Sample records for c1 inhibitor replacement

  1. Diarylsulfonamides and their bioisosteres as dual inhibitors of alkaline phosphatase and carbonic anhydrase: Structure activity relationship and molecular modelling studies.

    PubMed

    Al-Rashida, Mariya; Ejaz, Syeda Abida; Ali, Sharafat; Shaukat, Aisha; Hamayoun, Mehwish; Ahmed, Maqsood; Iqbal, Jamshed

    2015-05-15

    The effect of bioisosteric replacement of carboxamide linking group with sulfonamide linking group, on alkaline phosphatase (AP) and carbonic anhydrase (CA) inhibition activity of aromatic benzenesulfonamides was investigated. A series of carboxamide linked aromatic benzenesulfonamides 1a-1c, 2a-2d and their sulfonamide linked bioisosteres 3a-3d, 4a-4d was synthesized and evaluated for inhibitory activity against bovine tissue non-specific alkaline phosphatase (TNAP), intestinal alkaline phosphatase (IAP) and bCA II. A significant increase in CA inhibition activity was observed upon bioisosteric replacement of carboxamide linking group with a sulfonamide group. Some of these compounds were identified as highly potent and selective AP inhibitors. Compounds 1b, 2b, 3d, 4d 5b and 5c were found to be selective bTNAP inhibitors, whereas compounds 1a, 1c, 2a, 2c, 2d, 3a, 3c, 4a, 4b, 4c, 5a were found to be selective bIAP inhibitors. For most active AP inhibitor 3b, detailed kinetic studies indicated a competitive mode of inhibition against tissue non-specific alkaline phosphatase (TNAP) and non-competitive mode of inhibition against intestinal alkaline phosphatase (IAP). Molecular docking studies were carried out to rationalize important binding site interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Conestat alfa for the treatment of angioedema attacks

    PubMed Central

    Davis, Benjamin; Bernstein, Jonathan A

    2011-01-01

    Recently, multiple C1 inhibitor (C1-INH) replacement products have been approved for the treatment of hereditary angioedema (HAE). This review summarizes HAE and its current treatment modalities and focuses on findings from bench to bedside trials of a new C1-INH replacement, conestat alfa. Conestat alfa is unique among the other C1-INH replacement products because it is produced from transgenic rabbits rather than derived from human plasma donors, which can potentially allow an unlimited source of drug without any concern of infectious transmission. The clinical trial data generated to date indicate that conestat alfa is safe and effective for the treatment of acute HAE attacks. PMID:21753889

  3. Exposure‐Response Model of Subcutaneous C1‐Inhibitor Concentrate to Estimate the Risk of Attacks in Patients With Hereditary Angioedema

    PubMed Central

    Tortorici, Michael A.; Pawaskar, Dipti; Pragst, Ingo; Machnig, Thomas; Hutmacher, Matthew; Zuraw, Bruce; Cicardi, Marco; Craig, Timothy; Longhurst, Hilary; Sidhu, Jagdev

    2018-01-01

    Subcutaneous C1‐inhibitor (HAEGARDA, CSL Behring), is a US Food and Drug Administration (FDA)‐approved, highly concentrated formulation of a plasma‐derived C1‐esterase inhibitor (C1‐INH), which, in the phase III Clinical Studies for Optimal Management in Preventing Angioedema with Low‐Volume Subcutaneous C1‐inhibitor Replacement Therapy (COMPACT) trial, reduced the incidence of hereditary angioedema (HAE) attacks when given prophylactically. Data from the COMPACT trial were used to develop a repeated time‐to‐event model to characterize the timing and frequency of HAE attacks as a function of C1‐INH activity, and then develop an exposure–response model to assess the relationship between C1‐INH functional activity levels (C1‐INH(f)) and the risk of an attack. The C1‐INH(f) values of 33.1%, 40.3%, and 63.1% were predicted to correspond with 50%, 70%, and 90% reductions in the HAE attack risk, respectively, relative to no therapy. Based on trough C1‐INH(f) values for the 40 IU/kg (40.2%) and 60 IU/kg (48.0%) C1‐INH (SC) doses, the model predicted that 50% and 67% of the population, respectively, would see at least a 70% decrease in the risk of an attack. PMID:29316335

  4. Bradykinin-mediated diseases.

    PubMed

    Kaplan, Allen P

    2014-01-01

    Diseases which have been demonstrated to be caused by increased plasma levels of bradykinin all have angioedema as the common major clinical manifestation. Angioedema due to therapy with angiotensin-converting enzyme (ACE) inhibitors is caused by suppressed bradykinin degradation so that it accumulates. This occurs because ACE metabolizes bradykinin by removal of Phe-Arg from the C-terminus, which inactivates it. By contrast, angioedema due to C1 inhibitor deficiency (either hereditary types I and II, or acquired) is caused by bradykinin overproduction. C1 inhibitor inhibits factor XIIa, kallikrein and activity associated with the prekallikrein-HK (high-molecular-weight kininogen) complex. In its absence, uncontrolled activation of the plasma bradykinin cascade is seen once there has been an initiating stimulus. C4 levels are low in all types of C1 inhibitor deficiency due to the instability of C1 (C1r, in particular) such that some activated C1 always circulates and depletes C4. In the hereditary disorder, formation of factor XIIf (factor XII fragment) during attacks of swelling causes C4 levels to drop toward zero, and C2 levels decline. A kinin-like molecule, once thought to be a cleavage product derived from C2 that contributes to the increased vascular permeability seen in hereditary angioedema (HAE), is now thought to be an artifact, i.e. no such molecule is demonstrable. The acquired C1 inhibitor deficiency is associated with clonal disorders of B cell hyperreactivity, including lymphoma and monoclonal gammopathy. Most cases have an IgG autoantibody to C1 inhibitor which inactivates it so that the presentation is strikingly similar to type I HAE. New therapies for types I and II HAE include C1 inhibitor replacement therapy, ecallantide, a kallikrein antagonist, and icatibant, a B2 receptor antagonist. A newly described type III HAE has normal C1 inhibitor, although it is thought to be mediated by bradykinin, as is an antihistamine-resistant subpopulation of patients with 'idiopathic' angioedema. The mechanism(s) for the formation of bradykinin in these disorders is unknown. © 2014 S. Karger AG, Basel.

  5. Exposure-Response Model of Subcutaneous C1-Inhibitor Concentrate to Estimate the Risk of Attacks in Patients With Hereditary Angioedema.

    PubMed

    Zhang, Ying; Tortorici, Michael A; Pawaskar, Dipti; Pragst, Ingo; Machnig, Thomas; Hutmacher, Matthew; Zuraw, Bruce; Cicardi, Marco; Craig, Timothy; Longhurst, Hilary; Sidhu, Jagdev

    2018-03-01

    Subcutaneous C1-inhibitor (HAEGARDA, CSL Behring), is a US Food and Drug Administration (FDA)-approved, highly concentrated formulation of a plasma-derived C1-esterase inhibitor (C1-INH), which, in the phase III Clinical Studies for Optimal Management in Preventing Angioedema with Low-Volume Subcutaneous C1-inhibitor Replacement Therapy (COMPACT) trial, reduced the incidence of hereditary angioedema (HAE) attacks when given prophylactically. Data from the COMPACT trial were used to develop a repeated time-to-event model to characterize the timing and frequency of HAE attacks as a function of C1-INH activity, and then develop an exposure-response model to assess the relationship between C1-INH functional activity levels (C1-INH(f)) and the risk of an attack. The C1-INH(f) values of 33.1%, 40.3%, and 63.1% were predicted to correspond with 50%, 70%, and 90% reductions in the HAE attack risk, respectively, relative to no therapy. Based on trough C1-INH(f) values for the 40 IU/kg (40.2%) and 60 IU/kg (48.0%) C1-INH (SC) doses, the model predicted that 50% and 67% of the population, respectively, would see at least a 70% decrease in the risk of an attack. © 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  6. WNT-C59, a Small-Molecule WNT Inhibitor, Efficiently Induces Anterior Cortex That Includes Cortical Motor Neurons From Human Pluripotent Stem Cells.

    PubMed

    Motono, Makoto; Ioroi, Yoshihiko; Ogura, Takenori; Takahashi, Jun

    2016-04-01

    The recapitulation of human neural development in a controlled, defined manner from pluripotent stem cells (PSCs) has considerable potential for studies of human neural development, circuit formation and function, and the construction of in vitro models of neurological diseases. The inhibition of Wnt signaling, often by the recombinant protein DKK1, is important for the induction of cortical neurons. Here, we report a novel differentiation method using a small-molecule WNT inhibitor, WNT-C59 (C59), to efficiently induce human anterior cortex. We compared two types of small molecules, C59 and XAV939 (XAV), as substitutes for DKK1 to induce cortical neurons from PSCs in serum-free embryoid body-like aggregate culture. DKK1 and XAV inhibited only the canonical pathway of Wnt signaling, whereas C59 inhibited both the canonical and noncanonical pathways. C59 efficiently induced CTIP2+/COUP-TF1- cells, which are characteristic of the cells found in the anterior cortex. In addition, when grafted into the cortex of adult mice, the C59-induced cells showed abundant axonal fiber extension toward the spinal cord. These results raise the possibility of C59 contributing to cell replacement therapy for motor neuron diseases or insults. For a cell therapy against damaged corticospinal tract caused by neurodegenerative diseases or insults, cortical motor neurons are needed. Currently, their induction from pluripotent stem cells is considered very promising; however, an efficient protocol to induce motor neurons is not available. For efficient induction of anterior cortex, where motor neurons are located, various WNT inhibitors were investigated. It was found that one of them could induce anterior cortical cells efficiently. In addition, when grafted into the cortex of adult mice, the induced cells showed more abundant axonal fiber extension toward spinal cord. These results raise the possibility that this inhibitor contributes to a cell-replacement therapy for motor neuron diseases or insults. ©AlphaMed Press.

  7. Inhibitors of HIV-1 maturation: Development of structure-activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids.

    PubMed

    Swidorski, Jacob J; Liu, Zheng; Sit, Sing-Yuen; Chen, Jie; Chen, Yan; Sin, Ny; Venables, Brian L; Parker, Dawn D; Nowicka-Sans, Beata; Terry, Brian J; Protack, Tricia; Rahematpura, Sandhya; Hanumegowda, Umesh; Jenkins, Susan; Krystal, Mark; Dicker, Ira B; Meanwell, Nicholas A; Regueiro-Ren, Alicia

    2016-04-15

    We have recently reported on the discovery of a C-3 benzoic acid (1) as a suitable replacement for the dimethyl succinate side chain of bevirimat (2), an HIV-1 maturation inhibitor that reached Phase II clinical trials before being discontinued. Recent SAR studies aimed at improving the antiviral properties of 2 have shown that the benzoic acid moiety conferred topographical constraint to the pharmacophore and was associated with a lower shift in potency in the presence of human serum albumin. In this manuscript, we describe efforts to improve the polymorphic coverage of the C-3 benzoic acid chemotype through modifications at the C-28 position of the triterpenoid core. The dimethylaminoethyl amides 17 and 23 delivered improved potency toward bevirimat-resistant viruses while increasing C24 in rat oral PK studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Influence of class I and II HLA alleles on inhibitor development in severe haemophilia A patients from the south of Brazil.

    PubMed

    De Barros, M F; Herrero, J C M; Sell, A M; De Melo, F C; Braga, M A; Pelissari, C B; Machado, J; De Souza Schiller, S; De Souza Hirle, L; Visentainer, J E L

    2012-05-01

    Congenital haemophilia A is a chromosome-linked recessive disorder caused by the deficiency or reduction of factor VIII (FVIII) pro-coagulant activity. During treatment, some patients develop alloantibodies (FVIII inhibitors) that neutralize the action of exogenously administered FVIII. Currently, the presence of these inhibitors is the most serious adverse event found in replacement therapy. Some studies have suggested that genetic factors influence the development of the FVIII coagulation inhibitors. To identify the class I and II alleles that may be influencing the formation of inhibitors in severe haemophilic patients. Genotyping of the class I (HLA-A, -B and -C) and class II (HLA-DRB1, -DQA1 and -DQB1) alleles of 122 patients with severe haemophilia A, including 36 who had developed antibodies to factor VIII, was performed. After the comparison of the group without inhibitors and the group with inhibitors, HLA-C*16 [Odds ratio (OR) = 7.73; P = 0.0092] and HLA-DRB1*14 (OR = 4.52; P = 0.0174) were found to be positively associated with the formation of the inhibitors. These results confirm that HLA alleles are involved in inhibitor production and could be used as a tool for recognition of groups at high risk of possible inhibitor development in Southern Brazilian haemophilic patients. © 2011 Blackwell Publishing Ltd.

  9. Farnesyltransferase inhibitors: CAAX mimetics based on different biaryl scaffolds.

    PubMed

    Straniero, Valentina; Pallavicini, Marco; Chiodini, Giuseppe; Ruggeri, Paola; Fumagalli, Laura; Bolchi, Cristiano; Corsini, Alberto; Ferri, Nicola; Ricci, Chiara; Valoti, Ermanno

    2014-07-01

    Mimetics of the C-terminal CAAX tetrapeptide of Ras protein were designed as farnesyltransferase (FTase) inhibitors (FTIs) by replacing AA with o-aryl or o-heteroaryl substituted p-hydroxy- or p-aminobenzoic acid, while maintaining the replacement of C with 1,4-benzodioxan-2-ylmethyl or 2-amino-4-thiazolylacetyl residue as in previous CAAX mimetics. Both FTase inhibition and antiproliferative effect were showed by two thiazole derivatives, namely those with 1-naphthyl (10 and 10a) or 3-furanyl (15 and 15a) in the central spacer, and by the benzodioxane derivative with 2-thienyl (6 and 6a) in the same position. Accumulation of unprenylated RAS was demonstrated in cells incubated with 15a. Consistently with FTIs literature, such results delineate the biaryl scaffold not only as a spacer but also as a sensible area of these mimetic molecules, where modifications at the branching aromatic ring are not indifferent and should be matter of further investigation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Identification of 1H-indene-(1,3,5,6)-tetrol derivatives as potent pancreatic lipase inhibitors using molecular docking and molecular dynamics approach.

    PubMed

    Kalathiya, Umesh; Padariya, M; Baginski, M

    2016-11-01

    Pancreatic lipase is a potential therapeutic target to treat diet-induced obesity in humans, as obesity-related diseases continue to be a global problem. Despite intensive research on finding potential inhibitors, very few compounds have been introduced to clinical studies. In this work, new chemical scaffold 1H-indene-(1,3,5,6)-tetrol was proposed using knowledge-based approach, and 36 inhibitors were derived by modifying its functional groups at different positions in scaffold. To explore binding affinity and interactions of ligands with protein, CDOCKER and AutoDock programs were used for molecular docking studies. Analyzing results of rigid and flexible docking algorithms, inhibitors C_12, C_24, and C_36 were selected based on different properties and high predicted binding affinities for further analysis. These three inhibitors have different moieties placed at different functional groups in scaffold, and to characterize structural rationales for inhibitory activities of compounds, molecular dynamics simulations were performed (500 nSec). It has been shown through simulations that two structural fragments (indene and indole) in inhibitor can be treated as isosteric structures and their position at binding cleft can be replaced by each other. Taking into account these information, two lines of inhibitors can further be developed, each line based on a different core scaffold, that is, indene/indole. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  11. A survey of cyclic replacements for the central diamide moiety of inhibitors of inosine monophosphate dehydrogenase.

    PubMed

    Dhar, T G Murali; Liu, Chunjian; Pitts, William J; Guo, Junquing; Watterson, Scott H; Gu, Henry; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Barrish, Joel C; Hollenbaugh, Diane; Iwanowicz, Edwin J

    2002-11-04

    A series of heterocyclic replacements for the central diamide moiety of 1, a potent small molecule inhibitor of inosine monophosphate dehydrogenase (IMPDH) were explored The synthesis and the structure-activity relationships (SARs), derived from in vitro studies, for these new series of inhibitors is given.

  12. Structures of potent selective peptide mimetics bound to carboxypeptidase B.

    PubMed

    Adler, Marc; Buckman, Brad; Bryant, Judi; Chang, Zheng; Chu, Kieu; Emayan, Kumar; Hrvatin, Paul; Islam, Imadul; Morser, John; Sukovich, Drew; West, Christopher; Yuan, Shendong; Whitlow, Marc

    2008-02-01

    This article reports the crystal structures of inhibitors of the functional form of thrombin-activatable fibrinolysis inhibitor (TAFIa). In vivo experiments indicate that selective inhibitors of TAFIa would be useful in the treatment of heart attacks. Since TAFIa rapidly degrades in solution, the homologous protein porcine pancreatic carboxypeptidase B (pp-CpB) was used in these crystallography studies. Both TAFIa and pp-CpB are zinc-based exopeptidases that are specific for basic residues. The final development candidate, BX 528, is a potent inhibitor of TAFIa (2 nM) and has almost no measurable effect on the major selectivity target, carboxypeptidase N. BX 528 was designed to mimic the tripeptide Phe-Val-Lys. A sulfonamide replaces the Phe-Val amide bond and a phosphinate connects the Val and Lys groups. The phosphinate also chelates the active-site zinc. The electrostatic interactions with the protein mimic those of the natural substrate. The primary amine in BX 528 forms a salt bridge to Asp255 at the base of the S1' pocket. The carboxylic acid interacts with Arg145 and the sulfonamide is hydrogen bonded to Arg71. Isopropyl and phenyl groups replace the side chains of Val and Phe, respectively. A series of structures are presented here that illustrate the evolution of BX 528 from thiol-based inhibitors that mimic a free C-terminal arginine. The first step in development was the replacement of the thiol with a phosphinate. This caused a precipitous drop in binding affinity. Potency was reclaimed by extending the inhibitors into the downstream binding sites for the natural substrate.

  13. Hereditary angioedema: management of laryngeal attacks.

    PubMed

    Christiansen, Sandra C; Zuraw, Bruce L

    2011-01-01

    Hereditary angioedema (HAE) patients suffering from laryngeal attacks in the United States faced severely limited treatment options until 2008. These potentially life-threatening episodes occur in over one-half of the patients affected by HAE during their lifetimes. Acute therapy had been relegated to supportive care, intubation, and consideration of fresh frozen plasma (FFP)--the latter with the potential for actually accelerating the speed and severity of the swelling. In this article we will review the recently approved and emerging HAE treatments that have evolved from the recognition that bradykinin generation is the fundamental abnormality leading to attacks of angioedema. Acute therapy for laryngeal attacks will be discussed including purified plasma-derived C1 inhibitor (C1INH), recombinant C1INH, an inhibitor of plasma kallikrein (ecallantide), and a B2 receptor antagonist (icatibant). Prophylactic care has also been transformed from a reliance on attenuated androgens with their attendant side effects to C1INH replacement. The arrival of these novel therapies promises to transform the future management of HAE.

  14. Development of a novel non-radioactive cell-based method for the screening of SGLT1 and SGLT2 inhibitors using 1-NBDG.

    PubMed

    Chang, Hung-Chi; Yang, Su-Fu; Huang, Ching-Chun; Lin, Tzung-Sheng; Liang, Pi-Hui; Lin, Chun-Jung; Hsu, Lih-Ching

    2013-08-01

    Sodium-coupled glucose co-transporters SGLT1 and SGLT2 play important roles in intestinal absorption and renal reabsorption of glucose, respectively. Blocking SGLT2 is a novel mechanism for lowering the blood glucose level by inhibiting renal glucose reabsorption and selective SGLT2 inhibitors are under development for treatment of type 2 diabetes. Furthermore, it has been reported that perturbation of SGLT1 is associated with cardiomyopathy and cancer. Therefore, both SGLT1 and SGLT2 are potential therapeutic targets. Here we report the development of a non-radioactive cell-based method for the screening of SGLT inhibitors using COS-7 cells transiently expressing human SGLT1 (hSGLT1), CHO-K1 cells stably expressing human SGLT2 (hSGLT2), and a novel fluorescent d-glucose analogue 1-NBDG as a substrate. Our data indicate that 1-NBDG can be a good replacement for the currently used isotope-labeled SGLT substrate, (14)C-AMG. The Michaelis constant of 1-NBDG transport (0.55 mM) is similar to that of d-glucose (0.51 mM) and AMG (0.40 mM) transport through hSGLT1. The IC50 values of a SGLT inhibitor phlorizin for hSGLT1 obtained using 1-NBDG and (14)C-AMG were identical (0.11 μM) in our cell-based system. The IC50 values of dapagliflozin, a well-known selective SGLT2 inhibitor, for hSGLT2 and hSGLT1 determined using 1-NBDG were 1.86 nM and 880 nM, respectively, which are comparable to the published results obtained using (14)C-AMG. Compared to (14)C-AMG, the use of 1-NBDG is cost-effective, convenient and potentially more sensitive. Taken together, a non-radioactive system using 1-NBDG has been validated as a rapid and reliable method for the screening of SGLT1 and SGLT2 inhibitors.

  15. Inhibition of AmpC beta-lactamase through a destabilizing interaction in the active site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trehan, I.; Beadle, B.M.; Shoichet, B.K.

    2010-03-08

    {beta}-Lactamases hydrolyze {beta}-lactam antibiotics, including penicillins and cephalosporins; these enzymes are the most widespread resistance mechanism to these drugs and pose a growing threat to public health. {beta}-Lactams that contain a bulky 6(7){alpha} substituent, such as imipenem and moxalactam, actually inhibit serine {beta}-lactamases and are widely used for this reason. Although mutant serine {beta}-lactamases have arisen that hydrolyze {beta}-lactamase resistant {beta}-lactams (e.g., ceftazidime) or avoid mechanism-based inhibitors (e.g., clavulanate), mutant serine {beta}-lactamases have not yet arisen in the clinic with imipenemase or moxalactamase activity. Structural and thermodynamic studies suggest that the 6(7){alpha} substituents of these inhibitors form destabilizing contacts withinmore » the covalent adduct with the conserved Asn152 in class C {beta}-lactamases (Asn132 in class A {beta}-lactamases). This unfavorable interaction may be crucial to inhibition. To test this destabilization hypothesis, we replaced Asn152 with Ala in the class C {beta}-lactamase AmpC from Escherichia coli and examined the mutant enzyme's thermodynamic stability in complex with imipenem and moxalactam. Consistent with the hypothesis, the Asn152 {yields} Ala substitution relieved 0.44 and 1.10 kcal/mol of strain introduced by imipenem and moxalactam, respectively, relative to the wild-type complexes. However, the kinetic efficiency of AmpC N152A was reduced by 6300-fold relative to that of the wild-type enzyme. To further investigate the inhibitor's interaction with the mutant enzyme, the X-ray crystal structure of moxalactam in complex with N152A was determined to a resolution of 1.83 {angstrom}. Moxalactam in the mutant complex is significantly displaced from its orientation in the wild-type complex; however, moxalactam does not adopt an orientation that would restore competence for hydrolysis. Although Asn152 forces {beta}-lactams with 6(7){alpha} substituents out of a catalytically competent configuration, making them inhibitors, the residue is essential for orienting {beta}-lactam substrates and cannot simply be replaced with a much smaller residue to restore catalytic activity. Designing {beta}-lactam inhibitors that interact unfavorably with this conserved residue when in the covalent adduct merits further investigation.« less

  16. Recent Developments of C-Aryl Glucoside SGLT2 Inhibitors.

    PubMed

    Zhang, Yang; Liu, Zhao-Peng

    2016-01-01

    Sodium-glucose cotransporter 2 (SGLT2) is almost exclusively expressed in the proximal renal tubules. It is responsible for about 90% of the glucose reabsorption from tubular fluid. Selective inhibition of SGLT2 is expected to favor in the normalization of plasma glucose levels in T2DM patients through the prevention of renal glucose reabsorption and the promotion of glucose excretion from urine. Selective SGLT2 inhibitors have the merits to minimize the gastrointestinal side effects associated with SGLT1 inhibition, and selective SGLT2 inhibition may have a low risk of hypoglycemia. Since the C-aryl glucosides are metabolically more stable than the O-glucosides, numerous efforts have been made in the development of potent and selective C-aryl glucoside SGLT2 inhibitors, and a number of them are now used as anti-diabetes drugs in clinic or at various stages of clinical developments. Based on their structural features, in this review, these SGLT2 inhibitors are classified as three types: the phenyl/arylmethylphenyl C-glucosides, with an emphasis on the modifications on the proximal and/or the distal phenyl ring, and the spacer; the heteroarylmethylphenyl Cglucosides, with a replacement of the distal phenyl ring by a heterocycle like pyridazine, pyrimidine, thiophene and benzothiophene, thiazole, 1,3,4-thiadiazole, and triazolopyridinone; and the glucose-modified Caryl glucosides, including the glucose C-1 derived O-spiroketals, C-4 gem-difluoro analogues, C-5 and C-6 modified derivatives, dioxa-bicyclo[3.2.1]octane bridged ketals, the thioglucosides, and carbasugars. The structure-activity relationships (SARs) of each type along with their inhibitory potency against human SGLT2 and selectivity over human SGLT1 are discussed.

  17. Meeting the Challenge of Environmental Regulations in Europe and North America

    DTIC Science & Technology

    2011-02-08

    salts • Electrolytic • Trivalent chromium • Rare earth salts • Sol Gel Socomor Finishing Technologies 24 Ce document et les informations qu’il contient...l’autorisation préalable et écrite de Safran. ASETS DEFENSE 2011 CHROMATE C.C. REPLACEMENT (3) TRIVALENT CHROMIUM • SUITABLE ONLY TO 1000, 3000, 5000...REPLACEMENT(4) ) - TRIVALENT CHROMIUM + TOP COAT - TRIVALENT CHROMIUM + INHIBITORS - OTHER CHEMISTRY BASED - SOL GEL Socomor Finishing Technologies

  18. 2-Oxoamide inhibitors of cytosolic group IVA phospholipase A2 with reduced lipophilicity.

    PubMed

    Antonopoulou, Georgia; Magrioti, Victoria; Kokotou, Maroula G; Nikolaou, Aikaterini; Barbayianni, Efrosini; Mouchlis, Varnavas D; Dennis, Edward A; Kokotos, George

    2016-10-01

    Cytosolic GIVA phospholipase A2 (GIVA cPLA2) initiates the eicosanoid pathway of inflammation and thus inhibitors of this enzyme constitute novel potential agents for the treatment of inflammatory diseases. Traditionally, GIVA cPLA2 inhibitors have suffered systemically from high lipophilicity. We have developed a variety of long chain 2-oxoamides as inhibitors of GIVA PLA2. Among them, AX048 was found to produce a potent analgesic effect. We have now reduced the lipophilicity of AX048 by replacing the long aliphatic chain with a chain containing an ether linked aromatic ring with in vitro inhibitory activities similar to AX048. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Prospective surveillance study of haemophilia A patients switching from moroctocog alfa or other factor VIII products to moroctocog alfa albumin-free cell culture (AF-CC) in usual care settings.

    PubMed

    Parra Lopez, Rafael; Nemes, Laszlo; Jimenez-Yuste, Victor; Rusen, Luminita; Cid, Ana R; Charnigo, Robert J; Baumann, James A; Smith, Lynne; Korth-Bradley, Joan M; Rendo, Pablo

    2015-10-01

    This prospective, open-label, postauthorisation safety surveillance study assessed clinically significant inhibitor development in patients with severe haemophilia A transitioning from moroctocog alfa or other factor VIII (FVIII) replacement products to reformulated moroctocog alfa (AF-CC). Males aged ≥ 12 years with severe haemophilia A (FVIII:C) < 1 IU/dl), > 150 exposure days (EDs) to recombinant or plasma-derived FVIII products, and no detectable inhibitor at screening were enrolled. Primary end point was the incidence of clinically significant FVIII inhibitor development. Secondary end points included annualised bleeding rate (ABR), less-than-expected therapeutic effect (LETE), and FVIII recovery. Patients were assigned to one of two cohorts based on whether they were transitioning to moroctocog alfa (AF-CC) from moroctocog alfa (cohort 1; n=146) or from another recombinant or plasma-derived FVIII product (cohort 2; n=62). Mean number of EDs on study was 94 (range, 1-139). Six positive FVIII inhibitor results, as determined by local laboratories, were reported in four patients; none were confirmed by a central laboratory, no inhibitor-related clinical manifestations were reported, and all anti-FVIII antibody assays were negative. Median ABRs were 23.4 and 3.4 in patients categorised at baseline as following on-demand and prophylactic regimens, respectively; 86.5% of bleeding episodes resolved after one infusion. LETE incidence was 0.06% and 0.19% in the on-demand and prophylaxis settings, respectively. FVIII recovery remained constant throughout the study. No new safety concerns were identified. This study found no increased risk of clinically significant FVIII inhibitor development in patients transitioning from moroctocog alfa or other FVIII replacement products to moroctocog alfa (AF-CC).

  20. Discovery of 5-Amino- N -(1 H -pyrazol-4-yl)pyrazolo[1,5- a ]pyrimidine-3-carboxamide Inhibitors of IRAK4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Jongwon; Altman, Michael D.; Baker, James

    2015-06-11

    Interleukin-1 receptor associated kinase 4 (IRAK4) is an essential signal transducer downstream of the IL-1R and TLR superfamily, and selective inhibition of the kinase activity of the protein represents an attractive target for the treatment of inflammatory diseases. A series of 5-amino-N-(1H-pyrazol-4-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamides was developed via sequential modifications to the 5-position of the pyrazolopyrimidine ring and the 3-position of the pyrazole ring. Replacement of substituents responsible for poor permeability and improvement of physical properties guided by cLogD led to the identification of IRAK4 inhibitors with excellent potency, kinase selectivity, and pharmacokinetic properties suitable for oral dosing.

  1. Insights into structure and activity of natural compound inhibitors of pneumolysin

    PubMed Central

    Li, Hongen; Zhao, Xiaoran; Deng, Xuming; Wang, Jianfeng; Song, Meng; Niu, Xiaodi; Peng, Liping

    2017-01-01

    Pneumolysin is the one of the major virulence factor of the bacterium Streptococcus pneumoniae. In previous report, it is shown that β-sitosterol, a natural compound without antimicrobial activity, is a potent antagonist of pneumolysin. Here, two new pneumolysin natural compound inhibitors, with differential activity, were discovered via haemolysis assay. To explore the key factor of the conformation for the inhibition activity, the interactions between five natural compound inhibitors with differential activity and pneumolysin were reported using molecular modelling, the potential of mean force profiles. Interestingly, it is found that incorporation of the single bond (C22-C23-C24-C25) to replace the double bond (hydrocarbon sidechain) improved the anti-haemolytic activity. In view of the molecular modelling, binding of the five inhibitors to the conserved loop region (Val372, Leu460, and Tyr461) of the cholesterol binding sites led to stable complex systems, which was consistent with the result of β-sitosterol. Owing to the single bond (C22-C23-C24-C25), campesterol and brassicasterol could form strong interactions with Val372 and show higher anti-haemolytic activity, which indicated that the single bond (C22-C23-C24-C25) in inhibitors was required for the anti-haemolytic activity. Overall, the current molecular modelling work provides a starting point for the development of rational design and higher activity pneumolysin inhibitors. PMID:28165051

  2. Substitution scanning identifies a novel, catalytically active ibrutinib-resistant BTK cysteine 481 to threonine (C481T) variant

    PubMed Central

    Hamasy, A; Wang, Q; Blomberg, K E M; Mohammad, D K; Yu, L; Vihinen, M; Berglöf, A; Smith, C I E

    2017-01-01

    Irreversible Bruton tyrosine kinase (BTK) inhibitors, ibrutinib and acalabrutinib have demonstrated remarkable clinical responses in multiple B-cell malignancies. Acquired resistance has been identified in a sub-population of patients in which mutations affecting BTK predominantly substitute cysteine 481 in the kinase domain for catalytically active serine, thereby ablating covalent binding of inhibitors. Activating substitutions in the BTK substrate phospholipase Cγ2 (PLCγ2) instead confers resistance independent of BTK. Herein, we generated all six possible amino acid substitutions due to single nucleotide alterations for the cysteine 481 codon, in addition to threonine, requiring two nucleotide substitutions, and performed functional analysis. Replacement by arginine, phenylalanine, tryptophan or tyrosine completely inactivated the catalytic activity, whereas substitution with glycine caused severe impairment. BTK with threonine replacement was catalytically active, similar to substitution with serine. We identify three potential ibrutinib resistance scenarios for cysteine 481 replacement: (1) Serine, being catalytically active and therefore predominating among patients. (2) Threonine, also being catalytically active, but predicted to be scarce, because two nucleotide changes are needed. (3) As BTK variants replaced with other residues are catalytically inactive, they presumably need compensatory mutations, therefore being very scarce. Glycine and tryptophan variants were not yet reported but likely also provide resistance. PMID:27282255

  3. Body Weight Gain and Hyperphagia After Administration of SGLT-2 Inhibitor: A Case Report.

    PubMed

    Hamamoto, Hiromi; Noda, Mitsuhiko

    2015-12-07

    A detailed description is given of a case we encountered in which unexpectedly marked weight gain occurred following a treatment switch from a GLP-1 receptor agonist to an SGLT-2 inhibitor The patient, a 44-year-old man with type 2 diabetes mellitus, had gained about 10 kg in weight in the previous year. Therefore, metformin was replaced with liraglutide to obtain reduction of body weight. Although the patient lost about 8 kg (7%), during the 18-month period on the medication, the weight loss stabilized; therefore, the treatment was again switched to tofogliflozin to obtain further reduction of body weight. However, the patient reported increasing hunger and an exaggerated appetite from week 3 onward after the start of tofogliflozin, and gained about 9 kg in weight within 2 weeks, associated with a tendency towards increased HbA1c; therefore, tofogliflozin was discontinued. Immediate reinstitution of liraglutide resulted in reduction of the increased appetite, weight, and HbA1c level. Caution should be exercised against hyperphagia and weight gain due to hunger that may occur following discontinuation of a GLP-1 receptor agonist and/or initiation of an SGLT-2 inhibitor.

  4. Use of Belatacept as Alternative Immunosuppression in Three Renal Transplant Patients with De Novo Drug-Induced Thrombotic Microangiopathy

    PubMed Central

    Cicora, Federico; Paz, Marta; Mos, Fernando; Roberti, Javier

    2013-01-01

    Thrombotic microangiopathy (TMA), a severe complication of renal transplantation, is a pathological process involving microvascular occlusion, thrombocytopenia, and microangiopathic hemolytic anemia. It generally appears within the first weeks after transplantation, when immunosuppressive drugs are used at high doses. De novo TMA may also be drug-induced when calcineurin inhibitors or proliferation signal inhibitors are used. We report three cases of de novo drug-induced TMA in renal transplant patients who were managed by replacing calcineurin inhibitors or proliferation signal inhibitors with belatacept, a primary maintenance immunosuppressive drug, which blocks the CD28 costimulation pathway, preventing the activation of T lymphocytes. To identify the cause of TMA, we ruled out HUS, hepatitis C serology, HIV serology, parvovirus B19, cytomegalovirus, anti-HLA antibodies, and prolonged activated partial thromboplastin time. We suspect that the TMA was caused by the calcineurin inhibitors or proliferation signal inhibitors. Belatacept treatment was initiated at a dose of 10 mg/kg on days 1, 5, 14, 28, 60, and 90; maintenance treatment was 5 mg/kg once a month for 1 year. Belatacept, in combination with other agents, prevented graft rejection in three patients. PMID:24198835

  5. Molecular Modeling and Evaluation of Novel Dibenzopyrrole Derivatives as Telomerase Inhibitors and Potential Drug for Cancer Therapy.

    PubMed

    Kalathiya, Umesh; Padariya, Monikaben; Baginski, Maciej

    2014-01-01

    During previous years, many studies on synthesis, as well as on anti-tumor, anti-inflammatory and anti-bacterial activities of the pyrazole derivatives have been described. Certain pyrazole derivatives exhibit important pharmacological activities and have proved to be useful template in drug research. Considering importance of pyrazole template, in current work the series of novel inhibitors were designed by replacing central ring of acridine with pyrazole ring. These heterocyclic compounds were proposed as a new potential base for telomerase inhibitors. Obtained dibenzopyrrole structure was used as a novel scaffold structure and extension of inhibitors was done by different functional groups. Docking of newly designed compounds in the telomerase active site (telomerase catalytic subunit TERT) was carried out. All dibenzopyrrole derivatives were evaluated by three docking programs: CDOCKER, Ligandfit docking (Scoring Functions) and AutoDock. Compound C_9g, C_9k and C_9l performed best in comparison to all designed inhibitors during the docking in all methods and in interaction analysis. Introduction of pyrazole and extension of dibenzopyrrole in compounds confirm that such compound may act as potential telomerase inhibitors.

  6. Potentiation of C1-esterase inhibitor by heparin and interactions with C1s protease as assessed by surface plasmon resonance.

    PubMed

    Rajabi, Mohsen; Struble, Evi; Zhou, Zhaohua; Karnaukhova, Elena

    2012-01-01

    Human C1-esterase inhibitor (C1-INH) is a multifunctional plasma protein with a wide range of inhibitory and non-inhibitory properties, mainly recognized as a key down-regulator of the complement and contact cascades. The potentiation of C1-INH by heparin and other glycosaminoglycans (GAGs) regulates a broad spectrum of C1-INH activities in vivo both in normal and disease states. SCOPE OF RESEARCH: We have studied the potentiation of human C1-INH by heparin using Surface Plasmon Resonance (SPR), circular dichroism (CD) and a functional assay. To advance a SPR for multiple-unit interaction studies of C1-INH we have developed a novel (consecutive double capture) approach exploring different immobilization and layout. Our SPR experiments conducted in three different design versions showed marked acceleration in C1-INH interactions with complement protease C1s as a result of potentiation of C1-INH by heparin (from 5- to 11-fold increase of the association rate). Far-UV CD studies suggested that heparin binding did not alter C1-INH secondary structure. Functional assay using chromogenic substrate confirmed that heparin does not affect the amidolytic activity of C1s, but does accelerate its consumption due to C1-INH potentiation. This is the first report that directly demonstrates a significant acceleration of the C1-INH interactions with C1s due to heparin by using a consecutive double capture SPR approach. The results of this study may be useful for further C-INH therapeutic development, ultimately for the enhancement of current C1-INH replacement therapies. Published by Elsevier B.V.

  7. Reduced-Amide Inhibitor of Pin1 Binds in a Conformation Resembling a Twisted-Amide Transition State†

    PubMed Central

    Xu, Guoyan G.; Zhang, Yan; Mercedes-Camacho, Ana Y.; Etzkorn, Felicia A.

    2011-01-01

    The mechanism of the cell cycle regulatory peptidyl prolyl isomerase (PPIase), Pin1, was investigated using reduced-amide inhibitors designed to mimic the twisted-amide transition state. Inhibitors, R–pSer–Ψ[CH2N]–Pro–2-(indol-3-yl)-ethylamine, 1 (R = fluorenylmethoxycarbonyl, Fmoc), and 2 (R = Ac), of Pin1 were synthesized and bioassayed. Inhibitor 1 had an IC50 value of 6.3 μM, which is 4.5-fold better inhibition for Pin1 than our comparable ground state analogue, a cis-amide alkene isostere containing inhibitor. The change of Fmoc to Ac in 2 improved aqueous solubility for structural determination, and resulted in an IC50 value of 12 μM. The X-ray structure of the complex of 2 bound to Pin1 was determined to 1.76 Å resolution. The structure revealed that the reduced amide adopted a conformation similar to the proposed twisted-amide transition state of Pin1, with a trans-pyrrolidine conformation of the prolyl ring. A similar conformation of substrate would be destabilized relative to the planar amide conformation. Three additional reduced amides, with Thr replacing Ser, and l- or d-pipecolate (Pip) replacing Pro, were slightly weaker inhibitors of Pin1. PMID:21980916

  8. A reduced-amide inhibitor of Pin1 binds in a conformation resembling a twisted-amide transition state.

    PubMed

    Xu, Guoyan G; Zhang, Yan; Mercedes-Camacho, Ana Y; Etzkorn, Felicia A

    2011-11-08

    The mechanism of the cell cycle regulatory peptidyl prolyl isomerase (PPIase), Pin1, was investigated using reduced-amide inhibitors designed to mimic the twisted-amide transition state. Inhibitors, R-pSer-Ψ[CH(2)N]-Pro-2-(indol-3-yl)ethylamine, 1 [R = fluorenylmethoxycarbonyl (Fmoc)] and 2 (R = Ac), of Pin1 were synthesized and bioassayed. Inhibitor 1 had an IC(50) value of 6.3 μM, which is 4.5-fold better for Pin1 than our comparable ground-state analogue, a cis-amide alkene isostere-containing inhibitor. The change of Fmoc to Ac in 2 improved aqueous solubility for structural determination and resulted in an IC(50) value of 12 μM. The X-ray structure of the complex of 2 bound to Pin1 was determined to 1.76 Å resolution. The structure revealed that the reduced amide adopted a conformation similar to the proposed twisted-amide transition state of Pin1, with a trans-pyrrolidine conformation of the prolyl ring. A similar conformation of substrate would be destabilized relative to the planar amide conformation. Three additional reduced amides, with Thr replacing Ser and l- or d-pipecolate (Pip) replacing Pro, were slightly weaker inhibitors of Pin1.

  9. Inhibitors for human glutaminyl cyclase by structure based design and bioisosteric replacement.

    PubMed

    Buchholz, Mirko; Hamann, Antje; Aust, Susanne; Brandt, Wolfgang; Böhme, Livia; Hoffmann, Torsten; Schilling, Stephan; Demuth, Hans-Ulrich; Heiser, Ulrich

    2009-11-26

    The inhibition of human glutaminyl cyclase (hQC) has come into focus as a new potential approach for the treatment of Alzheimer's disease. The hallmark of this principle is the prevention of the formation of Abeta(3,11(pE)-40,42), as these Abeta-species were shown to be of elevated neurotoxicity and likely to act as a seeding core leading to an accelerated formation of Abeta-oligomers and fibrils. Starting from 1-(3-(1H-imidazol-1-yl)propyl)-3-(3,4-dimethoxyphenyl)thiourea, bioisosteric replacements led to the development of new classes of inhibitors. The optimization of the metal-binding group was achieved by homology modeling and afforded a first insight into the probable binding mode of the inhibitors in the hQC active site. The efficacy assessment of the hQC inhibitors was performed in cell culture, directly monitoring the inhibition of Abeta(3,11(pE)-40,42) formation.

  10. Inhibition of Pancreatic Cancer Cell Proliferation by LRH-1 Inhibitors

    DTIC Science & Technology

    2014-12-01

    coordinates and structure factors have been deposited in the Protein Data Bank, www.pdb.org [ PDB ID codes 4QJR (SF-1/PIP3) and 4QK4 (SF-1/PIP2)]. 1To whom...with Rfree/Rcryst values of 23/19% (Table S2). The structure was deposited with the PDB ID code 4QJR. SF 1/PIP3 (Fig. 1C) adopts the classic NR LBD...PIP2) was solved by molecular replacement, using PDB ID code 1YOW as the search model, and compared with the SF 1/PIP3 structure (Table S2). The

  11. Kinetic alteration of a human dihydrodiol/3alpha-hydroxysteroid dehydrogenase isoenzyme, AKR1C4, by replacement of histidine-216 with tyrosine or phenylalanine.

    PubMed Central

    Ohta, T; Ishikura, S; Shintani, S; Usami, N; Hara, A

    2000-01-01

    Human dihydrodiol dehydrogenase with 3alpha-hydroxysteroid dehydrogenase activity exists in four forms (AKR1C1-1C4) that belong to the aldo-keto reductase (AKR) family. Recent crystallographic studies on the other proteins in this family have indicated a role for a tyrosine residue (corresponding to position 216 in these isoenzymes) in stacking the nicotinamide ring of the coenzyme. This tyrosine residue is conserved in most AKR family members including AKR1C1-1C3, but is replaced with histidine in AKR1C4 and phenylalanine in some AKR members. In the present study we prepared mutant enzymes of AKR1C4 in which His-216 was replaced with tyrosine or phenylalanine. The two mutations decreased 3-fold the K(m) for NADP(+) and differently influenced the K(m) and k(cat) for substrates depending on their structures. The kinetic constants for bile acids with a 12alpha-hydroxy group were decreased 1.5-7-fold and those for the other substrates were increased 1.3-9-fold. The mutation also yielded different changes in sensitivity to competitive inhibitors such as hexoestrol analogues, 17beta-oestradiol, phenolphthalein and flufenamic acid and 3,5,3', 5'-tetraiodothyropropionic acid analogues. Furthermore, the mutation decreased the stimulatory effects of the enzyme activity by sulphobromophthalein, clofibric acid and thyroxine, which increased the K(m) for the coenzyme and substrate of the mutant enzymes more highly than those of the wild-type enzyme. These results indicate the importance of this histidine residue in creating the cavity of the substrate-binding site of AKR1C4 through the orientation of the nicotinamide ring of the coenzyme, as well as its involvement in the conformational change by binding non-essential activators. PMID:11104674

  12. Amino acid sequence of a trypsin inhibitor from a Spirometra (Spirometra erinaceieuropaei).

    PubMed

    Sanda, A; Uchida, A; Itagaki, T; Kobayashi, H; Inokuchi, N; Koyama, T; Iwama, M; Ohgi, K; Irie, M

    2001-12-01

    A trypsin inhibitor that is highly homologous with bovine pancreatic trypsin inhibitor (BPTI) was co-purified along with RNase from Spirometra (Spirometra erinaceieuropaei). The amino acid sequence of this inhibitor (SETI) and the nucleotide sequence of the cDNA encoding this protein were determined by protein chemistry and gene technology. SETI contains 68 amino acid residues and has a molecular mass of 7,798 Da. SETI has 31 amino acid residues that are identical with BPTI's sequence, including 6 half-cystine and 5 aromatic amino acid residues. The active site Lys residue in BPTI is replaced by an Arg residue in SETI. SETI is an effective inhibitor of trypsin and moderately inhibits a-chymotrypsin, but less inhibits elastase or subtilisin. SETI was expressed by E. coli containing a PelB vector carrying the SETI encoding cDNA; an expression yield of 0.68 mg/l was obtained. The phylogenetic relationship of SETI and the other BPTI-like trypsin inhibitors was analyzed using most likelihood inference methods.

  13. Structure-based design of a novel series of azetidine inhibitors of the hepatitis C virus NS3/4A serine protease.

    PubMed

    Parsy, Christophe; Alexandre, François-René; Brandt, Guillaume; Caillet, Catherine; Cappelle, Sylvie; Chaves, Dominique; Convard, Thierry; Derock, Michel; Gloux, Damien; Griffon, Yann; Lallos, Lisa; Leroy, Frédéric; Liuzzi, Michel; Loi, Anna-Giulia; Moulat, Laure; Musiu, Chiara; Rahali, Houcine; Roques, Virginie; Seifer, Maria; Standring, David; Surleraux, Dominique

    2014-09-15

    Structural homology between thrombin inhibitors and the early tetrapeptide HCV protease inhibitor led to the bioisosteric replacement of the P2 proline by a 2,4-disubstituted azetidine within the macrocyclic β-strand mimic. Molecular modeling guided the design of the series. This approach was validated by the excellent activity and selectivity in biochemical and cell based assays of this novel series and confirmed by the co-crystal structure of the inhibitor with the NS3/4A protein (PDB code: 4TYD). Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Body Weight Gain and Hyperphagia After Administration of SGLT-2 Inhibitor: A Case Report

    PubMed Central

    Hamamoto, Hiromi; Noda, Mitsuhiko

    2015-01-01

    Patient: Male, 44 Final Diagnosis: Type 2 diabetes Symptoms: Hunger • increased appetite Medication: GLP-1 receptor agonist • SGLT-2 inhibitor Clinical Procedure: — Specialty: Internal Medicine/Diabetology Objective: Unusual or unexpected effect of treatment Background: A detailed description is given of a case we encountered in which unexpectedly marked weight gain occurred following a treatment switch from a GLP-1 receptor agonist to an SGLT-2 inhibitor. Case Report: The patient, a 44-year-old man with type 2 diabetes mellitus, had gained about 10 kg in weight in the previous year. Therefore, metformin was replaced with liraglutide to obtain reduction of body weight. Although the patient lost about 8 kg (7%), during the 18-month period on the medication, the weight loss stabilized; therefore, the treatment was again switched to tofogliflozin to obtain further reduction of body weight. However, the patient reported increasing hunger and an exaggerated appetite from week 3 onward after the start of tofogliflozin, and gained about 9 kg in weight within 2 weeks, associated with a tendency towards increased HbA1c; therefore, tofogliflozin was discontinued. Immediate reinstitution of liraglutide resulted in reduction of the increased appetite, weight, and HbA1c level. Conclusions: Caution should be exercised against hyperphagia and weight gain due to hunger that may occur following discontinuation of a GLP-1 receptor agonist and/or initiation of an SGLT-2 inhibitor. PMID:26638727

  15. Interaction of dopamine beta-mono-oxygenase with substituted imidazoles and pyrazoles. Catalysis and inhibition.

    PubMed Central

    Sirimanne, S R; Herman, H H; May, S W

    1987-01-01

    The interaction of dopamine beta-mono-oxygenase (DBM) with substrate analogues possessing either imidazole or pyrazole functionalities at the alkyl chain terminus was investigated. 1-(4-Hydroxybenzyl)imidazole (4-HOBI) is an active substrate for DBM, and it exhibits the expected ascorbate- and fumarate-dependencies and normal kinetic behaviour at concentrations up to 10 mM. 4-Hydroxybenzaldehyde was identified as the product formed from 4-HOBI on the basis of h.p.l.c. and g.c.-m.s. analysis, and its formation exhibits the expected 1:1 stoichiometry with O2 consumption. The 4-HOBI/DBM reaction is kinetically comparable with other DBM activities, and 4-HOBI is the first substrate analogue yet reported that exhibits substantial activity though lacking a terminal amino group. Introduction of a methyl substituent at the 2-position of the imidazole ring abolishes substrate activity, probably through a steric effect. 1-(4-Hydroxybenzyl)pyrazole, where imidazole is replaced by the isomeric pyrazole moiety, is a potent DBM inhibitor, and not a substrate. These results represent the first report of an active heterocyclic substrate or inhibitor for this enzyme, and establish the basis for the design of new classes of DBM substrates and inhibitors. PMID:3593236

  16. Health-Related Quality of Life with Subcutaneous C1-Inhibitor for Prevention of Attacks of Hereditary Angioedema.

    PubMed

    Lumry, William R; Craig, Timothy; Zuraw, Bruce; Longhurst, Hilary; Baker, James; Li, H Henry; Bernstein, Jonathan A; Anderson, John; Riedl, Marc A; Manning, Michael E; Keith, Paul K; Levy, Donald S; Caballero, Teresa; Banerji, Aleena; Gower, Richard G; Farkas, Henriette; Lawo, John-Philip; Pragst, Ingo; Machnig, Thomas; Watson, Douglas J

    2018-01-31

    Hereditary angioedema with C1-inhibitor deficiency (C1-INH-HAE) impairs health-related quality of life (HRQoL). The objective of this study was to assess HRQoL outcomes in patients self-administering subcutaneous C1-INH (C1-INH[SC]; HAEGARDA) for routine prevention of HAE attacks. Post hoc analysis of data from the placebo-controlled, crossover phase III COMPACT study (Clinical Studies for Optimal Management of Preventing Angioedema with Low-Volume Subcutaneous C1-Inhibitor Replacement Therapy). Ninety patients with C1-INH-HAE were randomized to 1 of 4 treatment sequences: C1-INH(SC) 40 or 60 IU/kg twice weekly for 16 weeks, preceded or followed by 16 weeks of twice weekly placebo injections. All HAE attacks were treated with open-label on-demand treatment as necessary. HRQoL assessments at week 14 (last visit) included the European Quality of Life-5 Dimensions Questionnaire (EQ-5D-3L), the Hospital Anxiety and Depression Scale (HADS), the Work Productivity and Activity Impairment Questionnaire (WPAI), and the Treatment Satisfaction Questionnaire for Medication (TSQM). Compared with placebo (on-demand treatment alone), treatment with twice weekly C1-INH(SC) (both doses combined) was associated with better EQ-5D visual analog scale general health, less HADS anxiety, less WPAI presenteeism, work productivity loss, and activity impairment, and greater TSQM effectiveness and overall treatment satisfaction. More patients self-reported a "good/excellent" response during routine prevention with C1-INH(SC) compared with on-demand only (placebo prophylaxis) management. For each HRQoL measure, a greater proportion of patients had a clinically meaningful improvement during C1-INH(SC) treatment compared with placebo. In patients with frequent HAE attacks, a treatment strategy of routine prevention with self-administered twice weekly C1-INH(SC) had a greater impact on improving multiple HAE-related HRQoL impairments, most notably anxiety and work productivity, compared with on-demand treatment alone (placebo prophylaxis). Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Mechanistic Characterization of GS-9190 (Tegobuvir), a Novel Nonnucleoside Inhibitor of Hepatitis C Virus NS5B Polymerase▿

    PubMed Central

    Shih, I-hung; Vliegen, Inge; Peng, Betty; Yang, Huiling; Hebner, Christy; Paeshuyse, Jan; Pürstinger, Gerhard; Fenaux, Martijn; Tian, Yang; Mabery, Eric; Qi, Xiaoping; Bahador, Gina; Paulson, Matthew; Lehman, Laura S.; Bondy, Steven; Tse, Winston; Reiser, Hans; Lee, William A.; Schmitz, Uli; Neyts, Johan; Zhong, Weidong

    2011-01-01

    GS-9190 (Tegobuvir) is a novel imidazopyridine inhibitor of hepatitis C virus (HCV) RNA replication in vitro and has demonstrated potent antiviral activity in patients chronically infected with genotype 1 (GT1) HCV. GS-9190 exhibits reduced activity against GT2a (JFH1) subgenomic replicons and GT2a (J6/JFH1) infectious virus, suggesting that the compound's mechanism of action involves a genotype-specific viral component. To further investigate the GS-9190 mechanism of action, we utilized the susceptibility differences between GT1b and GT2a by constructing a series of replicon chimeras where combinations of 1b and 2a nonstructural proteins were encoded within the same replicon. The antiviral activities of GS-9190 against the chimeric replicons were reduced to levels comparable to that of the wild-type GT2a replicon in chimeras expressing GT2a NS5B. GT1b replicons in which the β-hairpin region (amino acids 435 to 455) was replaced by the corresponding sequence of GT2a were markedly less susceptible to GS-9190, indicating the importance of the thumb subdomain of the polymerase in this effect. Resistance selection in GT1b replicon cells identified several mutations in NS5B (C316Y, Y448H, Y452H, and C445F) that contributed to the drug resistance phenotype. Reintroduction of these mutations into wild-type replicons conferred resistance to GS-9190, with the number of NS5B mutations correlating with the degree of resistance. Analysis of GS-9190 cross-resistance against previously reported NS5B drug-selected mutations showed that the resistance pattern of GS-9190 is different from other nonnucleoside inhibitors. Collectively, these data demonstrate that GS-9190 represents a novel class of nonnucleoside polymerase inhibitors that interact with NS5B likely through involvement of the β-hairpin in the thumb subdomain. PMID:21746939

  18. Boronic Acid Transition State Inhibitors Active against KPC and Other Class A β-Lactamases: Structure-Activity Relationships as a Guide to Inhibitor Design

    PubMed Central

    Rojas, Laura J.; Taracila, Magdalena A.; Papp-Wallace, Krisztina M.; Bethel, Christopher R.; Caselli, Emilia; Romagnoli, Chiara; Winkler, Marisa L.; Spellberg, Brad; Prati, Fabio

    2016-01-01

    Boronic acid transition state inhibitors (BATSIs) are competitive, reversible β-lactamase inhibitors (BLIs). In this study, a series of BATSIs with selectively modified regions (R1, R2, and amide group) were strategically designed and tested against representative class A β-lactamases of Klebsiella pneumoniae, KPC-2 and SHV-1. Firstly, the R1 group of compounds 1a to 1c and 2a to 2e mimicked the side chain of cephalothin, whereas for compounds 3a to 3c, 4a, and 4b, the thiophene ring was replaced by a phenyl, typical of benzylpenicillin. Secondly, variations in the R2 groups which included substituted aryl side chains (compounds 1a, 1b, 1c, 3a, 3b, and 3c) and triazole groups (compounds 2a to 2e) were chosen to mimic the thiazolidine and dihydrothiazine ring of penicillins and cephalosporins, respectively. Thirdly, the amide backbone of the BATSI, which corresponds to the amide at C-6 or C-7 of β-lactams, was also changed to the following bioisosteric groups: urea (compound 3b), thiourea (compound 3c), and sulfonamide (compounds 4a and 4b). Among the compounds that inhibited KPC-2 and SHV-1 β-lactamases, nine possessed 50% inhibitory concentrations (IC50s) of ≤600 nM. The most active compounds contained the thiopheneacetyl group at R1 and for the chiral BATSIs, a carboxy- or hydroxy-substituted aryl group at R2. The most active sulfonamido derivative, compound 4b, lacked an R2 group. Compound 2b (S02030) was the most active, with acylation rates (k2/K) of 1.2 ± 0.2 × 104 M−1 s−1 for KPC-2 and 4.7 ± 0.6 × 103 M−1 s−1 for SHV-1, and demonstrated antimicrobial activity against Escherichia coli DH10B carrying blaSHV variants and blaKPC-2 or blaKPC-3 and against clinical strains of Klebsiella pneumoniae and E. coli producing different class A β-lactamase genes. At most, MICs decreased from 16 to 0.5 mg/liter. PMID:26729496

  19. Crystallization and preliminary X-ray analysis of Leishmania major glyoxalase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ariza, Antonio; Vickers, Tim J.; Greig, Neil

    2005-08-01

    The detoxification enzyme glyoxalase I from L. major has been crystallized. Preliminary molecular-replacement calculations indicate the presence of three glyoxalase I dimers in the asymmetric unit. Glyoxalase I (GLO1) is a putative drug target for trypanosomatids, which are pathogenic protozoa that include the causative agents of leishmaniasis. Significant sequence and functional differences between Leishmania major and human GLO1 suggest that it may make a suitable template for rational inhibitor design. L. major GLO1 was crystallized in two forms: the first is extremely disordered and does not diffract, while the second, an orthorhombic form, produces diffraction to 2.0 Å. Molecular-replacement calculationsmore » indicate that there are three GLO1 dimers in the asymmetric unit, which take up a helical arrangement with their molecular dyads arranged approximately perpendicular to the c axis. Further analysis of these data are under way.« less

  20. Synthesis of an N-aminopyrazinonium analogue of cytidine.

    PubMed

    Lee, T C; Chello, P L; Chou, T C; Templeton, M A; Parham, J C

    1983-02-01

    An N-aminated pyrazine analogue of cytidine, in which the pyrimidine N(3) ring nitrogen and C(4) amino group were replaced by a C-amino and an N-amino function, respectively, was prepared as a potential deaminase-resistant cytidine antimetabolite. The nucleoside 1,2-diamino-4-beta-D-ribofuranosylpyrazin-2-onium chloride (6) was a mild cytostatic agent but was neither a substrate for nor an inhibitor of mouse kidney cytidine deaminase. It ionized with a lower pKa than expected. The anion did not undergo the dimerization usually observed with N-imino heterocyclic ylides but unerwent hydrolysis of the 2-amino group to yield a 1-aminopyrazine-2,3-dione nucleoside.

  1. Structure of Cryptosporidium IMP dehydrogenase bound to an inhibitor with in vivo antiparasitic activity

    DOE PAGES

    Kim, Youngchang; Makowska-Grzyska, Magdalena; Gorla, Suresh Kumar; ...

    2015-04-21

    Inosine 5´-monophosphate dehydrogenase (IMPDH) is a promising target for the treatment of Cryptosporidium infections. Here, the structure of C. parvum IMPDH ( CpIMPDH) in complex with inosine 5´-monophosphate (IMP) and P131, an inhibitor with in vivo anticryptosporidial activity, is reported. P131 contains two aromatic groups, one of which interacts with the hypoxanthine ring of IMP, while the second interacts with the aromatic ring of a tyrosine in the adjacent subunit. In addition, the amine and NO 2 moieties bind in hydrated cavities, forming water-mediated hydrogen bonds to the protein. The design of compounds to replace these water molecules is amore » new strategy for the further optimization of C. parvum inhibitors for both antiparasitic and antibacterial applications.« less

  2. Imidazopyridine-based inhibitors of glycogen synthase kinase 3: synthesis and evaluation of amide isostere replacements of the carboxamide scaffold.

    PubMed

    Yngve, Ulrika; Söderman, Peter; Svensson, Mats; Rosqvist, Susanne; Arvidsson, Per I

    2012-11-01

    In this study, we explored the effect of bioisostere replacement in a series of glycogen synthase kinase 3 (GSK3) inhibitors based on the imidazopyridine core. The synthesis and biological evaluation of a number of novel sulfonamide, 1,2,4-oxadiazole, and thiazole derivates as amide bioisosteres, as well as a computational rationalization of the obtained results are reported. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  3. Regulation of Complement and Contact System Activation via C1 Inhibitor Potentiation and Factor XIIa Activity Modulation by Sulfated Glycans – Structure-Activity Relationships

    PubMed Central

    Schoenfeld, Ann-Kathrin; Lahrsen, Eric; Alban, Susanne

    2016-01-01

    The serpin C1 inhibitor (C1-INH) is the only regulator of classical complement activation as well as the major regulator of the contact system. Its importance is demonstrated by hereditary angioedema (HAE), a severe disease with potentially life-threatening attacks due to deficiency or dysfunction of C1-INH. C1-INH replacement is the therapy of choice in HAE. In addition, C1-INH showed to have beneficial effects in other diseases characterized by inappropriate complement and contact system activation. Due to some limitations of its clinical application, there is a need for improving the efficacy of therapeutically applied C1-INH or to enhance the activity of endogenous C1-INH. Given the known potentiating effect of heparin on C1-INH, sulfated glycans (SG) may be such candidates. The aim of this study was to characterize suitable SG by evaluating structure-activity relationships. For this, more than 40 structurally distinct SG were examined for their effects on C1-INH, C1s and FXIIa. The SG turned out to potentiate the C1s inhibition by C1-INH without any direct influence on C1s. Their potentiating activity proved to depend on their degree of sulfation, molecular mass as well as glycan structure. In contrast, the SG had no effect on the FXIIa inhibition by C1-INH, but structure-dependently modulated the activity of FXIIa. Among the tested SG, β-1,3-glucan sulfates with a Mr ≤ 10 000 were identified as most promising lead candidates for the development of a glycan-based C1-INH amplifier. In conclusion, the obtained information on structural characteristics of SG favoring C1-INH potentiation represent an useful elementary basis for the development of compounds improving the potency of C1-INH in diseases and clinical situations characterized by inappropriate activation of complement and contact system. PMID:27783665

  4. Improved Stability of Proline-Derived Direct Thrombin Inhibitors through Hydroxyl to Heterocycle Replacement.

    PubMed

    Chobanian, Harry R; Pio, Barbara; Guo, Yan; Shen, Hong; Huffman, Mark A; Madeira, Maria; Salituro, Gino; Terebetski, Jenna L; Ormes, James; Jochnowitz, Nina; Hoos, Lizbeth; Zhou, Yuchen; Lewis, Dale; Hawes, Brian; Mitnaul, Lyndon; O'Neill, Kim; Ellsworth, Kenneth; Wang, Liangsu; Biftu, Tesfaye; Duffy, Joseph L

    2015-05-14

    Modification of the previously disclosed (S)-N-(2-(aminomethyl)-5-chlorobenzyl)-1-((R)-2-hydroxy-3,3-dimethylbutanoyl)pyrrolidine-2-carboxamide 2 by optimization of the P3 group afforded novel, low molecular weight thrombin inhibitors. Heterocycle replacement of the hydroxyl functional group helped maintain thrombin in vitro potency while improving the chemical stability and pharmacokinetic profile. These modifications led to the identification of compound 10, which showed excellent selectivity over related serine proteases as well as in vivo efficacy in the rat arteriovenous shunt. Compound 10 exhibited significantly improved chemical stability and pharmacokinetic properties over 2 and may be utilized as a structurally differentiated preclinical tool comparator to dabigatran etexilate (Pro-1) to interrogate the on- and off-target effects of oral direct thrombin inhibitors.

  5. Compound-Specific Effects of Mutations at Val787 in DII-S6 of Nav1.4 Sodium Channels on the Action of Sodium Channel Inhibitor Insecticides

    PubMed Central

    von Stein, Richard T.; Soderlund, David M.

    2012-01-01

    Sodium channel inhibitor (SCI) insecticides are hypothesized to inhibit voltage-gated sodium channels by binding selectively to the slow-inactivated state. Replacement of valine at position 787 in the S6 segment of homology domain II of the rat Nav1.4 sodium channel by lysine (V787K) enchances slow inactivation of this channel whereas replacement by alanine or cysteine (V787A, V787C) inhibits slow inactivation. To test the hypothesis that SCI insecticides bind selectively to the slow-inactivated state, we constructed mutated Nav1.4/V787A, Nav1.4/V787C, and Nav1.4/V787K cDNAs, expressed wildtype and mutated channels with the auxiliary β1 subunit in Xenopus oocytes, and used the two-electrode voltage clamp technique to examine the effects of these mutations on channel inhibition by four SCI insecticides (indoxacarb, its bioactivated metabolite DCJW, metaflumizone, and RH3421). Mutations at Val787 affected SCI insecticide sensitivity in a manner that was independent of mutation-induced changes in slow inactivation gating. Sensitivity to inhibition by 10 μM indoxacarb was significantly increased in all three mutated channels, whereas sensitivity to inhibition by 10 μM metaflumizone was significantly reduced in Nav1.4/V787A channels and completely abolished in Nav1.4/V787K channels. The effects of Val787 mutations on metaflumizone were correlated with the hydrophobicity of the substituted amino acid rather than the extent of slow inactivation. None of the mutations at Val787 significantly affected the sensitivity to inhibition by DCJW or RH3421. These results demonstrate that the impact of mutations at Val787 on sodium channel inhibition by SCI insecticides depends on the specific insecticide examined and is independent of mutation-induced changes in slow inactivation gating. We propose that Val787 may be a unique determinant of metaflumizone binding. PMID:22983119

  6. Discovery of novel pyrazolopyrimidinone analogs as potent inhibitors of phosphodiesterase type-5.

    PubMed

    Sawant, Sanghapal D; Lakshma Reddy, G; Dar, Mohd Ishaq; Srinivas, M; Gupta, Gourav; Sahu, Promod Kumar; Mahajan, Priya; Nargotra, Amit; Singh, Surjeet; Sharma, Subhash C; Tikoo, Manoj; Singh, Gurdarshan; Vishwakarma, Ram A; Syed, Sajad Hussain

    2015-05-01

    Cyclic guanosine monophosphate (cGMP) specific phosphodiesterase type-5 (PDE5), a clinically proven target to treat erectile dysfunction and diseases associated with lower cGMP levels in humans, is present in corpus cavernosum, heart, lung, platelets, prostate, urethra, bladder, liver, brain, and stomach. Sildenafil, vardenafil, tadalafil and avanafil are FDA approved drugs in market as PDE5 inhibitors for treating erectile dysfunction. In the present study a lead molecule 4-ethoxy-N-(6-hydroxyhexyl)-3-(1-methyl-7-oxo-3-propyl-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidin-5-yl)benzenesulfonamide, that is, compound-4a, an analog of pyrazolopyrimidinone scaffold has been identified as selective PDE5 inhibitor. A series of compounds was synthesized by replacing N-methylpiperazine moiety (ring-C) of sildenafil structure with different N-substitutions towards sulfonamide end. Compound-4a showed lower IC₅₀ value (1.5 nM) against PDE5 than parent sildenafil (5.6 nM) in in vitro enzyme assay. The isoform selectivity of the compound-4a against other PDE isoforms was similar to that of the Sildenafil. In corroboration with the in vitro data, this molecule showed better efficacy in in vivo studies using the conscious rabbit model. Also compound-4a exhibited good physicochemical properties like solubility, caco-2 permeability, cLogP along with optimal PK profile having no significant CYP enzyme inhibitory liabilities. Discovery of these novel bioactive compounds may open a new alternative for developing novel preclinical candidates based on this drugable scaffold. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Comparison of three corrosion inhibitors in simulated partial lead service line replacements.

    PubMed

    Kogo, Aki; Payne, Sarah Jane; Andrews, Robert C

    2017-05-05

    Partial lead service line replacements (PLSLR) were simulated using five recirculating pipe loops treated with either zinc orthophosphate (1mg/L as P), orthophosphate (1mg/L as P) or sodium silicate (10mg/L). Two pipe loops served as ⿿inhibitor-free⿿ (Pb-Cu) and ⿿galvanic free⿿ (Pb-PVC) controls. Changes in water quality (CSMR [0.2 or 1], conductivity [⿿330mS/cm or ⿿560mS/cm], chlorine [1.4mg/L]) were not observed to provide a significant impact on lead or copper release, although galvanic corrosion was shown to be a driving factor. Generally, both orthophosphate and zinc orthophosphate provided better corrosion control for both total and dissolved lead (30min, 6h, 65h) and copper (30min, 6h), when compared to either the inhibitor-free control or the sodium silicate treated system. This work highlights the importance of understanding the complex interplay of corrosion inhibitors on particulate and dissolved species when considering both lead and copper. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Epidermal growth factor receptor gene mutation defines distinct subsets among small adenocarcinomas of the lung.

    PubMed

    Haneda, Hiroshi; Sasaki, Hidefumi; Shimizu, Shigeki; Endo, Katsuhiko; Suzuki, Eriko; Yukiue, Haruhiro; Kobayashi, Yoshihiro; Yano, Motoki; Fujii, Yoshitaka

    2006-04-01

    Epidermal growth factor receptor (EGFR) gene mutations are frequently detected in lung cancer, especially in adenocarcinoma, in females, and non-smoking patients. EGFR mutations are closely associated with clinical response to EGFR tyrosine kinase inhibitor. Bronchioloalveolar carcinoma (BAC) appearance is a good predictor of response to this agent. Noguchi et al. subdivided small peripheral adenocarcinoma of the lung into two groups. One group was characterized with tumor cell growth replacing the normal alveolar cells with varying degree of fibrosis (types A-C), and the other shows non-replacing and destructive growth (types D-F). Using probes for the 13 mutations which have been previously described, we have genotyped the EGFR gene status in surgically resected atypical adenomatous hyperplasias (AAH) and small peripheral adenocarcinomas up to 2 cm in diameter using TaqMan PCR assay. In 95 small-sized adenocarcinomas, the EGFR mutations were detected in 37 patients (38.9%), and no mutations were found in five AAHs. In small peripheral adenocarcinomas, EGFR mutations were found 47.1% of types A, B, or C adenocarcinomas; it was less frequent (16%) in Noguchi's types D, E or F adenocarcinomas. These results suggest that type D, F adenocarcinomas are not derived from the less malignant types A-C adenocarcinomas; rather, they have arisen de novo by distinct mechanisms. Although types A and B adenocarcinomas are almost 100% cured by surgery, some type C adenocarcinoma show lymph node metastasis and relapse. EGFR mutation analysis may help identify patients who will respond to treatment with tyrosine kinase inhibitors, e.g., gefitinib.

  9. Discovery of N-[4-[6-tert-Butyl-5-methoxy-8-(6-methoxy-2-oxo-1H-pyridin-3-yl)-3-quinolyl]phenyl]methanesulfonamide (RG7109), a Potent Inhibitor of the Hepatitis C Virus NS5B Polymerase

    PubMed Central

    Talamas, Francisco X.; Abbot, Sarah C.; Anand, Shalini; Brameld, Ken A.; Carter, David S.; Chen, Jun; Davis, Dana; de Vicente, Javier; Fung, Amy D.; Gong, Leyi; Harris, Seth F.; Inbar, Petra; Labadie, Sharada S.; Lee, Eun K.; Lemoine, Remy; Le Pogam, Sophie; Leveque, Vincent; Li, Jim; McIntosh, Joel; Nájera, Isabel; Park, Jaehyeon; Railkar, Aruna; Rajyaguru, Sonal; Sangi, Michael; Schoenfeld, Ryan C.; Staben, Leanna R.; Tan, Yunchou; Taygerly, Joshua P.; Villaseñor, Armando G.; Weller, Paul E.

    2013-01-01

    In the last few years, there have been many advances in the efforts to cure patients with hepatitis C virus (HCV). The ultimate goal of these efforts is to develop a combination therapy consisting of only direct-antiviral agents (DAA). In this paper, we discuss our efforts that led to the identification of a bicyclic template with potent activity against the NS5B polymerase, a critical enzyme on the life cycle of HCV. Continuing our exploration to improve the stilbene series, the 3,5,6,8-tetrasubstituted quinoline core was identified as replacement of the stilbene moiety. 6-Methoxy-2(1H)-pyridone was identified among several heterocyclic head groups to have the best potency. Solubility of the template was improved by replacing a planar aryl linker with a saturated pyrrolidine. Profiling of the most promising compounds led to the identification of quinoline 41 (RG7109) which was selected for advancement to clinical development. PMID:24195700

  10. Update on the Use of C1-Esterase Inhibitor Replacement Therapy in the Acute and Prophylactic Treatment of Hereditary Angioedema.

    PubMed

    Henry Li, H; Riedl, Marc; Kashkin, Jay

    2018-06-16

    In the vast majority of patients with hereditary angioedema (HAE), angioedema attacks are due to the quantitative or functional deficiency of C1-esterase inhibitor (C1-INH), which leads to increased vascular permeability and unregulated release of bradykinin. Exogenous administration of C1-INH is a rational way to restore the concentration and functional activity of this protein, regulate the release of bradykinin, and attenuate or prevent subcutaneous and submucosal edema associated with HAE. Recent international guidelines for the management of HAE include C1-INH as an option for acute treatment of HAE. In addition, these guidelines recommend C1-INH as first-line treatment for long-term prophylaxis and as the therapy of choice for short-term/preprocedural prophylaxis. Several C1-INH products are available, with approved indications varying across regions. For the acute treatment of HAE, both plasma-derived and recombinant C1-INH formulations have been shown to be effective and well tolerated in adolescents and adults with HAE, with onset of relief within 30 min to a few hours. Plasma-derived C1-INH is approved for use in children, and recombinant C1-INH is being evaluated in this population. Intravenous (IV) and subcutaneous (SC) formulations of C1-INH have been approved for routine prophylaxis to prevent HAE attacks in adolescents and adults. Both formulations when administered twice weekly have been shown to reduce the frequency and severity of HAE attacks. The SC formulation of C1-INH obviates the need for repeated venous access and may facilitate self-administration of HAE prophylaxis at home, as recommended in HAE treatment guidelines. As with most rare diseases, the costs of HAE treatment are high; however, the development of additional acute and prophylactic medications for HAE may result in competitive pricing and help drive down the costs of HAE treatment.

  11. The synthesis of ethacrynic acid thiazole derivatives as glutathione S-transferase pi inhibitors.

    PubMed

    Li, Ting; Liu, Guyue; Li, Hongcai; Yang, Xinmei; Jing, Yongkui; Zhao, Guisen

    2012-04-01

    Glutathione S-transferase pi (GSTpi) is a phase II enzyme which protects cells from death and detoxifies chemotherapeutic agents in cancer cells. Ethacrynic acid (EA) is a weak GSTpi inhibitor. Structure modifications were done to improve the ability of EA to inhibit GSTpi activity. Eighteen EA thiazole derivatives were designed and synthesized. Compounds 9a, 9b and 9c with a replacement of carboxyl group of EA by a heterocyclic thiazole exhibited improvement over EA to inhibit GSTpi activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. [Undiagnosed hereditary angioedema in a patient undergoing emergency caesarean section].

    PubMed

    Tomita, Yukihiko; Kamei, Masataka; Jyujou, Satoshi; Horiuchi, Chinami; Katsuragi, Shinji; Onishi, Yoshihiko

    2012-12-01

    Hereditary angioedema (HAE) is characterized by acute, recurrent attacks of localized edema. Surgical procedures, trauma, and infections have been considered as potential triggers of HAE. Although HAE is a rare genetic disorder, approximately 50-60% of all HAE patients are involved with at least one occurrence of upper airway obstruction. The airway trouble is the most life-threating complication in HAE patients because HAE-related edema does not respond to typical treatment, such as administration of epinephrine, antihistamines, or glucocorticoids. Indeed, mortality rates of laryngeal attack are estimated around 25% to 40%. Here we describe a case of undiagnosed HAE patient undergoing emergency caesarean section under neuraxial blockade. A 31-year-old woman showed multiple regions at her lip margin during surgery and rapidly developed lip swelling after admission to the ward. Neither respiratory nor hemodynamic instability was found during and after surgery. Immediately, in order to assess whether HAE caused these dermatological manifestations, we measured values of both complement component 4 (C4) and functional activity of C1-esterase inhibitor (C1-inh), a protein of the complement system. These laboratory data showed low levels, which were compatible with HAE definition. After commencement of C1-inhibitor replacement therapy, her lip swelling and erythema gradually disappeared without adverse drug reactions. The patient was finally discharged from our institution 10 days after surgery.

  13. From a novel HTS hit to potent, selective, and orally bioavailable KDM5 inhibitors.

    PubMed

    Liang, Jun; Labadie, Sharada; Zhang, Birong; Ortwine, Daniel F; Patel, Snahel; Vinogradova, Maia; Kiefer, James R; Mauer, Till; Gehling, Victor S; Harmange, Jean-Christophe; Cummings, Richard; Lai, Tommy; Liao, Jiangpeng; Zheng, Xiaoping; Liu, Yichin; Gustafson, Amy; Van der Porten, Erica; Mao, Weifeng; Liederer, Bianca M; Deshmukh, Gauri; An, Le; Ran, Yingqing; Classon, Marie; Trojer, Patrick; Dragovich, Peter S; Murray, Lesley

    2017-07-01

    A high-throughput screening (HTS) of the Genentech/Roche library identified a novel, uncharged scaffold as a KDM5A inhibitor. Lacking insight into the binding mode, initial attempts to improve inhibitor potency failed to improve potency, and synthesis of analogs was further hampered by the presence of a C-C bond between the pyrrolidine and pyridine. Replacing this with a C-N bond significantly simplified synthesis, yielding pyrazole analog 35, of which we obtained a co-crystal structure with KDM5A. Using structure-based design approach, we identified 50 with improved biochemical, cell potency and reduced MW and lower lipophilicity (LogD) compared with the original hit. Furthermore, 50 showed lower clearance than 9 in mice. In combination with its remarkably low plasma protein binding (PPB) in mice (40%), oral dosing of 50 at 5mg/kg resulted in unbound C max ∼2-fold of its cell potency (PC9 H3K4Me3 0.96μM), meeting our criteria for an in vivo tool compound from a new scaffold. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV.

    PubMed

    Lee, Hyun; Lei, Hao; Santarsiero, Bernard D; Gatuz, Joseph L; Cao, Shuyi; Rice, Amy J; Patel, Kavankumar; Szypulinski, Michael Z; Ojeda, Isabel; Ghosh, Arun K; Johnson, Michael E

    2015-06-19

    The Middle East Respiratory Syndrome coronavirus (MERS-CoV) papain-like protease (PLpro) blocking loop 2 (BL2) structure differs significantly from that of SARS-CoV PLpro, where it has been proven to play a crucial role in SARS-CoV PLpro inhibitor binding. Four SARS-CoV PLpro lead inhibitors were tested against MERS-CoV PLpro, none of which were effective against MERS-CoV PLpro. Structure and sequence alignments revealed that two residues, Y269 and Q270, responsible for inhibitor binding to SARS-CoV PLpro, were replaced by T274 and A275 in MERS-CoV PLpro, making critical binding interactions difficult to form for similar types of inhibitors. High-throughput screening (HTS) of 25 000 compounds against both PLpro enzymes identified a small fragment-like noncovalent dual inhibitor. Mode of inhibition studies by enzyme kinetics and competition surface plasmon resonance (SPR) analyses suggested that this compound acts as a competitive inhibitor with an IC50 of 6 μM against MERS-CoV PLpro, indicating that it binds to the active site, whereas it acts as an allosteric inhibitor against SARS-CoV PLpro with an IC50 of 11 μM. These results raised the possibility that inhibitor recognition specificity of MERS-CoV PLpro may differ from that of SARS-CoV PLpro. In addition, inhibitory activity of this compound was selective for SARS-CoV and MERS-CoV PLpro enzymes over two human homologues, the ubiquitin C-terminal hydrolases 1 and 3 (hUCH-L1 and hUCH-L3).

  15. Randomized Trial of C5a Receptor Inhibitor Avacopan in ANCA-Associated Vasculitis.

    PubMed

    Jayne, David R W; Bruchfeld, Annette N; Harper, Lorraine; Schaier, Matthias; Venning, Michael C; Hamilton, Patrick; Burst, Volker; Grundmann, Franziska; Jadoul, Michel; Szombati, István; Tesař, Vladimír; Segelmark, Mårten; Potarca, Antonia; Schall, Thomas J; Bekker, Pirow

    2017-09-01

    Alternative C activation is involved in the pathogenesis of ANCA-associated vasculitis. However, glucocorticoids used as treatment contribute to the morbidity and mortality of vasculitis. We determined whether avacopan (CCX168), an orally administered, selective C5a receptor inhibitor, could replace oral glucocorticoids without compromising efficacy. In this randomized, placebo-controlled trial, adults with newly diagnosed or relapsing vasculitis received placebo plus prednisone starting at 60 mg daily (control group), avacopan (30 mg, twice daily) plus reduced-dose prednisone (20 mg daily), or avacopan (30 mg, twice daily) without prednisone. All patients received cyclophosphamide or rituximab. The primary efficacy measure was the proportion of patients achieving a ≥50% reduction in Birmingham Vasculitis Activity Score by week 12 and no worsening in any body system. We enrolled 67 patients, 23 in the control and 22 in each of the avacopan groups. Clinical response at week 12 was achieved in 14 of 20 (70.0%) control patients, 19 of 22 (86.4%) patients in the avacopan plus reduced-dose prednisone group (difference from control 16.4%; two-sided 90% confidence limit, -4.3% to 37.1%; P =0.002 for noninferiority), and 17 of 21 (81.0%) patients in the avacopan without prednisone group (difference from control 11.0%; two-sided 90% confidence limit, -11.0% to 32.9%; P =0.01 for noninferiority). Adverse events occurred in 21 of 23 (91%) control patients, 19 of 22 (86%) patients in the avacopan plus reduced-dose prednisone group, and 21 of 22 (96%) patients in the avacopan without prednisone group. In conclusion, C5a receptor inhibition with avacopan was effective in replacing high-dose glucocorticoids in treating vasculitis. Copyright © 2017 by the American Society of Nephrology.

  16. Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment. 5. An evolution from indole to azaindoles leading to the discovery of 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043), a drug candidate that demonstrates antiviral activity in HIV-1-infected subjects.

    PubMed

    Wang, Tao; Yin, Zhiwei; Zhang, Zhongxing; Bender, John A; Yang, Zhong; Johnson, Graham; Yang, Zheng; Zadjura, Lisa M; D'Arienzo, Celia J; DiGiugno Parker, Dawn; Gesenberg, Christophe; Yamanaka, Gregory A; Gong, Yi-Fei; Ho, Hsu-Tso; Fang, Hua; Zhou, Nannan; McAuliffe, Brian V; Eggers, Betsy J; Fan, Li; Nowicka-Sans, Beata; Dicker, Ira B; Gao, Qi; Colonno, Richard J; Lin, Pin-Fang; Meanwell, Nicholas A; Kadow, John F

    2009-12-10

    Azaindole derivatives derived from the screening lead 1-(4-benzoylpiperazin-1-yl)-2-(1H-indol-3-yl)ethane-1,2-dione (1) were prepared and characterized to assess their potential as inhibitors of HIV-1 attachment. Systematic replacement of each of the unfused carbon atoms in the phenyl ring of the indole moiety by a nitrogen atom provided four different azaindole derivatives that displayed a clear SAR for antiviral activity and all of which displayed marked improvements in pharmaceutical properties. Optimization of these azaindole leads resulted in the identification of two compounds that were advanced to clinical studies: (R)-1-(4-benzoyl-2-methylpiperazin-1-yl)-2-(4-methoxy-1H-pyrrolo[2,3-b]pyridin-3-yl)ethane-1,2-dione (BMS-377806, 3) and 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043, 4). In a preliminary clinical study, 4 administered as monotherapy for 8 days, reduced viremia in HIV-1-infected subjects, providing proof of concept for this mechanistic class.

  17. Less-toxic corrosion inhibitors

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.

    1981-01-01

    Combinations of borates, nitrates, phosphates, silicates, and sodium MBT protect aluminum from corrosion in fresh water. Most effective combinations contained sodium phosphate and were alkaline. These inhibitors replace toxic chromates which are subject to governmental restrictions, but must be used in larger quantities. Experimental exposure times varied from 1 to 14 months depending upon nature of submersion solution.

  18. cAMP is an essential signal in the induction of antibody production by B cells but inhibits helper function of T cells.

    PubMed

    Gilbert, K M; Hoffmann, M K

    1985-09-01

    Dibutyryl cAMP and IL 1 were found to stimulate antigen-specific and polyclonal antibody production when added together to cultures of highly purified B cells. We propose that IL 1 and an elevation in cytoplasmic cAMP represent minimal signal requirements for B cell activation. In contrast to its effect on B cells, dibutyryl cAMP inhibited helper T cell activity. Cyclic AMP suppressed the production of IL 2 and T cell replacing factor (TRF) by T cells and thus abrogated the ability of helper T cells to enhance SRBC-specific antibody production by B cells. Cyclic AMP did not inhibit the generation by T cells of B cell growth factor (BCGF). BCGF, not normally detected in Con A supernatant, was found in the culture supernatant of spleen cells that were stimulated with Con A in the presence of cAMP. Our findings indicate that cAMP blocks the production of an inhibitor of BCGF activity. cAMP had no effect on the production by macrophages of IL 1.

  19. Synthesis and P1' SAR exploration of potent macrocyclic tissue factor-factor VIIa inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladziata, Vladimir; Glunz, Peter W.; Zou, Yan

    Selective tissue factor-factor VIIa complex (TF-FVIIa) inhibitors are viewed as promising compounds for treating thrombotic disease. In this contribution, we describe multifaceted exploratory SAR studies of S1'-binding moieties within a macrocyclic chemotype aimed at replacing cyclopropyl sulfone P1' group. Over the course of the optimization efforts, the 1-(1H-tetrazol-5-yl)cyclopropane P1' substituent emerged as an improved alternative, offering increased metabolic stability and lower clearance, while maintaining excellent potency and selectivity.

  20. Structural insights into activation and inhibition of histo-aspartic protease (HAP) from Plasmodium falciparum

    PubMed Central

    Bhaumik, Prasenjit; Xiao, Huogen; Hidaka, Koushi; Gustchina, Alla; Kiso, Yoshiaki; Yada, Rickey Y.; Wlodawer, Alexander

    2012-01-01

    Histo-aspartic protease (HAP) from Plasmodium falciparum offers a promising target for the development of novel antimalarial drugs. HAP exhibits high sequence similarity to pepsin-like aspartic proteases, but one of the two catalytic aspartates, Asp32, is replaced by histidine. Crystal structures of the truncated zymogen of HAP and of the complex of the mature enzyme with inhibitor KNI-10395 have been determined at 2.1 and 2.5 Å resolution, respectively. As in other proplasmepsins, the propeptide of the zymogen interacts with the C-terminal domain of the enzyme, forcing the N- and C- terminal domains apart, thereby separating His32 and Asp215 and preventing formation of the mature active site. In the inhibitor complex the enzyme forms a tight domain-swapped dimer, not previously seen in any aspartic proteases. The inhibitor is found in an unprecedented conformation resembling the letter “U”, stabilized by two intramolecular hydrogen bonds. Surprisingly, the location and conformation of the inhibitor are similar to the fragment of helix 2 comprising residues 34p–38p in the prosegments of the zymogens of gastric aspartic proteases; a corresponding helix assumes a vastly different orientation in proplasmepsins. Each inhibitor molecule is in contact with two molecules of HAP, interacting with the carboxylate group of the catalytic Asp215 of one HAP protomer through a water molecule, while also making a direct hydrogen bond to Glu278A′ of the other protomer. A comparison of the shifts in the positions of the catalytic residues in the inhibitor complex presented here with those published previously gives further hints regarding the enzymatic mechanism of HAP. PMID:21928835

  1. Structural Insights into the Activation and Inhibition of Histo-Aspartic Protease from Plasmodium falciparum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaumik, Prasenjit; Xiao, Huogen; Hidaka, Koushi

    2012-09-17

    Histo-aspartic protease (HAP) from Plasmodium falciparum is a promising target for the development of novel antimalarial drugs. The sequence of HAP is highly similar to those of pepsin-like aspartic proteases, but one of the two catalytic aspartates, Asp32, is replaced with histidine. Crystal structures of the truncated zymogen of HAP and of the complex of the mature enzyme with inhibitor KNI-10395 have been determined at 2.1 and 2.5 {angstrom} resolution, respectively. As in other proplasmepsins, the propeptide of the zymogen interacts with the C-terminal domain of the enzyme, forcing the N- and C-terminal domains apart, thereby separating His32 and Asp215more » and preventing formation of the mature active site. In the inhibitor complex, the enzyme forms a tight domain-swapped dimer, not previously seen in any aspartic proteases. The inhibitor is found in an unprecedented conformation resembling the letter U, stabilized by two intramolecular hydrogen bonds. Surprisingly, the location and conformation of the inhibitor are similar to those of the fragment of helix 2 comprising residues 34p-38p in the prosegments of the zymogens of gastric aspartic proteases; a corresponding helix assumes a vastly different orientation in proplasmepsins. Each inhibitor molecule is in contact with two molecules of HAP, interacting with the carboxylate group of the catalytic Asp215 of one HAP protomer through a water molecule, while also making a direct hydrogen bond to Glu278A' of the other protomer. A comparison of the shifts in the positions of the catalytic residues in the inhibitor complex presented here with those published previously gives further hints regarding the enzymatic mechanism of HAP.« less

  2. 21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  3. 21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  4. 21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  5. 21 CFR 866.5250 - Complement C 2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  6. 21 CFR 866.5250 - Complement C 2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  7. A comparative study of warheads for design of cysteine protease inhibitors.

    PubMed

    Silva, Daniel G; Ribeiro, Jean F R; De Vita, Daniela; Cianni, Lorenzo; Franco, Caio Haddad; Freitas-Junior, Lucio H; Moraes, Carolina Borsoi; Rocha, Josmar R; Burtoloso, Antonio C B; Kenny, Peter W; Leitão, Andrei; Montanari, Carlos A

    2017-11-15

    The effects on potency of cruzain inhibition of replacing a nitrile group with alternative warheads were explored. The oxime was almost an order of magnitude more potent than the corresponding nitrile and has the potential to provide access to the prime side of the catalytic site. Dipeptide aldehydes and azadipeptide nitriles were found to be two orders of magnitude more potent cruzain inhibitors than the corresponding dipeptide nitriles although potency differences were modulated by substitution at P1 and P3. Replacement of the α methylene of a dipeptide aldehyde with cyclopropane led to a loss of potency of almost three orders of magnitude. The vinyl esters and amides that were characterized as reversible inhibitors were less potent than the corresponding nitrile by between one and two orders of magnitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Drug-drug interaction of microdose and regular-dose omeprazole with a CYP2C19 inhibitor and inducer.

    PubMed

    Park, Gab-Jin; Bae, Soo Hyeon; Park, Wan-Su; Han, Seunghoon; Park, Min-Ho; Shin, Seok-Ho; Shin, Young G; Yim, Dong-Seok

    2017-01-01

    A microdose drug-drug interaction (DDI) study may be a valuable tool for anticipating drug interaction at therapeutic doses. This study aimed to compare the magnitude of DDIs at microdoses and regular doses to explore the applicability of a microdose DDI study. Six healthy male volunteer subjects were enrolled into each DDI study of omeprazole (victim) and known perpetrators: fluconazole (inhibitor) and rifampin (inducer). For both studies, the microdose (100 μg, cold compound) and the regular dose (20 mg) of omeprazole were given at days 0 and 1, respectively. On days 2-9, the inhibitor or inducer was given daily, and the microdose and regular dose of omeprazole were repeated at days 8 and 9, respectively. Full omeprazole pharmacokinetic samplings were performed at days 0, 1, 8, and 9 of both studies for noncompartmental analysis. The magnitude of the DDI, the geometric mean ratios (with perpetrator/omeprazole only) of maximum concentration (C max ) and area under the curve to the last measurement (AUC t ) of the microdose and the regular dose were compared. The geometric mean ratios in the inhibition study were: 2.17 (micro) and 2.68 (regular) for C max , and 4.07 (micro), 4.33 (regular) for AUC t . For the induction study, they were 0.26 (micro) and 0.21 (regular) for C max , and 0.16 (micro) and 0.15 (regular) for AUC t . There were no significant statistical differences in the magnitudes of DDIs between microdose and regular-dose conditions, regardless of induction or inhibition. Our results may be used as partial evidence that microdose DDI studies may replace regular-dose studies, or at least be used for DDI-screening purposes.

  9. Crystal structure of the complex of carboxypeptidase A with a strongly bound phosphonate in a new crystalline form: comparison with structures of other complexes.

    PubMed

    Kim, H; Lipscomb, W N

    1990-06-12

    O-[[(1R)-[[N-(Phenylmethoxycarbonyl)-L-alanyl]amino]ethyl] hydroxyphosphinyl]-L-3-phenyllacetate [ZAAP(O)F], an analogue of (benzyloxycarbonyl)-Ala-Ala-Phe or (benzyloxycarbonyl)-Ala-Ala-phenyllactate, binds to carboxypeptidase A with great affinity (Ki = 3 pM). Similar phosphonates have been shown to be transition-state analogues of the CPA-catalyzed hydrolysis [Hanson, J. E., Kaplan, A. P., & Bartlett, P. A. (1989) Biochemistry 28, 6294-6305]. In the present study, the structure of the complex of this phosphonate with carboxypeptidase A has been determined by X-ray crystallography to a resolution of 2.0 A. The complex crystallizes in the space group P2(1)2(1)2(1) with cell dimensions a = 61.9 A, b = 67.2 A, and c = 76.2 A. The structure of the complex was solved by molecular replacement. Refinement of the structure against 20,776 unique reflections between 10.0 and 2.0 A yields a crystallographic residual of 0.193, including 140 water molecules. The two phosphinyl oxygens of the inhibitor bind to the active-site zinc at 2.2 A on the electrophilic (Arg-127) side and 3.1 A on the nucleophilic (Glu-270) side. Various features of the binding mode of this phosphonate inhibitor are consistent with the hypothesis that carboxypeptidase A catalyzed hydrolysis proceeds through a general-base mechanism in which the carbonyl carbon of the substrate is attacked by Zn-hydroxyl (or Zn-water). An unexpected feature of the bound inhibitor, the cis carbamoyl ester bond at the benzyloxycarbonyl linkage to alanine, allows the benzyloxycarbonyl phenyl ring of the inhibitor to interact favorably with Tyr-198. This complex structure is compared with previous structures of carboxypeptidase A, including the complexes with the potato inhibitor, a hydrated keto methylene substrate analogue, and a phosphonamidate inhibitor. Comparisons are also made with the complexes of thermolysin with some phosphonamidate inhibitors.

