2013-11-01

    To decipher the molecular interactions between c-Met and its type I inhibitors and to facilitate the design of novel c-Met inhibitors. Based on the prototype model inhibitor 1, four ligands with subtle differences in the fused aromatic rings were synthesized. Quantum chemistry was employed to calculate the binding free energy for each ligand. Symmetry-adapted perturbation theory (SAPT) was used to decompose the binding energy into several fundamental forces to elucidate the determinant factors. Binding free energies calculated from quantum chemistry were correlated well with experimental data. SAPT calculations showed that the predominant driving force for binding was derived from a sandwich π-π interaction with Tyr-1230. Arg-1208 was the differentiating factor, interacting with the 6-position of the fused aromatic ring system through the backbone carbonyl with a force pattern similar to hydrogen bonding. Therefore, a hydrogen atom must be attached at the 6-position, and changing the carbon atom to nitrogen caused unfavorable electrostatic interactions. The theoretical studies have elucidated the determinant factors involved in the binding of type I inhibitors to c-Met.

  19. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo.

    PubMed

    Vendetti, Frank P; Lau, Alan; Schamus, Sandra; Conrads, Thomas P; O'Connor, Mark J; Bakkenist, Christopher J

    2015-12-29

    ATR and ATM are DNA damage signaling kinases that phosphorylate several thousand substrates. ATR kinase activity is increased at damaged replication forks and resected DNA double-strand breaks (DSBs). ATM kinase activity is increased at DSBs. ATM has been widely studied since ataxia telangiectasia individuals who express no ATM protein are the most radiosensitive patients identified. Since ATM is not an essential protein, it is widely believed that ATM kinase inhibitors will be well-tolerated in the clinic. ATR has been widely studied, but advances have been complicated by the finding that ATR is an essential protein and it is widely believed that ATR kinase inhibitors will be toxic in the clinic. We describe AZD6738, an orally active and bioavailable ATR kinase inhibitor. AZD6738 induces cell death and senescence in non-small cell lung cancer (NSCLC) cell lines. AZD6738 potentiates the cytotoxicity of cisplatin and gemcitabine in NSCLC cell lines with intact ATM kinase signaling, and potently synergizes with cisplatin in ATM-deficient NSCLC cells. In contrast to expectations, daily administration of AZD6738 and ATR kinase inhibition for 14 consecutive days is tolerated in mice and enhances the therapeutic efficacy of cisplatin in xenograft models. Remarkably, the combination of cisplatin and AZD6738 resolves ATM-deficient lung cancer xenografts.

  20. Clinical utility of alpha-1 proteinase inhibitor in the management of adult patients with severe alpha-1 antitrypsin deficiency: a review of the current literature

    PubMed Central

    Parr, David G; Lara, Beatriz

    2017-01-01

    Alpha-1 antitrypsin (AAT) functions primarily to inhibit neutrophil elastase, and its deficiency predisposes individuals to the development of chronic obstructive pulmonary disease (COPD). The putative protective serum concentration is generally considered to be above a threshold of 11 μM/L, and therapeutic augmentation of AAT above this value is believed to retard the progression of emphysema. Several AAT preparations, all derived from human donor plasma, have been commercialized since approval by the US Food and Drug Administration (FDA) in 1987. Biochemical efficacy has been demonstrated by augmentation of pulmonary antiprotease activity, but demonstration of clinical efficacy in randomized, placebo-controlled trials has been hampered by the practical difficulties of performing conventional studies in a rare disease with a relatively long natural history. Computed tomography has been applied to measure lung density as a more specific and sensitive surrogate outcome measure of emphysema than physiologic indices, such as forced expiratory volume in 1 second, and studies consistently show a therapeutic reduction in the rate of lung density decline. However, convincing evidence of benefit using traditional clinical measures remains elusive. Intravenous administration of AAT at a dose of 60 mg/kg/week is the commonest regime in use and has well-documented safety and tolerability. International and national guidelines on the management of AAT deficiency recommend intravenous augmentation therapy to supplement optimized usual COPD treatment in patients with severe deficiency and evidence of lung function impairment. PMID:28769553

  1. Discovery of an Inhibitor of Z-Alpha1 Antitrypsin Polymerization

    DOE PAGES

    Berthelier, Valerie; Harris, Jason Brett; Estenson, Kasey Noel; ...

