Science.gov

Sample records for c1 light chain

  1. Structural And Biochemical Studies of Botulinum Neurotoxin Serotype C1 Light Chain Protease: Implications for Dual Substrate Specificity

    SciTech Connect

    Jin, R.; Sikorra, S.; Stegmann, C.M.; Pich, A.; Binz, T.; Brunger, A.T.

    2009-06-01

    Clostridial neurotoxins are the causative agents of the neuroparalytic disease botulism and tetanus. They block neurotransmitter release through specific proteolysis of one of the three soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) SNAP-25, syntaxin, and synaptobrevin, which constitute part of the synaptic vesicle fusion machinery. The catalytic component of the clostridial neurotoxins is their light chain (LC), a Zn2+ endopeptidase. There are seven structurally and functionally related botulinum neurotoxins (BoNTs), termed serotype A to G, and tetanus neurotoxin (TeNT). Each of them exhibits unique specificity for their target SNAREs and peptide bond(s) they cleave. The mechanisms of action for substrate recognition and target cleavage are largely unknown. Here, we report structural and biochemical studies of BoNT/C1-LC, which is unique among BoNTs in that it exhibits dual specificity toward both syntaxin and SNAP-25. A distinct pocket (S1') near the active site likely achieves the correct register for the cleavage site by only allowing Ala as the P1' residue for both SNAP-25 and syntaxin. Mutations of this SNAP-25 residue dramatically reduce enzymatic activity. The remote a-exosite that was previously identified in the complex of BoNT/A-LC and SNAP-25 is structurally conserved in BoNT/C1. However, mutagenesis experiments show that the a-exosite of BoNT/C1 plays a less stringent role in substrate discrimination in comparison to that of BoNT/A, which could account for its dual substrate specificity.

  2. Peptide analogues of 1811-1818 loop of the A3 subunit of the light chain A3-C1-C2 of FVIII of blood coagulation: biological evaluation.

    PubMed

    Patsialas, K; Koutsas, C; Makris, P; Liakopoulou-Kyriakides, Maria

    2010-07-01

    Factor VIII, the plasma protein deficient or defective in individuals with hemophilia A, is a critical member of the blood coagulation cascade. Recent studies have identified the FVIII light chain region Glu1811-Lys1818 as being involved in FIXa binding and in the assembly of the FX-activating FIXaz-FVIIIa complex. Based on this, a series of 12 peptides, analogues of the 1811-1818 loop of the A3 subunit of the light chain A3-C1-C2 of FVIIIa, were synthesized and evaluated for their anticoagulant activity. Only peptide Ac-ETKTYFWK-NH(2) showed significant anticoagulant activity by inhibiting about 40% factor VIII at a concentration of 0.43 mM. It also showed a prolongation of activated partial thromboplastin time of 6.1 s, whereas its effect on prothrombin time measurements was meaningless. All the other peptides did not show any measurable effect at the concentration of 0.43 mM. These findings are encouraging though further investigation of the effect of this active peptide in different biological settings is needed in order to evaluate its possible clinical applications.

  3. Neurofilament light chain

    PubMed Central

    Lu, Ching-Hua; Macdonald-Wallis, Corrie; Gray, Elizabeth; Pearce, Neil; Petzold, Axel; Norgren, Niklas; Giovannoni, Gavin; Fratta, Pietro; Sidle, Katie; Fish, Mark; Orrell, Richard; Howard, Robin; Talbot, Kevin; Greensmith, Linda; Kuhle, Jens

    2015-01-01

    Objective: To test blood and CSF neurofilament light chain (NfL) levels in relation to disease progression and survival in amyotrophic lateral sclerosis (ALS). Methods: Using an electrochemiluminescence immunoassay, NfL levels were measured in samples from 2 cohorts of patients with sporadic ALS and healthy controls, recruited in London (ALS/control, plasma: n = 103/42) and Oxford (ALS/control, serum: n = 64/36; paired CSF: n = 38/20). NfL levels in patients were measured at regular intervals for up to 3 years. Change in ALS Functional Rating Scale–Revised score was used to assess disease progression. Survival was evaluated using Cox regression and Kaplan–Meier analysis. Results: CSF, serum, and plasma NfL discriminated patients with ALS from healthy controls with high sensitivity (97%, 89%, 90%, respectively) and specificity (95%, 75%, 71%, respectively). CSF NfL was highly correlated with serum levels (r = 0.78, p < 0.0001). Blood NfL levels were approximately 4 times as high in patients with ALS compared with controls in both cohorts, and maintained a relatively constant expression during follow-up. Blood NfL levels at recruitment were strong, independent predictors of survival. The highest tertile of blood NfL at baseline had a mortality hazard ratio of 3.91 (95% confidence interval 1.98–7.94, p < 0.001). Conclusion: Blood-derived NfL level is an easily accessible biomarker with prognostic value in ALS. The individually relatively stable levels longitudinally offer potential for NfL as a pharmacodynamic biomarker in future therapeutic trials. Classification of evidence: This report provides Class III evidence that the NfL electrochemiluminescence immunoassay accurately distinguishes patients with sporadic ALS from healthy controls. PMID:25934855

  4. Serum Free Light Chains

    MedlinePlus

    ... changes in the ratio of kappa and lambda production, which indicate an excess of one clone of ... test to detect abnormal monoclonal protein (M-protein) production and to calculate a kappa/lambda free light ...

  5. Note: Perturbation theory of polymer chains revisited. I. Corrected C1 and C2 parameters for excluded volume chains

    NASA Astrophysics Data System (ADS)

    Zifferer, Gerhard; Olaj, Oskar Friedrich

    2011-06-01

    Random walks (RWs) and self-avoiding random walks (SAWs) embedded in the cubic lattice are evaluated with respect to the number of i-tuples of overlaps within incompatible pairs leading to the parameters Ck of the perturbation theory of the excluded volume u. These parameters are strongly dependent on chain length N never before realized by theory. Extrapolated to infinite chain length C1 and C2 are fairly well recovered for RWs while markedly larger values appear for SAWs. The Kurata-Yamakawa approach recovers the simulation results with high accuracy if self-consistent C1 and C2 values are applied thus representing an easy to use well-performing method for the prediction of u in athermal solution.

