Science.gov

Sample records for c1 light chain

  1. Structural And Biochemical Studies of Botulinum Neurotoxin Serotype C1 Light Chain Protease: Implications for Dual Substrate Specificity

    SciTech Connect

    Jin, R.; Sikorra, S.; Stegmann, C.M.; Pich, A.; Binz, T.; Brunger, A.T.

    2009-06-01

    Clostridial neurotoxins are the causative agents of the neuroparalytic disease botulism and tetanus. They block neurotransmitter release through specific proteolysis of one of the three soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) SNAP-25, syntaxin, and synaptobrevin, which constitute part of the synaptic vesicle fusion machinery. The catalytic component of the clostridial neurotoxins is their light chain (LC), a Zn2+ endopeptidase. There are seven structurally and functionally related botulinum neurotoxins (BoNTs), termed serotype A to G, and tetanus neurotoxin (TeNT). Each of them exhibits unique specificity for their target SNAREs and peptide bond(s) they cleave. The mechanisms of action for substrate recognition and target cleavage are largely unknown. Here, we report structural and biochemical studies of BoNT/C1-LC, which is unique among BoNTs in that it exhibits dual specificity toward both syntaxin and SNAP-25. A distinct pocket (S1') near the active site likely achieves the correct register for the cleavage site by only allowing Ala as the P1' residue for both SNAP-25 and syntaxin. Mutations of this SNAP-25 residue dramatically reduce enzymatic activity. The remote a-exosite that was previously identified in the complex of BoNT/A-LC and SNAP-25 is structurally conserved in BoNT/C1. However, mutagenesis experiments show that the a-exosite of BoNT/C1 plays a less stringent role in substrate discrimination in comparison to that of BoNT/A, which could account for its dual substrate specificity.

  2. Serum Free Light Chains

    MedlinePlus

    ... and services. Advertising & Sponsorship: Policy | Opportunities Serum Free Light Chains Share this page: Was this page helpful? Also known as: Free Light Chains; SFLC; FLC; Kappa and Lambda Free Light ...

  3. Clathrin heavy chain, light chain interactions.

    PubMed Central

    Winkler, F K; Stanley, K K

    1983-01-01

    Purified pig brain clathrin can be reversibly dissociated and separated into heavy chain trimers and light chains in the presence of non-denaturing concentrations of the chaotrope thiocyanate. The isolated heavy chain trimers reassemble into regular polygonal cage structures in the absence of light chains. The light chain fraction can be further resolved into its two components L alpha and L beta which give different one-dimensional peptide maps. Radiolabelled light chains bind with high affinity (KD < 10(-10) M) to heavy chain trimers, to heavy chain cages and to a 110,000 mol. wt. tryptic fragment of the heavy chain. Both light chains compete with each other and with light chains from other sources for the same binding sites on heavy chains and c.d. spectroscopy shows that the two pig brain light chains possess very similar structures. We conclude that light chains from different sources, despite some heterogeneity, have a highly conserved, high affinity binding site on the heavy chain but are not essential for the formation of regular cage structures. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 8. PMID:10872336

  4. Neurofilament light chain

    PubMed Central

    Lu, Ching-Hua; Macdonald-Wallis, Corrie; Gray, Elizabeth; Pearce, Neil; Petzold, Axel; Norgren, Niklas; Giovannoni, Gavin; Fratta, Pietro; Sidle, Katie; Fish, Mark; Orrell, Richard; Howard, Robin; Talbot, Kevin; Greensmith, Linda; Kuhle, Jens

    2015-01-01

    Objective: To test blood and CSF neurofilament light chain (NfL) levels in relation to disease progression and survival in amyotrophic lateral sclerosis (ALS). Methods: Using an electrochemiluminescence immunoassay, NfL levels were measured in samples from 2 cohorts of patients with sporadic ALS and healthy controls, recruited in London (ALS/control, plasma: n = 103/42) and Oxford (ALS/control, serum: n = 64/36; paired CSF: n = 38/20). NfL levels in patients were measured at regular intervals for up to 3 years. Change in ALS Functional Rating Scale–Revised score was used to assess disease progression. Survival was evaluated using Cox regression and Kaplan–Meier analysis. Results: CSF, serum, and plasma NfL discriminated patients with ALS from healthy controls with high sensitivity (97%, 89%, 90%, respectively) and specificity (95%, 75%, 71%, respectively). CSF NfL was highly correlated with serum levels (r = 0.78, p < 0.0001). Blood NfL levels were approximately 4 times as high in patients with ALS compared with controls in both cohorts, and maintained a relatively constant expression during follow-up. Blood NfL levels at recruitment were strong, independent predictors of survival. The highest tertile of blood NfL at baseline had a mortality hazard ratio of 3.91 (95% confidence interval 1.98–7.94, p < 0.001). Conclusion: Blood-derived NfL level is an easily accessible biomarker with prognostic value in ALS. The individually relatively stable levels longitudinally offer potential for NfL as a pharmacodynamic biomarker in future therapeutic trials. Classification of evidence: This report provides Class III evidence that the NfL electrochemiluminescence immunoassay accurately distinguishes patients with sporadic ALS from healthy controls. PMID:25934855

  5. The serine proteinase chain of human complement component C1s. Cyanogen bromide cleavage and N-terminal sequences of the fragments.

    PubMed Central

    Carter, P E; Dunbar, B; Fothergill, J E

    1983-01-01

    Human complement component C1s was purified from fresh blood by conventional methods of precipitation and chromatography. The single-chain zymogen form was activated by treatment with C1r. Reduction and carboxymethylation then allowed the light chain and heavy chain to be separated on DEAE-Sepharose CL-6B in 8 M-urea. Liquid-phase sequencing of the light chain determined 50 residues from the N-terminus. CNBr-cleavage fragments of the light chain were separated by high-pressure liquid chromatography on gel-permeation and reverse-phase columns. N-Terminal sequencing of these fragments determined the order of a further 138 residues, giving a total of 188 residues or about 75% of the light chain. Seven of these eight sequences could be readily aligned with the amino acid sequences of other serine proteinases. The typical serine proteinase active-site residues are clearly conserved in C1s, and the specificity-related side chain of the substrate-binding pocket is aspartic acid, as in trypsin, consistent with the proteolytic action of C1s on C4 at an arginine residue. Somewhat surprisingly, when the C1s sequence is compared with that of complement subcomponent C1r, the percentage difference (59%) is approximately the same as that found between the other mammalian serine proteinases (56-71%). PMID:6362661

  6. Atypical immunoglobulin light chain amyloidosis

    PubMed Central

    Wu, Xia; Feng, Jun; Cao, Xinxin; Zhang, Lu; Zhou, Daobin; Li, Jian

    2016-01-01

    Abstract Background: Primary immunoglobulin light chain amyloidosis (AL amyloidosis) is a plasma cell disorder which mainly affects heart, kidneys, liver, and peripheral nervous system. Cases of atypical AL amyloidosis presented as spontaneous vertebral compression fractures have been rarely reported, and data about the management and clinical outcomes of the patients are scarce. Methods: Herein, we present 3 new cases of AL amyloidosis with spontaneous vertebral compression fracture and review 13 cases retrieved from the literature. Results: Moreover, we observed overrepresentations of liver involvement and bone marrow involvement in AL amyloidosis with spontaneous vertebral compression fracture. Conclusion: We believe that better awareness of the rare clinical presentation as spontaneous vertebral compression fracture of AL amyloidosis can facilitate earlier diagnosis and earlier treatment. PMID:27603350

  7. Complete amino acid sequence of the A chain of human complement-classical-pathway enzyme C1r.

    PubMed Central

    Arlaud, G J; Willis, A C; Gagnon, J

    1987-01-01

    The amino acid sequence of human C1r A chain was determined, from sequence analysis performed on fragments obtained from C1r autolytic cleavage, cleavage of methionyl bonds, tryptic cleavages at arginine and lysine residues, and cleavages by staphylococcal proteinase. The polypeptide chain has an N-terminal serine residue and contains 446 amino acid residues (Mr 51,200). The sequence data allow chemical characterization of fragments alpha (positions 1-211), beta (positions 212-279) and gamma (positions 280-446) yielded from C1r autolytic cleavage, and identification of the two major cleavage sites generating these fragments. Position 150 of C1r A chain is occupied by a modified amino acid residue that, upon acid hydrolysis, yields erythro-beta-hydroxyaspartic acid, and that is located in a sequence homologous to the beta-hydroxyaspartic acid-containing regions of Factor IX, Factor X, protein C and protein Z. Sequence comparison reveals internal homology between two segments (positions 10-78 and 186-257). Two carbohydrate moieties are attached to the polypeptide chain, both via asparagine residues at positions 108 and 204. Combined with the previously determined sequence of C1r B chain [Arlaud & Gagnon (1983) Biochemistry 22, 1758-1764], these data give the complete sequence of human C1r. PMID:3036070

  8. Immunoglobulin light chains, glycosaminoglycans and amyloid.

    SciTech Connect

    Stevens, F. J.; Kisilevsky, R.; Biosciences Division; Queen's Univ.

    2000-03-01

    Immunoglobulin light chains are the precursor proteins for fibrils that are formed during primary amyloidosis and in amyloidosis associated with multiple myeloma. As found for the approximately 20 currently described forms of focal, localized, or systemic amyloidoses, light chain-related fibrils extracted from physiological deposits are invariably associated with glycosaminoglycans, predominantly heparan sulfate. Other amyloid-related proteins are either structurally normal, such as g2-microglobulin and islet amyloid polypeptide, fragments of normal proteins such as serum amyloid A protein or the precursor protein of the g peptide involved in Alzheimer's disease, or are inherited forms of single amino acid variants of a normal protein such as found in the familial forms of amyloid associated with transthyretin. In contrast, the primary structures of light chains involved in fibril formation exhibit extensive mutational diversity rendering some proteins highly amyloidogenic and others non-pathological. The interactions between light chains and glycosaminoglycans are also affected by amino acid variation and may influence the clinical course of disease by enhancing fibril stability and contributing to resistance to protease degradation. Relatively little is currently known about the mechanisms by which glycosaminoglycans interact with light chains and light-chain fibrils. It is probable that future studies of this uniquely diverse family of proteins will continue o shed light on the processes of amyloidosis, and contribute as well to a greater understanding of the normal physiological roles of glycosaminoglycans.

  9. Red light-controlled polymerase chain reaction.

    PubMed

    Meyer, A; Schikora, Margot; Mokhir, A

    2015-09-04

    A 23-mer DNA "caged" at its 3'-terminus with a 9-anthracenyl moiety was prepared. It can be uncaged in the presence of photosensitizer (In(pyropheophorbide-a)chloride)-containing DNAs (9-12 mers) and upon irradiation with red light. This mixture of DNAs was used to design red-light controlled polymerase chain reaction.

  10. Structural and Functional Characterization of a Single-Chain Form of the Recognition Domain of Complement Protein C1q

    PubMed Central

    Moreau, Christophe; Bally, Isabelle; Chouquet, Anne; Bottazzi, Barbara; Ghebrehiwet, Berhane; Gaboriaud, Christine; Thielens, Nicole

    2016-01-01

    Complement C1q is a soluble pattern recognition molecule comprising six heterotrimeric subunits assembled from three polypeptide chains (A–C). Each heterotrimer forms a collagen-like stem prolonged by a globular recognition domain. These recognition domains sense a wide variety of ligands, including pathogens and altered-self components. Ligand recognition is either direct or mediated by immunoglobulins or pentraxins. Multivalent binding of C1q to its targets triggers immune effector mechanisms mediated via its collagen-like stems. The induced immune response includes activation of the classical complement pathway and enhancement of the phagocytosis of the recognized target. We report here, the first production of a single-chain recombinant form of human C1q globular region (C1q-scGR). The three monomers have been linked in tandem to generate a single continuous polypeptide, based on a strategy previously used for adiponectin, a protein structurally related to C1q. The resulting C1q-scGR protein was produced at high yield in stably transfected 293-F mammalian cells. Recombinant C1q-scGR was correctly folded, as demonstrated by its X-ray crystal structure solved at a resolution of 1.35 Å. Its interaction properties were assessed by surface plasmon resonance analysis using the following physiological C1q ligands: the receptor for C1q globular heads, the long pentraxin PTX3, calreticulin, and heparin. The 3D structure and the binding properties of C1q-scGR were similar to those of the three-chain fragment generated by collagenase digestion of serum-derived C1q. Comparison of the interaction properties of the fragments with those of native C1q provided insights into the avidity component associated with the hexameric assembly of C1q. The interest of this functional recombinant form of the recognition domains of C1q in basic research and its potential biomedical applications are discussed. PMID:26973654

  11. Structural and Functional Characterization of a Single-Chain Form of the Recognition Domain of Complement Protein C1q.

    PubMed

    Moreau, Christophe; Bally, Isabelle; Chouquet, Anne; Bottazzi, Barbara; Ghebrehiwet, Berhane; Gaboriaud, Christine; Thielens, Nicole

    2016-01-01

    Complement C1q is a soluble pattern recognition molecule comprising six heterotrimeric subunits assembled from three polypeptide chains (A-C). Each heterotrimer forms a collagen-like stem prolonged by a globular recognition domain. These recognition domains sense a wide variety of ligands, including pathogens and altered-self components. Ligand recognition is either direct or mediated by immunoglobulins or pentraxins. Multivalent binding of C1q to its targets triggers immune effector mechanisms mediated via its collagen-like stems. The induced immune response includes activation of the classical complement pathway and enhancement of the phagocytosis of the recognized target. We report here, the first production of a single-chain recombinant form of human C1q globular region (C1q-scGR). The three monomers have been linked in tandem to generate a single continuous polypeptide, based on a strategy previously used for adiponectin, a protein structurally related to C1q. The resulting C1q-scGR protein was produced at high yield in stably transfected 293-F mammalian cells. Recombinant C1q-scGR was correctly folded, as demonstrated by its X-ray crystal structure solved at a resolution of 1.35 Å. Its interaction properties were assessed by surface plasmon resonance analysis using the following physiological C1q ligands: the receptor for C1q globular heads, the long pentraxin PTX3, calreticulin, and heparin. The 3D structure and the binding properties of C1q-scGR were similar to those of the three-chain fragment generated by collagenase digestion of serum-derived C1q. Comparison of the interaction properties of the fragments with those of native C1q provided insights into the avidity component associated with the hexameric assembly of C1q. The interest of this functional recombinant form of the recognition domains of C1q in basic research and its potential biomedical applications are discussed.

  12. Light chain amyloidosis: Where are the light chains from and how they play their pathogenic role?

    PubMed

    Zhang, Chunlan; Huang, Xufei; Li, Jian

    2017-03-08

    Amyloid light-chain (AL) amyloidosis is a plasma-cell dyscrasia, as well as the most common type of systematic amyloidosis. Pathogenic plasma cells that have distinct cytogenetic and molecular properties secrete an excess amount of amyloidogenic light chains. Assisted by post-translational modifications, matrix components, and other environmental factors, these light chains undergo a conformational change that triggers the formation of amyloid fibrils that overrides the extracellular protein quality control system. Moreover, the amyloidogenic light-chain itself is cytotoxic. As a consequence, organ dysfunction is caused by both organ architecture disruption and the direct cytotoxic effect of amyloidogenic light chains. Here, we reviewed the molecular mechanisms underlying this sequence of events that ultimately leads to AL amyloidosis and also discuss current in vitro and in vivo models, as well as relevant novel therapeutic approaches.

  13. Structural repertoire of immunoglobulin λ light chains.

    PubMed

    Chailyan, Anna; Marcatili, Paolo; Cirillo, Davide; Tramontano, Anna

    2011-05-01

    The immunoglobulin λ isotype is present in nearly all vertebrates and plays an important role in the human immune system. Despite its importance, few systematic studies have been performed to analyze the structural conformation of its variable regions, contrary to what is the case for κ and heavy chains. We show here that an analysis of the structures of λ chains allows the definition of a discrete set of recurring conformations (canonical structures) of their hypervariable loops and, most importantly, the identification of sequence constraints that can be used to predict their structure. We also show that the structural repertoire of λ chains is different and more varied than that of the κ chains, consistently with the current view of the involvement of the two major light-chain families in complementary strategies of the immune system to ensure a fine tuning between diversity and stability in antigen recognition.

  14. C1orf163/RESA1 is a novel mitochondrial intermembrane space protein connected to respiratory chain assembly.

    PubMed

    Kozjak-Pavlovic, Vera; Prell, Florian; Thiede, Bernd; Götz, Monika; Wosiek, Dominik; Ott, Christine; Rudel, Thomas

    2014-02-20

    Oxidative phosphorylation (OXPHOS) in mitochondria takes place at the inner membrane, which folds into numerous cristae. The stability of cristae depends, among other things, on the mitochondrial intermembrane space bridging complex. Its components include inner mitochondrial membrane protein mitofilin and outer membrane protein Sam50. We identified a conserved, uncharacterized protein, C1orf163 [SEL1 repeat containing 1 protein (SELRC1)], as one of the proteins significantly reduced after the knockdown of Sam50 and mitofilin. We show that C1orf163 is a mitochondrial soluble intermembrane space protein. Sam50 depletion affects moderately the import and assembly of C1orf163 into two protein complexes of approximately 60kDa and 150kDa. We observe that the knockdown of C1orf163 leads to reduction of levels of proteins belonging to the OXPHOS complexes. The activity of complexes I and IV is reduced in C1orf163-depleted cells, and we observe the strongest defects in the assembly of complex IV. Therefore, we propose C1orf163 to be a novel factor important for the assembly of respiratory chain complexes in human mitochondria and suggest to name it RESA1 (for RESpiratory chain Assembly 1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Myosin light chains: Teaching old dogs new tricks

    PubMed Central

    Heissler, Sarah M; Sellers, James R

    2014-01-01

    The myosin holoenzyme is a multimeric protein complex consisting of heavy chains and light chains. Myosin light chains are calmodulin family members which are crucially involved in the mechanoenzymatic function of the myosin holoenzyme. This review examines the diversity of light chains within the myosin superfamily, discusses interactions between the light chain and the myosin heavy chain as well as regulatory and structural functions of the light chain as a subunit of the myosin holoenzyme. It covers aspects of the myosin light chain in the localization of the myosin holoenzyme, protein-protein interactions and light chain binding to non-myosin binding partners. Finally, this review challenges the dogma that myosin regulatory and essential light chain exclusively associate with conventional myosin heavy chains while unconventional myosin heavy chains usually associate with calmodulin. PMID:26155737

  16. Free light chains: Eclectic multipurpose biomarker.

    PubMed

    Basile, Umberto; Gulli, Francesca; Gragnani, Laura; Napodano, Cecilia; Pocino, Krizia; Rapaccini, Gian Ludovico; Mussap, Michele; Zignego, Anna Linda

    2017-09-18

    The production of antibodies is accompanied by a slight excess of synthesis of κ and λ immunoglobulin light chains; small amounts of them are released in the peripheral blood and can also be found in various body fluids, such as synovial fluid, cerebrospinal fluid, urine and saliva. They are rapidly filtered by the glomerulus and >99% are reabsorbed from the cells of the proximal convoluted tubule, making them present in the urine in only trace amounts. The production of an excess of protein without a reason or a specific function in a biological system is rare. Free light chains, considered for years a waste product of Ig synthesis, are currently known to be very active molecules, able to bind antigens as well as whole immunoglobulin and helping to develop specific antibody affinity. The ability of free light chains to activate mast cells and then become an active part of the pathogenic mechanisms of chronic inflammatory diseases has increased interest in their clinical use, both as an attractive therapeutic target or as a biochemical marker of disease evolution or remission. This is an overview of relevant scientific interest that immunoglobulin light chains κ and λ have attracted over the years, a report on the progress in knowledge about their structure and function, with a special focus on their biological meaning and potential clinical utility in different diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Systemic Light Chain Amyloidosis Mimicking Rheumatic Disorders

    PubMed Central

    2016-01-01

    Secondary amyloidosis can complicate chronic inflammatory autoimmune diseases. However, the clinical findings of primary amyloidosis may mimic those of primary rheumatologic disorders. We present the case of a 53-year-old woman who presented with dystrophic nail changes, dry eyes, bilateral carpal tunnel syndrome, Raynaud's phenomenon, and high titer positive nucleolar pattern antinuclear antibody. She was initially misdiagnosed as having Undifferentiated Connective Tissue Disease (UCTD). On further workup, she was eventually diagnosed with lambda light chain systemic amyloidosis by abdominal fat pad biopsy. Her symptoms completely resolved after autologous stem cell transplantation. With this case, we would like to highlight the similarities in the clinical features between light chain amyloidosis and rheumatological disorders. We would also like to emphasize the importance of the prompt recognition of the clinical features of amyloidosis which are crucial to triggering appropriate diagnostic procedures, since early diagnosis is a key to improving outcomes in this disease with an otherwise poor prognosis. PMID:28042297

  18. Shared epitopes of avian immunoglobulin light chains.

    PubMed

    Benčina, Mateja; Cizelj, Ivanka; Berčič, Rebeka Lucijana; Narat, Mojca; Benčina, Dušan; Dovč, Peter

    2014-04-15

    Like all jawed vertebrates, birds (Aves) also produce antibodies i.e. immunoglobulins (Igs) as a defence mechanism against pathogens. Their Igs are composed of two identical heavy (H) and light (L) chains which are of lambda isotype. The L chain consists of variable (VL), joining (JL) and constant (CL) region. Using enzyme immunoassays (EIA) and two monoclonal antibodies (mAbs) (3C10 and CH31) to chicken L chain, we analysed their cross-reactivity with sera from 33 avian species belonging to nine different orders. Among Galliformes tested, mAbs 3C10 and CH31 reacted with L chains of chicken, turkey, four genera of pheasants, tragopan and peafowl, but not with sera of grey partridge, quail and Japanese quail. Immunoglobulins of guinea-fowl reacted only with mAb 3C10. Both mAbs reacted also with the L chain of Eurasian griffon (order Falconiformes) and domestic sparrow (order Passeriformes). Sera from six other orders of Aves did not react with either of the two mAbs. EIA using mAbs 3C10 and CH31 enabled detection of antibodies to major avian pathogens in sera of chickens, turkeys, pheasants, peafowl, Eurasian griffon and guinea-fowl (only with mAb 3C10). The N-terminal amino acid sequence of pheasant L chain (19 residues) was identical to that of chicken. Sequences of genes encoding the L chain constant regions of pheasants, turkey and partridge were determined and deposited in the public database (GenBank accession numbers: FJ 649651, FJ 649652 and FJ 649653, respectively). Among them, amino acid sequence of pheasants is the most similar to that of chicken (97% similarity), whereas those of turkey and partridge have greater similarity to each other (89%) than to any other avian L chain sequence. The characteristic deletion of two amino acids which is present in the L chain constant region in Galliformes has been most likely introduced to their L chain after their divergence from Anseriformes.

  19. Method for altering antibody light chain interactions

    DOEpatents

    Stevens, Fred J.; Stevens, Priscilla Wilkins; Raffen, Rosemarie; Schiffer, Marianne

    2002-01-01

    A method for recombinant antibody subunit dimerization including modifying at least one codon of a nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in the interface segment of the light polypeptide variable region, the charged amino acid having a first polarity; and modifying at least one codon of the nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in an interface segment of the heavy polypeptide variable region corresponding to a position in the light polypeptide variable region, the charged amino acid having a second polarity opposite the first polarity. Nucleic acid sequences which code for novel light chain proteins, the latter of which are used in conjunction with the inventive method, are also provided.

  20. Myeloma light chains are ligands for cubilin (gp280).

    PubMed

    Batuman, V; Verroust, P J; Navar, G L; Kaysen, J H; Goda, F O; Campbell, W C; Simon, E; Pontillon, F; Lyles, M; Bruno, J; Hammond, T G

    1998-08-01

    Although myeloma light chains are known to undergo receptor-mediated endocytosis in the kidney, the molecular identity of the receptor has not been characterized. We examined the interaction between cubilin (gp280) and four species of light chains isolated from the urine of patients with multiple myeloma. Four lines of evidence identify cubilin, a giant glycoprotein receptor, which is restricted in distribution to endocytic scavenger pathways and which has potent effects on endosomal trafficking, as a potentially physiologically relevant binding site for light chains: 1) light chains coeluted during immunoaffinity purification of cubilin; 2) polyclonal antisera to cubilin but not control sera, displaced human light chain binding from rat renal brush-border membranes; 3) cubilin bound to multiple species of light chains during surface plasmon resonance; 4) anti-cubilin antiserum interfered with light chain endocytosis by visceral yolk sac epithelial cells. However, both binding of light chains to brush-border membranes and endocytosis of light chains by yolk sac epithelial cells were only partially inhibited by anticubilin antibodies, suggesting presence of additional or alternate binding sites for light chains. Excess light chain had a potent inhibitory effect on endosomal fusion in vitro. Binding showed dose and time-dependent saturability with low-affinity, high-capacity equilibrium binding parameters. These data demonstrate that cubilin plays a role in the endocytosis and trafficking of light chains in renal proximal tubule cells.

  1. Update on treatment of light chain amyloidosis

    PubMed Central

    Mahmood, Shameem; Palladini, Giovanni; Sanchorawala, Vaishali; Wechalekar, Ashutosh

    2014-01-01

    Light chain amyloidosis is the most common type of amyloidosis as a consequence of protein misfolding of aggregates composed of amyloid fibrils. The clinical features are dependent on the organs involved, typically cardiac, renal, hepatic, peripheral and autonomic neuropathy and soft tissue. A tissue biopsy or fat aspirate is needed to confirm the presence/type of amyloid and prognostic tools are important in a risk stratified approach to treatment. Autologous stem cell transplant eligibility should be assessed at baseline, weighing the reversible or non-reversible contraindications, toxicity of treatment and chemotherapy alternatives available. Chemotherapy options include melphalan, thalidomide, bortezomib, lenalidomide, bendamustine in combination with dexamethasone. Many studies have explored these treatment modalities, with ongoing debate about the optimal first line and sequential treatment thereafter. Attaining a very good partial response or better is the treatment goal coupled with early assessment central to optimizing treatment. One major challenge remains increasing the awareness of this disease, frequently diagnosed late as the presenting symptoms mimic many other medical conditions. This review focuses on the treatments for light chain amyloidosis, how these treatments have evolved over the years, improved patient risk stratification, toxicities encountered and future directions. PMID:24497558

  2. Isolation of cardiac myosin light-chain isotypes by chromatofocusing. Comparison of human cardiac atrial light-chain 1 and foetal ventricular light-chain 1.

    PubMed

    Vincent, N D; Cummins, P

    1985-04-01

    Cardiac myosin light chain isotypes have been resolved using chromatofocusing, a new preparative column chromatographic technique. The method relies on production of narrow-range, shallow and stable pH gradients using ion-exchange resins and buffers with even buffering capacity over the required pH range. Light chains were resolved in order of decreasing isoelectric point in the pH range 5.2-4.5. Gradients of delta pH = 0.004-0.006/ml elution volume were achieved which were capable of resolving light chains with isoelectric point differences of only 0.03. Analytical isoelectric focusing of light chains in polyacrylamide gels could be used to predict the results of preparative chromatofocusing for method development. Chromatofocusing was capable of resolving human and bovine cardiac light chain 1 and 2 subunits, atrial (ALC) and ventricular (VLC) light chain isotypes and homologous VLC-2 and VLC-2* light chains. The technique was used to purify and resolve the human foetal ventricular light chain 1 (FLC-1) from adult ventricular light chain 1 (VLC-1) present in foetal ventricles and the atrial light chain 1 (ALC-1) in adult atria. Comparative peptide mapping studies and amino acid analyses were carried out on FLC-1 and ALC-1. No differences were detected between FLC-1 and ALC-1 using three different proteases and amino acid compositions were similar with the exception of glycine content. The studies indicate that FLC-1 and ALC-1 are homologous, and possibly identical, light chains. Comparison of human FLC-1/ALC-1 with VLC-1 suggested marked structural and chemical differences in these light chain isotypes, in particular in the contents of methionine, proline, lysine and alanine residues. Differences in the contents of these residues were also apparent in the corresponding bovine atrial and ventricular light chains [Wikman-Coffelt, J. & Srivastava, S. (1979) FEBS Lett. 106, 207-212]. The latter three residues are known to be rich in the N-termini of cardiac and

  3. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    SciTech Connect

    Josephson, Matthew P.; Sikkink, Laura A.; Penheiter, Alan R.; Burghardt, Thomas P.; Ajtai, Katalin

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant

  4. Binding of actinomycin C1 (D) and actinomin to base-modified oligonucleotide duplexes with parallel chain orientation.

    PubMed

    Li, Hong; Peng, Xiaohua; Leonard, Peter; Seela, Frank

    2006-06-15

    The binding of actinomycin D (C1, 1) and its analog actinomin (2) was studied on base-modified oligonucleotide duplexes with parallel chain orientation (ps) and with anti-parallel chains (aps) for comparison. Actinomycin D binds not only to aps duplexes containing guanine-cytosine base pairs but also to those incorporating modified bases such as 7-deazaguanine or its 6-deoxo derivative. For this, novel phosphoramidites were prepared. The new building block of 7-deaza-2'-deoxyguanosine is significantly more stable than the one currently used and allows normal oxidation conditions during solid-phase oligonucleotide synthesis. Actinomycin binds weakly to ps duplexes containing guanine-isocytosine base pairs but not to ps-DNA incorporating pairs of isoguanine-cytosine residues. On the contrary, the actinomycin D analog actinomin, which contains positively charged side chains instead of the chiral peptide rings, is strongly bound to both ps- and aps-DNA. Guanines, isoguanine, as well as other 7-deaza derivatives are accepted as nucleobases. Apparently, the pentapeptide lacton rings of actinomycin do not fit nicely into the groove of ps-DNA thereby reducing the binding strength of the antibiotic while the groove size of ps-DNA does not affect actinomin binding notably.

  5. Myosin, Transgelin, and Myosin Light Chain Kinase

    PubMed Central

    Léguillette, Renaud; Laviolette, Michel; Bergeron, Celine; Zitouni, Nedjma; Kogut, Paul; Solway, Julian; Kachmar, Linda; Hamid, Qutayba; Lauzon, Anne-Marie

    2009-01-01

    Rationale: Airway smooth muscle (SM) of patients with asthma exhibits a greater velocity of shortening (Vmax) than that of normal subjects, and this is thought to contribute to airway hyperresponsiveness. A greater Vmax can result from increased myosin activation. This has been reported in sensitized human airway SM and in models of asthma. A faster Vmax can also result from the expression of specific contractile proteins that promote faster cross-bridge cycling. This possibility has never been addressed in asthma. Objectives: We tested the hypothesis that the expression of genes coding for SM contractile proteins is altered in asthmatic airways and contributes to their increased Vmax. Methods: We quantified the expression of several genes that code for SM contractile proteins in mild allergic asthmatic and control human airway endobronchial biopsies. The function of these contractile proteins was tested using the in vitro motility assay. Measurements and Main Results: We observed an increased expression of the fast myosin heavy chain isoform, transgelin, and myosin light chain kinase in patients with asthma. Immunohistochemistry demonstrated the expression of these genes at the protein level. To address the functional significance of this overexpression, we purified tracheal myosin from the hyperresponsive Fisher rats, which also overexpress the fast myosin heavy chain isoform as compared with the normoresponsive Lewis rats, and found a faster rate of actin filament propulsion. Conversely, transgelin did not alter the rate of actin filament propulsion. Conclusions: Selective overexpression of airway smooth muscle genes in asthmatic airways leads to increased Vmax, thus contributing to the airway hyperresponsiveness observed in asthma. PMID:19011151

  6. Comparison of serum free light chain and urine electrophoresis for the detection of the light chain component of monoclonal immunoglobulins in light chain and intact immunoglobulin multiple myeloma.

    PubMed

    Dejoie, Thomas; Attal, Michel; Moreau, Philippe; Harousseau, Jean-Luc; Avet-Loiseau, Herve

    2016-03-01

    Response criteria for multiple myeloma are based upon changes in monoclonal protein levels quantified using serum and/or urine protein electrophoresis. The latter lacks sensitivity at low monoclonal protein levels and since 2001, the serum free light chain test has been available and its clinical utility proven, yet guidelines have not recommended it as a replacement for urine assessment. Herein we evaluated responses using serum free light chain measurements and serum and urine electrophoresis after 2 and 4 cycles of therapy and after stem cell transplantation in 25 light chain and 157 intact immunoglobulin myeloma patients enrolled in the IFM 2007-02 MM trial. All 25 light chain patients had measurable disease by serum free light chain and urine methods at presentation. By contrast 98 out of 157 intact immunoglobulin patients had measurable disease by serum free light chain compared to 55 out of 157 by urine electrophoresis. In all patients there was substantial agreement between predicate (serum/urine protein electrophoresis) and test (serum protein electrophoresis and serum free light chain) methods for response assessment (Weighted Kappa=0.83). Urine immunofixation became negative in 47% light chain and 43% intact immunoglobulin patients after 2 cycles of therapy. At this time the serum free light chain ratio normalised in only 11% and 27% patients, respectively. In summary we found good agreement between methods for response assessment, but the serum free light chain test provided greater sensitivity than urine electrophoresis for monitoring. To our knowledge this is the first report comparing both methods for response assignment based on the International Myeloma Working Group guidelines. (Clinical Trials Register.eu identifier: 2007-005204-40).

  7. Complete nucleotide sequence of primitive vertebrate immunoglobulin light chain genes.

    PubMed Central

    Shamblott, M J; Litman, G W

    1989-01-01

    Antibody to Heterodontus francisci (horned shark) immunoglobulin light chain was used to screen a spleen cDNA expression library, and recombinant clones encoding light chain genes were isolated. The complete sequences of the mature coding regions of two light chain genes in this phylogenetically distant vertebrate have been determined and are reported here. Comparisons of the sequences are consistent with the presence of mammalian-like framework and complementarity-determining regions. The predicted amino acid sequences of the genes are more related to mammalian lambda than to kappa light chains. The nucleotide sequences of the genes are most related to mammalian T-cell antigen receptor beta chain. Heterodontus light chain genes may reflect characteristics of the common ancestor of immunoglobulin and T-cell antigen receptors before its evolutionary diversification. PMID:2499889

  8. Complete nucleotide sequence of primitive vertebrate immunoglobulin light chain genes.

    PubMed

    Shamblott, M J; Litman, G W

    1989-06-01

    Antibody to Heterodontus francisci (horned shark) immunoglobulin light chain was used to screen a spleen cDNA expression library, and recombinant clones encoding light chain genes were isolated. The complete sequences of the mature coding regions of two light chain genes in this phylogenetically distant vertebrate have been determined and are reported here. Comparisons of the sequences are consistent with the presence of mammalian-like framework and complementarity-determining regions. The predicted amino acid sequences of the genes are more related to mammalian lambda than to kappa light chains. The nucleotide sequences of the genes are most related to mammalian T-cell antigen receptor beta chain. Heterodontus light chain genes may reflect characteristics of the common ancestor of immunoglobulin and T-cell antigen receptors before its evolutionary diversification.

  9. Antibody elbow angles are influenced by their light chain class

    SciTech Connect

    Stanfield, R; Zemla, A; Wilson, I; Rupp, B

    2006-01-12

    We have examined the elbow angles for 365 different Fab fragments, and observe that Fabs with lambda light chains have adopted a wider range of elbow angles than their kappa-chain counterparts, and that the lambda light chain Fabs are frequently found with very large (>195{sup o}) elbow angles. This apparent hyperflexibility of lambda-chain Fabs may be due to an insertion in their switch region, which is one residue longer than in kappa chains, with glycine occurring most frequently at the insertion position. A new, web-based computer program that was used to calculate the Fab elbow angles is also described.

  10. Formation of Amyloid Fibers by Monomeric Light Chain Variable Domains*

    PubMed Central

    Brumshtein, Boris; Esswein, Shannon R.; Landau, Meytal; Ryan, Christopher M.; Whitelegge, Julian P.; Phillips, Martin L.; Cascio, Duilio; Sawaya, Michael R.; Eisenberg, David S.

    2014-01-01

    Systemic light chain amyloidosis is a lethal disease characterized by excess immunoglobulin light chains and light chain fragments composed of variable domains, which aggregate into amyloid fibers. These fibers accumulate and damage organs. Some light chains induce formation of amyloid fibers, whereas others do not, making it unclear what distinguishes amyloid formers from non-formers. One mechanism by which sequence variation may reduce propensity to form amyloid fibers is by shifting the equilibrium toward an amyloid-resistant quaternary structure. Here we identify the monomeric form of the Mcg immunoglobulin light chain variable domain as the quaternary unit required for amyloid fiber assembly. Dimers of Mcg variable domains remain stable and soluble, yet become prone to assemble into amyloid fibers upon disassociation into monomers. PMID:25138218

  11. Formation of amyloid fibers by monomeric light chain variable domains.

    PubMed

    Brumshtein, Boris; Esswein, Shannon R; Landau, Meytal; Ryan, Christopher M; Whitelegge, Julian P; Phillips, Martin L; Cascio, Duilio; Sawaya, Michael R; Eisenberg, David S

    2014-10-03

    Systemic light chain amyloidosis is a lethal disease characterized by excess immunoglobulin light chains and light chain fragments composed of variable domains, which aggregate into amyloid fibers. These fibers accumulate and damage organs. Some light chains induce formation of amyloid fibers, whereas others do not, making it unclear what distinguishes amyloid formers from non-formers. One mechanism by which sequence variation may reduce propensity to form amyloid fibers is by shifting the equilibrium toward an amyloid-resistant quaternary structure. Here we identify the monomeric form of the Mcg immunoglobulin light chain variable domain as the quaternary unit required for amyloid fiber assembly. Dimers of Mcg variable domains remain stable and soluble, yet become prone to assemble into amyloid fibers upon disassociation into monomers. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Biochemical characterization of human enteropeptidase light chain.

    PubMed

    Gasparian, M E; Ostapchenko, V G; Dolgikh, D A; Kirpichnikov, M P

    2006-02-01

    The synthetic gene encoding human enteropeptidase light chain (L-HEP) was cloned into plasmid pET-32a downstream from the gene of fusion partner thioredoxin immediately after the DNA sequence encoding the enteropeptidase recognition site. The fusion protein thioredoxin (Trx)/L-HEP was expressed in Escherichia coli BL21(DE3). Autocatalytic cleavage of the fusion protein and activation of recombinant L-HEP were achieved by solubilization of inclusion bodies and refolding of Trx/L-HEP fusion protein. The kinetic parameters of human and bovine enteropeptidases in the presence of different concentrations of Ca2+ and Na+ for cleavage of the specific substrate GD4K-na and nonspecific substrates such as small ester Z-Lys-SBzl and chromogenic substrates Z-Ala-X-Arg-pNA have been comparatively analyzed. It is demonstrated that positively charged ions increased the Michaelis constant (Km) for cleavage of specific substrate GD4K-na, while the catalytic constant (k(cat)) remained practically unchanged. L-HEP demonstrated secondary specificity to the chromogenic substrate Z-Ala-Phe-Arg-pNA with k(cat)/Km 260 mM(-1) x sec(-1). Enzymatic activity of L-HEP was suppressed by inhibitors of trypsin-like and cysteine (E-64), but not metallo-, amino-, or chymotrypsin-like proteinases. L-HEP was active over a broad range of pH (6-9) with optimum activity at pH 7.5, and it demonstrated high stability to different denaturing agents.

  13. Increased Serum Free Light Chains Precede the Presentation of Immunoglobulin Light Chain Amyloidosis

    PubMed Central

    Weiss, Brendan M.; Hebreo, Joseph; Cordaro, Daniel V.; Roschewski, Mark J.; Baker, Thomas P.; Abbott, Kevin C.; Olson, Stephen W.

    2014-01-01

    Purpose Patients with immunoglobulin light chain amyloidosis (AL amyloidosis) generally present with advanced organ dysfunction and have a high risk of early death. We sought to characterize monoclonal immunoglobulin (M-Ig) light chains before clinical presentation of AL amyloidosis. Patients and Methods We obtained prediagnostic sera from 20 cases with AL amyloidosis and 20 healthy controls matched for age, sex, race, and age of serum sample from the Department of Defense Serum Repository. Serum protein electrophoresis with immunofixation and serum free light chain (FLC) analysis were performed on all samples. Results An M-Ig was detected in 100% of cases and 0% of controls (P < .001). The M-Ig was present in 100%, 80%, and 42% of cases at less than 4 years, 4 to 11 years, and more than 11 years before diagnosis, respectively. The median FLC differential (FLC-diff) was higher in cases compared with controls at all time periods, less than 4 years (174.8 v 0.3 mg/L; P < .001), 4 to 11 years (65.1 v 2.2 mg/L; P < .001), and more than 11 years (4.5 v 0.4 mg/L; P = .03) before diagnosis. The FLC-diff was greater than 23 mg/L in 85% of cases and 0% of controls (P < .001). The FLC-diff level increased more than 10% per year in 84% of cases compared with 16% of controls (P < .001). Conclusion Increase of FLCs, including within the accepted normal range, precedes the development of AL amyloidosis for many years. PMID:25024082

  14. Magnetic moment of the XQ state with JP C=1+± in light cone QCD sum rules

    NASA Astrophysics Data System (ADS)

    Agamaliev, A. K.; Aliev, T. M.; Savcı, M.

    2017-02-01

    The magnetic moments of the recently observed resonance Xb(5568 ) by D0 Collaboration and its partner with charm quark are calculated in the framework of the light cone QCD sum rules, by assuming that these resonances are represented as tetraquark states with quantum numbers JP C=1+±. The magnetic moment can play a critical role in the determination of the quantum numbers, as well as give useful information about the inner structure of these mesons.

  15. Ligh chain cardiomyopathy - structural analysis of the light chain tissue deposits.

    SciTech Connect

    Gallo, G.; Goni, F.; Boctor, F.; Vidal, R.; Kumar, A.; Stevens, F. J.; Frangione, B.; Ghiso, J.; Center for Mechanistic Biology and Biotechnology; New York Univ. Medical Center

    1996-01-01

    Cardiomyopathy due to monoclonal light chain deposits is a complication of plasma cell disorders. The deposits may be either fibrillar as in light chain amyloid or nonfibrillar as in light chain deposition disease. The reasons for these structural differences are still unknown. We characterized the myocardial deposits by immunohistochemical examination of sections and extraction and biochemical analysis of the tissue deposits in a patient (MCM) who died of myeloma and systemic light chain deposition disease. Amino acid sequence analysis of the extracted nonfibrillar MCM {kappa}-light chain reveals that it belongs to the L12a germline subset of the {kappa}{sub I} protein and contains five distinctive amino acid substitutions (three in the framework region III and two in the complementarity-determining region III) that have not been reported previously in the same positions in other {kappa}I light chains. The theoretically determined isoelectric point (pI 8.21) of the MCM light chain is high compared with the low isoelectric point of other Bence Jones proteins from subjects without light chain deposition disease. The diffuse binding to basement membranes and the high isoelectric point of the MCM {kappa}-light chain suggest electrostatic interaction as a possible mechanism of tissue deposition. The spatial locations of the five distinctive residues and a sixth rare substitution of the MCM protein modeled on the backbone structure of REI, a {kappa}{sub I}-soluble Bence Jones light chain of known three-dimensional structure, may be responsible for protein destabilization, partial unfolding, and aggregation leading to tissue deposition.

  16. Tetany and osteolysis in light chain myeloma with amyloidosis.

    PubMed Central

    Bhakri, H. L.; Cundy, T. F.; Pettingale, K. W.

    1983-01-01

    A patient is described with light chain myeloma and amyloidosis in whom 2 unusual complications occurred, diffuse osteolytic lesions and tetany. These observations extend the previously recognized clinical spectrum of this disorder. Images Fig. 1 PMID:6413962

  17. Cytoplasmic dynein contains a family of differentially expressed light chains.

    PubMed

    King, S M; Barbarese, E; Dillman, J F; Benashski, S E; Do, K T; Patel-King, R S; Pfister, K K

    1998-10-27

    Cytoplasmic dynein contains a series of accessory proteins associated with the motor containing heavy chains.1 These include three distinct classes of light chains (Mr < approximately 22 000). Here we demonstrate that a previously cloned protein termed rp3 is a bona fide Mr 14 000 light chain component of this microtubule motor complex. The rp3 polypeptide is approximately 55% identical to the Tctex1 dynein light chain, and together, these two proteins define one branch of a diverse family of Mr 14 000 light chains associated with both cytoplasmic and flagellar dyneins. The Tctex1 and rp3 light chains are differentially expressed in various tissues: rp3 is most prevalent in liver and brain cytoplasmic dynein, whereas those tissues contain the least amounts of Tctex1. Immunofluorescence analysis was consistent with the tissue-specific distribution of these proteins and revealed that both rp3 and Tctex1 are present in multiple perinuclear punctate particles. Furthermore, in two cell lines, rp3 was found associated with an elongated structure located in the layer of cytoplasm above the nucleus. Electrophoretic/immunological analysis indicates that there are only single isoforms for these proteins in brain and PC-12 cells, suggesting that alterations in the Mr 14 000 light chains of dynein are achieved at the level of the individual proteins and not by posttranslational modification. Dissection of the cytoplasmic dynein complex revealed that Tctex1, an Mr 8000 LC dimer, and IC74 associate to define a basal-located intermediate chain/light chain complex analogous to that found in flagellar outer arm dynein.

  18. OPTICAL SPECTRAL OBSERVATIONS OF A FLICKERING WHITE-LIGHT KERNEL IN A C1 SOLAR FLARE

    SciTech Connect

    Kowalski, Adam F.; Cauzzi, Gianna; Fletcher, Lyndsay

    2015-01-10

    We analyze optical spectra of a two-ribbon, long-duration C1.1 flare that occurred on 2011 August 18 within AR 11271 (SOL2011-08-18T15:15). The impulsive phase of the flare was observed with a comprehensive set of space-borne and ground-based instruments, which provide a range of unique diagnostics of the lower flaring atmosphere. Here we report the detection of enhanced continuum emission, observed in low-resolution spectra from 3600 Å to 4550 Å acquired with the Horizontal Spectrograph at the Dunn Solar Telescope. A small, ≤0.''5 (10{sup 15} cm{sup 2}) penumbral/umbral kernel brightens repeatedly in the optical continuum and chromospheric emission lines, similar to the temporal characteristics of the hard X-ray variation as detected by the Gamma-ray Burst Monitor on the Fermi spacecraft. Radiative-hydrodynamic flare models that employ a nonthermal electron beam energy flux high enough to produce the optical contrast in our flare spectra would predict a large Balmer jump in emission, indicative of hydrogen recombination radiation from the upper flare chromosphere. However, we find no evidence of such a Balmer jump in the bluemost spectral region of the continuum excess. Just redward of the expected Balmer jump, we find evidence of a ''blue continuum bump'' in the excess emission which may be indicative of the merging of the higher order Balmer lines. The large number of observational constraints provides a springboard for modeling the blue/optical emission for this particular flare with radiative-hydrodynamic codes, which are necessary to understand the opacity effects for the continuum and emission line radiation at these wavelengths.

  19. Optical Spectral Observations of a Flickering White-light Kernel in a C1 Solar Flare

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Cauzzi, Gianna; Fletcher, Lyndsay

    2015-01-01

    We analyze optical spectra of a two-ribbon, long-duration C1.1 flare that occurred on 2011 August 18 within AR 11271 (SOL2011-08-18T15:15). The impulsive phase of the flare was observed with a comprehensive set of space-borne and ground-based instruments, which provide a range of unique diagnostics of the lower flaring atmosphere. Here we report the detection of enhanced continuum emission, observed in low-resolution spectra from 3600 Å to 4550 Å acquired with the Horizontal Spectrograph at the Dunn Solar Telescope. A small, <=0.''5 (1015 cm2) penumbral/umbral kernel brightens repeatedly in the optical continuum and chromospheric emission lines, similar to the temporal characteristics of the hard X-ray variation as detected by the Gamma-ray Burst Monitor on the Fermi spacecraft. Radiative-hydrodynamic flare models that employ a nonthermal electron beam energy flux high enough to produce the optical contrast in our flare spectra would predict a large Balmer jump in emission, indicative of hydrogen recombination radiation from the upper flare chromosphere. However, we find no evidence of such a Balmer jump in the bluemost spectral region of the continuum excess. Just redward of the expected Balmer jump, we find evidence of a "blue continuum bump" in the excess emission which may be indicative of the merging of the higher order Balmer lines. The large number of observational constraints provides a springboard for modeling the blue/optical emission for this particular flare with radiative-hydrodynamic codes, which are necessary to understand the opacity effects for the continuum and emission line radiation at these wavelengths.

  20. Purification of 14S Messenger RNA of Immunoglobulin Light Chain That Codes for a Possible Light-Chain Precursor

    PubMed Central

    Mach, B.; Faust, C.; Vassalli, P.

    1973-01-01

    Polysomes released from microsomes of MOPC 41 mouse myeloma were used to prepare a poly(A)-containing fraction of RNA by chromatography on poly-(dT)-cellulose. From that fraction, a 14S RNA species was purified to a single peak by successive sucrose gradient centrifugations, followed by acrylamide gel electrophoresis. The RNA has an apparent molecular weight of 380,000 (1100 nucleotides), as estimated from the electrophoretic analyses. In a reticulocyte lysate this RNA directs the synthesis of a protein that migrates more slowly in sodium dodecylsulfate-acrylamide gels than does the light chain secreted by the same tumor. This difference in migration corresponds to a size difference appropriate for polypeptide chain about 20 amino acids longer than the light chain. The tryptic peptides of this protein correspond to those of the secreted light chain, except for the presence of two additional peptides from the product synthesized in vitro and for the absence of one light-chain peptide. The purified RNA is, therefore, the mRNA of the light chain, and it seems to code for a precursor protein slightly larger than the light chain. From the estimated size of the 14S mRNA, it appears that only 65% of the RNA is translated. Images PMID:4510289

  1. Light chain replacement: a new model for antibody gene rearrangement

    PubMed Central

    1995-01-01

    A functional B cell antigen receptor is thought to regulate antibody gene rearrangement either by stopping further rearrangement (exclusion) or by promoting additional rearrangement (editing). We have developed a new model to study the regulation of antibody gene rearrangement. In this model, we used gene targeting to replace the J kappa region with a functional V kappa-J kappa light chain gene. Two different strains of mice were created; one, V kappa 4R, has a V kappa 4-J kappa 4 rearrangement followed by a downstream J kappa 5 segment, while the other, V kappa 8R, has a V kappa 8-J kappa 5 light chain. Here, we analyze the influence of these functional light chains on light chain rearrangement. We show that some V kappa 4R and V kappa 8R B cells only have the V kappa R light chain rearrangement, whereas others undergo additional rearrangements. Additional rearrangement can occur not only at the other kappa allele or isotype (lambda), but also at the targeted locus in both V kappa 4R and V kappa 8R. Rearrangement to the downstream J kappa 5 segment is observed in V kappa 4R, as is deletion of the targeted locus in both V kappa 4R and V kappa 8R. The V kappa R models illustrate that a productively rearranged light chain can either terminate further rearrangement or allow further rearrangement. We attribute the latter to editing of autoantibodies and to corrections of dysfunctional receptors. PMID:7629511

  2. The Spectrum of Light Isovector Mesons with C = +1 from the COMPASS Experiment

    NASA Astrophysics Data System (ADS)

    Paul, Stephan

    Based on the largest event sample of diffractively produced π-π-π+, obtained by a pion beam of 190 GeV/c momentum, the COMPASS collaboration has performed the so far most advanced partial-wave analysis on multi-body final states, using the isobar model. The large number of 88waves included in the analysis reduces truncation effects. We have used fourteen waves, to extract resonance parameters for eleven light-meson candidates, most of them observed previously. The coherence of the analysis and the large variety of systematic studies has allowed us to determine mass and width of most aJ and πJ states with a total of six different values of JPC below a mass of 2:1 GeV/c2, with high confidence. We exploit that the production rates of resonant and non-resonant contributions in these fourteen waves vary differently with the four-momentum transfer squared in the reaction. In addition, we have performed the first isobar-freed analysis in diffraction, from which we have determined the shape of the ππ S-wave isobar for different JPC of the 3π system.

  3. Characterizing Chain Processes in Visible Light Photoredox Catalysis

    PubMed Central

    Cismesia, Megan A.

    2015-01-01

    The recognition that Ru(bpy)32+ andsimilar visible light absorbing transition metal complexes can be photocatalysts for a variety of synthetically useful organic reactions has resulted in a recent resurgence of interest in photoredox catalysis. However, many of the critical mechanistic aspects of this class of reactions remain poorly understood. In particular, the degree to which visible light photoredox reactions involve radical chain processes has been a point of some disagreement that has not been subjected to systematic analysis. We have now performed quantum yield measurements to demonstrate that threerepresentative, mechanistically distinct photoredox processes involve product-forming chain reactions. Moreover, we show that the combination of quantum yield and luminescence quenching experiments provides a rapid method to estimate the length of these chains. Together, these measurements constitute a robust, operationally facile strategy for characterizing chain processes in a wide range of visible light photoredox reactions. PMID:26668708

  4. Chronic myopathy due to immunoglobulin light chain amyloidosis

    PubMed Central

    Manoli, Irini; Kwan, Justin Y.; Wang, Qian; Rushing, Elisabeth J.; Tsokos, Maria; Arai, Andrew E.; Burch, Warner M.; Dispenzieri, Angela; McPherron, Alexandra C.; Gahl, William A.

    2013-01-01

    Amyloid myopathy associated with a plasma cell dyscrasia is a rare cause of muscle hypertrophy. It can be a challenging diagnosis, since pathological findings are often elusive. In addition, the mechanism by which immunoglobulin light-chain deposition stimulates muscle overgrowth remains poorly understood. We present a 53–year old female with a 10-year history of progressive generalized muscle overgrowth. Congo-red staining and immunohistochemistry revealed perivascular lambda light chain amyloid deposits, apparent only in a second muscle biopsy. The numbers of central nuclei and satellite cells were increased, suggesting enhanced muscle progenitor cell formation. Despite the chronicity of the light chain disease, the patient showed complete resolution of hematologic findings and significant improvement of her muscle symptoms following autologous bone marrow transplantation. This case highlights the importance of early diagnosis and therapy for this treatable cause of a chronic myopathy with muscle hypertrophy. PMID:23465863

  5. Monoclonal free light chains can be found in heavy chain diseases.

    PubMed

    López-Anglada, L; Puig, N; Díez-Campelo, M; Alonso-Ralero, L; Barrena, S; Aparicio, M A; Gutiérrez, N C; García-Sanz, R

    2010-11-01

    Heavy chain diseases (HCDs) are rare B-cell lymphoproliferative neoplasias characterized by the production of a monoclonal component consisting of a truncated monoclonal Ig heavy chain without the associated light chain. Among them, patients with gamma-HCD are so rare that no more than 150 cases can be found in the literature. In this paper, we report one additional case: an 83-year-old man with a gamma-HCD, in whom a kappa light chain component was detected in the serum by using the serum free light-chain assessment and in addition monoclonal kappa cytoplasmic expression was detected in bone marrow plasma cells by flow cytometric analysis. In the work-up of the patient, the underlying anatomopathological lymphoproliferative disease corresponded to a lymphoplasmacytic lymphoma, as it is stated in the current World Health Organization classification (2008), with both lymphadenopathic and bone marrow infiltration. As in other cases, several autoimmune manifestations (antiphospholipidic syndrome and immune thrombocytopenia) were present during the course of the disease in this patient. This case report illustrates a new case of gamma-HCD, in which serum free light-chain analysis and flow cytometry represented a valuable tool for diagnosis, a finding that could be very important for the future management of these patients.

  6. Visualizing changes in electron distribution in coupled chains of cytochrome bc1 by modifying barrier for electron transfer between the FeS cluster and heme c1

    PubMed Central

    Cieluch, Ewelina; Pietryga, Krzysztof; Sarewicz, Marcin; Osyczka, Artur

    2010-01-01

    Cytochrome c1 of Rhodobacter (Rba.) species provides a series of mutants which change barriers for electron transfer through the cofactor chains of cytochrome bc1 by modifying heme c1 redox midpoint potential. Analysis of post-flash electron distribution in such systems can provide useful information about the contribution of individual reactions to the overall electron flow. In Rba. capsulatus, the non-functional low-potential forms of cytochrome c1 which are devoid of the disulfide bond naturally present in this protein revert spontaneously by introducing a second-site suppression (mutation A181T) that brings the potential of heme c1 back to the functionally high levels, yet maintains it some 100 mV lower from the native value. Here we report that the disulfide and the mutation A181T can coexist in one protein but the mutation exerts a dominant effect on the redox properties of heme c1 and the potential remains at the same lower value as in the disulfide-free form. This establishes effective means to modify a barrier for electron transfer between the FeS cluster and heme c1 without breaking disulfide. A comparison of the flash-induced electron transfers in native and mutated cytochrome bc1 revealed significant differences in the post-flash equilibrium distribution of electrons only when the connection of the chains with the quinone pool was interrupted at the level of either of the catalytic sites by the use of specific inhibitors, antimycin or myxothiazol. In the non-inhibited system no such differences were observed. We explain the results using a kinetic model in which a shift in the equilibrium of one reaction influences the equilibrium of all remaining reactions in the cofactor chains. It follows a rather simple description in which the direction of electron flow through the coupled chains of cytochrome bc1 exclusively depends on the rates of all reversible partial reactions, including the Q/QH2 exchange rate to/from the catalytic sites. PMID:19917265

  7. Kinesin light chains are essential for axonal transport in Drosophila.

    PubMed

    Gindhart, J G; Desai, C J; Beushausen, S; Zinn, K; Goldstein, L S

    1998-04-20

    Kinesin is a heterotetramer composed of two 115-kD heavy chains and two 58-kD light chains. The microtubule motor activity of kinesin is performed by the heavy chains, but the functions of the light chains are poorly understood. Mutations were generated in the Drosophila gene Kinesin light chain (Klc), and the phenotypic consequences of loss of Klc function were analyzed at the behavioral and cellular levels. Loss of Klc function results in progressive lethargy, crawling defects, and paralysis followed by death at the end of the second larval instar. Klc mutant axons contain large aggregates of membranous organelles in segmental nerve axons. These aggregates, or organelle jams (Hurd, D.D., and W.M. Saxton. 1996. Genetics. 144: 1075-1085), contain synaptic vesicle precursors as well as organelles that may be transported by kinesin, kinesin-like protein 68D, and cytoplasmic dynein, thus providing evidence that the loss of Klc function blocks multiple pathways of axonal transport. The similarity of the Klc and Khc (. Cell 64:1093-1102; Hurd, D.D., and W.M. Saxton. 1996. Genetics 144: 1075-1085) mutant phenotypes indicates that KLC is essential for kinesin function, perhaps by tethering KHC to intracellular cargos or by activating the kinesin motor.

  8. Immunoglobulin light chain allelic inclusion in systemic lupus erythematosus

    PubMed Central

    Fraser, Louise D.; Zhao, Yuan; Lutalo, Pamela M. K.; D'Cruz, David P.; Cason, John; Silva, Joselli S.; Dunn‐Walters, Deborah K.; Nayar, Saba; Cope, Andrew P.

    2015-01-01

    The principles of allelic exclusion state that each B cell expresses a single light and heavy chain pair. Here, we show that B cells with both kappa and lambda light chains (Igκ and Igλ) are enriched in some patients with the systemic autoimmune disease systemic lupus erythematosus (SLE), but not in the systemic autoimmune disease control granulomatosis with polyangiitis. Detection of dual Igκ and Igλ expression by flow cytometry could not be abolished by acid washing or by DNAse treatment to remove any bound polyclonal antibody or complexes, and was retained after two days in culture. Both surface and intracytoplasmic dual light chain expression was evident by flow cytometry and confocal microscopy. We observed reduced frequency of rearrangements of the kappa‐deleting element (KDE) in SLE and an inverse correlation between the frequency of KDE rearrangement and the frequency of dual light chain expressing B cells. We propose that dual expression of Igκ and Igλ by a single B cell may occur in some patients with SLE when this may be a consequence of reduced activity of the KDE. PMID:26036683

  9. Coexistence of chronic neutrophilic leukemia with light chain myeloma.

    PubMed

    Cehreli, C; Undar, B; Akkoc, N; Onvural, B; Altungoz, O

    1994-01-01

    A 60-year-old woman who presented with weakness, night sweats, bone pain, easy bruising and weight loss was found to have ecchymoses and hepatosplenomegaly. Blood counts showed persistent neutrophilia of mature cell type with Döhle bodies and toxic granulation. Coexistence of chronic neutrophilic leukemia and multiple myeloma of kappa light chain type was documented by bone marrow examination and immunofixation.

  10. Surface-mediated light transmission in metal nanoparticle chains

    NASA Astrophysics Data System (ADS)

    Compaijen, P. Jasper; Malyshev, Victor A.; Knoester, Jasper

    2013-05-01

    We study theoretically the efficiency of the transmission of optical signals through a linear chain consisting of identical and equidistantly spaced silver metal nanoparticles. Two situations are compared: the transmission efficiency through an isolated chain and through a chain in close proximity of a reflecting substrate. The Ohmic and radiative losses in each nanoparticle strongly affect the transmission efficiency of an isolated chain and suppress it to large extent. It is shown that the presence of a reflecting interface may enhance the guiding properties of the array. The reason for this is the energy exchange between the surface plasmon polaritons (SPPs) of the array and the substrate. We focus on the dependence of the transmission efficiency on the frequency and polarization of the incoming light, as well as on the influence of the array-interface spacing. Sometimes the effect of these parameters turns out to be counterintuitive, reflecting a complicated interplay of several transmission channels.

  11. The immunoglobulin light chain locus of the turkey, Meleagris gallopavo.

    PubMed

    Bao, Yonghua; Wu, Sun; Zang, Yunlong; Wang, Hui; Song, Xiangfeng; Xu, Chunyang; Xie, Bohong; Guo, Yongchen

    2012-06-15

    To date, most jawed vertebrate species encode more than one immunoglobulin light (IgL) chain isotypes. It has been shown that several bird species (chickens, white Pekin or domestic duck, and zebra finches) exclusively express lambda isotype. We analyze here the genomic organization of another bird species turkey IgL genes based on the recently released genome data. The turkey IgL locus located on chromosome 17 spans approximately 75.2kb and contains a single functional V(λ) gene, twenty V(λ) pseudogenes, and a single functional J(λ)-C(λ) block. These data suggest that the genomic organization of bird IgL chain genes seems to be conserved. Ten cDNA clones from turkey Igλ chain containing almost full-length V(λ), J(λ) and C(λ) segments were acquired. The comparison of V(λ) cDNA sequences to all the germline V(λ) segments suggests that turkey species may be generating IgL chain diversity by gene conversion and somatic hypermutation like the chicken. This study provides insights into the immunoglobulin light chain genes in another bird species. Copyright © 2012. Published by Elsevier B.V.

  12. Evaluation of myosin light chain phosphorylation in isolated pancreatic acini

    SciTech Connect

    Burnham, D.B.; Soeling, H.D.; Williams, J.A. Universitaet Goettingen )

    1988-01-01

    The role of contractile proteins in secretory granule exocytosis was evaluated by determining whether myosin light chain phosphorylation was altered during stimulation of secretion in mouse pancreatic acini. Acinar myosin was purified by extraction into isosmotic sucrose solution containing 40 mM pyrophosphate followed by ammonium sulfate precipitation and Sepharose 4B-CL chromatography. Myosin was eluted as a single peak of K{sup +}-EDTA ATPase activity and was purified over 2,000-fold to a final ATPase specific activity of 0.96 {mu}mol{center dot}min{sup {minus}1}{center dot}mg protein {sup {minus}1}. Three major myosin subunits of apparent M{sub r} of 200,000, 20,000, and 17,000 were present in the purified myosin preparation. A fourth protein of M{sub r} 21,000 was also present. Purification of myosin from {sup 32}P-labeled acini revealed that M{sub r} 200,000, 21,000, and 20,000 proteins to be heavily labeled. The effect of cholecystokinin octapeptide (CCK-8) on myosin phosphorylation was studied after isolation of myosin from {sup 32}P-labeled acinar lysates by immunoprecipitation. Treatment of acini for 1-10 min with a concentration of CCK-8 that gives a maximal secretory response caused a 25-40% increase in light chain labeling. Treatment with a supramaximal CCK-8 concentration produced a 50-80% increase in light chain labeling. Phosphorylation of myosin heavy chain was not significantly affected by secretagogue treatment. These results indicate that stimulation of pancreatic acinar secretion is accompanied by an increase in myosin light chain phosphorylation.

  13. OCULAR MANIFESTATIONS OF MONOCLONAL IMMUNOGLOBULIN LIGHT CHAIN DEPOSITION DISEASE.

    PubMed

    Dhrami-Gavazi, Elona; Freund, K Bailey; Lee, Winston; Cohen, Ben Z; Seshan, Surya V; Yannuzzi, Lawrence A

    2017-01-01

    To demonstrate unusual retinal findings in a patient with progressive renal failure due to idiopathic monoclonal immunoglobulin light chain deposition disease, using multimodal imaging. Observational case report of a 43-year-old white man with renal failure due to light chain deposition disease. His course over 6 years was documented with multimodal imaging including fundus photography, fundus autofluorescence, fluorescein angiography, and spectral domain optical coherence tomography. Additional evaluations included ocular ultrasound, electroretinography, positron emission tomography, serum protein electrophoreses, skeletal surveys to detect osteolytic lesions, and renal, liver, and rectal biopsies in search of amyloid. The patient's ocular course mirrored the severity of his renal dysfunction for which he required a renal transplant. Changes observed in the native kidney recurred in the transplant 2 years later, as evidenced by immunohistochemistry, revealing thick linear deposits of kappa chains, with no complement, overlying the glomerular basement membrane. The systemic workup was negative for amyloid but showed an overwhelming ratio of kappa to lambda light chains on serum protein electrophoreses and no clinical signs of plasma cell dyscrasias, all consistent with idiopathic light chain deposition disease. The patient presented with a generalized, bilateral "leopard-spot" fundus appearance on fundus autofluorescence, striking globular subretinal deposits on spectral domain optical coherence tomography, and subfoveal subretinal fluid without retinal pigment epithelium detachment or choroidal effusions. The subfoveal fluid did not respond to intravitreal injections of antiangiogenic agents or steroids but resolved after renal transplantation. A temporary posttransplant visual improvement was associated with lessening of the subretinal drusenoid deposits demonstrated by multimodal imaging. The terminal vision deterioration was associated with amorphous

  14. Inhibition of Light Chain 6aJL2-R24G Amyloid Fiber Formation Associated with Light Chain Amyloidosis.

    PubMed

    Pelaez-Aguilar, Angel E; Rivillas-Acevedo, Lina; French-Pacheco, Leidys; Valdes-Garcia, Gilberto; Maya-Martinez, Roberto; Pastor, Nina; Amero, Carlos

    2015-08-18

    Light chain amyloidosis (AL) is a deadly disease characterized by the deposition of monoclonal immunoglobulin light chains as insoluble amyloid fibrils in different organs and tissues. Germ line λ VI has been closely related to this condition; moreover, the R24G mutation is present in 25% of the proteins of this germ line in AL patients. In this work, five small molecules were tested as inhibitors of the formation of amyloid fibrils from the 6aJL2-R24G protein. We have found by thioflavin T fluorescence and transmission electron microscopy that EGCG inhibits 6aJL2-R24G fibrillogenesis. Furthermore, using nuclear magnetic resonance spectroscopy, dynamic light scattering, and isothermal titration calorimetry, we have determined that the inhibition is due to binding to the protein in its native state, interacting mainly with aromatic residues.

  15. Value of antibodies to free light chains in immunoperoxidase studies of renal biopsies

    PubMed Central

    Owen-Casey, Mared P; Sim, Rosalind; Cook, H Terence; Roufosse, Candice A; Gillmore, Julian D; Gilbertson, Janet A; Hutchison, Colin A; Howie, Alexander J

    2014-01-01

    Aims Because immunoglobulin abnormalities may affect the kidney, investigation of renal biopsies requires immunohistological study of light chains. A problem is that most antibodies to light chains react with whole immunoglobulins as well as free light chains, and there are generally many more whole immunoglobulins than free light chains. The usefulness of antibodies that only detected free light chains was investigated. Methods Antibodies to free light chains were used in an immunoperoxidase method on paraffin sections of 198 renal biopsies, and compared with conventional antibodies against light chains examined by immunofluorescence on 13 frozen sections and by immunoperoxidase on 46 paraffin sections. Results Immunofluorescence and immunoperoxidase were concordant on 10 of 13 biopsies. Immunofluorescence detected slight deposition of light chains in three biopsies not shown by immunoperoxidase, of undetermined clinical significance. Using immunoperoxidase, the free light chain antibodies were more sensitive than conventional antibodies, giving much cleaner staining and better detection of deposits in AL amyloid, light chain deposition disease and cryoglobulinaemic glomerulonephritis. The free light chain antibodies showed discordance or ambiguity between immunohistological and clinical findings in seven (4%) of 185 patients with known immunoglobulin status. These included two of 28 cases of AL amyloid that showed no light chain deposition. The method was not designed for detection of light chain restriction in neoplastic plasma or lymphoplasmacytic cells. Conclusions Polyclonal antibodies to free light chains are an improvement on conventional antibodies in immunoperoxidase study of paraffin sections of renal biopsies and are useful in everyday practice. PMID:24817705

  16. Analytical performance of the serum free light chain assay.

    PubMed

    Briand, Pierre-Yves; Decaux, Olivier; Caillon, Hélène; Grosbois, Bernard; Le Treut, André; Guenet, Lucienne

    2010-01-01

    The Freelite system for nephelometric or turbidimetric measurement of serum free light chains (FLCs) has been available since 2001. It has been valuable for the management of patients with oligosecretory myeloma, light chain myeloma and AL amyloidosis. However, there are several limitations of the method. The goal of this study was to evaluate the analytical performance of the FLC assay. Titrated controls and clinical serum specimens were used to determine precision and post-dilution recovery. As reported elsewhere, we found that the assay had several limitations, including poor post-dilution linearity and overestimation by nephelometry. These data demonstrate that the results of the FLC assay must be interpreted jointly by the clinician and the biologist, taking into account the individual patient's clinical and biological characteristics.

  17. Tertiary structure of human {Lambda}6 light chains.

    SciTech Connect

    Pokkuluri, P. R.; Solomon, A.; Weiss, D. T.; Stevens, F. J.; Schiffer, M.; Center for Mechanistic Biology and Biotechnology; Univ. of Tennessee Medical Center /Graduate School of Medicine

    1999-01-01

    AL amyloidosis is a disease process characterized by the pathologic deposition of monoclonal light chains in tissue. To date, only limited information has been obtained on the molecular features that render such light chains amyloidogenic. Although protein products of the major human V kappa and V lambda gene families have been identified in AL deposits, one particular subgroup--lambda 6--has been found to be preferentially associated with this disease. Notably, the variable region of lambda 6 proteins (V lambda 6) has distinctive primary structural features including the presence in the third framework region (FR3) of two additional amino acid residues that distinguish members of this subgroup from other types of light chains. However, the structural consequences of these alterations have not been elucidated. To determine if lambda 6 proteins possess unique tertiary structural features, as compared to light chains of other V lambda subgroups, we have obtained x-ray diffraction data on crystals prepared from two recombinant V lambda 6 molecules. These components, isolated from a bacterial expression system, were generated from lambda 6-related cDNAs cloned from bone marrow-derived plasma cells from a patient (Wil) who had documented AL amyloidosis and another (Jto) with multiple myeloma and tubular cast nephropathy, but no evident fibrillar deposits. The x-ray crystallographic analyses revealed that the two-residue insertion located between positions 68 and 69 (not between 66 and 67 as previously surmised) extended an existing loop region that effectively increased the surface area adjacent to the first complementarity determining region (CDR1). Further, an unusual interaction between the Arg 25 and Phe 2 residues commonly found in lambda 6 molecules was noted. However, the structures of V lambda 6 Wil and Jto also differed from each other, as evidenced by the presence in the latter of certain ionic and hydrophobic interactions that we posit increased protein

  18. Conformation switching of clathrin light chain regulates clathrin lattice assembly.

    PubMed

    Wilbur, Jeremy D; Hwang, Peter K; Ybe, Joel A; Lane, Michael; Sellers, Benjamin D; Jacobson, Matthew P; Fletterick, Robert J; Brodsky, Frances M

    2010-05-18

    Clathrin-coated vesicle formation is responsible for membrane traffic to and from the endocytic pathway during receptor-mediated endocytosis and organelle biogenesis, influencing how cells relate to their environment. Generating these vesicles involves self-assembly of clathrin molecules into a latticed coat on membranes that recruits receptors and organizes protein machinery necessary for budding. Here we define a molecular mechanism regulating clathrin lattice formation by obtaining structural information from co-crystals of clathrin subunits. Low resolution X-ray diffraction data (7.9-9.0 A) was analyzed using a combination of molecular replacement with an energy-minimized model and noncrystallographic symmetry averaging. Resulting topological information revealed two conformations of the regulatory clathrin light chain bound to clathrin heavy chain. Based on protein domain positions, mutagenesis, and biochemical assays, we identify an electrostatic interaction between the clathrin subunits that allows the observed conformational variation in clathrin light chains to alter the conformation of the clathrin heavy chain and thereby regulates assembly. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Structural and Thermodynamic Characterization of a Cytoplasmic Dynein Light Chain-Intermediate Chain Complex

    SciTech Connect

    Williams,J.; Roulhac, P.; Roy, A.; Vallee, R.; Fitzgerald, M.; Hendrickson, W.

    2007-01-01

    Cytoplasmic dynein is a microtubule-based motor protein complex that plays important roles in a wide range of fundamental cellular processes, including vesicular transport, mitosis, and cell migration. A single major form of cytoplasmic dynein associates with membranous organelles, mitotic kinetochores, the mitotic and migratory cell cortex, centrosomes, and mRNA complexes. The ability of cytoplasmic dynein to recognize such diverse forms of cargo is thought to be associated with its several accessory subunits, which reside at the base of the molecule. The dynein light chains (LCs) LC8 and TcTex1 form a subcomplex with dynein intermediate chains, and they also interact with numerous protein and ribonucleoprotein partners. This observation has led to the hypothesis that these subunits serve to tether cargo to the dynein motor. Here, we present the structure and a thermodynamic analysis of a complex of LC8 and TcTex1 associated with their intermediate chain scaffold. The intermediate chains effectively block the major putative cargo binding sites within the light chains. These data suggest that, in the dynein complex, the LCs do not bind cargo, in apparent disagreement with a role for LCs in dynein cargo binding interactions.

  20. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes

    DOE PAGES

    McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole; ...

    2015-09-22

    Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presencemore » of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. Ultimately, these data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.« less

  1. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes

    SciTech Connect

    McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole; Ramirez-Alvarado, Marina; Donohoe, Dallas; Williams, Angela; Macy, Sallie; Wooliver, Craig; Wortham, Dale; Morrell-Falvey, Jennifer; Foster, Carmen M.; Kennel, Stephen J.; Wall, Jonathan S.

    2015-09-22

    Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presence of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. Ultimately, these data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.

  2. Serum free light chain quantitative assays: Dilemma of a biomarker.

    PubMed

    Cigliana, Giovanni; Gulli, Francesca; Napodano, Cecilia; Pocino, Krizia; De Santis, Elena; Colacicco, Luigi; Cordone, Iole; Conti, Laura; Basile, Umberto

    2017-04-26

    Serum free light chains detection assays are consistently meeting greater interest for the diagnosis and monitoring of monoclonal gammopathies and plasma cell dyscrasias. Nowadays, there are neither standardized methods nor reference material for the determination of free light chains; for this reason, it is important to compare two different assays used in clinical laboratory. We evaluated 300 serum samples from patients with B-cell disorders and compared the analytical performances of both assay. Each test was assayed on both testing platforms (Siemens Dade Behring BN II Nephelometer and SPAPLUS by The Binding Site). κ/λ ratios were determined and compared. Results were analyzed by Passing-Bablok and Bland-Altman plots to evaluate comparability of the two techniques and to determine bias. The reproducibility of both assays is acceptable, reaching minimum and desirable analytical goals derived from biological variability. However, values are not interchangeable between systems. This study shows that the two systems do not allow results to be transferred from one method to the other even if they display good agreement. Our study highlights the importance of elaborating an international standard for free light chains quantification in order to offer homogeneous results as well as guarantee harmonization of values among laboratories. Moreover, the assays should be validated in specific patient groups to determine that they are clinically fit for purpose. © 2017 Wiley Periodicals, Inc.