  10. Influence of MLH1 on colon cancer sensitivity to poly(ADP-ribose) polymerase inhibitor combined with irinotecan.

    PubMed

    Tentori, Lucio; Leonetti, Carlo; Muzi, Alessia; Dorio, Annalisa Susanna; Porru, Manuela; Dolci, Susanna; Campolo, Federica; Vernole, Patrizia; Lacal, Pedro Miguel; Praz, Françoise; Graziani, Grazia

    2013-07-01

    Poly(ADP-ribose) polymerase inhibitors (PARPi) are currently evaluated in clinical trials in combination with topoisomerase I (Top1) inhibitors against a variety of cancers, including colon carcinoma. Since the mismatch repair component MLH1 is defective in 10-15% of colorectal cancers we have investigated whether MLH1 affects response to the Top1 inhibitor irinotecan, alone or in combination with PARPi. To this end, the colon cancer cell lines HCT116, carrying MLH1 mutations on chromosome 3 and HCT116 in which the wild-type MLH1 gene was replaced via chromosomal transfer (HCT116+3) or by transfection of the corresponding MLH1 cDNA (HCT116 1-2) were used. HCT116 cells or HCT116+3 cells stably silenced for PARP-1 expression were also analysed. The results of in vitro and in vivo experiments indicated that MLH1, together with low levels of Top1, contributed to colon cancer resistance to irinotecan. In the MLH1-proficient cells SN-38, the active metabolite of irinotecan, induced lower levels of DNA damage than in MLH1-deficient cells, as shown by the weaker induction of γ-H2AX and p53 phosphorylation. The presence of MLH1 contributed to induce of prompt Chk1 phosphorylation, restoring G2/M cell cycle checkpoint and repair of DNA damage. On the contrary, in the absence of MLH1, HCT116 cells showed minor Chk1 phosphorylation and underwent apoptosis. Remarkably, inhibition of PARP function by PARPi or by PARP-1 gene silencing always increased the antitumor activity of irinotecan, even in the presence of low PARP-1 expression.

  11. Secretion of alpha 2-plasmin inhibitor is impaired by amino acid deletion in a small region of the molecule.

    PubMed

    Toyota, S; Hirosawa, S; Aoki, N

    1994-02-01

    Alpha 2-plasmin inhibitor (alpha 2PI) deficiency Okinawa results from defective secretion of the inhibitor from the liver and appears to be a direct consequence of the deletion of Glu137 in the amino acid sequence of alpha 2PI. To examine the effects of replacing the amino acid occupying position 137 or deleting its neighboring amino acid on alpha 2PI secretion, we used oligonucleotide-directed mutagenesis of alpha 2PI cDNA to change the codon specifying Glu137 or delete a codon specifying its neighboring amino acid. The effects were determined by pulse-chase experiments and by enzyme-linked immunosorbent assay of media from transiently transfected COS-7 cells. Replacement of Glu137 with an amino acid other than Cys had little effect on alpha 2PI secretion. In contrast, deletion of an amino acid in a region spanning a sequence of less than 30 amino acids including positions 127 and 137 severely impaired the secretion. The results suggest that structural integrity of the region, rather than its component amino acids, is important for the intracellular transport and secretion of alpha 2PI.

  12. Subcutaneous infusion of human C1 inhibitor in swine.

    PubMed

    Jiang, Haixiang; Zhang, Hua-Mei; Frank, Michael M

    2010-09-01

    Hereditary angioedema afflicts patients with unpredictable episodes of swelling that can be life threatening. Treatments approved by the Food and Drug Administration for routine prophylaxis include danazol given orally and the nanofiltered human C1 esterase inhibitor, CINRYZE, which is approved for intravenous administration. Approved for the treatment of acute attacks are the C1 esterase inhibitor, Berinert, given intravenously, and the kallikrein inhibitor, KALBITOR, given subcutaneously. C1 inhibitor has generally been non-toxic and neither pro-inflammatory nor pro-fibrotic, suggesting that it may be suitable for subcutaneous infusion. The current study used a swine model to compare blood levels of human C1 inhibitor following intravenous and subcutaneous infusion, and the effect of infusion route on heart and skin pathology. Levels of C1 inhibitor achieved with SC infusion compared favorably with levels achieved after IV infusion and were relatively more stable than those after IV infusion. Neither cardiac nor skin toxicity was observed. Copyright 2010 Elsevier Inc. All rights reserved.

  13. A new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) affects Soybean Asian rust (Phakopsora pachyrhizi) spore germination

    PubMed Central

    2011-01-01

    Background Asian rust (Phakopsora pachyrhizi) is a common disease in Brazilian soybean fields and it is difficult to control. To identify a biochemical candidate with potential to combat this disease, a new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) (CaclXIP) leaves was cloned into the pGAPZα-B vector for expression in Pichia pastoris. Results A cDNA encoding a chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) (CaclXIP), was isolated from leaves. The amino acid sequence predicts a (β/α)8 topology common to Class III Chitinases (glycoside hydrolase family 18 proteins; GH18), and shares similarity with other GH18 members, although it lacks the glutamic acid residue essential for catalysis, which is replaced by glutamine. CaclXIP was expressed as a recombinant protein in Pichia pastoris. Enzymatic assay showed that purified recombinant CaclXIP had only residual chitinolytic activity. However, it inhibited xylanases from Acrophialophora nainiana by approx. 60% when present at 12:1 (w/w) enzyme:inhibitor ratio. Additionally, CaclXIP at 1.5 μg/μL inhibited the germination of spores of Phakopsora pachyrhizi by 45%. Conclusions Our data suggests that CaclXIP belongs to a class of naturally inactive chitinases that have evolved to act in plant cell defence as xylanase inhibitors. Its role on inhibiting germination of fungal spores makes it an eligible candidate gene for the control of Asian rust. PMID:21299880

  14. A new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) affects Soybean Asian rust (Phakopsora pachyrhizi) spore germination.

    PubMed

    Vasconcelos, Erico A R; Santana, Celso G; Godoy, Claudia V; Seixas, Claudine D S; Silva, Marilia S; Moreira, Leonora R S; Oliveira-Neto, Osmundo B; Price, Daniel; Fitches, Elaine; Filho, Edivaldo X F; Mehta, Angela; Gatehouse, John A; Grossi-De-Sa, Maria F

    2011-02-07

    Asian rust (Phakopsora pachyrhizi) is a common disease in Brazilian soybean fields and it is difficult to control. To identify a biochemical candidate with potential to combat this disease, a new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) (CaclXIP) leaves was cloned into the pGAPZα-B vector for expression in Pichia pastoris. A cDNA encoding a chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) (CaclXIP), was isolated from leaves. The amino acid sequence predicts a (β/α)8 topology common to Class III Chitinases (glycoside hydrolase family 18 proteins; GH18), and shares similarity with other GH18 members, although it lacks the glutamic acid residue essential for catalysis, which is replaced by glutamine. CaclXIP was expressed as a recombinant protein in Pichia pastoris. Enzymatic assay showed that purified recombinant CaclXIP had only residual chitinolytic activity. However, it inhibited xylanases from Acrophialophora nainiana by approx. 60% when present at 12:1 (w/w) enzyme:inhibitor ratio. Additionally, CaclXIP at 1.5 μg/μL inhibited the germination of spores of Phakopsora pachyrhizi by 45%. Our data suggests that CaclXIP belongs to a class of naturally inactive chitinases that have evolved to act in plant cell defence as xylanase inhibitors. Its role on inhibiting germination of fungal spores makes it an eligible candidate gene for the control of Asian rust.

  15. Structure of Cryptosporidium IMP dehydrogenase bound to an inhibitor with in vivo antiparasitic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Youngchang; Makowska-Grzyska, Magdalena; Gorla, Suresh Kumar

    2015-04-21

    Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising target for the treatment ofCryptosporidiuminfections. Here, the structure ofC. parvumIMPDH (CpIMPDH) in complex with inosine 5'-monophosphate (IMP) and P131, an inhibitor within vivoanticryptosporidial activity, is reported. P131 contains two aromatic groups, one of which interacts with the hypoxanthine ring of IMP, while the second interacts with the aromatic ring of a tyrosine in the adjacent subunit. In addition, the amine and NO 2moieties bind in hydrated cavities, forming water-mediated hydrogen bonds to the protein. The design of compounds to replace these water molecules is a new strategy for the further optimization ofC. parvuminhibitorsmore » for both antiparasitic and antibacterial applications.« less

  16. 1,2-Dithiole-3-Ones as Potent Inhibitors of the Bacterial 3-Ketoacyl Acyl Carrier Protein Synthase III (FabH)

    PubMed Central

    He, Xin; Reeve, Anne McElwee; Desai, Umesh R.; Kellogg, Glen E.; Reynolds, Kevin A.

    2004-01-01

    The enzyme FabH catalyzes the initial step of fatty acid biosynthesis via a type II dissociated fatty acid synthase. The pivotal role of this essential enzyme, combined with its unique structural features and ubiquitous occurrence in bacteria, has made it an attractive new target for the development of antibacterial and antiparasitic compounds. We have searched the National Cancer Institute database for compounds bearing structural similarities to thiolactomycin, a natural product which exhibits a weak activity against FabH. This search has yielded several substituted 1,2-dithiole-3-ones that are potent inhibitors of FabH from both Escherichia coli (ecFabH) and Staphylococcus aureus (saFabH). The most potent inhibitor was 4,5-dichloro-1,2-dithiole-3-one, which had 50% inhibitory concentration (IC50) values of 2 μM (ecFabH) and 0.16 μM (saFabH). The corresponding 3-thione analog exhibited comparable activities. Analogs in which the 4-chloro substituent was replaced with a phenyl group were also potent inhibitors, albeit somewhat less effectively (IC50 values of 5.7 and 0.98 μM for ecFabH and saFabH, respectively). All of the 5-chlorinated inhibitors were most effective when they were preincubated with FabH in the absence of substrates. The resulting enzyme-inhibitor complex did not readily regain activity after excess inhibitor was removed, suggesting that a slow dissociation occurs. In stark contrast, a series of inhibitors in which the 5-chloro substituent was replaced with the isosteric and isoelectronic trifluoromethyl group were poorer inhibitors (IC50 values typically ranging from 25 to >100 μM for both ecFabH and saFabH), did not require a preincubation period for maximal activity, and generated an enzyme-inhibitor complex which readily dissociated. Possible modes of binding of 5-chloro-1,2-dithiole-3-ones and 5-chloro-1,2-dithiole-3-thiones with FabH which account for the role of the 5-chloro substituent were considered. PMID:15273125

  17. Studies of Inhibitory Mechanisms of Propeptide-Like Cysteine Protease Inhibitors

    PubMed Central

    Nga, Bui T. T.; Takeshita, Yuki; Yamamoto, Misa; Yamamoto, Yoshimi

    2014-01-01

    Mouse cytotoxic T-lymphocyte antigen-2α (CTLA-2α), Drosophila CTLA-2-like protein (crammer), and Bombyx cysteine protease inhibitor (BCPI) belong to a novel family of cysteine protease inhibitors (I29). Their inhibitory mechanisms were studied comparatively. CTLA-2α contains a cysteine residue (C75), which is essential for its inhibitory potency. The CTLA-2α monomer was converted to a disulfide-bonded dimer in vitro and in vivo. The dimer was fully inhibitory, but the monomer, which possessed a free thiol residue, was not. A disulfide-bonded CTLA-2α/cathepsin L complex was isolated, and a cathepsin L subunit with a molecular weight of 24,000 was identified as the interactive enzyme protein. Crammer also contains a cysteine residue (C72). Both dimeric and monomeric forms of crammer were inhibitory. A crammer mutant with Cys72 to alanine (C72A) was fully inhibitory, while the replacement of Gly73 with alanine (G73A) caused a significant loss in inhibitory potency, which suggests a different inhibition mechanism from CTLA-2α. BCPI does not contain cysteine residue. C-terminal region (L77-R80) of BCPI was essential for its inhibitory potency. CTLA-2α was inhibitory in the acidic pH condition but stabilized cathepsin L under neutral pH conditions. The different inhibition mechanisms and functional considerations of these inhibitors are discussed. PMID:25045530

  18. Celecoxib versus ibuprofen in the prevention of heterotopic ossification following total hip replacement: a prospective randomised trial.

    PubMed

    Saudan, M; Saudan, P; Perneger, T; Riand, N; Keller, A; Hoffmeyer, P

    2007-02-01

    We examined whether a selective cyclooxygenase-2 (COX-2) inhibitor (celecoxib) was as effective as a non-selective inhibitor (ibuprofen) for the prevention of heterotopic ossification following total hip replacement. A total of 250 patients were randomised to receive celecoxib (200 mg b/d) or ibuprofen (400 mg t.d.s) for ten days after surgery. Anteroposterior radiographs of the pelvis were examined for heterotopic ossification three months after surgery. Of the 250 patients, 240 were available for assessment. Heterotopic ossification was more common in the ibuprofen group (none 40.7% (50), Brooker class I 46.3% (57), classes II and III 13.0% (16)) than in the celecoxib group (none 59.0% (69), Brooker class I 35.9% (42), classes II and III 5.1% (6), p=0.002). Celecoxib was more effective than ibuprofen in preventing heterotopic bone formation after total hip replacement.

  19. Defining the key pharmacophore elements of PF-04620110: discovery of a potent, orally-active, neutral DGAT-1 inhibitor.

    PubMed

    Dow, Robert L; Andrews, Melissa P; Li, Jian-Cheng; Michael Gibbs, E; Guzman-Perez, Angel; Laperle, Jennifer L; Li, Qifang; Mather, Dawn; Munchhof, Michael J; Niosi, Mark; Patel, Leena; Perreault, Christian; Tapley, Susan; Zavadoski, William J

    2013-09-01

    DGAT-1 is an enzyme that catalyzes the final step in triglyceride synthesis. mRNA knockout experiments in rodent models suggest that inhibitors of this enzyme could be of value in the treatment of obesity and type II diabetes. The carboxylic acid-based DGAT-1 inhibitor 1 was advanced to clinical trials for the treatment of type 2 diabetes, despite of the low passive permeability of 1. Because of questions relating to the potential attenuation of distribution and efficacy of a poorly permeable agent, efforts were initiated to identify compounds with improved permeability. Replacement of the acid moiety in 1 with an oxadiazole led to the discovery of 52, which possesses substantially improved passive permeability. The resulting pharmacodynamic profile of this neutral DGAT-1 inhibitor was found to be similar to 1 at comparable plasma exposures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. High-resolution structure of a retroviral protease folded as a monomer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilski, Miroslaw; Polish Academy of Sciences, 61-704 Poznan; Kazmierczyk, Maciej

    2011-11-01

    The crystal structure of Mason–Pfizer monkey virus protease folded as a monomer has been solved by molecular replacement using a model generated by players of the online game Foldit. The structure shows at high resolution the details of a retroviral protease folded as a monomer which can guide rational design of protease dimerization inhibitors as retroviral drugs. Mason–Pfizer monkey virus (M-PMV), a D-type retrovirus assembling in the cytoplasm, causes simian acquired immunodeficiency syndrome (SAIDS) in rhesus monkeys. Its pepsin-like aspartic protease (retropepsin) is an integral part of the expressed retroviral polyproteins. As in all retroviral life cycles, release and dimerizationmore » of the protease (PR) is strictly required for polyprotein processing and virion maturation. Biophysical and NMR studies have indicated that in the absence of substrates or inhibitors M-PMV PR should fold into a stable monomer, but the crystal structure of this protein could not be solved by molecular replacement despite countless attempts. Ultimately, a solution was obtained in mr-rosetta using a model constructed by players of the online protein-folding game Foldit. The structure indeed shows a monomeric protein, with the N- and C-termini completely disordered. On the other hand, the flap loop, which normally gates access to the active site of homodimeric retropepsins, is clearly traceable in the electron density. The flap has an unusual curled shape and a different orientation from both the open and closed states known from dimeric retropepsins. The overall fold of the protein follows the retropepsin canon, but the C{sup α} deviations are large and the active-site ‘DTG’ loop (here NTG) deviates up to 2.7 Å from the standard conformation. This structure of a monomeric retropepsin determined at high resolution (1.6 Å) provides important extra information for the design of dimerization inhibitors that might be developed as drugs for the treatment of retroviral infections, including AIDS.« less

  1. Optimum Use of Acute Treatments for Hereditary Angioedema: Evidence-Based Expert Consensus

    PubMed Central

    Longhurst, Hilary

    2018-01-01

    Acute treatment of hereditary angioedema due to C1 inhibitor deficiency has become available in the last 10 years and has greatly improved patients’ quality of life. Two plasma-derived C1 inhibitors (Berinert and Cinryze), a recombinant C1 inhibitor (Ruconest/Conestat alpha), a kallikrein inhibitor (Ecallantide), and a bradykinin B2 receptor inhibitor (Icatibant) are all effective. Durably good response is maintained over repeated treatments and several years. All currently available prophylactic agents are associated with breakthrough attacks, therefore an acute treatment plan is essential for every patient. Experience has shown that higher doses of C1 inhibitor than previously recommended may be desirable, although only recombinant C1 inhibitor has been subject to full dose–response evaluation. Treatment of early symptoms of an attack, with any licensed therapy, results in milder symptoms, more rapid resolution and shorter duration of attack, compared with later treatment. All therapies have been shown to be well-tolerated, with low risk of serious adverse events. Plasma-derived C1 inhibitors have a reassuring safety record regarding lack of transmission of virus or other infection. Thrombosis has been reported in association with plasma-derived C1 inhibitor in some case series. Ruconest was associated with anaphylaxis in a single rabbit-allergic volunteer, but no further anaphylaxis has been reported in those not allergic to rabbits despite, in a few cases, prior IgE sensitization to rabbit or milk protein. Icatibant is associated with high incidence of local reactions but not with systemic effects. Ecallantide may cause anaphylactoid reactions and is given under supervision. For children and pregnant women, plasma-derived C1 inhibitor has the best evidence of safety and currently remains first-line treatment. PMID:29594115

  2. Optimum Use of Acute Treatments for Hereditary Angioedema: Evidence-Based Expert Consensus.

    PubMed

    Longhurst, Hilary

    2017-01-01

    Acute treatment of hereditary angioedema due to C1 inhibitor deficiency has become available in the last 10 years and has greatly improved patients' quality of life. Two plasma-derived C1 inhibitors (Berinert and Cinryze), a recombinant C1 inhibitor (Ruconest/Conestat alpha), a kallikrein inhibitor (Ecallantide), and a bradykinin B2 receptor inhibitor (Icatibant) are all effective. Durably good response is maintained over repeated treatments and several years. All currently available prophylactic agents are associated with breakthrough attacks, therefore an acute treatment plan is essential for every patient. Experience has shown that higher doses of C1 inhibitor than previously recommended may be desirable, although only recombinant C1 inhibitor has been subject to full dose-response evaluation. Treatment of early symptoms of an attack, with any licensed therapy, results in milder symptoms, more rapid resolution and shorter duration of attack, compared with later treatment. All therapies have been shown to be well-tolerated, with low risk of serious adverse events. Plasma-derived C1 inhibitors have a reassuring safety record regarding lack of transmission of virus or other infection. Thrombosis has been reported in association with plasma-derived C1 inhibitor in some case series. Ruconest was associated with anaphylaxis in a single rabbit-allergic volunteer, but no further anaphylaxis has been reported in those not allergic to rabbits despite, in a few cases, prior IgE sensitization to rabbit or milk protein. Icatibant is associated with high incidence of local reactions but not with systemic effects. Ecallantide may cause anaphylactoid reactions and is given under supervision. For children and pregnant women, plasma-derived C1 inhibitor has the best evidence of safety and currently remains first-line treatment.

  3. A novel 3,4-dihydropyrimidin-2(1H)-one: HIV-1 replication inhibitors with improved metabolic stability.

    PubMed

    Kim, Junwon; Ok, Taedong; Park, Changmin; So, Wonyoung; Jo, Mina; Kim, Youngmi; Seo, Minjung; Lee, Doohyun; Jo, Suyeon; Ko, Yoonae; Choi, Inhee; Park, Youngsam; Yoon, Jaewan; Ju, Moon Kyeong; Ahn, JiYe; Kim, Junghwan; Han, Sung-Jun; Kim, Tae-Hee; Cechetto, Jonathan; Nam, Jiyoun; Liuzzi, Michel; Sommer, Peter; No, Zaesung

    2012-04-01

    Following the previous SAR of a novel dihydropyrimidinone scaffold as HIV-1 replication inhibitors a detailed study directed towards optimizing the metabolic stability of the ester functional group in the dihydropyrimidinone (DHPM) scaffold is described. Replacement of the ester moiety by thiazole ring significantly improved the metabolic stability while retaining antiviral activity against HIV-1 replication. These novel and potent DHPMs with bioisosteres could serve as advanced leads for further optimization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Structural studies of FIV and HIV-1 proteases complexed with an efficient inhibitor of FIV protease.

    PubMed

    Li, M; Morris, G M; Lee, T; Laco, G S; Wong, C H; Olson, A J; Elder, J H; Wlodawer, A; Gustchina, A

    2000-01-01

    Three forms of feline immunodeficiency virus protease (FIV PR), the wild type (wt) and two single point mutants, V59I and Q99V, as well as human immunodeficiency virus type 1 protease (HIV-1 PR), were cocrystallized with the C2-symmetric inhibitor, TL-3. The mutants of FIV PR were designed to replace residues involved in enzyme-ligand interactions by the corresponding HIV-1 PR residues at the structurally equivalent position. TL-3 shows decreased (improved) inhibition constants with these FIV PR mutants relative to wt FIV PR. Despite similar modes of binding of the inhibitor to all PRs (from P3 to P3'), small differences are evident in the conformation of the Phe side chains of TL-3 at the P1 and P1' positions in the complexes with the mutated FIV PRs. The differences mimick the observed binding of TL-3 in HIV-1 PR and correlate with a significant improvement in the inhibition constants of TL-3 with the two mutant FIV PRs. Large differences between the HIV-1 and FIV PR complexes are evident in the binding modes of the carboxybenzyl groups of TL-3 at P4 and P4'. In HIV-1 PR:TL-3, these groups bind over the flap region, whereas in the FIV PR complexes, the rings are located along the major axis of the active site. A significant difference in the location of the flaps in this region of the HIV-1 and FIV PRs correlates with the observed conformational changes in the binding mode of the peptidomimetic inhibitor at the P4 and P4' positions. These findings provide a structural explanation of the observed Ki values for TL-3 with the different PRs and will further assist in the development of improved inhibitors.

  5. Scaffold-hopping from xanthines to tricyclic guanines: A case study of dipeptidyl peptidase 4 (DPP4) inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pissarnitski, Dmitri A.; Zhao, Zhiqiang; Cole, David

    2016-11-01

    Molecular modeling of unbound tricyclic guanine scaffolds indicated that they can serve as effective bioisosteric replacements of xanthines. This notion was further confirmed by a combination of X-ray crystallography and SAR studies, indicating that tricyclic guanine DPP4 inhibitors mimic the binding mode of xanthine inhibitors, exemplified by linagliptin. Realization of the bioisosteric relationship between these scaffolds potentially will lead to a wider application of cyclic guanines as xanthine replacements in drug discovery programs for a variety of biological targets. Newly designed DPP4 inhibitors achieved sub-nanomolar potency range and demonstrated oral activity in vivo in mouse glucose tolerance test.

  6. Life threatening angioedema in a patient on ACE inhibitor (ACEI) confined to the upper airway

    PubMed Central

    Tharayil, Abdulgafoor Muslim; Chanda, Arshad Hussain; Shiekh, Hakim Ahmad; Elkhatib, Mohamed Saad; Nayeemuddin, Mohammed; Alshamandy, Abdelhafiz Ali Ahmed

    2014-01-01

    Introduction: ACE inhibitors accounts for 8% of all cases of angioneurotic edema and the overall incidence is 0.1 to 0.7% of patients on ACE inhibitors. It is a leading cause (20-40%) of emergency room visits in the US with angioedema. We report a case of angioedema caused by ACE inhibitors confined to the upper airway after four years on treatment with Lisinopril which persisted for three weeks and required endotracheal intubation and subsequent tracheostomy due to delayed resolution. This case is one of the rare cases presented as upper airway edema which persisted for a long time. Presentation: A 60-year-old Sudanese male patient with osteoarthritis in both knees underwent bilateral total knee replacement under single-shot epidural anesthesia. He had significant past medical history of type II diabetes, bipolar affective disorder and hypertension managed with Lisinopril for the past four years. Postoperatively after 10 hours the patient desaturated and developed airway obstruction requiring intubation. Laryngoscopy revealed an edematous tongue and upper airway and vocal cords were not visualized. In view of this clinical picture a provisional diagnosis of angioedema secondary to Lisinopril was made and it was discontinued. CT scan of the neck and soft tissues revealed severe airway edema with snugly fitting endotracheal tube with no peritubal air. A repeat CT neck on the tenth postoperative day showed no signs of resolution and an elective tracheostomy was performed on the eleventh postoperative day. C1 inhibitor protein and C4 levels were assayed to exclude hereditary angioedema and were found to be within normal range. Decannulation of tracheostomy was done after airway edema resolved on the twenty-fourth postoperative day as confirmed by CT scan. Subsequently he was transferred to the ward and discharged home. Conclusion: ACEI induced angioedema is a well-recognized condition. Early diagnosis based on a high index of suspicion, immediate withdrawal of the offending drug followed by supportive therapy is the cornerstone of management. PMID:25745598

  7. Pharmacological evaluation of a novel cyclic phosphatidic acid derivative 3-S-cyclic phosphatidic acid (3-S-cPA).

    PubMed

    Nozaki, Emi; Gotoh, Mari; Tanaka, Ryo; Kato, Masaru; Suzuki, Takahiro; Nakazaki, Atsuo; Hotta, Harumi; Kobayashi, Susumu; Murakami-Murofushi, Kimiko

    2012-05-15

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator possessing cyclic phosphate ring, which is necessary for its specific biological activities. To stabilize cyclic phosphate ring of cPA, we synthesized a series of cPA derivatives. We have shown that racemic 3-S-cPA, with a phosphate oxygen atom replaced with a sulfur atom at the sn-3, was a more effective autotaxin (ATX) inhibitor than cPA. In this study, we showed that racemic 3-S-cPA also had potent biological activities such as inhibition of cancer cell migration, suppression of the nociceptive reflex, and attenuation of ischemia-induced delayed neuronal cell death in the hippocampal CA1. Moreover, we synthesized both enantiomers of palmitoleoyl derivative of 3-S-cPA, and found that the chirality of 3-S-cPA is not involved in ATX inhibition. Based on these findings, racemic 3-S-cPA is suggested as an effective therapeutic compound like cPA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. [Acquired angioedema – clinical characteristic of the patients diagnosed in 2012-2016 with acquired C1 inhibitor deficiency].

    PubMed

    Stobiecki, Marcin; Czarnobilska, Ewa; Obtułowicz, Krystyna

    Acquired angioedema is a rare disease caused by a deficiency of C1 esterase inhibitor with recurrent swelling symptoms. It may occur in the course of lymphoproliferative disorders or autoimmune diseases. Symptoms resemble hereditary angioedema, and the only differentiating features is negative family history, late onset of symptoms and accompanying lymphoproliferative disorder. The aim of the study was to analyze the cases of acquired angioedema. The retrospective analysis of 341 patients from the registry of patients with C1 inhibitor deficiency. Results: We identified 4 patients among 119 with HAE (3.57%) diagnosed in this same period of time 2012-2016 who fulfilled the criteria of acquired edema. In two cases the primary reason of angioedema was lymphoproliferive disease, in two monoclonal gammapathy of unknown reason. We analyzed also the results of laboratory tests C4, C1 inhibitor, C1q. In all cases the face was dominated localization. After the treatment of primary lymphoproliferive disease, in two cases, we observed total remission of angioedema. Only one patient with gammapathy require treatment with C1 inhibitor during the attacks. In these case we observed both plasma deriver, and recombinant C1 inhibitor were effective.

  9. Crystal structures of sampatrilat and sampatrilat-Asp in complex with human ACE - a molecular basis for domain selectivity.

    PubMed

    Cozier, Gyles E; Schwager, Sylva L; Sharma, Rajni K; Chibale, Kelly; Sturrock, Edward D; Acharya, K Ravi

    2018-04-01

    Angiotensin-1-converting enzyme (ACE) is a zinc metallopeptidase that consists of two homologous catalytic domains (known as nACE and cACE) with different substrate specificities. Based on kinetic studies it was previously reported that sampatrilat, a tight-binding inhibitor of ACE, K i = 13.8 nm and 171.9 nm for cACE and nACE respectively [Sharma et al., Journal of Chemical Information and Modeling (2016), 56, 2486-2494], was 12.4-fold more selective for cACE. In addition, samAsp, in which an aspartate group replaces the sampatrilat lysine, was found to be a nonspecific and lower micromolar affinity inhibitor. Here, we report a detailed three-dimensional structural analysis of sampatrilat and samAsp binding to ACE using high-resolution crystal structures elucidated by X-ray crystallography, which provides a molecular basis for differences in inhibitor affinity and selectivity for nACE and cACE. The structures show that the specificity of sampatrilat can be explained by increased hydrophobic interactions and a H-bond from Glu403 of cACE with the lysine side chain of sampatrilat that are not observed in nACE. In addition, the structures clearly show a significantly greater number of hydrophilic and hydrophobic interactions with sampatrilat compared to samAsp in both cACE and nACE consistent with the difference in affinities. Our findings provide new experimental insights into ligand binding at the active site pockets that are important for the design of highly specific domain selective inhibitors of ACE. The atomic coordinates and structure factors for N- and C-domains of ACE bound to sampatrilat and sampatrilat-Asp complexes (6F9V, 6F9R, 6F9T and 6F9U respectively) have been deposited in the Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, NJ (http://www.rcsb.org/). © 2018 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  10. Biological abatement of cellulase inhibitors.

    PubMed

    Cao, Guangli; Ximenes, Eduardo; Nichols, Nancy N; Zhang, Leyu; Ladisch, Michael

    2013-10-01

    Removal of enzyme inhibitors released during lignocellulose pretreatment is essential for economically feasible biofuel production. We tested bio-abatement to mitigate enzyme inhibitor effects observed in corn stover liquors after pretreatment with either dilute acid or liquid hot water at 10% (w/v) solids. Bio-abatement of liquors was followed by enzymatic hydrolysis of cellulose. To distinguish between inhibitor effects on enzymes and recalcitrance of the substrate, pretreated corn stover solids were removed and replaced with 1% (w/v) Solka Floc. Cellulose conversion in the presence of bio-abated liquors from dilute acid pretreatment was 8.6% (0.1x enzyme) and 16% (1x enzyme) higher than control (non-abated) samples. In the presence of bio-abated liquor from liquid hot water pretreated corn stover, 10% (0.1x enzyme) and 13% (1x enzyme) higher cellulose conversion was obtained compared to control. Bio-abatement yielded improved enzyme hydrolysis in the same range as that obtained using a chemical (overliming) method for mitigating inhibitors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Discovery of potent 1H-imidazo[4,5-b]pyridine-based c-Met kinase inhibitors via mechanism-directed structural optimization.

    PubMed

    An, Xiao-De; Liu, Hongyan; Xu, Zhong-Liang; Jin, Yi; Peng, Xia; Yao, Ying-Ming; Geng, Meiyu; Long, Ya-Qiu

    2015-02-01

    Starting from our previously identified novel c-Met kinase inhibitors bearing 1H-imidazo[4,5-h][1,6]naphthyridin-2(3H)-one scaffold, a global structural exploration was conducted to furnish an optimal binding motif for further development, directed by the enzyme inhibitory mechanism. First round SAR study picked two imidazonaphthyridinone frameworks with 1,8- and 3,5-disubstitution pattern as class I and class II c-Met kinase inhibitors, respectively. Further structural optimization on type II inhibitors by truncation of the imidazonaphthyridinone core and incorporation of an N-phenyl cyclopropane-1,1-dicarboxamide pharmacophore led to the discovery of novel imidazopyridine-based c-Met kinase inhibitors, displaying nanomolar enzyme inhibitory activity and improved Met kinase selectivity. More significantly, the new chemotype c-Met kinase inhibitors effectively inhibited Met phosphorylation and its downstream signaling as well as the proliferation of Met-dependent EBC-1 human lung cancer cells at submicromolar concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Molecular phylogeny of C1 inhibitor depicts two immunoglobulin-like domains fusion in fishes and ray-finned fishes specific intron insertion after separation from zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Abhishek, E-mail: akumar@bot.uni-kiel.de; Bhandari, Anita; Sarde, Sandeep J.

    Highlights: • C1 inhibitors of fishes have two Ig domains fused in the N-terminal end. • Spliceosomal introns gain in two Ig domains of selected ray-finned fishes. • C1 inhibitors gene is maintained from 450 MY on the same locus. • C1 inhibitors gene is missing in frog and lampreys. • C1 inhibitors of tetrapod and fishes differ in the RCL region. - Abstract: C1 inhibitor (C1IN) is a multi-facet serine protease inhibitor in the plasma cascades, inhibiting several proteases, notably, regulates both complement and contact system activation. Despite huge advancements in the understanding of C1IN based on biochemical propertiesmore » and its roles in the plasma cascades, the phylogenetic history of C1IN remains uncharacterized. To date, there is no comprehensive study illustrating the phylogenetic history of C1IN. Herein, we explored phylogenetic history of C1IN gene in vertebrates. Fishes have C1IN with two immunoglobulin like domains attached in the N-terminal region. The RCL regions of CIIN from fishes and tetrapod genomes have variations at the positions P2 and P1′. Gene structures of C1IN gene from selected ray-finned fishes varied in the Ig domain region with creation of novel intron splitting exon Im2 into Im2a and Im2b. This intron is limited to ray-finned fishes with genome size reduced below 1 Gb. Hence, we suggest that genome compaction and associated double-strand break repairs are behind this intron gain. This study reveals the evolutionary history of C1IN and confirmed that this gene remains the same locus for ∼450 MY in 52 vertebrates analysed, but it is not found in frogs and lampreys.« less

  13. Crystal structure of a polyhistidine-tagged recombinant catalytic subunit of cAMP-dependent protein kinase complexed with the peptide inhibitor PKI(5-24) and adenosine.

    PubMed

    Narayana, N; Cox, S; Shaltiel, S; Taylor, S S; Xuong, N

    1997-04-15

    The crystal structure of the hexahistidine-tagged mouse recombinant catalytic subunit (H6-rC) of cAMP-dependent protein kinase (cAPK), complexed with a 20-residue peptide inhibitor from the heat-stable protein kinase inhibitor PKI(5-24) and adenosine, was determined at 2.2 A resolution. Novel crystallization conditions were required to grow the ternary complex crystals. The structure was refined to a final crystallographic R-factor of 18.2% with good stereochemical parameters. The "active" enzyme adopts a "closed" conformation as found in rC:PKI(5-24) [Knighton et al. (1991a,b) Science 253, 407-414, 414-420] and packs in a similar manner with the peptide providing a major contact surface. This structure clearly defines the subsites of the unique nucleotide binding site found in the protein kinase family. The adenosine occupies a mostly hydrophobic pocket at the base of the cleft between the two lobes and is completely buried. The missing triphosphate moiety of ATP is filled with a water molecule (Wtr 415) which replaces the gamma-phosphate of ATP. The glycine-rich loop between beta1 and beta2 helps to anchor the phosphates while the ribose ring is buried beneath beta-strand 2. Another ordered water molecule (Wtr 375) is pentacoordinated with polar atoms from adenosine, Leu 49 in beta-strand 1, Glu 127 in the linker strand between the two lobes, Tyr 330, and a third water molecule, Wtr 359. The conserved nucleotide fold can be defined as a lid comprised of beta-strand 1, the glycine-rich loop, and beta-strand 2. The adenine ring is buried beneath beta-strand 1 and the linker strand (120-127) that joins the small and large lobes. The C-terminal tail containing Tyr 330, a segment that lies outside the conserved core, covers this fold and anchors it in a closed conformation. The main-chain atoms of the flexible glycine-rich loop (residues 50-55) in the ATP binding domain have a mean B-factor of 41.4 A2. This loop is quite mobile, in striking contrast to the other conserved loops that converge at the active site cleft. The catalytic loop (residues 166-171) and the Mg2+ positioning loop (residues 184-186) are a stable part of the large lobe and have low B-factors in all structures solved to date. The stability of the glycine-rich loop is highly dependent on the ligands that occupy the active site cleft with maximum stability achieved in the ternary complex containing Mg x ATP and the peptide inhibitor. In this ternary complex the gamma-phosphate is secured between both lobes by hydrogen bonds to the backbone amide of Ser 53 in the glycine-rich loop and the amino group of Lys 168 in the catalytic loop. In the adenosine ternary complex the water molecule replacing the gamma-phosphate hydrogen bonds between Lys 168 and Asp 166 and makes no contact with the small lobe. This glycine-rich loop is thus the most mobile component of the active site cleft, with the tip of the loop being highly sensitive to what occupies the gamma-subsite.

  14. Design and characterization of an APC-specific serpin for the treatment of hemophilia

    PubMed Central

    Polderdijk, Stéphanie G. I.; Adams, Ty E.; Ivanciu, Lacramioara; Camire, Rodney M.; Baglin, Trevor P.

    2017-01-01

    Hemophilia is a bleeding disorder caused by deficiency in factors VIII or IX, the two components of the intrinsic Xase complex. Treatment with replacement factor can lead to the development of inhibitory antibodies, requiring the use of bypassing agents such as factor VIIa and factor concentrates. An alternative approach to bypass the Xase complex is to inhibit endogenous anticoagulant activities. Activated protein C (APC) breaks down the complex that produces thrombin by proteolytically inactivating factor Va. Defects in this mechanism (eg, factor V Leiden) are associated with thrombosis but result in less severe bleeding when co-inherited with hemophilia. Selective inhibition of APC might therefore be effective for the treatment of hemophilia. The endogenous inhibitors of APC are members of the serpin family: protein C inhibitor (PCI) and α1-antitrypsin (α1AT); however, both exhibit poor reactivity and selectivity for APC. We mutated residues in and around the scissile P1-P1′ bond in PCI and α1AT, resulting in serpins with the desired specificity profile. The lead candidate was shown to promote thrombin generation in vitro and to restore fibrin and platelet deposition in an intravital laser injury model in hemophilia B mice. The power of targeting APC was further demonstrated by the complete normalization of bleeding after a severe tail clip injury in these mice. These results demonstrate that the protein C anticoagulant system can be successfully targeted by engineered serpins and that administration of such agents is effective at restoring hemostasis in vivo. PMID:27789479

  15. A novel series of IKKβ inhibitors part I: Initial SAR studies of a HTS hit.

    PubMed

    Cushing, Timothy D; Baichwal, Vijay; Berry, Karen; Billedeau, Roland; Bordunov, Viola; Broka, Chris; Cardozo, Mario; Cheng, Peng; Clark, David; Dalrymple, Stacie; DeGraffenreid, Michael; Gill, Adrian; Hao, Xiaolin; Hawley, Ronald C; He, Xiao; Jaen, Juan C; Labadie, Sharada S; Labelle, Marc; Lehel, Csaba; Lu, Pu-Ping; McIntosh, Joel; Miao, Shichang; Parast, Camran; Shin, Youngsook; Sjogren, Eric B; Smith, Marie-Louise; Talamas, Francisco X; Tonn, George; Walker, Keith M; Walker, Nigel P C; Wesche, Holger; Whitehead, Chris; Wright, Matt; Browner, Michelle F

    2011-01-01

    A novel series of (E)-1-((2-(1-methyl-1H-imidazol-5-yl) quinolin-4-yl) methylene) thiosemicarbazides was discovered as potent inhibitors of IKKβ. In this Letter we document our early efforts at optimization of the quinoline core, the imidazole and the semithiocarbazone moiety. Most potency gains came from substitution around the 6- and 7-positions of the quinoline ring. Replacement of the semithiocarbazone with a semicarbazone decreased potency but led to some measurable exposure. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Searching for Novel Inhibitors of the S. aureus NorA Efflux Pump: Synthesis and Biological Evaluation of the 3-Phenyl-1,4-benzothiazine Analogues.

    PubMed

    Felicetti, Tommaso; Cannalire, Rolando; Burali, Maria Sole; Massari, Serena; Manfroni, Giuseppe; Barreca, Maria Letizia; Tabarrini, Oriana; Schindler, Bryan D; Sabatini, Stefano; Kaatz, Glenn W; Cecchetti, Violetta

    2017-08-22

    Bacterial resistance to antimicrobial agents has become an increasingly serious health problem in recent years. Among the strategies by which resistance can be achieved, overexpression of efflux pumps such as NorA of Staphylococcus aureus leads to a sub-lethal concentration of the antibacterial agent at the active site that in turn may predispose the organism to the development of high-level target-based resistance. With an aim to improve both the chemical stability and potency of our previously reported 3-phenyl-1,4-benzothiazine NorA inhibitors, we replaced the benzothiazine core with different nuclei. None of the new synthesized compounds showed any appreciable intrinsic antibacterial activity, and, in particular, 2-(3,4-dimethoxyphenyl)quinoline (6 c) was able to decrease, in a concentration-dependent manner, the ciprofloxacin MIC against the norA-overexpressing strains S. aureus SA-K2378 (norA++) and SA-1199B (norA+/A116E GrlA). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. C-Terminal HIV-1 Transframe p6* Tetrapeptide Blocks Enhanced Gag Cleavage Incurred by Leucine Zipper Replacement of a Deleted p6* Domain.

    PubMed

    Yu, Fu-Hsien; Huang, Kuo-Jung; Wang, Chin-Tien

    2017-05-15

    HIV-1 protease (PR) functions as a homodimer mediating virus maturation following virus budding. Gag-Pol dimerization is believed to trigger embedded PR activation by promoting PR dimer formation. Early PR activation can lead to markedly reduced virus yields due to premature Gag cleavage. The p6* peptide, located between Gag and PR, is believed to ensure virus production by preventing early PR maturation. Studies aimed at finding supporting evidence for this proposal are limited due to a reading frame overlap between p6* and the p6gag budding domain. To determine if p6* affects virus production via the modulation of PR activation, we engineered multiple constructs derived from Dp6*PR (an assembly- and processing-competent construct with Pol fused at the inactivated PR C terminus). The data indicated that a p6* deletion adjacent to active PR significantly impaired virus processing. We also observed that the insertion of a leucine zipper (LZ) dimerization motif in the deleted region eliminated virus production in a PR activity-dependent manner, suggesting that the LZ insertion triggered premature PR activation by facilitating PR dimer formation. As few as four C-terminal p6* residues remaining at the p6*/PR junction were sufficient to restore virus yields, with a Gag processing profile similar to that of the wild type. Our study provides supporting evidence in a virus assembly context that the C-terminal p6* tetrapeptide plays a role in preventing premature PR maturation. IMPORTANCE Supporting evidence for the assumption that p6* retards PR maturation in the context of virus assembly is lacking. We found that replacing p6* with a leucine zipper peptide abolished virus assembly due to the significant enhancement of Gag cleavage. However, as few as four C-terminal p6* residues remaining in the deleted region were sufficient for significant PR release, as well as for counteracting leucine zipper-incurred premature Gag cleavage. Our data provide evidence that (i) p6* ensures virus assembly by preventing early PR activation and (ii) four C-terminal p6* residues are critical for modulating PR activation. Current PR inhibitor development efforts are aimed largely at mature PR, but there is a tendency for HIV-1 variants that are resistant to multiple protease inhibitors to emerge. Our data support the idea of modulating PR activation by targeting PR precursors as an alternative approach to controlling HIV-1/AIDS. Copyright © 2017 American Society for Microbiology.

  18. Hemophilia A Pseudoaneurysm in a Patient with High Responding Inhibitors Complicating Total Knee Arthroplasty: Embolization: A Cost-Reducing Alternative to Medical Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kickuth, Ralph, E-mail: ralph.kickuth@insel.ch; Anderson, Suzanne; Peter-Salonen, Kristiina

    2006-12-15

    Joint hemorrhages are very common in patients with severe hemophilia. Inhibitors in patients with hemophilia are allo-antibodies that neutralize the activity of the clotting factor. After total knee replacement, rare intra-articular bleeding complications might occur that do not respond to clotting factor replacement. We report a 40-year-old male with severe hemophilia A and high responding inhibitors presenting with recurrent knee joint hemorrhage after bilateral knee prosthetic surgery despite adequate clotting factor treatment. There were two episodes of marked postoperative hemarthrosis requiring extensive use of subsititution therapy. Eleven days postoperatively, there was further hemorrhage into the right knee. Digital subtraction angiographymore » diagnosed a complicating pseudoaneurysm of the inferior lateral geniculate artery and embolization was successfully performed. Because clotting factor replacement therapy has proved to be excessively expensive and prolonged, especially in patients with inhibitors, we recommend the use of cost-effective early angiographic embolization.« less

  19. Characterization and inhibition studies of tissue nonspecific alkaline phosphatase by aminoalkanol derivatives of 1,7-dimethyl-8,9-diphenyl-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5,10-trione, new competitive and non-competitive inhibitors, by capillary electrophoresis.

    PubMed

    Grodner, Błażej; Napiórkowska, Mariola

    2017-09-05

    The article describes the inhibitory effect of two new aminoalkanol derivatives on the enzymatic kinetic of tissue non-specific alkaline phosphatase with use of capillary zone electrophoresis to evaluate the inhibitory effect. This technique allows to investigate of the enzymatic kinetic by the measure of the amounts of the substrate and product in the presence of compound (I) or (II) in the reaction mixture. The separation process was conducted using an eCAP fused-silica capillary. The detector was set at 200nm. The best parameters for the analysis were: 25mM sodium dihydrogen phosphate adjusted to pH=2.5, temperature 25°C, and voltage -15kV. Lineweaver-Burk plots were constructed and determined by comparison of the Km, of alkaline phosphatase in the presence of inhibitor (I) or (II) with the Km in a solution without inhibitor. The influence of replacement the propylamine group by the dimethylamine group on tissue non-specific alkaline phosphatase inhibition activity of new derivatives (I) and (II) was investigated. The tested compounds (I) and (II) were found to be tissue non-specific alkaline phosphatase inhibitors. Detailed kinetic studies indicated a competitive mode of inhibition against tissue non-specific alkaline phosphatase for compound (I) and non-competitive mode of inhibition for compound (II). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Transition state-based ST6Gal I inhibitors: Mimicking the phosphodiester linkage with a triazole or carbamate through an enthalpy-entropy compensation.

    PubMed

    Montgomery, Andrew P; Skropeta, Danielle; Yu, Haibo

    2017-10-31

    Human β-galactoside α-2,6-sialyltransferase I (ST6Gal I) catalyses the synthesis of sialylated glycoconjugates. Overexpression of ST6Gal I is observed in many cancers, where it promotes metastasis through altered cell surface sialylation. A wide range of sialyltransferase inhibitors have been developed, with analogues structurally similar to the transition state exhibiting the highest inhibitory activity. To improve synthetic accessibility and pharmacokinetics of previously reported inhibitors, the replacement of the charged phosphodiester linker with a potential neutral isostere such as a carbamate or a 1,2,3-triazole has been investigated. Extensive molecular dynamics simulations have demonstrated that compounds with the alternate linkers could maintain key interactions with the human ST6Gal I active site, demonstrating the potential of a carbamate or a 1,2,3-triazole as a phosphodiester isostere. Free energy perturbation calculations provided energetic evidence suggesting that the carbamate and 1,2,3-triazole were slightly more favourable than the phosphodiester. Further exploration with free energy component, quasi-harmonic and cluster analysis suggested that there is an enthalpy-entropy compensation accounting for the replacement of the flexible charged phosphodiester with a neutral and rigid isostere. Overall, these simulations provide a strong rationale for the use of a carbamate or 1,2,3-triazole as a phosphodiester isostere in the development of novel inhibitors of human ST6Gal I.

  1. Treatment with specific soluble factors promotes the functional maturation of transcription factor-mediated, pancreatic transdifferentiated cells.

    PubMed

    Motoyama, Hiroaki; Kobayashi, Akira; Yokoyama, Takahide; Shimizu, Akira; Sakai, Hiroshi; Notake, Tsuyoshi; Fukushima, Kentaro; Miyagawa, Shin-Ichi

    2018-01-01

    Pancreatic lineage-specific transcription factors (TFs) display instructive roles in converting adult cells to endocrine pancreatic cells through a process known as transdifferentiation. However, little is known about potential factors capable of accelerating transdifferentiation following transduction to achieve the functional maturation of transdifferentiated cells. In this study, we demonstrated, using adult liver-derived progenitor cells, that soluble factors utilized in pancreatic differentiation protocols of pluripotent stem cells promote functional maturation of TFs-mediated transdifferentiated cells. Treatment with an N2 supplement in combination with three soluble factors (glucagon-like peptide-1 [GLP-1] receptor agonist, notch inhibitor, and transforming growth factor-β [TGF-β] inhibitor) enhanced liver-to-pancreas transdifferentiation based on the following findings: i) the incidence of c-peptide-positive cells increased by approximately 1.2-fold after the aforementioned treatment; ii) the c-peptide expression level in the treated cells increased by approximately 12-fold as compared with the level in the untreated cells; iii) the treated cells secreted insulin in a glucose-dependent manner, whereas the untreated cells did not; and iv) transplantation of treated-transdifferentiated cells into streptozotocin-induced immunodeficient diabetic mice led to the amelioration of hyperglycemia. These results suggest that treatment with specific soluble factors promotes the functional maturation of transdifferentiated cells. Our findings could facilitate the development of new modalities for cell-replacement therapy for patients with diabetes.

  2. The contribution of the SPINK1 c.194+2T>C mutation to the clinical course of idiopathic chronic pancreatitis in Chinese patients.

    PubMed

    Sun, Chang; Liao, Zhuan; Jiang, Lili; Yang, Fu; Xue, Geng; Zhou, Qi; Chen, Ruiwen; Sun, Shuhan; Li, Zhaoshen

    2013-01-01

    Recent data suggest that the serine protease inhibitor Kazal type 1 (SPINK1) gene mutation is associated with idiopathic chronic pancreatitis. However, few studies have focused on the serine protease inhibitor Kazal type 1 c.194+2T>C mutation. Therefore, our goal was to study the prevalence and impact of serine protease inhibitor Kazal type 1 mutations on the clinical profile of idiopathic chronic pancreatitis patients in China. A retrospective-cohort study of 118 Chinese patients with idiopathic chronic pancreatitis was performed, and genetic tests were carried out to detect SPINK1 mutations. Subjects without pancreatitis were used as controls. In total, 118 idiopathic chronic pancreatitis patients and 100 control subjects were evaluated. The serine protease inhibitor Kazal type 1 c.194+2T>C variant was present in 44.9% of patients with idiopathic chronic pancreatitis. The frequency of diabetes in idiopathic chronic pancreatitis patients with the serine protease inhibitor Kazal type 1 c.194+2T>C mutation (39.6%) was higher than that of patients without the mutation (9.2%). The time to occurrence of diabetes mellitus after idiopathic chronic pancreatitis symptom onset is significantly influenced by the c.194+2T>C mutation (p<0.001). In addition, the mean age of diabetes onset in patients with the serine protease inhibitor Kazal type 1 c.194+2T>C mutation (38.33 ± 9.50) was significantly younger than that of patients without this mutation (49.67 ± 6.74). The presence of the serine protease inhibitor Kazal type 1 c.194+2T>C mutation seems to be associated with idiopathic chronic pancreatitis and could predispose individuals to pancreatic diabetes onset at an earlier age. Copyright © 2012 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  3. Virtual screening of selective multitarget kinase inhibitors by combinatorial support vector machines.

    PubMed

    Ma, X H; Wang, R; Tan, C Y; Jiang, Y Y; Lu, T; Rao, H B; Li, X Y; Go, M L; Low, B C; Chen, Y Z

    2010-10-04

    Multitarget agents have been increasingly explored for enhancing efficacy and reducing countertarget activities and toxicities. Efficient virtual screening (VS) tools for searching selective multitarget agents are desired. Combinatorial support vector machines (C-SVM) were tested as VS tools for searching dual-inhibitors of 11 combinations of 9 anticancer kinase targets (EGFR, VEGFR, PDGFR, Src, FGFR, Lck, CDK1, CDK2, GSK3). C-SVM trained on 233-1,316 non-dual-inhibitors correctly identified 26.8%-57.3% (majority >36%) of the 56-230 intra-kinase-group dual-inhibitors (equivalent to the 50-70% yields of two independent individual target VS tools), and 12.2% of the 41 inter-kinase-group dual-inhibitors. C-SVM were fairly selective in misidentifying as dual-inhibitors 3.7%-48.1% (majority <20%) of the 233-1,316 non-dual-inhibitors of the same kinase pairs and 0.98%-4.77% of the 3,971-5,180 inhibitors of other kinases. C-SVM produced low false-hit rates in misidentifying as dual-inhibitors 1,746-4,817 (0.013%-0.036%) of the 13.56 M PubChem compounds, 12-175 (0.007%-0.104%) of the 168 K MDDR compounds, and 0-84 (0.0%-2.9%) of the 19,495-38,483 MDDR compounds similar to the known dual-inhibitors. C-SVM was compared to other VS methods Surflex-Dock, DOCK Blaster, kNN and PNN against the same sets of kinase inhibitors and the full set or subset of the 1.02 M Zinc clean-leads data set. C-SVM produced comparable dual-inhibitor yields, slightly better false-hit rates for kinase inhibitors, and significantly lower false-hit rates for the Zinc clean-leads data set. Combinatorial SVM showed promising potential for searching selective multitarget agents against intra-kinase-group kinases without explicit knowledge of multitarget agents.

  4. Restricted growth of U-type infectious haematopoietic necrosis virus (IHNV) in rainbow trout cells may be linked to casein kinase II activity

    USGS Publications Warehouse

    Park, J.-W.; Moon, C.H.; Harmache, A.; Wargo, A.R.; Purcell, M.K.; Bremont, M.; Kurath, G.

    2011-01-01

    Previously, we demonstrated that a representative M genogroup type strain of infectious haematopoietic necrosis virus (IHNV) from rainbow trout grows well in rainbow trout-derived RTG-2 cells, but a U genogroup type strain from sockeye salmon has restricted growth, associated with reduced genome replication and mRNA transcription. Here, we analysed further the mechanisms for this growth restriction of U-type IHNV in RTG-2 cells, using strategies that assessed differences in viral genes, host immune regulation and phosphorylation. To determine whether the viral glycoprotein (G) or non-virion (NV) protein was responsible for the growth restriction, four recombinant IHNV viruses were generated in which the G gene of an infectious IHNV clone was replaced by the G gene of U- or M-type IHNV and the NV gene was replaced by NV of U- or M-type IHNV. There was no significant difference in the growth of these recombinants in RTG-2 cells, indicating that G and NV proteins are not major factors responsible for the differential growth of the U- and M-type strains. Poly I:C pretreatment of RTG-2 cells suppressed the growth of both U- and M-type IHNV, although the M virus continued to replicate at a reduced level. Both viruses induced type 1 interferon (IFN1) and the IFN1 stimulated gene Mx1, but the expression levels in M-infected cells were significantly higher than in U-infected cells and an inhibitor of the IFN1-inducible protein kinase PKR, 2-aminopurine (2-AP), did not affect the growth of U- or M-type IHNV in RTG-2 cells. These data did not indicate a role for the IFN1 system in the restricted growth of U-type IHNV in RTG-2 cells. Prediction of kinase-specific phosphorylation sites in the viral phosphoprotein (P) using the NetPhosK program revealed differences between U- and M-type P genes at five phosphorylation sites. Pretreatment of RTG-2 cells with a PKC inhibitor or a p38MAPK inhibitor did not affect the growth of the U- and M-type viruses. However, 100 μm of the casein kinase II (CKII) inhibitor, 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), reduced the titre of the U type 8.3-fold at 24 h post-infection. In contrast, 100 μm of the CKII inhibitor reduced the titre of the M type only 1.3-fold at 48 h post-infection. Our data suggest that the different growth of U- and M-type IHNV in RTG-2 cells may be linked to a differential requirement for cellular protein kinases such as CKII for their growth.

  5. A nomogram to estimate the HbA1c response to different DPP-4 inhibitors in type 2 diabetes: a systematic review and meta-analysis of 98 trials with 24 163 patients

    PubMed Central

    Esposito, Katherine; Chiodini, Paolo; Maiorino, Maria Ida; Capuano, Annalisa; Cozzolino, Domenico; Petrizzo, Michela; Bellastella, Giuseppe; Giugliano, Dario

    2015-01-01

    Objectives To develop a nomogram for estimating the glycated haemoglobin (HbA1c) response to different dipeptidyl peptidase-4 (DPP-4) inhibitors in type 2 diabetes. Design A systematic review and meta-analysis of randomised controlled trials (RCTs) of DPP-4 inhibitors (vildagliptin, sitagliptin, saxagliptin, linagliptin and alogliptin) on HbA1c were conducted. Electronic searches were carried out up to December 2013. Trials were included if they were carried out on participants with type 2 diabetes, lasted at least 12 weeks, included at least 30 participants and had a final assessment of HbA1c. A random effect model was used to pool data. A nomogram was used to represent results of the metaregression model. Participants Adults with type 2 diabetes. Interventions Any DPP-4 inhibitor (vildagliptin, sitagliptin, saxagliptin, linagliptin or alogliptin). Outcome measures The HbA1c response to each DPP-4 inhibitor within 1 year of therapy. Results We screened 928 citations and reviewed 98 articles reporting 98 RCTs with 100 arms in 24 163 participants. There were 26 arms with vildagliptin, 37 with sitagliptin, 13 with saxagliptin, 13 with linagliptin and 11 with alogliptin. For all 100 arms, the mean baseline HbA1c value was 8.05% (64 mmol/mol); the decrease of HbA1c from baseline was −0.77% (95% CI −0.82 to −0.72%), with high heterogeneity (I2=96%). Multivariable metaregression model that included baseline HbA1c, type of DPP-4 inhibitor and fasting glucose explained 58% of variance between studies, with no significant interaction between them. Other factors, including age, previous diabetes drugs and duration of treatment added low predictive power (<1%). The nomogram estimates the absolute HbA1c reduction from baseline using the type of DPP-4 inhibitor, baseline values of HbA1c and fasting glucose. Conclusions Baseline HbA1c level and fasting glucose explain most of the variance in HbA1c change in response to DPP-4 inhibitors: each increase of 1.0% units HbA1c provides a 0.4–0.5% units greater fall. PMID:25687897

  6. Small molecule inhibitors of anthrax edema factor.

    PubMed

    Jiao, Guan-Sheng; Kim, Seongjin; Moayeri, Mahtab; Thai, April; Cregar-Hernandez, Lynne; McKasson, Linda; O'Malley, Sean; Leppla, Stephen H; Johnson, Alan T

    2018-01-15

    Anthrax is a highly lethal disease caused by the Gram-(+) bacteria Bacillus anthracis. Edema toxin (ET) is a major contributor to the pathogenesis of disease in humans exposed to B. anthracis. ET is a bipartite toxin composed of two proteins secreted by the vegetative bacteria, edema factor (EF) and protective antigen (PA). Our work towards identifying a small molecule inhibitor of anthrax edema factor is the subject of this letter. First we demonstrate that the small molecule probe 5'-Fluorosulfonylbenzoyl 5'-adenosine (FSBA) reacts irreversibly with EF and blocks enzymatic activity. We then show that the adenosine portion of FSBA can be replaced to provide more drug-like molecules which are up to 1000-fold more potent against EF relative to FSBA, display low cross reactivity when tested against a panel of kinases, and are nanomolar inhibitors of EF in a cell-based assay of cAMP production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Current options and new developments in the treatment of haemophilia.

    PubMed

    Wong, Trisha; Recht, Michael

    2011-02-12

    Haemophilia A and B are X-linked bleeding disorders due to the inherited deficiency of factor VIII or factor IX, respectively. Of the approximately 1 per 5000-10000 male births affected by haemophilia, 80% are deficient in factor VIII and 20% are deficient in factor IX. Haemophilia is characterized by spontaneous and provoked joint, muscle, gastrointestinal and CNS bleeding leading to major morbidity and even mortality if left untreated or under-treated. The evolution of haemophilia management has been marked by tragedy and triumph over recent decades. Clotting factors and replacement strategies continue to evolve for patients without inhibitors. For patients with an inhibitor, factor replacement for acute bleeding episodes and immune tolerance, immune modulation and extracorporeal methods for inhibitor reduction are the cornerstone of care. In addition, adjuvant therapies such as desmopressin, antifibrinolytics and topical agents also contribute to improved outcomes for patients with and without inhibitors. The future direction of haemophilia care is promising with new longer-acting clotting factors and genetic therapies, including gene transfer and premature termination codon suppressors. With these current and future treatment modalities, the morbidity and mortality rates in patients with haemophilia certainly will continue to improve.

  8. THE INHIBITION OF PLASMIN, PLASMA KALLIKREIN, PLASMA PERMEABILITY FACTOR, AND THE C'1r SUBCOMPONENT OF THE FIRST COMPONENT OF COMPLEMENT BY SERUM C'1 ESTERASE INHIBITOR

    PubMed Central

    Ratnoff, Oscar D.; Pensky, Jack; Ogston, Derek; Naff, George B.

    1969-01-01

    The fraction of human serum designated as C'1 esterase inhibitor is known to inhibit the action of C'1 esterase, a plasma kallikrein, and PF/Dil, an enzyme in plasma enhancing cutaneous vascular permeability. In the present study, C'1 esterase inhibitor has been found to block the actions of plasmin and the C'1r subcomponent of the first component of complement, and to retard the generation of PF/Dil. No inhibition of blood clotting or of the generation of plasmin was demonstrable. PMID:4178758

  9. Characterization of hamster NAD+-dependent 3(17)β-hydroxysteroid dehydrogenase belonging to the aldo-keto reductase 1C subfamily.

    PubMed

    Endo, Satoshi; Noda, Misato; Ikari, Akira; Tatematsu, Kenjiro; El-Kabbani, Ossama; Hara, Akira; Kitade, Yukio; Matsunaga, Toshiyuki

    2015-11-01

    The cDNAs for morphine 6-dehydrogenase (AKR1C34) and its homologous aldo-keto reductase (AKR1C35) were cloned from golden hamster liver, and their enzymatic properties and tissue distribution were compared. AKR1C34 and AKR1C35 similarly oxidized various xenobiotic alicyclic alcohols using NAD(+), but differed in their substrate specificity for hydroxysteroids and inhibitor sensitivity. While AKR1C34 showed 3α/17β/20α-hydroxysteroid dehydrogenase activities, AKR1C35 efficiently oxidized various 3β- and 17β-hydroxysteroids, including biologically active 3β-hydroxy-5α/β-dihydro-C19/C21-steroids, dehydroepiandrosterone and 17β-estradiol. AKR1C35 also differed from AKR1C34 in its high sensitivity to flavonoids, which inhibited competitively with respect to 17β-estradiol (Ki 0.11-0.69 μM). The mRNA for AKR1C35 was expressed liver-specific in male hamsters and ubiquitously in female hamsters, whereas the expression of the mRNA for AKR1C34 displayed opposite sexual dimorphism. Because AKR1C35 is the first 317Β-HYDROXYSTEROID DEHYDROGENASE IN THE AKR SUPERFAMILY: , we also investigated the molecular determinants for the 3β-hydroxysteroid dehydrogenase activity by replacement of Val54 and Cys310 in AKR1C35 with the corresponding residues in AKR1C34, Ala and Phe, respectively. The mutation of Val54Ala, but not Cys310Phe, significantly impaired this activity, suggesting that Val54 plays a critical role in recognition of the steroidal substrate. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  10. Quinovosamycins: New tunicamycin-type antibiotics in which the alpha, beta-1", 11'-linked N-acetylglucosamine residue is replaced by N-acetylquinovosamine.

    USDA-ARS?s Scientific Manuscript database

    Tunicamycins (TUN) are potent inhibitors of polyprenyl phosphate N-acetylhexosamine 1-phosphate transferases (PPHP), including essential eukaryotic GPT enzymes and bacterial HexNAc 1-P translocases. Hence, TUN blocks the formation of eukaryotic N-glycoproteins and the assembly of bacterial call wall...

  11. Circular dichroism spectroscopic investigation of double-decker phthalocyanine with G-Quadruplex as promising telomerase inhibitor

    NASA Astrophysics Data System (ADS)

    Baǧda, Efkan; Baǧda, Esra; Yabaş, Ebru

    2017-01-01

    In the present study, interaction of a double-decker phthalocyanine with two G-quadruplex DNA, Tel 21 and cMYC, was investigated. To the best of our knowledge, this is the first study about G-quadruplex-double decker phthalocyanine interaction. The spectrophotometric titration method was used for binding constant calculations. From the binding constants, it can be said that double-decker phthalocyanine more likely to bind Tel 21 rather than cMYC. The conformational changes upon binding were monitored via circular dichroism spectroscopy. The ethidium bromide replacement assay was investigated spectrofluorometrically.

  12. A comparison of effects of DPP-4 inhibitor and SGLT2 inhibitor on lipid profile in patients with type 2 diabetes.

    PubMed

    Cha, Seon-Ah; Park, Yong-Moon; Yun, Jae-Seung; Lim, Tae-Seok; Song, Ki-Ho; Yoo, Ki-Dong; Ahn, Yu-Bae; Ko, Seung-Hyun

    2017-04-13

    Previous studies suggest that dipeptidyl peptidase-4 (DPP-4) inhibitors and sodium glucose cotransporter 2 (SGLT2) inhibitors have different effects on the lipid profile in patients with type 2 diabetes. We investigated the effects of DPP-4 inhibitors and SGLT2 inhibitors on the lipid profile in patients with type 2 diabetes. From January 2013 to December 2015, a total of 228 patients with type 2 diabetes who were receiving a DPP-4 inhibitor or SGLT2 inhibitor as add-on therapy to metformin and/or a sulfonylurea were consecutively enrolled. We compared the effects of DPP-4 inhibitors and SGLT2 inhibitors on the lipid profile at baseline and after 24 weeks of treatment. To compare lipid parameters between the two groups, we used the analysis of covariance (ANCOVA). A total of 184 patients completed follow-up (mean age: 53.1 ± 6.9 years, mean duration of diabetes: 7.1 ± 5.7 years). From baseline to 24 weeks, HDL-cholesterol (HDL-C) levels were increased by 0.5 (95% CI, -0.9 to 2.0) mg/dl with a DPP-4 inhibitor and by 5.1 (95% CI, 3.0 to 7.1) mg/dl with an SGLT2 inhibitor (p = 0.001). LDL-cholesterol (LDL-C) levels were reduced by 8.4 (95% CI, -14.0 to -2.8) mg/dl with a DPP-4 inhibitor, but increased by 1.3 (95% CI, -5.1 to 7.6) mg/dl with an SGLT2 inhibitor (p = 0.046). There was no significant difference in the mean hemoglobin A1c (8.3 ± 1.1 vs. 8.0 ± 0.9%, p = 0.110) and in the change of total cholesterol (TC) (p = 0.836), triglyceride (TG) (p = 0.867), apolipoprotein A (p = 0.726), apolipoprotein B (p = 0.660), and lipoprotein (a) (p = 0.991) between the DPP-4 inhibitor and the SGLT2 inhibitor. The SGLT2 inhibitor was associated with a significant increase in HDL-C and LDL-C after 24 weeks of SGLT2 inhibitor treatment in patients with type 2 diabetes compared with those with DPP-4 inhibitor treatment in this study. This study was conducted by retrospective medical record review.

  13. Discovery of a new series of imidazo[1,2-a]pyridine compounds as selective c-Met inhibitors.

    PubMed

    Liu, Tong-Chao; Peng, Xia; Ma, Yu-Chi; Ji, Yin-Chun; Chen, Dan-Qi; Zheng, Ming-Yue; Zhao, Dong-Mei; Cheng, Mao-Sheng; Geng, Mei-Yu; Shen, Jing-Kang; Ai, Jing; Xiong, Bing

    2016-05-01

    Aberrant c-Met activation plays a critical role in cancer formation, progression and dissemination, as well as in development of resistance to anticancer drugs. Therefore, c-Met has emerged as an attractive target for cancer therapy. The aim of this study was to develop new c-Met inhibitors and elaborate the structure-activity relationships of identified inhibitors. Based on the predicted binding modes of Compounds 5 and 14 in docking studies, a new series of c-Met inhibitor-harboring 3-((1H-pyrrolo[3,2-c]pyridin-1-yl)sulfonyl)imidazo[1,2-a]pyridine scaffolds was discovered. Potent inhibitors were identified through extensive optimizations combined with enzymatic and cellular assays. A promising compound was further investigated in regard to its selectivity, its effects on c-Met signaling, cell proliferation and cell scattering in vitro. The most potent Compound 31 inhibited c-Met kinase activity with an IC50 value of 12.8 nmol/L, which was >78-fold higher than those of a panel of 16 different tyrosine kinases. Compound 31 (8, 40, 200 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and ERK signaling cascades in c-Met aberrant human EBC-1 cancer cells. In 12 human cancer cell lines harboring different background levels of c-Met expression/activation, Compound 31 potently inhibited c-Met-driven cell proliferation. Furthermore, Compound 31 dose-dependently impaired c-Met-mediated cell scattering of MDCK cells. This series of c-Met inhibitors is a promising lead for development of novel anticancer drugs.

  14. On the value of therapeutic interventions targeting the complement system in acute myocardial infarction.

    PubMed

    Emmens, Reindert W; Wouters, Diana; Zeerleder, Sacha; van Ham, S Marieke; Niessen, Hans W M; Krijnen, Paul A J

    2017-04-01

    The complement system plays an important role in the inflammatory response subsequent to acute myocardial infarction (AMI). The aim of this study is to create a systematic overview of studies that have investigated therapeutic administration of complement inhibitors in both AMI animal models and human clinical trials. To enable extrapolation of observations from included animal studies toward post-AMI clinical trials, ex vivo studies on isolated hearts and proof-of-principle studies on inhibitor administration before experimental AMI induction were excluded. Positive therapeutic effects in AMI animal models have been described for cobra venom factor, soluble complement receptor 1, C1-esterase inhibitor (C1-inh), FUT-175, C1s-inhibitor, anti-C5, ADC-1004, clusterin, and glycosaminoglycans. Two types of complement inhibitors have been tested in clinical trials, being C1-inh and anti-C5. Pexelizumab (anti-C5) did not result in reproducible beneficial effects for AMI patients. Beneficial effects were reported in AMI patients for C1-inhibitor, albeit in small patient groups. In general, despite the absence of consistent positive effects in clinical trials thus far, the complement system remains a potentially interesting target for therapy in AMI patients. Based on the study designs of previous animal studies and clinical trials, we discuss several issues which require attention in the design of future studies: adjustment of clinical trial design to precise mechanism of action of administered inhibitor, optimizing the duration of therapy, and optimization of time point(s) on which therapeutic effects will be evaluated. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Inhibitor development after liver transplantation in congenital factor VII deficiency.

    PubMed

    See, W-S Q; Chang, K-O; Cheuk, D K-L; Leung, Y-Y R; Chan, G C-F; Chan, S-C; Ha, S-Y

    2016-09-01

    Congenital factor VII (FVII) deficiency is the commonest type of the rare bleeding disorders. Very few cases of congenital FVII deficiency developed inhibitor and liver transplant is considered as definitive treatment. In the literature, twelve patients with congenital FVII deficiency developed inhibitors. Two had spontaneous resolution of inhibitors and one did not respond to high dose recombinant factor VIIa (rFVIIa) and died. Regarding liver transplant in congenital FVII patients, seven patients underwent liver transplant with good prognosis. We report a 5-year-old girl with confirmed severe congenital FVII deficiency since neonatal period. She suffered from recurrent intracranial bleeding despite rFVIIa replacement. After auxiliary liver transplant at the age of 4, she continued to show persistent deranged clotting profile and was found to have inhibitor towards FVII. Interestingly, she was still responsive to rFVIIa replacement. © 2016 John Wiley & Sons Ltd.

  16. New associations: INFG and TGFB1 genes and the inhibitor development in severe haemophilia A.

    PubMed

    de Alencar, J B; Macedo, L C; de Barros, M F; Rodrigues, C; Shinzato, A H; Pelissari, C B; Machado, J; Sell, A M; Visentainer, J E L

    2015-07-01

    The development of factor VIII (FVIII) inhibitor is the main complication of replacement therapy in patients with haemophilia A (HA). A ratio of 5-7% of individuals HA develops antibodies (inhibitors) against the FVIII infused during the treatment, thereby reducing their pro-coagulant activity. The immunomodulatory cytokine genes have been related to the risk of development of alloantibodies in several studies, mainly in HA with severe form. We investigated the polymorphisms in regulatory regions of cytokine genes (IL1A, IL1B, IL1R, IL1RA, IL4RA, IL12, INFG, TGFB1, TNF, IL2, IL4, IL6, IL10) that could influence the risk of developing inhibitors in patients with severe HA. The genotyping of cytokine genes of 117 patients with HA was performed by polymerase chain reaction with sequence-specific primers (PCR-SSP) using the protocol recommended by the manufacturer (Invitrogen kit Cytokines(®) , Canoga Park, USA) RESULTS: From the cohort of 117 patients with severe HA, 35 developed inhibitors. There was a higher frequency of +874 T allele in INFG and of +869 TT and TG/TG in TGFB1 genes on patients with inhibitors. This suggests that polymorphisms in INFG and in TGFB1 genes are related to risk of developing inhibitor, and could contribute to a genetic profile of the individual HA for the risk of inhibitors development to FVIII. © 2015 John Wiley & Sons Ltd.

  17. PKI-179: an orally efficacious dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor.

    PubMed

    Venkatesan, Aranapakam M; Chen, Zecheng; dos Santos, Osvaldo; Dehnhardt, Christoph; Santos, Efren Delos; Ayral-Kaloustian, Semiramis; Mallon, Robert; Hollander, Irwin; Feldberg, Larry; Lucas, Judy; Yu, Ker; Chaudhary, Inder; Mansour, Tarek S

    2010-10-01

    A series of mono-morpholino 1,3,5-triazine derivatives (8a-8q) bearing a 3-oxa-8-azabicyclo[3.2.1]octane were prepared and evaluated for PI3-kinase/mTOR activity. Replacement of one of the bis-morpholines in lead compound 1 (PKI-587) with 3-oxa-8-azabicyclo[3.2.1]octane and reduction of the molecular weight yielded 8m (PKI-179), an orally efficacious dual PI3-kinase/mTOR inhibitor. The in vitro activity, in vivo efficacy, and PK properties of 8m are discussed. Copyright © 2010. Published by Elsevier Ltd.

  18. Fragment-wise design of inhibitors to 3C proteinase from enterovirus 71.

    PubMed

    Wu, Caiming; Zhang, Lanjun; Li, Peng; Cai, Qixu; Peng, Xuanjia; Yin, Ke; Chen, Xinsheng; Ren, Haixia; Zhong, Shilin; Weng, Yuwei; Guan, Yi; Chen, Shuhui; Wu, Jinzhun; Li, Jian; Lin, Tianwei

    2016-06-01

    Enterovirus 71 (EV71) is a causative agent of hand, foot and mouth disease (HFMD), which can spread its infection to central nervous and other systems with severe consequence. A key factor in the replication of EV71 is its 3C proteinase (3C(pro)), a significant drug target. Peptidomimetics were employed as inhibitors of this enzyme for developing antivirals. However, the peptide bonds in these peptidomimetics are a source of low bioavailability due to their susceptibility to protease digestion. To produce non-peptidomimetic inhibitors by replacing these peptide bonds, it would be important to gain better understanding on the contribution of each component to the interaction and potency. A series of compounds of different lengths targeting 3C(pro) and having an α,β-unsaturated ester as the warhead were synthesized and their interactions with the enzyme were evaluated by complex structure analyses and potency assays for a better understanding on the relationship between potency and evolution of interaction. The P2 moiety of the compound would need to be oriented to interact in the S2 site in the substrate binding cleft and the P3-P4 moieties were required to generate sufficient potency. A hydrophobic terminal group will benefit the cellular uptake and improve the activity in vivo. The data presented here provide a basis for designing a new generation of non-peptidomimetics to target EV71 3C(pro). Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Discovery and development of pyrazole-scaffold Hsp90 inhibitors.

    PubMed

    McDonald, Edward; Jones, Keith; Brough, Paul A; Drysdale, Martin J; Workman, Paul

    2006-01-01

    This review explains why the chaperone Hsp90 is an exciting protein target for the discovery of new drugs to treat cancer in the clinic, and summarises the properties of natural product derived inhibitors before relating the discovery and current state of development of synthetic pyrazole compounds. Blockade of Hsp90 results in reduced cellular levels of several proteins implicated in cancer including CDK4, ERBB2 and C-RAF, and causes simultaneous inhibition of cancer cell proliferation in culture and of tumor xenograft growth in vivo. Hsp90 has an ATPase domain that is necessary for its Hsp chaperone function, and X-ray crystallography has shown that natural product inhibitors (geldanamycin, radicicol) of Hsp90 function bind to this domain. High throughput assays focusing on the ATPase activity of Hsp90 were developed and used to discover novel chemical starting points for cancer drug discovery. The discovery, synthesis and SAR of 3,4-diaryl pyrazoles is described. X-Ray crystallography of protein-inhibitor complexes revealed important interactions involving the resorcinol substituent at C-3, and these X-ray structures strongly influenced subsequent medicinal chemistry research that has resulted in highly potent inhibitors with sub-micromolar activity in cells. SAR and X-ray data are summarised for analogues in which the 4-phenyl substituent is replaced by amides or piperazine derivatives. Prospects for the pyrazoles as they progress towards clinical development are discussed in relation to current Phase I trials with derivatives of geldanamycin.

  20. Insights into the activity of maturation inhibitor PF-46396 on HIV-1 clade C.

    PubMed

    Ghimire, Dibya; Timilsina, Uddhav; Srivastava, Tryambak Pratap; Gaur, Ritu

    2017-03-02

    HIV maturation inhibitors are an emerging class of anti-retroviral compounds that inhibit the viral protease-mediated cleavage of the Gag, CA-SP1 (capsid-spacer peptide 1) peptide to mature CA. The first-in-class maturation inhibitor bevirimat (BVM) displayed potent activity against HIV-1 clade B but was ineffective against other HIV-1 clades including clade C. Another pyridone-based maturation inhibitor, PF-46396 displayed potent activity against HIV-1 clade B. In this study, we aimed at determining the activity of PF-46396 against HIV-1 clade C. We employed various biochemical and virological assays to demonstrate that PF-46396 is effective against HIV-1 clade C. We observed a dose dependent accumulation of CA-SP1 intermediate in presence of the compound. We carried out mutagenesis in the CA- SP1 region of HIV-1 clade C Gag and observed that the mutations conferred resistance against the compound. Many mutations inhibited Gag processing thereby reducing virus release in the absence of the compound. However, presence of PF-46396 rescued these defects and enhanced virus release, replication capacity and infectivity of HIV-1 clade C. These results put together identify PF-46396 as a broadly active maturation inhibitor against HIV-1 clade B and C and help in rational designing of novel analogs with reduced toxicity and increased efficacy for its potential use in clinics.

  1. Curcumin derivatives inhibit or modulate beta-amyloid precursor protein metabolism.

    PubMed

    Narlawar, Rajeshwar; Baumann, Karlheinz; Schubenel, Robert; Schmidt, Boris

    2007-01-01

    Curcumin-derived oxazoles and pyrazoles were synthesized in order to minimize the metal chelation properties of curcumin. The reduced rotational freedom and the absence of stereoisomers was anticipated to enhance the inhibition of gamma-secretase. Accordingly, the replacement of the 1,3-dicarbonyl moiety by isosteric heterocycles turned curcumin analogue oxazoles and pyrazoles into potent gamma-secretase inhibitors. Compounds 4a-i were found to be potent inhibitors of gamma-secretase and displayed activity in the low micromolar range. 2007 S. Karger AG, Basel

  2. Discovery and evaluation of inhibitors to the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1): Probing the active site-inhibitor interactions.

    PubMed

    Tomek, Petr; Palmer, Brian D; Flanagan, Jack U; Sun, Chuanwen; Raven, Emma L; Ching, Lai-Ming

    2017-01-27

    High expression of the immunosuppressive enzyme, indoleamine 2,3-dioxygenase 1 (IDO1) for a broad range of malignancies is associated with poor patient prognosis, and the enzyme is a validated target for cancer intervention. To identify novel IDO1 inhibitors suitable for drug development, 1597 compounds in the National Cancer Institute Diversity Set III library were tested for inhibitory activity against recombinant human IDO1. We retrieved 35 hits that inhibited IDO1 activity >50% at 20 μM. Five structural filters and the PubChem Bioassay database were used to guide the selection of five inhibitors with IC 50 between 3 and 12 μM for subsequent experimental evaluation. A pyrimidinone scaffold emerged as being the most promising. It showed excellent cell penetration, negligible cytotoxicity and passed four out of the five structural filters applied. To evaluate the importance of Ser167 and Cys129 residues in the IDO1 active site for inhibitor binding, the entire NCI library was subsequently screened against alanine-replacement mutant enzymes of these two residues. The results established that Ser167 but not Cys129 is important for inhibitory activity of a broad range of IDO1 inhibitors. Structure-activity-relationship studies proposed substituents interacting with Ser167 on four investigated IDO1 inhibitors. Three of these four Ser167 interactions associated with an increased IDO1 inhibition and were correctly predicted by molecular docking supporting Ser167 as an important mediator of potency for IDO1 inhibitors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. The negative cell cycle regulators, p27Kip1, p18Ink4c, and GSK-3, play critical role in maintaining quiescence of adult human pancreatic β-cells and restrict their ability to proliferate

    PubMed Central

    Stein, Jeffrey; Milewski, Wieslawa M; Dey, Arunangsu

    2013-01-01

    Adult human pancreatic β-cells are primarily quiescent (G0) yet the mechanisms controlling their quiescence are poorly understood. Here, we demonstrate, by immunofluorescence and confocal microscopy, abundant levels of the critical negative cell cycle regulators, p27(Kip1) and p18(Ink4c), 2 key members of cyclin-dependent kinase (CDK) inhibitor family, and glycogen synthase kinase-3 (GSK-3), a serine-threonine protein kinase, in islet β-cells of adult human pancreatic tissue. Our data show that p27(Kip1) localizes primarily in β-cell nuclei, whereas, p18(Ink4c) is mostly present in β-cell cytosol. Additionally, p-p27(S10), a phosphorylated form of p27(Kip1), which was shown to interact with and to sequester cyclinD-CDK4/6 in the cytoplasm, is present in substantial amounts in β-cell cytosol. Our immunofluorescence analysis displays similar distribution pattern of p27(Kip1), p-p27(S10), p18(Ink4c) and GSK-3 in islet β-cells of adult mouse pancreatic tissue. We demonstrate marked interaction of p27(Kip1) with cyclin D3, an abundant D-type cyclin in adult human islets, and vice versa as well as with its cognate kinase partners, CDK4 and CDK6. Likewise, we show marked interaction of p18(Ink4c) with CDK4. The data collectively suggest that inhibition of CDK function by p27(Kip1) and p18(Ink4c) contributes to human β-cell quiescence. Consistent with this, we have found by BrdU incorporation assay that combined treatments of small molecule GSK-3 inhibitor and mitogen/s lead to elevated proliferation of human β-cells, which is caused partly due to p27(Kip1) downregulation. The results altogether suggest that ex vivo expansion of human β-cells is achievable via increased proliferation for β-cell replacement therapy in diabetes. PMID:23896637

  4. Tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrids as a new family of anti-Alzheimer agents targeting β-amyloid, tau, and cholinesterase pathologies.

    PubMed

    Di Pietro, Ornella; Pérez-Areales, F Javier; Juárez-Jiménez, Jordi; Espargaró, Alba; Clos, M Victòria; Pérez, Belén; Lavilla, Rodolfo; Sabaté, Raimon; Luque, F Javier; Muñoz-Torrero, Diego

    2014-09-12

    Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5b-d have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5a-d has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5a-d, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Preparation and characterization of liposomal formulations of neurotensin-degrading enzyme inhibitors.

    PubMed

    van Rooy, Inge; Wu, Shin-Ying; Storm, Gert; Hennink, Wim E; Dinter-Heidorn, Heike; Schiffelers, Raymond M; Mastrobattista, Enrico

    2011-09-20

    Neurotensin-degrading enzyme (NTDE) inhibitors hold great potential for treating psychotic disorders. However, brain uptake of such compounds in vivo is generally low due to the presence of the blood-brain barrier. In this study, liposomal formulations of two NTDE inhibitors, named compound 1 (C1) and compound 2 (C2) were prepared. Association of these compounds with the liposomal bilayer, subsequent liposomal stability, and compound release in the presence of albumin was studied. Entrapment of the compounds in the liposomal bilayer showed the solubilizing properties of the liposomes. Size and polydispersity index of the compound-entrapped liposomes did not change over 1 month, showing colloidal stability of the liposomal drug formulations. The amount of compounds associated with the liposomes decreased within one day. After this, the association remained stable at 4°C. For C1, association remained stable at 37°C in HEPES buffered saline, and the compound was gradually released in the presence of bovine serum albumin. For C2, the release was rapid in both HBS and BSA at 37°C. In conclusion, the formulation of NTDE inhibitors C1 and C2 in liposomes has been demonstrated and holds promise to deliver NTDE inhibitors in vivo. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Heterocyclic HIV-protease inhibitors.

    PubMed

    Calugi, C; Guarna, A; Trabocchi, A

    2013-01-01

    In the panorama of HIV protease inhibitors (HIV PIs), many efforts have been devoted to the development of new compounds with reduced peptidic nature in order to improve pharmacokinetics and pharmacodynamics features. The introduction of cyclic scaffolds in the design of new chemical entities reduces flexibility and affords more rigid inhibitors. Specifically, common dipeptide isosteres are replaced by a central cyclic scaffold designed to address the key interactions with catalytic aspartic acids and residues belonging to the flap region of the active site. The current interest in cyclic chemotypes addressing key interactions of HIV protease is motivated by the different nature of interactions formed with the enzyme, although maintaining key structural resemblance to a peptide substrate, hopefully giving rise to novel HIV-1 PIs displaying an improved profile towards multidrug resistant strains. This approach has been demonstrated for Tipranavir, which is a potent FDA approved HIV-1 PI representing the most famous example of heterocyclic aspartic protease inhibitors.

  7. Bioequivalence between two serum-free recombinant factor VIII preparations (N8 and ADVATE®)--an open-label, sequential dosing pharmacokinetic study in patients with severe haemophilia A.

    PubMed

    Martinowitz, U; Bjerre, J; Brand, B; Klamroth, R; Misgav, M; Morfini, M; Santagostino, E; Tiede, A; Viuff, D

    2011-11-01

    Recombinant coagulation factor VIII (rFVIII) concentrates provide a safe and efficacious replacement therapy for treatment and prevention of bleeding in patients with severe haemophilia A. The aim of this study was to compare the pharmacokinetic (PK) and safety profiles of two serum-free rFVIII products: N8, a new rFVIII manufactured by Novo Nordisk and Advate(®), a marketed product. Patients with severe haemophilia A with >150 exposure days to FVIII, without current or past inhibitors, were enrolled in an open-label, first human dose (FHD), multicentre trial. Twenty-three patients first received a single dose of 50 IU kg(-1) body weight Advate(®) followed by 50 IU kg(-1) body weight N8 at the next visit. A 4-day washout period was required prior to each dosing. Blood samples for PK and safety analyses were drawn prior to dosing and at intervals up until 48 h postdosing. The PK parameters were based on FVIII clotting activity (FVIII:C) measurements. Occurrence of adverse events was closely monitored. The mean profiles of FVIII:C and all primary and secondary parameters for Advate(®) and N8 were comparable. The 90% CI for the treatment ratio (Advate(®)/N8) for all primary endpoints (incremental recovery, t(1/2), AUC and Cl), and the secondary endpoints (AUC(last) and C(max)) were within the bioequivalence interval of 0.8-1.25. There were no safety concerns in the study and no reports of inhibitor formation in the 72-h period following exposure to a single N8 dose. In conclusion, N8 is bioequivalent to Advate(®). Furthermore, N8 is well tolerated in the FHD trial. © 2011 Blackwell Publishing Ltd.

  8. Discovery of a new series of imidazo[1,2-a]pyridine compounds as selective c-Met inhibitors

    PubMed Central

    Liu, Tong-chao; Peng, Xia; Ma, Yu-chi; Ji, Yin-chun; Chen, Dan-qi; Zheng, Ming-yue; Zhao, Dong-mei; Cheng, Mao-sheng; Geng, Mei-yu; Shen, Jing-kang; Ai, Jing; Xiong, Bing

    2016-01-01

    Aim: Aberrant c-Met activation plays a critical role in cancer formation, progression and dissemination, as well as in development of resistance to anticancer drugs. Therefore, c-Met has emerged as an attractive target for cancer therapy. The aim of this study was to develop new c-Met inhibitors and elaborate the structure-activity relationships of identified inhibitors. Methods: Based on the predicted binding modes of Compounds 5 and 14 in docking studies, a new series of c-Met inhibitor-harboring 3-((1H-pyrrolo[3,2-c]pyridin-1-yl)sulfonyl)imidazo[1,2-a]pyridine scaffolds was discovered. Potent inhibitors were identified through extensive optimizations combined with enzymatic and cellular assays. A promising compound was further investigated in regard to its selectivity, its effects on c-Met signaling, cell proliferation and cell scattering in vitro. Results: The most potent Compound 31 inhibited c-Met kinase activity with an IC50 value of 12.8 nmol/L, which was >78-fold higher than those of a panel of 16 different tyrosine kinases. Compound 31 (8, 40, 200 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and ERK signaling cascades in c-Met aberrant human EBC-1 cancer cells. In 12 human cancer cell lines harboring different background levels of c-Met expression/activation, Compound 31 potently inhibited c-Met-driven cell proliferation. Furthermore, Compound 31 dose-dependently impaired c-Met-mediated cell scattering of MDCK cells. Conclusion: This series of c-Met inhibitors is a promising lead for development of novel anticancer drugs. PMID:27041462

  9. Nebulized C1-Esterase Inhibitor does not Reduce Pulmonary Complement Activation in Rats with Severe Streptococcus Pneumoniae Pneumonia.

    PubMed

    de Beer, Friso; Lagrand, Wim; Glas, Gerie J; Beurskens, Charlotte J P; van Mierlo, Gerard; Wouters, Diana; Zeerleder, Sacha; Roelofs, Joris J T H; Juffermans, Nicole P; Horn, Janneke; Schultz, Marcus J

    2016-12-01

    Complement activation plays an important role in the pathogenesis of pneumonia. We hypothesized that inhibition of the complement system in the lungs by repeated treatment with nebulized plasma-derived human C1-esterase inhibitor reduces pulmonary complement activation and subsequently attenuates lung injury and lung inflammation. This was investigated in a rat model of severe Streptococcus pneumoniae pneumonia. Rats were intra-tracheally challenged with S. pneumoniae to induce pneumonia. Nebulized C1-esterase inhibitor or saline (control animals) was repeatedly administered to rats, 30 min before induction of pneumonia and every 6 h thereafter. Rats were sacrificed 20 or 40 h after inoculation with bacteria. Brochoalveolar lavage fluid and lung tissue were obtained for measuring levels of complement activation (C4b/c), lung injury and inflammation. Induction of pneumonia was associated with pulmonary complement activation (C4b/c at 20 h 1.24 % [0.56-2.59] and at 40 h 2.08 % [0.98-5.12], compared to 0.50 % [0.07-0.59] and 0.03 % [0.03-0.03] in the healthy control animals). The functional fraction of C1-INH was detectable in BALF, but no effect was found on pulmonary complement activation (C4b/c at 20 h 0.73 % [0.16-1.93] and at 40 h 2.38 % [0.54-4.19]). Twenty hours after inoculation, nebulized C1-esterase inhibitor treatment reduced total histology score, but this effect was no longer seen at 40 h. Nebulized C1-esterase inhibitor did not affect other markers of lung injury or lung inflammation. In this negative experimental animal study, severe S. pneumoniae pneumonia in rats is associated with pulmonary complement activation. Repeated treatment with nebulized C1-esterase inhibitor, although successfully delivered to the lungs, does not affect pulmonary complement activation, lung inflammation or lung injury.

  10. Antivirulence C-Mannosides as Antibiotic-Sparing, Oral Therapeutics for Urinary Tract Infections.

    PubMed

    Mydock-McGrane, Laurel; Cusumano, Zachary; Han, Zhenfu; Binkley, Jana; Kostakioti, Maria; Hannan, Thomas; Pinkner, Jerome S; Klein, Roger; Kalas, Vasilios; Crowley, Jan; Rath, Nigam P; Hultgren, Scott J; Janetka, James W

    2016-10-27

    Gram-negative uropathogenic Escherichia coli (UPEC) bacteria are a causative pathogen of urinary tract infections (UTIs). Previously developed antivirulence inhibitors of the type 1 pilus adhesin, FimH, demonstrated oral activity in animal models of UTI but were found to have limited compound exposure due to the metabolic instability of the O-glycosidic bond (O-mannosides). Herein, we disclose that compounds having the O-glycosidic bond replaced with carbon linkages had improved stability and inhibitory activity against FimH. We report on the design, synthesis, and in vivo evaluation of this promising new class of carbon-linked C-mannosides that show improved pharmacokinetic (PK) properties relative to O-mannosides. Interestingly, we found that FimH binding is stereospecifically modulated by hydroxyl substitution on the methylene linker, where the R-hydroxy isomer has a 60-fold increase in potency. This new class of C-mannoside antagonists have significantly increased compound exposure and, as a result, enhanced efficacy in mouse models of acute and chronic UTI.

  11. Arginine analogues incorporating carboxylate bioisosteric functions are micromolar inhibitors of human recombinant DDAH-1.

    PubMed

    Tommasi, Sara; Zanato, Chiara; Lewis, Benjamin C; Nair, Pramod C; Dall'Angelo, Sergio; Zanda, Matteo; Mangoni, Arduino A

    2015-12-14

    Dimethylarginine dimethylaminohydrolase (DDAH) is a key enzyme involved in the metabolism of asymmetric dimethylarginine (ADMA) and N-monomethyl arginine (NMMA), which are endogenous inhibitors of the nitric oxide synthase (NOS) family of enzymes. Two isoforms of DDAH have been identified in humans, DDAH-1 and DDAH-2. DDAH-1 inhibition represents a promising strategy to limit the overproduction of NO in pathological states without affecting the homeostatic role of this important messenger molecule. Here we describe the design and synthesis of 12 novel DDAH-1 inhibitors and report their derived kinetic parameters, IC50 and Ki. Arginine analogue 10a, characterized by an acylsulfonamide isosteric replacement of the carboxylate, showed a 13-fold greater inhibitory potential relative to the known DDAH-1 inhibitor, L-257. Compound 10a was utilized to study the putative binding interactions of human DDAH-1 inhibition using molecular dynamics simulations. The latter suggests that several stabilizing interactions occur in the DDAH-1 active-site, providing structural insights for the enhanced inhibitory potential demonstrated by in vitro inhibition studies.

  12. [The importance of C-terminal aspartic acid residue (D141) to the antirestriction activity of the ArdB (R64) protein].

    PubMed

    Kudryavtseva, A A; Osetrova, M S; Livinyuk, V Ya; Manukhov, I V; Zavilgelsky, G B

    2017-01-01

    Antirestriction proteins of the ArdB/KlcA family are specific inhibitors of restriction (endonuclease) activity of type-I restriction/modification enzymes. The effect of conserved amino acid residues on the antirestriction activity of the ArdB protein encoded by the transmissible R64 (IncI1) plasmid has been investigated. An analysis of the amino acid sequences of ArdB homologues demonstrated the presence of four groups of conserved residues ((1) R16, E32, and W51; (2) Y46 and G48; (3) S81, D83 and E132, and (4) N77, L(I)140, and D141) on the surface of the protein globule. Amino acid residues of the fourth group showed a unique localization pattern with the terminal residue protruding beyond the globule surface. The replacement of two conserved amino acids (D141 and N77) located in the close vicinity of each other on the globule surface showed that the C-terminal D141 is essential for the antirestriction activity of ArdB. The deletion of this residue, as well as replacement by a hydrophobic threonine residue (D141T), completely abolished the antirestriction activity of ArdB. The synonymous replacement of D141 by a glutamic acid residue (D141E) caused an approximately 30-fold decrease of the antirestriction activity of ArdB, and the point mutation N77A caused an approximately 20-fold decrease in activity. The residues D141 and N77 located on the surface of the protein globule are presumably essential for the formation of a contact between ArdB and a currently unknown factor that modulates the activity of type-I restriction/modification enzymes.