  6. Atypical immunoglobulin light chain amyloidosis

    PubMed Central

    Wu, Xia; Feng, Jun; Cao, Xinxin; Zhang, Lu; Zhou, Daobin; Li, Jian

    2016-01-01

    Abstract Background: Primary immunoglobulin light chain amyloidosis (AL amyloidosis) is a plasma cell disorder which mainly affects heart, kidneys, liver, and peripheral nervous system. Cases of atypical AL amyloidosis presented as spontaneous vertebral compression fractures have been rarely reported, and data about the management and clinical outcomes of the patients are scarce. Methods: Herein, we present 3 new cases of AL amyloidosis with spontaneous vertebral compression fracture and review 13 cases retrieved from the literature. Results: Moreover, we observed overrepresentations of liver involvement and bone marrow involvement in AL amyloidosis with spontaneous vertebral compression fracture. Conclusion: We believe that better awareness of the rare clinical presentation as spontaneous vertebral compression fracture of AL amyloidosis can facilitate earlier diagnosis and earlier treatment. PMID:27603350

  7. Interaction between glycosaminoglycans and immunoglobulin light chains.

    SciTech Connect

    Jiang, X.; Myatt, E.; Lykos, P.; Stevens, F. J.; Center for Mechanistic Biology and Biotechnology; Illinois Inst. of Tech.

    1997-01-01

    Amyloidosis is a pathological process in which normally soluble proteins polymerize to form insoluble fibrils (amyloid). Amyloid formation is found in a number of diseases, including Alzheimer's disease, adult-onset diabetes, and light-chain-associated amyloidosis. No pharmaceutical methods currently exist to prevent this process or to remove the fibrils from tissue. The search for treatment and prevention methods is hampered by a limited understanding of the biophysical basis of amyloid formation. Glycosaminoglycans (GAGs) are long, unbranched heteropolysaccharides composed of repeating disaccharide subunits and are known to associate with amyloid fibrils. The interaction of amyloid-associated free light chains with GAGs was tested by both size-exclusion high-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis experiments. The results indicated that heparin 16 000 and chondroitin sulfate B and C precipitated both human intact light chains and recombinant light chain variable domains. Although all light chains interacted with heparin, the strongest interactions were obtained with proteins that had formed amyloid. Molecular modeling indicated the possibility of interaction between heparin and the conserved saddle like surface of the light chain dimer opposite the complementarity-determining segments that form part of the antigen-binding site of a functional antibody. This suggestion might offer a new path to block the aggregation of amyloid-associated light chain proteins, by design of antagonists based on properties of GAG binding. A hexasaccharide was modeled as the basis for a possible antagonist.

  8. Immunoglobulin light chains, glycosaminoglycans and amyloid.

    SciTech Connect

    Stevens, F. J.; Kisilevsky, R.; Biosciences Division; Queen's Univ.

    2000-03-01

    Immunoglobulin light chains are the precursor proteins for fibrils that are formed during primary amyloidosis and in amyloidosis associated with multiple myeloma. As found for the approximately 20 currently described forms of focal, localized, or systemic amyloidoses, light chain-related fibrils extracted from physiological deposits are invariably associated with glycosaminoglycans, predominantly heparan sulfate. Other amyloid-related proteins are either structurally normal, such as g2-microglobulin and islet amyloid polypeptide, fragments of normal proteins such as serum amyloid A protein or the precursor protein of the g peptide involved in Alzheimer's disease, or are inherited forms of single amino acid variants of a normal protein such as found in the familial forms of amyloid associated with transthyretin. In contrast, the primary structures of light chains involved in fibril formation exhibit extensive mutational diversity rendering some proteins highly amyloidogenic and others non-pathological. The interactions between light chains and glycosaminoglycans are also affected by amino acid variation and may influence the clinical course of disease by enhancing fibril stability and contributing to resistance to protease degradation. Relatively little is currently known about the mechanisms by which glycosaminoglycans interact with light chains and light-chain fibrils. It is probable that future studies of this uniquely diverse family of proteins will continue o shed light on the processes of amyloidosis, and contribute as well to a greater understanding of the normal physiological roles of glycosaminoglycans.

  9. Structural and Functional Characterization of a Single-Chain Form of the Recognition Domain of Complement Protein C1q

    PubMed Central

    Moreau, Christophe; Bally, Isabelle; Chouquet, Anne; Bottazzi, Barbara; Ghebrehiwet, Berhane; Gaboriaud, Christine; Thielens, Nicole

    2016-01-01

    Complement C1q is a soluble pattern recognition molecule comprising six heterotrimeric subunits assembled from three polypeptide chains (A–C). Each heterotrimer forms a collagen-like stem prolonged by a globular recognition domain. These recognition domains sense a wide variety of ligands, including pathogens and altered-self components. Ligand recognition is either direct or mediated by immunoglobulins or pentraxins. Multivalent binding of C1q to its targets triggers immune effector mechanisms mediated via its collagen-like stems. The induced immune response includes activation of the classical complement pathway and enhancement of the phagocytosis of the recognized target. We report here, the first production of a single-chain recombinant form of human C1q globular region (C1q-scGR). The three monomers have been linked in tandem to generate a single continuous polypeptide, based on a strategy previously used for adiponectin, a protein structurally related to C1q. The resulting C1q-scGR protein was produced at high yield in stably transfected 293-F mammalian cells. Recombinant C1q-scGR was correctly folded, as demonstrated by its X-ray crystal structure solved at a resolution of 1.35 Å. Its interaction properties were assessed by surface plasmon resonance analysis using the following physiological C1q ligands: the receptor for C1q globular heads, the long pentraxin PTX3, calreticulin, and heparin. The 3D structure and the binding properties of C1q-scGR were similar to those of the three-chain fragment generated by collagenase digestion of serum-derived C1q. Comparison of the interaction properties of the fragments with those of native C1q provided insights into the avidity component associated with the hexameric assembly of C1q. The interest of this functional recombinant form of the recognition domains of C1q in basic research and its potential biomedical applications are discussed. PMID:26973654

  10. C1orf163/RESA1 is a novel mitochondrial intermembrane space protein connected to respiratory chain assembly.

    PubMed

    Kozjak-Pavlovic, Vera; Prell, Florian; Thiede, Bernd; Götz, Monika; Wosiek, Dominik; Ott, Christine; Rudel, Thomas

    2014-02-20

    Oxidative phosphorylation (OXPHOS) in mitochondria takes place at the inner membrane, which folds into numerous cristae. The stability of cristae depends, among other things, on the mitochondrial intermembrane space bridging complex. Its components include inner mitochondrial membrane protein mitofilin and outer membrane protein Sam50. We identified a conserved, uncharacterized protein, C1orf163 [SEL1 repeat containing 1 protein (SELRC1)], as one of the proteins significantly reduced after the knockdown of Sam50 and mitofilin. We show that C1orf163 is a mitochondrial soluble intermembrane space protein. Sam50 depletion affects moderately the import and assembly of C1orf163 into two protein complexes of approximately 60kDa and 150kDa. We observe that the knockdown of C1orf163 leads to reduction of levels of proteins belonging to the OXPHOS complexes. The activity of complexes I and IV is reduced in C1orf163-depleted cells, and we observe the strongest defects in the assembly of complex IV. Therefore, we propose C1orf163 to be a novel factor important for the assembly of respiratory chain complexes in human mitochondria and suggest to name it RESA1 (for RESpiratory chain Assembly 1).