  3. Thermal Stability Threshold for Amyloid Formation in Light Chain Amyloidosis

    PubMed Central

    Poshusta, Tanya L.; Katoh, Nagaaki; Gertz, Morie A.; Dispenzieri, Angela; Ramirez-Alvarado, Marina

    2013-01-01

    Light chain (AL) amyloidosis is a devastating disease characterized by amyloid deposits formed by immunoglobulin light chains. Current available treatments involve conventional chemotherapy and autologous stem cell transplant. We have recently concluded a phase III trial comparing these two treatments. AL amyloidosis patients who achieve hematological complete response (CR) do not necessarily achieve organ response regardless of the treatment they received. In order to investigate the possible correlation between amyloid formation kinetics and organ response, we selected AL amyloidosis patients from the trial with kidney involvement and CR after treatment. Six patients were selected and their monoclonal immunoglobulin light chains were characterized. The proteins showed differences in their stability and their kinetics of amyloid formation. A correlation was detected at pH 7.4, showing that less stable proteins are more likely to form amyloid fibrils. AL-T03 is too unstable to form amyloid fibrils at pH 7.4. This protein was found in the only patient in the study that had organ response, suggesting that partially folded species are required for amyloid formation to occur in AL amyloidosis. PMID:24248061

  4. Light chain (AL) amyloidosis: update on diagnosis and management

    PubMed Central

    2011-01-01

    Light chain (AL) amyloidosis is a plasma cell dyscrasia characterized by the pathologic production of fibrillar proteins comprised of monoclonal light chains which deposit in tissues and cause organ dysfunction. The diagnosis can be challenging, requiring a biopsy and often specialized testing to confirm the subtype of systemic disease. The goal of treatment is eradication of the monoclonal plasma cell population and suppression of the pathologic light chains which can result in organ improvement and extend patient survival. Standard treatment approaches include high dose melphalan (HDM) followed by autologous hematopoietic stem cell transplantation (SCT) or oral melphalan with dexamethasone (MDex). The use of novel agents (thalidomide, lenalidomide and bortezomib) alone and in combination with steroids and alkylating agents has shown efficacy and continues to be explored. A risk adapted approach to SCT followed by novel agents as consolidation reduces treatment related mortality with promising outcomes. Immunotherapeutic approaches targeting pathologic plasma cells and amyloid precursor proteins or fibrils are being developed. Referral of patients to specialized centers focusing on AL amyloidosis and conducting clinical trials is essential to improving patient outcomes. PMID:22100031

  5. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes

    PubMed Central

    McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole; Ramirez-Alvarado, Marina; Donohoe, Dallas; Williams, Angela; Macy, Sallie; Wooliver, Craig; Wortham, Dale; Morrell-Falvey, Jennifer; Foster, Carmen M.; Kennel, Stephen J.; Wall, Jonathan S.

    2015-01-01

    Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presence of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. These data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils. PMID:26393799

  6. Stabilizing an amyloidogenic λ6 light chain variable domain.

    PubMed

    Luna-Martínez, Oscar D; Hernández-Santoyo, Alejandra; Villalba-Velázquez, Myriam I; Sánchez-Alcalá, Rosalba; Fernández-Velasco, Daniel A; Becerril, Baltazar

    2017-09-12

    Light chain amyloidosis is a lethal disease where vital organs are damaged by the fibrillar aggregation of monoclonal light chains. λ6a is an immunoglobulin light chain encoded by the germ-line gene segment implicated in this disease. AR is a patient-derived germ-line variant with a markedly low thermodynamic stability and prone to form fibrils in vitro in less than an hour. Here, we sought to stabilize this domain by mutating some residues back to the germ-line sequence, and the most stabilizing mutations were the single-mutant AR-F21I and the double-mutant AR-F21/IV104L, both located in the hydrophobic core. While mutation Arg25Gly in 6aJL2 destabilized the domain, mutating Gly25 back to arginine in AR did not contribute to stabilization as expected. Crystallographic structures of AR and 6a-R25G were generated to explain this discrepancy. Finally, 6a-R25G crystals revealed an octameric assembly which was emulated into 6aJL2 and AR crystals by replicating their structural parameters and suggesting a common assembly pattern. The atomic coordinates and structure factors have been deposited in the Protein Data Bank under the accession numbers 5IR3 and 5C9K. © 2017 Federation of European Biochemical Societies.

  7. Electrochemistry of cytochrome c1, cytochrome c552, and CuA from the respiratory chain of Thermus thermophilus immobilized on gold nanoparticles.

    PubMed

    Meyer, Thomas; Gross, Julien; Blanck, Christian; Schmutz, Marc; Ludwig, Bernd; Hellwig, Petra; Melin, Frederic

    2011-06-02

    The electrochemical behavior of three proteins fragments from the respiratory chain of the extremophilic bacterium Thermus thermophilus , namely, cytochrome c(1) (Cyt-c(1)), cytochrome c(552) (Cyt-c(552)), and Cu(A), immobilized on three-dimensional gold nanoparticles electrodes was investigated by cyclic voltammetry. The gold nanoparticles were modified by either dithiobissuccinimidyl propionate (DTSP) or a mixed self-assembled monolayer of 6-mercaptohexan-1-ol and hexanethiol, depending on the surface of the protein. High surface coverages with enzymes and good electron transfer rates were achieved in the case of Cyt-c(1) immobilized on DTSP-modified gold nanoparticles and Cyt-c(552) or Cu(A) immobilized on mixed SAMs-modified gold nanoparticles. Interestingly, high surface coverages with Cu(A) were also observed on DTSP-modified gold nanoparticles, but a slower electron transfer rate was determined in this case. The gold nanoparticle/protein assemblies were characterized by surface-enhanced IR spectroscopy and transmission electron microscopy.

  8. Biased immunoglobulin light chain gene usage in the shark1

    PubMed Central

    Iacoangeli, Anna; Lui, Anita; Naik, Ushma; Ohta, Yuko; Flajnik, Martin; Hsu, Ellen

    2015-01-01

    This study of a large family of kappa light (L) chain clusters in nurse shark completes the characterization of its classical immunoglobulin (Ig) gene content (two heavy chain classes, mu and omega, and four L chain isotopes, kappa, lambda, sigma, and sigma-2). The shark kappa clusters are minigenes consisting of a simple VL-JL-CL array, where V to J recombination occurs over a ~500 bp interval, and functional clusters are widely separated by at least 100 kb. Six out of ca. 39 kappa clusters are pre-rearranged in the germline (GL-joined). Unlike the complex gene organization and multistep assembly process of Ig in mammals, each shark Ig rearrangement, somatic or in the germline, appears to be an independent event localized to the minigene. This study examined the expression of functional, non-productive, and sterile transcripts of the kappa clusters compared to the other three L chain isotypes. Kappa cluster usage was investigated in young sharks, and a skewed pattern of split gene expression was observed, one similar in functional and non-productive rearrangements. These results show that the individual activation of the spatially distant kappa clusters is non-random. Although both split and GL-joined kappa genes are expressed, the latter are prominent in young animals and wane with age. We speculate that, in the shark, the differential activation of the multiple isotypes can be advantageously used in receptor editing. PMID:26342033

  9. Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo.

    PubMed

    Chang, Audrey N; Battiprolu, Pavan K; Cowley, Patrick M; Chen, Guohua; Gerard, Robert D; Pinto, Jose R; Hill, Joseph A; Baker, Anthony J; Kamm, Kristine E; Stull, James T

    2015-04-24

    In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca(2+) sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity.

  10. Primary structure of the A chain of human complement-classical-pathway enzyme C1r. N-terminal sequences and alignment of autolytic fragments and CNBr-cleavage peptides.

    PubMed Central

    Gagnon, J; Arlaud, G J

    1985-01-01

    Activated human complement-classical-pathway enzyme C1r has previously been shown to undergo autolytic cleavages occurring in the A chain [Arlaud, Villiers, Chesne & Colomb (1980) Biochim. Biophys. Acta 616, 116-129]. Chemical analysis of the autolytic products confirms that the A chain undergoes two major cleavages, generating three fragments, which have now been isolated and characterized. The N-terminal alpha fragment (approx. 210 residues long) has a blocked N-terminus, as does the whole A chain, whereas N-terminal sequences of fragments beta and gamma (approx. 66 and 176 residues long respectively) do not, and their N-terminal sequences were determined. Fragments alpha, beta and gamma, which are not interconnected by disulphide bridges, are located in this order within C1r A chain. Fragment gamma is disulphide-linked to the B chain of C1r, which is C-terminal in the single polypeptide chain of precursor C1r. CNBr cleavage of C1r A chain yields seven major peptides, CN1b, CN4a, CN2a, CN1a, CN3, CN4b and CN2b, which were positioned in that order, on the basis of N-terminal sequences of the methionine-containing peptides generated from tryptic cleavage of the succinylated (3-carboxypropionylated) C1r A chain. About 60% of the sequence of C1r A chain (440-460 residues long) was determined, including the complete sequence of the C-terminal 95 residues. This region shows homology with the corresponding parts of plasminogen and chymotrypsinogen and, more surprisingly, with the alpha 1 chain of human haptoglobin 1-1, a serine proteinase homologue. PMID:2983658

  11. Russell body duodenitis with immunoglobulin kappa light chain restriction.

    PubMed

    Munday, William R; Kapur, Lucy Harn; Xu, Mina; Zhang, Xuchen

    2015-01-16

    Russell bodies are eosinophilic intracytoplasmic globules which are likely the result of disturbed secretion of immunoglobulins that accumulate within the plasma cell. Russell body collections have been identified within the stomach, known as Russell body gastritis. Similar lesions within the duodenum are referred to as Russell body duodenitis, which is rare. Several Russell body gastritis case reports are associated with Helicobacter pylori. However, the etiology of Russell body duodenitis remains unclear. Here we report the first case of Russell body duodenitis with immunoglobulin light chain restriction in a background of peptic duodenitis.

  12. [Light chain deposition disease as a cause of renal failure].

    PubMed

    Wohl, P; Chadimová, M; Englis, M; Táborský, P; Rossmann, P; Matl, I

    1998-11-30

    The objective of the paper is to draw attention to a rare cause of rapidly progressing renal failure which developed in the course of four months as a result of light chain deposition disease. The authors submit two case-histories of the disease assessed by renal biopsy after previous clinical and laboratory suspicion of monoclonal gammapathy. In one patient in the sternal punctate plasmacytoma was diagnosed and in the second case it was not possible to detect any type of monoclonal gammapathy or another possible cause of disease. Renal failure was in both cases irreversible and both patients were enlisted in regular haemodialyzation treatment.

  13. Quantitation of free light chains in the cerebrospinal fluid reliably predicts their intrathecal synthesis.

    PubMed

    Zeman, David; Kušnierová, Pavlína; Bartoš, Vladimír; Hradílek, Pavel; Kurková, Barbora; Zapletalová, Olga

    2016-01-01

    The results of free light chains quantitation in the cerebrospinal fluid were recently compared with the presence of cerebrospinal fluid-restricted oligoclonal IgG, but not oligoclonal free kappa light chains and oligoclonal free lambda light chains. We therefore aimed to compare the performance of the quantitative tests with the qualitative one for the same molecule. Seventy-five paired cerebrospinal fluid and serum samples were analysed for oligoclonal IgG, oligoclonal free kappa light chains and oligoclonal free lambda light chains. Cerebrospinal fluid and serum free kappa and lambda light chains were quantified using Freelite™ kits on SPA Plus analyzer. ROC curves were analysed for the prediction of intrathecal synthesis and compared for cerebrospinal fluid concentration, cerebrospinal fluid/serum quotient (QfLC) and index (QfLC/QAlbumin). The presence of cerebrospinal fluid-restricted oligoclonal free kappa light chains and oligoclonal free lambda light chains bands was used as reference. No statistically significant differences were observed among cerebrospinal fluid concentration, QfLC and index for the prediction of free light chain intrathecal synthesis. Each parameter was able to predict the occurrence of cerebrospinal fluid-restricted oligoclonal free light chain bands (AUCs 0.932-0.999). However, we noted elevated cerebrospinal fluid free light chain concentrations in the absence of cerebrospinal fluid-restricted oligoclonal free light chain bands in two patients with very high serum free light chain values. Quantitation of cerebrospinal fluid free light chains reliably predicts their intrathecal synthesis. Yet, cerebrospinal fluid/serum quotient may still be preferred to correct for high serum free light chain concentrations. An appropriate formula should be sought to correct for blood-cerebrospinal fluid barrier status. © The Author(s) 2015.

  14. Production and Characterization of Recombinant Light Chain and Carboxyterminal Heavy Chain Fragments of Tetanus Toxin

    PubMed Central

    Yousefi, Mehdi; Khosravi-Eghbal, Roya; Hemmati, Azam; Shokri, Fazel

    2013-01-01

    Background Light chain (LC) and heavy chain carboxyterminal subdomain (HCC) fragments are the most important parts of tetanus neurotoxin (TeNT) which play key roles in toxicity and binding of TeNT, respectively. In the present study, these two fragments were cloned and expressed in a prokaryotic system and their identity was confirmed using anti-TeNT specific polyclonal and monoclonal antibodies. Methods LC and HCC gene segments were amplified from Clostridium tetani genomic DNA by PCR, cloned into pET28b(+) cloning vector and transformed in Escherichia coli (E. coli) BL21(DE3) expression host. Recombinant proteins were then purified through His-tag using Nickel-based chromatography and characterized by SDS-PAGE, Western blotting and ELISA techniques. Results Recombinant light chain and HCC fragments were successfully cloned and expressed in (E. coli) BL21 (DE3). Optimization of the induction protocol resulted in production of high levels of HCC (~35% of total bacterial protein) and to lesser extends of LC (~5%). Reactivity of the His-tag purified proteins with specific polyclonal and monoclonal antibodies confirmed their renatured structure and identity. Conclusion Our results indicate successful cloning and production of recombinant LC and HCC fragments of TeNT. These two recombinant proteins are potentially useful tools for screening and monitoring of anti-TeNT antibody response and vaccine production. PMID:24285996

  15. Mutation of the 4F2 heavy-chain carboxy terminus causes y+ LAT2 light-chain dysfunction.

    PubMed

    Chubb, Sarah; Kingsland, Alice L; Bröer, Angelika; Bröer, Stefan

    2006-01-01

    Heteromeric amino acid transporters are composed of two subunits--a multipass membrane protein called the 'light chain'--and a single pass glycoprotein called the 'heavy chain'. The light chain contains the transport pore, while the heavy chain appears to be necessary for trafficking the light chain to the plasma membrane. In this study, the role of the 4F2hc heavy chain in the function of the y+ LAT2 light chain was investigated. Carboxy terminal truncations and site specific mutants of 4F2hc were co-expressed in Xenopus laevis oocytes with the y+ LAT2 light chain, and the oocytes were analysed for transport activity and surface expression. Truncations of the 4F2hc carboxy terminus ranging between 15 and 404 residues caused a complete loss of light chain function, although all heterodimers were expressed at the cell surface. This indicated that the 15 carboxy-terminal residues of 4F2hc are required for the transport function of the heterodimer. Mutation of the conserved residue leucine 523 to glutamine in the carboxy terminus reduced the Vmax of arginine and leucine uptake. The affinity of the transporter for both arginine and leucine remained unaltered, but the Km-value of Na+, being cotransported with leucine, increased about three-fold. The change of the Na+ Km caused a specific defect of leucine efflux, whereas uptake of leucine at high extracellular NaCl concentration was unaffected.

  16. Structural requirement of the regulatory light chain of smooth muscle myosin as a substrate for myosin light chain kinase.

    PubMed

    Ikebe, M; Reardon, S; Schwonek, J P; Sanders, C R; Ikebe, R

    1994-11-11

    The substrate structure required for skeletal and smooth muscle myosin light chain kinases (MLC kinase) was studied by using various mutant regulatory light chains of smooth muscle myosin. The deletion of the NH2-terminal 10 residues did not greatly affect the kinetic parameters of smooth MLC kinase; however, deletion of an additional 3 residues, Lys11-Arg13, prevented phosphorylation. In contrast, deletion of Lys11-Arg13 did not completely abolish the phosphorylation for skeletal MLC kinase, and deletion of three additional residues was required for complete inhibition. Substitution of Arg16 with Glu markedly decreased Vmax for both smooth and skeletal MLC kinases. Substitution of Lys11-Arg13 with acidic or noncharged residues decreased Vmax, but these changes were much lower than that occurring on substitution of Arg16. Replacement of Lys11-Arg13 with acidic residues reduced the affinity of the free LC20 but had little effect on the myosin-incorporated LC20. These results were different from those previously obtained with synthetic peptide analogs (Kemp, B. E., Pearson, R. B., and House, C. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 7471-7475) and suggest that a cluster of the basic amino acid residues are not fundamentally important for substrate recognition. The structural simulation revealed that the guanidyl group of Arg16 but not the corresponding Glu13 of skeletal light chain resides in close proximity to Ser19, suggesting that the guanidyl group of Arg16 stabilizes the phosphate transfer and that the introduction of Glu at the 16th position would significantly destabilized this reaction.

  17. Serum free light chains, not urine specimens, should be used to evaluate response in light-chain multiple myeloma

    PubMed Central

    Dejoie, Thomas; Corre, Jill; Caillon, Helene; Hulin, Cyrille; Perrot, Aurore; Caillot, Denis; Boyle, Eileen; Chretien, Marie-Lorraine; Fontan, Jean; Belhadj, Karim; Brechignac, Sabine; Decaux, Olivier; Voillat, Laurent; Rodon, Philippe; Fitoussi, Olivier; Araujo, Carla; Benboubker, Lotfi; Fontan, Charlotte; Tiab, Mourad; Godmer, Pascal; Luycx, Odile; Allangba, Olivier; Pignon, Jean-Michel; Fuzibet, Jean-Gabriel; Legros, Laurence; Stoppa, Anne Marie; Dib, Mamoun; Pegourie, Brigitte; Orsini-Piocelle, Frederique; Karlin, Lionel; Arnulf, Bertrand; Roussel, Murielle; Garderet, Laurent; Mohty, Mohamad; Meuleman, Nathalie; Doyen, Chantal; Lenain, Pascal; Macro, Margaret; Leleu, Xavier; Facon, Thierry; Moreau, Philippe; Attal, Michel

    2016-01-01

    Guidelines for monitoring multiple myeloma (MM) patients expressing light chains only (light-chain MM [LCMM]) rely on measurements of monoclonal protein in urine. Alternatively, serum free light chain (sFLC) measurements have better sensitivity over urine methods, however, demonstration that improved sensitivity provides any clinical benefit is lacking. Here, we compared performance of serum and urine measurements in 113 (72κ, 41λ) newly diagnosed LCMM patients enrolled in the Intergroupe Francophone du Myélome (IFM) 2009 trial. All diagnostic samples (100%) had an abnormal κ:λ sFLC ratio, and involved (monoclonal) FLC (iFLC) expressed at levels deemed measurable for monitoring (≥100 mg/L). By contrast, only 64% patients had measurable levels of monoclonal protein (≥200 mg per 24 hours) in urine protein electrophoresis (UPEP). After 1 and 3 treatment cycles, iFLC remained elevated in 71% and 46% of patients, respectively, whereas UPEP reported a positive result in 37% and 18%; all of the patients with positive UPEP at cycle 3 also had elevated iFLC levels. Importantly, elevated iFLC or an abnormal κ:λ sFLC ratio after 3 treatment cycles associated with poorer progression-free survival (P = .006 and P < .0001, respectively), whereas positive UPEP or urine immunofixation electrophoresis (uIFE) did not. In addition, patients with an abnormal κ:λ sFLC ratio had poorer overall survival (P = .022). Finally, early normalization of κ:λ sFLC ratio but not negative uIFE predicted achieving negative minimal residual disease, as determined by flow cytometry, after consolidation therapy (100% positive predictive value). We conclude that improved sensitivity and prognostic value of serum over urine measurements provide a strong basis for recommending the former for monitoring LCMM patients. PMID:27729323

  18. Regulatory myosin light-chain genes of Caenorhabditis elegans.

    PubMed Central

    Cummins, C; Anderson, P

    1988-01-01

    We have cloned and analyzed the Caenorhabditis elegans regulatory myosin light-chain genes. C. elegans contains two such genes, which we have designated mlc-1 and mlc-2. The two genes are separated by 2.6 kilobases and are divergently transcribed. We determined the complete nucleotide sequences of both mlc-1 and mlc-2. A single, conservative amino acid substitution distinguishes the sequences of the two proteins. The C. elegans proteins are strongly homologous to regulatory myosin light chains of Drosophila melanogaster and vertebrates and weakly homologous to a superfamily of eucaryotic calcium-binding proteins. Both mlc-1 and mlc-2 encode abundant mRNAs. We mapped the 5' termini of these transcripts by using primer extension sequencing of mRNA templates. mlc-1 mRNAs initiate within conserved hexanucleotides at two different positions, located at -28 and -38 relative to the start of translation. The 5' terminus of mlc-2 mRNA is not encoded in the 4.8-kilobase genomic region upstream of mlc-2. Rather, mlc-2 mRNA contains at its 5' end a short, untranslated leader sequence that is identical to the trans-spliced leader sequence of three C. elegans actin genes. Images PMID:3244358

  19. Immunoglobulin light chain isotypes in the teleost Trematomus bernacchii.

    PubMed

    Coscia, Maria Rosaria; Giacomelli, Stefano; De Santi, Concetta; Varriale, Sonia; Oreste, Umberto

    2008-06-01

    Three immunoglobulin light chain (IgL) isotypes TrbeL1, TrbeL2, and TrbeL3 were identified in the Antarctic teleost Trematomus bernacchii by immunoscreening a cDNA expression library, and using RT-PCR, and 5' RACE. One of them was distinguished in two subisotypes TrbeL1A and TrbeL1B. Real-time PCR experiments showed that the different isotypes were expressed in similar ratios in the various tissues analyzed. Interestingly, the expression level of TrbeL1A isotype was very high in all tissues. Molecular models of the CH1-CL domain pairings were built and minimized for the different isotypes. Several differences were identified in the superimposable structures mainly in the loops. In addition, the isotype-specific residues determined a different distribution of the charges on the external CL domain surface. Phylogenetic trees of 43 isotype representative sequences of CL domain from teleost species, built by different methods, indicated that all teleost light chain isotypes are distributed into three groups. Furthermore, the split of the group IgL1 into two subgroups, one of them carrying a micro-satellite DNA insertion, may have occurred in the Acanthopterygean ancestor.

  20. Serum free light chains in clinical laboratory diagnostics.

    PubMed

    Jenner, Ellen

    2014-01-01

    Monoclonal free light chains (FLCs) are important disease biomarkers in patients with plasma cell-proliferative disorders. The increasing evidence for clonal diversity and evolution in multiple myeloma highlights the importance of laboratory algorithms that measure both intact immunoglobulins and monoclonal FLCs, at diagnosis and when monitoring response to treatment. A particular focus in the field has been on the utility of serum FLC (sFLC) assays to replace urine electrophoresis for monoclonal FLC measurement. Due to the limited sensitivity and practical constraints of urine analysis, a serum-based algorithm of SPE and sFLC has been adopted by many laboratories as a first line screen in patients with suspected monoclonal gammopathies. This review will discuss the data supporting the use of this simple serum-based algorithm at initial diagnosis, including its utility for the rapid identification of monoclonal FLC in the setting of unexplained acute kidney injury, and provide a comprehensive review of the diagnostic sensitivity of sFLC in patients with multiple myeloma, AL amyloidosis and light chain deposition disease.

  1. Serum free light chains for monitoring multiple myeloma.

    PubMed

    Mead, G P; Carr-Smith, H D; Drayson, M T; Morgan, G J; Child, J A; Bradwell, A R

    2004-08-01

    Monoclonal immunoglobulin free light chains (FLC) are found in the serum and urine of patients with a number of B-cell proliferative disorders, including multiple myeloma. Automated immunoassays, which can measure FLC in serum, are useful for the diagnosis and monitoring of light chain (AL) amyloidosis, Bence Jones myeloma and non-secretory myeloma patients. We report the results of a study investigating the utility of serum FLC measurements in myeloma patients producing monoclonal intact immunoglobulin proteins. FLC concentrations were measured in presentation sera from 493 multiple myeloma patients with monoclonal, intact immunoglobulin proteins. Serial samples were assayed from 17 of these patients and the FLC measurements were compared with other disease markers. Serum FLC concentrations were abnormal in 96% of patients at presentation. FLC concentrations fell more rapidly in response to treatment than intact immunoglobulin G (IgG) and showed greater concordance with serum beta2 microglobulin concentrations and bone marrow plasma cell assessments. It was concluded that serum FLC assays could be used to follow the disease course in nearly all multiple myeloma patients. In addition, because of their short serum half-life, changes in serum FLC concentrations provide a rapid indication of the response to treatment.

  2. Dynein light chain association sequences can facilitate nuclear protein import.

    PubMed

    Moseley, Gregory W; Roth, Daniela Martino; DeJesus, Michelle A; Leyton, Denisse L; Filmer, Richard P; Pouton, Colin W; Jans, David A

    2007-08-01

    Nuclear localization sequence (NLS)-dependent nuclear protein import is not conventionally held to require interaction with microtubules (MTs) or components of the MT motor, dynein. Here we report for the first time the role of sequences conferring association with dynein light chains (DLCs) in NLS-dependent nuclear accumulation of the rabies virus P-protein. We find that P-protein nuclear accumulation is significantly enhanced by its dynein light chain association sequence (DLC-AS), dependent on MT integrity and association with DLCs, and that P-protein-DLC complexes can associate with MT cytoskeletal structures. We also find that P-protein DLC-AS, as well as analogous sequences from other proteins, acts as an independent module that can confer enhancement of nuclear accumulation to proteins carrying the P-protein NLS, as well as several heterologous NLSs. Photobleaching experiments in live cells demonstrate that the MT-dependent enhancement of NLS-mediated nuclear accumulation by the P-protein DLC-AS involves an increased rate of nuclear import. This is the first report of DLC-AS enhancement of NLS function, identifying a novel mechanism regulating nuclear transport with relevance to viral and cellular protein biology. Importantly, this data indicates that DLC-ASs represent versatile modules to enhance nuclear delivery with potential therapeutic application.

  3. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis.

    PubMed

    del Pozo-Yauner, Luis; Wall, Jonathan S; González Andrade, Martín; Sánchez-López, Rosana; Rodríguez-Ambriz, Sandra L; Pérez Carreón, Julio I; Ochoa-Leyva, Adrián; Fernández-Velasco, D Alejandro

    2014-01-10

    It has been suggested that the N-terminal strand of the light chain variable domain (V(L)) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stability and kinetic of fibrillogenesis of the V(L) protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein.

  4. Prediction of the secondary structure of myosin light chains from comparison of homologous sequences. Implications for the interaction between myosin heavy and light chains.

    PubMed

    Béchet, J J; Houadjeto, M

    1989-07-06

    The primary sequences of seventeen essential and seventeen regulatory myosin light chains were analyzed and compared, using algorithms based on the different structural properties of their amino acid residues. This process allowed estimation of the structural homology between the proteins studied, and improved the prediction of their mean secondary structure and functionally important segments or residues. On the basis of the crystal structure of troponin C, a model of the myosin essential light chain with a fairly compact form is proposed. The possible sites of interaction between myosin light and heavy chains from rabbit skeletal muscle were also investigated by a complementarity method adapted to helix-rich proteins. Segments 139-149 and 65-75 in the essential light chain and segments 27-37, 67-77 and 97-107 in the regulatory light chain are suggested to constitute some of these sites, as most of them were found to have the features of surface-seeking helices.

  5. The light chains of muscle myosin: its structure, function, and evolution.

    PubMed

    Matsuda, G

    1983-01-01

    In this review I described the primary structures of myosin light chains contained in fast skeletal muscle, cardiac muscle, and gizzard muscle of chicken. In a comparison of these proteins many more amino acid substitutions than expected were recognized among the primary structures in the muscle from various organs. A fairly high homology was however shown between their primary structure, and this homology is also recognized among the light chains, parvalbumins, troponins C, and calmodulins. On the other hand, the relation between the primary structures and physiological function of these myosin light chains or the interaction between light chains and heavy chains still seems unclear. These problems are important subjects for future study.

  6. Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains.

    PubMed

    Muyldermans, S; Atarhouch, T; Saldanha, J; Barbosa, J A; Hamers, R

    1994-09-01

    We cloned 17 different PCR fragments encoding VH genes of camel (Camelus dromedarius). These clones were derived from the camel heavy chain immunoglobulins lacking the light chain counterpart of normal immunoglobulins. Insight into the camel VH sequences and structure may help the development of single domain antibodies. The most remarkable difference in the camel VH, consistent with the absence of the VL interaction, is the substitution of the conserved Leu45 by an Arg or Cys. Another noteworthy substitution is the Leu11 to Ser. This amino acid normally interacts with the CH1 domain, a domain missing in the camel heavy chain immunoglobulins. The nature of these substitutions agrees with the increased solubility behavior of an isolated camel VH domain. The VH domains of the camels are also characterized by a long CDR3, possibly compensating for the absence of the VL contacts with the antigen. The CDR3 lacks the salt bridge between Arg94 and Asp101. However, the frequent occurrence of additional Cys residues in both the CDR1 and CDR3 might lead to the formation of a second internal disulfide bridge, thereby stabilizing the CDR structure as in the DAW antibody. Within CDRs of the camel VH domains we observe a broad size distribution and a different amino acid pattern compared with the mouse or human VH. Therefore the camel hypervariable regions might adopt structures which differ substantially from the known canonical structures, thereby increasing the repertoire of the camel antigen binding sites within a VH.

  7. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis

    SciTech Connect

    Pozo-Yauner, Luis del; Wall, Jonathan S.; González Andrade, Martín; Sánchez-López, Rosana; Rodríguez-Ambriz, Sandra L.; Pérez Carreón, Julio I.; and others

    2014-01-10

    Highlights: •We evaluated the impact of mutations in the N-terminal strand of 6aJL2 protein. •Mutations destabilized the protein in a position-dependent manner. •Destabilizing mutations accelerated the fibrillogenesis by shortening the lag time. •The effect on the kinetic of fibril elongation by seeding was of different nature. •The N-terminal strand is buried in the fibrillar state of 6aJL2 protein. -- Abstract: It has been suggested that the N-terminal strand of the light chain variable domain (V{sub L}) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stability and kinetic of fibrillogenesis of the V{sub L} protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein.

  8. Amino terminal sequence of heavy and light chains from ratfish immunoglobulin.

    PubMed

    De Ioannes, A E; Aguila, H L

    1989-01-01

    The ratfish, Callorhinchus callorhinchus, a representative of the Holocephali, has a natural serum hemagglutinin (Mr 960,000), composed of heavy (Mr 71,000), light (Mr 22,500), and J (Mr 16,000) chains. To approach the mechanisms that generate diversity at this level of evolution, the amino terminal sequence of the heavy and light chains was determined by automated microsequencing. The chains are unblocked and have modest internal sequence heterogeneity. The heavy chains show sequence similarity with the terminal region of the heavy chain from the horned shark, Heterodontus francisci, and other species. In contrast to the heavy chain, the ratfish light chains display low sequence similarity with their shark kappa counterparts. However, their similarity with the variable region of the chicken lambda light chains is about 75%.

  9. Polyclonal free light chain of Ig may interfere with interpretation of monoclonal free light chain κ/λ ratio.

    PubMed

    Levinson, Stanley S

    2010-01-01

    There is controversy about whether a sensitive assay for the serum Ig free light chain (FLC) κ/λ ratio can replace urine immunofixation electrophoresis (UIFE). This report describes two untreated patients in whom monoclonal FLCs were identified in urine despite normal serum FLC κ/λ ratios. Unlike the classical serum electrophoretic patterns in multiple myeloma, both serum samples showed adequate amounts of polyclonal Ig. The most likely explanation is a masking effect by polyclonal FLC on the serum κ/λ ratio when sufficient concentrations of polyclonal FLC exist. These cases illustrate this likely effect and attest to the continued importance of UIFE for initial screening of patients for Bence-Jones protein.

  10. Verification of serum reference intervals for free light chains in a local South African population.

    PubMed

    Zemlin, Annalise E; Rensburg, Megan A; Ipp, Hayley; Germishuys, Jurie J; Erasmus, Rajiv T

    2013-11-01

    Monoclonal serum free light chain measurements are used to follow up and manage patients with monoclonal gammopathies, and abnormal serum free light chain ratios are associated with risk of progression in certain diseases. We aimed to validate the reference intervals in our population. Reference intervals for κ and λ free light chains were established on 120 healthy adults. Creatinine levels were measured to exclude renal dysfunction and serum protein electrophoresis was performed. All creatinine values were within normal limits. After exclusion of subjects with abnormal serum protein electrophoreses, 113 subjects were available for analysis. The 95% reference interval was 6.3-20.6 mg/L for κ free light chains, 8.7-25.9 mg/L for λ free light chains and 0.46-1.23 for free light chain ratio. Most of the values fell within the manufacturer's recommended limits and therefore could be used for our population.

  11. Immunoglobulin light chain class multiplicity and alternative organizational forms in early vertebrate phylogeny.

    PubMed

    Rast, J P; Anderson, M K; Ota, T; Litman, R T; Margittai, M; Shamblott, M J; Litman, G W

    1994-01-01

    The prototypic chondrichthyan immunoglobulin (Ig) light chain type (type I) isolated from Heterodontus francisci (horned shark) has a clustered organization in which variable (V), joining (J), and constant (C) elements are in relatively close linkage (V-J-C). Using a polymerase chain reaction-based approach on a light chain peptide sequence from the holocephalan, Hydrolagus colliei (spotted ratfish), it was possible to isolate members of a second light chain gene family. A probe to this light chain (type II) detects homologs in two orders of elasmobranchs, Heterodontus, a galeomorph and Raja erinacea (little skate), a batoid, suggesting that this light chain type may be present throughout the cartilaginous fishes. In all cases, V, J, and C regions of the type II gene are arranged in closely linked clusters typical of all known Ig genes in cartilaginous fishes. All representatives of this type II gene family are joined in the germline. A third (kappa-like) light chain type from Heterodontus is described. These findings establish that a degree of light chain class complexity comparable to that of the mammals is present in the most phylogenetically distant extant jawed vertebrates and that the phenomenon of germline-joined (pre-rearranged) genes, described originally in the heavy chain genes of cartilaginous fishes, extends to light chain genes.

  12. Light chain-deficient mice produce novel multimeric heavy-chain-only IgA by faulty class switching.

    PubMed

    Matheson, Louise S; Osborn, Michael J; Smith, Jennifer A; Corcos, Daniel; Hamon, Maureen; Chaouaf, Rima; Coadwell, John; Morgan, Geoff; Oxley, David; Brüggemann, Marianne

    2009-08-01

    Recently, we identified that diverse heavy chain (H-chain)-only IgG is spontaneously produced in light chain (L-chain)-deficient mice (L(-/-) with silenced kappa and lambda loci) despite a block in B cell development. In murine H-chain IgG, the first Cgamma exon, C(H)1, is removed after DNA rearrangement and secreted polypeptides are comparable with camelid-type H-chain IgG. Here we show that L(-/-) mice generate a novel class of H-chain Ig with covalently linked alpha chains, not identified in any other healthy mammal. Surprisingly, diverse H-chain-only IgA can be released from B cells at levels similar to conventional IgA and is found in serum and sometimes in milk and saliva. Surface IgA without L-chain is expressed in B220(+) spleen cells, which exhibited a novel B cell receptor, suggesting that associated conventional differentiation events occur. To facilitate the cellular transport and release of H-chain-only IgA, chaperoning via BiP association seems to be prevented as only alpha chains lacking C(H)1 are released from the cell. This appears to be accomplished by imprecise class-switch recombination (CSR) from Smu into the alpha constant region, which removes all or part of the Calpha1 exon at the genomic level.

  13. Cloning and sequence determination of a human rheumatoid factor light-chain gene.

    PubMed Central

    Jirik, F R; Sorge, J; Fong, S; Heitzmann, J G; Curd, J G; Chen, P P; Goldfien, R; Carson, D A

    1986-01-01

    The contribution of germ-line variable regions to autoantibody formation in humans is poorly understood. To study the gene structure of a human autoantibody, chronic lymphatic leukemia (CLL) cells from a patient with an IgM anti-IgG (rheumatoid factor, RF) paraprotein were utilized. The rearranged immunoglobulin gene encoding the kappa light chain for the RF was cloned, and the nucleic acid sequence of its variable region was determined. As demonstrated by Southern blot analysis using a kappa joining-region probe, the CLL cells, stable CLL-WIL2-729-HF2 RF-secreting hybridomas, and the cloned light-chain gene all had an identical restriction fragment containing the rearranged light-chain gene. The CLL RF light chains reacted weakly with an antipeptide antibody against a primary structure-dependent idiotype present on the light chains of the majority of IgM RF paraproteins. The nucleotide and predicted amino acid sequences of the CLL light-chain gene place it in the kappa III variable-region subgroup, and a comparison to known RF paraproteins reveals marked homology to the light-chain amino acid sequence of the IgM RF paraprotein Pom. Both Pom and the CLL light chain appear to identify a second kappa III gene or gene group that is able to encode RF paraprotein light chains. Images PMID:3083417

  14. Free Immunoglobulin Light Chains as Criteria of Extracorporeal Hemocorrection in Patients with Monoclonal Gammopathies.

    PubMed

    Lyubimova, N V; Timofeeva, Yu S; Gromova, E G; Kuznetsova, L S; Votyakova, O M; Kushlinskii, N E

    2017-08-01

    Elimination of free immunoglobulin light chains with the use of EMic2 selective filters was carried out in 12 patients with monoclonal gammopathies and high production of free immunoglobulin light chains. We showed that extracorporeal detoxification for direct removal of excessive free immunoglobulin light chains from the circulation is advisable for these patients, irrespective of the presence and severity of renal insufficiency. Rapid reduction or elimination of free light chains of immunoglobulins in the course of selective extracorporeal elimination helps to prevent the development of irreversible renal failure and to perform adequate antitumor therapy.

  15. Mutations in Myosin Light Chain Kinase Cause Familial Aortic Dissections

    PubMed Central

    Wang, Li; Guo, Dong-chuan; Cao, Jiumei; Gong, Limin; Kamm, Kristine E.; Regalado, Ellen; Li, Li; Shete, Sanjay; He, Wei-Qi; Zhu, Min-Sheng; Offermanns, Stephan; Gilchrist, Dawna; Elefteriades, John; Stull, James T.; Milewicz, Dianna M.

    2010-01-01

    Mutations in smooth muscle cell (SMC)-specific isoforms of α-actin and β-myosin heavy chain, two major components of the SMC contractile unit, cause familial thoracic aortic aneurysms leading to acute aortic dissections (FTAAD). To investigate whether mutations in the kinase that controls SMC contractile function (myosin light chain kinase [MYLK]) cause FTAAD, we sequenced MYLK by using DNA from 193 affected probands from unrelated FTAAD families. One nonsense and four missense variants were identified in MYLK and were not present in matched controls. Two variants, p.R1480X (c.4438C>T) and p.S1759P (c.5275T>C), segregated with aortic dissections in two families with a maximum LOD score of 2.1, providing evidence of linkage of these rare variants to the disease (p = 0.0009). Both families demonstrated a similar phenotype characterized by presentation with an acute aortic dissection with little to no enlargement of the aorta. The p.R1480X mutation leads to a truncated protein lacking the kinase and calmodulin binding domains, and p.S1759P alters amino acids in the α-helix of the calmodulin binding sequence, which disrupts kinase binding to calmodulin and reduces kinase activity in vitro. Furthermore, mice with SMC-specific knockdown of Mylk demonstrate altered gene expression and pathology consistent with medial degeneration of the aorta. Thus, genetic and functional studies support the conclusion that heterozygous loss-of-function mutations in MYLK are associated with aortic dissections. PMID:21055718

  16. [Non-amyloidotic glomerular disease caused by light-chain deposits: a case report].

    PubMed

    Cantillo, Jorge de Jesús; López, Rocío del Pilar; Andrade, Rafael Enrique

    2009-12-01

    The nephropathy of monoclonal gammopathies is principally caused by light chain deposits of fragmented immunoglobins. Paraprotein-related renal diseases are associated with such deposits of intact (heavy chain) or fragmentary (light chain) immunoglobins. A condition of pathological light chain deposits is rare and characterized by deposits of fragments of monoclonal immunoglobulins in many organs. Renal deposits occur primarily in glomeruli and tubular basement membranes. This disease is frequently associated with lymphoproliferative disorders. The majority of cases are caused by deposits of kappa light chains. Whereas this disease is most frequently associated with hematologic malignancies, occasionally a case occurs without detectable hematological pathologies; these cases are called idiopathic or primary. They usually manifest themselves as severe renal insufficiencies with nephrotic-range proteinuria. No treatment regime has been clearly established and the prognosis is poor. Herein, the clinical and histological characteristics are described regarding the first case in Colombia of light chain deposit disease without symptoms of malignancy.

  17. CSF neurofilament light chain reflects corticospinal tract degeneration in ALS

    PubMed Central

    Menke, Ricarda A L; Gray, Elizabeth; Lu, Ching-Hua; Kuhle, Jens; Talbot, Kevin; Malaspina, Andrea; Turner, Martin R

    2015-01-01

    Objective Diffusion tensor imaging (DTI) is sensitive to white matter tract pathology. A core signature involving the corticospinal tracts (CSTs) has been identified in amyotrophic lateral sclerosis (ALS). Raised neurofilament light chain protein (NfL) in cerebrospinal fluid (CSF) is thought to reflect axonal damage in a range of neurological disorders. The relationship between these two measures was explored. Methods CSF and serum NfL concentrations and DTI acquired at 3 Tesla on the same day were obtained from ALS patients (n = 25 CSF, 40 serum) and healthy, age-similar controls (n = 17 CSF, 25 serum). Within-group correlations between NfL and DTI measures of microstructural integrity in major white matter tracts (CSTs, superior longitudinal fasciculi [SLF], and corpus callosum) were performed using tract-based spatial statistics. Results NfL levels were higher in patients compared to controls. CSF levels correlated with clinical upper motor neuron burden and rate of disease progression. Higher NfL levels were significantly associated with lower DTI fractional anisotropy and increased radial diffusivity in the CSTs of ALS patients, but not in controls. Interpretation Elevated CSF and serum NfL is, in part, a result of CST degeneration in ALS. This highlights the wider potential for combining neurochemical and neuroimaging-based biomarkers in neurological disease. PMID:26273687

  18. Distinct interactions between actin and essential myosin light chain isoforms.

    PubMed

    Petzhold, Daria; Simsek, Burcu; Meißner, Ralf; Mahmoodzadeh, Shokoufeh; Morano, Ingo

    2014-07-04

    Binding of the utmost N-terminus of essential myosin light chains (ELC) to actin slows down myosin motor function. In this study, we investigated the binding constants of two different human cardiac ELC isoforms with actin. We employed circular dichroism (CD) and surface plasmon resonance (SPR) spectroscopy to determine structural properties and protein-protein interaction of recombinant human atrial and ventricular ELC (hALC-1 and hVLC-1, respectively) with α-actin as well as α-actin with alanin-mutated ELC binding site (α-actin(ala3)) as control. CD spectroscopy showed similar secondary structure of both hALC-1 and hVLC-1 with high degree of α-helicity. SPR spectroscopy revealed that the affinity of hALC-1 to α-actin (KD=575 nM) was significantly (p<0.01) lower compared with the affinity of hVLC-1 to α-actin (KD=186 nM). The reduced affinity of hALC-1 to α-actin was mainly due to a significantly (p<0.01) lower association rate (kon: 1,018 M(-1)s(-1)) compared with kon of the hVLC-1/α-actin complex interaction (2,908 M(-1)s(-1)). Hence, differential expression of ELC isoforms could modulate muscle contractile activity via distinct α-actin interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Prognostic Value of Serum Free Light Chain in Multiple Myeloma.

    PubMed

    El Naggar, Amel A; El-Naggar, Mostafa; Mokhamer, El-Hassan; Avad, Mona W

    2015-01-01

    The measurement of serum free light chain (sFLC) has been shown to be valuable in screening for the presence of plasma cell dyscrasia as well as for baseline prognosis in newly diagnosed patients. The aim of the present work was to study the prognostic value of sFLC in multiple myeloma in relation to other serum biomarkers, response to therapy and survival. Forty five newly diagnosed patients with MM were included in the study. Patients were divided into responders and non-responders groups according to response to therapy. sFLC and serum Amyloid A (SAA) were measured by immunonephelometry. The non-responders group showed a statistically significant higher kappa/lambda or lambda/kappa ratio and higher β2 microglobulin level, but lower albumin level at presentation, as compared to the responders group (P < 0.001). However, no statistically significant difference was detected between the two groups regarding SA A or calcium levels. Comparison between sFLC ratio obtained before and after therapy revealed significant decrease after treatment in the responders group (P = 0.05). Survival was significantly inferior in patients with an FLC ratio of ≥ 2.6 or ≤ 0.56 compared with those with an FLC ratio that was between 0.56 and 2.6 (P = 0.002).

  20. Biochemistry of Smooth Muscle Myosin Light Chain Kinase

    PubMed Central

    Hong, Feng; Haldeman, Brian D.; Jackson, Del; Carter, Mike; Baker, Jonathan E.; Cremo, Christine R.

    2011-01-01

    The smooth muscle isoform of myosin light chain kinase (MLCK) is a Ca2+-calmodulin-activated kinase that is found in many tissues. It is particularly important for regulating smooth muscle contraction by phosphorylation of myosin. This review summarizes selected aspects of recent biochemical work on MLCK that pertains to its function in smooth muscle. In general, the focus of the review is on new findings, unresolved issues, and areas with the potential for high physiological significance that need further study. The review includes a concise summary of the structure, substrates, and enzyme activity, followed by a discussion of the factors that may limit the effective activity of MLCK in the muscle. The interactions of each of the many domains of MLCK with the proteins of the contractile apparatus, and the multi-domain interactions of MLCK that may control its behaviors in the cell are summarized. Finally, new in vitro approaches to studying the mechanism of phosphorylation of myosin are introduced. PMID:21565153

  1. Biochemical Features of a Catalytic Antibody Light Chain, 22F6, Prepared from Human Lymphocytes*

    PubMed Central

    Hifumi, Emi; Fujimoto, Naoko; Arakawa, Mitsue; Saito, Eri; Matsumoto, Shingo; Kobayashi, Nobuyuki; Uda, Taizo

    2013-01-01

    Human antibody light chains belonging to subgroup II of germ line genes were amplified by a seminested PCR technique using B-lymphocytes taken from a human adult infected with influenza virus. Each gene of the human light chains was transferred into the Escherichia coli system. The recovered light chain was highly purified using a two-step purification system. Light chain 22F6 showed interesting catalytic features. The light chain cleaved a peptide bond of synthetic peptidyl-4-methyl-coumaryl-7-amide (MCA) substrates, such as QAR-MCA and EAR-MCA, indicating amidase activity. It also hydrolyzed a phosphodiester bond of both DNA and RNA. From the analysis of amino acid sequences and molecular modeling, the 22F6 light chain possesses two kinds of active sites as amidase and nuclease in close distances. The 22F6 catalytic light chain could suppress the infection of influenza virus type A (H1N1) of Madin-Darby canine kidney cells in an in vitro assay. In addition, the catalytic light chain clearly inhibited the infection of the influenza virus of BALB/c mice via nasal administration in an in vivo assay. In the experiment, the titer in the serum of the mice coinfected with the 22F6 light chain and H1N1 virus became considerably lowered compared with that of 22F6-non-coinfected mice. Note that the catalytic light chain was prepared from human peripheral lymphocyte and plays an important role in preventing infection by influenza virus. Considering the fact that the human light chain did not show any acute toxicity for mice, our procedure developed in this study must be unique and noteworthy for developing new drugs. PMID:23677996

  2. Immunoglobulin K light chain deficiency: A rare, but probably underestimated, humoral immune defect.

    PubMed

    Sala, Pierguido; Colatutto, Antonio; Fabbro, Dora; Mariuzzi, Laura; Marzinotto, Stefania; Toffoletto, Barbara; Perosa, Anna R; Damante, Giuseppe

    2016-04-01

    Human immunoglobulin molecules are generated by a pair of identical heavy chains, which identify the immunoglobulin class, and a pair of identical light chains, Kappa or Lambda alternatively, which characterize the immunoglobulin type. In normal conditions, Kappa light chains represent approximately 2/3 of the light chains of total immunoglobulins, both circulating and lymphocyte surface bound. Very few cases of immunoglobulin Kappa or Lambda light chain defects have been reported. Furthermore, the genetic basis of this defect has been extensively explored only in a single case. We report a case of a patient suffering of serious recurrent bacterial infections, which was caused by a very rare form of immunoglobulin disorder, consisting of a pure defect of Kappa light chain. We evaluated major serum immunoglobulin concentrations, as well as total and free Kappa and Lambda light chain concentrations. Lymphocyte phenotyping was also performed and finally we tested the Kappa chain VJ rearrangement as well as the constant Kappa region sequence. Studies performed on VJ rearrangement showed a polyclonal genetic arrangement, whereas the gene sequencing for the constant region of Kappa chain showed a homozygous T to G substitution at the position 1288 (rs200765148). This mutation causes a substitution from Cys to Gly in the protein sequence and, therefore, determines the abnormal folding of the constant region of Kappa chain. We suggest that this defect could lead to an effective reduction of the variability of total antibody repertoire and a consequent defect of an apparently normal immunoglobulin response to common antigens.

  3. Insidious rifampin-associated renal failure with light-chain proteinuria.

    PubMed

    Warrington, R J; Hogg, G R; Paraskevas, F; Tse, K S

    1977-07-01

    A patient who was receiving rifampin treatment for tuberculosis developed heterogenous light-chain proteinuria and insidious renal failure after a period of fluid restriction. The renal damage was characterized pathologically by an interstitial nephritis with invasive tubular casts and an associated renal vein thrombosis. The possible role of the light-chain proteinuria in the pathogenesis of the renal failure is discussed.

  4. 21 CFR 866.5550 - Immunoglobulin (light chain specific) immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunoglobulin (light chain specific) immunological test system. 866.5550 Section 866.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5550 Immunoglobulin (light chain specific) immunological test system....

  5. 21 CFR 866.5550 - Immunoglobulin (light chain specific) immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Immunoglobulin (light chain specific) immunological test system. 866.5550 Section 866.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5550 Immunoglobulin (light chain specific) immunological test system....

  6. 21 CFR 866.5550 - Immunoglobulin (light chain specific) immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Immunoglobulin (light chain specific) immunological test system. 866.5550 Section 866.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5550 Immunoglobulin (light chain specific) immunological test system....

  7. 21 CFR 866.5550 - Immunoglobulin (light chain specific) immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Immunoglobulin (light chain specific) immunological test system. 866.5550 Section 866.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5550 Immunoglobulin (light chain specific) immunological test system....

  8. 21 CFR 866.5550 - Immunoglobulin (light chain specific) immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Immunoglobulin (light chain specific) immunological test system. 866.5550 Section 866.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5550 Immunoglobulin (light chain specific) immunological test system....

  9. The use of immunoglobulin light chain assays in the diagnosis of paraprotein-related kidney disease

    PubMed Central

    Yadav, Punit; Leung, Nelson; Sanders, Paul W.; Cockwell, Paul

    2016-01-01

    Kidney involvement is common in paraprotein-related diseases. A diversity of clinical presentations and histopathological features can occur secondary to tissue injury caused by precipitation or deposition of a clonal immunoglobulin, usually an immunoglobulin light chain. The paraprotein is either produced by multiple myeloma or by a clone of B-cell lineage that does not fulfill diagnostic criteria for multiple myeloma. The recent introduction of serum immunoglobulin free light chain assays, which accurately quantify both light chain isotypes to produce a ratio that indicates the presence or absence of a light chain paraprotein, is a major clinical development. However, as the interpretation of the assay can be challenging, the aim of this review is to clarify the role of serum and urinary light chain assays in the screening and diagnosis of paraprotein-related kidney disease. PMID:25296094

  10. Neurofilament light chain: a biomarker for genetic frontotemporal dementia.

    PubMed

    Meeter, Lieke H; Dopper, Elise G; Jiskoot, Lize C; Sanchez-Valle, Raquel; Graff, Caroline; Benussi, Luisa; Ghidoni, Roberta; Pijnenburg, Yolande A; Borroni, Barbara; Galimberti, Daniela; Laforce, Robert Jr; Masellis, Mario; Vandenberghe, Rik; Ber, Isabelle Le; Otto, Markus; van Minkelen, Rick; Papma, Janne M; Rombouts, Serge A; Balasa, Mircea; Öijerstedt, Linn; Jelic, Vesna; Dick, Katrina M; Cash, David M; Harding, Sophie R; Jorge Cardoso, M; Ourselin, Sebastien; Rossor, Martin N; Padovani, Alessandro; Scarpini, Elio; Fenoglio, Chiara; Tartaglia, Maria C; Lamari, Foudil; Barro, Christian; Kuhle, Jens; Rohrer, Jonathan D; Teunissen, Charlotte E; van Swieten, John C

    2016-08-01

    To evaluate cerebrospinal fluid (CSF) and serum neurofilament light chain (NfL) levels in genetic frontotemporal dementia (FTD) as a potential biomarker in the presymptomatic stage and during the conversion into the symptomatic stage. Additionally, to correlate NfL levels to clinical and neuroimaging parameters. In this multicenter case-control study, we investigated CSF NfL in 174 subjects (48 controls, 40 presymptomatic carriers and 86 patients with microtubule-associated protein tau (MAPT), progranulin (GRN), and chromosome 9 open reading frame 72 (C9orf72) mutations), and serum NfL in 118 subjects (39 controls, 44 presymptomatic carriers, 35 patients). In 55 subjects both CSF and serum was determined. In two subjects CSF was available before and after symptom onset (converters). Additionally, NfL levels were correlated with clinical parameters, survival, and regional brain atrophy. CSF NfL levels in patients (median 6762 pg/mL, interquartile range 3186-9309 pg/mL) were strongly elevated compared with presymptomatic carriers (804 pg/mL, 627-1173 pg/mL, P < 0.001), resulting in a good diagnostic performance to discriminate both groups. Serum NfL correlated highly with CSF NfL (r s = 0.87, P < 0.001) and was similarly elevated in patients. Longitudinal samples in the converters showed a three- to fourfold increase in CSF NfL after disease onset. Additionally, NfL levels in patients correlated with disease severity, brain atrophy, annualized brain atrophy rate and survival. NfL in both serum and CSF has the potential to serve as a biomarker for clinical disease onset and has a prognostic value in genetic FTD.

  11. Assessment of Intrathecal Free Light Chain Synthesis: Comparison of Different Quantitative Methods with the Detection of Oligoclonal Free Light Chains by Isoelectric Focusing and Affinity-Mediated Immunoblotting.

    PubMed

    Zeman, David; Kušnierová, Pavlína; Švagera, Zdeněk; Všianský, František; Byrtusová, Monika; Hradílek, Pavel; Kurková, Barbora; Zapletalová, Olga; Bartoš, Vladimír

    2016-01-01

    We aimed to compare various methods for free light chain (fLC) quantitation in cerebrospinal fluid (CSF) and serum and to determine whether quantitative CSF measurements could reliably predict intrathecal fLC synthesis. In addition, we wished to determine the relationship between free kappa and free lambda light chain concentrations in CSF and serum in various disease groups. We analysed 166 paired CSF and serum samples by at least one of the following methods: turbidimetry (Freelite™, SPAPLUS), nephelometry (N Latex FLC™, BN ProSpec), and two different (commercially available and in-house developed) sandwich ELISAs. The results were compared with oligoclonal fLC detected by affinity-mediated immunoblotting after isoelectric focusing. Although the correlations between quantitative methods were good, both proportional and systematic differences were discerned. However, no major differences were observed in the prediction of positive oligoclonal fLC test. Surprisingly, CSF free kappa/free lambda light chain ratios were lower than those in serum in about 75% of samples with negative oligoclonal fLC test. In about a half of patients with multiple sclerosis and clinically isolated syndrome, profoundly increased free kappa/free lambda light chain ratios were found in the CSF. Our results show that using appropriate method-specific cut-offs, different methods of CSF fLC quantitation can be used for the prediction of intrathecal fLC synthesis. The reason for unexpectedly low free kappa/free lambda light chain ratios in normal CSFs remains to be elucidated. Whereas CSF free kappa light chain concentration is increased in most patients with multiple sclerosis and clinically isolated syndrome, CSF free lambda light chain values show large interindividual variability in these patients and should be investigated further for possible immunopathological and prognostic significance.

  12. Assessment of Intrathecal Free Light Chain Synthesis: Comparison of Different Quantitative Methods with the Detection of Oligoclonal Free Light Chains by Isoelectric Focusing and Affinity-Mediated Immunoblotting

    PubMed Central

    Kušnierová, Pavlína; Švagera, Zdeněk; Všianský, František; Byrtusová, Monika; Hradílek, Pavel; Kurková, Barbora; Zapletalová, Olga; Bartoš, Vladimír

    2016-01-01

    Objectives We aimed to compare various methods for free light chain (fLC) quantitation in cerebrospinal fluid (CSF) and serum and to determine whether quantitative CSF measurements could reliably predict intrathecal fLC synthesis. In addition, we wished to determine the relationship between free kappa and free lambda light chain concentrations in CSF and serum in various disease groups. Methods We analysed 166 paired CSF and serum samples by at least one of the following methods: turbidimetry (Freelite™, SPAPLUS), nephelometry (N Latex FLC™, BN ProSpec), and two different (commercially available and in-house developed) sandwich ELISAs. The results were compared with oligoclonal fLC detected by affinity-mediated immunoblotting after isoelectric focusing. Results Although the correlations between quantitative methods were good, both proportional and systematic differences were discerned. However, no major differences were observed in the prediction of positive oligoclonal fLC test. Surprisingly, CSF free kappa/free lambda light chain ratios were lower than those in serum in about 75% of samples with negative oligoclonal fLC test. In about a half of patients with multiple sclerosis and clinically isolated syndrome, profoundly increased free kappa/free lambda light chain ratios were found in the CSF. Conclusions Our results show that using appropriate method-specific cut-offs, different methods of CSF fLC quantitation can be used for the prediction of intrathecal fLC synthesis. The reason for unexpectedly low free kappa/free lambda light chain ratios in normal CSFs remains to be elucidated. Whereas CSF free kappa light chain concentration is increased in most patients with multiple sclerosis and clinically isolated syndrome, CSF free lambda light chain values show large interindividual variability in these patients and should be investigated further for possible immunopathological and prognostic significance. PMID:27846293

  13. Deletion of the Synechocystis sp. PCC 6803 kaiAB1C1 gene cluster causes impaired cell growth under light-dark conditions.

    PubMed

    Dörrich, Anja K; Mitschke, Jan; Siadat, Olga; Wilde, Annegret

    2014-11-01

    In contrast to Synechococcus elongatus PCC 7942, few data exist on the timing mechanism of the widely used cyanobacterium Synechocystis sp. PCC 6803. The standard kaiAB1C1 operon present in this organism was shown to encode a functional KaiC protein that interacted with KaiA, similar to the S. elongatus PCC 7942 clock. Inactivation of this operon in Synechocystis sp. PCC 6803 resulted in a mutant with a strong growth defect when grown under light-dark cycles, which was even more pronounced when glucose was added to the growth medium. In addition, mutants showed a bleaching phenotype. No effects were detected in mutant cells grown under constant light. Microarray experiments performed with cells grown for 1 day under a light-dark cycle revealed many differentially regulated genes with known functions in the ΔkaiABC mutant in comparison with the WT. We identified the genes encoding the cyanobacterial phytochrome Cph1 and the light-repressed protein LrtA as well as several hypothetical ORFs with a complete inverse behaviour in the light cycle. These transcripts showed a stronger accumulation in the light but a weaker accumulation in the dark in ΔkaiABC cells in comparison with the WT. In general, we found a considerable overlap with microarray data obtained for hik31 and sigE mutants. These genes are known to be important regulators of cell metabolism in the dark. Strikingly, deletion of the ΔkaiABC operon led to a much stronger phenotype under light-dark cycles in Synechocystis sp. PCC 6803 than in Synechococcus sp. PCC 7942. © 2014 The Authors.

  14. Antigen nature and complexity influence human antibody light chain usage and specificity.

    PubMed

    Smith, Kenneth; Shah, Hemangi; Muther, Jennifer J; Duke, Angie L; Haley, Kathleen; James, Judith A

    2016-05-27

    Human antibodies consist of a heavy chain and one of two possible light chains, kappa (κ) or lambda (λ). Here we tested how these two possible light chains influence the overall antibody response to polysaccharide and protein antigens by measuring light chain usage in human monoclonal antibodies from antibody secreting cells obtained following vaccination with Pneumovax23. Remarkably, we found that individuals displayed restricted light chain usage to certain serotypes and that lambda antibodies have different specificities and modes of cross-reactivity than kappa antibodies. Thus, at both the monoclonal (7 kappa, no lambda) and serum levels (145μg/mL kappa, 2.82μg/mL lambda), antibodies to cell wall polysaccharide were nearly always kappa. The pneumococcal reference serum 007sp was analyzed for light chain usage to 12 pneumococcal serotypes for which it is well characterized. Similar to results at the monoclonal level, certain serotypes tended to favor one of the light chains (14 and 19A, lambda; 6A and 23F, kappa). We also explored differences in light chain usage at the serum level to a variety of antigens. We examined serum antibodies to diphtheria toxin mutant CRM197 and Epstein-Barr virus protein EBNA-1. These responses tended to be kappa dominant (average kappa-to-lambda ratios of 4.52 and 9.72 respectively). Responses to the influenza vaccine were more balanced with kappa-to-lambda ratio averages having slight strain variations: seasonal H1N1, 1.1; H3N2, 0.96; B, 0.91. We conclude that antigens with limited epitopes tend to produce antibodies with restricted light chain usage and that in most individuals, antibodies with lambda light chains have specificities different and complementary to kappa-containing antibodies.

  15. A hereditary immunoglobulin A abnormality: absence of light-heavy—chain assembly

    PubMed Central

    Moroz, Chaya; Amir, Jacob; Vries, Andre De

    1971-01-01

    A new immunoglobulin A abnormality, absence of assembly of α-chain and light-chain, was found in an adult female suffering from recurrent upper respiratory infection and tonsillitis since childhood, but otherwise healthy. The IgA abnormality was manifest in her serum by the presence of free α-chains, in her saliva by the presence of α-chains bound to secretory piece, and in her urine by the presence of free α-chains and free light-chains. The serum IgG and IgM were found to be complete, containing both heavy-chains and light-chains. Evidence for this immunoglobulin A abnormality was also found in the proposita's mother and elder son, demonstrating it to be a hereditary disorder. Studies performed with patient's tonsillar cells in short-term culture, using amino acids-14C, revealed synthesis and secretion of both free α-chains and free light-chains, in addition to synthesis and secretion of normally assembled IgG and IgM. Images PMID:5129320

  16. [Diagnostic value of immunoglobulin free light chains at the debut of multiple sclerosis].

    PubMed

    Nazarov, V D; Makshakov, G S; Mazing, A V; Surkova, E A; Krasnov, V S; Shumilina, M V; Totolyan, N A; Evdoshenko, E P; Lapin, S V; Emanuel, V L; Skoromets, A A

    2017-01-01

    To evaluate the diagnostic value of determination of free immunoglobulin light chains (IgG) in the debut of multiple sclerosis (MS). Data from 226 patients, including 111 patients with clinically isolated syndrome with conversion to multiple sclerosis within the first 2 years of the disease (group 1), 49 patients with clinically isolated syndrome who did not develop multiple sclerosis within the first 2 years of the disease (group 2), 20 patients with other inflammatory diseases of the central nervous system (group 3) were analyzed. The control group consisted of 46 patients with non-inflammatory diseases of the central nervous system. The clonality of immunoglobulins in the CSF, concentration of kappa and lambda free light chains and their ratio were studied. Concentrations of free light chains were significantly higher in the first group in comparison with group 2 and the control group, but didn't differ from group 3. In group 3, concentrations of free light chains were significantly higher compared to group 2 and controls. In oligoclonal-positive patients with clinically isolated syndrome (groups 1 and 2), concentrations of kappa and lambda free light chains were significantly higher than in oligoclonal-negative patients. The production of free light chains in patients from the first group was considerably higher than in group 2 regardless of the oligoclonal status. The concentration of kappa chains and quotient of kappa free light chains in the CSF had the best diagnostic characteristics. Their use, along with the evaluation of IgG clonality, reduced the risk of false-negative results by 50%. Regardless of other factors, elevated concentrations of kappa chains increase the likelihood of MS diagnosis by 9.718 times. The use of free light chains as a laboratory marker can increase the accuracy of MS diagnosis. These markers can help indirectly assess the risk of transformation of a clinically isolated syndrome into definite multiple sclerosis within the first 2

  17. Light chain editors of anti-DNA receptors in human B cells.

    PubMed

    Kalinina, Olga; Wang, Yue; Sia, Kevin; Radic, Marko; Cazenave, Pierre-André; Weigert, Martin

    2014-02-10

    Receptor editing is a mechanism of self-tolerance used in newly generated B cells. The expressed heavy (H) or light (L) chain of an autoreactive receptor is replaced by upstream V genes which eliminate or modify autoreactivity. Editing of anti-DNA receptors has been characterized in anti-DNA transgenic mouse models including 3H9, 3H9/56R, and their revertant 3H9GL. Certain L chains, termed editors, rescue anti-DNA B cells by neutralizing or modifying DNA binding of the H chain. This editing mechanism acts on the natural H chain repertoire; endogenous H chains with anti-DNA features are expressed primarily in combination with editor L chains. We ask whether a similar set of L chains exists in the human repertoire, and if so, do they edit H chains with anti-DNA signatures? We compared the protein sequences of mouse editors to all human L chains and found several human L chains similar to mouse editors. These L chains diminish or veto anti-DNA binding when expressed with anti-DNA H chains. The human H chains expressed with these L chains also have relatively high arginine (Arg) content in the H chain complementarity determining region (H3), suggesting that receptor editing plays a role in establishing tolerance to DNA in humans.

  18. Light chain editors of anti-DNA receptors in human B cells

    PubMed Central

    Kalinina, Olga; Wang, Yue; Sia, Kevin; Radic, Marko; Cazenave, Pierre-André

    2014-01-01

    Receptor editing is a mechanism of self-tolerance used in newly generated B cells. The expressed heavy (H) or light (L) chain of an autoreactive receptor is replaced by upstream V genes which eliminate or modify autoreactivity. Editing of anti-DNA receptors has been characterized in anti-DNA transgenic mouse models including 3H9, 3H9/56R, and their revertant 3H9GL. Certain L chains, termed editors, rescue anti-DNA B cells by neutralizing or modifying DNA binding of the H chain. This editing mechanism acts on the natural H chain repertoire; endogenous H chains with anti-DNA features are expressed primarily in combination with editor L chains. We ask whether a similar set of L chains exists in the human repertoire, and if so, do they edit H chains with anti-DNA signatures? We compared the protein sequences of mouse editors to all human L chains and found several human L chains similar to mouse editors. These L chains diminish or veto anti-DNA binding when expressed with anti-DNA H chains. The human H chains expressed with these L chains also have relatively high arginine (Arg) content in the H chain complementarity determining region (H3), suggesting that receptor editing plays a role in establishing tolerance to DNA in humans. PMID:24470445

  19. Human myeloma light chains with increased molecular weight: high frequency among lambda chains.

    PubMed

    Bouvet, J P; Pillot, J; Liacopoulos, P

    1983-04-01

    The discovery of a human myeloma protein comprising a kappa L-chain with an increased mol. wt of 30,000) (Bouvet et. al., 1980) prompted investigations on the incidence of such heavier L-chains among other human myeloma proteins. In 105 samples examined, 34 were found to have L-chains heavier than normal (23,000-24,000), ranging from 25,000 up to 31,000, and five of lighter mol. wt (21,000-22,000). These mol. wt abnormalities were detected by electrophoresis in sodium dodecyl sulfate 10% polyacrylamide gels (SDS-PAGE) after reduction with 2-mercaptoethanol. The mol. wt of three of the heavier kappa or lambda chains was also estimated by filtration through a Sephadex G100 column and by sedimentation equilibrium. All three methods indicated a mol. wt increase of about 15-25% as compared with the usual mol. wt. The distribution of the high mol. wt chains among all L-chains examined was found to be 11 out of 62 kappa chains (17.7%) and 23 out of 43 lambda chains (53%) (P less than 0.001). A preferential association of such L-chains with H-chains producing multiple bands in SDS-PAGE (P less than 0.01) and an association between multiple L-chain and multiple H-chain band (P less than 0.05) were also observed. In contrast, no abnormal L-chain was found in immunoglobulins from normal subjects. Spontaneous degradation of the normal H-chains sometimes yielded fragments of 30,000 mol. wt. These fragments were easily distinguishable from abnormal L-chains. The nature of extra mol. wt in heavy L-chains was investigated for the presence of carbohydrate moiety. Four large and three normal size L-chains were examined for amino-sugar and sialic acid content. A small amount (one residue per molecule) of amino-sugar was detected only in two normal and two heavy L-chains, whereas sialic acid was only found in the heaviest (27,000-30,000) L-chains (Lh) and in small percentage (one or two residues per molecule). Total sugar estimation in one Lh chain indicated a proportion not exceeding

  20. Judging disease activity in rheumatoid arthritis by serum free kappa and lambda light chain levels.

    PubMed

    Ye, Yun; Li, Su-Liang; Xie, Ming; Jiang, Ping; Liu, Kai-Ge; Li, Ya-Jun

    2013-10-01

    The study aimed to evaluate the levels of serum free kappa (κ) and lambda (λ) light chains in patients with rheumatoid arthritis (RA) as well as exploring the association between serum free κ and λ light chains and activity of RA. For this purpose, healthy individuals and patients with active RA and RA in remission were enrolled, and their serum levels of free κ and λ light chains were measured using rate nephelometry. The diagnostic accuracy of serum free κ and λ light chains was evaluated by receiver operating characteristic curves and 95% confidence intervals for areas under the curve (AUC). The results obtained indicated that the levels of serum free κ and λ light chains in patients with active RA were significantly higher than those of patients in remission and of healthy controls (p < 0.05). Further, the AUC values in patients with active RA were 0.871 for free κ light chain and 0.781 for free λ light chain. When the optimal cut-off point for serum κ light chain was 8.02 g/L, the maximum sensitivity and specificity were 82.5% and 82.5%, respectively, and when the optimal cut-off point for serum λ light chain was 3.57 g/L, the maximum sensitivity and specificity were 80% and 82.5%, respectively. It was thus found that serum levels of free κ and λ light chains were positively correlated with disease activity in RA, the Disease Activity Score 28 (DAS28), and values for C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), platelet count (PLT), rheumatoid factor (RF), and anticitrullinated protein antibody (ACPA) (p < 0.05). In conclusion, high serum levels of free κ and λ light chains in patients with active RA are closely correlated with disease activity parameters including DAS28, CRP, ESR, PLT, RF, and ACPA. Thus, the above-mentioned levels of serum free κ and λ light chains may be used as important indicators of activity of RA.

  1. Biased Immunoglobulin Light Chain Gene Usage in the Shark.

    PubMed

    Iacoangeli, Anna; Lui, Anita; Naik, Ushma; Ohta, Yuko; Flajnik, Martin; Hsu, Ellen

    2015-10-15

    This study of a large family of κ L chain clusters in nurse shark completes the characterization of its classical Ig gene content (two H chain isotypes, μ and ω, and four L chain isotypes, κ, λ, σ, and σ-2). The shark κ clusters are minigenes consisting of a simple VL-JL-CL array, where V to J recombination occurs over an ~500-bp interval, and functional clusters are widely separated by at least 100 kb. Six out of ~39 κ clusters are prerearranged in the germline (germline joined). Unlike the complex gene organization and multistep assembly process of Ig in mammals, each shark Ig rearrangement, somatic or in the germline, appears to be an independent event localized to the minigene. This study examined the expression of functional, nonproductive, and sterile transcripts of the κ clusters compared with the other three L chain isotypes. κ cluster usage was investigated in young sharks, and a skewed pattern of split gene expression was observed, one similar in functional and nonproductive rearrangements. These results show that the individual activation of the spatially distant κ clusters is nonrandom. Although both split and germline-joined κ genes are expressed, the latter are prominent in young animals and wane with age. We speculate that, in the shark, the differential activation of the multiple isotypes can be advantageously used in receptor editing.

  2. Complete sequence of a cDNA clone specifying sandbar shark immunoglobulin light chain: gene organization and implications for the evolution of light chains.

    PubMed Central

    Hohman, V S; Schluter, S F; Marchalonis, J J

    1992-01-01

    A full-length cDNA clone specifying sandbar shark (Carcharhinus plumbeus) immunoglobulin light chain has been isolated and sequenced. By alignment with human lambda chains, the leader, framework, complementarity-determining, joining, and constant regions are clearly identified in the shark light chain. Approximately 40-50% identity is shared between the human and shark sequences in the variable and constant regions. We have performed sequence comparisons of the individual segments and constructed phylogenetic trees for the variable region. These studies identify the shark protein as a lambda chain. In addition, the sandbar shark light chain is only distantly related to that of horned shark (Heterodontus francisci) [Shamblott, M. J. & Litman, G. W. (1989) Proc. Natl. Acad. Sci. USA 86, 4684-4688], demonstrating that the long evolutionary time of divergence among shark species has led to the generation of substantial differences in sequence. The positions of the variable, joining, and constant gene segments in 14 genomic clones have been mapped. The segments are linked in individual clusters (variable, joining, constant) occupying 3-7 kilobases. Cluster arrangement can be grouped into two patterns based upon spacing between the genes in the individual clones. This arrangement is fundamentally different from that observed in higher vertebrates. Images PMID:1729697

  3. Complete sequence of a cDNA clone specifying sandbar shark immunoglobulin light chain: gene organization and implications for the evolution of light chains.

    PubMed

    Hohman, V S; Schluter, S F; Marchalonis, J J

    1992-01-01

    A full-length cDNA clone specifying sandbar shark (Carcharhinus plumbeus) immunoglobulin light chain has been isolated and sequenced. By alignment with human lambda chains, the leader, framework, complementarity-determining, joining, and constant regions are clearly identified in the shark light chain. Approximately 40-50% identity is shared between the human and shark sequences in the variable and constant regions. We have performed sequence comparisons of the individual segments and constructed phylogenetic trees for the variable region. These studies identify the shark protein as a lambda chain. In addition, the sandbar shark light chain is only distantly related to that of horned shark (Heterodontus francisci) [Shamblott, M. J. & Litman, G. W. (1989) Proc. Natl. Acad. Sci. USA 86, 4684-4688], demonstrating that the long evolutionary time of divergence among shark species has led to the generation of substantial differences in sequence. The positions of the variable, joining, and constant gene segments in 14 genomic clones have been mapped. The segments are linked in individual clusters (variable, joining, constant) occupying 3-7 kilobases. Cluster arrangement can be grouped into two patterns based upon spacing between the genes in the individual clones. This arrangement is fundamentally different from that observed in higher vertebrates.

  4. Immunogenicity and antigenicity of immunoglobulins. XII. Intact light chain and heavy chain isotype-restricted Vk-associated epitopes.