  13. Design and synthesis of a biaryl series as inhibitors for the bromodomains of CBP/P300.

    PubMed

    Lai, Kwong Wah; Romero, F Anthony; Tsui, Vickie; Beresini, Maureen H; de Leon Boenig, Gladys; Bronner, Sarah M; Chen, Kevin; Chen, Zhongguo; Choo, Edna F; Crawford, Terry D; Cyr, Patrick; Kaufman, Susan; Li, Yingjie; Liao, Jiangpeng; Liu, Wenfeng; Ly, Justin; Murray, Jeremy; Shen, Weichao; Wai, John; Wang, Fei; Zhu, Caicai; Zhu, Xiaoyu; Magnuson, Steven

    2018-01-01

    A novel, potent, and orally bioavailable inhibitor of the bromodomain of CBP, compound 35 (GNE-207), has been identified through SAR investigations focused on optimizing al bicyclic heteroarene to replace the aniline present in the published GNE-272 series. Compound 35 has excellent CBP potency (CBP IC 50  = 1 nM, MYC EC 50  = 18 nM), a selectively index of >2500-fold against BRD4(1), and exhibits a good pharmacokinetic profile. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Novel indole sulfides as potent HIV-1 NNRTIs.

    PubMed

    Brigg, Siobhan; Pribut, Nicole; Basson, Adriaan E; Avgenikos, Moscos; Venter, Reinhardt; Blackie, Margaret A; van Otterlo, Willem A L; Pelly, Stephen C

    2016-03-15

    In a previous communication we described a series of indole based NNRTIs which were potent inhibitors of HIV replication, both for the wild type and K103N strains of the virus. However, the methyl ether functionality on these compounds, which was crucial for potency, was susceptible to acid promoted indole assisted SN1 substitution. This particular problem did not bode well for an orally bioavailable drug. Here we describe bioisosteric replacement of this problematic functional group, leading to a series of compounds which are potent inhibitors of HIV replication, and are acid stable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Mechanisms contributing to the dopamine induction of crawl-like bursting in leech motoneurons.

    PubMed

    Crisp, Kevin M; Gallagher, Brian R; Mesce, Karen A

    2012-09-01

    Dopamine (DA) activates fictive crawling behavior in the medicinal leech. To identify the cellular mechanisms underlying this activation at the level of crawl-specific motoneuronal bursting, we targeted potential cAMP-dependent events that are often activated through DA(1)-like receptor signaling pathways. We found that isolated ganglia produced crawl-like motoneuron bursting after bath application of phosphodiesterase inhibitors (PDIs) that upregulated cAMP. This bursting persisted in salines in which calcium ions were replaced with equimolar cobalt or nickel, but was blocked by riluzole, an inhibitor of a persistent sodium current. PDI-induced bursting contained a number of patterned elements that were statistically similar to those observed during DA-induced fictive crawling, except that one motoneuron (CV) exhibited bursting during the contraction rather than the elongation phase of crawling. Although DA and the PDIs produced similar bursting profiles, intracellular recordings from motoneurons revealed differences in altered membrane properties. For example, DA lowered motoneuron excitability whereas the PDIs increased resting discharge rates. We suggest that PDIs (and DA) activate a sodium-influx-dependent timing mechanism capable of setting the crawl rhythm and that multiple DA receptor subtypes are involved in shaping and modulating the phase relationships and membrane properties of cell-specific members of the crawl network to generate crawling.

  16. Photoaffinity labelling of cyclic GMP-inhibited phosphodiesterase (PDE III) in human and rat platelets and rat tissues: effects of phosphodiesterase inhibitors.

    PubMed

    Tang, K M; Jang, E K; Haslam, R J

    1994-06-15

    Ultraviolet irradiation of human platelet cytosol in the presence of 32P-labelled cyclic GMP (cGMP) can specifically label 110, 80, 55, 49 and 38 kDa proteins; the 110 kDa species is the subunit of cGMP-inhibited phosphodiesterase (PDE III) and the 80 kDa species that of cGMP-dependent protein kinase (Tang et al., 1993, Biochem. J. 294, 329). We have now shown that although photolabelling of platelet PDE III was inhibited by unlabelled cGMP, 8-bromo-cGMP and cyclic AMP (cAMP), it was not affected by phosphorothioate analogues of these cyclic nucleotides. Specific concentration-dependent inhibitions of the photolabelling of PDE III were observed with the following PDE inhibitors: trequinsin (IC50 = 13 +/- 2 nM), lixazinone (IC50 = 22 +/- 4 nM), milrinone (IC50 = 56 +/- 12 nM), cilostamide (IC50 = 70 +/- 9 nM), siguazodan (IC50 = 117 +/- 29 nM) and 3-isobutyl 1-methylxanthine (IBMX) (IC50 = 3950 +/- 22 nM). Thus, measurements of the inhibitory effects of compounds on the photolabelling of platelet PDE III provide a simple quantitative means of investigating their actions at a molecular level that avoids the need to purify the enzyme. Photolabelling of rat platelet lysate or rat heart homogenate by [32P]cGMP showed that the 110 kDa PDE III present in human material was replaced by a 115 kDa protein, labelling of which was also blocked by PDE III inhibitors. Heart and other rat tissues contained much less of this putative 115 kDa PDE III than rat platelets. In contrast, the 80 kDa protein was labelled much less in platelets than in many other rat tissue homogenates (e.g., heart, aorta, uterus and lung). Thus, comparison of the relative amounts of specific photolabelled proteins in different cells may provide an indication of different patterns of cyclic nucleotide action. We compared the abilities of phosphodiesterase inhibitors to block the photolabelling of PDE III in human platelet cytosol and to increase the iloprost-stimulated accumulation of cAMP in intact platelets. Whereas trequinsin (EC50 = 19 +/- 3 nM), lixazinone (EC50 = 122 +/- 8 nM), milrinone (EC50 = 5320 +/- 970 nM) and siguazodan (EC50 = 18880 +/- 3110 nM) all increased platelet cAMP to the same maximum extent, cilostamide and IBMX increased cAMP further, indicating that they inhibited a PDE isozyme in addition to PDE III.

  17. Sodium-glucose co-transporter-2 inhibitors, the latest residents on the block: Impact on glycaemic control at a general practice level in England.

    PubMed

    Heald, Adrian H; Fryer, Anthony A; Anderson, Simon G; Livingston, Mark; Lunt, Mark; Davies, Mark; Moreno, Gabriela Y C; Gadsby, Roger; Young, Robert J; Stedman, Mike

    2018-03-08

    To determine, using published general practice-level data, how differences in Type 2 diabetes mellitus (T2DM) prescribing patterns relate to glycaemic target achievement levels. Multiple linear regression modelling was used to link practice characteristics and defined daily dose (DDD) of different classes of medication in 2015/2016 and changes between that year and the year 2014/2015 in medication to proportion of patients achieving target glycaemic control (glycated haemoglobin A1c [HbA1c] ≤58 mmol/mol [7.5%]) and proportion of patients at high glycaemic risk (HbA1c >86 mmol/mol [10.0%]) for practices in the National Diabetes Audit with >100 people with T2DM on their register. Overall, HbA1c outcomes were not different between the years studied. Although, in percentage terms, most practices increased their use of sodium-glucose co-transporter-2 (SGLT2) inhibitors (96%), dipeptidyl peptidase-4 (DPP-4) inhibitors (76%) and glucagon-like peptide 1 (GLP-1) analogues (53%), there was wide variation in the use of older and newer therapies. For example, 12% of practices used >200% of the national average for some newer agents. In cross-sectional analysis, greater prescribing of metformin and analogue insulin were associated with a higher proportion of patients achieving HbA1c ≤58 mmol/mol; the use of SGLT2 inhibitors and metformin was associated with a reduced proportion of patients with HbA1c >86 mol/mol; otherwise associations for sulphonylureas, GLP-1 analogues, SGLT2 inhibitors and DPP-4 inhibitors were neutral or negative. In year-on-year analysis there was ongoing deterioration in glycaemic control, which was offset to some extent by increased use of SGLT2 inhibitors and GLP-1 analogues, which were associated with a greater proportion of patients achieving HbA1c levels ≤58 mmol/mol and a smaller proportion of patients with HbA1c levels >86 mmol/mol. SGLT2 inhibitor prescribing was associated with significantly greater improvements than those found for GLP-1 analogues. Greater use of newer agents was associated with improvement in glycaemic outcomes but was not sufficient to compensate for the prevailing decline. This may reflect wide variability in the prescribing of newer agents. We found that SGLT inhibitors may be superior to other oral agents in relation to HbA1c outcome. Serious consideration should be given to their use. © 2018 John Wiley & Sons Ltd.

  18. Subcutaneous self-injections of C1 inhibitor: an effective and safe treatment in a patient with hereditary angio-oedema.

    PubMed

    Weller, K; Krüger, R; Maurer, M; Magerl, M

    2016-01-01

    A 25-year-old woman presented to our clinic with a history of recurrent swelling and abdominal symptoms for > 20 years. The patient's father was similarly affected. The patient was diagnosed with hereditary angio-oedema (HAE) due to C1 inhibitor deficiency. This was initially managed with systemic androgens, but the symptoms of hyperandrogenism eventually became intolerable. Treatment with icatibant (an antagonist of bradykinin B2 receptors) was partially successful. We changed the therapy to prophylactic treatment with C1 inhibitor. Although the patient became completely symptom-free under this regimen, she found the repeated intravenous injections unacceptable. Therefore, we changed the route of administration to subcutaneous injections of C1 inhibitor 1000 U in 10 mL twice weekly, using a subcutaneous infusion kit. Since that time (December 2013), she has remained completely free of symptoms under this regimen. To our knowledge, this is the first report documenting the efficacy and safety of subcutaneous injections of C1 inhibitor in a patient with HAE. © 2015 British Association of Dermatologists.

  19. Hypersusceptibility to substrate analogs conferred by mutations in human immunodeficiency virus type 1 reverse transcriptase.

    PubMed

    Smith, Robert A; Anderson, Donovan J; Preston, Bradley D

    2006-07-01

    Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) contains four structural motifs (A, B, C, and D) that are conserved in polymerases from diverse organisms. Motif B interacts with the incoming nucleotide, the template strand, and key active-site residues from other motifs, suggesting that motif B is an important determinant of substrate specificity. To examine the functional role of this region, we performed "random scanning mutagenesis" of 11 motif B residues and screened replication-competent mutants for altered substrate analog sensitivity in culture. Single amino acid replacements throughout the targeted region conferred resistance to lamivudine and/or hypersusceptibility to zidovudine (AZT). Substitutions at residue Q151 increased the sensitivity of HIV-1 to multiple nucleoside analogs, and a subset of these Q151 variants was also hypersusceptible to the pyrophosphate analog phosphonoformic acid (PFA). Other AZT-hypersusceptible mutants were resistant to PFA and are therefore phenotypically similar to PFA-resistant variants selected in vitro and in infected patients. Collectively, these data show that specific amino acid replacements in motif B confer broad-spectrum hypersusceptibility to substrate analog inhibitors. Our results suggest that motif B influences RT-deoxynucleoside triphosphate interactions at multiple steps in the catalytic cycle of polymerization.

  20. Herbicide Transformation

    PubMed Central

    Lanzilotta, R. P.; Pramer, David

    1970-01-01

    Replacement cultures liberated 3,4-dichloroaniline (DCA) from 3,4-dichloropropionanilide (propanil). The kinetics of the conversion suggest a requirement for de novo enzyme synthesis, but the system was not influenced by chloramphenicol or puromycin. Enzyme activity was detected when acetanilide (Km = 0.195 mm) was used to replace propanil as substrate. Fungal acylamidase (E.C. 3.5.1., an aryl acylamine amidohydrolase) was concentrated by salt precipitation and characterized. The Fusarium solani acylamidase exhibited an optimum at pH 7.5 to 9.0 and was inactivated in 10 min at 50 C. The enzyme was not sensitive to methyl-carbamate or organophosphate insecticides, but the herbicide, Ramrod (N-isopropyl-2-chloroacetanilide), acted as a competitive inhibitor of acetanilide hydrolysis (Ki = 0.167 mm). Hydrolysis rates were decreased by various para substitutions of acetanilide. Chloro substitution in the acyl moiety of acetanilide also reduced the rate of hydrolysis. 3,4-Dichloroacetanilide was less susceptible to enzyme action than acetanilide, but 3,4-dichloropropionanilide was hydrolyzed much more rapidly than propionanilide. The fungal acylamidase was highly specific for N-acetylarylamines. It did not catalyze hydrolysis of formanilide, butyranilide, dicryl, Karsil, fenuron, monuron, or isopropyl-N-phenylcarbamate. It appears to differ from acylamidases that have been isolated from rice, rat liver, chick kidney, and Neurospora. PMID:5437306

  1. Health economics of treating haemophilia A with inhibitors.

    PubMed

    Knight, C

    2005-11-01

    Haemophilia is a rare, inherited blood disorder in which blood clotting is impaired such that patients suffer from excessive internal and external bleeding. At present there is no cure for haemophilia A and patients require expensive, life-long treatment involving clotting factor replacement therapy. Treatment costs are perceived to be higher for patients who have developed inhibitory antibodies to factor VIII, the standard therapy for haemophilia A. However, initial cost analyses suggest that clotting factor therapy with alternative haemostatic agents, such as recombinant activated factor VII or activated prothrombin complex concentrate, is no more expensive for the majority of haemophilia A patients with inhibitors than for those without inhibitors. With the availability of effective alternative haemostatic agents, orthopaedic surgery for haemophilia A patients with inhibitors is now a clinical option, and initial cost analyses suggest this may be a cost-effective treatment strategy for patients with inhibitors whose quality of life (QoL) is severely impaired by joint arthropathy. In an era of finite healthcare resourcing it is important to determine whether new treatments justify higher unit costs compared with standard therapies and whether such higher costs are justified from an individual perspective in terms of improved QoL, and from a societal perspective in terms of improved productivity and reduced overall healthcare costs. This paper examines current data on the health economics of treating haemophilia A patients with inhibitors, focusing on the overall costs of clotting factor replacement therapy and the cost consequences of joint replacement.

  2. Comparative effectiveness of venous thromboembolism prophylaxis options for the patient undergoing total hip and knee replacement: a network meta-analysis.

    PubMed

    Kapoor, A; Ellis, A; Shaffer, N; Gurwitz, J; Chandramohan, A; Saulino, J; Ishak, A; Okubanjo, T; Michota, F; Hylek, E; Trikalinos, T A

    2017-02-01

    Essentials Despite trial data, guidelines have not endorsed direct oral Xa inhibitors above other options. We provide profiles of venous thromboembolism and hemorrhage risk for 12 options. Direct oral Xa inhibitors had a favorable profile compared with low-molecular-weight heparin. Other options did not have favorable profiles compared with low-molecular-weight heparin. Background There are numerous trials and several meta-analyses comparing venous thromboembolism (VTE) prophylaxis options after total hip and knee replacement (THR and TKR). None have included simultaneous comparison of new with older options. Objective To measure simultaneously the relative risk of VTE and hemorrhage for 12 prophylaxis options. Methods We abstracted VTE and hemorrhage information from randomized controlled trials published between January 1990 and June 2016 comparing 12 prophylaxis options. We then constructed networks to compute the relative risk for each option, relative to once-daily dosing with low-molecular-weight heparin (LMWH) Low. Results Main: Relative to LMWH Low, direct oral Xa inhibitors had the lowest risk of total deep vein thrombosis (DVT)-asymptomatic and symptomatic- (odds ratio [OR], 0.45; 95% confidence interval [CI], 0.35-0.57), translating to 53-139 fewer DVTs per 1000 patients. Vitamin K antagonists (VKAs) titrated to International Normalized Ratio [INR] 2-3 predicted 56% more DVT events (OR, 1.56; 95% CI, 1.14-2.14). Aspirin performed similarly (OR, 0.80; 95% CI, 0.34-1.86), although small numbers prohibit firm conclusions. Direct oral Xa inhibitors did not lead to significantly more bleeding (OR, 1.21; 95% CI, 0.79-1.90). Secondary: Relative to LMWH Low, direct oral Xa inhibitors prevented 4-fold more symptomatic DVTs (OR, 0.25; 95% CI, 0.13-0.47). Conclusions Relative to LMWH Low, direct oral Xa inhibitors had a more favorable profile of VTE and hemorrhage risk, whereas VKAs had a less favorable profile. The profile of other agents was not more or less favorable. Clinicians should consider these profiles when selecting prophylaxis options. © 2016 International Society on Thrombosis and Haemostasis.

  3. Discovery of novel hedgehog antagonists from cell-based screening: Isosteric modification of p38 bisamides as potent inhibitors of SMO.

    PubMed

    Yang, Bin; Hird, Alexander W; Russell, Daniel John; Fauber, Benjamin P; Dakin, Les A; Zheng, Xiaolan; Su, Qibin; Godin, Robert; Brassil, Patrick; Devereaux, Erik; Janetka, James W

    2012-07-15

    Cell-based subset screening of compounds using a Gli transcription factor reporter cell assay and shh stimulated cell differentiation assay identified a series of bisamide compounds as hedgehog pathway inhibitors with good potency. Using a ligand-based optimization strategy, heteroaryl groups were utilized as conformationally restricted amide isosteres replacing one of the amides which significantly increased their potency against SMO and the hedgehog pathway while decreasing activity against p38α kinase. We report herein the identification of advanced lead compounds such as imidazole 11c and 11f encompassing good p38α selectivity, low nanomolar potency in both cell assays, excellent physiochemical properties and in vivo pharmacokinetics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Thio-Linked UDP–Peptide Conjugates as O-GlcNAc Transferase Inhibitors

    PubMed Central

    2018-01-01

    O-GlcNAc transferase (OGT) is an essential glycosyltransferase that installs the O-GlcNAc post-translational modification on the nucleocytoplasmic proteome. We report the development of S-linked UDP–peptide conjugates as potent bisubstrate OGT inhibitors. These compounds were assembled in a modular fashion by photoinitiated thiol–ene conjugation of allyl-UDP and optimal acceptor peptides in which the acceptor serine was replaced with cysteine. The conjugate VTPVC(S-propyl-UDP)TA (Ki = 1.3 μM) inhibits the OGT activity in HeLa cell lysates. Linear fusions of this conjugate with cell penetrating peptides were explored as prototypes of cell-penetrant OGT inhibitors. A crystal structure of human OGT with the inhibitor revealed mimicry of the interactions seen in the pseudo-Michaelis complex. Furthermore, a fluorophore-tagged derivative of the inhibitor works as a high affinity probe in a fluorescence polarimetry hOGT assay. PMID:29723473

  5. Development of potent inhibitors of the coxsackievirus 3C protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eui Seung; Lee, Won Gil; Yun, Soo-Hyeon

    Coxsackievirus B3 (CVB3) 3C protease (3CP) plays essential roles in the viral replication cycle, and therefore, provides an attractive therapeutic target for treatment of human diseases caused by CVB3 infection. CVB3 3CP and human rhinovirus (HRV) 3CP have a high degree of amino acid sequence similarity. Comparative modeling of these two 3CPs revealed one prominent distinction; an Asn residue delineating the S2' pocket in HRV 3CP is replaced by a Tyr residue in CVB3 3CP. AG7088, a potent inhibitor of HRV 3CP, was modified by substitution of the ethyl group at the P2' position with various hydrophobic aromatic rings thatmore » are predicted to interact preferentially with the Tyr residue in the S2' pocket of CVB3 3CP. The resulting derivatives showed dramatically increased inhibitory activities against CVB3 3CP. In addition, one of the derivatives effectively inhibited the CVB3 proliferation in vitro.« less

  6. [Erectile dysfunction and obstructive sleep apnea syndrome].

    PubMed

    Zhuravlev, V N; Frank, M A; Gomzhin, A I

    2008-01-01

    Of 72 patients with obstructive sleep apnea syndrome (OSAS) 32 had erectile dysfunction (ED). OSAS patients with erectile dysfunction had hypogonadism in 24 cases, in 8 men testosterone level was normal. A polysomnographic investigation with monitoring of nocturnal spontaneous erections showed that 32 patients had severe sleep fragmentation with reduced or complete absence of REM and deep sleep phases. In nocturnal penile tumescencia quantitative and qualitative characteristics were abnormal suggesting organic nature of erectile dysfunction in these patients. Eight ED and OSAS patients with normal testosterone received standard OSAS therapy with administration of FDE-5 type inhibitors. Six months later improvement of the erectile function was observed in 6 patients. OSAS patients with hypogonadism were divided into 2 groups. Group 1 (n = 5) received CPAP therapy and group 2 (n = 19) received OSAS standard therapy. Group 2 was treated with inhibitors of FDE-5 type. Three months later improvement of erectile function was seen only in 8. Group 1 received the inhibitors and testosterone replacement. Three months later all 5 patients had no ED complaints, their testosterone was normal. It is recommended to perform monitoring of nocturnal spontaneous erections in the algorithm of examination of all men with OSAS. All patients with OSAS, ED and documented hypogonadism need testosterone replacement therapy if its level persists low despite adequate therapy of OSAS.

  7. A Novel SND1-BRAF Fusion Confers Resistance to c-Met Inhibitor PF-04217903 in GTL16 Cells though MAPK Activation

    PubMed Central

    Lee, Nathan V.; Lira, Maruja E.; Pavlicek, Adam; Ye, Jingjing; Buckman, Dana; Bagrodia, Shubha; Srinivasa, Sreesha P.; Zhao, Yongjun; Aparicio, Samuel; Rejto, Paul A.; Christensen, James G.; Ching, Keith A.

    2012-01-01

    Targeting cancers with amplified or abnormally activated c-Met (hepatocyte growth factor receptor) may have therapeutic benefit based on nonclinical and emerging clinical findings. However, the eventual emergence of drug resistant tumors motivates the pre-emptive identification of potential mechanisms of clinical resistance. We rendered a MET amplified gastric cancer cell line, GTL16, resistant to c-Met inhibition with prolonged exposure to a c-Met inhibitor, PF-04217903 (METi). Characterization of surviving cells identified an amplified chromosomal rearrangement between 7q32 and 7q34 which overexpresses a constitutively active SND1-BRAF fusion protein. In the resistant clones, hyperactivation of the downstream MAPK pathway via SND1-BRAF conferred resistance to c-Met receptor tyrosine kinase inhibition. Combination treatment with METi and a RAF inhibitor, PF-04880594 (RAFi) inhibited ERK activation and circumvented resistance to either single agent. Alternatively, treatment with a MEK inhibitor, PD-0325901 (MEKi) alone effectively blocked ERK phosphorylation and inhibited cell growth. Our results suggest that combination of a c-Met tyrosine kinase inhibitor with a BRAF or a MEK inhibitor may be effective in treating resistant tumors that use activated BRAF to escape suppression of c-Met signaling. PMID:22745804

  8. Structure-based Design and In-Parallel Synthesis of Inhibitors of AmpC b-lactamase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tondi, D.; Powers, R.A.; Negri, M.C.

    2010-03-08

    Group I {beta}-lactamases are a major cause of antibiotic resistance to {beta}-lactams such as penicillins and cephalosporins. These enzymes are only modestly affected by classic {beta}-lactam-based inhibitors, such as clavulanic acid. Conversely, small arylboronic acids inhibit these enzymes at sub-micromolar concentrations. Structural studies suggest these inhibitors bind to a well-defined cleft in the group I {beta}-lactamase AmpC; this cleft binds the ubiquitous R1 side chain of {beta}-lactams. Intriguingly, much of this cleft is left unoccupied by the small arylboronic acids. To investigate if larger boronic acids might take advantage of this cleft, structure-guided in-parallel synthesis was used to explore newmore » inhibitors of AmpC. Twenty-eight derivatives of the lead compound, 3-aminophenylboronic acid, led to an inhibitor with 80-fold better binding (2; K{sub i} 83 nM). Molecular docking suggested orientations for this compound in the R1 cleft. Based on the docking results, 12 derivatives of 2 were synthesized, leading to inhibitors with K{sub i} values of 60 nM and with improved solubility. Several of these inhibitors reversed the resistance of nosocomial Gram-positive bacteria, though they showed little activity against Gram-negative bacteria. The X-ray crystal structure of compound 2 in complex with AmpC was subsequently determined to 2.1 {angstrom} resolution. The placement of the proximal two-thirds of the inhibitor in the experimental structure corresponds with the docked structure, but a bond rotation leads to a distinctly different placement of the distal part of the inhibitor. In the experimental structure, the inhibitor interacts with conserved residues in the R1 cleft whose role in recognition has not been previously explored. Combining structure-based design with in-parallel synthesis allowed for the rapid exploration of inhibitor functionality in the R1 cleft of AmpC. The resulting inhibitors differ considerably from {beta}-lactams but nevertheless inhibit the enzyme well. The crystal structure of 2 (K{sub i} 83 nM) in complex with AmpC may guide exploration of a highly conserved, largely unexplored cleft, providing a template for further design against AmpC {beta}-lactamase.« less

  9. Prenylated xanthones from mangosteen as promising cholinesterase inhibitors and their molecular docking studies.

    PubMed

    Khaw, K Y; Choi, S B; Tan, S C; Wahab, H A; Chan, K L; Murugaiyah, V

    2014-09-25

    Garcinia mangostana is a well-known tropical plant found mostly in South East Asia. The present study investigated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of G. mangostana extract and its chemical constituents using Ellman's colorimetric method. Cholinesterase inhibitory-guided approach led to identification of six bioactive prenylated xanthones showing moderate to potent cholinesterases inhibition with IC50 values of lower than 20.5 μM. The most potent inhibitor of AChE was garcinone C while γ-mangostin was the most potent inhibitor of BChE with IC50 values of 1.24 and 1.78 μM, respectively. Among the xanthones, mangostanol, 3-isomangostin, garcinone C and α-mangostin are AChE selective inhibitors, 8-deoxygartanin is a BChE selective inhibitor while γ-mangostin is a dual inhibitor. Preliminary structure-activity relationship suggests the importance of the C-8 prenyl and C-7 hydroxy groups for good AChE and BChE inhibitory activities. The enzyme kinetic studies indicate that both α-mangostin and garcinone C are mixed-mode inhibitors, while γ-mangostin is a non-competitive inhibitor of AChE. In contrast, both γ-mangostin and garcinone C are uncompetitive inhibitors, while α-mangostin is a mixed-mode inhibitor of BChE. Molecular docking studies revealed that α-mangostin, γ-mangostin and garcinone C interacts differently with the five important regions of AChE and BChE. The nature of protein-ligand interactions is mainly hydrophobic and hydrogen bonding. These bioactive prenylated xanthones are worthy for further investigations. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Universal Detection and Identification of Avian Influenza Virus by Use of Resequencing Microarrays

    DTIC Science & Technology

    2009-04-01

    For the RT step, primer LN was replaced by primer NLN (a random 9-mer with a linker se- quence). One picogram each of two internal controls (NAC1...samples (data not shown). These data indicated that most of the avian H5N1 samples identified were presumably sensitive to neuraminidase inhibitors

  11. Anti-hyperglycemic action of apigenin-6-C-β-fucopyranoside from Averrhoa carambola.

    PubMed

    Cazarolli, Luisa Helena; Kappel, Virgínia Demarchi; Pereira, Danielle Fontana; Moresco, Henrique Hunger; Brighente, Inês Maria Costa; Pizzolatti, Moacir Geraldo; Silva, Fátima Regina Mena Barreto

    2012-10-01

    A stimulatory effect of apigenin-6-C-β-fucopyranoside (1) on glucose uptake was observed when rat soleus muscle was incubated with 1, 10 and 100 μM of this flavonoid glycoside. The presence of specific insulin signaling inhibitors, such as wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K), RO318220, an inhibitor of protein kinase C (PKC), PD98059, an inhibitor of mitogen-activated protein kinase (MEK), and HNMPA(AM)₃, an insulin receptor tyrosine kinase activity inhibitor showed that apigenin-6-C-β-fucopyranoside triggers different metabolic pathways in skeletal muscle. The oral administration of crude extract, fractions and isolated flavonoids (apigenin-6-C-β-fucopyranoside (1) and apigenin-6-C-(2″-O-α-rhamnopyranosyl)-β-fucopyranoside (2)) from Averrhoa carambola leaves exhibited a potential hypoglycemic activity in hyperglycemic normal rats. Additionally, both flavonoids significantly increased the muscle and liver glycogen content after an acute treatment. The results indicate that A. carambola can be regarded as a potent antihyperglycemic agent with insulin secretagogue and insulin mimetic properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kδ and CK1ε in hematological malignancies.

    PubMed

    Deng, Changchun; Lipstein, Mark R; Scotto, Luigi; Jirau Serrano, Xavier O; Mangone, Michael A; Li, Shirong; Vendome, Jeremie; Hao, Yun; Xu, Xiaoming; Deng, Shi-Xian; Realubit, Ronald B; Tatonetti, Nicholas P; Karan, Charles; Lentzsch, Suzanne; Fruman, David A; Honig, Barry; Landry, Donald W; O'Connor, Owen A

    2017-01-05

    Phosphoinositide 3-kinase (PI3K) and the proteasome pathway are both involved in activating the mechanistic target of rapamycin (mTOR). Because mTOR signaling is required for initiation of messenger RNA translation, we hypothesized that cotargeting the PI3K and proteasome pathways might synergistically inhibit translation of c-Myc. We found that a novel PI3K δ isoform inhibitor TGR-1202, but not the approved PI3Kδ inhibitor idelalisib, was highly synergistic with the proteasome inhibitor carfilzomib in lymphoma, leukemia, and myeloma cell lines and primary lymphoma and leukemia cells. TGR-1202 and carfilzomib (TC) synergistically inhibited phosphorylation of the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), leading to suppression of c-Myc translation and silencing of c-Myc-dependent transcription. The synergistic cytotoxicity of TC was rescued by overexpression of eIF4E or c-Myc. TGR-1202, but not other PI3Kδ inhibitors, inhibited casein kinase-1 ε (CK1ε). Targeting CK1ε using a selective chemical inhibitor or short hairpin RNA complements the effects of idelalisib, as a single agent or in combination with carfilzomib, in repressing phosphorylation of 4E-BP1 and the protein level of c-Myc. These results suggest that TGR-1202 is a dual PI3Kδ/CK1ε inhibitor, which may in part explain the clinical activity of TGR-1202 in aggressive lymphoma not found with idelalisib. Targeting CK1ε should become an integral part of therapeutic strategies targeting translation of oncogenes such as c-Myc. © 2017 by The American Society of Hematology.

  13. Evaluation of growth performance, serum biochemistry and haematological parameters on broiler birds fed with raw and processed samples of Entada scandens, Canavalia gladiata and Canavalia ensiformis seed meal as an alternative protein source.

    PubMed

    Sasipriya, Gopalakrishnan; Siddhuraju, Perumal

    2013-03-01

    The experiment was carried out to investigate the inclusion of underutilised legumes, Entada scandens, Canavalia gladiata and Canavalia ensiformis, seed meal in soybean-based diet in broilers. The utilisation of these wild legumes is limited by the presence of antinutrient compounds. Processing methods like soaking followed by autoclaving in sodium bicarbonate solution in E. scandens and C. gladiata and soaking followed by autoclaving in ash solution in C. ensiformis were adopted. The proximate composition of raw and processed samples of E. scandens, C. gladiata and C. ensiformis were determined. The protein content was enhanced in processed sample of E. scandens (46 %) and C. ensiformis (16 %). This processing method had reduced the maximum number of antinutrients such as tannins (10-100 %), trypsin inhibitor activity (99 %), chymotrypsin inhibitor activity (72-100 %), canavanine (60-62 %), amylase inhibitor activity (73-100 %), saponins (78-92 %), phytic acid (19-40 %) and lectins. Hence, the raw samples at 15 % and processed samples at 15 and 30 % were replaced with soybean protein in commercial broiler diet respectively. Birds fed with 30 % processed samples of E. scandens, C. gladiata and C. ensiformis showed significantly similar results of growth performance, carcass characteristics, organ weight, haematological parameters and serum biochemical parameters (cholesterol, protein, bilirubin, albumin, globulin and liver and kidney function parameters) without any adverse effects after 42 days of supplementation. The proper utilisation of these underutilised legumes may act as an alternative protein ingredient in poultry diets.

  14. Randomized, Double-Blind, Phase 3 Trial of Triple Therapy With Dapagliflozin Add-on to Saxagliptin Plus Metformin in Type 2 Diabetes.

    PubMed

    Mathieu, Chantal; Ranetti, Aurelian Emil; Li, Danshi; Ekholm, Ella; Cook, William; Hirshberg, Boaz; Chen, Hungta; Hansen, Lars; Iqbal, Nayyar

    2015-11-01

    To compare the efficacy and safety of treatment with dapagliflozin versus that with placebo add-on to saxagliptin plus metformin in patients whose type 2 diabetes is inadequately controlled with saxagliptin plus metformin treatment. Patients receiving treatment with stable metformin (stratum A) (screening HbA1c level 8.0-11.5% [64-102 mmol/mol]) or stable metformin and a dipeptidyl peptidase-4 (DPP-4) inhibitor (stratum B) (HbA1c 7.5-10.5% [58-91 mmol/mol]) for ≥8 weeks received open-label saxagliptin 5 mg/day and metformin for 16 weeks (stratum A) or 8 weeks (stratum B) (saxagliptin replaced any DPP-4 inhibitor). Patients with inadequate glycemic control (HbA1c 7-10.5% [53-91 mmol/mol]) were randomized to receive placebo or dapagliflozin 10 mg/day plus saxagliptin and metformin. The primary end point was the change in HbA1c from baseline to week 24. Secondary end points included fasting plasma glucose (FPG) level, 2-h postprandial glucose (PPG) level, body weight, and proportion of patients achieving an HbA1c level of <7% (53 mmol/mol). Treatment with dapagliflozin add-on to saxagliptin plus metformin resulted in a greater mean HbA1c reduction than placebo (-0.82 vs. -0.10% [-9 vs. -1.1 mmol/mol], P < 0.0001). Significantly greater reductions in FPG level, 2-h PPG level, and body weight were observed, and more patients achieved an HbA1c level of <7% (53 mmol/mol) with treatment with dapagliflozin versus placebo. Adverse events were similar across treatment groups, with a low overall risk of hypoglycemia (∼1%). Genital infections developed in more patients with dapagliflozin treatment (5%) than with placebo (0.6%). Triple therapy with dapagliflozin add-on to saxagliptin plus metformin improves glycemic control and is well tolerated in patients whose type 2 diabetes is inadequately controlled with saxagliptin plus metformin therapy. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  15. Synthesis and biological evaluation of some N-(3-(1H-tetrazol-5-yl) phenyl)acetamide derivatives as novel non-carboxylic PTP1B inhibitors designed through bioisosteric modulation.

    PubMed

    Maheshwari, Neelesh; Karthikeyan, Chandrabose; Bhadada, Shraddha V; Sahi, Chandan; Verma, Amit K; Hari Narayana Moorthy, N S; Trivedi, Piyush

    2018-06-08

    Described herein is the synthesis and biological evaluation of a series of non-carboxylic inhibitors of Protein Tyrosine Phosphatase 1B designed using bioisosteric replacement strategy. Six N-(3-(1H-tetrazol-5-yl)phenyl)acetamide derivatives designed employing the aforementioned strategy were synthesized and screened for PTP1B inhibitory activity. Among the synthesized compounds, compound NM-03 exhibited the most potent inhibitory activity with IC 50 value of 4.48 µM. Docking studies with NM-03 revealed the key interactions with desired amino acids in the binding site of PTP1B. Furthermore, compound NM-03 also elicited good in vivo activity. Taken together, the results of this study establish N-(3-(1H-tetrazole-5-yl)phenyl)-2-(benzo[d]oxazol-2-ylthio)acetamide (NM-03) as a valuable lead molecule with great potential for PTP1B inhibitor development targeting diabetes. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Novel small molecule epithelial sodium channel inhibitors as potential therapeutics in cystic fibrosis - a patent evaluation.

    PubMed

    Schoenberger, Matthias; Althaus, Mike

    2013-10-01

    Novel molecular platforms for epithelial sodium channel (ENaC) modulators are claimed in the following six patents: WO2012035158(A1); WO2009074575(A2); WO2011028740(A1); WO2009150137(A2); WO2011079087(A1); WO2008135557(A1). These ENaC inhibitors may be used in blocking transepithelial sodium and consequently water absorption across airway epithelia. This may result in airway rehydration and enhanced mucociliary clearance in patients with cystic fibrosis (CF) lung disease. All inhibitors resemble the classical ENaC blocker amiloride but follow different strategies to increase structural diversity in a sterically tolerant region. These substitutions can be modified to i) enhance potency of ENaC inhibition; ii) reduce epithelial permeability; and iii) broaden applicability in order to be used as potential drugs for CF therapy. Most of the claims and patent data are supported by the currently available literature. The patents deliver a solid chemical basis for a variety of chemical modifications of the ENaC inhibitor amiloride. These modifications may result in the development of a novel, applicable ENaC inhibitors which may have lasting effects on diseased airways and may achieve airway rehydration and enhanced mucociliary clearance in CF lung disease.

  17. Crystallization and preliminary X-ray analysis of a novel Kunitz-type kallikrein inhibitor from Bauhinia bauhinioides

    PubMed Central

    Navarro, Marcos Vicente de A. S.; Vierira, Débora F.; Nagem, Ronaldo A. P.; de Araújo, Ana Paula U.; Oliva, Maria Luiza V.; Garratt, Richard C.

    2005-01-01

    A Kunitz-type protease inhibitor (BbKI) found in Bauhinia bauhinioides seeds has been overexpressed in Escherichia coli and crystallized at 293 K using PEG 4000 as the precipitant. X-ray diffraction data have been collected to 1.87 Å resolution using an in-house X-ray generator. The crystals of the recombinant protein (rBbKI) belong to the orthorhombic space group P212121, with unit-cell parameters a = 46.70, b = 64.14, c = 59.24 Å. Calculation of the Matthews coefficient suggests the presence of one monomer of rBbKI in the asymmetric unit, with a corresponding solvent content of 51% (V M = 2.5 Å3 Da−1). Iodinated crystals were prepared and a derivative data set was also collected at 2.1 Å resolution. Crystals soaked for a few seconds in a cryogenic solution containing 0.5 M NaI were found to be reasonably isomorphous to the native crystals. Furthermore, the presence of iodide anions could be confirmed in the NaI-derivatized crystal. Data sets from native and derivative crystals are being evaluated for use in crystal structure determination by means of the SIRAS (single isomorphous replacement with anomalous scattering) method. PMID:16511193

  18. Small molecule inhibitors of Late SV40 Factor (LSF) abrogate hepatocellular carcinoma (HCC): Evaluation using an endogenous HCC model.

    PubMed

    Rajasekaran, Devaraja; Siddiq, Ayesha; Willoughby, Jennifer L S; Biagi, Jessica M; Christadore, Lisa M; Yunes, Sarah A; Gredler, Rachel; Jariwala, Nidhi; Robertson, Chadia L; Akiel, Maaged A; Shen, Xue-Ning; Subler, Mark A; Windle, Jolene J; Schaus, Scott E; Fisher, Paul B; Hansen, Ulla; Sarkar, Devanand

    2015-09-22

    Hepatocellular carcinoma (HCC) is a lethal malignancy with high mortality and poor prognosis. Oncogenic transcription factor Late SV40 Factor (LSF) plays an important role in promoting HCC. A small molecule inhibitor of LSF, Factor Quinolinone Inhibitor 1 (FQI1), significantly inhibited human HCC xenografts in nude mice without harming normal cells. Here we evaluated the efficacy of FQI1 and another inhibitor, FQI2, in inhibiting endogenous hepatocarcinogenesis. HCC was induced in a transgenic mouse with hepatocyte-specific overexpression of c-myc (Alb/c-myc) by injecting N-nitrosodiethylamine (DEN) followed by FQI1 or FQI2 treatment after tumor development. LSF inhibitors markedly decreased tumor burden in Alb/c-myc mice with a corresponding decrease in proliferation and angiogenesis. Interestingly, in vitro treatment of human HCC cells with LSF inhibitors resulted in mitotic arrest with an accompanying increase in CyclinB1. Inhibition of CyclinB1 induction by Cycloheximide or CDK1 activity by Roscovitine significantly prevented FQI-induced mitotic arrest. A significant induction of apoptosis was also observed upon treatment with FQI. These effects of LSF inhibition, mitotic arrest and induction of apoptosis by FQI1s provide multiple avenues by which these inhibitors eliminate HCC cells. LSF inhibitors might be highly potent and effective therapeutics for HCC either alone or in combination with currently existing therapies.

  19. In pursuit of excellence: an integrated care pathway for C1 inhibitor deficiency

    PubMed Central

    Manson, A L; Price, A; Dempster, J; Clinton-Tarestad, P; Greening, C; Enti, R; Hill, S; Grigoriadou, S; Buckland, M S; Longhurst, H J

    2013-01-01

    There are estimated to be approximately 1500 people in the United Kingdom with C1 inhibitor (C1INH) deficiency. At BartsHealth National Health Service (NHS) Trust we manage 133 patients with this condition and we believe that this represents one of the largest cohorts in the United Kingdom. C1INH deficiency may be hereditary or acquired. It is characterized by unpredictable episodic swellings, which may affect any part of the body, but are potentially fatal if they involve the larynx and cause significant morbidity if they involve the viscera. The last few years have seen a revolution in the treatment options that are available for C1 inhibitor deficiency. However, this occurs at a time when there are increased spending restraints in the NHS and the commissioning structure is being overhauled. Integrated care pathways (ICP) are a tool for disseminating best practice, for facilitating clinical audit, enabling multi-disciplinary working and for reducing health-care costs. Here we present an ICP for managing C1 inhibitor deficiency. PMID:23607500

  20. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haimou; Qin, Gangjian; Liang, Gang

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanismmore » of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.« less

  1. A cyclodextrin-capped histone deacetylase inhibitor.

    PubMed

    Amin, Jahangir; Puglisi, Antonino; Clarke, James; Milton, John; Wang, Minghua; Paranal, Ronald M; Bradner, James E; Spencer, John

    2013-06-01

    We have synthesized a β-cyclodextrin (βCD)-capped histone deacetylase (HDAC) inhibitor 3 containing an alkyl linker and a zinc-binding hydroxamic acid motif. Biological evaluation (HDAC inhibition studies) of 3 enabled us to establish the effect of replacing an aryl cap (in SAHA (vorinostat,)) 1 by a large saccharidic scaffold "cap". HDAC inhibition was observed for 3, to a lesser extent than SAHA, and rationalized by molecular docking into the active site of HDAC8. However, compound 3 displayed no cellular activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Strategies toward improving the brain penetration of macrocyclic tertiary carbinamine BACE-1 inhibitors.

    PubMed

    Moore, Keith P; Zhu, Hong; Rajapakse, Hemaka A; McGaughey, Georgia B; Colussi, Dennis; Price, Eric A; Sankaranarayanan, Sethu; Simon, Adam J; Pudvah, Nicole T; Hochman, Jerome H; Allison, Timothy; Munshi, Sanjeev K; Graham, Samuel L; Vacca, Joseph P; Nantermet, Philippe G

    2007-11-01

    This letter describes replacements for the P3 amide moiety present in previously reported tertiary carbinamine macrolactones. Although P-gp efflux issues associated with these amide-macrolactones were solved and full brain penetration was measured in one case, potency was compromised in the process.

  3. Novel acyl-CoA: cholesterol acyltransferase inhibitor: indoline-based sulfamide derivatives with low lipophilicity and protein binding ratio.

    PubMed

    Takahashi, Kenji; Ohta, Masaru; Shoji, Yoshimichi; Kasai, Masayasu; Kunishiro, Kazuyoshi; Miike, Tomohiro; Kanda, Mamoru; Shirahase, Hiroaki

    2010-08-01

    To find a novel acyl-CoA: cholesterol acyltransferase inhibitor, a series of sulfamide derivatives were synthesized and evaluated. Compound 1d, in which carboxymethyl moiety at the 5-position of Pactimibe was replaced by a sulfamoylamino group, showed 150-fold more potent anti-foam cell formation activity (IC(50): 0.02 microM), 1.6-fold higher log D(7.0) (4.63), and a slightly lower protein binding ratio (93.2%) than Pactimibe. Compound 1i, in which the octyl chain at the 1-position in 1d was replaced by an ethoxyethyl, showed markedly low log D(7.0) (1.73) and maintained 3-fold higher anti-foam cell formation activity (IC(50): 1.0 microM), than Pactimibe. The plasma protein binding ratio (PBR) of 1i was much lower than that of Pactimibe (62.5% vs. 98.1%), and its partition ratio to the rabbit atherosclerotic aorta after oral administration was higher than that of Pactimibe. Compound 1i at 10 microM markedly inhibited cholesterol esterification in atherosclerotic rabbit aortas even when incubated with serum, while Pactimibe had little effect probably due to its high PBR. In conclusion, compound 1i is expected to more efficiently inhibit the progression of atherosclerosis than Pactimibe.

  4. Recombinant FVIIa (NovoSeven) continuous infusion and total hip replacement in patients with haemophilia and high titre of inhibitors to FVIII: experience of two cases.

    PubMed

    Tagariello, G; De Biasi, E; Gajo, G B; Risato, R; Radossi, P; Davoli, P G; Traldi, A

    2000-09-01

    In this report we describe our experience of total hip replacement in two patients with severe haemophilia A and high titres of inhibitors to FVIII. We used rFVIIa replacement therapy by continuous infusion to perform the surgery. The total amount of rFVIIa used in these two patients was very similar but the manner of administration was quite different. In our experience, it is an advantage to use a higher dose for shorter periods than a lower dose for a longer treatment period. Tranexamic acid by continuous infusion, and parallel saline infusion were useful for good haemostasis and avoided local thrombophlebitis in the side of rFVIIa infusion.

  5. The chemistry of nicotinamide adenine dinucleotide (NAD) analogues containing C-nucleosides related to nicotinamide riboside.

    PubMed

    Pankiewicz, Krzysztof W; Watanabe, Kyoichi A; Lesiak-Watanabe, Krystyna; Goldstein, Barry M; Jayaram, Hiremagalur N

    2002-04-01

    Oncolytic C-nucleosides, tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide) and benzamide riboside (3-beta-D-ribofuranosylbenzamide) are converted in cell into active metabolites thiazole-4-carboxamide- and benzamide adenine dinucleotide, TAD and BAD, respectively. TAD and BAD as NAD analogues were found to bind at the nicotinamide adenine dinucleotide (cofactor NAD) site of inosine monophosphate dehydrogenase (IMPDH), an important target in cancer treatment. The synthesis and evaluation of anticancer activity of a number of C-nucleosides related to tiazofurin and nicotinamide riboside then followed and are reviewed herein. Interestingly, pyridine C-nucleosides (such as C-nicotinamide riboside) are not metabolized into the corresponding NAD analogues in cell. Their conversion by chemical methods is described. As dinucleotides these compounds show inhibition of IMPDH in low micromolar level. Also, the synthesis of BAD in metabolically stable bis(phosphonate) form is discussed indicating the usefulness of such preformed inhibitors in drug development. Among tiazofurin analogues, Franchetti and Grifantini found, that the replacement of the sulfur by oxygen (as in oxazafurin) but not the removal of nitrogen (tiophenfurin) of the thiazole ring resulted in inactive compounds. The anti cancer activity of their synthetic dinucleotide analogues indicate that inactive compounds are not only poorly metabolized in cell but also are weak inhibitors of IMPDH as dinucleotides.

  6. Hereditary Angioedema Nationwide Study in Slovenia Reveals Four Novel Mutations in SERPING1 Gene

    PubMed Central

    Rijavec, Matija; Korošec, Peter; Šilar, Mira; Zidarn, Mihaela; Miljković, Jovan; Košnik, Mitja

    2013-01-01

    Hereditary angioedema (HAE) is a rare autosomal dominant disease characterized by swelling of the face, lips, tongue, larynx, genitalia, or extremities, with abdominal pain caused by intra-abdominal edema. HAE is caused by mutations affecting the C1 inhibitor gene, SERPING1, resulting in low levels of C1 inhibitor (Type I HAE) or normal levels of ineffective C1 inhibitor (Type II HAE). A nationwide survey identified nine unrelated families with HAE in Slovenia, among whom 17 individuals from eight families were recruited for genetic analyses. A diagnosis of HAE was established in the presence of clinical and laboratory criteria (low C1 inhibitor antigenic levels and/or function), followed up by a positive family history. Genetic studies were carried out using PCR and sequencing to detect SERPING1 mutations in promoter, noncoding exon 1, the 7 coding exons, and exon-intron boundaries. Multiplex ligation-dependent probe amplification was performed in order to search for large deletions/duplications in SERPING1 gene. A mutation responsible for HAE was identified in patients from seven families with the disease. In HAE type I families, one previously reported substitution (Gln67Stop, c.265C>T) and four novel mutations were identified. The new mutations included two missense substitutions, Ser128Phe (c.449C>T), and Glu429Lys (c.1351G>A), together with two frameshift mutations, indel (c.49delGinsTT) and deletion (c.593_594delCT). Both families with HAE type II harbored the two well-known substitutions affecting the arginyl residue at the reactive center in exon 8, Arg444Cys (c.1396C>T) and Arg444His (c.1397G>A), respectively. In one patient only the homozygous variant g.566T>C (c.-21T>C) was identified. Our study identified four novel mutations in the Slovenian HAE population, highlighting the heterogeneity of mutations in the SERPING1 gene causing C1 inhibitor deficiency and HAE. In a single patient with HAE a homozygous variant g.566T>C (c.-21T>C) might be responsible for the disease. PMID:23437219

  7. Hereditary angioedema nationwide study in Slovenia reveals four novel mutations in SERPING1 gene.

    PubMed

    Rijavec, Matija; Korošec, Peter; Šilar, Mira; Zidarn, Mihaela; Miljković, Jovan; Košnik, Mitja

    2013-01-01

    Hereditary angioedema (HAE) is a rare autosomal dominant disease characterized by swelling of the face, lips, tongue, larynx, genitalia, or extremities, with abdominal pain caused by intra-abdominal edema. HAE is caused by mutations affecting the C1 inhibitor gene, SERPING1, resulting in low levels of C1 inhibitor (Type I HAE) or normal levels of ineffective C1 inhibitor (Type II HAE). A nationwide survey identified nine unrelated families with HAE in Slovenia, among whom 17 individuals from eight families were recruited for genetic analyses. A diagnosis of HAE was established in the presence of clinical and laboratory criteria (low C1 inhibitor antigenic levels and/or function), followed up by a positive family history. Genetic studies were carried out using PCR and sequencing to detect SERPING1 mutations in promoter, noncoding exon 1, the 7 coding exons, and exon-intron boundaries. Multiplex ligation-dependent probe amplification was performed in order to search for large deletions/duplications in SERPING1 gene. A mutation responsible for HAE was identified in patients from seven families with the disease. In HAE type I families, one previously reported substitution (Gln67Stop, c.265C>T) and four novel mutations were identified. The new mutations included two missense substitutions, Ser128Phe (c.449C>T), and Glu429Lys (c.1351G>A), together with two frameshift mutations, indel (c.49delGinsTT) and deletion (c.593_594delCT). Both families with HAE type II harbored the two well-known substitutions affecting the arginyl residue at the reactive center in exon 8, Arg444Cys (c.1396C>T) and Arg444His (c.1397G>A), respectively. In one patient only the homozygous variant g.566T>C (c.-21T>C) was identified. Our study identified four novel mutations in the Slovenian HAE population, highlighting the heterogeneity of mutations in the SERPING1 gene causing C1 inhibitor deficiency and HAE. In a single patient with HAE a homozygous variant g.566T>C (c.-21T>C) might be responsible for the disease.

  8. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition

    PubMed Central

    Li, Bo; Ren, Hui; Yue, Ping; Chen, Mingwei; Khuri, Fadlo R.; Sun, Shi-Yong

    2012-01-01

    API-1 is a novel small molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation, and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of c-FLIP levels and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of DR4 or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis, but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1, but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Since other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity. PMID:22345097

  9. Pharmacological Characterization of a Novel Bifunctional Aldo-Keto Reductase 1C3 Inhibitor and Androgen Receptor Antagonist

    DTIC Science & Technology

    2013-10-01

    Novel Bifunctional Aldo -Keto Reductase 1C3 Inhibitor and Androgen Receptor Antagonist” PRINCIPAL INVESTIGATOR: ADEGOKE ADENIJI, Ph.D...therapeutic benefit relative to targeting either mechanism alone. Aldo -keto reductase 1C3 (AKR1C3) is highly upregulated in APC and is localized within...therapy of Abi with MDV3100 has been proposed as a way to reduce resistance. 14, 15 Aldo -keto reductase IC3 (AKR1C3, type 5 17β hydroxysteroid

  10. Evidence for Arginine as the Endogenous Precursor of Necines in Heliotropium1

    PubMed Central

    Birecka, Helena; Birecki, Mieczyslaw; Frohlich, M. W.

    1987-01-01

    In pyrrolizidine alkaloid-bearing Heliotropium angiospermum and H. indicum shoots exposed, in the light, to 14C-labeled CO2 for 44 hours, the incorporation of 14C into 1,2-epoxy-1-hydroxymethylpyrrolizidine and retronecine amounted to 0.23 and 0.15%, respectively, of the total carbon assimilated. Treatment of the shoots with α-dl-difluoromethylornithine, the specific ornithine decarboxylase inhibitor, at 1 to 2 millimolar had no effect on 14C incorporation into the necines. In contrast, α-dl-difluoromethylarginine, the specific arginine decarboxylase inhibitor, prevented the incorporation of 14C into the necines of both species; the inhibitor did not affect the absolute incorporation of 14C from exogenous [1,4-14C] putrescine in either species. Thus, arginine is the only apparent endogenous precursor of the putrescine channeled into pyrrolizidines, at least in these two Heliotropium species that exhibited a relatively much higher in vitro activity of arginine decarboxylase than of ornithine decarboxylase. However, within 28 hours after administration, not only exogenous l-[5-14C]arginine, but also exogenous l-[5-14C]ornithine exhibited significant incorporation of their label into the necines, incorporation that could be partially prevented by both inhibitors. Neither inhibitor affected the rates of 14C-labeled CO2 assimilation, transformation of labeled assimilates into ethanol-insoluble compounds, or the very high degree of conversion of the introduced amino acids into other compounds. Methodology related to alkaloid biosynthetic studies is discussed. PMID:16665402

  11. Thrombotic events associated with C1 esterase inhibitor products in patients with hereditary angioedema: investigation from the United States Food and Drug Administration adverse event reporting system database.

    PubMed

    Gandhi, Pranav K; Gentry, William M; Bottorff, Michael B

    2012-10-01

    To investigate reports of thrombotic events associated with the use of C1 esterase inhibitor products in patients with hereditary angioedema in the United States. Retrospective data mining analysis. The United States Food and Drug Administration (FDA) adverse event reporting system (AERS) database. Case reports of C1 esterase inhibitor products, thrombotic events, and C1 esterase inhibitor product-associated thrombotic events (i.e., combination cases) were extracted from the AERS database, using the time frames of each respective product's FDA approval date through the second quarter of 2011. Bayesian statistical methodology within the neural network architecture was implemented to identify potential signals of a drug-associated adverse event. A potential signal is generated when the lower limit of the 95% 2-sided confidence interval of the information component, denoted by IC₀₂₅ , is greater than zero. This suggests that the particular drug-associated adverse event was reported to the database more often than statistically expected from reports available in the database. Ten combination cases of thrombotic events associated with the use of one C1 esterase inhibitor product (Cinryze) were identified in patients with hereditary angioedema. A potential signal demonstrated by an IC₀₂₅ value greater than zero (IC₀₂₅ = 2.91) was generated for these combination cases. The extracted cases from the AERS indicate continuing reports of thrombotic events associated with the use of one C1 esterase inhibitor product among patients with hereditary angioedema. The AERS is incapable of establishing a causal link and detecting the true frequency of an adverse event associated with a drug; however, potential signals of C1 esterase inhibitor product-associated thrombotic events among patients with hereditary angioedema were identified in the extracted combination cases. © 2012 Pharmacotherapy Publications, Inc.

  12. Indanones as high-potency reversible inhibitors of monoamine oxidase.

    PubMed

    Mostert, Samantha; Petzer, Anél; Petzer, Jacobus P

    2015-05-01

    Recent reports document that α-tetralone (3,4-dihydro-2H-naphthalen-1-one) is an appropriate scaffold for the design of high-potency monoamine oxidase (MAO) inhibitors. Based on the structural similarity between α-tetralone and 1-indanone, the present study involved synthesis of 34 1-indanone and related indane derivatives as potential inhibitors of recombinant human MAO-A and MAO-B. The results show that C6-substituted indanones are particularly potent and selective MAO-B inhibitors, with IC50 values ranging from 0.001 to 0.030 μM. C5-Substituted indanone and indane derivatives are comparatively weaker MAO-B inhibitors. Although the 1-indanone and indane derivatives are selective inhibitors of the MAO-B isoform, a number of homologues are also potent MAO-A inhibitors, with three homologues possessing IC50 values <0.1 μM. Dialysis of enzyme-inhibitor mixtures further established a selected 1-indanone as a reversible MAO inhibitor with a competitive mode of inhibition. It may be concluded that 1-indanones are promising leads for the design of therapies for neurodegenerative and neuropsychiatric disorders such as Parkinson's disease and depression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Evaluation of protein C and protein S levels in patients with diabetes mellitus receiving therapy with statins and ACE inhibitors or angiotensin II receptor blockers.

    PubMed

    Aktaş, Şerife; Uçak, Sema; Kurt, Fatma; Taşdemir, Mehmet; Kutlu, Orkide; Eker, Pınar

    2018-01-01

    To evaluate protein C, protein S level in patients with diabetes mellitus receiving statin and ACE inhibitor/ARB therapy. 95 patients were included in the study and divided into four groups depending on the use of statin and ACE inhibitor/ARB therapy. Group 1 comprised of patients receiving statin therapy (n = 15), Group 2 comprised of patients receiving ACE inhibitor/ARB therapy (n = 31), Group 3 comprised of patients receiving statin and ACE inhibitor/ARB therapy (n = 23), and Group 4 comprised of patients who did not receive either statin or ACE inhibitor/ARB therapy (n = 26). These four groups were compared with respect to protein C, protein S, fibrinogen, D-dimer, INR, and aPTT levels. There were statistically significant differences with respect to protein C levels. Group 1 and group 2 had higher protein C levels compared with group 4. (p < .01). Similarly, Group 3 had higher protein C levels compared with group 4. (p < .01). There was no significant difference between the groups with respect to protein S, INR, aPTT, and D-dimer levels. Diabetic patients receiving statin or ACE inhibitor/ARB therapy had higher protein C levels. Use of statin and ACE inhibitor/ARB therapy in diabetic patients decrease hypercoagulability and therefore could reduce the occurrence of cardiovascular events. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Biochemical characterization of the alpha-amylase inhibitor in mungbeans and its application in inhibiting the growth of Callosobruchus maculatus.

    PubMed

    Wisessing, Anussorn; Engkagul, Arunee; Wongpiyasatid, Arunee; Choowongkomon, Kiattawee

    2010-02-24

    The insect Callosobruchus maculatus causes considerable damage to harvested mungbean seeds every year, which leads to commercial losses. However, recent studies have revealed that mungbean seeds contain alpha-amylase inhibitors that can inhibit the protein C. maculatus, preventing growth and development of the insect larvae in the seed, thus preventing further damage. For this reason, the use of alpha-amylase inhibitors to interfere with the pest's digestion process has become an interesting alternative biocontrolling agent. In this study, we have isolated and purified the alpha-amylase inhibitor from mungbean seeds (KPS1) using ammonium sulfate precipitation, gel filtration chromatography and reversed phase HPLC. We found that the alpha-amylase inhibitor, isolated as a monomer, had a molecular weight of 27 kDa. The alpha-amylase inhibitor was purified 750-fold with a final yield of 0.4 mg of protein per 30 g of mungbean seeds. Its specific activity was determined at 14.5 U (mg of protein)(-1). Interestingly, we found that the isolated alpha-amylase inhibitor inhibits C. maculatus alpha-amylase but not human salivary alpha-amylase. After preincubation of the enzyme with the inhibitor, the mungbean alpha-amylase inhibitor inhibited C. maculatus alpha-amylase activity by decreasing V(max) while increasing the K(m) constant, indicating that the mungbean alpha-amylase is a mix noncompetitive inhibitor. The in vivo effect of alpha-amylase inhibitor on the mortality of C. maculatus shows that the alpha-amylase inhibitor acts on C. maculatus during the development stage, by reducing carbohydrate digestion necessary for growth and development, rather than during the end laying/hatching stage. Our results suggest that mungbean alpha-amylase inhibitor could be a useful future biocontrolling agent.

  15. Enfuvirtide (T20)-Based Lipopeptide Is a Potent HIV-1 Cell Fusion Inhibitor: Implications for Viral Entry and Inhibition.

    PubMed

    Ding, Xiaohui; Zhang, Xiujuan; Chong, Huihui; Zhu, Yuanmei; Wei, Huamian; Wu, Xiyuan; He, Jinsheng; Wang, Xinquan; He, Yuxian

    2017-09-15

    The peptide drug enfuvirtide (T20) is the only viral fusion inhibitor used in combination therapy for HIV-1 infection, but it has relatively low antiviral activity and easily induces drug resistance. Emerging studies demonstrate that lipopeptide-based fusion inhibitors, such as LP-11 and LP-19, which mainly target the gp41 pocket site, have greatly improved antiviral potency and in vivo stability. In this study, we focused on developing a T20-based lipopeptide inhibitor that lacks pocket-binding sequence and targets a different site. First, the C-terminal tryptophan-rich motif (TRM) of T20 was verified to be essential for its target binding and inhibition; then, a novel lipopeptide, termed LP-40, was created by replacing the TRM with a fatty acid group. LP-40 showed markedly enhanced binding affinity for the target site and dramatically increased inhibitory activity on HIV-1 membrane fusion, entry, and infection. Unlike LP-11 and LP-19, which required a flexible linker between the peptide sequence and the lipid moiety, addition of a linker to LP-40 sharply reduced its potency, implying different binding modes with the extended N-terminal helices of gp41. Also, interestingly, LP-40 showed more potent activity than LP-11 in inhibiting HIV-1 Env-mediated cell-cell fusion while it was less active than LP-11 in inhibiting pseudovirus entry, and the two inhibitors displayed synergistic antiviral effects. The crystal structure of LP-40 in complex with a target peptide revealed their key binding residues and motifs. Combined, our studies have not only provided a potent HIV-1 fusion inhibitor, but also revealed new insights into the mechanisms of viral inhibition. IMPORTANCE T20 is the only membrane fusion inhibitor available for treatment of viral infection; however, T20 requires high doses and has a low genetic barrier for resistance, and its inhibitory mechanism and structural basis remain unclear. Here, we report the design of LP-40, a T20-based lipopeptide inhibitor that has greatly improved anti-HIV activity and is a more potent inhibitor of cell-cell fusion than of cell-free virus infection. The binding modes of two classes of membrane-anchoring lipopeptides (LP-40 and LP-11) verify the current fusion model in which an extended prehairpin structure bridges the viral and cellular membranes, and their complementary effects suggest a vital strategy for combination therapy of HIV-1 infection. Moreover, our understanding of the mechanism of action of T20 and its derivatives benefits from the crystal structure of LP-40. Copyright © 2017 American Society for Microbiology.

  16. Application of electrochemical methods in corrosion and battery research

    NASA Astrophysics Data System (ADS)

    Sun, Zhaoli

    Various electrochemical methods have been applied in the development of corrosion protection methods for ammonia/water absorption heat pumps and the evaluation of the stability of metallic materials in Li-ion battery electrolyte. Rare earth metal salts (REMSs) and organic inhibitors have been evaluated for corrosion protection of mild steel in the baseline solution of 5 wt% NH 3 + 0.2 wt% NaOH to replace the conventionally used toxic chromate salt inhibitors. Cerium nitrate provided at least comparable corrosion inhibition efficiency as dichromate in the baseline solution at 100°C. The cerium (IV) oxide formed on mild steel through the cerating process exhibited increasing corrosion protection for mild steel with prolonged exposure time in the hot baseline solution. The optimum cerating process was found to be first cerating in a solution of 2.3 g/L CeCl3 + 4.4 wt% H2O2 + appropriate additives for 20 minutes at pH 2.2 at room temperature with 30 minutes solution aging prior to use, then sealing in 10% sodium (meta) silicate or sodium molybdate at 50°C for 30 minutes. Yttrium salts provided less corrosion protection for mild steel in the baseline solution than cerium salts. Glycerophosphate was found to be a promising chromate-free organic inhibitor for mild steel; however, its thermostability in hot ammonia/water solutions has not been confirmed yet. The stability of six metallic materials used in Li-ion batteries has been evaluated in 1M lithium hexafluorophosphate (LiPF6) dissolved in a 1:1 volume mixture of ethylene carbonate and diethyl carbonate at 37°C in a dry-box. Aluminum is the most stable material, while Copper is active under anodic potentials and susceptible to localized corrosion and galvanic corrosion. The higher the concentration of the alloying elements Al and/or V in a titanium alloy, the higher was the stability of the titanium alloy in the battery electrolyte. 90Pt-10Ir can cause decomposition of the electrolyte resulting in a low stable potential window.

  17. A case of hereditary angioneurotic oedema, successfully treated with ε-aminocaproic acid. Studies on C'1 esterase inhibitor, C'1 activation, plasminogen level and histamine metabolism

    PubMed Central

    Lundh, B.; Laurell, Anna-Brita; Wetterqvist, H.; White, T.; Granerus, G.

    1968-01-01

    A patient with clinical and laboratory findings characteristic of hereditary angioneurotic oedema was investigated. The patient was observed for a period of 5 weeks, during which he had four attacks. ε-Aminocaproic acid (EACA) was then given continuously for 5 months, during which time the patient had no attacks. Attacks reappeared on withdrawal of EACA. Trans-4-(aminomethyl) cyclohexane carboxylic acid (AMCA®) was found to be equally effective in later therapeutic trials. C'1 esterase inhibitor was found in low concentration in defibrinated plasma also during attacks. ε-Aminocaproic acid (EACA) produced no significant change of the inhibitor content. C'1 esterase inhibitor disappeared on incubation of defibrinated plasma from the patient at 37°C for 40 min, and C'1 esterase was generated. The generation time of C'1 esterase increased with increasing the concentration of EDTA in the test solution. The C'1 esterase inhibitor content of defibrinated plasma from the patient, varied with the C'1 esterase generation time, the coefficient of correlation being higher in plasma sampled before treatment with EACA. Plasminogen and α2-macroglobulin were within the normal ranges, also during attacks. EACA markedly depressed the plasminogen level, which rapidly returned to normal on withdrawal of the drug. The studies on histamine metabolism revealed no significant changes with the exception of the urinary excretion of histamine, which was moderately increased towards the end of the period studied. On the days the patient received EACA the urine never contained 1-methylimidazole-5-acetic acid which was present in all the other specimens of urine examined. The basal gastric acid secretion was increased. PMID:5701955

  18. From lin-benzoguanines to lin-benzohypoxanthines as ligands for Zymomonas mobilis tRNA-guanine transglycosylase: replacement of protein-ligand hydrogen bonding by importing water clusters.

    PubMed

    Barandun, Luzi Jakob; Immekus, Florian; Kohler, Philipp C; Tonazzi, Sandro; Wagner, Björn; Wendelspiess, Severin; Ritschel, Tina; Heine, Andreas; Kansy, Manfred; Klebe, Gerhard; Diederich, François

    2012-07-23

    The foodborne illness shigellosis is caused by Shigella bacteria that secrete the highly cytotoxic Shiga toxin, which is also formed by the closely related enterohemorrhagic Escherichia coli (EHEC). It has been shown that tRNA-guanine transglycosylase (TGT) is essential for the pathogenicity of Shigella flexneri. Herein, the molecular recognition properties of a guanine binding pocket in Zymomonas mobilis TGT are investigated with a series of lin-benzohypoxanthine- and lin-benzoguanine-based inhibitors that bear substituents to occupy either the ribose-33 or the ribose-34 pocket. The three inhibitor scaffolds differ by the substituent at C(6) being H, NH(2), or NH-alkyl. These differences lead to major changes in the inhibition constants, pK(a) values, and binding modes. Compared to the lin-benzoguanines, with an exocyclic NH(2) at C(6), the lin-benzohypoxanthines without an exocyclic NH(2) group have a weaker affinity as several ionic protein-ligand hydrogen bonds are lost. X-ray cocrystal structure analysis reveals that a new water cluster is imported into the space vacated by the lacking NH(2) group and by a conformational shift of the side chain of catalytic Asp102. In the presence of an N-alkyl group at C(6) in lin-benzoguanine ligands, this water cluster is largely maintained but replacement of one of the water molecules in the cluster leads to a substantial loss in binding affinity. This study provides new insight into the role of water clusters at enzyme active sites and their challenging substitution by ligand parts, a topic of general interest in contemporary structure-based drug design. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Diagnostic and therapeutic problems associated with hereditary deficiency of the C1 esterase inhibitor.

    PubMed

    Molina, C; Brun, J; Coulet, M; Betail, G; Wahl, D; Hartmann, L

    1977-03-01

    Six patients in a family with a history of hereditary angioedema reported swelling of the extremities and recurrent abdominal pain occurring spontaneously or after trauma. Attacks of oedema involving the airways, the greatest danger with this disorder, were present only in one case. This autosomal dominant disease is due to deficient activity of the inhibitor of the first component of complement. Low levels of C4, and absence of C1 esterase inhibitor confirm the diagnosis. Two asymptomatic cases with the appropriate biochemical abnormality are reported in this study. For short term prophylaxis of attacks (before surgery expecially), fresh frozen plasma is used, or better still, C1 esterase inhibitor. For long term prophylaxis of attacks antifibrinolytic and hormonal drugs are used: in two cases, the authors obtained good results with methyltestosterone after failure of tranexamic acid.

  20. Design, synthesis and activity as acid ceramidase inhibitors of 2-oxooctanoyl and N-oleoylethanolamine analogues.

    PubMed

    Grijalvo, Santiago; Bedia, Carmen; Triola, Gemma; Casas, Josefina; Llebaria, Amadeu; Teixidó, Jordi; Rabal, Obdulia; Levade, Thierry; Delgado, Antonio; Fabriàs, Gemma

    2006-10-01

    The synthesis of novel N-acylethanolamines and their use as inhibitors of the aCDase is reported here. The compounds are either 2-oxooctanamides or oleamides of sphingosine analogs featuring a 3-hydroxy-4,5-hexadecenyl tail replaced by ether or thioether moieties. It appears that, within the 2-oxooctanamide family, the C3-OH group of the sphingosine molecule is required for inhibition both in vitro and in cultured cells. Furthermore, although the (E)-4 double bond is not essential for inhibitory activity, the (E) configuration is required, since the analogue with a (Z)-4 unsaturation was not inhibitory. None of the oleamides inhibited the aCDase in vitro. Conversely, with the exception of N-oleoylethanolamine and its analogs with S-decyl and S-hexadecyl substituents, all the synthesized oleamides inhibited the aCDase in cultured cells, although with a relatively low potency. We conclude that novel aCDase inhibitors can evolve from N-acylation of sphingoid bases with electron deficient-acyl groups. In contrast, chemical modification of the N-oleoylsphingosine backbone does not seem to offer an appropriate strategy to obtain aCDase inhibitors.

  1. Large FVIII gene deletion confers very high risk of inhibitor development in three related severe haemophiliacs.

    PubMed

    Salviato, R; Belvini, D; Are, A; Radossi, P; Tagariello, G

    2002-01-01

    Haemophilia A displays a broad heterogeneity of genetic defects and of clinical severity. Inhibitor development is the main complication of replacement therapy in severe cases and most patients with inhibitors have gross gene rearrangement or point mutations, which hamper the production of normal circulating factor VIII (FVIII). We have investigated three related severe haemophilia A patients, all of whom have high titre inhibitors. By using long-range polymerase chain reaction (PCR) for FVIII gene inversion, we observed an unusual pattern in these patients. We therefore decided to screen the whole FVIII gene by conformation-sensitive gel electrophoresis. A large FVIII gene deletion spanning exon 2 to exon 25 was identified and we were able to obtain a 18.5 kb PCR product, which is specific for this mutation and useful for determining the carrier state in this family. All three haemophiliacs carrying this very large gene deletion show similar clinical history and very high-titre inhibitors, supporting the observation that inhibitor development seems to be an inherited characteristic. On the basis of our observations we think that this subgroup of patients at very high risk of inhibitor development should be identified by mutation analysis whenever possible, before the beginning of replacement therapy.

  2. Optimization of a binding fragment targeting the "enlarged methionine pocket" leads to potent Trypanosoma brucei methionyl-tRNA synthetase inhibitors.

    PubMed

    Huang, Wenlin; Zhang, Zhongsheng; Ranade, Ranae M; Gillespie, J Robert; Barros-Álvarez, Ximena; Creason, Sharon A; Shibata, Sayaka; Verlinde, Christophe L M J; Hol, Wim G J; Buckner, Frederick S; Fan, Erkang

    2017-06-15

    Potent inhibitors of Trypanosoma brucei methionyl-tRNA synthetase were previously designed using a structure-guided approach. Compounds 1 and 2 were the most active compounds in the cyclic and linear linker series, respectively. To further improve cellular potency, SAR investigation of a binding fragment targeting the "enlarged methionine pocket" (EMP) was performed. The optimization led to the identification of a 6,8-dichloro-tetrahydroquinoline ring as a favorable fragment to bind the EMP. Replacement of 3,5-dichloro-benzyl group (the EMP binding fragment) of inhibitor 2 using this tetrahydroquinoline fragment resulted in compound 13, that exhibited an EC 50 of 4nM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Crystal structures and mutagenesis of PPP-family ser/thr protein phosphatases elucidate the selectivity of cantharidin and novel norcantharidin-based inhibitors of PP5C.

    PubMed

    Chattopadhyay, Debasish; Swingle, Mark R; Salter, Edward A; Wood, Eric; D'Arcy, Brandon; Zivanov, Catherine; Abney, Kevin; Musiyenko, Alla; Rusin, Scott F; Kettenbach, Arminja; Yet, Larry; Schroeder, Chad E; Golden, Jennifer E; Dunham, Wade H; Gingras, Anne-Claude; Banerjee, Surajit; Forbes, David; Wierzbicki, Andrzej; Honkanen, Richard E

    2016-06-01

    Cantharidin is a natural toxin and an active constituent in a traditional Chinese medicine used to treat tumors. Cantharidin acts as a semi-selective inhibitor of PPP-family ser/thr protein phosphatases. Despite sharing a common catalytic mechanism and marked structural similarity with PP1C, PP2AC and PP5C, human PP4C was found to be insensitive to the inhibitory activity of cantharidin. To explore the molecular basis for this selectivity, we synthesized and tested novel C5/C6-derivatives designed from quantum-based modeling of the interactions revealed in the co-crystal structures of PP5C in complex with cantharidin. Structure-activity relationship studies and analysis of high-resolution (1.25Å) PP5C-inhibitor co-crystal structures reveal close contacts between the inhibitor bridgehead oxygen and both a catalytic metal ion and a non-catalytic phenylalanine residue, the latter of which is substituted by tryptophan in PP4C. Quantum chemistry calculations predicted that steric clashes with the bulkier tryptophan side chain in PP4C would force all cantharidin-based inhibitors into an unfavorable binding mode, disrupting the strong coordination of active site metal ions observed in the PP5C co-crystal structures, thereby rendering PP4C insensitive to the inhibitors. This prediction was confirmed by inhibition studies employing native human PP4C. Mutation of PP5C (F446W) and PP1C (F257W), to mimic the PP4C active site, resulted in markedly suppressed sensitivity to cantharidin. These observations provide insight into the structural basis for the natural selectivity of cantharidin and provide an avenue for PP4C deselection. The novel crystal structures also provide insight into interactions that provide increased selectivity of the C5/C6 modifications for PP5C versus other PPP-family phosphatases. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Multimerized CHR-derived peptides as HIV-1 fusion inhibitors.

    PubMed

    Nomura, Wataru; Hashimoto, Chie; Suzuki, Takaharu; Ohashi, Nami; Fujino, Masayuki; Murakami, Tsutomu; Yamamoto, Naoki; Tamamura, Hirokazu

    2013-08-01

    To date, several HIV-1 fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of an HIV-1 envelope protein gp41 have been discovered. We have shown that a synthetic peptide mimetic of a trimer form of the CHR-derived peptide C34 has potent inhibitory activity against the HIV-1 fusion mechanism, compared to a monomer C34 peptide. The present study revealed that a dimeric form of C34 is evidently structurally critical for fusion inhibitors, and that the activity of multimerized CHR-derived peptides in fusion inhibition is affected by the properties of the unit peptides C34, SC34EK, and T20. The fluorescence-based study suggested that the N36-interactive sites of the C34 trimer, including hydrophobic residues, are exposed outside the trimer and that trimerization of C34 caused a remarkable increase in fusion inhibitory activity. The present results could be useful in the design of fusion inhibitors against viral infections which proceed via membrane fusion with host cells. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. The Mechanism of Action of Zingerone in the Pacemaker Potentials of Interstitial Cells of Cajal Isolated from Murine Small Intestine.

    PubMed

    Kim, Jung Nam; Kim, Hyun Jung; Kim, Iksung; Kim, Yun Tai; Kim, Byung Joo

    2018-01-01

    Zingerone, a major component found in ginger root, is clinically effective for the treatment of various diseases. Interstitial cells of Cajal (ICCs) are the pacemaker cells responsible for slow waves in the gastrointestinal (GI) tract. We investigated the effects of zingerone on the pacemaker potentials of ICCs to assess its mechanisms of action and its potential as a treatment for GI tract motility disorder. We isolated ICCs from small intestines, and the whole-cell patch-clamp configuration was used to record the pacemaker potentials in cultured ICCs. Under the current clamping mode, zingerone inhibited pacemaker potentials of ICCs concentration-dependently. These effects were blocked not by capsazepine, a transient receptor potential vanilloid 1 (TRPV1) channel blocker, but by glibenclamide, a specific ATP-sensitive K+ channel blocker. Pretreatment with SQ-22536 (an adenylate cyclase inhibitor), LY294002 (a phosphoinositide 3-kinase inhibitor), and calphostin C (a protein kinase C (PKC) inhibitor) did not block the effects of zingerone on the pacemaker potentials relative to treatment with zingerone alone. However, zingerone-induced pacemaker potential inhibition was blocked by 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ; a guanylate cyclase inhibitor), KT5823 (a protein kinase G (PKG) inhibitor), and L-NAME (a non-selective nitric oxide synthase (NOS) inhibitor). In addition, zingerone stimulated cyclic guanosine monophosphate (cGMP) production in ICCs. Finally, pretreatment with PD98059 (a p42/44 mitogen-activated protein kinase (MAPK) inhibitor), SB203580 (a p38 MAPK inhibitor), and SP600125 (c-Jun N-terminal kinases (JNK)-specific inhibitor) blocked the zingerone-induced pacemaker potential inhibition. These results suggest that zingerone concentration-dependently inhibits pacemaker potentials of ICCs via NO/cGMP-dependent ATP-sensitive K+ channels through MAPK-dependent pathways. Taken together, this study shows that zingerone may have the potential for development as a GI regulation agent. © 2018 The Author(s). Published by S. Karger AG, Basel.

  6. Transitioning issues in adolescent to young adult hemophilia patients with inhibitors: an approach for a growing population.

    PubMed

    Young, Guy

    2010-09-01

    The major adverse effect of factor replacement therapy in patients with hemophilia is the development of neutralizing antibodies termed inhibitors. This complication renders standard factor replacement therapy ineffective resulting in increased morbidity and mortality. Until recently, the population of adults with inhibitors was relatively small due to the death of many of the patients from HIV that they contracted from contaminated factor in the early 1980s. With the advent of factor products with reduced risks for deadly infections in the mid-1980s to early 1990s, a cohort of inhibitor patients is now beginning to enter adulthood thus raising the issues regarding the transition of these patients into adulthood. It is, therefore, expected that adult hematologists will be seeing more inhibitor patients and that pediatric hematologists will be faced with managing this transition process, which may not necessarily include transition to an adult facility or adult hematologist. This review will discuss the various issues ranging from choice of medical provider to a discussion of psychosocial and financial issues facing this specific patient population.

  7. Evidence for arginine as the endogenous precursor of necines in heliotropium.

    PubMed

    Birecka, H; Birecki, M; Frohlich, M W

    1987-05-01

    In pyrrolizidine alkaloid-bearing Heliotropium angiospermum and H. indicum shoots exposed, in the light, to (14)C-labeled CO(2) for 44 hours, the incorporation of (14)C into 1,2-epoxy-1-hydroxymethylpyrrolizidine and retronecine amounted to 0.23 and 0.15%, respectively, of the total carbon assimilated. Treatment of the shoots with alpha-dl-difluoromethylornithine, the specific ornithine decarboxylase inhibitor, at 1 to 2 millimolar had no effect on (14)C incorporation into the necines. In contrast, alpha-dl-difluoromethylarginine, the specific arginine decarboxylase inhibitor, prevented the incorporation of (14)C into the necines of both species; the inhibitor did not affect the absolute incorporation of (14)C from exogenous [1,4-(14)C] putrescine in either species. Thus, arginine is the only apparent endogenous precursor of the putrescine channeled into pyrrolizidines, at least in these two Heliotropium species that exhibited a relatively much higher in vitro activity of arginine decarboxylase than of ornithine decarboxylase. However, within 28 hours after administration, not only exogenous l-[5-(14)C]arginine, but also exogenous l-[5-(14)C]ornithine exhibited significant incorporation of their label into the necines, incorporation that could be partially prevented by both inhibitors. Neither inhibitor affected the rates of (14)C-labeled CO(2) assimilation, transformation of labeled assimilates into ethanol-insoluble compounds, or the very high degree of conversion of the introduced amino acids into other compounds. Methodology related to alkaloid biosynthetic studies is discussed.

  8. Role of gemfibrozil as an inhibitor of CYP2C8 and membrane transporters.

    PubMed

    Tornio, Aleksi; Neuvonen, Pertti J; Niemi, Mikko; Backman, Janne T

    2017-01-01

    Cytochrome P450 (CYP) 2C8 is a drug metabolizing enzyme of major importance. The lipid-lowering drug gemfibrozil has been identified as a strong inhibitor of CYP2C8 in vivo. This effect is due to mechanism-based inhibition of CYP2C8 by gemfibrozil 1-O-β-glucuronide. In vivo, gemfibrozil is a fairly selective CYP2C8 inhibitor, which lacks significant inhibitory effect on other CYP enzymes. Gemfibrozil can, however, have a smaller but clinically meaningful inhibitory effect on membrane transporters, such as organic anion transporting polypeptide 1B1 and organic anion transporter 3. Areas covered: This review describes the inhibitory effects of gemfibrozil on CYP enzymes and membrane transporters. The clinical drug interactions caused by gemfibrozil and the different mechanisms contributing to the interactions are reviewed in detail. Expert opinion: Gemfibrozil is a useful probe inhibitor of CYP2C8 in vivo, but its effect on membrane transporters has to be taken into account in study design and interpretation. Moreover, gemfibrozil could be used to boost the pharmacokinetics of CYP2C8 substrate drugs. Identification of gemfibrozil 1-O-β-glucuronide as a potent mechanism-based inhibitor of CYP2C8 has led to recognition of glucuronide metabolites as perpetrators of drug-drug interactions. Recently, also acyl glucuronide metabolites of clopidogrel and deleobuvir have been shown to strongly inhibit CYP2C8.

  9. Pathophysiological roles of aldo-keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers.

    PubMed

    Matsunaga, Toshiyuki; Hojo, Aki; Yamane, Yumi; Endo, Satoshi; El-Kabbani, Ossama; Hara, Akira

    2013-02-25

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is widely used for treatment of patients with solid tumors formed in various organs including the lung, prostate and cervix, but is much less sensitive in colon and breast cancers. One major factor implicated in the ineffectiveness has been suggested to be acquisition of the CDDP resistance. Here, we established the CDDP-resistant phenotypes of human colon HCT15 cells by continuously exposing them to incremental concentrations of the drug, and monitored expressions of aldo-keto reductases (AKRs) 1A1, 1B1, 1B10, 1C1, 1C2 and 1C3. Among the six AKRs, AKR1C1 and AKR1C3 are highly induced with the CDDP resistance. The resistance lowered the sensitivity toward cellular damages evoked by oxidative stress-derived aldehydes, 4-hydroxy-2-nonenal and 4-oxo-2-nonenal that are detoxified by AKR1C1 and AKR1C3. Overexpression of AKR1C1 or AKR1C3 in the parental HCT15 cells mitigated the cytotoxicity of the aldehydes and CDDP. Knockdown of both AKR1C1 and AKR1C3 in the resistant cells or treatment of the cells with specific inhibitors of the AKRs increased the sensitivity to CDDP toxicity. Thus, the two AKRs participate in the mechanism underlying the CDDP resistance probably via detoxification of the aldehydes resulting from enhanced oxidative stress. The resistant cells also showed an enhancement in proteolytic activity of proteasome accompanied by overexpression of its catalytic subunits (PSMβ9 and PSMβ10). Pretreatment of the resistant cells with a potent proteasome inhibitor Z-Leu-Leu-Leu-al augmented the CDDP sensitization elicited by the AKR inhibitors. Additionally, the treatment of the cells with Z-Leu-Leu-Leu-al and the AKR inhibitors induced the expressions of the two AKRs and proteasome subunits. Collectively, these results suggest the involvement of up-regulated AKR1C1, AKR1C3 and proteasome in CDDP resistance of colon cancers and support a chemotherapeutic role for their inhibitors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Hinnuliquinone, a C2-symmetric dimeric non-peptide fungal metabolite inhibitor of HIV-1 protease.

    PubMed

    Singh, Sheo B; Ondeyka, John G; Tsipouras, Nasios; Ruby, Carolyn; Sardana, Vinod; Schulman, Marvin; Sanchez, Manuel; Pelaez, Fernando; Stahlhut, Mark W; Munshi, Sanjeev; Olsen, David B; Lingham, Russell B

    2004-11-05

    HIV-1 protease is one of several key enzymes required for the replication and maturation of HIV-1 virus. An almost two-decade research effort by academic and pharmaceutical institutions resulted in the successful commercialization of seven drugs that are potent inhibitors of HIV-1 protease activity and which, if used correctly, are highly effective in managing viral load. However, identification of clinical viral isolates that are resistant to these drugs indicates that this is a significant problem and that new classes of inhibitors are continually needed. Screening of microbial extracts followed by bioassay-guided isolation led to the discovery of a natural hinnuliquinone, a C(2)-symmetric bis-indolyl quinone natural product that inhibited the wild-type and a clinically resistant (A44) strain of HIV-1 protease with K(i) values of 0.97 and 1.25microM, respectively. Crystallographic analysis of the inhibitor-bound HIV-1 protease helped explain the importance of the C(2)-symmetry of hinnuliquinone for activity. Details of the isolation, biological activity, and crystallographic analysis of the inhibitor-bound protease are herein described.

  11. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition.

    PubMed

    Li, Bo; Ren, Hui; Yue, Ping; Chen, Mingwei; Khuri, Fadlo R; Sun, Shi-Yong

    2012-04-01

    API-1 (pyrido[2,3-d]pyrimidines) is a novel small-molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of cellular FLICE-inhibitory protein (c-FLIP) levels and TRAIL-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of death receptor 4 (DR4) or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1 but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Because other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity. 2012 AACR

  12. The M-T Hook Structure Is Critical for Design of HIV-1 Fusion Inhibitors*

    PubMed Central

    Chong, Huihui; Yao, Xue; Sun, Jianping; Qiu, Zonglin; Zhang, Meng; Waltersperger, Sandro; Wang, Meitian; Cui, Sheng; He, Yuxian

    2012-01-01

    CP621-652 is a potent HIV-1 fusion inhibitor peptide derived from the C-terminal heptad repeat of gp41. We recently identified that its N-terminal residues Met-626 and Thr-627 adopt a unique hook-like structure (termed M-T hook) thus stabilizing the interaction of the inhibitor with the deep pocket on the N-terminal heptad repeat. In this study, we further demonstrated that the M-T hook structure is a key determinant of CP621-652 in terms of its thermostability and anti-HIV activity. To directly define the structure and function of the M-T hook, we generated the peptide MT-C34 by incorporating Met-626 and Thr-627 into the N terminus of the C-terminal heptad repeat-derived peptide C34. The high resolution crystal structure (1.9 Å) of MT-C34 complexed by an N-terminal heptad repeat-derived peptide reveals that the M-T hook conformation is well preserved at the N-terminal extreme of the inhibitor. Strikingly, addition of two hook residues could dramatically enhance the binding affinity and thermostability of 6-helix bundle core. Compared with C34, MT-C34 exhibited significantly increased activity to inhibit HIV-1 envelope-mediated cell fusion (6.6-fold), virus entry (4.5-fold), and replication (6-fold). Mechanistically, MT-C34 had a 10.5-fold higher increase than C34 in blocking 6-helix bundle formation. We further showed that MT-C34 possessed higher potency against T20 (Enfuvirtide, Fuzeon)-resistant HIV-1 variants. Therefore, this study provides convincing data for our proposed concept that the M-T hook structure is critical for designing HIV-1 fusion inhibitors. PMID:22879603

  13. Biochemical and Structural Analysis of Inhibitors Targeting the ADC-7 Cephalosporinase of Acinetobacter baumannii

    DOE PAGES

    Powers, Rachel A.; Swanson, Hollister C.; Taracila, Magdalena A.; ...

    2014-11-07

    β-Lactam resistance in Acinetobacter baumannii presents one of the greatest challenges to contemporary antimicrobial chemotherapy. Much of this resistance to cephalosporins derives from the expression of the class C β-lactamase enzymes, known as Acinetobacter-derived cephalosporinases (ADCs). Currently, β-lactamase inhibitors are structurally similar to β-lactam substrates and are not effective inactivators of this class C cephalosporinase. Herein, two boronic acid transition state inhibitors (BATSIs S02030 and SM23) that are chemically distinct from β-lactams were designed and tested for inhibition of ADC enzymes. BATSIs SM23 and S02030 bind with high affinity to ADC-7, a chromosomal cephalosporinase from Acinetobacter baumannii (K i =more » 21.1 ± 1.9 nM and 44.5 ± 2.2 nM, respectively). The X-ray crystal structures of ADC-7 were determined in both the apo form (1.73 Å resolution) and in complex with S02030 (2.0 Å resolution). In the complex, S02030 makes several canonical interactions: the O1 oxygen of S02030 is bound in the oxyanion hole, and the R1 amide group makes key interactions with conserved residues Asn152 and Gln120. In addition, the carboxylate group of the inhibitor is meant to mimic the C 3/C 4 carboxylate found in β-lactams. The C 3/C 4 carboxylate recognition site in class C enzymes is comprised of Asn346 and Arg349 (AmpC numbering), and these residues are conserved in ADC-7. Interestingly, in the ADC-7/S02030 complex, the inhibitor carboxylate group is observed to interact with Arg340, a residue that distinguishes ADC-7 from the related class C enzyme AmpC. A thermodynamic analysis suggests that ΔH driven compounds may be optimized to generate new lead agents. In conclusion, the ADC-7/BATSI complex provides insight into recognition of non-β-lactam inhibitors by ADC enzymes and offers a starting point for the structure-based optimization of this class of novel β-lactamase inhibitors against a key resistance target.« less

  14. Minority Human Immunodeficiency Virus Type 1 Variants in Antiretroviral-Naive Persons with Reverse Transcriptase Codon 215 Revertant Mutations▿ †

    PubMed Central

    Mitsuya, Yumi; Varghese, Vici; Wang, Chunlin; Liu, Tommy F.; Holmes, Susan P.; Jayakumar, Prerana; Gharizadeh, Baback; Ronaghi, Mostafa; Klein, Daniel; Fessel, W. Jeffrey; Shafer, Robert W.

    2008-01-01

    T215 revertant mutations such as T215C/D/E/S that evolve from the nucleoside reverse transcriptase (RT) inhibitor mutations T215Y/F have been found in about 3% of human immunodeficiency virus type 1 (HIV-1) isolates from newly diagnosed HIV-1-infected persons. We used a newly developed sequencing method—ultradeep pyrosequencing (UDPS; 454 Life Sciences)—to determine the frequency with which T215Y/F or other RT inhibitor resistance mutations could be detected as minority variants in samples from untreated persons that contain T215 revertants (“revertant” samples) compared with samples from untreated persons that lack such revertants (“control” samples). Among the 22 revertant and 29 control samples, UDPS detected a mean of 3.8 and 4.8 additional RT amino acid mutations, respectively. In 6 of 22 (27%) revertant samples and in 4 of 29 control samples (14%; P = 0.4), UDPS detected one or more RT inhibitor resistance mutations. T215Y or T215F was not detected in any of the revertant or control samples; however, 4 of 22 revertant samples had one or more T215 revertants that were detected by UDPS but not by direct PCR sequencing. The failure to detect viruses with T215Y/F in the 22 revertant samples in this study may result from the overwhelming replacement of transmitted T215Y variants by the more fit T215 revertants or from the primary transmission of a T215 revertant in a subset of persons with T215 revertants. PMID:18715933

  15. Bicarbonate is required for migration of sperm epididymal protein DE (CRISP-1) to the equatorial segment and expression of rat sperm fusion ability.

    PubMed

    Da Ros, Vanina G; Munuce, María J; Cohen, Débora J; Marín-Briggiler, Clara I; Busso, Dolores; Visconti, Pablo E; Cuasnicú, Patricia S

    2004-05-01

    Numerous studies have demonstrated that sperm capacitation is a bicarbonate-dependent process. In the rat, capacitation has not been studied as much as in other species, mainly because of the difficulties in carrying out functional assays with this animal model. In the present study, we have examined the influence of bicarbonate in the overall rat sperm capacitation process by analyzing involvement of the anion in 1) protein tyrosine phosphorylation, 2) migration of epididymal protein DE (also known as CRISP-1) from the dorsal region to the equatorial segment of the sperm head that occurs during capacitation, and 3) ability of sperm to fuse with the egg. Incubation of sperm under capacitating conditions produced a time-dependent increase in protein tyrosine phosphorylation. This phosphorylation did not occur in the absence of HCO3- and rapidly increased by either exposure of sperm to HCO3- or replacement of the anion by a cAMP analog (dibutyryl-cAMP) and a phosphodiesterase inhibitor (pentoxifylline). The absence of HCO3- also produced a significant decrease in the percentage of cells showing migration of DE to the equatorial segment. This parameter was completely restored by addition of the anion, but dibutyryl-cAMP and pentoxifylline were not sufficient to overcome the decrease in DE migration. Sperm capacitated in the absence of HCO3- were unable to penetrate zona-free eggs independent of the presence of the anion during gamete coincubation. Exposure of these sperm to bicarbonate, or replacement of the anion by dibutyryl-cAMP and pentoxifylline, only partially restored the sperm fusion ability. Altogether, these results indicate that, in addition to its influence on protein tyrosine phosphorylation, bicarbonate is required to support other rat sperm capacitation- associated events, such as migration of DE to the equatorial segment, and expression of the ability of sperm to fuse with the egg.

  16. Hemoglobin glycation index as a useful predictor of therapeutic responses to dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes

    PubMed Central

    Chen, Yu-Wei; Wang, Jun-Sing; Sheu, Wayne H-H; Lin, Shih-Yi; Lee, I-Te; Song, Yuh-Min; Fu, Chia-Po; Lee, Chia-Lin

    2017-01-01

    Introduction A high hemoglobin glycation index (HGI) and glycated hemoglobin (HbA1c) level are associated with greater inflammatory status, and dipeptidyl peptidase-4 (DPP-4) inhibitors can suppress inflammation. We aimed to evaluate the relationship between HGI and the therapeutic effect of DPP-4 inhibitors. Methods This retrospective cohort study followed 468 patients with type 2 diabetes receiving DPP-4 inhibitor treatment for 1 year. Estimated HbA1c was calculated using a linear regression equation derived from another 2969 randomly extracted patients with type 2 diabetes based on fasting plasma glucose (FPG) level. The subjects were divided into two groups based on HGI (HGI = observed HbA1c - estimated HbA1c). Mixed model repeated measures were used to compare the treatment efficacy after 1 year in patients with a low (HGI<0, n = 199) and high HGI (HGI≧0, n = 269). Results There were no significant group differences in mean changes of FPG after 1 year (-12.8 and -13.4 mg/dL in the low and high HGI groups, respectively). However, the patients with a high HGI had a significantly greater reduction in HbA1c from baseline compared to those with a low HGI (-1.9 versus -0.3% [-20.8 versus -3.3 mmol/mol]). Improvements in glycemic control were statistically significantly associated with the tested DPP-4 inhibitors in the high HGI group (-2.4, -1.4, -1.2 and -2.2% [-26.2, -15.3, -13.1 and -24.0 mmol/mol] for vildagliptin, linagliptin, saxagliptin and sitagliptin, respectively) but not in the low HGI group. Conclusions The HGI index derived from FPG and HbA1c may be able to identify who will have a better response to DPP-4 inhibitors. PMID:28182722

  17. The frequency of CYP2C19 genetic polymorphisms in Russian patients with peptic ulcers treated with proton pump inhibitors.