  11. Mutations in CYC1, Encoding Cytochrome c1 Subunit of Respiratory Chain Complex III, Cause Insulin-Responsive Hyperglycemia

    PubMed Central

    Gaignard, Pauline; Menezes, Minal; Schiff, Manuel; Bayot, Aurélien; Rak, Malgorzata; Ogier de Baulny, Hélène; Su, Chen-Hsien; Gilleron, Mylene; Lombes, Anne; Abida, Heni; Tzagoloff, Alexander; Riley, Lisa; Cooper, Sandra T.; Mina, Kym; Sivadorai, Padma; Davis, Mark R.; Allcock, Richard J.N.; Kresoje, Nina; Laing, Nigel G.; Thorburn, David R.; Slama, Abdelhamid; Christodoulou, John; Rustin, Pierre

    2013-01-01

    Many individuals with abnormalities of mitochondrial respiratory chain complex III remain genetically undefined. Here, we report mutations (c.288G>T [p.Trp96Cys] and c.643C>T [p.Leu215Phe]) in CYC1, encoding the cytochrome c1 subunit of complex III, in two unrelated children presenting with recurrent episodes of ketoacidosis and insulin-responsive hyperglycemia. Cytochrome c1, the heme-containing component of complex III, mediates the transfer of electrons from the Rieske iron-sulfur protein to cytochrome c. Cytochrome c1 is present at reduced levels in the skeletal muscle and skin fibroblasts of affected individuals. Moreover, studies on yeast mutants and affected individuals’ fibroblasts have shown that exogenous expression of wild-type CYC1 rescues complex III activity, demonstrating the deleterious effect of each mutation on cytochrome c1 stability and complex III activity. PMID:23910460

  12. [Light Chain Amyloidosis: an Update for Treatment].

    PubMed

    Shen, Kai-Ni; Li, Jian

    2015-06-01

    Systemic light chain amyloidosis (AL amyloidosis) is the most common type of amyloidosis, in which deposition of misfolded monoclonal light chain secreted by underlying clonal plasma cells leads to organ dysfunction. Tissue biopsy of involved organ is needed to confirm the type of amyloid deposits, thus proper treatment could be applied. Laser microdissection followed by mass spectrometry, performed on formalin-fixed paraffin-embedded specimens, has been proven superior to traditional methods on accurate diagnosis of amyloidosis. Prognosis depends on the extent of cardiac involvement. The Mayo staging system using NT-ProBNP, cardiac troponin-T and free light chain, is the most robust method for risk stratification and treatment guidance. The introduction of autologous stem cell transplantation (auto-ASCT) resulted in long-term survival in responders, while treatment-related toxicity substantially limited the number of eligible candidates. Novel agents, especially bortezomib, thalidomide and lenalidomide hold promise to achieve comparable hematological responses with auto-ASCT, which might play significant role in treatment of recurrent or refractory AL amyloidosis. PMID:26117060

  13. Shared epitopes of avian immunoglobulin light chains.

    PubMed

    Benčina, Mateja; Cizelj, Ivanka; Berčič, Rebeka Lucijana; Narat, Mojca; Benčina, Dušan; Dovč, Peter

    2014-04-15

    Like all jawed vertebrates, birds (Aves) also produce antibodies i.e. immunoglobulins (Igs) as a defence mechanism against pathogens. Their Igs are composed of two identical heavy (H) and light (L) chains which are of lambda isotype. The L chain consists of variable (VL), joining (JL) and constant (CL) region. Using enzyme immunoassays (EIA) and two monoclonal antibodies (mAbs) (3C10 and CH31) to chicken L chain, we analysed their cross-reactivity with sera from 33 avian species belonging to nine different orders. Among Galliformes tested, mAbs 3C10 and CH31 reacted with L chains of chicken, turkey, four genera of pheasants, tragopan and peafowl, but not with sera of grey partridge, quail and Japanese quail. Immunoglobulins of guinea-fowl reacted only with mAb 3C10. Both mAbs reacted also with the L chain of Eurasian griffon (order Falconiformes) and domestic sparrow (order Passeriformes). Sera from six other orders of Aves did not react with either of the two mAbs. EIA using mAbs 3C10 and CH31 enabled detection of antibodies to major avian pathogens in sera of chickens, turkeys, pheasants, peafowl, Eurasian griffon and guinea-fowl (only with mAb 3C10). The N-terminal amino acid sequence of pheasant L chain (19 residues) was identical to that of chicken. Sequences of genes encoding the L chain constant regions of pheasants, turkey and partridge were determined and deposited in the public database (GenBank accession numbers: FJ 649651, FJ 649652 and FJ 649653, respectively). Among them, amino acid sequence of pheasants is the most similar to that of chicken (97% similarity), whereas those of turkey and partridge have greater similarity to each other (89%) than to any other avian L chain sequence. The characteristic deletion of two amino acids which is present in the L chain constant region in Galliformes has been most likely introduced to their L chain after their divergence from Anseriformes.

  14. Shared epitopes of avian immunoglobulin light chains.

    PubMed

    Benčina, Mateja; Cizelj, Ivanka; Berčič, Rebeka Lucijana; Narat, Mojca; Benčina, Dušan; Dovč, Peter