    2015-05-11

    Polymerization of the Z variant alpha-1-antitrypsin (Z-α1AT) results in the most common and severe form of α1AT deficiency1ATD), a debilitating genetic disorder whose clinical manifestations range from asymptomatic to fatal liver and/or lung disease. As the altered conformation of Z-α1AT and its attendant aggregation are responsible for pathogenesis, the polymerization process per se has become a major target for the development of therapeutics. Based on the ability of Z-alpha 1AT to aggregate by recruiting the reactive center loop (RCL) of another Z-α1AT into its s4A cavity, we developed a high-throughput screening assay that uses a modified 6-mer peptide mimickingmore » the RCL to screen for inhibitors of Z-α1AT polymer growth. We used a subset of compounds from the Library of Pharmacologically Active Compounds (LOPAC) with molecular weights ranging from 300 to 700 Da, to evaluate the assay's capabilities. The inhibitor S-(4-nitrobenzyl)-6-thioguanosine was identified as a lead compound and its ability to prevent Z-α1AT polymerization confirmed by secondary assays. In order to further investigate the binding location of S-(4-nitrobenzyl)-6-thioguanosine, an in silico strategy was pursued and the intermediate alpha 1AT M* state modeled to allow molecular docking simulations and explore various potential binding sites. Docking results predict that S-(4-nitrobenzyl)-6-thioguanosine can bind at the s4A cavity and at the edge of beta-sheet A. The former binding site would directly block RCL insertion whereas the latter site would prevent beta-sheet A from expanding between s3A/s5A, and thus indirectly impede RCL insertion. Our investigations have revealed a novel compound that inhibits the formation of Z-α1AT polymers, as well as in vitro and in silico strategies for identifying and characterizing additional blocking molecules of Z-α1AT polymerization.« less

  2. Insulin-Like Growth Factor I (IGF-1) Deficiency Ameliorates Sex Difference in Cardiac Contractile Function and Intracellular Ca2+ Homeostasis

    PubMed Central

    Ceylan-Isik, Asli F.; Li, Qun; Ren, Jun

    2011-01-01

    Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca2+ properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (± dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR90), fura-fluorescence intensity (FFI) and intracellular Ca2+ clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ± dL/dt, longer TPS, TR90 and intracellular Ca2+ clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na+-Ca2+ exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca2+ regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca2+ regulation. PMID:21763763

  3. Insulin-like growth factor I (IGF-1) deficiency ameliorates sex difference in cardiac contractile function and intracellular Ca(2+) homeostasis.

    PubMed

    Ceylan-Isik, Asli F; Li, Qun; Ren, Jun

    2011-10-10

    Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (±dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR(90)), fura-fluorescence intensity (FFI) and intracellular Ca(2+) clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ±dL/dt, longer TPS, TR(90) and intracellular Ca(2+) clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na(+)-Ca(2+) exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca(2+) regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca(2+) regulation. Copyright © 2011 Elsevier Ireland

  4. Sanfilippo Syndrome: Profound Deficiency of Alpha-Acetylglucosaminidase Activity in Organs and Skin Fibroblasts from Type-B Patients

    PubMed Central

    O'brien, John S.

    1972-01-01

    Cultured skin fibroblasts from two patients with Sanfilippo syndrome, Type B were strikingly deficient in α-acetylglucosaminidase activity (α-2-acetamido-2-deoxy-D-glucoside acetamidodeoxyglucohydrolase, EC 3.2.1.X). A similar deficiency was found in frozen organs from two other patients. A partial deficiency of α-acetylglucosaminidase was found in cultured skin fibroblasts from both parents of one patient. Soluble endogenous inhibitors did not account for the enzyme deficiency. Other lysosomal hydrolases were normal or increased in cultured fibroblasts from patients with this disease. No deficiency of α-acetylglucosaminidase is present in other genetic mucopolysaccharidoses, including Sanfilippo Type A. PMID:4261742

  5. 1H and 13C NMR Chemical Shift Assignments and Conformational Analysis for the Two Diastereomers of the Vitamin K Epoxide Reductase Inhibitor Brodifacoum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cort, John R.; Cho, Herman M.