    PubMed

    Walker, M; Hardie, D; Lowe, J; Ling, N R; De Lange, G; Jefferis, R

    1985-06-01

    Immunization with intact IgG has allowed the isolation of four hybridomas producing antibodies recognizing epitopes expressed within subpopulations of human kappa light chains unrelated to known polymorphisms (Km) and previously defined V-region subgroups. The V-region-associated epitopes recognized are conformation-dependent, being expressed on intact light chain but not on isolated VK or CK fragments. The frequency of expression within paraprotein panels of different heavy chain isotypes varied between individual antibodies. An epitope recognized by B2A6, expressed by greater than 85% IgGK paraproteins, was not represented in 16 IgM paraproteins tested, suggesting that association of VK with mu chains does not result in display of the epitope recognized, or alternatively, that selective association between VK and CH gene products occurs. These data contrast with the reactivity of other McAb for CK epitopes which were reactive with isolated CK fragments, and for all kappa-bearing paraproteins, regardless of heavy chain isotypes.

  5. Cutaneous Light Chain Deposition Disease: A Report of 2 Cases and Review of the Literature.

    PubMed

    Hendricks, Carlo; Fernández Figueras, Maite T; Liersch, Julia; Martin-Urdà, Maria-Teresa; López, Dolores; Brochhausen, Christoph; Röcken, Christoph; Schaller, Jörg

    2017-09-20

    Light chain deposition disease (LCDD) is a rare systemic disorder with deposition of mostly monoclonal amorphous nonamyloid light chains in multiple organs. Renal involvement with rapidly progressing renal failure presents the dominant manifestation of LCDD. Approximately 20%-30% of patients show symptomatic cardiac or liver involvement. Cutaneous manifestations are extremely rare with only a few published cases. We report 2 additional cases of cutaneous LCDD without detectable systemic disease.

  6. Cell mediated and humoral immunity and light-chain proteinuria in rifampicin-treated tuberculous patients.

    PubMed

    Galal, S H; Khalil, S H; el Husseiny, W; Brock, J

    1988-01-01

    The present study was devoted to assess the humoral and cell mediated immune responsiveness in patients with pulmonary tuberculosis before and after rifampicin therapy. Skin test using PPD and PHA; Rosette forming cells test, serum IgG, M and A; and light chain proteinuria have been tested for 15 newly diagnosed tuberculous patients and 15 normal controls. Rifampicin showed an immunosuppressive effect on both cellular and humoral immune responses as well as by the advent of light chain proteinuria.

  7. Characteristics of light chains of Chara myosin revealed by immunological investigation

    PubMed Central

    KAKEI, Toshihito; SUMIYOSHI, Hiroki; HIGASHI-FUJIME, Sugie

    2012-01-01

    Chara myosin is plant myosin responsible for cytoplasmic streaming and moves actin filaments at 60 µm/s, which is the fastest of all myosins examined. The neck of the myosin molecule has usually mechanical and regulatory roles. The neck of Chara myosin is supposed to bind six light chains, but, at present, we have no knowledge about them. We found Ca++-calmodulin activated Chara myosin motility and its actin-activated ATPase, and actually bound with the Chara myosin heavy chain, indicating calmodulin might be one of candidates for Chara myosin light chains. Antibody against essential light chain from Physarum myosin, and antibodies against Chara calmodulin and chicken myosin light chain from lens membranes reacted with 20 kDa and 18 kDa polypeptides of Chara myosin preparation, respectively. Correspondingly, column purified Chara myosin had light chains of 20 kDa, and 18 kDa with the molar ratio of 0.7 and 2.5 to the heavy chain, respectively. PMID:22687741

  8. The essential light chain is required for full force production by skeletal muscle myosin.

    PubMed Central

    VanBuren, P; Waller, G S; Harris, D E; Trybus, K M; Warshaw, D M; Lowey, S

    1994-01-01

    Myosin, a molecular motor that is responsible for muscle contraction, is composed of two heavy chains each with two light chains. The crystal structure of subfragment 1 indicates that both the regulatory light chains (RLCs) and the essential light chains (ELCs) stabilize an extended alpha-helical segment of the heavy chain. It has recently been shown in a motility assay that removal of either light chain markedly reduces actin filament sliding velocity without a significant loss in actin-activated ATPase activity. Here we demonstrate by single actin filament force measurements that RLC removal has little effect on isometric force, whereas ELC removal reduces isometric force by over 50%. These data are interpreted with a simple mechanical model where subfragment 1 behaves as a torque motor whose leyer arm length is sensitive to light-chain removal. Although the effect of removing RLCs fits within the confines of this model, altered crossbridge kinetics, as reflected in a reduced unloaded duty cycle, probably contributes to the reduced velocity and force production of ELC-deficient myosins. Images Fig. 2 PMID:7809049

  9. Myosin subunit interactions. Properties of the 19,000-dalton light chain-deficient myosin.

    PubMed

    Pastra-Landis, S C; Lowey, S

    1986-11-05

    The 19,000-dalton light chain (LC2) can be completely and reversibly removed from chicken pectoralis myosin in 1 mM EDTA and 5 mM ATP using immunoaffinity chromatography at 37 degrees C. Earlier methods have led to only partial removal of LC2 or have caused limited degradation of the heavy chain. Electron microscopy of LC2-deficient myosin showed it to have a marked tendency to aggregate into oligomers through the "neck" region of the myosin head. Myosin reverted to the monomeric form when it was reconstituted with light chains. LC2-deficient myosin retained full K+ (EDTA) or Ca2+-ATPase activity, and the actin-activated Mg2+-ATPase was similar to that of the native molecule. Alkali light chain exchange at 37 degrees C, which has been demonstrated in subfragment 1 prepared with chymotrypsin, does not occur with intact myosin molecules or with papain subfragment 1, both of which contain LC2. However, a temperature-dependent exchange of alkali light chains was observed in myosin lacking LC2. The interaction of the alkali light chain with the heavy chain thus appears to be influenced by the presence of LC2, which may have an important stabilizing effect on the myosin molecule.

  10. Convergent mechanisms favor fast amyloid formation in two lambda 6a Ig light chain mutants.

    PubMed

    Valdés-García, Gilberto; Millán-Pacheco, César; Pastor, Nina

    2017-08-01

    Extracellular deposition as amyloids of immunoglobulin light chains causes light chain amyloidosis. Among the light chain families, lambda 6a is one of the most frequent in light chain amyloidosis patients. Its germline protein, 6aJL2, and point mutants, R24G and P7S, are good models to study fibrillogenesis, because their stability and fibril formation characteristics have been described. Both mutations make the germline protein unstable and speed up its ability to aggregate. To date, there is no molecular mechanism that explains how these differences in amyloidogenesis can arise from a single mutation. To look into the structural and dynamical differences in the native state of these proteins, we carried out molecular dynamics simulations at room temperature. Despite the structural similarity of the germline protein and the mutants, we found differences in their dynamical signatures that explain the mutants' increased tendency to form amyloids. The contact network alterations caused by the mutations, though different, converge in affecting two anti-aggregation motifs present in light chain variable domains, suggesting a different starting point for aggregation in lambda chains compared to kappa chains. © 2017 Wiley Periodicals, Inc.

  11. IMMUNOGLOBULIN LIGHT CHAIN IMMUNOHISTOCHEMISTRY REVISITED, WITH EMPHASIS ON REACTIVE FOLLICULAR HYPERPLASIA VS. FOLLICULAR LYMPHOMA

    PubMed Central

    Weiss, Lawrence M.; Loera, Sofia; Bacchi, Carlos E.

    2009-01-01

    The identification of monotypic light chains is an important adjunct to the diagnosis of B-cell lymphoma, yet is often difficult to reliably perform on formalin-fixed paraffin sections. We have evaluated a new set of monoclonal antibodies to kappa and lambda light chain that are reactive in paraffin sections. In reactive lymphoid tissues, polytypic staining was noted in greater than 95% of cases, with strong staining of plasma cells, moderate staining of the follicular dendritic cell network, and weak staining of mantle zone cells. Strong staining for the appropriate light chain was seen in each of 7 cases of multiple myeloma. In a series of 58 cases of B-cell lymphoma, correlation between the results of immunohistochemistry and flow cytometry was obtained in 36 cases (62%), including 32 cases (21 kappa and 11 lambda) in which a single light chain was expressed. Monotypic staining also seen in 6 additional cases (10%) in which the flow cytometry had been negative. Thirty of 46 cases (65%) of follicular lymphoma showed monotypic light chain expression, in contrast to 64 of 67 cases (95%) of reactive lymphoid hyperplasia, which showed polytypic light chain expression. These antibodies may provide an effective adjunct to the diagnosis of B-cell lymphoma in routine diagnostic work. PMID:20042853

  12. Diversity and diversification of light chains in myeloma: the specter of amyloidogenesis by proxy.

    PubMed

    Gu, Minyi; Wilton, Rosemary; Stevens, Fred J

    2007-01-01

    Primary amyloidosis and the cancer, multiple myeloma, are characterized by the overproduction of free antibody light chains. Approximately 10% of myeloma patients develop amyloidosis; primary amyloidosis may be thought of as the pathological analog of monoclonal gammopathy of undetermined significance. The kidney is a common site of accumulation of amyloid fibrils and is also the target of other light chain pathologies. Understanding the structural origin of these pathologies is complicated by the extreme primary structure heterogeneity of light chains. Patterns of light chain germline gene usage in myeloma patients were compared to those found in other immune system disorders: lymphoma, leukemia, systemic lupus erythematosus and rheumatoid arthritis. Significant differences in apparent gene usage are found in the various diseases; several germline gene products have not been documented in myeloma patients to date. The plasma cell dyscrasias including myeloma, lymphoma, leukemia, and monoclonal gammopathy of undetermined significance are usually monoclonal diseases; however, the light chains produced are not homogeneous. Thus, the pathological risk for the patient may change during the course of the illness. Mutation rates in light chains observed during clonal diversification parallel mutations occurring in all genes in the malignant cells and could be a clinically useful biomarker.

  13. B cell development in mice that lack one or both immunoglobulin kappa light chain genes.

    PubMed Central

    Chen, J; Trounstine, M; Kurahara, C; Young, F; Kuo, C C; Xu, Y; Loring, J F; Alt, F W; Huszar, D

    1993-01-01

    We have generated mice that lack the ability to produce immunoglobulin (Ig) kappa light chains by targeted deletion of J kappa and C kappa gene segments and the intervening sequences in mouse embryonic stem cells. In wild type mice, approximately 95% of B cells express kappa light chains and only approximately 5% express lambda light chains. Mice heterozygous for the J kappa C kappa deletion have approximately 2-fold more lambda+ B cells than wild-type littermates. Compared with normal mice, homozygous mutants for the J kappa C kappa deletion have about half the number of B cells in both the newly generated and the peripheral B cell compartments, and all of these B cells express lambda light chains in their Ig. Therefore, homozygous mutant mice appear to produce lambda-expressing cells at nearly 10 times the rate observed in normal mice. These findings demonstrate that kappa gene assembly and/or expression is not a prerequisite for lambda gene assembly and expression. Furthermore, there is no detectable rearrangement of 3' kappa RS sequences in lambda+ B cells of the homozygous mutant mice, thus rearrangements of these sequences, per se, is not required for lambda light chain gene assembly. We discuss these findings in the context of their implications for the control of Ig light chain gene rearrangement and potential applications of the mutant animals. Images PMID:8458340

  14. "Light-cone" dynamics after quantum quenches in spin chains.

    PubMed

    Bonnes, Lars; Essler, Fabian H L; Läuchli, Andreas M

    2014-10-31

    Signal propagation in the nonequilibrium evolution after quantum quenches has recently attracted much experimental and theoretical interest. A key question arising in this context is what principles, and which of the properties of the quench, determine the characteristic propagation velocity. Here we investigate such issues for a class of quench protocols in one of the central paradigms of interacting many-particle quantum systems, the spin-1/2 Heisenberg XXZ chain. We consider quenches from a variety of initial thermal density matrices to the same final Hamiltonian using matrix product state methods. The spreading velocities are observed to vary substantially with the initial density matrix. However, we achieve a striking data collapse when the spreading velocity is considered to be a function of the excess energy. Using the fact that the XXZ chain is integrable, we present an explanation of the observed velocities in terms of "excitations" in an appropriately defined generalized Gibbs ensemble.

  15. Plasmonic graded-chains as deep-subwavelength light concentrators.

    PubMed

    Esteves-López, Natalia; Pastawski, Horacio M; Bustos-Marún, Raúl A

    2015-04-01

    We have studied the plasmonic properties of aperiodic arrays of identical nanoparticles (NPs) formed by two opposite and equal graded-chains (a chain where interactions change gradually). We found that these arrays concentrate the external electromagnetic fields even in the long wavelength limit. The phenomenon was understood by identifying the system with an effective cavity where plasmonics excitations are trapped between effective band edges, resulting from the change of passband with the NP's position. Dependence of excitation concentration on several system parameters was also assessed. This includes different gradings as well as NP couplings, damping, and resonant frequencies. In the spirit of the scaling laws in condensed matter physics, we developed a theory that allows us to rationalize all these system parameters into universal curves. The theory is quite general and can also be used in many other situations (different arrays for example). Additionally, we also provided an analytical solution, in the tight-binding limit, for the plasmonic response of homogeneous linear chains of NPs illuminated by a plane wave. Our results can find applications in sensing, near field imaging, plasmon-enhanced photodetectors, as well as to increase solar cell efficiency.

  16. Plasmonic graded-chains as deep-subwavelength light concentrators

    NASA Astrophysics Data System (ADS)

    Esteves-López, Natalia; Pastawski, Horacio M.; Bustos-Marún, Raúl A.

    2015-04-01

    We have studied the plasmonic properties of aperiodic arrays of identical nanoparticles (NPs) formed by two opposite and equal graded-chains (a chain where interactions change gradually). We found that these arrays concentrate the external electromagnetic fields even in the long wavelength limit. The phenomenon was understood by identifying the system with an effective cavity where plasmonics excitations are trapped between effective band edges, resulting from the change of passband with the NP's position. Dependence of excitation concentration on several system parameters was also assessed. This includes different gradings as well as NP couplings, damping, and resonant frequencies. In the spirit of the scaling laws in condensed matter physics, we developed a theory that allows us to rationalize all these system parameters into universal curves. The theory is quite general and can also be used in many other situations (different arrays for example). Additionally, we also provided an analytical solution, in the tight-binding limit, for the plasmonic response of homogeneous linear chains of NPs illuminated by a plane wave. Our results can find applications in sensing, near field imaging, plasmon-enhanced photodetectors, as well as to increase solar cell efficiency.

  17. Demonstration of structural polymorphism among MB3 light chains by two-dimensional gel electrophoresis.

    PubMed

    Ishikawa, N; Kasahara, M; Ikeda, H; Ogasawara, K; Hawkin, S; Takenouchi, T; Wakisaka, A; Kikuchi, Y; Aizawa, M

    1985-01-01

    The heavy and light chain subunits of MB3 molecules were isolated from KT2 (DKT2, DR4, MB3 homozygous), ER (Dw4, DR4, MB3 homozygous), JMe (Dw5, DR5, MB3 homozygous), EBV-Sh (DSh, DRw6.2, MB3 homozygous), and EBV-Ky (DKy, DRw9, MB3 homozygous) cells and were compared with one another by two-dimensional gel electrophoresis. The MB3 light chains from KT2, ER, and EBV-Ky cells were clearly different in terms of their isoelectric points, whereas those from ER, JMe, and EBV-Sh cells were indistinguishable. No differences in charge or m.w. were noted for the MB3 heavy chains from the five cell lines. Thus, three out of the five MB3-positive, D/DR-disparate cell lines were found to express structurally distinct MB3 molecules, demonstrating that MB3 is a public serologic specificity shared by at least three structurally distinct MB (human I-A-like) molecules. Because the DR light chain subunits isolated from EBV-Wa, KT2, ER, JMe, EBV-Sh, and EBV-Ky cells differed from one another in their isoelectric points, the DR light chains were apparently more polymorphic than the MB3 light chains.

  18. The interdomain disulfide bond of a homogeneous rabbit pneumococcal antibody light chain.

    PubMed

    Strosberg, A D; Margolies, M N; Haber, E

    1975-11-01

    Rabbit light chain 3315, prepared from a homogeneous antipneumococcal antibody, was subjected to hydrolysis by pepsin without prior reduction and alkylation of the intrachain disulfide bonds. Gel filtration of the hydrolysate on Sephadex G-10, G-15, and G-25 and ion exchange chromatography on SP-Sephadex yielded several disulfide bridge peptides. These were fully reduced and alkulated and sequenced by Edman degradation. The peptides were located in the light chain sequence determined in independent studies from our laboratory. The half-cystine residues in this KB rabbit chain are located at positions 23, 80, 88, 134, 171, 194, and 214. The extra disulfide bridge extends between residues 80 and 171, thus joining the variable and constant domains. This is consistent with x-ray diffraction crystallographic studies showing that the corresponding residues in human light chains are separated by a distance compatible with disulfide bond formation.

  19. Restricted light chain subgroup expression on human rheumatoid factor paraproteins determined by monoclonal antibodies.

    PubMed Central

    Mageed, R A; Walker, M R; Jefferis, R

    1986-01-01

    Two hybridoma antibodies specific for determinants on the V kappa light chain subgroup have been produced and characterized. Antibodies C7 and B12 reacted with distinct V kappa epitopes irrespective of association with heavy chain class or subclass. Epitopes recognized by C7 and B12 were expressed on the light chain of IgG, IgA, and IgM and Bence-Jones paraproteins from the V kappa subgroup. However, a preferential association of both epitopes with IgM RF paraproteins was demonstrated. Hybridomas C7 and B12 reacted with 12/12 and 10/12 IgM RF paraproteins, respectively, but only with 3/6 IgM paraproteins, with no RF activity. Both epitopes C7 and B12, were immunodominant and conformation dependent, being detected by HA, HAI and ELISA on intact light chain but not isolated VK. PMID:2432001

  20. Physicochemical consequences of amino acid variations that contribute to fibril formation by immunoglobulin light chains.

    PubMed Central

    Raffen, R.; Dieckman, L. J.; Szpunar, M.; Wunschl, C.; Pokkuluri, P. R.; Dave, P.; Wilkins Stevens, P.; Cai, X.; Schiffer, M.; Stevens, F. J.

    1999-01-01

    The most common form of systemic amyloidosis originates from antibody light chains. The large number of amino acid variations that distinguish amyloidogenic from nonamyloidogenic light chain proteins has impeded our understanding of the structural basis of light-chain fibril formation. Moreover, even among the subset of human light chains that are amyloidogenic, many primary structure differences are found. We compared the thermodynamic stabilities of two recombinant kappa4 light-chain variable domains (V(L)s) derived from amyloidogenic light chains with a V(L) from a benign light chain. The amyloidogenic V(L)s were significantly less stable than the benign V(L). Furthermore, only the amyloidogenic V(L)s formed fibrils under native conditions in an in vitro fibril formation assay. We used site-directed mutagenesis to examine the consequences of individual amino acid substitutions found in the amyloidogenic V(L)s on stability and fibril formation capability. Both stabilizing and destabilizing mutations were found; however, only destabilizing mutations induced fibril formation in vitro. We found that fibril formation by the benign V(L) could be induced by low concentrations of a denaturant. This indicates that there are no structural or sequence-specific features of the benign V(L) that are incompatible with fibril formation, other than its greater stability. These studies demonstrate that the V(L) beta-domain structure is vulnerable to destabilizing mutations at a number of sites, including complementarity determining regions (CDRs), and that loss of variable domain stability is a major driving force in fibril formation. PMID:10091653

  1. BiP and immunoglobulin light chain cooperate to control the folding of heavy chain and ensure the fidelity of immunoglobulin assembly.

    PubMed

    Lee, Y K; Brewer, J W; Hellman, R; Hendershot, L M

    1999-07-01

    The immunoglobulin (Ig) molecule is composed of two identical heavy chains and two identical light chains (H2L2). Transport of this heteromeric complex is dependent on the correct assembly of the component parts, which is controlled, in part, by the association of incompletely assembled Ig heavy chains with the endoplasmic reticulum (ER) chaperone, BiP. Although other heavy chain-constant domains interact transiently with BiP, in the absence of light chain synthesis, BiP binds stably to the first constant domain (CH1) of the heavy chain, causing it to be retained in the ER. Using a simplified two-domain Ig heavy chain (VH-CH1), we have determined why BiP remains bound to free heavy chains and how light chains facilitate their transport. We found that in the absence of light chain expression, the CH1 domain neither folds nor forms its intradomain disulfide bond and therefore remains a substrate for BiP. In vivo, light chains are required to facilitate both the folding of the CH1 domain and the release of BiP. In contrast, the addition of ATP to isolated BiP-heavy chain complexes in vitro causes the release of BiP and allows the CH1 domain to fold in the absence of light chains. Therefore, light chains are not intrinsically essential for CH1 domain folding, but play a critical role in removing BiP from the CH1 domain, thereby allowing it to fold and Ig assembly to proceed. These data suggest that the assembly of multimeric protein complexes in the ER is not strictly dependent on the proper folding of individual subunits; rather, assembly can drive the complete folding of protein subunits.

  2. Functional Material Features of Bombyx mori Silk Light vs. Heavy Chain Proteins

    PubMed Central

    Zafar, Muhammad S.; Belton, David J.; Hanby, Benjamin; Kaplan, David L.; Perry, Carole C.

    2016-01-01

    Bombyx mori (BM) silk fibroin is composed of two different subunits; heavy chain and light chain fibroin linked by a covalent disulphide bond. Current methods of separating the two silk fractions is complicated and produces inadequate quantities of the isolated components for the study of the individual light and heavy chain silks with respect to new materials. We report a simple method of separating silk fractions using formic acid. The formic acid treatment partially releases predominately the light chain fragment (soluble fraction) and then the soluble fraction and insoluble fractions can be converted into new materials. The regenerated original (total) silk fibroin and the separated fractions (soluble vs. insoluble) had different molecular weights and showed distinctive pH stabilities against aggregation/precipitation based on particle charging. All silk fractions could be electrospun to give fibre mats with viscosity of the regenerated fractions being the controlling factor for successful electrospinning. The silk fractions could be mixed to give blends with different proportions of the two fractions to modify the diameter and uniformity of the electrospun fibres formed. The soluble fraction containing the light chain was able to modify the viscosity by thinning the insoluble fraction containing heavy chain fragments, perhaps analogous to its role in natural fibre formation where the light chain provides increased mobility and the heavy chain producing shear thickening effects. The simplicity of this new separation method should enable access to these different silk protein fractions and accelerate the identification of methods, modifications and potential applications of these materials in biomedical and industrial applications. PMID:25565556

  3. Complementary DNA sequence of human amyloidogenic immunoglobulin light-chain precursors.

    PubMed Central

    Aucouturier, P; Khamlichi, A A; Preud'homme, J L; Bauwens, M; Touchard, G; Cogné, M

    1992-01-01

    The primary structure of three amyloid precursor light chains was deduced from the sequence of complementary DNA (cDNA) from bone marrow cells from patients affected with classical lambda (patient Air) or kappa (patient Arn) amyloidosis and from a patient (Aub) in whom lambda amyloid deposits were unusual by their perimembranous location in the kidney glomerulus. All three RNAs were of normal size, as estimated by Northern blotting, and encoded normal-sized light chains. The deduced light-chain sequence from patient Arn was related to the V kappa 1 subgroup, and included ten residues that had not been previously reported at these positions, only one of which (Leu-21) was located in a beta-sheet (4-2). The unusual presence of Asn-70 determined a potential N-glycosylation site. The sequence of the light chain from patient Air belonged to the V lambda 1 subgroup, and included three unusually located amino acid residues, one of which had already been reported in an amyloidogenic lambda-chain. The sequence of the light chain from patient Aub was related to the V lambda 3 subgroup, and contained five amino acid residues that had not previously been described at the corresponding positions; two of them (His-36 and Ser-77) were located in beta-sheets (3-1 and 4-3 respectively). This sequence was also peculiar because of the presence of numerous acidic residues in the complementarity-determining regions. Such unusual primary structures might be responsible for the amyloidogenic properties of these light-chain precursors. Images Fig. 1. PMID:1379039

  4. Phosphorylation/dephosphorylation of the beta light chain of clathrin from rat liver coated vesicles.

    PubMed

    Loeb, J E; Cantournet, B; Vartanian, J P; Goris, J; Merlevede, W

    1989-06-01

    The phosphorylation in vitro, on serine residues by endogenous casein kinase 2, of the clathrin beta light chain (33 kDa) of rat liver coated vesicles requires the presence of poly(L-lysine) which acts through binding to the beta light chain. The phosphorylation of other proteins is also increased in the presence of poly(L-lysine) and casein kinase 2. In contrast, the phosphorylation of the upper band of the 50-kDa protein doublet from rat liver coated vesicles is inhibited. Rat liver coated vesicles display a protein phosphatase activity which preferentially dephosphorylates clathrin beta light chain. This activity is different from the protein phosphatase which dephosphorylates the 50-kDa protein. This enzyme seems to be unrelated to the ATP/Mg-dependent protein phosphatase, or the polycation-stimulated protein phosphatases, which dephosphorylate the 50-kDa protein and beta light chain very efficiently, but with a different specificity. After dissociation of coated vesicles the beta-light-chain phosphatase activity is recovered in the membrane fraction. This phosphatase activity is inhibited by 50 microM orthovanadate and 5 mM p-nitrophenyl phosphate but not by 10 mM EDTA.

  5. Minimum requirements for inhibition of smooth-muscle myosin light-chain kinase by synthetic peptides.

    PubMed Central

    Hunt, J T; Floyd, D M; Lee, V G; Little, D K; Moreland, S

    1989-01-01

    Although the amino acid residues that are important for peptide substrates of myosin light-chain kinase have been reported, those that are important for peptide inhibitors of this enzyme have not previously been investigated. Synthetic peptides based on the sequence Lys11-Lys12-Arg13-Ala-Ala-Arg16-Ala-Thr-Ser19 -Asn-Val21-Phe22-Ala of the chicken gizzard myosin light chain were tested as inhibitors of pig carotid-artery myosin light-chain kinase. The basic amino acid residues of the known myosin light-chain kinase inhibitor Lys-Lys-Arg-Ala-Ala-Arg-Ala-Thr-Ser-NH2 (IC50 = 14 microM) [Pearson, Misconi & Kemp (1986) J. Biol. Chem. 261, 25-27] were shown to be the important residues that contribute to inhibitor potency, as evidence by the finding that the hexapeptide Lys-Lys-Arg-Ala-Ala-Arg-NH2 had an IC50 value of 22 microM. This indicates that binding of the phosphorylatable serine residue to myosin light-chain kinase, which is of obvious importance for a substrate, does not enhance the potency of an inhibitor. With the aim of preparing more potent inhibitors, peptides Lys-Lys-Arg-Ala-Ala-Arg-Ala-Ala-Xaa-NH2 were prepared with a variety of amino acids substituted for the phosphorylatable serine residue. None of these peptides was a more potent inhibitor than the serine peptide. PMID:2920029

  6. Differential Light Chain Assembly Influences Outer Arm Dynein Motor Function

    PubMed Central

    DiBella, Linda M.; Gorbatyuk, Oksana; Sakato, Miho; Wakabayashi, Ken-ichi; Patel-King, Ramila S.; Pazour, Gregory J.; Witman, George B.; King, Stephen M.

    2005-01-01

    Tctex1 and Tctex2 were originally described as potential distorters/sterility factors in the non-Mendelian transmission of t-haplotypes in mice. These proteins have since been identified as subunits of cytoplasmic and/or axonemal dyneins. Within the Chlamydomonas flagellum, Tctex1 is a subunit of inner arm I1. We have now identified a second Tctex1-related protein (here termed LC9) in Chlamydomonas. LC9 copurifies with outer arm dynein in sucrose density gradients and is missing only in those strains completely lacking this motor. Zero-length cross-linking of purified outer arm dynein indicates that LC9 interacts directly with both the IC1 and IC2 intermediate chains. Immunoblot analysis revealed that LC2, LC6, and LC9 are missing in an IC2 mutant strain (oda6-r88) that can assemble outer arms but exhibits significantly reduced flagellar beat frequency. This defect is unlikely to be due to lack of LC6, because an LC6 null mutant (oda13) exhibits only a minor swimming abnormality. Using an LC2 null mutant (oda12-1), we find that although some outer arm dynein components assemble in the absence of LC2, they are nonfunctional. In contrast, dyneins from oda6-r88, which also lack LC2, retain some activity. Furthermore, we observed a synthetic assembly defect in an oda6-r88 oda12-1 double mutant. These data suggest that LC2, LC6, and LC9 have different roles in outer arm assembly and are required for wild-type motor function in the Chlamydomonas flagellum. PMID:16195342

  7. Low-power light guiding and localization in optoplasmonic chains obtained by directed self-assembly

    SciTech Connect

    Ahn, Wonmi; Zhao, Xin; Hong, Yan; Reinhard, Bjorn M.

    2016-03-02

    Here, optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and, at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth.

  8. Low-power light guiding and localization in optoplasmonic chains obtained by directed self-assembly

    DOE PAGES

    Ahn, Wonmi; Zhao, Xin; Hong, Yan; ...

    2016-03-02

    Here, optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and,more » at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth.« less

  9. Low-Power Light Guiding and Localization in Optoplasmonic Chains Obtained by Directed Self-Assembly

    PubMed Central

    Ahn, Wonmi; Zhao, Xin; Hong, Yan; Reinhard, Björn M.

    2016-01-01

    Optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and, at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth. PMID:26931149

  10. Different effects of light irradiation on the photosynthetic electron transport chain during apple tree leaf dehydration.

    PubMed

    Li, Pengmin; Ma, Fengwang

    2012-06-01

    Effects of light irradiation on the photosynthetic electron transport chain between P680 and P700 in apple tree leaves was probed with chlorophyll a fluorescence transient and 820 nm transmission measurements during dehydration under different light intensities. The results showed that light accelerated the leaf water-loss rate during dehydration. Leaf dehydration lowered the maximum quantum yield of PSII and the far-red light induced maximal transmission change at 820 nm, but increased the relative variable fluorescence intensity at J-step, especially under increasing irradiation conditions. During leaf dehydration, irradiation lowered the relative variable fluorescence intensity at I-step. At the beginning of leaf dehydration, moderate light accelerated the leaf water-loss rate and then lowered the maximal light-trapping efficiency of P₆₈₀. Upon further dehydration under moderate light or dehydration under high light, light accelerated the water-loss rate and also directly decreased the maximal light-trapping efficiency of P680. The more significant decrease in the exchange capacity of plastoquinones at the Q(B) site was mainly attributed to the faster water-loss rate under moderate light than in the dark. Under high light, irradiation also directly lowered the capacity. The reoxidation of PQH₂ in the dehydrated leaves was enhanced by the light irradiation. The rapidly decreased contents of P700 + plastocyanin were mainly attributed to the faster water-loss rate under light conditions in contrast with that in the dark. The different effects of light irradiations on the photosynthetic electron transport chain might be involved in the acclimation of apple tree leaves to dehydration. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. K-252a, a novel microbial product, inhibits smooth muscle myosin light chain kinase

    SciTech Connect

    Nakanishi, S.; Yamada, K.; Kase, H.; Nakamura, S.; Nonomura, Y.

    1988-05-05

    Effects of K-252a, purified from the culture broth of Nocardiopsis sp., on the activity of myosin (light chain kinase were investigated. 1) K-252a affected three characteristic properties of chicken gizzard myosin-B, natural actomyosin, to a similar degree: the Ca/sup 2 +/-dependent activity of ATPase, superprecipitation, and the phosphorylation of the myosin light chain. 2) K-252a inhibited the activities of the purified myosin light chain kinase and a Ca/sup 2 +/-independent form of the enzyme which was constructed by cross-linking of myosin light chain kinase and calmodulin using glutaraldehyde. The degrees of inhibition by 3 x 10/sup -6/ M K-252a were 69 and 48% of the control activities with the purified enzyme and the cross-linked complex, respectively. Chlorpromazine (3 x 10/sup -4/ M), a calmodulin antagonist, inhibited the native enzyme, but not the cross-linked one. These results suggested that K-252a inhibited myosin light chain kinase by direct interaction with the enzyme, whereas chlorpromazine suppressed the enzyme activation by interacting with calmodulin. 3) The inhibition by K-252a of the cross-linked kinase was affected by the concentration of ATP, a phosphate donor. The concentration causing 50% inhibition was two orders magnitude lowere in the presence of 100 ..mu..M ATP than in the presence of 2 mM ATP. 4) Kinetic analyses using (..gamma..-/sup 32/P)ATP indicated that the inhibitory mode of K-252a was competitive with respect to ATP. These results suggest that K-252a interacts at the ATP-binding domain of myosin light chain kinase.

  12. Primary CNS Nonamyloidogenic Light Chain Deposition Disease: Case Report and Brief Review.

    PubMed

    Mercado, Juan Jose; Markert, James M; Meador, William; Chapman, Philip; Perry, Arie; Hackney, James R

    2017-06-01

    The true incidence of light chain deposition disease (LCDD) restricted to the central nervous system (CNS) is unknown. To our knowledge only 7 cases of LCDD restricted to the brain have been previously reported. We herein describe an unusual example. A 44-year-old man presented with a history of ischemic retinopathy in 2004 and left lower extremity hypoesthesia in 2007 that progressed gradually to left-sided weakness and numbness in the 2 years prior to his hospitalization in 2015. A stereotactic brain biopsy was performed, displaying nonspecific hyaline deposits of amorphous "amyloid-like" material involving deep brain white matter and vessels. These were Congo red negative and were accompanied by a sparse lymphoplasmacytic infiltrate. Plasma cells demonstrated kappa light chain class restriction by chromogenic in situ hybridization (CISH). There was patchy reactivity with kappa immunohistochemistry in the amorphous deposits. A diagnosis of light chain deposition disease was made. Subsequent systemic myeloma and lymphoma workups were negative. Previously reported cases have included men and women, spanning the ages of 19 and 72 years, often presenting with hemiparesis, hypoesthesia, or seizures. Deposits have been reported in the cerebrum and cerebellum. T2/FLAIR (fluid attenuation inversion recovery) changes are usual, but lesions may or may not produce contrast enhancement. The light chain deposition may be of kappa or lambda class. Most lesions have been accompanied by local lymphoid and/or plasma cell infiltrates exhibiting light chain restriction of the same class as the deposits. In summary, LCDD limited to the CNS is a rare lesion consisting of deposition of amyloid-like, but Congo red-negative monotypic light chain usually produced by local lymphoplasmacytic infiltrates.

  13. Plasmonic nanoparticle chain in a light field: a resonant optical sail.

    PubMed

    Albaladejo, Silvia; Sáenz, Juan José; Marqués, Manuel I

    2011-11-09

    Optical trapping and driving of small objects has become a topic of increasing interest in multidisciplinary sciences. We propose to use a chain made of metallic nanoparticles as a resonant light sail, attached by one end point to a transparent object and propelling it by the use of electromagnetic radiation. Driving forces exerted on the chain are theoretically studied as a function of radiation's wavelength and chain's alignments with respect to the direction of radiation. Interestingly, there is a window in the frequency spectrum in which null-torque equilibrium configuration, with minimum geometric cross section, corresponds to a maximum in the driving force.

  14. Dynein light intermediate chain in Aspergillus nidulans is essential for the interaction between heavy and intermediate chains.

    PubMed

    Zhang, Jun; Li, Shihe; Musa, Shamsideen; Zhou, Henry; Xiang, Xin

    2009-12-11

    Cytoplasmic dynein is a complex containing heavy chains (HCs), intermediate chains (ICs), light intermediate chains (LICs), and light chains (LCs). The HCs are responsible for motor activity. The ICs at the tail region of the motor interact with dynactin, which is essential for dynein function. However, functions of other subunits and how they contribute to the assembly of the core complex are not clearly defined. Here, we analyzed in the filamentous fungus Aspergillus nidulans functions of the only LIC and two LCs, RobA (Roadblock/LC7) and TctexA (Tctex1) in dynein-mediated nuclear distribution (nud). Whereas the deletion mutant of tctexA did not exhibit an apparent nud mutant phenotype, the deletion mutant of robA exhibited a nud phenotype at an elevated temperature, which is similar to the previously characterized nudG (LC8) deletion mutant. Remarkably, in contrast to the single mutants, the robA and nudG double deletion mutant exhibits a severe nud phenotype at various temperatures. Thus, functions of these two LC classes overlap to some extent, but the presence of both becomes important under specific conditions. The single LIC, however, is essential for dynein function in nuclear distribution. This is evidenced by the identification of the nudN gene as the LIC coding gene, and by the nud phenotype exhibited by the LIC down-regulating mutant, alcA-LIC. Without a functional LIC, the HC-IC association is significantly weakened, and the HCs could no longer accumulate at the microtubule plus end. Thus, the LIC is essential for the assembly of the core complex of dynein in Aspergillus.

  15. Dynein Light Intermediate Chain in Aspergillus nidulans Is Essential for the Interaction between Heavy and Intermediate Chains*

    PubMed Central

    Zhang, Jun; Li, Shihe; Musa, Shamsideen; Zhou, Henry; Xiang, Xin

    2009-01-01

    Cytoplasmic dynein is a complex containing heavy chains (HCs), intermediate chains (ICs), light intermediate chains (LICs), and light chains (LCs). The HCs are responsible for motor activity. The ICs at the tail region of the motor interact with dynactin, which is essential for dynein function. However, functions of other subunits and how they contribute to the assembly of the core complex are not clearly defined. Here, we analyzed in the filamentous fungus Aspergillus nidulans functions of the only LIC and two LCs, RobA (Roadblock/LC7) and TctexA (Tctex1) in dynein-mediated nuclear distribution (nud). Whereas the deletion mutant of tctexA did not exhibit an apparent nud mutant phenotype, the deletion mutant of robA exhibited a nud phenotype at an elevated temperature, which is similar to the previously characterized nudG (LC8) deletion mutant. Remarkably, in contrast to the single mutants, the robA and nudG double deletion mutant exhibits a severe nud phenotype at various temperatures. Thus, functions of these two LC classes overlap to some extent, but the presence of both becomes important under specific conditions. The single LIC, however, is essential for dynein function in nuclear distribution. This is evidenced by the identification of the nudN gene as the LIC coding gene, and by the nud phenotype exhibited by the LIC down-regulating mutant, alcA-LIC. Without a functional LIC, the HC-IC association is significantly weakened, and the HCs could no longer accumulate at the microtubule plus end. Thus, the LIC is essential for the assembly of the core complex of dynein in Aspergillus. PMID:19837669

  16. Systemic lambda light-chain deposition presenting with predominant cardiac involvement.

    PubMed Central

    Garton, M. J.; Walton, S.; Ewen, S. W.

    1993-01-01

    An 82 year old woman with suspected Bence Jones myeloma developed intractable fluid retention presumed secondary to cardiac failure. In addition she experienced angina pectoris, and required permanent cardiac pacing for symptomatic sinus bradycardia. Postmortem studies revealed prominent myocardial and renal deposits of lambda light-chains which were Congo Red negative, and had a non-fibrillar ultrastructure. Non-amyloidotic light-chain deposition is uncommon, and a rare cause of cardiac disease. Previous work regarding possible pathogenetic mechanisms, clinical and laboratory features and treatment is reviewed. Images Figure 1 Figure 2 Figure 3 PMID:8415352

  17. Lambda light chain myeloma presenting as nodular hepatic lesion: a clinical rarity.

    PubMed

    Pal, Santanu; Chattopadhyay, Bitoti; Chatterjee, Atri; Bhattacharya, Biswamit

    2014-01-01

    We report a case of a 63-year-old lady presenting with pain in the right hypochondrium, jaundice, anorexia, and firm tender hepatomegaly with remarkably high serum alkaline phosphatase. Abdominal ultrasonography revealed a hypoechoic solid space-occupying lesion in right lobe of liver which was cytologically diagnosed as hepatic plasmacytoma. Serum and urine immunofixation electrophoresis, serum free light chain ratio, and bone marrow examination further confirmed the presence of lambda light chain multiple myeloma in the background. The patient achieved complete remission after four cycles of induction therapy with thalidomide and dexamethasone protocol and consolidated with further four cycles of the same regimen.

  18. Aggregation of Full-length Immunoglobulin Light Chains from Systemic Light Chain Amyloidosis (AL) Patients Is Remodeled by Epigallocatechin-3-gallate.

    PubMed

    Andrich, Kathrin; Hegenbart, Ute; Kimmich, Christoph; Kedia, Niraja; Bergen, H Robert; Schönland, Stefan; Wanker, Erich; Bieschke, Jan

    2017-02-10

    Intervention into amyloid deposition with anti-amyloid agents like the polyphenol epigallocatechin-3-gallate (EGCG) is emerging as an experimental secondary treatment strategy in systemic light chain amyloidosis (AL). In both AL and multiple myeloma (MM), soluble immunoglobulin light chains (LC) are produced by clonal plasma cells, but only in AL do they form amyloid deposits in vivo We investigated the amyloid formation of patient-derived LC and their susceptibility to EGCG in vitro to probe commonalities and systematic differences in their assembly mechanisms. We isolated nine LC from the urine of AL and MM patients. We quantified their thermodynamic stabilities and monitored their aggregation under physiological conditions by thioflavin T fluorescence, light scattering, SDS stability, and atomic force microscopy. LC from all patients formed amyloid-like aggregates, albeit with individually different kinetics. LC existed as dimers, ∼50% of which were linked by disulfide bridges. Our results suggest that cleavage into LC monomers is required for efficient amyloid formation. The kinetics of AL LC displayed a transition point in concentration dependence, which MM LC lacked. The lack of concentration dependence of MM LC aggregation kinetics suggests that conformational change of the light chain is rate-limiting for these proteins. Aggregation kinetics displayed two distinct phases, which corresponded to the formation of oligomers and amyloid fibrils, respectively. EGCG specifically inhibited the second aggregation phase and induced the formation of SDS-stable, non-amyloid LC aggregates. Our data suggest that EGCG intervention does not depend on the individual LC sequence and is similar to the mechanism observed for amyloid-β and α-synuclein.

  19. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels.

    PubMed

    Dickman, Elizabeth M; Newell, Jennifer M; González, María J; Vanni, Michael J

    2008-11-25

    The efficiency of energy transfer through food chains [food chain efficiency (FCE)] is an important ecosystem function. It has been hypothesized that FCE across multiple trophic levels is constrained by the efficiency at which herbivores use plant energy, which depends on plant nutritional quality. Furthermore, the number of trophic levels may also constrain FCE, because herbivores are less efficient in using plant production when they are constrained by carnivores. These hypotheses have not been tested experimentally in food chains with 3 or more trophic levels. In a field experiment manipulating light, nutrients, and food-chain length, we show that FCE is constrained by algal food quality and food-chain length. FCE across 3 trophic levels (phytoplankton to carnivorous fish) was highest under low light and high nutrients, where algal quality was best as indicated by taxonomic composition and nutrient stoichiometry. In 3-level systems, FCE was constrained by the efficiency at which both herbivores and carnivores converted food into production; a strong nutrient effect on carnivore efficiency suggests a carryover effect of algal quality across 3 trophic levels. Energy transfer efficiency from algae to herbivores was also higher in 2-level systems (without carnivores) than in 3-level systems. Our results support the hypothesis that FCE is strongly constrained by light, nutrients, and food-chain length and suggest that carryover effects across multiple trophic levels are important. Because many environmental perturbations affect light, nutrients, and food-chain length, and many ecological services are mediated by FCE, it will be important to apply these findings to various ecosystem types.

  20. Two kappa immunoglobulin light chains are secreted by an anti-DNA hybridoma: implications for isotypic exclusion.

    PubMed

    Zack, D J; Wong, A L; Stempniak, M; Weisbart, R H

    1995-12-01

    An anti-DNA hybridoma derived from an MRL/lpr mouse secretes two different kappa light chains in combination with a single heavy chain. Multiple single cell clones express and secrete immunoglobulin containing both kappa light chains. The N-terminal protein sequences of the light chains correspond to sequences predicted from functionally rearranged mRNAs subjected to reverse transcription and amplified by polymerase chain reaction (PCR). Karyotype analysis of the hybridoma indicates a clonal line derived from the fusion of two cells. By amino acid sequence comparison and PCR analysis, both functional kappa light chains are derived from the MRL/lpr spleen. The two functional light chain cDNAs were cloned and co-transfected into COS-7 cells with the heavy chain cDNA. Only one of the light chains in combination with mAb 3E10 heavy chain confers anti-DNA reactivity. The presence of two separate kappa light chains and, therefore, two separate antigen receptors on a single B cell may have ramifications for both polyclonal activation and toleration of lupus B cells.

  1. λ Light Chain Bias Associated With Enhanced Binding and Function of Anti-HIV Env Glycoprotein Antibodies

    PubMed Central

    Sajadi, Mohammad M.; Farshidpour, Maham; Brown, Eric P.; Ouyang, Xin; Seaman, Michael S.; Pazgier, Marzena; Ackerman, Margaret E.; Robinson, Harriet; Tomaras, Georgia; Parsons, Matthew S.; Charurat, Manhattan; DeVico, Anthony L.; Redfield, Robert R.; Lewis, George K.

    2016-01-01

    The humoral response to human immunodeficiency virus (HIV) remains incompletely understood. In this report, we describe biased λ light chain use during the HIV Env glycoprotein (Env) response in HIV infection and vaccination. We examined HIV Env binding (and neutralization) in the context of light chain use in subjects with acute HIV infection, chronic HIV infection, and among HIV vaccinees. In all populations tested, there was a λ chain bias for HIV Env binding antibodies, compared with other HIV antigens (such as p24) or tetanus toxoid. In subjects with chronic HIV infection, a λ bias was noted for neutralization, with λ antibodies accounting for up to 90% of all neutralization activity observed. This is the first report of antibody function in a human infection being tied to light chain use. In HIV infection, antibodies expressing λ light chains tended to have longer CDRL3s, increased light chain contact with HIV Env, and less hypermutation in the heavy chain, compared with antibodies using the κ light chain. These data also support an evolutionary model for the understanding the various κ to λ light chain ratios observed across species and suggest that the λ light chain bias against HIV provides the host an advantage in developing a more efficient humoral response. PMID:26347575

  2. λ Light Chain Bias Associated With Enhanced Binding and Function of Anti-HIV Env Glycoprotein Antibodies.

    PubMed

    Sajadi, Mohammad M; Farshidpour, Maham; Brown, Eric P; Ouyang, Xin; Seaman, Michael S; Pazgier, Marzena; Ackerman, Margaret E; Robinson, Harriet; Tomaras, Georgia; Parsons, Matthew S; Charurat, Manhattan; DeVico, Anthony L; Redfield, Robert R; Lewis, George K

    2016-01-01

    The humoral response to human immunodeficiency virus (HIV) remains incompletely understood. In this report, we describe biased λ light chain use during the HIV Env glycoprotein (Env) response in HIV infection and vaccination. We examined HIV Env binding (and neutralization) in the context of light chain use in subjects with acute HIV infection, chronic HIV infection, and among HIV vaccinees. In all populations tested, there was a λ chain bias for HIV Env binding antibodies, compared with other HIV antigens (such as p24) or tetanus toxoid. In subjects with chronic HIV infection, a λ bias was noted for neutralization, with λ antibodies accounting for up to 90% of all neutralization activity observed. This is the first report of antibody function in a human infection being tied to light chain use. In HIV infection, antibodies expressing λ light chains tended to have longer CDRL3s, increased light chain contact with HIV Env, and less hypermutation in the heavy chain, compared with antibodies using the κ light chain. These data also support an evolutionary model for the understanding the various κ to λ light chain ratios observed across species and suggest that the λ light chain bias against HIV provides the host an advantage in developing a more efficient humoral response. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  3. Silencing megalin and cubilin genes inhibits myeloma light chain endocytosis and ameliorates toxicity in human renal proximal tubule epithelial cells.

    PubMed

    Li, Min; Balamuthusamy, Saravanan; Simon, Eric E; Batuman, Vecihi

    2008-07-01

    Using target-specific short interfering (si) RNAs, we silenced the tandem endocytic receptors megalin and cubilin genes in cultured human renal proximal tubule epithelial cells. Transfection by siRNA resulted in up to 90% suppression of both megalin and cubilin protein and mRNA expression. In HK-2 cells exposed to kappa-light chain for up to 24 h, light chain endocytosis was reduced in either megalin- or cubilin-silenced cells markedly but incompletely. Simultaneous silencing of both the cubilin and megalin genes, however, resulted in near-complete inhibition of light chain endocytosis, as determined by measuring kappa-light chain protein concentration in cell cytoplasm and by flow cytometry using FITC-labeled kappa-light chain. In these cells, light chain-induced cytokine responses (interleukin-6 and monocyte chemoattractant protein-1) and epithelial-to-mesenchymal transition as well as the associated cellular and morphological alterations were also markedly suppressed. The results demonstrate that light chain endocytosis is predominantly mediated by the megalin-cubilin tandem endocytic receptor and identify endocytosis as a key step in light chain cytotoxicity. Blocking light chain endocytosis prevents its nephrotoxic effects on human kidney proximal tubule cells.

  4. Early Prognostic Value of Monitoring Serum Free Light Chain in Patients with Multiple Myeloma Undergoing Autologous Stem Cell Transplantation.

    PubMed

    Özkurt, Zübeyde Nur; Sucak, Gülsan Türköz; Akı, Şahika Zeynep; Yağcı, Münci; Haznedar, Rauf

    2017-03-16

    We hypothesized the levels of free light chains obtained before and after autologous stem cell transplantation can be useful in predicting transplantation outcome. We analyzed 70 multiple myeloma patients. Abnormal free light chain ratios before stem cell transplantation were found to be associated early progression, although without any impact on overall survival. At day +30, the normalization of levels of involved free light chain related with early progression. According to these results almost one-third reduction of free light chain levels can predict favorable prognosis after autologous stem cell transplantation.

  5. IgG light chain-independent secretion of heavy chain dimers: consequence for therapeutic antibody production and design.

    PubMed

    Stoyle, Chloe L; Stephens, Paul E; Humphreys, David P; Heywood, Sam; Cain, Katharine; Bulleid, Neil J

    2017-09-07

    Rodent monoclonal antibodies with specificity towards important biological targets are developed for therapeutic use by a process of humanisation. This process involves the creation of molecules, which retain the specificity of the rodent antibody but contain predominantly human coding sequence. Here, we show that some humanised heavy chains (HCs) can fold, form dimers and be secreted even in the absence of a light chain (LC). Quality control of recombinant antibody assembly in vivo is thought to rely upon folding of the HC CH1 domain. This domain acts as a switch for secretion, only folding upon interaction with the LC CL domain. We show that the secreted heavy-chain dimers contain folded CH1 domains and contribute to the heterogeneity of antibody species secreted during the expression of therapeutic antibodies. This subversion of the normal quality control process is dependent on the HC variable domain, is prevalent with engineered antibodies and can occur when only the Fab fragments are expressed. This discovery will have an impact on the efficient production of both humanised antibodies and the design of novel antibody formats. © 2017 The Author(s).

  6. Purification, Characterization and Analysis of the Allergenic Properties of Myosin Light Chain in Procambarus clarkia.

    USDA-ARS?s Scientific Manuscript database

    Myosin light chain (MLC) plays a vital role in cell and muscle functions and has been identified as an allergen in close species. In this study, MLC with the molecular mass of 18kDa was purified from crayfish (Procambarus clarkii) muscle fibrils. Its physicochemical characterization showed that the...

  7. A molecular model for self-assembly of amyloid fibrils: Immunoglobulin light chains

    SciTech Connect

    Stevens, F.J.; Myatt, E.A.; Westholm, F.A.

    1995-08-29

    The formation and pathological deposition of amyloid fibrils are defining features of many acquired and inherited disorders, including primary or light-chain-associated amyloidosis, Alzheimer`s disease, and adult-onset diabetes. No pharmacological methods exist to block this process or to effect the removal of fibrils from tissue, and thus, little can be done to prevent organ failure and ultimate death that result from deposition of amyloid. Knowledge of the pathogenesis, treatment, or prevention of these presently incurable diseases is limited due to the relative paucity of information regarding the biophysical basis of amyloid formation. Antibody light chains of different amino acid sequence show differential amyloid-forming tendencies and, as such, can provide insight into the structural organization of amyloid fibrils as well as into basic mechanisms of protein self-assembly. We have compared primary structures of 180 human monoclonal light chains and have identified particular residues and positions within the variable domain that differentiate amyloid-from nonamyloid-associated proteins. We propose a molecular model that accounts for amyloid formation by antibody light chains and might also have implications for other forms of amyloidosis. 24 refs., 2 figs., 1 tab.

  8. Monitoring the assembly of Ig light-chain amyloid fibrils by atomic force microscopy.

    PubMed

    Ionescu-Zanetti, C; Khurana, R; Gillespie, J R; Petrick, J S; Trabachino, L C; Minert, L J; Carter, S A; Fink, A L

    1999-11-09

    Aggregation of Ig light chains to form amyloid fibrils is a characteristic feature of light-chain amyloidosis, a light-chain deposition disease. A recombinant variable domain of the light chain SMA was used to form amyloid fibrils in vitro. Fibril formation was monitored by atomic force microscopy imaging. Single filaments 2.4 nm in diameter were predominant at early times; protofibrils 4.0 nm in diameter were predominant at intermediate times; type I and type II fibrils 8.0 nm and 6.0 nm in diameter, respectively, were predominant at the endpoints. The increase in number of fibrils correlated with increased binding of the fluorescent dye thioflavin T. The fibrils and protofibrils showed a braided structure, suggesting that their formation involves the winding of protofibrils and filaments, respectively. These observations support a model in which two filaments combine to form a protofibril, two protofibrils intertwine to form a type I fibril, and three filaments form a type II fibril.

  9. Bone marrow lambda-type light chain crystalline structures associated with multiple myeloma.

    PubMed

    Schvartz, H; Bonhomme, P; Caulet, S; Beorchia, A; Patey, M; Caulet, T

    1985-01-01

    A 58-year-old man showed bone marrow crystalline structures associated with a lambda light chain producing multiple myeloma. Analysis and processing of electron images clearly displayed the periodic structure of the crystals. Immunochemistry suggested that they contained the whole or a fragmented constant portion of immunoglobulin.

  10. Rapid quantitative analysis of monoclonal antibody heavy and light chain charge heterogeneity

    PubMed Central

    Vanam, Ram P; Schneider, Michael A; Marlow, Michael S

    2015-01-01

    An alternative method to traditional 2-dimensional gel electrophoresis (2D-PAGE) and its application in characterizing the inherent charge heterogeneity of chromatographically isolated monoclonal antibody heavy and light chains is described. This method, referred to as ChromiCE, utilizes analytical size-exclusion chromatography (SEC), performed under reducing and denaturing conditions, followed by imaged capillary isoelectric focusing (icIEF) of the chromatographically separated heavy and light chains. Under conditions suitable for the subsequent icIEF analysis, the absolute and relative SEC elution volumes of the heavy and light chains were found to be highly pH dependent, a phenomenon that can be exploited in optimizing chromatographic separation. Compared to 2D-PAGE, the ChromiCE method substantially decreases the time and labor needed to complete the analysis, improves reproducibility, and provides fully quantitative assessment of charge heterogeneity. The ChromiCE methodology was applied to a set of diverse monoclonal antibodies to demonstrate suitability for quantitative charge variant analysis of heavy and light chains. A typical application of ChromiCE in extended characterization and stability studies of a purified antibody is shown. PMID:26305772

  11. Tyrosine residues mediate fibril formation in a dynamic light chain dimer interface.

    PubMed

    DiCostanzo, Ara Celi; Thompson, James R; Peterson, Francis C; Volkman, Brian F; Ramirez-Alvarado, Marina

    2012-08-10

    Light chain amyloidosis is an incurable protein misfolding disease where monoclonal immunoglobulin light chains misfold and deposit as amyloid fibrils, causing organ failure and death. Previously, we determined that amyloidogenic light chains AL-09 and AL-103 do not form fibrils at pH 10 (tyrosine pK(a)). There are three tyrosine residues (32, 91, and 96) clustered in the dimer interface, interacting differently in the two light chain proteins due to their two different dimer conformations. These tyrosines may be ionized at pH 10, causing repulsion and inhibiting fibril formation. Here, we characterize single and double Tyr-to-Phe mutations in AL-09 and AL-103. All AL-09 Tyr-to-Phe mutants form fibrils at pH 10, whereas none of the AL-103 mutants form fibrils at pH 10. NMR studies suggest that although both AL-09 and AL-103 present conformational heterogeneity, only AL-09 favors dimer conformations where tyrosine residues mediate crucial interactions for amyloid formation.

  12. ATYPICAL MACULOPATHY IN A PATIENT WITH LIGHT CHAIN DEPOSITION DISEASE MIMICKING ADVANCED GEOGRAPHIC ATROPHY

    PubMed Central

    Oshry, Lauren J.; Reichel, Elias

    2017-01-01

    Purpose: To report a previously unreported presentation of advanced geographic atrophy of the macula mimicking nonneovascular (dry) age-related macular degeneration in a patient with light chain deposition disease. Methods: Ocular examination included dilated fundus examination, fundus autofluorescence, full-field electroretinography, and spectral domain optical coherence tomography. Patients: Single-patient case report. Results: Dilated fundus examination demonstrated diffuse loss of the retinal pigment epithelium in a geographic atrophy pattern in the macula and drusenlike deposits localized to the outer retina and retinal pigment epithelium. There were no signs of choroidal neovascularization or retinal pigment epithelium detachments. Fundus autofluorescence demonstrated wide areas of retinal pigment epithelium loss. Full-field electroretinography was normal. Spectral domain optical coherence tomography displayed atrophy of the outer retinal layers. Discussion: This is the first documented case of drusenlike deposits and maculopathy in a patient with light chain deposition disease that mimics advanced geographic atrophy that is typically observed in nonneovascular age-related macular degeneration. Physicians should be aware of the macular changes that can be associated with light chain deposition disease, and patients with light chain deposition disease should be regularly evaluated for associated macular disease. PMID:26934302

  13. A novel approach for the chromatographic purification and peptide mass fingerprinting of urinary free light chains.

    PubMed

    Mali, Bhupesh C; Badgujar, Shamkant B; Shukla, Kunal K; Bhanushali, Paresh B

    2017-02-01

    We describe a chromatographic approach for the purification of urinary free light chains (FLCs) viz., lambda free light chains (λ-FLCs) and kappa free light chains (κ-FLCs). Isolated urinary FLCs were analyzed by SDS-PAGE, immunoblotting and mass spectrometry (MS). The relative molecular masses of λ-FLC and κ-FLC are 22,933.397 and 23,544.336Da respectively. Moreover, dimer forms of each FLC were also detected in mass spectrum which corresponds to 45,737.747 and 47,348.028Da respectively for λ-FLCs and κ-FLCs. Peptide mass fingerprint analysis of the purified λ-FLCs and κ-FLCs has yielded peptides that partially match with known light chain sequences viz., gi|218783338 and gi|48475432 respectively. The tryptic digestion profile of isolated FLCs infers the exclusive nature of them and they may be additive molecules in the dictionary of urinary proteins. This is the first report of characterization and validation of FLCs from large volume samples by peptide sequencing. This simple and cost-effective approach to purification of FLCs, together with the easy availability of urine samples make the large-scale production of FLCs possible, allowing exploration of various bioclinical as well as biodiagnostic applications.

  14. Immunoglobulin heavy chain/light chain pair measurement is associated with survival in diffuse large B-cell lymphoma.

    PubMed

    Jardin, Fabrice; Delfau-Larue, Marie Hélène; Molina, Thierry Jo; Copie-Bergman, Christiane; Brière, Josette; Petrella, Tony; Canioni, Danielle; Fabiani, Bettina; Jais, Jean-Philippe; Figeac, Martin; Leroy, Karen; Mareschal, Sylvain; Salles, Gilles André; Coiffier, Bertrand; Delarue, Richard; Peyrade, Frédéric; Bosly, André; André, Marc; Ketterer, Nicolas; Haioun, Corinne; Tilly, Hervé

    2013-09-01

    Elevated serum free light chains (FLCs) have been associated with an unfavorable prognosis in diffuse large B-cell lymphoma (DLBCL). The aim of this study was to determine the clinical relevance of a quantitative assessment of intact circulating immunoglobulin (Ig), using serum Ig heavy chain/light chain pair (HLC) measurements in patients with DLBCL. FLC and HLC were measured in 409 serum samples of patients with DLBCL included in the LNH03-B clinical trial program of the Groupe d'Etudes des Lymphomes de l'Adulte (GELA). Patients with an abnormal IgMκ/IgMλ ratio or an abnormal FLC ratio more frequently displayed adverse clinical characteristics. Patients with abnormal IgMκ/IgMλ ratios had inferior progression-free survival (PFS) and overall survival (OS) as compared to patients with a normal ratio in the overall cohort (5-year PFS 44.9% vs. 69.3%, p = 0.0003 and 5-year OS 50.8% vs. 78.1%, p = 0.0003) and in the R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone) cohort (5-year OS 43.5% vs. 70.3%, p = 0.003). In multivariate analysis, including elevated FLC/HLC and International Prognostic Index (IPI), an abnormal IgMκ/IgMλ ratio (hazard ratio [HR] = 1.54, 95% confidence interval [CI] 1.03-2.3, p = 0.03) remained predictive of shorter progression-free survival. Gene expression profile experiments and immunohistochemistry indicate that this measurement is at least partially related to tumor cell secretion. Both elevated serum FLCs and an abnormal IgMκ/IgMλ ratio are associated with unfavorable outcomes in patients with DLBCL treated by R-CHOP.

  15. Two Essential Light Chains Regulate the MyoA Lever Arm To Promote Toxoplasma Gliding Motility.

    PubMed

    Williams, Melanie J; Alonso, Hernan; Enciso, Marta; Egarter, Saskia; Sheiner, Lilach; Meissner, Markus; Striepen, Boris; Smith, Brian J; Tonkin, Christopher J

    2015-09-15

    Key to the virulence of apicomplexan parasites is their ability to move through tissue and to invade and egress from host cells. Apicomplexan motility requires the activity of the glideosome, a multicomponent molecular motor composed of a type XIV myosin, MyoA. Here we identify a novel glideosome component, essential light chain 2 (ELC2), and functionally characterize the two essential light chains (ELC1 and ELC2) of MyoA in Toxoplasma. We show that these proteins are functionally redundant but are important for invasion, egress, and motility. Molecular simulations of the MyoA lever arm identify a role for Ca(2+) in promoting intermolecular contacts between the ELCs and the adjacent MLC1 light chain to stabilize this domain. Using point mutations predicted to ablate either the interaction with Ca(2+) or the interface between the two light chains, we demonstrate their contribution to the quality, displacement, and speed of gliding Toxoplasma parasites. Our work therefore delineates the importance of the MyoA lever arm and highlights a mechanism by which this domain could be stabilized in order to promote invasion, egress, and gliding motility in apicomplexan parasites. Tissue dissemination and host cell invasion by apicomplexan parasites such as Toxoplasma are pivotal to their pathogenesis. Central to these processes is gliding motility, which is driven by an actomyosin motor, the MyoA glideosome. Others have demonstrated the importance of the MyoA glideosome for parasite motility and virulence in mice. Disruption of its function may therefore have therapeutic potential, and yet a deeper mechanistic understanding of how it works is required. Ca(2+)-dependent and -independent phosphorylation and the direct binding of Ca(2+) to the essential light chain have been implicated in the regulation of MyoA activity. Here we identify a second essential light chain of MyoA and demonstrate the importance of both to Toxoplasma motility. We also investigate the role of Ca(2+) and

  16. Characterization of axolotl heavy and light immunoglobulin chains by monoclonal antibodies.

    PubMed

    Chardin, H; Vilain, C; Charlemagne, J

    1987-12-01

    Axolotl specific antibodies to 2,4-dinitrophenyl (DNP) were purified by affinity chromatography from the sera of animals immunized with 2,4,6-trinitrophenylated sheep red blood cells (TNP-SRBC). The purified anti-TNP/DNP antibodies, when analyzed by SDS-PAGE, were constituted of high molecular weight molecules, which in reducing conditions, were separated into heavy 72-88 kD and light 27-30 kD polypeptides. The axolotl heavy antibody chains strongly bound Concanavalin-A and migrate faster in SDS-PAGE after endoglycosidase-F (Endo-F) treatment. Using the same techniques, no carbohydrate components were detected onto light chains. Monoclonal antibodies (MAbs) were obtained against these purified axolotl immunoglobulins (Ig) and their specificities were studied by immunoblotting. MAbs 33.45.1 and 33.101.2 respectively recognized heavy and light chains determinants of the Ig molecule. These determinants were resistant to Endo-F digestion, suggesting that the two MAbs were not directed to polypeptide-associated N-linked high mannose or complex oligosaccharides. MAbs 33.45.1 and 33.101.2 were compared to 11.5.2, an anti-axolotl thymocytes MAb which was reactive for both axolotl leucocytes and soluble Ig. MAb 11.5.2 reacted in immunoblotting against several high molecular weight axolotl serum proteins, including heavy Ig chains. Light chains were not recognized. However, 11.5.2 did not further recognize Endo-F treated Ig, suggesting its specificity for a carbohydrate determinant of the heavy chain, and link to a large diversity of soluble or membrane glycoproteins.

  17. Prognostic value of depressed midwall systolic function in cardiac light-chain amyloidosis.

    PubMed

    Perlini, Stefano; Salinaro, Francesco; Musca, Francesco; Mussinelli, Roberta; Boldrini, Michele; Raimondi, Ambra; Milani, Paolo; Foli, Andrea; Cappelli, Francesco; Perfetto, Federico; Palladini, Giovanni; Rapezzi, Claudio; Merlini, Giampaolo

    2014-05-01

    Cardiac amyloidosis represents an archetypal form of restrictive heart disease, characterized by profound diastolic dysfunction. As ejection fraction is preserved until the late stage of the disease, the majority of patients do fulfill the definition of diastolic heart failure, that is, heart failure with preserved ejection fraction (HFpEF). In another clinical model of HFpEF, that is, pressure-overload hypertrophy, depressed midwall fractional shortening (mFS) has been shown to be a powerful prognostic factor. To assess the potential prognostic role of mFS in cardiac light-chain amyloidosis with preserved ejection fraction, we enrolled 221 consecutive untreated patients, in whom a first diagnosis of cardiac light-chain amyloidosis was concluded between 2008 and 2010. HFpEF was present in 181 patients. Patients in whom cardiac involvement was excluded served as controls (n = 121). Prognosis was assessed after a median follow-up of 561 days. When compared with light-chain amyloidosis patients without myocardial involvement, cardiac light-chain amyloidosis was characterized by increased wall thickness (P <0.001), reduced end-diastolic left ventricular volumes (P <0.001), and diastolic dysfunction (P <0.001). In patients with preserved ejection fraction, mFS was markedly depressed [10.6% (8.7-13.5) vs. 17.8% (15.9-19.5) P <0.001]. At multivariable analysis, mFS, troponin I, and NT-pro-brain natriuretic peptide were the only significant prognostic determinants (P <0.001), whereas other indices of diastolic (E/E' ratio, transmitral and pulmonary vein flow velocities) and systolic function (tissue Doppler systolic indices, ejection fraction), or the presence/absence of congestive heart failure did not enter the model. In cardiac light-chain amyloidosis with normal ejection fraction, depressed circumferential mFS, a marker of myocardial contractile dysfunction, is a powerful predictor of survival.

  18. Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry.

    PubMed

    Barnidge, David R; Dasari, Surendra; Ramirez-Alvarado, Marina; Fontan, Adrian; Willrich, Maria A V; Tschumper, Renee C; Jelinek, Diane F; Snyder, Melissa R; Dispenzieri, Angela; Katzmann, Jerry A; Murray, David L

    2014-11-07

    We previously described a microLC-ESI-Q-TOF MS method for identifying monoclonal immunoglobulins in serum and then tracking them over time using their accurate molecular mass. Here we demonstrate how the same methodology can be used to identify and characterize polyclonal immunoglobulins in serum. We establish that two molecular mass distributions observed by microLC-ESI-Q-TOF MS are from polyclonal kappa and lambda light chains using a combination of theoretical molecular masses from gene sequence data and the analysis of commercially available purified polyclonal IgG kappa and IgG lambda from normal human serum. A linear regression comparison of kappa/lambda ratios for 74 serum samples (25 hypergammaglobulinemia, 24 hypogammaglobulinemia, 25 normal) determined by microflowLC-ESI-Q-TOF MS and immunonephelometry had a slope of 1.37 and a correlation coefficient of 0.639. In addition to providing kappa/lambda ratios, the same microLC-ESI-Q-TOF MS analysis can determine the molecular mass for oligoclonal light chains observed above the polyclonal background in patient samples. In 2 patients with immune disorders and hypergammaglobulinemia, we observed a skewed polyclonal molecular mass distribution which translated into biased kappa/lambda ratios. Mass spectrometry provides a rapid and simple way to combine the polyclonal kappa/lambda light chain abundance ratios with the identification of dominant monoclonal as well as oligoclonal light chain immunoglobulins. We anticipate that this approach to evaluating immunoglobulin light chains will lead to improved understanding of immune deficiencies, autoimmune diseases, and antibody responses.

  19. Nested polymerase chain reaction amplification and sequencing analysis of the light-chain and heavy-chain variable regions in the influenza A H1N1 virus hemagglutinin monoclonal antibody gene.

    PubMed

    Li, H J; Guo, C Y; Sun, J Y; Sun, L J; Zhao, P H; Hu, L; Li, Y; Hu, J

    2014-06-11

    The nested polymerase chain reaction (PCR) method was used for the amplification of the influenza A H1N1 virus hemagglutinin monoclonal antibody light-chain and heavy-chain genes. Sequence analysis of the obtained genes was then used to identify common cloning methods of the mouse immunoglobulin-kappa (Igκ) light-chain and heavy-chain variable gene regions. Twenty-two pairs of amplification primers for the mouse Igκ light-chain and heavy-chain variable gene regions were designed, and 6 mouse anti-human H1N1 influenza virus hemagglutinin monoclonal antibody light-chain and heavy-chain variable gene regions were cloned and sequenced. Comparative analysis was conducted between our results and the mouse Ig sequences published in the National Center of Biotechnology Information (NCBI). The nested PCR method effectively avoided cloning the pseudogenes of the monoclonal antibody, and the amino acid sequence obtained was consistent with the characteristics of the mouse Ig variable region. A general method of cloning the mouse Ig light-chain and heavy-chain variable gene regions was established, which provides a basis for further cloning of mouse monoclonal antibody variable gene regions. This study also provides data for further studies of H1N1 influenza virus hemagglutinin antibody binding sites.

  20. Bacterial kinesin light chain (Bklc) links the Btub cytoskeleton to membranes.

    PubMed

    Akendengue, Lurlène; Trépout, Sylvain; Graña, Martín; Voegele, Alexis; Janke, Carsten; Raynal, Bertrand; Chenal, Alexandre; Marco, Sergio; Wehenkel, Anne Marie

    2017-03-30

    Bacterial kinesin light chain is a TPR domain-containing protein encoded by the bklc gene, which co-localizes with the bacterial tubulin (btub) genes in a conserved operon in Prosthecobacter. Btub heterodimers show high structural homology with eukaryotic tubulin and assemble into head-to-tail protofilaments. Intriguingly, Bklc is homologous to the light chain of the microtubule motor kinesin and could thus represent an additional eukaryotic-like cytoskeletal element in bacteria. Using biochemical characterization as well as cryo-electron tomography we show here that Bklc interacts specifically with Btub protofilaments, as well as lipid vesicles and could thus play a role in anchoring the Btub filaments to the membrane protrusions in Prosthecobacter where they specifically localize in vivo. This work sheds new light into possible ways in which the microtubule cytoskeleton may have evolved linking precursors of microtubules to the membrane via the kinesin moiety that in today's eukaryotic cytoskeleton links vesicle-packaged cargo to microtubules.

  1. Light-assisted, templated self-assembly of gold nanoparticle chains.

    PubMed

    Jaquay, Eric; Martínez, Luis Javier; Huang, Ningfeng; Mejia, Camilo A; Sarkar, Debarghya; Povinelli, Michelle L

    2014-09-10

    We experimentally demonstrate the technique of light-assisted, templated self-assembly (LATS) to trap and assemble 200 nm diameter gold nanoparticles. We excite a guided-resonance mode of a photonic-crystal slab with 1.55 μm laser light to create an array of optical traps. Unlike our previous demonstration of LATS with polystyrene particles, we find that the interparticle interactions play a significant role in the resulting particle patterns. Despite a two-dimensionally periodic intensity profile in the slab, the particles form one-dimensional chains whose orientations can be controlled by the incident polarization of the light. The formation of chains can be understood in terms of a competition between the gradient force due to the excitation of the mode in the slab and optical binding between particles.

  2. A light-induced spin crossover actuated single-chain magnet

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Zheng, Hui; Kang, Soonchul; Shiota, Yoshihito; Hayami, Shinya; Mito, Masaki; Sato, Osamu; Yoshizawa, Kazunari; Kanegawa, Shinji; Duan, Chunying

    2013-11-01

    Both spin-crossover complexes and molecular nanomagnets display bistable magnetic states, potentially behaving as elementary binary units for information storage. It is a challenge to introduce spin-crossover units into molecular nanomagnets to switch the bistable state of the nanomagnets through external stimuli-tuned spin crossover. Here we report an iron(II) spin-crossover unit and paramagnetic iron(III) ions that are incorporated into a well-isolated double-zigzag chain. The chain exhibits thermally induced reversible spin-crossover and light-induced excited spin-state trapping at the iron(II) sites. Single-chain magnet behaviour is actuated accompanying the synergy between light-induced excited spin-state trapping at the iron(II) sites and ferromagnetic interactions between the photoinduced high-spin iron(II) and low-spin iron(III) ions in the chain. The result provides a strategy to switch the bistable state of molecular nanomagnets using external stimuli such as light and heat, with the potential to erase and write information at a molecular level.

  3. Chromophore-Assisted Light Inactivation of Mitochondrial Electron Transport Chain Complex II in Caenorhabditis elegans

    PubMed Central

    Wojtovich, Andrew P.; Wei, Alicia Y.; Sherman, Teresa A.; Foster, Thomas H.; Nehrke, Keith

    2016-01-01

    Mitochondria play critical roles in meeting cellular energy demand, in cell death, and in reactive oxygen species (ROS) and stress signaling. Most Caenorhabditis elegans loss-of-function (lf) mutants in nuclear-encoded components of the respiratory chain are non-viable, emphasizing the importance of respiratory function. Chromophore-Assisted Light Inactivation (CALI) using genetically-encoded photosensitizers provides an opportunity to determine how individual respiratory chain components contribute to physiology following acute lf. As proof-of-concept, we expressed the ‘singlet oxygen generator’ miniSOG as a fusion with the SDHC subunit of respiratory complex II, encoded by mev-1 in C. elegans, using Mos1-mediated Single Copy Insertion. The resulting mev-1::miniSOG transgene complemented mev-1 mutant phenotypes in kn1 missense and tm1081(lf) deletion mutants. Complex II activity was inactivated by blue light in mitochondria from strains expressing active miniSOG fusions, but not those from inactive fusions. Moreover, light-inducible phenotypes in vivo demonstrated that complex II activity is important under conditions of high energy demand, and that specific cell types are uniquely susceptible to loss of complex II. In conclusion, miniSOG-mediated CALI is a novel genetic platform for acute inactivation of respiratory chain components. Spatio-temporally controlled ROS generation will expand our understanding of how the respiratory chain and mitochondrial ROS influence whole organism physiology. PMID:27440050

  4. Removal of the cardiac myosin regulatory light chain increases isometric force production

    PubMed Central

    Pant, Kiran; Watt, James; Greenberg, Michael; Jones, Michelle; Szczesna-Cordary, Danuta; Moore, Jeffrey R.