    2014-04-15

    Like all jawed vertebrates, birds (Aves) also produce antibodies i.e. immunoglobulins (Igs) as a defence mechanism against pathogens. Their Igs are composed of two identical heavy (H) and light (L) chains which are of lambda isotype. The L chain consists of variable (VL), joining (JL) and constant (CL) region. Using enzyme immunoassays (EIA) and two monoclonal antibodies (mAbs) (3C10 and CH31) to chicken L chain, we analysed their cross-reactivity with sera from 33 avian species belonging to nine different orders. Among Galliformes tested, mAbs 3C10 and CH31 reacted with L chains of chicken, turkey, four genera of pheasants, tragopan and peafowl, but not with sera of grey partridge, quail and Japanese quail. Immunoglobulins of guinea-fowl reacted only with mAb 3C10. Both mAbs reacted also with the L chain of Eurasian griffon (order Falconiformes) and domestic sparrow (order Passeriformes). Sera from six other orders of Aves did not react with either of the two mAbs. EIA using mAbs 3C10 and CH31 enabled detection of antibodies to major avian pathogens in sera of chickens, turkeys, pheasants, peafowl, Eurasian griffon and guinea-fowl (only with mAb 3C10). The N-terminal amino acid sequence of pheasant L chain (19 residues) was identical to that of chicken. Sequences of genes encoding the L chain constant regions of pheasants, turkey and partridge were determined and deposited in the public database (GenBank accession numbers: FJ 649651, FJ 649652 and FJ 649653, respectively). Among them, amino acid sequence of pheasants is the most similar to that of chicken (97% similarity), whereas those of turkey and partridge have greater similarity to each other (89%) than to any other avian L chain sequence. The characteristic deletion of two amino acids which is present in the L chain constant region in Galliformes has been most likely introduced to their L chain after their divergence from Anseriformes. PMID:24603015

  15. Method for altering antibody light chain interactions

    DOEpatents

    Stevens, Fred J.; Stevens, Priscilla Wilkins; Raffen, Rosemarie; Schiffer, Marianne

    2002-01-01

    A method for recombinant antibody subunit dimerization including modifying at least one codon of a nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in the interface segment of the light polypeptide variable region, the charged amino acid having a first polarity; and modifying at least one codon of the nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in an interface segment of the heavy polypeptide variable region corresponding to a position in the light polypeptide variable region, the charged amino acid having a second polarity opposite the first polarity. Nucleic acid sequences which code for novel light chain proteins, the latter of which are used in conjunction with the inventive method, are also provided.

  16. Chain length specificity for activation of cPLA2alpha by C1P: use of the dodecane delivery system to determine lipid-specific effects.

    PubMed

    Wijesinghe, Dayanjan S; Subramanian, Preeti; Lamour, Nadia F; Gentile, Luciana B; Granado, Maria H; Bielawska, Alicja; Szulc, Zdzislaw; Gomez-Munoz, Antonio; Chalfant, Charles E

    2009-10-01

    Previously, our laboratory demonstrated that ceramide-1-phosphate (C1P) specifically activated group IVA cytosolic phospholipase A(2) (cPLA(2)alpha) in vitro. In this study, we investigated the chain length specificity of this interaction. C1P with an acyl-chain of >or=6 carbons efficiently activated cPLA(2)alpha in vitro, whereas C(2)-C1P, was unable to do so. Delivery of C1P to cells via the newly characterized ethanol/dodecane system demonstrated a lipid-specific activation of cPLA(2)alpha, AA release, and PGE(2) synthesis (EC(50) = 400 nM) when compared to structurally similar lipids. C1P delivered as vesicles in water also induced a lipid-specific increase in AA release. Mass spectrometric analysis demonstrated that C1P delivered via ethanol/dodecane induced a 3-fold increase in endogenous C1P with little metabolism to ceramide. C1P was also more efficiently delivered (>3-fold) to internal membranes by ethanol/dodecane as compared to vesiculated C1P. Using this now established delivery method for lipids, C(2)-C1P was shown to be ineffective in the induction of AA release as compared with C(6)-C1P, C(16)-C1P, and C(18:1) C1P. Here, we demonstrate that C1P requires >or=6 carbon acyl-chain to activate cPLA(2)alpha. Thus, published reports on the biological activity of C(2)-C1P are not via eicosanoid synthesis. Furthermore, this study demonstrates that the alcohol/dodecane system can be used to efficiently deliver exogenous phospholipids to cells for the examination of specific biological effects.

  17. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    SciTech Connect

    Josephson, Matthew P.; Sikkink, Laura A.; Penheiter, Alan R.; Burghardt, Thomas P.; Ajtai, Katalin

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant

  18. Myosin, Transgelin, and Myosin Light Chain Kinase

    PubMed Central

    Léguillette, Renaud; Laviolette, Michel; Bergeron, Celine; Zitouni, Nedjma; Kogut, Paul; Solway, Julian; Kachmar, Linda; Hamid, Qutayba; Lauzon, Anne-Marie

    2009-01-01

    Rationale: Airway smooth muscle (SM) of patients with asthma exhibits a greater velocity of shortening (Vmax) than that of normal subjects, and this is thought to contribute to airway hyperresponsiveness. A greater Vmax can result from increased myosin activation. This has been reported in sensitized human airway SM and in models of asthma. A faster Vmax can also result from the expression of specific contractile proteins that promote faster cross-bridge cycling. This possibility has never been addressed in asthma. Objectives: We tested the hypothesis that the expression of genes coding for SM contractile proteins is altered in asthmatic airways and contributes to their increased Vmax. Methods: We quantified the expression of several genes that code for SM contractile proteins in mild allergic asthmatic and control human airway endobronchial biopsies. The function of these contractile proteins was tested using the in vitro motility assay. Measurements and Main Results: We observed an increased expression of the fast myosin heavy chain isoform, transgelin, and myosin light chain kinase in patients with asthma. Immunohistochemistry demonstrated the expression of these genes at the protein level. To address the functional significance of this overexpression, we purified tracheal myosin from the hyperresponsive Fisher rats, which also overexpress the fast myosin heavy chain isoform as compared with the normoresponsive Lewis rats, and found a faster rate of actin filament propulsion. Conversely, transgelin did not alter the rate of actin filament propulsion. Conclusions: Selective overexpression of airway smooth muscle genes in asthmatic airways leads to increased Vmax, thus contributing to the airway hyperresponsiveness observed in asthma. PMID:19011151

  19. Comparison of serum free light chain and urine electrophoresis for the detection of the light chain component of monoclonal immunoglobulins in light chain and intact immunoglobulin multiple myeloma.

    PubMed

    Dejoie, Thomas; Attal, Michel; Moreau, Philippe; Harousseau, Jean-Luc; Avet-Loiseau, Herve

    2016-03-01

    Response criteria for multiple myeloma are based upon changes in monoclonal protein levels quantified using serum and/or urine protein electrophoresis. The latter lacks sensitivity at low monoclonal protein levels and since 2001, the serum free light chain test has been available and its clinical utility proven, yet guidelines have not recommended it as a replacement for urine assessment. Herein we evaluated responses using serum free light chain measurements and serum and urine electrophoresis after 2 and 4 cycles of therapy and after stem cell transplantation in 25 light chain and 157 intact immunoglobulin myeloma patients enrolled in the IFM 2007-02 MM trial. All 25 light chain patients had measurable disease by serum free light chain and urine methods at presentation. By contrast 98 out of 157 intact immunoglobulin patients had measurable disease by serum free light chain compared to 55 out of 157 by urine electrophoresis. In all patients there was substantial agreement between predicate (serum/urine protein electrophoresis) and test (serum protein electrophoresis and serum free light chain) methods for response assessment (Weighted Kappa=0.83). Urine immunofixation became negative in 47% light chain and 43% intact immunoglobulin patients after 2 cycles of therapy. At this time the serum free light chain ratio normalised in only 11% and 27% patients, respectively. In summary we found good agreement between methods for response assessment, but the serum free light chain test provided greater sensitivity than urine electrophoresis for monitoring. To our knowledge this is the first report comparing both methods for response assignment based on the International Myeloma Working Group guidelines. (Clinical Trials Register.eu identifier: 2007-005204-40).