    PubMed

    Sychev, D A; Denisenko, N P; Sizova, Z M; Grachev, A V; Velikolug, K A

    2015-01-01

    Proton pump inhibitors, which are widely used as acid-inhibitory agents for the treatment of peptic ulcers, are mainly metabolized by 2C19 isoenzyme of cytochrome P450 (CYP2C19). CYP2C19 has genetic polymorphisms, associated with extensive, poor, intermediate or ultra-rapid metabolism of proton pump inhibitors. Genetic polymorphisms of CYP2C19 could be of clinical concern in the treatment of peptic ulcers with proton pump inhibitors. To investigate the frequencies of CYP2C19*2, CYP2C19*3, and CYP2C19*17 alleles and genotypes in Russian patients with peptic ulcers. We retrospectively reviewed the cases of 971 patients of Caucasian origin with Russian nationality from Moscow region with endoscopically and histologically proven ulcers, 428 males (44%) and 543 females (56%). The mean age was 44.6±11.9 years (range: 15-88 years). DNA was extracted from ethylenediaminetetraacetic acid whole blood samples (10 mL). The polymorphisms CYP2C19 681G.A (CYP2C19*2, rs4244285), CYP2C19 636 G.A (CYP2C19*3, rs4986893) and CYP2C19 -806 C.T (CYP2C19*17, rs12248560) were evaluated using real-time polymerase chain reaction. Regarding CYP2C19 genotype, 317 patients (32.65%) out of 971 were CYP2C19*1/*1 carriers classified as extensive metabolizers. Three hundred and eighty-six (39.75%) with CYP2C19*1/*17 or CYP2C19*17/*17 genotype were ultra-rapid metabolizers. Two hundred and fifty-one people (25.85%) were intermediate metabolizers with CYP2C19*1/*2, CYP2C19*2/*17, CYP2C19*1/*3, CYP2C19*3/*17 genotypes. Seventeen patients (1.75%) with CYP2C19*2/*2, CYP2C19*3/*3, CYP2C19*2/*3 genotypes were poor metabolizers. The allele frequencies were the following: CYP2C19*2 - 0.140, CYP2C19*3 - 0.006, CYP2C19*17 - 0.274. There is a high frequency of CYP2C19 genotypes associated with modified response to proton pump inhibitors in Russian patients with peptic ulcers. Genotyping for CYP2C19 polymorphisms is suggested to be a useful tool for personalized dosing of proton pump inhibitors.

  18. Serum α1-proteinase inhibitor concentrations in dogs with exocrine pancreatic disease, chronic hepatitis or proteinuric chronic kidney disease.

    PubMed

    Heilmann, R M; Grützner, N; Hokamp, J A; Lidbury, J A; Xenoulis, P G; Suchodolski, J S; Nabity, M B; Cianciolo, R; Steiner, J M

    2018-06-01

    Serum canine α 1 -proteinase inhibitor (cα 1 -PI) concentrations were evaluated in dogs with pancreatitis (n=24), exocrine pancreatic insufficiency (EPI; n=29), chronic hepatitis (CH; n=11) or proteinuric chronic kidney disease (CKD-P; n=61) to determine whether systemic proteinase/proteinase-inhibitor balance is altered in these conditions. Dogs with CKD-P had significantly lower cα 1 -PI concentrations than dogs with pancreatitis, EPI or CH; 16% of dogs with CKD-P had serum cα 1 -PI concentrations below the reference interval. Serum and urine cα 1 -PI concentrations were inversely correlated in dogs with CKD-P, but not in dogs with CH. This suggests that renal loss of cα 1 -PI contributes to decreased serum concentrations in dogs with CKD-P, while hepatic cα 1 -PI synthesis with CH either is not compromised or is counterbalanced by extrahepatic production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Hemodialysis in a patient with severe hemophilia A and factor VIII inhibitor.

    PubMed

    Gopalakrishnan, Natarajan; Usha, Thiruvengadam; Thopalan, Balasubramaniyan; Dhanapriya, Jeyachandran; Dineshkumar, Thanigachalam; Thirumalvalavan, Kaliaperumal; Sakthirajan, Ramanathan

    2016-10-01

    Hemophilia A is a hereditary X-linked recessive disease caused by mutations in the gene encoding factor VIII (FVIII), occurring in 1 out of 10,000 persons. Life expectancy and quality of life have dramatically improved recently in patients with hemophilia. Chronic kidney disease and need for renal replacement therapy in these patients are rare. The development of inhibitors to FVIII is the most serious complication of hemophilia and makes treatment of bleeds very challenging. We describe here a 28-year-old male patient with severe hemophilia A with presence of factor VIII inhibitor, who had end stage renal disease. Central venous access device was inserted along with infusion of factor eight inhibitor bypass activity before and after the procedure. He is currently on thrice weekly hemodialysis and doing well for 6 months without bleeding episodes. To our knowledge, hemophilia A with factor VIII inhibitor managed with hemodialysis has not been reported so far. © 2016 International Society for Hemodialysis.

  20. B-Raf kinase inhibitors: hit enrichment through scaffold hopping.

    PubMed

    Gopalsamy, Ariamala; Shi, Mengxiao; Hu, Yongbo; Lee, Frederick; Feldberg, Larry; Frommer, Eileen; Kim, Steven; Collins, Karen; Wojciechowicz, Donald; Mallon, Robert

    2010-04-15

    In continuation of our efforts toward hit identification and optimization for a B-Raf kinase project, we have employed a scaffold hopping strategy. The original HTS hit scaffold pyrazolo[1,5-a]pyrimidine was replaced with different thienopyrimidine and thienopyridine scaffolds to append the optimal pharmacophore moieties in order to generate novel B-raf kinase inhibitors with desirable potency and properties. This strategy led to the identification of additional lead compound 11b which had good enzyme and cell potency, while maintaining selectivity over a number of kinases. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Pharmacologic Therapy in Men's Health: Hypogonadism, Erectile Dysfunction, and Benign Prostatic Hyperplasia.

    PubMed

    Berkseth, Kathryn E; Thirumalai, Arthi; Amory, John K

    2016-07-01

    This article reviews current pharmacologic treatment options for 3 common men's health concerns: hypogonadism, erectile dysfunction (ED), and benign prostatic hyperplasia (BPH). Specific topics addressed include: management of male hypogonadism using testosterone replacement therapy, use of oral phosphodiesterase inhibitors as first-line therapy for men with ED and the utility of intraurethral and intrapenile alprostadil injections for patients who do not respond to oral medications, and the role of alpha1-adrenergic antagonists, 5-alpha-reductase inhibitors, anticholinergic agents, and herbal therapies in the management of BPH. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Improved BM212 MmpL3 Inhibitor Analogue Shows Efficacy in Acute Murine Model of Tuberculosis Infection

    PubMed Central

    Alfonso, Salvatore; Cocozza, Martina; Porretta, Giulio Cesare; Ballell, Lluís; Rullas, Joaquin; Ortega, Fátima; De Logu, Alessandro; Agus, Emanuela; La Rosa, Valentina; Pasca, Maria Rosalia; De Rossi, Edda; Wae, Baojie; Franzblau, Scott G.; Manetti, Fabrizio; Botta, Maurizio; Biava, Mariangela

    2013-01-01

    1,5-Diphenyl pyrroles were previously identified as a class of compounds endowed with high in vitro efficacy against M. tuberculosis. To improve the physical chemical properties and drug-like parameters of this class of compounds, a medicinal chemistry effort was undertaken. By selecting the optimal substitution patterns for the phenyl rings at N1 and C5 and by replacing the thiomorpholine moiety with a morpholine one, a new series of compounds was produced. The replacement of the sulfur with oxygen gave compounds with lower lipophilicity and improved in vitro microsomal stability. Moreover, since the parent compound of this family has been shown to target MmpL3, mycobacterial mutants resistant to two compounds have been isolated and characterized by sequencing the mmpL3 gene; all the mutants showed point mutations in this gene. The best compound identified to date was progressed to dose-response studies in an acute murine TB infection model. The resulting ED99 of 49 mg/Kg is within the range of commonly employed tuberculosis drugs, demonstrating the potential of this chemical series. The in vitro and in vivo target validation evidence presented here adds further weight to MmpL3 as a druggable target of interest for anti-tubercular drug discovery. PMID:23437287

  3. Glycopeptide Analogues of PSGL-1 Inhibit P-Selectin In Vitro and In Vivo

    PubMed Central

    Krishnamurthy, Venkata R; Sardar, Mohammed Y. R.; Yu, Ying; Song, Xuezheng; Haller, Carolyn; Dai, Erbin; Wang, Xiacong; Hanjaya-Putra, Donny; Sun, Lijun; Morikis, Vasilios; Simon, Scott I.; Woods, Robert; Cummings, Richard D.; Chaikof, Elliot L.

    2015-01-01

    Blockade of P-selectin/PSGL-1 interactions holds significant potential for treatment of disorders of innate immunity, thrombosis, and cancer. Current inhibitors remain limited due to low binding affinity or by the recognized disadvantages inherent to chronic administration of antibody therapeutics. Here we report an efficient approach for generating glycosulfopeptide mimics of N-terminal PSGL-1 through development of a stereoselective route for multi-gram scale synthesis of the C2 O-glycan building block and replacement of hydrolytically labile tyrosine sulfates with isosteric sulfonate analogs. Library screening afforded a compound of exceptional stability, GSnP-6, that binds to human P-selectin with nanomolar affinity (Kd ~ 22 nM). Molecular dynamics simulation defines the origin of this affinity in terms of a number of critical structural contributions. GSnP-6 potently blocks P-selectin/PSGL-1 interactions in vitro and in vivo and represents a promising candidate for the treatment of diseases driven by acute and chronic inflammation. PMID:25824568

  4. Discovery of pyridyl sulfonamide 11-beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors for the treatment of metabolic disorders.

    PubMed

    Yoon, David S; Wu, Shung C; Seethala, Ramakrishna; Golla, Rajasree; Nayeem, Akbar; Everlof, John G; Gordon, David A; Hamann, Lawrence G; Robl, Jeffrey A

    2014-11-01

    A previous disclosure from this lab highlighted the discovery of pyridyl amides as potent 11β-HSD1 inhibitors. In order to build additional novelty and polarity into this chemotype, replacement of the hydrogen-bonding carbonyl (CO) pharmacophore with the bioisosteric sulfonyl (SO2) group was examined. Despite initial comparisons suggesting the corresponding sulfonamides exhibited weaker activity versus their carbonyl counterparts, further optimization was performed in an effort to identify various potent and unique leads for the program. Judicious incorporation of polar moieties resulted in the identification of compounds with enhanced potency and lipophilicity profiles, resulting in leads with superior aqueous solubility and liver microsomal stability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Complement, Kinins, and Hereditary Angioedema: Mechanisms of Plasma Instability when C1 Inhibitor is Absent.

    PubMed

    Kaplan, Allen P; Joseph, Kusumam

    2016-10-01

    Plasma of patients with types I and II hereditary angioedema is unstable if incubated in a plastic (i.e., inert) vessel at 37 °C manifested by progressively increasing formation of bradykinin. There is also a persistent low level of C4 in 95 % of patients even when they are symptomatic. These phenomena are due to the properties of the C1r subcomponent of C1, factor XII, and the bimolecular complex of prekallikrein with high molecular weight kininogen (HK). Purified C1r auto-activates in physiologic buffers, activates C1s, which in turn depletes C4. This occurs when C1 inhibitor is deficient. The complex of prekallikrein-HK acquires an inducible active site not present in prekallikrein which in Tris-type buffers cleaves HK stoichiometrically to release bradykinin, or in phosphate buffer auto-activates to generate kallikrein and bradykinin. Thus immunologic depletion of C1 inhibitor from factor XII-deficient plasma (phosphate is the natural buffer) auto-activates on incubation to release bradykinin. Normal C1 inhibitor prevents this from occurring. During attacks of angioedema, if factor XII auto-activates on surfaces, the initial factor XIIa formed converts prekallikrein to kallikrein, and kallikrein cleaves HK to release bradykinin. Kallikrein also rapidly activates most remaining factor XII to factor XIIa. Additional cleavages convert factor XIIa to factor XIIf and factor XIIf activates C1r enzymatically so that C4 levels approach zero, and C2 is depleted. There is also a possibility that kallikrein is generated first as a result of activation of the prekallikrein-HK complex by heat shock protein 90 released from endothelial cells, followed by kallikrein activation of factor XII.

  6. Identification of human cytochrome P450 enzymes involved in the metabolism of IN-1130, a novel activin receptor-like kinase-5 (ALK5) inhibitor.

    PubMed

    Kim, Y W; Kim, Y K; Kim, D-K; Sheen, Y Y

    2008-05-01

    1. The in vitro metabolism of 3-((5-(6-methylpyridin-2-yl)-4-(quinoxalin-6-yl)-1H-imidazol-2-yl)methyl)benzamide (IN-1,130), a selective activin receptor-like kinase-5 (ALK5) inhibitor and a candidate drug for fibrotic disease, was studied. 2. The cytochrome P450s (CYPs) responsible for metabolism of IN-1,130 in liver microsomes of rat, mouse, dog, monkey and human, and in human CYP supersomestrade mark, were identified using specific CYP inhibitors. The order of disappearance of IN-1,130 in various liver microsomal systems studied was as follows: monkey, mouse, rat, human, and dog. 3. Five distinct metabolites (M1-M5) were identified in all the above microsomes and their production was substantially inhibited by CYP inhibitors such as SKF-525A and ketoconazole. Among nine human CYP supersomestrade mark examined, CYP3A4, CYP2C8, CYP2D6 1, and CYP2C19 were involved in the metabolism of IN-1,130, and the production of metabolites were significantly inhibited by specific CYP inhibitors. IN-1,130 disappeared fastest in CYP2C8 supersomes. CYP3A4 produced four metabolites of IN-1,130 (M1-M4), whereas supersomes expressing human FMO cDNAs, such as FMO1, FMO3, and FMO5, produced no metabolites. 4. Hence, it is concluded that metabolism of IN-1,130 is mediated by CYP3A4, CYP2C8, CYP2D6 1, and CYP2C19.

  7. High-affinity, noninhibitory pathogenic C1 domain antibodies are present in patients with hemophilia A and inhibitors

    PubMed Central

    Batsuli, Glaivy; Deng, Wei; Healey, John F.; Parker, Ernest T.; Baldwin, W. Hunter; Cox, Courtney; Nguyen, Brenda; Kahle, Joerg; Königs, Christoph; Li, Renhao; Lollar, Pete

    2016-01-01

    Inhibitor formation in hemophilia A is the most feared treatment-related complication of factor VIII (fVIII) therapy. Most inhibitor patients with hemophilia A develop antibodies against the fVIII A2 and C2 domains. Recent evidence demonstrates that the C1 domain contributes to the inhibitor response. Inhibitory anti-C1 monoclonal antibodies (mAbs) have been identified that bind to putative phospholipid and von Willebrand factor (VWF) binding epitopes and block endocytosis of fVIII by antigen presenting cells. We now demonstrate by competitive enzyme-linked immunosorbent assay and hydrogen-deuterium exchange mass spectrometry that 7 of 9 anti-human C1 mAbs tested recognize an epitope distinct from the C1 phospholipid binding site. These mAbs, designated group A, display high binding affinities for fVIII, weakly inhibit fVIII procoagulant activity, poorly inhibit fVIII binding to phospholipid, and exhibit heterogeneity with respect to blocking fVIII binding to VWF. Another mAb, designated group B, inhibits fVIII procoagulant activity, fVIII binding to VWF and phospholipid, fVIIIa incorporation into the intrinsic Xase complex, thrombin generation in plasma, and fVIII uptake by dendritic cells. Group A and B epitopes are distinct from the epitope recognized by the canonical, human-derived inhibitory anti-C1 mAb, KM33, whose epitope overlaps both groups A and B. Antibodies recognizing group A and B epitopes are present in inhibitor plasmas from patients with hemophilia A. Additionally, group A and B mAbs increase fVIII clearance and are pathogenic in a hemophilia A mouse tail snip bleeding model. Group A anti-C1 mAbs represent the first identification of pathogenic, weakly inhibitory antibodies that increase fVIII clearance. PMID:27381905

  8. Monoamine oxidase inhibitory activity of methoxy-substituted chalcones.

    PubMed

    Mathew, Bijo; Mathew, Githa Elizabeth; Ucar, Gulberk; Joy, Monu; Nafna, E K; Lohidakshan, Krishnakumar K; Suresh, Jerad

    2017-11-01

    The MAO-B inhibitory activity of chalcone (1, 3- diphenyl-2-propen-1-one) based compounds arise from its structural similarity with 1, 4-diphenyl-2-butene, a known MAO-B inhibitor. Based on our previous report, the methoxy-substituted with fluorine containing chalcones are promising reversible MAO-B inhibitors, while in the present study, a series of methoxylated chalcones (C1-C9) bearing substitution on the para position of ring B was synthesized and evaluated for their human monoamine oxidase inhibitory activity. With the exception of (2E)-1-(4-methoxyphenyl)-3-(4-nitrophenyl) prop-2-en-1-one (C7), which is a nonselective inhibitor, the chalcones exhibited competitive, selective, and reversible inhibition of hMAO-B. The most potent compound, (2E)-3-[4-(dimethylamino) phenyl]-1-(4-methoxyphenyl) prop-2-en-1-one (C5), showed the best inhibitory activity towards hMAO-B (IC 50 =0.29±0.011μM;K i =0.14±0.001μM). The reversibility of MAO-B inhibition by compound C5 was demonstrated by the recovery of enzyme activity after dialysis of mixtures containing enzyme and inhibitor. The reversiblity of C5 was 25.38±1.40 and 92.00±3.87% before and after dialysis, respectively. PAMPA was carried out to evaluate the blood-brain barrier effects of the designated compounds. Moreover, the most potent MAO-B inhibitor, C5, was found to be nontoxic towards cultured hepatic cells at 5 and 25μM, with 97 and 90% viability. Molecular docking study was performed against hMAO-B to observe the binding site interactions of the lead compound. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Rho/Rock cross-talks with transforming growth factor-β/Smad pathway participates in lung fibroblast-myofibroblast differentiation.

    PubMed

    Ji, Hong; Tang, Haiying; Lin, Hongli; Mao, Jingwei; Gao, Lili; Liu, Jia; Wu, Taihua

    2014-11-01

    The differentiation of fibroblasts, which are promoted by transforming growth factor-β (TGF-β)/Smad, is involved in the process of pulmonary fibrosis. The Rho/Rho-associated coiled-coil-forming protein kinase (Rock) pathway may regulate the fibroblast differentiation and myofibroblast expression of α-smooth muscle actin (α-SMA), however, the mechanism is not clear. The aim of the present study was to evaluate the role of Rho/Rock and TGF-β/Smad in TGF-β1-induced lung fibroblasts differentiation. Human embryonic lung fibroblasts were stimulated by TGF-β1, Y-27632 (inhibitor of Rho/Rock signaling) and staurosporine (inhibitor of TGF-β/Smad signaling). The α-SMA expression, cell cycle progression, content of the extracellular matrix (ECM) in cell culture supernatants and the expression of RhoA, RhoC, Rock1 and Smad2 were detected. The results demonstrated that α-SMA-positive cells significantly increased following TGF-β1 stimulation. Rho/Rock and TGF-β/Smad inhibitors suppressed TGF-β1-induced lung fibroblast differentiation. The inhibitors increased G 0 /G 1 and decreased S and G 2 /M percentages. The concentrations of the ECM proteins in the supernatant were significantly increased by TGF-β1 stimulation, whereas they were decreased by inhibitor stimulation. RhoA, RhoC, Rock1, Smad2 and tissue inhibitor of metalloproteinase-1 were upregulated by TGF-β1 stimulation. The Rho/Rock inhibitor downregulated Smad2 expression and the TGF-β/Smad inhibitor downregulated RhoA, RhoC and Rock1 expression. Therefore, the Rho/Rock pathway and Smad signaling were involved in the process of lung fibroblasts transformation, induced by TGF-β1, to myofibroblasts. The two pathways may undergo cross-talk in the lung fibroblasts differentiation in vitro .

  10. Design and synthesis of 3,3'-biscoumarin-based c-Met inhibitors.

    PubMed

    Xu, Jimin; Ai, Jing; Liu, Sheng; Peng, Xia; Yu, Linqian; Geng, Meiyu; Nan, Fajun

    2014-06-14

    A library of biscoumarin-based c-Met inhibitors was synthesized, based on optimization of 3,3'-biscoumarin hit 3, which was identified as a non-ATP competitive inhibitor of c-Met from a diverse library of coumarin derivatives. Among these compounds, 38 and 40 not only showed potent enzyme activities with IC50 values of 107 nM and 30 nM, respectively, but also inhibited c-Met phosphorylation in BaF3/TPR-Met and EBC-1 cells.

  11. 4-Amino-7-chloroquinolines: probing ligand efficiency provides botulinum neurotoxin serotype A light chain inhibitors with significant antiprotozoal activity

    PubMed Central

    Opsenica, Igor M.; Tot, Mikloš; Gomba, Laura; Nuss, Jonathan E.; Sciotti, Richard J.; Bavari, Sina; Burnett, James C.; Šolaja, Bogdan A.

    2013-01-01

    Structurally simplified analogs of dual antimalarial and botulinum neurotoxin serotype A light chain (BoNT/A LC) inhibitor bis-aminoquinoline (1) were prepared. New compounds were designed to improve ligand efficiency while maintaining or exceeding the inhibitory potency of 1. Three of the new compounds are more active than 1 against both indications. Metabolically, the new inhibitors are relatively stable and non-toxic. Twelve, 14, and 15 are more potent BoNT/A LC inhibitors than 1. Additionally, 15 has excellent in vitro antimalarial efficacy, with IC90 values ranging from 4.45-12.11 nM against five Plasmodium falciparum (P.f.) strains: W2, D6, C235, C2A, C2B. The results indicate that the same level of inhibitory efficacy provided by 1 can be retained/exceeded with less structural complexity. Twelve, 14, and 15 provide new platforms for the development of more potent dual BoNT/A LC and P.f. inhibitors adhering to generally accepted chemical properties associated with the druggability of synthetic molecules. PMID:23815186

  12. Absolute configuration of acremoxanthone C, a potent calmodulin inhibitor from Purpureocillium lilacinum

    USDA-ARS?s Scientific Manuscript database

    Bioassay-guided fractionation of an extract prepared from the culture medium and mycelium of Purpureocillium lilacinum allowed the isolation of two calmodulin (CaM) inhibitors, namely, acremoxanthone C (1) and acremonidin A (2). The absolute configuration of 1 was established as 2R, 3R, 1'S, 11'S, ...

  13. Antihistone Properties of C1 Esterase Inhibitor Protect against Lung Injury.

    PubMed

    Wygrecka, Malgorzata; Kosanovic, Djuro; Wujak, Lukasz; Reppe, Katrin; Henneke, Ingrid; Frey, Helena; Didiasova, Miroslava; Kwapiszewska, Grazyna; Marsh, Leigh M; Baal, Nelli; Hackstein, Holger; Zakrzewicz, Dariusz; Müller-Redetzky, Holger C; de Maat, Steven; Maas, Coen; Nolte, Marc W; Panousis, Con; Schermuly, Ralph T; Seeger, Werner; Witzenrath, Martin; Schaefer, Liliana; Markart, Philipp

    2017-07-15

    Acute respiratory distress syndrome is characterized by alveolar epithelial cell injury, edema formation, and intraalveolar contact phase activation. To explore whether C1 esterase inhibitor (C1INH), an endogenous inhibitor of the contact phase, may protect from lung injury in vivo and to decipher the possible underlying mechanisms mediating protection. The ability of C1INH to control the inflammatory processes was studied in vitro and in vivo. Here, we demonstrate that application of C1INH alleviates bleomycin-induced lung injury via direct interaction with extracellular histones. In vitro, C1INH was found to bind all histone types. Interaction with histones was independent of its protease inhibitory activity, as demonstrated by the use of reactive-center-cleaved C1INH, but dependent on its glycosylation status. C1INH sialylated-N- and -O-glycans were not only essential for its interaction with histones but also to protect against histone-induced cell death. In vivo, histone-C1INH complexes were detected in bronchoalveolar lavage fluid from patients with acute respiratory distress syndrome and multiple models of lung injury. Furthermore, reactive-center-cleaved C1INH attenuated pulmonary damage evoked by intravenous histone instillation. Collectively, C1INH administration provides a new therapeutic option for disorders associated with histone release.

  14. Influence of experimental subarachnoid hemorrhage on nicotine-induced contraction of the rat basilar artery in relation to arachidonic acid metabolites signaling pathway.

    PubMed

    Ji, Xu; Wang, Aimin; Trandafir, Cristina C; Kurahashi, Kazuyoshi

    2013-10-01

    Smoking is one of the most important risk factors for cerebral circulatory disorders. The purpose of this study was to investigate the influence of experimental subarachnoid hemorrhage (SAH) on nicotine-induced contraction (arachidonic acid metabolites) in the basilar arteries of rats. Rats were killed at 1 hour and 1 week after blood injection, and the basilar artery was isolated and cut into a spiral strip. Testing of cyclooxygenase-1 (COX-1) and 5-lipoxygenase (5-LOX) inhibitors revealed no significant differences in their effects on normal and SAH (1 hour and 1 week). Phospholipase C (PLC) inhibitor (1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17yl)amino)hexyl)-1H-pyrrole-2,5,-dione [U-73122]) slightly inhibited contraction of SAH (1 hour and 1 week) when compared to controls. Phospholipase A2 (PLA2) inhibitor (manoalide) and cytosolic PLA2 (cPLA2) inhibitor (arachidonyltrifluoromenthylketone [AACOCF3]) more strongly attenuated contraction in SAH (1 hour and 1 week) than in controls. Secreted PLA2 (sPLA2) inhibitor (indoxam), PLC inhibitor (2-nitro-4-carboxyphenyl N, N-diphenylcarbamate [NCDC]), and COX-2 inhibitors (nimesulide, (5-methanesulfonamido-6-(2,4-difluorothiophenyl)-1-indanone) [L-745337], and celecoxib) only slightly inhibited contraction of SAH (1 week) when compared to normal and SAH (1 hour). The calcium-independent PLA2 (iPLA2) inhibitor bromoenol lactone (BEL) showed greater inhibition of contraction in SAH (1 hour) when compared to normal and SAH (1 week). One week after exposure to SAH, PLC, sPLA2, and COX-2 activity were enhanced and cPLA2 activity was inhibited. One hour after exposure to SAH, PLC activity was enhanced and cPLA2 and iPLA2 activity was inhibited. Such changes of inflammatory arachidonic acid metabolites by smoking after SAH may play important roles in fatal cerebral circulatory disorders, suggesting important implications for the etiology and pathogenesis of SAH. Copyright © 2013 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  15. International consensus and practical guidelines on the gynecologic and obstetric management of female patients with hereditary angioedema caused by C1 inhibitor deficiency.

    PubMed

    Caballero, Teresa; Farkas, Henriette; Bouillet, Laurence; Bowen, Tom; Gompel, Anne; Fagerberg, Christina; Bjökander, Janne; Bork, Konrad; Bygum, Anette; Cicardi, Marco; de Carolis, Caterina; Frank, Michael; Gooi, Jimmy H C; Longhurst, Hilary; Martínez-Saguer, Inmaculada; Nielsen, Erik Waage; Obtulowitz, Krystina; Perricone, Roberto; Prior, Nieves

    2012-02-01

    There are a limited number of publications on the management of gynecologic/obstetric events in female patients with hereditary angioedema caused by C1 inhibitor deficiency (HAE-C1-INH). We sought to elaborate guidelines for optimizing the management of gynecologic/obstetric events in female patients with HAE-C1-INH. A roundtable discussion took place at the 6th C1 Inhibitor Deficiency Workshop (May 2009, Budapest, Hungary). A review of related literature in English was performed. Contraception: Estrogens should be avoided. Barrier methods, intrauterine devices, and progestins can be used. Pregnancy: Attenuated androgens are contraindicated and should be discontinued before attempting conception. Plasma-derived human C1 inhibitor concentrate (pdhC1INH) is preferred for acute treatment, short-term prophylaxis, or long-term prophylaxis. Tranexamic acid or virally inactivated fresh frozen plasma can be used for long-term prophylaxis if human plasma-derived C1-INH is not available. No safety data are available on icatibant, ecallantide, or recombinant human C1-INH (rhC1INH). Parturition: Complications during vaginal delivery are rare. Prophylaxis before labor and delivery might not be clinically indicated, but pdhC1INH therapeutic doses (20 U/kg) should be available. Nevertheless, each case should be treated based on HAE-C1-INH symptoms during pregnancy and previous labors. pdhC1INH prophylaxis is advised before forceps or vacuum extraction or cesarean section. Regional anesthesia is preferred to endotracheal intubation. Breast cancer: Attenuated androgens should be avoided. Antiestrogens can worsen angioedema symptoms. In these cases anastrozole might be an alternative. Other issues addressed include special features of HAE-C1-INH treatment in female patients, genetic counseling, infertility, abortion, lactation, menopause treatment, and endometrial cancer. A consensus for the management of female patients with HAE-C1-INH is presented. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  16. Photo-Initiated Electron Transfer Within the P. denitrificans Cytochrome bc1 Complex: The mobility of the Iron Sulfur Protein is modulated by the occupant of the Qo site†

    PubMed Central

    Havens, Jeffrey; Castellani, Michela; Kleinschroth, Thomas; Ludwig, Bernd; Durham, Bill; Millett, Francis

    2011-01-01

    Domain rotation of the Rieske iron-sulfur protein (ISP) between the cytochrome (cyt) b and cyt c1 redox centers plays a key role in the mechanism of the cyt bc1 complex. Electron transfer within the cyt bc1 complex of P. denitrificans was studied using a ruthenium dimer to rapidly photo-oxidize cyt c1 within 1 μs and initiate the reaction. In the absence of any added quinol or inhibitor of the bc1 complex at pH 8.0, electron transfer from reduced ISP to cyt c1 was biphasic with rate constants of k1f = 6300 ± 3000 s−1 and k1s = 640 ± 300 s−1 and amplitudes of 10 ± 3% and 16 ± 4 % of the total amount of cyt c1 photooxidized. Upon addition of any of the Pm type inhibitors MOA-stilbene, myxothiazol, or azoxystrobin to cyt bc1 in the absence of quinol, the total amplitude increased 2-fold, consistent with a decrease in redox potential of the ISP. In addition, the relative amplitude of the fast phase increased significantly, consistent with a change in the dynamics of the ISP domain rotation. In contrast, addition of the Pf type inhibitors JG-144 and famoxadone decreased the rate constant k1f by 5 to 10-fold, and increased the amplitude over 2-fold. Addition of quinol substrate in the absence of inhibitors led to a two-fold increase in the amplitude of the k1f phase. The effect of QH2 on the kinetics of electron transfer from reduced ISP to cyt c1 was thus similar to that of the Pm inhibitors and very different from that of the Pf inhibitors. The current results indicate that the species occupying the Qo site has a significant conformational influence on the dynamics of the ISP domain rotation. PMID:22026826

  17. Newly developed glycogen synthase kinase-3 (GSK-3) inhibitors protect neuronal cells death in amyloid-beta induced cell model and in a transgenic mouse model of Alzheimer's disease.

    PubMed

    Noh, Min-Young; Chun, Kwangwoo; Kang, Byung Yong; Kim, Heejaung; Park, Ji-Seon; Lee, Han-Chang; Kim, Young-Ha; Ku, Saekwang; Kim, Seung Hyun

    2013-05-31

    Glycogen synthase kinase-3 (GSK-3) is emerging as a prominent therapeutic target of Alzheimer's disease (AD). A number of studies have been undertaken to develop GSK-3 inhibitors for clinical use. We report two novel GSK-3 inhibitors (C-7a and C-7b) showing good activity and pharmacokinetic (PK) profiles. IC50 of new GSK-3 inhibitors were in the range of 120-130 nM, and they effectively reduced the Aβ-oligomers induced neuronal toxicity. Also, new GSK-3 inhibitors decreased the phosphorylated tau at pThr231, pSer396, pThr181, and pSer202, and inhibited the GSK-3 activity against Aβ-oligomers induced neuronal cell toxicity. In B6;129-Psen1(tm1Mpm) Tg(APPSwe, tauP301L)1Lfa/Mmjax model of AD, oral administration of C-7a (20 mg/kg, 50 mg/kg) showed increased total arm entries and spontaneous alteration of Y-maze which was regarded as short-term memory. In particular, 50 mg/kg C-7a treated mice significantly decreased the level of phosphorylated tau (Ser396) in brain hippocampus. We suggest that new GSK-3 inhibitor (C-7a) is potential candidates for the treatment of AD. Copyright © 2013 The Author. Published by Elsevier Inc. All rights reserved.

  18. Design and synthesis of sulfonamide-substituted diphenylpyrimidines (SFA-DPPYs) as potent Bruton's tyrosine kinase (BTK) inhibitors with improved activity toward B-cell lymphoblastic leukemia.

    PubMed

    Liu, He; Qu, Menghua; Xu, Lina; Han, Xu; Wang, Changyuan; Shu, Xiaohong; Yao, Jihong; Liu, Kexin; Peng, Jinyong; Li, Yanxia; Ma, Xiaodong

    2017-07-28

    A new series of diphenylpyrimidine derivatives (SFA-DPPYs) were synthesized by introducing a functional sulfonamide into the C-2 aniline moiety of pyrimidine template, and then were biologically evaluated as potent Bruton's tyrosine kinase (BTK) inhibitors. Among these molecules, inhibitors 10c, 10i, 10j and 10k displayed high potency against the BTK enzyme, with IC 50 values of 1.18 nM, 0.92 nM, 0.42 nM and 1.05 nM, respectively. In particular, compound 10c could remarkably inhibit the proliferation of the B lymphoma cell lines at concentrations of 6.49 μM (Ramos cells) and 13.2 μM (Raji cells), and was stronger than the novel agent spebrutinib. In addition, the inhibitory potency toward the normal PBMC cells showed that inhibitor 10c possesses low cell cytotoxicity. All these explorations indicated that molecule 10c could serve as a valuable inhibitor for B-cell lymphoblastic leukemia treatment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication.

    PubMed

    Mukherjee, Sourav; Weiner, Warren S; Schroeder, Chad E; Simpson, Denise S; Hanson, Alicia M; Sweeney, Noreena L; Marvin, Rachel K; Ndjomou, Jean; Kolli, Rajesh; Isailovic, Dragan; Schoenen, Frank J; Frick, David N

    2014-10-17

    The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 μM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 μM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure-activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines.

  20. Epoxyethylglycyl peptides as inhibitors of oligosaccharyltransferase: double-labelling of the active site.

    PubMed

    Bause, E; Wesemann, M; Bartoschek, A; Breuer, W

    1997-02-15

    Pig liver oligosaccharyltransferase (OST) is inactivated irreversibly by a hexapeptide in which threonine has been substituted by epoxyethylglycine in the Asn-Xaa-Thr glycosylation triplet. Incubation of the enzyme in the presence of Dol-PP-linked [14C]oligosaccharides and the N-3,5-dinitrobenzoylated epoxy derivative leads to the double-labelling of two subunits (48 and 66 kDa) of the oligomeric OST complex, both of which are involved in the catalytic activity. Labelling of both subunits was blocked competitively by the acceptor peptide N-benzoyl-Asu-Gly-Thr-NHCH3 and by the OST inhibitor N-benzoyl-alpha,gamma-diaminobutyric acid-Gly-Thr-NHCH3, but not by an analogue derived from the epoxy-inhibitor by replacing asparagine with glutamine. Our data clearly show that double-labelling is an active-site-directed modification, involving inhibitor glycosylation at asparagine and covalent attachment of the glycosylated inhibitor, via the epoxy group, to the enzyme. Double-labelling of OST can occur as the result of either a consecutive or a syn-catalytic reaction sequence. The latter mechanism, during the course of which OST catalyses its own 'suicide' inactivation, is more likely, as suggested by indirect experimental evidence. The syn-catalytic mechanism corresponds with our current view of the functional role of the acceptor site Thr/Ser acting as a hydrogen-bond acceptor, not a donor, during transglycosylation.

  1. Covalent Allosteric Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) by an Inhibitor-Electrophile Conjugate.

    PubMed

    Punthasee, Puminan; Laciak, Adrian R; Cummings, Andrea H; Ruddraraju, Kasi Viswanatharaju; Lewis, Sarah M; Hillebrand, Roman; Singh, Harkewal; Tanner, John J; Gates, Kent S

    2017-04-11

    Protein tyrosine phosphatase 1B (PTP1B) is a validated drug target, but it has proven difficult to develop medicinally useful, reversible inhibitors of this enzyme. Here we explored covalent strategies for the inactivation of PTP1B using a conjugate composed of an active site-directed 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxide inhibitor connected via a short linker to an electrophilic α-bromoacetamide moiety. Inhibitor-electrophile conjugate 5a caused time-dependent loss of PTP1B activity consistent with a covalent inactivation mechanism. The inactivation occurred with a second-order rate constant of (1.7 ± 0.3) × 10 2 M -1 min -1 . Mass spectrometric analysis of the inactivated enzyme indicated that the primary site of modification was C121, a residue distant from the active site. Previous work provided evidence that covalent modification of the allosteric residue C121 can cause inactivation of PTP1B [Hansen, S. K., Cancilla, M. T., Shiau, T. P., Kung, J., Chen, T., and Erlanson, D. A. (2005) Biochemistry 44, 7704-7712]. Overall, our results are consistent with an unusual enzyme inactivation process in which noncovalent binding of the inhibitor-electrophile conjugate to the active site of PTP1B protects the nucleophilic catalytic C215 residue from covalent modification, thus allowing inactivation of the enzyme via selective modification of allosteric residue C121.

  2. Effect of food additives on egg yolk gelation induced by freezing.

    PubMed

    Primacella, Monica; Fei, Tao; Acevedo, Nuria; Wang, Tong

    2018-10-15

    This study demonstrates technological advances in preventing yolk gelation during freezing and thawing. Gelation negatively affects yolk functionality in food formulation. Preventing gelation using 10% salt or sugar limits the application of the yolk. Novel food additives were tested to prevent gelation induced by freezing. Significant reduction (p < 0.05) in gel hardness of frozen-thawed yolk (45 h freezing at -20 °C) indicates that hydrolyzed carboxymethyl cellulose (HCMC), proline, and hydrolyzed egg white and yolk (HEW and HEY) are effective gelation inhibitors. The mechanisms in which these additives prevented gelation were further studied through measuring the changes in the amount of freezable water, lipoprotein particle size, and protein surface hydrophobicity. Overall, this study provides several alternatives of gelation inhibitor that have great potentials in replacing the use of salt or sugar in commercial operation of freezing egg yolk for shelf-life extension. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Pharmacodynamic effects of C-domain-specific ACE inhibitors on the renin-angiotensin system in myocardial infarcted rats.

    PubMed

    Sharp, Sarah; Poglitsch, Marko; Zilla, Peter; Davies, Neil H; Sturrock, Edward D

    2015-12-01

    The renin-angiotensin system (RAS) is a dynamic network that plays a critical role in blood pressure regulation and fluid and electrolyte homeostasis. Modulators of the RAS, such as angiotensin-converting enzyme (ACE) inhibitors, are widely used to treat hypertension, heart failure and myocardial infarction. The effect of ACE inhibitors (lisinopril and C-domain-selective LisW-S) on the constituent peptides of the RAS following myocardial infarction was examined in rats. Ten angiotensin peptides were analysed using a sensitive LC-MS/MS-based assay to examine both the circulating and equilibrium levels of these peptides. Administration of lisinopril or LisW-S caused a significant decrease in Ang 1-8/Ang 1-10 ratios as determined by circulating and equilibrium peptide level analysis. Furthermore, Ang 1-7 levels were elevated by both ACE inhibitors, but only lisinopril decreased the Ang 1-5/Ang 1-7 ratio. This indicates LisW-S C-domain specificity as Ang 1-5 is generated by hydrolysis of Ang 1-7 by the N-domain. Further corroboration of LisW-S C-domain specificity is that only lisinopril increased the circulating levels of the N-domain ACE substrate Ac-SDKP. LisW-S is able to effectively block ACE in vivo by C-domain-selective inhibition. The LC-MS/MS-based assay allows the evaluation of the pharmacologic impact of RAS inhibitors in different pathophysiological conditions. © The Author(s) 2015.

  4. The lectin pathway in renal disease: old concept and new insights.

    PubMed

    Gaya da Costa, Mariana; Poppelaars, Felix; Berger, Stefan P; Daha, Mohamed R; Seelen, Marc A

    2018-04-26

    The complement system is composed of a network of at least 40 proteins, which significantly contributes to health and disease. The lectin pathway (LP) is one of three pathways that can activate the complement system. Next to protection of the host against pathogens, the LP has been shown to play a crucial role in multiple renal diseases as well as during renal replacement therapy. Therefore, several complement-targeted drugs are currently being explored in clinical trials. Among these complement inhibitors, specific LP inhibitors are also being tested in renal abnormalities such as in immunoglobulin A nephropathy and lupus nephritis. Using various in vitro models, Yaseen et al. (Lectin pathway effector enzyme mannan-binding lectin-associated serine protease-2 can activate native complement component 3 (C3) in absence of C4 and/or C2. FASEB J 2017; 31: 2210-2219) showed that Mannan-associated serine protease2 can directly activate C3 thereby bypassing C2 and C4 in the activation of the LP. These new findings broaden our understanding of the mechanisms of complement activation and could potentially impact our strategies to inhibit the LP in renal diseases. In support of these findings, we present data of human renal biopsies, demonstrating the occurrence of the LP bypass mechanism in vivo. In conclusion, this review provides a detailed overview of the LP and clarifies the recently described bypass mechanism and its relevance. Finally, we speculate on the role of the C4 bypass mechanism in other renal diseases.

  5. Low doses of cyclic AMP-phosphodiesterase inhibitors rapidly evoke opioid receptor-mediated thermal hyperalgesia in naïve mice which is converted to prominent analgesia by cotreatment with ultra-low-dose naltrexone.

    PubMed

    Crain, Stanley M; Shen, Ke-Fei

    2008-09-22

    Systemic (s.c.) injection in naïve mice of cyclic AMP-phosphodiesterase (cAMP-PDE) inhibitors, e.g. 3-isobutyl-1-methylxanthine [(IBMX) or caffeine, 10 mg/kg] or the more specific cAMP-PDE inhibitor, rolipram (1 mug/kg), rapidly evokes thermal hyperalgesia (lasting >5 h). These effects appear to be mediated by enhanced excitatory opioid receptor signaling, as occurs during withdrawal in opioid-dependent mice. Cotreatment of these mice with ultra-low-dose naltrexone (NTX, 0.1 ng/kg-1 pg/kg, s.c.) results in prominent opioid analgesia (lasting >4 h) even when the dose of rolipram is reduced to 1 pg/kg. Cotreatment of these cAMP-PDE inhibitors in naïve mice with an ultra-low-dose (0.1 ng/kg) of the kappa-opioid receptor antagonist, nor-binaltorphimine (nor-BNI) or the mu-opioid receptor antagonist, beta-funaltrexamine (beta-FNA) also results in opioid analgesia. These excitatory effects of cAMP-PDE inhibitors in naïve mice may be mediated by enhanced release of small amounts of endogenous bimodally-acting (excitatory/inhibitory) opioid agonists by neurons in nociceptive networks. Ultra-low-dose NTX, nor-BNI or beta-FNA selectively antagonizes high-efficacy excitatory (hyperalgesic) Gs-coupled opioid receptor-mediated signaling in naïve mice and results in rapid conversion to inhibitory (analgesic) Gi/Go-coupled opioid receptor-mediated signaling which normally requires activation by much higher doses of opioid agonists. Cotreatment with a low subanalgesic dose of kelatorphan, an inhibitor of multiple endogenous opioid peptide-degrading enzymes, stabilizes endogenous opioid agonists released by cAMP-PDE inhibitors, resulting in conversion of the hyperalgesia to analgesia without requiring selective blockade of excitatory opioid receptor signaling. The present study provides a novel pharmacologic paradigm that may facilitate development of valuable non-narcotic clinical analgesics utilizing cotreatment with ultra-low-dose rolipram plus ultra-low-dose NTX or related agents.

  6. Alpha 1 antitrypsin to treat lung disease in alpha 1 antitrypsin deficiency: recent developments and clinical implications.

    PubMed

    Chapman, Kenneth R; Chorostowska-Wynimko, Joanna; Koczulla, A Rembert; Ferrarotti, Ilaria; McElvaney, Noel G

    2018-01-01

    Alpha 1 antitrypsin deficiency is a hereditary condition characterized by low alpha 1 proteinase inhibitor (also known as alpha 1 antitrypsin [AAT]) serum levels. Reduced levels of AAT allow abnormal degradation of lung tissue, which may ultimately lead to the development of early-onset emphysema. Intravenous infusion of AAT is the only therapeutic option that can be used to maintain levels above the protective threshold. Based on its biochemical efficacy, AAT replacement therapy was approved by the US Food and Drug administration in 1987. However, there remained considerable interest in selecting appropriate outcome measures that could confirm clinical efficacy in a randomized controlled trial setting. Using computed tomography as the primary measure of decline in lung density, the capacity for intravenously administered AAT replacement therapy to slow and modify the course of disease progression was demonstrated for the first time in the Randomized, Placebo-controlled Trial of Augmentation Therapy in Alpha-1 Proteinase Inhibitor Deficiency (RAPID) trial. Following these results, an expert review forum was held at the European Respiratory Society to discuss the findings of the RAPID trial program and how they may change the landscape of alpha 1 antitrypsin emphysema treatment. This review summarizes the results of the RAPID program and the implications for clinical considerations with respect to diagnosis, treatment and management of emphysema due to alpha 1 antitrypsin deficiency.

  7. Structural analysis of xylanase inhibitor protein I (XIP-I), a proteinaceous xylanase inhibitor from wheat (Triticum aestivum, var. Soisson).

    PubMed Central

    Payan, Françoise; Flatman, Ruth; Porciero, Sophie; Williamson, Gary; Juge, Nathalie; Roussel, Alain

    2003-01-01

    A novel class of proteinaceous inhibitors exhibiting specificity towards microbial xylanases has recently been discovered in cereals. The three-dimensional structure of xylanase inhibitor protein I (XIP-I) from wheat (Triticum aestivum, var. Soisson) was determined by X-ray crystallography at 1.8 A (1 A=0.1 nm) resolution. The inhibitor possesses a (beta/alpha)(8) barrel fold and has structural features typical of glycoside hydrolase family 18, namely two consensus regions, approximately corresponding to the third and fourth barrel strands, and two non-proline cis -peptide bonds, Ser(36)-Phe and Trp(256)-Asp (in XIP-I numbering). However, detailed structural analysis of XIP-I revealed several differences in the region homologous with the active site of chitinases. The catalytic glutamic acid residue of family 18 chitinases [Glu(127) in hevamine, a chitinase/lysozyme from the rubber tree (Hevea brasiliensis)] is conserved in the structure of the inhibitor (Glu(128)), but its side chain is fully engaged in salt bridges with two neighbouring arginine residues. Gly(81), located in subsite -1 of hevamine, where the reaction intermediate is formed, is replaced by Tyr(80) in XIP-I. The tyrosine side chain fills the subsite area and makes a strong hydrogen bond with the side chain of Glu(190) located at the opposite side of the cleft, preventing access of the substrate to the catalytic glutamic acid. The structural differences in the inhibitor cleft structure probably account for the lack of activity of XIP-I towards chitin. PMID:12617724

  8. Human trabecular meshwork cell volume decrease by NO-independent soluble guanylate cyclase activators YC-1 and BAY-58-2667 involves the BKCa ion channel.

    PubMed

    Dismuke, William M; Sharif, Najam A; Ellis, Dorette Z

    2009-07-01

    There is a correlation between cell volume changes and changes in the rate of aqueous humor outflow; agents that decrease trabecular meshwork (TM) cell volume increase the rate of aqueous humor outflow. This study investigated the effects of the nitric oxide (NO)-independent activators of soluble guanylate cyclase (sGC), YC-1, and BAY-58-2667 on TM cell volume and the signal transduction pathways and ion channel involved. Cell volume was measured with the use of calcein AM fluorescent dye, detected by confocal microscopy. Inhibitors and activators of sGC, 3',5'-cyclic guanosine monophosphate (cGMP), protein kinase G (PKG), and the BK(Ca) channel were used to characterize their involvement in the YC-1- and BAY-58-2667-induced regulation of TM cell volume. cGMP was assayed by an enzyme immunoassay. YC-1 (10 nM-200 microM) and BAY-58-2667 (10 nM-100 microM) each elicited a biphasic effect on TM cell volume. YC-1 (1 microM) increased TM cell volume, but higher concentrations decreased TM cell volume. Similarly, BAY-58-2667 (100 nM) increased TM cell volume, but higher concentrations decreased cell volume. The YC-1-induced cell volume decrease was mimicked by 8-Br-cGMP and abolished by the sGC inhibitor ODQ, the PKG inhibitor (RP)-8-Br-PET-cGMP-S, and the BK(Ca) channel inhibitor IBTX. The BAY-58-2667-induced cell volume decrease was mimicked by 8-Br-cGMP and was abolished by the PKG inhibitor and the BK(Ca) channel inhibitor. Unlike the YC-1 response, ODQ potentiated the BAY-58-2667-induced decreases in cell volume. These data suggest that the NO-independent decrease in TM cell volume is mediated by the sGC/cGMP/PKG pathway and involves K(+) efflux.

  9. Antiproteinuric therapy and fabry nephropathy: sustained reduction of proteinuria in patients receiving enzyme replacement therapy with agalsidase-beta.

    PubMed

    Tahir, Hindia; Jackson, Leslie L; Warnock, David G

    2007-09-01

    This report describes an open-label, nonrandomized, prospective evaluation of the effects of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker therapy on patients who have Fabry disease and also received enzyme replacement therapy with agalsidase-beta, given at 1 mg/kg body wt every 2 wk. Previous placebo-controlled phase III and phase IV trials with agalsidase-beta demonstrated clearing of globotriaosylceramide from vascular endothelia but little effect on proteinuria or progressive loss of kidney function in patients with Fabry disease and severe chronic kidney disease marked by overt proteinuria and/or estimated GFR <60 ml/min per 1.73 m2. Angiotensin-converting enzyme inhibitor and/or angiotensin receptor blocker therapy is the standard of care for patients with proteinuric kidney diseases, but their use is challenging in patients with Fabry disease and low or low-normal baseline systemic BP. A group of patients with Fabry disease were treated with antiproteinuric therapy, in conjunction with agalsidase-beta; sustained reductions in proteinuria with stabilization of kidney function were achieved in a group of six patients who had severe Fabry nephropathy; the progression rate was -0.23 +/- 1.12 ml/min per 1.73 m2 per yr with 30 mo of follow-up.

  10. The sequence and X-ray structure of the trypsin from Fusarium oxysporum.

    PubMed

    Rypniewski, W R; Hastrup, S; Betzel, C; Dauter, M; Dauter, Z; Papendorf, G; Branner, S; Wilson, K S

    1993-06-01

    The trypsin from Fusarium oxysporum is equally homologous to trypsins from Streptomyces griseus, Streptomyces erythraeus and to bovine trypsin. A DFP (diisopropylfluorophosphate) inhibited form of the enzyme has been crystallized from 1.4 M Na2SO4, buffered with citrate at pH 5.0-5.5. The crystals belong to space group P2(1) with cell parameters a = 33.43 A, b = 67.65 A, c = 39.85 A and beta = 107.6 degrees. There is one protein molecule in the asymmetric unit. X-ray diffraction data to a resolution of 1.8 A were collected on film using synchrotron radiation. The structure was solved by molecular replacement using models of bovine and S. griseus trypsins and refined to an R-factor of 0.141. The overall fold is similar to other trypsins, with some insertions and deletions. There is no evidence of the divalent cation binding sites seen in other trypsins. The covalently bound inhibitor molecule is clearly visible.

  11. Evaluation of six proton pump inhibitors as inhibitors of various human cytochromes P450: focus on cytochrome P450 2C19.

    PubMed

    Zvyaga, Tatyana; Chang, Shu-Ying; Chen, Cliff; Yang, Zheng; Vuppugalla, Ragini; Hurley, Jeremy; Thorndike, Denise; Wagner, Andrew; Chimalakonda, Anjaneya; Rodrigues, A David

    2012-09-01

    Six proton pump inhibitors (PPIs), omeprazole, lansoprazole, esomeprazole, dexlansoprazole, pantoprazole, and rabeprazole, were shown to be weak inhibitors of cytochromes P450 (CYP3A4, -2B6, -2D6, -2C9, -2C8, and -1A2) in human liver microsomes. In most cases, IC₅₀ values were greater than 40 μM, except for dexlansoprazole and lansoprazole with CYP1A2 (IC₅₀ = ∼8 μM) and esomeprazole with CYP2C8 (IC₅₀ = 31 μM). With the exception of CYP2C19 inhibition by omeprazole and esomeprazole (IC₅₀ ratio, 2.5 to 5.9), there was no evidence for a marked time-dependent shift in IC₅₀ (IC₅₀ ratio, ≤ 2) after a 30-min preincubation with NADPH. In the absence of preincubation, lansoprazole (IC₅₀ = 0.73 μM) and esomeprazole (IC₅₀ = 3.7 μM) were the most potent CYP2C19 inhibitors, followed by dexlansoprazole and omeprazole (IC₅₀ = ∼7.0 μM). Rabeprazole and pantoprazole (IC₅₀ = ≥ 25 μM) were the weakest. A similar ranking was obtained with recombinant CYP2C19. Despite the IC₅₀ ranking, after consideration of plasma levels (static and dynamic), protein binding, and metabolism-dependent inhibition, it is concluded that omeprazole and esomeprazole are the most potent CYP2C19 inhibitors. This was confirmed after the incubation of the individual PPIs with human primary hepatocytes (in the presence of human serum) and by monitoring their impact on diazepam N-demethylase activity at a low concentration of diazepam (2 μM). Data described herein are consistent with reports that PPIs are mostly weak inhibitors of cytochromes P450 in vivo. However, two members of the PPI class (esomeprazole and omeprazole) are more likely to serve as clinically relevant inhibitors of CYP2C19.

  12. Cyclic GMP-mediated memory enhancement in the object recognition test by inhibitors of phosphodiesterase-2 in mice.

    PubMed

    Lueptow, Lindsay M; Zhan, Chang-Guo; O'Donnell, James M

    2016-02-01

    Cyclic nucleotide phosphodiesterase-2 (PDE2) is a potential therapeutic target for the treatment of cognitive dysfunction. Using the object recognition test (ORT), this study assessed the effects of two PDE2 inhibitors, Bay 60-7550 and ND7001, on learning and memory, and examined underlying mechanisms. To assess the role of PDE2 inhibition on phases of memory, Bay 60-7550 (3 mg/kg) was administered: 30 min prior to training; 0, 1, or 3 h after training; or 30 min prior to recall testing. To assess cyclic nucleotide involvement in PDE2 inhibitor-enhanced memory consolidation, either the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg; intraperitoneal (IP)), soluble guanylyl cyclase inhibitor 1H-[-1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ; 20 mg/kg; IP), protein kinase G inhibitor KT5823 (2.5 μg; intracerebroventricular (ICV)), or protein kinase A inhibitor H89 (1 μg; ICV) was administered 30 min prior to the PDE2 inhibitor Bay 60-7550 (3 mg/kg) or ND7001 (3 mg/kg). Changes in the phosphorylation of 3'5'-cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) at Ser-133 and vasodilator-stimulated phosphoprotein (VASP) at Ser-239 were determined to confirm activation of cAMP and 3'5'-cyclic guanosine monophosphate (cGMP) signaling. Bay 60-7550 (3 mg/kg) enhanced memory of mice in the ORT when given 30 min prior to training, immediately after training, or 30 min prior to recall. Inhibitors of the cGMP pathway blocked the memory-enhancing effects of both Bay 60-7550 (3 mg/kg) and ND7001 (3 mg/kg) on early consolidation processes. Bay 60-7550 (3 mg/kg) enhanced phosphorylation of CREB and VASP, both targets of cGMP-dependent protein kinase (PKG). These results confirm a potential of PDE2, or components of its signaling pathway, as a therapeutic target for drug discovery focused on restoring memory function.

  13. HDAC inhibitors enhance neratinib activity and when combined enhance the actions of an anti-PD-1 immunomodulatory antibody in vivo.

    PubMed

    Booth, Laurence; Roberts, Jane L; Poklepovic, Andrew; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Dent, Paul

    2017-10-27

    Patients whose NSCLC tumors become afatinib resistant presently have few effective therapeutic options to extend their survival. Afatinib resistant NSCLC cells were sensitive to clinically relevant concentrations of the irreversible pan-HER inhibitor neratinib, but not by the first generation ERBB1/2/4 inhibitor lapatinib. In multiple afatinib resistant NSCLC clones, HDAC inhibitors reduced the expression of ERBB1/3/4, but activated c-SRC, which resulted in higher total levels of ERBB1/3 phosphorylation. Neratinib also rapidly reduced the expression of ERBB1/2/3/4, c-MET and of mutant K-/N-RAS; K-RAS co-localized with phosphorylated ATG13 and with cathepsin B in vesicles. Combined exposure of cells to [neratinib + HDAC inhibitors] caused inactivation of mTORC1 and mTORC2, enhanced autophagosome and subsequently autolysosome formation, and caused an additive to greater than additive induction of cell death. Knock down of Beclin1 or ATG5 prevented HDAC inhibitors or neratinib from reducing ERBB1/3/4 and K-/N-RAS expression and reduced [neratinib + HDAC inhibitor] lethality. Neratinib and HDAC inhibitors reduced the expression of multiple HDAC proteins via autophagy that was causal in the reduced expression of PD-L1, PD-L2 and ornithine decarboxylase, and increased expression of Class I MHCA. In vivo , neratinib and HDAC inhibitors interacted to suppress the growth of 4T1 mammary tumors, an effect that was enhanced by an anti-PD-1 antibody. Our data support the premises that neratinib lethality can be enhanced by HDAC inhibitors, that neratinib may be a useful therapeutic tool in afatinib resistant NSCLC, and that [neratinib + HDAC inhibitor] exposure facilitates anti-tumor immune responses.

  14. HDAC inhibitors enhance neratinib activity and when combined enhance the actions of an anti-PD-1 immunomodulatory antibody in vivo

    PubMed Central

    Booth, Laurence; Roberts, Jane L.; Poklepovic, Andrew; Avogadri-Connors, Francesca; Cutler, Richard E.; Lalani, Alshad S.; Dent, Paul

    2017-01-01

    Patients whose NSCLC tumors become afatinib resistant presently have few effective therapeutic options to extend their survival. Afatinib resistant NSCLC cells were sensitive to clinically relevant concentrations of the irreversible pan-HER inhibitor neratinib, but not by the first generation ERBB1/2/4 inhibitor lapatinib. In multiple afatinib resistant NSCLC clones, HDAC inhibitors reduced the expression of ERBB1/3/4, but activated c-SRC, which resulted in higher total levels of ERBB1/3 phosphorylation. Neratinib also rapidly reduced the expression of ERBB1/2/3/4, c-MET and of mutant K-/N-RAS; K-RAS co-localized with phosphorylated ATG13 and with cathepsin B in vesicles. Combined exposure of cells to [neratinib + HDAC inhibitors] caused inactivation of mTORC1 and mTORC2, enhanced autophagosome and subsequently autolysosome formation, and caused an additive to greater than additive induction of cell death. Knock down of Beclin1 or ATG5 prevented HDAC inhibitors or neratinib from reducing ERBB1/3/4 and K-/N-RAS expression and reduced [neratinib + HDAC inhibitor] lethality. Neratinib and HDAC inhibitors reduced the expression of multiple HDAC proteins via autophagy that was causal in the reduced expression of PD-L1, PD-L2 and ornithine decarboxylase, and increased expression of Class I MHCA. In vivo, neratinib and HDAC inhibitors interacted to suppress the growth of 4T1 mammary tumors, an effect that was enhanced by an anti-PD-1 antibody. Our data support the premises that neratinib lethality can be enhanced by HDAC inhibitors, that neratinib may be a useful therapeutic tool in afatinib resistant NSCLC, and that [neratinib + HDAC inhibitor] exposure facilitates anti-tumor immune responses. PMID:29163826

  15. Targeting Type 2 Diabetes with C-Glucosyl Dihydrochalcones as Selective Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: Synthesis and Biological Evaluation.

    PubMed

    Jesus, Ana R; Vila-Viçosa, Diogo; Machuqueiro, Miguel; Marques, Ana P; Dore, Timothy M; Rauter, Amélia P

    2017-01-26

    Inhibiting glucose reabsorption by sodium glucose co-transporter proteins (SGLTs) in the kidneys is a relatively new strategy for treating type 2 diabetes. Selective inhibition of SGLT2 over SGLT1 is critical for minimizing adverse side effects associated with SGLT1 inhibition. A library of C-glucosyl dihydrochalcones and their dihydrochalcone and chalcone precursors was synthesized and tested as SGLT1/SGLT2 inhibitors using a cell-based fluorescence assay of glucose uptake. The most potent inhibitors of SGLT2 (IC 50 = 9-23 nM) were considerably weaker inhibitors of SGLT1 (IC 50 = 10-19 μM). They showed no effect on the sodium independent GLUT family of glucose transporters, and the most potent ones were not acutely toxic to cultured cells. The interaction of a C-glucosyl dihydrochalcone with a POPC membrane was modeled computationally, providing evidence that it is not a pan-assay interference compound. These results point toward the discovery of structures that are potent and highly selective inhibitors of SGLT2.

  16. Fastener corrosion : testing, research, and design considerations

    Treesearch

    Douglas R. Rammer; Samuel L. Zelinka; Philip Line

    2006-01-01

    In 2004, the voluntary removal of chromated copper arsenate (CCA) from residential wood construction raised concern about corrosion of metal fasteners in wood treated with replacement preservatives. Replacement preservatives contain more copper, which may increase corrosion, and do not contain chromates or arsenates, which are known corrosion inhibitors. This paper is...

  17. Synthesis and evaluation of "AZT-HEPT", "AZT-pyridinone", and "ddC-HEPT" conjugates as inhibitors of HIV reverse transcriptase.

    PubMed

    Pontikis, R; Dollé, V; Guillaumel, J; Dechaux, E; Note, R; Nguyen, C H; Legraverend, M; Bisagni, E; Aubertin, A M; Grierson, D S; Monneret, C

    2000-05-18

    To test the concept that HIV reverse transcriptase could be effectively inhibited by "mixed site inhibitors", a series of seven conjugates containing both a nucleoside analogue component (AZT 1, ddC 2) and a nonnucleoside type inhibitor (HEPT analogue 12, pyridinone 27) were synthesized and evaluated for their ability to block HIV replication. The (N-3 and C-5)AZT-HEPT conjugates 15, 22, and 23 displayed 2-5 microM anti-HIV activity, but they had no effect on the replication of HIV-2 or the HIV-1 strain with the Y181C mutation. The (C-5)AZT-pyridinone conjugates 34-37 were found to be inactive. In marked contrast, the ddC-HEPT molecule 26 displayed the same potency (EC(50) = 0.45 microM) against HIV-1 (wild type and the Y181C nevirapine-resistant strain) and HIV-2 in cell culture. No synergistic effect was observed for these bis-substrate inhibitors, suggesting that the two individual inhibitor components in these molecules do not bind simultaneously in their respective sites. Interestingly, however, the results indicate that the AZT-HEPT conjugates and the ddC-HEPT derivative 26 inhibit reverse transcriptase (RT) in an opposite manner. One explanation for this difference is that the former compounds interact preferentially with the hydrophobic pocket in RT, whereas 26 (after supposed triphosphorylation) inhibits RT through binding in the catalytic site.

  18. Frequent life-threatening laryngeal attacks in two Croatian families with hereditary angioedema due to C1 inhibitor deficiency harbouring a novel frameshift mutation in SERPING1.

    PubMed

    Karadža-Lapić, Ljerka; Korošec, Peter; Šilar, Mira; Košnik, Mitja; Cikojević, Draško; Lozić, Bernarda; Rijavec, Matija

    2016-11-01

    Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare autosomal dominant disease caused by mutations in the SERPING1 gene. It can affect many regions in the body, but potentially life-threatening laryngeal oedemas are of concern. Twenty-three subjects from two families were recruited for clinical data evaluation and molecular analysis at General Hospital Šibenik, Croatia. Decreased levels of C1 inhibitor were detected in 12 adult patients and three young asymptomatic persons. The same novel deletion of two nucleotides on exon 3 (c.74_75delAT) was identified in all of them. A history of laryngeal oedema was present in 10 patients (83%), and all patients reported laryngeal attacks at least once a year. The delay in diagnosis decreased noticeably from the first to the last generation. We identified a novel causative mutation in SERPING1 in several affected members of two apparently unrelated families with a high frequency of laryngeal oedema. Molecular analysis of large C1-INH-HAE families will provide new insights on the genotype-phenotype relationship. Key messages Hereditary angioedema due to C1 inhibitor deficiency is a rare autosomal dominant disease caused by mutations in the SERPING1 gene, and laryngeal oedema is of concern because it can cause death by asphyxiation. A novel causative mutation in SERPING1, a deletion of two nucleotides on exon 3 (c.74_75delAT), was identified in several affected members of two apparently unrelated families with a high frequency of laryngeal oedema. Molecular analysis of large C1-INH-HAE families will provide new insights on the genotype-phenotype relationship because it appears that the mutation type may affect disease severity.

  19. Recombinant yeast screen for new inhibitors of human acetyl-CoA carboxylase 2 identifies potential drugs to treat obesity

    PubMed Central

    Marjanovic, Jasmina; Chalupska, Dominika; Patenode, Caroline; Coster, Adam; Arnold, Evan; Ye, Alice; Anesi, George; Lu, Ying; Okun, Ilya; Tkachenko, Sergey; Haselkorn, Robert; Gornicki, Piotr

    2010-01-01

    Acetyl-CoA carboxylase (ACC) is a key enzyme of fatty acid metabolism with multiple isozymes often expressed in different eukaryotic cellular compartments. ACC-made malonyl-CoA serves as a precursor for fatty acids; it also regulates fatty acid oxidation and feeding behavior in animals. ACC provides an important target for new drugs to treat human diseases. We have developed an inexpensive nonradioactive high-throughput screening system to identify new ACC inhibitors. The screen uses yeast gene-replacement strains depending for growth on cloned human ACC1 and ACC2. In “proof of concept” experiments, growth of such strains was inhibited by compounds known to target human ACCs. The screen is sensitive and robust. Medium-size chemical libraries yielded new specific inhibitors of human ACC2. The target of the best of these inhibitors was confirmed with in vitro enzymatic assays. This compound is a new drug chemotype inhibiting human ACC2 with 2.8 μM IC50 and having no effect on human ACC1 at 100 μM. PMID:20439761

  20. A novel subtilase inhibitor in plants shows structural and functional similarities to protease propeptides.

    PubMed

    Hohl, Mathias; Stintzi, Annick; Schaller, Andreas

    2017-04-14

    The propeptides of subtilisin-like serine proteinases (subtilases, SBTs) serve dual functions as intramolecular chaperones that are required for enzyme folding and as inhibitors of the mature proteases. SBT propeptides are homologous to the I9 family of protease inhibitors that have only been described in fungi. Here we report the identification and characterization of subtilisin propeptide-like inhibitor 1 (SPI-1) from Arabidopsis thaliana Sequence similarity and the shared β-α-β-β-α-β core structure identified SPI-1 as a member of the I9 inhibitor family and as the first independent I9 inhibitor in higher eukaryotes. SPI-1 was characterized as a high-affinity, tight-binding inhibitor of Arabidopsis subtilase SBT4.13 with K d and K i values in the picomolar range. SPI-1 acted as a stable inhibitor of SBT4.13 over the physiologically relevant range of pH, and its inhibitory profile included many other SBTs from plants but not bovine chymotrypsin or bacterial subtilisin A. Upon binding to SBT4.13, the C-terminal extension of SPI-1 was proteolytically cleaved. The last four amino acids at the newly formed C terminus of SPI-1 matched both the cleavage specificity of SBT4.13 and the consensus sequence of Arabidopsis SBTs at the junction of the propeptide with the catalytic domain. The data suggest that the C terminus of SPI-1 acts as a competitive inhibitor of target proteases as it remains bound to the active site in a product-like manner. SPI-1 thus resembles SBT propeptides with respect to its mode of protease inhibition. However, in contrast to SBT propeptides, SPI-1 could not substitute as a folding assistant for SBT4.13. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Discovery of an Orally Bioavailable Benzimidazole Diacylglycerol Acyltransferase 1 (DGAT1) Inhibitor That Suppresses Body Weight Gain in Diet-Induced Obese Dogs and Postprandial Triglycerides in Humans.

    PubMed

    Nakajima, Katsumasa; Chatelain, Ricardo; Clairmont, Kevin B; Commerford, Renee; Coppola, Gary M; Daniels, Thomas; Forster, Cornelia J; Gilmore, Thomas A; Gong, Yongjin; Jain, Monish; Kanter, Aaron; Kwak, Youngshin; Li, Jingzhou; Meyers, Charles D; Neubert, Alan D; Szklennik, Paul; Tedesco, Vivienne; Thompson, James; Truong, David; Yang, Qing; Hubbard, Brian K; Serrano-Wu, Michael H

    2017-06-08

    Modification of a gut restricted class of benzimidazole DGAT1 inhibitor 1 led to 9 with good oral bioavailability. The key structural changes to 1 include bioisosteric replacement of the amide with oxadiazole and α,α-dimethylation of the carboxylic acid, improving DGAT1 potency and gut permeability. Since DGAT1 is expressed in the small intestine, both 1 and 9 can suppress postprandial triglycerides during acute oral lipid challenges in rats and dogs. Interestingly, only 9 was found to be effective in suppressing body weight gain relative to control in a diet-induced obese dog model, suggesting the importance of systemic inhibition of DGAT1 for body weight control. 9 has advanced to clinical investigation and successfully suppressed postprandial triglycerides during an acute meal challenge in humans.

  2. The effect of peptidase inhibitors on bradykinin-induced bronchoconstriction in guinea-pigs in vivo.

    PubMed Central

    Ichinose, M.; Barnes, P. J.

    1990-01-01

    1. Bradykinin (BK) instilled directly into the airway lumen caused bronchoconstriction in anaesthetized, mechanically ventilated guinea-pigs in the presence of propranolol (1 mg kg-1 i.v.). The geometric mean dose of BK required to produce 100% increase in airway opening pressure (PD100) was 22.9 nmol (95% c.i. 11.7-44.6 nmol). 2. The dose-response curve for the effect of instilled BK was significantly shifted to the left by the angiotensin converting enzyme (ACE) inhibitor, captopril (5 and 50 nmol instillation, PD100 = 3.0, 95% c.i. 0.98-8.9, and 2.0 nmol, 95% c.i. 0.65-6.2 nmol, respectively). 3. The neutral endopeptidase (NEP) inhibitor, phosphoramidon (5 and 50 nmol instillation) also shifted the dose-response curve for the effect of instilled BK; the PD100 values = 2.2 (95% c.i. 0.40-11.7) and 1.8 nmol (95% c.i. 0.87-3.5 nmol), respectively. 4. After pretreatment with captopril (50 nmol) and phosphoramidon (50 nmol) in combination, the dose-response curve for the effect of instilled BK (PD100 = 1.1 nmol, 95% c.i. 0.37-3.2 nmol) was similar to that obtained in the presence of each inhibitor used alone. 5. The kinase I inhibitor, DL-2-mercaptomethyl-3-guanidinoethylthiopropionic acid (50 nmol instillation) failed to alter the dose-response curve to instilled BK (PD100 = 14.6 nmol, 95% c.i. 6.7-32.0 nmol). 6. These data suggest that both ACE and NEP degrade BK in the airway lumen, but that kininase I is not involved. PMID:2282470

  3. Synthesis and SAR of piperazine amides as novel c-jun N-terminal kinase (JNK) inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Youseung; Chen, Weiming; Habel, Jeff

    2009-09-14

    A novel series of c-jun N-terminal kinase (JNK) inhibitors were designed and developed from a high-throughput-screening hit. Through the optimization of the piperazine amide 1, several potent compounds were discovered. The X-ray crystal structure of 4g showed a unique binding mode different from other well known JNK3 inhibitors.

  4. Synthesis of betulinic acid derivatives as entry inhibitors against HIV-1 and bevirimat-resistant HIV-1 variants.

    PubMed

    Dang, Zhao; Qian, Keduo; Ho, Phong; Zhu, Lei; Lee, Kuo-Hsiung; Huang, Li; Chen, Chin-Ho

    2012-08-15

    Betulinic acid derivatives modified at the C28 position are HIV-1entry inhibitors such as compound A43D; however, modified at the C3 position instead of C28 give HIV-1 maturation inhibitor such as bevirimat. Bevirimat exhibited promising pharmacokinetic profiles in clinical trials, but its effectiveness was compromised by the high baseline drug resistance of HIV-1 variants with polymorphism in the putative drug binding site. In an effort to determine whether the viruses with bevirimat resistant polymorphism also altered their sensitivities to the betulinic acid derivatives that inhibit HIV-1 entry, a series of new betulinic acid entry inhibitors were synthesized and tested for their activities against HIV-1 NL4-3 and NL4-3 variants resistant to bevirimat. The results show that the bevirimat resistant viruses were approximately 5- to10-fold more sensitive to three new glutamine ester derivatives (13, 15 and 38) and A43D in an HIV-1 multi-cycle replication assay. In contrast, the wild type NL4-3 and the bevirimat resistant variants were equally sensitive to the HIV-1 RT inhibitor AZT. In addition, these three new compounds markedly improved microsomal stability compared to A43D. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Quazi Sohel; Department of Biochemistry, School of Medicine, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215; Ulziikhishig, Enkhbaatar

    We recently reported that the glutathione transferase in rat liver mitochondrial membranes (mtMGST1) is activated by S-glutathionylation and the activated mtMGST1 contributes to the mitochondrial permeability transition (MPT) pore and cytochrome c release from mitochondria [Lee, K.K., Shimoji, M., Quazi, S.H., Sunakawa, H., Aniya, Y., 2008. Novel function of glutathione transferase in rat liver mitochondrial membrane: role for cytochrome c release from mitochondria. Toxcol. Appl. Pharmacol. 232, 109-118]. In the present study we investigated the effect of reactive oxygen species (ROS), generator gallic acid (GA) and GST inhibitors on mtMGST1 and the MPT. When rat liver mitochondria were incubated withmore » GA, mtMGST1 activity was increased to about 3 fold and the increase was inhibited with antioxidant enzymes and singlet oxygen quenchers including 1,4-diazabicyclo [2,2,2] octane (DABCO). GA-mediated mtMGST1 activation was prevented by GST inhibitors such as tannic acid, hematin, and cibacron blue and also by cyclosporin A (CsA). In addition, GA induced the mitochondrial swelling which was also inhibited by GST inhibitors, but not by MPT inhibitors CsA, ADP, and bongkrekic acid. GA also released cytochrome c from the mitochondria which was inhibited completely by DABCO, moderately by GST inhibitors, and somewhat by CsA. Ca{sup 2+}-mediated mitochondrial swelling and cytochrome c release were inhibited by MPT inhibitors but not by GST inhibitors. When the outer mitochondrial membrane was isolated after treatment of mitochondria with GA, mtMGST1 activity was markedly increased and oligomer/aggregate of mtMGST1 was observed. These results indicate that mtMGST1 in the outer mitochondrial membrane is activated by GA through thiol oxidation leading to protein oligomerization/aggregation, which may contribute to the formation of ROS-mediated, CsA-insensitive MPT pore, suggesting a novel mechanism for regulation of the MPT by mtMGST1.« less

  6. Piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine as orally-active adhesion molecule inhibitors.

    PubMed

    Kaneko, Toshihiko; Clark, Richard S J; Ohi, Norihito; Ozaki, Fumihiro; Kawahara, Tetsuya; Kamada, Atsushi; Okano, Kazuo; Yokohama, Hiromitsu; Ohkuro, Masayoshi; Muramoto, Kenzo; Takenaka, Osamu; Kobayashi, Seiichi

    2004-06-01

    Novel piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine were prepared and evaluated for their inhibitory activity on the upregulation of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1). Replacement of the methanesulfonyl group on the piperidine ring of previously prepared derivatives with a carboxylic acid-containing moiety resulted in a number of potent adhesion molecule inhibitors. Of these, (anti) [3-(10H-pyrazino[2,3-b][1,4]benzothiazin-8-yl)methyl-3-azabicyclo[3.3.1]non-9-yl]acetic acid 2q (ER-49890), showed the most potent oral inhibitory activities against neutrophil migration in an interleukin-1 (IL-1) induced paw inflammation model using mice, and leukocyte accumulation in a carrageenan pleurisy model in the rat, and therapeutic effect on collagen-induced arthritis in rats.

  7. Anxiolytic effects of phosphodiesterase-2 inhibitors associated with increased cGMP signaling.

    PubMed

    Masood, Anbrin; Huang, Ying; Hajjhussein, Hassan; Xiao, Lan; Li, Hao; Wang, Wei; Hamza, Adel; Zhan, Chang-Guo; O'Donnell, James M

    2009-11-01

    Phosphodiesterase (PDE)-2 is a component of the nitric-oxide synthase (NOS)/guanylyl cyclase signaling pathway in the brain. Given recent evidence that pharmacologically induced changes in NO-cGMP signaling can affect anxiety-related behaviors, the effects of the PDE2 inhibitors (2-(3,4-dimethoxybenzyl)-7-det-5-methylimidazo-[5,1-f][1,2,4]triazin-4(3H)-one) (Bay 60-7550) and 3-(8-methoxy-1-methyl-2-oxo-7-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-5-yl)benzamide (ND7001), as well as modulators of NO, were assessed on cGMP signaling in neurons and on the behavior of mice in the elevated plus-maze, hole-board, and open-field tests, well established procedures for the evaluation of anxiolytics. Bay 60-7550 (1 microM) and ND7001 (10 microM) increased basal and N-methyl-d-aspartate- or detanonoate-stimulated cGMP in primary cultures of rat cerebral cortical neurons; Bay 60-7550, but not ND7001, also increased cAMP. Increased cGMP signaling, either by administration of the PDE2 inhibitors Bay 60-7550 (0.5, 1, and 3 mg/kg) or ND7001 (1 mg/kg), or the NO donor detanonoate (0.5 mg/kg), antagonized the anxiogenic effects of restraint stress on behavior in the three tests. These drugs also produced anxiolytic effects on behavior in nonstressed mice in the elevated plus-maze and hole-board tests; these effects were antagonized by the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (20 mg/kg). By contrast, the NOS inhibitor N(omega)-nitro-l-arginine methyl ester (50 mg/kg), which reduces cGMP signaling, produced anxiogenic effects similar to restraint stress. Overall, the present behavioral and neurochemical data suggest that PDE2 may be a novel pharmacological target for the development of drugs for the treatment of anxiety disorders.

  8. Cowpea bruchid Callosobruchus maculatus counteracts dietary protease inhibitors by modulating propeptides of major digestive enzymes.

    PubMed

    Ahn, J-E; Lovingshimer, M R; Salzman, R A; Presnail, J K; Lu, A L; Koiwa, H; Zhu-Salzman, K

    2007-06-01

    Cowpea bruchids, when challenged by consumption of the soybean cysteine protease inhibitor scN, reconfigure expression of their major CmCP digestive proteases and resume normal feeding and development. Previous evidence indicated that insects selectively induced CmCPs from subfamily B, that were more efficient in autoprocessing and possessed not only higher proteolytic, but also scN-degrading activities. In contrast, dietary scN only marginally up-regulated genes from the more predominant CmCP subfamily A that were inferior to subfamily B. To gain further molecular insight into this adaptive adjustment, we performed domain swapping between the two respective subfamily members B1 and A16, the latter unable to autoprocess or degrade scN even after intermolecular processing. Swapping the propeptides did not qualitatively alter autoprocessing in either protease isoform. Incorporation of either the N- (pAmBA) or C-terminal (pAmAB) mature B1 segment into A16, however, was sufficient to prime autoprocessing of A16 to its mature form. Further, the swap at the N-terminal mature A16 protein region (pAmBA) resulted in four amino acid changes. Replacement of these amino acid residues by the corresponding B1 residues, singly and pair-wise, revealed that autoprocessing activation in pAmBA resulted from cumulative and/or coordinated individual effects. Bacterially expressed isolated propeptides (pA16 and pB1) differed in their ability to inhibit mature B1 enzyme. Lower inhibitory activity in pB1 is likely attributable to its lack of protein stability. This instability in the cleaved propeptide is necessary, although insufficient by itself, for scN-degradation by the mature B1 enzyme. Taken together, cowpea bruchids modulate proteolysis of their digestive enzymes by controlling proCmCP cleavage and propeptide stability, which explains at least in part the plasticity cowpea bruchids demonstrate in response to protease inhibitors.

  9. Hepatitis C treatment with triple therapy in a patient with hemophilia A

    PubMed Central

    Singh, Gurshawn; Sass, Reuben; Alamiry, Rayan; Zein, Nizar; Alkhouri, Naim

    2013-01-01

    We report a case of successful treatment of chronic hepatitis C infection with telaprevir-based triple therapy in a patient with hemophilia A complicated by factor VIII inhibitor. A twenty-two years old male with hereditary hemophilia A and high-titer factor VIII inhibitor was taking maintenance doses of recombinant factor VIII. He visited our clinic for treatment of his chronic hepatitis C with the newly instituted protease inhibitor based therapy. He was diagnosed with hepatitis C genotype 1a at one year of age. He was initiated on telaprevir, ribavirin and peg-interferon for treatment of hepatitis C and qualified for response-guided therapy. He completed treatment at 24 wk with minimal adverse effects. Notably, after 4 wk of hepatitis C treatment, his factor VIII inhibitor screen was negative and the dose for recombinant factor VIII decreased by half of the initial dosing before he was treated for hepatitis C. We suspect that suppressing hepatitis C may help decrease factor VIII inhibitor level and the need for recombinant factor VIII. PMID:24303477

  10. Consensus Induced Fit Docking (cIFD): methodology, validation, and application to the discovery of novel Crm1 inhibitors

    NASA Astrophysics Data System (ADS)

    Kalid, Ori; Toledo Warshaviak, Dora; Shechter, Sharon; Sherman, Woody; Shacham, Sharon

    2012-11-01

    We present the Consensus Induced Fit Docking (cIFD) approach for adapting a protein binding site to accommodate multiple diverse ligands for virtual screening. This novel approach results in a single binding site structure that can bind diverse chemotypes and is thus highly useful for efficient structure-based virtual screening. We first describe the cIFD method and its validation on three targets that were previously shown to be challenging for docking programs (COX-2, estrogen receptor, and HIV reverse transcriptase). We then demonstrate the application of cIFD to the challenging discovery of irreversible Crm1 inhibitors. We report the identification of 33 novel Crm1 inhibitors, which resulted from the testing of 402 purchased compounds selected from a screening set containing 261,680 compounds. This corresponds to a hit rate of 8.2 %. The novel Crm1 inhibitors reveal diverse chemical structures, validating the utility of the cIFD method in a real-world drug discovery project. This approach offers a pragmatic way to implicitly account for protein flexibility without the additional computational costs of ensemble docking or including full protein flexibility during virtual screening.

  11. Enzyme architecture: the effect of replacement and deletion mutations of loop 6 on catalysis by triosephosphate isomerase.

    PubMed

    Zhai, Xiang; Go, Maybelle K; O'Donoghue, AnnMarie C; Amyes, Tina L; Pegan, Scott D; Wang, Yan; Loria, J Patrick; Mesecar, Andrew D; Richard, John P

    2014-06-03

    Two mutations of the phosphodianion gripper loop in chicken muscle triosephosphate isomerase (cTIM) were examined: (1) the loop deletion mutant (LDM) formed by removal of residues 170-173 [Pompliano, D. L., et al. (1990) Biochemistry 29, 3186-3194] and (2) the loop 6 replacement mutant (L6RM), in which the N-terminal hinge sequence of TIM from eukaryotes, 166-PXW-168 (X = L or V), is replaced by the sequence from archaea, 166-PPE-168. The X-ray crystal structure of the L6RM shows a large displacement of the side chain of E168 from that for W168 in wild-type cTIM. Solution nuclear magnetic resonance data show that the L6RM results in significant chemical shift changes in loop 6 and surrounding regions, and that the binding of glycerol 3-phosphate (G3P) results in chemical shift changes for nuclei at the active site of the L6RM that are smaller than those of wild-type cTIM. Interactions with loop 6 of the L6RM stabilize the enediolate intermediate toward the elimination reaction catalyzed by the LDM. The LDM and L6RM result in 800000- and 23000-fold decreases, respectively, in kcat/Km for isomerization of GAP. Saturation of the LDM, but not the L6RM, by substrate and inhibitor phosphoglycolate is detected by steady-state kinetic analyses. We propose, on the basis of a comparison of X-ray crystal structures for wild-type TIM and the L6RM, that ligands bind weakly to the L6RM because a large fraction of the ligand binding energy is utilized to overcome destabilizing electrostatic interactions between the side chains of E168 and E129 that are predicted to develop in the loop-closed enzyme. Similar normalized yields of DHAP, d-DHAP, and d-GAP are formed in LDM- and L6RM-catalyzed reactions of GAP in D2O. The smaller normalized 12-13% yield of DHAP and d-DHAP observed for the mutant cTIM-catalyzed reactions compared with the 79% yield of these products for wild-type cTIM suggests that these mutations impair the transfer of a proton from O-2 to O-1 at the initial enediolate phosphate intermediate. No products are detected for the LDM-catalyzed isomerization reactions in D2O of [1-(13)C]GA and HPi, but the L6RM-catalyzed reaction in the presence of 0.020 M dianion gives a 2% yield of the isomerization product [2-(13)C,2-(2)H]GA.

  12. Dimethylarginine dimethylaminohydrolase 1 modulates endothelial cell growth through NO and Akt

    PubMed Central

    Zhang, Ping; Hu, Xinli; Xu, Xin; Chen, Yingjie; Bache, Robert J.

    2011-01-01

    Objective Dimethylarginine dimethylaminohydrolase 1 (DDAH1) modulates NO production by degrading the endogenous NO synthase (NOS) inhibitors ADMA and L-NMMA. This study examined whether, in addition to degrading ADMA, DDAH1 exerts ADMA independent effects that influence endothelial function. Methods and Results Using selective gene silencing of DDAH1 with small interfering RNA and overexpression of DDAH1 in HUVEC, we found that DDAH1 acts to promote endothelial cell proliferation, migration and tube formation both by Akt phosphorylation as well as through the traditional role of degrading ADMA. Incubation of HUVEC with the NOS inhibitors L-NAME or ADMA, the soluble guanylyl cyclase inhibitor ODQ, or the cGMP analog 8-pCPT-cGMP had no effect on p-AktSer473, indicating that the increase of p-AktSer473 produced by DDAH1 was independent of the NO-cGMP signaling pathway. DDAH1 formed a protein complex with Ras, and DDAH1 overexpression increased Ras activity. The Ras inhibitor manumycin-A or dominant-negative Ras significantly attenuated the DDAH1-induced increase of p-AktSer473. Furthermore, DDAH1 knockout impaired endothelial sprouting from cultured aortic rings, and overexpression of constitutively active Akt or DDAH1 rescued endothelial sprouting in the aortic rings from these mice. Conclusions DDAH1 exerts a unique role in activating Akt that affects endothelial function independent of degrading endogenous NOS inhibitors. PMID:21212404

  13. N1-Nonyl-1,4-diaminobutane ameliorates brain infarction size in photochemically induced thrombosis model mice.

    PubMed

    Masuko, Takashi; Takao, Koichi; Samejima, Keijiro; Shirahata, Akira; Igarashi, Kazuei; Casero, Robert A; Kizawa, Yasuo; Sugita, Yoshiaki

    2018-04-13

    Inhibitors for polyamine oxidizing enzymes, spermine oxidase (SMOX) and N 1 -acetylpolyamine oxidase (PAOX), were designed and evaluated for their effectiveness in a photochemically induced thrombosis (PIT) mouse model. N 1 -Nonyl-1,4-diaminobutane (C9-4) and N 1 -tridecyl-1,4-diaminobutane (C13-4) competitively inhibited the activity of PAOX and SMOX in a manner comparable to N 1 ,N 4 -bis(2,3-butadienyl)-1,4-butanediamine (MDL72527), an irreversible inhibitor of both enzymes. The two compounds were then tested for their effects in the PIT model. Both intraperitoneal (i.p.) and intracerebroventricular (i.c.v.) administration of C9-4 decreased infarct volumes significantly. By contrast, C13-4 reduced the volume of brain infarction by i.c.v. administration, but no reduction was observed after i.p. administration. C9-4 administered by i.p. injection reduced the volume of brain infarction significantly at doses of more than 3 mg/kg, and the dosage of 5 mg/kg or 10 mg/kg demonstrated the most potent effect and were more effective than equivalent doses of the other inhibitors such as MDL72527 and N-benzylhydroxylamine. I.P. injection of 5 mg/kg of C9-4 provided a therapeutic time window of longer than 12 h. This report demonstrates that C9-4 is a potent inhibitor of the polyamine oxidizing enzymes and is useful lead compound for candidate drugs with a long therapeutic time window, to be used in the treatment of ischemic stroke. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Cinnamoyl compounds as simple molecules that inhibit p300 histone acetyltransferase.

    PubMed

    Costi, Roberta; Di Santo, Roberto; Artico, Marino; Miele, Gaetano; Valentini, Paola; Novellino, Ettore; Cereseto, Anna

    2007-04-19

    Cinnamoly compounds 1a-c and 2a-d were designed, synthesized, and in vitro tested as p300 inhibitors. At different degrees, all tested compounds were proven to inactivate p300, particularly, derivative 2c was the most active inhibitor, also showing high specificity for p300 as compared to other histone acetyltransferases. Most notably, 2c showed anti-acetylase activity in mammalian cells. These compounds represent a new class of synthetic inhibitors of p300, characterized by simple chemical structures.

  15. Fusion of the C-terminal triskaidecapeptide of hirudin variant 3 to alpha1-proteinase inhibitor M358R increases the serpin-mediated rate of thrombin inhibition

    PubMed Central

    2013-01-01

    Background Alpha-1 proteinase inhibitor (API) is a plasma serpin superfamily member that inhibits neutrophil elastase; variant API M358R inhibits thrombin and activated protein C (APC). Fusing residues 1-75 of another serpin, heparin cofactor II (HCII), to API M358R (in HAPI M358R) was previously shown to accelerate thrombin inhibition over API M358R by conferring thrombin exosite 1 binding properties. We hypothesized that replacing HCII 1-75 region with the 13 C-terminal residues (triskaidecapeptide) of hirudin variant 3 (HV354-66) would further enhance the inhibitory potency of API M358R fusion proteins. We therefore expressed HV3API M358R (HV354-66 fused to API M358R) and HV3API RCL5 (HV354-66 fused to API F352A/L353V/E354V/A355I/I356A/I460L/M358R) API M358R) as N-terminally hexahistidine-tagged polypeptides in E. coli. Results HV3API M358R inhibited thrombin 3.3-fold more rapidly than API M358R; for HV3API RCL5 the rate enhancement was 1.9-fold versus API RCL5; neither protein inhibited thrombin as rapidly as HAPI M358R. While the thrombin/Activated Protein C rate constant ratio was 77-fold higher for HV3API RCL5 than for HV3API M358R, most of the increased specificity derived from the API F352A/L353V/E354V/A355I/I356A/I460L API RCL 5 mutations, since API RCL5 remained 3-fold more specific than HV3API RCL5. An HV3 54-66 peptide doubled the Thrombin Clotting Time (TCT) and halved the binding of thrombin to immobilized HCII 1-75 at lower concentrations than free HCII 1-75. HV3API RCL5 bound active site-inhibited FPR-chloromethyl ketone-thrombin more effectively than HAPI RCL5. Transferring the position of the fused HV3 triskaidecapeptide to the C-terminus of API M358R decreased the rate of thrombin inhibition relative to that mediated by HV3API M358R by 11-to 14-fold. Conclusions Fusing the C-terminal triskaidecapeptide of HV3 to API M358R-containing serpins significantly increased their effectiveness as thrombin inhibitors, but the enhancement was less than that seen in HCII 1-75–API M358R fusion proteins. HCII 1-75 was a superior fusion partner, in spite of the greater affinity of the HV3 triskaidecapeptide, manifested both in isolated and API-fused form, for thrombin exosite 1. Our results suggest that HCII 1-75 binds thrombin exosite 1 and orients the attached serpin scaffold for more efficient interaction with the active site of thrombin than the HV3 triskaidecapeptide. PMID:24215622

  16. Osteoporosis and osteopenia are not associated with T-cell activation in older cART-treated HIV-infected patients.

    PubMed

    Krikke, M; Klomberg, R C W; van der Veer, E; Tesselaar, K; Verhaar, H J J; Hoepelman, A I M; Arends, J E

    2017-05-01

    A higher risk of developing osteopenia/ osteoporosis has been seen in HIV-infected patients. We compared HIV-infected patients, all treated with combination antiretroviral therapy (cART), with a low bone mineral density (BMD) (T-score < -1) to those with a normal BMD (T-score > -1), examining the relation with T-cell activation and bone turnover markers (c-terminal telopeptide (CTX) and procollagen type 1 amino-terminal propeptide (P1NP)). In this single visit pilot study, bone turnover markers, T-cell activation (CD38 + HLA - DR +) and senescence (CD57+) of T cells were measured in patients who had previously undergone dual energy X-ray absorptiometry scanning. All study participants (n = 16) were male, on cART, with a median age of 61 years (IQR 56-66). Nine patients had osteopenia/osteoporosis. When comparing the patients with osteopenia/osteoporosis with those with a normal BMD, no differences in activation and senescence were found. A relation was seen between higher bone formation (P1NP) and patients who were on cART for longer. The median length of cART use was 5.5 years (IQR 4.5-7.8), with all patients on nucleoside reverse transcriptase inhibitors, 88% on tenofovir, 63% on non-nucleoside reverse transcriptase inhibitors (NNRTIs) and 38% on protease inhibitors. Osteopenia/osteoporosis was seen in 100% of the patients on protease inhibitors versus 30% of those on NNRTIs. This study did not find an association between activated T cells and BMD, thus did not explain the higher prevalence of osteopenia/osteoporosis in HIV-infected patients. Interestingly, this small pilot showed that cART might influence BMD, with a possible negative effect for protease inhibitors and a possible protective effect for NNRTIs. These results warrant further investigation.

  17. Use of a dehydroalanine-containing peptide as an efficient inhibitor of tripeptidyl peptidase II.

    PubMed

    Tomkinson, B; Grehn, L; Fransson, B; Zetterqvist, O

    1994-11-01

    Tripeptidyl peptidase II is an intracellular exopeptidase, which has been purified from rat liver and human erythrocytes. An efficient specific inhibitor was obtained through beta-elimination of phosphate from the phosphopeptide Arg-Ala-Ser(P)-Val-Ala. The dehydroalanine-containing peptide formed was a competitive inhibitor with a Ki of 0.02 +/- 0.01 microM. This study demonstrated that replacing a serine residue in a good inhibitor with a dehydroalanine residue reduced the Ki 45 times. It is proposed that dehydroalanine-containing peptides could be of interest in the development of inhibitors for other peptidases as well.