    2009-10-01

    Proton and 13C NMR chemical shift assignments and 1H-1H scalar couplings for the two diastereomers of the vitamin K epoxide reductase (VKOR) inhibitor brodifacoum have been determined from acetone solutions containing both diastereomers. Data were obtained from homo- and heteronuclear correlation spectra acquired at 1H frequencies of 750 and 900 MHz over a 268-303 K temperature range. Conformations inferred from scalar coupling and 1-D NOE measurements exhibit large differences between the diastereomers. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  6. PD-1/PD-L1 Inhibitors for Immuno-oncology: From Antibodies to Small Molecules.

    PubMed

    Geng, Qiaohong; Jiao, Peifu; Jin, Peng; Su, Gaoxing; Dong, Jinlong; Yan, Bing

    2018-02-12

    The recent regulatory approvals of immune checkpoint protein inhibitors, such as ipilimumab, pembrolizumab, nivolumab, atezolizumab, durvalumab, and avelumab ushered a new era in cancer therapy. These inhibitors do not attack tumor cells directly but instead mobilize the immune system to re-recognize and eradicate tumors, which endows them with unique advantages including durable clinical responses and substantial clinical benefits. PD-1/PD-L1 inhibitors, a pillar of immune checkpoint protein inhibitors, have demonstrated unprecedented clinical efficacy in more than 20 cancer types. Besides monoclonal antibodies, diverse PD- 1/PD-L1 inhibiting candidates, such as peptides, small molecules have formed a powerful collection of weapons to fight cancer. The goal of this review is to summarize and discuss the current PD-1/PD-L1 inhibitors including candidates under clinical development, their molecular interactions with PD-1 or PD-L1, the disclosed structureactivity relationships of peptides and small molecules as inhibitors. Current PD-1/PD-L1 inhibitors under clinical development are exclusively dominated by antibodies. The molecular interactions of therapeutic antibodies with PD-1 or PD-L1 have been gradually elucidated for the design of novel inhibitors. Various peptides and traditional small molecules have been investigated in preclinical model to discover novel PD-1/PD-L1 inhibitors. Peptides and small molecules may play an important role in immuno-oncology because they may bind to multiple immune checkpoint proteins via rational design, opening opportunity for a new generation of novel PD-1/PD-L1 inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Vitamin D Deficiency in Uygurs and Kazaks Is Associated with Polymorphisms in CYP2R1 and DHCR7/NADSYN1 Genes

    PubMed Central

    Xu, Xinjuan; Mao, Jiangfeng; Zhang, Mingchen; Liu, Haiming; Li, Haixia; Lei, Hong; Han, Lu; Gao, Min

    2015-01-01

    Background Our study is aimed to 1) clarify the vitamin D status in Uygur and Kazak ethnic populations and 2) elucidate the relationship between 14 SNPs (in 5 vitamin D-related genes) and vitamin D deficiency in these 2 ethnic populations. Material/Methods A multistage-cluster sampling survey was carried out for residents with Uygur or Kazak ethnicity in Xinjiang, China. Anthropometric measurements were taken and the concentrations of 25OHD were measured. Fourteen common variants in VDR, GC, CYP2R1, CYP27B1, and DHCR7/NADSYN1 were genotyped by using multiple SNaPshot assay. Logistic regression analysis was performed to identify the possible risk factors for vitamin D deficiency, after adjusting for several environmental and biological factors. The pattern of SNP associations was distinct between Uygurs and Kazaks. Results Anthropometric measurements and the concentrations of 25OHD were obtained from 1873 participants (945 Uygur ethnic and 928 Kazak ethnic). The genotypes of 14 SNPs were measured for 300 Uygurs and 300 Kazaks. The median 25OHD concentration was as low as 10.4 ng/ml in Uygurs and 16.2ng/ml in Kazaks. In Uygurs, the prevalence of vitamin D deficiency, in-sufficiency, and sufficiency was 91.2%, 5.8%, and 3.0%, respectively. CYP2R1-rs10766197 was significantly associated with the presence of vitamin D deficiency in the Uygur ethnic population (P=0.019, OR=6.533, 95%C.I.: 361–31.357), while DHCR7/NADSYN1-rs12785878 was significantly associated with the presence of vitamin D deficiency in the Kazak ethnic population (P=0.011, OR=2.442, 95%C.I.: 1.224–4.873). Of 10 SNPs in VDR and GC genes, none was associated with vitamin D status in these 2 ethnic populations. Conclusions Vitamin D insufficiency is highly prevalent in Uygurs and Kazaks living in Xinjiang, China. Polymorphisms in CYP2R1-rs10766197 and DHCR7/NADSYN1-rs12785878 are associated with vitamin D deficiency in Uygur and Kazak ethnic populations. PMID:26149120