  20. [The renal pathology in light chain deposition disease].

    PubMed

    Giannakakis, K N; Faraggiana, T

    2005-01-01

    Light Chain Deposition Disease (LCDD) is a relatively frequent renal disease associated with dysproteinemia. Although the light chain deposits can be widespread, the kidney is the most frequently involved organ, and renal involvement can dominate the clinical condition. The morphological features of LCDD can be recognized by light microscopy; however, the diagnosis can be made certain only by immunofluorescence microscopy, using antisera to kappa and lambda chains, and by electron microscopy.

  1. Antibody elbow angles are influenced by their light chain class

    SciTech Connect

    Stanfield, R; Zemla, A; Wilson, I; Rupp, B

    2006-01-12

    We have examined the elbow angles for 365 different Fab fragments, and observe that Fabs with lambda light chains have adopted a wider range of elbow angles than their kappa-chain counterparts, and that the lambda light chain Fabs are frequently found with very large (>195{sup o}) elbow angles. This apparent hyperflexibility of lambda-chain Fabs may be due to an insertion in their switch region, which is one residue longer than in kappa chains, with glycine occurring most frequently at the insertion position. A new, web-based computer program that was used to calculate the Fab elbow angles is also described.

  2. Increased Serum Free Light Chains Precede the Presentation of Immunoglobulin Light Chain Amyloidosis

    PubMed Central

    Weiss, Brendan M.; Hebreo, Joseph; Cordaro, Daniel V.; Roschewski, Mark J.; Baker, Thomas P.; Abbott, Kevin C.; Olson, Stephen W.

    2014-01-01

    Purpose Patients with immunoglobulin light chain amyloidosis (AL amyloidosis) generally present with advanced organ dysfunction and have a high risk of early death. We sought to characterize monoclonal immunoglobulin (M-Ig) light chains before clinical presentation of AL amyloidosis. Patients and Methods We obtained prediagnostic sera from 20 cases with AL amyloidosis and 20 healthy controls matched for age, sex, race, and age of serum sample from the Department of Defense Serum Repository. Serum protein electrophoresis with immunofixation and serum free light chain (FLC) analysis were performed on all samples. Results An M-Ig was detected in 100% of cases and 0% of controls (P < .001). The M-Ig was present in 100%, 80%, and 42% of cases at less than 4 years, 4 to 11 years, and more than 11 years before diagnosis, respectively. The median FLC differential (FLC-diff) was higher in cases compared with controls at all time periods, less than 4 years (174.8 v 0.3 mg/L; P < .001), 4 to 11 years (65.1 v 2.2 mg/L; P < .001), and more than 11 years (4.5 v 0.4 mg/L; P = .03) before diagnosis. The FLC-diff was greater than 23 mg/L in 85% of cases and 0% of controls (P < .001). The FLC-diff level increased more than 10% per year in 84% of cases compared with 16% of controls (P < .001). Conclusion Increase of FLCs, including within the accepted normal range, precedes the development of AL amyloidosis for many years. PMID:25024082

  3. Unusual Presentation of Light Chain Deposition Disease: A Case Report

    PubMed Central

    Uppal, Mayank; Amitabh, Vindu; Agrawal, Usha

    2016-01-01

    Light Chain Deposition Disease (LCDD) is a rare disease characterized by deposition of monoclonal non-amyloid light chains in multiple organs. We report an unusual histologic manifestation of LCDD in a 55-year-old female patient, who presented with nephrotic syndrome and an increased serum creatinine. This case of LCDD had features of cast nephropathy on biopsy which is diagnostic of myeloma kidney, when the patient was clinically asymptomatic. Serum electrophoresis showed no abnormal band. There was no other evidence of a B-cell clonal disorder or amyloidosis. Following chemotherapy, improvement in renal function correlated with a reduction in circulating light-chain levels. PMID:27437235

  4. Optical Spectral Observations of a Flickering White-light Kernel in a C1 Solar Flare

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Cauzzi, Gianna; Fletcher, Lyndsay

    2015-01-01

    We analyze optical spectra of a two-ribbon, long-duration C1.1 flare that occurred on 2011 August 18 within AR 11271 (SOL2011-08-18T15:15). The impulsive phase of the flare was observed with a comprehensive set of space-borne and ground-based instruments, which provide a range of unique diagnostics of the lower flaring atmosphere. Here we report the detection of enhanced continuum emission, observed in low-resolution spectra from 3600 Å to 4550 Å acquired with the Horizontal Spectrograph at the Dunn Solar Telescope. A small, <=0.''5 (1015 cm2) penumbral/umbral kernel brightens repeatedly in the optical continuum and chromospheric emission lines, similar to the temporal characteristics of the hard X-ray variation as detected by the Gamma-ray Burst Monitor on the Fermi spacecraft. Radiative-hydrodynamic flare models that employ a nonthermal electron beam energy flux high enough to produce the optical contrast in our flare spectra would predict a large Balmer jump in emission, indicative of hydrogen recombination radiation from the upper flare chromosphere. However, we find no evidence of such a Balmer jump in the bluemost spectral region of the continuum excess. Just redward of the expected Balmer jump, we find evidence of a "blue continuum bump" in the excess emission which may be indicative of the merging of the higher order Balmer lines. The large number of observational constraints provides a springboard for modeling the blue/optical emission for this particular flare with radiative-hydrodynamic codes, which are necessary to understand the opacity effects for the continuum and emission line radiation at these wavelengths.