  18. Activation of the ζ receptor 1 suppresses NMDA responses in rat retinal ganglion cells.

    PubMed

    Zhang, X-J; Liu, L-L; Jiang, S-X; Zhong, Y-M; Yang, X-L

    2011-03-17

    The sigma receptor 1 (σR1) has been shown to modulate the activity of several voltage- and ligand-gated channels. Using patch-clamp techniques in rat retinal slice preparations, we demonstrated that activation of σR1 by SKF10047 (SKF) or PRE-084 suppressed N-methyl-D-aspartate (NMDA) receptor-mediated current responses from both ON and OFF type ganglion cells (GCs), dose-dependently, and the effect could be blocked by the σR1 antagonist BD1047 or the σR antagonist haloperidol. The suppression by SKF of NMDA currents was abolished with pre-incubation of the G protein inhibitor GDP-β-S or the Gi/o activator mastoparan. We further explored the intracellular signaling pathway responsible for the SKF-induced suppression of NMDA responses. Application of either cAMP/the PKA inhibitor Rp-cAMP or cGMP/the PKG inhibitor KT5823 did not change the SKF-induced effect, suggesting the involvement of neither cAMP/PKA nor cGMP/PKG pathway. In contrast, suppression of NMDA responses by SKF was abolished by internal infusion of the phosphatidylinostiol-specific phospholipase C (PLC) inhibitor U73122, but not by the phosphatidylcholine-PLC inhibitor D609. SKF-induced suppression of NMDA responses was dependent on intracellular Ca2+ concentration ([Ca2+]i), as evidenced by the fact that the effect was abolished when [Ca2+]i was buffered with 10 mM BAPTA. The SKF effect was blocked by xestospongin-C/heparin, IP3 receptor antagonists, but unchanged by ryanodine/caffeine, ryanodine receptor modulators. Furthermore, application of protein kinase C inhibitors Bis IV and Gö6976 eliminated the SKF effect. These results suggest that the suppression of NMDA responses of rat retinal GCs caused by the activation of σR1 may be mediated by a distinct [Ca2+]i-dependent PLC-PKC pathway. This effect of SKF could help ameliorate malfunction of GCs caused by excessive stimulation of NMDA receptors under pathological conditions. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Cells adapted to the proteasome inhibitor 4-hydroxy- 5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone require enzymatically active proteasomes for continued survival.

    PubMed

    Princiotta, M F; Schubert, U; Chen, W; Bennink, J R; Myung, J; Crews, C M; Yewdell, J W

    2001-01-16

    The proteasome is the primary protease used by cells for degrading proteins and generating peptide ligands for class I molecules of the major histocompatibility complex. Based on the properties of cells adapted to grow in the presence of the proteasome inhibitor 4-hydroxy-5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone (NLVS), it was proposed that proteasomes can be replaced by alternative proteolytic systems, particularly a large proteolytic complex with a tripeptidyl peptidase II activity. Here we show that NLVS-adapted cells retain sensitivity to a number of highly specific proteasome inhibitors with regard to antigenic peptide generation, accumulation of polyubiquitinated proteins, degradation of p53, and cell viability. In addition, we show that in the same assays (with a single minor exception), NLVS-adapted cells are about as sensitive as nonselected cells to Ala-Ala-Phe-chloromethylketone, a specific inhibitor of tripeptidyl peptidase II activity. Based on these findings, we conclude that proteasomes still have essential proteolytic functions in adapted cells that are not replaced by Ala-Ala-Phe-chloromethylketone-sensitive proteases.

  20. EFFECT OF CYP2C19 GENETIC POLYMORPHISMS ON THE EFFICACY OF PROTON PUMP INHIBITOR-BASED TRIPLE ERADICATION THERAPY IN SLAVIC PATIENTS WITH PEPTIC ULCERS: A META-ANALYSIS.

    PubMed

    Denisenko, N P; Sychev, D A; Sizova, Zh M; Rozhkov, A V; Kondrashov, A V

    Several meta-analyzes reported the effect of CYP2C19 genetic polymorphisms on the efficacy of proton pump inhibitor-based triple therapy for Helicobacter pylori eradication. Most of the studies which were included in these meta-analyzes were held on Asian population. Thus, there is lack of information about the effect of CYP2C19 genetic polymorphisms on the efficacy of proton pump inhibitor-based triple eradication therapy in Slavic patients with peptic ulcers. The aim of the study - to determine whether CYP2C19 affect the efficacy of proton pump inhibitor-based triple eradica- tion therapy in Slavic patients with peptic ulcers. Data search was performed using Russian index of scientific citation database, Google Scholar and MEDLINE PubMed. Statistics was held in Review Manager v 5.3. The odds ratio (OR) and 95% confidence interval (95% Cl) for eradication of H.pylori was estimated in a fixed-effect model when no heterogeneity across the studies was indicated. Four articles published between 2008 and 2015 were included in meta-analysis (three Russian studies, one Polish study). Eradication rates were significantly lower in CYP2C19 extensive metabolizers of proton pump inhibitors than in a combined group of intermediate and poor metabolizers (OR = 1,90, CI-95% 1,08-3,34, p = 0,03; heterogeneity: 12= 0%, p = 0,74). We also found that proton pump inhibitor-based triple eradication therapy achieved higher rates in poor metabolizers than in a combined group of intermediate and extensive metabolizers of CYP2C19 (OR= 5,48 CI-95% 1,51-19,93, p = 0,01; heterogeneity: F= 0%, p = 0,66). The impact of CYP2C19 genetic polymorphisms on the efficacy of proton pump inhibitor-based triple eradication therapy in Slavic patients appears significant.

  1. TEMPERATURE-SENSITIVE DEXTRANSUCRASE SYNTHESIS BY A LACTOBACILLUS.

    PubMed

    DUNICAN, L K; SEELEY, H W

    1963-11-01

    Dunican, L. K. (Cornell University, Ithaca, New York), and H. W. Seeley, Jr. Temperature-sensitive dextransucrase synthesis by a lactobacillus. J. Bacteriol. 86:1079-1083. 1963.-Dextran synthesis was found to be temperature-dependent in Lactobacillus strain RWM-13. Dextran was not formed above 37 C, although growth of cells occurred up to 42 C. Logarithmically growing cells transferred from 30 C to 40 C ceased producing dextran while growth decreased nominally. An examination of the extracts of cells broken by sonic treatment showed that as the temperature of growth was increased above 37 C the production of dextransucrase decreased. By use of an inhibitor of invertase, 10(-4)m AgNO(3), it was shown that invertase replaced dextransucrase activity at temperatures above 37 C. In contrast to dextransucrase in Leuconostoc mesenteroides, the enzyme in Lactobacillus strain RWM-13 was constitutive and thus resembled that of Streptococcus bovis. Thermosensitivity of dextransucrase synthesis has not been observed in Leuconostoc or Streptococcus.

  2. A nomogram to estimate the proportion of patients at hemoglobin A1c target <7% with noninsulin antidiabetic drugs in type 2 diabetes: a systematic review of 137 randomized controlled trials with 39,845 patients.

    PubMed

    Esposito, Katherine; Chiodini, Paolo; Ceriello, Antonio; Giugliano, Dario

    2014-04-01

    We assessed the efficacy of noninsulin antidiabetic medications used in current clinical practice (metformin, sulfonylureas, α-glucosidase inhibitors, thiazolidinediones, glinides, dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 agonists) to reach the HbA1c target <7% in people with type 2 diabetes. MEDLINE, EMBASE, and the Cochrane CENTRAL were searched from inception through April 2011 for randomized controlled trials (RCTs) involving noninsulin antidiabetic drugs. RCTs had to report the effect of any diabetes medication on the HbA1c levels, to include at least 30 subjects in every arm of the study, and to last at least 12 weeks. Data were summarized across studies using random-effects meta-regression. We found 137 RCTs with 205 arms and 39,845 patients. The proportion of patients who achieved the HbA1c goal ranged from 25.9% (95% CI 18.5-34.9) with α-glucosidase inhibitors to 48.6% (95% CI, 53.6) with GLP-1 analogs. Baseline HbA1c was the major determinant of the proportion of patients at HbA1c goal. The meta-regression model with mean baseline HbA1c value, concomitant drug use, and class of drugs as covariates explained almost 67% of the between-study variability. A nomogram was developed to estimate the proportion of patients at target for each noninsulin drug class: for a baseline HbA1c level of 7.5%, all noninsulin drugs, except α-glucosidase inhibitors, achieved the HbA1c goal <7% in more than 50% of patients. Starting or intensifying pharmacological therapy at baseline HbA1c 8% or less was associated with more than 50% of patients at HbA1c goal for most noninsulin drugs.

  3. High-affinity, noninhibitory pathogenic C1 domain antibodies are present in patients with hemophilia A and inhibitors.

    PubMed

    Batsuli, Glaivy; Deng, Wei; Healey, John F; Parker, Ernest T; Baldwin, W Hunter; Cox, Courtney; Nguyen, Brenda; Kahle, Joerg; Königs, Christoph; Li, Renhao; Lollar, Pete; Meeks, Shannon L

    2016-10-20

    Inhibitor formation in hemophilia A is the most feared treatment-related complication of factor VIII (fVIII) therapy. Most inhibitor patients with hemophilia A develop antibodies against the fVIII A2 and C2 domains. Recent evidence demonstrates that the C1 domain contributes to the inhibitor response. Inhibitory anti-C1 monoclonal antibodies (mAbs) have been identified that bind to putative phospholipid and von Willebrand factor (VWF) binding epitopes and block endocytosis of fVIII by antigen presenting cells. We now demonstrate by competitive enzyme-linked immunosorbent assay and hydrogen-deuterium exchange mass spectrometry that 7 of 9 anti-human C1 mAbs tested recognize an epitope distinct from the C1 phospholipid binding site. These mAbs, designated group A, display high binding affinities for fVIII, weakly inhibit fVIII procoagulant activity, poorly inhibit fVIII binding to phospholipid, and exhibit heterogeneity with respect to blocking fVIII binding to VWF. Another mAb, designated group B, inhibits fVIII procoagulant activity, fVIII binding to VWF and phospholipid, fVIIIa incorporation into the intrinsic Xase complex, thrombin generation in plasma, and fVIII uptake by dendritic cells. Group A and B epitopes are distinct from the epitope recognized by the canonical, human-derived inhibitory anti-C1 mAb, KM33, whose epitope overlaps both groups A and B. Antibodies recognizing group A and B epitopes are present in inhibitor plasmas from patients with hemophilia A. Additionally, group A and B mAbs increase fVIII clearance and are pathogenic in a hemophilia A mouse tail snip bleeding model. Group A anti-C1 mAbs represent the first identification of pathogenic, weakly inhibitory antibodies that increase fVIII clearance. © 2016 by The American Society of Hematology.

  4. Inhibitor candidates's identification of HCV's RNA polymerase NS5B using virtual screening against iPPI-library

    NASA Astrophysics Data System (ADS)

    Sulistyawati, Indah; Sulistyo Dwi K., P.; Ichsan, Mochammad

    2016-03-01

    Hepatitis C is one of the major causes of chronic liver failure that caused by Hepatitis C Virus (HCV). Preventing the progression of HCV's replication through the inhibition of The RNA polymerase NS5B of Hepatitis C virus (NS5B) can be achieved via 4 binding regions: Site I (Thumb I), Site II (Thumb II), Site III (Palm I), and Site IV (Palm II). The aim of this research is to identify a candidate of NS5B inhibitor as an alternative for Hepatitis C treatment. An NS5B's 3D structure (PDB ID = 3D5M) used in this study has met some criteria of a good model to be used in virtual screening againts iPPI-lib using MTiOpenScreen webserver. The top two natural compounds resulted here then docked using Pyrix 0.8 and discovered trans-6-Benzamido-2-methyldecahydroisoquinoline (-9,1kcal/mol) and 2,4-dichloro-5-[4-(2 methoxyphenyl) piperazine-1-carbonyl]-N-[3-(trifluoromethyl)phenyl] benzenesulfonamide (9,4 kcal/mol) can bind to Tyr448 similar with all three established inhibitors, such as setrobuvir (-11,4 kcal/mol; site 3 inhibitor), CHEMBL379677 (-9,1 kcal/mol; site 1 inhibitor), and nesbuvir (-7,7 kcal/mol; site 4 inhibitor). The results of this study are relatively still needs to be tested, both in vitro and in vivo, in order to obtain more comprehensive knowledges as a follow-up of this predictive study.

  5. Some aromatic hydrazone derivatives as inhibitors for the corrosion of C-steel in phosphoric acid solution.

    PubMed

    Fouda, Abd El-Aziz S; Al-Sarawy, Ahmed A; Radwan, Mohamed S

    2006-01-01

    The effect of furfural benzoylhydrazone and its derivatives (I-VII) as corrosion inhibitors for C-steel in 1M phosphoric acid solution has been studied by weight-loss and galvanostatic polarization techniques. A significant decrease in the corrosion rate of C-steel was observed in the presence of the investigated inhibitors. This study revealed that, the inhibition efficiency increases with increasing the inhibitor concentration, and the addition of iodide ions enhances it to a considerable extent. The effect of temperature on the inhibition efficiency of these compounds was studied using weight-loss method. Activation energy (E(a)*) and other thermodynamic parameters for the corrosion process were calculated and discussed. The galvanostatic polarization data indicated that, the inhibitors were of mixed-type, but the cathode is more polarized than the anode. The adsorption of these compounds on C-steel surface has been found to obey Frumkin's adsorption isotherm. The mechanism of inhibition was discussed in the light of the chemical structure of the undertaken inhibitors.

  6. Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells.

    PubMed

    Lauf, Peter K; Misri, Sandeep; Chimote, Ameet A; Adragna, Norma C

    2008-03-01

    This study explores the nature of K fluxes in human lens epithelial cells (LECs) in hyposmotic solutions. Total ion fluxes, Na-K pump, Cl-dependent Na-K-2Cl (NKCC), K-Cl (KCC) cotransport, and K channels were determined by 85Rb uptake and cell K (Kc) by atomic absorption spectrophotometry, and cell water gravimetrically after exposure to ouabain +/- bumetanide (Na-K pump and NKCC inhibitors), and ion channel inhibitors in varying osmolalities with Na, K, or methyl-d-glucamine and Cl, sulfamate, or nitrate. Reverse transcriptase polymerase chain reaction (RT-PCR), Western blot analyses, and immunochemistry were also performed. In isosmotic (300 mosM) media approximately 90% of the total Rb influx occurred through the Na-K pump and NKCC and approximately 10% through KCC and a residual leak. Hyposmotic media (150 mosM) decreased K(c) by a 16-fold higher K permeability and cell water, but failed to inactivate NKCC and activate KCC. Sucrose replacement or extracellular K to >57 mM, but not Rb or Cs, in hyposmotic media prevented Kc and water loss. Rb influx equaled Kc loss, both blocked by clotrimazole (IC50 approximately 25 microM) and partially by 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) inhibitors of the IK channel KCa3.1 but not by other K channel or connexin hemichannel blockers. Of several anion channel blockers (dihydro-indenyl)oxy]alkanoic acid (DIOA), 4-2(butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)oxybutyric acid (DCPIB), and phloretin totally or partially inhibited Kc loss and Rb influx, respectively. RT-PCR and immunochemistry confirmed the presence of KCa3.1 channels, aside of the KCC1, KCC2, KCC3 and KCC4 isoforms. Apparently, IK channels, possibly in parallel with volume-sensitive outwardly rectifying Cl channels, effect regulatory volume decrease in LECs.

  7. DNA (Cytosine-C5) methyltransferase inhibition by oligodeoxyribonucleotides containing 2-(1H)-pyrimidinone (zebularine aglycon) at the enzymatic target site.

    PubMed

    van Bemmel, Dana M; Brank, Adam S; Eritja, Ramon; Marquez, Victor E; Christman, Judith K

    2009-09-15

    Aberrant cytosine methylation in promoter regions leads to gene silencing associated with cancer progression. A number of DNA methyltransferase inhibitors are known to reactivate silenced genes; including 5-azacytidine and 2-(1H)-pyrimidinone riboside (zebularine). Zebularine is a more stable, less cytotoxic inhibitor compared to 5-azacytidine. To determine the mechanistic basis for this difference, we carried out a detailed comparisons of the interaction between purified DNA methyltransferases and oligodeoxyribonucleotides (ODNs) containing either 5-azacytosine or 2-(1H)-pyrimidinone in place of the cytosine targeted for methylation. When incorporated into small ODNs, the rate of C5 DNA methyltransferase inhibition by both nucleosides is essentially identical. However, the stability and reversibility of the enzyme complex in the absence and presence of cofactor differs. 5-Azacytosine ODNs form complexes with C5 DNA methyltransferases that are irreversible when the 5-azacytosine ring is intact. ODNs containing 2-(1H)-pyrimidinone at the enzymatic target site are competitive inhibitors of both prokaryotic and mammalian DNA C5 methyltransferases. We determined that the ternary complexes between the enzymes, 2-(1H)-pyrimidinone inhibitor, and the cofactor S-adenosyl methionine are maintained through the formation of a reversible covalent interaction. The differing stability and reversibility of the covalent bonds may partially account for the observed differences in cytotoxicity between zebularine and 5-azacytidine inhibitors.

  8. DNA (Cytosine-C5) Methyltransferase Inhibition by Oligodeoxyribonucleotides Containing 2-(1H)-Pyrimidinone (Zebularine Aglycon) at the Enzymatic Target Site

    PubMed Central

    van Bemmel, Dana M.; Brank, Adam S.; Eritja, Ramon; Marquez, Victor E.; Christman, Judith K.

    2009-01-01

    Aberrant cytosine methylation in promoter regions leads to gene silencing associated with cancer progression. A number of DNA methyltransferase inhibitors are known to reactivate silenced genes; including 5-azacytidine and 2-(1H)-pyrimidinone riboside (zebularine). Zebularine is a more stable, less cytotoxic inhibitor compared to 5-azacytidine. To determine the mechanistic basis for this difference, we carried out a detailed comparisons of the interaction between purified DNA methyltransferases and oligodeoxyribonucleotides (ODNs) containing either 5-azacytosine or 2-(1H)-pyrimidinone in place of the cytosine targeted for methylation. When incorporated into small ODNs, the rate of C5 DNA methyltransferase inhibition by both nucleosides is essentially identical. However, the stability and reversibility of the enzyme complex in the absence and presence of cofactor differs. 5-Azacytosine ODNs form complexes with C5 DNA methyltransferases that are irreversible when the 5-azacytosine ring is intact. ODNs containing 2-(1H)-pyrimidinone at the enzymatic target site are competitive inhibitors of both prokaryotic and mammalian DNA C5 methyltransferases. We determined that the ternary complexes between the enzymes, 2-(1H)-pyrimidinone inhibitor, and the cofactor S-adenosyl methionine are maintained through the formation of a reversible covalent interaction. The differing stability and reversibility of the covalent bonds may partially account for the observed differences in cytotoxicity between zebularine and 5-azacytidine inhibitors. PMID:19467223

  9. Theoretical study of Escherichia coli peptide deformylase inhibition by several drugs.

    PubMed

    Chikhi, Abdelouahab; Bensegueni, Abderrahmane; Boulahrouf, Abderrahmane; Bencharif, Mustapha

    2006-01-01

    Because peptide deformylase (PDF) is essential for the initiation of translation in eubacteria but not in eukaryotes, it is a potentially interesting target for antibiotics. Computer simulation using docking software can be used to model protein-ligand interactions, and in this brief report we describe its use in optimizing the design in PDF-directed inhibitors. PDF was used as target for a set of five inhibitors with substantial structural differences. Docking results show that the compound 1BB2 (actinonin) binds with high affinity to the enzyme and produces the most stable complex, forming nine hydrogen bonds with the enzyme active site. Its binding energy is DeltaG = -31.880 kJ/mol. The modeling study shows that when the methyl group of 1BB2 is replaced with an amine group, the binding energy is increased to -35.316 kJ/mole. This enhancement is more marked (DeltaG = -41.141 kJ/mol) when the propyl group and the five-membered ring of 1BB2 are replaced by an amide group and a phenyl ring, respectively. We describe an attempt to design better antibiotics on the basis of a computer-aided simulation of the interaction between a drug and its target molecule.

  10. Zinc L-carnosine suppresses inflammatory responses in lipopolysaccharide-induced RAW 264.7 murine macrophages cell line via activation of Nrf2/HO-1 signaling pathway.

    PubMed

    Ooi, Theng Choon; Chan, Kok Meng; Sharif, Razinah

    2017-10-01

    Zinc L-carnosine (ZnC) is a chelate of Zn and L-carnosine and is used clinically in the treatment of peptic ulcer. In this study, we aim to investigate the involvement of heme oxygenase-1 (HO-1) in the anti-inflammatory effects of ZnC in lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages. We used immunoblotting analysis to evaluate the involvement of HO-1 in the anti-inflammatory effects of ZnC and the signaling pathway involved was measured using Dual luciferase reporter assay. Results from immunoblotting analysis demonstrated that pretreatment of cells with ZnC enhanced the expression of HO-1 in RAW 264.7 cells. Pretreatment of cells with HO-1 inhibitor (tin protoporphyrin IX dichloride) significantly attenuated the inhibitory effects of ZnC on nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) expression and NF-κB activation in LPS-induced RAW 264.7 cells, suggesting that HO-1 play an important role in the suppression of inflammatory responses induced by ZnC. Furthermore, results from co-immunoprecipitation of Nrf2 and Keap1 and dual luciferase reporter assay showed that pretreatment of ZnC was able to activate the Nrf2 signaling pathway. Treatment of cells with p38 inhibitor (SB203580), c-Jun N-terminal kinase inhibitor (SP600125), and MEK 1/2 inhibitor (U0126) did not significantly suppress the induction of HO-1 by ZnC. Moreover, our present findings suggest that the effects of ZnC on NO production, HO-1 expression, and Nrf2 activation were attributed to its Zn subcomponent, but not l-carnosine. Pretreatment with ZnC was able to activate Nrf2/HO-1 signaling pathway, thus suppressing the expression of inflammatory mediators, such as NO and iNOS in LPS-induced RAW 264.7 cells.

  11. Substrate-derived triazolo- and azapeptides as inhibitors of cathepsins K and S.

    PubMed

    Galibert, Matthieu; Wartenberg, Mylène; Lecaille, Fabien; Saidi, Ahlame; Mavel, Sylvie; Joulin-Giet, Alix; Korkmaz, Brice; Brömme, Dieter; Aucagne, Vincent; Delmas, Agnès F; Lalmanach, Gilles

    2018-01-20

    Cathepsin (Cat) K is a critical bone-resorbing protease and is a relevant target for the treatment of osteoporosis and bone metastasis, while CatS is an attractive target for drugs in autoimmune diseases (e.g. rheumatoid arthritis), emphysema or neuropathic pain. Despite major achievements, current pharmacological inhibitors are still lacking in safety and may have damaging side effects. A promising strategy for developing safer reversible and competitive inhibitors as new lead compounds could be to insert non-cleavable bonds at the scissile P1-P1' position of selective substrates of CatS and CatK. Accordingly, we introduced a 1,4-disubstituted 1,2,3-triazole heterocycle that mimics most of the features of a trans-amide bond, or we incorporated a semicarbazide bond (azaGly residue) by replacing the α-carbon of the glycyl residue at P1 by a nitrogen atom. AzaGly-containing peptidomimetics inhibited powerfully their respective target proteases in the nM range, while triazolopeptides were weaker inhibitors (Ki in the μM range). The selectivity of the azaGly CatS inhibitor (1b) was confirmed by using spleen lysates from wild-type vs CatS-deficient mice. Alternatively, the azaGly bradykinin-derived CatK inhibitor (2b) potently inhibited CatK (Ki = 9 nM) and impaired its kininase activity in vitro. Molecular modeling studies support that the semicarbazide bond of 2b is more favorable than the 1,2,3-triazole linkage of the bradykinin-derived pseudopeptide 2a to preserve an effective affinity towards CatK, its protease target. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Regulation of cAMP and GSK3 signaling pathways contributes to the neuronal conversion of glioma

    PubMed Central

    Kim, Yongbo; Che, Lihua; Kim, Jeong Beom; Chang, Gyeong Eon; Cheong, Eunji; Kang, Seok-Gu; Ha, Yoon

    2017-01-01

    Glioma is the most malignant type of primary central nervous system tumors, and has an extremely poor prognosis. One potential therapeutic approach is to induce the terminal differentiation of glioma through the forced expression of pro-neural factors. Our goal is to show the proof of concept of the neuronal conversion of C6 glioma through the combined action of small molecules. We investigated the various changes in gene expression, cell-specific marker expression, signaling pathways, physiological characteristics, and morphology in glioma after combination treatment with two small molecules (CHIR99021, a glycogen synthase kinase 3 [GSK3] inhibitor and forskolin, a cyclic adenosine monophosphate [cAMP] activator). Here, we show that the combined action of CHIR99021 and forskolin converted malignant glioma into fully differentiated neurons with no malignant characteristics; inhibited the proliferation of malignant glioma; and significantly down-regulated gene ontology and gene expression profiles related to cell division, gliogenesis, and angiogenesis in small molecule–induced neurons. In vivo, the combined action of CHIR99021 and forskolin markedly delayed neurological deficits and significantly reduced the tumor volume. We suggest that reprogramming technology may be a potential treatment strategy replacing the therapeutic paradigm of traditional treatment of malignant glioma, and a combination molecule comprising a GSK3 inhibitor and a cAMP inducer could be the next generation of anticancer drugs. PMID:29161257

  13. The Role of Tumor Metastases Suppressor Gene, Drg-1, in Breast Cancer

    DTIC Science & Technology

    2007-03-01

    acetyl-CoA carboxylase inhibitor), fumonisin B1 (ceramide synthase inhibitor), etomoxir [carnitine palmitoyltransferase-1 (CPT-1) inhibitor], and C2...synthase inhibitor, fumonisin B1. RNA was extracted from the cells, and the expression of BNIP3 and b-actin genes were examined by real-time RT-PCR. G, MCF...7 cells were treated with 300 nmol/L FAS siRNA or GFP siRNA or a combination of FAS siRNA and 50 Amol/L fumonisin B1, and the level of cellular

  14. Randomized, Placebo-Controlled, Single-Ascending-Dose Study of BMS-791325, a Hepatitis C Virus (HCV) NS5B Polymerase Inhibitor, in HCV Genotype 1 Infection

    PubMed Central

    Lemm, Julie; Eley, Timothy; Liu, Menping; Berglind, Anna; Sherman, Diane; Lawitz, Eric; Vutikullird, Apinya B.; Tebas, Pablo; Gao, Min; Pasquinelli, Claudio; Grasela, Dennis M.

    2014-01-01

    BMS-791325 is a nonnucleoside inhibitor of hepatitis C virus (HCV) NS5B polymerase with low-nanomolar potency against genotypes 1a (50% effective concentration [EC50], 3 nM) and 1b (EC50, 7 nM) in vitro. BMS-791325 safety, pharmacokinetics, and antiviral activity were evaluated in a double-blind, placebo-controlled, single-ascending-dose study in 24 patients (interferon naive and experienced) with chronic HCV genotype 1 infection, randomized (5:1) to receive a single dose of BMS-791325 (100, 300, 600, or 900 mg) or placebo. The prevalence and phenotype of HCV variants at baseline and specific posttreatment time points were assessed. Antiviral activity was observed in all cohorts, with a mean HCV RNA decline of ≈2.5 log10 copies/ml observed 24 h after a single 300-mg dose. Mean plasma half-life among cohorts was 7 to 9 h; individual 24-hour levels exceeded the protein-adjusted EC90 for genotype 1 at all doses. BMS-791325 was generally well tolerated, with no serious adverse events or discontinuations. Enrichment for resistance variants was not observed at 100 to 600 mg. At 900 mg, variants (P495L/S) associated with BMS-791325 resistance in vitro were transiently observed in one patient, concurrent with an observed HCV RNA decline of 3.4 log10 IU/ml, but were replaced with wild type by 48 h. Single doses of BMS-791325 were well tolerated; demonstrated rapid, substantial, and exposure-related antiviral activity; displayed dose-related increases in exposure; and showed viral kinetic and pharmacokinetic profiles supportive of once- or twice-daily dosing. These results support its further development in combination with other direct-acting antivirals for HCV genotype 1 infection. (This trial has been registered at ClinicalTrials.gov under registration no. NCT00664625.) PMID:24733462

  15. Novel factor Xa inhibitors: a patent review.

    PubMed

    de Candia, Modesto; Lopopolo, Gianfranco; Altomare, Cosimo

    2009-11-01

    New oral anticoagulants with favorable safety profiles and fixed doses are required for the management of thromboembolism and stroke prevention in patients with atrial fibrillation. Among them, fXa inhibitors (the so-called xabans) are attractive options that can overcome limitations (e.g., bleeding) of the current oral antithrombotic therapy. The rational design of small-molecule direct fXa inhibitors, whose importance is testified by the growing number of publications and patents recently registered, has been fully supported by the X-ray crystallography of enzyme-ligand complexes. Pubmed, SciFinder Scholar, ISI web of knowledge(SM), http://ep.espacenet.com/ and Google websites were used as the main sources for literature retrieving, and > 100 patents filed between 2006 and April 2009, reviewed and discussed herein, highlight the variety among the P1 and P4 moieties on suitable scaffolds. The replacement of the benzamidine P1 moiety, which characterizes the first generation, with less basic bioisosteric or nonpolar neutral P1 groups led to the disclosure of numerous fXa inhibitors with high potency, selectivity and oral bioavailability. Novel selective fXa inhibitors with stable pharmacokinetics, better therapeutic windows and ease-of-use than the existing anticoagulants are currently under advanced stage clinical trials. Available data from Phase II and Phase III studies reflect the drive towards fXa inhibitors as potentially more effective and safer antithrombotic drugs. Their development is expected to address two major needs for anticoagulation, namely safety and ease-of-use, and to significantly affect the anticoagulant market.

  16. Effects of VKORC1 Genetic Polymorphisms on Warfarin Maintenance Dose Requirement in a Chinese Han Population

    PubMed Central

    Yan, Xiaojuan; Yang, Feng; Zhou, Hanyun; Zhang, Hongshen; Liu, Jianfei; Ma, Kezhong; Li, Yi; Zhu, Jun; Ding, Jianqiang

    2015-01-01

    Background VKORC1 is reported to be capable of treating several diseases with thrombotic risk, such as cardiac valve replacement. Some single-nucleotide polymorphisms (SNPs) in VKORC1 are documented to be associated with clinical differences in warfarin maintenance dose. This study explored the correlations of VKORC1–1639 G/A, 1173 C/T and 497 T/G genetic polymorphisms with warfarin maintenance dose requirement in patients undergoing cardiac valve replacement. Material/Methods A total of 298 patients undergoing cardiac valve replacement were recruited. During follow-up, clinical data were recorded. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was applied to detect VKORC1–1639 G/A, 1173 C/T and 497 T/G polymorphisms, and genotypes were analyzed. Results Correlations between warfarin maintenance dose and baseline characteristics revealed statistical significances of age, gender and operation methods with warfarin maintenance dose (all P<0.05). Warfarin maintenance dose in VKORC1–1639 G/A AG + GG carriers was obviously higher than in AA carriers (P<0.001). As compared with patients with TT genotype in VKORC1 1173 C/T, warfarin maintenance dose was apparently higher in patients with CT genotype (P<0.001). Linear regression analysis revealed that gender, operation method, method for heart valve replacement, as well as VKORC1–1639 G/A and 1173 C/T gene polymorphisms were significantly related to warfarin maintenance dose (all P<0.05). Conclusions VKORC1 gene polymorphisms are key genetic factors to affect individual differences in warfarin maintenance dose in patients undergoing cardiac valve replacement; meanwhile, gender, operation method and method for heart valve replacement might also be correlate with warfarin maintenance dose. PMID:26583785

  17. Characterization of mutants expressing thermostable D1 and D2 polypeptides of photosystem II in the cyanobacterium Synechococcus elongatus PCC 7942.

    PubMed

    Haraguchi, Norihisa; Kaseda, Jun; Nakayama, Yasumune; Nagahama, Kazuhiro; Ogawa, Takahira; Matsuoka, Masayoshi

    2018-06-08

    Photosystem II complex embedded in thylakoid membrane performs oxygenic photosynthesis where the reaction center D1/D2 heterodimer accommodates all components of the electron transport chain. To express thermostable D1/D2 heterodimer in a cyanobacterium Synechococcus elongatus PCC 7942, we constructed a series of mutant strains whose psbA1 and psbD1 genes encoding, respectively, the most highly expressed D1 and D2 polypeptides were replaced with those of a thermophilic strain, Thermosynechococcus vulcanus. Because the C-terminal 16 amino acid sequences of D1 polypeptides should be processed prior to maturation but diverge from each other, we also constructed the psbA1ΔC-replaced strain expressing a thermostable D1 polypeptide devoid of the C-terminal extension. The psbA1/psbD1-replaced strain showed decreased growth rate and oxygen evolution rate, suggesting inefficient photosystem II. Immunoblot analyses for thermostable D1, D2 polypeptides revealed that the heterologous D1 protein was absent in thylakoid membrane from any mutant strains with psbA1, psbA1ΔC, and psbA1/psbD1-replacements, whereas the heterologous D2 protein was present in thylakoid membrane as well as purified photosystem II complex from the psbA1/psbD1-replaced strain. In the latter strain, the compensatory expression of psbA3 and psbD2 genes was elevated. These data suggest that heterologous D2 polypeptide could be combined with the host D1 polypeptide to form chimeric D1/D2 heterodimer, whereas heterologous D1 polypeptide even without the C-terminal extension was unable to make complex with the host D2 polypeptide. Since the heterologous D1 could not be detected even in the whole cells of psbA1/psbD1-replaced strain, the rapid degradation of unprocessed or unassembled heterologous D1 was implicated. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Structure-Guided Development of Efficacious Antifungal Agents Targeting Candida Glabrata Dihydrofolate Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.; Bolstad, D; Smith, A

    2008-01-01

    Candida glabrata is a lethal fungal pathogen resistant to many antifungal agents and has emerged as a critical target for drug discovery. Over the past several years, we have been developing a class of propargyl-linked antifolates as antimicrobials and hypothesized that these compounds could be effective inhibitors of dihydrofolate reductase (DHFR) from C. glabrata. We initially screened a small collection of these inhibitors and found modest levels of potency. Subsequently, we determined the crystal structure of C. glabrata DHFR bound to a representative inhibitor with data to 1.6 A resolution. Using this structure, we designed and synthesized second-generation inhibitors. Thesemore » inhibitors bind the C. glabrata DHFR enzyme with subnanomolar potency, display greater than 2000-fold levels of selectivity over the human enzyme, and inhibit the growth of C. glabrata at levels observed with clinically employed therapeutics.« less

  19. Hyperthermia enhances mapatumumab-induced apoptotic death through ubiquitin-mediated degradation of cellular FLIP(long) in human colon cancer cells

    PubMed Central

    Song, X; Kim, S-Y; Zhou, Z; Lagasse, E; Kwon, Y T; Lee, Y J

    2013-01-01

    Colorectal cancer is the third leading cause of cancer-related mortality in the world; the main cause of death of colorectal cancer is hepatic metastases, which can be treated with hyperthermia using isolated hepatic perfusion (IHP). In this study, we report that mild hyperthermia potently reduced cellular FLIP(long), (c-FLIPL), a major regulator of the death receptor (DR) pathway of apoptosis, thereby enhancing humanized anti-DR4 antibody mapatumumab (Mapa)-mediated mitochondria-independent apoptosis. We observed that overexpression of c-FLIPL in CX-1 cells abrogated the synergistic effect of Mapa and hyperthermia, whereas silencing of c-FLIP in CX-1 cells enhanced Mapa-induced apoptosis. Hyperthermia altered c-FLIPL protein stability without concomitant reductions in FLIP mRNA. Ubiquitination of c-FLIPL was increased by hyperthermia, and proteasome inhibitor MG132 prevented heat-induced downregulation of c-FLIPL. These results suggest the involvement of the ubiquitin-proteasome system in this process. We also found lysine residue 195 (K195) to be essential for c-FLIPL ubiquitination and proteolysis, as mutant c-FLIPL lysine 195 arginine (arginine replacing lysine) was left virtually un-ubiquitinated and was refractory to hyperthermia-triggered degradation, and thus partially blocked the synergistic effect of Mapa and hyperthermia. Our observations reveal that hyperthermia transiently reduced c-FLIPL by proteolysis linked to K195 ubiquitination, which contributed to the synergistic effect between Mapa and hyperthermia. This study supports the application of hyperthermia combined with other regimens to treat colorectal hepatic metastases. PMID:23559011

  20. Hyperthermia enhances mapatumumab-induced apoptotic death through ubiquitin-mediated degradation of cellular FLIP(long) in human colon cancer cells.

    PubMed

    Song, X; Kim, S-Y; Zhou, Z; Lagasse, E; Kwon, Y T; Lee, Y J

    2013-04-04

    Colorectal cancer is the third leading cause of cancer-related mortality in the world; the main cause of death of colorectal cancer is hepatic metastases, which can be treated with hyperthermia using isolated hepatic perfusion (IHP). In this study, we report that mild hyperthermia potently reduced cellular FLIP(long), (c-FLIP(L)), a major regulator of the death receptor (DR) pathway of apoptosis, thereby enhancing humanized anti-DR4 antibody mapatumumab (Mapa)-mediated mitochondria-independent apoptosis. We observed that overexpression of c-FLIP(L) in CX-1 cells abrogated the synergistic effect of Mapa and hyperthermia, whereas silencing of c-FLIP in CX-1 cells enhanced Mapa-induced apoptosis. Hyperthermia altered c-FLIP(L) protein stability without concomitant reductions in FLIP mRNA. Ubiquitination of c-FLIP(L) was increased by hyperthermia, and proteasome inhibitor MG132 prevented heat-induced downregulation of c-FLIP(L). These results suggest the involvement of the ubiquitin-proteasome system in this process. We also found lysine residue 195 (K195) to be essential for c-FLIP(L) ubiquitination and proteolysis, as mutant c-FLIP(L) lysine 195 arginine (arginine replacing lysine) was left virtually un-ubiquitinated and was refractory to hyperthermia-triggered degradation, and thus partially blocked the synergistic effect of Mapa and hyperthermia. Our observations reveal that hyperthermia transiently reduced c-FLIP(L) by proteolysis linked to K195 ubiquitination, which contributed to the synergistic effect between Mapa and hyperthermia. This study supports the application of hyperthermia combined with other regimens to treat colorectal hepatic metastases.

  1. PROTEASOME INHIBITOR TREATMENT REDUCED FATTY ACID, TRIACYLGLYCEROL AND CHOLESTEROL SYNTHESIS

    PubMed Central

    Oliva, Joan; French, Samuel W.; Li, Jun; Bardag-Gorce, Fawzia

    2014-01-01

    In the present study, the beneficial effects of proteasome inhibitor treatment in reducing ethanol-induced steatosis were investigated. A microarray analysis was performed on the liver of rats injected with PS-341 (Bortezomib, Velcade®), and the results showed that proteasome inhibitor treatment significantly reduced the mRNA expression of SREBP-1c, and the downstream lipogenic enzymes, such as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), which catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting step in fatty acid synthesis. ELOVL6, which is responsible for fatty acids long chain elongation, was also significantly down regulated by proteasome inhibitor treatment. Moreover, PS-341 administration significantly reduced the expression of acyl-glycerol-3-phosphate acyltransferase (AGPAT), and diacylglycerol acyltransferase (DGAT), enzyme involved in triacylglycerol (TAG) synthesis. Finally, PS-341 was found to down regulate the enzymes 3-hydroxy-3-methylglutaryl-CoenzymeA synthase (HMG-CoA synthase) that is responsible for cholesterol synthesis. Proteasome inhibitor was also found to play a role in intestinal lipid adsorption because apolipoproteins A (apoA-I, apoAII, apoA-IV and ApoCIII) were down regulated by proteasome inhibitor treatment, especially ApoA-II that is known to be a marker of alcohol consumption. Proteasome inhibitor treatment also decreased apobec-1 complementation factor (ACF) leading to lower level of editing and production of ApoB protein. Moreover apolipoprotein C-III, a major component of chylomicrons was significantly down regulated. However, lipoprotein lipase (Lpl) and High density lipoprotein binding protein (Hdlbp) mRNA levels were increased by proteasome inhibitor treatment. These results suggested that proteasome inhibitor treatment could be used to reduce the alcohol-enhanced lipogenesis and alcohol-induced liver steatosis. A morphologic analysis, performed on the liver of rats fed ethanol for one month and treated with PS-341, showed that proteasome inhibitor treatment significantly decreased ethanol-induced liver steatosis. SREBP-1c, FAS and ACC were increased by ethanol feeding alone, but were significantly decreased when proteasome inhibitor was administered to rats fed ethanol. Our results also show that both mRNA and protein levels of these lipogenic enzymes, up regulated by ethanol, were then down regulated when proteasome inhibitor was administered to rats fed ethanol. It was also confirmed that alcohol feeding caused an increase in AGPAT and DGAT, which was prevented by proteasome inhibitor treatment of the animal fed ethanol. Chronic alcohol feeding did not affect the gene expression of HMG-CoA synthase. However, PS341 administration significantly reduced the HMG-CoA synthase mRNA levels, confirming the results obtained with the microarray analysis. C/EBP transcription factors alpha (CCAAT/enhancer-binding protein alpha) has been shown to positively regulate SREBP-1c mRNA expression, thus regulating lipogenesis. Proteasome inhibition caused a decrease in C/EBP alpha mRNA expression, indicating that C/EBP down regulation may be the mechanism by which proteasome inhibitor treatment reduced lipogenesis. In conclusion, our results indicate that proteasome activity is not only involved in down regulating fatty acid synthesis and triacylglycerol synthesis, but also cholesterol synthesis and intestinal lipid adsorption. Proteasome inhibitor, administrated at a non-toxic low dose, played a beneficial role in reducing lipogenesis caused by chronic ethanol feeding and these beneficial effects are obtained because of the specificity and reversibility of the proteasome inhibitor used. PMID:22445925

  2. Navy Stock Point Local Unique Computer Programs: An Analysis for Transition and Management Under the Stock Point ADP Replacement (SPAR) Project.

    DTIC Science & Technology

    1987-03-01

    Project (SPAR). An impor- tant issue of the replacement will be the conversion of existing co uter software to allow transition from the current... issue of the replacement will be the conversion of existing computer software to allow transition from the current hardware environment to the replacement...36 G. LOCAL PROGRAM C1/C2 CONVERSION CONTRACT . . . 38 5 H. LOCAL PROGRAM COMMONALITY ISSUES ....... 41 I. SUMMARY

  3. Design, synthesis and biological evaluation of uncharged catechol derivatives as selective inhibitors of PTP1B.

    PubMed

    Li, Xiang-Qian; Xu, Qi; Luo, Jiao; Wang, Li-Jun; Jiang, Bo; Zhang, Ren-Shuai; Shi, Da-Yong

    2017-08-18

    Protein tyrosine phosphatases 1B (PTP1B) is a promising and validated therapeutic target to effectively treat T2DM and obesity. However, the development of charged PTP1B inhibitors was restricted due to their low cell permeability and poor bioavailability. Based on active natural products, two series of uncharged catechol derivatives were identified as PTP1B inhibitors by targeting a secondary aryl phosphate-binding site as well as the catalytic site. The most potent inhibitor 22 showed an IC 50 of 0.487 μM against PTP1B and strong selectivity (27-fold) over TCPTP. Kinetic studies were also performed that 22 act as a competitive PTP1B inhibitor. The treatment of C2C12 myotubes with 22 markedly increased the phosphorylation levels of IRβ, Akt and IRS1 phosphorylation. The similarity of its action profiling with that produced by insulin suggested its potential as a new non-insulin-dependent drug candidate. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Nebivolol potentiates the efficacy of PDE5 inhibitors to relax corpus cavernosum and penile arteries from diabetic patients by enhancing the NO/cGMP pathway.

    PubMed

    Martínez-Salamanca, Juan I; La Fuente, José M; Cardoso, José; Fernández, Argentina; Cuevas, Pedro; Wright, Harold M; Angulo, Javier

    2014-05-01

    The efficacy of oral pharmacotherapy for erectile dysfunction (ED) (i.e., type 5 phosphodiesterase[PDE5] inhibitors) is significantly reduced in diabetic patients. Nebivolol is a selective β1-blocker used for treatinghy pertension that has been shown to increase the efficacy of sildenafil to reverse ED in diabetic rats. To evaluate the effects of nebivolol on the efficacy of the PDE5 inhibitors, sildenafil, tadalafil, and vardenafil to relax human corpus cavernosum (HCC) and vasodilate human penile resistance arteries (HPRA) from diabetic patients with ED (DMED). The influence of nebivolol on the capacity of these three PDE5 inhibitors to stimulate cyclic guanosine monophosphate (cGMP) production in HCC was also evaluated. HCC and HPRA were obtained from organ donors without ED (NEND; n = 18) or patients with diabetes undergoing penile prosthesis implantation (DMED; n = 19). Relaxations of HCC strips and HPRA to sildenafil,tadalafil, and vardenafil were evaluated in organ chambers and wire myographs. cGMP content in HCC was determined by ether extraction and quantification by ELISA. Effects of nebivolol on PDE5 inhibitor-induced relaxation of HCC, vasodilation ofHPRA and cGMP accumulation in HCC. Treatment with nebivolol (1 μM) significantly potentiated sildenafil-, tadalafil- and vardenafil-induced relaxations of HCC and vasodilations of HPRA from both NEND and DMED. Enhancement of relaxant capacity by nebivolol resulted in reversion of the impairment of PDE5 inhibition-induced responses in DMED and it was accompanied by enhancing the ability of PDE5 inhibitors to increase cGMP in HCC restoring reduced cGMP levelsin HCC from DMED. Nebivolol potentiated the capacity of PDE5 inhibitors to relax vascular structures of erectile tissue from diabetic patients by enhancing the nitric oxide (NO)/cGMP pathway in these tissues. These effects suggest a potential therapeutic utility of nebivolol as an adjunct to PDE5 inhibitors for the treatment of ED associated with diabetes.

  5. New Therapeutic Agent against Arterial Thrombosis: An Iridium(III)-Derived Organometallic Compound.

    PubMed

    Hsia, Chih-Wei; Velusamy, Marappan; Tsao, Jeng-Ting; Hsia, Chih-Hsuan; Chou, Duen-Suey; Jayakumar, Thanasekaran; Lee, Lin-Wen; Li, Jiun-Yi; Sheu, Joen-Rong

    2017-12-05

    Platelet activation plays a major role in cardio and cerebrovascular diseases, and cancer progression. Disruption of platelet activation represents an attractive therapeutic target for reducing the bidirectional cross talk between platelets and tumor cells. Platinum (Pt) compounds have been used for treating cancer. Hence, replacing Pt with iridium (Ir) is considered a potential alternative. We recently developed an Ir(III)-derived complex, [Ir(Cp*)1-(2-pyridyl)-3-(2-hydroxyphenyl)imidazo[1,5-a]pyridine Cl]BF₄ (Ir-11), which exhibited strong antiplatelet activity; hence, we assessed the therapeutic potential of Ir-11 against arterial thrombosis. In collagen-activated platelets, Ir-11 inhibited platelet aggregation, adenosine triphosphate (ATP) release, intracellular Ca 2+ mobilization, P-selectin expression, and OH · formation, as well as the phosphorylation of phospholipase Cγ2 (PLCγ2), protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and Akt. Neither the adenylate cyclase inhibitor nor the guanylate cyclase inhibitor reversed the Ir-11-mediated antiplatelet effects. In experimental mice, Ir-11 prolonged the bleeding time and reduced mortality associated with acute pulmonary thromboembolism. Ir-11 plays a crucial role by inhibiting platelet activation through the inhibition of the PLCγ2-PKC cascade, and the subsequent suppression of Akt and MAPK activation, ultimately inhibiting platelet aggregation. Therefore, Ir-11 can be considered a new therapeutic agent against either arterial thrombosis or the bidirectional cross talk between platelets and tumor cells.

  6. An Inhibitor of the δPKC Interaction with the d Subunit of F1Fo ATP Synthase Reduces Cardiac Troponin I Release from Ischemic Rat Hearts: Utility of a Novel Ammonium Sulfate Precipitation Technique

    PubMed Central

    Ogbi, Mourad; Obi, Ijeoma; Johnson, John A.

    2013-01-01

    We have previously reported protection against hypoxic injury by a cell-permeable, mitochondrially-targeted δPKC-d subunit of F1Fo ATPase (dF1Fo) interaction inhibitor [NH2-YGRKKRRQRRRMLA TRALSLIGKRAISTSVCAGRKLALKTIDWVSFDYKDDDDK-COOH] in neonatal cardiac myo-cytes. In the present work we demonstrate the partitioning of this peptide to the inner membrane and matrix of mitochondria when it is perfused into isolated rat hearts. We also used ammonium sulfate ((NH4)2SO4) and chloroform/methanol precipitation of heart effluents to demonstrate reduced card-iac troponin I (cTnI) release from ischemic rat hearts perfused with this inhibitor. 50% (NH4)2SO4 saturation of perfusates collected from Langendorff rat heart preparations optimally precipitated cTnI, allowing its detection in Western blots. In hearts receiving 20 min of ischemia followed by 30, or 60 min of reperfusion, the Mean±S.E. (n = 5) percentage of maximal cTnI release was 30±7 and 60±17, respectively, with additional cTnI release occurring after 150 min of reperfusion. Perfusion of hearts with the δPKC-dF1Fo interaction inhibitor, prior to 20 min of ischemia and 60–150 min of reperfusion, reduced cTnI release by 80%. Additionally, we found that when soybean trypsin inhibitor (SBTI), was added to rat heart effluents, it could also be precipitated using (NH4)2SO4 and detected in western blots. This provided a convenient method for normalizing protein recoveries between groups. Our results support the further development of the δPKC-dF1Fo inhibitor as a potential therapeutic for combating cardiac ischemic injury. In addition, we have developed an improved method for the detection of cTnI release from perfused rat hearts. PMID:23936451

  7. Two-track virtual screening approach to identify both competitive and allosteric inhibitors of human small C-terminal domain phosphatase 1

    NASA Astrophysics Data System (ADS)

    Park, Hwangseo; Lee, Hye Seon; Ku, Bonsu; Lee, Sang-Rae; Kim, Seung Jun

    2017-08-01

    Despite a wealth of persuasive evidence for the involvement of human small C-terminal domain phosphatase 1 (Scp1) in the impairment of neuronal differentiation and in Huntington's disease, small-molecule inhibitors of Scp1 have been rarely reported so far. This study aims to the discovery of both competitive and allosteric Scp1 inhibitors through the two-track virtual screening procedure. By virtue of the improvement of the scoring function by implementing a new molecular solvation energy term and by reoptimizing the atomic charges for the active-site Mg2+ ion cluster, we have been able to identify three allosteric and five competitive Scp1 inhibitors with low-micromolar inhibitory activity. Consistent with the results of kinetic studies on the inhibitory mechanisms, the allosteric inhibitors appear to be accommodated in the peripheral binding pocket through the hydrophobic interactions with the nonpolar residues whereas the competitive ones bind tightly in the active site with a direct coordination to the central Mg2+ ion. Some structural modifications to improve the biochemical potency of the newly identified inhibitors are proposed based on the binding modes estimated with docking simulations.

  8. Design, Synthesis and Biological Evaluation of Histone Deacetylase (HDAC) Inhibitors: Saha (Vorinostat) Analogs and Biaryl Indolyl Benzamide Inhibitors Display Isoform Selectivity

    NASA Astrophysics Data System (ADS)

    Negmeldin, Ahmed Thabet

    HDAC proteins have emerged as interesting targets for anti-cancer drugs due to their involvement in cancers, as well as several other diseases. Several HDAC inhibitors have been approved by the FDA as anti-cancer drugs, including SAHA (suberoylanilide hydroxamic acid, Vorinostat). Unfortunately, SAHA inhibits most HDAC isoforms, which limit its use as a pharmacological tool and may lead to side effects in the clinic. In this work we were interested in developing isoform selective HDAC inhibitors, which may decrease or eliminate the side effects associated with non-selective inhibitors treatment. In addition, isoform selective HDAC inhibitors can be used as biological tools to help understand the HDAC-related cancer biology. Our strategy was based on synthesis and screening of several derivatives of the non-selective FDA approved drug SAHA substituted at different positions of the linker region. Several SAHA analogs modified at the C4 and C5 positions of the linker were synthesized. The new C4- and C5-modified SAHA libraries, along with the previously synthesized C2-modified SAHA analogs were screened in vitro and in cellulo for HDAC isoform selectivity. Interestingly, several analogs exhibited dual HDAC6/HDAC8 selectivity. Enantioselective syntheses of the pure enantiomers of some of the interesting analogs were performed and the enantiomers were screened in vitro. Among the most interesting analogs, ( R)-C4-benzyl SAHA displayed 520- to 1300-fold selectivity for HDAC6 and HDAC8 over HDAC1, 2, and 3, with IC50 values of 48 and 27 nM with HDAC6 and 8, respectively. Docking studies were performed to provide structural rationale for the observed selectivity of the new analogs. In addition, rational design, synthesis, and screening of several other biaryl indolyl benzamide HDAC inhibitors is discussed, and some showed modest HDAC1 selectivity. The new biaryl indolyl benzamides can be useful to further develop HDAC1 selective inhibitors. The dual HDAC6/8 selective inhibitors can be used as lead compounds and as a chemical tool to study HDAC related cancer biology. The observed enhancement of selectivity upon modifying the linker region of the non-selective inhibitor SAHA shows that modifying current drugs, like SAHA, could lead to substantial improvement in its pharmacodynamic properties.

  9. 1-Nitropyrene (1-NP) induces apoptosis and apparently a non-apoptotic programmed cell death (paraptosis) in Hepa1c1c7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asare, Nana; Landvik, Nina E.; Lagadic-Gossmann, Dominique

    2008-07-15

    Mechanistic studies of nitro-PAHs (polycyclic aromatic hydrocarbons) of interest might help elucidate which chemical characteristics are most important in eliciting toxic effects. 1-Nitropyrene (1-NP) is the predominant nitrated PAH emitted in diesel exhaust. 1-NP-exposed Hepa1c1c7 cells exhibited marked changes in cellular morphology, decreased proliferation and different forms of cell death. A dramatic increase in cytoplasmic vacuolization was observed already after 6 h of exposure and the cells started to round up at 12 h. The rate of cell proliferation was markedly reduced at 24 h and apoptotic as well as propidium iodide (PI)-positive cells appeared. Electron microscopic examination revealed thatmore » the vacuolization was partly due to mitochondria swelling. The caspase inhibitor Z-VAD-FMK inhibited only the apoptotic cell death and Nec-1 (an inhibitor of necroptosis) exhibited no inhibitory effects on either cell death or vacuolization. In contrast, cycloheximide markedly reduced both the number of apoptotic and PI-positive cells as well as the cytoplasmic vacuolization, suggesting that 1-NP induced paraptotic cell death. All the MAPKs; ERK1/2, p38 and JNK, appear to be involved in the death process since marked activation was observed upon 1-NP exposure, and their inhibitors partly reduced the induced cell death. The ERK1/2 inhibitor PD 98057 completely blocked the induced vacuolization, whereas the other MAPKs inhibitors only had minor effects on this process. These findings suggest that 1-NP may cause apoptosis and paraptosis. In contrast, the corresponding amine (1-aminopyrene) elicited only minor apoptotic and necrotic cell death, and cells with characteristics typical of paraptosis were absent.« less

  10. Design of SGLT2 Inhibitors for the Treatment of Type 2 Diabetes: A History Driven by Biology to Chemistry.

    PubMed

    Cai, Wenqing; Jiang, Linlin; Xie, Yafei; Liu, Yuqiang; Liu, Wei; Zhao, Guilong

    2015-01-01

    A brief history of the design of sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors is reviewed. The design of O-glucoside SGLT2 inhibitors by structural modification of phlorizin, a naturally occurring O-glucoside, in the early stage was a process mainly driven by biology with anticipation of improving SGLT2/SGLT1 selectivity and increasing metabolic stability. Discovery of dapagliflozin, a pioneering C-glucoside SGLT2 inhibitor developed by Bristol-Myers Squibb, represents an important milestone in this history. In the second stage, the design of C-glycoside SGLT2 inhibitors by modifications of the aglycone and glucose moiety of dapagliflozin, an original structural template for almost all C-glycoside SGLT2 inhibitors, was mainly driven by synthetic organic chemistry due to the challenge of designing dapagliflozin derivatives that are patentable, biologically active and synthetically accessible. Structure-activity relationships (SAR) of the SGLT2 inhibitors are also discussed.

  11. Ortho effects in quantitative structure-activity relationships for acetylcholinesterase inhibition by aryl carbamates.

    PubMed

    Lin, Gialih; Liu, Yu-Chen; Lin, Yan-Fu; Wu, Yon-Gi

    2004-10-01

    Ortho-substituted phenyl-N-butyl carbamates (1-9) are characterized as "pseudo-pseudo-substrate" inhibitors of acetylcholinesterase. Since the inhibitors protonate at pH 7.0 buffer solution, the virtual inhibition constants (K'is) of the protonated inhibitors are calculated from the equation, - logK'i = - logKi - logKb. The logarithms of the inhibition constant (Ki), the carbamylation constant (k(c)), and the bimolecular inhibition constant (k(i)) for the enzyme inhibitions by carbamates 1-9 are multiply linearly correlated with the Hammett para-substituent constant (sigma(p)), the Taft-Kutter-Hansch ortho steric constant (E(S)), and the Swan-Lupton ortho polar constant (F). Values of rho, delta, and f for the - logKi-, logk(c)-, and logk(i)-correlations are -0.6, -0.16, 0.7; 0.11, 0.03, -0.3; and - 0.5, - 0.12, 0.4, respectively. The Ki step further divides into two steps: 1) the pre-equilibrium protonation of the inhibitors, Kb step and 2) formation of a negatively charged enzyme-inhibitor Michaelis-Menten complex--virtual inhibition, K'i step. The Ki step has little ortho steric enhancement effect; moreover, the k(c)step is insensitive to the ortho steric effect. The f value of 0.7 for the Ki step indicates that ortho electron-withdrawing substituents of the inhibitors accelerate the inhibition reactions from the ortho polar effect; however, the f value of -0.3 for the k(c)step implies that ortho electron-withdrawing substituents of the inhibitors lessen the inhibition reactions from the ortho polar effect.

  12. Regulation of CD93 cell surface expression by protein kinase C isoenzymes.

    PubMed

    Ikewaki, Nobunao; Kulski, Jerzy K; Inoko, Hidetoshi

    2006-01-01

    Human CD93, also known as complement protein 1, q subcomponent, receptor (C1qRp), is selectively expressed by cells with a myeloid lineage, endothelial cells, platelets, and microglia and was originally reported to be involved in the complement protein 1, q subcomponent (C1q)-mediated enhancement of phagocytosis. The intracellular molecular events responsible for the regulation of its expression on the cell surface, however, have not been determined. In this study, the effect of protein kinases in the regulation of CD93 expression on the cell surface of a human monocyte-like cell line (U937), a human NK-like cell line (KHYG-1), and a human umbilical vein endothelial cell line (HUV-EC-C) was investigated using four types of protein kinase inhibitors, the classical protein kinase C (cPKC) inhibitor Go6976, the novel PKC (nPKC) inhibitor Rottlerin, the protein kinase A (PKA) inhibitor H-89 and the protein tyrosine kinase (PTK) inhibitor herbimycin A at their optimum concentrations for 24 hr. CD93 expression was analyzed using flow cytometry and glutaraldehyde-fixed cellular enzyme-linked immunoassay (EIA) techniques utilizing a CD93 monoclonal antibody (mAb), mNI-11, that was originally established in our laboratory as a CD93 detection probe. The nPKC inhibitor Rottlerin strongly down-regulated CD93 expression on the U937 cells in a dose-dependent manner, whereas the other inhibitors had little or no effect. CD93 expression was down-regulated by Go6976, but not by Rottlerin, in the KHYG-1 cells and by both Rottlerin and Go6976 in the HUV-EC-C cells. The PKC stimulator, phorbol myristate acetate (PMA), strongly up-regulated CD93 expression on the cell surface of all three cell-lines and induced interleukin-8 (IL-8) production by the U937 cells and interferon-gamma (IFN-gamma) production by the KHYG-1 cells. In addition, both Go6976 and Rottlerin inhibited the up-regulation of CD93 expression induced by PMA and IL-8 or IFN-gamma production in the respective cell-lines. Whereas recombinant tumor necrosis factor-alpha (rTNF-alpha) slightly up-regulated CD93 expression on the U937 cells, recombinant interleukin-1beta (rIL-1beta), recombinant interleukin-2 (rIL-2), recombinant interferon-gamma (rIFN-gamma) and lipopolysaccharide (LPS) had no effect. Taken together, these findings indicate that the regulation of CD93 expression on these cells involves the PKC isoenzymes.

  13. Identification of an inhibitor of the MurC enzyme, which catalyzes an essential step in the peptidoglycan precursor synthesis pathway.

    PubMed

    Zawadzke, Laura E; Norcia, Michael; Desbonnet, Charlene R; Wang, Hong; Freeman-Cook, Kevin; Dougherty, Thomas J

    2008-02-01

    The pathway for synthesis of the peptidoglycan precursor UDP-N-acetylmuramyl pentapeptide is essential in Gram-positive and Gram-negative bacteria. This pathway has been exploited in the recent past to identify potential new antibiotics as inhibitors of one or more of the Mur enzymes. In the present study, a high-throughput screen was employed to identify potential inhibitors of the Escherichia coli MurC (UDP-N-acetylmuramic acid:L-alanine ligase), the first of four paralogous amino acid-adding enzymes. Inhibition of ATP consumed during the MurC reaction, using an adaptation of a kinase assay format, identified a number of potential inhibitory chemotypes. After nonspecific inhibition testing and chemical attractiveness were assessed, C-1 emerged as a compound for further characterization. The inhibition of MurC by this compound was confirmed in both a kinetic-coupled enzyme assay and a direct nuclear magnetic resonance product detection assay. C-1 was found to be a low micromolar inhibitor of the E. coli MurC reaction, with preferential inhibition by one of two enantiomeric forms. Experiments indicated that it was a competitive inhibitor of ATP binding to the MurC enzyme. Further work with MurC enzymes from several bacterial sources revealed that while the compound was equally effective at inhibiting MurC from genera (Proteus mirabilis and Klebsiella pneumoniae) closely related to E. coli, MurC enzymes from more distant Gram-negative species such as Haemophilus influenzae, Acinetobacter baylyi, and Pseudomonas aeruginosa were not inhibited.

  14. Wnt signaling during tooth replacement in zebrafish (Danio rerio): pitfalls and perspectives

    PubMed Central

    Huysseune, Ann; Soenens, Mieke; Elderweirdt, Fien

    2014-01-01

    The canonical (β-catenin dependent) Wnt signaling pathway has emerged as a likely candidate for regulating tooth replacement in continuously renewing dentitions. So far, the involvement of canonical Wnt signaling has been experimentally demonstrated predominantly in amniotes. These studies tend to show stimulation of tooth formation by activation of the Wnt pathway, and inhibition of tooth formation when blocking the pathway. Here, we report a strong and dynamic expression of the soluble Wnt inhibitor dickkopf1 (dkk1) in developing zebrafish (Danio rerio) tooth germs, suggesting an active repression of Wnt signaling during morphogenesis and cytodifferentiation of a tooth, and derepression of Wnt signaling during start of replacement tooth formation. To further analyse the role of Wnt signaling, we used different gain-of-function approaches. These yielded disjunct results, yet none of them indicating enhanced tooth replacement. Thus, masterblind (mbl) mutants, defective in axin1, mimic overexpression of Wnt, but display a normally patterned dentition in which teeth are replaced at the appropriate times and positions. Activating the pathway with LiCl had variable outcomes, either resulting in the absence, or the delayed formation, of first-generation teeth, or yielding a regular dentition with normal replacement, but no supernumerary teeth or accelerated tooth replacement. The failure so far to influence tooth replacement in the zebrafish by perturbing Wnt signaling is discussed in the light of (i) potential technical pitfalls related to dose- or time-dependency, (ii) the complexity of the canonical Wnt pathway, and (iii) species-specific differences in the nature and activity of pathway components. Finally, we emphasize the importance of in-depth knowledge of the wild-type pattern for reliable interpretations. It is hoped that our analysis can be inspiring to critically assess and elucidate the role of Wnt signaling in tooth development in polyphyodonts. PMID:25339911

  15. A novel transmembrane Ser/Thr kinase complexes with protein phosphatase-1 and inhibitor-2.

    PubMed

    Wang, Hong; Brautigan, David L

    2002-12-20

    Protein kinases and protein phosphatases exert coordinated control over many essential cellular processes. Here, we describe the cloning and characterization of a novel human transmembrane protein KPI-2 (Kinase/Phosphatase/Inhibitor-2) that was identified by yeast two-hybrid using protein phosphatase inhibitor-2 (Inh2) as bait. KPI-2 mRNA was predominantly expressed in skeletal muscle. KPI-2 is a 1503-residue protein with two predicted transmembrane helices at the N terminus, a kinase domain, followed by a C-terminal domain. The transmembrane helices were sufficient for targeting proteins to the membrane. KPI-2 kinase domain has about 60% identity with its closest relative, a tyrosine kinase. However, it only exhibited serine/threonine kinase activity in autophosphorylation reactions or with added substrates. KPI-2 kinase domain phosphorylated protein phosphatase-1 (PP1C) at Thr(320), which attenuated PP1C activity. KPI-2 C-terminal domain directly associated with PP1C, and this required a VTF motif. Inh2 associated with KPI-2 C-terminal domain with and without PP1C. Thus, KPI-2 is a kinase with sites to associate with PP1C and Inh2 to form a regulatory complex that is localized to membranes.

  16. Facilitation of fear extinction by novelty depends on dopamine acting on D1-subtype dopamine receptors in hippocampus

    PubMed Central

    Menezes, Jefferson; Alves, Niége; Borges, Sidnei; Roehrs, Rafael; de Carvalho Myskiw, Jociane; Furini, Cristiane Regina Guerino; Izquierdo, Ivan; Mello-Carpes, Pâmela B.

    2015-01-01

    Extinction is the learned inhibition of retrieval. Recently it was shown that a brief exposure to a novel environment enhances the extinction of contextual fear in rats, an effect explainable by a synaptic tagging-and-capture process. Here we examine whether this also happens with the extinction of another fear-motivated task, inhibitory avoidance (IA), and whether it depends on dopamine acting on D1 or D5 receptors. Rats were trained first in IA and then in extinction of this task. The retention of extinction was measured 24 h later. A 5-min exposure to a novel environment 30 min before extinction training enhanced its retention. Right after exposure to the novelty, animals were given bilateral intrahippocampal infusions of vehicle (VEH), of the protein synthesis inhibitor anisomycin, of the D1/D5 dopaminergic antagonist SCH23390, of the PKA inhibitor Rp-cAMP or of the PKC inhibitor Gö6976, and of the PKA stimulator Sp-cAMP or of the PKC stimulator PMA. The novelty increased hippocampal dopamine levels and facilitated the extinction, which was inhibited by intrahippocampal protein synthesis inhibitor anisomysin, D1/D5 dopaminerdic antagonist SCH23390, or PKA inhibitor Rp-cAMP and unaffected by PKC inhibitor Gö6976; additionally, the hippocampal infusion of PKA stimulator Sp-cAMP reverts the effect of D1/D5 dopaminergic antagonist SCH 23390, but the infusion of PKC stimulator PMA does not. The results attest to the generality of the novelty effect on fear extinction, suggest that it relies on synaptic tagging and capture, and show that it depends on hippocampal dopamine D1 but not D5 receptors. PMID:25775606

  17. Energetic, Structural, and Antimicrobial Analyses of [beta]-Lactam Side Chain Recognition by [beta]-Lactamases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caselli, E.; Powers, R.A.; Blaszczak, L.C.

    2010-03-05

    Penicillins and cephalosporins are among the most widely used and successful antibiotics. The emergence of resistance to these {beta}-lactams, most often through bacterial expression of {beta}-lactamases, threatens public health. To understand how {beta}-lactamases recognize their substrates, it would be helpful to know their binding energies. Unfortunately, these have been difficult to measure because {beta}-lactams form covalent adducts with {beta}-lactamases. This has complicated functional analyses and inhibitor design. To investigate the contribution to interaction energy of the key amide (R1) side chain of {beta}-lactam antibiotics, eight acylglycineboronic acids that bear the side chains of characteristic penicillins and cephalosporins, as well asmore » four other analogs, were synthesized. These transition-state analogs form reversible adducts with serine {beta}-lactamases. Therefore, binding energies can be calculated directly from K{sub i} values. The K{sub i} values measured span four orders of magnitude against the Group I {beta}-lactamase AmpC and three orders of magnitude against the Group II {beta}-lactamase TEM-1. The acylglycineboronic acids have K{sub i} values as low as 20 nM against AmpC and as low as 390 nM against TEM-1. The inhibitors showed little activity against serine proteases, such as chymotrypsin. R1 side chains characteristic of {beta}-lactam inhibitors did not have better affinity for AmpC than did side chains characteristic of {beta}-lactam substrates. Two of the inhibitors reversed the resistance of pathogenic bacteria to {beta}-lactams in cell culture. Structures of two inhibitors in their complexes with AmpC were determined by X-ray crystallography to 1.90 {angstrom} and 1.75 {angstrom} resolution; these structures suggest interactions that are important to the affinity of the inhibitors. Acylglycineboronic acids allow us to begin to dissect interaction energies between {beta}-lactam side chains and {beta}-lactamases. Surprisingly, there is little correlation between the affinity contributed by R1 side chains and their occurrence in {beta}-lactam inhibitors or {beta}-lactam substrates of serine {beta}-lactamases. Nevertheless, presented in acylglycineboronic acids, these side chains can lead to inhibitors with high affinities and specificities. The structures of their complexes with AmpC give a molecular context to their affinities and may guide the design of anti-resistance compounds in this series.« less

  18. Role of protein kinase C alpha in endothelin-1 stimulation of cytosolic phospholipase A2 and arachidonic acid release in cultured cat iris sphincter smooth muscle cells.

    PubMed

    Husain, S; Abdel-Latif, A A

    1998-05-20

    We have investigated the role and mechanism of protein kinase C (PKC) isoforms in endothelin-1 (ET-1)-induced arachidonic acid (AA) release in cat iris sphincter smooth muscle (CISM) cells. ET-1 increased AA release in a concentration (EC50=8 nM) and time-dependent (t1/2=1.2 min) manner. Cytosolic phospholipase A2 (cPLA2), but not phospholipase C (PLC), is involved in the liberation of AA in the stimulated cells. This conclusion is supported by the findings that ET-1-induced AA release is inhibited by AACOCF3, quinacrine and manoalide, PLA2 inhibitors, but not by U-73122, a PLC inhibitor, or by RHC-80267, a diacylglycerol lipase inhibitor. A role for PKC in ET-1-induced AA release is supported by the findings that the phorbol ester, PDBu, increased AA release by 96%, that prolonged treatment of the cells with PDBu resulted in the selective down regulation of PKCalpha and the complete inhibition of ET-1-induced AA release, and that pretreatment of the cells with staurosporine or RO 31-8220, PKC inhibitors, blocked the ET-1-induced AA release. Gö-6976, a compound that inhibits PKCalpha and beta specifically, blocked ET-1-induced AA release in a concentration-dependent manner with an IC50 value of 8 nM. Thymeatoxin (0.1 microM), a specific activator of PKCalpha, beta, and gamma induced a 150% increase in AA release. Treatment of the cells with ET-1 caused significant translocation of PKCalpha, but not PKCbeta, from cytosol to the particulate fraction. These results suggest that PKCalpha plays a critical role in ET-1-induced AA release in these cells. Immunochemical analysis revealed the presence of cPLA2, p42mapk and p44mapk in the CISM cells. The data presented are consistent with a role for PKCalpha, but not for p42/p44 mitogen-activated protein kinase (MAPK), in cPLA2 activation and AA release in ET-1-stimulated CISM cells since: (i) the PKC inhibitor, RO 31-8220, inhibited ET-1-induced AA release, cPLA2 phosphorylation and cPLA2 activity, but had no inhibitory effect on p42/p44 MAPK activation, (ii) genistein, a tyrosine kinase inhibitor, inhibited ET-1-stimulated MAPK activity but had no inhibitory effect on AA release in the ET-1-stimulated cells. We conclude that in CISM cells, ET-1 activates PKCalpha, which activates cPLA2, which liberates AA for prostaglandin synthesis. Copyright 1998 Elsevier Science B.V. All rights reserved.

  19. Role of angiotensin converting enzyme in the vascular effects of an endopeptidase 24.15 inhibitor.

    PubMed Central

    Telford, S E; Smith, A I; Lew, R A; Perich, R B; Madden, A C; Evans, R G

    1995-01-01

    1. We investigated the role of angiotensin converting enzyme (ACE) in the cardiovascular effects of N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate (cFP), a peptidase inhibitor selective for metalloendopeptidase (EP) E.C. 3.4.24.15. 2. In conscious rabbits, cFP (5 mg kg-1, i.v.) markedly slowed the degradation of [3H]-bradykinin, potentiated the depressor response to right atrial administration of bradykinin (10-1000 ng kg-1), and inhibited the pressor response to right atrial angiotensin I (10-100 ng kg-1). In each of these respects, the effects of cFP were indistinguishable from those of the ACE inhibitor, captopril (0.5 mg plus 10 mg kg-1h-1 i.v.). Furthermore, the effects of combined administration of cFP and captopril were indistinguishable from those of captopril alone. 3. In experimentally naive anaesthetized rats, cFP administration (9.3 mg kg-1, i.v.) was followed by a moderate but sustained fall in arterial pressure of 13 mmHg. However, in rats pretreated with bradykinin (50 micrograms kg-1) a more pronounced fall of 30 mmHg was observed. Captopril (5 mg kg-1) had similar hypotensive effects to those of cFP, and cFP had no effect when it was administered after captopril. 4. CFP displaced the binding of [125I]-351A (the p-hydroxybenzamidine derivative of lisinopril) from preparations of rat plasma ACE and solubilized lung membrane ACE (KD = 1.2 and 0.14 microM respectively), and inhibited rat plasma ACE activity (KI = 2.4 microM). Addition of phosphoramidon (10 microM), an inhibitor of a range of metalloendopeptidases, including neutral endopeptidase (E.C.3.4.24.11), markedly reduced the potency of cFP in these systems.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7620708

  20. Drug–drug interaction of microdose and regular-dose omeprazole with a CYP2C19 inhibitor and inducer

    PubMed Central

    Park, Gab-jin; Bae, Soo Hyeon; Park, Wan-Su; Han, Seunghoon; Park, Min-Ho; Shin, Seok-Ho; Shin, Young G; Yim, Dong-Seok

    2017-01-01

    Purpose A microdose drug–drug interaction (DDI) study may be a valuable tool for anticipating drug interaction at therapeutic doses. This study aimed to compare the magnitude of DDIs at microdoses and regular doses to explore the applicability of a microdose DDI study. Patients and methods Six healthy male volunteer subjects were enrolled into each DDI study of omeprazole (victim) and known perpetrators: fluconazole (inhibitor) and rifampin (inducer). For both studies, the microdose (100 μg, cold compound) and the regular dose (20 mg) of omeprazole were given at days 0 and 1, respectively. On days 2–9, the inhibitor or inducer was given daily, and the microdose and regular dose of omeprazole were repeated at days 8 and 9, respectively. Full omeprazole pharmacokinetic samplings were performed at days 0, 1, 8, and 9 of both studies for noncompartmental analysis. Results The magnitude of the DDI, the geometric mean ratios (with perpetrator/omeprazole only) of maximum concentration (Cmax) and area under the curve to the last measurement (AUCt) of the microdose and the regular dose were compared. The geometric mean ratios in the inhibition study were: 2.17 (micro) and 2.68 (regular) for Cmax, and 4.07 (micro), 4.33 (regular) for AUCt. For the induction study, they were 0.26 (micro) and 0.21 (regular) for Cmax, and 0.16 (micro) and 0.15 (regular) for AUCt. There were no significant statistical differences in the magnitudes of DDIs between microdose and regular-dose conditions, regardless of induction or inhibition. Conclusion Our results may be used as partial evidence that microdose DDI studies may replace regular-dose studies, or at least be used for DDI-screening purposes. PMID:28408803

  1. Replacing zoledronic acid with denosumab is a risk factor for developing osteonecrosis of the jaw.

    PubMed

    Higuchi, Tomoko; Soga, Yoshihiko; Muro, Misato; Kajizono, Makoto; Kitamura, Yoshihisa; Sendo, Toshiaki; Sasaki, Akira

    2018-06-01

    Intravenous zoledronic acid (ZA) is often replaced with subcutaneous denosumab in patients with bone metastatic cancer. Despite their different pharmacologic mechanisms of action, both denosumab and ZA are effective in bone metastasis but cause osteonecrosis of the jaw (ONJ) as a side effect. ZA persists in the body almost indefinitely, whereas denosumab does not persist for long periods. This study evaluated the risks of developing ONJ when replacing ZA with denosumab. In total, 161 Japanese patients administered ZA for bone metastatic cancer were enrolled in this single-center, retrospective, observational study. The risk of developing ONJ was evaluated by logistic regression analysis using the following factors: age, gender, cancer type, angiogenesis inhibitors, steroids, and replacement of ZA with denosumab. Seventeen patients (10.6%) developed ONJ. Multiple regression analysis indicated a significant difference in rate of ONJ associated with replacement of ZA with denosumab (odds ratio = 3.81; 95% confidence interval 1.04-13.97; P = .043). Replacing ZA with denosumab is a risk factor for the development of ONJ. Both binding of bisphosphonate to bone and receptor activator of nuclear factor-κ B ligand inhibition could additively increase the risk of ONJ. We bring the replacement of ZA with denosumab to the attention of clinical oncologists. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Matrix metalloproteinase-10 (MMP-10) interaction with tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2: binding studies and crystal structure.

    PubMed

    Batra, Jyotica; Robinson, Jessica; Soares, Alexei S; Fields, Alan P; Radisky, Derek C; Radisky, Evette S

    2012-05-04

    Matrix metalloproteinase 10 (MMP-10, stromelysin-2) is a secreted metalloproteinase with functions in skeletal development, wound healing, and vascular remodeling; its overexpression is also implicated in lung tumorigenesis and tumor progression. To understand the regulation of MMP-10 by tissue inhibitors of metalloproteinases (TIMPs), we have assessed equilibrium inhibition constants (K(i)) of putative physiological inhibitors TIMP-1 and TIMP-2 for the active catalytic domain of human MMP-10 (MMP-10cd) using multiple kinetic approaches. We find that TIMP-1 inhibits the MMP-10cd with a K(i) of 1.1 × 10(-9) M; this interaction is 10-fold weaker than the inhibition of the similar MMP-3 (stromelysin-1) catalytic domain (MMP-3cd) by TIMP-1. TIMP-2 inhibits the MMP-10cd with a K(i) of 5.8 × 10(-9) M, which is again 10-fold weaker than the inhibition of MMP-3cd by this inhibitor (K(i) = 5.5 × 10(-10) M). We solved the x-ray crystal structure of TIMP-1 bound to the MMP-10cd at 1.9 Å resolution; the structure was solved by molecular replacement and refined with an R-factor of 0.215 (R(free) = 0.266). Comparing our structure of MMP-10cd·TIMP-1 with the previously solved structure of MMP-3cd·TIMP-1 (Protein Data Bank entry 1UEA), we see substantial differences at the binding interface that provide insight into the differential binding of stromelysin family members to TIMP-1. This structural information may ultimately assist in the design of more selective TIMP-based inhibitors tailored for specificity toward individual members of the stromelysin family, with potential therapeutic applications.

  3. Hereditary Angioedema Caused By C1-Esterase Inhibitor Deficiency: A Literature-Based Analysis and Clinical Commentary on Prophylaxis Treatment Strategies

    PubMed Central

    2011-01-01

    Hereditary angioedema (HAE) caused by C1-esterase inhibitor deficiency is an autosomal-dominant disease resulting from a mutation in the C1-inhibitor gene. HAE is characterized by recurrent attacks of intense, massive, localized subcutaneous edema involving the extremities, genitalia, face, or trunk, or submucosal edema of upper airway or bowels. These symptoms may be disabling, have a dramatic impact on quality of life, and can be life-threatening when affecting the upper airways. Because the manifestations and severity of HAE are highly variable and unpredictable, patients need individualized care to reduce the burden of HAE on daily life. Although effective therapy for the treatment of HAE attacks has been available in many countries for more than 30 years, until recently, there were no agents approved in the United States to treat HAE acutely. Therefore, prophylactic therapy is an integral part of HAE treatment in the United States and for selected patients worldwide. Routine long-term prophylaxis with either attenuated androgens or C1-esterase inhibitor has been shown to reduce the frequency and severity of HAE attacks. Therapy with attenuated androgens, a mainstay of treatment in the past, has been marked by concern about potential adverse effects. C1-esterase inhibitor works directly on the complement and contact plasma cascades to reduce bradykinin release, which is the primary pathologic mechanism in HAE. Different approaches to long-term prophylactic therapy can be used to successfully manage HAE when tailored to meet the needs of the individual patient. PMID:23283143

  4. Midazolam suppresses interleukin-1β-induced interleukin-6 release from rat glial cells

    PubMed Central

    2011-01-01

    Background Peripheral-type benzodiazepine receptor (PBR) expression levels are low in normal human brain, but their levels increase in inflammation, brain injury, neurodegenerative states and gliomas. It has been reported that PBR functions as an immunomodulator. The mechanisms of action of midazolam, a benzodiazepine, in the immune system in the CNS remain to be fully elucidated. We previously reported that interleukin (IL)-1β stimulates IL-6 synthesis from rat C6 glioma cells and that IL-1β induces phosphorylation of inhibitory kappa B (IκB), p38 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2, and signal transducer and activator of transcription (STAT)3. It has been shown that p38 MAP kinase is involved in IL-1β-induced IL-6 release from these cells. In the present study, we investigated the effect of midazolam on IL-1β-induced IL-6 release from C6 cells, and the mechanisms of this effect. Methods Cultured C6 cells were stimulated by IL-1β. IL-6 release from C6 cells was measured using an enzyme-linked immunosorbent assay, and phosphorylation of IκB, the MAP kinase superfamily, and STAT3 was analyzed by Western blotting. Results Midazolam, but not propofol, inhibited IL-1β-stimulated IL-6 release from C6 cells. The IL-1β-stimulated levels of IL-6 were suppressed by wedelolactone (an inhibitor of IκB kinase), SP600125 (an inhibitor of SAPK/JNK), and JAK inhibitor I (an inhibitor of JAK 1, 2 and 3). However, IL-6 levels were not affected by PD98059 (an inhibitor of MEK1/2). Midazolam markedly suppressed IL-1β-stimulated STAT3 phosphorylation without affecting the phosphorylation of p38 MAP kinase, SAPK/JNK or IκB. Conclusion These results strongly suggest that midazolam inhibits IL-1β-induced IL-6 release in rat C6 glioma cells via suppression of STAT3 activation. Midazolam may affect immune system function in the CNS. PMID:21682888

  5. Discovery of novel high potent and cellular active ADC type PTP1B inhibitors with selectivity over TC-PTP via modification interacting with C site.

    PubMed

    Du, Yongli; Zhang, Yanhui; Ling, Hao; Li, Qunyi; Shen, Jingkang

    2018-01-20

    PTP1B serving as a key negative regulator of insulin signaling is a novel target for type 2 diabetes and obesity. Modification at ring B of N-{4-[(3-Phenyl-ureido)-methyl]-phenyl}-methane-sulfonamide template to interact with residues Arg47 and Lys41 in the C site of PTP1B by molecular docking aided design resulted in the discovery of a series of novel high potent and selective inhibitors of PTP1B. The structure activity relationship interacting with the C site of PTP1B was well illustrated. Compounds 8 and 18 were shown to be the high potent and most promising PTP1B inhibitors with cellular activity and great selectivity over the highly homologous TCPTP and other PTPs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7-10.

    PubMed

    Ovens, Matthew J; Davies, Andrew J; Wilson, Marieangela C; Murray, Clare M; Halestrap, Andrew P

    2010-01-15

    In the present study we characterize the properties of the potent MCT1 (monocarboxylate transporter 1) inhibitor AR-C155858. Inhibitor titrations of L-lactate transport by MCT1 in rat erythrocytes were used to determine the Ki value and number of AR-C155858-binding sites (Et) on MCT1 and the turnover number of the transporter (kcat). Derived values were 2.3+/-1.4 nM, 1.29+/-0.09 nmol per ml of packed cells and 12.2+/-1.1 s-1 respectively. When expressed in Xenopus laevis oocytes, MCT1 and MCT2 were potently inhibited by AR-C155858, whereas MCT4 was not. Inhibition of MCT1 was shown to be time-dependent, and the compound was also active when microinjected, suggesting that AR-C155858 probably enters the cell before binding to an intracellular site on MCT1. Measurement of the inhibitor sensitivity of several chimaeric transporters combining different domains of MCT1 and MCT4 revealed that the binding site for AR-C155858 is contained within the C-terminal half of MCT1, and involves TM (transmembrane) domains 7-10. This is consistent with previous data identifying Phe360 (in TM10) and Asp302 plus Arg306 (TM8) as key residues in substrate binding and translocation by MCT1. Measurement of the Km values of the chimaeras for L-lactate and pyruvate demonstrate that both the C- and N-terminal halves of the molecule influence transport kinetics consistent with our proposed molecular model of MCT1 and its translocation mechanism that requires Lys38 in TM1 in addition to Asp302 and Arg306 in TM8 [Wilson, Meredith, Bunnun, Sessions and Halestrap (2009) J. Biol. Chem. 284, 20011-20021].

  7. ORAL DELIVERY OF L-ARGININE STIMULATES PROSTAGLANDIN-DEPENDENT SECRETORY DIARRHEA IN C. PARVUM INFECTED NEONATAL PIGLETS

    PubMed Central

    Gookin, Jody L.; Foster, Derek M.; Coccaro, Maria R.; Stauffer, Stephen H.

    2008-01-01

    Objectives To determine if oral supplementation with L-arginine could augment nitric oxide (NO) synthesis and promote epithelial defense in neonatal piglets infected with C. parvum. Methods Neonatal piglets were fed a liquid milk replacer and on day 3 of age infected or not with 108 C. parvum oocysts and the milk replacer supplemented with L-arginine or L-alanine. Milk consumption, body weight, fecal consistency, and oocyst excretion were recorded daily. On day 3 post-infection, piglets were euthanized, and serum concentration of NO metabolites and histological severity of villous atrophy and epithelial infection were quantified. Sheets of ileal mucosa were mounted in Ussing chambers for measurement of barrier function (transepithelial resistance (TER) and permeability) and short-circuit current (Isc; an indirect measurement of Cl− secretion in this tissue). Results C. parvum infected piglets had large numbers of epithelial parasites, villous atrophy, decreased barrier function, severe watery diarrhea, and failure to gain weight. L-arginine promoted synthesis of NO by infected piglets which was unaccompanied by improvement in severity of infection but rather promoted epithelial chloride secretion and diarrhea. Epithelial secretion by infected mucosa from L-arginine supplemented piglets was fully inhibited by the cyclooxygenase inhibitor indomethacin, indicating that prostaglandin synthesis was responsible for this effect. Conclusions Results of these studies demonstrate that provision of additional NO substrate in the form of L-arginine incites prostaglandin-dependent secretory diarrhea and does not promote epithelial defense or barrier function of C. parvum infected neonatal ileum. PMID:18223372

  8. Synthesis and structure-activity relationship study of pyrazolo[3,4-d]pyrimidines as tyrosine kinase RET inhibitors.

    PubMed

    Wang, Chengyan; Liu, Hongchun; Song, Zilan; Ji, Yinchun; Xing, Li; Peng, Xia; Wang, Xisheng; Ai, Jing; Geng, Meiyu; Zhang, Ao

    2017-06-01

    Three series of pyrazolo[3,4-d]pyrimidine derivatives were synthesized and evaluated as RET kinase inhibitors. Compounds 23a and 23c were identified to show significant activity both in the biochemical and the BaF3/CCDC6-RET cell assays. Compound 23c was found to significantly inhibit RET phosphorylation and down-stream signaling in BaF3/CCDC6-RET cells, confirming its potent cellular RET-targeting profile. Different from other RET inhibitors with equal potency against KDR that associated with severe toxicity, 23c did not show significant KDR-inhibition even at the concentration of 1μM. These results demonstrated that 23c is a potent and selective RET inhibitor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Conformationally constrained farnesoid X receptor (FXR) agonists: heteroaryl replacements of the naphthalene.

    PubMed

    Bass, Jonathan Y; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Madauss, Kevin P; Marr, Harry B; McFadyen, Robert B; Miller, Aaron B; Mills, Wendy Y; Navas, Frank; Parks, Derek J; Smalley, Terrence L; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Wisely, G Bruce

    2011-02-15

    To improve on the drug properties of GSK8062 1b, a series of heteroaryl bicyclic naphthalene replacements were prepared. The quinoline 1c was an equipotent FXR agonist with improved drug developability parameters relative to 1b. In addition, analog 1c lowered body weight gain and serum glucose in a DIO mouse model of diabetes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Characterization of New Cationic N,N-Dimethyl[70]fulleropyrrolidinium Iodide Derivatives as Potent HIV-1 Maturation Inhibitors.

    PubMed

    Castro, Edison; Martinez, Zachary S; Seong, Chang-Soo; Cabrera-Espinoza, Andrea; Ruiz, Mauro; Hernandez Garcia, Andrea; Valdez, Federico; Llano, Manuel; Echegoyen, Luis

    2016-12-22

    HIV-1 maturation can be impaired by altering protease (PR) activity, the structure of the Gag-Pol substrate, or the molecular interactions of viral structural proteins. Here we report the synthesis and characterization of new cationic N,N-dimethyl[70]fulleropyrrolidinium iodide derivatives that inhibit more than 99% of HIV-1 infectivity at low micromolar concentrations. Analysis of the HIV-1 life cycle indicated that these compounds inhibit viral maturation by impairing Gag and Gag-Pol processing. Importantly, fullerene derivatives 2a-c did not inhibit in vitro PR activity and strongly interacted with HIV immature capsid protein in pull-down experiments. Furthermore, these compounds potently blocked infectivity of viruses harboring mutant PR that are resistant to multiple PR inhibitors or mutant Gag proteins that confer resistance to the maturation inhibitor Bevirimat. Collectively, our studies indicate fullerene derivatives 2a-c as potent and novel HIV-1 maturation inhibitors.

  11. Nanomolar Inhibitors of Glycogen Phosphorylase Based on β-d-Glucosaminyl Heterocycles: A Combined Synthetic, Enzyme Kinetic, and Protein Crystallography Study.

    PubMed

    Bokor, Éva; Kyriakis, Efthimios; Solovou, Theodora G A; Koppány, Csenge; Kantsadi, Anastassia L; Szabó, Katalin E; Szakács, Andrea; Stravodimos, George A; Docsa, Tibor; Skamnaki, Vassiliki T; Zographos, Spyros E; Gergely, Pál; Leonidas, Demetres D; Somsák, László

    2017-11-22

    Aryl substituted 1-(β-d-glucosaminyl)-1,2,3-triazoles as well as C-β-d-glucosaminyl 1,2,4-triazoles and imidazoles were synthesized and tested as inhibitors against muscle and liver isoforms of glycogen phosphorylase (GP). While the N-β-d-glucosaminyl 1,2,3-triazoles showed weak or no inhibition, the C-β-d-glucosaminyl derivatives had potent activity, and the best inhibitor was the 2-(β-d-glucosaminyl)-4(5)-(2-naphthyl)-imidazole with a K i value of 143 nM against human liver GPa. An X-ray crystallography study of the rabbit muscle GPb inhibitor complexes revealed structural features of the strong binding and offered an explanation for the differences in inhibitory potency between glucosyl and glucosaminyl derivatives and also for the differences between imidazole and 1,2,4-triazole analogues.

  12. Anti-Inflammatory Strategies in Intrahepatic Islet Transplantation: A Comparative Study in Preclinical Models.

    PubMed

    Citro, Antonio; Cantarelli, Elisa; Pellegrini, Silvia; Dugnani, Erica; Piemonti, Lorenzo

    2018-02-01

    The identification of pathway(s) playing a pivotal role in peritransplant detrimental inflammatory events represents the crucial step toward a better management and outcome of pancreatic islet transplanted patients. Recently, we selected the CXCR1/2 inhibition as a relevant strategy in enhancing pancreatic islet survival after transplantation. Here, the most clinically used anti-inflammatory compounds (IL1-receptor antagonist, steroids, and TNF-α inhibitor) alone or in combination with a CXCR1/2 inhibitor were evaluated in their ability to improve engraftment or delay graft rejection. To rule out bias related to transplantation site, we used well-established preclinical syngeneic (250 C57BL/6 equivalent islets in C57BL/6) and allogeneic (400 Balb/c equivalent islets in C57BL6) intrahepatic islet transplantation platforms. In mice, we confirmed that targeting the CXCR1/2 pathway is crucial in preserving islet function and improving engraftment. In the allogeneic setting, CXCR1/2 inhibitor alone could reduce the overall recruitment of transplant-induced leukocytes and significantly prolong the time to graft rejection both as a single agent and in combination with immunosuppression. No other anti-inflammatory compounds tested (IL1-receptor antagonist, steroids, and TNF-α inhibitor) alone or in combination with CXCR1/2 inhibitor improve islet engraftment and significantly delay graft rejection in the presence of MMF + FK-506 immunosuppressive treatment. These findings indicate that only the CXCR1/2-mediated axis plays a crucial role in controlling the islet damage and should be a target for intervention to improve the efficiency of islet transplantation.

  13. Biochemical Characterization of the Active Anti-Hepatitis C Virus Metabolites of 2,6-Diaminopurine Ribonucleoside Prodrug Compared to Sofosbuvir and BMS-986094

    PubMed Central

    Ehteshami, Maryam; Tao, Sijia; Ozturk, Tugba; Zhou, Longhu; Cho, Jong Hyun; Zhang, Hongwang; Amiralaei, Sheida; Shelton, Jadd R.; Lu, Xiao; Khalil, Ahmed; Domaoal, Robert A.; Stanton, Richard A.; Suesserman, Justin E.; Lin, Biing; Lee, Sam S.; Amblard, Franck; Whitaker, Tony; Coats, Steven J.

    2016-01-01

    Ribonucleoside analog inhibitors (rNAI) target the hepatitis C virus (HCV) RNA-dependent RNA polymerase nonstructural protein 5B (NS5B) and cause RNA chain termination. Here, we expand our studies on β-d-2′-C-methyl-2,6-diaminopurine-ribonucleotide (DAPN) phosphoramidate prodrug 1 (PD1) as a novel investigational inhibitor of HCV. DAPN-PD1 is metabolized intracellularly into two distinct bioactive nucleoside triphosphate (TP) analogs. The first metabolite, 2′-C-methyl-GTP, is a well-characterized inhibitor of NS5B polymerase, whereas the second metabolite, 2′-C-methyl-DAPN-TP, behaves as an adenosine base analog. In vitro assays suggest that both metabolites are inhibitors of NS5B-mediated RNA polymerization. Additional factors, such as rNAI-TP incorporation efficiencies, intracellular rNAI-TP levels, and competition with natural ribonucleotides, were examined in order to further characterize the potential role of each nucleotide metabolite in vivo. Finally, we found that although both 2′-C-methyl-GTP and 2′-C-methyl-DAPN-TP were weak substrates for human mitochondrial RNA (mtRNA) polymerase (POLRMT) in vitro, DAPN-PD1 did not cause off-target inhibition of mtRNA transcription in Huh-7 cells. In contrast, administration of BMS-986094, which also generates 2′-C-methyl-GTP and previously has been associated with toxicity in humans, caused detectable inhibition of mtRNA transcription. Metabolism of BMS-986094 in Huh-7 cells leads to 87-fold higher levels of intracellular 2′-C-methyl-GTP than DAPN-PD1. Collectively, our data characterize DAPN-PD1 as a novel and potent antiviral agent that combines the delivery of two active metabolites. PMID:27216050

  14. Carbon-13 and carbon-14 labeled dabigatran etexilate and tritium labeled dabigatran.

    PubMed

    Latli, Bachir; Kiesling, Ralf; Aßfalg, Stefan; Chevliakov, Max; Hrapchak, Matt; Campbell, Scot; Gonnella, Nina; Busacca, Carl A; Senanayake, Chris H

    2016-12-01

    Dabigatran etexilate or pradaxa, a novel oral anticoagulant, is a reversible, competitive, direct thrombin inhibitor. It is used to prevent strokes in patients with atrial fibrillation and the formation of blood clots in the veins (deep venous thrombosis) in adults who have had an operation to replace a hip or a knee. Pradaxa is the only novel oral anticoagulant available with both proven superiority to warfarin and a specific reversal agent for use in rare emergency situations. The detailed description of the synthesis of carbon-13 and carbon-14 labeled dabigatran etexilate, and tritium labeled dabigatran is described. The synthesis of carbon-13 dabigatran etexilate was accomplished in eight steps and in 6% overall yield starting from aniline- 13 C 6 . Ethyl bromoacetate-1- 14 C was the reagent of choice in the synthesis of carbon-14 labeled dabigatran etexilate in six steps and 17% overall yield. Tritium labeled dabigatran was prepared using either direct tritium incorporation under Crabtree's catalytic conditions or tritium-dehalogenation of a diiodo-precursor of dabigatran. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Head-to-head comparison of structurally unrelated dipeptidyl peptidase 4 inhibitors in the setting of renal ischemia reperfusion injury.