    2009-01-01

    The myosin neck, which is supported by the interactions between light chains and the underlying α-helical heavy chain, is thought to act as a lever arm to amplify movements originating in the globular motor domain. Here, we studied the role of the cardiac myosin regulatory light chains (RLCs) in the capacity of myosin to produce force using a novel optical-trap-based isometric force in vitro motility assay. We measured the isometric force and actin filament velocity for native porcine cardiac (PC) myosin, RLC-depleted PC (PCdepl) myosin, and PC myosin reconstituted with recombinant bacterially expressed human cardiac RLC (PCrecon). RLC depletion reduced unloaded actin filament velocity by 58% and enhanced the myosin-based isometric force ∼2-fold. No significant change between PC and PCdepl preparations was observed in the maximal rate of actin-activated myosin ATPase activity. Reconstitution of PCdepl myosin with human RLC partially restored the velocity and force levels to near untreated values. The reduction in unloaded velocity after RLC extraction is consistent with the myosin neck acting as a lever, while the enhancement in isometric force can be directly related to enhancement of unitary force. The force data are consistent with a model in which the neck region behaves as a cantilevered beam.—Pant, K., Watt, J., Greenberg, M., Jones, M., Szczesna-Cordary, D., Moore, J. R. Removal of the cardiac myosin regulatory light chain increases isometric force production. PMID:19470801

  5. A role for destabilizing amino acid replacements in light-chain amyloidosis.

    PubMed Central

    Hurle, M R; Helms, L R; Li, L; Chan, W; Wetzel, R

    1994-01-01

    Light-chain (L-chain) amyloidosis is characterized by deposition of fibrillar aggregates composed of the N-terminal L-chain variable region (VL) domain of an immunoglobulin, generally in individuals overproducing a monoclonal L chain. In addition to proteolytic fragmentation and high protein concentration, particular amino acid substitutions may also contribute to the tendency of an L chain to aggregate in L-chain amyloidosis, although evidence in support of this has been limited and difficult to interpret. In this paper we identify particular amino acid replacements at specific positions in the VL domain that are occupied at frequencies significantly higher in those L chains associated with amyloidosis. Analysis of the structural model for the VL domain of the Bence-Jones protein REI suggests that these positions play important roles in maintaining domain structure and stability. Using an Escherichia coli expression system, we prepared single-point mutants of REI VL incorporating amyloid-associated amino acid replacements that are both rare and located at structurally important positions. These mutants support ordered aggregate formation in an in vitro L-chain fibril formation model in which wild-type REI VL remains soluble. Moreover, the ability of these sequences to aggregate in vitro correlates well with the extent to which domain stability is decreased in denaturant-induced unfolding. The results are consistent with a mechanism for the disease process in which the VL domain, either before or after proteolytic cleavage from the L-chain constant region domain, unfolds by virtue of one or more destabilizing amino acid replacements to generate an aggregation-prone nonnative state. Images PMID:8202506

  6. Investigation of the role of the calvin cycle and C1 metabolism during HCHO metabolism in gaseous HCHO-treated petunia under light and dark conditions using 13C-NMR.

    PubMed

    Sun, Huiqun; Zhang, Wei; Tang, Lijuan; Han, Shuang; Wang, Xinjia; Zhou, Shengen; Li, Kunzhi; Chen, Limei

    2015-01-01

    It has been shown that formaldehyde (HCHO) absorbed by plants can be assimilated through the Calvin cycle or C1 metabolism. Our previous study indicated that Petunia hybrida could effectively eliminate HCHO from HCHO-polluted air. To understand the roles of C1 metabolism and the Calvin cycle during HCHO metabolism and detoxification in petunia plants treated with gaseous H(13)CHO under light and dark conditions. Aseptically grown petunia plants were treated with gaseous H(13)CHO under dark and light conditions. The metabolites generated from HCHO detoxification in petunia were investigated using (13)C-NMR. [2-(13)C]glycine (Gly) was generated via C1 metabolism and [U-(13)C]glucose (Gluc) was produced through the Calvin cycle simultaneously in petunia treated with low-level gaseous H(13)CHO under light conditions. Generation of [2-(13)C]Gly decreased whereas [U-(13) C]Gluc and [U-(13)C]fructose (Fruc) production increased greatly under high-level gaseous H(13)CHO stress in the light. In contrast, [U-(13)C]Gluc and [U-(13)C] Fruc production decreased greatly and [2-(13)C]Gly generation increased significantly under low-level and high-level gaseous H(13)CHO stress in the dark. C1 metabolism and the Calvin cycle contributed differently to HCHO metabolism and detoxification in gaseous H(13CHO-treated petunia plants. As the level of gaseous HCHO increased, the role of C1 metabolism decreased and the role of the Calvin cycle increased under light conditions. However, opposite changes were observed in petunia plants under dark conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Co-deposition of amyloidogenic immunoglobulin light and heavy chains in localized pulmonary amyloidosis.

    PubMed

    Kaplan, Batia; Martin, Brian M; Boykov, Olga; Gal, Rivka; Pras, Mordechai; Shechtman, Itzhak; Saute, Milton; Kramer, Mordechai R

    2005-10-01

    Localized pulmonary amyloidosis is a rare condition whose pathogenesis is insufficiently understood. In the present study, we report a case of localized pulmonary amyloidosis associated with lung-restricted lymphoplasmacytoid lymphoma, monoclonal for immunoglobulin (Ig) G lambda (lambda). Biochemical microtechniques have been applied for extraction, purification, and characterization of amyloid proteins. Surprisingly, chemical analysis of these proteins revealed a not-previously-described case of combined deposits containing Ig fragments of gamma heavy chain (variable domain) and lambda light chain (constant domain). In view of the absence of circulating monoclonal Ig, this case supports the hypothesis that localized amyloid is formed by local plasmacytoid cells.

  8. Localization of myosin II regulatory light chain in the cerebral vasculature.

    PubMed

    Ishmael, Jane E; Löhr, Christiane V; Fischer, Kay; Kioussi, Chrissa

    2008-01-01

    The cytoskeleton of cerebral microvascular endothelial cells is a critical determinant of blood-brain barrier (BBB) function. Barrier integrity appears to be particularly sensitive to the phosphorylation state of specific residues within myosin regulatory light chain (RLC), one of two accessory light chains of the myosin II motor complex. Phosphorylation of myosin RLC by myosin light chain kinase (MLCK) has been implicated in BBB dysfunction associated with alcohol abuse and hypoxia, whereas dephosphorylation may enhance BBB integrity following exposure to lipid-lowering statin drugs. Using immunohistochemistry we provide evidence of widespread myosin II RLC distribution throughout the cerebral vasculature of the mouse. Light microscopy revealed immunolocalization of myosin II RLC protein in the endothelium of brain capillaries, the endothelial cell layer of arterioles and in association with venules. Immunolabeling of myosin RLC in non-muscle endothelial cells could be distinguished from myosin RLC immunoreactivity associated with the smooth muscle layer of the tunica media in larger muscular arterioles. These findings support an emerging role for myosin II RLC as a component of the actomyosin cytoskeleton of cerebral endothelial cells with the potential to contribute to the selective vulnerability of the brain in vivo.

  9. Deposition of kappa and lambda light chains in amyloid filaments of dialysis-related amyloidosis.

    PubMed

    Brancaccio, D; Ghiggeri, G M; Braidotti, P; Garberi, A; Gallieni, M; Bellotti, V; Zoni, U; Gusmano, R; Coggi, G

    1995-10-01

    beta 2-Microglobulin (beta 2m) is considered to be the amyloidogenic precursor in dialysis-related amyloidosis, although the implication of other relevant cofactors in the pathogenesis of this disease has also been hypothesized. It is conceivable that substances found in amyloid deposits might represent something more than simple codeposition, possibly playing a pathogenic role in amyloidogenesis. Along these lines, a detailed analysis of the protein composition of amyloid fibrils purified from synovial material surgically obtained from nine patients on long-term dialysis was carried out. By the use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, several other protein components, in addition to beta 2m, were found. These were characterized by NH2 amino-terminal sequencing and immunoblotting. In fibrils obtained by water extraction, which fulfill the electron microscopy criteria of highly pure amyloid material, polyclonal kappa and lambda light chains were detected with a concentration of 15 micrograms/mL in the water extraction material; the beta 2m concentration was 200 micrograms/mL. Light microscopy immunohistochemistry was performed on samples from five patients. Amyloid deposits reacted with anti-beta 2m, and anti-light (kappa, lambda), chain antibodies. The immunoreaction of amyloid filaments to anti-beta 2m, anti-lambda, and anti-kappa light chain antibodies was also tested by electron microscopy by use of the immunogold staining procedure. Amyloid filaments were labeled by the three antibodies and showed a different intensity of immunostaining apparently related to their different aggregation pattern. These observations demonstrate that polyclonal immunoglobulin light chains (kappa and lambda) are not contaminants but, together with beta 2m, represent a major constituent of amyloid deposits in dialysis-related osteoarticular amyloidosis, thus indicating their possible role in amyloidogenesis.

  10. Masticatory (;superfast') myosin heavy chain and embryonic/atrial myosin light chain 1 in rodent jaw-closing muscles.

    PubMed

    Reiser, Peter J; Bicer, Sabahattin; Chen, Qun; Zhu, Ling; Quan, Ning

    2009-08-01

    Masticatory myosin is widely expressed among several vertebrate classes. Generally, the expression of masticatory myosin has been associated with high bite force for a carnivorous feeding style (including capturing/restraining live prey), breaking down tough plant material and defensive biting in different species. Masticatory myosin expression in the largest mammalian order, Rodentia, has not been reported. Several members of Rodentia consume large numbers of tree nuts that are encased in very hard shells, presumably requiring large forces to access the nutmeat. We, therefore, tested whether some rodent species express masticatory myosin in jaw-closing muscles. Myosin isoform expression in six Sciuridae species was examined, using protein gel electrophoresis, immunoblotting, mass spectrometry and RNA analysis. The results indicate that masticatory myosin is expressed in some Sciuridae species but not in other closely related species with similar diets but having different nut-opening strategies. We also discovered that the myosin light chain 1 isoform associated with masticatory myosin heavy chain, in the same four Sciuridae species, is the embryonic/atrial isoform. We conclude that rodent speciation did not completely eliminate masticatory myosin and that its persistent expression in some rodent species might be related to not only diet but also to feeding style.

  11. Optimization of Heavy Chain and Light Chain Signal Peptides for High Level Expression of Therapeutic Antibodies in CHO Cells

    PubMed Central

    Haryadi, Ryan; Ho, Steven; Kok, Yee Jiun; Pu, Helen X.; Zheng, Lu; Pereira, Natasha A.; Li, Bin; Bi, Xuezhi; Goh, Lin-Tang; Yang, Yuansheng; Song, Zhiwei

    2015-01-01

    Translocation of a nascent protein from the cytosol into the ER mediated by its signal peptide is a critical step in protein secretion. The aim of this work was to develop a platform technology to optimize the signal peptides for high level production of therapeutic antibodies in CHO cells. A database of signal peptides from a large number of human immunoglobulin (Ig) heavy chain (HC) and kappa light chain (LC) was generated. Most of the HC signal peptides contain 19 amino acids which can be divided into three domains and the LC signal peptides contain 22 amino acids. The signal peptides were then clustered according to sequence similarity. Based on the clustering, 8 HC and 2 LC signal peptides were analyzed for their impacts on the production of 5-top selling antibody therapeutics, namely, Herceptin, Avastin, Remicade, Rituxan, and Humira. The best HC and LC signal peptides for producing these 5 antibodies were identified. The optimized signal peptides for Rituxan is 2-fold better compared to its native signal peptides which are available in the public database. Substitution of a single amino acid in the optimized HC signal peptide for Avastin reduced its production significantly. Mass spectrometry analyses revealed that all optimized signal peptides are accurately removed in the mature antibodies. The results presented in this report are particularly important for the production of these 5 antibodies as biosimilar drugs. They also have the potential to be the best signal peptides for the production of new antibodies in CHO cells. PMID:25706993

  12. The Enhancing Effects of the Light Chain on Heavy Chain Secretion in Split Delivery of Factor VIII Gene

    PubMed Central

    Chen, Lingxia; Zhu, Fuxiang; Li, Juan; Lu, Hui; Jiang, Haiyan; Sarkar, Rita; Arruda, Valder R; Wang, Jinhui; Zhao, Jennifer; Pierce, Glenn F; Ding, Qiulan; Wang, Xuefeng; Wang, Hongli; Pipe, Steven W; Liu, Xiang-Qin; Xiao, Xiao; Camire, Rodney M; Xiao, Weidong

    2008-01-01

    Coagulation factor VIII (FVIII) is secreted as a heterodimer consisting of a heavy chain (HC) and a light chain (LC), which can be expressed independently and reassociate with recovery of biological activity. Because of the size limitation of adeno-associated virus (AAV) vectors, a strategy for delivering the HC and LC separately has been developed. However, the FVIII HC is secreted 10–100-fold less efficiently than the LC. In this study, we demonstrated that the F309S mutation and enhanced B-domain glycosylations alone are not sufficient to improve FVIII HC secretion, which suggested a role of the FVIII LC in regulating HC secretion. To characterize this role of the FVIII LC, we compared FVIII HC secretion with and without the LC via post-translational protein trans-splicing. As demonstrated in vitro, ligation of the LC to the HC significantly increased HC secretion. Such HC secretion increases were also confirmed in vivo by hydrodynamic injection of FVIII intein plasmids into hemophilia A mice. Moreover, similar enhancement of HC secretion can also be observed when the LC is supplied in trans, which is probably due to the spontaneous association of the HC and the LC in the secretion pathway. In sum, enhancing the secretion of the FVIII HC polypeptide may require the proper association of the FVIII LC polypeptide in cis or in trans. These results may be helpful in designing new strategies to improve FVIII gene delivery. PMID:17653101

  13. Clathrin self-assembly is regulated by three light-chain residues controlling the formation of critical salt bridges.

    PubMed

    Ybe, J A; Greene, B; Liu, S H; Pley, U; Parham, P; Brodsky, F M

    1998-08-10

    Clathrin self-assembly into a polyhedral lattice mediates membrane protein sorting during endocytosis and organelle biogenesis. Lattice formation occurs spontaneously in vitro at low pH and, intracellularly, is triggered by adaptors at physiological pH. To begin to understand the cellular regulation of clathrin polymerization, we analyzed molecular interactions during the spontaneous assembly of recombinant hub fragments of the clathrin heavy chain, which bind clathrin light-chain subunits and mimic the self-assembly of intact clathrin. Reconstitution of hubs using deletion and substitution mutants of the light-chain subunits revealed that the pH dependence of clathrin self-assembly is controlled by only three acidic residues in the clathrin light-chain subunits. Salt inhibition of hub assembly identified two classes of salt bridges which are involved and deletion analysis mapped the clathrin heavy-chain regions participating in their formation. These combined observations indicated that the negatively charged regulatory residues, identified in the light-chain subunits, inhibit the formation of high-affinity salt bridges which would otherwise induce clathrin heavy chains to assemble at physiological pH. In the presence of light chains, clathrin self-assembly depends on salt bridges that form only at low pH, but is exquisitely sensitive to regulation. We propose that cellular clathrin assembly is controlled via the simple biochemical mechanism of reversing the inhibitory effect of the light-chain regulatory sequence, thereby promoting high-affinity salt bridge formation.

  14. Visualization of Fermi's golden rule through imaging of light emission from atomic silver chains.

    PubMed

    Chen, Chi; Bobisch, C A; Ho, W

    2009-08-21

    Atomic-scale spatial imaging of one-dimensional chains of silver atoms allows Fermi's golden rule, a fundamental principle governing optical transitions, to be visualized. We used a scanning tunneling microscope (STM) to assemble a silver atom chain on a nickel-aluminum alloy surface. Photon emission was induced with electrons from the tip of the STM. The emission was spatially resolved with subnanometer resolution by changing the tip position along the chain. The number and positions of the emission maxima in the photon images match those of the nodes in the differential conductance images of particle-in-a-box states. This surprising correlation between the emission maxima and nodes in the density of states is a manifestation of Fermi's golden rule in real space for radiative transitions and provides an understanding of the mechanism of STM-induced light emission.

  15. Diagnosing Light Chain Amyloidosis on Temporal Artery Biopsies for Suspected Giant Cell Arteritis.

    PubMed

    Ghinai, Rosanna A M; Mahmood, Shameem; Mukonoweshuro, Pinias; Webber, Sally; Wechalekar, Ashutosh D; Moore, Sally E

    2017-03-01

    Although still rarely diagnosed, amyloid light chain (AL) amyloidosis is the most common form of systemic amyloidosis. It is characterized by misfolded monoclonal immunoglobulin light chain fragments that accumulate extracellularly as amyloid fibrils, with consequent organ dysfunction. We report 2 such cases where initial symptoms and signs were identical to and mistaken for those of giant cell arteritis, associated with polymyalgia rheumatica. Neither patient responded to high-dose corticosteroids; instead, their temporal artery biopsies revealed amyloid deposits and other investigations confirmed a diagnosis of systemic AL amyloidosis. Review of the literature reveals similar cases of diagnostic confusion spanning 75 years. We have summarized the findings and learning points from cases reported in the past 30 years and highlight the need for increased awareness and investigation of this underrecognized syndrome.

  16. Crystal Structure of a Phosphorylated Light Chain Domain of Scallop Smooth-Muscle Myosin

    SciTech Connect

    Kumar, V.S.; Robinson, H.; O-Neall-Hennessey, E.; Reshetnikova, L.; Brown, J. H.; Szent-Gyorgyi, A. G.; Cohen, C.

    2011-11-02

    We have determined the crystal structure of a phosphorylated smooth-muscle myosin light chain domain (LCD). This reconstituted LCD is of a sea scallop catch muscle myosin with its phosphorylatable regulatory light chain (RLC SmoA). In the crystal structure, Arg{sup 16}, an arginine residue that is present in this isoform but not in vertebrate smooth-muscle RLC, stabilizes the phosphorylation site. This arginine interacts with the carbonyl group of the phosphorylation-site serine in the unphosphorylated LCD (determined previously), and with the phosphate group when the serine is phosphorylated. However, the overall conformation of the LCD is essentially unchanged upon phosphorylation. This result provides additional evidence that phosphorylation of the RLC is unlikely to act as an on-switch in regulation of scallop catch muscle myosin.

  17. Epigallocatechin-3-gallate preferentially induces aggregation of amyloidogenic immunoglobulin light chains

    PubMed Central

    Hora, Manuel; Carballo-Pacheco, Martin; Weber, Benedikt; Morris, Vanessa K.; Wittkopf, Antje; Buchner, Johannes; Strodel, Birgit; Reif, Bernd

    2017-01-01

    Antibody light chain amyloidosis is a rare disease caused by fibril formation of secreted immunoglobulin light chains (LCs). The huge variety of antibody sequences puts a serious challenge to drug discovery. The green tea polyphenol epigallocatechin-3-gallate (EGCG) is known to interfere with fibril formation in general. Here we present solution- and solid-state NMR studies as well as MD simulations to characterise the interaction of EGCG with LC variable domains. We identified two distinct EGCG binding sites, both of which include a proline as an important recognition element. The binding sites were confirmed by site-directed mutagenesis and solid-state NMR analysis. The EGCG-induced protein complexes are unstructured. We propose a general mechanistic model for EGCG binding to a conserved site in LCs. We find that EGCG reacts selectively with amyloidogenic mutants. This makes this compound a promising lead structure, that can handle the immense sequence variability of antibody LCs. PMID:28128355

  18. Five Sequential Evaluations of Renal Histology in a Patient with Light Chain Deposition Disease

    PubMed Central

    Ueno, Toshiharu; Kikuchi, Koichi; Hazue, Ryo; Mise, Koki; Sumida, Keiichi; Hayami, Noriko; Suwabe, Tatsuya; Hoshino, Junichi; Sawa, Naoki; Arizono, Kenji; Hara, Shigeko; Takaichi, Kenmei; Fujii, Takeshi; Ohashi, Kenichi; Ubara, Yoshifumi

    2016-01-01

    A 58-year-old man was referred to our institution for an evaluation of nephrotic range proteinuria. Renal biopsy showed a marked expansion of the mesangial matrix and thickening of glomerular basement membrane (GBM) in periodic acid-silver methenamine (PAM). Immunofluorescence (IF) revealed strong staining for the monoclonal kappa light chain. EM demonstrated massive subendothelial and mesangial dense deposits. As a result, light chain deposition disease (LCDD) was diagnosed. Melphalan and prednisolone (MP) therapy was started, which was continued for 10 years with minimal complications. Serial evaluations of renal histology revealed the resolution of nodular lesions and the glomeruli became nearly normal. MP therapy can therefore be an effective therapeutic option for LCDD if it is continued over the long term. PMID:27746438

  19. Interaction of protein-bound polysaccharide (PSK) with smooth muscle myosin regulatory light chain.

    PubMed

    Fujii, Toshihiro; Kunimatsu, Mitoshi

    2003-06-01

    The interaction of a protein-bound polysaccharide (PSK) isolated from Basidiomycetes with smooth muscle myosin components was evaluated by limited digestion, urea/glycerol gel electrophoresis, affinity chromatography and overlay assay using a peptide array. PSK was bound to the regulatory light chain (RLC) of myosin, but not to the essential light chain. The binding to PSK was definitely observed for unphosphorylated RLC, compared to phosphorylated one. From the amino acid sequence of the RLC, 490 peptides were synthesized on a cellulose membrane. Overlay assays showed that the PSK-binding on the molecule of RLC were localized in the N- and C-terminal basic regions and these sites were conserved in RLC from the human smooth muscle and nonmuscle cells.

  20. Light-chain deposition disease of the kidney: a case report.

    PubMed

    Darouich, Sihem; Goucha, Rym; Jaafoura, Mohamed Habib; Zekri, Semy; Kheder, Adel; Maiz, Hedi Ben

    2012-04-01

    A 41-year-old man was admitted for evaluation of nephrotic syndrome associated with microhematuria, hypertension, and moderate renal failure. In serum and urine samples, monoclonal IgG-lambda was detected. Bone marrow examination showed normal representation of all cell lines with normal range of plasma cells. Renal biopsy demonstrated diabetes-like nodular glomerulosclerosis. Immunofluorescence failed to demonstrate the presence of kappa or lambda light chains in the kidney. Electron microcopy showed granular electron-dense deposits along the glomerular basement membranes and in the mesangial nodules. The patient was diagnosed as having light-chain deposition disease (LCDD) without evidence of plasma cell dyscrasia. This report was designed to stress the significant challenges that remain in the diagnosis of LCDD-related glomerulopathy. The salient morphological features that help in making an accurate diagnosis are discussed.

  1. Surface supercharged human enteropeptidase light chain shows improved solubility and refolding yield.

    PubMed

    Simeonov, Peter; Berger-Hoffmann, Renate; Hoffmann, Ralf; Sträter, Norbert; Zuchner, Thole

    2011-03-01

    Enteropeptidase is a serine protease used in different biotechnological applications. For many applications the smaller light chain can be used to avoid the expression of the rather large holoenzyme. Recombinant human enteropeptidase light chain (hEPL) shows high activity but low solubility and refolding yields, currently limiting its use in biotechnological applications. Here we describe several protein modifications that lead to improved solubility and refolding yield of human hEPL whilst retaining the enzyme activity. Specifically, protein surface supercharging (N6D, G21D, G22D, N141D, K209E) of the protein increased the solubility more than 100-fold. Replacement of a free cysteine residue with serine (C112S) improved the refolding yield by 50%. The heat stability of this C112S variant was also significantly improved by supercharging. This study shows that even mild protein surface supercharging can have pronounced effects on protein solubility and stability.

  2. Expression, purification, and characterization of Clostridium botulinum type B light chain.

    PubMed

    Gilsdorf, Janice; Gul, Nizamettin; Smith, Leonard A

    2006-04-01

    A full-length synthetic gene encoding the light chain of botulinum neurotoxin serotype B, approximately 50 kDa (BoNT/B LC), has been cloned into a bacterial expression vector pET24a+. BoNT/B LC was expressed in Escherichia coli BL21.DE3.pLysS and isolated from the soluble fraction. The resultant protein was purified to homogeneity by cation chromatography and was determined to be >98% pure as assessed by SDS-polyacrylamide gel stained with SilverXpress and analyzed by densitometry. Mass spectroscopic analysis indicated the protein to be 50.8 kDa, which equaled the theoretically expected mass. N-terminal sequencing of the purified protein showed the sequence corresponded to the known reported sequence. The recombinant BoNT/B light chain was found to be highly stable, catalytically active, and has been used to prepare antisera that neutralizes against BoNT/B challenge. Characterization of the protein including pH, temperature, and the stability of the protein in the presence or absence of zinc is described within. The influence of pH differences, buffer, and added zinc on secondary and tertiary structure of BoNT/B light chain was analyzed by circular dichroism and tryptophan fluorescence measurements. Optimal conditions for obtaining maximum metalloprotease activity and stabilizing the protein for long term storage were determined. We further analyzed the thermal denaturation of BoNT/B LC as a function of temperature to probe the pH and added zinc effects on light chain stability. The synthetic BoNT/B LC has been found to be highly active on its substrate (vesicle associated membrane protein-2) and, therefore, can serve as a useful reagent for BoNT/B research.

  3. Calcyon, a novel partner of clathrin light chain, stimulates clathrin-mediated endocytosis.

    PubMed

    Xiao, Jiping; Dai, Rujuan; Negyessy, Laszlo; Bergson, Clare

    2006-06-02

    In the central nervous system, clathrin-mediated endocytosis is crucial for efficient synaptic transmission. Clathrin-coated vesicle assembly and disassembly is regulated by some 30 adaptor and accessory proteins, most of which interact with clathrin heavy chain. Using the calcyon cytosolic domain as bait, we isolated clathrin light chain in a yeast two-hybrid screen. The interaction domain was mapped to the heavy chain binding domain and C-terminal regions of light chain. Further, the addition of the calcyon C terminus stimulated clathrin self-assembly in a dose-dependent fashion. Calcyon, which is a single transmembrane protein predominantly expressed in brain, localized to vesicular compartments within pre- and postsynaptic structures. There was a high degree of overlap in the distribution of LC and calcyon in neuronal dendrites, spines, and cell bodies. Co-immunoprecipitation studies further suggested an association of calcyon with the clathrin-mediated endocytic machinery. Compared with controls, HEK293 cells overexpressing calcyon exhibited significantly enhanced transferrin uptake but equivalent levels of recycling. Conversely, transferrin uptake was largely abolished in neocortical neurons obtained from mice homozygous for a calcyon null allele, whereas recycling proceeded at wild type levels. Collectively, these data indicate a role for calcyon in clathrin-mediated endocytosis in brain.

  4. High level expression of human enteropeptidase light chain in Pichia pastoris.

    PubMed

    Pepeliaev, Stanislav; Krahulec, Ján; Černý, Zbyněk; Jílková, Jana; Tlustá, Marcela; Dostálová, Jana

    2011-10-20

    Human enterokinase (enteropeptidase, rhEP), a serine protease expressed in the proximal part of the small intestine, converts the inactive form of trypsinogen to active trypsin by endoproteolytic cleavage. The high specificity of the target site makes enterokinase an ideal tool for cleaving fusion proteins at defined cleavage sites. The mature active enzyme is comprised of two disulfide-linked polypeptide chains. The heavy chain anchors the enzyme in the intestinal brush border membrane, whereas the light chain represents the catalytic enzyme subunit. The synthetic gene encoding human enteropeptidase light chain with His-tag added at the C-terminus to facilitate protein purification was cloned into Pichia pastoris expression plasmids under the control of an inducible AOX1 or constitutive promoters GAP and AAC. Cultivation media and conditions were optimized as well as isolation and purification of the target protein. Up to 4 mg/L of rhEP was obtained in shake-flask experiments and the expression level of about 60-70 mg/L was achieved when cultivating in lab-scale fermentors. The constitutively expressing strains proved more efficient and less labor-demanding than the inducible ones. The rhEP was immobilized on AV 100 sorbent (Iontosorb) to allow repeated use of enterokinase, showing specific activity of 4U/mL of wet matrix.

  5. Spinon and bound-state excitation light cones in Heisenberg XXZ chains

    NASA Astrophysics Data System (ADS)

    de Paula, A. L.; Bragança, H.; Pereira, R. G.; Drumond, R. C.; Aguiar, M. C. O.

    2017-01-01

    We investigate the out-of-equilibrium dynamics after a local quench that connects two spin-1/2 XXZ chains prepared in the ground state of the Hamiltonian in different phases, one in the ferromagnetic phase and the other in the critical phase. We analyze the time evolution of the on-site magnetization and bipartite entanglement entropy via adaptive time-dependent density matrix renormalization group. In systems with short-range interactions, such as the one we consider, the velocity of information transfer is expected to be bounded, giving rise to a light-cone effect. Interestingly, our results show that, when the anisotropy parameter of the critical chain is sufficiently close to that of the isotropic ferromagnet, the light cone is determined by the velocity of spin-wave bound states that propagate faster than single-particle ("spinon") excitations. Furthermore, we investigate how the system approaches equilibrium in the inhomogeneous ground state of the connected system, in which the ferromagnetic chain induces a nonzero magnetization in the critical chain in the vicinity of the interface.

  6. Engineering Botulinum Neurotoxin C1 as a Molecular Vehicle for Intra-Neuronal Drug Delivery

    PubMed Central

    Vazquez-Cintron, Edwin J.; Beske, Phillip H.; Tenezaca, Luis; Tran, Bao Q.; Oyler, Jonathan M.; Glotfelty, Elliot J.; Angeles, Christopher A.; Syngkon, Aurelia; Mukherjee, Jean; Kalb, Suzanne R.; Band, Philip A.; McNutt, Patrick M.; Shoemaker, Charles B.; Ichtchenko, Konstantin

    2017-01-01

    Botulinum neurotoxin (BoNT) binds to and internalizes its light chain into presynaptic compartments with exquisite specificity. While the native toxin is extremely lethal, bioengineering of BoNT has the potential to eliminate toxicity without disrupting neuron-specific targeting, thereby creating a molecular vehicle capable of delivering therapeutic cargo into the neuronal cytosol. Building upon previous work, we have developed an atoxic derivative (ad) of BoNT/C1 through rationally designed amino acid substitutions in the metalloprotease domain of wild type (wt) BoNT/C1. To test if BoNT/C1 ad retains neuron-specific targeting without concomitant toxic host responses, we evaluated the localization, activity, and toxicity of BoNT/C1 ad in vitro and in vivo. In neuronal cultures, BoNT/C1 ad light chain is rapidly internalized into presynaptic compartments, but does not cleave SNARE proteins nor impair spontaneous neurotransmitter release. In mice, systemic administration resulted in the specific co-localization of BoNT/C1 ad with diaphragmatic motor nerve terminals. The mouse LD50 of BoNT/C1 ad is 5 mg/kg, with transient neurological symptoms emerging at sub-lethal doses. Given the low toxicity and highly specific neuron-targeting properties of BoNT/C1 ad, these data suggest that BoNT/C1 ad can be useful as a molecular vehicle for drug delivery to the neuronal cytoplasm. PMID:28220863

  7. Engineering Botulinum Neurotoxin C1 as a Molecular Vehicle for Intra-Neuronal Drug Delivery.

    PubMed

    Vazquez-Cintron, Edwin J; Beske, Phillip H; Tenezaca, Luis; Tran, Bao Q; Oyler, Jonathan M; Glotfelty, Elliot J; Angeles, Christopher A; Syngkon, Aurelia; Mukherjee, Jean; Kalb, Suzanne R; Band, Philip A; McNutt, Patrick M; Shoemaker, Charles B; Ichtchenko, Konstantin

    2017-02-21

    Botulinum neurotoxin (BoNT) binds to and internalizes its light chain into presynaptic compartments with exquisite specificity. While the native toxin is extremely lethal, bioengineering of BoNT has the potential to eliminate toxicity without disrupting neuron-specific targeting, thereby creating a molecular vehicle capable of delivering therapeutic cargo into the neuronal cytosol. Building upon previous work, we have developed an atoxic derivative (ad) of BoNT/C1 through rationally designed amino acid substitutions in the metalloprotease domain of wild type (wt) BoNT/C1. To test if BoNT/C1 ad retains neuron-specific targeting without concomitant toxic host responses, we evaluated the localization, activity, and toxicity of BoNT/C1 ad in vitro and in vivo. In neuronal cultures, BoNT/C1 ad light chain is rapidly internalized into presynaptic compartments, but does not cleave SNARE proteins nor impair spontaneous neurotransmitter release. In mice, systemic administration resulted in the specific co-localization of BoNT/C1 ad with diaphragmatic motor nerve terminals. The mouse LD50 of BoNT/C1 ad is 5 mg/kg, with transient neurological symptoms emerging at sub-lethal doses. Given the low toxicity and highly specific neuron-targeting properties of BoNT/C1 ad, these data suggest that BoNT/C1 ad can be useful as a molecular vehicle for drug delivery to the neuronal cytoplasm.

  8. Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis.

    PubMed

    Valencia-Expósito, Andrea; Grosheva, Inna; Míguez, David G; González-Reyes, Acaimo; Martín-Bermudo, María D

    2016-02-18

    Contractile actomyosin networks generate forces that drive tissue morphogenesis. Actomyosin contractility is controlled primarily by reversible phosphorylation of the myosin-II regulatory light chain through the action of myosin kinases and phosphatases. While the role of myosin light-chain kinase in regulating contractility during morphogenesis has been largely characterized, there is surprisingly little information on myosin light-chain phosphatase (MLCP) function in this context. Here, we use live imaging of Drosophila follicle cells combined with mathematical modelling to demonstrate that the MLCP subunit flapwing (flw) is a key regulator of basal myosin oscillations and cell contractions underlying egg chamber elongation. Flw expression decreases specifically on the basal side of follicle cells at the onset of contraction and flw controls the initiation and periodicity of basal actomyosin oscillations. Contrary to previous reports, basal F-actin pulsates similarly to myosin. Finally, we propose a quantitative model in which periodic basal actomyosin oscillations arise in a cell-autonomous fashion from intrinsic properties of motor assemblies.

  9. Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis

    PubMed Central

    Valencia-Expósito, Andrea; Grosheva, Inna; Míguez, David G.; González-Reyes, Acaimo; Martín-Bermudo, María D.

    2016-01-01

    Contractile actomyosin networks generate forces that drive tissue morphogenesis. Actomyosin contractility is controlled primarily by reversible phosphorylation of the myosin-II regulatory light chain through the action of myosin kinases and phosphatases. While the role of myosin light-chain kinase in regulating contractility during morphogenesis has been largely characterized, there is surprisingly little information on myosin light-chain phosphatase (MLCP) function in this context. Here, we use live imaging of Drosophila follicle cells combined with mathematical modelling to demonstrate that the MLCP subunit flapwing (flw) is a key regulator of basal myosin oscillations and cell contractions underlying egg chamber elongation. Flw expression decreases specifically on the basal side of follicle cells at the onset of contraction and flw controls the initiation and periodicity of basal actomyosin oscillations. Contrary to previous reports, basal F-actin pulsates similarly to myosin. Finally, we propose a quantitative model in which periodic basal actomyosin oscillations arise in a cell-autonomous fashion from intrinsic properties of motor assemblies. PMID:26888436

  10. The evolving use of serum free light chain assays in haematology.

    PubMed

    Pratt, Guy

    2008-05-01

    Over the last few years new immunoassays have emerged that allow the measurement of free immunoglobulin light chains (FLCs) in serum to a level of 2-4 mg/l and provide a much greater sensitivity than older methods, such as immunofixation, which is able to detect FLCs at a minimum concentration of 100-150 mg/l. The new FLC assay has enabled the detection of monoclonal protein in some patients with non-secretory myeloma and amyloidosis that were previously undetectable. FLC measurements are quantitative, correlating with disease activity, and are an advance in monitoring light chain only multiple myeloma, AL amyloidosis, non-secretory and oligo-secretory multiple myeloma. Serum FLC concentrations also reflect the disease course in the majority of myeloma patients producing intact monoclonal immunoglobulin proteins and have been incorporated into the new response criteria. The rapid half life of lambda and kappa free light chains means that FLC assays may provide a more rapid indication of the response to treatment but their clinical utility in this setting needs further study. An abnormal FLC ratio has been shown to be a risk factor for progression of monoclonal gammopathy of undetermined significance, smouldering myeloma and solitary plasmacytoma of bone and is prognostic in multiple myeloma.

  11. Detection of free immunoglobulin light chains in cerebrospinal fluids of patients with central nervous system lymphomas.

    PubMed

    Schroers, Roland; Baraniskin, Alexander; Heute, Christoph; Kuhnhenn, Jan; Alekseyev, Andriy; Schmiegel, Wolff; Schlegel, Uwe; Pels, Hendrik-Johannes

    2010-09-01

    Diagnosis of central nervous system (CNS) lymphoma depends on histopathology of brain biopsies, because no reliable disease marker in the cerebrospinal fluid (CSF) has been identified yet. B-cell lymphomas such as CNS lymphomas are clonally restricted and express either kappa or lambda immunoglobulin light chains. The aim of this study was to find out a potential diagnostic value of free immunoglobulin light chains released into the CSF of CNS lymphoma patients. Kappa (kappa) and lambda (lambda) free immunoglobulin light chains (FLC) were measured in CSF and serum samples collected from 21 patients with primary and secondary CNS lymphomas and 14 control patients with different neurologic disorders. FLC concentrations and ratios were compared between patient groups and were further analyzed in correlation with clinical, cytopathological, and radiological findings. FLC concentrations for all patients were lower in CSF when compared to serum. In patients with CNS lymphoma, the FLC ratios in CSF were higher (range 392-0.3) compared to control patients (range 3.0-0.3). Irrespective of cytopathological proven lymphomatous meningitis, in 11/21 lymphoma CSF samples the FLC ratios were markedly above 3.0 indicating a clonally restricted B-cell population. Increased FLC ratios in CSF were found in those patients showing subependymal lymphoma contact as detected in magnetic resonance imaging. In summary, this is the first report demonstrating that a significant proportion of patients with CNS lymphomas display a markedly increased FLC ratio in the CSF.

  12. A novel monoclonal antibody against the constant region of goose immunoglobulin light chain.

    PubMed

    Guo, Yongli; Gao, Mingchun; Ma, Bo; Sheng, Qiaoling; Wang, Qian; Liu, Dandan; Wang, Junwei

    2014-04-01

    A monoclonal antibody (MAb) against the antigenic determinant of the constant region of goose immunoglobulin light chain (GoIgCL) was produced and characterized for the first time here. Goose immunoglobulin (Ig) in serum was purified by immunoaffinity chromatography and the resulting protein was used as immunogen to immunize BALB/c mice. At the same time, the GoIgCL gene was expressed and purified as the screening antigen for selecting MAb against GoIgCL. One hybridoma that produces antibodies against GoIgCL was selected by indirect ELISA. Then the characterization of the MAb was analyzed by ELISA, Western blot, and flow cytometry. It was found to be IgG1 with κ light chain; the MAB has high specificity to Ig in goose serum, bile, and B lymphocytes from peripheral blood, reacts only with the light chain of goose Ig, and can distinguish Ig from other birds. Therefore, the MAb generated in this study can be used as a specific reagent for detection of goose disease-specific antibodies and as a powerful tool for basic immunology research on geese.

  13. A prospective study of nutritional status in immunoglobulin light chain amyloidosis

    PubMed Central

    Sattianayagam, Prayman T.; Lane, Thirusha; Fox, Zoe; Petrie, Aviva; Gibbs, Simon D.J.; Pinney, Jennifer H.; Risom, Signe S.; Rowczenio, Dorota M.; Wechalekar, Ashutosh D.; Lachmann, Helen J.; Gilbertson, Janet A.; Hawkins, Philip N.; Gillmore, Julian D.

    2013-01-01

    Weight loss is common in systemic immunoglobulin light chain amyloidosis but there are limited data on the impact of nutritional status on outcome. Using the Patient-Generated Subjective Global Assessment (PG-SGA) score, we prospectively examined nutritional status in 110 consecutive newly-diagnosed, treatment-naïve patients with immunoglobulin light chain amyloidosis attending the UK National Amyloidosis Centre. At study entry, 72 of 110 (66%) patients had a PG-SGA score of 4 or over, indicating malnutrition requiring specialist nutritional intervention. Number of amyloidotic organs, elevated alkaline phosphatase, presence of autonomic neuropathy and advanced Mayo disease stage were independently associated with poor nutritional status (P<0.05). Quality of life was substantially poorer among those with higher PG-SGA scores (P<0.001). Furthermore, PG-SGA score was a powerful independent predictor of patient survival (P=0.02). Malnutrition is prevalent and is associated with poor quality of life and reduced survival among patients with systemic immunoglobulin light chain amyloidosis. The PG-SGA score would be an appropriate tool to evaluate whether nutritional intervention could improve patient outcomes. PMID:22983575

  14. High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire.

    PubMed

    DeKosky, Brandon J; Ippolito, Gregory C; Deschner, Ryan P; Lavinder, Jason J; Wine, Yariv; Rawlings, Brandon M; Varadarajan, Navin; Giesecke, Claudia; Dörner, Thomas; Andrews, Sarah F; Wilson, Patrick C; Hunicke-Smith, Scott P; Willson, C Grant; Ellington, Andrew D; Georgiou, George

    2013-02-01

    Each B-cell receptor consists of a pair of heavy and light chains. High-throughput sequencing can identify large numbers of heavy- and light-chain variable regions (V(H) and V(L)) in a given B-cell repertoire, but information about endogenous pairing of heavy and light chains is lost after bulk lysis of B-cell populations. Here we describe a way to retain this pairing information. In our approach, single B cells (>5 × 10(4) capacity per experiment) are deposited in a high-density microwell plate (125 pl/well) and lysed in situ. mRNA is then captured on magnetic beads, reverse transcribed and amplified by emulsion V(H):V(L) linkage PCR. The linked transcripts are analyzed by Illumina high-throughput sequencing. We validated the fidelity of V(H):V(L) pairs identified by this approach and used the method to sequence the repertoire of three human cell subsets-peripheral blood IgG(+) B cells, peripheral plasmablasts isolated after tetanus toxoid immunization and memory B cells isolated after seasonal influenza vaccination.

  15. Apolipoprotein C-II Deposition Amyloidosis: A Potential Misdiagnosis as Light Chain Amyloidosis

    PubMed Central

    Schuiteman, Emily; Zarouk, Sami

    2016-01-01

    Hereditary amyloidoses are rare and pose a diagnostic challenge. We report a case of hereditary amyloidosis associated with apolipoprotein C-II deposition in a 61-year-old female presenting with renal failure and nephrotic syndrome misdiagnosed as light chain amyloidosis. Renal biopsy was consistent with amyloidosis on microscopy; however, immunofluorescence was inconclusive for the type of amyloid protein. Monoclonal gammopathy evaluation revealed kappa light chain. Bone marrow biopsy revealed minimal involvement with amyloidosis with kappa monotypic plasma cells on flow cytometry. She was started on chemotherapy for light chain amyloidosis. She was referred to the Mayo clinic where laser microdissection and liquid chromatography mass spectrometry detected high levels of apolipoprotein C-II, making a definitive diagnosis. Apolipoprotein C-II is a component of very low-density lipoprotein and aggregates in lipid-free conditions to form amyloid fibrils. The identification of apolipoprotein C-II as the cause of amyloidosis cannot be solely made with routine microscopy or immunofluorescence. Further evaluation of biopsy specimens with laser microdissection and mass spectrometry and DNA sequencing of exons should be done routinely in patients with amyloidoses for definitive diagnosis. Our case highlights the importance of determining the subtype of amyloidosis that is critical for avoiding unnecessary therapy such as chemotherapy. PMID:27840752

  16. Solid-state NMR chemical shift assignments for AL-09 VL immunoglobulin light chain fibrils.

    PubMed

    Piehl, Dennis W; Blancas-Mejía, Luis M; Ramirez-Alvarado, Marina; Rienstra, Chad M

    2017-04-01

    Light chain (AL) amyloidosis is a systemic disease characterized by the formation of immunoglobulin light-chain fibrils in critical organs of the body. The light-chain protein AL-09 presents one severe case of cardiac AL amyloidosis, which contains seven mutations in the variable domain (VL) relative to its germline counterpart, κI O18/O8 VL. Three of these mutations are non-conservative-Y87H, N34I, and K42Q-and previous work has shown that they are responsible for significantly reducing the protein's thermodynamic stability, allowing fibril formation to occur with fast kinetics and across a wide-range of pH conditions. Currently, however, there is extremely limited structural information available which explicitly describes the residues that are involved in supporting the misfolded fibril structure. Here, we assign the site-specific (15)N and (13)C chemical shifts of the rigid residues of AL-09 VL fibrils by solid-state NMR, reporting on the regions of the protein involved in the fibril as well as the extent of secondary structure.

  17. A novel method of preparing the monoform structure of catalytic antibody light chain.

    PubMed

    Hifumi, Emi; Matsumoto, Shingo; Nakashima, Hiroki; Itonaga, Shogo; Arakawa, Mitsue; Katayama, Yoshiki; Kato, Ryuichi; Uda, Taizo

    2016-02-01

    Along with the development of antibody drugs and catalytic antibodies, the structural diversity (heterogeneity) of antibodies has been given attention. For >20 yr, detailed studies on the subject have not been conducted, because the phenomenon presents many difficult and complex problems. Structural diversity provides some (or many) isoforms of an antibody distinguished by different charges, different molecular sizes, and modifications of amino acid residues. For practical use, the antibody and the subunits must have a defined structure. In recent work, we have found that the copper (Cu) ion plays a substantial role in solving the diversity problem. In the current study, we used several catalytic antibody light chains to examine the effect of the Cu ion. In all cases, the different electrical charges of the molecule converged to a single charge, giving 1 peak in cation-exchange chromatography, as well as a single spot in 2-dimensional gel electrophoresis. The Cu-binding site was investigated by using mutagenesis, ultraviolet-visible spectroscopy, atomic force microscope analysis, and molecular modeling, which suggested that histidine and cysteine residues close to the C-terminus are involved with the binding site. The constant region domain of the antibody light chain played an important role in the heterogeneity of the light chain. Our findings may be a significant tool for preparing a single defined, not multiple, isoform structure.

  18. Clearance of the heavy and light polypeptide chains of human tissue-type plasminogen activator in rats.

    PubMed Central

    Rijken, D C; Emeis, J J

    1986-01-01

    In order to assess which part of the tissue-type plasminogen activator (t-PA) molecule should be (genetically) modified to obtain more-slowly-clearing mutants, two-chain t-PA and its isolated heavy and light chains were radiolabelled and injected into rats. The vast majority of t-PA and the heavy chain disappeared from the blood circulation with half-lives of 2.3 and 1.0 min respectively. The clearance of the light chain was biphasic, owing to complex-formation with plasma proteinase inhibitors. The disappearance of di-isopropylphospho-light chain, which has a blocked active site, was nearly monophasic, with a half-life of 5.7 min. Organ distribution studies showed that hepatic clearance constituted the major pathway in all cases. These results strongly suggest that t-PA is recognized by the liver primarily through the heavy chain. PMID:3099771

  19. Computational design of a specific heavy chainlight chain interface for expressing fully IgG bispecific antibodies.

    PubMed

    Froning, K J; Leaver-Fay, A; Wu, X; Phan, S; Gao, L; Huang, F; Pustilnik, A; Bacica, M; Houlihan, K; Chai, Q; Fitchett, J R; Hendle, J; Kuhlman, B; Demarest, S J

    2017-07-20

    The use of bispecific antibodies (BsAbs) to treat human diseases is on the rise. Increasingly complex and powerful therapeutic mechanisms made possible by BsAbs are spurring innovation of novel BsAb formats and methods for their production. The long-lived in vivo pharmacokinetics, optimal biophysical properties and potential effector functions of natural IgG monoclonal (and monospecific) antibodies has resulted in a push to generate fully IgG BsAb formats with the same quaternary structure as monoclonal IgGs. The production of fully IgG BsAbs is challenging because of the highly heterogeneous pairing of heavy chains (HCs) and light chains (LCs) when produced in mammalian cells with two IgG HCs and two LCs. A solution to the HC heterodimerization aspect of IgG BsAb production was first discovered two decades ago; however, addressing the LC mispairing issue has remained intractable until recently. Here, we use computational and rational engineering to develop novel designs to the HC/LC pairing issue, and particularly for κ LCs. Crystal structures of these designs highlight the interactions that provide HC/LC specificity. We produce and characterize multiple fully IgG BsAbs using these novel designs. We demonstrate the importance of specificity engineering in both the variable and constant domains to achieve robust HC/LC specificity within all the BsAbs. These solutions facilitate the production of fully IgG BsAbs for clinical use. © 2017 The Protein Society.

  20. Thirteen is enough: the myosins of Dictyostelium discoideum and their light chains

    PubMed Central

    Kollmar, Martin

    2006-01-01

    Background Dictyostelium discoideum is one of the most famous model organisms for studying motile processes like cell movement, organelle transport, cytokinesis, and endocytosis. Members of the myosin superfamily, that move on actin filaments and power many of these tasks, are tripartite proteins consisting of a conserved catalytic domain followed by the neck region consisting of a different number of so-called IQ motifs for binding of light chains. The tails contain functional motifs that are responsible for the accomplishment of the different tasks in the cell. Unicellular organisms like yeasts contain three to five myosins while vertebrates express over 40 different myosin genes. Recently, the question has been raised how many myosins a simple multicellular organism like Dictyostelium would need to accomplish all the different motility-related tasks. Results The analysis of the Dictyostelium genome revealed thirteen myosins of which three have not been described before. The phylogenetic analysis of the motor domains of the new myosins placed Myo1F to the class-I myosins and Myo5A to the class-V myosins. The third new myosin, an orphan myosin, has been named MyoG. It contains an N-terminal extension of over 400 residues, and a tail consisting of four IQ motifs and two MyTH4/FERM (myosin tail homology 4/band 4.1, ezrin, radixin, and moesin) tandem domains that are separated by a long region containing an SH3 (src homology 3) domain. In contrast to previous analyses, an extensive comparison with 126 class-VII, class-X, class-XV, and class-XXII myosins now showed that MyoI does not group into any of these classes and should not be used as a model for class-VII myosins. The search for calmodulin related proteins revealed two further potential myosin light chains. One is a close homolog of the two EF-hand motifs containing MlcB, and the other, CBP14, phylogenetically groups to the ELC/RLC/calmodulin (essential light chain/regulatory light chain) branch of the tree

  1. Identification of calmodulin and MlcC as light chains for Dictyostelium myosin-I isozymes.

    PubMed

    Crawley, Scott W; Liburd, Janine; Shaw, Kristopher; Jung, Yoojin; Smith, Steven P; Côté, Graham P

    2011-08-02

    Dictyostelium discoideum express seven single-headed myosin-I isozymes (MyoA-MyoE and MyoK) that drive motile processes at the cell membrane. The light chains for MyoA and MyoE were identified by expressing Flag-tagged constructs consisting of the motor domain and the two IQ motifs in the neck region in Dictyostelium. The MyoA and MyoE constructs both copurified with calmodulin. Isothermal titration calorimetry (ITC) showed that apo-calmodulin bound to peptides corresponding to the MyoA and MyoE IQ motifs with micromolar affinity. In the presence of calcium, calmodulin cross-linked two IQ motif peptides, with one domain binding with nanomolar affinity and the other with micromolar affinity. The IQ motifs were required for the actin-activated MgATPase activity of MyoA but not MyoE; however, neither myosin exhibited calcium-dependent activity. A Flag-tagged construct consisting of the MyoC motor domain and the three IQ motifs in the adjacent neck region bound a novel 8.6 kDa two EF-hand protein named MlcC, for myosin light chain for MyoC. MlcC is most similar to the C-terminal domain of calmodulin but does not bind calcium. ITC studies showed that MlcC binds IQ1 and IQ2 but not IQ3 of MyoC. IQ3 contains a proline residue that may render it nonfunctional. Each long-tailed Dictyostelium myosin-I has now been shown to have a unique light chain (MyoB-MlcB, MyoC-MlcC, and MyoD-MlcD), whereas the short-tailed myosins-I, MyoA and MyoE, have the multifunctional calmodulin as a light chain. The diversity in light chain composition is likely to contribute to the distinct cellular functions of each myosin-I isozyme.

  2. Mammalian Nonmuscle Myosin II Binds to Anionic Phospholipids with Concomitant Dissociation of the Regulatory Light Chain.

    PubMed

    Liu, Xiong; Shu, Shi; Billington, Neil; Williamson, Chad D; Yu, Shuhua; Brzeska, Hanna; Donaldson, Julie G; Sellers, James R; Korn, Edward D

    2016-11-25

    Mammalian cells express three Class II nonmuscle myosins (NM): NM2A, NM2B, and NM2C. The three NM2s have well established essential roles in cell motility, adhesion, and cytokinesis and less well defined roles in vesicle transport and other processes that would require association of NM2s with cell membranes. Previous evidence for the mechanism of NM2-membrane association includes direct interaction of NM2s with membrane lipids and indirect interaction by association of NM2s with membrane-bound F-actin or peripheral membrane proteins. Direct binding of NM2s to phosphatidylserine-liposomes, but not to phosphatidylcholine-liposomes, has been reported, but the molecular basis of the interaction between NM2s and acidic phospholipids has not been previously investigated. We now show that filamentous, full-length NM2A, NM2B, and NM2C and monomeric, non-filamentous heavy meromyosin bind to liposomes containing one or more acidic phospholipids (phosphatidylserine, phosphatidylinositol 4,5-diphosphate, and phosphatidylinositol 3,4,5-triphosphate) but do not bind to 100% phosphatidylcholine-liposomes. Binding of NM2s to acidic liposomes occurs predominantly through interaction of the liposomes with the regulatory light chain (RLC) binding site in the myosin heavy chain with concomitant dissociation of the RLC. Phosphorylation of myosin-bound RLC by myosin light chain kinase substantially inhibits binding to liposomes of both filamentous NM2 and non-filamentous heavy meromyosin; the addition of excess unbound RLC, but not excess unbound essential light chain, competes with liposome binding. Consistent with the in vitro data, we show that endogenous and expressed NM2A associates with the plasma membrane of HeLa cells and fibrosarcoma cells independently of F-actin. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Systemic lupus erythematosus: molecular cloning and analysis of recombinant DNase monoclonal κ light chain NGK-1.

    PubMed

    Kostrikina, Irina A; Odintsova, Elena S; Buneva, Valentina N; Nevinsky, Georgy A

    2014-08-01

    Because DNase antibodies are cytotoxic, enter the nucleus and cause DNA fragmentation inducing cell death by apoptosis, they can play an important role in the pathogenesis of different autoimmune pathologies and especially systemic lupus erythematosus (SLE). The interesting goal of catalytic antibodies research is not only to study a possible biological role of such antibodies, but also to develop in future new human and animal therapies that use the advantages offered by abzymes. An immunoglobulin κ light chain library from SLE patients was cloned into a phagemid vector. Phage particles displaying recombinant monoclonal antibody light chains (MLChs) capable of binding DNA were isolated by affinity chromatography on DNA-cellulose. Sixteen of the 46 MLChs efficiently hydrolyzed DNA; one MLCh (approximately 27-28kDa) was expressed in Escherichia coli and purified by metal chelating and gel filtration. MLCh NGK-1 was electrophoretically homogeneous and demonstrated a positive answer with mouse IgGs against light chains of human antibodies after western blotting. SDS-PAGE in a gel containing DNA demonstrated that the MLCh hydrolyzes DNA and is not contaminated by canonical DNases. The DNase MLCh was activated by several metal ions. The protein sequence of the DNase MLCh has homology with mammalian DNases I and shares with them several identical or similar (with the same side chain functionality) important amino acid residues, which are necessary for DNA hydrolysis and binding of Mg(2+) and Ca(2+) ions. The affinity of DNA for this first example of a MLCh (K(M) = 0.3 microM) was 150- to 200-fold higher than for human DNase I.

  4. Smooth muscle myosin light chain kinase, supramolecular organization, modulation of activity, and related conformational changes.

    PubMed Central

    Filenko, A M; Danilova, V M; Sobieszek, A

    1997-01-01

    It has recently been suggested that activation of smooth muscle myosin light chain kinase (MLCK) can be modulated by formation of supramolecular structures (Sobieszek, A. 1991. Regulation of smooth muscle myosin light chain kinase. Allosteric effects and co-operative activation by CaM. J. Mol. Biol. 220:947-957). The present light scattering data demonstrate that the inactive (calmodulin-free) MLCK apoenzyme exists in solution as a mixture of oligomeric (2% by weight), dimeric (53%), and monomeric (45%) species at physiological ionic strength (160 mM salt). These long-living assemblies, the lifetime of which was measured by minutes, were in equilibrium with each other. The most likely form of the oligomer was a spiral-like hexamer, the dimensions of which fit very well the helical structure of self-assembled myosin filaments (Sobieszek, A. 1972. Cross-bridges on self-assembled smooth muscle myosin filaments. J. Mol. Biol. 70:741-744). After activation of the kinase by calmodulin (CaM) we could not detect any appreciable changes in the distribution of the kinase species either when the kinase was saturated with CaM or when its molar concentration exceeded that of CaM. Our fluorescent measurements suggest that the earlier observed inhibition of kinase at substoichiometric amounts of CaM (Sobieszek, A., A. Strobl, B. Ortner, and E. Babiychuk. 1993. Ca2+-calmodulin-dependent modification of smooth-muscle myosin light chain kinase leading to its co-operative activation by calmodulin. Biochem. J. 295:405-411) is associated with slow conformational change(s) of the activated (CaM-bound) kinase molecules. Such conformational rearrangements also took place with equimolar kinase to CaM; however, in this case there was no decrease in MLCK activity. The nature of these conformational changes, which are accompanied by reduction of the kinase for CaM affinity, is discussed. PMID:9284326

  5. Gangliosides, Ab1 and Ab2 antibodies II. Light versus heavy chain: An idiotype-anti-idiotype case study.

    PubMed

    López-Requena, Alejandro; Rodríguez, Mabel; de Acosta, Cristina Mateo; Moreno, Ernesto; Puchades, Yaquelin; González, Majela; Talavera, Ariel; Valle, Aisel; Hernández, Tays; Vázquez, Ana María; Pérez, Rolando

    2007-02-01

    The antibody heavy chain is generally more important than the light chain for the interaction with the antigen, although many reports demonstrate the influence of the light chain in the antibody binding properties. The heavy chains of anti-N-glycolyl-ganglioside P3 mAb and anti-idiotypic 1E10 mAb display complementary charged residues in their H-CDRs, particularly in H-CDR3. A basic residue in P3 mAb H-CDR1 was shown to be crucial for the interaction with the antigen and 1E10 mAb. The immunogenetic features of three other P3 mAb anti-idiotypic mAbs are now analyzed. One of them bears the same heavy chain as 1E10 mAb and a different light chain, but differs in its binding to P3 mAb mutants where H-CDR basic residues were replaced and in the binding to 1E10-specific phagotopes. Chimeric hybrid antibodies with P3 and 1E10 mAb heavy chains and unrelated light chains were obtained to further determine the importance of heavy chains in P3 and 1E10 mAb binding properties. One of the P3 heavy chain hybrid antibodies retained the specificity of P3 mAb with slight affinity differences. The heavy chains appear to play the main role in these mAb interactions, with the light chains modulating the affinity to their ligands.

  6. Detection of normal B-cell precursors that give rise to colonies producing both kappa and lambda light immunoglobulin chains.

    PubMed Central

    Sauter, H; Paige, C J

    1987-01-01

    The pre-B-cell cloning assay is an in vitro differentiation system in which B-lymphocyte precursors expand and generate colonies containing immunoglobulin-secreting cells. Analysis of surface characteristics, growth requirements, and kinetics suggested that these cells represent early stages of the B-cell differentiation pathway. Here we describe a modification of the assay, which allowed us to determine the differentiative potential of these clonable pre-B cells. Using a nitrocellulose protein-transfer technique, we studied immunoglobulin light chain expression in colonies derived from fetal mouse liver B-cell precursors; in particular, we explored whether the B-cell precursors are already committed to the expression of a particular light chain gene at the initiation of culture. Our results show that fetal liver-derived B-cell progenitors generate colonies in vitro that secrete kappa and lambda light chains at a ratio similar to that found in colonies derived from adult splenic B cells. Further, we document the existence of colonies that are derived from single cells and that simultaneously secrete both types of light chains. This indicates that the progenitors of (kappa + lambda)-producing colonies are light chain-uncommitted at the initiation of culture. These cells are able to rearrange their light chain genes in vitro and differentiate along the B-cell pathway to form colonies secreting both kappa and lambda chains. PMID:3110779

  7. Genomic organization and sequences of immunoglobulin light chain genes in a primitive vertebrate suggest coevolution of immunoglobulin gene organization.

    PubMed Central

    Shamblott, M J; Litman, G W

    1989-01-01

    The genomic organization and sequence of immunoglobulin light chain genes in Heterodontus francisci (horned shark), a phylogenetically primitive vertebrate, have been characterized. Light chain variable (VL) and joining (JI) segments are separated by 380 nucleotides and together with the single constant region exon (CI), occupy less than 2.7 kb, the closest linkage described thus far for a rearranging gene system. The VL segment is flanked by a characteristic recombination signal sequence possessing a 12 nucleotide spacer; the recombination signal sequence flanking the JL segment is 23 nucleotides. The VL genes, unlike heavy chain genes, possess a typical upstream regulatory octamer as well as conserved enhancer core sequences in the intervening sequence separating JL and CL. Restriction mapping and genomic Southern blotting are consistent with the presence of multiple light chain gene clusters. There appear to be considerably fewer light than heavy chain genes. Heavy and light chain clusters show no evidence of genomic linkage using field inversion gel electrophoresis. The findings of major differences in the organization and functional rearrangement properties of immunoglobulin genes in species representing different levels of vertebrate evolution, but consistent similarity in the organization of heavy and light chain genes within a species, suggests that these systems may be coevolving. Images PMID:2511000

  8. A Unique Role for Endothelial Cell Kinesin Light Chain 1, Variant 1 in Leukocyte Transendothelial Migration

    PubMed Central

    Cyrus, Bita F.; Muller, William A.

    2017-01-01

    A reservoir of parajunctional membrane in endothelial cells, the lateral border recycling compartment (LBRC), is critical for transendothelial migration (TEM). We have previously shown that targeted recycling of the LBRC to the site of TEM requires microtubules and a kinesin molecular motor. However, the identity of the kinesin and mechanism of cargo binding were not known. We show that microinjection of endothelial cells with a monoclonal antibody specific for kinesin-1 significantly blocked LBRC-targeted recycling and TEM. In complementary experiments, knocking down KIF5B, a ubiquitous kinesin-1 isoform, in endothelial cells significantly decreased targeted recycling of the LBRC and leukocyte TEM. Kinesin heavy chains move cargo along microtubules by one of many kinesin light chains (KLCs), which directly bind the cargo. Knocking down KLC 1 isoform variant 1 (KLC1C) significantly decreased LBRC-targeted recycling and TEM, whereas knocking down other isoforms of KLC1 had no effect. Re-expression of KLC1C resistant to the knockdown shRNA restored targeted recycling and TEM. Thus kinesin-1 and KLC1C are specifically required for targeted recycling and TEM. These data suggest that of the many potential combinations of the 45 kinesin family members and multiple associated light chains, KLC1C links the LBRC to kinesin-1 (KIF5B) during targeted recycling and TEM. Thus, KLC1C can potentially be used as a target for anti-inflammatory therapy. PMID:26994343

  9. Analysis of the immunoglobulin light chain genes in zebra finch: evolutionary implications.

    PubMed

    Das, Sabyasachi; Mohamedy, Uzra; Hirano, Masayuki; Nei, Masatoshi; Nikolaidis, Nikolas

    2010-01-01

    All jawed vertebrates produce immunoglobulins (IGs) as a defense mechanism against pathogens. Typically, IGs are composed of two identical heavy chains (IGH) and two identical light chains (IGL). Most tetrapod species encode more than one isotype of light chains. Chicken is the only representative of birds for which genomic information is currently available and is an exception to the above rule because it encodes only a single IGL isotype (i.e., lambda). Here, we show that the genome of zebra finch, another bird species, encodes a single IGL isotype, that is, lambda, like the chicken. These results strongly suggest that the second isotype (i.e., kappa) present in both reptiles and mammals was lost in a very early stage of bird evolution. Furthermore, we show that both chicken and zebra finch contain a single set of functional variable, joining, and constant region genes and multiple variable region pseudogenes. The latter finding suggests that this type of genomic organization was already present in the common ancestor of these bird species and remained unchanged over a long evolutionary time. This conservation is in contrast with the high levels of variation observed in the mammalian IGL loci. The presence of a single functional variable region gene followed by multiple variable pseudogenes in zebra finch suggest that this species may be generating antibody diversity by a gene conversion-like mechanism like the chicken.

  10. Contribution of human smooth muscle cells to amyloid angiopathy in AL (light-chain) amyloidosis.

    PubMed

    Vora, Moiz; Kevil, Christopher G; Herrera, Guillermo A

    2017-01-01

    Amyloid light-chain (AL) amyloidosis is a disease process that often compromises the peripheral vascular system and leads to systemic end-organ dysfunction. Although amyloid formation in vessel walls is a multifaceted process, the assembly of the native light chains (LCs) into amyloid fibrils is central to its pathogenesis. Recent evidence suggests that endocytosis and endolysosomal processing of immunoglobin LCs by host cells is essential to the formation of amyloid fibrils that are deposited in at least some tissues. The aim of this study was to elucidate the role of vascular smooth muscle in amyloid angiopathy. Human coronary artery smooth muscle cells (SMCs) were grown on coverslips, four chamber glass slides, and growth factor-reduced Matrigel matrix in the presence of 10 µg/ml of ALs (λ and κ isotypes), nonamyloidogenic LCs, and culture medium (negative control) for 48 and 72 hours. Thereafter, a detailed light microscopic, immunohistochemical, and ultrastructural evaluation was conducted to verify amyloid deposition and characterize the role of SMCs in the formation of amyloid deposits in the various experimental conditions. Amyloid deposits were detected extracellulary as early as 48 hours after exposure of vascular smooth muscle cells (VSMCs) to AL-LCs (amyloidogenic light chains) as confirmed by affinity to Congo red dye, thioflavin T fluorescence, and transmission electron microscopy. No amyloid was present in the cultures of SMCs treated with medium alone or nonamyloidogenic LCs. SMCs associated with amyloid deposits exhibited CD68, lysosome-associated membrane protein 1-1, and intracellular lambda light chain expression and only focal smooth muscle actin and muscle-specific actin positivity. Electron microscopy revealed these cells to have an expanded mature lysosomal compartment closely associated with deposits of newly formed amyloid fibrils. The interaction of amyloidogenic LCs with VSMCs is necessary for the formation of amyloid fibrils that are

  11. Bacterial kinesin light chain (Bklc) links the Btub cytoskeleton to membranes

    PubMed Central

    Akendengue, Lurlène; Trépout, Sylvain; Graña, Martín; Voegele, Alexis; Janke, Carsten; Raynal, Bertrand; Chenal, Alexandre; Marco, Sergio; Wehenkel, Anne Marie

    2017-01-01

    Bacterial kinesin light chain is a TPR domain-containing protein encoded by the bklc gene, which co-localizes with the bacterial tubulin (btub) genes in a conserved operon in Prosthecobacter. Btub heterodimers show high structural homology with eukaryotic tubulin and assemble into head-to-tail protofilaments. Intriguingly, Bklc is homologous to the light chain of the microtubule motor kinesin and could thus represent an additional eukaryotic-like cytoskeletal element in bacteria. Using biochemical characterization as well as cryo-electron tomography we show here that Bklc interacts specifically with Btub protofilaments, as well as lipid vesicles and could thus play a role in anchoring the Btub filaments to the membrane protrusions in Prosthecobacter where they specifically localize in vivo. This work sheds new light into possible ways in which the microtubule cytoskeleton may have evolved linking precursors of microtubules to the membrane via the kinesin moiety that in today’s eukaryotic cytoskeleton links vesicle-packaged cargo to microtubules. PMID:28358387

  12. Cryo-EM reveals the steric zipper structure of a light chain-derived amyloid fibril

    PubMed Central

    Schmidt, Andreas; Annamalai, Karthikeyan; Schmidt, Matthias; Grigorieff, Nikolaus; Fändrich, Marcus

    2016-01-01

    Amyloid fibrils are proteinaceous aggregates associated with diseases in humans and animals. The fibrils are defined by intermolecular interactions between the fibril-forming polypeptide chains, but it has so far remained difficult to reveal the assembly of the peptide subunits in a full-scale fibril. Using electron cryomicroscopy (cryo-EM), we present a reconstruction of a fibril formed from the pathogenic core of an amyloidogenic immunoglobulin (Ig) light chain. The fibril density shows a lattice-like assembly of face-to-face packed peptide dimers that corresponds to the structure of steric zippers in peptide crystals. Interpretation of the density map with a molecular model enabled us to identify the intermolecular interactions between the peptides and rationalize the hierarchical structure of the fibril based on simple chemical principles. PMID:27185936

  13. Urinary monoclonal free light chains in primary Sjögren's syndrome: an aid to the diagnosis of malignant lymphoma.

    PubMed Central

    Walters, M T; Stevenson, F K; Herbert, A; Cawley, M I; Smith, J L

    1986-01-01

    Three patients, two with typical primary Sjögren's syndrome (SS) and the third with several features of SS, including abnormal sialography and reduced tear secretion, developed B cell non-Hodgkin's lymphoma (NHL) of parotid or lung, or both. Isoelectric focusing of concentrated urine specimens in agarose, followed by immunofixation, demonstrated the presence in each patient's urine of monoclonal free light chains of the same class as that shown on the tumour cells. In one patient the level of urinary free light chains was monitored and found to correlate with disease activity. Similar techniques showed no monoclonal light chains in the urine from a further 26 cases of SS with no clinical evidence of lymphoma. The detection of monoclonal urinary free light chains may provide an early diagnostic clue to the development of lymphoma in patients with SS and be a means of tumour monitoring. Images PMID:3082300

  14. Impact of involved free light chain (FLC) levels in patients achieving normal FLC ratio after initial therapy in light chain amyloidosis (AL).

    PubMed

    Tandon, Nidhi; Sidana, Surbhi; Dispenzieri, Angela; Gertz, Morie A; Lacy, Martha Q; Dingli, David; Buadi, Francis K; Fonder, Amie L; Hayman, Suzanne R; Hwa, Yi Lisa; Hobbs, Miriam A; Kapoor, Prashant; Gonsalves, Wilson I; Leung, Nelson; Go, Ronald S; Lust, John A; Russell, Stephen J; Kyle, Robert A; Rajkumar, S Vincent; Kumar, Shaji K

    2017-09-27

    Achievement of a normal FLC ratio (FLCr) following treatment indicates hematologic response and suggests better outcomes in light chain amyloidosis (AL). We examined if elevated involved free light chain (hiFLC) impacts outcomes in patients achieving normal FLCr. We retrospectively analyzed 345 AL patients who were diagnosed within a 10-year period (2006-2015) and had 2 consecutive normal FLCr values after 1st line treatment. Among these, patients with hiFLC at 1(st) reading of normal FLCr (hiFLC1; n=166; 48.1%) were compared to those who did not (n=179; 51.9%). Patients with AL who have hiFLC1 after initial therapy had higher rates of multi-organ involvement (63.3 vs 46.4%; p=0.002) and patients in advanced Mayo stage (42.9 vs 32.2%; p=0.04) at diagnosis. The median progression free survival [PFS; 38.2 (95%CI; 26.4, 55.4) vs 67.1 (95%CI; 55.8, 88) months; p=0.0002] and overall survival [OS; 94.4 (95%CI; 78, 107.1) vs not reached (NR, 95%CI; 116.1, NR) months; p<0.0001] were lower in those who had hiFLC1. A more stringent comparison for patients with 2 consecutive hiFLC (hIFLC2; n=111; 32.2%) versus not (n=2234; 67.8%) showed consistent results [PFS; 27.1 (95%CI; 23, 53.8) vs 63.3 (95%CI; 55.4, 77) months; p<0.0001 and OS; 78 (95% CI; 54.6, 98.8) vs NR (95%CI; NR, NR); p<0.0001]. This poor prognostic impact of hiFLC on survival was independent of serum creatinine, Mayo stage, negative immunofixation status and inclusion of transplant in initial therapy on multivariate analysis. Hence, persistent elevation of iFLC predicts poor prognosis even among patients achieving normal ratio after initial therapy in AL. This article is protected by copyright. All rights reserved. © 2017 Wiley Periodicals, Inc.

  15. [The value of serum free light chain in differential diagnosis of monoclonal gammopathy of renal significance].

    PubMed

    Li, C; Wen, Y B; Li, H; Su, W; Li, J; Cai, J F; Chen, L M; Li, X M; Li, X W

    2017-08-08

    Objective: To investigate the value of serum free light chain (FLC) in differential diagnosis of monoclonal gammopathy of renal significance (MGRS). Methods: Forty-nine hospitalized patients who underwent renal biopsy in Peking Union Medical College Hospital between January 2013 and December 2015 were included. Monoclonal gammopathy was detected by serum protein electrophoresis (SPE), serum immunofixation electrophoresis (IFE), urine IFE and serum FLC. All patients were classified as MGRS (n=32) and monoclonal gammopathy of undetermined significance (MGUS) (n=17). Results: Renal lesions in MGRS subgroup included light chain amyloidosis (n=24, 75.0%), light chain deposition disease (n=7, 21.9%), and fibrillary glomerulopathy (n=1, 3.1%). Renal diseases in MGUS subgroup included membranous nephropathy (n=10), focal segmental glomerulosclerosi (FSGS) (n=3), diabetic glomerulopathy (n=1), Henoch-Schonlein purpura nephritis (n=1), anti-GBM disease concurrent with membranous nephropathy (n=1) and glomerulomegaly (n=1). Positive number of SPE, serum IFE, urine IFE and abnormal number of serum FLC ratio in MGRS subgroup were 12, 16, 23 and 30, respectively. Positive number of SPE, serum IFE, urine IFE and abnormal number of serum FLC ratio in MGUS subgroup were 11, 17, 6 and 3, respectively. MGRS and MGUS subgroups differed significantly in positive rate of serum IFE (P<0.001), as well as positive rate of urine IFE (P=0.02) and abnormal rate of serum FLC ratio (P<0.001). The sensitivity, specificity, total consistent rate of serum FLC ratio for diagnosis of MGRS were 93.8%, 82.4%, and 89.8% respectively. The sensitivity for diagnosing MGRS could be increased to 100% by combining serum FLC ratio and urine IFE. Conclusions: The significance of monoclonal gammopathy in patients with renal disease should be evaluated by renal pathology.On the premise of excluding lymphoplasmacytic malignancy, serum FLC ratio had promising diagnostic value for MGRS, which was helpful for

  16. Molecular characterization of the immunoglobulin light chain variable region repertoire of human autoantibodies

    SciTech Connect

    Victor, K.D.

    1992-01-01

    The molecular structures of the light chain variable regions encoding human autoantibodies have been studied in detail. The variable region repertoire among this group of antibodies is diverse. There is no evidence for preferential utilization of specific V[sub L] gene families or over-representation of certain V[sub L] gene segments in autoantibodies. Many autoreactive antibodies utilize direct copies of known germline gene segments with little evidence of somatic mutation, supporting the conclusion that at least some germline gene segments encode autoreactivity. Additionally, the structures of several autoantibodies are clearly the product of somatic mutation. Lastly, affinity maturation has been demonstrated in two clonally related IgM rheumatoid factors suggestive of an antigen driven response. The heterogeneity of the V[sub L] region repertoire in human autoantibodies challenges evidence in the literature suggesting that the majority of human autoantibodies utilize the same or closely related germline gene segments with no evidence of somatic mutation. In addition, this study has documented that variation in the length of the light chain is a common feature in human antibodies. Length variation is confined to the V[sub k]-J[sub k] joint of CDR3 and occurs in all V[sub k] gene families. Analysis of the structures of the V[sub k]-J[sub k] joints suggests that both germline derived and non-germline encoded nucleotides (N-segments), probably the result of terminal deoxynucleotidyl transferase activity, contribute to the junctional diversity of the immunoglobulin light chain variable region. Thus, length variation at the V[sub L]-J[sub L] joint is a frequent event having the potential to expand the diversity of the antibody molecule.