  5. OPTICAL SPECTRAL OBSERVATIONS OF A FLICKERING WHITE-LIGHT KERNEL IN A C1 SOLAR FLARE

    SciTech Connect

    Kowalski, Adam F.; Cauzzi, Gianna; Fletcher, Lyndsay

    2015-01-10

    We analyze optical spectra of a two-ribbon, long-duration C1.1 flare that occurred on 2011 August 18 within AR 11271 (SOL2011-08-18T15:15). The impulsive phase of the flare was observed with a comprehensive set of space-borne and ground-based instruments, which provide a range of unique diagnostics of the lower flaring atmosphere. Here we report the detection of enhanced continuum emission, observed in low-resolution spectra from 3600 Å to 4550 Å acquired with the Horizontal Spectrograph at the Dunn Solar Telescope. A small, ≤0.''5 (10{sup 15} cm{sup 2}) penumbral/umbral kernel brightens repeatedly in the optical continuum and chromospheric emission lines, similar to the temporal characteristics of the hard X-ray variation as detected by the Gamma-ray Burst Monitor on the Fermi spacecraft. Radiative-hydrodynamic flare models that employ a nonthermal electron beam energy flux high enough to produce the optical contrast in our flare spectra would predict a large Balmer jump in emission, indicative of hydrogen recombination radiation from the upper flare chromosphere. However, we find no evidence of such a Balmer jump in the bluemost spectral region of the continuum excess. Just redward of the expected Balmer jump, we find evidence of a ''blue continuum bump'' in the excess emission which may be indicative of the merging of the higher order Balmer lines. The large number of observational constraints provides a springboard for modeling the blue/optical emission for this particular flare with radiative-hydrodynamic codes, which are necessary to understand the opacity effects for the continuum and emission line radiation at these wavelengths.

  6. Serum free light chain assays not total light chain assays are the standard of care to assess Monoclonal Gammopathies.

    PubMed

    Tietsche de Moraes Hungria, Vania; Allen, Syreeta; Kampanis, Petros; Soares, Elyara Maria

    2016-01-01

    The diagnosis of Multiple Myeloma is a challenge to the physician due to the non-specific symptoms (anemia, bone pain and recurrent infections) that are commonplace in the elderly population. However, early diagnosis is associated with less severe disease, including fewer patients presenting with acute renal injury, pathological fractures and severe anemia. Since 2006, the serum free light chain test Freelite(®) has been included alongside standard laboratory tests (serum and urine protein electrophoresis, and serum and urine immunofixation) as an aid in the identification of monoclonal proteins, which are a cornerstone for the diagnosis of Multiple Myeloma. The serum free light chain assay recognizes the light chain component of the immunoglobulin in its free form with high sensitivity. Other assays that measure light chains in the free and intact immunoglobulin forms are sensitive, but unfortunately, due to the nomenclature used, these assays (total light chains) are sometimes used in place of the free light chain assay. This paper reviews the available literature comparing the two assays and tries to clarify hypothetical limitations of the total assay to detect Multiple Myeloma. Furthermore, we elaborate on our study comparing the two assays used in 11 Light Chain Multiple Myeloma patients at presentation and 103 patients taken through the course of their disease. The aim of this article is to provide a clear discrimination between the two assays and to provide information to physicians and laboratory technicians so that they can utilize the International Myeloma Working Group guidelines.

  7. Serum free light chain assays not total light chain assays are the standard of care to assess Monoclonal Gammopathies

    PubMed Central

    Tietsche de Moraes Hungria, Vania; Allen, Syreeta; Kampanis, Petros; Soares, Elyara Maria

    2016-01-01

    The diagnosis of Multiple Myeloma is a challenge to the physician due to the non-specific symptoms (anemia, bone pain and recurrent infections) that are commonplace in the elderly population. However, early diagnosis is associated with less severe disease, including fewer patients presenting with acute renal injury, pathological fractures and severe anemia. Since 2006, the serum free light chain test Freelite® has been included alongside standard laboratory tests (serum and urine protein electrophoresis, and serum and urine immunofixation) as an aid in the identification of monoclonal proteins, which are a cornerstone for the diagnosis of Multiple Myeloma. The serum free light chain assay recognizes the light chain component of the immunoglobulin in its free form with high sensitivity. Other assays that measure light chains in the free and intact immunoglobulin forms are sensitive, but unfortunately, due to the nomenclature used, these assays (total light chains) are sometimes used in place of the free light chain assay. This paper reviews the available literature comparing the two assays and tries to clarify hypothetical limitations of the total assay to detect Multiple Myeloma. Furthermore, we elaborate on our study comparing the two assays used in 11 Light Chain Multiple Myeloma patients at presentation and 103 patients taken through the course of their disease. The aim of this article is to provide a clear discrimination between the two assays and to provide information to physicians and laboratory technicians so that they can utilize the International Myeloma Working Group guidelines. PMID:26969773

  8. Specific dimerization of the light chains of human immunoglobulin.

    PubMed

    Stevenson, G T; Straus, D

    1968-07-01

    1. The light chains of human immunoglobulin were allowed to dimerize in vitro on removal of the dispersing agents acetic acid or urea. 2. On electrophoresis in polyacrylamide gel at pH8.8 the dimers yielded up to nine regularly spaced bands. This approximates to the number of electrophoretic components known to occur among the monomers. 3. Single electrophoretic components of the dimers were isolated from the gel, dissociated into monomers, and subjected as such to electrophoresis in urea-containing gels. Each gave two adjacent bands. 4. Similarly, after all the light chains as monomers had been subjected to electrophoresis in urea-containing gels, single electrophoretic components were isolated and allowed to dimerize. When examined now as dimers in the absence of urea, each component gave two adjacent bands. 5. These findings are explicable on the following basis. (a) The dimerization of the light chains is specific, at least inasmuch as it occurs between monomers of the same electrophoretic mobilities. (b) With the buffer constant, different light chains undergo different changes in net charge on being transferred from urea-containing to urea-free solution; in this way two different chains of the same initial charge can acquire a charge difference of 1. 6. Experiments with Bence-Jones proteins and other homogeneous light chains gave results substantiating the conclusions (a) and (b). PMID:4174431

  9. Myosin light chain genes in the turkey (Meleagris gallopavo).

    PubMed

    Chaves, L D; Ostroski, B J; Reed, K M

    2003-01-01

    Myosin light chains associate with the motor protein myosin and are believed to play a role in the regulation of its actin-based ATPase activity. Myosin light chain cDNA clones from the turkey (Meleagris gallopavo) were isolated and sequenced. One sequence corresponded to an alternative transcript, the skeletal muscle essential light chain (MYL1 isoform 1) and a second to the smooth muscle isoform of myosin light chain (MYL6). The DNA and predicted amino acid sequences of both light chain genes were compared to that of the chicken. Based on the cDNA sequence, oligonucleotide primers were designed to amplify genomic DNA from six of the seven introns of the MYL1 gene. Approximately 5 kb of DNA was sequenced (introns and 3' UTR) and evaluated for the presence of single nucleotide polymorphisms (SNPs). SNPs were verified by sequencing common intron regions from multiple individuals and three polymorphisms were used to genotype pedigreed families. MYL1 is assigned to a turkey linkage group that corresponds to a region of chicken chromosome 7 (GGA7). The results of this study provide genomic reagents for comparative studies of avian muscle components and muscle biology.