    PubMed

    Reichetzeder, Christoph; von Websky, Karoline; Tsuprykov, Oleg; Mohagheghi Samarin, Azadeh; Falke, Luise Gabriele; Dwi Putra, Sulistyo Emantoko; Hasan, Ahmed Abdallah; Antonenko, Viktoriia; Curato, Caterina; Rippmann, Jörg; Klein, Thomas; Hocher, Berthold

    2017-07-01

    Results regarding protective effects of dipeptidyl peptidase 4 (DPP4) inhibitors in renal ischaemia-reperfusion injury (IRI) are conflicting. Here we have compared structurally unrelated DPP4 inhibitors in a model of renal IRI. IRI was induced in uninephrectomized male rats by renal artery clamping for 30 min. The sham group was uninephrectomized but not subjected to IRI. DPP4 inhibitors or vehicle were given p.o. once daily on three consecutive days prior to IRI: linagliptin (1.5 mg·kg -1 ·day -1 ), vildagliptin (8 mg·kg -1 ·day -1 ) and sitagliptin (30 mg·kg -1 ·day -1 ). An additional group received sitagliptin until study end (before IRI: 30 mg·kg -1 ·day -1 ; after IRI: 15 mg·kg -1 ·day -1 ). Plasma-active glucagon-like peptide type 1 (GLP-1) increased threefold to fourfold in all DPP4 inhibitor groups 24 h after IRI. Plasma cystatin C, a marker of GFR, peaked 48 h after IRI. Compared with the placebo group, DPP4 inhibition did not reduce increased plasma cystatin C levels. DPP4 inhibitors ameliorated histopathologically assessed tubular damage with varying degrees of drug-specific efficacies. Renal osteopontin expression was uniformly reduced by all DPP4 inhibitors. IRI-related increased renal cytokine expression was not decreased by DPP4 inhibition. Renal DPP4 activity at study end was significantly inhibited in the linagliptin group, but only numerically reduced in the prolonged/dose-adjusted sitagliptin group. Active GLP-1 plasma levels at study end were increased only in the prolonged/dose-adjusted sitagliptin treatment group. In rats with renal IRI, DPP4 inhibition did not alter plasma cystatin C, a marker of glomerular function, but may protect against tubular damage. © 2017 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  16. Postnatal changes of gene expression for tissue inhibitors of metalloproteinase-1 and -2 and cystatins S and C, in rat submandibular gland demonstrated by quantitative reverse transcription-polymerase chain reaction.

    PubMed

    Nishiura, T; Abe, K

    1999-01-01

    The rat submandibular gland is not fully developed at birth and definitive differentiation takes place postnatally. The steady-state mRNA expression for the four proteinase inhibitor molecules, tissue inhibitors of metalloproteinase (TIMP)-1 and -2, and cystatins S and C, and for a housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (G3PDH), in rat submandibular glands was measured by quantitative competitive reverse transcription-polymerase chain reaction (RT-PCR) at different stages of postnatal development. The gene-expression patterns of TIMP-1 and -2 relative to G3PDH were similar to each other. The TIMP-2 and cystatin C genes were more highly expressed than those of TIMP-1 and cystatin S at all stages. Moreover, the gene expressions of TIMP-1 and -2, and of cystatins S and C, were predominant between 1 and 7, and 7 and 12 weeks of age, respectively, and coincided developmentally with the regression of terminal tubule cells and the differentiation of granular convoluted tubule cells, respectively. Quantitative competitive RT-PCR allowed accurate measurement of small changes in the steady-state concentrations of these proteinase-inhibitor mRNA molecules.

  17. Leishmania major: effect of protein kinase A and phosphodiesterase activity on infectivity and proliferation of promastigotes.

    PubMed

    Malki-Feldman, Laura; Jaffe, Charles L

    2009-09-01

    Effect of modulators on protein kinase A (PKA) activity, promastigote growth and their ability to infect peritoneal macrophages was monitored. PKA inhibitors reduced [Protein Kinase Inhibitor (PKI) - 56%; H89 - 54.5%] kemptide phosphorylation by Leishmania major promastigote lysates, while activators increased phosphorylation (8-CPT-cAMP - 88%; Sp-cAMPS-AM - 152%). Activation was specifically inhibited by PKI. Phosphodiesterase inhibitors also increased kemptide phosphorylation (dipyridamole - 171%; rolipram - 106%; and 3-isobutyl-1-methyl-xanthine - 154%). Parasite proliferation was significantly retarded (200 nM H89; 100 microM myristoylated-PKI) or completely inhibited (500 nM H89) by culturing with PKA inhibitors. Incubation with dipyridamole or Sp-cAMPS-AM also inhibited proliferation. Brief treatment (2h) with either H89, myristoylated-PKI, dipyridamole or Sp-cAMPS-AM reduced initial macrophage infection at days 1 and 2 (>40%) and on day 3 (>78% only for 100 microM myr-PKI). Characterization of leishmanial cAMP mediated signal transduction pathways will serve as the basis for the new drug design.

  18. Crystallographic Studies of Two Bacterial AntibioticResistance Enzymes: Aminoglycoside Phosphotransferase (2')-Ic and GES-1\\beta-lactamase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brynes, Laura; /Rensselaer Poly.

    2007-10-31

    Guiana Extended-Spectrum-1 (GES-1) and Aminoglycoside phosphotransferase (2')-Ic (APH(2')-Ic) are two bacteria-produced enzymes that essentially perform the same task: they provide resistance to an array of antibiotics. Both enzymes are part of a growing resistance problem in the medical world. In order to overcome the ever-growing arsenal of antibiotic-resistance enzymes, it is necessary to understand the molecular basis of their action. Accurate structures of these proteins have become an invaluable tool to do this. Using protein crystallography techniques and X-ray diffraction, the protein structure of GES-1 bound to imipenem (an inhibitor) has been solved. Also, APH(2')-Ic has been successfully crystallized, butmore » its structure was unable to be solved using molecular replacement using APH(2')-Ib as a search model. The structure of GES-1, with bound imipenem was solved to a resolution of 1.89A, and though the inhibitor is bound with only moderate occupancy, the structure shows crucial interactions inside the active site that render the enzyme unable to complete the hydrolysis of the {beta}-lactam ring. The APH(2')-Ic dataset could not be matched to the model, APH(2')-Ib, with which it shares 25% sequence identity. The structural information gained from GES-1, and future studies using isomorphous replacement to solve the APH(2')-Ic structure can aid directly to the creation of novel drugs to combat both of these classes of resistance enzymes.« less

  19. PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease.

    PubMed

    Schmidt, Amand F; Pearce, Lucy S; Wilkins, John T; Overington, John P; Hingorani, Aroon D; Casas, Juan P

    2017-04-28

    Despite the availability of effective drug therapies that reduce low-density lipoprotein (LDL)-cholesterol (LDL-C), cardiovascular disease (CVD) remains an important cause of mortality and morbidity. Therefore, additional LDL-C reduction may be warranted, especially for patients who are unresponsive to, or unable to take, existing LDL-C-reducing therapies. By inhibiting the proprotein convertase subtilisin/kexin type 9 (PCSK9) enzyme, monoclonal antibodies (PCSK9 inhibitors) may further reduce LDL-C, potentially reducing CVD risk as well. Primary To quantify short-term (24 weeks), medium-term (one year), and long-term (five years) effects of PCSK9 inhibitors on lipid parameters and on the incidence of CVD. Secondary To quantify the safety of PCSK9 inhibitors, with specific focus on the incidence of type 2 diabetes, cognitive function, and cancer. Additionally, to determine if specific patient subgroups were more or less likely to benefit from the use of PCSK9 inhibitors. We identified studies by systematically searching the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and Web of Science. We also searched Clinicaltrials.gov and the International Clinical Trials Registry Platform and screened the reference lists of included studies. We identified the studies included in this review through electronic literature searches conducted up to May 2016, and added three large trials published in March 2017. All parallel-group and factorial randomised controlled trials (RCTs) with a follow-up time of at least 24 weeks were eligible. Two review authors independently reviewed and extracted data. When data were available, we calculated pooled effect estimates. We included 20 studies with data on 67,237 participants (median age 61 years; range 52 to 64 years). Twelve trials randomised participants to alirocumab, three trials to bococizumab, one to RG7652, and four to evolocumab. Owing to the small number of trials using agents other than alirocumab, we did not differentiate between types of PCSK9 inhibitors used. We compared PCSK9 inhibitors with placebo (thirteen RCTs), ezetimibe (two RCTs) or ezetimibe and statins (five RCTs).Compared with placebo, PCSK9 inhibitors decreased LDL-C by 53.86% (95% confidence interval (CI) 58.64 to 49.08; eight studies; 4782 participants; GRADE: moderate) at 24 weeks; compared with ezetimibe, PCSK9 inhibitors decreased LDL-C by 30.20% (95% CI 34.18 to 26.23; two studies; 823 participants; GRADE: moderate), and compared with ezetimibe and statins, PCSK9 inhibitors decreased LDL-C by 39.20% (95% CI 56.15 to 22.26; five studies; 5376 participants; GRADE: moderate).Compared with placebo, PCSK9 inhibitors decreased the risk of CVD events, with a risk difference (RD) of 0.91% (odds ratio (OR) of 0.86, 95% CI 0.80 to 0.92; eight studies; 59,294 participants; GRADE: moderate). Compared with ezetimibe and statins, PCSK9 inhibitors appeared to have a stronger protective effect on CVD risk, although with considerable uncertainty (RD 1.06%, OR 0.45, 95% CI 0.27 to 0.75; three studies; 4770 participants; GRADE: very low). No data were available for the ezetimibe only comparison. Compared with placebo, PCSK9 probably had little or no effect on mortality (RD 0.03%, OR 1.02, 95% CI 0.91 to 1.14; 12 studies; 60,684 participants; GRADE: moderate). Compared with placebo, PCSK9 inhibitors increased the risk of any adverse events (RD 1.54%, OR 1.08, 95% CI 1.04 to 1.12; 13 studies; 54,204 participants; GRADE: low). Similar effects were observed for the comparison of ezetimibe and statins: RD 3.70%, OR 1.18, 95% CI 1.05 to 1.34; four studies; 5376 participants; GRADE: low. Clinical event data were unavailable for the ezetimibe only comparison. Over short-term to medium-term follow-up, PCSK9 inhibitors reduced LDL-C. Studies with medium-term follow-up time (longest median follow-up recorded was 26 months) reported that PCSK9 inhibitors (compared with placebo) decreased CVD risk but may have increased the risk of any adverse events (driven by SPIRE-1 and -2 trials). Available evidence suggests that PCSK9 inhibitor use probably leads to little or no difference in mortality. Evidence on relative efficacy and safety when PCSK9 inhibitors were compared with active treatments was of low to very low quality (GRADE); follow-up times were short and events were few. Large trials with longer follow-up are needed to evaluate PCSK9 inhibitors versus active treatments as well as placebo. Owing to the predominant inclusion of high-risk patients in these studies, applicability of results to primary prevention is limited. Finally, estimated risk differences indicate that PCSK9 inhibitors only modestly change absolute risks (often to less than 1%).

  20. A calpain-2 selective inhibitor enhances learning & memory by prolonging ERK activation.

    PubMed

    Liu, Yan; Wang, Yubin; Zhu, Guoqi; Sun, Jiandong; Bi, Xiaoning; Baudry, Michel

    2016-06-01

    While calpain-1 activation is required for LTP induction by theta burst stimulation (TBS), calpain-2 activation limits its magnitude during the consolidation period. A selective calpain-2 inhibitor applied either before or shortly after TBS enhanced the degree of potentiation. In the present study, we tested whether the selective calpain-2 inhibitor, Z-Leu-Abu-CONH-CH2-C6H3 (3, 5-(OMe)2 (C2I), could enhance learning and memory in wild-type (WT) and calpain-1 knock-out (C1KO) mice. We first showed that C2I could reestablish TBS-LTP in hippocampal slices from C1KO mice, and this effect was blocked by PD98059, an inhibitor of ERK. TBS resulted in PTEN degradation in hippocampal slices from both WT and C1KO mice, and C2I treatment blocked this effect in both mouse genotypes. Systemic injection of C2I 30 min before training in the fear-conditioning paradigm resulted in a biphasic dose-response curve, with low doses enhancing and high doses inhibiting freezing behavior. The difference between the doses needed to enhance and inhibit learning matches the difference in concentrations producing inhibition of calpain-2 and calpain-1. A low dose of C2I also restored normal learning in a novel object recognition task in C1KO mice. Levels of SCOP, a ERK phosphatase known to be cleaved by calpain-1, were decreased in dorsal hippocampus early but not late following training in WT mice; C2I treatment did not affect the early decrease in SCOP levels but prevented its recovery at the later time-point and prolonged ERK activation. The results indicate that calpain-2 activation limits the extent of learning, an effect possibly due to temporal limitation of ERK activation, as a result of SCOP synthesis induced by calpain-2-mediated PTEN degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Pharmacoinformatics exploration of polyphenol oxidases leading to novel inhibitors by virtual screening and molecular dynamic simulation study.

    PubMed

    Hassan, Mubashir; Abbas, Qamar; Ashraf, Zaman; Moustafa, Ahmed A; Seo, Sung-Yum

    2017-06-01

    Polyphenol oxidases (PPOs)/tyrosinases are metal-dependent enzymes and known as important targets for melanogenesis. Although considerable attempts have been conducted to control the melanin-associated diseases by using various inhibitors. However, the exploration of the best anti-melanin inhibitor without side effect still remains a challenge in drug discovery. In present study, protein structure prediction, ligand-based pharmacophore modeling, virtual screening, molecular docking and dynamic simulation study were used to screen the strong novel inhibitor to cure melanogenesis. The 3D structures of PPO1 and PPO2 were built through homology modeling, while the 3D crystal structures of PPO3 and PPO4 were retrieved from PDB. Pharmacophore modeling was performed using LigandScout 3.1 software and top five models were selected to screen the libraries (2601 of Aurora and 727, 842 of ZINC). Top 10 hit compounds (C1-10) were short-listed having strong binding affinities for PPO1-4. Drug and synthetic accessibility (SA) scores along with absorption, distribution, metabolism, excretion and toxicity (ADMET) assessment were employed to scrutinize the best lead hit. C4 (name) hit showed the best predicted SA score (5.75), ADMET properties and drug-likeness behavior among the short-listed compounds. Furthermore, docking simulations were performed to check the binding affinity of C1-C10 compounds against target proteins (PPOs). The binding affinity values of complex between C4 and PPOs were higher than those of other complexes (-11.70, -12.1, -9.90 and -11.20kcal/mol with PPO1, PPO2, PPO3, or PPO4, respectively). From comparative docking energy and binding analyses, PPO2 may be considered as better target for melanogenesis than others. The potential binding modes of C4, C8 and C10 against PPO2 were explored using molecular dynamics simulations. The root mean square deviation and fluctuation (RMSD/RMSF) graphs results depict the significance of C4 over the other compounds. Overall, bioactivity and ligand efficiency profiles suggested that the proposed hit may be more effective inhibitors for melanogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Crystallization and preliminary X-ray diffraction analysis of a Lys49-phospholipase A2 complexed with caffeic acid, a molecule with inhibitory properties against snake venoms

    PubMed Central

    Shimabuku, Patrícia S.; Fernandes, Carlos A. H.; Magro, Angelo J.; Costa, Tássia R.; Soares, Andreimar M.; Fontes, Marcos R. M.

    2011-01-01

    Phospholipases A2 (PLA2s) are one of the main components of bothropic venoms; in addition to their phospholipid hydrolysis action, they are involved in a wide spectrum of pharmacological activities, including neurotoxicity, myo­toxicity and cardiotoxicity. Caffeic acid is an inhibitor that is present in several plants and is employed for the treatment of ophidian envenomations in the folk medicine of many developing countries; as bothropic snake bites are not efficiently neutralized by conventional serum therapy, it may be useful as an antivenom. In this work, the cocrystallization and preliminary X-ray diffraction analysis of the Lys49-PLA2 piratoxin I from Bothrops pirajai venom in the presence of the inhibitor caffeic acid (CA) are reported. The crystals diffracted X-rays to 1.65 Å resolution and the structure was solved by molecular-replacement techniques. The electron-density map unambiguously indicated the presence of three CA molecules that interact with the C-terminus of the protein. This is the first time a ligand has been observed bound to this region and is in agreement with various experiments previously reported in the literature. PMID:21301098

  3. Synthesis, Biological Activity, and Crystal Structure of Potent Nonnucleoside Inhibitors of HIV-1 Reverse Transcriptase That Retain Activity against Mutant Forms of the Enzyme†

    PubMed Central

    Morningstar, Marshall L.; Roth, Thomas; Farnsworth, David W.; Smith, Marilyn Kroeger; Watson, Karen; Buckheit, Robert W.; Das, Kalyan; Zhang, Wanyi; Arnold, Eddy; Julias, John G.; Hughes, Stephen H.; Michejda, Christopher J.

    2010-01-01

    In an ongoing effort to develop novel and potent nonnucleoside HIV-1 reverse transcriptase (RT) inhibitors that are effective against the wild type (WT) virus and clinically observed mutants, 1,2-bis-substituted benzimidazoles were synthesized and tested. Optimization of the N1 and C2 positions of benzimidazole led to the development of 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)-4-methylbenzimidazole (1) (IC50 = 0.2 μM, EC50 = 0.44 μM, and TC50 ≥ 100 against WT). This paper describes how substitution on the benzimidazole ring profoundly affects activity. Substituents at the benzimidazole C4 dramatically enhanced potency, while at C5 or C6 substituents were generally detrimental or neutral to activity, respectively. A 7-methyl analogue did not inhibit HIV-1 RT. Determination of the crystal structure of 1 bound to RT provided the basis for accurate modeling of additional analogues, which were synthesized and tested. Several derivatives were nanomolar inhibitors of wild-type virus and were effective against clinically relevant HIV-1 mutants. PMID:17663538

  4. Effect of diethyldithiocarbamate (DDC) and ticlopidine on CYP1A2 activity and caffeine metabolism: an in vitro comparative study with human cDNA-expressed CYP1A2 and liver microsomes.

    PubMed

    Kot, Marta; Daniel, Władysława A

    2009-01-01

    The aim of the present study was to test the effect of diethyldithiocarbamate (DDC), which is regarded as a cytochrome P450 (CYP) CYP2A6 and CYP2E1 inhibitor, and ticlopidine, an efficient CYP2B6, CYP2C19 and CYP2D6 inhibitor, on the activity of human CYP1A2 and the metabolism of caffeine (1-N-, 3-N- and 7-N-demethylation, and C-8-hydroxylation). The experiment was carried out in vitro using human cDNA-expressed CYP1A2 (Supersomes) and human pooled liver microsomes. The effects of DDC and ticlopidine were compared to those of furafylline (a strong CYP1A2 inhibitor). A comparative in vitro study provides clear evidence that ticlopidine and DDC, applied at concentrations that inhibit the above-mentioned CYP isoforms, potently (as compared to furafylline) inhibit human CYP1A2 and caffeine metabolism, in particular 1-N- and 3-N-demethylation.

  5. Can Small Chemical Modifications of Natural Pan-inhibitors Modulate the Biological Selectivity? The Case of Curcumin Prenylated Derivatives Acting as HDAC or mPGES-1 Inhibitors.

    PubMed

    Iranshahi, Mehrdad; Chini, Maria Giovanna; Masullo, Milena; Sahebkar, Amirhossein; Javidnia, Azita; Chitsazian Yazdi, Mahsa; Pergola, Carlo; Koeberle, Andreas; Werz, Oliver; Pizza, Cosimo; Terracciano, Stefania; Piacente, Sonia; Bifulco, Giuseppe

    2015-12-24

    Curcumin, or diferuloylmethane, a polyphenolic molecule isolated from the rhizome of Curcuma longa, is reported to modulate multiple molecular targets involved in cancer and inflammatory processes. On the basis of its pan-inhibitory characteristics, here we show that simple chemical modifications of the curcumin scaffold can regulate its biological selectivity. In particular, the curcumin scaffold was modified with three types of substituents at positions C-1, C-8, and/or C-8' [C5 (isopentenyl, 5-8), C10 (geranyl, 9-12), and C15 (farnesyl, 13, 14)] in order to make these molecules more selective than the parent compound toward two specific targets: histone deacetylase (HDAC) and microsomal prostaglandin E2 synthase-1 (mPGES-1). From combined in silico and in vitro analyses, three selective inhibitors by proper substitution at position 8 were revealed. Compound 13 has improved HDAC inhibitory activity and selectivity with respect to the parent compound, while 5 and 9 block the mPGES-1 enzyme. We hypothesize about the covalent interaction of curcumin, 5, and 9 with the mPGES-1 binding site.

  6. The selective dopamine uptake inhibitor, D-84, suppresses cocaine self-administration, but does not occasion cocaine-like levels of generalization

    PubMed Central

    Batman, Angela M.; Dutta, Aloke K.; Reith, Maarten E. A.; Beardsley, Patrick M.

    2010-01-01

    A successful replacement pharmacotherapy for treating cocaine dependency would likely reduce cocaine's abuse, support a low abuse liability, overlap cocaine's subjective effects, and have a long duration of action. Inhibitors with varying selectivity at the dopamine transporter (DAT) have approximated these properties. The objective of the present study was to characterize the behavioural effects of an extremely selective DAT inhibitor, (+) trans-4-(2-Benzhydryloxyethyl)-1-(4-fluorobenzyl) piperadin-3-ol (D-84), a 3-hydroxy substituted piperidine derivative of GBR-12935, for its cocaine-like discriminative stimulus effects, its effects on cocaine self-administration, and for its own self-administration. During cocaine discrimination tests, cocaine occasioned the 10 mg/kg cocaine training stimulus with an ED50 value of 3.13 (1.54-6.34) mg/kg, and reduced response rates with an ED50 value of 20.39 (7.24-57.44) mg/kg. D-84 incompletely generalized to the cocaine stimulus occasioning a maximal 76% cocaine lever responding, while reducing response rates with lower potency than cocaine (ED50=30.94 (12.34-77.60) mg/kg). Pretreatment with D-84 (9.6-30.4 mg/kg) significantly (P<0.05) reduced cocaine intake at 17.1 mg/kg D-84 when cocaine was self-administered at 0.5 mg/kg/infusion, and at 30.4 mg/kg D-84 when cocaine was self-administered at 0.1, 0.5 .and 1.0 mg/kg/infusion. During self-administration tests with D-84 (0.1-1 mg/kg/infusion), numbers of infusions significantly exceeded vehicle levels at 0.3 mg/kg/infusion. These results show that D-84 pre-treatment can decrease cocaine intake especially when high doses of cocaine are being self-administered. This observation, combined with its incomplete generalization to the cocaine discriminative stimulus and its reported long duration of action, provides a profile consistent with a potential replacement therapy for treating cocaine abusing patients. PMID:20840845

  7. Phospholipid Binding Protein C Inhibitor (PCI) Is Present on Microparticles Generated In Vitro and In Vivo

    PubMed Central

    Einfinger, Katrin; Badrnya, Sigrun; Furtmüller, Margareta; Handschuh, Daniela; Lindner, Herbert; Geiger, Margarethe

    2015-01-01

    Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles. PMID:26580551

  8. Hsp90 C-Terminal Inhibitors Exhibit Antimigratory Activity by Disrupting the Hsp90α/Aha1 Complex in PC3-MM2 Cells

    PubMed Central

    2015-01-01

    Human Hsp90 isoforms are molecular chaperones that are often up-regulated in malignances and represent a primary target for Hsp90 inhibitors undergoing clinical evaluation. Hsp90α is a stress-inducible isoform of Hsp90 that plays a significant role in apoptosis and metastasis. Though Hsp90α is secreted into the extracellular space under metastatic conditions, its role in cancer biology is poorly understood. We report that Hsp90α associates with the Aha1 co-chaperone and found this complex to localize in secretory vesicles and at the leading edge of migrating cells. Knockdown of Hsp90α resulted in a defect in cell migration. The functional role of Hsp90α/Aha1 was studied by treating the cells with various novobiocin-based Hsp90 C-terminal inhibitors. These inhibitors disrupted the Hsp90α/Aha1 complex, caused a cytoplasmic redistribution of Hsp90α and Aha1, and decreased cell migration. Structure–function studies determined that disruption of Hsp90α/Aha1 association and inhibition of cell migration correlated with the presence of a benzamide side chain, since an acetamide substituted analog was less effective. Our results show that disruption of Hsp90α/Aha1 interactions with novobiocin-based Hsp90 C-terminal inhibitors may limit the metastatic potential of tumors. PMID:25402753

  9. Effect of pressure on interactions of anti-fluorescent probe monoclonal antibody with a ligand and inhibitors

    NASA Astrophysics Data System (ADS)

    Nishimoto, M.; Goto, M.; Tamai, N.; Nagamune, H.; Kaneshina, S.; Matsuki, H.

    2010-03-01

    Interactions of anti-fluorescent probe monoclonal antibody (immunoglobulin G (IgG)-49) with a ligand (fluorescein (FL)) and three kinds of inhibitors (1-tetradecanol (C14OH), 1-tetradecanoic acid (C13COOH) and 5-aminofluorescein (5-FLNH2)) under high pressure were examined by methods of fluorescence spectroscopy. Pressure promoted the dissociation between FL and IgG-49 from the complex. The standard volume changes of the dissociation became negative, hence, the binding of FL to IgG-49 expands the volume of the complex. The volume expansion may be closely related to the large hydrophobicity around binding sites of FL in the IgG-49 molecule. Further, the standard volume changes of IgG-49 for the inhibitor binding, which were calculated from the Johnson-Eyring plots, became all negative. The volume change for 5-FLNH2 was smaller than those for C14OH and C13COOH. This means that the volume of IgG-49 shrinks by the addition of the inhibitors in contrast with the FL binding. The differences among inhibitors are attributable to the differences in interaction modes to IgG-49 among them.

  10. Downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes

    PubMed Central

    Huang, Shujuan; Huang, Suling; Wang, Xi; Zhang, Qingli; Liu, Jia; Leng, Ying

    2017-01-01

    Dysregulation of lipid metabolism in skeletal muscle is involved in the development of insulin resistance. Mutations in lipin-1, a key lipid metabolism regulator leads to significant systemic insulin resistance in fld mice. However, the function of lipin-1 on lipid metabolism and insulin sensitivity in skeletal muscle is still unclear. Herein we demonstrated that downregulation of lipin-1 in C2C12 myotubes by siRNA transfection suppressed insulin action, characterized by reduced insulin stimulated Akt phosphorylation and glucose uptake. Correspondingly, decreased lipin-1 expression was observed in palmitate-induced insulin resistance in C2C12 myotubes, suggested that lipin-1 might play a role in the etiology of insulin resistance in skeletal muscle. The insulin resistance induced by lipin-1 downregulation was related to the disturbance of lipid homeostasis. Lipin-1 silencing reduced intracellular DAG and TAG levels, but elevated ceramide accumulation in C2C12 myotubes. Moreover, the impaired insulin stimulated Akt phosphorylation and glucose uptake caused by lipin-1 silencing could be blocked by the pretreatment with SPT inhibitor myriocin, ceramide synthase inhibitor FB1, or PP2A inhibitor okadaic acid, suggested that the increased ceramide accumulation might be responsible for the development of insulin resistance induced by lipin-1 silencing in C2C12 myotubes. Meanwhile, decreased lipin-1 expression also impaired mitochondrial function in C2C12 myotubes. Therefore, our study suggests that lipin-1 plays an important role in lipid metabolism and downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes. These results offer a molecular insight into the role of lipin-1 in the development of insulin resistance in skeletal muscle. PMID:28123341

  11. Downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes.

    PubMed

    Huang, Shujuan; Huang, Suling; Wang, Xi; Zhang, Qingli; Liu, Jia; Leng, Ying

    2017-01-01

    Dysregulation of lipid metabolism in skeletal muscle is involved in the development of insulin resistance. Mutations in lipin-1, a key lipid metabolism regulator leads to significant systemic insulin resistance in fld mice. However, the function of lipin-1 on lipid metabolism and insulin sensitivity in skeletal muscle is still unclear. Herein we demonstrated that downregulation of lipin-1 in C2C12 myotubes by siRNA transfection suppressed insulin action, characterized by reduced insulin stimulated Akt phosphorylation and glucose uptake. Correspondingly, decreased lipin-1 expression was observed in palmitate-induced insulin resistance in C2C12 myotubes, suggested that lipin-1 might play a role in the etiology of insulin resistance in skeletal muscle. The insulin resistance induced by lipin-1 downregulation was related to the disturbance of lipid homeostasis. Lipin-1 silencing reduced intracellular DAG and TAG levels, but elevated ceramide accumulation in C2C12 myotubes. Moreover, the impaired insulin stimulated Akt phosphorylation and glucose uptake caused by lipin-1 silencing could be blocked by the pretreatment with SPT inhibitor myriocin, ceramide synthase inhibitor FB1, or PP2A inhibitor okadaic acid, suggested that the increased ceramide accumulation might be responsible for the development of insulin resistance induced by lipin-1 silencing in C2C12 myotubes. Meanwhile, decreased lipin-1 expression also impaired mitochondrial function in C2C12 myotubes. Therefore, our study suggests that lipin-1 plays an important role in lipid metabolism and downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes. These results offer a molecular insight into the role of lipin-1 in the development of insulin resistance in skeletal muscle.

  12. Regulation of potassium transport in human lens epithelial cells.

    PubMed

    Lauf, Peter K; Warwar, Ronald; Brown, Thomas L; Adragna, Norma C

    2006-01-01

    The major K influx pathways and their response to thiol modification by N-ethylmaleimide (NEM) and protein kinase and phosphatase inhibitors were characterized in human lens epithelial B3 (HLE-B3) cells with Rb as K congener. Ouabain (0.1 mM) and bumetanide (5 microM) discriminated between the Na/K pump ( approximately 35% of total Rb influx) and Na-K-2Cl cotransport (NKCC) ( approximately 50%). Cl-replacement with nitrate or sulfamate revealed <10% residual [ouabain+bumetanide]-insensitive K-Cl cotransport (KCC). At 0.3-0.5 mM, NEM stimulated the Na/K pump by 2-fold independent of external Na, KCC between 2 and 4-fold, and abolished approximately 90% of NKCC. Calyculin-A, a serine/threonine protein phosphatase-1 inhibitor, did not affect NKCC but inhibited KCC, whereas 10 microM staurosporine, a serine/threonine kinase inhibitor, abolished NKCC, and stimulated KCC only when followed by NEM treatment. The tyrosine-kinase inhibitor genistein, at concentrations >100 microM, activated the Na/K pump and abolished NKCC but did not affect KCC. The data suggest at least partial inverse regulation of KCC and NKCC in HLE-B3 cells by signaling cascades involving serine, threonine and tyrosine phosphorylation/dephosphorylation equilibria.

  13. Erythropoietin activates two distinct signaling pathways required for the initiation and the elongation of c-myc

    NASA Technical Reports Server (NTRS)

    Chen, C.; Sytkowski, A. J.

    2001-01-01

    Erythropoietin (Epo) stimulation of erythroid cells results in the activation of several kinases and a rapid induction of c-myc expression. Protein kinase C is necessary for Epo up-regulation of c-myc by promoting elongation at the 3'-end of exon 1. PKCepsilon mediates this signal. We now show that Epo triggers two signaling pathways to c-myc. Epo rapidly up-regulated Myc protein in BaF3-EpoR cells. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 blocked Myc up-regulation in a concentration-dependent manner but had no effect on the Epo-induced phosphorylation of ERK1 and ERK2. LY294002 also had no effect on Epo up-regulation of c-fos. MEK1 inhibitor PD98059 blocked both the c-myc and the c-fos responses to Epo. PD98059 and the PKC inhibitor H7 also blocked the phosphorylation of ERK1 and ERK2. PD98059 but not LY294002 inhibited Epo induction of ERK1 and ERK2 phosphorylation in normal erythroid cells. LY294002 blocked transcription of c-myc at exon 1. PD98059 had no effect on transcription from exon 1 but, rather, blocked Epo-induced c-myc elongation at the 3'-end of exon 1. These results identify two Epo signaling pathways to c-myc, one of which is PI3K-dependent operating on transcriptional initiation, whereas the other is mitogen-activated protein kinase-dependent operating on elongation.

  14. Hepatitis C virus inhibitor synergism suggests multistep interactions between heat-shock protein 90 and hepatitis C virus replication

    PubMed Central

    Kubota, Naoko; Nomoto, Masataka; Hwang, Gi-Wook; Watanabe, Toshihiko; Kohara, Michinori; Wakita, Takaji; Naganuma, Akira; Kuge, Shusuke

    2016-01-01

    AIM: To address the effect of heat-shock protein 90 (HSP90) inhibitors on the release of the hepatitis C virus (HCV), a cell culture-derived HCV (JFH1/HCVcc) from Huh-7 cells was examined. METHODS: We quantified both the intracellular and extracellular (culture medium) levels of the components (RNA and core) of JFH-1/HCVcc. The intracellular HCV RNA and core levels were determined after the JFH1/HCVcc-infected Huh-7 cells were treated with radicicol for 36 h. The extracellular HCV RNA and core protein levels were determined from the medium of the last 24 h of radicicol treatment. To determine the possible role of the HSP90 inhibitor in HCV release, we examined the effect of a combined application of low doses of the HSP90 inhibitor radicicol and the RNA replication inhibitors cyclosporin A (CsA) or interferon. Finally, we statistically examined the combined effect of radicicol and CsA using the combination index (CI) and graphical representation proposed by Chou and Talalay. RESULTS: We found that the HSP90 inhibitors had greater inhibitory effects on the HCV RNA and core protein levels measured in the medium than inside the cells. This inhibitory effect was observed in the presence of a low level of a known RNA replication inhibitor (CsA or interferon-α). Treating the cells with a combination of radicicol and cyclosporin A for 24 h resulted in significant synergy (CI < 1) that affected the release of both the viral RNA and the core protein. CONCLUSION: In addition to having an inhibitory effect on RNA replication, HSP90 inhibitors may interfere with an HCV replication step that occurs after the synthesis of viral RNA, such as assembly and release. PMID:26925202

  15. Dietary protein hydrolysate and trypsin inhibitor effects on digestive capacities and performances during early-stages of spotted wolffish: suggested mechanisms.

    PubMed

    Savoie, A; Le François, N R; Lamarre, S G; Blier, P U; Beaulieu, L; Cahu, C

    2011-04-01

    Growth rate is dependent upon adequate provision of amino acids especially in newly-hatched fish which experience very high growth rate. The replacement of a fraction of protein content by partially hydrolyzed (pre-digested) proteins was carried out and the digestive capacities and performances of larval/juvenile spotted wolffish (Anarhichas minor) were measured. The goal of this study was to verify whether the scope for growth is principally dictated by the proteolytic capacity of the digestive system by examining the effect of protein hydrolysates (PH) and trypsin inhibitor dietary inclusion on protein digestion/assimilation capacities, growth and survival. Four experimental diets were examined: C (control) I (supplemented with 750 mg/kg soybean trypsin inhibitor (SBTI)) H (supplemented with 20% PH) and HI (supplemented with 20% PH and 750 mg/kg SBTI). Protein hydrolysate supplementation gave significantly higher body mass than control at day 15 post-hatching. Unexpectedly, at day 30 and 60, fish administered diet HI (containing trypsin inhibitor) were heavier than the other groups. Suggested mechanisms are presented and discussed. The main conclusions of this study are that wolffish larval stage lasts roughly 15 days and that juvenile growth is linked to proteolytic capacity, but also very likely to absorption capacity of peptides and amino acids. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. F99 is critical for dimerization and activation of South African HIV-1 subtype C protease.

    PubMed

    Naicker, Previn; Seele, Palesa; Dirr, Heini W; Sayed, Yasien

    2013-10-01

    HIV-1 protease (PR) is an obligate homodimer which plays a pivotal role in the maturation and hence propagation of HIV. Although successful developments on PR active site inhibitors have been achieved, the major limiting factor has been the emergence of HIV drug-resistant strains. Disruption of the dimer interface serves as an alternative mechanism to inactivate the enzyme. The terminal residue, F99, was mutated to an alanine to investigate its contribution to dimer stability in the South African HIV-1 subtype C (C-SA) PR. The F99A PR and wild-type C-SA PR were overexpressed and purified. The activities of the PRs and their ability to bind an active site inhibitor, acetyl-pepstatin, were determined in vitro. The F99A PR showed no activity and the inability to bind to the inhibitor. Secondary and quaternary structure analysis were performed and revealed that the F99A PR is monomeric with reduced β-sheet content. The mutation of F99 to alanine disrupted the presumed 'lock-and-key' motif at the terminal dimer interface, in turn creating a cavity at the N- and C-terminal antiparallel β-sheet. These findings support the design of inhibitors targeting the C-terminus of the C-SA PR, centered on interactions with the bulky F99.

  17. Scaffold protein enigma homolog 1 overcomes the repression of myogenesis activation by inhibitor of DNA binding 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakatani, Miyuki; Ito, Jumpei; Japan Society for the Promotion of Science, Tokyo, 102-0083

    Enigma Homolog 1 (ENH1) is a scaffold protein for signaling proteins and transcription factors. Previously, we reported that ENH1 overexpression promotes the differentiation of C2C12 myoblasts. However, the molecular mechanism underlying the role of ENH1 in the C2C12 cells differentiation remains elusive. ENH1 was shown to inhibit the proliferation of neuroblastoma cells by sequestering Inhibitor of DNA binding protein 2 (Id2) in the cytosol. Id2 is a repressor of basic Helix-Loop-Helix transcription factors activity and prevents myogenesis. Here, we found that ENH1 overcome the Id2 repression of C2C12 cells myogenic differentiation and that ENH1 overexpression promotes mice satellite cells activation, the firstmore » step toward myogenic differentiation. In addition, we show that ENH1 interacted with Id2 in C2C12 cells and mice satellite cells. Collectively, our results suggest that ENH1 plays an important role in the activation of myogenesis through the repression of Id2 activity. -- Highlights: •Enigma Homolog 1 (ENH1) is a scaffold protein. •ENH1 binds to inhibitor of DNA binding 2 (Id2) in myoblasts. •ENH1 overexpression overcomes the Id2's repression of myogenesis. •The Id2-ENH1 complex play an important role in the activation of myogenesis.« less

  18. An alternative assay to discover potential calmodulin inhibitors using a human fluorophore-labeled CaM protein.

    PubMed

    González-Andrade, Martín; Figueroa, Mario; Rodríguez-Sotres, Rogelio; Mata, Rachel; Sosa-Peinado, Alejandro

    2009-04-01

    This article describes the development of a new fluorescent-engineered human calmodulin, hCaM M124C-mBBr, useful in the identification of potential calmodulin (CaM) inhibitors. An hCaM mutant containing a unique cysteine residue at position 124 on the protein was expressed, purified, and chemically modified with the fluorophore monobromobimane (mBBr). The fluorophore-labeled protein exhibited stability and functionality to the activation of calmodulin-sensitive cAMP phosphodiesterase (PDE1) similar to wild-type hCaM. The hCaM M124C-mBBr is highly sensitive to detecting inhibitor interaction given that it showed a quantum efficiency of 0.494, approximately 20 times more than the value for wild-type hCaM, and a large spectral change ( approximately 80% quenching) when the protein is in the presence of saturating inhibitor concentrations. Two natural products previously shown to act as CaM inhibitors, malbrancheamide (1) and tajixanthone hydrate (2), and the well-known CaM inhibitor chlorpromazine (CPZ) were found to quench the hCaM M124C-mBBr fluorescence, and the IC(50) values were comparable to those obtained for the wild-type protein. These results support the use of hCaM M124C-mBBr as a fluorescence biosensor and a powerful analytical tool in the high-throughput screening demanded by the pharmaceutical and biotechnology industries.

  19. Protozoan Parasite Growth Inhibitors Discovered by Cross-Screening Yield Potent Scaffolds for Lead Discovery

    PubMed Central

    2015-01-01

    Tropical protozoal infections are a significant cause of morbidity and mortality worldwide; four in particular (human African trypanosomiasis (HAT), Chagas disease, cutaneous leishmaniasis, and malaria) have an estimated combined burden of over 87 million disability-adjusted life years. New drugs are needed for each of these diseases. Building on the previous identification of NEU-617 (1) as a potent and nontoxic inhibitor of proliferation for the HAT pathogen (Trypanosoma brucei), we have now tested this class of analogs against other protozoal species: T. cruzi (Chagas disease), Leishmania major (cutaneous leishmaniasis), and Plasmodium falciparum (malaria). Based on hits identified in this screening campaign, we describe the preparation of several replacements for the quinazoline scaffold and report these inhibitors’ biological activities against these parasites. In doing this, we have identified several potent proliferation inhibitors for each pathogen, such as 4-((3-chloro-4-((3-fluorobenzyl)oxy)phenyl)amino)-6-(4-((4-methyl-1,4-diazepan-1-yl)sulfonyl)phenyl)quinoline-3-carbonitrile (NEU-924, 83) for T. cruzi and N-(3-chloro-4-((3-fluorobenzyl)oxy)phenyl)-7-(4-((4-methyl-1,4-diazepan-1-yl)sulfonyl)phenyl)cinnolin-4-amine (NEU-1017, 68) for L. major and P. falciparum. PMID:26087257

  20. Identification of amino acid residues responsible for differences in substrate specificity and inhibitor sensitivity between two human liver dihydrodiol dehydrogenase isoenzymes by site-directed mutagenesis.

    PubMed Central

    Matsuura, K; Deyashiki, Y; Sato, K; Ishida, N; Miwa, G; Hara, A

    1997-01-01

    Human liver dihydrodiol dehydrogenase isoenzymes (DD1 and DD2), in which only seven amino acid residues are substituted, differ remarkably in specificity for steroidal substrates and inhibitor sensitivity: DD1 shows 20alpha-hydroxysteroid dehydrogenase activity and sensitivity to 1,10-phenanthroline, whereas DD2 oxidizes 3alpha-hydroxysteroids and is highly inhibited by bile acids. In the present study we performed site-directed mutagenesis of the seven residues (Thr-38, Arg-47, Leu-54, Cys-87, Val-151, Arg-170 and Gln-172) of DD1 to the corresponding residues (Val, His, Val, Ser, Met, His and Leu respectively) of DD2. Of the seven mutations, only the replacement of Leu-54 with Val produced an enzyme that had almost the same properties as DD2. No significant changes were observed in the other mutant enzymes. An additional site-directed mutagenesis of Tyr-55 of DD1 to Phe yielded an inactive protein, suggesting the catalytically important role of this residue. Thus a residue at a position before the catalytic Tyr residue might play a key role in determining the orientation of the substrates and inhibitors. PMID:9173902

  1. Human Immunodeficiency Virus Type 1 cDNA Integration: New Aromatic Hydroxylated Inhibitors and Studies of the Inhibition Mechanism

    PubMed Central

    Farnet, C. M.; Wang, B.; Hansen, M.; Lipford, J. R.; Zalkow, L.; Robinson, W. E.; Siegel, J.; Bushman, F.

    1998-01-01

    Integration of the human immunodeficiency virus type 1 (HIV-1) cDNA is a required step for viral replication. Integrase, the virus-encoded enzyme important for integration, has not yet been exploited as a target for clinically useful inhibitors. Here we report on the identification of new polyhydroxylated aromatic inhibitors of integrase including ellagic acid, purpurogallin, 4,8,12-trioxatricornan, and hypericin, the last of which is known to inhibit viral replication. These compounds and others were characterized in assays with subviral preintegration complexes (PICs) isolated from HIV-1-infected cells. Hypericin was found to inhibit PIC assays, while the other compounds tested were inactive. Counterscreening of these and other integrase inhibitors against additional DNA-modifying enzymes revealed that none of the polyhydroxylated aromatic compounds are active against enzymes that do not require metals (methylases, a pox virus topoisomerase). However, all were cross-reactive with metal-requiring enzymes (restriction enzymes, a reverse transcriptase), implicating metal atoms in the inhibitory mechanism. In mechanistic studies, we localized binding of some inhibitors to the catalytic domain of integrase by assaying competition of binding by labeled nucleotides. These findings help elucidate the mechanism of action of the polyhydroxylated aromatic inhibitors and provide practical guidance for further inhibitor development. PMID:9736543

  2. Immunosafety of recombinant human C1-inhibitor in hereditary angioedema: evaluation of ige antibodies.

    PubMed

    Hack, C Erik; Relan, Anurag; Baboeram, Aartie; Oortwijn, Beatrijs; Versteeg, Serge; van Ree, Ronald; Pijpstra, Rienk

    2013-04-01

    Recombinant human C1-inhibitor (rhC1INH) purified from milk of transgenic rabbits is used for the treatment of acute attacks in patients with hereditary angioedema (HAE) due to C1-inhibitor (C1INH) deficiency. The objective was to investigate the risk of rhC1INH inducing IgE antibodies or eliciting anaphylactic reactions. In subjects treated with rhC1INH, we retrospectively analysed the frequency and clinical relevance of pre-exposure and potentially newly induced IgE antibodies against rabbit and other animal allergens including cow's milk by the ImmunoCAP(®) Specific IgE blood test system. 130 HAE patients and 14 healthy subjects received 300 administrations of rhC1INH, 65 subjects (47.4 %) on one occasion; 72 (52.6 %) on at least two occasions (range 2-12; median 2). Five subjects had pre-existing anti-rabbit epithelium IgE; the subject with the highest levels and a previously undisclosed rabbit allergy developed an anaphylactic reaction upon first exposure to rhC1INH, whereas the other four subjects with lower pre-existing IgE levels (Class 1-3), did not. No other anaphylactic reactions were identified in any of the subjects exposed to rhC1INH. Analysis of post-exposure samples revealed that the risk of inducing new or boosting existing IgE responses to rabbit or cow's milk allergens was negligible. The propensity of rhC1INH to induce IgE antibodies following repeated administration of rhC1INH is low. Subjects with substantially elevated anti-rabbit epithelium IgE antibodies and/or clinical allergy to rabbits may have an increased risk for an allergic reaction. No other risk factors for allergic reactions to rhC1INH have been identified.

  3. Dimethylarginine dimethylaminohydrolase 1 modulates endothelial cell growth through nitric oxide and Akt.

    PubMed

    Zhang, Ping; Hu, Xinli; Xu, Xin; Chen, Yingjie; Bache, Robert J

    2011-04-01

    Dimethylarginine dimethylaminohydrolase 1 (DDAH1) modulates NO production by degrading the endogenous nitric oxide (NO) synthase (NOS) inhibitors asymmetrical dimethylarginine (ADMA) and L-NG-monomethyl arginine (L-NMMA). This study examined whether, in addition to degrading ADMA, DDAH1 exerts ADMA-independent effects that influence endothelial function. Using selective gene silencing of DDAH1 with small interfering RNA and overexpression of DDAH1 in human umbilical vein endothelial cells, we found that DDAH1 acts to promote endothelial cell proliferation, migration, and tube formation by Akt phosphorylation, as well as through the traditional role of degrading ADMA. Incubation of human umbilical vein endothelial cells with the NOS inhibitors l-NG-nitro-arginine methyl ester (L-NAME) or ADMA, the soluble guanylyl cyclase inhibitor 1H-(1,2,4)oxadiazolo-(4,3-2)quinoxalin-1-one, or the cGMP analog 8-(4-Chlorophenylthio)-cGMP had no effect on phosphorylated (p)-Akt(Ser473), indicating that the increase in p-Akt(Ser473) produced by DDAH1 was independent of the NO-cGMP signaling pathway. DDAH1 formed a protein complex with Ras, and DDAH1 overexpression increased Ras activity. The Ras inhibitor manumycin-A or dominant-negative Ras significantly attenuated the DDAH1-induced increase in p-Akt(Ser473). Furthermore, DDAH1 knockout impaired endothelial sprouting from cultured aortic rings, and overexpression of constitutively active Akt or DDAH1 rescued endothelial sprouting in the aortic rings from these mice. DDAH1 exerts a unique role in activating Akt that affects endothelial function independently of degrading endogenous NOS inhibitors.

  4. Cells adapted to the proteasome inhibitor 4-hydroxy- 5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone require enzymatically active proteasomes for continued survival

    PubMed Central

    Princiotta, Michael F.; Schubert, Ulrich; Chen, Weisan; Bennink, Jack R.; Myung, Jayhyuk; Crews, Craig M.; Yewdell, Jonathan W.

    2001-01-01

    The proteasome is the primary protease used by cells for degrading proteins and generating peptide ligands for class I molecules of the major histocompatibility complex. Based on the properties of cells adapted to grow in the presence of the proteasome inhibitor 4-hydroxy-5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone (NLVS), it was proposed that proteasomes can be replaced by alternative proteolytic systems, particularly a large proteolytic complex with a tripeptidyl peptidase II activity. Here we show that NLVS-adapted cells retain sensitivity to a number of highly specific proteasome inhibitors with regard to antigenic peptide generation, accumulation of polyubiquitinated proteins, degradation of p53, and cell viability. In addition, we show that in the same assays (with a single minor exception), NLVS-adapted cells are about as sensitive as nonselected cells to Ala-Ala-Phe-chloromethylketone, a specific inhibitor of tripeptidyl peptidase II activity. Based on these findings, we conclude that proteasomes still have essential proteolytic functions in adapted cells that are not replaced by Ala-Ala-Phe-chloromethylketone-sensitive proteases. PMID:11149939

  5. Cross regulation between cGMP-dependent protein kinase and Akt in vasodilatation of porcine pulmonary artery.

    PubMed

    Liu, Juan; Liu, Huixia; Li, Yanjing; Xu, Xiaojian; Chen, Zhengju; Liu, Limei; Yu, Xiaoxing; Gao, Yuansheng; Dou, Dou

    2014-11-01

    cGMP-dependent protein kinase (PKG) plays a crucial role in vasodilatation induced by cGMP-elevating agents. Akt has been demonstrated to be involved in modulating vasoreactivity. The present study was to determine the interaction between PKG and Akt and their influences on nitric oxide (NO)-induced vasodilatation. Isolated fourth-generation porcine pulmonary arteries were dissected from the lung and cut into rings in ice-cold modified Krebs-Ringer bicarbonate buffer. The relaxant responses of vessels were determined by organ chamber technique, cGMP was assayed by using enzyme-linked immunosorbent assay kit, the protein levels of phosphorylated Akt were examined by Western blotting, and the activity of phosphodiesterase type 5 (PDE5) was assayed by measuring the rate of cGMP degradation. Incubation with DETA NONOate (a stable NO donor) and 8-Br-cGMP (a cell membrane permeable analog of cGMP) attenuated Akt phosphorylation at Ser-473, which was prevented by Rp-8-Br-PET-cGMPS (a specific inhibitor of PKG) and calyculin A (an inhibitor of protein phosphatase 1 and 2A) but not by okadaic acid (a selective inhibitor of protein phosphatase 2A). Inhibition of Akt enhanced the relaxation and cGMP elevation of porcine pulmonary arteries induced by DETA NONOate or sodium nitroprusside, which was prevented by zaprinast, a specific inhibitor of PDE5. Incubation with LY294002 or Akt inhibitor reduced PDE5 activity in porcine pulmonary arteries. The present study indicates that PKG may attenuate Akt phosphorylation through protein phosphatase 1, which leads to an augmented cGMP elevation by inhibition of PDE5. The increased cGMP in turn activates PKG. Such a positive feedback may play an important role in NO-induced pulmonary vasodilatation.

  6. Sequential treatment with aurora B inhibitors enhances cisplatin-mediated apoptosis via c-Myc.

    PubMed

    Ma, Yaxi; Cao, Handi; Lou, Siyue; Shao, Xuejing; Lv, Wen; Qi, Xiaotian; Liu, Yujia; Ying, Meidan; He, Qiaojun; Yang, Xiaochun

    2015-04-01

    Platinum compound such as cisplatin is the first-line chemotherapy of choice in most patients with ovarian carcinoma. However, patients with inherent or acquired cisplatin resistance often experience relapse. Therefore, novel therapies are urgently required to treat drug-resistant ovarian carcinoma. Here, we showed that compared to the non-functional traditional simultaneous treatment, sequential combination of Aurora B inhibitors followed by cisplatin synergistically enhanced apoptotic response in cisplatin-resistant OVCAR-8 cells. This effect was accompanied by the induction of polyploidy in a c-Myc-dependent manner, as c-Myc knockdown reduced the efficacy of the combination by suppressing the expression of Aurora B and impairing cellular response to Aurora B inhibitor, as indicated by the decreased polyploidy and hyperphosphorylation of histone H1. In c-Myc-deficient SKOV3 cells, c-Myc overexpression restored Aurora B expression, induced polyploidy after inhibition of Aurora B, and sensitized cells to this combination therapy. Thus, our report reveals for the first time that sequential treatment of Aurora B inhibitors and cisplatin is essential to inhibit ovarian carcinoma by inducing polyploidy and downregulating c-Myc and that c-Myc is identified as a predictive biomarker to select cells responsive to chemotherapeutical combinations targeting Aurora B. Collectively, these studies provide novel approaches to overcoming cisplatin chemotherapy resistance in ovarian cancer. Pretreatment of Aurora B inhibitors augment apoptotic effects of cisplatin. The synergy of Aurora B inhibitor with cisplatin is dependent on c-Myc expression. c-Myc-dependent induction of polyploidy sensitizes cells to cisplatin.

  7. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review).

    PubMed

    Katoh, Masaru

    2017-11-01

    Cancer stem cells (CSCs), which have the potential for self-renewal, differentiation and de-differentiation, undergo epigenetic, epithelial-mesenchymal, immunological and metabolic reprogramming to adapt to the tumor microenvironment and survive host defense or therapeutic insults. Intra-tumor heterogeneity and cancer-cell plasticity give rise to therapeutic resistance and recurrence through clonal replacement and reactivation of dormant CSCs, respectively. WNT signaling cascades cross-talk with the FGF, Notch, Hedgehog and TGFβ/BMP signaling cascades and regulate expression of functional CSC markers, such as CD44, CD133 (PROM1), EPCAM and LGR5 (GPR49). Aberrant canonical and non-canonical WNT signaling in human malignancies, including breast, colorectal, gastric, lung, ovary, pancreatic, prostate and uterine cancers, leukemia and melanoma, are involved in CSC survival, bulk-tumor expansion and invasion/metastasis. WNT signaling-targeted therapeutics, such as anti-FZD1/2/5/7/8 monoclonal antibody (mAb) (vantictumab), anti-LGR5 antibody-drug conjugate (ADC) (mAb-mc-vc-PAB-MMAE), anti-PTK7 ADC (PF-06647020), anti-ROR1 mAb (cirmtuzumab), anti-RSPO3 mAb (rosmantuzumab), small-molecule porcupine inhibitors (ETC-159, WNT-C59 and WNT974), tankyrase inhibitors (AZ1366, G007-LK, NVP-TNKS656 and XAV939) and β-catenin inhibitors (BC2059, CWP232228, ICG-001 and PRI-724), are in clinical trials or preclinical studies for the treatment of patients with WNT-driven cancers. WNT signaling-targeted therapeutics are applicable for combination therapy with BCR-ABL, EGFR, FLT3, KIT or RET inhibitors to treat a subset of tyrosine kinase-driven cancers because WNT and tyrosine kinase signaling cascades converge to β-catenin for the maintenance and expansion of CSCs. WNT signaling-targeted therapeutics might also be applicable for combination therapy with immune checkpoint blockers, such as atezolizumab, avelumab, durvalumab, ipilimumab, nivolumab and pembrolizumab, to treat cancers with immune evasion, although the context-dependent effects of WNT signaling on immunity should be carefully assessed. Omics monitoring, such as genome sequencing and transcriptome tests, immunohistochemical analyses on PD-L1 (CD274), PD-1 (PDCD1), ROR1 and nuclear β-catenin and organoid-based drug screening, is necessary to determine the appropriate WNT signaling-targeted therapeutics for cancer patients.

  8. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review)

    PubMed Central

    Katoh, Masaru

    2017-01-01

    Cancer stem cells (CSCs), which have the potential for self-renewal, differentiation and de-differentiation, undergo epigenetic, epithelial-mesenchymal, immunological and metabolic reprogramming to adapt to the tumor microenvironment and survive host defense or therapeutic insults. Intra-tumor heterogeneity and cancer-cell plasticity give rise to therapeutic resistance and recurrence through clonal replacement and reactivation of dormant CSCs, respectively. WNT signaling cascades cross-talk with the FGF, Notch, Hedgehog and TGFβ/BMP signaling cascades and regulate expression of functional CSC markers, such as CD44, CD133 (PROM1), EPCAM and LGR5 (GPR49). Aberrant canonical and non-canonical WNT signaling in human malignancies, including breast, colorectal, gastric, lung, ovary, pancreatic, prostate and uterine cancers, leukemia and melanoma, are involved in CSC survival, bulk-tumor expansion and invasion/metastasis. WNT signaling-targeted therapeutics, such as anti-FZD1/2/5/7/8 monoclonal antibody (mAb) (vantictumab), anti-LGR5 antibody-drug conjugate (ADC) (mAb-mc-vc-PAB-MMAE), anti-PTK7 ADC (PF-06647020), anti-ROR1 mAb (cirmtuzumab), anti-RSPO3 mAb (rosmantuzumab), small-molecule porcupine inhibitors (ETC-159, WNT-C59 and WNT974), tankyrase inhibitors (AZ1366, G007-LK, NVP-TNKS656 and XAV939) and β-catenin inhibitors (BC2059, CWP232228, ICG-001 and PRI-724), are in clinical trials or preclinical studies for the treatment of patients with WNT-driven cancers. WNT signaling-targeted therapeutics are applicable for combination therapy with BCR-ABL, EGFR, FLT3, KIT or RET inhibitors to treat a subset of tyrosine kinase-driven cancers because WNT and tyrosine kinase signaling cascades converge to β-catenin for the maintenance and expansion of CSCs. WNT signaling-targeted therapeutics might also be applicable for combination therapy with immune checkpoint blockers, such as atezolizumab, avelumab, durvalumab, ipilimumab, nivolumab and pembrolizumab, to treat cancers with immune evasion, although the context-dependent effects of WNT signaling on immunity should be carefully assessed. Omics monitoring, such as genome sequencing and transcriptome tests, immunohistochemical analyses on PD-L1 (CD274), PD-1 (PDCD1), ROR1 and nuclear β-catenin and organoid-based drug screening, is necessary to determine the appropriate WNT signaling-targeted therapeutics for cancer patients. PMID:29048660

  9. Glucose dynamics and mechanistic implications of SGLT2 inhibitors in animals and humans.

    PubMed

    List, James F; Whaley, Jean M

    2011-03-01

    Glucose is freely filtered in the glomeruli before being almost entirely reabsorbed into circulation from the proximal renal tubules. The sodium-glucose cotransporter 2 (SGLT2), present in the S1 segment of the proximal tubule, is responsible for the majority of glucose reabsorption. SGLT2 inhibitors reduce glucose reabsorption and increase urinary glucose excretion. In animal models and humans with type 2 diabetes, this effect is associated with reduced fasting and postprandial blood glucose levels, and reduced hemoglobin A1c. Animal studies suggest that reduction of hyperglycemia with SGLT2 inhibitors may also improve insulin sensitivity and preserve β-cell function. Urinary excretion of excess calories with SGLT2 inhibitors is also associated with reduction in body weight. Modest reductions in blood pressure have been noted with SGLT2 inhibitors, consistent with a mild diuretic action. Some C-glucoside SGLT2 inhibitors, such as dapagliflozin, have pharmacokinetic properties that make them amenable to once-daily dosing.

  10. A designed inhibitor of a CLC antiporter blocks function through a unique binding mode

    PubMed Central

    Howery, Andrew E.; Elvington, Shelley; Abraham, Sherwin J.; Choi, Kee-Hyun; Phillips, Sabrina; Ryan, Christopher M.; Sanford, R. Lea; Simpson-Dworschak, Sierra; Almqvist, Jonas; Tran, Kevin; Chew, Thomas A.; Zachariae, Ulrich; Andersen, Olaf S.; Whitelegge, Julian; Matulef, Kimberly; Du Bois, Justin; Maduke, Merritt C.

    2012-01-01

    SUMMARY The lack of small-molecule inhibitors for anion-selective transporters and channels has impeded our understanding of the complex mechanisms that underlie ion passage. The ubiquitous CLC “Chloride Channel” family represents a unique target for biophysical and biochemical studies because its distinctive protein fold supports both passive chloride channels and secondary-active chloride-proton transporters. Here, we describe the synthesis and characterization of the first specific small-molecule inhibitor directed against a CLC antiporter (ClC-ec1). This compound, 4,4′-octanamidostilbene-2,2′-disulfonate (OADS), inhibits ClC-ec1 with low micromolar affinity and has no specific effect on a CLC channel (ClC-1). Inhibition of ClC-ec1 occurs by binding to two distinct intracellular sites. The location of these sites and the lipid-dependence of inhibition suggest potential mechanisms of action. The discovery of this compound will empower research to elucidate differences between antiporter and channel mechanisms and to develop treatments for CLC-mediated disorders. PMID:23177200

  11. Design and synthesis of novel benzo[d]oxazol-2(3H)-one derivatives bearing 7-substituted-4-enthoxyquinoline moieties as c-Met kinase inhibitors.

    PubMed

    Lu, Dong; Shen, Aijun; Liu, Yang; Peng, Xia; Xing, Weiqiang; Ai, Jing; Geng, Meiyu; Hu, Youhong

    2016-06-10

    Analysis of the results of studies of docking 1 and 7a with c-Met kinase led to the identification of benzo[d]oxazol-2(3H)-one-quinolone derivatives as potential inhibitors of this enzyme. A molecular hybrid strategy, using a 4-ethoxy-7-substituted-quinoline core and a benzo[d]oxazol-2(3H)-one scaffold, was employed to design members of this family for study as inhibitors of the kinase and proliferation of EBC-1 cells. Most of the substances were found to display good to excellent c-Met kinase inhibitory activities. The results of a structure-activity relationship (SAR) study led to the discovery of benzo[d]oxazol-2(3H)-one-quinolone 13, which has IC50 values of 1 nM against c-Met kinase and 5 nM against proliferation of the EBC-1 cell line. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Gaucher disease types 1, 2, and 3: differential mutations of the acid beta-glucosidase active site identified with conduritol B epoxide derivatives and sphingosine.

    PubMed Central

    Grabowski, G A; Dinur, T; Osiecki, K M; Kruse, J R; Legler, G; Gatt, S

    1985-01-01

    To elucidate the genetic heterogeneity in Gaucher disease, the residual beta-glucosidase in cultured fibroblasts from affected patients with each of the major phenotypes was investigated in vitro and/or in viable cells by inhibitor studies using the covalent catalytic site inhibitors, conduritol B epoxide or its bromo derivative, and the reversible cationic inhibitor, sphingosine. These studies delineated three distinct groups (designated A, B, and C) of residual activities with characteristic responses to these inhibitors. Group A residual enzymes had normal I50 values (i.e., the concentration of inhibitor that results in 50% inhibition) for the inhibitors and normal or nearly normal t1/2 values for conduritol B epoxide. All neuronopathic (types 2 and 3) and most non-Jewish nonneuronopathic (type 1) patients had group A residual activities and, thus, could not be distinguished by these inhibitor studies. Group B residual enzymes had about four- to fivefold increased I50 values for the inhibitors and similarly increased t1/2 values for conduritol B epoxide. All Ashkenazi Jewish type 1 and only two non-Jewish type 1 patients had group B residual activities. The differences in I50 values between groups A and B also were confirmed by determining the uninhibited enzyme activity after culturing the cells in the presence of bromo-conduritol B epoxide. Group C residual activity had intermediate I50 values for the inhibitors and represented a single Afrikaner type 1 patient: this patient was a genetic compound for the group A (type 2) and group B (type 1) mutations. These inhibition studies indicated that: Gaucher disease type 1 is biochemically heterogeneous, neuronopathic and non-Jewish nonneuronopathic phenotypes cannot be reliably distinguished by these inhibitor studies, and the Ashkenazi Jewish form of Gaucher disease type 1 results from a unique mutation in a specific active site domain of acid beta-glucosidase that leads to a defective enzyme with a decreased Vmax. PMID:4003396

  13. Evidence for a Pro-Proliferative Feedback Loop in Prostate Cancer: The Role of Epac1 and COX-2-Dependent Pathways

    PubMed Central

    Misra, Uma Kant; Pizzo, Salvatore Vincent

    2013-01-01

    Objective In human prostate cancer cells, a selective Epac agonist, 8-CPT-2Me-cAMP, upregulates cell proliferation and survival via activation of Ras-MAPK and PI- 3-kinase-Akt-mTOR signaling cascades. Here we examine the role of inflammatory mediators in Epac1-induced cellular proliferation by determining the expression of the pro-inflammatory markers p-cPLA2, COX-2, and PGE2 in prostate cancer cells treated with 8-CPT-2Me-cAMP. Methods We employed inhibitors of COX-2, mTORC1, and mTORC2 to probe cyclic AMP-dependent pathways in human prostate cancer cells. RNAi targeting Epac1, Raptor, and Rictor was also employed in these studies. Results 8-CPT-2Me-cAMP treatment caused a 2–2.5-fold increase of p-cPLA2S505, COX-2, and PGE2 levels in human prostate cancer cell lines. Pretreatment of cells with the COX-2 inhibitor SC-58125 or the EP4 antagonist AH-23848, or with an inhibitor of mTORC1 and mTORC2, Torin1, significantly reduced the Epac1-dependent increase of p-cPLA2 and COX-2, p-S6-kinaseT389, and p-AKTS473. In addition, Epac1-induced protein and DNA synthesis were greatly reduced upon pretreatment of cells with either COX-2, EP4, or mTOR inhibitors. Transfection of prostate cancer cells with Epac1 dsRNA, Raptor dsRNA, or Rictor dsRNA profoundly reduced Epac1-dependent increases in p-cPLA2 and COX-2. Conclusion We show that Epac1, a downstream effector of cAMP, functions as a pro-inflammatory modulator in prostate cancer cells and promotes cell proliferation and survival by upregulating Ras-MAPK, and PI 3-kinase-Akt-mTOR signaling. PMID:23646189

  14. Towards discovering dual functional inhibitors against both wild type and K103N mutant HIV-1 reverse transcriptases: molecular docking and QSAR studies on 4,1-benzoxazepinone analogues

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenshan; Zheng, Mingyue; Du, Li; Shen, Jianhua; Luo, Xiaomin; Zhu, Weiliang; Jiang, Hualiang

    2006-05-01

    To find useful information for discovering dual functional inhibitors against both wild type (WT) and K103N mutant reverse transcriptases (RTs) of HIV-1, molecular docking and 3D-QSAR approaches were applied to a set of twenty-five 4,1-benzoxazepinone analogues of efavirenz (SUSTIVA®), some of them are active against the two RTs. 3D-QSAR models were constructed, based on their binding conformations determined by molecular docking, with r 2 cv values ranging from 0.656 to 0.834 for CoMFA and CoMSIA, respectively. The models were then validated to be highly predictive and extrapolative by inhibitors in two test sets with different molecular skeletons. Furthermore, CoMFA models were found to be well matched with the binding sites of both WT and K103N RTs. Finally, a reasonable pharmacophore model of 4,1-benzoxazepinones were established. The application of the model not only successfully differentiated the experimentally determined inhibitors from non-inhibitors, but also discovered two potent inhibitors from the compound database SPECS. On the basis of both the 3D-QSAR and pharmacophore models, new clues for discovering and designing potent dual functional drug leads against HIV-1 were proposed: (i) adopting positively charged aliphatic group at the cis-substituent of C3; (ii) reducing the electronic density at the position of O4; (iii) positioning a small branched aliphatic group at position of C5; (iv) using the negatively charged bulky substituents at position of C7.

  15. A translational study of resistance emergence using sequential direct-acting antiviral agents for hepatitis C using ultra-deep sequencing.

    PubMed

    Abe, Hiromi; Hayes, C Nelson; Hiraga, Nobuhiko; Imamura, Michio; Tsuge, Masataka; Miki, Daiki; Takahashi, Shoichi; Ochi, Hidenori; Chayama, Kazuaki

    2013-09-01

    Direct-acting antiviral agents (DAAs) against hepatitis C virus (HCV) have recently been developed and are ultimately hoped to replace interferon-based therapy. However, DAA monotherapy results in rapid emergence of resistant strains and DAAs must be used in combinations that present a high genetic barrier to resistance, although viral kinetics of multidrug-resistant strains remain poorly characterized. The aim of this study is to track the emergence and fitness of resistance using combinations of telaprevir and NS5A or NS5B inhibitors with genotype 1b clones. HCV-infected chimeric mice were treated with DAAs, and resistance was monitored using direct and ultra-deep sequencing. Combination therapy with telaprevir and BMS-788329 (NS5A inhibitor) reduced serum HCV RNA to undetectable levels. The presence of an NS3-V36A telaprevir resistance mutation resulted in poor response to telaprevir monotherapy but showed significant HCV reduction when telaprevir was combined with BMS-788329. However, a BMS-788329-resistant strain emerged at low frequency. Infection with a BMS-788329-resistant NS5A-L31V mutation rapidly resulted in gain of an additional NS5A-Y93A mutation that conferred telaprevir resistance during combination therapy. Infection with dual NS5AL31V/NS5AY93H mutations resulted in poor response to combination therapy and development of telaprevir resistance. Although HCV RNA became undetectable soon after the beginning of combination therapy with BMS-788329 and BMS-821095 (NS5B inhibitor), rebound with emergence of resistance against all three drugs occurred. Triple resistance also occurred following infection with the NS3V36A/NS5AL31V/NS5AY93H triple mutation. Resistant strains easily develop from cloned virus strains. Sequential use of DAAs should be avoided to prevent emergence of multidrug-resistant strains.

  16. Biosynthesis of the trehalase inhibitor trehazolin.

    PubMed

    Sugiyama, Yasumasa; Nagasawa, Hiromichi; Suzuki, Akinori; Sakuda, Shohei

    2002-03-01

    Trehazolin (1) is a trehalase inhibitor produced by Micromonospora coriacea. Biosynthesis of 1 was studied by feeding experiments with a variety of labeled precursors. Feeding experiments with [1-13C]- and [6-13C]-D-glucose revealed that the carbon skeletons of both a glucose residue and a cyclopentane ring moiety in 1 were each derived from glucose, and that C-C bond formation between C-1 and C-5 of glucose occurred during the cyclopentane ring formation. Furthermore, an experiment with [guanidino-13C, 15N2]-L-arginine revealed that two nitrogen atoms and a quaternary carbon atom involved in the aminooxazoline moiety of 1 originated from an amidino group of arginine. Further feeding experiments with [1-2H]-, [2-2H]-, [4-2H]-, [6,6-2H2]- and [1,2,3,4,5,6,6-2H7]-D-glucose as well as [1-13C]-D-fructose showed that deuteriums on C-1, C-3, C-4 and C-6 of glucose were retained during the formation of the cyclopentane ring moiety of 1.

  17. Discovery and SAR study of c-Met kinase inhibitors bearing an 3-amino-benzo[d]isoxazole or 3-aminoindazole scaffold.

    PubMed

    Jiang, Xiaolong; Liu, Hongyan; Song, Zilan; Peng, Xia; Ji, Yinchun; Yao, Qizheng; Geng, Meiyu; Ai, Jing; Zhang, Ao

    2015-02-01

    A series of 3-amino-benzo[d]isoxazole-/3-aminoindazole-based compounds were designed, synthesized and pharmacologically evaluated as tyrosine kinase c-Met inhibitors. The SAR study was conducted leading to identification of nine compounds (8d, 8e, 12, 28a-d, 28h and 28i) with IC50s less than 10nM against c-Met. Compound 28a stood out as the most potent c-Met inhibitor displaying potent inhibitory effects both at enzymatic (IC50=1.8 nM) and cellular (IC50=0.18 μM on EBC-1 cells) levels. In addition, 28a had a relatively good selectivity compared to a panel of our in-house 14 RTKs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Design of inhibitors of orotidine monophosphate decarboxylase using bioisosteric replacement and determination of inhibition kinetics.

    PubMed

    Poduch, Ewa; Bello, Angelica M; Tang, Sishi; Fujihashi, Masahiro; Pai, Emil F; Kotra, Lakshmi P

    2006-08-10

    Inhibitors of orotidine monophosphate decarboxylase (ODCase) have applications in RNA viral, parasitic, and other infectious diseases. ODCase catalyzes the decarboxylation of orotidine monophosphate (OMP), producing uridine monophosphate (UMP). Novel inhibitors 6-amino-UMP and 6-cyano-UMP were designed on the basis of the substructure volumes in the substrate OMP and in an inhibitor of ODCase, barbituric acid monophosphate, BMP. A new enzyme assay method using isothermal titration calorimetry (ITC) was developed to investigate the inhibition kinetics of ODCase. The reaction rates were measured by monitoring the heat generated during the decarboxylation reaction of orotidine monophosphate. Kinetic parameters (k(cat) = 21 s(-1) and KM = 5 microM) and the molar enthalpy (DeltaH(app) = 5 kcal/mol) were determined for the decarboxylation of the substrate by ODCase. Competitive inhibition of the enzyme was observed and the inhibition constants (Ki) were determined to be 12.4 microM and 29 microM for 6-aza-UMP and 6-cyano-UMP, respectively. 6-Amino-UMP was found to be among the potent inhibitors of ODCase, having an inhibition constant of 840 nM. We reveal here the first inhibitors of ODCase designed by the principles of bioisosterism and a novel method of using isothermal calorimetry for enzyme inhibition studies.

  19. A close insight to factor VIII inhibitor in the congenital hemophilia A.

    PubMed

    Tabriznia-Tabrizi, Shamsoreza; Gholampour, Marzie; Mansouritorghabeh, Hassan

    2016-09-01

    Hemophilia A (HA) has an X-linked pattern of inheritance and is the most common of the hemorrhagic disorders. HA is caused by a decreased or deficiency of the functional clotting factor VIII (FVIII) and effects 1 in 5000-10,000 male births. The common treatment for hemophilia is replacement therapy by plasma-derived or recombinant FVIII. Approximately 20-30% of people with a severe type of HA develop an inhibitor and this phenomenon is the main challenge in the management of these patients. Genetic factors and environmental determinants contribute to inhibitor development. Here, the roles of various genetic and environmental factors such as the type of FVIII concentrate used, the number of exposure days, and peak treatment time will be discussed in detail. It seems this information is helpful for hematologists. A literature review was done in January 2016 on PubMed and Scopus using the following keywords:' h(a)emophilia A & factor VIII inhibitor', 'h(a)emophilia A & factor VIII alloantibody', 'h(a)emophilia A & inhibitor'. There was no time limitation; however, there was an English language limitation placed on the articles selected. Expert commentary: Influential genetic and environmental factors in developing inhibitors have been discussed. Most of the risk factors are related to previously untreated patients with hemophili.

  20. 1α,25(OH)2-Vitamin D3 Inhibits C2C12 Cell Differentiation by Activating c-Src and ERK1/2.

    PubMed

    Wang, Zhonghua; Jiang, Aijun; Mei, Jingwei; Zhang, Xinyan

    2018-05-01

    The steroid hormone 1α,25(OH)2-vitamin D3 (1,25-D3) induced some biological responses through activation of MAPK cascades in various cell types. It seems that 1,25-D3 plays different roles at different stages of proliferating, differentiating, and differentiated C2C12 cells. We wanted to detect the effect of 1,25-D3 on myogenic differentiation and the role of ERK1/2 in differentiating stage induced by 2% horse serum with 1,25-D3. In this study, cells were induced to differentiate with 2% horse serum until the 7th day (with addition of 1,25-D3 every two days). The protein level of MHC (myosin heavy chain) and phosphorylation level of Src and ERK1/2 were determined with western blot. U0126 (MEK inhibitor) and PP2 (Src specific inhibitor) were used to confirm the relationship between 1,25-D3, MHC, Src, and ERK1/2. 1,25-D3 inhibited differentiation of C2C12 cells and fusion of myotubes by phosphorylating and activating Src and ERK1/2. Phosphorylation of ERK1/2 was inhibited, not only by U0126 but also by PP2 (a Src specific inhibitor) which led to the promotion of differentiation of C2C12 cells; however, U0126 did not inhibit Src phosphorylation. These results suggested that 1,25-D3 possibly inhibited C2C12 differentiation through Src and ERK1/2, and Src played an upstream role in this signaling pathway.

  1. Crystal structure of a complex of HIV-1 protease with a dihydroxyethylene-containing inhibitor: comparisons with molecular modeling.

    PubMed Central

    Thanki, N.; Rao, J. K.; Foundling, S. I.; Howe, W. J.; Moon, J. B.; Hui, J. O.; Tomasselli, A. G.; Heinrikson, R. L.; Thaisrivongs, S.; Wlodawer, A.

    1992-01-01

    The structure of a crystal complex of recombinant human immunodeficiency virus type 1 (HIV-1) protease with a peptide-mimetic inhibitor containing a dihydroxyethylene isostere insert replacing the scissile bond has been determined. The inhibitor is Noa-His-Hch psi [CH(OH)CH(OH)]Vam-Ile-Amp (U-75875), and its Ki for inhibition of the HIV-1 protease is < 1.0 nM (Noa = 1-naphthoxyacetyl, Hch = a hydroxy-modified form of cyclohexylalanine, Vam = a hydroxy-modified form of valine, Amp = 2-pyridylmethylamine). The structure of the complex has been refined to a crystallographic R factor of 0.169 at 2.0 A resolution by using restrained least-squares procedures. Root mean square deviations from ideality are 0.02 A and 2.4 degrees, for bond lengths and angles, respectively. The bound inhibitor diastereomer has the R configurations at both of the hydroxyl chiral carbon atoms. One of the diol hydroxyl groups is positioned such that it forms hydrogen bonds with both the active site aspartates, whereas the other interacts with only one of them. Comparison of this X-ray structure with a model-built structure of the inhibitor, published earlier, reveals similar positioning of the backbone atoms and of the side-chain atoms in the P2-P2' region, where the interaction with the protein is strongest. However, the X-ray structure and the model differ considerably in the location of the P3 and P3' end groups, and also in the positioning of the second of the two central hydroxyl groups. Reconstruction of the central portion of the model revealed the source of the hydroxyl discrepancy, which, when corrected, provided a P1-P1' geometry very close to that seen in the X-ray structure. PMID:1304383

  2. Synthesis and Biological Evaluation of Analogues of AKT (Protein Kinase B) Inhibitor-IV

    PubMed Central

    Sun, Qi; Wu, Runzhi; Cai, Sutang; Lin, Yuan; Sellers, Llewlyn; Sakamoto, Kaori; He, Biao; Peterson, Blake R.

    2011-01-01

    Inhibitors of the PI3-kinase/AKT (protein kinase B) pathway are under investigation as anticancer and antiviral agents. The benzimidazole derivative AKT inhibitor-IV (ChemBridge 5233705) affects this pathway and exhibits potent anticancer and antiviral activity. To probe its biological activity, we synthesized AKT inhibitor-IV and 21 analogues using a novel six-step route based on ZrCl4-catalyzed cyclization of 1,2-arylenediamines with α,β-unsaturated aldehydes. We examined effects on viability of HeLa carcinoma cells, viability of normal human cells (NHBE), replication of recombinant parainfluenza virus 5 (PIV5) in HeLa cells, and replication of the intracellular bacterium Mycobacterium fortuitum in HeLa cells. Replacement of the benzimidazole N-ethyl substitutent of AKT inhibitor-IV with N-hexyl and N-dodecyl groups enhanced antiviral activity and cytotoxicity against the cancer cell line, but these compounds showed substantially lower toxicity (from 6-fold to >20-fold) against NHBE cells, and no effect on M. fortuitum, suggesting inhibition of one or more host protein(s) required for proliferation of cancer cells and PIV5. The key structural elements identified here may facilitate identification of targets of this highly biologically active scaffold. PMID:21319800

  3. Short-term and long-term effects of dipeptidyl peptidase-4 inhibitors in type 2 diabetes mellitus patients with renal impairment: a meta-analysis of randomized controlled trials.

    PubMed

    Li, Ruifei; Wang, Rui; Li, Haixia; Sun, Sihao; Zou, Meijuan; Cheng, Gang

    2016-09-01

    To assess the short-term and long-term effects of dipeptidyl peptidase-4 (DPP-4) inhibitors in type 2 diabetes mellitus patients with renal impairment, a meta-analysis of randomized clinical trials of DPP-4 inhibitor interventions in type 2 diabetes mellitus patients with renal impairment was performed. PubMed, Embase, Cochrane Library and ClinicalTrials.gov were searched through the end of March 2015. Randomized clinical trials were selected if (1) DPP-4 inhibitors were compared with a placebo or other active-comparators, (2) the treatment duration was ≥12 weeks and (3) data regarding changes in haemoglobin A1c (HbA1c ), changes in fasting plasma glucose or hypoglycaemia and other adverse events were reported. Of 790 studies, ten studies on eight randomized clinical trials were included. Compared with the control group, DPP-4 inhibitors were associated with a greater HbA1c reduction in both the short-term [mean differences (MD) = -0.45, 95% confidence intervals (-0.57, -0.33), p < 0.0001] and long-term [MD = -0.33, 95% confidence intervals (-0.63, -0.03), p = 0.03] treatments. However, the long-term greater reduction in HbA1c with DPP-4 inhibitor treatment was only significant when the control treatment comprised placebo plus stable background treatment, but not glipizide plus stable background treatment. DPP-4 inhibitors were associated with a greater fasting plasma glucose reduction [MD = -12.59, 95% confidence intervals (-22.01, -3.17), p = 0.009] over the short-term; however, this effect was not present over the long-term. Regarding the hypoglycaemia adverse events assessment, the long-term treatment data indicated there was no increased risk of hypoglycaemia compared with placebo or active-controlled anti-diabetic drugs. The present meta-analysis confirms that DPP-4 inhibitors are effective and equivalent to other agents in type 2 diabetes mellitus patients with renal impairment. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. The Role of cGMP on Adenosine A1 Receptor-mediated Inhibition of Synaptic Transmission at the Hippocampus

    PubMed Central

    Pinto, Isa; Serpa, André; Sebastião, Ana M.; Cascalheira, José F.

    2016-01-01

    Both adenosine A1 receptor and cGMP inhibit synaptic transmission at the hippocampus and recently it was found that A1 receptor increased cGMP levels in hippocampus, but the role of cGMP on A1 receptor-mediated inhibition of synaptic transmission remains to be established. In the present work we investigated if blocking the NOS/sGC/cGMP/PKG pathway using nitric oxide synthase (NOS), protein kinase G (PKG), and soluble guanylyl cyclase (sGC) inhibitors modify the A1 receptor effect on synaptic transmission. Neurotransmission was evaluated by measuring the slope of field excitatory postsynaptic potentials (fEPSPs) evoked by electrical stimulation at hippocampal slices. N6-cyclopentyladenosine (CPA, 15 nM), a selective A1 receptor agonist, reversibly decreased the fEPSPs by 54 ± 5%. Incubation of the slices with an inhibitor of NOS (L-NAME, 200 μM) decreased the CPA effect on fEPSPs by 57 ± 9% in female rats. In males, ODQ (10 μM), an sGC inhibitor, decreased the CPA inhibitory effect on fEPSPs by 23 ± 6%, but only when adenosine deaminase (ADA,1 U/ml) was present; similar results were found in females, where ODQ decreased CPA-induced inhibition of fEPSP slope by 23 ± 7%. In male rats, the presence of the PKG inhibitor (KT5823, 1 nM) decreased the CPA effect by 45.0 ± 9%; similar results were obtained in females, where KT5823 caused a 32 ± 9% decrease on the CPA effect. In conclusion, the results suggest that the inhibitory action of adenosine A1 receptors on synaptic transmission at hippocampus is, in part, mediated by the NOS/sGC/cGMP/PKG pathway. PMID:27148059

  5. Bi-functional, substrate mimicking RNA inhibits MSK1-mediated cAMP-response element-binding protein phosphorylation and reveals magnesium ion-dependent conformational changes of the kinase.

    PubMed

    Hamm, Jorg; Alessi, Dario R; Biondi, Ricardo M

    2002-11-29

    The design of specific inhibitors for protein kinases is an important step toward elucidation of intracellular signal transduction pathways and to guide drug discovery programs. We devised a model approach to generate specific, competitive kinase inhibitors by isolating substrate mimics containing two independent binding sites with an anti-idiotype strategy from combinatorial RNA libraries. As a general test for the ability to generate highly specific kinase inhibitors, we selected the transcription factor cAMP-response element-binding protein (CREB) that is phosphorylated on the same serine residue by the protein kinase MSK1 as well as by RSK1. The sequences and structures of these kinases are very similar, about 60% of their amino acids are identical. Nevertheless, we can demonstrate that the selected RNA inhibitors inhibit specifically CREB phosphorylation by MSK1 but do not affect CREB phosphorylation by RSK1. The inhibitors interact preferentially with the inactive form of MSK1. Furthermore, we demonstrate that RNA ligands can be conformation-specific probes, and this feature allowed us to describe magnesium ion-dependent conformational changes of MSK1 upon activation.

  6. The co-crystal structure of ubiquitin carboxy-terminal hydrolase L1 (UCHL1) with a tripeptide fluoromethyl ketone (Z-VAE(OMe)-FMK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, Christopher W.; Chaney, Joseph; Korbel, Gregory

    2012-07-25

    UCHL1 is a 223 amino acid member of the UCH family of deubiquitinating enzymes (DUBs), found abundantly and exclusively expressed in neurons and the testis in normal tissues. Two naturally occurring variants of UCHL1 are directly involved in Parkinson's disease (PD). Not only has UCHL1 been linked to PD, but it has oncogenic properties, having been found abnormally expressed in lung, pancreatic, and colorectal cancers. Although inhibitors of UCHL1 have been described previously the co-crystal structure of the enzyme bound to any inhibitor has not been reported. Herein, we report the X-ray structure of UCHL1 co-crystallized with a peptide-based fluoromethylketonemore » inhibitor, Z-VAE(OMe)-FMK (VAEFMK) at 2.35 {angstrom} resolution. The co-crystal structure reveals that the inhibitor binds in the active-site cleft, irreversibly modifying the active-site cysteine; however, the catalytic histidine is still misaligned as seen in the native structure, suggesting that the inhibitor binds to an inactive form of the enzyme. Our structure also reveals that the inhibitor approaches the active-site cleft from the opposite side of the crossover loop as compared to the direction of approach of ubiquitin's C-terminal tail, thereby occupying the P1{prime} (leaving group) site, a binding site perhaps used by the unknown C-terminal extension of ubiquitin in the actual in vivo substrate(s) of UCHL1. This structure provides a view of molecular contacts at the active-site cleft between the inhibitor and the enzyme as well as furnishing structural information needed to facilitate further design of inhibitors targeted to UCHL1 with high selectivity and potency.« less

  7. DMH1, a Highly Selective Small Molecule BMP Inhibitor Promotes Neurogenesis of hiPSCs: Comparison of PAX6 and SOX1 Expression during Neural Induction

    PubMed Central

    2012-01-01

    Recent successes in deriving human-induced pluripotent stem cells (hiPSCs) allow for the possibility of studying human neurons derived from patients with neurological diseases. Concomitant inhibition of the BMP and TGF-β1 branches of the TGF-β signaling pathways by the endogenous antagonist, Noggin, and the small molecule SB431542, respectively, induces efficient neuralization of hiPSCs, a method known as dual-SMAD inhibition. The use of small molecule inhibitors instead of their endogenous counterparts has several advantages including lower cost, consistent activity, and the maintenance of xeno-free culture conditions. We tested the efficacy of DMH1, a highly selective small molecule BMP-inhibitor for its potential to replace Noggin in the neuralization of hiPSCs. We compare Noggin and DMH1-induced neuralization of hiPSCs by measuring protein and mRNA levels of pluripotency and neural precursor markers over a period of seven days. The regulation of five of the six markers assessed was indistinguishable in the presence of concentrations of Noggin or DMH1 that have been shown to effectively inhibit BMP signaling in other systems. We observed that by varying the DMH1 or Noggin concentration, we could selectively modulate the number of SOX1 expressing cells, whereas PAX6, another neural precursor marker, remained the same. The level and timing of SOX1 expression have been shown to affect neural induction as well as neural lineage. Our observations, therefore, suggest that BMP-inhibitor concentrations need to be carefully monitored to ensure appropriate expression levels of all transcription factors necessary for the induction of a particular neuronal lineage. We further demonstrate that DMH1-induced neural progenitors can be differentiated into β3-tubulin expressing neurons, a subset of which also express tyrosine hydroxylase. Thus, the combined use of DMH1, a highly specific BMP-pathway inhibitor, and SB431542, a TGF-β1-pathway specific inhibitor, provides us with the tools to independently regulate these two pathways through the exclusive use of small molecule inhibitors. PMID:22860217

  8. An insight to the dynamics of conserved water molecular triad in IMPDH II (human): recognition of cofactor and substrate to catalytic Arg 322.

    PubMed

    Bairagya, Hridoy R; Mukhopadhyay, Bishnu P; Sekar, K

    2009-10-01

    Inosine 5' monophosphate dehydrogenase (IMPDH II) is a key enzyme involved in the de novo biosynthesis pathway of purine nucleotides and is also considered to be an excellent target for cancer inhibitor design. The conserve R 322 residue (in human) is thought to play some role in the recognition of inhibitor and cofactor through the catalytic D 364 and N 303. The 15 ns simulation and the water dynamics of the three different PDB structures (1B3O, 1NF7, and 1NFB) of human IMPDH by CHARMM force field have clearly indicated the involvement of three conserved water molecules (W(L), W(M), and W(C)) in the recognition of catalytic residues (R 322, D 364, and N 303) to inhibitor and cofactor. Both the guanidine nitrogen atoms (NH1 and NH 2) of the R 322 have anchored the di- and mono-nucleotide (cofactor and inhibitor) binding domains via the conserved W(C) and W(L) water molecules. Another conserved water molecule WM seems to bridge the two domains including the R 322 and also the W(C) and W(L) through seven centers H-bonding coordination. The conserved water molecular triad (W(C)-W(M)-W(L)) in the protein complex may thought to play some important role in the recognition of inhibitor and cofactor to the protein through R 322 residue.

  9. Structure of the metal-dependent deacetylase LpxC from Yersinia enterocolitica complexed with the potent inhibitor CHIR-090 .

    PubMed

    Cole, Kathryn E; Gattis, Samuel G; Angell, Heather D; Fierke, Carol A; Christianson, David W

    2011-01-18

    The first committed step of lipid A biosynthesis is catalyzed by UDP-(3-O-((R)-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase, a metal-dependent deacetylase also known as LpxC. Because lipid A is essential for bacterial viability, the inhibition of LpxC is an appealing therapeutic strategy for the treatment of Gram-negative bacterial infections. Here we report the 1.79 Å resolution X-ray crystal structure of LpxC from Yersinia enterocolitica (YeLpxC) complexed with the potent hydroxamate inhibitor CHIR-090. This enzyme is a nearly identical orthologue of LpxC from Yersinia pestis (99.7% sequence identity), the pathogen that causes bubonic plague. Similar to the inhibition of LpxC from Escherichia coli, CHIR-090 inhibits YeLpxC via a two-step slow, tight-binding mechanism with an apparent K(i) of 0.54 ± 0.14 nM followed by conversion of the E·I to E·I* species with a rate constant of 0.11 ± 0.01 min(-1). The structure of the LpxC complex with CHIR-090 shows that the inhibitor hydroxamate group chelates the active site zinc ion, and the "tail" of the inhibitor binds in the hydrophobic tunnel in the active site. This hydrophobic tunnel is framed by a βαβ subdomain that exhibits significant conformational flexibility as it accommodates inhibitor binding. CHIR-090 displays a 27 mm zone of inhibition against Y. enterocolitica in a Kirby-Bauer antibiotic assay, which is comparable to its reported activity against other Gram-negative species including E. coli and Pseudomonas aeruginosa. This study demonstrates that the inhibition of LpxC should be explored as a potential therapeutic and/or prophylatic response to infection by weaponized Yersinia species.

  10. PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1

    PubMed Central

    Ebi, Hiromichi; Costa, Carlotta; Faber, Anthony C.; Nishtala, Madhuri; Kotani, Hiroshi; Juric, Dejan; Della Pelle, Patricia; Song, Youngchul; Yano, Seiji; Mino-Kenudson, Mari; Benes, Cyril H.; Engelman, Jeffrey A.

    2013-01-01

    The PI3K pathway is genetically altered in excess of 70% of breast cancers, largely through PIK3CA mutation and HER2 amplification. Preclinical studies have suggested that these subsets of breast cancers are particularly sensitive to PI3K inhibitors; however, the reasons for this heightened sensitivity are mainly unknown. We investigated the signaling effects of PI3K inhibition in PIK3CA mutant and HER2 amplified breast cancers using PI3K inhibitors currently in clinical trials. Unexpectedly, we found that in PIK3CA mutant and HER2 amplified breast cancers sensitive to PI3K inhibitors, PI3K inhibition led to a rapid suppression of Rac1/p21-activated kinase (PAK)/protein kinase C-RAF (C-RAF)/ protein kinase MEK (MEK)/ERK signaling that did not involve RAS. Furthermore, PI3K inhibition led to an ERK-dependent up-regulation of the proapoptotic protein, BIM, followed by induction of apoptosis. Expression of a constitutively active form of Rac1 in these breast cancer models blocked PI3Ki-induced down-regulation of ERK phosphorylation, apoptosis, and mitigated PI3K inhibitor sensitivity in vivo. In contrast, protein kinase AKT inhibitors failed to block MEK/ERK signaling, did not up-regulate BIM, and failed to induce apoptosis. Finally, we identified phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) as the PI(3,4,5)P3-dependent guanine exchange factor for Rac1 responsible for regulation of the Rac1/C-RAF/MEK/ERK pathway in these cells. The expression level of P-Rex1 correlates with sensitivity to PI3K inhibitors in these breast cancer cell lines. Thus, PI3K inhibitors have enhanced activity in PIK3CA mutant and HER2 amplified breast cancers in which PI3K inhibition down-regulates both the AKT and Rac1/ERK pathways. In addition, P-Rex1 may serve as a biomarker to predict response to single-agent PI3K inhibitors within this subset of breast cancers. PMID:24327733

  11. Sirtuin 1 promotes the proliferation of C2C12 myoblast cells via the myostatin signaling pathway.

    PubMed

    Wang, Liang; Zhang, Ting; Xi, Yongyong; Yang, Cuili; Sun, Chengcao; Li, Dejia

    2016-08-01

    Accumulating evidence suggests that Sirtuin (Sirt)1 serves a significant role in proliferation and differentiation of myoblast cells; however the signaling mechanisms involved remain to be established. Myostatin (MSTN), a member of transforming growth factor‑β family, is an vital regulator of myoblast, fibroblast growth and differentiation. To determine if MSTN is involved in the regulation of myoblast cell proliferation by Sirt1, the present study administrated the Sirt1 activator resveratrol, inhibitor nicotinamide (NAM) and MSTN inhibitor SB431542 to C2C12 myoblast cells. It was demonstrated that the Sirt1 activator, resveratrol, repressed, whereas the Sirt1 inhibitor, NAM, enhanced C2C12 myoblast cells proliferation in a Sirt1‑dependent manner. SB431542 promoted the proliferation of C2C12 myoblast cells and reversed the inhibition effect of NAM on C2C12 myoblast cell proliferation. Additionally, resveratrol upregulated the mRNA expression of MyoD, but inhibited the expression of MSTN. Additionally, NAM significantly repressed the expression of MyoD and the phosphorylation of P107 (p‑P107), but enhanced the expression of MSTN and the protein expression of P107. SB431542 significantly mitigated the effect of NAM on the expression of MyoD, P107 and p‑P107. Taken together, these results indicated that Sirt1 promotes the proliferation of C2C12 myoblast cells via the MSTN signaling pathway.