  8. Different effects of histone deacetylase inhibitors nicotinamide and trichostatin A (TSA) in C17.2 neural stem cells.

    PubMed

    Wang, Haifeng; Cheng, Hua; Wang, Kai; Wen, Tieqiao

    2012-11-01

    Histone deacetylase inhibitors are involved in proliferation, apoptosis, cell cycle, mRNA transcription, and protein expression in various cells. However, the molecular mechanism underlying such functions is still not fully clear. In this study, we used C17.2 neural stem cell (NSC) line as a model to evaluate the effects of nicotinamide and trichostatin A (TSA) on cell characteristics. Results show that nicotinamide and TSA greatly inhibit cell growth, lead to cell morphology changes, and effectively induce cell apoptosis in a dose-dependent manner. Western blot analyses confirmed that nicotinamide significantly decreases the expression of bcl-2 and p38. Further insight into the molecular mechanisms shows the suppression of phosphorylation in eukaryotic initiation factor 4E-binding protein 1 (4EBP1) by nicotinamide, whereas, an increased expression of bcl-2 and p38 and phosphorylation of 4EBP1 by TSA. However, both nicotinamide and TSA significantly increase the expression of cytochrome c (cyt c). These results strongly suggest that bcl-2, p38, cyt c, and p-4EBP1 could suppress proliferation and induce apoptosis of C17.2 NSCs mediated by histone deacetylase inhibitors, nicotinamide and TSA, involving different molecular mechanisms.

  9. Antibody mediated rejection associated with complement factor h-related protein 3/1 deficiency successfully treated with eculizumab.

    PubMed

    Noone, D; Al-Matrafi, J; Tinckam, K; Zipfel, P F; Herzenberg, A M; Thorner, P S; Pluthero, F G; Kahr, W H A; Filler, G; Hebert, D; Harvey, E; Licht, C

    2012-09-01

    Antibody mediated rejection (AMR) activates the classical complement pathway and can be detrimental to graft survival. AMR can be accompanied by thrombotic microangiopathy (TMA). Eculizumab, a monoclonal C5 antibody prevents induction of the terminal complement cascade (TCC) and has recently emerged as a therapeutic option for AMR. We present a highly sensitized 13-year-old female with end-stage kidney disease secondary to spina bifida-associated reflux nephropathy, who developed severe steroid-, ATG- and plasmapheresis-resistant AMR with TMA 1 week post second kidney transplant despite previous desensitization therapy with immunoglobulin infusions. Eculizumab rescue therapy resulted in a dramatic improvement in biochemical (C3; creatinine) and hematological (platelets) parameters within 6 days. The patient was proven to be deficient in complement Factor H-related protein 3/1 (CFHR3/1), a plasma protein that regulates the complement cascade at the level of C5 conversion and has been involved in the pathogenesis of atypical hemolytic uremic syndrome caused by CFH autoantibodies (DEAP-HUS). CFHR1 deficiency may have worsened the severe clinical progression of AMR and possibly contributed to the development of donor-specific antibodies. Thus, screening for CFHR3/1 deficiency should be considered in patients with severe AMR associated with TMA. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.

  10. Understanding inhibitor resistance in Mps1 kinase through novel biophysical assays and structures.

    PubMed

    Hiruma, Yoshitaka; Koch, Andre; Hazraty, Nazila; Tsakou, Foteini; Medema, René H; Joosten, Robbie P; Perrakis, Anastassis