  17. Clathrin light chain B: gene structure and neuron-specific splicing.

    PubMed Central

    Stamm, S; Casper, D; Dinsmore, J; Kaufmann, C A; Brosius, J; Helfman, D M

    1992-01-01

    The clathrin light chains are components of clathrin coated vesicles, structural constituents involved in endocytosis and membrane recycling. The clathrin light chain B (LCB) gene encodes two isoforms, termed LCB2 and LCB3, via an alternative RNA splicing mechanism. We have determined the structure of the rat clathrin light chain B gene. The gene consists of six exons that extend over 11.9 kb. The first four exons and the last exon are common to the LCB2 and LCB3 isoforms. The fifth exon, termed EN, is included in the mRNA in brain, giving rise to the brain specific form LCB2 but is excluded in other tissues, generating the LCB3 isoform. Primary rat neuronal cell cultures express predominantly the brain specific LCB2 isoform, whereas primary rat cultures of glia express only the LCB3 isoform, suggesting that expression of the brain-specific LCB2 form is limited to neurons. Further evidence for neuronal localization of the LCB2 form is provided using a teratocarcinoma cell line, P19, which can be induced by retinoic acid to express a neuronal phenotype, concomitant with the induction of the LCB2 form. In order to determine the sequences involved in alternative splice site selection, we constructed a minigene containing the alternative spliced exon EN and its flanking intron and exon sequences. This minigene reflects the splicing pattern of the endogenous gene upon transfection in HeLa cell and primary neuronal cell cultures, indicating that this region of the LCB gene contains all the necessary information for neuron-specific splicing. Images PMID:1408826

  18. Myosin Regulatory Light Chain Diphosphorylation Slows Relaxation of Arterial Smooth Muscle*

    PubMed Central

    Sutherland, Cindy; Walsh, Michael P.

    2012-01-01

    The principal signal to activate smooth muscle contraction is phosphorylation of the regulatory light chains of myosin (LC20) at Ser19 by Ca2+/calmodulin-dependent myosin light chain kinase. Inhibition of myosin light chain phosphatase leads to Ca2+-independent phosphorylation at both Ser19 and Thr18 by integrin-linked kinase and/or zipper-interacting protein kinase. The functional effects of phosphorylation at Thr18 on steady-state isometric force and relaxation rate were investigated in Triton-skinned rat caudal arterial smooth muscle strips. Sequential phosphorylation at Ser19 and Thr18 was achieved by treatment with adenosine 5′-O-(3-thiotriphosphate) in the presence of Ca2+, which induced stoichiometric thiophosphorylation at Ser19, followed by microcystin (phosphatase inhibitor) in the absence of Ca2+, which induced phosphorylation at Thr18. Phosphorylation at Thr18 had no effect on steady-state force induced by Ser19 thiophosphorylation. However, phosphorylation of Ser19 or both Ser19 and Thr18 to comparable stoichiometries (0.5 mol of Pi/mol of LC20) and similar levels of isometric force revealed differences in the rates of dephosphorylation and relaxation following removal of the stimulus: t½ values for dephosphorylation were 83.3 and 560 s, and for relaxation were 560 and 1293 s, for monophosphorylated (Ser19) and diphosphorylated LC20, respectively. We conclude that phosphorylation at Thr18 decreases the rates of LC20 dephosphorylation and smooth muscle relaxation compared with LC20 phosphorylated exclusively at Ser19. These effects of LC20 diphosphorylation, combined with increased Ser19 phosphorylation (Ca2+-independent), may underlie the hypercontractility that is observed in response to certain physiological contractile stimuli, and under pathological conditions such as cerebral and coronary arterial vasospasm, intimal hyperplasia, and hypertension. PMID:22661704

  19. Light chain proteinuria and cellular mediated immunity in rifampin treated patients with tuberculosis.

    PubMed

    Graber, C D; Patrick, C C; Galphin, R L

    1975-04-01

    Light chain proteinuria was found in 9 of 17 tuberculosis patients treated with rifampin. Concomitant assay of cellular mediated immunity in these patients using skin test antigen and a lymphokine in vitro test provided results that were different. Response to Varidase skin test antigen was negative for all eight tuberculosis patients tested, but there occurred a hyper-responsiveness of the lymphocytes of these eight patients to phytomitogen (PHA-P). as well as of those of seven other tuberculous patients. This last finding may be related to time of testing and/or endogenous serum binding of rifampin which could have inhibited mitogen activity for the lymphocyte.

  20. GENETIC CORRELATION OF A MOUSE LIGHT CHAIN VARIABLE REGION MARKER WITH A THYMOCYTE SURFACE ANTIGEN

    PubMed Central

    Gottlieb, Paul D.

    1974-01-01

    The inbred and congenic strain distribution of the IH-peptide marker in the variable region of mouse immunoglobulin light chains has been compared with other known genetic markers. A positive correlation was noted between the IH-peptide marker and expression of the Ly-3.1 thymocyte cell surface antigen. This suggests that the locus responsible for IH-peptide expression is genetically linked to the Ly-2 and Ly-3 loci in linkage group XI on chromsome 6 of the mouse. PMID:4547628

  1. Berberine Depresses Contraction of Smooth Muscle via Inhibiting Myosin Light-chain Kinase.

    PubMed

    Xu, Zhili; Zhang, Mingbo; Dou, Deqiang; Tao, Xiaojun; Kang, Tingguo

    2017-01-01

    Berberine is a natural isoquinoline alkaloid possessing various pharmacological effects, particularly apparent in the treatment of diarrhea, but the underlying mechanism remains unclear. Smooth muscle myosin light-chain kinase (MLCK) plays a crucial role in the smooth muscle relaxation-contraction events, and it is well known that berberine can effectively depress the contraction of smooth muscle. Hence, whether berberine could inhibit MLCK and then depress the smooth muscle contractility might be researched. The purpose of this study is to investigate the effects of berberine on MLCK. Based on this, the contractility of gastro-intestine, catalysis activity of MLCK, and molecular docking are going to be evaluated. The experiment of smooth muscle contraction was directly monitored the contractions of the isolated gastrointestine by frequency and amplitude at different concentration of berberine. The effects of berberine on MLCK were measured in the presence of Ca(2+)-calmodulin, using the activities of 20 kDa myosin light chain (MLC20) phosphorylation, and myosin Mg(2+)-ATPase induced by MLCK. The docking study was conducted with expert software in the meantime. The phosphorylation of myosin and the Mg(2+)-ATPase activity is reduced in the presence of berberine. Moreover, berberine could inhibit the contractibility of isolated gastric intestine smooth muscle. Berberine could bind to the ATP binding site of MLCK through hydrophobic effect and hydrogen bonding according to the docking study. The present work gives a deep insight into the molecular mechanism for the treatment of diarrhea with berberine, i.e., berberine could suppress the contractility of smooth muscle through binding to MLCK and depressing the catalysis activity of MLCK. Berberine significantly reduced the amplitude of contraction in isolated duodenum and gastric strips in ratsBerberine inhibited the phosphorylated extents of MLC20 and Mg2+-ATPase activity of phosphorylated myosin induced by

  2. Myosin light chain phosphorylation is correlated with cold-induced changes in platelet shape.

    PubMed

    Kawakami, H; Higashihara, M; Ohsaka, M; Miyazaki, K; Ikebe, M; Hirano, H

    2001-12-01

    Chilling induces shape changes in platelets from disks to spheres with abundant filopodia. Such changes were time-dependent and correlated well with the phosphorylation of 20-kDa myosin light chain (LC20). Both the shape changes and the phosphorylation were reversible. After the platelets had been chilled, myosin became incorporated into the Triton X-insoluble fraction. When the chilled platelets were immunocytochemically stained, anti-myosin antibody was localized with filamentous structures inside the filopodia. These results suggest that LC20 phosphorylation and subsequent interactions with actin filaments play a crucial role in the cold-induced changes in platelet shape and in the formation of filopodia.

  3. Association of immunoglobulin G4 and free light chain with idiopathic pleural effusion.

    PubMed

    Murata, Y; Aoe, K; Mimura-Kimura, Y; Murakami, T; Oishi, K; Matsumoto, T; Ueoka, H; Matsunaga, K; Yano, M; Mimura, Y

    2017-10-01

    The cause of pleural effusion remains uncertain in approximately 15% of patients despite exhaustive evaluation. As recently described immunoglobulin (Ig)G4-related disease is a fibroinflammatory disorder that can affect various organs, including the lungs, we investigate whether idiopathic pleural effusion includes IgG4-associated etiology. Between 2000 and 2012, we collected 830 pleural fluid samples and reviewed 35 patients with pleural effusions undiagnosed after pleural biopsy at Yamaguchi-Ube Medical Center. Importantly, IgG4 immunostaining revealed infiltration of IgG4-positive plasma cells in the pleura of 12 patients (34%, IgG4(+) group). The median effusion IgG4 level was 41 mg/dl in the IgG4(+) group and 27 mg/dl in the IgG4(-) group (P < 0·01). The light and heavy chains of effusion IgG4 antibodies of patients in the IgG4(+) group were heterogeneous by two-dimensional electrophoresis, indicating the absence of clonality of the IgG4 antibodies. Interestingly, the κ light chains were more heterogeneous than the λ light chains. The measurement of the κ and λ free light chain (FLC) levels in the pleural fluids showed significantly different κ FLC levels (median: 28·0 versus 9·1 mg/dl, P < 0·01) and κ/λ ratios (median: 2·0 versus 1·2, P < 0·001) between the IgG4(+) and IgG4(-) groups. Furthermore, the κ/λ ratios were correlated with the IgG4(+) /IgG(+) plasma cell ratios in the pleura of the IgG4(+) group. Taken together, these results demonstrate the involvement of IgG4 in certain idiopathic pleural effusions and provide insights into the diagnosis, pathogenesis and therapeutic opportunities of IgG4-associated pleural effusion. © 2017 British Society for Immunology.

  4. Effect of specimen type on free immunoglobulin light chains analysis on the Roche Diagnostics cobas 8000 analyzer.

    PubMed

    Nelson, Louis S; Steussy, Bryan; Morris, Cory S; Krasowski, Matthew D

    2015-01-01

    The measurement of free immunoglobulin light chains is typically performed on serum; however, the use of alternative specimen types has potential benefits. Using the Freelite™ kappa and lambda free light chains assay on a Roche Diagnostics cobas 8000 c502 analyzer, we compared three specimen types (serum, EDTA-plasma and lithium heparin plasma separator gel-plasma) on 100 patients. Using Deming regression and eliminating outliers (limiting data to light chain concentrations below 400 mg/L), the three specimen types showed comparable results for kappa light chain concentration, lambda light chain concentration, and kappa/lambda ratio with slopes close to 1.0 and y-intercepts close to zero. EDTA-plasma showed slightly more positive bias relative to serum than lithium heparin. Analysis using EDTA-plasma and lithium heparin plasma showed comparable linearity, precision, and temperature stability. A single sample showing hook effect (not in the comparison set) gave comparable results using either plasma specimen type. For the Freelite™ kappa and lambda free light chains assay, both EDTA-plasma or lithium heparin-plasma can serve as acceptable substitutes for serum, at least for the Roche cobas 8000 analyzer.

  5. Structural Characterization of the Partially Folded Intermediates of An Immunoglobulin Light Chain Leading to Amyloid Fibrillation And Amorphous Aggregation

    SciTech Connect

    Qin, Z.; Hu, D.; Zhu, M.; Fink, A.L.; /UC, Santa Cruz

    2007-07-12

    Immunoglobulin light chain deposition diseases involve various types of extracellular deposition of light chain variable domains, including amyloid fibrils and amorphous deposits. The decreased thermodynamic stability of the light chain is believed to be the major factor leading to fibrillation. However, the differences in the nature of the deposits among the light chain deposition diseases raise the question of whether the mechanisms leading to fibrillar or amorphous aggregation is different. In this study, we generated two partially folded intermediates of the light chain variable domain SMA in the presence of guanidine hydrochloride (GuHCl) and characterized their conformations. The more unfolded intermediate formed fibrils most rapidly, while the more native-like intermediate predominantly led to amorphous deposits. The results also show that the monomeric, rather than the dimeric state, was critical for fibrillation. The data also indicate that fibril elongation involves addition of a partially unfolded intermediate, rather than the native state. We postulate that a more highly unfolded intermediate is more suited to undergo the topological rearrangements necessary to form amyloid fibrils than a more structured one and that this also correlates with increased destabilization. In the case of light chain aggregation, it appears that more native-like intermediate conformations are more prone to form amorphous deposits.

  6. Restriction in the repertoire of the immunoglobulin light chain subgroup in pathological cold agglutinins with anti-Pr specificity.

    PubMed

    Leo, A; Kreft, H; Hack, H; Kempf, T; Roelcke, D

    2004-02-01

    In cold agglutinin disease, monoclonal red blood cell autoantibodies, termed cold agglutinins, induce haemolysis in patients exposed to the cold. Commonly, these autoantibodies are directed against the developmentally regulated I/i blood groups. A second blood group system, the Pr system (located on glycophorins), is involved less frequently. Anti-Pr cold agglutinins recognize either alpha 2,3- or alpha 2,6-linked N-acetylneuraminic acid as the immunodominant group. Cold agglutinins of anti-I/i specificity show a remarkable restriction in their genomic repertoire of the immunoglobulin heavy and light-chain immunoglobulin-variable domain (i.e. exclusive use of VH4-34 in heavy chains). For anti-Pr cold agglutinins, preliminary data on the repertoire of the light-chain variable domain indicate a preference for the subgroup Vkappa IV. To elucidate restrictions in the light-chain variable-domain subgroup repertoire of anti-Pr cold agglutinins systematically, and to discuss these results in the context of their anti-Pr(1-3) subclassification and immunodominant sialic acid, light chains in 13 anti-Pr cold agglutinins were investigated. The anti-Pr light chains were isolated using temperature-dependent absorption/elution techniques. Subsequently, they were subjected to N-terminal Edman degradation, and the light chain Vkappa subgroup was affiliated using the Kabat database. Five of 13 (38%) light chains belonged to Vkappa IV, five of 13 (38%) to Vkappa I and three of 13 (23%) to Vkappa III. Anti-Pr with Vkappa IV subgroup light chains exclusively recognized alpha 2,3-linked N-acetylneuraminic acid. Including data from the literature, the repertoire of the light-chain variable domain in pathological anti-Pr cold agglutinins exhibits a clear bias towards the use of the single germline gene-derived subgroup, Vkappa IV (eight of 17 or 47%). The association of Vkappa IV subgroup light chain-containing anti-Pr cold agglutinins with binding to alpha 2,3-, but not alpha 2,6-linked

  7. Immunohistochemical and morphometric analysis of immunoglobulin light-chain immunoreactive amyloid in psammoma bodies of the human choroid plexus.

    PubMed

    Jovanović, Ivan; Ugrenović, Sladjana; Vasović, Ljiljana; Stojanović, Ivan

    2014-03-01

    The aim of this research was to establish the presence of amyloid and to quantify immunohistochemical reactions of kappa and lambda light chains of psammoma bodies of the choroid plexus. Choroid plexus tissue obtained from 14 right lateral ventricles postmortem was processed histologically and stained with Congo red, thioflavin T, and monoclonal antibodies for kappa and lambda light chains. Morphological analysis was performed with a light microscope at lens magnifications of 4×, 10×, 20×, 25×, and 40×. The morphometric characteristics of psammoma bodies that were kappa and lambda positive and negative were analyzed with ImageJ. Histological analysis showed that the psammoma bodies, stromal blood vessel walls, and some epithelial cells reacted positively with Congo red and thioflavin T. Psammoma bodies were predominantly positive for lambda light chains. Lambda positivity was detected inside some stromal blood vessels, which pointed to a probable systemic origin for these light chains. Morphometric analysis showed that the mean optical densities of lambda- and kappa-positive psammoma bodies were significantly higher than those that gave a negative reaction. The percentage of lambda-positive psammoma bodies was significantly higher than the percentage of lambda-negative psammoma bodies in 80% of the cases, while the reaction with kappa light chains was negative in the majority of the cases. Linear regression analysis showed a significant increase in the percentage of lambda-positive psammoma bodies and their mean optical density with age. Finally, it can be concluded that the positive reaction of psammoma bodies in the choroid plexus with respect to amyloid and lambda light chains may point to the presence of light-chain amyloid in their structures.

  8. Nonmuscle Myosin IIA Regulates Platelet Contractile Forces Through Rho Kinase and Myosin Light-Chain Kinase.

    PubMed

    Feghhi, Shirin; Tooley, Wes W; Sniadecki, Nathan J

    2016-10-01

    Platelet contractile forces play a major role in clot retraction and help to hold hemostatic clots against the vessel wall. Platelet forces are produced by its cytoskeleton, which is composed of actin and nonmuscle myosin filaments. In this work, we studied the role of Rho kinase, myosin light-chain kinase, and myosin in the generation of contractile forces by using pharmacological inhibitors and arrays of flexible microposts to measure platelet forces. When platelets were seeded onto microposts, they formed aggregates on the tips of the microposts. Forces produced by the platelets in the aggregates were measured by quantifying the deflection of the microposts, which bent in proportion to the force of the platelets. Platelets were treated with small molecule inhibitors of myosin activity: Y-27632 to inhibit the Rho kinase (ROCK), ML-7 to inhibit myosin light-chain kinase (MLCK), and blebbistatin to inhibit myosin ATPase activity. ROCK inhibition reduced platelet forces, demonstrating the importance of the assembly of actin and myosin phosphorylation in generating contractile forces. Similarly, MLCK inhibition caused weaker platelet forces, which verifies that myosin phosphorylation is needed for force generation in platelets. Platelets treated with blebbistatin also had weaker forces, which indicates that myosin's ATPase activity is necessary for platelet forces. Our studies demonstrate that myosin ATPase activity and the regulation of actin-myosin assembly by ROCK and MLCK are needed for the generation of platelet forces. Our findings illustrate and explain the importance of myosin for clot compaction in hemostasis and thrombosis.

  9. Precise Protein Photolithography (P3): High Performance Biopatterning Using Silk Fibroin Light Chain as the Resist

    PubMed Central

    Liu, Wanpeng; Zhou, Zhitao; Zhang, Shaoqing; Shi, Zhifeng; Tabarini, Justin; Lee, Woonsoo; Zhang, Yeshun; Gilbert Corder, S. N.; Li, Xinxin; Dong, Fei; Cheng, Liang; Liu, Mengkun; Kaplan, David L.; Omenetto, Fiorenzo G.

    2017-01-01

    Precise patterning of biomaterials has widespread applications, including drug release, degradable implants, tissue engineering, and regenerative medicine. Patterning of protein‐based microstructures using UV‐photolithography has been demonstrated using protein as the resist material. The Achilles heel of existing protein‐based biophotoresists is the inevitable wide molecular weight distribution during the protein extraction/regeneration process, hindering their practical uses in the semiconductor industry where reliability and repeatability are paramount. A wafer‐scale high resolution patterning of bio‐microstructures using well‐defined silk fibroin light chain as the resist material is presented showing unprecedent performances. The lithographic and etching performance of silk fibroin light chain resists are evaluated systematically and the underlying mechanisms are thoroughly discussed. The micropatterned silk structures are tested as cellular substrates for the successful spatial guidance of fetal neural stems cells seeded on the patterned substrates. The enhanced patterning resolution, the improved etch resistance, and the inherent biocompatibility of such protein‐based photoresist provide new opportunities in fabricating large scale biocompatible functional microstructures. PMID:28932678

  10. Planarian myosin essential light chain is involved in the formation of brain lateral branches during regeneration.

    PubMed

    Yu, Shuying; Chen, Xuhui; Yuan, Zuoqing; Zhou, Luming; Pang, Qiuxiang; Mao, Bingyu; Zhao, Bosheng

    2015-08-01

    The myosin essential light chain (ELC) is a structure component of the actomyosin cross-bridge, however, the functions in the central nervous system (CNS) development and regeneration remain poorly understood. Planarian Dugesia japonica has revealed fundamental mechanisms and unique aspects of neuroscience and neuroregeneration. In this study, the cDNA DjElc, encoding a planarian essential light chain of myosin, was identified from the planarian Dugesia japonica cDNA library. It encodes a deduced protein with highly conserved functionally domains EF-Hand and Ca(2+) binding sites that shares significant similarity with other members of ELC. Whole mount in situ hybridization studies show that DjElc expressed in CNS during embryonic development and regeneration of adult planarians. Loss of function of DjElc by RNA interference during planarian regeneration inhibits brain lateral branches regeneration completely. In conclusion, these results demonstrated that DjElc is required for maintenance of neurons and neurite outgrowth, particularly for involving the brain later branch regeneration.

  11. The intrinsic hypermutability of antibody heavy and light chain genes decays exponentially

    PubMed Central

    Rada, Cristina; Milstein, César

    2001-01-01

    Somatic hypermutation, essential for the affinity maturation of antibodies, is restricted to a small segment of DNA. The upstream boundary is sharp and is probably related to transcription initiation. However, for reasons unknown, the hypermutation domain does not encompass the whole transcription unit, notably the C-region exon. Since analysis of the downstream decay of hypermutation is obscured by sequence-dependent hot and cold spots, we describe a strategy to minimize these fluctuations by computing mutations of different sequences located at similar distances from the promoter. We pool large databases of mutated heavy and light chains and analyse the decay of mutation frequencies. We define an intrinsic decay of probability of mutation that is remarkably similar for heavy and light chains, faster than anticipated and consistent with an exponential fit. Indeed, quite apart from hot spots, the intrinsic probability of mutation at CDR1 can be almost twice that of CDR3. The analysis has mechanistic implications for current and future models of hypermutation. PMID:11500383

  12. Retinal pigment epithelial detachments and tears, and progressive retinal degeneration in light chain deposition disease

    PubMed Central

    Spielberg, Leigh H; Heckenlively, John R; Leys, Anita M

    2013-01-01

    Background/purpose Light-chain deposition disease (LCDD) is a rare condition characterised by deposition of monoclonal immunoglobulin light chains (LCs) in tissues, resulting in varying degrees of organ dysfunction. This study reports the characteristic clinical ocular findings seen in advanced LCDD upon development of ocular fundus changes. This is the first report to describe this entity in vivo in a series of patients. Methods A case series of ocular fundus changes in three patients with kidney biopsy-proven LCDD. All patients underwent best corrected visual acuity (BCVA) exam, perimetry, colour fundus photography and fluorescein angiography; two patients underwent indocyanine green angiography, optical coherence tomography, ultrasound and electroretinography; and one patient underwent fundus autofluorescence. Results Three patients, 53–60 years old at initial presentation, were studied. All three presented with night blindness, poor dark adaptation, metamorphopsia and visual loss. Examination revealed serous and serohaemorrhagic detachments, multiple retinal pigment epithelial (RPE) tears, diffuse RPE degeneration and progressive fibrotic changes. Neither choroidal neovascularisation nor other vascular abnormalities were present. Final best corrected visual acuity (BCVA) ranged from 20/40 to 20/300. Conclusions Progressive LC deposition in the fundus seems to damage RPE pump function with flow disturbance between choroid and retina. This pathogenesis can explain the evolution to RPE detachments and subsequent rips and progressive retinal malfunction. PMID:23385633

  13. Rat pulmonary arterial smooth muscle myosin light chain kinase and phosphatase activities decrease with age.

    PubMed

    Belik, J; Kerc, Ewa; Pato, Mary D

    2006-03-01

    We and others have shown that the fetal pulmonary arterial smooth muscle potential for contraction and relaxation is significantly reduced compared with the adult. Whether these developmental changes relate to age differences in the expression and/or activity of key enzymes regulating the smooth muscle mechanical properties has not been previously evaluated. Therefore, we studied the catalytic activities and expression of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) catalytic (PP1cdelta) and regulatory (MYPT) subunits in late fetal, early newborn, and adult rat intrapulmonary arterial tissues. In keeping with the greater force development and relaxation of adult pulmonary artery, Western blot analysis showed that the MLCK, MYPT, and PP1cdelta contents increased significantly with age and were highest in the adult rat. In contrast, their specific activities (activity/enzyme content) were significantly higher in the fetal compared with the adult tissue. The fetal and newborn pulmonary arterial muscle relaxant response to the Rho-kinase inhibitor Y-27632 was greater than the adult tissue. In addition to the 130-kDa isoform of MLCK, we documented the presence of minor higher-molecular-weight embryonic isoforms in the fetus and newborn. During fetal life, the lung pulmonary arterial MLCK- and MLCP-specific activities are highest and appear to be related to Rho-kinase activation during lung morphogenesis.

  14. Effect of lysine modification on the stability and cellular binding of human amyloidogenic light chains.

    PubMed

    Davern, S; Murphy, C L; O'Neill, H; Wall, J S; Weiss, D T; Solomon, A

    2011-01-01

    AL amyloidosis is characterized by the pathologic deposition as fibrils of monoclonal light chains (i.e., Bence Jones proteins [BJPs]) in particular organs and tissues. This phenomenon has been attributed to the presence in amyloidogenic proteins of particular amino acids that cause these molecules to become unstable, as well as post-translational modifications and, in regard to the latter, we have investigated the effect of biotinylation of lysyl residues on cell binding. We utilized an experimental system designed to test if BJPs obtained from patients with AL amyloidosis or, as a control, multiple myeloma (MM), bound human fibroblasts and renal epithelial cells. As documented by fluorescence microscopy and ELISA, the amyloidogenic BJPs, as compared with MM components, bound preferentially and this reactivity increased significantly after chemical modification of their lysyl residues with sulfo-NHS-biotin. Further, based on tryptophan fluorescence and circular dichroism data, it was apparent that their conformation was altered, which we hypothesize exposed a binding site not accessible on the native protein. The results of our studies indicate that post-translational structural modifications of pathologic light chains can enhance their capacity for cellular interaction and thus may contribute to the pathogenesis of AL amyloidosis and multiple myeloma.

  15. Inhibition of pathologic immunoglobulin free light chain production by small interfering RNA molecules

    PubMed Central

    Phipps, Jonathan E.; Kestler, Daniel P.; Foster, James S.; Kennel, Stephen J.; Donnell, Robert; Weiss, Deborah T.; Solomon, Alan; Wall, Jonathan S.

    2010-01-01

    Objectives Morbidity and mortality occurring in patients with multiple myeloma, AL amyloidosis, and light chain deposition disease can result from the pathologic deposition of monoclonal Ig light chains (LCs) in kidneys and other organs. To reduce synthesis of such components, therapy for these disorders typically has involved anti-plasma cell agents; however, this approach is not always effective and can have adverse consequences. We have investigated another means to achieve this objective; namely, RNA interference (RNAi). Materials and Methods SP2/O mouse myeloma cells were stably transfected with a construct encoding a λ6 LC (Wil) under control of the CMV promoter, while λ2-producing myeloma cell line RPMI 8226 was purchased from the ATCC. Both were treated with small interfering RNA (siRNA) directed specifically to the V, J, or C portions of the molecules and then analyzed by ELISA, flow cytometry and real time PCR. Results Transfected cells were found to constitutively express detectable quantities of mRNA and protein Wil and, after exposure to siRNAs, an ~40% reduction in mRNA and LC production was evidenced at 48 hours. An even greater effect was seen with the 8226 cells. Conclusion Our results have shown that RNAi can markedly reduce LC synthesis and provide the basis for testing the therapeutic potential of this strategy using in vivo experimental models of multiple myeloma. PMID:20637260

  16. Clathrin light chains' role in selective endocytosis influences antibody isotype switching.

    PubMed

    Wu, Shuang; Majeed, Sophia R; Evans, Timothy M; Camus, Marine D; Wong, Nicole M L; Schollmeier, Yvette; Park, Minjong; Muppidi, Jagan R; Reboldi, Andrea; Parham, Peter; Cyster, Jason G; Brodsky, Frances M

    2016-08-30

    Clathrin, a cytosolic protein composed of heavy and light chain subunits, assembles into a vesicle coat, controlling receptor-mediated endocytosis. To establish clathrin light chain (CLC) function in vivo, we engineered mice lacking CLCa, the major CLC isoform in B lymphocytes, generating animals with CLC-deficient B cells. In CLCa-null mice, the germinal centers have fewer B cells, and they are enriched for IgA-producing cells. This enhanced switch to IgA production in the absence of CLCa was attributable to increased transforming growth factor β receptor 2 (TGFβR2) signaling resulting from defective endocytosis. Internalization of C-X-C chemokine receptor 4 (CXCR4), but not CXCR5, was affected in CLCa-null B cells, and CLC depletion from cell lines affected endocytosis of the δ-opioid receptor, but not the β2-adrenergic receptor, defining a role for CLCs in the uptake of a subset of signaling receptors. This instance of clathrin subunit deletion in vertebrates demonstrates that CLCs contribute to clathrin's role in vivo by influencing cargo selectivity, a function previously assigned exclusively to adaptor molecules.

  17. Serum free light chain ratio as a biomarker for high-risk smoldering multiple myeloma

    PubMed Central

    Larsen, JT; Kumar, SK; Dispenzieri, A; Kyle, RA; Katzmann, JA; Rajkumar, SV

    2013-01-01

    A markedly elevated serum free light chain (FLC) ratio may serve as a biomarker for malignant transformation in high-risk smoldering multiple myeloma (SMM) and identify patients who are at imminent risk of progression. We retrospectively studied the predictive value of the serum (FLC) assay in 586 patients with SMM diagnosed between 1970 to 2010. A serum involved/uninvolved FLC ratio ≥100 was used to define high-risk SMM, which included 15% (n = 90) of the total cohort. Receiver operating characteristics analysis determined the optimal FLC ratio cut-point to predict progression to symptomatic multiple myeloma (MM) within 2 years of diagnosis, which resulted in a specificity of 97% and sensitivity of 16%. Fifty-six percent of patients developed progressive disease during median follow-up of 52 months, but this increased to 98% in the subgroup of patients with FLC ratio ≥100. The median time to progression in the FLC ratio ≥100 group was 15 months versus 55 months in the FLC <100 group (P<0.0001). The risk of progression to MM within the first 2 years in patients with an FLC ratio ≥100 was 72%; the risk of progression to MM or light chain amyloidosis in 2 years was 79%. We conclude that a high FLC ratio ≥100 is a predictor of imminent progression in SMM, and such patients may be considered candidates for early treatment intervention. PMID:23183428

  18. Effect of Lysine Modification on the Stability and Cellular Binding of Human Amyloidogenic Light Chains

    SciTech Connect

    O'Neill, Hugh Michael; Davern, Sandra M.; Murphy, Charles L.; Wall, Jonathan; Deborah, Weiss T.; Solomon, Alan

    2011-01-01

    AL amyloidosis is characterized by the pathologic deposition as fibrils of monoclonal light chains (i.e., Bence Jones proteins [BJPs]) in particular organs and tissues. This phenomenon has been attributed to the presence in amyloidogenic proteins of particular amino acids that cause these molecules to become unstable, as well as post-translational modifications and, in regard to the latter, we have investigated the effect of biotinylation of lysyl residues on cell binding. We utilized an experimental system designed to test if BJPs obtained from patients with AL amyloidosis or, as a control, multiple myeloma (MM), bound human fibroblasts and renal epithelial cells. As documented by fluorescent microscopy and ELISA, the amyloidogenic BJPs, as compared with MM components, bound preferentially and this reactivity increased significantly after chemical modification of their lysyl residues with sulfo-NHS-biotin. Further, based on tryptophan fluorescence and circular dichorism data, it was apparent that their conformation was altered, which we hypothesize exposed a binding site not accessible on the native protein. The results of our studies indicate that post-translational structural modifications of pathologic light chains can enhance their capacity for cellular interaction and thus may contribute to the pathogenesis of AL amyloidosis and multiple myeloma.

  19. Increasing evidence of mechanical force as a functional regulator in smooth muscle myosin light chain kinase

    PubMed Central

    Baumann, Fabian; Bauer, Magnus Sebastian; Rees, Martin; Alexandrovich, Alexander; Gautel, Mathias; Pippig, Diana Angela; Gaub, Hermann Eduard

    2017-01-01

    Mechanosensitive proteins are key players in cytoskeletal remodeling, muscle contraction, cell migration and differentiation processes. Smooth muscle myosin light chain kinase (smMLCK) is a member of a diverse group of serine/threonine kinases that feature cytoskeletal association. Its catalytic activity is triggered by a conformational change upon Ca2+/calmodulin (Ca2+/CaM) binding. Due to its significant homology with the force-activated titin kinase, smMLCK is suspected to be also regulatable by mechanical stress. In this study, a CaM-independent activation mechanism for smMLCK by mechanical release of the inhibitory elements is investigated via high throughput AFM single-molecule force spectroscopy. The characteristic pattern of transitions between different smMLCK states and their variations in the presence of different substrates and ligands are presented. Interaction between kinase domain and regulatory light chain (RLC) substrate is identified in the absence of CaM, indicating restored substrate-binding capability due to mechanically induced removal of the auto-inhibitory regulatory region. DOI: http://dx.doi.org/10.7554/eLife.26473.001 PMID:28696205

  20. Serum free light chain ratio as a biomarker for high-risk smoldering multiple myeloma.

    PubMed

    Larsen, J T; Kumar, S K; Dispenzieri, A; Kyle, R A; Katzmann, J A; Rajkumar, S V

    2013-04-01

    A markedly elevated serum free light chain (FLC) ratio may serve as a biomarker for malignant transformation in high-risk smoldering multiple myeloma (SMM) and identify patients who are at imminent risk of progression. We retrospectively studied the predictive value of the serum (FLC) assay in 586 patients with SMM diagnosed between 1970 to 2010. A serum involved/uninvolved FLC ratio ≥ 100 was used to define high-risk SMM, which included 15% (n=90) of the total cohort. Receiver operating characteristics analysis determined the optimal FLC ratio cut-point to predict progression to symptomatic multiple myeloma (MM) within 2 years of diagnosis, which resulted in a specificity of 97% and sensitivity of 16%. Fifty-six percent of patients developed progressive disease during median follow-up of 52 months, but this increased to 98% in the subgroup of patients with FLC ratio ≥ 100. The median time to progression in the FLC ratio ≥ 100 group was 15 months versus 55 months in the FLC <100 group (P<0.0001). The risk of progression to MM within the first 2 years in patients with an FLC ratio ≥ 100 was 72%; the risk of progression to MM or light chain amyloidosis in 2 years was 79%. We conclude that a high FLC ratio ≥ 100 is a predictor of imminent progression in SMM, and such patients may be considered candidates for early treatment intervention.

  1. Unique Substrate Recognition Mechanism of the Botulinum Neurotoxin D Light Chain*

    PubMed Central

    Guo, Jiubiao; Chen, Sheng

    2013-01-01

    Botulinum neurotoxins are the most potent protein toxins in nature. Despite the potential to block neurotransmitter release at the neuromuscular junction and cause human botulism, they are widely used in protein therapies. Among the seven botulinum neurotoxin serotypes, mechanisms of substrate recognition and specificity are known to a certain extent in the A, B, E, and F light chains, but not in the D light chain (LC/D). In this study, we addressed the unique substrate recognition mechanism of LC/D and showed that this serotype underwent hydrophobic interactions with VAMP-2 at its V1 motif. The LC/D B3, B4, and B5 binding sites specifically recognize the hydrophobic residues in the V1 motif of VAMP-2. Interestingly, we identified a novel dual recognition mechanism employed by LC/D in recognition of VAMP-2 sites at both the active site and distal binding sites, in which one site of VAMP-2 was recognized by two independent, but functionally similar LC/D sites that were complementary to each other. The dual recognition strategy increases the tolerance of LC/D to mutations and renders it a good candidate for engineering to improve its therapeutic properties. In conclusion, in this study, we identified a unique multistep substrate recognition mechanism by LC/D and provide insights for LC/D engineering and antitoxin development. PMID:23963459

  2. [Ontogenetic and phylogenetic analysis of myosin light chain proteins from skeletal muscles of loach Misgurnus fossilis].

    PubMed

    Miuge, N S; Tikhonov, A V; Ozerniuk, N D

    2005-01-01

    mRNAs of all three types of myosin light chain proteins are expressed in skeletal muscles of both larval and adult stages of loach Misgurnus fossilis (Cobitidae) and these proteins are encoded by different genes (mlc1, mlc2, and mlc3). No difference was revealed between transcripts from larval stage and adult fish for all three mlc proteins. Our approach (RT-PCR with fish-specific mlc1, mlc2, and mlc3 primers) failed to reveal the larval form of myosin light chain protein found previously by protein electrophoresis of loach fry muscle extract. Comparative analysis of the protein structure shows high homology of MLC1 and MLC3 proteins sharing a large EF-hand calcium-binding domain. Phylogenetic analysis of MLC1 from skeletal muscles of fish and other vertebrate species is concordant with the traditional phylogeny of the group. Within the Teleostei, loach MLC1 had the highest homology with other Cyprinidae, and least with Salmonidae fishes.

  3. Myosin Regulatory Light Chain (RLC) Phosphorylation Change as a Modulator of Cardiac Muscle Contraction in Disease*

    PubMed Central

    Toepfer, Christopher; Caorsi, Valentina; Kampourakis, Thomas; Sikkel, Markus B.; West, Timothy G.; Leung, Man-Ching; Al-Saud, Sara A.; MacLeod, Kenneth T.; Lyon, Alexander R.; Marston, Steven B.; Sellers, James R.; Ferenczi, Michael A.

    2013-01-01

    Understanding how cardiac myosin regulatory light chain (RLC) phosphorylation alters cardiac muscle mechanics is important because it is often altered in cardiac disease. The effect this protein phosphorylation has on muscle mechanics during a physiological range of shortening velocities, during which the heart generates power and performs work, has not been addressed. We have expressed and phosphorylated recombinant Rattus norvegicus left ventricular RLC. In vitro we have phosphorylated these recombinant species with cardiac myosin light chain kinase and zipper-interacting protein kinase. We compare rat permeabilized cardiac trabeculae, which have undergone exchange with differently phosphorylated RLC species. We were able to enrich trabecular RLC phosphorylation by 40% compared with controls and, in a separate series, lower RLC phosphorylation to 60% of control values. Compared with the trabeculae with a low level of RLC phosphorylation, RLC phosphorylation enrichment increased isometric force by more than 3-fold and peak power output by more than 7-fold and approximately doubled both maximum shortening speed and the shortening velocity that generated peak power. We augmented these measurements by observing increased RLC phosphorylation of human and rat HF samples from endocardial left ventricular homogenate. These results demonstrate the importance of increased RLC phosphorylation in the up-regulation of myocardial performance and suggest that reduced RLC phosphorylation is a key aspect of impaired contractile function in the diseased myocardium. PMID:23530050

  4. Regulatory light chain phosphorylation increases eccentric contraction-induced injury in skinned fast-twitch fibers.

    PubMed

    Childers, Martin K; McDonald, Kerry S

    2004-02-01

    During contraction, activation of Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) results in phosphorylation of myosin's regulatory light chain (RLC), which potentiates force and increases speed of force development over a wide range of [Ca(2+)]. We tested the hypothesis that RLC phosphorylation by MLCK mediates the extent of eccentric contraction-induced injury as measured by force deficit in skinned fast-twitch skeletal muscle fibers. Results indicated that RLC phosphorylation in single skinned rat psoas fibers significantly increased Ca(2+) sensitivity of isometric force; isometric force from 50 +/- 16 to 59 +/- 18 kN/m(2) during maximal Ca(2+) activation; peak absolute power output from 38 +/- 15 to 48 +/- 14 nW during maximal Ca(2+) activation; and the magnitude of contraction-induced force deficit during maximal (pCa 4.5) activation from 26 +/- 9.8 to 35 +/- 9.6%. We conclude that RLC phosphorylation increases force deficits following eccentric contractions, perhaps by increasing the number of force-generating cross-bridges.

  5. Catalytic antibody light chain capable of cleaving a chemokine receptor CCR-5 peptide with a high reaction rate constant.

    PubMed

    Mitsuda, Yukie; Hifumi, Emi; Tsuruhata, Kumi; Fujinami, Hiroko; Yamamoto, Naoki; Uda, Taizo

    2004-04-20

    A monoclonal antibody (MAb), ECL2B-2, was obtained by immunizing a peptide possessing a part of a sequence of a chemokine receptor, CCR-5, which is present as a membrane protein on the macrophage surface, and which plays an important role in human immunodeficiency virus (HIV) infection. From the DNA and the deduced amino acid sequences of the light and heavy chains of ECL2B-2 MAb, molecular modeling was conducted to calculate the steric conformation of the antibody. Modeling suggested that the structure of ECL2B-2 could possess one or two catalytic triad(s), composed of Asp(1), Ser(27a) (or Ser(27e)), and His(93) (or His(27d)), in the light chain of ECL2B-2. The three amino acid residues, Asp(1), Ser(27a), and His(93), are identical to those of catalytic antibody light chains such as VIPase and i41SL1-2. The light chain of ECL2B-2 MAb degraded the antigenic peptide CCR-5 within about 100 h. Surprisingly, the light chain had a very high catalytic reaction rate constant (k(cat)) of 2.23 min(-1), which is greater by factors of tens to hundreds than those of natural catalytic antibodies obtained previously. The heavy chain of ECL2B-2 MAb, which has no catalytic triad because of a lack of His residue, did not degrade the CCR-5 peptide.

  6. Expression of heavy chain‐only antibodies can support B‐cell development in light chain knockout chickens

    PubMed Central

    Schusser, Benjamin; Collarini, Ellen J.; Pedersen, Darlene; Yi, Henry; Ching, Kathryn; Izquierdo, Shelley; Thoma, Theresa; Lettmann, Sarah; Kaspers, Bernd; Etches, Robert J.; van de Lavoir, Marie‐Cecile; Harriman, William

    2016-01-01

    Since the discovery of antibody‐producing B cells in chickens six decades ago, chickens have been a model for B‐cell development in gut‐associated lymphoid tissue species. Here we describe targeting of the immunoglobulin light chain locus by homologous recombination in chicken primordial germ cells (PGCs) and generation of VJCL knockout chickens. In contrast to immunoglobulin heavy chain knockout chickens, which completely lack mature B cells, homozygous light chain knockout (IgL−/−) chickens have a small population of B lineage cells that develop in the bursa and migrate to the periphery. This population of B cells expresses the immunoglobulin heavy chain molecule on the cell surface. Soluble heavy‐chain‐only IgM and IgY proteins of reduced molecular weight were detectable in plasma in 4‐week‐old IgL−/− chickens, and antigen‐specific IgM and IgY heavy chain proteins were produced in response to immunization. Circulating heavy‐chain‐only IgM showed a deletion of the CH1 domain of the constant region enabling the immunoglobulin heavy chain to be secreted in the absence of the light chain. Our data suggest that the heavy chain by itself is enough to support all the important steps in B‐cell development in a gut‐associated lymphoid tissue species. PMID:27392810

  7. Light Chain Deposition Disease Diagnosed with Laser Micro-dissection, Liquid Chromatography, and Tandem Mass Spectrometry of Nodular Glomerular Lesions

    PubMed Central

    Kasagi, Tomomichi; Nobata, Hironobu; Suzuki, Keisuke; Miura, Naoto; Banno, Shogo; Takami, Akiyoshi; Yamashita, Taro; Ando, Yukio; Imai, Hirokazu

    2017-01-01

    A 42-year-old man developed nephrotic syndrome and rapidly progressive renal failure. Kidney biopsy demonstrated nodular glomerulosclerosis, negative Congo red staining, and no deposition of light or heavy chains. Laser micro-dissection and liquid chromatography with tandem mass spectrometry of nodular lesions revealed the presence of a kappa chain constant region and kappa III variable region, which signified light chain deposition disease. Dexamethasone and thalidomide were effective in decreasing the serum levels of free kappa light chain from 147.0 to 38.0 mg/L, eliminating proteinuria, and halting the worsening of the kidney dysfunction, with serum creatinine levels stable around 4.0 mg/dL for 3 years. PMID:28050001

  8. Rearrangement of immunoglobulin light chain genes in the chicken occurs prior to colonization of the embryonic bursa of Fabricius.

    PubMed Central

    Mansikka, A; Sandberg, M; Lassila, O; Toivanen, P

    1990-01-01

    We have applied polymerase-chain-reaction-directed immunoglobulin gene analysis to study the embryonic differentiation of chicken B cells. Immunoglobulin light chain DNA segments in the rearranged configuration were amplified from cells of the intraembryonic mesenchyme as early as day 7 of incubation. We showed by sequencing that the rearranged variable region genes in these early B-cell progenitors were not different from the germ-line V lambda 1 gene (the single functional light chain variable region gene in chickens). In the bursal B lymphocytes, on the other hand, clear gene conversion events were first observed at day 15 of embryonic development. The present data indicate that rearrangement of light chain genes in the chicken occurs independently of the bursa of Fabricius and that diversification of the variable region begins only later, when the surface immunoglobulin-positive B cells are proliferating in the bursal follicles. Images PMID:2123557

  9. Clinical responses with T lymphocytes targeting malignancy-associated κ light chains

    PubMed Central

    Ramos, Carlos A.; Savoldo, Barbara; Torrano, Vicky; Ballard, Brandon; Zhang, Huimin; Dakhova, Olga; Liu, Enli; Carrum, George; Kamble, Rammurti T.; Gee, Adrian P.; Mei, Zhuyong; Wu, Meng-Fen; Liu, Hao; Grilley, Bambi; Rooney, Cliona M.; Brenner, Malcolm K.; Heslop, Helen E.; Dotti, Gianpietro

    2016-01-01

    BACKGROUND. Treatment of B cell malignancies with adoptive transfer of T cells with a CD19-specific chimeric antigen receptor (CAR) shows remarkable clinical efficacy. However, long-term persistence of T cells targeting CD19, a pan–B cell marker, also depletes normal B cells and causes severe hypogammaglobulinemia. Here, we developed a strategy to target B cell malignancies more selectively by taking advantage of B cell light Ig chain restriction. We generated a CAR that is specific for the κ light chain (κ.CAR) and therefore recognizes κ-restricted cells and spares the normal B cells expressing the nontargeted λ light chain, thus potentially minimizing humoral immunity impairment. METHODS. We conducted a phase 1 clinical trial and treated 16 patients with relapsed or refractory κ+ non-Hodgkin lymphoma/chronic lymphocytic leukemia (NHL/CLL) or multiple myeloma (MM) with autologous T cells genetically modified to express κ.CAR (κ.CARTs). Other treatments were discontinued in 11 of the 16 patients at least 4 weeks prior to T cell infusion. Six patients without lymphopenia received 12.5 mg/kg cyclophosphamide 4 days before κ.CART infusion (0.2 × 108 to 2 × 108 κ.CARTs/m2). No other lymphodepletion was used. RESULTS. κ.CART expansion peaked 1–2 weeks after infusion, and cells remained detectable for more than 6 weeks. Of 9 patients with relapsed NHL or CLL, 2 entered complete remission after 2 and 3 infusions of κ.CARTs, and 1 had a partial response. Of 7 patients with MM, 4 had stable disease lasting 2–17 months. No toxicities attributable to κ.CARTs were observed. CONCLUSION. κ.CART infusion is feasible and safe and can lead to complete clinical responses. TRIAL REGISTRATION. ClinicalTrials.gov NCT00881920. FUNDING. National Cancer Institute (NCI) grants 3P50CA126752 and 5P30CA125123 and Leukemia and Lymphoma Society (LLS) Specialized Centers of Research (SCOR) grant 7018. PMID:27270177

  10. Human lambda light-chain constant region gene CMor lambda: the primary structure of lambda VI Bence Jones protein Mor.

    PubMed Central

    Frangione, B; Moloshok, T; Prelli, F; Solomon, A

    1985-01-01

    Serologic, structural, and genetic analyses have shown that the constant (C) region of human kappa light chains is encoded by a single gene, whereas that of lambda chains is encoded by multiple genes. We have determined the complete C region amino acid sequence of two monoclonal lambda VI light chains, Bence Jones proteins Sut and Mor. The C region of lambda chains Sut and Mor consists of 105 residues, as is characteristic for human lambda light chains, of which 102 are identical in sequence. Protein Sut has the C region sequence associated with the C lambda isotype Mcg-, Kern-, Oz+ and represents a product of the C lambda 3 (Kern-, Oz+) gene. Protein Mor has a C region sequence associated with Mcg-, Kern-, and Oz- proteins but differs from protein Sut by the presence of three amino acid interchanges at positions 168, 176, and 194. These substitutions distinguish protein Mor from lambda chains encoded by the C lambda 1 (Mcg+), C lambda 2 (Kern-, Oz-), and C lambda 3 (Kern-, Oz+) genes and provide further evidence for polymorphism of the human C lambda genome. The gene encoding the C region sequence of lambda chain Mor is designated CMor lambda. PMID:3923477

  11. Differences in potential for amino acid change after mutation reveals distinct strategies for kappa and lambda light-chain variation.

    PubMed

    Hershberg, Uri; Shlomchik, Mark J

    2006-10-24

    B cells generate varied yet functional clones under high rates of mutation of their V genes. It has been proposed that as a result of the opposing demands of diversification and preservation of integrity, the V genes of heavy and light chains have evolved to overexpress codons prone to amino acid change in their complementarity determining regions (CDR) compared with the framework (FW) regions. We have analyzed the germ-line V genes of heavy and light chains (both kappa and lambda), comparing codons of CDR and FW of the germ-line V regions both to each other and to control regions. We found that in both germ-line heavy chains and lambda chains, CDR codons are prone to replacement mutations, whereas in the FW, the opposite is true. Furthermore, the difference between CDR and FW in heavy chains and lambda chains is based on codons that are prone to nonconservative changes of amino acid. In contrast, in germ-line kappa chains, the codons in both CDR and FW are more prone to replacement mutations. We also demonstrated that negative selection during immune responses is more sensitive to nonconservative amino acid substitutions than overall amino acid change, demonstrating the applicability of our analysis to real-time process of selection in the immune system. The differences in germ-line kappa and lambda light chains' potential reaction to mutation suggests that via these two differently evolved light-chain types, the B cell repertoire encompasses two different strategies to balance diversity and stability in an immune response.

  12. Insulin-induced myosin light-chain phosphorylation during receptor capping in IM-9 human B-lymphoblasts.

    PubMed Central

    Majercik, M H; Bourguignon, L Y

    1988-01-01

    We have examined further the interaction between insulin surface receptors and the cytoskeleton of IM-9 human lymphoblasts. Using immunocytochemical techniques, we determined that actin, myosin, calmodulin and myosin light-chain kinase (MLCK) are all accumulated directly underneath insulin-receptor caps. In addition, we have now established that the concentration of intracellular Ca2+ (as measured by fura-2 fluorescence) increases just before insulin-induced receptor capping. Most importantly, we found that the binding of insulin to its receptor induces phosphorylation of myosin light chain in vivo. Furthermore, a number of drugs known to abolish the activation properties of calmodulin, such as trifluoperazine (TFP) or W-7, strongly inhibit insulin-receptor capping and myosin light-chain phosphorylation. These data imply that an actomyosin cytoskeletal contraction, regulated by Ca2+/calmodulin and MLCK, is involved in insulin-receptor capping. Biochemical analysis in vitro has revealed that IM-9 insulin receptors are physically associated with actin and myosin; and most interestingly, the binding of insulin-receptor/cytoskeletal complex significantly enhances the phosphorylation of the 20 kDa myosin light chain. This insulin-induced phosphorylation is inhibited by calmodulin antagonists (e.g. TFP and W-7), suggesting that the phosphorylation is catalysed by MLCK. Together, these results strongly suggest that MLCK-mediated myosin light-chain phosphorylation plays an important role in regulating the membrane-associated actomyosin contraction required for the collection of insulin receptors into caps. Images Fig. 2. Fig. 4. PMID:3048249

  13. Two distinct myosin light chain structures are induced by specific variations within the bound IQ motifs—functional implications

    PubMed Central

    Terrak, Mohammed; Wu, Guanming; Stafford, Walter F.; Lu, Renne C.; Dominguez, Roberto

    2003-01-01

    IQ motifs are widespread in nature. Mlc1p is a calmodulin-like myosin light chain that binds to IQ motifs of a class V myosin, Myo2p, and an IQGAP-related protein, Iqg1p, playing a role in polarized growth and cytokinesis in Saccharomyces cerevisiae. The crystal structures of Mlc1p bound to IQ2 and IQ4 of Myo2p differ dramatically. When bound to IQ2, Mlc1p adopts a compact conformation in which both the N- and C-lobes interact with the IQ motif. However, in the complex with IQ4, the N-lobe no longer interacts with the IQ motif, resulting in an extended conformation of Mlc1p. The two light chain structures relate to two distinct subfamilies of IQ motifs, one of which does not interact with the N-lobes of calmodulin-like light chains. The correlation between light chain structure and IQ sequence is demonstrated further by sedimentation velocity analysis of complexes of Mlc1p with IQ motifs from Myo2p and Iqg1p. The resulting ‘free’ N-lobes of myosin light chains in the extended conformation could mediate the formation of ternary complexes during protein localization and/or partner recruitment. PMID:12554638

  14. Four primordial immunoglobulin light chain isotypes, including lambda and kappa, identified in the most primitive living jawed vertebrates.

    PubMed

    Criscitiello, Michael F; Flajnik, Martin F

    2007-10-01

    The discovery of a fourth immunoglobulin (Ig) light (L) chain isotype in sharks has revealed the origins and natural history of all vertebrate L chains. Phylogenetic comparisons have established orthology between this new shark L chain and the unique Xenopus L chain isotype sigma. More importantly, inclusion of this new L chain family in phylogenetic analyses showed that all vertebrate L chains can be categorized into four ancestral clans originating prior to the emergence of cartilaginous fish: one restricted to elasmobranchs (sigma-cart/type I), one found in all cold-blooded vertebrates (sigma/teleost type 2/elasmobranch type IV), one in all groups except bony fish (lambda/elasmobranch type II), and one in all groups except birds (kappa/elasmobranch type III/teleost type 1 and 3). All four of these primordial L chain isotypes (sigma, sigma-cart, lambda and kappa) have maintained separate V region identities since their emergence at least 450 million years ago, suggestive of an ancient physiological distinction of the L chains. We suggest that, based upon unique, discrete sizes of complementarity determining regions 1 and 2 and other features of the V region sequences, the different L chain isotypes arose to provide different functional conformations in the Ig binding site when they pair with heavy chains.

  15. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility

    NASA Technical Reports Server (NTRS)

    Morfini, Gerardo; Szebenyi, Gyorgyi; Elluru, Ravindhra; Ratner, Nancy; Brady, Scott T.

    2002-01-01

    Membrane-bounded organelles (MBOs) are delivered to different domains in neurons by fast axonal transport. The importance of kinesin for fast antero grade transport is well established, but mechanisms for regulating kinesin-based motility are largely unknown. In this report, we provide biochemical and in vivo evidence that kinesin light chains (KLCs) interact with and are in vivo substrates for glycogen synthase kinase 3 (GSK3). Active GSK3 inhibited anterograde, but not retrograde, transport in squid axoplasm and reduced the amount of kinesin bound to MBOs. Kinesin microtubule binding and microtubule-stimulated ATPase activities were unaffected by GSK3 phosphorylation of KLCs. Active GSK3 was also localized preferentially to regions known to be sites of membrane delivery. These data suggest that GSK3 can regulate fast anterograde axonal transport and targeting of cargos to specific subcellular domains in neurons.

  16. Purification, Characterization, and Analysis of the Allergenic Properties of Myosin Light Chain in Procambarus clarkii.

    PubMed

    Zhang, Yong-Xia; Chen, Heng-Li; Maleki, Soheila J; Cao, Min-Jie; Zhang, Ling-Jing; Su, Wen-Jin; Liu, Guang-Ming

    2015-07-15

    Myosin light chain (MLC) plays a vital role in cell and muscle functions and has been identified as an allergen in shrimp. In this study, MLC with a molecular mass of 18 kDa was purified from crayfish (Procambarus clarkii) muscle. Its physicochemical characterization showed that the purified MLC is a glycoprotein with 4.3% carbohydrate, highly stable to heat, acid-alkali, and digestion, and weakly retains IgE-binding activity when its secondary structure was altered. Serological assays suggested that conformational epitopes predominate over linear epitopes in the purified MLC. Two isoforms of the MLC gene (MLC1 and MLC2) were cloned, and the purified MLC was identified as MLC1. Analysis of the secondary and tertiary structures of the MLCs indicated that MLC1 has four conformational epitopes and three linear epitopes, whereas MLC2 had a major conformational epitope and three linear epitopes. These results are significant for understanding hypersensitization of humans to crayfish.

  17. Light chain crystalline kidney disease: diagnostic urine microscopy as the "liquid kidney biopsy".

    PubMed

    Luciano, Randy L; Castano, Ekaterina; Fogazzi, Giovanni B; Perazella, Mark A

    2014-12-01

    Multiple myeloma (MM) is a plasma cell disorder, which often causes parenchymal kidney disease. Light chain (LC) cast nephropathy represents the most common renal lesion. In some instances, LC crystals precipitate within renal tubular lumens and deposit within proximal tubular cell cytoplasms. Importantly, urine microscopy in such patients can provide insight into the underlying LC-related lesion. Here we present two patients with MM complicated by acute kidney injury (AKI) where LC crystalline casts were observed on urinary sediment analysis. Kidney biopsy revealed acute tubular injury with LC crystal casts within both tubular lumens and renal tubular epithelial cell cytoplasms. These findings suggest that the urinary sediment may be a non-invasive way to diagnose LC crystalline-induced AKI in patients with MM.

  18. [Light chain escape followed by leukemic transformation in a patient with IgD myeloma].

    PubMed

    Hatsuse, Mayumi; Fuchida, Shin-Ichi; Okano, Akira; Murakami, Satoshi; Shimazaki, Chihiro

    2015-01-01

    A 63-year-old male with multiple myeloma (IgD-λ) received autologous peripheral blood stem cell transplantation (PBSCT) after induction of VAD in March 2008, and obtained a very good partial response. However, he required BOR/DEX and a second PBSCT for relapse, and in August 2012, treatment with LEN/DEX was started. After 4 cycles of LEN/DEX, IgD decreased but FLC-λ increased paradoxically, indicating a clonal change. In January 2013, an LCD regimen was started and after 4 cycles, IgD showed normalization, but his condition worsened as FLC-λ increased. This case showed a fulminant clinical course with light chain escape in this era of treating multiple myeloma with novel agents.

  19. Light chain multiple myeloma presenting with spinal plasmacytoma: Unusual radiological appearance mimicking giant cell tumor.

    PubMed

    Satija, Bhawna; Gupta, Rajat; Kumar, Sanyal; Chandoke, Raj

    2015-01-01

    Plasmacytoma, an initial presentation of multiple myeloma, is extremely rare and an unusual cause of spinal cord compression in a young male. A 35-year-old man presented with complaints of progressive weakness and tingling of bilateral lower limbs, severe backache for 3 months, and bladder and bowel incontinence for 1 week duration. Imaging demonstrated lytic destruction of 10 th and 11 th dorsal vertebrae with large soft tissue component and compression of the spinal cord. Biopsy was performed under computed tomography guidance and the histopathology demonstrated presence of plasmacytoma. Serum electrophoresis and bone marrow examination confirmed the diagnosis of light chain multiple myeloma. Though the magnetic resonance imaging the appearance of spinal plasmacytoma is nonspecific, a minibrain appearance has been considered pathognomonic. This case is reported for the unusual radiological appearance of this entity mimicking giant cell tumor.

  20. Dynein light intermediate chains maintain spindle bipolarity by functioning in centriole cohesion.

    PubMed

    Jones, Laura A; Villemant, Cécile; Starborg, Toby; Salter, Anna; Goddard, Georgina; Ruane, Peter; Woodman, Philip G; Papalopulu, Nancy; Woolner, Sarah; Allan, Victoria J

    2014-11-24

    Cytoplasmic dynein 1 (dynein) is a minus end-directed microtubule motor protein with many cellular functions, including during cell division. The role of the light intermediate chains (LICs; DYNC1LI1 and 2) within the complex is poorly understood. In this paper, we have used small interfering RNAs or morpholino oligonucleotides to deplete the LICs in human cell lines and Xenopus laevis early embryos to dissect the LICs' role in cell division. We show that although dynein lacking LICs drives microtubule gliding at normal rates, the LICs are required for the formation and maintenance of a bipolar spindle. Multipolar spindles with poles that contain single centrioles were formed in cells lacking LICs, indicating that they are needed for maintaining centrosome integrity. The formation of multipolar spindles via centrosome splitting after LIC depletion could be rescued by inhibiting Eg5. This suggests a novel role for the dynein complex, counteracted by Eg5, in the maintenance of centriole cohesion during mitosis.

  1. Salts Enhance Both Protein Stability and Amyloid Formation of an Immunoglobulin Light Chain

    PubMed Central

    Sikkink, Laura A.; Ramirez-Alvarado, Marina

    2008-01-01

    Amyloid fibrils are associated with sulfated glycosaminoglycans in the extracellular matrix. The presence of sulfated glycosaminoglycans is known to promote amyloid formation in vitro and in vivo, with the sulfate groups playing a role in this process. In order to understand the role that sulfate plays in amyloid formation, we have studied the effect of salts from the Hofmeister series on the protein structure, stability and amyloid formation of an amyloidogenic light chain protein, AL-12. We have been able to show for the first time a direct correlation between protein stability and amyloid formation enhancement by salts from the Hofmeister series, where SO42−conferred the most protein stability and enhancement of amyloid formation. Our study emphasizes the importance of the effect of ions in the protein bound water properties and downplays the role of specific interactions between the protein and ions. PMID:18395318

  2. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility

    NASA Technical Reports Server (NTRS)

    Morfini, Gerardo; Szebenyi, Gyorgyi; Elluru, Ravindhra; Ratner, Nancy; Brady, Scott T.

    2002-01-01

    Membrane-bounded organelles (MBOs) are delivered to different domains in neurons by fast axonal transport. The importance of kinesin for fast antero grade transport is well established, but mechanisms for regulating kinesin-based motility are largely unknown. In this report, we provide biochemical and in vivo evidence that kinesin light chains (KLCs) interact with and are in vivo substrates for glycogen synthase kinase 3 (GSK3). Active GSK3 inhibited anterograde, but not retrograde, transport in squid axoplasm and reduced the amount of kinesin bound to MBOs. Kinesin microtubule binding and microtubule-stimulated ATPase activities were unaffected by GSK3 phosphorylation of KLCs. Active GSK3 was also localized preferentially to regions known to be sites of membrane delivery. These data suggest that GSK3 can regulate fast anterograde axonal transport and targeting of cargos to specific subcellular domains in neurons.

  3. RNA metabolism in isolated nuclei: processing and transport of immunoglobulin light chain sequences.

    PubMed Central

    Otegui, C; Patterson, R J

    1981-01-01

    Transport of prelabeled RNA from isolated myeloma nuclei is studied using conditions that permit RNA synthesis. Cytosol and spermidine are not required to maintain nuclear stability and inhibited RNA release. Omission of ATP or GTP decreased release 25 to 40%. The stimulatory effect of ATP or GTP is not due to hydrolysis of the triphosphates by the nuclear envelope NTPase, since addition of quercetin (an inhibitor of this NTPase) has no effect on the quantity of RNA released. The size distribution and percentage of poly A-containing species released from nuclei incubated with or without ATP or the other rNTPs are identical. Hybridization analysis of nuclear RNA before the transport assay revealed mature and precursor k light chain mRNA sequences. Following the transport assay, a significant fraction of k mRNA precursors is chased into mature k mRNA which is found both in nuclear-retained and released RNA. PMID:6795596

  4. Design and efficient production of bovine enterokinase light chain with higher specificity in E. coli.

    PubMed

    Chun, Haarin; Joo, Keehyoung; Lee, Jooyoung; Shin, Hang-Cheol

    2011-06-01

    Enterokinase light chain (EKL) is a serine protease that recognizes Asp-Asp-Asp-Asp-Lys (D(4)K) sequence and cleaves the C-terminal peptide bond of the lysine residue. The utility of EKL as a site-specific cleavage enzyme is hampered by sporadic cleavage at other sites than the canonical D(4)K recognition sequence. In order to produce more site-specific EKL, we have generated several EKL mutants in E. coli with substitutions at Tyr174 and Lys99 using PDI (protein disulfide isomerase) fusion system. Substitution of Tyr174 by basic residues confers higher specificity on EKL. The production of EKL with higher specificity could widen the utility of EKL as a site-specific cleavage enzyme to produce various recombinant proteins with therapeutic or industrial values.

  5. Crystal structure of a supercharged variant of the human enteropeptidase light chain.

    PubMed

    Simeonov, Peter; Zahn, Michael; Sträter, Norbert; Zuchner, Thole

    2012-07-01

    The highly specific serine protease human enteropeptidase light chain cleaves the Asp4Lys recognition sequence and represents an interesting enzyme for biotechnological applications. The human enzyme shows 10 times faster kinetics compared to other animal sources but low solubility under low salt conditions, which hampers protein production and crystallization. Therefore, a supercharged variant (N6D/G21D/G22D/N142D/K210E/C112S) with increased solubility was used for crystallization. The structure (resolution, 1.9 Å) displays a typical α/β trypsin-like serine protease-fold. The mutations introduced for protein supercharging generate larger clusters of negative potential on both sites of the active cleft but do not affect the structural integrity of the protein.

  6. PKC-mediated cerebral vasoconstriction: Role of myosin light chain phosphorylation versus actin cytoskeleton reorganization.

    PubMed

    El-Yazbi, Ahmed F; Abd-Elrahman, Khaled S; Moreno-Dominguez, Alejandro

    2015-06-15

    Defective protein kinase C (PKC) signaling has been suggested to contribute to abnormal vascular contraction in disease conditions including hypertension and diabetes. Our previous work on agonist and pressure-induced cerebral vasoconstriction implicated PKC as a major contributor to force production in a myosin light chain (LC20) phosphorylation-independent manner. Here, we used phorbol dibutyrate to selectively induce a PKC-dependent constriction in rat middle cerebral arteries and delineate the relative contribution of different contractile mechanisms involved. Specifically, we employed an ultra-sensitive 3-step western blotting approach to detect changes in the content of phosphoproteins that regulate myosin light chain phosphatase (MLCP) activity, thin filament activation, and actin cytoskeleton reorganization. Data indicate that PKC activation evoked a greater constriction at a similar level of LC20 phosphorylation achieved by 5-HT. PDBu-evoked constriction persisted in the presence of Gö6976, a selective inhibitor of Ca(2+)-dependent PKC, and in the absence of extracellular Ca(2+). Biochemical evidence indicates that either + or - extracellular Ca(2+), PDBu (i) inhibits MLCP activity via the phosphorylation of myosin targeting subunit of myosin phosphatase (MYPT1) and C-kinase potentiated protein phosphatase-1 inhibitor (CPI-17), (ii) increases the phosphorylation of paxillin and heat shock protein 27 (HSP27), and reduces G-actin content, and (iii) does not change the phospho-content of the thin filament proteins, calponin and caldesmon. PDBu-induced constriction was more sensitive to disruption of actin cytoskeleton compared to inhibition of cross-bridge cycling. In conclusion, this study provided evidence for the pivotal contribution of cytoskeletal actin polymerization in force generation following PKC activation in cerebral resistance arteries. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Crystal Structures of the Tetratricopeptide Repeat Domains of Kinesin Light Chains: Insight into Cargo Recognition Mechanisms

    PubMed Central

    Tong, Yufeng; Hong, Bum-Soo; Kim, Kyung-Phil; Shen, Yang; Lim, Kyung Jik; Mackenzie, Farrell; Tempel, Wolfram; Park, Hee-Won

    2012-01-01

    Kinesin-1 transports various cargos along the axon by interacting with the cargos through its light chain subunit. Kinesin light chains (KLC) utilize its tetratricopeptide repeat (TPR) domain to interact with over 10 different cargos. Despite a high sequence identity between their TPR domains (87%), KLC1 and KLC2 isoforms exhibit differential binding properties towards some cargos. We determined the structures of human KLC1 and KLC2 tetratricopeptide repeat (TPR) domains using X-ray crystallography and investigated the different mechanisms by which KLCs interact with their cargos. Using isothermal titration calorimetry, we attributed the specific interaction between KLC1 and JNK-interacting protein 1 (JIP1) cargo to residue N343 in the fourth TRP repeat. Structurally, the N343 residue is adjacent to other asparagines and lysines, creating a positively charged polar patch within the groove of the TPR domain. Whereas, KLC2 with the corresponding residue S328 did not interact with JIP1. Based on these finding, we propose that N343 of KLC1 can form “a carboxylate clamp” with its neighboring asparagine to interact with JIP1, similar to that of HSP70/HSP90 organizing protein-1's (HOP1) interaction with heat shock proteins. For the binding of cargos shared by KLC1 and KLC2, we propose a different site located within the groove but not involving N343. We further propose a third binding site on KLC1 which involves a stretch of polar residues along the inter-TPR loops that may form a network of hydrogen bonds to JIP3 and JIP4. Together, these results provide structural insights into possible mechanisms of interaction between KLC TPR domains and various cargo proteins. PMID:22470497

  8. Cytoplasmic free calcium, myosin light chain phosphorylation, and force in phasic and tonic smooth muscle

    PubMed Central

    1988-01-01

    The time course of [Ca2+]i, tension, and myosin light chain phosphorylation were determined during prolonged depolarization with high K+ in intact tonic (rabbit pulmonary artery) and phasic (longitudinal layer of guinea pig ileum) smooth muscles. [Ca2+]i was monitored with the 340 nm/380 nm signal ratio of the fluorescent indicator fura-2. The fluorescence ratio had a similar time course in both muscle types during depolarization with 109 mM [K+]o; after a transient peak, there was a decline to 70% of its peak value in tonic smooth muscle, and to 60% in phasic smooth muscle. Tension, however, continued to increase in the pulmonary artery, while in the ileum it declined in parallel with the [Ca2+]i. On changing [K+]o from 109 to 20 mM, tension and [Ca2+]i either remained unchanged or declined in parallel in the pulmonary artery. Phosphorylation of the 20-kD myosin light chain, measured during stimulation of muscle strips with 109 mM [K+]o in another set of experiments, increased from 3% to a peak of 50% in the intact pulmonary artery, and then declined to a steady state value of 23%. In the intact ileum, a very rapid, early transient phosphorylation (up to 50%) at 2-3 s was seen. This transient declined by 30 s to a value that was close to the resting level (7%), while tension remained at 55% of its peak force. A quick release during maintained stimulation induced no detectable change in the [Ca2+]i in either type of smooth muscle. We discuss the possibility that the slowly rising tonic tension in pulmonary artery could be due to cooperativity between phosphorylated and nonphosphorylated crossbridges. PMID:3216188

  9. Crystal Structures of the Tetratricopeptide Repeat Domains of Kinesin Light Chains: Insight into Cargo Recognition Mechanisms

    SciTech Connect

    Zhu, Haizhong; Lee, Han Youl; Tong, Yufeng; Hong, Bum-Soo; Kim, Kyung-Phil; Shen, Yang; Lim, Kyung Jik; Mackenzie, Farrell; Tempel, Wolfram; Park, Hee-Won

    2012-10-23

    Kinesin-1 transports various cargos along the axon by interacting with the cargos through its light chain subunit. Kinesin light chains (KLC) utilize its tetratricopeptide repeat (TPR) domain to interact with over 10 different cargos. Despite a high sequence identity between their TPR domains (87%), KLC1 and KLC2 isoforms exhibit differential binding properties towards some cargos. We determined the structures of human KLC1 and KLC2 tetratricopeptide repeat (TPR) domains using X-ray crystallography and investigated the different mechanisms by which KLCs interact with their cargos. Using isothermal titration calorimetry, we attributed the specific interaction between KLC1 and JNK-interacting protein 1 (JIP1) cargo to residue N343 in the fourth TRP repeat. Structurally, the N343 residue is adjacent to other asparagines and lysines, creating a positively charged polar patch within the groove of the TPR domain. Whereas, KLC2 with the corresponding residue S328 did not interact with JIP1. Based on these finding, we propose that N343 of KLC1 can form 'a carboxylate clamp' with its neighboring asparagine to interact with JIP1, similar to that of HSP70/HSP90 organizing protein-1's (HOP1) interaction with heat shock proteins. For the binding of cargos shared by KLC1 and KLC2, we propose a different site located within the groove but not involving N343. We further propose a third binding site on KLC1 which involves a stretch of polar residues along the inter-TPR loops that may form a network of hydrogen bonds to JIP3 and JIP4. Together, these results provide structural insights into possible mechanisms of interaction between KLC TPR domains and various cargo proteins.

  10. Light chain types of IgD in human bone marrow and serum.

    PubMed Central

    van Nieuwkoop, J A; Radl, J

    1985-01-01

    One of the unexplained features of human IgD is its preferential expression with either kappa or lambda light chains in different situations. While the membrane IgD on B lymphocytes shows a predominance of the kappa type, about 90% of all known IgD myeloma proteins and 87% of normal IgD producing plasma cells in spleens of healthy individuals were shown to belong to the lambda type. Very little is known of the kappa/lambda light chain distribution of normal polyclonal IgD in the serum and in the bone marrow plasma cells. In this study, the kappa/lambda representation of IgD in bone marrow plasma cells and in the serum of 25 adult persons (two healthy and 23 suffering from various nonmalignant diseases) was investigated. The kappa/lambda ratio of IgD+ bone marrow plasma cells showed a large variation among the individuals of this group, in 84% of the cases being below 1.0. While about 1/3 of the investigated subjects had 80% or more of IgD of the lambda type (kappa/lambda ratio below 0.2), most showed a kappa/lambda ratio of IgD higher than that, with four persons exhibiting a clear cut predominance of IgD of the kappa type. A positive correlation (Spearman's correlation co-efficient, P = 0.005) between the percentages of IgD+ plasma cells and their kappa/lambda ratio was found. Semiquantitative evaluation of the kappa/lambda composition within the serum IgD by immunoselection was in agreement with the kappa/lambda ratio of IgD+ plasma cells in all individual cases. Images Fig. 1 PMID:3926359

  11. Prevalence and progression of monoclonal gammopathy of undetermined significance and light-chain MGUS in Germany.

    PubMed

    Eisele, Lewin; Dürig, Jan; Hüttmann, Andreas; Dührsen, Ulrich; Assert, Roland; Bokhof, Beate; Erbel, Raimund; Mann, Klaus; Jöckel, Karl-Heinz; Moebus, Susanne

    2012-02-01

    We determined the prevalence and progression rate of monoclonal gammopathy of undetermined significance (MGUS) and light-chain MGUS (LCMGUS) in Germany utilizing the biobank of the population-based Heinz Nixdorf Recall Study. The Heinz Nixdorf Recall Study comprises 4,814 men and women aged 45-75 years. To detect monoclonal proteins, standard serum electrophoresis was combined with parallel screening immunofixation using pentavalent antisera. Additionally, free light chains (FLC) were measured in all samples. Definition of MGUS included M-protein concentration, laboratory results, and disease history. LCMGUS was defined as abnormal FLC ratio, increase in FLC causing the abnormal ratio, and lack of intact immunoglobulin. One hundred sixty-five MGUS cases were identified among 4,702 screened samples (prevalence 3.5%, 95% confidence interval (CI) 3.0-4.1; median age 63 years, range 47-75 years; 103 (62%) male; IgG 59%, IgA 17%, IgM 17%, biclonal 4.8%, kappa 56%, and lambda 44%). Five cases progressed (0.6%/year, 95% CI 0.2-1.4). An abnormal FLC ratio was detected in 220 samples. Thirty-nine of these showed intact immunoglobulin. Thirty-four of the remaining met LCMGUS criteria (prevalence 0.7%, 95% CI 0.5-1.0). None of the LCMGUS cases progressed. We demonstrate a MGUS prevalence of 3.5% and a LCMGUS prevalence of 0.7% in the general population aged 45-75 years in Germany using a sensitive screening approach.