  12. Covalent docking of selected boron-based serine beta-lactamase inhibitors

    NASA Astrophysics Data System (ADS)

    Sgrignani, Jacopo; Novati, Beatrice; Colombo, Giorgio; Grazioso, Giovanni

    2015-05-01

    AmpC β-lactamase is a hydrolytic enzyme conferring resistance to β-lactam antibiotics in multiple Gram-negative bacteria. Therefore, identification of non-β-lactam compounds able to inhibit the enzyme is crucial for the development of novel antibacterial therapies. In general, AmpC inhibitors have to engage the highly solvent-exposed catalytic site of the enzyme. Therefore, understanding the implications of ligand-protein induced-fit and water-mediated interactions behind the inhibitor-enzyme recognition process is fundamental for undertaking structure-based drug design process. Here, we focus on boronic acids, a promising class of beta-lactamase covalent inhibitors. First, we optimized a docking protocol able to reproduce the experimentally determined binding mode of AmpC inhibitors bearing a boronic group. This goal was pursued (1) performing rigid and flexible docking calculations aiming to establish the role of the side chain conformations; and (2) investigating the role of specific water molecules in shaping the enzyme active site and mediating ligand protein interactions. Our calculations showed that some water molecules, conserved in the majority of the considered X-ray structures, are needed to correctly predict the binding pose of known covalent AmpC inhibitors. On this basis, we formalized our findings in a docking and scoring protocol that could be useful for the structure-based design of new boronic acid AmpC inhibitors.

  13. Identification of key binding site residues of MCT1 for AR-C155858 reveals the molecular basis of its isoform selectivity.

    PubMed

    Nancolas, Bethany; Sessions, Richard B; Halestrap, Andrew P

    2015-02-15

    The proton-linked monocarboxylate transporters (MCTs) are required for lactic acid transport into and out of all mammalian cells. Thus, they play an essential role in tumour cells that are usually highly glycolytic and are promising targets for anti-cancer drugs. AR-C155858 is a potent MCT1 inhibitor (Ki ~2 nM) that also inhibits MCT2 when associated with basigin but not MCT4. Previous work [Ovens, M.J. et al. (2010) Biochem. J. 425, 523-530] revealed that AR-C155858 binding to MCT1 occurs from the intracellular side and involves transmembrane helices (TMs) 7-10. In the present paper, we generate a molecular model of MCT4 based on our previous models of MCT1 and identify residues in the intracellular substrate-binding cavity that differ significantly between MCT4 and MCT1/MCT2 and so might account for differences in inhibitor binding. We tested their involvement using site-directed mutagenesis (SDM) of MCT1 to change residues individually or in combination with their MCT4 equivalent and determined inhibitor sensitivity following expression in Xenopus oocytes. Phe360 and Ser364 were identified as important for AR-C155858 binding with the F360Y/S364G mutant exhibiting >100-fold reduction in inhibitor sensitivity. To refine the binding site further, we used molecular dynamics (MD) simulations and additional SDM. This approach implicated six more residues whose involvement was confirmed by both transport studies and [3H]-AR-C155858 binding to oocyte membranes. Taken together, our data imply that Asn147, Arg306 and Ser364 are important for directing AR-C155858 to its final binding site which involves interaction of the inhibitor with Lys38, Asp302 and Phe360 (residues that also play key roles in the translocation cycle) and also Leu274 and Ser278.

  14. Identification of key binding site residues of MCT1 for AR-C155858 reveals the molecular basis of its isoform selectivity

    PubMed Central

    Nancolas, Bethany; Sessions, Richard B.; Halestrap, Andrew P.

    2014-01-01

    The proton-linked monocarboxylate transporters (MCTs) are required for lactic acid transport into and out of all mammalian cells. Thus, they play an essential role in tumour cells that are usually highly glycolytic and are promising targets for anti-cancer drugs. AR-C155858 is a potent MCT1 inhibitor (Ki ~2 nM) that also inhibits MCT2 when associated with basigin but not MCT4. Previous work [Ovens, M.J. et al. (2010) Biochem. J. 425, 523–530] revealed that AR-C155858 binding to MCT1 occurs from the intracellular side and involves transmembrane helices (TMs) 7–10. In the present paper, we generate a molecular model of MCT4 based on our previous models of MCT1 and identify residues in the intracellular substrate-binding cavity that differ significantly between MCT4 and MCT1/MCT2 and so might account for differences in inhibitor binding. We tested their involvement using site-directed mutagenesis (SDM) of MCT1 to change residues individually or in combination with their MCT4 equivalent and determined inhibitor sensitivity following expression in Xenopus oocytes. Phe360 and Ser364 were identified as important for AR-C155858 binding with the F360Y/S364G mutant exhibiting >100-fold reduction in inhibitor sensitivity. To refine the binding site further, we used molecular dynamics (MD) simulations and additional SDM. This approach implicated six more residues whose involvement was confirmed by both transport studies and [3H]-AR-C155858 binding to oocyte membranes. Taken together, our data imply that Asn147, Arg306 and Ser364 are important for directing AR-C155858 to its final binding site which involves interaction of the inhibitor with Lys38, Asp302 and Phe360 (residues that also play key roles in the translocation cycle) and also Leu274 and Ser278. PMID:25437897

  15. An essential role for Ink4 and Cip/Kip cell-cycle inhibitors in preventing replicative stress.

    PubMed

    Quereda, V; Porlan, E; Cañamero, M; Dubus, P; Malumbres, M

    2016-03-01

    Cell-cycle inhibitors of the Ink4 and Cip/Kip families are involved in cellular senescence and tumor suppression. These inhibitors are individually dispensable for the cell cycle and inactivation of specific family members results in increased proliferation and enhanced susceptibility to tumor development. We have now analyzed the consequences of eliminating a substantial part of the cell-cycle inhibitory activity in the cell by generating a mouse model, which combines the absence of both p21(Cip1) and p27(Kip1) proteins with the endogenous expression of a Cdk4 R24C mutant insensitive to Ink4 inhibitors. Pairwise combination of Cdk4 R24C, p21-null and p27-null alleles results in frequent hyperplasias and tumors, mainly in cells of endocrine origin such as pituitary cells and in mesenchymal tissues. Interestingly, complete abrogation of p21(Cip1) and p27(Kip1) in Cdk4 R24C mutant mice results in a different phenotype characterized by perinatal death accompanied by general hypoplasia in most tissues. This phenotype correlates with increased replicative stress in developing tissues such as the nervous system and subsequent apoptotic cell death. Partial inhibition of Cdk4/6 rescues replicative stress signaling as well as p53 induction in the absence of cell-cycle inhibitors. We conclude that one of the major physiological activities of cell-cycle inhibitors is to prevent replicative stress during development.

  16. Histone deacetylase inhibitors restore IL-10 expression in lipopolysaccharide-induced cell inflammation and reduce IL-1β and IL-6 production in breast silicone implant in C57BL/6J wild-type murine model.

    PubMed

    Di Liddo, Rosa; Valente, Sergio; Taurone, Samanta; Zwergel, Clemens; Marrocco, Biagina; Turchetta, Rosaria; Conconi, Maria Teresa; Scarpa, Carlotta; Bertalot, Thomas; Schrenk, Sandra; Mai, Antonello; Artico, Marco

    2016-01-20

    Among epigenetic enzymes, histone deacetylases (HDACs) are responsible for regulating the expression of an extensive array of genes by reversible deacetylation of nuclear histones as well as a large number of non-histone proteins. Initially proposed for cancer therapy, recently the interest for HDAC inhibitors (HDACi) as orally active, safe, and anti-inflammatory agents is rising due to their ability in reducing the severity of inflammatory and autoimmune diseases. In particular, selective HDAC3, HDAC6, and HDAC8 inhibitors have been described to downregulate the expression of pro-inflammatory cytokines (TNF-α, TGF-β, IL-1β, and IL-6). Herein, using KB31, C2C12, and 3T3-J2 cell lines, we demonstrated that, under lipopolysaccharide-induced in vitro inflammation, HDAC3/6/8 inhibitor MC2625 and HDAC6-selective inhibitor MC2780 were effective at a concentration of 30 ng/mL to downregulate mRNA expression of pro-inflammatory cytokines (IL-1β and IL-6) and to promote the transcription of IL-10 gene, without affecting the cell viability. Afterwards, we investigated by immunohistochemistry the activity of MC2625 and MC2780 at a concentration of 60 ng/kg animal weight to regulate silicone-triggered immune response in C57BL/6J female mice. Our findings evidenced the ability of such inhibitors to reduce host inflammation in silicone implants promoting a thickness reduction of peri-implant fibrous capsule, upregulating IL-10 expression, and reducing the production of both IL-1β and IL-6. These results underline the potential application of MC2625 and MC2780 in inflammation-related diseases.

  17. Evaluation of DNA Repair Function as a Predictor of Response in a Clinical Trial of PARP Inhibitor Monotherapy for Recurrent Ovarian Carcinoma

    DTIC Science & Technology

    2016-12-01

    no specifi c biomarkers were tested in a trial of a PARP inhibitor in patients with ovarian carcinoma with measurable disease . There is currently no... disease that was measurable with the Response Evaluation Criteria In Solid Tumors version 1.1 (RECIST) and amenable to biopsy at trial entry. Patients...have measurable disease treated with a PARP inhibitor, thereby testing the assay as a biomarker for PARP inhibitor response. Other prospective

  18. Structural Characterization and Reversal of the Natural Organophosphate Resistance of a D-Type Esterase, Saccharomyces cerevisiae S-Formylglutathione Hydrolase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legler,P.; Kumaran, D.; Swaminathan, S.

    2008-01-01

    Saccharomyces cerevisiae expresses a 67.8 kDa homodimeric serine thioesterase, S-formylglutathione hydrolase (SFGH), that is 39.9% identical with human esterase D. Both enzymes possess significant carboxylesterase and S-formylglutathione thioesterase activity but are unusually resistant to organophosphate (OP) inhibitors. We determined the X-ray crystal structure of yeast (y) SFGH to 2.3 Angstroms resolution by multiwavelength anomalous dispersion and used the structure to guide site-specific mutagenesis experiments addressing substrate and inhibitor reactivity. Our results demonstrate a steric mechanism of OP resistance mediated by a single indole ring (W197) located in an enzyme 'acyl pocket'. The W197I substitution enhances ySFGH reactivity with paraoxon bymore » >1000-fold (kiW197I = 16 {+-} 2 mM-1 h-1), thereby overcoming natural OP resistance. W197I increases the rate of OP inhibition under pseudo-first-order conditions but does not accelerate OP hydrolysis. The structure of the paraoxon-inhibited W197I variant was determined by molecular replacement (2.2 Angstroms); it revealed a stabilized sulfenic acid at Cys60. Wild-type (WT) ySFGH is inhibited by thiol reactive compounds and is sensitive to oxidation; thus, the cysteine sulfenic acid may play a role in the regulation of a 'D-type' esterase. The structure of the W197I variant is the first reported cysteine sulfenic acid in a serine esterase. We constructed five Cys60/W197I variants and show that introducing a positive charge near the oxyanion hole, W197I/C60R or W197I/C60K, results in a further enhancement of the rates of phosphorylation with paraoxon (ki = 42 or 80 mM-1 h-1, respectively) but does not affect the dephosphorylation of the enzyme. We also characterized three histidine substitutions near the oxyanion hole, G57H, L58H, and M162H, which significantly decrease esterase activity.« less

  19. Value of improved lipid control in patients at high risk for adverse cardiac events.

    PubMed

    Jena, Anupam B; Blumenthal, Daniel M; Stevens, Warren; Chou, Jacquelyn W; Ton, Thanh G N; Goldman, Dana P

    2016-06-01

    Lipid-lowering therapy (LLT) is suboptimally used in patients with hyperlipidemia in the 2 highest statin benefit groups (SBGs), as categorized by the American College of Cardiology and the American Heart Association. This study estimated the social value of reducing low-density lipoprotein cholesterol (LDL-C) levels by 50% for patients in SBGs 1 and 2 who have been treated with standard LLT but have not reached LDL-C goal, as well as the potential value of PCSK9 inhibitors for patients in these groups. Simulation model. We used National Health and Nutrition Examination Surveys (NHANES) and US Census data to project the population of SBGs 1 and 2 in the time period 2015 to 2035. We used insurance claims data to estimate incidence rates of major adverse cardiac events (MACEs), and NHANES with National Vital Statistics data to estimate cardiovascular disease mortality rates. Using established associations between LDL-C and MACE risk, we estimated the value of reducing LDL-C levels by 50%. We incorporated results from a meta-analysis to estimate the value of PSCK9 inhibitors. Among those treated with LLT with LDL-C > 70 mg/dL in SBGs 1 and 2, the cumulative value of reducing LDL-C levels by 50% would be $2.9 trillion from 2015 to 2035, resulting primarily from 1.6 million deaths averted. The cumulative value of PCSK9 inhibitors would range from $3.4 trillion to $5.1 trillion (1.9-2.8 million deaths averted), or $12,000 to $17,000 per patient-year of treatment. Lowering LDL-C in high-risk patients with hyperlipidemia has enormous potential social value. For patients in these high-risk groups, PCSK9 inhibitors may have considerable net value depending on the final prices payers ultimately select.

  20. Generation of reactive oxygen species (ROS) is a key factor for stimulation of macrophage proliferation by ceramide 1-phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arana, Lide; Gangoiti, Patricia; Ouro, Alberto

    2012-02-15

    We previously demonstrated that ceramide 1-phosphate (C1P) is mitogenic for fibroblasts and macrophages. However, the mechanisms involved in this action were only partially described. Here, we demonstrate that C1P stimulates reactive oxygen species (ROS) formation in primary bone marrow-derived macrophages, and that ROS are required for the mitogenic effect of C1P. ROS production was dependent upon prior activation of NADPH oxidase by C1P, which was determined by measuring phosphorylation of the p40phox subunit and translocation of p47phox from the cytosol to the plasma membrane. In addition, C1P activated cytosolic calcium-dependent phospholipase A{sub 2} and protein kinase C-{alpha}, and NADPH oxidasemore » activation was blocked by selective inhibitors of these enzymes. These inhibitors, and inhibitors of ROS production, blocked the mitogenic effect of C1P. By using BHNB-C1P (a photolabile caged-C1P analog), we demonstrate that all of these C1P actions are caused by intracellular C1P. It can be concluded that the enzyme responsible for C1P-stimulated ROS generation in bone marrow-derived macrophages is NADPH oxidase, and that this enzyme is downstream of PKC-{alpha} and cPLA{sub 2}-{alpha} in this pathway. -- Highlights: Black-Right-Pointing-Pointer Ceramide 1-phosphate (C1P) stimulates reactive oxygen species (ROS) formation. Black-Right-Pointing-Pointer The enzyme responsible for ROS generation by C1P in macrophages is NADPH oxidase. Black-Right-Pointing-Pointer NADPH oxidase lies downstream of cPLA{sub 2}-{alpha} and PKC-{alpha} in this pathway. Black-Right-Pointing-Pointer ROS generation is essential for the stimulation of macrophage proliferation by C1P.« less

  1. Discovering Small Molecule Inhibitors Targeted to Ligand-Stimulated RAGE-DIAPH1 Signaling Transduction

    NASA Astrophysics Data System (ADS)

    Pan, Jinhong

    The receptor of advanced glycation end product (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules, which plays an important role in immune responses. Full-length RAGE includes three extracellular immunoglobulin domains, a transmembrane domain and an intracellular domain. It is a pattern recognition receptor that can bind diverse ligands. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. It is found that calgranulin binding to the C1C2 domain or AGEs binding to the V domain activates extracellular signaling, which triggers interactions of the RAGE cytoplasmic tail (ctRAGE) with intracellular effector, such as diaphanous 1 (DIAPH1), to initiate signal transduction cascades. ctRAGE is essential for RAGE-ligand-mediated signal transduction and consequent modulation of gene expression and cellular properties. RAGE is over-expressed in diseased tissues of most RAGE-associated pathogenic conditions, such as complications of Alzheimer's diseases, diabetes, vascular diseases, inflammation, cancers and neurodegeneration. They are the major diseases affecting a large population worldwide. RAGE can function as a biomarker or drug target for these diseases. The cytoplasmic tail of RAGE can be used as a drug target to inhibit RAGE-induced intracellular signaling by small molecule inhibitors to treat RAGE-associated diseases. We developed a high throughput screening assay with which we probed a small molecule library of 58,000 compounds to find that 777 small molecules displayed 50% inhibition and 97 compounds demonstrated dose-dependent inhibition of the binding of ctRAGE-DIAPH1. Eventually, there were 13 compounds which displayed dose-dependent inhibition of ctRAGE binding to DIAPH1 and direct binding to ctRAGE analyzed by 15N HSQC-NMR and native tryptophan fluorescence titration experiments; thus, they were identified as competitive inhibitors of ctRAGE interaction with DIAPH1. These compounds, which exhibit in vitro and in vivo inhibition of RAGE-dependent molecular processes, present attractive molecular scaffolds for the development of therapeutics against RAGE-induced diseases, and provide support for the feasibility of inhibition of protein-protein interaction (PPI). Among those 13 compounds, compounds 3, 4 and 11 with novel druggable structural features, strongly bound to ctRAGE with Kd values reaching to 18, 2 and 2 nM, respectively. There were 28 quinoline acetamide analogues of compound 11, and 20 carbazole/benzimidazole/indole 1,3-diamino-2-propanol analogues of compounds 3 and 4 were selected for SAR study by 15N-HSQC NMR. Native tryptophan fluorescence titration studies quantified the binding affinity and confirmed that tryptophan is involved in this interaction. The binding affinity tests found 19 compounds binding to ctRAGE with nanomolar binding affinities. They would be developed into lead compounds for in vitro and in vivo studies. The site directed mutagenesis was adopted to verify the interaction mode, in which the amino acid residues at the binding sites (Q3 and Q6) were knocked out individually and replaced with one alanine, resulting in weaker binding to the selective small molecule inhibitors across these knock-out sites. Therefore, it is confirmed that the amino acid residues of ctRAGE, Q3, and Q6, were involved in binding with R24, R102, R108, R 166, R167 and R208. Mutation modeling verified the established binding models for ctRAGE-R25 and ctRAGE-compound 3. Mapping the binding sites by NMR and CYANA calculation which established three-dimensional structure models of the ctRAGE-compound 3 complex and the ctRAGE-R25 complex, found the interactions between ctRAGE and compound 3 take place at W2, Q3 and Q6, while the interactions between ctRAGE and R25 take place W2, Q3, Q6 and E11. Their binding sites overlap the binding sites of ctRAGE-DIAPH1, which results that these two inhibitors bind to ctRAGE by replacing DIAPH1, and thus inhibit RAGE signaling.

  2. Involvement of 53BP1, a p53 Binding Protein, in Chk2 Phosphorylation of p53 and DNA Damage Cell Cycle Checkpoints

    DTIC Science & Technology

    2005-05-01

    NaC1, 1 mM EDTA, 1% NP40 supplemented required for cell survival. Mal. Cell. Biol. 22, 555-566 (2002). with protease inhibitors (Roche) and Benzonase...response is delayed or inhibited by treatment with the PIK this fact. inhibitors caffeine and wortmannin. 53BP1 foci also overlap I1 A fellow of the U...ltr Xbal __BTK_ _ WT 2,6 kB VICTR54 LTR NEO PGK BTK LT 8A 4DSI) inutant 1.5 LII + 13 D A +C +1tr rtrtr Neo 2 kR-’ c +i+ +i+tr tr/tr 2 3 A b

  3. 75 FR 57846 - Airworthiness Directives; Robert E. Rust, Jr. Model DeHavilland DH.C1 Chipmunk 21, DH.C1 Chipmunk...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... Airworthiness Directives; Robert E. Rust, Jr. Model DeHavilland DH.C1 Chipmunk 21, DH.C1 Chipmunk 22, and DH.C1... installation, with replacement as necessary for Robert E. Rust, Jr. Model DeHavilland DH.C1 Chipmunk 21, DH.C1...

  4. Identification of potent maturation inhibitors against HIV-1 clade C.

    PubMed

    Timilsina, Uddhav; Ghimire, Dibya; Timalsina, Bivek; Nitz, Theodore J; Wild, Carl T; Freed, Eric O; Gaur, Ritu

    2016-06-06

    Antiretroviral therapy has led to a profound improvement in the clinical care of HIV-infected patients. However, drug tolerability and the evolution of drug resistance have limited treatment options for many patients. Maturation inhibitors are a new class of antiretroviral agents for treatment of HIV-1. They act by interfering with the maturation of the virus by blocking the last step in Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA by the viral protease (PR). The first-in-class maturation inhibitor bevirimat (BVM) failed against a subset of HIV-1 isolates in clinical trials due to polymorphisms present in the CA-SP1 region of the Gag protein. Sequence analysis indicated that these polymorphisms are more common in non-clade B strains of HIV-1 such as HIV-1 clade C. Indeed, BVM was found to be ineffective against HIV-1 clade C molecular clones tested in this study. A number of BVM analogs were synthesized by chemical modifications at the C-28 position to improve its activity. The new BVM analogs displayed potent activity against HIV-1 clade B and C and also reduced infectivity of the virus. This study identifies novel and broadly active BVM analogs that may ultimately demonstrate efficacy in the clinic.

  5. Recent advances in colony stimulating factor-1 receptor/c-FMS as an emerging target for various therapeutic implications.

    PubMed

    Kumari, Archana; Silakari, Om; Singh, Rajesh K

    2018-07-01

    Colony stimulating factor-1 (CSF-1) is one of the most common proinflammatory cytokine responsible for various inflammatory disorders. It has a remarkable role in the development and progression of osteoarthritis, cancer and other autoimmune disease conditions. The CSF-1 acts by binding to the receptor, called colony stimulating factor-1 receptor (CSF-1R) also known as c-FMS resulting in the cascade of signalling pathway causing cell proliferation and differentiation. Interleukin-34 (IL-34), recently identified as another ligand for CSF-IR, is a cytokine protein. Both, CSF-1 and IL-34, although two distinct cytokines, follow the similar signalling pathway on binding to the same receptor, CSF-1R. Like CSF-1, IL-34 promotes the differentiation and survival of monocyte, macrophages and osteoclasts. This CSF-1R/c-FMS is over expressed in many cancers and on tumour associated macrophages, consequently, have been exploited as a drug target for promising treatment for cancer and inflammatory diseases. Some CSF-1R/c-FMS inhibitors such as ABT-869, Imatinib, AG013736, JNJ-40346527, PLX3397, DCC-3014 and Ki20227 have been successfully used in these disease conditions. Many c-FMS inhibitors have been the candidates of clinical trials, but suffer from some side effects like cardiotoxicity, vomiting, swollen eyes, diarrhoea, etc. If selectivity of cFMS inhibition is achieved successfully, side effects can be overruled and this approach may become a novel therapy for treatment of various therapeutic interventions. Thus, successful targeting of c-FMS may result in multifunctional therapy. With this background of information, the present review focuses on the recent developments in the area of CSF-1R/c-FMS inhibitors with emphasis on crystal structure, mechanism of action and various therapeutic implications in which c-FMS plays a pivotal role. The review on structure activity relationship of various compounds acting as the inhibitors of c-FMS which gives the selection criteria for the development of novel molecules is also being presented. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells.

    PubMed

    The, Inge; Ruijtenberg, Suzan; Bouchet, Benjamin P; Cristobal, Alba; Prinsen, Martine B W; van Mourik, Tim; Koreth, John; Xu, Huihong; Heck, Albert J R; Akhmanova, Anna; Cuppen, Edwin; Boxem, Mike; Muñoz, Javier; van den Heuvel, Sander

    2015-01-06

    Cyclin-dependent kinases 4 and 6 (CDK4/6) in complex with D-type cyclins promote cell cycle entry. Most human cancers contain overactive CDK4/6-cyclin D, and CDK4/6-specific inhibitors are promising anti-cancer therapeutics. Here, we investigate the critical functions of CDK4/6-cyclin D kinases, starting from an unbiased screen in the nematode Caenorhabditis elegans. We found that simultaneous mutation of lin-35, a retinoblastoma (Rb)-related gene, and fzr-1, an orthologue to the APC/C co-activator Cdh1, completely eliminates the essential requirement of CDK4/6-cyclin D (CDK-4/CYD-1) in C. elegans. CDK-4/CYD-1 phosphorylates specific residues in the LIN-35 Rb spacer domain and FZR-1 amino terminus, resembling inactivating phosphorylations of the human proteins. In human breast cancer cells, simultaneous knockdown of Rb and FZR1 synergistically bypasses cell division arrest induced by the CDK4/6-specific inhibitor PD-0332991. Our data identify FZR1 as a candidate CDK4/6-cyclin D substrate and point to an APC/C(FZR1) activity as an important determinant in response to CDK4/6-inhibitors.

  7. Anti-hepatitis C virus activity and toxicity of type III phosphatidylinositol-4-kinase beta inhibitors.

    PubMed

    Lamarche, M J; Borawski, J; Bose, A; Capacci-Daniel, C; Colvin, R; Dennehy, M; Ding, J; Dobler, M; Drumm, J; Gaither, L A; Gao, J; Jiang, X; Lin, K; McKeever, U; Puyang, X; Raman, P; Thohan, S; Tommasi, R; Wagner, K; Xiong, X; Zabawa, T; Zhu, S; Wiedmann, B

    2012-10-01

    Type III phosphatidylinositol-4-kinase beta (PI4KIIIβ) was previously implicated in hepatitis C virus (HCV) replication by small interfering RNA (siRNA) depletion and was therefore proposed as a novel cellular target for the treatment of hepatitis C. Medicinal chemistry efforts identified highly selective PI4KIIIβ inhibitors that potently inhibited the replication of genotype 1a and 1b HCV replicons and genotype 2a virus in vitro. Replicon cells required more than 5 weeks to reach low levels of 3- to 5-fold resistance, suggesting a high resistance barrier to these cellular targets. Extensive in vitro profiling of the compounds revealed a role of PI4KIIIβ in lymphocyte proliferation. Previously proposed functions of PI4KIIIβ in insulin secretion and the regulation of several ion channels were not perturbed with these inhibitors. Moreover, PI4KIIIβ inhibitors were not generally cytotoxic as demonstrated across hundreds of cell lines and primary cells. However, an unexpected antiproliferative effect in lymphocytes precluded their further development for the treatment of hepatitis C.

  8. Anti-Hepatitis C Virus Activity and Toxicity of Type III Phosphatidylinositol-4-Kinase Beta Inhibitors

    PubMed Central

    LaMarche, M. J.; Borawski, J.; Bose, A.; Capacci-Daniel, C.; Colvin, R.; Dennehy, M.; Ding, J.; Dobler, M.; Drumm, J.; Gaither, L. A.; Gao, J.; Jiang, X.; Lin, K.; McKeever, U.; Puyang, X.; Raman, P.; Thohan, S.; Tommasi, R.; Wagner, K.; Xiong, X.; Zabawa, T.; Zhu, S.

    2012-01-01

    Type III phosphatidylinositol-4-kinase beta (PI4KIIIβ) was previously implicated in hepatitis C virus (HCV) replication by small interfering RNA (siRNA) depletion and was therefore proposed as a novel cellular target for the treatment of hepatitis C. Medicinal chemistry efforts identified highly selective PI4KIIIβ inhibitors that potently inhibited the replication of genotype 1a and 1b HCV replicons and genotype 2a virus in vitro. Replicon cells required more than 5 weeks to reach low levels of 3- to 5-fold resistance, suggesting a high resistance barrier to these cellular targets. Extensive in vitro profiling of the compounds revealed a role of PI4KIIIβ in lymphocyte proliferation. Previously proposed functions of PI4KIIIβ in insulin secretion and the regulation of several ion channels were not perturbed with these inhibitors. Moreover, PI4KIIIβ inhibitors were not generally cytotoxic as demonstrated across hundreds of cell lines and primary cells. However, an unexpected antiproliferative effect in lymphocytes precluded their further development for the treatment of hepatitis C. PMID:22825118

  9. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy.

    PubMed

    Cha, Minjun; Shin, Kyuchul; Lee, Huen; Moudrakovski, Igor L; Ripmeester, John A; Seo, Yutaek

    2015-02-03

    In this study, the kinetics of methane replacement with carbon dioxide and nitrogen gas in methane gas hydrate prepared in porous silica gel matrices has been studied by in situ (1)H and (13)C NMR spectroscopy. The replacement process was monitored by in situ (1)H NMR spectra, where about 42 mol % of the methane in the hydrate cages was replaced in 65 h. Large amounts of free water were not observed during the replacement process, indicating a spontaneous replacement reaction upon exposing methane hydrate to carbon dioxide and nitrogen gas mixture. From in situ (13)C NMR spectra, we confirmed that the replacement ratio was slightly higher in small cages, but due to the composition of structure I hydrate, the amount of methane evolved from the large cages was larger than that of the small cages. Compositional analysis of vapor and hydrate phases was also carried out after the replacement reaction ceased. Notably, the composition changes in hydrate phases after the replacement reaction would be affected by the difference in the chemical potential between the vapor phase and hydrate surface rather than a pore size effect. These results suggest that the replacement technique provides methane recovery as well as stabilization of the resulting carbon dioxide hydrate phase without melting.

  10. Murine hematopoietic stem cell dormancy controlled by induction of a novel short form of PSF1 by histone deacetylase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yinglu; Gong, Zhi-Yuan; Takakura, Nobuyuki, E-mail: ntakaku@biken.osaka-u.ac.jp

    2015-06-10

    Hematopoietic stem cells (HSCs) can survive long-term in a state of dormancy. Little is known about how histone deacetylase inhibitors (HDACi) affect HSC kinetics. Here, we use trichostatin A (TSA), a histone deacetylase inhibitor, to enforce histone acetylation and show that this suppresses cell cycle entry by dormant HSCs. Previously, we found that haploinsufficiency of PSF1, a DNA replication factor, led to attenuation of the bone marrow (BM) HSC pool size and lack of acute proliferation after 5-FU ablation. Because PSF1 protein is present in CD34{sup +} transiently amplifying HSCs but not in CD34{sup −} long-term reconstituting-HSCs which are restingmore » in a dormant state, we analyzed the relationship between dormancy and PSF1 expression, and how a histone deacetylase inhibitor affects this. We found that CD34{sup +} HSCs produce long functional PSF1 (PSF1a) but CD34{sup −} HSCs produce a shorter possibly non-functional PSF1 (PSF1b, c, dominantly PSF1c). Using PSF1a-overexpressing NIH-3T3 cells in which the endogenous PSF1 promoter is suppressed, we found that TSA treatment promotes production of the shorter form of PSF1 possibly by inducing recruitment of E2F family factors upstream of the PSF1 transcription start site. Our data document one mechanism by which histone deacetylase inhibitors affect the dormancy of HSCs by regulating the DNA replication factor PSF1. - Highlights: • Hematopoetic stem cell dormancy is controlled by histone deacetylation inhibitors. • Dormancy of HSCs is associated with a shorter form of non-functional PSF1. • Histone deacetylase inhibitors suppress PSF1 promoter activity.« less

  11. Different effects of histone deacetylase inhibitors nicotinamide and trichostatin A (TSA) in C17.2 neural stem cells.

    PubMed

    Wang, Haifeng; Cheng, Hua; Wang, Kai; Wen, Tieqiao

    2012-11-01

    Histone deacetylase inhibitors are involved in proliferation, apoptosis, cell cycle, mRNA transcription, and protein expression in various cells. However, the molecular mechanism underlying such functions is still not fully clear. In this study, we used C17.2 neural stem cell (NSC) line as a model to evaluate the effects of nicotinamide and trichostatin A (TSA) on cell characteristics. Results show that nicotinamide and TSA greatly inhibit cell growth, lead to cell morphology changes, and effectively induce cell apoptosis in a dose-dependent manner. Western blot analyses confirmed that nicotinamide significantly decreases the expression of bcl-2 and p38. Further insight into the molecular mechanisms shows the suppression of phosphorylation in eukaryotic initiation factor 4E-binding protein 1 (4EBP1) by nicotinamide, whereas, an increased expression of bcl-2 and p38 and phosphorylation of 4EBP1 by TSA. However, both nicotinamide and TSA significantly increase the expression of cytochrome c (cyt c). These results strongly suggest that bcl-2, p38, cyt c, and p-4EBP1 could suppress proliferation and induce apoptosis of C17.2 NSCs mediated by histone deacetylase inhibitors, nicotinamide and TSA, involving different molecular mechanisms.

  12. C75, a fatty acid synthase inhibitor, modulates AMP-activated protein kinase to alter neuronal energy metabolism.

    PubMed

    Landree, Leslie E; Hanlon, Andrea L; Strong, David W; Rumbaugh, Gavin; Miller, Ian M; Thupari, Jagan N; Connolly, Erin C; Huganir, Richard L; Richardson, Christine; Witters, Lee A; Kuhajda, Francis P; Ronnett, Gabriele V

    2004-01-30

    C75, a synthetic inhibitor of fatty acid synthase (FAS), is hypothesized to alter the metabolism of neurons in the hypothalamus that regulate feeding behavior to contribute to the decreased food intake and profound weight loss seen with C75 treatment. In the present study, we characterize the suitability of primary cultures of cortical neurons for studies designed to investigate the consequences of C75 treatment and the alteration of fatty acid metabolism in neurons. We demonstrate that in primary cortical neurons, C75 inhibits FAS activity and stimulates carnitine palmitoyltransferase-1 (CPT-1), consistent with its effects in peripheral tissues. C75 alters neuronal ATP levels and AMP-activated protein kinase (AMPK) activity. Neuronal ATP levels are affected in a biphasic manner with C75 treatment, decreasing initially, followed by a prolonged increase above control levels. Cerulenin, a FAS inhibitor, causes a similar biphasic change in ATP levels, although levels do not exceed control. C75 and cerulenin modulate AMPK phosphorylation and activity. TOFA, an inhibitor of acetyl-CoA carboxylase, increases ATP levels, but does not affect AMPK activity. Several downstream pathways are affected by C75 treatment, including glucose metabolism and acetyl-CoA carboxylase (ACC) phosphorylation. These data demonstrate that C75 modulates the levels of energy intermediates, thus, affecting the energy sensor AMPK. Similar effects in hypothalamic neurons could form the basis for the effects of C75 on feeding behavior.

  13. Proteasome inhibitor PS-341 limits macrophage necroptosis by promoting cIAPs-mediated inhibition of RIP1 and RIP3 activation.

    PubMed

    Zhang, Yuchen; Cheng, Junjun; Zhang, Junmeng; Wu, Xiaofan; Chen, Fang; Ren, Xuejun; Wang, Yunlong; Li, Quan; Li, Yu

    2016-09-02

    Apoptotic and necrotic macrophages have long been known for their existence in atherosclerotic lesions. However, the mechanisms underlying the choice of their death pattern have not been fully elucidated. Here, we report the effects of PS-341, a potent and specific proteasome inhibitor, on the cell death of primary bone marrow-derived macrophages (BMDMs) in vitro. The results showed that PS-341 could not induce macrophage apoptosis or promote TNF-induced macrophage apoptosis, on the other hand, PS-341 could significantly inhibit macrophage necroptosis induced by TNF and pan-caspase inhibitor z-VAD treatment. Remarkably, high-dose of PS-341 showed similar inhibitory effects on macrophage necroptosis comparable to that of kinase inhibition of RIP1 through specific inhibitor Nec-1 or inhibition of RIP3 via specific genetical ablation. Furthermore, the degradation of cellular inhibitor of apoptosis proteins (cIAPs) was suppressed by PS-341, which could antagonize the activation of RIP1 kinase via post-translational mechanism. Further evidences demonstrated reduced levels of both RIP1 and RIP 3 upon PS-341 treatment, concomitantly, a more strong association of RIP1 with cIAPs and less with RIP3 was found following PS-341 treatment, these findings suggested that PS-341 may disrupt the formation of RIP1-RIP3 complex (necrosome) through stabilizing cIAPs. Collectively, our results indicated that the proteasome-mediated degradation of cIAPs could be inhibited by PS-341 and followed by limited RIP1 and RIP3 kinase activities, which were indispensable for necroptosis, thus eliciting a significant necroptosis rescue in BMDMs in vitro. Overall, our study has identified a new role of PS-341 in the cell death of BMDMs and provided a novel insight into the atherosclerotic inflammation caused by proteasome-mediated macrophage necroptosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. In silico design of novel hERG-neutral sildenafil-like PDE5 inhibitors.

    PubMed

    Kayık, Gülru; Tüzün, Nurcan Ş; Durdagi, Serdar

    2017-10-01

    Cyclic nucleotide phosphodiesterase enzymes (PDEs) have functions in regulating the levels of intracellular second messengers, 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP), via hydrolysis and decomposing mechanisms in cells. They take essential roles in modulating various cellular activities such as memory and smooth muscle functions. PDE type 5 (PDE5) inhibitors enhance the vasodilatory effects of cGMP in the corpus cavernosum and they are used to treat erectile dysfunction. Patch clamp experiments showed that the IC 50 values of the human ether-à-go-go-related gene (hERG1) potassium (K) ion channel blocking affinity of PDE5 inhibitors sildenafil, vardenafil, and tadalafil as 33, 12, and 100 μM, respectively. hERG1 channel is responsible for the regulation of the action potential of human ventricular myocyte by contributing the rapid component of delayed rectifier K + current (I Kr ) component of the cardiac action potential. In this work, interaction patterns and binding affinity predictions of selected PDE5 inhibitors against the hERG1 channel are studied. It is attempted to develop PDE5 inhibitor analogs with lower binding affinity to hERG1 ion channel while keeping their pharmacological activity against their principal target PDE5 using in silico methods. Based on detailed analyses of docking poses and predicted interaction energies, novel analogs of PDE5 inhibitors with lower predicted binding affinity to hERG1 channels without loosing their principal target activity were proposed. Moreover, molecular dynamics (MD) simulations and post-processing MD analyses (i.e. Molecular Mechanics/Generalized Born Surface Area calculations) were performed. Detailed analysis of molecular simulations helped us to better understand the PDE5 inhibitor-target binding interactions in the atomic level. Results of this study can be useful for designing of novel and safe PDE5 inhibitors with enhanced activity and other tailored properties.

  15. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium.

    PubMed

    Feng, Yujie; Li, Chao; Zhang, Dawei

    2011-01-01

    Chlorella vulgaris was used to study algal lipid production with wastewater treatment. Artificial wastewater was used to cultivate C. vulgaris in a column aeration photobioreactor (CAP) under batch and semi-continuous cultivation with various daily culture replacements (0.5l-1.5l per 2l reactor). The cell density was decreased from 0.89 g/l with the daily replacement of 0.5l to 0.28 g/l with 1.5l replacement. However, C. vulgaris culture achieved the highest lipid content (42%, average value of the phase) and the lipid productivity (147 mg/ld(-1)) with daily replacement of 1.0 l. And then the nutrient removal efficiency were 86% (COD), 97% (NH(4)(+)) and 96% (TP), respectively. Analyses of energy efficiency showed that the net energy ratio (NER) for lipid production with daily replacement of 1.0 l (1.25) was higher than the other volume replacement protocols. And cost analyses showed that the algal biomass can be competitive with petroleum at US$ 63.97 per barrel with the potential credit for wastewater treatment. According to the above results, it is concluded that the present research will lead to an economical technology of algal lipid production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Anesthetics inhibit extracellular signal-regulated Kinase1/2 phosphorylation via NMDA receptor, phospholipase C and protein kinase C in mouse hippocampal slices.

    PubMed

    Haiying, Gao; Mingjie, Han; Lingyu, Zhang; Qingxiang, Wang; Haisong, Wang; Bingxi, Zhang

    2017-02-01

    Extracellular signal-regulated kinase 1/2 (ERK1/2) has been implicated in learning and memory; however, whether intravenous anesthetics modulate ERK1/2 remains unknown. The aim of this study was to examine the effect of several intravenous anesthetics on the phosphorylation of ERK1/2 in the hippocampus of adult mice. Western blotting was used to examine cellular levels of phosphorylated and unphosphorylated ERK1/2 in mouse hippocampus slices, which were incubated with or without anesthetics including propofol, etomidate, ketamine and midazolam, a protein kinase C (PKC) activator or inhibitor, or phospholipase C (PLC) activator or inhibitor. Propofol, etomidate, ketamine and midazolam reduced phosphorylation of ERK1/2 in a time-dependent manner. Washing out propofol after 5 min increased ERK1/2 phosphorylation. The anesthetic-induced depression of ERK1/2 phosphorylation was blocked by 0.1 μM phorbol-12-myristate 13-acetate (an activator of PKC), 50 μM U73122 (an inhibitor of PLC). The anesthetic-induced depression of ERK1 phosphorylation was blocked by 1 mMN-methyl-d-aspartate (NMDA). Whereas 100 μM chelerythrine (an inhibitor of PKC) and 100 μM carbachol (an activator of PLC) and 20 μM PD-98059 (an inhibitor of MEK) had additive effects on propofol-induced inhibition of ERK1/2 phosphorylation. In contrast, 10 μM MK801 (a NMDA receptor antagonist) did not block anesthetic-induced inhibition of ERK1/2 phosphorylation. Intravenous anesthetics markedly decreased phosphorylation of ERK1/2 in mouse hippocampal slices, most likely via the NMDA receptor, and PLC- and PKC-dependent pathways. Thus, ERK1/2 represents a target for anesthetics in the brain. Copyright © 2016. Published by Elsevier Ltd.

  17. PEDF-derived peptide promotes skeletal muscle regeneration through its mitogenic effect on muscle progenitor cells.

    PubMed

    Ho, Tsung-Chuan; Chiang, Yi-Pin; Chuang, Chih-Kuang; Chen, Show-Li; Hsieh, Jui-Wen; Lan, Yu-Wen; Tsao, Yeou-Ping

    2015-08-01

    In response injury, intrinsic repair mechanisms are activated in skeletal muscle to replace the damaged muscle fibers with new muscle fibers. The regeneration process starts with the proliferation of satellite cells to give rise to myoblasts, which subsequently differentiate terminally into myofibers. Here, we investigated the promotion effect of pigment epithelial-derived factor (PEDF) on muscle regeneration. We report that PEDF and a synthetic PEDF-derived short peptide (PSP; residues Ser(93)-Leu(112)) induce satellite cell proliferation in vitro and promote muscle regeneration in vivo. Extensively, soleus muscle necrosis was induced in rats by bupivacaine, and an injectable alginate gel was used to release the PSP in the injured muscle. PSP delivery was found to stimulate satellite cell proliferation in damaged muscle and enhance the growth of regenerating myofibers, with complete regeneration of normal muscle mass by 2 wk. In cell culture, PEDF/PSP stimulated C2C12 myoblast proliferation, together with a rise in cyclin D1 expression. PEDF induced the phosphorylation of ERK1/2, Akt, and STAT3 in C2C12 myoblasts. Blocking the activity of ERK, Akt, or STAT3 with pharmacological inhibitors attenuated the effects of PEDF/PSP on the induction of C2C12 cell proliferation and cyclin D1 expression. Moreover, 5-bromo-2'-deoxyuridine pulse-labeling demonstrated that PEDF/PSP stimulated primary rat satellite cell proliferation in myofibers in vitro. In summary, we report for the first time that PSP is capable of promoting the regeneration of skeletal muscle. The signaling mechanism involves the ERK, AKT, and STAT3 pathways. These results show the potential utility of this PEDF peptide for muscle regeneration. Copyright © 2015 the American Physiological Society.

  18. Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, Benjamin Pieter; Li, Wenyan; Buhrow, Jerry; Zhang, Xuejun; Surma, Jan; Fitzpatrick, Lilly; Montgomery, Eliza; Calle, Luz Marina

    2014-01-01

    Research efforts are under way to replace current corrosion inhibitors with more environmentally friendly alternatives. However, problems with corrosion inhibition efficiency, coating compatibility and solubility have hindered the use of many of these materials as simple pigment additives.This paper will present technical details on how the Corrosion Technology Lab at NASAs Kennedy Space Center (KSC) has addressed these issues by encapsulating environmentally friendly inhibitors into organic and inorganic microparticles and microcapsules. The synthetic process for polymer particles was characterized and post-synthesis analysis was performed to determine the interactions between the inhibitors and the encapsulation material. The pH-controlled release of inhibitors from various particle formulations in aqueous base was monitored and compared to both electrochemical and salt immersion accelerated corrosion experiment. Furthermore, synergistic corrosion inhibition effects observed during the corrosion testing of several inhibitor combinations will be presented.

  19. Biophysical Mode-of-Action and Selectivity Analysis of Allosteric Inhibitors of Hepatitis C Virus (HCV) Polymerase.

    PubMed

    Abdurakhmanov, Eldar; Øie Solbak, Sara; Danielson, U Helena

    2017-06-16

    Allosteric inhibitors of hepatitis C virus (HCV) non-structural protein 5B (NS5B) polymerase are effective for treatment of genotype 1, although their mode of action and potential to inhibit other isolates and genotypes are not well established. We have used biophysical techniques and a novel biosensor-based real-time polymerase assay to investigate the mode-of-action and selectivity of four inhibitors against enzyme from genotypes 1b (BK and Con1) and 3a. Two thumb inhibitors (lomibuvir and filibuvir) interacted with all three NS5B variants, although the affinities for the 3a enzyme were low. Of the two tested palm inhibitors (dasabuvir and nesbuvir), only dasabuvir interacted with the 1b variant, and nesbuvir interacted with NS5B 3a. Lomibuvir, filibuvir and dasabuvir stabilized the structure of the two 1b variants, but not the 3a enzyme. The thumb compounds interfered with the interaction between the enzyme and RNA and blocked the transition from initiation to elongation. The two allosteric inhibitor types have different inhibition mechanisms. Sequence and structure analysis revealed differences in the binding sites for 1b and 3a variants, explaining the poor effect against genotype 3a NS5B. The indirect mode-of-action needs to be considered when designing allosteric compounds. The current approach provides an efficient strategy for identifying and optimizing allosteric inhibitors targeting HCV genotype 3a.

  20. Effect of Antioxidants and Apoptosis Inhibitors on Cryopreservation of Murine Germ Cells Enriched for Spermatogonial Stem Cells.

    PubMed

    Ha, Seung-Jung; Kim, Byung-Gak; Lee, Yong-An; Kim, Yong-Hee; Kim, Bang-Jin; Jung, Sang-Eun; Pang, Myeong-Geol; Ryu, Buom-Yong

    2016-01-01

    Spermatogonial stem cells (SSCs) are germline stem cells that serve as the foundation of spermatogenesis to maintain fertility throughout a male's lifetime. To treat male infertility using stem cell banking systems and transplantation, it is important to be able to preserve SSCs for long periods of time. Therefore, this study was conducted to develop an optimal cryopreservation protocol for SSCs using antioxidants and apoptosis inhibitors in freezing medium. No differences were observed compared to controls when SSCs were cryopreserved in the presence of apoptosis inhibitors by themselves. However, mouse germ cells cryopreserved in basal medium containing the antioxidant hypotaurine (14 mM) resulted in significantly greater proliferation potential and mitochondrial activity. Furthermore, treatment groups with combinations containing 200 mM trehalose and 14 mM hypotaurine showed higher proliferation rates compared to controls. In addition, several serum free conditions were evaluated for SSC cryopreservation. Treatment media containing 10% or 20% knockout serum replacement resulted in similar cryopreservation results compared to media containing FBS. SSC transplantation was also performed to confirm the functionality of SSCs frozen in 14 mM hypotaurine. Donor SSCs formed normal spermatogenic colonies and sperm in the recipient testis. These data indicate that inclusion of 14 mM hypotaurine in cryopreservation media is an effective way to efficiently cryopreserve germ cells enriched for SSCs and that knockout serum replacement can replace FBS in germ cell cryopreservation media.

  1. A thermostable serralysin inhibitor from marine bacterium Flavobacterium sp. YS-80-122

    NASA Astrophysics Data System (ADS)

    Liang, Pengjuan; Li, Shangyong; Wang, Kun; Wang, Fang; Xing, Mengxin; Hao, Jianhua; Sun, Mi

    2018-03-01

    Serralysin inhibitors have been proposed as potent drugs against many diseases and may help to prevent further development of antibiotic-resistant pathogenic bacteria. In this study, a novel serralysin inhibitor gene, lupI, was cloned from the marine bacterium Flavobacterium sp. YS-80-122 and expressed in Escherichia coli. The deduced serralysin inhibitor, LupI, shows <40% amino acid identity to other reported serralysin inhibitors. Multiple sequence alignment and phylogenetic analysis of LupI with other serralysin inhibitors indicated that LupI was a novel type of serralysin inhibitor. The inhibitory constant for LupI towards its target metalloprotease was 0.64 μmol/L. LupI was thermostable at high temperature, in which 35.6%-90.7% of its inhibitory activity was recovered after treatment at 100°C for 1-60 min followed by incubation at 0°C. This novel inhibitor may represent a candidate drug for the treatment of serralysin-related infections.

  2. A thermostable serralysin inhibitor from marine bacterium Flavobacterium sp. YS-80-122

    NASA Astrophysics Data System (ADS)

    Liang, Pengjuan; Li, Shangyong; Wang, Kun; Wang, Fang; Xing, Mengxin; Hao, Jianhua; Sun, Mi

    2017-06-01

    Serralysin inhibitors have been proposed as potent drugs against many diseases and may help to prevent further development of antibiotic-resistant pathogenic bacteria. In this study, a novel serralysin inhibitor gene, lupI, was cloned from the marine bacterium Flavobacterium sp. YS-80-122 and expressed in Escherichia coli. The deduced serralysin inhibitor, LupI, shows <40% amino acid identity to other reported serralysin inhibitors. Multiple sequence alignment and phylogenetic analysis of LupI with other serralysin inhibitors indicated that LupI was a novel type of serralysin inhibitor. The inhibitory constant for LupI towards its target metalloprotease was 0.64 μmol/L. LupI was thermostable at high temperature, in which 35.6%-90.7% of its inhibitory activity was recovered after treatment at 100°C for 1-60 min followed by incubation at 0°C. This novel inhibitor may represent a candidate drug for the treatment of serralysin-related infections.

  3. Chlamydia trachomatis can protect host cells against apoptosis in the absence of cellular Inhibitor of Apoptosis Proteins and Mcl-1.

    PubMed

    Ying, Songmin; Christian, Jan G; Paschen, Stefan A; Häcker, Georg

    2008-01-01

    Infection with Chlamydia protects mammalian host cells against apoptosis. Hypotheses have been proposed to explain this molecularly, including the up-regulation of host anti-apoptotic proteins such as cellular Inhibitor of Apoptosis Protein (IAP) 2 and the Bcl-2 protein Mcl-1. To test for the importance of these proteins, we used mouse embryonic fibroblasts from gene-targeted mice that were deficient in cIAP1, cIAP2, cIAP1/cIAP2, XIAP, or Mcl-1. Infection with Chlamydia trachomatis protected all cells equally well against apoptosis, which was induced either with tumour necrosis factor/cycloheximide (IAP-knock-out cells) or staurosporine (Mcl-1-knock-out). Therefore, these cellular anti-apoptotic proteins are not essential for apoptosis-protection by C. trachomatis.

  4. Andrastins A-C, new protein farnesyltransferase inhibitors produced by Penicillium sp. FO-3929. I. Producing strain, fermentation, isolation, and biological activities.

    PubMed

    Omura, S; Inokoshi, J; Uchida, R; Shiomi, K; Masuma, R; Kawakubo, T; Tanaka, H; Iwai, Y; Kosemura, S; Yamamura, S

    1996-05-01

    New protein farnesyltransferase inhibitors, andrastins A-C, have been discovered in the cultured broth of Penicillium sp. FO-3929. Andrastins extracted from broth supernatant were purified by silica gel chromatography, ODS chromatography and HPLC. The IC50 of andrastins A, B, and C against protein farnesyltransferase were 24.9, 47.1, and 13.3 microM, respectively.

  5. Impact of CYP2C8*3 polymorphism on in vitro metabolism of imatinib to N-desmethyl imatinib.

    PubMed

    Khan, Muhammad Suleman; Barratt, Daniel T; Somogyi, Andrew A

    2016-01-01

    1. Imatinib is metabolized to N-desmethyl imatinib by CYPs 3A4 and 2C8. The effect of CYP2C8*3 genotype on N-desmethyl imatinib formation was unknown. 2. We examined imatinib N-demethylation in human liver microsomes (HLMs) genotyped for CYP2C8*3, in CYP2C8*3/*3 pooled HLMs and in recombinant CYP2C8 and CYP3A4 enzymes. Effects of CYP-selective inhibitors on N-demethylation were also determined. 3. A single-enzyme Michaelis-Menten model with autoinhibition best fitted CYP2C8*1/*1 HLM (n = 5) and recombinant CYP2C8 kinetic data (median ± SD Ki = 139 ± 61 µM and 149 µM, respectively). Recombinant CYP3A4 showed two-site enzyme kinetics with no autoinhibition. Three of four CYP2C8*1/*3 HLMs showed single-enzyme kinetics with no autoinhibition. Binding affinity was higher in CYP2C8*1/*3 than CYP2C8*1/*1 HLM (median ± SD Km = 6 ± 2 versus 11 ± 2 µM, P=0.04). CYP2C8*3/*3 (pooled HLM) also showed high binding affinity (Km = 4 µM) and single-enzyme weak autoinhibition (Ki = 449 µM) kinetics. CYP2C8 inhibitors reduced HLM N-demethylation by 47-75%, compared to 0-30% for CYP3A4 inhibitors. 4. In conclusion, CYP2C8*3 is a gain-of-function polymorphism for imatinib N-demethylation, which appears to be mainly mediated by CYP2C8 and not CYP3A4 in vitro in HLM.

  6. A Common Susceptibility Gene for Type 2 Diabetes Is Associated with Drug Response to a DPP-4 Inhibitor: Pharmacogenomic Cohort in Okinawa Japan.

    PubMed

    Osada, Uru Nezu; Sunagawa, Hiroshi; Terauchi, Yasuo; Ueda, Shinichiro

    2016-01-01

    We investigated the association between common type 2 susceptibility variants of CDK5 regulatory subunit associated protein 1-like 1(CDKAL1) and therapeutic responses to anti-diabetic agents among patients with type 2 diabetes. Two SNPs (rs7754840: C>G, rs7756992: A>G) were genotyped via the Taqman PCR method. A total of 798 type 2 diabetic patients were included. HbA1c reduction after use of DPP-4 inhibitors for 3 months was significantly greater in patients with a risk allele for type 2 diabetes (GG -0.4%, CG -0.5%, CC -0.8%, p = 0.02 for rs7754840 and AA -0.4%, AG -0.5%, GG -0.8%, p = 0.01 for rs7756992). Linear regression analysis showed that per allele reductions of hemoglobin A1c (HbA1c) after 3 months were -0.10% for rs7754840 (p = 0.02) and -0.13% for rs7756992 (p = 0.0008) after adjusting for clinically influential covariates such as age, sex, BMI, duration of diabetes, baseline HbA1c and concomitant anti-diabetic agents. The results suggested that common variants of CDKAL1 are associated with therapeutic response to DPP-4 inhibitors.

  7. Drug Modulation of Water–Heme Interactions in Low-Spin P450 Complexes of CYP2C9d and CYP125A1

    PubMed Central

    Conner, Kip P.; Cruce, Alex A.; Krzyaniak, Matthew D.; Schimpf, Alina M.; Frank, Daniel J.; de Montellano, Paul Ortiz; Atkins, William M.; Bowman, Michael K.

    2015-01-01

    Azoles and pyridines are commonly incorporated into small molecule inhibitor scaffolds that target cytochromes P450 (CYPs) as a strategy to increase drug binding affinity, impart isoform-dependent selectivity, and improve metabolic stability. Optical absorbance spectra of the CYP–inhibitor complex are widely used to infer whether these inhibitors are ligated directly to the heme iron as catalytically inert, low-spin (type II) complexes. Here, we show that the low-spin complex between a drug-metabolizing CYP2C9 variant and 4-(3-phenyl-propyl)-1H-1,2,3-triazole (PPT) retains an axial water ligand despite exhibiting elements of “classic” type II optical behavior. Hydrogens of the axial water ligand are observed by pulsed electron paramagnetic resonance (EPR) spectroscopy for both inhibitor-free and inhibitor-bound species and show that inhibitor binding does not displace the axial water. A 15N label incorporated into PPT is 0.444 nm from the heme iron, showing that PPT is also in the active site. The reverse type I inhibitor, LP10, of CYP125A1 from Mycobacterium tuberculosis, known from X-ray crystal structures to form a low-spin water-bridged complex, is found by EPR and by visible and near-infrared magnetic circular dichroism spectroscopy to retain the axial water ligand in the complex in solution. PMID:25591012

  8. Impact of the Central Polypurine Tract on the Kinetics of Human Immunodeficiency Virus Type 1 Vector Transduction

    PubMed Central

    Van Maele, Bénédicte; De Rijck, Jan; De Clercq, Erik; Debyser, Zeger

    2003-01-01

    Lentiviral vectors derived from human immunodeficiency virus type 1 (HIV-1) show great promise as gene carriers for future gene therapy. Insertion of a fragment containing the central polypurine tract (cPPT) in HIV-1 vector constructs is known to enhance transduction efficiency drastically, reportedly by facilitating the nuclear import of HIV-1 cDNA through a central DNA flap. We have studied the impact of the cPPT on the kinetics of HIV-1 vector transduction by real-time PCR. The kinetics of total HIV-1 DNA, two-long-terminal-repeat (2-LTR) circles, and, by an Alu-PCR, integrated proviral DNA were monitored. About 6 to 12 h after transduction, the total HIV-1 DNA reached a maximum level, followed by a steep decrease. The 2-LTR circles peaked after 24 to 48 h and were diluted upon cell division. Integration of HIV-1 DNA was first detected at 12 h postinfection. When HIV-1 vectors that contained the cPPT were used, DNA synthesis was similar but a threefold higher amount of 2-LTR circles was detected, confirming the impact on nuclear import. Moreover, a 10-fold increase in the amount of integrated DNA was observed in the presence of the cPPT. Only in the absence of the cPPT was a saturation in 2-LTR circle formation seen at a high multiplicity of infection, suggesting a role for the cPPT in overcoming a barrier to the nuclear import of HIV-1 DNA. A major effect of the central DNA flap on the juxtaposition of both LTRs is unlikely, since transduction with HIV-1 vectors containing ectopic cPPT fragments resulted in increased amounts of 2-LTR circles as well as integrated DNA. Inhibitors of transduction by cPPT-containing HIV vectors were also studied by real-time PCR. The reverse transcriptase inhibitor azidothymidine (AZT) and the nonnucleoside reverse transcriptase inhibitor α-APA clearly inhibited viral DNA synthesis, whereas integrase inhibitors such as the diketo acid L-708,906 and the pyranodipyrimidine V-165 specifically inhibited integration. PMID:12663775

  9. Transcriptional profiling, molecular cloning, and functional analysis of C1 inhibitor, the main regulator of the complement system in black rockfish, Sebastes schlegelii.

    PubMed

    Nilojan, Jehanathan; Bathige, S D N K; Thulasitha, W S; Kwon, Hyukjae; Jung, Sumi; Kim, Myoung-Jin; Nam, Bo-Hye; Lee, Jehee

    2018-04-01

    C1-inhibitor (C1inh) plays a crucial role in assuring homeostasis and is the central regulator of the complement activation involved in immunity and inflammation. A C1-inhibitor gene from Sebastes schlegelii was identified and designated as SsC1inh. The identified genomic DNA and cDNA sequences were 6837 bp and 2161 bp, respectively. The genomic DNA possessed 11 exons, interrupted by 10 introns. The amino acid sequence possessed two immunoglobulin-like domains and a serpin domain. Multiple sequence alignment revealed that the serpin domain of SsC1inh was highly conserved among analyzed species where the two immunoglobulin-like domains showed divergence. The distinctiveness of teleost C1inh from other homologs was indicated by the phylogenetic analysis, genomic DNA organization, and their extended N-terminal amino acid sequences. Under normal physiological conditions, SsC1inh mRNA was most expressed in the liver, followed by the gills. The involvement of SsC1inh in homeostasis was demonstrated by modulated transcription profiles in the liver and spleen upon pathogenic stress by different immune stimulants. The protease inhibitory potential of recombinant SsC1inh (rSsC1inh) and the potentiation effect of heparin on rSsC1inh was demonstrated against C1esterase and thrombin. For the first time, the anti-protease activity of the teleost C1inh against its natural substrates C1r and C1s was proved in this study. The protease assay conducted with recombinant black rockfish C1r and C1s proteins in the presence or absence of rSsC1inh showed that the activities of both proteases were significantly diminished by rSsC1inh. Taken together, results from the present study indicate that SsC1inh actively plays a significant role in maintaining homeostasis in the immune system of black rock fish. Copyright © 2018. Published by Elsevier Ltd.

  10. Activities of the human immunodeficiency virus type 1 (HIV-1) protease inhibitor nelfinavir mesylate in combination with reverse transcriptase and protease inhibitors against acute HIV-1 infection in vitro.

    PubMed

    Patick, A K; Boritzki, T J; Bloom, L A

    1997-10-01

    Nelfinavir mesylate (formerly AG1343) is a potent and selective, nonpeptidic inhibitor of human immunodeficiency virus type 1 (HIV-1) protease that was discovered by protein structure-based design methodologies. We evaluated the antiviral and cytotoxic effects of two-drug combinations of nelfinavir with the clinically approved antiretroviral therapeutics zidovudine (ZDV), lamivudine (3TC), dideoxycytidine (ddC; zalcitabine), stavudine (d4T), didanosine (ddI), indinavir, saquinavir, and ritonavir and a three-drug combination of nelfinavir with ZDV and 3TC against an acute HIV-1 strain RF infection of CEM-SS cells in vitro. Quantitative assessment of drug interaction was evaluated by a universal response surface approach (W. R. Greco, G. Bravo, and J. C. Parsons, Pharm. Rev. 47:331-385, 1995) and by the method of M. N. Prichard and C. Shipman (Antiviral Res. 14:181-206, 1990). Both analytical methods yielded similar results and showed that the two-drug combinations of nelfinavir with the reverse transcriptase inhibitors ZDV, 3TC, ddI, d4T, and ddC and the three-drug combination with ZDV and 3TC resulted in additive to statistically significant synergistic interactions. In a similar manner, the combination of nelfinavir with the three protease inhibitors resulted in additive (ritonavir and saquinavir) to slightly antagonistic (indinavir) interactions. In all combinations, minimal cellular cytotoxicity was observed with any drug alone and in combination. These results suggest that administration of combinations of the appropriate doses of nelfinavir with other currently approved antiretroviral therapeutic agents in vivo may result in enhanced antiviral activity with no associated increase in cellular cytotoxicity.

  11. Activities of the human immunodeficiency virus type 1 (HIV-1) protease inhibitor nelfinavir mesylate in combination with reverse transcriptase and protease inhibitors against acute HIV-1 infection in vitro.

    PubMed Central

    Patick, A K; Boritzki, T J; Bloom, L A

    1997-01-01

    Nelfinavir mesylate (formerly AG1343) is a potent and selective, nonpeptidic inhibitor of human immunodeficiency virus type 1 (HIV-1) protease that was discovered by protein structure-based design methodologies. We evaluated the antiviral and cytotoxic effects of two-drug combinations of nelfinavir with the clinically approved antiretroviral therapeutics zidovudine (ZDV), lamivudine (3TC), dideoxycytidine (ddC; zalcitabine), stavudine (d4T), didanosine (ddI), indinavir, saquinavir, and ritonavir and a three-drug combination of nelfinavir with ZDV and 3TC against an acute HIV-1 strain RF infection of CEM-SS cells in vitro. Quantitative assessment of drug interaction was evaluated by a universal response surface approach (W. R. Greco, G. Bravo, and J. C. Parsons, Pharm. Rev. 47:331-385, 1995) and by the method of M. N. Prichard and C. Shipman (Antiviral Res. 14:181-206, 1990). Both analytical methods yielded similar results and showed that the two-drug combinations of nelfinavir with the reverse transcriptase inhibitors ZDV, 3TC, ddI, d4T, and ddC and the three-drug combination with ZDV and 3TC resulted in additive to statistically significant synergistic interactions. In a similar manner, the combination of nelfinavir with the three protease inhibitors resulted in additive (ritonavir and saquinavir) to slightly antagonistic (indinavir) interactions. In all combinations, minimal cellular cytotoxicity was observed with any drug alone and in combination. These results suggest that administration of combinations of the appropriate doses of nelfinavir with other currently approved antiretroviral therapeutic agents in vivo may result in enhanced antiviral activity with no associated increase in cellular cytotoxicity. PMID:9333041

  12. Structural studies of series HIV-1 nonnucleoside reverse transcriptase inhibitors 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)-benzimidazoles with different 4-substituents

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2010-03-01

    Over the past 10 years, several anti-viral drugs have become available to fight the HIV infection. Antiretroviral treatment reduces the mortality of AIDS. Nonnucleoside inhibitors of HIV-1 reverse transcriptase are specific and potentially nontoxic drugs against AIDS. The crystal structures of five nonnucleoside inhibitors of HIV-1 reverse transcriptase are presented here. The structural parameters, especially those describing the angular orientation of the π-electron systems and influencing biological activity, were determined for all of the investigated inhibitors. The chemical character and orientation of the substituent at C4 position of the benzimidazole moiety substantially influences the anti-viral activity. The structural data of the investigated inhibitors is a good basis for modeling enzyme-inhibitor interactions for structure-assisted drug design.

  13. Exploring alternative Zn-binding groups in the design of HDAC inhibitors: squaric acid, N-hydroxyurea, and oxazoline analogues of SAHA.

    PubMed

    Hanessian, Stephen; Vinci, Valerio; Auzzas, Luciana; Marzi, Mauro; Giannini, Giuseppe

    2006-09-15

    Analogues of suberoylanilide hydroxamic acid (SAHA) were prepared by replacing the Zn-binding group with squaric acid, N-hydroxyurea, and 4-hydroxymethyl oxazoline units, also varying the length of the aliphatic chain. No inhibitory activity on HDAC was observed below 1.0 microM and no cytotoxic activity on different tumor cell lines was seen below 20.0 microM.

  14. Biological and Structural Characterization of Rotamers of C-C Chemokine Receptor Type 5 (CCR5) Inhibitor GSK214096.

    PubMed

    Kazmierski, Wieslaw M; Danehower, Susan; Duan, Maosheng; Ferris, Robert G; Elitzin, Vassil; Minick, Douglas; Sharp, Matthew; Stewart, Eugene; Villeneuve, Manon

    2014-12-11

    We recently reported the discovery of preclinical CCR5 inhibitor GSK214096, 1 (J. Med. Chem. 2011, 54, 756). Detailed characterization of 1 revealed that it exists as a mixture of four separable atropisomers A-D. The two slow-interconverting pairs of rotamers A + B and C + D were separated and further characterized. HIV and CCR5-mediated chemotaxis data strongly suggest that the antiviral potency of 1 is due to rotamers A + B and not C + D. Furthermore, integrated UV, vibrational circular dichroism VCD and computational approach allowed to determine the M chirality in C + D (and P chirality in A + B). These findings imply additional avenues to be pursued toward new CCR5 antagonists.

  15. Chlamydocin analogs bearing carbonyl group as possible ligand toward zinc atom in histone deacetylases.

    PubMed

    Bhuiyan, Mohammed P I; Kato, Tamaki; Okauchi, Tatsuo; Nishino, Norikazu; Maeda, Satoko; Nishino, Tomonori G; Yoshida, Minoru

    2006-05-15

    A series of chlamydocin analogs with various carbonyl functionalities were designed and synthesized as histone deacetylase (HDAC) inhibitors. Chlamydocin is a cyclic tetrapeptide containing an epoxyketone surrogate in the side chain which makes it irreversible inhibitor of HDACs, whereas apicidins are a class of cyclic tetrapeptides that contain an ethylketone moiety as zinc ligand. We replaced the epoxyketone moiety of chlamydocin with several ketones and aldehyde to synthesize potent reversible and selective HDAC inhibitors. The inhibitory activity of the cyclic tetrapeptides against histone deacetylase enzymes were evaluated and the result showed most of them are potent inhibitors. Some of them have remarkable selectivity among the HDACs.

  16. 46 CFR 56.01-1 - Scope (replaces 100.1).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Scope (replaces 100.1). 56.01-1 Section 56.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... operation of the vessel. (c) Piping for industrial systems on mobile offshore drilling units need not fully...

  17. 46 CFR 56.01-1 - Scope (replaces 100.1).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Scope (replaces 100.1). 56.01-1 Section 56.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... operation of the vessel. (c) Piping for industrial systems on mobile offshore drilling units need not fully...

  18. 46 CFR 56.01-1 - Scope (replaces 100.1).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Scope (replaces 100.1). 56.01-1 Section 56.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... operation of the vessel. (c) Piping for industrial systems on mobile offshore drilling units need not fully...

  19. 46 CFR 56.01-1 - Scope (replaces 100.1).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Scope (replaces 100.1). 56.01-1 Section 56.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... operation of the vessel. (c) Piping for industrial systems on mobile offshore drilling units need not fully...

  20. 46 CFR 56.01-1 - Scope (replaces 100.1).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Scope (replaces 100.1). 56.01-1 Section 56.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... operation of the vessel. (c) Piping for industrial systems on mobile offshore drilling units need not fully...

  1. Prostaglandin E2 Stimulates EP2, Adenylate Cyclase, Phospholipase C, and Intracellular Calcium Release to Mediate Cyclic Adenosine Monophosphate Production in Dental Pulp Cells.

    PubMed

    Chang, Mei-Chi; Lin, Szu-I; Lin, Li-Deh; Chan, Chiu-Po; Lee, Ming-Shu; Wang, Tong-Mei; Jeng, Po-Yuan; Yeung, Sin-Yuet; Jeng, Jiiang-Huei

    2016-04-01

    Prostaglandin E2 (PGE2) plays a crucial role in pulpal inflammation and repair. However, its induction of signal transduction pathways is not clear but is crucial for future control of pulpal inflammation. Primary dental pulp cells were exposed to PGE2 and 19R-OH PGE2 (EP2 agonist) or sulprostone (EP1/EP3 agonist) for 5 to 40 minutes. Cellular cyclic adenosine monophosphate (cAMP) levels were measured using the enzyme-linked immunosorbent assay. In some experiments, cells were pretreated with SQ22536 (adenylate cyclase inhibitor), H89 (protein kinase A inhibitor), dorsomorphin (adenosine monophosphate-activated protein kinase inhibitor), U73122 (phospholipase C inhibitor), thapsigargin (inhibitor of intracellular calcium release), W7 (calmodulin antagonist), verapamil (L-type calcium channel blocker), and EGTA (extracellular calcium chelator) for 20 minutes before the addition of PGE2. PGE2 and 19R-OH PGE2 (EP2 agonist) stimulated cAMP production, whereas sulprostone (EP1/EP3 agonist) shows little effect. PGE2-induced cAMP production was attenuated by SQ22536 and U73122 but not H89 and dorsomorphin. Intriguingly, thapsigargin and W7 prevented PGE2-induced cAMP production, but verapamil and EGTA showed little effect. These results indicate that PGE2-induced cAMP production is associated with EP2 receptor and adenylate cyclase activation. These events are mediated by phospholipase C, intracellular calcium release, and calcium-calmodulin signaling. These results are helpful for understanding the role of PGE2 in pulpal inflammation and repair and possible future drug intervention. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. International consensus on the diagnosis and management of pediatric patients with hereditary angioedema with C1 inhibitor deficiency.

    PubMed

    Farkas, H; Martinez-Saguer, I; Bork, K; Bowen, T; Craig, T; Frank, M; Germenis, A E; Grumach, A S; Luczay, A; Varga, L; Zanichelli, A

    2017-02-01

    The consensus documents published to date on hereditary angioedema with C1 inhibitor deficiency (C1-INH-HAE) have focused on adult patients. Many of the previous recommendations have not been adapted to pediatric patients. We intended to produce consensus recommendations for the diagnosis and management of pediatric patients with C1-INH-HAE. During an expert panel meeting that took place during the 9th C1 Inhibitor Deficiency Workshop in Budapest, 2015 (www.haenet.hu), pediatric data were presented and discussed and a consensus was developed by voting. The symptoms of C1-INH-HAE often present in childhood. Differential diagnosis can be difficult as abdominal pain is common in pediatric C1-INH-HAE, but also commonly occurs in the general pediatric population. The early onset of symptoms may predict a more severe subsequent course of the disease. Before the age of 1 year, C1-INH levels may be lower than in adults; therefore, it is advisable to confirm the diagnosis after the age of one year. All neonates/infants with an affected C1-INH-HAE family member should be screened for C1-INH deficiency. Pediatric patients should always carry a C1-INH-HAE information card and medicine for emergency use. The regulatory approval status of the drugs for prophylaxis and for acute treatment is different in each country. Plasma-derived C1-INH, recombinant C1-INH, and ecallantide are the only agents licensed for the acute treatment of pediatric patients. Clinical trials are underway with additional drugs. It is recommended to follow up patients in an HAE comprehensive care center. The pediatric-focused international consensus for the diagnosis and management of C1-INH-HAE patients was created. © 2016 The Authors. Allergy Published by John Wiley & Sons Ltd.

  3. A Stabilized Demethoxyviridin Derivative Inhibits PI3 kinase

    PubMed Central

    Yuan, Hushan; Pupo, Monica T.; Blois, Joe; Smith, Adam; Weissleder, Ralph; Clardy, Jon; Josephson, Lee

    2009-01-01

    The viridins like demethoxyviridin (Dmv) and wortmannin (Wm) are nanomolar inhibitors of the PI3 kinases, a family of enzymes that play key roles in a host of regulatory processes. Central to the use of these compounds to investigate the role of PI3 kinase in biological systems, or as scaffolds for drug development, are the interrelated issues of stability, chemical reactivity, and bioactivity as inhibitors of PI3 kinase. We found that Dmv was an even more potent inhibitor of PI3 kinase than Wm. However, Dmv was notably less stable than Wm in PBS, with a half-life of 26 min vs Wm’s half-life of 3470 min. Dmv, like Wm, disappeared in culture media with a half-life of less than 1 min. To overcome Dmv’s instability, it was esterified at the C1 position, and then reacted with glycine at the C20 position. The resulting Dmv derivative, termed SA-DmvC20-Gly had a half-life of 218 min in PBS and 64 min in culture media. SA-DmvC20-Gly underwent an exchange reaction at the C20 position with N-acetyl lysine in a manner similar to a WmC20 derivative, WmC20-Proline. SA-DmvC20-Gly inhibited PI3 kinase with an IC50 of 44 nM, compared to Wm’s IC50 of 12 nM. These results indicate that the stability of Dmv can be manipulated by reactions at the C1 and C20 positions, while substantially maintaining its ability to inhibit PI3 kinase. Our results indicate it may be possible to obtain stabilized Dmv derivatives for use as PI3 kinase inhibitors in biological systems. PMID:19523825

  4. Effects of combined neutral endopeptidase 24-11 and angiotensin-converting enzyme inhibition on femoral vascular conductance in streptozotocin-induced diabetic rats

    PubMed Central

    Arbin, V; Claperon, N; Fournié-Zaluski, M -C; Roques, B P; Peyroux, J

    2000-01-01

    The successive effects of the angiotensin-converting enzyme inhibitor captopril (CAP, 2 mg kg−1+1 mg kg−1 30 min−1 infusion) and the neutral endopeptidase 24-11 inhibitor retrothiorphan (RT, 25 mg kg−1+12.5 mg kg−1 30 min−1 infusion) were studied on femoral vascular conductance (FVC) in streptozotocin-induced diabetic (STZ-SD) and control Sprague-Dawley (C-SD) rats. The role of the kinin-nitric oxide (NO) pathway was assessed by (1) using pre-treatments: a bradykinin (BK) B2 receptor antagonist (Hoe-140, 300 μg kg−1), a NO-synthase inhibitor (Nω-nitro-L-arginine methyl ester, L-NAME, 10 mg kg−1), a kininase I inhibitor (DL-2-mercaptomethyl-3-guanidinoethylthiopropanoic acid, MGTA, 10 mg kg−1+20 mg kg−1 20 min−1 infusion) and (2) comparing the effects in STZ-induced diabetic (STZ-BN) and control Brown-Norway kininogen-deficient (C-BN) rats.In C-SDs, CAP and CAP+RT increased FVC similarly. In STZ-SDs, FVC and FBF were decreased compared to C-SDs. CAP+RT increased them more effectively than CAP alone.In both C-SDs and STZ-SDs, the femoral bed vasodilatation elicited by CAP was inhibited by Hoe-140 and L-NAME. The FVC increase elicited by CAP+RT was not significantly reduced by Hoe-140 but was inhibited by L-NAME and Hoe-140+MGTA.In C-BNs, the vasodilatator responses to CAP and CAP+RT were abolished and highly reduced, respectively. In STZ-BNs, these responses were abolished.These results show that in STZ-SDs, CAP+RT improve FBF and FVC more effectively than CAP alone. These effects are linked to an increased activation of the kinin-NO pathway. BK could lead to NO production by BK B2 receptor activation and another pathway in which kininase I may be involved. PMID:10903969

  5. Energetic factors determining the binding of type I inhibitors to c-Met kinase: experimental studies and quantum mechanical calculations.

    PubMed

    Yu, Zhe; Ma, Yu-chi; Ai, Jing; Chen, Dan-qi; Zhao, Dong-mei; Wang, Xin; Chen, Yue-lei; Geng, Mei-yu; Xiong, Bing; Cheng, Mao-sheng; Shen, Jing-Kang

    2013-11-01

    To decipher the molecular interactions between c-Met and its type I inhibitors and to facilitate the design of novel c-Met inhibitors. Based on the prototype model inhibitor 1, four ligands with subtle differences in the fused aromatic rings were synthesized. Quantum chemistry was employed to calculate the binding free energy for each ligand. Symmetry-adapted perturbation theory (SAPT) was used to decompose the binding energy into several fundamental forces to elucidate the determinant factors. Binding free energies calculated from quantum chemistry were correlated well with experimental data. SAPT calculations showed that the predominant driving force for binding was derived from a sandwich π-π interaction with Tyr-1230. Arg-1208 was the differentiating factor, interacting with the 6-position of the fused aromatic ring system through the backbone carbonyl with a force pattern similar to hydrogen bonding. Therefore, a hydrogen atom must be attached at the 6-position, and changing the carbon atom to nitrogen caused unfavorable electrostatic interactions. The theoretical studies have elucidated the determinant factors involved in the binding of type I inhibitors to c-Met.

  6. Anti-inflammatory properties of Gö 6850: a selective inhibitor of protein kinase C.

    PubMed

    Jacobson, P B; Kuchera, S L; Metz, A; Schächtele, C; Imre, K; Schrier, D J

    1995-11-01

    Protein kinase C (PKC) regulates a variety of signal transduction events implicated in the pathogenesis of inflammation, including the biosynthesis of inflammatory cytokines and superoxide and the activation of phospholipase A2. Because of the significant role of PKC in these inflammatory processes, we evaluated a specific and potent inhibitor of C kinase for efficacy in several in vitro and in vivo murine models of inflammation. Unlike the relatively nonspecific kinase inhibitor staurosporine, the bisindolylmaleimide 3-[1-[-3-(dimethylaminopropyl]-1H-indol-3-yl]- 4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione monohydrochloride (Gö 6850) demonstrated increased selectivity for C kinase in purified enzyme assays (respective IC50 values (microM) for Gö 6850 and staurosporine: protein kinase C (0.032, 0.009); myosin light-chain kinase (0.6, 0.01); protein kinase G (4.6, 0.018); protein kinase A (33, 0.04); tyrosine kinase1 (94, 0.4); tyrosine kinase2 (> 100, > 1)). Topically applied Gö 6850 inhibited phorbol myristate acetate-induced edema, neutrophil influx and vascular permeability in murine epidermis in a dose- and time-dependent manner at levels comparable to indomethacin. In a murine model of delayed type hypersensitivity, Gö 6850 inhibited dinitrofluorobenzene-induced contact dermatitis with and ID50 value of 150 micrograms/ear. Cellular studies in mouse peritoneal macrophages demonstrated that Gö 6850 was a potent inhibitor of phorbol myristate acetate-induced prostaglandin E2 production. Superoxide production in phorbol myristate acetate-stimulated murine neutrophils was also inhibited by Gö 6850 (IC50 = 88 nM).(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Inhibitors of the alpha-ketoglutarate dehydrogenase complex alter [1-13C]glucose and [U-13C]glutamate metabolism in cerebellar granule neurons.

    PubMed

    Santos, Sónia Sá; Gibson, Gary E; Cooper, Arthur J L; Denton, Travis T; Thompson, Charles M; Bunik, Victoria I; Alves, Paula M; Sonnewald, Ursula

    2006-02-15

    Diminished activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), an important component of the tricarboxylic acid (TCA) cycle, occurs in several neurological diseases. The effect of specific KGDHC inhibitors [phosphonoethyl ester of succinyl phosphonate (PESP) and the carboxy ethyl ester of succinyl phosphonate (CESP)] on [1-13C]glucose and [U-13C]glutamate metabolism in intact cerebellar granule neurons was investigated. Both inhibitors decreased formation of [4-13C]glutamate from [1-13C]glucose, a reduction in label in glutamate derived from [1-13C]glucose/[U-13C]glutamate through a second turn of the TCA cycle and a decline in the amounts of gamma-aminobutyric acid (GABA), aspartate, and alanine. PESP decreased formation of [U-13C]aspartate and total glutathione, whereas CESP decreased concentrations of valine and leucine. The findings are consistent with decreased KGDHC activity; increased alpha-ketoglutarate formation; increased transamination of alpha-ketoglutarate with valine, leucine, and GABA; and new equilibrium position of the aspartate aminotransferase reaction. Overall, the findings also suggest that some carbon derived from alpha-ketoglutarate may bypass the block in the TCA cycle at KGDHC by means of the GABA shunt and/or conversion of valine to succinate. The results suggest the potential of succinyl phosphonate esters for modeling the biochemical and pathophysiological consequences of reduced KGDHC activity in brain diseases.

  8. Binding Properties of a Peptide Derived from β-Lactamase Inhibitory Protein

    PubMed Central

    Rudgers, Gary W.; Huang, Wanzhi; Palzkill, Timothy

    2001-01-01

    To overcome the antibiotic resistance mechanism mediated by β-lactamases, small-molecule β-lactamase inhibitors, such as clavulanic acid, have been used. This approach, however, has applied selective pressure for mutations that result in β-lactamases no longer sensitive to β-lactamase inhibitors. On the basis of the structure of β-lactamase inhibitor protein (BLIP), novel peptide inhibitors of β-lactamase have been constructed. BLIP is a 165-amino-acid protein that is a potent inhibitor of TEM-1 β-lactamase (Ki = 0.3 nM). The cocrystal structure of TEM-1 β-lactamase and BLIP indicates that residues 46 to 51 of BLIP make critical interactions with the active site of TEM-1 β-lactamase. A peptide containing this six-residue region of BLIP was found to retain sufficient binding energy to interact with TEM-1 β-lactamase. Inhibition assays with the BLIP peptide reveal that, in addition to inhibiting TEM-1 β-lactamase, the peptide also inhibits a class A β-lactamase and a class C β-lactamase that are not inhibited by BLIP. The crystal structures of class A and C β-lactamases and two penicillin-binding proteins (PBPs) reveal that the enzymes have similar three-dimensional structures in the vicinity of the active site. This similarity suggests that the BLIP peptide inhibitor may have a broad range of activity that can be used to develop novel small-molecule inhibitors of various classes of β-lactamases and PBPs. PMID:11709298

  9. C1 inhibitor-mediated myocardial protection from chronic intermittent hypoxia-induced injury

    PubMed Central

    Fu, Jinrong; Guo, Furong; Chen, Cheng; Yu, Xiaoman; Hu, Ke; Li, Mingjiang

    2016-01-01

    The optimal treatment for chronic intermittent hypoxia (CIH)-induced cardiovascular injuries has yet to be determined. The aim of the current study was to explore the potential protective effect and mechanism of a C1 inhibitor in CIH in the myocardium. The present study used a rat model of CIH in which complement regulatory protein, known as C1 inhibitor (C1INH), was administered to the rats in the intervention groups. Cardiomyocyte apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. The expression of proteins associated with the apoptotic pathway, such as B-cell lymphoma 2 (Bcl-2), Bax and caspase-3 were detected by western blot analysis. The expression of complement C3 protein and RNA were also analyzed. C1INH was observed to improve the cardiac function in rats with CIH. Myocardial myeloperoxidase activity, a marker of neutrophil infiltration, was significantly decreased in the C1INH intervention group compared with the CIH control group, and cardiomyocyte apoptosis was significantly attenuated (P<0.05). Western blotting and reverse transcription-polymerase chain reaction analysis indicated that the protein expression levels of Bcl-2 were decreased and those of Bax were increased in the CIH group compared with the normal control group, but the protein expression levels of Bcl-2 were increased and those of Bax were decreased in the C1INH intervention group, as compared with the CIH group. Furthermore, the CIH-induced expression and synthesis of complement C3 in the myocardium were also reduced in the C1INH intervention group. C1INH, in addition to inhibiting complement activation and inflammation, preserved cardiac function in CIH-mediated myocardial cell injury through an anti-apoptotic mechanism. PMID:27698713

  10. Sphingosine 1-phosphate and human ether-a'-go-go-related gene potassium channels modulate migration in human anaplastic thyroid cancer cells.

    PubMed

    Asghar, Muhammad Yasir; Viitanen, Tero; Kemppainen, Kati; Törnquist, Kid

    2012-10-01

    Anaplastic thyroid cancer (ATC) is the most aggressive form of human thyroid cancer, lacking any effective treatment. Sphingosine 1-phosphate (S1P) receptors and human ether-a'-go-go-related gene (HERG (KCNH2)) potassium channels are important modulators of cell migration. In this study, we have shown that the S1P(1-3) receptors are expressed in C643 and THJ-16T human ATC cell lines, both at mRNA and protein level. S1P inhibited migration of these cells and of follicular FTC-133 thyroid cancer cells. Using the S1P(1,3) inhibitor VPC-23019, the S1P(2) inhibitor JTE-013, and the S1P(2) receptor siRNA, we showed that the effect was mediated through S1P(2). Treatment of the cells with the Rho inhibitor C3 transferase abolished the effect of S1P on migration. S1P attenuated Rac activity, and inhibiting Rac decreased migration. Sphingosine kinase inhibitor enhanced basal migration of cells, and addition of exogenous S1P inhibited migration. C643 cells expressed a nonconducting HERG protein, and S1P decreased HERG protein expression. The HERG blocker E-4031 decreased migration. Interestingly, downregulating HERG protein with siRNA decreased the basal migration. In experiments using HEK cells overexpressing HERG, we showed that S1P decreased channel protein expression and current and that S1P attenuated migration of the cells. We conclude that S1P attenuates migration of C643 ATC cells by activating S1P(2) and the Rho pathway. The attenuated migration is also, in part, dependent on a S1P-induced decrease of HERG protein.

  11. HIV type 1 genotypic variation in an antiretroviral treatment-naive population in southern India.

    PubMed

    Balakrishnan, Pachamuthu; Kumarasamy, Nagalingeswaran; Kantor, Rami; Solomon, Suniti; Vidya, Sundararajan; Mayer, Kenneth H; Newstein, Michael; Thyagarajan, Sadras P; Katzenstein, David; Ramratnam, Bharat

    2005-04-01

    Most studies of HIV-1 drug resistance have examined subtype B viruses; fewer data are available from developing countries, where non-B subtypes predominate. We determined the prevalence of mutations at protease and reverse transcriptase drug resistance positions in antiretroviral drug-naive individuals in southern India. The pol region of the genome was amplified from plasma HIV-1 RNA in 50 patients. All sequences clustered with HIV-1 subtype C. All patients had at least one protease and/or RT mutation at a known subtype B drug resistance position. Twenty percent of patients had mutations at major protease inhibitor resistance positions and 100% had mutations at minor protease inhibitor resistance positions. Six percent and 14% of patients had mutations at nucleoside reverse transcriptase inhibitor and/or nonnucleoside reverse transcriptase inhibitor resistance positions, respectively. Larger scale studies need to be undertaken to better define the genotypic variation of circulating Indian subtype C viruses and their potential impact on drug susceptibility and clinical outcome in treated individuals.

  12. Synthesis and biological evaluation of kresoxim-methyl analogues as novel inhibitors of hypoxia-inducible factor (HIF)-1 accumulation in cancer cells.

    PubMed

    Lee, Sanghyuck; Kwon, Oh Seok; Lee, Chang-Soo; Won, Misun; Ban, Hyun Seung; Ra, Choon Sup

    2017-07-01

    We designed and synthesized strobilurin analogues as hypoxia-inducible factor (HIF) inhibitors based on the molecular structure of kresoxim-methyl. Biological evaluation in human colorectal cancer HCT116 cells showed that most of the synthesized kresoxim-methyl analogues possessed moderate to potent inhibitory activity against hypoxia-induced HIF-1 transcriptional activation. Three candidates, compounds 11b, 11c, and 11d were identified as potent inhibitors against HIF-1 activation with IC 50 values of 0.60-0.94µM. Under hypoxic condition, compounds 11b, 11c, and 11d increased the intracellular oxygen contents, thereby attenuating the hypoxia-induced accumulation of HIF-1α protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Efficacy and safety of teneligliptin added to canagliflozin monotherapy in Japanese patients with type 2 diabetes mellitus: A multicentre, randomized, double‐blind, placebo‐controlled, parallel‐group comparative study

    PubMed Central

    Kadowaki, Takashi; Inagaki, Nobuya; Kondo, Kazuoki; Nishimura, Kenichi; Kaneko, Genki; Maruyama, Nobuko; Nakanishi, Nobuhiro; Gouda, Maki; Iijima, Hiroaki

    2017-01-01

    Dipeptidyl peptidase‐4 (DPP‐4) inhibitors and sodium glucose co‐transporter 2 (SGLT2) inhibitors are frequently used in combination for the treatment of type 2 diabetes mellitus (T2DM). We examined the efficacy and safety of teneligliptin (a DPP‐4 inhibitor) added to canagliflozin (an SGLT2 inhibitor) monotherapy in Japanese patients with poorly controlled T2DM as part of the development of a fixed‐dose combination of teneligliptin and canagliflozin. Japanese patients treated with canagliflozin (100 mg) for ≥12 weeks were randomized to receive add‐on teneligliptin (20 mg; C + T group) or placebo (C + P group) for 24 weeks. The primary endpoint was change in glycated haemoglobin (HbA1c) from baseline to Week 24. The between‐group differences in reductions from baseline to Week 24 were significantly greater in the C + T group for HbA1c (−0.94%; P < .001). The incidence of adverse events was similar in both groups (55.8% and 49.4% in the C + T and C + P groups, respectively). No episodes of hypoglycaemia were reported. Teneligliptin added to ongoing canagliflozin monotherapy improved glycaemic control and was well tolerated in Japanese patients with inadequately controlled T2DM. PMID:28786530

  14. Inactivation of a class A and a class C β-lactamase by 6β-(hydroxymethyl)penicillanic acid sulfone

    PubMed Central

    Papp-Wallace, Krisztina M.; Bethel, Christopher R.; Gootz, Thomas D.; Shang, Wenchi; Stroh, Justin; Lau, William; McLeod, Dale; Price, Loren; Marfat, Anthony; Distler, Anne; Drawz, Sarah M.; Chen, Hansong; Harry, Emily; Nottingham, Micheal; Carey, Paul R.; Buynak, John D.; Bonomo, Robert A.

    2012-01-01

    β-Lactamase inhibitors (clavulanic acid, sulbactam, and tazobactam) contribute significantly to the longevity of the β-lactam antibiotics used to treat serious infections. In the quest to design more potent compounds and to understand the mechanism of action of known inhibitors, 6β-(hydroxymethyl)penicillanic acid sulfone (6β-HM-sulfone) was tested against isolates expressing the class A TEM-1 β-lactamase and a clinically important variant of the AmpC cephalosporinase of Pseudomonas aeruginosa, PDC-3. The addition of the 6β-HM-sulfone inhibitor to ampicillin was highly effective. 6β-HM-sulfone inhibited TEM-1 with an IC50 of 12 ± 2 nM and PDC-3 with an IC50 of 180 ± 36 nM, and displayed lower partition ratios than commercial inhibitors, with partition ratios (kcat/kinact) equal to 174 for TEM-1 and 4 for PDC-3. Measured for 20 h, 6β-HM-sulfone demonstrated rapid, first-order inactivation kinetics with the extent of inactivation being related to the concentration of inhibitor for both TEM-1 and PDC-3. Using mass spectrometry to gain insight into the intermediates of inactivation of this inhibitor, 6β-HM-sulfone was found to form a major adduct of +247 ± 5 Da with TEM-1 and +245 ± 5 Da with PDC-3, suggesting that the covalently bound, hydrolytically stabilized acyl-enzyme has lost a molecule of water (H–O–H). Minor adducts of +88 ± 5 Da with TEM-1 and +85 ± 5 Da with PDC-3 revealed that fragmentation of the covalent adduct can result but appeared to occur slowly with both enzymes. 6β-HM-sulfone is an effective and versatile β-lactamase inhibitor of representative class A and C enzymes. PMID:22155308

  15. Synthesis and activity study of phosphonamidate dipeptides as potential inhibitors of VanX.

    PubMed

    Yang, Ke-Wu; Cheng, Xu; Zhao, Chuan; Liu, Cheng-Cheng; Jia, Chao; Feng, Lei; Xiao, Jian-Min; Zhou, Li-Sheng; Gao, Hui-Zhou; Yang, Xia; Zhai, Le

    2011-12-01

    In an effort to develop inhibitors of VanX, the phosphonamidate analogs of D-Ala-D-Ala dipeptides, N-[(1-aminoethyl) hydroxyphosphinyl]-glycine (1a), -alanine (1b), -valine (1c), -leucine (1d) and -phenylalanine (1e) were synthesized, characterized and evaluated using recombinant VanX. The crystal structure of the intermediate 6d was obtained (Deposition number: CCDC 839134), and structural analysis revealed that it is orthorhombic with a space group P2(1)2(1)2(1), the bond length of P-N is 1.62Å and angle of C-N-P is 123.6°. Phosphonamidate 1(a-e) showed to be inhibitors of VanX with IC(50) values of 0.39, 0.70, 1.12, 2.82, and 4.13mM, respectively, which revealed that the inhibition activities of the phosphonamidates were dependent on the size of R-substituent of them, with the best inhibitor 1a having the smallest substituent. Also, 1a showed antibacterial activity against Staphylococcus aureus (ATCC 25923) with a MIC value of 0.25 μg/ml. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Revealing the drug-resistant mechanism for diarylpyrimidine analogue inhibitors of HIV-1 reverse transcriptase.