    2017-09-01

    Monopolar spindle 1 (Mps1/TTK) is a protein kinase essential in mitotic checkpoint signaling, preventing anaphase until all chromosomes are properly attached to spindle microtubules. Mps1 has emerged as a potential target for cancer therapy, and a variety of compounds have been developed to inhibit its kinase activity. Mutations in the catalytic domain of Mps1 that give rise to inhibitor resistance, but retain catalytic activity and do not display cross-resistance to other Mps1 inhibitors, have been described. Here we characterize the interactions of two such mutants, Mps1 C604Y and C604W, which raise resistance to two closely related compounds, NMS-P715 and its derivative Cpd-5, but not to the well characterized Mps1 inhibitor, reversine. We show that estimates of the IC 50 (employing a novel specific and efficient assay that utilizes a fluorescently labeled substrate) and the binding affinity ( K D ) indicate that, in both mutants, Cpd-5 should be better tolerated than the closely related NMS-P715. To gain further insight, we determined the crystal structure of the Mps1 kinase mutants bound to Cpd-5 and NMS-P715 and compared the binding modes of Cpd-5, NMS-P715, and reversine. The difference in steric hindrance between Tyr/Trp 604 and the trifluoromethoxy moiety of NMS-P715, the methoxy moiety of Cpd-5, and complete absence of such a group in reversine, account for differences we observe in vitro Our analysis enforces the notion that inhibitors targeting Mps1 drug-resistant mutations can emerge as a feasible intervention strategy based on existing scaffolds, if the clinical need arises. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. HDAC inhibitors enhance neratinib activity and when combined enhance the actions of an anti-PD-1 immunomodulatory antibody in vivo.

    PubMed

    Booth, Laurence; Roberts, Jane L; Poklepovic, Andrew; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Dent, Paul

    2017-10-27

    Patients whose NSCLC tumors become afatinib resistant presently have few effective therapeutic options to extend their survival. Afatinib resistant NSCLC cells were sensitive to clinically relevant concentrations of the irreversible pan-HER inhibitor neratinib, but not by the first generation ERBB1/2/4 inhibitor lapatinib. In multiple afatinib resistant NSCLC clones, HDAC inhibitors reduced the expression of ERBB1/3/4, but activated c-SRC, which resulted in higher total levels of ERBB1/3 phosphorylation. Neratinib also rapidly reduced the expression of ERBB1/2/3/4, c-MET and of mutant K-/N-RAS; K-RAS co-localized with phosphorylated ATG13 and with cathepsin B in vesicles. Combined exposure of cells to [neratinib + HDAC inhibitors] caused inactivation of mTORC1 and mTORC2, enhanced autophagosome and subsequently autolysosome formation, and caused an additive to greater than additive induction of cell death. Knock down of Beclin1 or ATG5 prevented HDAC inhibitors or neratinib from reducing ERBB1/3/4 and K-/N-RAS expression and reduced [neratinib + HDAC inhibitor] lethality. Neratinib and HDAC inhibitors reduced the expression of multiple HDAC proteins via autophagy that was causal in the reduced expression of PD-L1, PD-L2 and ornithine decarboxylase, and increased expression of Class I MHCA. In vivo , neratinib and HDAC inhibitors interacted to suppress the growth of 4T1 mammary tumors, an effect that was enhanced by an anti-PD-1 antibody. Our data support the premises that neratinib lethality can be enhanced by HDAC inhibitors, that neratinib may be a useful therapeutic tool in afatinib resistant NSCLC, and that [neratinib + HDAC inhibitor] exposure facilitates anti-tumor immune responses.

  12. Regulatory role of glycogen synthase kinase 3 for transcriptional activity of ADD1/SREBP1c.

    PubMed

    Kim, Kang Ho; Song, Min Jeong; Yoo, Eung Jae; Choe, Sung Sik; Park, Sang Dai; Kim, Jae Bum

    2004-12-10

    Adipocyte determination- and differentiation-dependent factor 1 (ADD1) plays important roles in lipid metabolism and insulin-dependent gene expression. Because insulin stimulates carbohydrate and lipid synthesis, it would be important to decipher how the transcriptional activity of ADD1/SREBP1c is regulated in the insulin signaling pathway. In this study, we demonstrated that glycogen synthase kinase (GSK)-3 negatively regulates the transcriptional activity of ADD1/SREBP1c. GSK3 inhibitors enhanced a transcriptional activity of ADD1/SREBP1c and expression of ADD1/SREBP1c target genes including fatty acid synthase (FAS), acetyl-CoA carboxylase 1 (ACC1), and steroyl-CoA desaturase 1 (SCD1) in adipocytes and hepatocytes. In contrast, overexpression of GSK3beta down-regulated the transcriptional activity of ADD1/SREBP1c. GSK3 inhibitor-mediated ADD1/SREBP1c target gene activation did not require de novo protein synthesis, implying that GSK3 might affect transcriptional activity of ADD1/SREBP1c at the level of post-translational modification. Additionally, we demonstrated that GSK3 efficiently phosphorylated ADD1/SREBP1c in vitro and in vivo. Therefore, these data suggest that GSK3 inactivation is crucial to confer stimulated transcriptional activity of ADD1/SREBP1c for insulin-dependent gene expression, which would coordinate lipid and glucose metabolism.