  12. Autoregulatory Control of Smooth Muscle Myosin Light Chain Kinase Promoter by Notch Signaling*

    PubMed Central

    Basu, Sanchita; Proweller, Aaron

    2016-01-01

    Smooth muscle myosin light chain kinase (SM-MLCK) is the key enzyme responsible for phosphorylation of regulatory myosin light chain (MLC20), resulting in actin-myosin cross-bridging and force generation in vascular smooth muscle required for physiological vasoreactivity and blood pressure control. In this study, we investigated the combinatorial role of myocardin/serum response factor (SRF) and Notch signaling in the transcriptional regulation of MLCK gene expression. Promoter reporter analyses in rat A10 smooth muscle cells revealed a bimodal pattern of MLCK promoter activity and gene expression upon stimulation with constitutively active Notch1 in presence of myocardin or by Jagged1 ligand stimulation. An initial Notch1-induced increase in MLCK transcription was followed by loss in promoter sensitivity, which could be restored with further Notch1 dose escalation. Real-time PCR analyses revealed that endogenous levels of Hairy Related Transcription (HRT) factor 2 (HRT2) peaked concurrently with inhibitory concentrations of Notch1. Forced expression of HRT2 demonstrated simultaneous repression of both myocardin- and Notch1-induced MLCK promoter activity. HRT2-mediated repression was further confirmed by HRT2 truncations and siHRT2 treatments that rescued MLCK promoter activity and gene expression. Chromatin immunoprecipitation studies revealed both Jagged1 ligand- and Notch1-enhanced myocardin/SRF complex formation at the promoter CArG element. In contrast, heightened levels of HRT2 concomitantly disrupted myocardin/SRF and Notch transcription complex formation at respective CArG and CSL binding elements. Taken together, SM-MLCK promoter activity appears highly sensitive to the relative levels of Notch1 signaling, HRT2, and myocardin. These findings identify a novel Notch-dependent HRT2 autoregulatory circuit coordinating transcriptional regulation of SM-MLCK. PMID:26703474

  13. Novel Polymorphisms in the Myosin Light Chain Kinase Gene Confer Risk for Acute Lung Injury

    PubMed Central

    Gao, Li; Grant, Audrey; Halder, Indrani; Brower, Roy; Sevransky, Jonathan; Maloney, James P.; Moss, Marc; Shanholtz, Carl; Yates, Charles R.; Meduri, Gianfranco Umberto; Shriver, Mark D.; Ingersoll, Roxann; Scott, Alan F.; Beaty, Terri H.; Moitra, Jaideep; Ma, Shwu Fan; Ye, Shui Q.; Barnes, Kathleen C.; Garcia, Joe G. N.

    2006-01-01

    The genetic basis of acute lung injury (ALI) is poorly understood. The myosin light chain kinase (MYLK) gene encodes the nonmuscle myosin light chain kinase isoform, a multifunctional protein involved in the inflammatory response (apoptosis, vascular permeability, leukocyte diapedesis). To examine MYLK as a novel candidate gene in sepsis-associated ALI, we sequenced exons, exon–intron boundaries, and 2 kb of 5′ UTR of the MYLK, which revealed 51 single-nucleotide polymorphisms (SNPs). Potential association of 28 MYLK SNPs with sepsis-associated ALI were evaluated in a case-control sample of 288 European American subjects (EAs) with sepsis alone, subjects with sepsis-associated ALI, or healthy control subjects, and a sample population of 158 African American subjects (AAs) with sepsis and ALI. Significant single locus associations in EAs were observed between four MYLK SNPs and the sepsis phenotype (P < 0.001), with an additional SNP associated with the ALI phenotype (P = 0.03). A significant association of a single SNP (identical to the SNP identified in EAs) was observed in AAs with sepsis (P = 0.002) and with ALI (P = 0.01). Three sepsis risk-conferring haplotypes in EAs were defined downstream of start codon of smooth muscle MYLK isoform, a region containing putative regulatory elements (P < 0.001). In contrast, multiple haplotypic analyses revealed an ALI-specific, risk-conferring haplotype at 5′ of the MYLK gene in both European and African Americans and an additional 3′ region haplotype only in African Americans. These data strongly implicate MYLK genetic variants to confer increased risk of sepsis and sepsis-associated ALI. PMID:16399953

  14. Serum levels of immunoglobulin free light chains in patients with chronic hepatitis C presenting cryoglobulinemia.

    PubMed

    Oliveira, Isabela S; Cabral, Milena S; Jesus, Larissa S; Paraná, Raymundo; Atta, Ajax M; Sousa Atta, Maria Luiza B

    2014-01-01

    Hepatitis C virus (HCV) infects B-lymphocytes, provokes cellular dysfunction and causes lymphoproliferative diseases such as cryoglobulinemia and non-Hodgkin's B-cell lymphoma. In the present study, we investigated the serum levels of kappa and lambda free light chains (FLC) of immunoglobulins and the kappa/lambda FLC ratio in Brazilian patients with chronic HCV infection and cryoglobulinemia. We also analyzed the immunochemical composition of the cryoglobulins in these patients. Twenty-eight cryoglobulinemic HCV patients composed the target group, while 37 HCV patients without cryoglobulinemia were included as controls. The median levels of kappa and lambda FLC were higher in patients with cryoglobulinemia compared to controls (p=0.001 and p=0.003, respectively), but the kappa/lambda FLC ratio was similar in patients with and without cryoglobulinemia (p>0.05). The median FLC ratio was higher in HCV patients presenting with advanced fibrosis of the liver compared to HCV patients without fibrosis (p=0.004). Kappa and lambda FLC levels were strongly correlated with the IgA, IgG and IgM levels in the patients with cryoglobulinemia. In patients without cryoglobulinemia, the kappa FLC level was only correlated with the IgG level, whereas the lambda FLC were weakly correlated with the IgA, IgG and IgM levels. An immunochemical pattern of mixed cryoglobulins (MC), predominantly IgM, IgG, IgA and kappa light chain, was verified in these immune complexes. We concluded that HCV-infected patients presenting cryoglobulinemia have vigorous polyclonal B-lymphocyte activation due to chronic HCV infection and persistent immune stimulation.

  15. Cardiac myosin light chain is phosphorylated by Ca2+/calmodulin-dependent and -independent kinase activities

    PubMed Central

    Mahajan, Pravin; Knapp, Stefan; Barton, Hannah; Sweeney, H. Lee; Kamm, Kristine E.; Stull, James T.

    2016-01-01

    The well-known, muscle-specific smooth muscle myosin light chain kinase (MLCK) (smMLCK) and skeletal muscle MLCK (skMLCK) are dedicated protein kinases regulated by an autoregulatory segment C terminus of the catalytic core that blocks myosin regulatory light chain (RLC) binding and phosphorylation in the absence of Ca2+/calmodulin (CaM). Although it is known that a more recently discovered cardiac MLCK (cMLCK) is necessary for normal RLC phosphorylation in vivo and physiological cardiac performance, information on cMLCK biochemical properties are limited. We find that a fourth uncharacterized MLCK, MLCK4, is also expressed in cardiac muscle with high catalytic domain sequence similarity with other MLCKs but lacking an autoinhibitory segment. Its crystal structure shows the catalytic domain in its active conformation with a short C-terminal “pseudoregulatory helix” that cannot inhibit catalysis as a result of missing linker regions. MLCK4 has only Ca2+/CaM-independent activity with comparable Vmax and Km values for different RLCs. In contrast, the Vmax value of cMLCK is orders of magnitude lower than those of the other three MLCK family members, whereas its Km (RLC and ATP) and KCaM values are similar. In contrast to smMLCK and skMLCK, which lack activity in the absence of Ca2+/CaM, cMLCK has constitutive activity that is stimulated by Ca2+/CaM. Potential contributions of autoregulatory segment to cMLCK activity were analyzed with chimeras of skMLCK and cMLCK. The constitutive, low activity of cMLCK appears to be intrinsic to its catalytic core structure rather than an autoinhibitory segment. Thus, RLC phosphorylation in cardiac muscle may be regulated by two different protein kinases with distinct biochemical regulatory properties. PMID:27325775

  16. Structure and function of outer dynein arm intermediate and light chain complex

    PubMed Central

    Oda, Toshiyuki; Abe, Tatsuki; Yanagisawa, Haruaki; Kikkawa, Masahide

    2016-01-01

    The outer dynein arm (ODA) is a molecular complex that drives the beating motion of cilia/flagella. Chlamydomonas ODA is composed of three heavy chains (HCs), two ICs, and 11 light chains (LCs). Although the three-dimensional (3D) structure of the whole ODA complex has been investigated, the 3D configurations of the ICs and LCs are largely unknown. Here we identified the 3D positions of the two ICs and three LCs using cryo–electron tomography and structural labeling. We found that these ICs and LCs were all localized at the root of the outer-inner dynein (OID) linker, designated the ODA-Beak complex. Of interest, the coiled-coil domain of IC2 extended from the ODA-Beak to the outer surface of ODA. Furthermore, we investigated the molecular mechanisms of how the OID linker transmits signals to the ODA-Beak, by manipulating the interaction within the OID linker using a chemically induced dimerization system. We showed that the cross-linking of the OID linker strongly suppresses flagellar motility in vivo. These results suggest that the ICs and LCs of the ODA form the ODA-Beak, which may be involved in mechanosignaling from the OID linker to the HCs. PMID:26864626

  17. A high affinity monoclonal antibody recognizing the light chain of human coagulating factor VII.

    PubMed

    Sarial, Sheila; Asadi, Farzad; Jeddi-Tehrani, Mahmood; Hadavi, Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Taghizadeh-Jahed, Masoud; Shokri, Fazel; Rabbani, Hodjattallah

    2012-12-01

    Factor VII (FVII) is a serine protease-coagulating element responsible for the initiation of an extrinsic pathway of clot formation. Here we generated and characterized a high affinity monoclonal antibody that specifically recognizes human FVII. Recombinant human FVII (rh-FVII) was used for the production of a monoclonal antibody using BALB/c mice. The specificity of the antibody was determined by Western blot using plasma samples from human, mouse, sheep, goat, bovine, rabbit, and rat. Furthermore, the antibody was used to detect transiently expressed rh-FVII in BHK21 cell line using Western blot and sandwich ELISA. A mouse IgG1 (kappa chain) monoclonal antibody clone 1F1-B11 was produced against rh-FVII. The affinity constant (K(aff)) of the antibody was calculated to be 6.4×10(10) M(-1). The antibody could specifically recognize an epitope on the light chain of hFVII, with no reactivity with factor VII from several other animals. In addition, transiently expressed rh-FVII in BHK21 cells was recognized by 1F1-B11. The high affinity as well as the specificity of 1F1-B11 for hFVII will facilitate the affinity purification of hFVII and also production of FVII deficient plasma and minimizes the risk of bovine FVII contamination when fetal bovine serum-supplemented media are used for production and subsequent purification of rh-FVII.

  18. Clathrin light and heavy chain interface: alpha-helix binding superhelix loops via critical tryptophans.

    PubMed

    Chen, Chih-Ying; Reese, Michael L; Hwang, Peter K; Ota, Nobuyuki; Agard, David; Brodsky, Frances M

    2002-11-15

    Clathrin light chain subunits (LCa and LCb) contribute to regulation of coated vesicle formation to sort proteins during receptor-mediated endocytosis and organelle biogenesis. LC binding to clathrin heavy chain (HC) was characterized by genetic and structural approaches. The core interactions were mapped to HC residues 1267-1522 (out of 1675) and LCb residues 90-157 (out of 228), using yeast two-hybrid assays. The C-termini of both subunits also displayed interactions extending beyond the core domains. Mutations to helix breakers within the LCb core disrupted HC association. Further suppressor mutagenesis uncovered compensatory mutations in HC (K1415E or K1326E) capable of rescuing the binding defects of LCb mutations W127R or W105R plus W138R, thereby pinpointing contacts between HC and LCb. Mutant HC K1415E also rescued loss of binding by LCa W130R, indicating that both LCs interact similarly with HC. Based on circular dichroism data, mapping and mutagenesis, LCa and LCb were represented as alpha-helices, aligned along the HC and, using molecular dynamics, a structural model of their interaction was generated with novel implications for LC control of clathrin assembly.

  19. An outer arm dynein light chain acts in a conformational switch for flagellar motility

    PubMed Central

    Patel-King, Ramila S.

    2009-01-01

    A system distinct from the central pair–radial spoke complex was proposed to control outer arm dynein function in response to alterations in the mechanical state of the flagellum. In this study, we examine the role of a Chlamydomonas reinhardtii outer arm dynein light chain that associates with the motor domain of the γ heavy chain (HC). We demonstrate that expression of mutant forms of LC1 yield dominant-negative effects on swimming velocity, as the flagella continually beat out of phase and stall near or at the power/recovery stroke switchpoint. Furthermore, we observed that LC1 interacts directly with tubulin in a nucleotide-independent manner and tethers this motor unit to the A-tubule of the outer doublet microtubules within the axoneme. Therefore, this dynein HC is attached to the same microtubule by two sites: via both the N-terminal region and the motor domain. We propose that this γ HC–LC1–microtubule ternary complex functions as a conformational switch to control outer arm activity. PMID:19620633

  20. Structure of heavy and light chain subunits of type A botulinum neurotoxin analyzed by circular dichroism and fluorescence measurements.

    PubMed

    Singh, B R; DasGupta, B R

    1989-01-23

    The secondary and tertiary structural features of botulinum neurotoxin (NT) serotype A, a dichain protein (Mr 145,000), and its two subunits, the heavy (H) and light (L) chains (Mr 97,000 and 53,000, respectively) were examined using circular dichroism and fluorescence spectorscopy. Nearly 70% of the amino acid residues in each of the three polypeptide preparations were found in ordered structure (sum of alpha helix, beta sheet and beta turns). Also, the alpha helix, beta sheet, beta turns and random coil contents of the dichain NT were nearly equal to the weighted mean of each of these secondary structure parameters of the L and H chains; e.g., sum of alpha helix of L chain (22%) and H chain (18.7%), as weighted mean, 19.8% was similar to that of NT (20%). These agreements suggested that the secondary structures of the subunits of the dichain NT do not significantly change when they are separated as isolated L and H chains. Fluorescence emission maximum of L chain, 4 nm less (blue shift) than that of H chain, suggested relatively more hydrophobic environment of fluorescent tryptophan residue(s) of L chain. Tryptophan fluorescence quantum yields of L chain, H chain and the NT, 0.072, 0.174 and 0.197, respectively, suggested that a) an alteration in the micro-environment of the tryptophan residues was possibly caused by interactions of L and H chain subunits of the NT and b) quantum yields for L and H chains were altered when they are together as subunits of the NT. Possible implications of structural features of the L and H chains, their interactions and the molecular mechanism of action of botulinum NT are assessed.

  1. Monoclonal gammopathy of renal significance with light-chain deposition disease diagnosed postrenal transplant: a diagnostic and therapeutic challenge.

    PubMed

    Nambirajan, Aruna; Bhowmik, Dipankar; Singh, Geetika; Agarwal, Sanjay Kumar; Dinda, Amit Kumar

    2015-03-01

    Patients with light-chain deposition disease (LCDD) frequently do not meet criteria for myeloma. In such cases, despite low tumor burden, the circulating monoclonal immunoglobulins cause renal damage, are responsible for post-transplant recurrence, and are rightly categorized as monoclonal gammopathy of renal significance (MGRS) requiring chemotherapy. A 65-year male with uncharacterized nodular glomerulopathy presented with proteinuria 3 years postrenal transplant. His allograft biopsies were diagnostic of light-chain deposition disease (likely recurrent), and in the absence of myeloma, he was labeled as MGRS. Based on the limited literature available, he was treated with bortezomib which resulted in normalization of serum-free light-chain ratios and resolution of proteinuria. He, however, later succumbed to complications of chemotherapy. This case highlights the diagnostic difficulties in LCDD, the importance of an accurate pretransplant diagnosis, and treatment of the malignant clone, in the absence of which post-transplant management of recurrence is challenging with poor outcomes.

  2. Analysis of heavy and light chain sequences of conventional camelid antibodies from Camelus dromedarius and Camelus bactrianus species.

    PubMed

    Griffin, Laura M; Snowden, James R; Lawson, Alastair D G; Wernery, Ulrich; Kinne, Jorg; Baker, Terry S

    2014-03-01

    Camel antibodies have been widely investigated, but work has focused upon the unique heavy chain antibodies found across camelid species. These are homodimers, devoid of light chains and the first constant heavy chain domain. Camelid species also display conventional hetero-tetrameric antibodies with identical pairs of heavy and light chains; in Camelus dromedarius these constitute 25% of circulating antibodies. Few investigations have been made on this subset of antibodies and complete conventional camel IgG sequences have not been reported. Here we study the sequence diversity of functional variable and constant regions observed in 57 conventional heavy, 18 kappa and 35 lambda light chains of C. dromedarius and Camelus bactrianus. We detail sequences of the full kappa and lambda light chain, variable and CH1 region for IgG1a and IgG1b and the CH2 and CH3 region for IgG1a. The majority (60%) of IgG1 variable region sequences aligned with the human IgHV3 family (clan III) and had leader sequences beginning with MELG whereas the remaining sequences aligned with the IgHV4 (clan II) and had leader sequences beginning with MRLL. Distinct differences in CDR length were observed between the two; where CDR1 was typically 5 and 7 residues and CDR2 at 17 and 16 residues, respectively. CDR3 length of IgHV4 (range 11 to 20) was closer to that typical of VHH antibodies than that of IgHV3 (range 3 to 18 residues). Designed oligonucleotide primers have enabled identification of paired heavy and light chains of conventional camel antibodies from individual B cell clones.

  3. Relationship between circulating syndecan-1 levels (CD138s) and serum free light chains in monoclonal gammopathies.

    PubMed

    Cigliana, Giovanni; Torti, Eleonora; Gulli, Francesca; De Santis, Elena; Dell'Abate, Maria Teresa; Colacicco, Luigi; Pisani, Francesco; Conti, Laura; Basile, Umberto

    2015-04-23

    Monoclonal gammopathies encompass a wide range of diseases characterized by the monoclonal expansion of a B-cell clone. Despite emerging therapeutic strategies, chances of survival of patients who are affected are still scarce, which implies that new tools are necessary not only for the diagnosis but also for the follow-up of patients affected by such diseases. In this context, the use of free light chains (FLCs) has been incorporated into many guidelines. Likewise, tumor microenvironment is consistently gaining importance as role player in tumor pathogenesis. Specifically, Syndecan-1 (CD138), a heparan-sulfate proteoglycan is attracting interests as it is highly expressed and shed by myeloma plasma-cells. The aim of our study was to analyze CD138 levels in the serum of patients affected by multiple myeloma or light chain only disease, and to compare the values obtained with free light chain (FLC) kappa, lambda and FLC ratio in both groups of patients. 84 patients affected by Multiple Myeloma and Light Chain Myeloma were recruited for this study. Serum CD138 was assessed by ELISA (Diaclone Research, France) and FLC values were quantified by nephelometry (Freelite TM Human Kappa and Lambda Free Kits, The Binding Site, UK). Data was analyzed by GraphPad Prism software and Statgraph. We observed higher CD138 mean values in myeloma patients compared to the light chain only myeloma group. A positive linear regression of CD138 and FLC was observed in the light chain only cohort as opposed to myeloma patients which show an inverse trend. The study highlighted an existing relationship between FLCs and CD138 and wishes to seek also a correlation in order to rapidly and efficiently perform diagnosis and different diagnostic schemes.

  4. In vitro aggregation behavior of a non-amyloidogenic λ light chain dimer deriving from U266 multiple myeloma cells.

    PubMed

    Arosio, Paolo; Owczarz, Marta; Müller-Späth, Thomas; Rognoni, Paola; Beeg, Marten; Wu, Hua; Salmona, Mario; Morbidelli, Massimo

    2012-01-01

    Excessive production of monoclonal light chains due to multiple myeloma can induce aggregation-related disorders, such as light chain amyloidosis (AL) and light chain deposition diseases (LCDD). In this work, we produce a non-amyloidogenic IgE λ light chain dimer from human mammalian cells U266, which originated from a patient suffering from multiple myeloma, and we investigate the effect of several physicochemical parameters on the in vitro stability of this protein. The dimer is stable in physiological conditions and aggregation is observed only when strong denaturating conditions are applied (acidic pH with salt at large concentration or heating at melting temperature T(m) at pH 7.4). The produced aggregates are spherical, amorphous oligomers. Despite the larger β-sheet content of such oligomers with respect to the native state, they do not bind Congo Red or ThT. The impossibility to obtain fibrils from the light chain dimer suggests that the occurrence of amyloidosis in patients requires the presence of the light chain fragment in the monomer form, while dimer can form only amorphous oligomers or amorphous deposits. No aggregation is observed after denaturant addition at pH 7.4 or at pH 2.0 with low salt concentration, indicating that not a generic unfolding but specific conformational changes are necessary to trigger aggregation. A specific anion effect in increasing the aggregation rate at pH 2.0 is observed according to the following order: SO(4)(-)≫Cl(-)>H(2)PO(4)(-), confirming the peculiar role of sulfate in promoting protein aggregation. It is found that, at least for the investigated case, the mechanism of the sulfate effect is related to protein secondary structure changes induced by anion binding.

  5. In Vitro Aggregation Behavior of a Non-Amyloidogenic λ Light Chain Dimer Deriving from U266 Multiple Myeloma Cells

    PubMed Central

    Arosio, Paolo; Owczarz, Marta; Müller-Späth, Thomas; Rognoni, Paola; Beeg, Marten; Wu, Hua; Salmona, Mario; Morbidelli, Massimo

    2012-01-01

    Excessive production of monoclonal light chains due to multiple myeloma can induce aggregation-related disorders, such as light chain amyloidosis (AL) and light chain deposition diseases (LCDD). In this work, we produce a non-amyloidogenic IgE λ light chain dimer from human mammalian cells U266, which originated from a patient suffering from multiple myeloma, and we investigate the effect of several physicochemical parameters on the in vitro stability of this protein. The dimer is stable in physiological conditions and aggregation is observed only when strong denaturating conditions are applied (acidic pH with salt at large concentration or heating at melting temperature Tm at pH 7.4). The produced aggregates are spherical, amorphous oligomers. Despite the larger β-sheet content of such oligomers with respect to the native state, they do not bind Congo Red or ThT. The impossibility to obtain fibrils from the light chain dimer suggests that the occurrence of amyloidosis in patients requires the presence of the light chain fragment in the monomer form, while dimer can form only amorphous oligomers or amorphous deposits. No aggregation is observed after denaturant addition at pH 7.4 or at pH 2.0 with low salt concentration, indicating that not a generic unfolding but specific conformational changes are necessary to trigger aggregation. A specific anion effect in increasing the aggregation rate at pH 2.0 is observed according to the following order: SO4−≫Cl−>H2PO4−, confirming the peculiar role of sulfate in promoting protein aggregation. It is found that, at least for the investigated case, the mechanism of the sulfate effect is related to protein secondary structure changes induced by anion binding. PMID:22432016

  6. Influence of the germline sequence on the thermodynamic stability and fibrillogenicity of human lambda 6 light chains.

    PubMed

    del Pozo Yauner, Luis; Ortiz, Ernesto; Sánchez, Rosalba; Sánchez-López, Rosana; Güereca, Leopoldo; Murphy, Charles L; Allen, Amy; Wall, Jonathan S; Fernández-Velasco, D Alejandro; Solomon, Alan; Becerril, Baltazar

    2008-08-01

    Light chain-associated amyloidosis is a fatal disease characterized by the aggregation and pathologic deposition of monoclonal light chain-related fragments as amyloid fibrils in organs or tissues throughout the body. Notably, it has been observed that proteins encoded by the lambda variable light chain (V(L)) gene segment 6a are invariably associated with amyloid deposition; however, the contribution of the gene to this phenomenon has not been established. In this regard, we have determined the thermodynamic stability and kinetics of in vitro fibrillogenesis of a recombinant (r) V(L) protein, designated 6aJL2, which contains the predicted sequences encoded by the 6a and JL2 germline genes. Additionally, we studied a 6a mutant (6aJL2-Arg25Gly), that is present in approximately 25% of all amyloid-associated lambda6 light chains. Remarkably, the wild-type 6aJL2 protein was more stable than were all known amyloidogenic kappa and lambda light chains for which stability parameters are available; more importantly, it was even more so (and less fibrillogenic) than the only clinically proven nonamyloidogenic lambda6 protein, Jto. Conversely, the mutated 6aJL2-R25G molecule was considerably less stable and more fibrillogenic than was the native 6aJL2. Our data indicate that the propensity of lambda6 light chains to form amyloid can not be attributed to thermodynamic instability of the germline-encoded Vlambda6 domain, but rather, is dependent on sequence alterations that render such proteins amyloidogenic.

  7. Thermal Denaturation and Aggregation of Myosin Subfragment 1 Isoforms with Different Essential Light Chains

    PubMed Central

    Markov, Denis I.; Zubov, Eugene O.; Nikolaeva, Olga P.; Kurganov, Boris I.; Levitsky, Dmitrii I.

    2010-01-01

    We compared thermally induced denaturation and aggregation of two isoforms of the isolated myosin head (myosin subfragment 1, S1) containing different “essential” (or “alkali”) light chains, A1 or A2. We applied differential scanning calorimetry (DSC) to investigate the domain structure of these two S1 isoforms. For this purpose, a special calorimetric approach was developed to analyze the DSC profiles of irreversibly denaturing multidomain proteins. Using this approach, we revealed two calorimetric domains in the S1 molecule, the more thermostable domain denaturing in two steps. Comparing the DSC data with temperature dependences of intrinsic fluorescence parameters and S1 ATPase inactivation, we have identified these two calorimetric domains as motor domain and regulatory domain of the myosin head, the motor domain being more thermostable. Some difference between the two S1 isoforms was only revealed by DSC in thermal denaturation of the regulatory domain. We also applied dynamic light scattering (DLS) to analyze the aggregation of S1 isoforms induced by their thermal denaturation. We have found no appreciable difference between these S1 isoforms in their aggregation properties under ionic strength conditions close to those in the muscle fiber (in the presence of 100 mM KCl). Under these conditions kinetics of this process was independent of protein concentration, and the aggregation rate was limited by irreversible denaturation of the S1 motor domain. PMID:21151434

  8. Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG

    PubMed Central

    Fischer, Nicolas; Elson, Greg; Magistrelli, Giovanni; Dheilly, Elie; Fouque, Nicolas; Laurendon, Amélie; Gueneau, Franck; Ravn, Ulla; Depoisier, Jean-François; Moine, Valery; Raimondi, Sylvain; Malinge, Pauline; Di Grazia, Laura; Rousseau, François; Poitevin, Yves; Calloud, Sébastien; Cayatte, Pierre-Alexis; Alcoz, Mathias; Pontini, Guillemette; Fagète, Séverine; Broyer, Lucile; Corbier, Marie; Schrag, Delphine; Didelot, Gérard; Bosson, Nicolas; Costes, Nessie; Cons, Laura; Buatois, Vanessa; Johnson, Zoe; Ferlin, Walter; Masternak, Krzysztof; Kosco-Vilbois, Marie

    2015-01-01

    Bispecific antibodies enable unique therapeutic approaches but it remains a challenge to produce them at the industrial scale, and the modifications introduced to achieve bispecificity often have an impact on stability and risk of immunogenicity. Here we describe a fully human bispecific IgG devoid of any modification, which can be produced at the industrial scale, using a platform process. This format, referred to as a κλ-body, is assembled by co-expressing one heavy chain and two different light chains, one κ and one λ. Using ten different targets, we demonstrate that light chains can play a dominant role in mediating specificity and high affinity. The κλ-bodies support multiple modes of action, and their stability and pharmacokinetic properties are indistinguishable from therapeutic antibodies. Thus, the κλ-body represents a unique, fully human format that exploits light-chain variable domains for antigen binding and light-chain constant domains for robust downstream processing, to realize the potential of bispecific antibodies. PMID:25672245

  9. Identification and partial characterization of a low affinity metal-binding site in the light chain of tetanus toxin.

    PubMed

    Wright, J F; Pernollet, M; Reboul, A; Aude, C; Colomb, M G

    1992-05-05

    Tetanus toxin was shown to contain a metal-binding site for zinc and copper. Equilibrium dialysis binding experiments using 65Zn indicated an association constant of 9-15 microM, with one zinc-binding site/toxin molecule. The zinc-binding site was localized to the toxin light chain as determined by binding of 65Zn to the light chain but not to the heavy chain after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transfer to Immobilon membranes. Copper was an efficient inhibitor of 65Zn binding to tetanus toxin and caused two peptide bond cleavages in the toxin light chain in the presence of ascorbate. These metal-catalyzed oxidative cleavages were inhibited by the presence of zinc. Partial characterization of metal-catalyzed oxidative modifications of a peptide based on a putative metal-binding site (HELIH) in the toxin light chain was used to map the metal-binding site in the protein.

  10. Sequential cyclophosphamide-bortezomib-dexamethasone unmasks the harmful cardiac effect of dexamethasone in primary light-chain cardiac amyloidosis.

    PubMed

    Le Bras, Fabien; Molinier-Frenkel, Valerie; Guellich, Aziz; Dupuis, Jehan; Belhadj, Karim; Guendouz, Soulef; Ayad, Karima; Colombat, Magali; Benhaiem, Nicole; Tissot, Claire Marie; Hulin, Anne; Jaccard, Arnaud; Damy, Thibaud

    2017-03-20

    Chemotherapy combining cyclophosphamide, bortezomib and dexamethasone is widely used in light-chain amyloidosis. The benefit is limited in patients with cardiac amyloidosis mainly because of adverse cardiac events. Retrospective analysis of our cohort showed that 39 patients died with 42% during the first month. A new escalation-sequential regimen was set to improve the outcomes. Nine newly-diagnosed patients were prospectively treated with close monitoring of serum N-terminal pro-brain natriuretic peptide, troponin-T and free light chains. The results show that corticoids may destabilise the heart through fluid retention. Thus, a sequential protocol may be a promising approach to treat these patients.

  11. Chromosomal orientation of the lambda light chain locus: V lambda is proximal to C lambda in 22q11.

    PubMed Central

    Emanuel, B S; Cannizzaro, L A; Magrath, I; Tsujimoto, Y; Nowell, P C; Croce, C M

    1985-01-01

    We have demonstrated that the chromosomal breakpoint at 22q11 of a Burkitt lymphoma cell line (PA682) with an 8;22 translocation interrupts the variable region of the lambda light chain locus. In these cells, all of the C lambda and some V lambda sequences translocate to the 8q+ chromosome whereas some V lambda sequences remain on the 22q-. These results indicate that the lambda light chain locus on the long arm of chromosome 22 is oriented such that V lambda is proximal to C lambda. Images PMID:3923432

  12. The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions.

    PubMed

    Blisnick, Thierry; Buisson, Johanna; Absalon, Sabrina; Marie, Alexandra; Cayet, Nadège; Bastin, Philippe

    2014-09-01

    Cilia and flagella are assembled by intraflagellar transport (IFT) of protein complexes that bring tubulin and other precursors to the incorporation site at their distal tip. Anterograde transport is driven by kinesin, whereas retrograde transport is ensured by a specific dynein. In the protist Trypanosoma brucei, two distinct genes encode fairly different dynein heavy chains (DHCs; ∼40% identity) termed DHC2.1 and DHC2.2, which form a heterodimer and are both essential for retrograde IFT. The stability of each heavy chain relies on the presence of a dynein light intermediate chain (DLI1; also known as XBX-1/D1bLIC). The presence of both heavy chains and of DLI1 at the base of the flagellum depends on the intermediate dynein chain DIC5 (FAP133/WDR34). In the IFT140(RNAi) mutant, an IFT-A protein essential for retrograde transport, the IFT dynein components are found at high concentration at the flagellar base but fail to penetrate the flagellar compartment. We propose a model by which the IFT dynein particle is assembled in the cytoplasm, reaches the base of the flagellum, and associates with the IFT machinery in a manner dependent on the IFT-A complex.

  13. Antibody light chain variable domains and their biophysically improved versions for human immunotherapy

    PubMed Central

    Kim, Dae Young; To, Rebecca; Kandalaft, Hiba; Ding, Wen; van Faassen, Henk; Luo, Yan; Schrag, Joseph D; St-Amant, Nadereh; Hefford, Mary; Hirama, Tomoko; Kelly, John F; MacKenzie, Roger; Tanha, Jamshid

    2014-01-01

    We set out to gain deeper insight into the potential of antibody light chain variable domains (VLs) as immunotherapeutics. To this end, we generated a naïve human VL phage display library and, by using a method previously shown to select for non-aggregating antibody heavy chain variable domains (VHs), we isolated a diversity of VL domains by panning the library against B cell super-antigen protein L. Eight domains representing different germline origins were shown to be non-aggregating at concentrations as high as 450 µM, indicating VL repertoires are a rich source of non-aggregating domains. In addition, the VLs demonstrated high expression yields in E. coli, protein L binding and high reversibility of thermal unfolding. A side-by-side comparison with a set of non-aggregating human VHs revealed that the VLs had similar overall profiles with respect to melting temperature (Tm), reversibility of thermal unfolding and resistance to gastrointestinal proteases. Successful engineering of a non-canonical disulfide linkage in the core of VLs did not compromise the non-aggregation state or protein L binding properties. Furthermore, the introduced disulfide bond significantly increased their Tms, by 5.5–17.5 °C, and pepsin resistance, although it somewhat reduced expression yields and subtly changed the structure of VLs. Human VLs and engineered versions may make suitable therapeutics due to their desirable biophysical features. The disulfide linkage-engineered VLs may be the preferred therapeutic format because of their higher stability, especially for oral therapy applications that necessitate high resistance to the stomach’s acidic pH and pepsin. PMID:24423624

  14. Elevated neurofilament light chain (NFL) mRNA levels in prediabetic peripheral neuropathy.

    PubMed

    Celikbilek, Asuman; Tanik, Nermin; Sabah, Seda; Borekci, Elif; Akyol, Lutfi; Ak, Hakan; Adam, Mehmet; Suher, Murat; Yilmaz, Neziha

    2014-06-01

    Evidence suggests that peripheral nerve injury occurs during the early stages of disease with mild glycemic dysregulation. Two proteins, neuron-specific enolase (NSE) and neurofilament light chain (NFL), have been examined previously as possible markers of neuronal damage in the pathophysiology of neuropathies. Herein, we aimed to determine the potential value of circulatory NSE and NFL mRNA levels in prediabetic patients and in those with peripheral neuropathy. This prospective clinical study included 45 prediabetic patients and 30 age- and sex-matched controls. All prediabetic patients were assessed with respect to diabetes-related microvascular complications, such as peripheral neuropathy, retinopathy and nephropathy. mRNA levels of NSE and NFL were determined in the blood by real-time polymerase chain reaction. NSE mRNA levels were similar between prediabetic and control groups (p > 0.05), whereas NFL mRNA levels were significantly higher in prediabetics than in controls (p < 0.001). NSE mRNA levels did not significantly differ between prediabetic patients with and without peripheral neuropathy (p > 0.05), while NFL mRNA levels were significantly higher in prediabetics with peripheral neuropathy than in those without (p = 0.038). According to correlation analysis, NFL mRNA levels were positively correlated with the Douleur Neuropathique 4 questionnaire score in prediabetic patients (r = 0.302, p = 0.044). This is the first study to suggest blood NFL mRNA as a surrogate marker for early prediction of prediabetic peripheral neuropathy, while NSE mRNA levels may be of no diagnostic value in prediabetic patients.

  15. A Cardiomyopathy Mutation in the Myosin Essential Light Chain Alters Actomyosin Structure.

    PubMed

    Guhathakurta, Piyali; Prochniewicz, Ewa; Roopnarine, Osha; Rohde, John A; Thomas, David D

    2017-07-11

    We have used site-directed time-resolved fluorescence resonance energy transfer to determine the effect of a pathological mutation in the human ventricular essential light chain (hVELC) of myosin, on the structural dynamics of the actin-myosin complex. The hVELC modulates the function of actomyosin, through the interaction of its N-terminal extension with actin and its C-terminal lobe with the myosin heavy chain. Several mutations in hVELC are associated with hypertrophic cardiomyopathy (HCM). Some biochemical effects of these mutations are known, but further insight is needed about their effects on the structural dynamics of functioning actomyosin. Therefore, we introduced the HCM mutation E56G into a single-cysteine (C16) hVELC construct and substituted it for the VELC of bovine cardiac myosin subfragment 1. Using a donor fluorescent probe on actin (at C374) and an acceptor probe on C16 of hVELC, we performed time-resolved fluorescence resonance energy transfer, directly detecting structural changes within the bound actomyosin complex during function. The E56G mutation has no significant effect on actin-activated ATPase activity or actomyosin affinity in the presence of ATP, or on the structure of the strong-binding S complex in the absence of ATP. However, in the presence of saturating ATP, where both W (prepowerstroke) and S (postpowerstroke) structural states are observed, the mutant increases the mole fraction of the S complex (increasing the duty ratio), while shifting the structure of the remaining W complex toward that of S, indicating a structural redistribution toward the strongly bound (force-generating) complex. We propose that this effect is responsible for the hypercontractile phenotype induced by this HCM mutation in myosin. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Diagnostic value of immunoglobulin κ light chain gene rearrangement analysis in B-cell lymphomas.

    PubMed

    Kokovic, Ira; Jezersek Novakovic, Barbara; Novakovic, Srdjan

    2015-03-01

    Analysis of the immunoglobulin κ light chain (IGK) gene is an alternative method for B-cell clonality assessment in the diagnosis of mature B-cell proliferations in which the detection of clonal immunoglobulin heavy chain (IGH) gene rearrangements fails. The aim of the present study was to evaluate the added value of standardized BIOMED-2 assay for the detection of clonal IGK gene rearrangements in the diagnostic setting of suspected B-cell lymphomas. With this purpose, 92 specimens from 80 patients with the final diagnosis of mature B-cell lymphoma (37 specimens), mature T-cell lymphoma (26 specimens) and reactive lymphoid proliferation (29 specimens) were analyzed for B-cell clonality. B-cell clonality analysis was performed using the BIOMED-2 IGH and IGK gene clonality assays. The determined sensitivity of the IGK assay was 67.6%, while the determined sensitivity of the IGH assay was 75.7%. The sensitivity of combined IGH+IGK assay was 81.1%. The determined specificity of the IGK assay was 96.2% in the group of T-cell lymphomas and 96.6% in the group of reactive lesions. The determined specificity of the IGH assay was 84.6% in the group of lymphomas and 86.2% in the group of reactive lesions. The comparison of GeneScan (GS) and heteroduplex pretreatment-polyacrylamide gel electrophoresis (HD-PAGE) methods for the analysis of IGK gene rearrangements showed a higher efficacy of GS analysis in a series of 27 B-cell lymphomas analyzed by both methods. In the present study, we demonstrated that by applying the combined IGH+IGK clonality assay the overall detection rate of B-cell clonality was increased by 5.4%. Thus, we confirmed the added value of the standardized BIOMED-2 IGK assay for assessment of B-cell clonality in suspected B-cell lymphomas with inconclusive clinical and cyto/histological diagnosis.

  17. N-terminal or signal peptide sequence engineering prevents truncation of human monoclonal antibody light chains.

    PubMed

    Gibson, S J; Bond, N J; Milne, S; Lewis, A; Sheriff, A; Pettman, G; Pradhan, R; Higazi, D R; Hatton, D

    2017-03-28

    Monoclonal antibodies (mAbs) contain short N-terminal signal peptides on each individual polypeptide that comprises the mature antibody, targeting them for export from the cell in which they are produced. The signal peptide is cleaved from each heavy chain (Hc) and light chain (Lc) polypeptide after translocation to the ER and prior to secretion. This process is generally highly efficient, producing a high proportion of correctly cleaved Hc and Lc polypeptides. However, mis-cleavage of the signal peptide can occur, resulting in truncation or elongation at the N-terminus of the Hc or Lc. This is undesirable for antibody manufacturing as it can impact efficacy and can result in product heterogeneity. Here, we describe a truncated variant of the Lc that was detected during a routine developability assessment of the recombinant human IgG1 MEDI8490 in Chinese hamster ovary cells. We found that the truncation of the Lc was caused due to the use of the murine Hc signal peptide together with a lambda Lc containing an SYE amino acid motif at the N-terminus. This truncation was not caused by mis-processing of the mRNA encoding the Lc and was not dependent on expression platform (transient or stable), the scale of the fed-batch culture or clonal lineage. We further show that using alternative signal peptides or engineering the Lc SYE N-terminal motif prevented the truncation and that this strategy will improve Lc homogeneity of other SYE lambda Lc-containing mAbs. This article is protected by copyright. All rights reserved.

  18. Comparing domain interactions within antibody Fabs with kappa and lambda light chains

    PubMed Central

    Toughiri, Raheleh; Wu, Xiufeng; Ruiz, Diana; Huang, Flora; Crissman, John W.; Dickey, Mark; Froning, Karen; Conner, Elaine M.; Cujec, Thomas P.; Demarest, Stephen J.

    2016-01-01

    ABSTRACT IgG antibodies are multi-domain proteins with complex inter-domain interactions. Human IgG heavy chains (HCs) associate with light chains (LCs) of the κ or λ isotype to form mature antibodies capable of binding antigen. The HC/LC interaction involves 4 domains: VH and CH1 from the HC and VL and CL from the LC. Human Fabs with κ LCs have been well characterized for their unfolding behaviors and demonstrate a significant level of cooperativity and stabilization when all 4 domains are intact. Very little is known regarding the thermodynamic properties of human Fabs with λ LCs. Here, we dissect the domain contributions to Fab stability for both κ and λ LC-containing Fabs. We find the cooperativity of unfolding between the constant domains, CH1/Cλ, and variable domains, VH/Vλ, within λ LC-containing Fabs is significantly weaker than that of κ LC-containing Fabs. The data suggests there may not be an evolutionary necessity for strong variable/constant domain cooperativity within λ LC-containing Fabs. After investigating the biophysical properties of Fabs with mismatched variable and constant domain subunits (e.g., VH/Vκ paired with CH1/Cλ or T cell receptor Cα/Cβ), the major role of the constant domains for both κ- and λ-containing Fabs may be to reduce the hydrophobic exposure at the VH/VL interface. Even though Fabs with these non-native pairings were thermodynamically less stable, they secreted well from mammalian cells as well behaved monodisperse proteins, which was in contrast to what was observed with the VH/Vκ and VH/Vλ scFvs that secreted as a mixture of monomer and aggregates. PMID:27454112

  19. Comparing domain interactions within antibody Fabs with kappa and lambda light chains.

    PubMed

    Toughiri, Raheleh; Wu, Xiufeng; Ruiz, Diana; Huang, Flora; Crissman, John W; Dickey, Mark; Froning, Karen; Conner, Elaine M; Cujec, Thomas P; Demarest, Stephen J

    2016-10-01

    IgG antibodies are multi-domain proteins with complex inter-domain interactions. Human IgG heavy chains (HCs) associate with light chains (LCs) of the κ or λ isotype to form mature antibodies capable of binding antigen. The HC/LC interaction involves 4 domains: VH and CH1 from the HC and VL and CL from the LC. Human Fabs with κ LCs have been well characterized for their unfolding behaviors and demonstrate a significant level of cooperativity and stabilization when all 4 domains are intact. Very little is known regarding the thermodynamic properties of human Fabs with λ LCs. Here, we dissect the domain contributions to Fab stability for both κ and λ LC-containing Fabs. We find the cooperativity of unfolding between the constant domains, CH1/Cλ, and variable domains, VH/Vλ, within λ LC-containing Fabs is significantly weaker than that of κ LC-containing Fabs. The data suggests there may not be an evolutionary necessity for strong variable/constant domain cooperativity within λ LC-containing Fabs. After investigating the biophysical properties of Fabs with mismatched variable and constant domain subunits (e.g., VH/Vκ paired with CH1/Cλ or T cell receptor Cα/Cβ), the major role of the constant domains for both κ- and λ-containing Fabs may be to reduce the hydrophobic exposure at the VH/VL interface. Even though Fabs with these non-native pairings were thermodynamically less stable, they secreted well from mammalian cells as well behaved monodisperse proteins, which was in contrast to what was observed with the VH/Vκ and VH/Vλ scFvs that secreted as a mixture of monomer and aggregates.

  20. The clinical spectrum of light chain myeloma. A study of 35 patients with special reference to the occurrence of amyloidosis.

    PubMed

    Stone, M J; Frendel, E P

    1975-05-01

    During a 40 month interval, 35 patients were seen with a plasma cell dyscrasia in which the only detectable monoclonal immunoglobulin abnormality consisted of excess production of either type kappa or type lambda light chains (Bence Jones protein). This group constituted 17.3 per cent of the total number of patients with plasma cell dyscrasias and 25.7 per cent of the patients with myeloma identified during the same period. Variable initial clinical presentation, the absence of a typical monoclonal serum spike and the unreliability of commonly used urine protein tests made recognition of the disorder difficult in many patients. Sulfosalicylic acid and p-toluene sulfonic acid proved valuable in screening for ueine protein. Definition of "proteinuria" by quantitative, electrophoretic and immunochemical studies was essential for diagnosis. Bence Jones proteinemia was present in 80 per cent of the patients; panhypogammaglobulinemia and lytic bone lesions were demonstrable in more than 60 per cent. Although no specific morphologic abnormality of marrow plasma cells was evident by light microscopy, the absence of rouleau on peripheral blood smear was a helpful diagnostic clue. Although patients with lambda light chains presented with more Bence Jones proteinuria, this did not correlate with the severity of initial renal functional impairment or with survival when compared to patients with kappa light chains. No other clinical or laboratory observation differentiated the groups with kappa light chains from those with lambda light chains. Amyloid was identified in seven patients. Their course was dominated by the features of primary systemic amyloidosis instead of the usual findings of classic myeloma. Patients with amyloidosis had lower initial serum albumin levels, fewer lytic bone lesions and reduced survival compared to patients without amyloidosis.

  1. Calcium-mediated regulation of recombinant hybrids of full-length Physarum myosin heavy chain with Physarum/scallop myosin light chains

    PubMed Central

    Zhang, Ying; Kawamichi, Hozumi; Kohama, Kazuhiro; Nakamura, Akio

    2016-01-01

    Physarum myosin is a Ca2+-binding protein and its activity is inhibited by Ca2+. In the present study, to clarify the light chains (LCs) from the different species (Physarum and scallop) and to determine the specific Ca2+-regulated effects, we constructed hybrid myosins with a Physarum myosin heavy chain (Ph·HC) and Physarum and/or scallop myosin LCs, and examined Ca2+-mediated regulation of ATPases and motor activities. In these experiments, it was found that Ca2+ inhibited motilities and ATPase activities of Physarum hybrid myosin with scallop regulatory light chain (ScRLC) and Physarum essential light chain (PhELC) but could not inhibit those of the Physarum hybrid myosin mutant Ph·HC/ScRLC/PhELC-3A which lacks Ca2+-binding ability, indicating that PhELC plays a critical role in Ca2+-mediated regulation of Physarum myosin. Furthermore, the effects of Ca2+ on ATPase activities of Physarum myosin constructs are in the following order: Ph·HC/PhRLC/PhELC > Ph·HC/ScRLC/PhELC > Ph·HC/PhRLC/ScELC > Ph·HC/ScRLC/ScELC, suggesting that the presence of PhRLC and PhELC leads to the greatest Ca2+ sensitivity of Physarum myosin. Although we did not observe the motilities of Physarum hybrid myosin Ph·HC/PhRLC/ScELC and Ph·HC/ScRLC/ScELC, our results suggest that Ca2+-binding to the PhELC may alter the flexibility of the regulatory domain and induce a ’closed’ state, which may consequently prevent full activity and force generation. PMID:27125976

  2. Detection of kappa and lambda light chain monoclonal proteins in human serum: automated immunoassay versus immunofixation electrophoresis.

    PubMed

    Jaskowski, Troy D; Litwin, Christine M; Hill, Harry R

    2006-02-01

    Recently, turbidimetric immunoassays for detecting and quantifying kappa and lambda free light chains (FLC) have become available and are promoted as being more sensitive than immunofixation electrophoresis (IFE) in detecting FLC monoclonal proteins. In this study, we assessed the ability of these turbidimetric assays to detect serum monoclonal proteins involving both free and heavy-chain-bound kappa and lambda light chains compared to standard immunofixation electrophoresis. Sera demonstrating a restricted band of protein migration (other than a definite M spike) by serum protein electrophoresis (SPE), which may represent early monoclonal proteins, were also examined. When compared to IFE, percent agreement, sensitivity, and specificity for the kappa-FLC and lambda-FLC were 94.6, 72.9, and 99.5% and 98.5, 91.4, and 99.7%, respectively, in detecting monoclonal proteins involving free and heavy-chain-bound light chains. The majority of sera (73.7%) demonstrating a restricted band of protein migration on SPE demonstrated abnormal IFE patterns suggestive of multiple myeloma or monoclonal gammopathy of unknown significance, but gave normal kappa/lambda FLC ratios using the turbidimetric immunoassays. In conclusion, the kappa and lambda FLC assays are significantly less sensitive (72.9 to 91.4%) than IFE, but specific in detecting serum monoclonal proteins. Moreover, the kappa/lambda ratio has little value in routine screening since the majority of sera with abnormal IFE patterns had normal kappa/lambda FLC ratios.

  3. Constitutive phosphorylation of cardiac myosin regulatory light chain prevents development of hypertrophic cardiomyopathy in mice

    PubMed Central

    Yuan, Chen-Ching; Muthu, Priya; Kazmierczak, Katarzyna; Liang, Jingsheng; Huang, Wenrui; Irving, Thomas C.; Kanashiro-Takeuchi, Rosemeire M.; Hare, Joshua M.; Szczesna-Cordary, Danuta

    2015-01-01

    Myosin light chain kinase (MLCK)-dependent phosphorylation of the regulatory light chain (RLC) of cardiac myosin is known to play a beneficial role in heart disease, but the idea of a phosphorylation-mediated reversal of a hypertrophic cardiomyopathy (HCM) phenotype is novel. Our previous studies on transgenic (Tg) HCM-RLC mice revealed that the D166V (Aspartate166 →Valine) mutation-induced changes in heart morphology and function coincided with largely reduced RLC phosphorylation in situ. We hypothesized that the introduction of a constitutively phosphorylated Serine15 (S15D) into the hearts of D166V mice would prevent the development of a deleterious HCM phenotype. In support of this notion, MLCK-induced phosphorylation of D166V-mutated hearts was found to rescue some of their abnormal contractile properties. Tg-S15D-D166V mice were generated with the human cardiac RLC-S15D-D166V construct substituted for mouse cardiac RLC and were subjected to functional, structural, and morphological assessments. The results were compared with Tg-WT and Tg-D166V mice expressing the human ventricular RLC-WT or its D166V mutant, respectively. Echocardiography and invasive hemodynamic studies demonstrated significant improvements of intact heart function in S15D-D166V mice compared with D166V, with the systolic and diastolic indices reaching those monitored in WT mice. A largely reduced maximal tension and abnormally high myofilament Ca2+ sensitivity observed in D166V-mutated hearts were reversed in S15D-D166V mice. Low-angle X-ray diffraction study revealed that altered myofilament structures present in HCM-D166V mice were mitigated in S15D-D166V rescue mice. Our collective results suggest that expression of pseudophosphorylated RLC in the hearts of HCM mice is sufficient to prevent the development of the pathological HCM phenotype. PMID:26124132

  4. Constitutive phosphorylation of cardiac myosin regulatory light chain prevents development of hypertrophic cardiomyopathy in mice

    SciTech Connect

    Yuan, Chen-Ching; Muthu, Priya; Kazmierczak, Katarzyna; Liang, Jingsheng; Huang, Wenrui; Irving, Thomas C.; Kanashiro-Takeuchi, Rosemeire M.; Hare, Joshua M.; Szczesna-Cordary, Danuta

    2015-06-29

    Myosin light chain kinase (MLCK)-dependent phosphorylation of the regulatory light chain (RLC) of cardiac myosin is known to play a beneficial role in heart disease, but the idea of a phosphorylation-mediated reversal of a hypertrophic cardiomyopathy (HCM) phenotype is novel. Our previous studies on transgenic (Tg) HCM-RLC mice revealed that the D166V (Aspartate166 →Valine) mutation-induced changes in heart morphology and function coincided with largely reduced RLC phosphorylation in situ. In this paper, we hypothesized that the introduction of a constitutively phosphorylated Serine15 (S15D) into the hearts of D166V mice would prevent the development of a deleterious HCM phenotype. In support of this notion, MLCK-induced phosphorylation of D166V-mutated hearts was found to rescue some of their abnormal contractile properties. Tg-S15D-D166V mice were generated with the human cardiac RLC-S15D-D166V construct substituted for mouse cardiac RLC and were subjected to functional, structural, and morphological assessments. The results were compared with Tg-WT and Tg-D166V mice expressing the human ventricular RLC-WT or its D166V mutant, respectively. Echocardiography and invasive hemodynamic studies demonstrated significant improvements of intact heart function in S15D-D166V mice compared with D166V, with the systolic and diastolic indices reaching those monitored in WT mice. A largely reduced maximal tension and abnormally high myofilament Ca2+ sensitivity observed in D166V-mutated hearts were reversed in S15D-D166V mice. Low-angle X-ray diffraction study revealed that altered myofilament structures present in HCM-D166V mice were mitigated in S15D-D166V rescue mice. Finally, our collective results suggest that expression of pseudophosphorylated RLC in the hearts of HCM mice is sufficient to prevent the development of the pathological HCM phenotype.

  5. [The prognostic value of baseline serum free light chain in cardiac amyloidosis].

    PubMed

    Zhao, Lei; Tian, Zhuang; Fang, Quan

    2016-03-01

    To analyze the prognostic value of baseline serum free light chain (sFLC) in light-chain (AL) cardiac amyloidosis. Twenty-seven patients with AL cardiac amyloidosis were retrospectively reviewed from January 2014 to January 2015. sFLC was measured by immuoturbidimetric assay. Baseline characteristics, echocardiographic parameters and electrocardiogram data were analyzed. According to the median baseline dFLC (involved sFLC minus uninvolved sFLC), patients were categorized into either the low dFLC(≤ 307 mg/L) or the high dFLC group (>307 mg/L). More subjects in the high dFLC group with early/late diastolic mitral velocity ratio (E/A ratio) over 2 (71.4% vs 30.8%, P=0.035), and subjects in this group had a shorter median survival time than those in the low dFLC group (3 months vs 17 months, P=0.004). A similar phenomenon for median survival time was observed when the subjects were redivided either by a new cut-off value of 180 mg/L for dFLC (low dFLC group: 17 months; high dFLC group: 4 months, P=0.014) or a κ/λ ratio, in which subjects with κ type sFLC-ratio ≤ 19.6 and λ type sFLC-ratio>0.065 were in the low sFLC-ratio group (17 months) and those with κ type sFLC-ratio > 19.6 and λ type sFLC-ratio ≤ 0.065 were in the high sFLC-ratio group (4 months, P=0.023). In multivariate analysis, dFLC and New York Heart Association (NYHA)classification of cardiac function were two risk factors associated with all-cause mortality in patients, among which the hazard ratio for higher dFLC was 4.28 (95%CI 1.55-11.8, P=0.005). The level of sFLC could be a marker for the prognosis of AL cardiac amyloidosis.

  6. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon

    PubMed Central

    Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts. PMID:27483374

  7. Constitutive phosphorylation of cardiac myosin regulatory light chain prevents development of hypertrophic cardiomyopathy in mice

    DOE PAGES

    Yuan, Chen-Ching; Muthu, Priya; Kazmierczak, Katarzyna; ...

    2015-06-29

    Myosin light chain kinase (MLCK)-dependent phosphorylation of the regulatory light chain (RLC) of cardiac myosin is known to play a beneficial role in heart disease, but the idea of a phosphorylation-mediated reversal of a hypertrophic cardiomyopathy (HCM) phenotype is novel. Our previous studies on transgenic (Tg) HCM-RLC mice revealed that the D166V (Aspartate166 →Valine) mutation-induced changes in heart morphology and function coincided with largely reduced RLC phosphorylation in situ. In this paper, we hypothesized that the introduction of a constitutively phosphorylated Serine15 (S15D) into the hearts of D166V mice would prevent the development of a deleterious HCM phenotype. In supportmore » of this notion, MLCK-induced phosphorylation of D166V-mutated hearts was found to rescue some of their abnormal contractile properties. Tg-S15D-D166V mice were generated with the human cardiac RLC-S15D-D166V construct substituted for mouse cardiac RLC and were subjected to functional, structural, and morphological assessments. The results were compared with Tg-WT and Tg-D166V mice expressing the human ventricular RLC-WT or its D166V mutant, respectively. Echocardiography and invasive hemodynamic studies demonstrated significant improvements of intact heart function in S15D-D166V mice compared with D166V, with the systolic and diastolic indices reaching those monitored in WT mice. A largely reduced maximal tension and abnormally high myofilament Ca2+ sensitivity observed in D166V-mutated hearts were reversed in S15D-D166V mice. Low-angle X-ray diffraction study revealed that altered myofilament structures present in HCM-D166V mice were mitigated in S15D-D166V rescue mice. Finally, our collective results suggest that expression of pseudophosphorylated RLC in the hearts of HCM mice is sufficient to prevent the development of the pathological HCM phenotype.« less

  8. Assay interference caused by antibodies reacting with rat kappa light-chain in human sera.

    PubMed

    Degn, Søren E; Andersen, Stig Henrik; Jensen, Lisbeth; Thiel, Steffen; Jensenius, Jens C

    2011-09-30

    The enzyme-linked immunosorbent assay (ELISA) and its derivatives are powerful tools used in research, in the clinic, and in many other analytical and quality control settings. In general, ELISAs are robust, reproducible and reliable. However, a number of pitfalls of ELISAs have been described over the years. The issue of rheumatoid factor (RF), autoantibodies against the Fc portion of IgG, is well recognized (yet often forgotten), as are problems arising from heterophilic antibodies induced by external antigens that cross-react with self-antigens. A few years ago focus was on human anti-mouse antibodies (HAMA) concomitant with the increased use of mouse monoclonal antibody therapy, a problem that is now diminishing due to development of humanized antibodies. Issues pertaining to food antigens or environmentally encountered antigens are less recognized. We report a recently encountered example of the latter resulting in interference in a solid-phase sandwich assay. Due to the set-up employing a monoclonal rat IgG for capture and a monoclonal rat IgM for development the interference had to be human antibodies reacting with rat light-chain. Out of 102 Danish Caucasian blood donors we found a prevalence of anti-rat kappa light chain antibodies of close to 40% (39/102, defined as at least 2-fold elevated measurements), with around 6% (6/102) having very high levels (defined as at least 4-fold elevated measurements), yielding significantly higher measurements in the assay designed to measure the complement component MAp19 in serum samples. The interference could be blocked by the addition of rat immunoglobulin to the sample buffer. An individual, who had been followed over time, demonstrated a periodic increase of interfering antibodies, highlighting that it is an independently varying parameter and thereby a variable interference in assays. Our results highlight a major pitfall of potential relevance to many sandwich-type assays, as well as an approach to rectify such

  9. Serum-free light-chain analysis in diagnosis and management of multiple myeloma and related conditions.

    PubMed

    Milani, Paolo; Palladini, Giovanni; Merlini, Giampaolo

    2016-01-01

    The introduction of the serum-free light-chain (S-FLC) assay has been a breakthrough in the diagnosis and management of plasma cell dyscrasias, particularly monoclonal light-chain diseases. The first method, proposed in 2001, quantifies serum-free light-chains using polyclonal antibodies. More recently, assays based on monoclonal antibodies have entered into clinical practice. S-FLC measurement plays a central role in the screening for multiple myeloma and related conditions, in association with electrophoretic techniques. Analysis of S-FLC is essential in assessing the risk of progression of precursor diseases to overt plasma cell dyscrasias. It is also useful for risk stratification in solitary plasmacytoma and AL amyloidosis. The S-FLC measurement is part of the new diagnostic criteria for multiple myeloma, and provides a marker to follow changes in clonal substructure over time. Finally, the evaluation of S-FLC is fundamental for assessing the response to treatment in monoclonal light chain diseases.

  10. Lambda Immunoglobulin Light Chain Restricted B Cells in the Ascitic Fluid in Association with Terminal Ileal Florid Follicular Hyperplasia.

    PubMed

    Aqil, Barina; Xie, Wei; Szigeti, Reka

    2016-01-01

    Distinguishing reactive changes from neoplastic processes during lymphoid tissue evaluation is oftentimes difficult. Ancillary studies, such as flow cytometry, may aid the diagnosis by demonstrating monotypic or polytypic light chain expression on the B cells. The detection of immunoglobulin light chain restricted B cell population is considered a surrogate marker of clonality, which can be confirmed by molecular assays. In general, the presence of a monotypic B cell population in the ascitic fluid is considered lymphomatous involvement rather than a reactive condition. We describe a young, previously healthy male patient who developed ascites with a lambda light chain restricted B cell population. Further investigation revealed florid follicular hyperplasia, histologically mimicking diffuse large B cell lymphoma, in the terminal ileum. Follicular hyperplasia in the gastrointestinal tract with lambda light chain restricted B cells has been recently described in the pediatric population. Importantly, our case demonstrates that such entity can occur in older age groups. This recognition could prevent misdiagnosis and unnecessary treatment in similar cases.

  11. Characterization and bacterial expression of the Dictyostelium myosin light chain kinase cDNA. Identification of an autoinhibitory domain.

    PubMed

    Tan, J L; Spudich, J A

    1991-08-25

    A full-length cDNA corresponding to the Dictyostelium myosin light chain kinase gene has been isolated and characterized. Sequence analysis of the cDNA confirms conserved protein kinase subdomains and reveals that the Dictyostelium sequence is highly homologous to those of calcium/calmodulin-dependent protein kinases, including myosin light chain kinases from higher eukaryotes. Despite the high homologies to calcium/calmodulin-dependent protein kinases, there is no recognizable calmodulin-binding domain within the Dictyostelium sequence. However, the Dictyostelium myosin light chain kinase possesses a putative auto-inhibitory domain near its carboxyl terminus. To further characterize this domain, the full-length enzyme as well as a truncated form lacking this domain were expressed in bacterial cells and purified. The full-length enzyme expressed in bacteria exhibits essentially the same biochemical characteristics as the enzyme isolated from Dictyostelium. The truncated form however exhibits a Vmax that is approximately ten times greater than that of the native enzyme. In addition, unlike the native kinase and the full-length kinase expressed in bacteria, the truncated enzyme does not undergo autophosphorylation. These results suggest that the Dictyostelium enzyme, like myosin light chain kinases from higher eukaryotes, is regulated by an autoinhibitory domain but that the specific molecular signals necessary for activation of the Dictyostelium enzyme are entirely distinct.

  12. Hematogones With Lambda Light Chain Restriction in a 4-Year-Old Boy With Burkitt Lymphoma: A Potential Diagnostic Pitfall.

    PubMed

    Guillory, Tesha; Li, Shiyong; Bergsagel, Daniel J; Weinzierl, Elizabeth; Bunting, Silvia T

    2016-05-01

    Hematogones are immature normal B cell precursors with a characteristic immunophenotype profile on flow cytometry that typically do not express surface immunoglobulin light chains. In this report, we describe a case in which the hematogones exhibit light chain restriction. Our patient was a 4-year-old boy with a complicated medical history involving treatment for a presumed bilateral Wilms tumor of the kidney that on later resection was diagnosed as Burkitt lymphoma. Flow cytometry analysis of his bone marrow revealed a small distinct population of cells expressing dim cluster of differentiation (CD)10, CD19, CD22, CD38, dim CD58, human leukocyte antigen-D related (HLA-DR), and dim CD45, which are characteristic of hematogones. These cells, however, demonstrated dim surface immunoglobulin lambda light-chain restriction. Molecular study results for immunoglobulin heavy and kappa light-chain gene rearrangements were negative. We present this case to raise awareness of the potential pitfalls of working up bone marrow for involvement by B cell lymphoproliferative disorder.

  13. Characterization and ontogenetic expression analysis of the myosin light chains from the fast white muscle of mandarin fish Siniperca chuatsi.

    PubMed

    Chu, W Y; Chen, J; Zhou, R X; Zhao, F L; Meng, T; Chen, D X; Nong, X X; Liu, Z; Lu, S Q; Zhang, J S

    2011-04-01

    Three full-length complementary DNA (cDNA) clones were isolated encoding the skeletal myosin light chain 1 (MLC1; 1237 bp), myosin light chain 2 (MLC2; 1206 bp) and myosin light chain 3 (MLC3; 1079 bp) from the fast white muscle cDNA library of mandarin fish Siniperca chuatsi. The sequence analysis indicated that MLC1 and MLC3 were not produced from differentially spliced messenger RNAs (mRNA) as reported in birds and rodents but were encoded by different genes. The MLC2 encodes 170 amino acids, which include four EF-hand (helix-loop-helix) structures. The primary structures of the Ca(2+)-binding domain were well conserved among the MLC2s of seven other fish species. The ontogenetic expression analysis by real-time PCR showed that the three light-chain mRNAs were first detected in the gastrula stage, and their expression increased from the tail bud stage to the larval stage. All three MLC mRNAs showed longitudinal expression variation in the fast white muscle of S. chuatsi, especially MLC1 which was highly expressed at the posterior area. Taken together, the study provides a better understanding about the MLC gene structure and their expression pattern in muscle development of S. chuatsi.

  14. Activation of Dynein-Mediated in Vitro Microtubule Translocation via Phosphorylation of a 29kDa Light Chain

    PubMed Central

    Hamasaki, Toshikazu; Simon, Inpakala; Barkalow, Kurt; Satir, Peter

    1995-01-01

    To explain how a substoichiometric amount of phosphorylation of a 29-kDa dynein light chain (p29) activates microtubule translocation in vitro, we constructed a “pacemaker” hypothesis. An example of a translocating microtubule that follows the hypothesis is demonstrated.

  15. Classical complement pathway component C1q: purification of human C1q, isolation of C1q collagen-like and globular head fragments and production of recombinant C1q-derivatives. Functional characterization.

    PubMed

    Kojouharova, Mihaela

    2014-01-01

    The classical complement pathway (CCP) activation is a multimolecular complex, composed of three subcomponents namely C1q, C1r, and C1s. C1q is the recognition subunit of this complex and its binding to the specific targets leads to the formation of active C1, which in turn activates the CCP in an immunoglobulin-dependent or -independent manner. C1q is a hexameric glycoprotein composed of 18 polypeptide chains of three different types (A, B, and C), organized in two fragments-collagen-like (CLR) and globular head (gC1q) possessing different functional activity. The contemporary knowledge of the C1q structure allows the isolation and purification of a C1q molecule from serum by combination of different chromatography procedures including ion-exchange, size-exclusion, and affinity chromatography, as well as the isolation of CLR and gC1q by limited enzymatic hydrolysis of the native C1q molecule. In this chapter, we described methods for purification of human C1q and its CLR and gC1q fragments, as well as methods for their biochemical and functional characterization. The production and purification of recombinant C1q derivatives ghA, ghB, and ghC (globular fragments of the individual C1q chains) are also presented.

  16. Removal of free light chains in hemodialysis patients without multiple myeloma: a crossover comparison of three different dialyzers.

    PubMed

    Donati, Gabriele; Moretti, Maria Ilaria; Baraldi, Olga; Spazzoli, Alessandra; Capelli, Irene; Comai, Giorgia; Marchetti, Antonio; Sarma, Maria; Mancini, Rita; La Manna, Gaetano

    2016-11-25

    Immunoglobulin light chains are classified as middle molecule uremic toxins able to interact with B lymphocyte membranes leading to the activation of transmembrane signaling. The ensuing impairment of neutrophil function can contribute to the chronic inflammation state of uremic patients, and the increased risk of bacterial infections or vascular calcifications. The aim of this crossover observational study was to assess the difference in free light chain removal by three different hemodialysis filters in patients not affected by multiple myeloma. Free light chain removal was compared in the polymethylmethacrylate (PMMA) membrane Filtryzer BK-F, the polyphenylene HFR17 filter and the conventional polysulfone filter F7HPS. Twenty chronic hemodialysis patients were enrolled: mean age was 67.7 ± 17.0 years, M/F = 14/6, dialysis vintage (months) 25.5 ± 32.0. The patients were randomized into two groups of treatment lasting 6 weeks each. The dialysis sessions checked were the midweek sessions and the blood was drawn at times 0, 120' and 240'. Kappa (k) and lambda (λ) light chain levels, β2microglobulin (β2M), C reactive protein (CRP) and albumin were checked. K light chain levels were 345.0 ± 100.0 mg/L, λ light chains were 121.4 ± 27.0 mg/L. The values of k light chains at times 120' and 240' were significantly lower with PMMA and HFR17 than those obtained with F7. The reduction ratio per session (RRs) for k light chains was 44.1 ± 4.3% with HFR17, 55.3 ± 3.4% with PMMA, 25.7 ± 8.3% with F7 (p = 0.018). The RRs for λ light chains was 30.3 ± 2.9% with HFR17, 37.8 ± 17.3% with PMMA, 14.0 ± 3.9% with F7 (p = 0.032). As to β2M, RRs was 42.4 ± 3.2% with HFR17 vs. 33.9 ± 2.8% with PMMA vs. 6.3 ± 1.9% with F7 (p = 0.022). The three filters tested showed no differences in CRP or albumin levels. In terms of light chain and β2M removal, the PMMA and on-line HFR filters are similar and

  17. N-Methyl-D-aspartate Receptor Subunits Are Non-myosin Targets of Myosin Regulatory Light Chain*

    PubMed Central

    Bajaj, Gaurav; Zhang, Yong; Schimerlik, Michael I.; Hau, Andrew M.; Yang, Jing; Filtz, Theresa M.; Kioussi, Chrissa; Ishmael, Jane E.

    2009-01-01

    Excitatory synapses contain multiple members of the myosin superfamily of molecular motors for which functions have not been assigned. In this study we characterized the molecular determinants of myosin regulatory light chain (RLC) binding to two major subunits of the N-methyl-d-aspartate receptor (NR). Myosin RLC bound to NR subunits in a manner that could be distinguished from the interaction of RLC with the neck region of non-muscle myosin II-B (NMII-B) heavy chain; NR-RLC interactions did not require the addition of magnesium, were maintained in the absence of the fourth EF-hand domain of the light chain, and were sensitive to RLC phosphorylation. Equilibrium fluorescence spectroscopy experiments indicate that the affinity of myosin RLC for NR1 is high (30 nm) in the context of the isolated light chain. Binding was not favored in the context of a recombinant NMII-B subfragment one, indicating that if the RLC is already bound to NMII-B it is unlikely to form a bridge between two binding partners. We report that sequence similarity in the “GXXXR” portion of the incomplete IQ2 motif found in NMII heavy chain isoforms likely contributes to recognition of NR2A as a non-myosin target of the RLC. Using site-directed mutagenesis to disrupt NR2A-RLC binding in intact cells, we find that RLC interactions facilitate trafficking of NR1/NR2A receptors to the cell membrane. We suggest that myosin RLC can adopt target-dependent conformations and that a role for this light chain in protein trafficking may be independent of the myosin II complex. PMID:18945678

  18. Expression of muscle-specific myosin heavy chain and myosin light chain 1 in the electric tissue of Electrophorus electricus (L.) in comparison with other vertebrate species.

    PubMed

    Ayres Sá, L; Menezes, M A; dos Santos Mermelstein, C

    2001-08-01

    Myosin light and heavy chains from skeletal and cardiac muscles and from the electric organ of Electrophorus electricus (L.) were characterised using biochemical and immunological methods, and compared with myosin extracted from avian, reptilian, and mammalian skeletal and cardiac muscles. The results indicate that the electric tissue has a myosin light chain 1 (LC1) and a muscle-specific myosin heavy chain. We also show that monoclonal antibody F109-12A8 (against LC1 and LC2) recognizes LC1 of myosin from human skeletal and cardiac muscles as well as those of rabbit, lizard, chick, and electric eel. However, only cardiac muscles from humans and rabbits have LC2, which is recognized by antibody F109-16F4. The data presented confirm the muscle origin of the electric tissue of E. electricus. This electric tissue has a profile of LC1 protein expression that resembles the myosin from cardiac muscle of the eel more than that from eel skeletal muscle. This work raises an interesting question about the ontogenesis and differentiation of the electric tissue of E. electricus. Copyright 2001 Wiley-Liss, Inc.

  19. Myosin light chain kinase regulates cell polarization independently of membrane tension or Rho kinase

    PubMed Central

    Lou, Sunny S.; Diz-Muñoz, Alba; Weiner, Orion D.; Fletcher, Daniel A.

    2015-01-01

    Cells polarize to a single front and rear to achieve rapid actin-based motility, but the mechanisms preventing the formation of multiple fronts are unclear. We developed embryonic zebrafish keratocytes as a model system for investigating establishment of a single axis. We observed that, although keratocytes from 2 d postfertilization (dpf) embryos resembled canonical fan-shaped keratocytes, keratocytes from 4 dpf embryos often formed multiple protrusions despite unchanged membrane tension. Using genomic, genetic, and pharmacological approaches, we determined that the multiple-protrusion phenotype was primarily due to increased myosin light chain kinase (MLCK) expression. MLCK activity influences cell polarity by increasing myosin accumulation in lamellipodia, which locally decreases protrusion lifetime, limiting lamellipodial size and allowing for multiple protrusions to coexist within the context of membrane tension limiting protrusion globally. In contrast, Rho kinase (ROCK) regulates myosin accumulation at the cell rear and does not determine protrusion size. These results suggest a novel MLCK-specific mechanism for controlling cell polarity via regulation of myosin activity in protrusions. PMID:25918227

  20. New insights into the regulation of myosin light chain phosphorylation in retinal pigment epithelial cells.

    PubMed

    Ruiz-Loredo, Ariadna Yolanda; López-Colomé, Ana María

    2012-01-01

    The retinal pigment epithelium (RPE) plays an essential role in the function of the neural retina and the maintenance of vision. Most of the functions displayed by RPE require a dynamic organization of the acto-myosin cytoskeleton. Myosin II, a main cytoskeletal component in muscle and non-muscle cells, is directly involved in force generation required for organelle movement, selective molecule transport within cell compartments, exocytosis, endocytosis, phagocytosis, and cell division, among others. Contractile processes are triggered by the phosphorylation of myosin II light chains (MLCs), which promotes actin-myosin interaction and the assembly of contractile fibers. Considerable evidence indicates that non-muscle myosin II activation is critically involved in various pathological states, increasing the interest in studying the signaling pathways controlling MLC phosphorylation. Particularly, recent findings suggest a role for non-muscle myosin II-induced contraction in RPE cell transformation involved in the establishment of numerous retinal diseases. This review summarizes the current knowledge regarding myosin function in RPE cells, as well as the signaling networks leading to MLC phosphorylation under pathological conditions. Understanding the molecular mechanisms underlying RPE dysfunction would improve the development of new therapies for the treatment or prevention of different ocular disorders leading to blindness.

  1. Crystal Structure of Botulinum Neurotoxin Type G Light Chain - Serotype Divergence in Substrate Recognition†,‡

    PubMed Central

    Arndt, Joseph W.; Yu, Wayne; Bi, Fay; Stevens, Raymond C.