    PubMed

    Zhang, Hao; Qin, Fang; Ye, Wei; Li, Zeng; Ma, Songyao; Xia, Yan; Jiang, Yi; Zhu, Jiayi; Li, Yixue; Zhang, Jian; Chen, Hai-Feng

    2011-09-01

    Diaryltriazine (DATA) and diarylpyrimidine (DAPY) were two category inhibitors with highly potent activity for wild type (wt) and four principal mutant types (L100I, K103N, Y181C and Y188L) of HIV-1 reverse transcriptase (RT). We had revealed the drug-resistant mechanism of DATA analogue inhibitors with molecular dynamics simulation and three-dimensional quantitative structure-activity relationship (3D-QSAR) methods. In this work, we investigated the drug-resistant mechanism of DAPY analogue inhibitors. It was found that DAPY analogue inhibitors form more hydrogen bonds and hydrophobic contacts with wild type and mutants of HIV-1 RT than DATA inhibitors. This could explain that DAPY analogue inhibitors are more potent than DATA for the wild type and mutants of HIV-1 RT. Then, 3D-QSAR models were constructed for these inhibitors of wild type and four principal mutant types HIV-1 RT and evaluated by test set compounds. These combined models can be used to design new chemical entities and make quantitative prediction of the bioactivities for HIV-1 RT inhibitors before resorting to in vitro and in vivo experiment. © 2011 John Wiley & Sons A/S.

  17. Glucose-dependent growth arrest of leukemia cells by MCT1 inhibition: Feeding Warburg's sweet tooth and blocking acid export as an anticancer strategy.

    PubMed

    Pivovarova, Aleksandra I; MacGregor, Gordon G

    2018-02-01

    This study aims to investigate the utilization of The Warburg Effect, cancer's "sweet tooth" and natural greed for glucose to enhance the effect of monocarboxylate transporter inhibition on cellular acidification. By simulating hyperglycemia with high glucose we may increase the effectiveness of inhibition of lactate and proton export on the dysregulation of cell pH homeostasis causing cell death or disruption of growth in cancer cells. MCT1 and MCT4 expression was determined in MCF7 and K562 cell lines using RT-PCR. Cell viability, growth, intracellular pH and cell cycle analysis was measured in the cell lines grown in 5 mM and 25 mM glucose containing media in the presence and absence of the MCT1 inhibitor AR-C155858 (1 μM) and the NHE1 inhibitor cariporide (10 μM). The MCT1 inhibitor, AR-C155858 had minimal effect on the viability, growth and intracellular pH of MCT4 expressing MCF7 cells. AR-C155858 had no effect on the viability of the MCT1 expressing K562 cells, but decreased intracellular pH and cell proliferation, by a glucose-dependent mechanism. Inhibition of NHE1 on its own had a no effect on cell growth, but together with AR-C155858 showed an additive effect on inhibition of cell growth. In cancer cells that only express MCT1, increased glucose concentrations in the presence of an MCT1 inhibitor decreased intracellular pH and reduced cell growth by G1 phase cell-cycle arrest. Thus we propose a transient hyperglycemic-clamp in combination with proton export inhibitors be evaluated as an adjunct to cancer treatment in clinical studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Design and optimization of a series of 1-sulfonylpyrazolo[4,3-b]pyridines as selective c-Met inhibitors.

    PubMed

    Ma, Yuchi; Sun, Guangqiang; Chen, Danqi; Peng, Xia; Chen, Yue-Lei; Su, Yi; Ji, Yinchun; Liang, Jin; Wang, Xin; Chen, Lin; Ding, Jian; Xiong, Bing; Ai, Jing; Geng, Meiyu; Shen, Jingkang

    2015-03-12

    c-Met has emerged as an attractive target for targeted cancer therapy because of its abnormal activation in many cancer cells. To identify high potent and selective c-Met inhibitors, we started with profiling the potency and in vitro metabolic stability of a reported hit 7. By rational design, a novel sulfonylpyrazolo[4,3-b]pyridine 9 with improved DMPK properties was discovered. Further elaboration of π-π stacking interactions and solvent accessible polar moieties led to a series of highly potent and selective type I c-Met inhibitors. On the basis of in vitro and in vivo pharmacological and pharmacokinetics studies, compound 46 was selected as a preclinical candidate for further anticancer drug development.

  19. Neutral endopeptidase-like enzyme controls the contractile activity of substance P in guinea pig lung.

    PubMed Central

    Stimler-Gerard, N P

    1987-01-01

    The responsiveness of isolated guinea pig lung parenchymal strips to substance P was enhanced by at least 100-fold in the presence of the endopeptidase inhibitors phosphoramidon (1 microM) or thiorphan (1 microM), but not with the converting enzyme inhibitor, captopril, or an inhibitor of serum carboxypeptidase N (both 1 microM). Responses of guinea pig tracheal rings to substance P were also markedly potentiated by phosphoramidon. The increase in tissue responsiveness by these inhibitors was relatively specific for substance P among several other spasmogenic peptides, including formyl-methionyl-leucyl-phenylalanine and the complement peptides C3a and C5a. The enhanced responses appear to result from a decrease in the rate of substance P degradation in the presence of neutral endopeptidase inhibitors. Specific binding of substance P to its receptor on bronchial membranes was increased by three- to fourfold in the presence of phosphoramidon. These data demonstrate an enhanced potential for substance P to contract lung tissues when degradation by a neutral endopeptidase-like enzyme is blocked. PMID:2438306

  20. An expedient synthesis of N-(1-(5-mercapto-4-((substituted benzylidene)amino)-4H-1,2,4-triazol-3-yl)-2-phenylethyl)benzamides as jack bean urease inhibitors and free radical scavengers: Kinetic mechanism and molecular docking studies.

    PubMed

    Saeed, Aamer; Larik, Fayaz Ali; Channar, Pervaiz Ali; Mehfooz, Haroon; Ashraf, Mohammad Haseeb; Abbas, Qamar; Hassan, Mubashir; Seo, Sung-Yum

    2017-11-01

    In this study, some new azomethine-triazole hybrids 5a-5l derived from N-benzoyl-L-phenylalanine were synthesized and characterized. The synthesized compounds showed first-rate, urease inhibition, and compounds 5c and 5e were found to be most effective inhibitors with 0.0137 ± 0.00082 μm and 0.0183 ± 0.00068 μm, respectively (thiourea 15.151 ± 1.27 μm). The kinetic mechanism of urease inhibition revealed the compounds 5c and 5e to be non-competitive inhibitors, whereas compounds 5d and 5j were found to be of mixed-type inhibitors. Docking studies also indicated better interaction patterns with urease enzyme. The results of enzyme inhibition, kinetic mechanism and molecular docking suggest that these compounds can serve as lead compounds in the design of more effective urease inhibitors. © 2017 John Wiley & Sons A/S.

  1. Fluorescence and NMR investigations in the ligand binding properties of adenylate kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinstein, J.; Vetter, I.R.; Schlichting, I.

    A new system for measurement of affinities of adenylate kinases (AK) for substrates and inhibitors is presented. This system is based on the use of the fluorescent ligand {alpha},{omega}-di((3{prime} or 2{prime})-O-(N-methyl-anthraniloyl)adenosine-5{prime}) pentaphosphate (MAP5Am), which is an analogue of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A). It allows the determination of dissociation constants for any ligand in the range of 1 {times} 10{sup {minus}9} to 5 {times} 10{sup {minus}2} M. Affinities for different bisubstrate inhibitors (AP4A, AP5A, AP6A) and substrates (AMP, ADP, ATP, GTP) were determined in the presence and absence of magnesium. An analysis of the binding of bisubstrate inhibitors ismore » proposed and applied to these data. Temperature denaturation experiments indicate that the mutant enzyme has the same thermal stability as the wild-type enzyme and, as NMR studies indicate, also a very similar structure. Together with the results obtained by Tian et al on the effect of replacement of the conserved His-36 in the cytosolic AK (AK1) from chicken by glutamine and asparagine, this shows that residues 28 of AK from E. coli (AKec) and 36 of AK1 are situated in a comparable environment and are not essential for catalytic activity.« less

  2. Effective GTP-replacing FtsZ inhibitors and antibacterial mechanism of action.

    PubMed

    Artola, Marta; Ruiz-Avila, Laura B; Vergoñós, Albert; Huecas, Sonia; Araujo-Bazán, Lidia; Martín-Fontecha, Mar; Vázquez-Villa, Henar; Turrado, Carlos; Ramírez-Aportela, Erney; Hoegl, Annabelle; Nodwell, Matthew; Barasoain, Isabel; Chacón, Pablo; Sieber, Stephan A; Andreu, Jose M; López-Rodríguez, María L

    2015-03-20

    Essential cell division protein FtsZ is considered an attractive target in the search for antibacterials with novel mechanisms of action to overcome the resistance problem. FtsZ undergoes GTP-dependent assembly at midcell to form the Z-ring, a dynamic structure that evolves until final constriction of the cell. Therefore, molecules able to inhibit its activity will eventually disrupt bacterial viability. In this work, we report a new series of small molecules able to replace GTP and to specifically inhibit FtsZ, blocking the bacterial division process. These new synthesized inhibitors interact with the GTP-binding site of FtsZ (Kd = 0.4-0.8 μM), display antibacterial activity against Gram-positive pathogenic bacteria, and show selectivity against tubulin. Biphenyl derivative 28 stands out as a potent FtsZ inhibitor (Kd = 0.5 μM) with high antibacterial activity [MIC (MRSA) = 7 μM]. In-depth analysis of the mechanism of action of compounds 22, 28, 33, and 36 has revealed that they act as effective inhibitors of correct FtsZ assembly, blocking bacterial division and thus leading to filamentous undivided cells. These findings provide a compelling rationale for the development of compounds targeting the GTP-binding site as antibacterial agents and open the door to antibiotics with novel mechanisms of action.

  3. Discovery of N-((4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): a highly potent, selective, and orally bioavailable inhibitor of TGF-β type I receptor kinase as cancer immunotherapeutic/antifibrotic agent.

    PubMed

    Jin, Cheng Hua; Krishnaiah, Maddeboina; Sreenu, Domalapally; Subrahmanyam, Vura B; Rao, Kota S; Lee, Hwa Jeong; Park, So-Jung; Park, Hyun-Ju; Lee, Kiho; Sheen, Yhun Yhong; Kim, Dae-Kee

    2014-05-22

    A series of 2-substituted-4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin-2-yl)imidazoles was synthesized and evaluated to optimize a prototype inhibitor of TGF-β type I receptor kinase (ALK5), 6. Combination of replacement of a quinoxalin-6-yl moiety of 6 with a [1,2,4]triazolo[1,5-a]pyridin-6-yl moiety, insertion of a methyleneamino linker, and a o-F substituent in the phenyl ring markedly increased ALK5 inhibitory activity, kinase selectivity, and oral bioavailability. The 12b (EW-7197) inhibited ALK5 with IC50 value of 0.013 μM in a kinase assay and with IC50 values of 0.0165 and 0.0121 μM in HaCaT (3TP-luc) stable cells and 4T1 (3TP-luc) stable cells, respectively, in a luciferase assay. Selectivity profiling of 12b using a panel of 320 protein kinases revealed that it is a highly selective ALK5/ALK4 inhibitor. Pharmacokinetic study with 12b·HCl in rats showed an oral bioavailability of 51% with high systemic exposure (AUC) of 1426 ng × h/mL and maximum plasma concentration (Cmax) of 1620 ng/mL. Rational optimization of 6 has led to the identification of a highly potent, selective, and orally bioavailable ALK5 inhibitor 12b.

  4. Identification, characterization and subcellular localization of TcPDE1, a novel cAMP-specific phosphodiesterase from Trypanosoma cruzi.

    PubMed Central

    D'Angelo, Maximiliano A; Sanguineti, Santiago; Reece, Jeffrey M; Birnbaumer, Lutz; Torres, Héctor N; Flawiá, Mirtha M

    2004-01-01

    Compartmentalization of cAMP phosphodiesterases plays a key role in the regulation of cAMP signalling in mammals. In the present paper, we report the characterization and subcellular localization of TcPDE1, the first cAMP-specific phosphodiesterase to be identified from Trypanosoma cruzi. TcPDE1 is part of a small gene family and encodes a 929-amino-acid protein that can complement a heat-shock-sensitive yeast mutant deficient in phospho-diesterase genes. Recombinant TcPDE1 strongly associates with membranes and cannot be released with NaCl or sodium cholate, suggesting that it is an integral membrane protein. This enzyme is specific for cAMP and its activity is not affected by cGMP, Ca2+, calmodulin or fenotiazinic inhibitors. TcPDE1 is sensitive to the phosphodiesterase inhibitor dipyridamole but is resistant to 3-isobutyl-1-methylxanthine, theophylline, rolipram and zaprinast. Papaverine, erythro-9-(2-hydroxy-3-nonyl)-adenine hydrochloride, and vinpocetine are poor inhibitors of this enzyme. Confocal laser scanning of T. cruzi epimastigotes showed that TcPDE1 is associated with the plasma membrane and concentrated in the flagellum of the parasite. The association of TcPDE1 with this organelle was confirmed by subcellular fractionation and cell-disruption treatments. The localization of this enzyme is a unique feature that distinguishes it from all the trypanosomatid phosphodiesterases described so far and indicates that compartmentalization of cAMP phosphodiesterases could also be important in these parasites. PMID:14556647

  5. P27/Kip1 is responsible for magnolol-induced U373 apoptosis in vitro and in vivo.

    PubMed

    Chen, Li-Ching; Lee, Wen-Sen

    2013-03-20

    Previously, we demonstrated that magnolol, a hydroxylated biphenyl compound isolated from the bark of Magnolia officinalis, at low concentrations (3-10 μM) exerted an antiproliferation effect in colon cancer, hepatoma, and glioblastoma (U373) cell lines through upregulation of the p21/Cip1 protein. Magnolol at a higher concentration of 100 μM, however, induced apoptosis and upregulated p27/Kip1 expression in U373. In the present study, we further studied whether the increased p27/Kip1 expression contributes to the magnolol-induced apoptosis in U373. Our data show that knock-down of p27/Kip1 expression significantly suppressed the magnolol-induced apoptosis, suggesting that p27/Kip1 might play an important role in the regulation of magnolol-induced apoptosis. This notion was further supported by demonstrating that magnolol induced an increase of the caspase activity in U373 in vitro and in vivo, and these effects were abolished by pretransfection of the cell with p27/Kip1 siRNA. To delineate the possible signaling pathways involved in the magnolol-induced increases of p27/Kip1 expression and apoptosis, we found that magnolol (100 μM) increased the levels of phosphorylated cSrc (p-cSrc), p-ERK, p-p38 MAP kinase (p-p38 MAPK), and p-AKT but not p-JNK in U373. Moreover, pretreatment of U373 with a cSrc inhibitor (PP2), a PI3K inhibitor (LY294002), an ERK inhibitor (PD98059), or a p38 MAPK inhibitor (SB203580) but not a JNK inhibitor (SP600125) significantly reduced the magnolol-induced increases of p27/Kip1 protein levels and apoptosis. Taken together, our data suggest that magnolol at a higher concentration of 100 μM induced apopotosis in U373 cells through cSrc-mediated upregulation of p27/Kip1.

  6. Rational Design, Synthesis and Evaluation of First Generation Inhibitors of the Giardia lamblia Fructose-1,6-biphosphate Aldolase

    PubMed Central

    Li, Zhimin; Liu, Zhengang; Cho, Dae Won; Zou, Jiwen; Gong, Maozhen; Breece, Robert M.; Galkin, Andrey; Li, Ling; Zhao, Hong; Maestas, Gabriel D.; Tierney, David L.; Herzberg, Osnat; Dunaway-Mariano, Debra; Mariano, Patrick S.

    2011-01-01

    Inhibitors of the Giardia lamblia fructose 1,6-bisphosphate aldolase (GlFBPA), which transforms fructose 1,6-bisphosphate (FBP) to dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, were designed based on 3-hydroxy-2-pyridone and 1,2-dihydroxypyridine scaffolds that position two negatively charged tetrahedral groups for interaction with substrate phosphate binding residues, a hydrogen bond donor to the catalytic Asp83, and a Zn2+ binding group. The inhibition activities for the GlFBPA catalyzed reaction of FBP of the prepared alkyl phosphonate/phosphate substituted 3-hydroxy-2-pyridinones and a dihydroxypyridine were determined. The 3-hydroxy-2-pyridone inhibitor 8 was found to bind to GlFBPA with an affinity (Ki = 14 μM) that is comparable to that of FBP (Km = 2 μM) or its inert analog TBP (Ki = 1 μM). The X-ray structure of the GlFBPA-inhibitor 8 complex (2.3 Å) shows that 8 binds to the active site in the manner predicted by in silico docking with the exception of coordination with Zn2+. The observed distances and orientation of the pyridone ring O=C-C-OH relative to Zn2+ are not consistent with a strong interaction. To determine if Zn2+coordination occurs in the GlFBPA-inhibitor 8 complex in solution, EXAFS spectra were measured. A four coordinate geometry comprised of the three enzyme histidine ligands and an oxygen atom from the pyridone ring O=C-C-OH was indicated. Analysis of the Zn2+ coordination geometries in recently reported structures of class II FBPAs suggests that strong Zn2+ coordination is reserved for the enediolate-like transition state, accounting for minimal contribution of Zn2+ coordination to binding of 8 to GlFBPA. PMID:21333622

  7. Mechanistic Target of Rapamycin (mTOR) Inhibition Synergizes with Reduced Internal Ribosome Entry Site (IRES)-mediated Translation of Cyclin D1 and c-MYC mRNAs to Treat Glioblastoma.

    PubMed

    Holmes, Brent; Lee, Jihye; Landon, Kenna A; Benavides-Serrato, Angelica; Bashir, Tariq; Jung, Michael E; Lichtenstein, Alan; Gera, Joseph

    2016-07-01

    Our previous work has demonstrated an intrinsic mRNA-specific protein synthesis salvage pathway operative in glioblastoma (GBM) tumor cells that is resistant to mechanistic target of rapamycin (mTOR) inhibitors. The activation of this internal ribosome entry site (IRES)-dependent mRNA translation initiation pathway results in continued translation of critical transcripts involved in cell cycle progression in the face of global eIF-4E-mediated translation inhibition. Recently we identified compound 11 (C11), a small molecule capable of inhibiting c-MYC IRES translation as a consequence of blocking the interaction of a requisite c-MYC IRES trans-acting factor, heterogeneous nuclear ribonucleoprotein A1, with its IRES. Here we demonstrate that C11 also blocks cyclin D1 IRES-dependent initiation and demonstrates synergistic anti-GBM properties when combined with the mechanistic target of rapamycin kinase inhibitor PP242. The structure-activity relationship of C11 was investigated and resulted in the identification of IRES-J007, which displayed improved IRES-dependent initiation blockade and synergistic anti-GBM effects with PP242. Mechanistic studies with C11 and IRES-J007 revealed binding of the inhibitors within the UP1 fragment of heterogeneous nuclear ribonucleoprotein A1, and docking analysis suggested a small pocket within close proximity to RRM2 as the potential binding site. We further demonstrate that co-therapy with IRES-J007 and PP242 significantly reduces tumor growth of GBM xenografts in mice and that combined inhibitor treatments markedly reduce the mRNA translational state of cyclin D1 and c-MYC transcripts in these tumors. These data support the combined use of IRES-J007 and PP242 to achieve synergistic antitumor responses in GBM. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Novel Small Molecule Entry Inhibitors of Ebola Virus

    PubMed Central

    Basu, Arnab; Mills, Debra M.; Mitchell, Daniel; Ndungo, Esther; Williams, John D.; Herbert, Andrew S.; Dye, John M.; Moir, Donald T.; Chandran, Kartik; Patterson, Jean L.; Rong, Lijun; Bowlin, Terry L.

    2015-01-01

    Background. The current Ebola virus (EBOV) outbreak has highlighted the troubling absence of available antivirals or vaccines to treat infected patients and stop the spread of EBOV. The EBOV glycoprotein (GP) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-EBOV drugs. We report the identification of 2 novel EBOV inhibitors targeting viral entry. Methods. To identify small molecule inhibitors of EBOV entry, we carried out a cell-based high-throughput screening using human immunodeficiency virus–based pseudotyped viruses expressing EBOV-GP. Two compounds were identified, and mechanism-of-action studies were performed using immunoflourescence, AlphaLISA, and enzymatic assays for cathepsin B inhibition. Results. We report the identification of 2 novel entry inhibitors. These inhibitors (1) inhibit EBOV infection (50% inhibitory concentration, approximately 0.28 and approximately 10 µmol/L) at a late stage of entry, (2) induce Niemann-Pick C phenotype, and (3) inhibit GP–Niemann-Pick C1 (NPC1) protein interaction. Conclusions. We have identified 2 novel EBOV inhibitors, MBX2254 and MBX2270, that can serve as starting points for the development of an anti-EBOV therapeutic agent. Our findings also highlight the importance of NPC1-GP interaction in EBOV entry and the attractiveness of NPC1 as an antifiloviral therapeutic target. PMID:26206510

  9. Oxidative Damage in Parkinson’s Disease

    DTIC Science & Technology

    2005-01-01

    inhibitors of MMPs, TIMP-1 and TIMP-2 in postmortem brain tissue of progressive supranuclear palsy . J Neurol Sci 2004; 218:39-45. Martinat C, Shendelman S...inhibitors of MMPs, TIMP-1 and TIMP-2 in postmortem brain tissue of progressive supranuclear palsy . J Neurol Sci 2004; 218:39-45. Martinat C...excess can have serious neurologi- effects at the higher dosages needed to overcome the In Viva Iron Chelation Prevents MPTP Toxicity 905 A 0 20 in

  10. Role of glutamate-104 in generating a transition state analogue inhibitor at the active site of cytidine deaminase.

    PubMed

    Carlow, D C; Short, S A; Wolfenden, R

    1996-01-23

    The 19F-NMR resonance of 5-[19F]fluoropyrimidin-2-one ribonucleoside moves upfield when it is bound by wild-type cytidine deaminase from Escherichia coli, in agreement with UV and X-ray spectroscopic indications that this inhibitor is bound as the rate 3,4-hydrated species 5-fluoro-3,4-dihydrouridine, a transition state analogue inhibitor resembling an intermediate in direct water attack on 5-fluorocytidine. Comparison of pKa values of model compounds indicates that the equilibrium constant for 3,4-hydration of this inhibitor in free solution is 3.5 x 10(-4) M, so that the corrected dissociation constant of 5-fluoro-3,4-dihydrouridine from the wild-type enzyme is 3.9 x 10(-11) M. Very different behavior is observed for a mutant enzyme in which alanine replaces Glu-104 at the active site, and kcat has been reduced by a factor of 10(8). 5-[19F]Fluoropyrimidin-2-one ribonucleoside is strongly fluorescent, making it possible to observe that the mutant enzyme binds this inhibitor even more tightly (Kd = 4.4 x 10(-8) M) than does the native enzyme (Kd = 1.1 x 10(-7) M). 19F-NMR indicates, however, that the E104A mutant enzyme binds the inhibitor without modification, in a form that resembles the substrate in the ground state. These results are consistent with a major role for Glu-104, not only in stabilizing the ES++ complex in the transition state, but also in destabilizing the ES complex in the ground state.

  11. A single polymorphism in HIV-1 subtype C SP1 is sufficient to confer natural resistance to the maturation inhibitor bevirimat.

    PubMed

    Lu, Wuxun; Salzwedel, Karl; Wang, Dan; Chakravarty, Suvobrata; Freed, Eric O; Wild, Carl T; Li, Feng

    2011-07-01

    3-O-(3',3'-Dimethylsuccinyl) betulinic acid (DSB), also known as PA-457, bevirimat (BVM), or MPC-4326, is a novel HIV-1 maturation inhibitor. Unlike protease inhibitors, BVM blocks the cleavage of the Gag capsid precursor (CA-SP1) to mature capsid (CA) protein, resulting in the release of immature, noninfectious viral particles. Despite the novel mechanism of action and initial progress made in small-scale clinical trials, further development of bevirimat has encountered unexpected challenges, because patients whose viruses contain genetic polymorphisms in the Gag SP1 (positions 6 to 8) protein do not generally respond well to BVM treatment. To better define the role of amino acid residues in the HIV-1 Gag SP1 protein that are involved in natural polymorphisms to confer resistance to the HIV-1 maturation inhibitor BVM, a series of Gag SP1 chimeras involving BVM-sensitive (subtype B) and BVM-resistant (subtype C) viruses was generated and characterized for sensitivity to BVM. We show that SP1 residue 7 of the Gag protein is a primary determinant of SP1 polymorphism-associated drug resistance to BVM.

  12. Hereditary Angioedema: Not An Allergy

    PubMed Central

    Bhivgade, Sanjay; Melkote, Shubha; Ghate, Smita; Jerajani, H R

    2012-01-01

    Hereditary angioedema is a genetic disorder due to a deficiency or malfunction of C1 esterase inhibitor. We herein describe a case of 25-year-old male who presented with swelling over face since one day. There was history of similar episodes since two years with gradual subsidence of swelling without any treatment. Investigations revealed grossly reduced complement C4 and C1 esterase inhibitor level. Patient was diagnosed to have hereditary angioedema type 1 and started on stanozolol 2 mg three times a day with no recurrence in one year of follow-up. Hereditary angioedema resembles angioedema of an allergic reaction. However, the cause is different. PMID:23248378

  13. The RAAS in the pathogenesis and treatment of diabetic nephropathy.

    PubMed

    Ruggenenti, Piero; Cravedi, Paolo; Remuzzi, Giuseppe

    2010-06-01

    Angiotensin II and other components of the renin-angiotensin-aldosterone system (RAAS) have a central role in the pathogenesis and progression of diabetic renal disease. A study in patients with type 1 diabetes and overt nephropathy found that RAAS inhibition with angiotensin-converting-enzyme (ACE) inhibitors was associated with a reduced risk of progression to end-stage renal disease and mortality compared with non-RAAS-inhibiting drugs. Blood-pressure control was similar between groups and proteinuria reduction was responsible for a large part of the renoprotective and cardioprotective effect. ACE inhibitors can also prevent microalbuminuria in patients with type 2 diabetes who are hypertensive and normoalbuminuric; in addition, ACE inhibitors are cardioprotective even in the early stages of diabetic renal disease. Angiotensin-II-receptor blockers (ARBs) are renoprotective (but not cardioprotective) in patients with type 2 diabetes and overt nephropathy or microalbuminuria. Studies have evaluated the renoprotective effect of other RAAS inhibitors, such as aldosterone antagonists and renin inhibitors, administered either alone or in combination with ACE inhibitors or ARBs. An important task for the future will be identifying which combination of agents achieves the best renoprotection (and cardioprotection) at the lowest cost. Such findings will have major implications, particularly in settings where money and facilities are limited and in settings where renal replacement therapy is not available and the prevention of kidney failure is life saving.

  14. High resolution crystal structure of rat long chain hydroxy acid oxidase in complex with the inhibitor 4-carboxy-5-[(4-chlorophenyl)sulfanyl]-1, 2, 3-thiadiazole. Implications for inhibitor specificity and drug design.

    PubMed

    Chen, Zhi-wei; Vignaud, Caroline; Jaafar, Adil; Lévy, Bernard; Guéritte, Françoise; Guénard, Daniel; Lederer, Florence; Mathews, F Scott

    2012-05-01

    Long chain hydroxy acid oxidase (LCHAO) is responsible for the formation of methylguanidine, a toxic compound with elevated serum levels in patients with chronic renal failure. Its isozyme glycolate oxidase (GOX), has a role in the formation of oxalate, which can lead to pathological deposits of calcium oxalate, in particular in the disease primary hyperoxaluria. Inhibitors of these two enzymes may have therapeutic value. These enzymes are the only human members of the family of FMN-dependent l-2-hydroxy acid-oxidizing enzymes, with yeast flavocytochrome b(2) (Fcb2) among its well studied members. We screened a chemical library for inhibitors, using in parallel rat LCHAO, human GOX and the Fcb2 flavodehydrogenase domain (FDH). Among the hits was an inhibitor, CCPST, with an IC(50) in the micromolar range for all three enzymes. We report here the crystal structure of a complex between this compound and LCHAO at 1.3 Å resolution. In comparison with a lower resolution structure of this enzyme, binding of the inhibitor induces a conformational change in part of the TIM barrel loop 4, as well as protonation of the active site histidine. The CCPST interactions are compared with those it forms with human GOX and those formed by two other inhibitors with human GOX and spinach GOX. These compounds differ from CCPST in having the sulfur replaced with a nitrogen in the five-membered ring as well as different hydrophobic substituents. The possible reason for the ∼100-fold difference in affinity between these two series of inhibitors is discussed. The present results indicate that specificity is an issue in the quest for therapeutic inhibitors of either LCHAO or GOX, but they may give leads for this quest. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  15. Fibroin and Sericin from Bombyx mori Silk Stimulate Cell Migration through Upregulation and Phosphorylation of c-Jun

    PubMed Central

    García-Vizcaíno, Eva María; Alcaraz, Antonia; Cenis, José Luis; Nicolás, Francisco José

    2012-01-01

    Wound healing is a biological process directed to the restoration of tissue that has suffered an injury. An important phase of wound healing is the generation of a basal epithelium able to wholly replace the epidermis of the wound. A broad range of products derived from fibroin and sericin from Bombyx mori silk are used to stimulate wound healing. However, so far the molecular mechanism underlying this phenomenon has not been elucidated. The aim of this work was to determine the molecular basis underlying wound healing properties of silk proteins using a cell model. For this purpose, we assayed fibroin and sericin in a wound healing scratch assay using MDA-MB-231 and Mv1Lu cells. Both proteins stimulated cell migration. Furthermore, treatment with sericin and fibroin involved key factors of the wound healing process such as upregulation of c-Jun and c-Jun protein phosphorylation. Moreover, fibroin and sericin stimulated the phosphorylation of ERK 1/2 and JNK 1/2 kinases. All these experiments were done in the presence of specific inhibitors for some of the cell signalling pathways referred above. The obtained results revealed that MEK, JNK and PI3K pathways are involved in fibroin and sericin stimulated cells migration. Inhibition of these three kinases prevented c-Jun upregulation and phosphorylation by fibroin or sericin. Fibroin and sericin were tested in the human keratinocyte cell line, HaCaT, with similar results. Altogether, our results showed that fibroin and sericin initiate cell migration by activating the MEK, JNK and PI3K signalling pathways ending in c-Jun activation. PMID:22860103

  16. X-ray structures of the Pseudomonas cichorii D-tagatose 3-epimerase mutant form C66S recognizing deoxy sugars as substrates.

    PubMed

    Yoshida, Hiromi; Yoshihara, Akihide; Ishii, Tomohiko; Izumori, Ken; Kamitori, Shigehiro

    2016-12-01

    Pseudomonas cichorii D-tagatose 3-epimerase (PcDTE), which has a broad substrate specificity, efficiently catalyzes the epimerization of not only D-tagatose to D-sorbose but also D-fructose to D-psicose (D-allulose) and also recognizes the deoxy sugars as substrates. In an attempt to elucidate the substrate recognition and catalytic reaction mechanisms of PcDTE for deoxy sugars, the X-ray structures of the PcDTE mutant form with the replacement of Cys66 by Ser (PcDTE_C66S) in complexes with deoxy sugars were determined. These X-ray structures showed that substrate recognition by the enzyme at the 1-, 2-, and 3-positions is responsible for enzymatic activity and that substrate-enzyme interactions at the 4-, 5-, and 6-positions are not essential for the catalytic reaction of the enzyme leading to the broad substrate specificity of PcDTE. They also showed that the epimerization site of 1-deoxy 3-keto D-galactitol is shifted from C3 to C4 and that 1-deoxy sugars may bind to the catalytic site in the inhibitor-binding mode. The hydrophobic groove that acts as an accessible surface for substrate binding is formed through the dimerization of PcDTE. In PcDTE_C66S/deoxy sugar complex structures, bound ligand molecules in both the linear and ring forms were detected in the hydrophobic groove, while bound ligand molecules in the catalytic site were in the linear form. This result suggests that the sugar-ring opening of a substrate may occur in the hydrophobic groove and also that the narrow channel of the passageway to the catalytic site allows a substrate in the linear form to pass through.

  17. Enhancing Immune Checkpoint Inhibitor Therapy In Kidney Cancer

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0141 TITLE: Enhancing Immune Checkpoint Inhibitor therapy in Kidney Cancer PRINCIPAL INVESTIGATOR: Hans-Joerg Hammers...Immune Checkpoint Inhibitor therapy in Kidney Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH- 15-1-0141 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...to develop strategies to enhance immune checkpoint inhibition in kidney cancer. The work is designed to test different strategies to induce or

  18. Enhancing Immune Checkpoint Inhibitor Therapy in Kidney Cancer

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0141 TITLE: Enhancing Immune Checkpoint Inhibitor therapy in Kidney Cancer PRINCIPAL INVESTIGATOR: Hans-Joerg Hammers...SUBTITLE Enhancing Immune Checkpoint Inhibitor therapy in Kidney Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH- 15-1-0141 5c. PROGRAM ELEMENT NUMBER...immune checkpoint inhibition in kidney cancer . The work is designed to test different strategies to induce or enhance the abscopal in a kidney cancer

  19. Two M-T hook residues greatly improve the antiviral activity and resistance profile of the HIV-1 fusion inhibitor SC29EK

    PubMed Central

    2014-01-01

    Background Peptides derived from the C-terminal heptad repeat (CHR) of HIV-1 gp41 such as T20 (Enfuvirtide) and C34 are potent viral fusion inhibitors. We have recently found that two N-terminal residues (Met115 and Thr116) of CHR peptides form a unique M-T hook structure that can greatly enhance the binding and anti-HIV activity of inhibitors. Here, we applied two M-T hook residues to optimize SC29EK, an electrostatically constrained peptide inhibitor with a potent anti-HIV activity. Results The resulting peptide MT-SC29EK showed a dramatically increased binding affinity and could block the six-helical bundle (6-HB) formation more efficiently. As expected, MT-SC29EK potently inhibited HIV-1 entry and infection, especially against those T20- and SC29EK-resistant HIV-1 variants. More importantly, MT-SC29EK and its short form (MT-SC22EK) suffered from the difficulty to induce HIV-1 resistance during the in vitro selection, suggesting their high genetic barriers to the development of resistance. Conclusions Our studies have verified the M-T hook structure as a vital strategy to design novel HIV-1 fusion inhibitors and offered an ideal candidate for clinical development. PMID:24884671

  20. Structural requirements for thioester bond formation in human complement component C3. Reassessment of the role of thioester bond integrity on the conformation of C3.

    PubMed

    Isaac, L; Isenman, D E

    1992-05-15

    A unique thioester bond, formed between the side chains of neighboring C and Q residues, is present in complement components C3 and C4 and the protease inhibitor alpha 2-macroglobulin. This structure is essential for mediating covalent attachment to target acceptors and also for maintaining these proteins in their native conformation. An examination of the residues in the immediate vicinity of the C and Q reveals a very high degree of sequence similarity among the three proteins which crosses species barriers. The following is the sequence flanking the thioester residues in C3, the highly conserved amino acids being underlined and the the thioester-forming residues being indicated by italics: 1005V-T-P-S-G-C-G-E-Q-N-M-I-G-M-T-P-T1021. Through a site-directed mutagenesis and cDNA expression approach, we have examined the importance of the conserved amino acids in the formation, stability, and function of the thioester bond in C3. The behavior of the mutants fell into three categories. The potential loss in peptide backbone flexibility by the replacement of G1009 by A or S was permissive to thioester formation and function as was replacement of M1015 by the still fairly bulky residue F. In contrast, replacement of M1015 by A resulted in an alpha-chain which was highly unstable toward proteolytic degradation. The third category, which included mutant molecules P1007G, P1020G, E1012Q, and Q1013N, displayed an unusual phenotype in which both the autolytic fragmentation and the hemolytic activity characteristics of thioester-intact molecules were absent. However, like their wildtype counterpart, these molecules retained the ability to be cleaved by C3 convertase (C4b2a), a conformation-dependent property that is normally lost in the conversion of native C3 to thioester-hydrolyzed C3(H2O). Since an identical functional profile was obtained when the thioester was deliberately prevented from forming in the mutant C1010A, we conclude that if a stable thioester fails to form during biosynthesis, at least parts of the mature protein can adopt a more native-like conformation than is the case when the thioester is first formed and then hydrolyzed in the mature protein. In view of these new findings, the interpretation of the previously observed correlation between the loss of thioester integrity and the adoption of a C3b-like conformation must be reassessed.

  1. Transcriptional activation of peroxisome proliferator-activated receptor-{gamma} requires activation of both protein kinase A and Akt during adipocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sang-pil; Ha, Jung Min; Yun, Sung Ji

    2010-08-13

    Research highlights: {yields} Elevated cAMP activates both PKA and Epac. {yields} PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. {yields} Akt modulates PPAR-{gamma} transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-{gamma} is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-{gamma}. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by amore » Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-{gamma} was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-{gamma} transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-{gamma} transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-{gamma}, suggesting post-translational activation of PPAR-{gamma} might be critical step for adipogenic gene expression.« less

  2. Effect of dibutyryl cyclic adenosine monophosphate on the gene expression of plasminogen activator inhibitor-1 and tissue factor in adipocytes.

    PubMed

    Taniguchi, Makoto; Ono, Naoko; Hayashi, Akira; Yakura, Yuwna; Takeya, Hiroyuki

    2011-10-01

    Hypertrophic adipocytes in obese states express the elevated levels of plasminogen activator inhibitor-1 (PAI-1) and tissue factor (TF). An increase in the intracellular concentration of cyclic adenosine monophosphate (cAMP) promotes triglyceride hydrolysis and may improve dysregulation of adipocyte metabolism. Here, we investigate the effect of dibutyryl-cAMP (a phosphodiesterase-resistant analog of cAMP) on the gene expression of PAI-1 and TF in adipocytes. Differentiated 3T3-L1 adipocytes were treated with dibutyryl-cAMP and agents that would be expected to elevate intracellular cAMP, including cilostazol (a phosphodiesterase inhibitor with anti-platelet and vasodilatory properties), isoproterenol (a beta adrenergic agonist) and forskolin (an adenylyl cyclase activator). The levels of PAI-1 and TF mRNAs were measured using real-time quantitative reverse transcription-PCR. The treatment of adipocytes with dibutyryl-cAMP resulted in the inhibition of both lipid accumulation and TF gene expression. However, PAI-1 gene expression was slightly but significantly increased by dibutyryl-cAMP. On the other hand, cilostazol inhibited the expression of PAI-1 without affecting lipid accumulation. When the adipocytes were treated with cilostazol in combination with isoproterenol or forskolin, the inhibitory effect of cilostazol on PAI-1 gene expression was counteracted, thus suggesting that inhibition by cilostazol may not be the result of intracellular cAMP accumulation by phosphodiesterase inhibition. These results suggest the implication of cAMP in regulation of the gene expression of TF and PAI-1 in adipocytes. Our findings will serve as a useful basis for further research in therapy for obesity-associated thrombosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Synthesis, conformational analysis, and biological activity of new analogues of thiazole-4-carboxamide adenine dinucleotide (TAD) as IMP dehydrogenase inhibitors.

    PubMed

    Franchetti, Palmarisa; Cappellacci, Loredana; Pasqualini, Michela; Petrelli, Riccardo; Jayaprakasan, Vetrichelvan; Jayaram, Hiremagalur N; Boyd, Donald B; Jain, Manojkumar D; Grifantini, Mario

    2005-03-15

    Thiazole-4-carboxamide adenine dinucleotide (TAD) analogues T-2'-MeAD (1) and T-3'-MeAD (2) containing, respectively, a methyl group at the ribose 2'-C-, and 3'-C-position of the adenosine moiety, were prepared as potential selective human inosine monophosphate dehydrogenase (IMPDH) type II inhibitors. The synthesis of heterodinucleotides was carried out by CDI-catalyzed coupling reaction of unprotected 2'-C-methyl- or 3'-C-methyl-adenosine 5'-monophosphate with 2',3'-O-isopropylidene-tiazofurin 5'-monophosphate, and then deisopropylidenation. Biological evaluation of dinucleotides 1 and 2 as inhibitors of recombinant human IMPDH type I and type II resulted in a good activity. Inhibition of both isoenzymes by T-2'-MeAD and T-3'-MeAD was noncompetitive with respect to NAD substrate. Binding of T-3'-MeAD was comparable to that of parent compound TAD, while T-2'-MeAD proved to be a weaker inhibitor. However, no significant difference was found in inhibition of the IMPDH isoenzymes. T-2'-MeAD and T-3'-MeAD were found to inhibit the growth of K562 cells (IC(50) 30.7 and 65.0muM, respectively).

  4. Blocking VEGF signaling delays development of replacement teeth in zebrafish.

    PubMed

    Crucke, J; Huysseune, A

    2015-01-01

    The dentition in zebrafish is extremely and richly vascularized, but the function of the vasculature, in view of the continuous replacement of the teeth, remains elusive. Through application of SU5416, a vascular endothelial growth factor receptor inhibitor, we studied the role of the blood vessels in the dentition of the zebrafish. We were unable to show an effect on the development of first-generation teeth as well as first tooth replacement. However, in juvenile fish, a delay was observed in the developmental state of the replacement tooth compared with what was expected based on the maturation state of the functional tooth. Furthermore, we observed a difference between treated and nontreated fish in the distance between blood vessels and developing replacement teeth. In conclusion, our results provide support for a nutritive, rather than an inductive, function of the vasculature in the process of tooth development and replacement. © International & American Associations for Dental Research 2014.

  5. Calcineurin Controls Drug Tolerance, Hyphal Growth, and Virulence in Candida dubliniensis▿†

    PubMed Central

    Chen, Ying-Lien; Brand, Alexandra; Morrison, Emma L.; Silao, Fitz Gerald S.; Bigol, Ursela G.; Malbas, Fedelino F.; Nett, Jeniel E.; Andes, David R.; Solis, Norma V.; Filler, Scott G.; Averette, Anna; Heitman, Joseph

    2011-01-01

    Candida dubliniensis is an emerging pathogenic yeast species closely related to Candida albicans and frequently found colonizing or infecting the oral cavities of HIV/AIDS patients. Drug resistance during C. dubliniensis infection is common and constitutes a significant therapeutic challenge. The calcineurin inhibitor FK506 exhibits synergistic fungicidal activity with azoles or echinocandins in the fungal pathogens C. albicans, Cryptococcus neoformans, and Aspergillus fumigatus. In this study, we show that calcineurin is required for cell wall integrity and wild-type tolerance of C. dubliniensis to azoles and echinocandins; hence, these drugs are candidates for combination therapy with calcineurin inhibitors. In contrast to C. albicans, in which the roles of calcineurin and Crz1 in hyphal growth are unclear, here we show that calcineurin and Crz1 play a clearly demonstrable role in hyphal growth in response to nutrient limitation in C. dubliniensis. We further demonstrate that thigmotropism is controlled by Crz1, but not calcineurin, in C. dubliniensis. Similar to C. albicans, C. dubliniensis calcineurin enhances survival in serum. C. dubliniensis calcineurin and crz1/crz1 mutants exhibit attenuated virulence in a murine systemic infection model, likely attributable to defects in cell wall integrity, hyphal growth, and serum survival. Furthermore, we show that C. dubliniensis calcineurin mutants are unable to establish murine ocular infection or form biofilms in a rat denture model. That calcineurin is required for drug tolerance and virulence makes fungus-specific calcineurin inhibitors attractive candidates for combination therapy with azoles or echinocandins against emerging C. dubliniensis infections. PMID:21531874

  6. mTOR and Cardiovascular Diseases: Diabetes Mellitus.

    PubMed

    Vergès, Bruno

    2018-02-01

    The mammalian targets of rapamycin (mTOR) inhibitors are potent immunosuppressors used for prevention of acute rejection after transplantation and have been more recently used as anticancer drugs. mTOR inhibitors have a significant impact on glucose metabolism and frequently induce diabetes. mTOR inhibitors, when used as immunosuppressive agents (sirolimus, everolimus), can induce diabetes with an incidence which is low when used without calcineurin inhibitors but high when used in combination with calcineurin inhibitors (from 11.0% to 38.1%). mTOR inhibitors used as anticancer agents (everolimus, temsirolimus) increase significantly the risk for new-onset diabetes and induce a 5-fold increase in the risk for severe hyperglycemia. The deleterious effect of mTOR inhibitors on glucose metabolism is due to an increased insulin resistance secondary to a reduction of the insulin signaling pathway within the cell and a reduction of insulin secretion via a direct effect on the pancreatic beta cells. Because of the risk for diabetes, it is recommended, when starting a treatment with an mTOR inhibitor, to check fasting blood glucose every 2 weeks during the first month of treatment then every month and HbA1c every 3 months and to intensify self-monitoring of blood glucose in patients with known diabetes. When fasting blood glucose is more than 126 mg/dL (7.0 mmol/L), when plasma glucose is more than 200 mg/dL at any time, or when HbA1c is more than 6.5%, it is recommended to start antidiabetic treatment.

  7. Inadequate Triglyceride Management Worsens the Durability of Dipeptidyl Peptidase-4 Inhibitor in Subjects with Type 2 Diabetes Mellitus.

    PubMed

    Shimoda, Masashi; Miyoshi-Takai, Maiko; Irie, Shintaro; Tanabe, Akihito; Obata, Atsushi; Okauchi, Seizo; Hirukawa, Hidenori; Kimura, Tomohiko; Kohara, Kenji; Kamei, Shinji; Mune, Tomoatsu; Kaku, Kohei; Kaneto, Hideaki

    2017-01-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are often used all over the world and exert various beneficial effects including glucose-lowering effect in many subjects with type 2 diabetes. It is poorly understood, however, which factors are closely related with the durability of glucose-lowering effect by DPP-4 inhibitor. In this study, we examined retrospectively which factors could mainly influence the durability of DPP-4 inhibitor. We enrolled 212 participants with type 2 diabetes to whom DPP-4 inhibitor was administered for over 1 year without an addition or increase of other hypoglycemic agents. Age and baseline HbA1c level were significantly higher in the effective group than those in the ineffective group. The effective group had a tendency of smaller amounts of weight change, average total cholesterol, and average triglyceride compared with the ineffective group. Multiple logistic regression analysis showed that average triglyceride and baseline HbA1c were independent predictors associated with the durability of DPP-4 inhibitor. Moreover, an average triglyceride level contributed to the durability of DPP-4 inhibitor in the obese group (BMI ≥ 25 kg/m 2 ) but not in the nonobese group (BMI < 25 kg/m 2 ). These results suggest the importance of strict triglyceride management to maintain the durability of glucose-lowering effect by DPP-4 inhibitor, especially in obese subjects with type 2 diabetes.

  8. Kinetic characterization of factor Xa binding using a quenched fluorescent substrate based on the reactive site of factor Xa inhibitor from Bauhinia ungulata seeds.

    PubMed

    Oliva, M L V; Andrade, S A; Juliano, M A; Sallai, R C; Torquato, R J; Sampaio, M U; Pott, V J; Sampaio, C A M

    2003-07-01

    The specific Kunitz Bauhinia ungulata factor Xa inhibitor (BuXI) and the Bauhinia variegata trypsin inhibitor (BvTI) blocked the activity of trypsin, chymotrypsin, plasmin, plasma kallikrein and factor XIIa, and factor Xa inhibition was achieved only by BuXI (K(i) 14 nM). BuXI and BvTI are highly homologous (70%). The major differences are the methionine residues at BuXI reactive site, which are involved in the inhibition, since the oxidized protein no longer inhibits factor Xa but maintains the trypsin inhibition. Quenched fluorescent substrates based on the reactive site sequence of the inhibitors were synthesized and the kinetic parameters of the hydrolysis were determined using factor Xa and trypsin. The catalytic efficiency k(cat)/K(m) 4.3 x 10(7) M(-1)sec(>-1) for Abz-VMIAALPRTMFIQ-EDDnp (lead peptide) hydrolysis by factor Xa was 10(4)-fold higher than that of Boc-Ile-Glu-Gly-Arg-AMC, widely used as factor Xa substrate. Lengthening of the substrate changed its susceptibility to factor Xa hydrolysis. Both methionine residues in the substrate influence the binding to factor Xa. Serine replacement of threonine (P(1)') decreases the catalytic efficiency by four orders of magnitude. Factor Xa did not hydrolyze the substrate containing the reactive site sequence of BvTI, that inhibits trypsin inhibitor but not factor Xa. Abz-VMIAALPRTMFIQ-EDDnp prolonged both the prothrombin time and the activated partial thromboplastin time, and the other modified substrates used in this experiment altered blood-clotting assays.

  9. Recent developments in small molecule therapies for renal cell carcinoma.

    PubMed

    Song, Minsoo

    2017-12-15

    Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults and is known to be the 10th most common type of cancer in the world. Most of the currently available RCC drugs are tyrosine kinase inhibitors (TKIs). However, combination therapies of TKIs and immune checkpoint inhibitors such as programmed cell death protein 1 (PD-1) and programmed cell death protein 1 ligand 1 (PD-L1) inhibitors are the focus of most of the final stage clinical trials. Meanwhile, other small molecule therapies for RCC that target indoleamine-2,3-dioxygenase (IDO1), glutaminase, C-X-C chemokine receptor 4 (CXCR4), and transglutaminase 2 (TG2) are emerging as the next generation of therapeutics. In this review, these three major streams for the development of small molecule drugs for RCC are described. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Recombinant production, crystallization and X-ray crystallographic structure determination of the peptidyl-tRNA hydrolase of Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Ronny C.; McFeeters, Hana; Coates, Leighton

    The peptidyl-tRNA hydrolase enzyme from the pathogenic bacterium Pseudomonas aeruginosa (Pth; EC 3.1.1.29) has been cloned, expressed in Escherichia coli and crystallized for X-ray structural analysis. Suitable crystals were grown using the sitting-drop vapour-diffusion method after one week of incubation against a reservoir solution consisting of 20% polyethylene glycol 4000, 100 mM Tris pH 7.5, 10%(v/v) isopropyl alcohol. The crystals were used to obtain the three-dimensional structure of the native protein at 1.77 Å resolution. The structure was determined by molecular replacement of the crystallographic data processed in space group P6122 with unit-cell parameters a = b = 63.62,c =more » 155.20 Å, α = β = 90, γ = 120°. The asymmetric unit of the crystallographic lattice was composed of a single copy of the enzyme molecule with a 43% solvent fraction, corresponding to a Matthews coefficient of 2.43 Å3 Da-1. The crystallographic structure reported here will serve as the foundation for future structure-guided efforts towards the development of novel small-molecule inhibitors specific to bacterial Pths.« less

  11. Comparisons of the efficacy of glucose control, lipid profile, and β-cell function between DPP-4 inhibitors and AGI treatment in type 2 diabetes patients: a meta-analysis.

    PubMed

    Cai, Xiaoling; Yang, Wenjia; Zhou, Lingli; Zhang, Simin; Han, Xueyao; Ji, Linong

    2015-12-01

    The aim of this study is to compare the efficacy of dipeptidyl peptidase-4 (DPP-4) inhibitor treatment with α-glucosidase inhibitor (AGI) treatment in patients with type 2 diabetes through a meta-analysis. Studies were identified by a literature search of Medline, Embase, and others from the time that recording commenced until December 2014. The meta-analysis was performed by computing the weighted mean difference (WMD) and 95 % confidence interval (CI) for a change from baseline to the study endpoint for DPP-4 inhibitors versus AGIs. Nine randomized controlled trial were judged to be appropriate for inclusion in the meta-analysis. One thousand and forty-six patients were treated with a DPP-4 inhibitor, while 929 patients were treated with AGI treatment; the groups had a comparable baseline body mass index of 25.5 ± 1.3 kg/m(2) and mean baseline HbA1c of 7.83 ± 0.53 %. Treatment with DPP-4 inhibitors led to a significantly greater change from baseline in the HbA1c levels (WMD -0.30 %; 95 % CI -0.47 to -0.13 %, p < 0.001) and fasting plasma glucose levels (WMD -0.50 mmol/L; 95 % CI -0.89 to -0.11 mmol/L, p = 0.01) compared with AGI treatment. Compared with AGIs, treatment with DPP-4 inhibitors was associated with a significantly greater increase in the weight change from baseline (WMD 0.89 kg; 95 % CI 0.53-1.25, p < 0.001). Treatment with DPP-4 inhibitors was associated with a significantly greater increase in the fasting insulin level from baseline (WMD 0.63 µU/mL; 95 % CI 0.35-0.90 µU/mL, p < 0.001). DPP-4 inhibitors significantly improved homeostatic model assessment for β-cell function in type 2 diabetes patients compared with AGI treatment (WMD 5.43; 95 % CI 1.01-9.85, p = 0.02). DPP-4 inhibitors were associated with a significantly greater decrease in the cholesterol (CHO) level (WMD -0.19 mmol/L; 95 % CI -0.19 to -0.19 mmol/L, p < 0.001) and a significantly greater decrease in the low-density lipoprotein cholesterol (LDL-C) level (WMD -0.16 mmol/L; 95 % CI -0.26 to -0.05 mmol/L, p = 0.003). Compared with AGIs (813 participants), treatment with DPP-4 inhibitors (1031 participants) was associated with a significantly lower incidence of drug-related adverse event (OR 0.48; 95 % CI 0.36-0.64, p < 0.0001). The efficacy of glucose control and improvement of β-cell function, as well as total CHO and LDL-C decreases, in DPP-4 inhibitor treatment were superior to those with AGI treatment, and there was a lower incidence of drug-related AE.

  12. Protein kinase C -dependent regulation of synaptosomal glutamate uptake under conditions of hypergravity

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana; Krisanova, Natalia; Borisov, Arseniy; Sivko, Roman

    Glutamate is not only the main excitatory neurotransmitter in the mammalian CNS, but also a potent neurotoxin. Excessive concentration of ambient glutamate over activates glutamate receptors and causes neurotoxicity. Uptake of glutamate from the extracellular space into nerve cells was mediated by sodium-dependent glutamate transporters located in the plasma membrane. It was shown that the activity of glutamate transporters in rat brain nerve terminals was decreased after hypergravity (centrifugation of rats in special containers at 10 G for 1 hour). This decrease may result from the reduction in the number of glutamate transporters expressed in the plasma membrane of nerve terminals after hypergravity that was regulated by protein kinase C. The possibility of the involvement of protein kinase C in the regulation of the activity of glutamate transporters was assessed under conditions of hypergravity. The effect of protein kinase C inhibitor GF 109 203X on synaptosomal L-[14C]glutamate uptake was analysed. It was shown that the inhibitor decreased L-[14C]glutamate uptake by 15 % in control but did not influence it after hypergravity. In control, the initial velocity of L-[14C]glutamate uptake in the presence of the inhibitor decreased from 2.5 ± 0.2 nmol x min-1 x mg-1 of proteins to 2.17 ± 0.1 nmol x min-1 x mg-1 of proteins, whereas after hypergravity this value lowered from 2.05 ± 0.1 nmol x min-1 x mg-1 of proteins to 2.04 ± 0.1 nmol x min-1 x mg-1 of proteins. Thus, protein kinase C -dependent alteration in the cell surface expression of glutamate transporters may be one of the causes of a decrease in the activity of glutamate transporters after hypergravity.

  13. Initiation of human myoblast differentiation via dephosphorylation of Kir2.1 K+ channels at tyrosine 242.

    PubMed

    Hinard, Valérie; Belin, Dominique; Konig, Stéphane; Bader, Charles Roland; Bernheim, Laurent

    2008-03-01

    Myoblast differentiation is essential to skeletal muscle formation and repair. The earliest detectable event leading to human myoblast differentiation is an upregulation of Kir2.1 channel activity, which causes a negative shift (hyperpolarization) of the resting potential of myoblasts. After exploring various mechanisms, we found that this upregulation of Kir2.1 was due to dephosphorylation of the channel itself. Application of genistein, a tyrosine kinase inhibitor, increased Kir2.1 activity and triggered the differentiation process, whereas application of bpV(Phen), a tyrosine phosphatase inhibitor, had the opposite effects. We could show that increased Kir2.1 activity requires dephosphorylation of tyrosine 242; replacing this tyrosine in Kir2.1 by a phenylalanine abolished inhibition by bpV(Phen). Finally, we found that the level of tyrosine phosphorylation in endogenous Kir2.1 channels is considerably reduced during differentiation when compared with proliferation. We propose that Kir2.1 channels are already present at the membrane of proliferating, undifferentiated human myoblasts but in a silent state, and that Kir2.1 tyrosine 242 dephosphorylation triggers differentiation.

  14. Low molecular weight squash trypsin inhibitors from Sechium edule seeds.

    PubMed

    Laure, Hélen J; Faça, Vítor M; Izumi, Clarice; Padovan, Júlio C; Greene, Lewis J

    2006-02-01

    Nine chromatographic components containing trypsin inhibitor activity were isolated from Sechium edule seeds by acetone fractionation, gel filtration, affinity chromatography and RP-HPLC in an overall yield of 46% of activity and 0.05% of protein. The components obtained with highest yield of total activity and highest specific activity were sequenced by Edman degradation and their molecular masses determined by mass spectrometry. The inhibitors contained 31, 32 and 27 residues per molecule and their sequences were: SETI-IIa, EDRKCPKILMRCKRDSDCLAKCTCQESGYCG; SETI-IIb, EEDRKCPKILMRCKRDSDCLAKCTCQESGYCG and SETI-V, CPRILMKCKLDTDCFPTCTCRPSGFCG. SETI-IIa and SETI-IIb, which differed by an amino-terminal E in the IIb form, were not separable under the conditions employed. The sequences are consistent with consensus sequences obtained from 37 other inhibitors: CPriI1meCk_DSDCla_C_C_G_CG, where capital letters are invariant amino acid residues and lower case letters are the most preserved in this position. SETI-II and SETI-V form complexes with trypsin with a 1:1 stoichiometry and have dissociation constants of 5.4x10(-11)M and 1.1x10(-9)M, respectively.

  15. Crystallization and preliminary X-ray analysis of a protease inhibitor from the latex of Carica papaya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azarkan, Mohamed; Garcia-Pino, Abel; Dibiani, Rachid

    2006-12-01

    The Kunitz-type trypsin/chymotrypsin inhibitor isolated from C. papaya latex has been crystallized using the hanging-drop vapour-diffusion method. Two different crystal forms are observed, diffracting to 2.6 and 1.7 Å. A Kunitz-type protease inhibitor purified from the latex of green papaya (Carica papaya) fruits was crystallized in the presence and absence of divalent metal ions. Crystal form I, which is devoid of divalent cations, diffracts to a resolution of 2.6 Å and belongs to space group P3{sub 1} or P3{sub 2}. This crystal form is a merohedral twin with two molecules in the asymmetric unit and unit-cell parameters a = bmore » = 74.70, c = 78.97 Å. Crystal form II, which was grown in the presence of Co{sup 2+}, diffracts to a resolution of 1.7 Å and belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 44.26, b = 81.99, c = 140.89 Å.« less

  16. The crystal structure of the secreted aspartic protease 1 from Candida parapsilosis in complex with pepstatin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dostál, Jiří; Brynda, Jiří; Hrušková-Heidingsfeldová, Olga

    2010-09-01

    Opportunistic pathogens of the genus Candida cause infections representing a major threat to long-term survival of immunocompromised patients. Virulence of the Candida pathogens is enhanced by production of extracellular proteolytic enzymes and secreted aspartic proteases (Saps) are therefore studied as potential virulence factors and possible targets for therapeutic drug design. Candida parapsilosis is less invasive than C. albicans, however, it is one of the leading causative agents of yeast infections. We report three-dimensional crystal structure of Sapp1p from C. parapsilosis in complex with pepstatin A, the classical inhibitor of aspartic proteases. The structure of Sapp1p was determined from protein isolatedmore » from its natural source and represents the first structure of Sap from C. parapsilosis. Overall fold and topology of Sapp1p is very similar to the archetypic fold of monomeric aspartic protease family and known structures of Sap isoenzymes from C. albicans and Sapt1p from C. tropicalis. Structural comparison revealed noticeable differences in the structure of loops surrounding the active site. This resulted in differential character, shape, and size of the substrate binding site explaining divergent substrate specificities and inhibitor affinities. Determination of structures of Sap isoenzymes from various species might contribute to the development of new Sap-specific inhibitors.« less

  17. Inhibitors of Acetylcholinesterase Derived from 7-Methoxytacrine and Their Effects on the Choline Transporter CHT1.

    PubMed

    Kristofikova, Zdenka; Ricny, Jan; Soukup, Ondrej; Korabecny, Jan; Nepovimova, Eugenie; Kuca, Kamil; Ripova, Daniela

    2017-01-01

    Reversible acetylcholinesterase inhibitors are used in Alzheimer disease therapy. However, tacrine and its derivatives have severe side effects. Derivatives of the tacrine analogue 7-methoxytacrine (MEOTA) are less toxic. We evaluated new derivatives of 7-MEOTA (2 homodimers linked by 2 C4-C5 chains and 5 N-alkylated C4-C8 side chain derivatives) in vitro, using the rat hippocampal choline transporter CHT1. Some derivatives were effective inhibitors of rat acetylcholinesterase and comparable with 7-MEOTA. All derivatives were able to inhibit CHT1, probably via quaternary ammonium, and this interaction could be involved in the enhancement of their detrimental side effects and/or in the attenuation of their promising effects. Under conditions of disrupted lipid rafts, the unfavorable effects of some derivatives were weakened. Only tacrine was probably able to stereospecifically interact with the naturally occurring amyloid-β isoform and to simultaneously stimulate CHT1. Some derivatives, when coincubated with amyloid β, did not influence CHT1. All derivatives also increased the fluidity of the cortical membranes. The N-alkylated derivative of 7-MEOTA bearing from C4 side chains appears to be the most promising compound and should be evaluated in future in vivo research. © 2016 S. Karger AG, Basel.

  18. Synthesis of the highly selective p38 MAPK inhibitor UR-13756 for possible therapeutic use in Werner syndrome.

    PubMed

    Bagley, Mark C; Davis, Terence; Rokicki, Michal J; Widdowson, Caroline S; Kipling, David

    2010-02-01

    UR-13756 is a potent and selective p38 mitogen-activated protein kinase (MAPK) inhibitor, reported to have good bioavailability and pharmacokinetic properties and, thus, is of potential use in the treatment of accelerated aging in Werner syndrome. Irradiation of 2-chloroacrylonitrile and methylhydrazine in ethanol at 100 °C gives 1-methyl-3-aminopyrazole, which reacts with 4-fluorobenzaldehyde and a ketone, obtained by Claisen condensation of 4-picoline, in a Hantzsch-type 3-component hereocyclocondensation, to give the pyrazolopyridine UR-13756. UR-13756 shows p38 MAPK inhibitory activity in human telomerase reverse transcriptase-immortalized HCA2 dermal fibroblasts, with an IC(50) of 80 nm, as shown by ELISA, is 100% efficacious for up to 24 h at 1.0 μm and displays excellent kinase selectivity over the related stress-activated c-Jun kinases. In addition, UR-13756 is an effective p38 inhibitor at 1.0 μm in Werner syndrome cells, as shown by immunoblot. The convergent synthesis of UR-13756 is realized using microwave dielectric heating and provides a highly selective inhibitor that shows excellent selectivity for p38 MAPK over c-Jun N-terminal kinase.

  19. Kinetics of acrylodan-labelled cAMP-dependent protein kinase catalytic subunit denaturation.

    PubMed

    Kivi, Rait; Loog, Mart; Jemth, Per; Järv, Jaak

    2013-10-01

    Fluorescence spectroscopy was used to study denaturation of cAMP-dependent protein kinase catalytic subunit labeled with an acrylodan moiety. The dye was covalently bound to a cystein residue introduced into the enzyme by replacement of arginine in position 326 in the native sequence, located near the enzyme active center. This labeling had no effect on catalytic activity of the enzyme, but provided possibility to monitor changes in protein structure through measuring the fluorescence spectrum of the dye, which is sensitive to changes in its environment. This method was used to monitor denaturation of the protein kinase catalytic subunit and study the kinetics of this process as well as influence of specific ligands on stability of the protein. Stabilization of the enzyme structure was observed in the presence of adenosine triphosphate, peptide substrate RRYSV and inhibitor peptide PKI[5-24].

  20. Effects of dexmedetomidine on H-FABP, CK-MB, cTnI levels, neurological function and near-term prognosis in patients undergoing heart valve replacement.

    PubMed

    Wang, Zhi; Chen, Qiang; Guo, Hao; Li, Zhishan; Zhang, Jinfeng; Lv, Lei; Guo, Yongqing

    2017-12-01

    This study investigated the effects of dexmedetomidine on heart-type fatty acid binding protein (H-FABP), creatine kinase isoenzymes (CK-MB), and troponin I (cTnI) levels, neurological function and near-term prognosis in patients undergoing heart valve replacement. Patients undergoing heart valve replacement were randomly allocated to remifentanil anesthesia (control group, n=48) or dexmedetomidine anesthesia (observation group, n=48). Hemodynamic parameters were measured before anesthesia induction (T1), 1 min after intubation (T2), 10 min after start of surgery (T3), and on completion of surgery (T4). Levels of plasma H-FABP, CK-MB and cTnI were measured 10 min before anesthesia induction (C1), 10 min after start of surgery (C2), on completion of surgery (C3), 6 h after surgery (C4), and 24 h after surgery (C5). S100β protein and serum neuron-specific enolase (NSE) were detected 10 min before anesthesia induction (C1), and 24 h after surgery (C5). Neurological and cardiac function was evaluated 24 h after surgery. Incidence of cardiovascular adverse events was recorded for 1 year of follow-up. There were no significant differences in the average heart rate between the two groups during the perioperative period. The mean arterial pressure in the observation group was significantly lower than control group (P<0.05). Levels of H-FABP, CK-MB and cTnI at C2, C3, C4 and C5, were significantly higher than C1, but significantly lower in the observation versus control group (P<0.05). Twenty-four hours after surgery, levels of S100β and NSE in both groups were higher than those before induction (P<0.05), but significantly lower in the observation versus control group (P<0.05). Twenty-four hours after surgery, neurological function scores were better, and myocardial contractility and arrhythmia scores significantly lower in the observation versus control group (P<0.05 for all). After follow-up for 1 year, incidence of cardiovascular adverse events was significantly lower in the observation versus control group (P<0.05). Dexmedetomidine anesthesia can effectively maintain hemodynamic stability, reduce myocardial injury and the occurrence of cognitive dysfunction, and improve prognosis in patients undergoing heart valve replacement.

  1. High-throughput screening (HTS) and hit validation to identify small molecule inhibitors with activity against NS3/4A proteases from multiple hepatitis C virus genotypes.

    PubMed

    Lee, Hyun; Zhu, Tian; Patel, Kavankumar; Zhang, Yan-Yan; Truong, Lena; Hevener, Kirk E; Gatuz, Joseph L; Subramanya, Gitanjali; Jeong, Hyun-Young; Uprichard, Susan L; Johnson, Michael E

    2013-01-01

    Development of drug-resistant mutations has been a major problem with all currently developed Hepatitis C Virus (HCV) NS3/4A inhibitors, including the two FDA approved drugs, significantly reducing the efficacy of these inhibitors. The high incidence of drug-resistance mutations and the limited utility of these inhibitors against only genotype 1 highlight the need for novel, broad-spectrum HCV therapies. Here we used high-throughput screening (HTS) to identify low molecular weight inhibitors against NS3/4A from multiple genotypes. A total of 40,967 compounds from four structurally diverse molecular libraries were screened by HTS using fluorescence-based enzymatic assays, followed by an orthogonal binding analysis using surface plasmon resonance (SPR) to eliminate false positives. A novel small molecule compound was identified with an IC50 value of 2.2 µM against the NS3/4A from genotype 1b. Mode of inhibition analysis subsequently confirmed this compound to be a competitive inhibitor with respect to the substrate, indicating direct binding to the protease active site, rather than to the allosteric binding pocket that was discovered to be the binding site of a few recently discovered small molecule inhibitors. This newly discovered inhibitor also showed promising inhibitory activity against the NS3/4As from three other HCV genotypes, as well as five common drug-resistant mutants of genotype 1b NS3/4A. The inhibitor was selective for NS3 from multiple HCV genotypes over two human serine proteases, and a whole cell lysate assay confirmed inhibitory activity in the cellular environment. This compound provides a lead for further development of potentially broader spectrum inhibitors.

  2. Off-Target Vascular Effects of Cholesteryl Ester Transfer Protein Inhibitors Involve Redox-Sensitive and Signal Transducer and Activator of Transcription 3-Dependent Pathways.

    PubMed

    Rios, Francisco J; Lopes, Rheure A; Neves, Karla B; Camargo, Livia L; Montezano, Augusto C; Touyz, Rhian M

    2016-05-01

    Elevated blood pressure was an unexpected outcome in some cholesteryl ester transfer protein (CETP) inhibitor trials, possibly due to vascular effects of these drugs. We investigated whether CETP inhibitors (torcetrapib, dalcetrapib, anacetrapib) influence vascular function and explored the putative underlying molecular mechanisms. Resistance arteries and vascular smooth muscle cells (VSMC) from rats, which lack the CETP gene, were studied. CETP inhibitors increased phenylephrine-stimulated vascular contraction (logEC50 (:) 6.6 ± 0.1; 6.4 ± 0.06, and 6.2 ± 0.09 for torcetrapib, dalcetrapib, and anacetrapib, respectively, versus control 5.9 ± 0.05). Only torcetrapib reduced endothelium-dependent vasorelaxation. The CETP inhibitor effects were ameliorated by N-acetylcysteine (NAC), a reactive oxygen species (ROS) scavenger, and by S3I-201 [2-hydroxy-4-[[2-(4-methylphenyl)sulfonyloxyacetyl]amino]benzoic acid], a signal transducer and activator of transcription 3 (STAT3) inhibitor. CETP inhibitors increased the phosphorylation (2- to 3-fold) of vascular myosin light chain (MLC) and myosin phosphatase target subunit 1 (MYPT1) (procontractile proteins) and stimulated ROS production. CETP inhibitors increased the phosphorylation of STAT3 (by 3- to 4-fold), a transcription factor important in cell activation. Activation of MLC was reduced by NAC, GKT137831 [2-(2-chlorophenyl)-4-[3-(dimethylamino)phenyl]-5-methyl-1H-pyrazolo[4,3-c]pyridine-3,6-dione] (Nox1/4 inhibitor), and S3I-201. The phosphorylation of STAT3 was unaffected by NAC and GKT137831. CETP inhibitors did not influence activation of mitogen-activated proteins kinases (MAPK) or c-Src. Our data demonstrate that CETP inhibitors influence vascular function and contraction through redox-sensitive, STAT3-dependent, and MAPK-independent processes. These phenomena do not involve CETP because the CETP gene is absent in rodents. Findings from our study indicate that CETP inhibitors have vasoactive properties, which may contribute to the adverse cardiovascular effects of these drugs such as hypertension. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. The selective dopamine uptake inhibitor, D-84, suppresses cocaine self-administration, but does not occasion cocaine-like levels of generalization.

    PubMed

    Batman, Angela M; Dutta, Aloke K; Reith, Maarten E A; Beardsley, Patrick M

    2010-12-01

    A successful replacement pharmacotherapy for treating cocaine dependency would likely reduce cocaine's abuse, support a low abuse liability, overlap cocaine's subjective effects, and have a long duration of action. Inhibitors with varying selectivity at the dopamine transporter (DAT) have approximated these properties. The objective of the present study was to characterize the behavioural effects of an extremely selective DAT inhibitor, (+) trans-4-(2-Benzhydryloxyethyl)-1-(4-fluorobenzyl) piperadin-3-ol (D-84), a 3-hydroxy substituted piperidine derivative of GBR-12935, for its cocaine-like discriminative stimulus effects, its effects on cocaine self-administration, and for its own self-administration. During cocaine discrimination tests, cocaine occasioned the 10 mg/kg cocaine training stimulus with an ED(50) value of 3.13 (1.54-6.34) mg/kg, and reduced response rates with an ED(50) value of 20.39 (7.24-57.44) mg/kg. D-84 incompletely generalized to the cocaine stimulus occasioning a maximal 76% cocaine-lever responding, while reducing response rates with lower potency than cocaine (ED(50)=30.94 (12.34-77.60) mg/kg). Pretreatment with D-84 (9.6-30.4 mg/kg) significantly (P<0.05) reduced cocaine intake at 17.1 mg/kg D-84 when cocaine was self-administered at 0.5 mg/kg/infusion, and at 30.4 mg/kg D-84 when cocaine was self-administered at 0.1, 0.5 .and 1.0 mg/kg/infusion. During self-administration tests with D-84 (0.1-1 mg/kg/infusion), numbers of infusions significantly exceeded vehicle levels at 0.3 mg/kg/infusion. These results show that D-84 pretreatment can decrease cocaine intake especially when high doses of cocaine are being self-administered. This observation, combined with its incomplete generalization to the cocaine discriminative stimulus and its reported long duration of action, provides a profile consistent with a potential replacement therapy for treating cocaine-abusing patients. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Enhancement of corrosion resistance of carbon steel by Dioscorea Hispida starch in NaCl

    NASA Astrophysics Data System (ADS)

    Zulhusni, M. D. M.; Othman, N. K.; Lazim, Azwan Mat

    2015-09-01

    Starch is a one of the most abundant natural product in the world and has the potential as corrosion inhibitor replacing harmful synthetic chemical based corrosion inhibitor. This research was aimed to examines the potential of starch extracted from local Malaysian wild yam (Dioscorea hispida), as corrosion inhibitor to carbon steel in NaCl media replicating sea water. By using gravimetric test and analysis, in which the carbon steel specimens were immersed in NaCl media for 24, 48 and 60 hours with the starch as corrosion inhibitor. the corrosion rate (mmpy) and inhibition efficiencies (%) was calculated. The results obtained showed decrease in corrosion rate as higher concentration of starch was employed. The inhibition efficiencies also shows an increasing manner up to 95.97 % as the concentration of the inhibitor increased.

  5. PDE4 and PDE5 regulate cyclic nucleotide contents and relaxing effects on carbachol-induced contraction in the bovine abomasum.

    PubMed

    Kaneda, Takeharu; Kido, Yuuki; Tajima, Tsuyoshi; Urakawa, Norimoto; Shimizu, Kazumasa

    2015-01-01

    The effects of various selective phosphodiesterase (PDE) inhibitors on carbachol (CCh)-induced contraction in the bovine abomasum were investigated. Various selective PDE inhibitors, vinpocetine (type 1), erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA, type 2), milrinone (type 3), Ro20-1724 (type 4), vardenafil (type 5), BRL-50481 (type 7) and BAY73-6691 (type 9), inhibited CCh-induced contractions in a concentration-dependent manner. Among the PDE inhibitors, Ro20-1724 and vardenafil induced more relaxation than the other inhibitors based on the data for the IC50 or maximum relaxation. In smooth muscle of the bovine abomasum, we showed the expression of PDE4B, 4C, 4D and 5 by RT-PCR analysis. In the presence of CCh, Ro20-1724 increased the cAMP content, but not the cGMP content. By contrast, vardenafil increased the cGMP content, but not the cAMP content. These results suggest that Ro20-1724-induced relaxation was correlated with cAMP and that vardenafil-induced relaxation was correlated with cGMP in the bovine abomasum. In conclusion, PDE4 and PDE5 are the enzymes involved in regulation of the relaxation associated with cAMP and cGMP, respectively, in the bovine abomasum.

  6. A role for protein kinase intracellular messengers in substance P- and nociceptor afferent-mediated excitation and expression of the transcription factor Fos in rat dorsal horn neurons in vitro.

    PubMed

    Badie-Mahdavi, H; Worsley, M A; Ackley, M A; Asghar, A U; Slack, J R; King, A E

    2001-08-01

    Expression of the inducible transcription factor Fos in the spinal dorsal horn in vivo is associated with nociceptive afferent activation, but the underlying stimulation-transcription pathway is less clear. This in vitro spinal cord study concerns the role of protein kinase A and C second messengers in substance P receptor (NK1R)-mediated or nociceptive afferent-evoked neuronal excitation and Fos expression. Nociceptive afferent (dorsal root) stimulation of isolated spinal cords (10-14 day old rats) evoked a 'prolonged' excitatory polysynaptic potential (DR-EPSP) that was attenuated (P < 0.05) by: the protein kinase A inhibitor, Rp-cAMP; the protein kinase C inhibitor, bisindolymaleimide I; and the selective NK1R antagonist, GR82334. Neuronal excitations induced by the NK1R agonist [Sar9,Met(O2)11]-SP were attenuated by Rp-cAMP, bisindolymaleimide I and GR82334. Effects of the protein kinase A and C inhibitors on the DR-EPSP or the [Sar9,Met(O2)11]-SP-induced depolarization were nonadditive, suggesting convergence of these intracellular signalling pathways onto a common final target. Nociceptor afferent-induced Fos, detected by immunohistochemistry in superficial and deep dorsal horn laminae, was attenuated by Rp-cAMP, bisindolymaleimide I and GR82334. In spinal cords pretreated with TTX to eliminate indirect neuronal activation, [Sar9,Met(O2)11]-SP (1-20 microM) elicited a dose-related expression of Fos that was reduced by Rp-cAMP, bisindolymaleimide I and GR82334. The effects of these inhibitors were most pronounced in the deep laminae. These data support a causal relationship between protein kinase A- or C-dependent signal transduction, nociceptive afferent- or NK1R-induced neuronal excitation and Fos expression in dorsal horn. Implications for short- versus long-term modulation of nociceptive circuitry are discussed.

  7. Corrosion inhibitors for concrete bridges.

    DOT National Transportation Integrated Search

    2004-12-01

    Deicing salts and salt-water spray can cause serious corrosion problems for reinforced concrete bridge structures. : These problems can lead to costly and labor-intensive repair and even replacement of the structure. Surface applied : corrosion inhib...

  8. Effect of Antioxidants and Apoptosis Inhibitors on Cryopreservation of Murine Germ Cells Enriched for Spermatogonial Stem Cells

    PubMed Central

    Lee, Yong-An; Kim, Yong-Hee; Kim, Bang-Jin; Jung, Sang-Eun; Pang, Myeong-Geol; Ryu, Buom-Yong

    2016-01-01

    Spermatogonial stem cells (SSCs) are germline stem cells that serve as the foundation of spermatogenesis to maintain fertility throughout a male’s lifetime. To treat male infertility using stem cell banking systems and transplantation, it is important to be able to preserve SSCs for long periods of time. Therefore, this study was conducted to develop an optimal cryopreservation protocol for SSCs using antioxidants and apoptosis inhibitors in freezing medium. No differences were observed compared to controls when SSCs were cryopreserved in the presence of apoptosis inhibitors by themselves. However, mouse germ cells cryopreserved in basal medium containing the antioxidant hypotaurine (14 mM) resulted in significantly greater proliferation potential and mitochondrial activity. Furthermore, treatment groups with combinations containing 200 mM trehalose and 14 mM hypotaurine showed higher proliferation rates compared to controls. In addition, several serum free conditions were evaluated for SSC cryopreservation. Treatment media containing 10% or 20% knockout serum replacement resulted in similar cryopreservation results compared to media containing FBS. SSC transplantation was also performed to confirm the functionality of SSCs frozen in 14 mM hypotaurine. Donor SSCs formed normal spermatogenic colonies and sperm in the recipient testis. These data indicate that inclusion of 14 mM hypotaurine in cryopreservation media is an effective way to efficiently cryopreserve germ cells enriched for SSCs and that knockout serum replacement can replace FBS in germ cell cryopreservation media. PMID:27548381

  9. Different protein kinase C isoenzymes mediate inhibition of cardiac rapidly activating delayed rectifier K+ current by different G-protein coupled receptors.

    PubMed

    Liu, Xueli; Wang, Yuhong; Zhang, Hua; Shen, Li; Xu, Yanfang

    2017-12-01

    Elevated angiotensin II (Ang II) and sympathetic activity contributes to a high risk of ventricular arrhythmias in heart disease. The rapidly activating delayed rectifier K + current (I Kr ) carried by the hERG channels plays a critical role in cardiac repolarization, and decreased I Kr is involved in increased cardiac arrhythmogenicity. Stimulation of α 1A -adrenoreceptors or angiotensin II AT 1 receptors is known to inhibit I Kr via PKC. Here, we have identified the PKC isoenzymes mediating the inhibition of I Kr by activation of these two different GPCRs. The whole-cell patch-clamp technique was used to record I Kr in guinea pig cardiomyocytes and HEK293 cells co-transfected with hERG and α 1A -adrenoreceptor or AT 1 receptor genes. A broad spectrum PKC inhibitor Gö6983 (not inhibiting PKCε), a selective cPKC inhibitor Gö6976 and a PKCα-specific inhibitor peptide, blocked the inhibition of I Kr by the α 1A -adrenoreceptor agonist A61603. However, these inhibitors did not affect the reduction of I Kr by activation of AT 1 receptors, whereas the PKCε-selective inhibitor peptide did block the effect. The effects of angiotensin II and the PKCε activator peptide were inhibited in mutant hERG channels in which 17 of the 18 PKC phosphorylation sites were deleted, whereas a deletion of the N-terminus of the hERG channels selectively prevented the inhibition elicited by A61603 and the cPKC activator peptide. Our results indicated that inhibition of I Kr by activation of α 1A -adrenoreceptors or AT 1 receptors were mediated by PKCα and PKCε isoforms respectively, through different molecular mechanisms. © 2017 The British Pharmacological Society.

  10. C1 esterase inhibitor

    MedlinePlus

    ... important in testing for autoimmune diseases, especially systemic lupus erythematosus . Low levels of C1-INH can lead to a condition called angioedema . Angioedema results in sudden swelling of the tissues of the ...

  11. Molecular cloning of a cysteine proteinase cDNA from the cotton boll weevil Anthonomus grandis (Coleoptera: Curculionidae).

    PubMed

    De Oliveira Neto, Osmundo Brilhante; Batista, João Aguiar Nogueira; Rigden, Daniel John; Franco, Octávio Luiz; Fragoso, Rodrigo Rocha; Monteiro, Ana Carolina Santos; Monnerat, Rose Gomes; Grossi-De-Sa, Maria Fátima

    2004-06-01

    The cotton boll weevil (Anthonomus grandis) causes severe cotton crop losses in North and South America. This report describes the presence of cysteine proteinase activity in the cotton boll weevil. Cysteine proteinase inhibitors from different sources were assayed against total A. grandis proteinases but, unexpectedly, no inhibitor tested was particularly effective. In order to screen for active inhibitors against the boll weevil, a cysteine proteinase cDNA (Agcys1) was isolated from A. grandis larvae using degenerate primers and rapid amplification of cDNA ends (RACE) techniques. Sequence analysis showed significant homologies with other insect cysteine proteinases. Northern blot analysis indicated that the mRNA encoding the proteinase was transcribed mainly in the gut of larvae. No mRNA was detected in neonatal larvae, pupae, or in the gut of the adult insect, suggesting that Agcys1 is an important cysteine proteinase for larvae digestion. The isolated gene will facilitate the search for highly active inhibitors towards boll weevil larvae that may provide a new opportunity to control this important insect pest.

  12. Microwave-assisted synthesis of 3-aminobenzo[b]thiophene scaffolds for the preparation of kinase inhibitors.

    PubMed

    Bagley, Mark C; Dwyer, Jessica E; Molina, Maria D Beltran; Rand, Alexander W; Rand, Hayley L; Tomkinson, Nicholas C O

    2015-06-28

    Microwave irradiation of 2-halobenzonitriles and methyl thioglycolate in the presence of triethylamine in DMSO at 130 °C provides rapid access to 3-aminobenzo[b]thiophenes in 58-96% yield. This transformation has been applied in the synthesis of the thieno[2,3-b]pyridine core motif of LIMK1 inhibitors, the benzo[4,5]thieno[3,2-e][1,4]diazepin-5(2H)-one scaffold of MK2 inhibitors and a benzo[4,5]thieno[3,2-d]pyrimidin-4-one inhibitor of the PIM kinases.

  13. Sweet Taste Receptor Expressed in Pancreatic β-Cells Activates the Calcium and Cyclic AMP Signaling Systems and Stimulates Insulin Secretion

    PubMed Central

    Nakagawa, Yuko; Nagasawa, Masahiro; Yamada, Satoko; Hara, Akemi; Mogami, Hideo; Nikolaev, Viacheslav O.; Lohse, Martin J.; Shigemura, Noriatsu; Ninomiya, Yuzo; Kojima, Itaru

    2009-01-01

    Background Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. Methodology/Principal Findings The expression of the sweet taste receptor was determined by RT–PCR and immunohistochemistry. Changes in cytoplasmic Ca2+ ([Ca2+]c) and cAMP ([cAMP]c) were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca2+]c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5)-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca2+]c response. The effect of sucralose on [Ca2+]c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a Gq inhibitor. Sucralose also induced sustained elevation of [cAMP]c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. Conclusions Sweet taste receptor is expressed in β-cells, and activation of this receptor induces insulin secretion by Ca2+ and cAMP-dependent mechanisms. PMID:19352508

  14. Short-chain C6 ceramide sensitizes AT406-induced anti-pancreatic cancer cell activity.

    PubMed

    Zhao, Xiaoguang; Sun, Baoyou; Zhang, Jingjing; Zhang, Ruishen; Zhang, Qing

    2016-10-14

    Our previous study has shown that AT406, a first-in-class small molecular antagonist of IAPs (inhibitor of apoptosis proteins), inhibits pancreatic cancer cell proliferation in vitro and in vivo. The aim of this research is to increase AT406's sensitivity by adding short-chain C6 ceramide. We show that co-treatment of C6 ceramide dramatically potentiated AT406-induced caspase/apoptosis activation and cytotoxicity in established (Panc-1 and Mia-PaCa-2 lines) and primary human pancreatic cancer cells. Reversely, caspase inhibitors largely attenuated C6 ceramide plus AT406-induced above cancer cell death. Molecularly, C6 ceramide downregulated Bcl-2 to increase AT406's sensitivity in pancreatic cancer cells. Intriguingly, C6 ceramide-mediated AT406 sensitization was nullified with Bcl-2 shRNA knockdown or pretreatment of the Bcl-2 inhibitor ABT-737. In vivo, liposomal C6 ceramide plus AT406 co-administration dramatically inhibited Panc-1 xenograft tumor growth in severe combined immunodeficient (SCID) mice. The combined anti-tumor activity was significantly more potent than either single treatment. Expressions of IAPs (cIAP1/XIAP) and Bcl-2 were downregulated in Panc-1 xenografts with the co-administration. Together, we demonstrate that C6 ceramide sensitizes AT406-mediated anti-pancreatic cancer cell activity possibly via downregulating Bcl-2. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells

    PubMed Central

    The, Inge; Ruijtenberg, Suzan; Bouchet, Benjamin P.; Cristobal, Alba; Prinsen, Martine B. W.; van Mourik, Tim; Koreth, John; Xu, Huihong; Heck, Albert J. R.; Akhmanova, Anna; Cuppen, Edwin; Boxem, Mike; Muñoz, Javier; van den Heuvel, Sander

    2015-01-01

    Cyclin-dependent kinases 4 and 6 (CDK4/6) in complex with D-type cyclins promote cell cycle entry. Most human cancers contain overactive CDK4/6-cyclin D, and CDK4/6-specific inhibitors are promising anti-cancer therapeutics. Here, we investigate the critical functions of CDK4/6-cyclin D kinases, starting from an unbiased screen in the nematode Caenorhabditis elegans. We found that simultaneous mutation of lin-35, a retinoblastoma (Rb)-related gene, and fzr-1, an orthologue to the APC/C co-activator Cdh1, completely eliminates the essential requirement of CDK4/6-cyclin D (CDK-4/CYD-1) in C. elegans. CDK-4/CYD-1 phosphorylates specific residues in the LIN-35 Rb spacer domain and FZR-1 amino terminus, resembling inactivating phosphorylations of the human proteins. In human breast cancer cells, simultaneous knockdown of Rb and FZR1 synergistically bypasses cell division arrest induced by the CDK4/6-specific inhibitor PD-0332991. Our data identify FZR1 as a candidate CDK4/6-cyclin D substrate and point to an APC/CFZR1 activity as an important determinant in response to CDK4/6-inhibitors. PMID:25562820

  16. C1 Inhibitor in Acute Antibody-Mediated Rejection Nonresponsive to Conventional Therapy in Kidney Transplant Recipients: A Pilot Study.

    PubMed

    Viglietti, D; Gosset, C; Loupy, A; Deville, L; Verine, J; Zeevi, A; Glotz, D; Lefaucheur, C

    2016-05-01

    Complement inhibitors have not been thoroughly evaluated in the treatment of acute antibody-mediated rejection (ABMR). We performed a prospective, single-arm pilot study to investigate the potential effects and safety of C1 inhibitor (C1-INH) Berinert added to high-dose intravenous immunoglobulin (IVIG) for the treatment of acute ABMR that is nonresponsive to conventional therapy. Kidney recipients with nonresponsive active ABMR and acute allograft dysfunction were enrolled between April 2013 and July 2014 and received C1-INH and IVIG for 6 months (six patients). The primary end point was the change in eGFR at 6 months after inclusion (M+6). Secondary end points included the changes in histology and DSA characteristics and adverse events as evaluated at M+6. All patients showed an improvement in eGFR between inclusion and M+6: from 38.7 ± 17.9 to 45.2 ± 21.3 mL/min/1.73 m(2) (p = 0.0277). There was no change in histological features, except a decrease in the C4d deposition rate from 5/6 to 1/6 (p = 0.0455). There was a change in DSA C1q status from 6/6 to 1/6 positive (p = 0.0253). One deep venous thrombosis was observed. In a secondary analysis, C1-INH patients were compared with a similar historical control group (21 patients). C1-INH added to IVIG is safe and may improve allograft function in kidney recipients with nonresponsive acute ABMR. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  17. Absolute configuration of acremoxanthone C, a potent calmodulin inhibitor from Purpureocillium lilacinum.

    PubMed

    Madariaga-Mazón, Abraham; González-Andrade, Martín; González, María Del Carmen; Glenn, Anthony E; Cerda-García-Rojas, Carlos M; Mata, Rachel

    2013-08-23

    Bioassay-guided fractionation of an extract prepared from the culture medium and mycelium of Purpureocillium lilacinum allowed the isolation of two calmodulin (CaM) inhibitors, namely, acremoxanthone C (1) and acremonidin A (2). The absolute configuration of 1 was established as 2R, 3R, 1'S, 11'S, and 14'R through extensive NMR spectroscopy and molecular modeling calculations at the DFT B3LYP/DGDZVP level, which included the comparison between theoretical and experimental specific rotation, ³J(C,H), and ³J(H,H) values. Compounds 1 and 2 bind to the human calmodulin (hCaM) biosensor hCaM M124C-mBBr, with dissociation constants (Kd) of 18.25 and 19.40 nM, respectively, 70-fold higher than that of chlorpromazine (Kd = 1.24 μM), used as positive control. Docking analysis using AutoDock 4.2 predicted that 1 and 2 bind to CaM at a similar site to that which KAR-2 binds, which is unusual. Furthermore, a novel, sensible, and specific fluorescent biosensor of hCaM, i.e., hCaM T110C-mBBr, was constructed; this device is labeled at a site where classical inhibitors do not interact and was successfully applied to measure the interaction of 1 with CaM. This is the first report of xanthone-anthraquinone heterodimers in species of Paecilomyces or Purpureocillium genera.

  18. Anti-PD-L1 atezolizumab-Induced Autoimmune Diabetes: a Case Report and Review of the Literature.

    PubMed

    Hickmott, Laura; De La Peña, Hugo; Turner, Helen; Ahmed, Fathelrahman; Protheroe, Andrew; Grossman, Ashley; Gupta, Avinash

    2017-04-01

    Programmed cell death-1 and programmed death ligand 1 (PD-1/PD-L1) inhibitors trigger an immune-mediated anti-tumour response by promoting the activation of cytotoxic T lymphocytes. Although proven to be highly effective in the treatment of several malignancies they can induce significant immune-related adverse events (irAEs) including endocrinopathies, most commonly hypophysitis and thyroid dysfunction, and rarely autoimmune diabetes. Here we present the first case report of a patient with a primary diagnosis of urothelial cancer developing PD-L1 inhibitor-induced autoimmune diabetes. A euglycemic 57 year old male presented to clinic with dehydration after the fifth cycle of treatment with the novel PD-L1 inhibitor atezolizumab. Blood tests demonstrated rapid onset hyperglycaemia (BM 24 mmol/L), ketosis and a low C-peptide level (0.65 ng/mL) confirming the diagnosis of type 1 diabetes. He responded well to insulin therapy and was discharged with stable blood glucose levels. Due to the widening use of PD-1/PD-L1 inhibitors in cancer treatment clinicians need to be aware of this rare yet treatable irAE. Given the morbidity and mortality associated with undiagnosed autoimmune diabetes we recommend routine HbA1c and plasma glucose testing in all patients prior to and during treatment with PD-1/PD-L1 inhibitors until more evidence has accumulated on identifying those patients with a pre-treatment risk of such irAEs.

  19. Inhibitors of Fatty Acid Synthesis Induce PPAR α -Regulated Fatty Acid β -Oxidative Genes: Synergistic Roles of L-FABP and Glucose.

    PubMed

    Huang, Huan; McIntosh, Avery L; Martin, Gregory G; Petrescu, Anca D; Landrock, Kerstin K; Landrock, Danilo; Kier, Ann B; Schroeder, Friedhelm

    2013-01-01

    While TOFA (acetyl CoA carboxylase inhibitor) and C75 (fatty acid synthase inhibitor) prevent lipid accumulation by inhibiting fatty acid synthesis, the mechanism of action is not simply accounted for by inhibition of the enzymes alone. Liver fatty acid binding protein (L-FABP), a mediator of long chain fatty acid signaling to peroxisome proliferator-activated receptor- α (PPAR α ) in the nucleus, was found to bind TOFA and its activated CoA thioester, TOFyl-CoA, with high affinity while binding C75 and C75-CoA with lower affinity. Binding of TOFA and C75-CoA significantly altered L-FABP secondary structure. High (20 mM) but not physiological (6 mM) glucose conferred on both TOFA and C75 the ability to induce PPAR α transcription of the fatty acid β -oxidative enzymes CPT1A, CPT2, and ACOX1 in cultured primary hepatocytes from wild-type (WT) mice. However, L-FABP gene ablation abolished the effects of TOFA and C75 in the context of high glucose. These effects were not associated with an increased cellular level of unesterified fatty acids but rather by increased intracellular glucose. These findings suggested that L-FABP may function as an intracellular fatty acid synthesis inhibitor binding protein facilitating TOFA and C75-mediated induction of PPAR α in the context of high glucose at levels similar to those in uncontrolled diabetes.

  20. Inhibitors of Fatty Acid Synthesis Induce PPARα-Regulated Fatty Acid β-Oxidative Genes: Synergistic Roles of L-FABP and Glucose

    PubMed Central

    Huang, Huan; McIntosh, Avery L.; Martin, Gregory G.; Petrescu, Anca D.; Landrock, Kerstin K.; Landrock, Danilo; Kier, Ann B.; Schroeder, Friedhelm

    2013-01-01

    While TOFA (acetyl CoA carboxylase inhibitor) and C75 (fatty acid synthase inhibitor) prevent lipid accumulation by inhibiting fatty acid synthesis, the mechanism of action is not simply accounted for by inhibition of the enzymes alone. Liver fatty acid binding protein (L-FABP), a mediator of long chain fatty acid signaling to peroxisome proliferator-activated receptor-α (PPARα) in the nucleus, was found to bind TOFA and its activated CoA thioester, TOFyl-CoA, with high affinity while binding C75 and C75-CoA with lower affinity. Binding of TOFA and C75-CoA significantly altered L-FABP secondary structure. High (20 mM) but not physiological (6 mM) glucose conferred on both TOFA and C75 the ability to induce PPARα transcription of the fatty acid β-oxidative enzymes CPT1A, CPT2, and ACOX1 in cultured primary hepatocytes from wild-type (WT) mice. However, L-FABP gene ablation abolished the effects of TOFA and C75 in the context of high glucose. These effects were not associated with an increased cellular level of unesterified fatty acids but rather by increased intracellular glucose. These findings suggested that L-FABP may function as an intracellular fatty acid synthesis inhibitor binding protein facilitating TOFA and C75-mediated induction of PPARα in the context of high glucose at levels similar to those in uncontrolled diabetes. PMID:23533380

Top