  13. Genotypes and clinical phenotypes in children with cytochrome-c oxidase deficiency.

    PubMed

    Darin, N; Moslemi, A-R; Lebon, S; Rustin, P; Holme, E; Oldfors, A; Tulinius, M

    2003-12-01

    Cytochrome c oxidase (COX) deficiency has been associated with a wide spectrum of clinical features and may be caused by mutations in different genes of both the mitochondrial and the nuclear DNA. In an attempt to correlate the clinical phenotype with the genotype in 16 childhood cases, mtDNA was analysed for deletion, depletion, and mutations in the three genes encoding COX subunits and the 22 tRNA genes. Furthermore, nuclear DNA was analysed for mutations in the SURF1, SCO2, COX10, and COX17 genes and cases with mtDNA depletion were analysed for mutations in the TK2 gene. SURF1-mutations were identified in three out of four cases with Leigh syndrome while a mutation in the mitochondrial tRNA (trp) gene was identified in the fourth. One case with mtDNA depletion had mutations in the TK2 gene. In two cases with leukoencephalopathy, one case with encephalopathy, five cases with fatal infantile myopathy and cardiomyopathy, two cases with benign infantile myopathy, and one case with mtDNA depletion, no mutations were identified. We conclude that COX deficiency in childhood should be suspected in a wide range of clinical settings and although an increasing number of genetic defects have been identified, the underlying mutations remain unclear in the majority of the cases.

  14. Substrate-Dependence of Competitive Nucleotide Pyrophosphatase/Phosphodiesterase1 (NPP1) Inhibitors

    PubMed Central

    Lee, Sang-Yong; Sarkar, Soumya; Bhattarai, Sanjay; Namasivayam, Vigneshwaran; De Jonghe, Steven; Stephan, Holger; Herdewijn, Piet; El-Tayeb, Ali; Müller, Christa E.

    2017-01-01

    Nucleotide pyrophosphatase/phosphodiesterase type 1 (NPP1) is a membrane glycoprotein involved in the hydrolysis of extracellular nucleotides. Its major substrate is ATP which is converted to AMP and diphosphate. NPP1 was proposed as a new therapeutic target in brain cancer and immuno-oncology. Several NPP1 inhibitors have been reported to date, most of which were evaluated vs. the artificial substrate p-nitrophenyl 5′-thymidine monophosphate (p-Nph-5′-TMP). Recently, we observed large discrepancies in inhibitory potencies for a class of competitive NPP1 inhibitors when tested vs. the artificial substrate p-Nph-5′-TMP as compared to the natural substrate ATP. Therefore, the goal of the present study was to investigate whether inhibitors of human NPP1 generally display substrate-dependent inhibitory potency. Systematic evaluation of nucleotidic as well as non-nucleotidic NPP1 inhibitors revealed significant differences in determined Ki values for competitive, but not for non- and un-competitive inhibitors when tested vs. the frequently used artificial substrate p-Nph-5′-TMP as compared to ATP. Allosteric modulation of NPP1 by p-Nph-5′-TMP may explain these discrepancies. Results obtained using the AMP derivative p-nitrophenyl 5′-adenosine monophosphate (p-Nph-5′-AMP) as an alternative artificial substrate correlated much better with those employing the natural substrate ATP. PMID:28261095

  15. Structural studies of series HIV-1 nonnucleoside reverse transcriptase inhibitors 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)-benzimidazoles with different 4-substituents

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2010-03-01

    Over the past 10 years, several anti-viral drugs have become available to fight the HIV infection. Antiretroviral treatment reduces the mortality of AIDS. Nonnucleoside inhibitors of HIV-1 reverse transcriptase are specific and potentially nontoxic drugs against AIDS. The crystal structures of five nonnucleoside inhibitors of HIV-1 reverse transcriptase are presented here. The structural parameters, especially those describing the angular orientation of the π-electron systems and influencing biological activity, were determined for all of the investigated inhibitors. The chemical character and orientation of the substituent at C4 position of the benzimidazole moiety substantially influences the anti-viral activity. The structural data of the investigated inhibitors is a good basis for modeling enzyme-inhibitor interactions for structure-assisted drug design.