  10. Chronic myopathy due to immunoglobulin light chain amyloidosis

    PubMed Central

    Manoli, Irini; Kwan, Justin Y.; Wang, Qian; Rushing, Elisabeth J.; Tsokos, Maria; Arai, Andrew E.; Burch, Warner M.; Dispenzieri, Angela; McPherron, Alexandra C.; Gahl, William A.

    2013-01-01

    Amyloid myopathy associated with a plasma cell dyscrasia is a rare cause of muscle hypertrophy. It can be a challenging diagnosis, since pathological findings are often elusive. In addition, the mechanism by which immunoglobulin light-chain deposition stimulates muscle overgrowth remains poorly understood. We present a 53–year old female with a 10-year history of progressive generalized muscle overgrowth. Congo-red staining and immunohistochemistry revealed perivascular lambda light chain amyloid deposits, apparent only in a second muscle biopsy. The numbers of central nuclei and satellite cells were increased, suggesting enhanced muscle progenitor cell formation. Despite the chronicity of the light chain disease, the patient showed complete resolution of hematologic findings and significant improvement of her muscle symptoms following autologous bone marrow transplantation. This case highlights the importance of early diagnosis and therapy for this treatable cause of a chronic myopathy with muscle hypertrophy. PMID:23465863

  11. Targeted disruption of the porcine immunoglobulin kappa light chain locus.

    PubMed

    Ramsoondar, J; Mendicino, M; Phelps, C; Vaught, T; Ball, S; Monahan, J; Chen, S; Dandro, A; Boone, J; Jobst, P; Vance, A; Wertz, N; Polejaeva, I; Butler, J; Dai, Y; Ayares, D; Wells, K

    2011-06-01

    Inactivation of the endogenous pig immunoglobulin (Ig) loci, and replacement with their human counterparts, would produce animals that could alleviate both the supply and specificity issues of therapeutic human polyclonal antibodies (PAbs). Platform genetics are being developed in pigs that have all endogenous Ig loci inactivated and replaced by human counterparts, in order to address this unmet clinical need. This report describes the deletion of the porcine kappa (κ) light chain constant (Cκ) region in pig primary fetal fibroblasts (PPFFs) using gene targeting technology, and the generation of live animals from these cells via somatic cell nuclear transfer (SCNT) cloning. There are only two other targeted loci previously published in swine, and this is the first report of a targeted disruption of an Ig light chain locus in a livestock species. Pigs with one targeted Cκ allele (heterozygous knockout or ±) were bred together to generate Cκ homozygous knockout (-/-) animals. Peripheral blood mononuclear cells (PBMCs) and mesenteric lymph nodes (MLNs) from Cκ -/- pigs were devoid of κ-containing Igs. Furthermore, there was an increase in lambda (λ) light chain expression when compared to that of wild-type littermates (Cκ +/+). Targeted inactivation of the Ig heavy chain locus has also been achieved and work is underway to inactivate the pig lambda light chain locus.

  12. Dual immunoglobulin light chain B cells: Trojan horses of autoimmunity?

    PubMed

    Pelanda, Roberta

    2014-04-01

    Receptor editing, a major mechanism of B cell tolerance, can also lead to allelic inclusion at the immunoglobulin light chain loci and the development of B cells that coexpress two different immunoglobulin light chains and, therefore, two antibody specificities. Most allelically included B cells express two κ chains, although rare dual-λ cells are also observed. Moreover, these cells typically coexpress an autoreactive and a nonautoreactive antibody. Thus, allelically included B cells could operate like 'Trojan horses': expression and function of the nonautoreactive antigen receptors might promote their maturation, activation, and terminal differentiation into effector cells that also express and secrete autoantibodies. Indeed, dual-κ B cells are greatly expanded into effector B cell subsets in some autoimmune mice, thus indicating they might play an important role in disease.

  13. The immunoglobulin light chain locus of the turkey, Meleagris gallopavo.

    PubMed

    Bao, Yonghua; Wu, Sun; Zang, Yunlong; Wang, Hui; Song, Xiangfeng; Xu, Chunyang; Xie, Bohong; Guo, Yongchen

    2012-06-15

    To date, most jawed vertebrate species encode more than one immunoglobulin light (IgL) chain isotypes. It has been shown that several bird species (chickens, white Pekin or domestic duck, and zebra finches) exclusively express lambda isotype. We analyze here the genomic organization of another bird species turkey IgL genes based on the recently released genome data. The turkey IgL locus located on chromosome 17 spans approximately 75.2kb and contains a single functional V(λ) gene, twenty V(λ) pseudogenes, and a single functional J(λ)-C(λ) block. These data suggest that the genomic organization of bird IgL chain genes seems to be conserved. Ten cDNA clones from turkey Igλ chain containing almost full-length V(λ), J(λ) and C(λ) segments were acquired. The comparison of V(λ) cDNA sequences to all the germline V(λ) segments suggests that turkey species may be generating IgL chain diversity by gene conversion and somatic hypermutation like the chicken. This study provides insights into the immunoglobulin light chain genes in another bird species.

  14. Cysteine Racemization on IgG Heavy and Light Chains

    PubMed Central

    Zhang, Qingchun; Flynn, Gregory C.

    2013-01-01

    Under basic pH conditions, the heavy chain 220-light chain 214 (H220-L214) disulfide bond, found in the flexible hinge region of an IgG1, can convert to a thioether. Similar conditions also result in racemization of the H220 cysteine. Here, we report that racemization occurs on both H220 and L214 on an IgG1 with a λ light chain (IgG1λ) but almost entirely on H220 of an IgGl with a κ light chain (IgG1κ) under similar conditions. Likewise, racemization was detected at significant levels on H220 and L214 on endogenous human IgG1λ but only at the H220 position on IgG1κ. Low but measurable levels of d-cysteines were found on IgG2 cysteines in the hinge region, both with monoclonal antibodies incubated under basic pH conditions and on antibodies isolated from human serum. A simplified reaction mechanism involving reversible β-elimination on the cysteine is presented that accounts for both base-catalyzed racemization and thioether formation at the hinge disulfide. PMID:24142697

  15. Immunoglobulin heavy chain/light chain pairs (HLC, Hevylite™) assays for diagnosing and monitoring monoclonal gammopathies.