    2008-01-01

    The seven serotypes (A–G) of botulinum neurotoxins (BoNTs) block neurotransmitter release through their specific proteolysis of one of the three proteins of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) complex. BoNTs have stringent substrate specificities that are unique for metalloprotease in that they require exceptionally long substrates (1). In order to understand the molecular reasons for the unique specificities of the BoNTs, we determined the crystal structure of the catalytic light chain (LC) of Clostridium botulinum neurotoxin type G (BoNT/G-LC) at 2.35 Å resolution. The structure of BoNT/G-LC reveals a C-terminal β-sheet that is critical for LC oligomerization and is unlike that seen in the other LC structures. Its structural comparison with thermolysin and the available pool of LC structures reveals important serotype differences that are likely to be involved in substrate recognition of the P1’ residue. In addition, structural and sequence analysis have identified a potential exosite of BoNT/G-LC that recognizes a SNARE recognition motif of VAMP. PMID:16008342

  2. Crystal structure of botulinum neurotoxin type G light chain: serotype divergence in substrate recognition.

    PubMed

    Arndt, Joseph W; Yu, Wayne; Bi, Fay; Stevens, Raymond C

    2005-07-19

    The seven serotypes (A-G) of botulinum neurotoxins (BoNTs) block neurotransmitter release through their specific proteolysis of one of the three proteins of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) complex. BoNTs have stringent substrate specificities that are unique for metalloprotease in that they require exceptionally long substrates (1). To understand the molecular reasons for the unique specificities of the BoNTs, we determined the crystal structure of the catalytic light chain (LC) of Clostridium botulinum neurotoxin type G (BoNT/G-LC) at 2.35 A resolution. The structure of BoNT/G-LC reveals a C-terminal beta-sheet that is critical for LC oligomerization and is unlike that seen in the other LC structures. Its structural comparison with thermolysin and the available pool of LC structures reveals important serotype differences that are likely to be involved in substrate recognition of the P1' residue. In addition, structural and sequence analyses have identified a potential exosite of BoNT/G-LC that recognizes a SNARE recognition motif of VAMP.

  3. A comparison between mammalian and avian fast skeletal muscle alkali myosin light chain genes: regulatory implications.

    PubMed Central

    Daubas, P; Robert, B; Garner, I; Buckingham, M

    1985-01-01

    A single locus in the mouse, rat and chicken encodes both alkali myosin light chains, MLC1F and MLC3F. This gene has two distinct promoters and gives rise to two different primary transcripts, which are processed by alternative and different modes of splicing to form MLC1F and MLC3F mRNAs. The MLC1F/MLC3F gene is very similar between mouse, rat and chicken, in terms of its overall structure, the length and location of the introns, and the splice site consensus sequences. Nucleotide sequences of coding regions are very conserved but 3' and 5' non coding regions of the mRNAs have diverged. In the MLC1F promoter regions, several blocks of nucleotides are highly conserved (more than 70% homology), especially a sequence of about 70 nucleotides, located between positions -80 and -150 relative to the Cap site. Conserved blocks of homology are also found in the MLC3F promoter regions, although the common sequences are shorter. The presence of such highly conserved nucleotide sequences in the 5' flanking regions suggests that these sequences are functionally important in initiation of transcription and regulation of expression of this complex gene. Primer extension experiments indicate multiple cap sites for MLC3F mRNA. Images PMID:4022770

  4. The long myosin light chain kinase is differentially phosphorylated during interphase and mitosis.

    PubMed

    Dulyaninova, Natalya G; Bresnick, Anne R

    2004-10-01

    We have shown previously that the activity of the long myosin light chain kinase (MLCK) is cell cycle regulated with a decrease in specific activity during mitosis that can be restored following treatment with alkaline phosphatase. To better understand the role and significance of phosphorylation in regulating MLCK function during mitosis, we examined the phosphorylation state of in vivo derived MLCK. Phosphoamino acid analysis and phosphopeptide mapping demonstrate that the long MLCK is differentially phosphorylated on serine residues during interphase and mitosis with the majority of the phosphorylation sites located within the N-terminal IgG domain. Biochemical assays show that Aurora B binds and phosphorylates the IgG domain of the long MLCK. In addition, phosphopeptide maps of the endogenous full-length MLCK from mitotic cells and in vitro phosphorylated IgG domain demonstrate that Aurora B phosphorylates the same sites as those observed in vivo. Altogether, these studies suggest that the long MLCK may be a cellular target for Aurora B during mitosis.

  5. Probing BoNT/A Protease Exosites: Implications for Inhibitor Design and Light Chain Longevity

    PubMed Central

    2015-01-01

    Botulinum neurotoxin serotype A (BoNT/A) is one of the most lethal toxins known. Its extreme toxicity is due to its light chain (LC), a zinc protease that cleaves SNAP-25, a synaptosome-associated protein, leading to the inhibition of neuronal activity. Studies on BoNT/A LC have revealed that two regions, termed exosites, can play an important role in BoNT catalytic activity. A clear understanding of how these exosites influence neurotoxin catalytic activity would provide a critical framework for deciphering the mechanism of SNAP-25 cleavage and the design of inhibitors. Herein, based on the crystallographic structure of BoNT/A LC complexed with its substrate, we designed an α-exosite binding probe. Experiments with this unique probe demonstrated that α-exosite binding enhanced both catalytic activity and stability of the LC. These data help delineate why α-exosite binding is needed for SNAP-25 cleavage and also provide new insights into the extended lifetime observed for BoNT/A LC in vivo. PMID:25295706

  6. Phase 2 trial of daily, oral epigallocatechin gallate in patients with light-chain amyloidosis.

    PubMed

    Meshitsuka, Sohsuke; Shingaki, Sumito; Hotta, Masatoshi; Goto, Miku; Kobayashi, Makoto; Ukawa, Yuuichi; Sagesaka, Yuko M; Wada, Yasuyo; Nojima, Masanori; Suzuki, Kenshi

    2017-03-01

    Previous studies have suggested that an increase in mitochondrial reactive oxygen species may cause organ damage in patients with light-chain (AL) amyloidosis; however, this damage can be decreased by antioxidant-agent treatment. Epigallocatechin gallate (EGCG), the major natural catechin in green tea, has potent antioxidant activity. Because EGCG has recently been reported to have a favorable toxicity profile for treating amyloidosis, we sought to examine the clinical efficacy and toxicity of EGCG in patients with AL amyloidosis. Fifty-seven patients were randomly assigned to the EGCG and observation groups and observed for six months. There were no increases in grade 3-5 adverse events and EGCG therapy was well tolerated. Although a decrease in the urinary albumin level was found in the EGCG group in patients with obvious albuminuria after treatment initiation, its antioxidant activity may not be sufficient to clarify the potential effect of EGCG in patients with AL amyloidosis. Because some of the biological markers responsible for organ damage were well correlated to the level of antioxidant potential in patients' plasma, the status of oxidative stress in the blood may indicate the extent of organ damage in clinical situations.

  7. Analysis of somatic hypermutation in mouse Peyer's patches using immunoglobulin kappa light-chain transgenes.

    PubMed Central

    González-Fernández, A; Milstein, C

    1993-01-01

    We have exploited mice transgenic for an immunoglobulin kappa light chain in order to show that immunoglobulin genes in the B cells of Peyer's patches in unimmunized mice carry a high level of somatic mutations. Most of the mutations are found in the subpopulation of B cells which, based on peanut agglutinin binding, derive from the germinal centers. The number of mutations per clone and their distribution along the variable gene segment (indicative of untemplated point mutations) are very similar to those found in antigen-specific splenic B cells of normal mice after secondary immunization. The mutations accumulate mainly in complementarity-determining region 1, in particular in some specific codons (Ser-26, Ser-31, and Ser-77) which have been previously recognized as intrinsic hypermutational hotspots. These results suggest that, as in the spleen, somatic mutation occurs in B cells which have migrated to the germinal centers, probably as a consequence of stimulation by antigens present in the gut environment. Transgenic animals are increasingly being used to define the signals involved in hypermutation. However, their subsequent study is very time-consuming because it is based on immunization and analysis of hybridomas or antigen-selected cells. We propose that the use of Peyer's patches of unimmunized adult mice offers a reliable and simple approach to analyze hypermutation of transgenes. PMID:8234326

  8. Hsp70 and antifibrillogenic peptides promote degradation and inhibit intracellular aggregation of amyloidogenic light chains.

    SciTech Connect

    Dul, J. L.; Davis, D. P.; Williamson, E. K.; Stevens, F. J.; Argon, Y.; Univ. of Chicago

    2001-02-19

    In light chain (LC) amyloidosis an immunoglobulin LC assembles into fibrils that are deposited in various tissues. Little is known about how these fibrils form in vivo. We previously showed that a known amyloidogenic LC, SMA, can give rise to amyloid fibrils in vitro when a segment of one of its {beta} sheets undergoes a conformational change, exposing an Hsp70 binding site. To examine SMA aggregation in vivo, we expressed it and its wild-type counterpart, LEN, in COS cells. While LEN is rapidly oxidized and subsequently secreted, newly synthesized SMA remains in the reduced state. Most SMA molecules are dislocated out of the ER into the cytosol, where they are ubiquitinylated and degraded by proteasomes. A parallel pathway for molecules that are not degraded is condensation into perinuclear aggresomes that are surrounded by vimentin-containing intermediate filaments and are dependent upon intact microtubules. Inhibition of proteasome activity shifts the balance toward aggresome formation. Intracellular aggregation is decreased and targeting to proteasomes improved by overexpression of the cytosolic chaperone Hsp70. Importantly, transduction into the cell of an Hsp70 target peptide, derived from the LC sequence, also reduces aggresome formation and increases SMA degradation. These results demonstrate that an amyloidogenic LC can aggregate intracellularly despite the common presentation of extracellular aggregates, and that a similar molecular surface mediates both in vitro fibril formation and in vivo aggregation. Furthermore, rationally designed peptides can be used to suppress this aggregation and may provide a feasible therapeutic approach.

  9. Dynein light chain interaction with the peroxisomal import docking complex modulates peroxisome biogenesis in yeast

    PubMed Central

    Chang, Jinlan; Tower, Robert J.; Lancaster, David L.; Rachubinski, Richard A.

    2013-01-01

    Summary Dynein is a large macromolecular motor complex that moves cargo along microtubules. A motor-independent role for the light chain of dynein, Dyn2p, in peroxisome biology in Saccharomyces cerevisiae was suggested from its interaction with Pex14p, a component of the peroxisomal matrix protein import docking complex. Here we show that cells of the yeast Yarrowia lipolytica deleted for the gene encoding the homologue of Dyn2p are impaired in peroxisome function and biogenesis. These cells exhibit compromised growth on medium containing oleic acid as the carbon source, the metabolism of which requires functional peroxisomes. Their peroxisomes have abnormal morphology, atypical matrix protein localization, and an absence of proteolytic processing of the matrix enzyme thiolase, which normally occurs upon its import into the peroxisome. We also show physical and genetic interactions between Dyn2p and members of the docking complex, particularly Pex17p. Together, our results demonstrate a role for Dyn2p in the assembly of functional peroxisomes and provide evidence that Dyn2p acts in cooperation with the peroxisomal matrix protein import docking complex to effect optimal matrix protein import. PMID:23943868

  10. Dynein light chain interaction with the peroxisomal import docking complex modulates peroxisome biogenesis in yeast.

    PubMed

    Chang, Jinlan; Tower, Robert J; Lancaster, David L; Rachubinski, Richard A

    2013-10-15

    Dynein is a large macromolecular motor complex that moves cargo along microtubules. A motor-independent role for the light chain of dynein, Dyn2p, in peroxisome biology in Saccharomyces cerevisiae was suggested from its interaction with Pex14p, a component of the peroxisomal matrix protein import docking complex. Here we show that cells of the yeast Yarrowia lipolytica deleted for the gene encoding the homologue of Dyn2p are impaired in peroxisome function and biogenesis. These cells exhibit compromised growth on medium containing oleic acid as the carbon source, the metabolism of which requires functional peroxisomes. Their peroxisomes have abnormal morphology, atypical matrix protein localization, and an absence of proteolytic processing of the matrix enzyme thiolase, which normally occurs upon its import into the peroxisome. We also show physical and genetic interactions between Dyn2p and members of the docking complex, particularly Pex17p. Together, our results demonstrate a role for Dyn2p in the assembly of functional peroxisomes and provide evidence that Dyn2p acts in cooperation with the peroxisomal matrix protein import docking complex to effect optimal matrix protein import.

  11. Sequence analysis of the myosin regulatory light chain gene of the vestimentiferan Riftia pachyptila.

    PubMed

    Ravaux, J; Hassanin, A; Deutsch, J; Gaill, F; Markmann-Mulisch, U

    2001-01-24

    We have isolated and characterized a cDNA (DNA complementary to RNA) clone (Rf69) from the vestimentiferan Riftia pachyptila. The cDNA insert consists of 1169 base pairs. The aminoacid sequence deduced from the longest reading frame is 193 residues in length, and clearly characterized it as a myosin regulatory light chain (RLC). The RLC primary structure is described in relation to its function in muscle contraction. The comparison with other RLCs suggested that Riftia myosin is probably regulated through its RLC either by phosphorylation like the vertebrate smooth muscle myosins, and/or by Ca2+-binding like the mollusk myosins. Riftia RLC possesses a N-terminal extension lacking in all other species besides the earthworm Lumbricus terrestris. Aminoacid sequence comparisons with a number of RLCs from vertebrates and invertebrates revealed a relatively high identity score (64%) between Riftia RLC and the homologous gene from Lumbricus. The relationships between the members of the myosin RLCs were examined by two phylogenetic methods, i.e. distance matrix and maximum parsimony. The resulting trees depict the grouping of the RLCs according to their role in myosin activity regulation. In all trees, Riftia RLC groups with RLCs that depend on Ca2+-binding for myosin activity regulation.

  12. Behavioural and other phenotypes in a cytoplasmic dynein light intermediate chain 1 mutant mouse

    PubMed Central

    Banks, Gareth T.; Haas, Matilda A.; Line, Samantha; Shepherd, Hazel L.; AlQatari, Mona; Stewart, Sammy; Rishal, Ida; Philpott, Amelia; Kalmar, Bernadett; Kuta, Anna; Groves, Michael; Parkinson, Nicholas; Acevedo-Arozena, Abraham; Brandner, Sebastian; Bannerman, David; Greensmith, Linda; Hafezparast, Majid; Koltzenburg, Martin; Deacon, Robert; Fainzilber, Mike; Fisher, Elizabeth M.C.

    2011-01-01

    The cytoplasmic dynein complex is fundamentally important to all eukaryotic cells for transporting a variety of essential cargoes along microtubules within the cell. This complex also plays more specialised roles in neurons. The complex consists of 11 types of protein that interact with each other and with external adaptors, regulators and cargoes. Despite the importance of the cytoplasmic dynein complex, we know comparatively little of the roles of each component protein, and in mammals few mutants exist that allow us to explore the effects of defects in dynein controlled processes in the context of the whole organism. Here we have taken a genotype-driven approach in mouse (Mus musculus) to analyse the role of one subunit, the dynein light intermediate chain 1 (Dync1li1). We find that, surprisingly, an N235Y point mutation in this protein results in altered neuronal development, as shown from in vivo studies in the developing cortex, and analyses of electrophysiological function. Moreover, mutant mice display increased anxiety, thus linking dynein functions to a behavioural phenotype in mammals for the first time. These results demonstrate the important role that dynein controlled processes play in the correct development and function of the mammalian nervous system. PMID:21471385

  13. Behavioral and other phenotypes in a cytoplasmic Dynein light intermediate chain 1 mutant mouse.

    PubMed

    Banks, Gareth T; Haas, Matilda A; Line, Samantha; Shepherd, Hazel L; Alqatari, Mona; Stewart, Sammy; Rishal, Ida; Philpott, Amelia; Kalmar, Bernadett; Kuta, Anna; Groves, Michael; Parkinson, Nicholas; Acevedo-Arozena, Abraham; Brandner, Sebastian; Bannerman, David; Greensmith, Linda; Hafezparast, Majid; Koltzenburg, Martin; Deacon, Robert; Fainzilber, Mike; Fisher, Elizabeth M C

    2011-04-06

    The cytoplasmic dynein complex is fundamentally important to all eukaryotic cells for transporting a variety of essential cargoes along microtubules within the cell. This complex also plays more specialized roles in neurons. The complex consists of 11 types of protein that interact with each other and with external adaptors, regulators and cargoes. Despite the importance of the cytoplasmic dynein complex, we know comparatively little of the roles of each component protein, and in mammals few mutants exist that allow us to explore the effects of defects in dynein-controlled processes in the context of the whole organism. Here we have taken a genotype-driven approach in mouse (Mus musculus) to analyze the role of one subunit, the dynein light intermediate chain 1 (Dync1li1). We find that, surprisingly, an N235Y point mutation in this protein results in altered neuronal development, as shown from in vivo studies in the developing cortex, and analyses of electrophysiological function. Moreover, mutant mice display increased anxiety, thus linking dynein functions to a behavioral phenotype in mammals for the first time. These results demonstrate the important role that dynein-controlled processes play in the correct development and function of the mammalian nervous system.

  14. Dynein light intermediate chains maintain spindle bipolarity by functioning in centriole cohesion

    PubMed Central

    Jones, Laura A.; Villemant, Cécile; Starborg, Toby; Salter, Anna; Goddard, Georgina; Ruane, Peter; Woodman, Philip G.; Papalopulu, Nancy

    2014-01-01

    Cytoplasmic dynein 1 (dynein) is a minus end–directed microtubule motor protein with many cellular functions, including during cell division. The role of the light intermediate chains (LICs; DYNC1LI1 and 2) within the complex is poorly understood. In this paper, we have used small interfering RNAs or morpholino oligonucleotides to deplete the LICs in human cell lines and Xenopus laevis early embryos to dissect the LICs’ role in cell division. We show that although dynein lacking LICs drives microtubule gliding at normal rates, the LICs are required for the formation and maintenance of a bipolar spindle. Multipolar spindles with poles that contain single centrioles were formed in cells lacking LICs, indicating that they are needed for maintaining centrosome integrity. The formation of multipolar spindles via centrosome splitting after LIC depletion could be rescued by inhibiting Eg5. This suggests a novel role for the dynein complex, counteracted by Eg5, in the maintenance of centriole cohesion during mitosis. PMID:25422374

  15. Novel pathologic scoring tools predict end-stage kidney disease in light chain (AL) amyloidosis.

    PubMed

    Rubinstein, Samuel; Cornell, Robert F; Du, Liping; Concepcion, Beatrice; Goodman, Stacey; Harrell, Shelton; Horst, Sara; Lenihan, Daniel; Slosky, David; Fogo, Agnes; Langone, Anthony

    2017-09-01

    Light chain (AL) amyloidosis frequently involves the kidney, causing significant morbidity and mortality. A pathologic scoring system with prognostic utility has not been developed. We hypothesized that the extent of amyloid deposition and degree of scarring injury on kidney biopsy, could provide prognostic value, and aimed to develop pathologic scoring tools based on these features. This is a case-control study of 39 patients treated for AL amyloidosis with biopsy-proven kidney involvement at a large academic medical center. Our novel scoring tools, composite scarring injury score (CSIS) and amyloid score (AS) were applied to each kidney biopsy. The primary outcome was progression to dialysis-dependent end-stage kidney disease (ESKD) using a 12-month landmark analysis. At 12 months, nine patients had progressed to ESKD. Patients with an AS ≥7.5 had a significantly higher cumulative incidence of ESKD than those with AS <7.5 (p = .04, 95% CI 0.13-0.64). Using a 12-month landmark analysis, AS correlated with progression to ESKD. These data suggest that a kidney biopsy, in addition to providing diagnostic information, can be the basis for a pathologic scoring system with prognostic significance.

  16. Proteomic identification of brain proteins that interact with dynein light chain LC8.

    PubMed

    Navarro-Lérida, Inmaculada; Martínez Moreno, Mónica; Roncal, Fernando; Gavilanes, Francisco; Albar, Juan Pablo; Rodríguez-Crespo, Ignacio

    2004-02-01

    Cytoplasmic dynein is a large minus end-directed microtubule motor that translocates cargos towards the minus end of microtubules. Light chain 8 of the dynein machinery (LC8) has been reported to interact with a large variety of proteins that possess K/RSTQT or GIQVD motifs in their sequence, hence permitting their transport in a retrograde manner. Yeast two-hybrid analysis has revealed that in brain, LC8 associates directly with several proteins such as neuronal nitric oxide synthase, guanylate kinase domain-associated protein and gephyrin. In this work, we report the identification of over 40 polypeptides, by means of a proteomic approach, that interact with LC8 either directly or indirectly. Many of the neuronal proteins that we identified cluster at the post-synaptic terminal, and some of them such as phosphofructokinase, lactate dehydrogenase or aldolase are directly involved in glutamate metabolism. Other pool of proteins identified displayed the LC8 consensus binding motif. Finally, recombinant LC8 was produced and a library of overlapping dodecapeptides (pepscan) was employed to map the LC8 binding site of some of the proteins that were previously identified using the proteomic approach, hence confirming binding to the consensus binding sites.

  17. Dynein light chain family genes in 15 plant species: Identification, evolution and expression profiles.

    PubMed

    Cao, Jun; Li, Xiangyang; Lv, Yueqing

    2017-01-01

    Dynein light chain (DLC) is one important component of the dynein complexes, which have been proved involving in a variety of cellular functions. However, higher plants lack all other components of the complexes except DLCs, suggesting that in plants, the DLC protein does not carry out the same function as it in animals. Therefore, the function of this family in plants is mysterious. In this study, we investigated the DLC gene family in 15 plant species and analyzed their expression profiles. In total, 128 DLC genes were identified from the 15 studied plant species and were divided into eight groups by their phylogenetic relation. Highly conserved gene structure and motif arrangement was discovered within each group, indicating their functional correlation. Genetic variation and recombination events were also detected in DLC genes. Through selection analyses, we also identified some significant site-specific constraints in most of the DLC paralogs. In addition, DLC genes presented various expression profiles in different development stages, or under different abiotic stresses or phytohormone treatments. This may be associated with a variety of cis-elements responding to stress and phytohormone in the upstream sequences of the DLC genes. Functional network analysis exhibited 123 physical or functional interactions. The results provide a foundation for exploring the characterization of the DLC genes in plants and offer insights for additional functional studies.

  18. Phosphorylation of myosin light chain from adrenomedullary chromaffin cells in culture.

    PubMed Central

    Gutierrez, L M; Hidalgo, M J; Palmero, M; Ballesta, J J; Reig, J A; Garcia, A G; Viniegra, S

    1989-01-01

    The myosin-light-chain (MLC) phosphorylation accompanying catecholamine release in chromaffin cells was investigated with the objective of assessing the possible role of this contractile protein in catecholamine secretion. The electrophoretic characteristics of adrenomedullary MLC were determined by immunochemical techniques using two different specific antibodies. The identified 22 kDa phosphoprotein was mainly present in the cytosol, as demonstrated by ultracentrifugation and immunocytochemical analysis. A part of this protein was located on, or close to, the plasma membrane. Cell stimulation by secretagogues resulted in a Ca2(+)-dependent 32P incorporation into MLC, the time course of this process being related to catecholamine release. These findings were supported by a two-dimensional gel-electrophoretic analysis by which means this protein was resolved into two acidic forms. A role for Ca2(+)-calmodulin and Ca2(+)-phospholipid kinases in adrenomedullary MLC phosphorylation is reported. The results obtained suggest a regulatory role for such a protein in the underlying exocytotic event. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 6. PMID:2481449

  19. The prognostic value of diagnosing concurrent multiple myeloma in immunoglobulin light chain amyloidosis.

    PubMed

    Dinner, Shira; Witteles, Wesley; Witteles, Ronald; Lam, Anthony; Arai, Sally; Lafayette, Richard; George, Tracy I; Schrier, Stanley L; Liedtke, Michaela

    2013-05-01

    The prevalence and prognostic value of a concomitant diagnosis of symptomatic or asymptomatic multiple myeloma (MM), as defined by the current International Myeloma Working Group (IMWG) criteria, in patients with immunoglobulin light chain amyloidosis (AL), are unknown. We studied 46 consecutive patients with AL who underwent quantification of serum M-protein and clonal bone marrow plasma cells, as well as a comprehensive evaluation for end organ damage by MM. Using standard morphology and CD138 immunohistochemical staining, 57% and 80% of patients were found to have concomitant MM, respectively. Nine patients exhibited end organ damage consistent with a diagnosis of symptomatic MM. While overall survival was similar between AL patients with or without concurrent myeloma (1-year overall survival 68% vs. 87%; P = 0.27), a diagnosis of symptomatic myeloma was associated with inferior outcome (1-year overall survival 39% vs. 81%; P = 0.005). Quantification of bone marrow plasma cells by both standard morphology and CD138 immunohistochemistry identified a much higher prevalence of concurrent MM in patients with AL than previously reported. Evaluation of bone marrow plasma cell infiltration and presence of myeloma associated end organ damage could be clinically useful for prognostication of patients with AL. © 2013 Blackwell Publishing Ltd.

  20. Prognostic value of serum heavy/light chain ratios in patients with POEMS syndrome.

    PubMed

    Wang, Chen; Su, Wei; Cai, Qian-Qian; Cai, Hao; Ji, Wei; Di, Qian; Duan, Ming-Hui; Cao, Xin-Xin; Zhou, Dao-Bin; Li, Jian

    2016-07-01

    POEMS syndrome is a rare plasma cell dyscrasia. Serum concentrations of the monoclonal protein in this disorder are typically low, and inapplicable to monitor disease activity in most cases, resulting in limited practical and prognostic values. Novel immunoassays measuring isotype-specific heavy/light chain (HLC) pairs showed its utility in disease monitoring and outcome prediction in several plasma cell dyscrasias. We report results of HLC measurements in 90 patients with POEMS syndrome. Sixty-six patients (73%; 95% confidence interval, 63-82%) had an abnormal HLC ratio at baseline. It could stratify the risk of disease relapse and was strongly associated with worse progression-free survival in a multivariate analysis (P = 0.021; hazard ratio [HR] 6.89, 95% CI 1.34-35.43). After therapy, HLC ratios improved, with 43 patients (48%) remaining abnormal. The post-therapeutic HLC ratio, if abnormal, also remained as an independent prognostic factor associated with worse progression-free survival (P = 0.019; HR 4.30, 95% CI 1.27-14.56). These results suggest the prognostic utility of HLC ratios in clinical management of POEMS patients. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Cytoplasmic Immunoglobulin Light Chain Revelation and Interphase Fluorescence In Situ Hybridization in Myeloma.

    PubMed

    Moore, Sarah; Suttle, Jeffrey M; Nicola, Mario

    2017-01-01

    The cytogenetic analysis of plasma cell myeloma (PCM) allows stratification of patients so that prognosis may be determined and appropriate therapeutic options can be discussed. Owing to the patchy nature of the disease in the bone marrow (BM), the low proliferative activity of plasma cells and the cryptic nature of some PCM-associated cytogenetic changes, karyotypic analysis in this disease should be augmented with targeted interphase fluorescence in situ hybridization (FISH). Immunofluorescent revelation of cytoplasmic immunoglobulin light chains, together with interphase FISH (cIg-FISH), allows the identification of plasma cells within a sample so that they may be scored preferentially. This is particularly useful in situations where there are only a small percentage of plasma cells in a sample. Where an underlying myeloid disease is suspected the cIg-FISH-negative cells can be scored separately. Two methods are provided in this chapter: the technique for cIg-FISH in fresh PCM BM samples and a procedure for use in fixed cytogenetics preparations.

  2. Subglottic extramedullary plasmacytoma with light chain multiple myeloma masquerading as adult-onset asthma.

    PubMed

    Gan, Yijin Jereme; Chopra, Akhil; Kanagalingam, Jeevendra

    2014-05-01

    Extramedullary plasmacytoma (EMP) arises outside the bone marrow and can be associated with multiple myeloma (MM). A 55-year-old gentleman, who presented with dyspnea and expiratory wheeze, was diagnosed and treated for asthma. A subsequent relapse 6 months later prompted an Otolaryngology consult. Preliminary findings showed a benign-looking nodular lesion at the subglottis. Work-up at our institution revealed an Fludeoxyglucose (FDG) avid left subglottic lesion with multiple bone metastases on a Positron Emission Tomography / Computed Tomography (PET/CT). The patient underwent a panendoscopy and laser excision of the subglottic lesion with subglottic jet ventilation. Histology showed an EMP. Further work-up revealed the presence of kappa light chain MM with adverse cytogenetics. Patient was treated systemically with lenalidomide, bortezomib, and dexamethasone for four cycles with rapid improvement in his symptoms. We review the literature about EMP of the subglottis with MM. We present the first case of subglottic laryngeal EMP with MM managed via CO2 laser excision. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  3. Clinical and prognostic differences among patients with light chain deposition disease, myeloma cast nephropathy and both.

    PubMed

    Zand, Ladan; Nasr, Samih H; Gertz, Morie A; Dispenzieri, Angela; Lacy, Martha Q; Buadi, Francis K; Kumar, Shaji; Kyle, Robert A; Fervenza, Fernando C; Sethi, Sanjeev; Dingli, David; Rajkumar, S Vincent; Kapoor, Prashant; McCurdy, Arleigh; Leung, Nelson

    2015-01-01

    In some patients with light chain deposition disease (LCDD) there is also evidence of myeloma cast nephropathy (MCN) on renal biopsy. The purpose of this study was to evaluate the renal and survival outcome of patients with concomitant diagnosis of MCN and LCDD to LCDD and MCN alone. Eighty seven patients were identified and divided into LCDD (n=45), MCN (n=29), and LCDD+ MCN (n=13). Patients with LCDD+ MCN had a worse overall survival (OS) compared to patients with LCDD (p=0.03), but similar to patients with MCN (p=0.4). Death-censored renal survival was no different amongst the groups. Presenting with acute renal failure at time of renal biopsy (HR 7.2, p=0.0002) was an independent poor renal prognostic factor while older age (HR 1.06, p=0.0002), presence of osteolytic lesions (HR 4.4, p<0.0001), and requirement for dialysis or creatinine≥5 mg/dL (HR 3.2, p=0.0006) at time of renal biopsy were independent poor prognostic factors for OS.

  4. Prolonged Cerebrospinal Fluid Neurofilament Light Chain Increase in Patients with Post-Traumatic Disorders of Consciousness.

    PubMed

    Bagnato, Sergio; Grimaldi, Luigi M E; Di Raimondo, Giorgio; Sant'Angelo, Antonino; Boccagni, Cristina; Virgilio, Vittorio; Andriolo, Maria

    2017-08-15

    The mechanisms involved in secondary brain injury after the acute phase of severe traumatic brain injury (TBI) are largely unknown. Ongoing axonal degeneration, consequent to the initial trauma, may lead to secondary brain injury. To test this hypothesis, we evaluated the cerebrospinal fluid (CSF) level of neurofilament light chain (NF-L), a proposed marker of axonal degeneration, in 10 patients who developed a severe disorder of consciousness after a TBI, including 7 in a minimally conscious state and 3 with unresponsive wakefulness syndrome (time since brain injury, 309 ± 169 days). CSF NF-L level was measured with a commercially available NF-L enzyme-linked immunosorbent assay. CSF NF-L level was very high in all 10 patients, ranging from 2.4- to 60.5-fold the upper normal limit (median value, 4458 pg/mL; range, 695-23,000). Moreover, NF-L level was significantly higher after a severe TBI than in a reference group of 9 patients with probable Alzheimer's disease, a population with elevated levels of CSF NF-L attributed to neuronal degeneration (median value, 1173 pg/mL; range, 670-3643; p < 0.01). CSF NF-L level was correlated with time post-TBI (p = 0.04). These results demonstrate prolonged secondary brain injury, suggesting that patients exhibit ongoing axonal degeneration up to 19 months after a severe TBI.

  5. [Functional regulation of endothelial Myosin light chain kinase in extravascular migration of fibrosarcoma cells].

    PubMed

    Xin, Hua; Han, Zhen-guo

    2009-03-01

    To evaluate the functional regulation of endothelial Myosin light chain kinase (MLCK) in extravascular migration of fibrosarcoma HT1080 cells. An in vitro model of fibrosarcoma cell transmigration across a monolayer of HUVEC cultured on collagen gel was applied to observe extravascular migration of HT1080 cells,and were the electrical resistance of HUVEC monolayer and endothelial MLC phosphorylation in extravascular migration of HT1080 cells. HT1080 cells migrated through endothelial cells into collagen gel, the electrical resistance of a HUVEC monolayer was reduced and endothelial MLC phosphorylation was enhanced in extravascular migration of fibrosarcoma cells. Endothelial MLCK inhibitor (ML-7) blocked extravascular migration of HT1080 cells and inhibited reduction of electrical resistance of a HUVEC monolayer and enhancement of endothelial MLC phosphorylation in extravascular migration of HT1080 cells in a dose-dependent manner. Endothelial MLCK regulates fibrosarcoma cell transendothelial migration through MLC phosphorylation, leading to cytoskeletal reorganization and endothelial cell constriction, then fibrosarcoma cells migrate into extravascular tissue through the gaps between endothelial cells.

  6. Circulating antibody free light chains and risk of posttransplant lymphoproliferative disorder.

    PubMed

    Engels, E A; Preiksaitis, J; Zingone, A; Landgren, O

    2012-05-01

    Posttransplant lymphoproliferative disorder (PTLD) is a major complication of solid-organ transplantation. With human immunodeficiency virus infection (an analogous immunosuppressive state), elevated kappa and lambda immunoglobulin free light chains (FLCs) in peripheral blood are associated with increased risk of lymphoma. To assess the role of B-cell dysfunction in PTLD, we measured circulating FLCs among Canadian transplant recipients, including 29 individuals with PTLD and 57 matched transplant recipients who were PTLD-free. Compared with controls, PTLD cases had higher kappa FLCs (median 1.53 vs. 1.07 times upper limit of normal) and lambda FLCs (1.03 vs. 0.68). Using samples obtained on average 3.5 months before PTLD diagnosis, cases were more likely to have polyclonal FLC elevations (i.e. elevated kappa and/or lambda with normal kappa/lambda ratio: odds ratio [OR] 4.2, 95%CI 1.1-15) or monoclonal elevations (elevated kappa and/or lambda with abnormal ratio: OR 3.0, 95%CI 0.5-18). Strong FLC-PTLD associations were also observed at diagnosis/selection. Among recipients with Epstein-Barr virus (EBV) DNA measured in blood, EBV DNAemia was associated with FLC abnormalities (ORs 6.2 and 3.2 for monoclonal and polyclonal elevations). FLC elevations are common in transplant recipients and associated with heightened PTLD risk. FLCs likely reflect B-cell dysfunction, perhaps related to EBV-driven lymphoproliferation.

  7. Free light chain monomer-dimer patterns in the diagnosis of multiple sclerosis.

    PubMed

    Kaplan, Batia; Golderman, Sizilia; Yahalom, Gilad; Yeskaraev, Regina; Ziv, Tamar; Aizenbud, Boris M; Sela, Ben-Ami; Livneh, Avi

    2013-04-30

    In our search of new biomarkers for multiple sclerosis (MS), we aimed to characterize the immunoglobulin (Ig) free light chains (FLC) in patients' cerebrospinal fluid (CSF) and serum, and to evaluate the diagnostic utility of FLC monomer-dimer patterns for MS. FLC were analyzed by Western blotting and mass spectroscopy. CSF and serum samples were examined for the presence of oligoclonal Ig bands by a conventional laboratory test for MS. Three distinct pathological FLC monomer-dimer patterns, typical of MS but not of other neurological diseases, were revealed. In 31 out 56 MS patients the highly increased CSF levels of κ monomers and dimers were demonstrated. In 18 MS patients, the increased κ-FLC levels were accompanied by highly elevated λ dimers. Five MS cases showed no significant elevation in κ-FLC, but they displayed abnormally high λ dimer levels. The intensity of the immunoreactive FLC bands was measured to account for κ and λ monomer and dimer levels and their ratios in the CSF and serum. Combined usage of different FLC parameters allowed the determination of the appropriate FLC threshold values to diagnose MS. The developed method showed higher sensitivity and specificity (96% and 90%, respectively), as compared to those of the conventional OCB test (82% and 70%, respectively). Our study highlights the role of the differential analysis of monomeric and dimeric κ- and λ-FLC for the precise diagnosis of MS.

  8. Serum free light chains and post-transplant lymphoproliferative disorder in patients with renal transplant.

    PubMed

    Fernando, Rodrigo C; Rizzatti, Edgar G; Braga, Walter M T; Santos, Melina G; de Oliveira, Mariana B; Pestana, José O M; Baiocchi, Otavio C G; Colleoni, Gisele W B

    2013-10-01

    The aim of the present study was to determine whether there is an association between serum free light chains (sFLC) quantification and the development of post-transplant lymphoproliferative disorder (PTLD), using serum samples from a nested case-control cohort of patients with renal transplant. Ten new cases of PTLD and 46 controls were enrolled. Additional comparison groups consisted of five human immunodeficiency virus (HIV)-infected individuals, five with untreated Hodgkin lymphoma and six normal individuals. Serum κ and λ FLC concentrations were measured by nephelometry and compared with reference ranges (normal and renal ranges). κ and/or λ were above the normal range in 90% of cases and in 65% of matched controls. There was no statistically significant difference between all groups, except for λ FLC concentrations between cases of PTLD and normal individuals (p = 0.016). The κ/λ sFLC ratios of cases and controls were within the renal range and normal range. Our results suggest that sFLC are not useful to predict PTLD development in renal transplant recipients.

  9. Olanzapine May Inhibit Colonic Motility Associated with the 5-HT Receptor and Myosin Light Chain Kinase

    PubMed Central

    Zhang, Jiarui; Qiao, Ying; Le, Jingjing

    2016-01-01

    Objective To study whether the effects of olanzapine on gastrointestinal motility is related to the serotonin antagonism and myosin light chain kinase. Methods Male Sprague-Dawley rats were randomly divided into four groups. Olanzapine gavage was performed for each treatment group during the course of 30 continuous days, while the same volume of saline was given to the rats in the control group. Defecation of the rats was observed on days 7 and 30 after olanzapine gavage. The effects of olanzapine on contraction of colonic smooth muscles were observed in ex vivo experiments. A Western blot was used to evaluate expression levels of the serotonin transporter (SERT) and MLCK in colon segments of the rats. Results ResultsaaCompared to the control group, 5-160 µ M of olanzapine could inhibit dose-dependently the contraction of colonic smooth muscle ex vivo experiments. The maximum smooth muscle contraction effects of 5-HT and acetylcholine significantly decreased after treatment with 40-160 µ M of olanzapine. Constipation was found in the olanzapine-treated rats on day 7 and have sustained day 30 after gavage. Expression of MLCK in olanzapine-treated rats was significantly decreased, whereas the expression of SERT significantly increased on the day 7, then significantly decreased on the day 30 after olanzapine gavage. Conclusion SERT and MLCK may involve in the inhibition of colonic contraction induced by olanzapine. PMID:27081386

  10. Peptide modulators of myosin light chain kinase affect smooth muscle cell contraction.

    PubMed

    Kargacin, G J; Ikebe, M; Fay, F S

    1990-08-01

    To examine the importance of myosin light chain kinase (MLCK) in the initiation of contraction in smooth muscle, we used a constitutively active form of MLCK (IMLCK) and two specific peptide inhibitors of MLCK to study the activation of skinned single smooth muscle cells. Although unregulated by Ca-calmodulin, IMLCK, in vitro, was found to have biochemical properties like those of MLCK. Upon photolysis of caged ATP, IMLCK caused Ca-free shortening of skinned cells similar in time course and extent to that induced by Ca2+. Two peptide probes, RS-20 and SM-1, patterned after the Ca-calmodulin binding site and a pseudosubstrate inhibitory site, respectively, of the native MLCK molecule, were shown to specifically inhibit MLCK in in vitro experiments. Both peptides dose dependently inhibited Ca-induced shortening of skinned single cells. These results indicate that MLCK plays an essential role in the activation process in the smooth muscle cell in that activation of this enzyme is both necessary and sufficient for the initiation of contraction.

  11. [Refolding of the fusion protein of recombinant enterokinase light chain rEKL].

    PubMed

    Yi, Jin-Hua; Zhang, Yuan-Xing

    2006-09-01

    The fusion protein of enterokinase light chain, DsbA-rEKL, was expressed mainly in inclusion body in E. coli. The recombinant bacteria was fermented to high density, with high expression of the fusion protein. After being washed with 0.5% Triton X-100 and 4mol/L urea, the inclusion body was dissolved in 6mol/L guanidine and 100mmol/L DTP, derivatized by cystine and refolded by pulse refolding. The strategy of pulse refolding involved the addition of 0.03mg/mL of fusion protein until its final concentration reached 0.3mg/mL. The refolded protein was autocleaved and the active EKL molecule was released after adding 2mmol/L CaCl2. Using the two-step purification processes of IDA-Sepharose chromatography and Q-Sepharose chromatography, the purity of rEKL was found to be above 95%, with a high activity to cleave the recombinant reteplase fusion protein Trx-rPA. The yield of purified rEKL was more than 60mg/L of cultures. As a result, the therapeutic proteins like rPA could be produced on a large-scale in a way such as expressed in the form of fusion proteins.

  12. Functional expression and purification of bovine enterokinase light chain in recombinant Escherichia coli.

    PubMed

    Huang, Lei; Ruan, Hong; Gu, Weiyan; Xu, Zhinan; Cen, Peilin; Fan, Limei

    2007-01-01

    Enterokinase (EC 3.4.21.9) is a serine proteinase of the intestinal brush border that exhibits specificity for the sequence (Asp)(4)-Lys and converts trypsinogen into its active form, trypsin. A codon optimized sequence coding light chain (catalytic subunit) of bovine enterokinase gene (sBEKLC) was synthesized, and it was fused with DsbA to construct the expression vector (pET39-sBEKLC). Then, the plasmid was transformed into E. coli BL21 (DE3) for expression. Under optimal conditions, the volumetric productivity of fusion protein reached 151.2 mg L(-1), i.e., 80.6 mg sBEKLC L(-1). The cold osmotic shock technique was successfully used to extract sBEKLC from periplasmic space, and nickel affinity chromatography was employed to obtain mature sBEKLC. Finally, about 6.8 mg of bioactive sBEKLC was purified from 1 liter fermentation broth and could be used to cleave one tested fusion protein with an inter-domain enteropeptidase recognition site. This work will be helpful for large-scale production of this increasingly demanded enterokinase.

  13. Purification and refolding optimization of recombinant bovine enterokinase light chain overexpressed in Escherichia coli.

    PubMed

    Tan, Haidong; Wang, Jinxia; Zhao, Zongbao Kent

    2007-11-01

    The nucleotide sequence encoding bovine enterokinase light chain (EK) from Chinese northern yellow bovine was isolated. Two single-nucleotide mutations, namely, C245G and A528T were identified. The gene encoding the Pro82Arg/Glu176Asp variant of known bovine EK was fused with glutathione S-transferase and overexpressed mainly as an inclusion body in Escherichia coli BL21 (DE3), upon induction with IPTG and glucose. Effective fusion protein purification, refolding, auto-catalytic cleavage and mature EK recovery were described. The specific activity of the purified EK was determined as 110+/- 10 U/mg, which was comparable to a specific activity of > or =20 U/mg of the E. coli expressed EK sample provided by Sigma (Cat. No. E4906). This procedure produced approximately 53 mg of EK per 500 mL of cell culture, which was much higher than previous reports, thus providing a basis for large-scale production of EK and for further applications in biotechnology.

  14. High-level secretory production of recombinant bovine enterokinase light chain by Pichia pastoris.

    PubMed

    Peng, Lisheng; Zhong, Xiaofen; Ou, Jingxing; Zheng, Suilan; Liao, Jian; Wang, Lei; Xu, Anlong

    2004-03-04

    Enterokinase (EC 3.4.21.9) is a serine proteinase with a specific digest sequence (Asp)4-Lys in the duodenum. Its high specificity for the recognition site makes enterokinase (EK) a useful tool for an in vitro cleavage of fusion proteins. In this work, an active bovine enterokinase light chain (EK(L)) was produced in secretory form by a recombinant strain of the methylotrophic yeast Pichia pastoris. The influences of methanol utilization phenotype of the host strain, induction pH, and carbon source on the recombinant production were studied. The production of recombinant EK(L) by Mut(s) strain was much higher than that by Mut+ strain. When inducted at pH 6.0, on a glycerol/methanol medium, the concentration of recombinant EK(L) (rEK(L)) reached 350 mg l(-1), which was 20-fold higher than that reported previously. The recombinant EK(L) was purified in a simple procedure on the anion exchange chromatography and 15 mg pure active EK(L) were obtained from 100 ml culture broth supernatant. The specific activity of purified rEK(L) was approximately 9000 u mg(-1). To facilitate purification and removal of rEKL after cleavage of fusion protein, the C-terminal His-tagged EK(L) (EK(L)/His) was also expressed in P. pastoris, and this His-tagged EK(L) exhibited a similar enzymatic activity to the untagged EK(L).

  15. Interaction of the Rabies Virus P Protein with the LC8 Dynein Light Chain

    PubMed Central

    Raux, Hélène; Flamand, Anne; Blondel, Danielle

    2000-01-01

    The rabies virus P protein is involved in viral transcription and replication but its precise function is not clear. We investigated the role of P (CVS strain) by searching for cellular partners by using a two-hybrid screening of a PC12 cDNA library. We isolated a cDNA encoding a 10-kDa dynein light chain (LC8). LC8 is a component of cytoplasmic dynein involved in the minus end-directed movement of organelles along microtubules. We confirmed that this molecule interacts with P by coimmunoprecipitation in infected cells and in cells transfected with a plasmid encoding P protein. LC8 was also detected in virus particles. Series of deletions from the N- and C-terminal ends of P protein were used to map the LC8-binding domain to the central part of P (residues 138 to 172). These results are relevant to speculate that dynein may be involved in the axonal transport of rabies virus along microtubules through neuron cells. PMID:11024151

  16. AMPK Regulates Mitotic Spindle Orientation through Phosphorylation of Myosin Regulatory Light Chain

    PubMed Central

    Thaiparambil, Jose T.; Eggers, Carrie M.

    2012-01-01

    The proper orientation of the mitotic spindle is essential for mitosis; however, how these events unfold at the molecular level is not well understood. AMP-activated protein kinase (AMPK) regulates energy homeostasis in eukaryotes, and AMPK-null Drosophila mutants have spindle defects. We show that threonine172 phosphorylated AMPK localizes to the mitotic spindle poles and increases when cells enter mitosis. AMPK depletion causes a mitotic delay with misoriented spindles relative to the normal division plane and a reduced number and length of astral microtubules. AMPK-depleted cells contain mitotic actin bundles, which prevent astral microtubule-actin cortex attachments. Since myosin regulatory light chain (MRLC) is an AMPK downstream target and mediates actin function, we investigated whether AMPK signals through MRLC to control spindle orientation. Mitotic levels of serine19 phosphorylated MRLC (pMRLCser19) and spindle pole-associated pMRLCser19 are abolished when AMPK function is compromised, indicating that AMPK is essential for pMRLCser19 spindle pole activity. Phosphorylation of AMPK and MRLC in the mitotic spindle is dependent upon calcium/calmodulin-dependent protein kinase kinase (CamKK) activity in LKB1-deficient cells, suggesting that CamKK regulates this pathway when LKB1 function is compromised. Taken together, these data indicate that AMPK mediates spindle pole-associated pMRLCser19 to control spindle orientation via regulation of actin cortex-astral microtubule attachments. PMID:22688514

  17. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas.

    PubMed

    Reck, Jaimee; Schauer, Alexandria M; VanderWaal Mills, Kristyn; Bower, Raqual; Tritschler, Douglas; Perrone, Catherine A; Porter, Mary E

    2016-08-01

    The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms.

  18. Orientational correlation of liquid-crystalline polymer chains in isotropic solutions. I. Anisotropic light scattering

    NASA Astrophysics Data System (ADS)

    Jinbo, Yuji; Varichon, Lionel; Sato, Takahiro; Teramoto, Akio

    1998-11-01

    The orientational fluctuation in isotropic toluene and dichloromethane solutions of a stiff-chain polymer, poly(n-hexyl isocyanate) (PHIC), has been studied by anisotropic light scattering up to the vicinity of the isotropic-nematic phase separation region. The depolarized component ΔRθ,Hv of the Rayleigh ratio divided by the polymer concentration increased with increasing the polymer concentration. The ΔRθ,Hv data for different molecular weights were fitted almost quantitatively to the scaled particle theory for wormlike hard-spherocylinders with the hard-core diameter d, developed by incorporating the higher virial terms in the free energy. However, the fitted d value was appreciably smaller than that chosen to explain the experimental osmotic compressibilities and/or isotropic-nematic phase boundaries of the same systems. Then it was found that the "spinodal concentration" c*, where the isotropic phase becomes thermodynamically unstable, lies within the nematic region, in contrast with the prediction of the scaled particle theory that c* should be in the isotropic-nematic biphasic region. This inconsistency may come from a mean-field approximation used in the scaled particle theory.

  19. Effects of a Fluorescent Myosin Light Chain Phosphatase Inhibitor on Prostate Cancer Cells

    PubMed Central

    Grindrod, Scott; Suy, Simeng; Fallen, Shannon; Eto, Masumi; Toretsky, Jeffrey; Brown, Milton L.

    2011-01-01

    Myosin light chain phosphatase (MLCP) is an enzyme important to regulation of cell cycle and motility that is shown to be upregulated in aggressive prostate cancer cells and tissue. We developed a fluorescent small molecule inhibitor of MLCP using structure based design in recombinant protein phosphatase 1C. Several best fit compounds were synthesized and evaluated by their inhibition of MLCP/32P-MLC dephosphorylation, which resulted in the identification of novel MLCP inhibitors. Androgen dependent (AD) and castration resistant prostate cancer cell (CRPC) lines were treated with the lead inhibitor resulting in decreased growth rate, reduced DNA synthesis, and G2/M cell cycle arrest. Moreover, CRPC cell lines showed an increased sensitivity to drug treatment having GI50 values four times lower than the AD prostate cancer cell line. This was reinforced by reduced BrdU DNA incorporation into CRPC cells compared to AD cells. β-actin disruption was also seen at much lower drug concentrations in CR cells which caused a dose dependent reduction in cellular chemotaxis of PC-3 cells. Since there are currently few clinical therapeutics targeting CR prostate cancer, MLCP represents a new target for preclinical and clinical development of new potential therapeutics which inhibit this disease phenotype. PMID:22655237

  20. Ferritin light chain interacts with PEN-2 and affects γ-secretase activity.

    PubMed

    Li, Xinxin; Liu, Yiqian; Zheng, Qiuyang; Yao, Guorui; Cheng, Peng; Bu, Guojun; Xu, Huaxi; Zhang, Yun-wu

    2013-08-26

    Alzheimer's disease (AD) is primarily caused by overproduction/deposition of β-amyloid (Aβ) in the brain. Dysregulation of iron in the brain also contributes to AD. Although iron affects β-amyloid precursor protein (APP) expression and Aβ deposition, detailed role of iron in AD requires further elucidation. Aβ is produced by sequential proteolytic cleavages of APP by β-secretase and γ-secretase. The γ-secretase complex comprises presenilins (PS1 or PS2), nicastrin, APH-1, and PEN-2. Herein, we find that PEN-2 can interact with ferritin light chain (FTL), an important component of the iron storage protein ferritin. In addition, we show that overexpression of FTL increases the protein levels of PEN-2 and PS1 amino-terminal fragment (NTF) and promotes γ-secretase activity for more production of Aβ and notch intracellular domain (NICD). Furthermore, iron treatments increase the levels of FTL, PEN-2 and PS1 NTF and promote γ-secretase-mediated NICD production. Moreover, downregulation of FTL decreases the levels of PEN-2 and PS1 NTF. Together, our results suggest that iron can increase γ-secretase activity through promoting the level of FTL that interacts with and stabilizes PEN-2, providing a new molecular link between iron, PEN-2/γ-secretase and Aβ generation in AD. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas

    PubMed Central

    Reck, Jaimee; Schauer, Alexandria M.; VanderWaal Mills, Kristyn; Bower, Raqual; Tritschler, Douglas; Perrone, Catherine A.; Porter, Mary E.

    2016-01-01

    The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms. PMID:27251063

  2. Phenotypic, transcriptomic, and genomic features of clonal plasma cells in light-chain amyloidosis.

    PubMed

    Paiva, Bruno; Martinez-Lopez, Joaquin; Corchete, Luis A; Sanchez-Vega, Beatriz; Rapado, Inmaculada; Puig, Noemi; Barrio, Santiago; Sanchez, Maria-Luz; Alignani, Diego; Lasa, Marta; García de Coca, Alfonso; Pardal, Emilia; Oriol, Alberto; Garcia, Maria-Esther Gonzalez; Escalante, Fernando; González-López, Tomás J; Palomera, Luis; Alonso, José; Prosper, Felipe; Orfao, Alberto; Vidriales, Maria-Belen; Mateos, María-Victoria; Lahuerta, Juan-Jose; Gutierrez, Norma C; San Miguel, Jesús F

    2016-06-16

    Immunoglobulin light-chain amyloidosis (AL) and multiple myeloma (MM) are 2 distinct monoclonal gammopathies that involve the same cellular compartment: clonal plasma cells (PCs). Despite the fact that knowledge about MM PC biology has significantly increased in the last decade, the same does not apply for AL. Here, we used an integrative phenotypic, molecular, and genomic approach to study clonal PCs from 24 newly diagnosed patients with AL. Through principal-component-analysis, we demonstrated highly overlapping phenotypic profiles between AL and both monoclonal gammopathy of undetermined significance and MM PCs. However, in contrast to MM, highly purified fluorescence-activated cell-sorted clonal PCs from AL (n = 9) showed almost normal transcriptome, with only 38 deregulated genes vs normal PCs; these included a few tumor-suppressor (CDH1, RCAN) and proapoptotic (GLIPR1, FAS) genes. Notwithstanding, clonal PCs in AL (n = 11) were genomically unstable, with a median of 9 copy number alterations (CNAs) per case, many of such CNAs being similar to those found in MM. Whole-exome sequencing (WES) performed in 5 AL patients revealed a median of 15 nonrecurrent mutations per case. Altogether, our results show that in the absence of a unifying mutation by WES, clonal PCs in AL display phenotypic and CNA profiles similar to MM, but their transcriptome is remarkably similar to that of normal PCs. © 2016 by The American Society of Hematology.

  3. Myosin light chain kinase accelerates vesicle endocytosis at the calyx of Held synapse.

    PubMed

    Yue, Hai-Yuan; Xu, Jianhua

    2014-01-01

    Neuronal activity triggers endocytosis at synaptic terminals to retrieve efficiently the exocytosed vesicle membrane, ensuring the membrane homeostasis of active zones and the continuous supply of releasable vesicles. The kinetics of endocytosis depends on Ca(2+) and calmodulin which, as a versatile signal pathway, can activate a broad spectrum of downstream targets, including myosin light chain kinase (MLCK). MLCK is known to regulate vesicle trafficking and synaptic transmission, but whether this kinase regulates vesicle endocytosis at synapses remains elusive. We investigated this issue at the rat calyx of Held synapse, where previous studies using whole-cell membrane capacitance measurement have characterized two common forms of Ca(2+)/calmodulin-dependent endocytosis, i.e., slow clathrin-dependent endocytosis and rapid endocytosis. Acute inhibition of MLCK with pharmacological agents was found to slow down the kinetics of both slow and rapid forms of endocytosis at calyces. Similar impairment of endocytosis occurred when blocking myosin II, a motor protein that can be phosphorylated upon MLCK activation. The inhibition of endocytosis was not accompanied by a change in Ca(2+) channel current. Combined inhibition of MLCK and calmodulin did not induce synergistic inhibition of endocytosis. Together, our results suggest that activation of MLCK accelerates both slow and rapid forms of vesicle endocytosis at nerve terminals, likely by functioning downstream of Ca(2+)/calmodulin.

  4. Subset of Kappa and Lambda Germline Sequences Result in Light Chains with a Higher Molecular Mass Phenotype.

    PubMed

    Barnidge, David R; Lundström, Susanna L; Zhang, Bo; Dasari, Surendra; Murray, David L; Zubarev, Roman A

    2015-12-04

    In our previous work, we showed that electrospray ionization of intact polyclonal kappa and lambda light chains isolated from normal serum generates two distinct, Gaussian-shaped, molecular mass distributions representing the light-chain repertoire. During the analysis of a large (>100) patient sample set, we noticed a low-intensity molecular mass distribution with a mean of approximately 24 250 Da, roughly 800 Da higher than the mean of the typical kappa molecular-mass distribution mean of 23 450 Da. We also observed distinct clones in this region that did not appear to contain any typical post-translational modifications that would account for such a large mass shift. To determine the origin of the high molecular mass clones, we performed de novo bottom-up mass spectrometry on a purified IgM monoclonal light chain that had a calculated molecular mass of 24 275.03 Da. The entire sequence of the monoclonal light chain was determined using multienzyme digestion and de novo sequence-alignment software and was found to belong to the germline allele IGKV2-30. The alignment of kappa germline sequences revealed ten IGKV2 and one IGKV4 sequences that contained additional amino acids in their CDR1 region, creating the high-molecular-mass phenotype. We also performed an alignment of lambda germline sequences, which showed additional amino acids in the CDR2 region, and the FR3 region of functional germline sequences that result in a high-molecular-mass phenotype. The work presented here illustrates the ability of mass spectrometry to provide information on the diversity of light-chain molecular mass phenotypes in circulation, which reflects the germline sequences selected by the immunoglobulin-secreting B-cell population.

  5. Significant Influences of Elaborately Modulating Electron Donors on Light Absorption and Multichannel Charge-Transfer Dynamics for 4-(Benzo[c][1,2,5]thiadiazol-4-ylethynyl)benzoic Acid Dyes.

    PubMed

    Wang, Erfeng; Yao, Zhaoyang; Zhang, Yiqiang; Shao, Guosheng; Zhang, Min; Wang, Peng

    2016-07-20

    4-(Benzo[c][1,2,5]thiadiazol-4-ylethynyl)benzoic acid (BTEBA) as a promising electron acceptor has been used in the highly efficient organic dye-sensitized solar cells (DSCs) recently. Because of its strong electron-deficient character, BTEBA could bring forth a remarkable decline in the energy level of the lowest unoccupied molecular orbital (LUMO) and further reduce the energy gap of dye molecules significantly. In this contribution, two metal-free organic dyes WEF1 and WEF2 were synthesized by simply combining BTEBA with two slightly tailored electron-releasing moieties: 4-hexylphenyl substituted indaceno[1,2-b:5,6-b']dithiophene (IDT) and cyclopenta[1,2-b:5,4-b']dithiophene[2',1':4,5]thieno[2,3-d]thiophene (CPDTDT), which were screened rationally from an electron-donor pool via computational simulation. With respect to those of WEF1, WEF2-sensitized solar cells demonstrate a far better short-circuit photocurrent density (JSC) and open-circuit photovoltage (VOC), resulting in a ∼50% improved power conversion efficiency of 10.0% under irradiance of 100 mW cm(-2) AM1.5G sunlight. We resorted to theoretical calculations, electrical measurements, steady-state, and time-resolved spectroscopic methods to shed light on the fatal influences of elaborately modulating electron donors on light absorption, interfacial energetics, and multichannel charge-transfer dynamics.

  6. Expression of recombinant human complement C1q allows identification of the C1r/C1s-binding sites

    PubMed Central

    Bally, Isabelle; Ancelet, Sarah; Moriscot, Christine; Gonnet, Florence; Mantovani, Alberto; Daniel, Régis; Schoehn, Guy; Arlaud, Gérard J.; Thielens, Nicole M.

    2013-01-01

    Complement C1q is a hexameric molecule assembled from 18 polypeptide chains of three different types encoded by three genes. This versatile recognition protein senses a wide variety of immune and nonimmune ligands, including pathogens and altered self components, and triggers the classical complement pathway through activation of its associated proteases C1r and C1s. We report a method for expression of recombinant full-length human C1q involving stable transfection of HEK 293-F mammalian cells and fusion of an affinity tag to the C-terminal end of the C chain. The resulting recombinant (r) C1q molecule is similar to serum C1q as judged from biochemical and structural analyses and exhibits the characteristic shape of a bunch of flowers. Analysis of its interaction properties by surface plasmon resonance shows that rC1q retains the ability of serum C1q to associate with the C1s-C1r-C1r-C1s tetramer, to recognize physiological C1q ligands such as IgG and pentraxin 3, and to trigger C1r and C1s activation. Functional analysis of rC1q variants carrying mutations of LysA59, LysB61, and/or LysC58, in the collagen-like stems, demonstrates that LysB61 and LysC58 each play a key role in the interaction with C1s-C1r-C1r-C1s, with LysA59 being involved to a lesser degree. We propose that LysB61 and LysC58 both form salt bridges with outer acidic Ca2+ ligands of the C1r and C1s CUB (complement C1r/C1s, Uegf, bone morphogenetic protein) domains. The expression method reported here opens the way for deciphering the molecular basis of the unusual binding versatility of C1q by mapping the residues involved in the sensing of its targets and the binding of its receptors. PMID:23650384

  7. Association of 4F2hc with light chains LAT1, LAT2 or y+LAT2 requires different domains.

    PubMed

    Bröer, A; Friedrich, B; Wagner, C A; Fillon, S; Ganapathy, V; Lang, F; Bröer, S

    2001-05-01

    Heterodimeric amino acid transporters are comprised of a type-II membrane protein named the heavy chain (4F2hc or rBAT) that may associate with a number of different polytopic membrane proteins, called light chains. It is thought that the heavy chain is mainly involved in the trafficking of the complex to the plasma membrane, whereas the transport process itself is catalysed by the light chain. The 4F2 heavy chain (4F2hc) associates with at least six different light chains to induce distinct amino acid-transport activites. To test if the light chains are specifically recognized and to identify domains involved in the recognition of light chains, C-terminally truncated mutants of 4F2hc were constructed and co-expressed with the light chains LAT1, LAT2 and y(+)LAT2. The truncated isoform T1, comprised of only 133 amino acids that form the cytosolic N-terminus and the transmembrane helix, displayed only a slight reduction in its ability to promote LAT1 expression at the membrane surface compared with the 529 amino acid wild-type 4F2hc protein. Co-expression of increasingly larger 4F2hc mutants caused a delayed translocation of LAT1. In contrast to the weak effects of 4F2hc truncations on LAT1 expression, surface expression of LAT2 and y(+)LAT2 was almost completely lost with all truncated heavy chains. Co-expression of LAT1 together with the other light chains did not result in displacement of LAT2 and y(+)LAT2. The results suggest that extracellular domains of the heavy chain are responsible mainly for recognition of light chains other than LAT1 and that the extracellular domain ensures proper translocation to the plasma membrane.

  8. Association of 4F2hc with light chains LAT1, LAT2 or y+LAT2 requires different domains.

    PubMed Central

    Bröer, A; Friedrich, B; Wagner, C A; Fillon, S; Ganapathy, V; Lang, F; Bröer, S

    2001-01-01

    Heterodimeric amino acid transporters are comprised of a type-II membrane protein named the heavy chain (4F2hc or rBAT) that may associate with a number of different polytopic membrane proteins, called light chains. It is thought that the heavy chain is mainly involved in the trafficking of the complex to the plasma membrane, whereas the transport process itself is catalysed by the light chain. The 4F2 heavy chain (4F2hc) associates with at least six different light chains to induce distinct amino acid-transport activites. To test if the light chains are specifically recognized and to identify domains involved in the recognition of light chains, C-terminally truncated mutants of 4F2hc were constructed and co-expressed with the light chains LAT1, LAT2 and y(+)LAT2. The truncated isoform T1, comprised of only 133 amino acids that form the cytosolic N-terminus and the transmembrane helix, displayed only a slight reduction in its ability to promote LAT1 expression at the membrane surface compared with the 529 amino acid wild-type 4F2hc protein. Co-expression of increasingly larger 4F2hc mutants caused a delayed translocation of LAT1. In contrast to the weak effects of 4F2hc truncations on LAT1 expression, surface expression of LAT2 and y(+)LAT2 was almost completely lost with all truncated heavy chains. Co-expression of LAT1 together with the other light chains did not result in displacement of LAT2 and y(+)LAT2. The results suggest that extracellular domains of the heavy chain are responsible mainly for recognition of light chains other than LAT1 and that the extracellular domain ensures proper translocation to the plasma membrane. PMID:11311135

  9. Site-directed mutagenesis of the regulatory light-chain Ca2+/Mg2+ binding site and its role in hybrid myosins

    NASA Astrophysics Data System (ADS)

    Reinach, Fernando C.; Nagai, Kiyoshi; Kendrick-Jones, John

    1986-07-01

    The regulatory light chains, small polypeptides located on the myosin head, regulate the interaction of myosin with actin in response to either Ca2+ or phosphorylation. The demonstration that the regulatory light chains on scallop myosin can be replaced by light chains from other myosins has allowed us to compare the functional capabilities of different light chains1, but has not enabled us to probe the role of features, such as the Ca2+/Mg2+ binding site, that are common to all of them. Here, we describe the use of site-directed mutagenesis to study the function of that site. We synthesized the chicken skeletal myosin light chain in Escherichia coli and constructed mutants with substitutions within the Ca2+/Mg2+ binding site. When the aspartate residues at the first and sixth Ca2+ coordination positions are replaced by uncharged alanines, the light chains have a reduced Ca2+ binding capacity but still bind to scallop myosin with high affinity. Unlike the wild-type skeletal light chain which inhibits myosin interaction with actin, the mutants activate it. Thus, an intact Ca2+/Mg2+ binding site in the N-terminal region of the light chain is essential for regulating the interaction of myosin with actin.

  10. Dynamical light scattering for DNA-CTMA:DR1 chains: wormlike semi-flexible model, coil size and persistence length

    NASA Astrophysics Data System (ADS)

    Mitus, A. C.; Radosz, W.; Pawlik, G.; Lazar, C. A.; Kajzar, F.; Rau, I.

    2016-09-01

    Recent experimental Dynamic Light Scattering (DLS) studies of the coil sizes of DNA-CTMA:Rh solutions have lead to numerical discrepancies with theoretical predictions amounting to one-two orders of magnitude.1 In this paper, which has partially character of a tutorial, we present the basic theoretical concepts underlying an analysis of the polymer coil sizes from DLS experiments. In particular, we discuss the limitations of those methods. We present a wormlike model of a polymer chain which is a promising candidate for inferring information about the spatial structure of the DNA chain from experimental data.

  11. Subunit Heterogeneity of Cytoplasmic Dynein: Differential Expression of 14 kDa Dynein Light Chains in Rat Hippocampus

    PubMed Central

    Chuang, Jen-Zen; Milner, Teresa A.; Sung, Ching-Hwa

    2013-01-01

    Cytoplasmic dynein is a multi-subunit protein complex in which each subunit is encoded by a few genes. How these subunit isoforms are assembled and regulated to mediate the diverse functions of cytoplasmic dynein is unknown. We previously have shown that two highly conserved 14 kDa dynein light chains, Tctex-1 and RP3, have different cargo-binding abilities. In this report, coimmunoprecipitation revealed that Tctex-1 and RP3 were present in mutually exclusive dynein complexes of brain. Two specific antibodies were used to examine the localization of these two dynein light chains in adult rat hippocampal formation and cerebral cortex. By light microscopy, Tctex-1 and RP3 immunoreactivities exhibited distinct and almost complementary distribution patterns in both brain regions. In hippocampal formation, Tctex-1 immunoreactivity was most enriched in somata of newly generated granule cells and scant in the mature granule and pyramidal cell somata. In contrast, RP3 immunoreactivity was abundant in pyramidal and granule cell somata. Ultrastructural analysis of the dentate gyrus revealed both dynein light chains were associated with various membranous organelles that often were affiliated with microtubules. In addition, Tctex-1 and RP3 immunoreactivities were preferentially and highly enriched on membranous organelles and/or vesicles of axon terminals and dendritic spines, respectively. These results suggest that dynein complexes with different subunit composition, and possibly function, are expressed differentially in a spatially and temporally regulated manner. Furthermore, Tctex-1 and RP3 may play important roles in synaptic functions. PMID:11466421

  12. Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia

    PubMed Central

    Woollacott, Ione O.C.; Dick, Katrina M.; Brotherhood, Emilie; Gordon, Elizabeth; Fellows, Alexander; Toombs, Jamie; Druyeh, Ronald; Cardoso, M. Jorge; Ourselin, Sebastien; Nicholas, Jennifer M.; Norgren, Niklas; Mead, Simon; Andreasson, Ulf; Blennow, Kaj; Schott, Jonathan M.; Fox, Nick C.; Warren, Jason D.; Zetterberg, Henrik

    2016-01-01

    Objective: To investigate serum neurofilament light chain (NfL) concentrations in frontotemporal dementia (FTD) and to see whether they are associated with the severity of disease. Methods: Serum samples were collected from 74 participants (34 with behavioral variant FTD [bvFTD], 3 with FTD and motor neuron disease and 37 with primary progressive aphasia [PPA]) and 28 healthy controls. Twenty-four of the FTD participants carried a pathogenic mutation in C9orf72 (9), microtubule-associated protein tau (MAPT; 11), or progranulin (GRN; 4). Serum NfL concentrations were determined with the NF-Light kit transferred onto the single-molecule array platform and compared between FTD and healthy controls and between the FTD clinical and genetic subtypes. We also assessed the relationship between NfL concentrations and measures of cognition and brain volume. Results: Serum NfL concentrations were higher in patients with FTD overall (mean 77.9 pg/mL [SD 51.3 pg/mL]) than controls (19.6 pg/mL [SD 8.2 pg/mL]; p < 0.001). Concentrations were also significantly higher in bvFTD (57.8 pg/mL [SD 33.1 pg/mL]) and both the semantic and nonfluent variants of PPA (95.9 and 82.5 pg/mL [SD 33.0 and 33.8 pg/mL], respectively) compared with controls and in semantic variant PPA compared with logopenic variant PPA. Concentrations were significantly higher than controls in both the C9orf72 and MAPT subgroups (79.2 and 40.5 pg/mL [SD 48.2 and 20.9 pg/mL], respectively) with a trend to a higher level in the GRN subgroup (138.5 pg/mL [SD 103.3 pg/mL). However, there was variability within all groups. Serum concentrations correlated particularly with frontal lobe atrophy rate (r = 0.53, p = 0.003). Conclusions: Increased serum NfL concentrations are seen in FTD but show wide variability within each clinical and genetic group. Higher concentrations may reflect the intensity of the disease in FTD and are associated with more rapid atrophy of the frontal lobes. PMID:27581216

  13. Ferritin light chain gene mutations in two Brazilian families with hereditary hyperferritinemia-cataract syndrome.

    PubMed

    Petroni, Roberta Cardoso; Rosa, Susana Elaine Alves da; Carvalho, Flavia Pereira de; Santana, Rúbia Anita Ferraz; Hyppolito, Joyce Esteves; Nascimento, Claudia Mac Donald Bley; Hamerschlak, Nelson; Campregher, Paulo Vidal

    2017-07-24

    Hereditary hyperferritinemia-cataract syndrome is an autosomal dominant genetic disorder associated with mutations in the 5'UTR region of the ferritin light chain gene. These mutations cause the ferritin levels to increase even in the absence of iron overload. Patients also develop bilateral cataract early due to accumulation of ferritin in the lens, and many are misdiagnosed as having hemochromatosis and thus not properly treated. The first cases were described in 1995 and several mutations have already been identified. However, this syndrome is still a poorly understood. We report two cases of unrelated Brazilian families with clinical suspicion of the syndrome, which were treated in our department. For the definitive diagnosis, the affected patients, their parents and siblings were submitted to Sanger sequencing of the 5'UTR region for detection of the ferritin light gene mutation. Single nucleotide polymorphism-like mutations were found in the affected patients, previously described. The test assisted in making the accurate diagnosis of the disease, and its description is important so that the test can be incorporated into clinical practice. RESUMO A síndrome hereditária hiperferritinemia-catarata é uma doença genética autossômica dominante associada a mutações na região 5'UTR do gene da cadeia leve da ferritina. Estas mutações elevam os níveis de ferritina, mesmo na ausência de sobrecarga de ferro. Os pacientes também desenvolvem catarata bilateral precocemente, devido ao acúmulo de ferritina no cristalino, e muitos são erroneamente diagnosticados como portadores de hemocromatose, sendo tratados de maneira inadequada. Os primeiros casos foram descritos em 1995, e diversas mutações já foram identificadas. Entretanto, essa síndrome ainda é pouco conhecida. Relatamos dois casos de famílias brasileiras, não relacionadas, com suspeita clínica da síndrome, que foram atendidas em nosso serviço. Para o diagnóstico definitivo, os pacientes

  14. Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation

    PubMed Central

    1995-01-01

    The phosphorylation of regulatory myosin light chains by the Ca2+/calmodulin-dependent enzyme myosin light chain kinase (MLCK) has been shown to be essential and sufficient for initiation of endothelial cell retraction in saponin permeabilized monolayers (Wysolmerski, R. B. and D. Lagunoff. 1990. Proc. Natl. Acad. Sci. USA. 87:16-20). We now report the effects of thrombin stimulation on human umbilical vein endothelial cell (HUVE) actin, myosin II and the functional correlate of the activated actomyosin based contractile system, isometric tension development. Using a newly designed isometric tension apparatus, we recorded quantitative changes in isometric tension from paired monolayers. Thrombin stimulation results in a rapid sustained isometric contraction that increases 2- to 2.5-fold within 5 min and remains elevated for at least 60 min. The phosphorylatable myosin light chains from HUVE were found to exist as two isoforms, differing in their molecular weights and isoelectric points. Resting isometric tension is associated with a basal phosphorylation of 0.54 mol PO4/mol myosin light chain. After thrombin treatment, phosphorylation rapidly increases to 1.61 mol PO4/mol myosin light chain within 60 s and remains elevated for the duration of the experiment. Myosin light chain phosphorylation precedes the development of isometric tension and maximal phosphorylation is maintained during the sustained phase of isometric contraction. Tryptic phosphopeptide maps from both control and thrombin-stimulated cultures resolve both monophosphorylated Ser-19 and diphosphorylated Ser-19/Thr-18 peptides indicative of MLCK activation. Changes in the polymerization of actin and association of myosin II correlate temporally with the phosphorylation of myosin II and development of isometric tension. Activation results in a 57% increase in F-actin content within 90 s and 90% of the soluble myosin II associates with the reorganizing F-actin. Furthermore, the disposition of actin and

  15. Immunoglobulin diversity in the phylogenetically primitive shark, Heterodontus francisci. Suggested lack of structural variation between light chains isolated from different animals.

    PubMed

    Litman, G W; Scheffel, C; Gerber-Jenson, B

    1980-06-01

    A two-step procedure employing gel filtration and anion exchange chromatography has been utilized to isolate LMW immunoglobulin from the horned shark, Heterodontus francisci. Light chains obtained by complete reduction and alkylation of the parent protein have been compared by several analytical techniques. Amino acid composition data implies a limited degree of variation in the light chains isolated from individual animals. Polyacrylamide gel electrophoresis of the CNBr digests of the light chains reveal indistinguishable banding profiles of the major peptides. Isoelectric focusing indicates limited heterogeneity in the light chain spectrotype and identity in the pI of the majority of bands detectable by staining. The suggested degree of structural similarity in the light chains of this phylogenetically primitive shark is discussed in terms of the evolutionary position of the species and current theories concerning the origins of structural diversity in immunoglobulins.

  16. Dynein Light Chain 1 (LC8) Association Enhances Microtubule Stability and Promotes Microtubule Bundling*

    PubMed Central

    Asthana, Jayant; Kuchibhatla, Anuradha; Jana, Swadhin Chandra; Ray, Krishanu; Panda, Dulal

    2012-01-01

    Dynein light chain 1 (LC8), a highly conserved protein, is known to bind to a variety of different polypeptides. It functions as a dimer, which is inactivated through phosphorylation at the Ser-88 residue. A loss of LC8 function causes apoptosis in Drosophila embryos, and its overexpression induces malignant transformation of breast cancer cells. Here we show that LC8 binds to tubulin, promotes microtubule assembly, and induces the bundling of reconstituted microtubules in vitro. Furthermore, LC8 decorates microtubules both in Drosophila embryos and in HeLa cells, increases the microtubule stability, and promotes microtubule bundling in these cells. Microtubule stability influences a number of different cellular functions including mitosis and cell differentiation. The LC8 overexpression reduces the susceptibility of microtubules to cold and nocodazole-induced depolymerization in tissue-cultured cells and increases microtubule acetylation, suggesting that LC8 stabilizes microtubules. We also show that LC8 knockdown or transfection with inhibitory peptides destabilizes microtubules and inhibits bipolar spindle assembly in HeLa cells. In addition, LC8 knockdown leads to the mitotic block in HeLa cells. Furthermore, molecular docking analysis using the crystal structures of tubulin and LC8 dimer indicated that the latter may bind at α-β tubulin junction in a protofilament at sites distinct from the kinesin and dynein binding sites. Together, we provide the first evidence of a novel microtubule-associated protein-like function of LC8 that could explain its reported roles in cellular metastasis and differentiation. PMID:23038268

  17. Diagnostic and Prognostic Utility of Cardiovascular Magnetic Resonance Imaging in Light-Chain Cardiac Amyloidosis

    PubMed Central

    Ruberg, Frederick L.; Appelbaum, Evan; Davidoff, Ravin; Ozonoff, Al; Kissinger, Kraig V.; Harrigan, Caitlin; Skinner, Martha; Manning, Warren J.