  16. Synthesis and structure-activity relationships of imidazo[1,2-a]pyrimidin-5(1H)-ones as a novel series of beta isoform selective phosphatidylinositol 3-kinase inhibitors.

    PubMed

    Lin, Hong; Erhard, Karl; Hardwicke, Mary Ann; Luengo, Juan I; Mack, James F; McSurdy-Freed, Jeanelle; Plant, Ramona; Raha, Kaushik; Rominger, Cynthia M; Sanchez, Robert M; Schaber, Michael D; Schulz, Mark J; Spengler, Michael D; Tedesco, Rosanna; Xie, Ren; Zeng, Jin J; Rivero, Ralph A

    2012-03-15

    A series of PI3K-beta selective inhibitors, imidazo[1,2-a]-pyrimidin-5(1H)-ones, has been rationally designed based on the docking model of the more potent R enantiomer of TGX-221, identified by a chiral separation, in a PI3K-beta homology model. Synthesis and SAR of this novel chemotype are described. Several compounds in the series demonstrated potent growth inhibition in a PTEN-deficient breast cancer cell line MDA-MB-468 under anchorage independent conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Congenital IGF1 deficiency tends to confer protection against post-natal development of malignancies.

    PubMed

    Steuerman, Rachel; Shevah, Orit; Laron, Zvi

    2011-04-01

    To investigate whether congenital IGF1 deficiency confers protection against development of malignancies, by comparing the prevalence of malignancies in patients with congenital (secondary) deficiency of IGF1 with the prevalence of cancer in their family members. Only patients with an ascertained diagnosis of either Laron syndrome (LS), congenital IGHD, congenital multiple pituitary hormone deficiency (cMPHD) including GH or GHRHR defect were included in this study. In addition to our own patients, we performed a worldwide survey and collected data on a total of 538 patients, 752 of their first-degree family members, of which 274 were siblings and 131 were further family members. We found that none of the 230 LS patients developed cancer and that only 1 out of 116 patients with congenital IGHD, also suffering from xeroderma pigmentosum, had a malignancy. Out of 79 patients with GHRHR defects and out of 113 patients with congenital MPHD, we found three patients with cancer in each group. Among the first-degree family members (most heterozygotes) of LS, IGHD and MPHD, we found 30 cases of cancer and 1 suspected. In addition, 31 malignancies were reported among 131 further relatives. Our findings bear heavily on the relationship between GH/IGF1 and cancer. Homozygous patients with congenital IGF1 deficiency and insensitivity to GH such as LS seem protected from future cancer development, even if treated by IGF1. Patients with congenital IGHD also seem protected.

  18. Design, synthesis and structure-activity relationship evaluation of novel LpxC inhibitors as Gram-negative antibacterial agents.

    PubMed

    Ding, Shi; Dai, Rui-Yang; Wang, Wen-Ke; Cao, Qiao; Lan, Le-Fu; Zhou, Xian-Li; Yang, Yu-She

    2018-01-15

    LpxC inhibitors are new-type antibacterial agents developed in the last twenty years, mainly against Gram-negative bacteria infections. To develop novel LpxC inhibitors with good antibacterial activities and biological metabolism, we summarized the basic skeleton of reported LpxC inhibitors, designed and synthesized several series of compounds and tested their antibacterial activities against Escherichial coli and Pseudomonas aeruginosa in vitro. Structure-activity relationships have been discussed in this article. The metabolism stability of YDL-2, YDL-5, YDL-8, YDL-14, YDL-20-YDL-23 have been evaluated in liver microsomes, which indicated that the 2-amino isopropyl group may be a preferred structure than the 2-hydroxy ethyl group in the design of LpxC inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A comparison of effects of DPP-4 inhibitor and SGLT2 inhibitor on lipid profile in patients with type 2 diabetes.

    PubMed

    Cha, Seon-Ah; Park, Yong-Moon; Yun, Jae-Seung; Lim, Tae-Seok; Song, Ki-Ho; Yoo, Ki-Dong; Ahn, Yu-Bae; Ko, Seung-Hyun

    2017-04-13

    Previous studies suggest that dipeptidyl peptidase-4 (DPP-4) inhibitors and sodium glucose cotransporter 2 (SGLT2) inhibitors have different effects on the lipid profile in patients with type 2 diabetes. We investigated the effects of DPP-4 inhibitors and SGLT2 inhibitors on the lipid profile in patients with type 2 diabetes. From January 2013 to December 2015, a total of 228 patients with type 2 diabetes who were receiving a DPP-4 inhibitor or SGLT2 inhibitor as add-on therapy to metformin and/or a sulfonylurea were consecutively enrolled. We compared the effects of DPP-4 inhibitors and SGLT2 inhibitors on the lipid profile at baseline and after 24 weeks of treatment. To compare lipid parameters between the two groups, we used the analysis of covariance (ANCOVA). A total of 184 patients completed follow-up (mean age: 53.1 ± 6.9 years, mean duration of diabetes: 7.1 ± 5.7 years). From baseline to 24 weeks, HDL-cholesterol (HDL-C) levels were increased by 0.5 (95% CI, -0.9 to 2.0) mg/dl with a DPP-4 inhibitor and by 5.1 (95% CI, 3.0 to 7.1) mg/dl with an SGLT2 inhibitor (p = 0.001). LDL-cholesterol (LDL-C) levels were reduced by 8.4 (95% CI, -14.0 to -2.8) mg/dl with a DPP-4 inhibitor, but increased by 1.3 (95% CI, -5.1 to 7.6) mg/dl with an SGLT2 inhibitor (p = 0.046). There was no significant difference in the mean hemoglobin A1c (8.3 ± 1.1 vs. 8.0 ± 0.9%, p = 0.110) and in the change of total cholesterol (TC) (p = 0.836), triglyceride (TG) (p = 0.867), apolipoprotein A (p = 0.726), apolipoprotein B (p = 0.660), and lipoprotein (a) (p = 0.991) between the DPP-4 inhibitor and the SGLT2 inhibitor. The SGLT2 inhibitor was associated with a significant increase in HDL-C and LDL-C after 24 weeks of SGLT2 inhibitor treatment in patients with type 2 diabetes compared with those with DPP-4 inhibitor treatment in this study. This study was conducted by retrospective medical record review.

  20. Discovery of a series of dihydroquinoxalin-2(1H)-ones as selective BET inhibitors from a dual PLK1-BRD4 inhibitor.

    PubMed

    Hu, Jianping; Wang, Yingqing; Li, Yanlian; Xu, Lin; Cao, Danyan; Song, ShanShan; Damaneh, Mohammadali Soleimani; Wang, Xin; Meng, Tao; Chen, Yue-Lei; Shen, Jingkang; Miao, Zehong; Xiong, Bing

    2017-09-08

    Recent years have seen much effort to discover new chemotypes of BRD4 inhibitors. Interestingly, some kinase inhibitors have been demonstrated to be potent bromodomain inhibitors, especially the PLK1 inhibitor BI-2536 and the JAK2 inhibitor TG101209, which can bind to BRD4 with IC 50 values of 0.025 μM and 0.13 μM, respectively. Although the concept of dual inhibition is intriguing, selective BRD4 inhibitors are preferred as they may diminish off-target effects and provide more flexibility in anticancer drug combination therapy. Inspired by BI-2536, we designed and prepared a series of dihydroquinoxalin-2(1H)-one derivatives as selective bromodomain inhibitors. We found compound 54 had slightly higher activity than (+)-JQ1 in the fluorescence anisotropy assay and potent antiproliferative cellular activity in the MM.1S cell line. We have successfully solved the cocrystal structure of 52 in complex with BRD4-BD1, providing a solid structural basis for the binding mode of compounds of this series. Compound 54 exhibited high selectivity over most non-BET subfamily members and did not show bioactivity towards the PLK1 kinase at 10 or 1 μM. From in vivo studies, compound 54 demonstrated a good PK profile, and the results from in vivo pharmacological studies clearly showed the efficacy of 54 in the mouse MM.1S xenograft model. Copyright © 2017 Elsevier Masson SAS. All rights reserved.