    2009-01-01

    While the presence of abnormal late gadolinium enhancement (LGE) in cardiac amyloidosis has been well established, its prognostic implication and utility to identify cardiac involvement in patients with systemic amyloidosis is unknown. We sought to assess the diagnostic and prognostic significance of cardiovascular magnetic resonance (CMR) imaging in patients with light chain (AL) amyloidosis but unknown cardiac involvement. CMR with LGE was performed in 28 patients with systemic amyloidosis. The presence of cardiac amyloidosis was determined by a separate clinical evaluation. The performance of LGE for the prediction of cardiac amyloidosis and prognostic implications of LGE were determined. LGE was observed in 19 (68%) patients. The sensitivity, specificity, positive predictive value and negative predictive value of LGE for the identification of clinical cardiac involvement was 86%, 86%, 95%, and 67% respectively. During a median follow-up of 29 months, there were 5 deaths (82% survival). LGE itself did not predict survival (p=0.62). LGE volume positively correlated to serum level of B-type natriuretic peptide (BNP) (R=0.64, p≤0.001) and in multivariable analysis, LGE volume proved the strongest independent predictor of BNP. BNP was correlated to New York Heart Association class (p=0.03). Reduced right ventricular end-diastolic volume (p < 0.01) and stroke volume (p = 0.02) were associated with mortality. In conclusion, in patients with systemic amyloidosis, LGE is highly sensitive and specific for the identification of cardiac involvement, but does not predict survival. LGE does correlate strongly to heart failure severity as assessed by BNP. PMID:19195518

  18. Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction

    SciTech Connect

    Muthu, Priya; Wang, Li; Yuan, Chen-Ching; Kazmierczak, Katarzyna; Huang, Wenrui; Hernandez, Olga M.; Kawai, Masataka; Irving, Thomas C.; Szczesna-Cordary, Danuta

    2012-04-02

    The myosin essential light chain (ELC) is a structural component of the actomyosin cross-bridge, but its function is poorly understood, especially the role of the cardiac specific N-terminal extension in modulating actomyosin interaction. Here, we generated transgenic (Tg) mice expressing the A57G (alanine to glycine) mutation in the cardiac ELC known to cause familial hypertrophic cardiomyopathy (FHC). The function of the ELC N-terminal extension was investigated with the Tg-{Delta}43 mouse model, whose myocardium expresses a truncated ELC. Low-angle X-ray diffraction studies on papillary muscle fibers in rigor revealed a decreased interfilament spacing ({approx} 1.5 nm) and no alterations in cross-bridge mass distribution in Tg-A57G mice compared to Tg-WT, expressing the full-length nonmutated ELC. The truncation mutation showed a 1.3-fold increase in I{sub 1,1}/I{sub 1,0}, indicating a shift of cross-bridge mass from the thick filament backbone toward the thin filaments. Mechanical studies demonstrated increased stiffness in Tg-A57G muscle fibers compared to Tg-WT or Tg-{Delta}43. The equilibrium constant for the cross-bridge force generation step was smallest in Tg-{Delta}43. These results support an important role for the N-terminal ELC extension in prepositioning the cross-bridge for optimal force production. Subtle changes in the ELC sequence were sufficient to alter cross-bridge properties and lead to pathological phenotypes.

  19. Light chain amyloidosis: Experience in a tertiary hospital: 2005-2013.

    PubMed

    Krsnik, I; Cabero, M; Morillo, D; Segovia, J; García-Pavía, P; Gómez-Bueno, M; Salas, C

    2015-01-01

    AL amyloidosis is a rare condition whose management is undergoing changes due to recent advances in diagnosis and treatment. We describe a contemporary series of patients with AL amyloidosis to analyze the features that enable early diagnosis and optimal management. We recruited for analysis 32 patients (19 women; mean age, 63 years) treated consecutively at our center. Eighty-four percent of the patients presented with asthenia, dyspnea or edema, with a previous duration of symptoms of 8 months (median). Cardiac (21/32) and renal impairment were the most common type (11/32). All of the patients, except one, had a monoclonal component in serum/urine or abnormal values for free light chains (78%, λ). The bone marrow (BM) showed clonal plasmacytosis in 29 cases. All of the cardiac biopsies and 50% of the BM biopsies showed amyloid deposits. The results of the echocardiogram and/or cardiac resonance were abnormal in 27/30 cases. The median NT-proBNP value at diagnosis was 5200 ng/ml. Thirteen patients died due to heart failure, 2 due to rejection after heart transplantation, 2 due to pneumonia and 1 after a stroke. Ten patients did not undergo treatment, 12 were treated with bortezomib and 5 were treated with alkylating agents. Five patients underwent heart transplantation and 4 underwent autologous bone marrow transplantation. Fourteen patients achieved a complete hematologic response and 10 achieved organ response. The median survival was 17 months. Cardiac involvement is the major determinant of prognosis. Yield of involved organ biopsy is high (100% heart biopsies). Antineoplastic treatment with bortezomib and/or autologous bone marrow transplantation achieves hematological responses with improvements in organ impairment. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  20. Residual structure and dynamics in DMSO-d6 denatured dynein light chain protein.

    PubMed

    Chakraborty, Swagata; Mohan, P M Krishna; Hosur, Ramakrishna V

    2012-01-01

    Structural and motional features in the denatured state of a protein dictate the early folding events starting from that state and these features vary depending upon the nature of the denaturant used. Here, we have attempted to decipher the early events in the folding of Dynein Light Chain protein (DLC8), starting from DMSO-d6 denatured state. Multinuclear NMR experiments were used to obtain the full spectral assignment. The HSQC spectrum shows the presence of two sets of peaks for the residues Met 1, Ser 2, Arg 4, Ala 11, Met 17, Thr 26, Lys 44, Tyr 50, Asn 51, Trp 54, His 55, Val 58, Gly 59, Ser 64, Tyr 65, His 68, Phe 86, Lys 87 indicating the presence of slow conformational transition in the heterogeneous ensemble. Analysis of residual structural propensities with secondary (13)C chemical shifts, (3)J(H(N)(-)H(α)) coupling constants and (1)H-(1)H NOE revealed the presence of local preferences which encompass both native and non-native like structures. The spectral density calculations, as obtained from measured R(1), R(2) and (1)H-(15)N steady state NOE values provide insights into the backbone dynamics on the milli to picosecond timescale. The segment Ser 14 - His 55 exhibits slow motions on the milli- to microsecond timescale arising from conformational exchange. The presence of native like structural preference, as well as conformational exchange classifies the above segment as the nucleation site of folding. Based on the observations, we propose here, the probable hierarchy of folding of DLC8 on dilution of denaturant: the two helices are formed first followed by the formation of β2 and β5.

  1. Immunoglobulin Free Light Chains Are Increased in Hypersensitivity Pneumonitis and Idiopathic Pulmonary Fibrosis

    PubMed Central

    Groot Kormelink, Tom; Pardo, Annie; Knipping, Karen; Buendía-Roldán, Ivette; García-de-Alba, Carolina; Blokhuis, Bart R.; Selman, Moises; Redegeld, Frank A.

    2011-01-01

    Background Idiopathic pulmonary fibrosis (IPF), a devastating lung disorder of unknown aetiology, and chronic hypersensitivity pneumonitis (HP), a disease provoked by an immunopathologic reaction to inhaled antigens, are two common interstitial lung diseases with uncertain pathogenic mechanisms. Previously, we have shown in other upper and lower airway diseases that immunoglobulin free light chains (FLCs) are increased and may be involved in initiating a local inflammation. In this study we explored if such a mechanism may also apply to HP and IPF. Methods In this study we examined the presence of FLC in serum and BAL fluid from 21 IPF and 22 HP patients and controls. IgG, IgE and tryptase concentrations were measured in BAL fluid only. The presence of FLCs, plasma cells, B cells and mast cells in lung tissue of 3 HP and 3 IPF patients and 1 control was analyzed using immunohistochemistry. Results FLC concentrations in serum and BAL fluid were increased in IPF and HP patients as compared to control subjects. IgG concentrations were only increased in HP patients, whereas IgE concentrations were comparable to controls in both patient groups. FLC-positive cells, B cells, plasma cells, and large numbers of activated mast cells were all detected in the lungs of HP and IPF patients, not in control lung. Conclusion These results show that FLC concentrations are increased in serum and BAL fluid of IPF and HP patients and that FLCs are present within affected lung tissue. This suggests that FLCs may be involved in mediating pathology in both diseases. PMID:21980441

  2. Salivary immunoglobulin free light chains: reference ranges and responses to exercise in young and older adults.

    PubMed

    Heaney, Jennifer L J; Gleeson, Michael; Phillips, Anna C; Taylor, Ian M; Drayson, Mark T; Goodall, Margret; He, Cheng-Shiun; Svendsen, Ida S; Killer, Sophie C; Campbell, John P

    2016-01-01

    Free light chains (FLCs) have a range of biological functions and may act as a broad marker of immunesuppression and activation and inflammation. Measurement of salivary FLCs may provide practical advantages in a range of clinical populations. The aim of the present study was to develop normal reference ranges of FLCs in saliva and assess the effects of acute exercise on FLC levels in younger and older adults. Saliva FLC concentrations and secretion rates were measuredin young (n = 88, aged 18-36) and older (n = 53, aged 60-80) adults. To assess FLC changes in response to acute exercise, young adults completed a constant work-rate cycling exercise trial at 60% VO2max (n = 18) or a 1 h cycling time trial (TT) (n = 10) and older adults completed an incremental submaximal treadmill walking exercise test to 75% HRmax (n = 53). Serum FLCs were measured at baseline and in response to exercise. Older adults demonstrated significantly higher levels of salivary FLC parameters compared with young adults. Median (5-95th percentile) concentrationswere 0.45 (0.004- 3.45) mg/L for kappa and 0.30 (0.08-1.54) mg/L for lambda in young adults; 3.91 (0.75-19.65) mg/L for kappa and 1.00 (0.02-4.50) mg/L for lambda in older ad ults. Overall median concentrations of salivary kappa and lambda FLCs were 10-fold and 20-fold lower than serum, respectively. Reductions in salivary FLC concentrations and secretion rates were observed immediately post- and at 1 h post exercise, but were only significant for the older cohort; FLCs began to recover between post and 1 h post-exercise. No changes in serum FLCs were observed in response to exercise. Copyright © 2015 International Society of Exercise and Immunology. All rights reserved.

  3. Regulation of myosin light chain phosphorylation in the trabecular meshwork: role in aqueous humour outflow facility.

    PubMed

    Rao, P Vasantha; Deng, Peifeng; Sasaki, Yasuharu; Epstein, David L

    2005-02-01

    Cellular contraction and relaxation and integrity of the actin cytoskeleton in trabecular meshwork (TM) tissue have been thought to influence aqueous humour outflow. However, the cellular pathways that regulate these events in TM cells are not well understood. In this study, we investigated physiological agonist-mediated regulation of myosin light chain (MLC) phosphorylation in the TM, and correlated such effects with alterations in aqueous outflow facility, since MLC phosphorylation is a critical biochemical determinant of cellular contraction in TM cells. Treatment of serum starved human TM cells with endothelin-1 (0.1 microM), thromboxane A2 mimetic U-46619 (1.0 microM), or angiotensin II (1 microM), all of which are agonists of G-protein coupled receptors, triggered activation of MLC phosphorylation, as determined by urea/glycerol-based Western blot analysis. Agonist-stimulated increase in MLC phosphorylation was associated with activation of Rho GTPase in TM cells, as determined in pull-down assays. In contrast, treatment of human TM cells with a novel Rho-kinase inhibitor H-1152 (0.1-2 microM), in the presence of serum reduced basal MLC phosphorylation. H-1152 also increased aqueous outflow facility significantly in a dose-dependent fashion, in perfusion studies with cadaver porcine eyes. This effect of H-1152 on outflow facility was associated with decreased MLC phosphorylation in TM tissue of drug-perfused eyes. Collectively, this study identifies potential physiological regulators of MLC phosphorylation in human TM cells and demonstrates the significance of Rho/Rho-kinase pathway-mediated MLC phosphorylation in modulation of aqueous outflow facility through TM.

  4. Disruption of the murine dynein light chain gene Tcte3-3 results in asthenozoospermia.

    PubMed

    Rashid, Sajid; Grzmil, Pawel; Drenckhahn, Joerg-Detlef; Meinhardt, Andreas; Adham, Ibrahim; Engel, Wolfgang; Neesen, Juergen

    2010-01-01

    To elucidate the role of the mouse gene Tcte3 (Tctex2), which encodes a putative light chain of the outer dynein arm of cilia and sperm flagella, we have inactivated this gene in mice using targeted disruption. Breeding of heterozygous males and females resulted in normal litter size; however, we were not able to detect homozygous Tcte3-deficent mice using standard genotype techniques. In fact, our results indicate the presence of at least three highly similar copies of the Tcte3 gene (Tcte3-1, Tcte3-2, and Tcte3-3) in the murine genome. Therefore, quantitative real-time PCR was established to differentiate between mice having one or two targeted Tcte3-3 alleles. By this approach, Tcte3-3(-/-) animals were identified, which were viable and revealed no obvious malformation. Interestingly, some homozygous Tcte3-3-deficient male mice bred with wild-type female produced no offspring while other Tcte3-3-deficient males revealed decreased sperm motility but were fertile. In infertile Tcte3-3(-/-) males, spermatogenesis was affected and sperm motility was reduced, too, resulting in decreased ability of Tcte3-3-deficient spermatozoa to move from the uterus into the oviduct. Impaired flagellar motility is not correlated with any gross defects in the axonemal structure, since outer dynein arms are detectable in sperm of Tcte3-3(-/-) males. However, in infertile males, deficient Tcte3-3 function is correlated with increased apoptosis during male germ cell development, resulting in a reduction of sperm number. Moreover, multiple malformations in developing haploid germ cells are present. Our results support a role of Tcte3-3 in generation of sperm motility as well as in male germ cell differentiation.

  5. Use of Nonclonal Serum Immunoglobulin Free Light Chains to Predict Overall Survival in the General Population

    PubMed Central

    Dispenzieri, Angela; Katzmann, Jerry A.; Kyle, Robert A.; Larson, Dirk R.; Therneau, Terry M.; Colby, Colin L.; Clark, Raynell J.; Mead, Graham P.; Kumar, Shaji; Melton, L. Joseph; Rajkumar, S. Vincent

    2012-01-01

    Objective To determine whether the free light chain (FLC) assay provides prognostic information relevant to the general population. Methods After excluding persons with a known plasma cell disorder, we studied 15,859 Olmsted County, Minnesota, residents 50 years or older in whom unmasked data and samples for FLC testing were available. Baseline information was obtained between March 13, 1995, and November 21, 2003, and follow-up status and cause of death were identified through June 30, 2009. The κ and λ FLC sum (Σ FLC) was evaluated for its ability to predict overall survival. Specific causes of death were also investigated. Results In 158,003 person-years of follow-up, 4348 individuals died. A high Σ FLC was significantly predictive of worse overall survival; the risk ratio for death for those with the highest decile of Σ FLC (ie, ≥4.72 mg/dL) was 4.4 (95% confidence interval, 4.1-4.7) relative to the remaining study participants. Multivariate analyses demonstrated that this excess risk of death was independent of age, sex, and renal insufficiency, with a corrected risk ratio of 2.1 (95% confidence interval, 1.9-2.2). The increased mortality was not restricted to any particular cause of death because the observed-to-expected risk of death from most causes was significantly higher among those individuals with an antecedent Σ FLC of 4.72 mg/dL or higher, which is near the upper limit of normal for the test. Conclusion A nonclonal elevation of Σ FLC is a significant predictor of worse overall survival in the general population of persons without plasma cell disorders. PMID:22677072

  6. Nutritional status of outpatients with systemic immunoglobulin light-chain amyloidosis 1.

    PubMed

    Caccialanza, Riccardo; Palladini, Giovanni; Klersy, Catherine; Cena, Hellas; Vagia, Christina; Cameletti, Barbara; Russo, Paola; Lavatelli, Francesca; Merlini, Giampaolo

    2006-02-01

    Maintenance of a good nutritional status is associated with prolonged survival in many chronic diseases. To date, the nutritional status of outpatients with immunoglobulin light-chain (AL) amyloidosis has not been evaluated. The aims of this study were to obtain information regarding the nutritional status of AL amyloidosis outpatients and to investigate its prognostic role. One hundred six consecutive patients with histologically confirmed AL amyloidosis were enrolled. Anthropometric, biochemical, and clinical variables were measured. The Kaplan-Meier method was used to calculate survival. A Cox proportional hazard model was constructed to evaluate the prognostic effect of the nutritional variables. Unintentional weight loss (median: 11.3%; range: 2.6-34% of usual nonedematous body weight) was documented in 58 subjects (54.7%). Body mass index (BMI; in kg/m2) was <22 in 25 subjects (23.6%). Serum prealbumin was <200 mg/L (lower reference limit) in 26 patients (24.5%). A multivariate analysis showed that the percentage weight loss was significantly greater in patients with than in those without cardiac involvement (P = 0.03), and it also differed significantly by New York Heart Association class (P = 0.02) and Eastern Cooperative Oncology Group performance status (P = 0.001). Cardiac involvement (P = 0.008), hematologic response to therapy (P = 0.013), BMI (P = 0.001) and serum prealbumin (P = 0.001) were independent predictors of survival. Malnutrition is a prominent clinical feature of patients with AL amyloidosis. Appropriate nutritional evaluation that comprises the easily measurable nutritional variables associated with survival should be an integral part of the clinical assessment of AL amyloidosis outpatients.

  7. T1 mapping and survival in systemic light-chain amyloidosis

    PubMed Central

    Banypersad, Sanjay M.; Fontana, Marianna; Maestrini, Viviana; Sado, Daniel M.; Captur, Gabriella; Petrie, Aviva; Piechnik, Stefan K.; Whelan, Carol J.; Herrey, Anna S.; Gillmore, Julian D.; Lachmann, Helen J.; Wechalekar, Ashutosh D.; Hawkins, Philip N.; Moon, James C.

    2015-01-01

    Aims To assess the prognostic value of myocardial pre-contrast T1 and extracellular volume (ECV) in systemic amyloid light-chain (AL) amyloidosis using cardiovascular magnetic resonance (CMR) T1 mapping. Methods and results One hundred patients underwent CMR and T1 mapping pre- and post-contrast. Myocardial ECV was calculated at contrast equilibrium (ECVi) and 15 min post-bolus (ECVb). Fifty-four healthy volunteers served as controls. Patients were followed up for a median duration of 23 months and survival analyses were performed. Mean ECVi was raised in amyloid (0.44 ± 0.12) as was ECVb (mean 0.44 ± 0.12) compared with healthy volunteers (0.25 ± 0.02), P < 0.001. Native pre-contrast T1 was raised in amyloid (mean 1080 ± 87 ms vs. 954 ± 34 ms, P < 0.001). All three correlated with pre-test probability of cardiac involvement, cardiac biomarkers, and systolic and diastolic dysfunction. During follow-up, 25 deaths occurred. An ECVi of >0.45 carried a hazard ratio (HR) for death of 3.84 [95% confidence interval (CI): 1.53–9.61], P = 0.004 and pre-contrast T1 of >1044 ms = HR 5.39 (95% CI: 1.24–23.4), P = 0.02. Extracellular volume after primed infusion and ECVb performed similarly. Isolated post-contrast T1 was non-predictive. In Cox regression models, ECVi was independently predictive of mortality (HR = 4.41, 95% CI: 1.35–14.4) after adjusting for E:E′, ejection fraction, diastolic dysfunction grade, and NT-proBNP. Conclusion Myocardial ECV (bolus or infusion technique) and pre-contrast T1 are biomarkers for cardiac AL amyloid and they predict mortality in systemic amyloidosis. PMID:25411195

  8. Myosin light chain kinase controls voltage-dependent calcium channels in vascular smooth muscle.

    PubMed

    Martinsen, A; Schakman, O; Yerna, X; Dessy, C; Morel, N

    2014-07-01

    The Ca(2+)-dependent kinase myosin light chain kinase (MLCK) is the activator of smooth muscle contraction. In addition, it has been reported to be involved in Ca(2+) channel regulation in cultured cells, and we previously showed that the MLCK inhibitor ML-7 decreases arginine vasopressin (AVP)-induced Ca(2+) influx in rat aorta. This study was designed to investigate whether MLCK is involved in Ca(2+) regulation in resistance artery smooth muscle cell, which plays a major role in the control of blood pressure. As ML compounds were shown to have off-target effects, MLCK was downregulated by transfection with a small interfering RNA targeting MLCK (MLCK-siRNA) in rat small resistance mesenteric artery (RMA) and in the rat embryonic aortic cell line A7r5. Noradrenaline-induced contraction and Ca(2+) signal were significantly depressed in MLCK-siRNA compared to scramble-siRNA-transfected RMA. Contraction and Ca(2+) signal induced by high KCl and voltage-activated Ca(2+) current were also significantly decreased in MLCK-siRNA-transfected RMA, suggesting that MLCK depletion modifies voltage-operated Ca(2+) channels. KCl- and AVP-induced Ca(2+) signals and voltage-activated Ca(2+) current were decreased in MLCK-depleted A7r5 cells. Eventually, real-time quantitative PCR analysis indicated that in A7r5, MLCK controlled mRNA expression of CaV1.2 (L-type) and CaV3.1 (T-type) voltage-dependent Ca(2+) channels. Our results suggest that MLCK controls the transcription of voltage-dependent Ca(2+) channels in vascular smooth muscle cells.

  9. Cardiac Light Chain Amyloidosis: The Role of Metal Ions in Oxidative Stress and Mitochondrial Damage.

    PubMed

    Diomede, Luisa; Romeo, Margherita; Rognoni, Paola; Beeg, Marten; Foray, Claudia; Ghibaudi, Elena; Palladini, Giovanni; Cherny, Robert A; Verga, Laura; Capello, Gian Luca; Perfetti, Vittorio; Fiordaliso, Fabio; Merlini, Giampaolo; Salmona, Mario

    2017-09-20

    The knowledge of the mechanism underlying the cardiac damage in immunoglobulin light chain (LC) amyloidosis (AL) is essential to develop novel therapies and improve patients' outcome. Although an active role of reactive oxygen species (ROS) in LC-induced cardiotoxicity has already been envisaged, the actual mechanisms behind their generation remain elusive. This study was aimed at further dissecting the action of ROS generated by cardiotoxic LC in vivo and investigating whether transition metal ions are involved in this process. In the absence of reliable vertebrate model of AL, we used the nematode Caenorhabditis elegans, whose pharynx is an "ancestral heart." LC purified from patients with severe cardiac involvement intrinsically generated high levels of ROS and when administered to C. elegans induced ROS production, activation of the DAF-16/forkhead transcription factor (FOXO) pathway, and expression of proteins involved in stress resistance and survival. Profound functional and structural ROS-mediated mitochondrial damage, similar to that observed in amyloid-affected hearts from AL patients, was observed. All these effects were entirely dependent on the presence of metal ions since addition of metal chelator or metal-binding 8-hydroxyquinoline compounds (chelex, PBT2, and clioquinol) permanently blocked the ROS production and prevented the cardiotoxic effects of amyloid LC. Innovation and Conclusion: Our findings identify the key role of metal ions in driving the ROS-mediated toxic effects of LC. This is a novel conceptual advance that paves the way for new pharmacological strategies aimed at not only counteracting but also totally inhibiting the vicious cycle of redox damage. Antioxid. Redox Signal. 27, 567-582.

  10. Constraints on intron evolution in the gene encoding the myosin alkali light chain in Drosophila

    SciTech Connect

    Leicht, B.G.; Muse, S.V.; Hanczyc, M.

    1995-01-01

    Interspecific comparisons of intron sequences reveal conserved blocks of invariant nucleotides and several other departures from the strictly neutral model of molecular evolution. To distinguish the past action of evolutionary forces in introns known to have regulatory information, we examined nucleotide sequence variation at 991 sites in a random sample of 16 Drosophila melanogaster alleles of the gene encoding the myosin alkali light chain (Mlc1). The Mlc1 gene of D. melanogaster encodes two Mlc1 isoforms via developmentally regulated alternative pre-mRNA splicing. Analyses of these data reveal that introns 4 and 5, which flank the alternatively spliced exon 5, have reduced levels of both intraspecific polymorphism and interspecific divergence relative to intron 3. No polymorphism was observed in any of the exons examined in D. melanogaster. A genealogical analysis clearly demonstrates the occurrence of intragenic recombination in the ancestral history of Mlc1. Recombination events are estimated to be 13 times more likely than mutation events over the span of the sequenced region. Although there is little evidence for pairwise linkage disequilibrium in the Mlc1 region, higher order disequilibrium. does seem to be present in the 5{prime} half of the portion of the gene that was examined. Predictions of the folding free energy of the pre-mRNA reveal that sampled alleles have a significantly higher (less stable) free energy than do randomly permuted sequences. These results are consistent with the hypothesis that introns surrounding an alternatively spliced exon are subjected to additional constraints, perhaps due to specific aspects of secondary structure required for appropriate splicing of the pre-mRNA molecule. 48 refs., 5 figs., 3 tabs.

  11. Myosin Light Chain Kinase Mediates Intestinal Barrier Disruption following Burn Injury

    PubMed Central

    Chen, Chuanli; Wang, Pei; Su, Qin; Wang, Shiliang; Wang, Fengjun

    2012-01-01

    Background Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. Methodology/Principal Findings Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. Conclusions/Significance The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury. PMID:22529961

  12. N Latex FLC serum free light-chain assays in patients with renal impairment.

    PubMed

    Jacobs, Joannes F M; Hoedemakers, Rein M J; Teunissen, Elisa; Te Velthuis, Henk

    2014-06-01

    The aim of this study was to establish ranges for N Latex free light-chain (FLC) monoclonal-based nephelometric assays in patients with renal impairment. In this retrospective study, serum samples from 284 patients with chronic kidney disease (CKD) stages 1-5 were measured with N Latex and Freelite FLC reagents on the Siemens BNII system and compared with controls without renal impairment. Both κFLC and λFLC concentrations increased with the N Latex FLC and the Freelite assays with each increment in CKD stage. No difference was found in FLC κ concentrations between the two methods. In patients with renal failure, N Latex FLC detected higher concentrations of λFLC (CKD5 median, 128 mg/L; 95% range, 43-302) compared with Freelite (89.5 mg/L, 35-197) (p<0.0001). This resulted in significantly different κ/λ ratios in patients with CKD for the two tests. The Freelite κ/λ ratio in the CKD5 group (median, 1.22; min-max, 0.22-2.70) was significantly increased compared with healthy controls (p<0.0001), and several individual samples were outside the reference range for healthy controls (0.26-1.65). In contrast, none of the 284 patients with CKD had an FLC κ/λ ratio exceeding the N Latex reference limits for healthy controls (0.31-1.56). The N Latex FLC κ/λ ratio in the CKD5 group (0.69, 0.32-1.54) was significantly lower compared with the control group (p<0.0001). These findings demonstrate that the N Latex FLC κ/λ ratio in patients with renal failure did not differ from the reference limits for healthy controls.

  13. Serum free-light chain removal by high cutoff hemodialysis: optimizing removal and supportive care.

    PubMed

    Hutchison, Colin A; Harding, Stephen; Mead, Graham; Goehl, Hermann; Storr, Markus; Bradwell, Arthur; Cockwell, Paul

    2008-12-01

    In multiple myeloma the predominant cause of irreversible renal failure is cast nephropathy, secondary to excess kappa or lambda serum free light chains (FLCs). These molecules are efficiently cleared by hemodialysis (HD) using the Gambro HCO 1100 dialyzer. To optimize the removal of FLCs by this dialyzer we have studied the effect of dialyzers in series, dialyzer change, and hemodiafiltration in 14 patients with multiple myeloma and renal failure. The clearance rates of both kappa FLCs and lambda FLCs were significantly increased on two dialyzers from 19 (7.3-34)-15.3 (9-28) mL/min to 47 (17-79)-35.5 (20-57) mL/min, respectively. Clearance rates of both FLCs decreased over the course of the dialysis sessions (both P < 0.001). Changing the dialyzer during a HD session increased lambda FLC clearance rates (22.5 [6-41] to 37.6 [9-52] mL/min; P < 0.001) and decreased kappa FLC clearance rates (39.6 [9-72] to 19 [8-59] mL/min; P < 0.003). Ultrafiltration during HD increased the clearance rates of kappa FLCs (R 0.52, P < 0.01) but not lambda FLCs (R -0.25; P < 0.076). Hemodiafiltration increased the clearance rates of both kappa (19 [SD 6.8] to 32 [SD 9.8] mL/min) and lambda FLCs (15 [SD 7.8] to 20 [SD 7.7] mL/min). Albumin replacement requirements for 8 h of HD increased from 12 g for a single dialyzer to 45 g for two dialyzers in series (P < 0.001). Different protocols are required to optimize the removal of kappa and lambda FLCs in patients with myeloma and renal failure.

  14. N-terminus of Cardiac Myosin Essential Light Chain Modulates Myosin Step-Size

    PubMed Central

    Wang, Yihua; Ajtai, Katalin; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta; Burghardt, Thomas P.

    2016-01-01

    Muscle myosin cyclically hydrolyzes ATP to translate actin. Ventricular cardiac myosin (βmys) moves actin with three distinct unitary step-sizes resulting from its lever-arm rotation and with step-frequencies that are modulated in a myosin regulation mechanism. The lever-arm associated essential light chain (vELC) binds actin by its 43 residue N-terminal extension. Unitary steps were proposed to involve the vELC N-terminal extension with the 8 nm step engaging the vELC/actin bond facilitating an extra ~19 degrees of lever-arm rotation while the predominant 5 nm step forgoes vELC/actin binding. A minor 3 nm step is the unlikely conversion of the completed 5 to the 8 nm step. This hypothesis was tested using a 17 residue N-terminal truncated vELC in porcine βmys (Δ17βmys) and a 43 residue N-terminal truncated human vELC expressed in transgenic mouse heart (Δ43αmys). Step-size and step-frequency were measured using the Qdot motility assay. Both Δ17βmys and Δ43αmys had significantly increased 5 nm step-frequency and coincident loss in the 8 nm step-frequency compared to native proteins suggesting the vELC/actin interaction drives step-size preference. Step-size and step-frequency probability densities depend on the relative fraction of truncated vELC and relate linearly to pure myosin species concentrations in a mixture containing native vELC homodimer, two truncated vELCs in the modified homodimer, and one native and one truncated vELC in the heterodimer. Step-size and step-frequency, measured for native homodimer and at two or more known relative fractions of truncated vELC, are surmised for each pure species by using a new analytical method. PMID:26671638

  15. Myosin regulatory light chain phosphorylation enhances cardiac β-myosin in vitro motility under load.

    PubMed

    Karabina, Anastasia; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta; Moore, Jeffrey R

    2015-08-15

    Familial hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy and myofibrillar disarray, and often results in sudden cardiac death. Two HCM mutations, N47K and R58Q, are located in the myosin regulatory light chain (RLC). The RLC mechanically stabilizes the myosin lever arm, which is crucial to myosin's ability to transmit contractile force. The N47K and R58Q mutations have previously been shown to reduce actin filament velocity under load, stemming from a more compliant lever arm (Greenberg, 2010). In contrast, RLC phosphorylation was shown to impart stiffness to the myosin lever arm (Greenberg, 2009). We hypothesized that phosphorylation of the mutant HCM-RLC may mitigate distinct mutation-induced structural and functional abnormalities. In vitro motility assays were utilized to investigate the effects of RLC phosphorylation on the HCM-RLC mutant phenotype in the presence of an α-actinin frictional load. Porcine cardiac β-myosin was depleted of its native RLC and reconstituted with mutant or wild-type human RLC in phosphorylated or non-phosphorylated form. Consistent with previous findings, in the presence of load, myosin bearing the HCM mutations reduced actin sliding velocity compared to WT resulting in 31-41% reductions in force production. Myosin containing phosphorylated RLC (WT or mutant) increased sliding velocity and also restored mutant myosin force production to near WT unphosphorylated values. These results point to RLC phosphorylation as a general mechanism to increase force production of the individual myosin motor and as a potential target to ameliorate the HCM-induced phenotype at the molecular level.

  16. Expression of Calmodulin and Myosin Light Chain Kinase during Larval Settlement of the Barnacle Balanus amphitrite

    PubMed Central

    Chen, Zhang-Fan; Wang, Hao; Matsumura, Kiyotaka; Qian, Pei-Yuan

    2012-01-01

    Barnacles are one of the most common organisms in intertidal areas. Their life cycle includes seven free-swimming larval stages and sessile juvenile and adult stages. The transition from the swimming to the sessile stages, referred to as larval settlement, is crucial for their survivor success and subsequent population distribution. In this study, we focused on the involvement of calmodulin (CaM) and its binding proteins in the larval settlement of the barnacle, Balanus ( = Amphibalanus) amphitrite. The full length of CaM gene was cloned from stage II nauplii of B. amphitrite (referred to as Ba-CaM), encoding 149 amino acid residues that share a high similarity with published CaMs in other organisms. Quantitative real-time PCR showed that Ba-CaM was highly expressed in cyprids, the stage at which swimming larvae are competent to attach and undergo metamorphosis. In situ hybridization revealed that the expressed Ba-CaM gene was localized in compound eyes, posterior ganglion and cement glands, all of which may have essential functions during larval settlement. Larval settlement assays showed that both the CaM inhibitor compound 48/80 and the CaM-dependent myosin light chain kinase (MLCK) inhibitor ML-7 effectively blocked barnacle larval settlement, whereas Ca2+/CaM-dependent kinase II (CaMKII) inhibitors did not show any clear effects. The subsequent real-time PCR assay showed a higher expression level of Ba-MLCK gene in larval stages than in adults, suggesting an important role of Ba-MLCK gene in larval development and competency. Overall, the results suggest that CaM and CaM-dependent MLCK function during larval settlement of B. amphitrite. PMID:22348072

  17. Regulatory light chain mutants linked to heart disease modify the cardiac myosin lever arm.

    PubMed

    Burghardt, Thomas P; Sikkink, Laura A

    2013-02-19

    Myosin is the chemomechanical energy transducer in striated heart muscle. The myosin cross-bridge applies impulsive force to actin while consuming ATP chemical energy to propel myosin thick filaments relative to actin thin filaments in the fiber. Transduction begins with ATP hydrolysis in the cross-bridge driving rotary movement of a lever arm converting torque into linear displacement. Myosin regulatory light chain (RLC) binds to the lever arm and modifies its ability to translate actin. Gene sequencing implicated several RLC mutations in heart disease, and three of them are investigated here using photoactivatable GFP-tagged RLC (RLC-PAGFP) exchanged into permeabilized papillary muscle fibers. A single-lever arm probe orientation is detected in the crowded environment of the muscle fiber by using RLC-PAGFP with dipole orientation deduced from the three-spatial dimension fluorescence emission pattern of the single molecule. Symmetry and selection rules locate dipoles in their half-sarcomere, identify those at the minimal free energy, and specify active dipole contraction intermediates. Experiments were performed in a microfluidic chamber designed for isometric contraction, total internal reflection fluorescence detection, and two-photon excitation second harmonic generation to evaluate sarcomere length. The RLC-PAGFP reports apparently discretized lever arm orientation intermediates in active isometric fibers that on average produce the stall force. Disease-linked mutants introduced into RLC move intermediate occupancy further down the free energy gradient, implying lever arms rotate more to reach stall force because mutant RLC increases lever arm shear strain. A lower free energy intermediate occupancy involves a lower energy conversion efficiency in the fiber relating a specific myosin function modification to the disease-implicated mutant.

  18. Structure of the Single-lobe Myosin Light Chain C in Complex with the Light Chain-binding Domains of Myosin-1C Provides Insights into Divergent IQ Motif Recognition.

    PubMed

    Langelaan, David N; Liburd, Janine; Yang, Yidai; Miller, Emily; Chitayat, Seth; Crawley, Scott W; Côté, Graham P; Smith, Steven P

    2016-09-09

    Myosin light chains are key regulators of class 1 myosins and typically comprise two domains, with calmodulin being the archetypal example. They bind IQ motifs within the myosin neck region and amplify conformational changes in the motor domain. A single lobe light chain, myosin light chain C (MlcC), was recently identified and shown to specifically bind to two sequentially divergent IQ motifs of the Dictyostelium myosin-1C. To provide a molecular basis of this interaction, the structures of apo-MlcC and a 2:1 MlcC·myosin-1C neck complex were determined. The two non-functional EF-hand motifs of MlcC pack together to form a globular four-helix bundle that opens up to expose a central hydrophobic groove, which interacts with the N-terminal portion of the divergent IQ1 and IQ2 motifs. The N- and C-terminal regions of MlcC make critical contacts that contribute to its specific interactions with the myosin-1C divergent IQ motifs, which are contacts that deviate from the traditional mode of calmodulin-IQ recognition.

  19. Structure of the Single-lobe Myosin Light Chain C in Complex with the Light Chain-binding Domains of Myosin-1C Provides Insights into Divergent IQ Motif Recognition *

    PubMed Central

    Langelaan, David N.; Liburd, Janine; Yang, Yidai; Miller, Emily; Chitayat, Seth; Crawley, Scott W.; Côté, Graham P.; Smith, Steven P.

    2016-01-01

    Myosin light chains are key regulators of class 1 myosins and typically comprise two domains, with calmodulin being the archetypal example. They bind IQ motifs within the myosin neck region and amplify conformational changes in the motor domain. A single lobe light chain, myosin light chain C (MlcC), was recently identified and shown to specifically bind to two sequentially divergent IQ motifs of the Dictyostelium myosin-1C. To provide a molecular basis of this interaction, the structures of apo-MlcC and a 2:1 MlcC·myosin-1C neck complex were determined. The two non-functional EF-hand motifs of MlcC pack together to form a globular four-helix bundle that opens up to expose a central hydrophobic groove, which interacts with the N-terminal portion of the divergent IQ1 and IQ2 motifs. The N- and C-terminal regions of MlcC make critical contacts that contribute to its specific interactions with the myosin-1C divergent IQ motifs, which are contacts that deviate from the traditional mode of calmodulin-IQ recognition. PMID:27466369

  20. A Ras-like domain in the light intermediate chain bridges the dynein motor to a cargo-binding region.

    PubMed

    Schroeder, Courtney M; Ostrem, Jonathan M L; Hertz, Nicholas T; Vale, Ronald D

    2014-10-01

    Cytoplasmic dynein, a microtubule-based motor protein, transports many intracellular cargos by means of its light intermediate chain (LIC). In this study, we have determined the crystal structure of the conserved LIC domain, which binds the motor heavy chain, from a thermophilic fungus. We show that the LIC has a Ras-like fold with insertions that distinguish it from Ras and other previously described G proteins. Despite having a G protein fold, the fungal LIC has lost its ability to bind nucleotide, while the human LIC1 binds GDP preferentially over GTP. We show that the LIC G domain binds the dynein heavy chain using a conserved patch of aromatic residues, whereas the less conserved C-terminal domain binds several Rab effectors involved in membrane transport. These studies provide the first structural information and insight into the evolutionary origin of the LIC as well as revealing how this critical subunit connects the dynein motor to cargo.

  1. New Light Chain Amyloid Response Criteria Help Risk Stratification of Patients by Day 100 after Autologous Hematopoietic Cell Transplantation.

    PubMed

    D'Souza, Anita; Huang, Jiaxing; Hari, Parameswaran

    2016-04-01

    Hematologic response criteria in light chain (AL) amyloidosis were updated in 2012 to incorporate free light chain responses. These criteria have been validated in autologous hematopoietic cell transplantation in AL at 6 and 12 months after transplantation. Using a transplantation registry, we assessed day 100 responses in AL amyloidosis. We validate the prognostic significance of the new criteria at this time point. Further, we show that patients who do not achieve at least a very good partial response by this time point have equally worse outcomes, regardless of depth of response (partial versus no response). Thus, we conclude that the new criteria help identify the poor responders by day 100 after transplantation and that this subset of patients should be studied for early evaluation in consolidation trials.

  2. Cytokinesis is not controlled by calmodulin or myosin light chain kinase in the Caenorhabditis elegans early embryo

    PubMed Central

    Batchelder, Ellen L.; Thomas–Virnig, Christina L.; Hardin, Jeffery D.; White, John G.

    2007-01-01

    Furrow ingression in animal cell cytokinesis is controlled by phosphorylation of myosin II regulatory light chain (mRLC). In C. elegans embryos, Rho-dependent Kinase (RhoK) is involved in, but not absolutely required for, this phosphorylation. The calmodulin effector Myosin Light Chain Kinase (MLCK) can also phosphorylate mRLC and is widely regarded as a candidate for redundant function with RhoK. However, our results show that RNAi against C. elegans calmodulin and candidate MLCKs had no effect on cytokinesis in wild type or RhoK mutant embryos, ruling out the calmodulin/MLCK pathway as the missing regulator of cytokinesis in the C. elegans early embryo. PMID:17716666

  3. Cytokinesis is not controlled by calmodulin or myosin light chain kinase in the Caenorhabditis elegans early embryo.

    PubMed

    Batchelder, Ellen L; Thomas-Virnig, Christina L; Hardin, Jeffery D; White, John G

    2007-09-04

    Furrow ingression in animal cell cytokinesis is controlled by phosphorylation of myosin II regulatory light chain (mRLC). In Caenorhabditis elegans embryos, Rho-dependent Kinase (RhoK) is involved in, but not absolutely required for, this phosphorylation. The calmodulin effector myosin light chain kinase (MLCK) can also phosphorylate mRLC and is widely regarded as a candidate for redundant function with RhoK. However, our results show that RNA mediated interference against C. elegans calmodulin and candidate MLCKs had no effect on cytokinesis in wild-type or RhoK mutant embryos, ruling out the calmodulin/MLCK pathway as the missing regulator of cytokinesis in the C. elegans early embryo.

  4. Phylogeny, genomic organization and expression of lambda and kappa immunoglobulin light chain genes in a reptile, Anolis carolinensis.

    PubMed

    Wu, Qian; Wei, Zhiguo; Yang, Zhi; Wang, Tao; Ren, Liming; Hu, Xiaoxiang; Meng, Qingyong; Guo, Ying; Zhu, Qinghong; Robert, Jacques; Hammarström, Lennart; Li, Ning; Zhao, Yaofeng

    2010-05-01

    The reptiles are the last major taxon of jawed vertebrates in which immunoglobulin light chain isotypes have not been well characterized. Using the recently released genome sequencing data, we show in this study that the reptile Anolis carolinensis expresses both lambda and kappa light chain genes. The genomic organization of both gene loci is structurally similar to their respective counterparts in mammals. The identified lambda locus contains three constant region genes each preceded by a joining gene segment, and a total of 37 variable gene segments. In contrast, the kappa locus contains only a single constant region gene, and two joining gene segments with a single family of 14 variable gene segments located upstream. Analysis of junctions of the recombined VJ transcripts reveals a paucity of N and P nucleotides in both expressed lambda and kappa sequences. These results help us to understand the generation of the immunoglobulin repertoire in reptiles and immunoglobulin evolution in vertebrates.

  5. The Coexistence of Multiple Myeloma-associated Amyloid Light-chain Amyloidosis and Fabry Disease in a Hemodialysis Patient.

    PubMed

    Taguchi, Kensei; Moriyama, Atsuo; Kodama, Goh; Nakayama, Yosuke; Fukami, Kei

    2017-01-01

    Fabry disease (FD) is an inherited lysosomal disorder caused by an X-linked α-galactosidase A deficiency. We report the case of a 50-year-old male FD patient on hemodialysis who presented with macroglossia-related speaking difficulty and gastrointestinal symptoms. An endoscopic analysis revealed multiple gastric ulcers, and a histological examination led to a diagnosis of amyloid light-chain amyloidosis. Serum free light-chain and bone marrow analyses detected multiple myeloma (MM). Treatment with bortezomib and dexamethasone significantly improved the patient's symptoms. This is the first case to demonstrate a potential pathogenic relationship between FD and MM. The similar gastrointestinal manifestations might have contributed to the diagnostic difficulty.

  6. Homology of the NH2-terminal amino acid sequences of the heavy and light chains of human monoclonal lupus autoantibodies containing the dominant 16/6 idiotype.

    PubMed Central

    Atkinson, P M; Lampman, G W; Furie, B C; Naparstek, Y; Schwartz, R S; Stollar, B D; Furie, B

    1985-01-01

    The NH2-terminal amino acid sequences have been determined by automated Edman degradation for the heavy and light chains of five monoclonal IgM anti-DNA autoantibodies that were produced by human-human hybridomas derived from lymphocytes of two patients with systemic lupus erythematosus. Four of the antibodies were closely related to the idiotype system 16/6, whereas the fifth antibody was unrelated idiotypically. The light chains of the 16/6 idiotype-positive autoantibodies (HF2-1/13b, HF2-1/17, HF2-18/2, and HF3-16/6) had identical amino acid sequences from residues 1 to 40. Their framework structures were characteristic of VKI light chains. The light chain of the 16/6 idiotype-negative autoantibody HF6-21/28 was characteristic of the VKII subgroup. The heavy chains of the 16/6 idiotype-positive autoantibodies had nearly identical amino acid sequences from residues 1 to 40. The framework structures were characteristic of the VHIII subgroup. In contrast, the GM4672 fusion partner of the hybridoma produced small quantities of an IgG with a VHI heavy chain and a VKI light chain. The heavy chains of the lupus autoantibodies and the light chains of those autoantibodies that were idiotypically related to the 16/6 system had marked sequence homology with WEA, a Waldenstrom IgM that binds to Klebsiella polysaccharides and expresses the 16/6 idiotype. These results indicate a striking homology in the amino termini of the heavy and light chains of the lupus autoantibodies studied and suggest that the V regions of the heavy and light chains of the 16/6 idiotype-positive DNA-binding lupus auto-antibodies are each encoded by a single germ line gene. PMID:3921567

  7. Site-directed mutagenesis reveals regions implicated in the stability and fiber formation of human λ3r light chains.

    PubMed

    Villalba, Miryam I; Canul-Tec, Juan C; Luna-Martínez, Oscar D; Sánchez-Alcalá, Rosalba; Olamendi-Portugal, Timoteo; Rudiño-Piñera, Enrique; Rojas, Sonia; Sánchez-López, Rosana; Fernández-Velasco, Daniel A; Becerril, Baltazar

    2015-01-30

    Light chain amyloidosis (AL) is a disease that affects vital organs by the fibrillar aggregation of monoclonal light chains. λ3r germ line is significantly implicated in this disease. In this work, we contrasted the thermodynamic stability and aggregation propensity of 3mJL2 (nonamyloidogenic) and 3rJL2 (amyloidogenic) λ3 germ lines. Because of an inherent limitation (extremely low expression), Cys at position 34 of the 3r germ line was replaced by Tyr reaching a good expression yield. A second substitution (W91A) was introduced in 3r to obtain a better template to incorporate additional mutations. Although the single mutant (C34Y) was not fibrillogenic, the second mutation located at CDR3 (W91A) induced fibrillogenesis. We propose, for the first time, that CDR3 (position 91) affects the stability and fiber formation of human λ3r light chains. Using the double mutant (3rJL2/YA) as template, other variants were constructed to evaluate the importance of those substitutions into the stability and aggregation propensity of λ3 light chains. A change in position 7 (P7D) boosted 3rJL2/YA fibrillogenic properties. Modification of position 48 (I48M) partially reverted 3rJL2/YA fibril aggregation. Finally, changes at positions 8 (P8S) or 40 (P40S) completely reverted fibril formation. These results confirm the influential roles of N-terminal region (positions 7 and 8) and the loop 40-60 (positions 40 and 48) on AL. X-ray crystallography revealed that the three-dimensional topology of the single and double λ3r mutants was not significantly altered. This mutagenic approach helped to identify key regions implicated in λ3 AL.

  8. Site-directed Mutagenesis Reveals Regions Implicated in the Stability and Fiber Formation of Human λ3r Light Chains*

    PubMed Central

    Villalba, Miryam I.; Canul-Tec, Juan C.; Luna-Martínez, Oscar D.; Sánchez-Alcalá, Rosalba; Olamendi-Portugal, Timoteo; Rudiño-Piñera, Enrique; Rojas, Sonia; Sánchez-López, Rosana; Fernández-Velasco, Daniel A.; Becerril, Baltazar

    2015-01-01

    Light chain amyloidosis (AL) is a disease that affects vital organs by the fibrillar aggregation of monoclonal light chains. λ3r germ line is significantly implicated in this disease. In this work, we contrasted the thermodynamic stability and aggregation propensity of 3mJL2 (nonamyloidogenic) and 3rJL2 (amyloidogenic) λ3 germ lines. Because of an inherent limitation (extremely low expression), Cys at position 34 of the 3r germ line was replaced by Tyr reaching a good expression yield. A second substitution (W91A) was introduced in 3r to obtain a better template to incorporate additional mutations. Although the single mutant (C34Y) was not fibrillogenic, the second mutation located at CDR3 (W91A) induced fibrillogenesis. We propose, for the first time, that CDR3 (position 91) affects the stability and fiber formation of human λ3r light chains. Using the double mutant (3rJL2/YA) as template, other variants were constructed to evaluate the importance of those substitutions into the stability and aggregation propensity of λ3 light chains. A change in position 7 (P7D) boosted 3rJL2/YA fibrillogenic properties. Modification of position 48 (I48M) partially reverted 3rJL2/YA fibril aggregation. Finally, changes at positions 8 (P8S) or 40 (P40S) completely reverted fibril formation. These results confirm the influential roles of N-terminal region (positions 7 and 8) and the loop 40–60 (positions 40 and 48) on AL. X-ray crystallography revealed that the three-dimensional topology of the single and double λ3r mutants was not significantly altered. This mutagenic approach helped to identify key regions implicated in λ3 AL. PMID:25505244

  9. [Secondary monoclonal gammopathy after bone marrow autotransplantation as a cause of worse renal function in light chain immunoglobulin deposition disease].

    PubMed

    Rekhtina, I G; Mendeleeva, L P; Stolyarevich, E S; Galtseva, I V; Povilaitite, P E; Biryukova, L S

    2016-01-01

    The paper describes a clinical case of a female woman with nephropathy due to light chain deposition disease caused by secretion of κ Bence-Jones protein. Complete immunochemical remission was achieved after induction therapy using a bortezomib + cyclophosphamide + dexamethasone regimen. Renal function remained unchanged (glomerular filtration rate 16 ml/min), there was a reduction in proteinuria from 5.8 to 2.6 g/day. High-dose melphalan (200 mg/m2) chemotherapy with peripheral blood stem cell autotransplantation was performed as consolidation of remission. A year posttransplantation, there was no secretion of κ light chains; however, monoclonal IgG lambda emerged in a quantity of 3.2 g/l. At the same period, nephrotic syndrome became progressive (daily proteinuria 12 g) and dialysis-dependent renal failure developed. A repeat renal biopsy specimen revealed changes, suggesting that there was a decrease in renal deposits of κ light chains. Simultaneously with this, the obvious negative trend as progressive nephrosclerosis and fixation of IgG and λ light chains in the glomeruli (in the sclerotic areas) cause IgGλ monoclonal protein to be involved in the genesis of further kidney injury. Attention is also paid to different characteristics of capillary wall deposits by density (according to the electron microscopic findings), which may point to their different qualitative composition and possibly different formation duration. Papaprotein Gλ disappeared after a year without therapy, suggesting its reactivity. The findings confirm that worse renal function is caused by the action of paraprotein Gλ due to secondary (after autologous hematopoietic stem cells transplantation) monoclonal gammopathy.

  10. Myosin light chain kinase steady-state kinetics: comparison of smooth muscle myosin II and nonmuscle myosin IIB as substrates.

    PubMed

    Alcala, Diego B; Haldeman, Brian D; Brizendine, Richard K; Krenc, Agata K; Baker, Josh E; Rock, Ronald S; Cremo, Christine R

    2016-10-01

    Myosin light chain kinase (MLCK) phosphorylates S19 of the myosin regulatory light chain (RLC), which is required to activate myosin's ATPase activity and contraction. Smooth muscles are known to display plasticity in response to factors such as inflammation, developmental stage, or stress, which lead to differential expression of nonmuscle and smooth muscle isoforms. Here, we compare steady-state kinetics parameters for phosphorylation of different MLCK substrates: (1) nonmuscle RLC, (2) smooth muscle RLC, and heavy meromyosin subfragments of (3) nonmuscle myosin IIB, and (4) smooth muscle myosin II. We show that MLCK has a ~2-fold higher kcat for both smooth muscle myosin II substrates compared with nonmuscle myosin IIB substrates, whereas Km values were very similar. Myosin light chain kinase has a 1.6-fold and 1.5-fold higher specificity (kcat /Km ) for smooth versus nonmuscle-free RLC and heavy meromyosin, respectively, suggesting that differences in specificity are dictated by RLC sequences. Of the 10 non-identical RLC residues, we ruled out 7 as possible underlying causes of different MLCK kinetics. The remaining 3 residues were found to be surface exposed in the N-terminal half of the RLC, consistent with their importance in substrate recognition. These data are consistent with prior deletion/chimera studies and significantly add to understanding of MLCK myosin interactions. Phosphorylation of nonmuscle and smooth muscle myosin by myosin light chain kinase (MLCK) is required for activation of myosin's ATPase activity. In smooth muscles, nonmuscle myosin coexists with smooth muscle myosin, but the two myosins have very different chemo-mechanical properties relating to their ability to maintain force. Differences in specificity of MLCK for different myosin isoforms had not been previously investigated. We show that the MLCK prefers smooth muscle myosin by a significant factor. These data suggest that nonmuscle myosin is phosphorylated more slowly than smooth

  11. Papaverine Prevents Vasospasm by Regulation of Myosin Light Chain Phosphorylation and Actin Polymerization in Human Saphenous Vein

    PubMed Central

    Hocking, Kyle M.; Putumbaka, Gowthami; Wise, Eric S.; Cheung-Flynn, Joyce; Brophy, Colleen M.; Komalavilas, Padmini

    2016-01-01

    Objective Papaverine is used to prevent vasospasm in human saphenous veins (HSV) during vein graft preparation prior to implantation as a bypass conduit. Papaverine is a nonspecific inhibitor of phosphodiesterases, leading to increases in both intracellular cGMP and cAMP. We hypothesized that papaverine reduces force by decreasing intracellular calcium concentrations ([Ca2+]i) and myosin light chain phosphorylation, and increasing actin depolymerization via regulation of actin regulatory protein phosphorylation. Approach and Results HSV was equilibrated in a muscle bath, pre-treated with 1 mM papaverine followed by 5 μM norepinephrine, and force along with [Ca2+]i levels were concurrently measured. Filamentous actin (F-actin) level was measured by an in vitro actin assay. Tissue was snap frozen to measure myosin light chain and actin regulatory protein phosphorylation. Pre-treatment with papaverine completely inhibited norepinephrine-induced force generation, blocked increases in [Ca2+]i and led to a decrease in the phosphorylation of myosin light chain. Papaverine pre-treatment also led to increased phosphorylation of the heat shock-related protein 20 (HSPB6) and the vasodilator stimulated phosphoprotein (VASP), as well as decreased filamentous actin (F-actin) levels suggesting depolymerization of actin. Conclusions These results suggest that papaverine-induced force inhibition of HSV involves [Ca2+]i-mediated inhibition of myosin light chain phosphorylation and actin regulatory protein phosphorylation-mediated actin depolymerization. Thus, papaverine induces sustained inhibition of contraction of HSV by the modulation of both myosin cross-bridge formation and actin cytoskeletal dynamics and is a pharmacological alternative to high pressure distention to prevent vasospasm. PMID:27136356

  12. Light conditions alter accumulation of long chain polyprenols in leaves of trees and shrubs throughout the vegetation season.

    PubMed

    Bajda, Agnieszka; Chojnacki, Tadeusz; Hertel, Józefina; Swiezewska, Ewa; Wójcik, Jacek; Kaczkowska, Alicja; Marczewski, Andrzej; Bojarczuk, Tomasz; Karolewski, Piotr; Oleksyn, Jacek

    2005-01-01

    In many plants belonging to angiosperms and gymnosperms the accumulation in leaves of long chain polyprenols and polyprenyl esters during growth in natural habitats depends on the light intensity. The amount of polyprenols in leaves is also positively correlated with the thickness of the leaf blade (SLA, specific leaf area). The polyprenol content of leaves shows seasonal changes with a maximum in autumn and a minimum in early summer with the difference between poorly and well illuminated plants persisting throughout the vegetation season.

  13. Systemic lupus erythematosus: molecular cloning of several recombinant DNase monoclonal kappa light chains with different catalytic properties.

    PubMed

    Botvinovskaya, Alina V; Kostrikina, Irina A; Buneva, Valentina N; Nevinsky, Georgy A

    2013-10-01

    An immunoglobulin light chain phagemid library derived from peripheral blood lymphocytes of three patients with systemic lupus erythematosus was used. Phage particles displaying DNA binding light chains were isolated by affinity chromatography on DNA-cellulose, and the fraction eluted by an acidic buffer (pH 2.6) was used for preparation of individual monoclonal light chains (MLChs, 28 kDa). Thirty three of 687 individual colonies obtained were randomly chosen for study of MLCh DNase activity. Nineteen of 33 clones contained MLChs with DNase activity. Four preparations of MLChs were expressed in Escherichia coli in soluble form, purified by metal chelating chromatography followed by gel filtration, and studied in detail. Detection of DNase activity after SDS-PAGE in a gel containing DNA demonstrated that the four MLChs are not contaminated by canonical DNases. The MLChs demonstrated one or two pH optima. They were inactive after the dialysis against ethylenediaminetetraacetic acid but could be activated by several externally added metal ions; the ratio of relative activity in the presence of Mg(2+) , Mn(2+) , Ni(2+) , Ca(2+) , Zn(2+) , and Co(2+) was individual for each MLCh preparation. K(+) and Na(+) inhibited the DNase activity of various MLChs at different concentrations. Hydrolysis of DNA by all four MLCh was saturable and consistent with Michaelis-Menten kinetics. These clones are the first examples of recombinant MLChs possessing high affinity for DNA (Km  = 3-9 nM) and demonstrating high kcat values (3.4-6.9 min(-1) ). These observations suggest that the systemic lupus erythematosus light chain repertoire can serve as a source of new types of DNases.

  14. Site-directed Mutagenesis Reveals Regions Implicated in the Stability and Fiber Formation of Human λ3r Light Chains

    SciTech Connect

    Villalba, Miryam I.; Canul-Tec, Juan C.; Luna-Martínez, Oscar D.; Sánchez-Alcalá, Rosalba; Olamendi-Portugal, Timoteo; Rudiño-Piñera, Enrique; Rojas, Sonia; Sánchez-López, Rosana; Fernández-Velasco, Daniel A.; Becerril, Baltazar

    2014-12-11

    Light chain amyloidosis (AL) is a disease that affects vital organs by the fibrillar aggregation of monoclonal light chains. λ3r germ line is significantly implicated in this disease. In this paper, we contrasted the thermodynamic stability and aggregation propensity of 3mJL2 (nonamyloidogenic) and 3rJL2 (amyloidogenic) λ3 germ lines. Because of an inherent limitation (extremely low expression), Cys at position 34 of the 3r germ line was replaced by Tyr reaching a good expression yield. A second substitution (W91A) was introduced in 3r to obtain a better template to incorporate additional mutations. Although the single mutant (C34Y) was not fibrillogenic, the second mutation located at CDR3 (W91A) induced fibrillogenesis. We propose, for the first time, that CDR3 (position 91) affects the stability and fiber formation of human λ3r light chains. Using the double mutant (3rJL2/YA) as template, other variants were constructed to evaluate the importance of those substitutions into the stability and aggregation propensity of λ3 light chains. A change in position 7 (P7D) boosted 3rJL2/YA fibrillogenic properties. Modification of position 48 (I48M) partially reverted 3rJL2/YA fibril aggregation. Finally, changes at positions 8 (P8S) or 40 (P40S) completely reverted fibril formation. These results confirm the influential roles of N-terminal region (positions 7 and 8) and the loop 40–60 (positions 40 and 48) on AL. X-ray crystallography revealed that the three-dimensional topology of the single and double λ3r mutants was not significantly altered. Finally, this mutagenic approach helped to identify key regions implicated in λ3 AL.

  15. Site-directed Mutagenesis Reveals Regions Implicated in the Stability and Fiber Formation of Human λ3r Light Chains

    DOE PAGES

    Villalba, Miryam I.; Canul-Tec, Juan C.; Luna-Martínez, Oscar D.; ...

    2014-12-11

    Light chain amyloidosis (AL) is a disease that affects vital organs by the fibrillar aggregation of monoclonal light chains. λ3r germ line is significantly implicated in this disease. In this paper, we contrasted the thermodynamic stability and aggregation propensity of 3mJL2 (nonamyloidogenic) and 3rJL2 (amyloidogenic) λ3 germ lines. Because of an inherent limitation (extremely low expression), Cys at position 34 of the 3r germ line was replaced by Tyr reaching a good expression yield. A second substitution (W91A) was introduced in 3r to obtain a better template to incorporate additional mutations. Although the single mutant (C34Y) was not fibrillogenic, themore » second mutation located at CDR3 (W91A) induced fibrillogenesis. We propose, for the first time, that CDR3 (position 91) affects the stability and fiber formation of human λ3r light chains. Using the double mutant (3rJL2/YA) as template, other variants were constructed to evaluate the importance of those substitutions into the stability and aggregation propensity of λ3 light chains. A change in position 7 (P7D) boosted 3rJL2/YA fibrillogenic properties. Modification of position 48 (I48M) partially reverted 3rJL2/YA fibril aggregation. Finally, changes at positions 8 (P8S) or 40 (P40S) completely reverted fibril formation. These results confirm the influential roles of N-terminal region (positions 7 and 8) and the loop 40–60 (positions 40 and 48) on AL. X-ray crystallography revealed that the three-dimensional topology of the single and double λ3r mutants was not significantly altered. Finally, this mutagenic approach helped to identify key regions implicated in λ3 AL.« less

  16. Cloning, high level expression, purification, and crystallization of the full length Clostridium botulinum neurotoxin type E light chain.

    PubMed

    Agarwal, Rakhi; Eswaramoorthy, Subramaniam; Kumaran, Desigan; Dunn, John J; Swaminathan, Subramanyam

    2004-03-01

    The catalytic activity of the highly potent botulinum neurotoxins are confined to their N-terminal light chains ( approximately 50kDa). A full-length light chain for the type E neurotoxin with a C-terminal 6x His-tag, BoNT/E-LC, has been cloned in a pET-9c vector and over-expressed in BL21 (DE3) cells. BoNT/E-LC was purified to homogeneity by affinity chromatography on Ni-NTA agarose followed by exclusion chromatography using a Superdex-75 sizing column. The purified protein has very good solubility and can be stored stably at -20 degrees C; however, it seems to undergo auto-proteolysis when stored at temperature #10878;4-10 degrees C. BoNT/E-LC is active on its natural substrate, the synaptosomal associated 25kDa protein, SNAP-25, indicating that it retains a native-like conformation and therefore can be considered as a useful tool in studying the structure/function of the catalytic light chain. Recombinant BoNT/E-LC has been crystallized under five different conditions and at various pHs. Crystals diffract to better than 2.1A.

  17. Abnormal heavy/light chain ratio after treatment is associated with shorter survival in patients with IgA myeloma.

    PubMed

    Suehara, Yasuhito; Takamatsu, Hiroyuki; Fukumoto, Kota; Fujisawa, Manabu; Narita, Kentaro; Usui, Yoshiaki; Takeuchi, Masami; Endean, Kelly; Matsue, Kosei

    2017-02-01

    Immunoglobulin (Ig) heavy/light chain (HLC) assays enable the separate quantification of the different light chain types of each Ig class. We retrospectively analyzed the correlation of heavy/light chain ratio (HLCR) with clinical status and its impact on outcome in 120 patients with multiple myeloma (MM). Abnormal HLCR was seen more frequently in patients with poorer myeloma response, and it appeared to be more sensitive for detecting clonality in IgA myeloma compared to IgG myeloma after treatment. Among the 85 patients who achieved ≥VGPR, the patients remained HLCR abnormal were showed significantly shorter overall survival (OS) compared to those achieving a normal HLCR (not reached vs 55.5 months, P = 0.032). This correlation was seen in IgA myeloma patients (not reached vs 30.1 months, P = 0.014), but not in IgG myeloma patients when patients were analyzed separately. Univariate and multivariate analysis of factors that may affect survival identified abnormal HLCR at the best response as the only independent risk factor (hazard ratio, 4.7; 95% confidence interval, 1.4 - 15.26; P = 0.012) for shorter OS in this subset of patients. This study highlighted the HLC assay as a prognostic predictor in patients with IgA myeloma.

  18. Mechanism of action of endothelin in rat cardiac muscle: cross-bridge kinetics and myosin light chain phosphorylation.

    PubMed Central

    Rossmanith, G H; Hoh, J F; Turnbull, L; Ludowyke, R I

    1997-01-01

    1. The molecular mechanism of inotropic action of endothelin was investigated in rat ventricular muscle by studying its effects on characteristics of isometric twitch, barium-induced steady contracture and the level of incorporation of 32Pi into myosin light chain 2. 2. Exposure of rat papillary muscle to endothelin caused an increase in isometric twitch force but did not alter the twitch-time parameters. 3. Endothelin did not significantly change the maximum contracture tension but did cause an increase in contracture tension at submaximal levels of activation, without changes in the tension-to-stiffness ratio and kinetics of attached cross-bridges. Kinetics of attached cross-bridges were deduced during steady contracture from complex-stiffness values, and in particular from the frequency at which muscle stiffness assumes a minimum value, fmin. Endothelin did not alter fmin. 4. Endothelin caused an increase in the level of incorporation of 32Pi into myosin light chain 2 without a concurrent change in the level of incorporation of 32Pi into troponin I. 5. We conclude that the inotropic action of endothelin is not due to an increase in the kinetics of attached cross-bridges, nor due to a change in the force per unit cross-bridge, but may result from an increased divalent cation sensitivity caused by elevated myosin light chain 2 phosphorylation, resembling post-tetanic potentiation in fast skeletal muscle fibres. Images Figure 3 Figure 5 PMID:9409484

  19. [Ssp DnaB intein-mediated ligation of heavy and light chains of coagulation factor VIII in Escherichia coli].

    PubMed

    Zhu, Fuxiang; Liu, Zelong; Qu, Huige; Xin, Xiaolin; Dong, Hongxin; Liu, Xiangqin

    2009-07-01

    We studied the ligation of coagulation factor VIII heavy and light chains in Escherichia coli by utilizing the intein-mediated protein trans-splicing. A B-domain deleted factor VIII (BDD-FVIII) gene was broken into two halves of heavy and light chains before Ser1657 which meets the splicing required conserved residue and then fused to 106 and 48 amino acid-containing N-part termed Int-N and C-part termed Int-C coding sequences of split mini Ssp DnaB intein respectively. These two fusion genes were constructed into a prokaryotic expression vector pBV220. Through induction for expression of recombinant protein it displayed an obvious protein band as predicted size of BDD-FVIII protein on SDS-PAGE gel. Western blotting using factor VIII specific antibodies confirmed that this protein band is BDD-FVIII produced by protein trans-splicing. It demonstrated that the heavy and light chains of BDD-FVIII can be efficiently ligated with the Ssp DnaB intein-mediated protein trans-splicing. These results provided evidence for encouraging our ongoing investigation with intein as a means in dual AAV vectors carrying the factor VIII gene to overcome the packaging size limitation of a single AAV vector in hemophilia A gene therapy.

  20. Lambda light chain myeloma with co-migrating paraprotein at beta region on agarose gel electrophoresis: a case report.

    PubMed

    Siti Sarah, M; Nor Aini, U; Nurismah, M I; Hafiza, A; Khalidah, M; Mokhtar, A B; Das, S

    2014-01-01

    Paraproteinemia is one of the diagnostic features of multiple myeloma. A commonly used method is the detection of paraprotein by agarose gel electrophoresis (AGE) followed by by immunofixation electrophoresis (IFE) to confirm monoclonality. Due to their smaller size, immunoglobulin A (IgA) and light chain only paraproteins may appear at the beta or even alpha 2 protein fractions. Here, we discuss a case report of a 47-year-old man who presented with pathological fracture of third thoracic (T3) vertebra. Serum protein electrophoresis (SPE) was initially reported as no paraprotein detected. However, a bone biopsy was reported to show plasma cell proliferation with light chain restriction. A repeat sample for protein electrophoresis together with IFE revealed lambda light chain paraprotein co-migrating at the beta region. The beta band plus paraprotein was quantitated as 4.3 g/L (7.0%), which was within normal limits of the beta protein fraction. Hence, it has to be remembered that if the SPE is negative, it does not necessarily mean that the paraprotein is absent in cases which are highly suspicious.

  1. Age- and Activity-Related Differences in the Abundance of Myosin Essential and Regulatory Light Chains in Human Muscle

    PubMed Central

    Cobley, James N.; Ab. Malik, Zulezwan; Morton, James P.; Close, Graeme L.; Edwards, Ben J.; Burniston, Jatin G.

    2016-01-01

    Traditional methods for phenotyping skeletal muscle (e.g., immunohistochemistry) are labor-intensive and ill-suited to multixplex analysis, i.e., assays must be performed in a series. Addressing these concerns represents a largely unmet research need but more comprehensive parallel analysis of myofibrillar proteins could advance knowledge regarding age- and activity-dependent changes in human muscle. We report a label-free, semi-automated and time efficient LC-MS proteomic workflow for phenotyping the myofibrillar proteome. Application of this workflow in old and young as well as trained and untrained human skeletal muscle yielded several novel observations that were subsequently verified by multiple reaction monitoring (MRM). We report novel data demonstrating that human ageing is associated with lesser myosin light chain 1 content and greater myosin light chain 3 content, consistent with an age-related reduction in type II muscle fibers. We also disambiguate conflicting data regarding myosin regulatory light chain, revealing that age-related changes in this protein more closely reflect physical activity status than ageing per se. This finding reinforces the need to control for physical activity levels when investigating the natural process of ageing. Taken together, our data confirm and extend knowledge regarding age- and activity-related phenotypes. In addition, the MRM transitions described here provide a methodological platform that can be fine-tuned to suite multiple research needs and thus advance myofibrillar phenotyping. PMID:28248225

  2. Chimeric Anti-Human Podoplanin Antibody NZ-12 of Lambda Light Chain Exerts Higher Antibody-Dependent Cellular Cytotoxicity and Complement-Dependent Cytotoxicity Compared with NZ-8 of Kappa Light Chain.

    PubMed

    Kaneko, Mika K; Abe, Shinji; Ogasawara, Satoshi; Fujii, Yuki; Yamada, Shinji; Murata, Takeshi; Uchida, Hiroaki; Tahara, Hideaki; Nishioka, Yasuhiko; Kato, Yukinari

    2017-02-01

    Podoplanin (PDPN), a type I transmembrane 36-kDa glycoprotein, is expressed not only in normal cells, such as renal epithelial cells (podocytes), lymphatic endothelial cells, and pulmonary type I alveolar cells, but also in cancer cells, including brain tumors and lung squamous cell carcinomas. Podoplanin activates platelet aggregation by binding to C-type lectin-like receptor-2 (CLEC-2) on platelets, and the podoplanin/CLEC-2 interaction facilitates blood/lymphatic vessel separation. We previously produced neutralizing anti-human podoplanin monoclonal antibody (mAb), clone NZ-1 (rat IgG2a, lambda), which neutralizes the podoplanin/CLEC-2 interaction and inhibits platelet aggregation and cancer metastasis. Human-rat chimeric antibody, NZ-8, was previously developed using variable regions of NZ-1 and human constant regions of heavy chain (IgG1) and light chain (kappa chain). Although NZ-8 showed high antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against human podoplanin-expressing cancer cells, the binding affinity of NZ-8 was lower than that of NZ-1. Herein, we produced a novel human-rat chimeric antibody, NZ-12, the constant regions of which consist of IgG1 heavy chain and lambda light chain. Using flow cytometry, we demonstrated that the binding affinity of NZ-12 was much higher than that of NZ-8. Furthermore, ADCC and CDC activities of NZ-12 were significantly increased against glioblastoma cell lines (LN319 and D397) and lung cancer cell line (PC-10). These results suggested that NZ-12 could become a promising therapeutic antibody against podoplanin-expressing brain tumors and lung cancers.

  3. Heart Failure Induced by Perinatal Ablation of Cardiac Myosin Light Chain Kinase.

    PubMed

    Islam, Yasmin F K; Joseph, Ryan; Chowdhury, Rajib R; Anderson, Robert H; Kasahara, Hideko

    2016-01-01

    Background: Germline knockout mice are invaluable in understanding the function of the targeted genes. Sometimes, however, unexpected phenotypes are encountered, due in part to the activation of compensatory mechanisms. Germline ablation of cardiac myosin light chain kinase (cMLCK) causes mild cardiac dysfunction with cardiomyocyte hypertrophy, whereas ablation in adult hearts results in acute heart failure with cardiomyocyte atrophy. We hypothesized that compensation after ablation of cMLCK is dependent on developmental staging and perinatal-onset of cMLCK ablation will result in more evident heart failure than germline ablation, but less profound when compared to adult-onset ablation. Methods and Results: The floxed-Mylk3 gene was ablated at the beginning of the perinatal stage using a single intra-peritoneal tamoxifen injection of 50 mg/kg into pregnant mice on the 19th day of gestation, this being the final day of gestation. The level of cMLCK protein level could no longer be detected 3 days after the injection, with these mice hereafter denoted as the perinatal Mylk3-KO. At postnatal day 19, shortly before weaning age, these mice showed reduced cardiac contractility with a fractional shortening 22.8 ± 1.0% (n = 7) as opposed to 31.4 ± 1.0% (n = 11) in controls. The ratio of the heart weight relative to body weight was significantly increased at 6.68 ± 0.28 mg/g (n = 12) relative to the two control groups, 5.90 ± 0.16 (flox/flox, n = 11) and 5.81 ± 0.33 (wild/wild/Cre, n = 5), accompanied by reduced body weight. Furthermore, their cardiomyocytes were elongated without thickening, with a long-axis of 101.8 ± 2.4 μm (n = 320) as opposed to 87.1 ± 1.6 μm (n = 360) in the controls. Conclusion: Perinatal ablation of cMLCK produces an increase of heart weight/body weight ratio, a reduction of contractility, and an increase in the expression of fetal genes. The perinatal Mylk3-KO cardiomyocytes were elongated in the absence of thickening, differing from the

  4. T1 mapping and survival in systemic light-chain amyloidosis.

    PubMed

    Banypersad, Sanjay M; Fontana, Marianna; Maestrini, Viviana; Sado, Daniel M; Captur, Gabriella; Petrie, Aviva; Piechnik, Stefan K; Whelan, Carol J; Herrey, Anna S; Gillmore, Julian D; Lachmann, Helen J; Wechalekar, Ashutosh D; Hawkins, Philip N; Moon, James C

    2015-01-21

    To assess the prognostic value of myocardial pre-contrast T1 and extracellular volume (ECV) in systemic amyloid light-chain (AL) amyloidosis using cardiovascular magnetic resonance (CMR) T1 mapping. One hundred patients underwent CMR and T1 mapping pre- and post-contrast. Myocardial ECV was calculated at contrast equilibriu