    PubMed

    Kraj, Maria

    2014-01-01

    Immunofixation (IFE) is a standard method for detecting monoclonal immunoglobulins and characterizing its isotype. Recently clonality can also be determined by using immunoglobulin (Ig) heavy chain/light chain immunoassays - HLC, HevyliteTM. HLC separately measures in pairs light chain types of each intact Ig class generating ratios of monoclonal Ig/uninvolved polyclonal Ig concentrations. Studies have shown that HLC and IFE are complementary methods. HLC assays quantify monoclonal proteins and identify monoclonality. It is possible to predict prognosis in multiple myeloma and to monitor response to treatment using HLC ratio. HLC ratio may serve as a parameter for myeloma induced immunoparesis and serve as a new marker for validating remission depth and relapse probabilities.

  16. Serologically defined V region subgroups of human lambda light chains.

    PubMed

    Solomon, A; Weiss, D T

    1987-08-01

    The availability of numerous antisera prepared against lambda-type Bence Jones proteins and lambda chains of known amino acid sequence has led to the differentiation and classification of human lambda light chains into one of five V lambda subgroups. The five serologically defined subgroups, V lambda I, V lambda II, V lambda III, V lambda IV, and V lambda VI, correspond to the chemical classification that is based on sequence homologies in the first framework region (FR1). Proteins designated by sequence as lambda V react with specific anti-lambda II antisera and are thus included in the V lambda II subgroup classification. The isotypic nature of the five V lambda subgroups was evidenced through analyses of lambda-type light chains that were isolated from the IgG of normal individuals. Based on analyses of 116 Bence Jones proteins, the frequency of distribution of the lambda I, lambda II/V, lambda III, lambda IV, and lambda VI proteins in the normal lambda chain population is estimated to be 27%, 37%, 23%, 3%, and 10%, respectively. This distribution of V lambda subgroups was comparable to that found among 82 monoclonal Ig lambda proteins. Considerable V lambda intragroup antigenic heterogeneity was also apparent. At least two sub-subgroups were identified among each of the five major V lambda subgroups, implying the existence of multiple genes in the human V lambda genome. The V lambda classification of 54 Ig lambda proteins obtained from patients with primary or multiple myeloma-associated amyloidosis substantiated the preferential association of lambda VI light chains with amyloidosis AL and the predominance of the normally rare V lambda VI subgroup in this disease. PMID:3110284

  17. Structural and Thermodynamic Characterization of a Cytoplasmic Dynein Light Chain-Intermediate Chain Complex

    SciTech Connect

    Williams,J.; Roulhac, P.; Roy, A.; Vallee, R.; Fitzgerald, M.; Hendrickson, W.

    2007-01-01

    Cytoplasmic dynein is a microtubule-based motor protein complex that plays important roles in a wide range of fundamental cellular processes, including vesicular transport, mitosis, and cell migration. A single major form of cytoplasmic dynein associates with membranous organelles, mitotic kinetochores, the mitotic and migratory cell cortex, centrosomes, and mRNA complexes. The ability of cytoplasmic dynein to recognize such diverse forms of cargo is thought to be associated with its several accessory subunits, which reside at the base of the molecule. The dynein light chains (LCs) LC8 and TcTex1 form a subcomplex with dynein intermediate chains, and they also interact with numerous protein and ribonucleoprotein partners. This observation has led to the hypothesis that these subunits serve to tether cargo to the dynein motor. Here, we present the structure and a thermodynamic analysis of a complex of LC8 and TcTex1 associated with their intermediate chain scaffold. The intermediate chains effectively block the major putative cargo binding sites within the light chains. These data suggest that, in the dynein complex, the LCs do not bind cargo, in apparent disagreement with a role for LCs in dynein cargo binding interactions.

  18. Tertiary structure of human {Lambda}6 light chains.

    SciTech Connect

    Pokkuluri, P. R.; Solomon, A.; Weiss, D. T.; Stevens, F. J.; Schiffer, M.; Center for Mechanistic Biology and Biotechnology; Univ. of Tennessee Medical Center /Graduate School of Medicine

    1999-01-01

    AL amyloidosis is a disease process characterized by the pathologic deposition of monoclonal light chains in tissue. To date, only limited information has been obtained on the molecular features that render such light chains amyloidogenic. Although protein products of the major human V kappa and V lambda gene families have been identified in AL deposits, one particular subgroup--lambda 6--has been found to be preferentially associated with this disease. Notably, the variable region of lambda 6 proteins (V lambda 6) has distinctive primary structural features including the presence in the third framework region (FR3) of two additional amino acid residues that distinguish members of this subgroup from other types of light chains. However, the structural consequences of these alterations have not been elucidated. To determine if lambda 6 proteins possess unique tertiary structural features, as compared to light chains of other V lambda subgroups, we have obtained x-ray diffraction data on crystals prepared from two recombinant V lambda 6 molecules. These components, isolated from a bacterial expression system, were generated from lambda 6-related cDNAs cloned from bone marrow-derived plasma cells from a patient (Wil) who had documented AL amyloidosis and another (Jto) with multiple myeloma and tubular cast nephropathy, but no evident fibrillar deposits. The x-ray crystallographic analyses revealed that the two-residue insertion located between positions 68 and 69 (not between 66 and 67 as previously surmised) extended an existing loop region that effectively increased the surface area adjacent to the first complementarity determining region (CDR1). Further, an unusual interaction between the Arg 25 and Phe 2 residues commonly found in lambda 6 molecules was noted. However, the structures of V lambda 6 Wil and Jto also differed from each other, as evidenced by the presence in the latter of certain ionic and hydrophobic interactions that we posit increased protein

  19. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes

    SciTech Connect

    McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole; Ramirez-Alvarado, Marina; Donohoe, Dallas; Williams, Angela; Macy, Sallie; Wooliver, Craig; Wortham, Dale; Morrell-Falvey, Jennifer; Foster, Carmen M.; Kennel, Stephen J.; Wall, Jonathan S.

    2015-09-22

    Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presence of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. Ultimately, these data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.

  20. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes

    DOE PAGESBeta

    McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole; Ramirez-Alvarado, Marina; Donohoe, Dallas; Williams, Angela; Macy, Sallie; Wooliver, Craig; Wortham, Dale; Morrell-Falvey, Jennifer; et al

    2015-09-22

    Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presencemore » of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. Ultimately, these data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.« less

  1. Role of myosin light chain and myosin light chain kinase in advanced glycation end product-induced endothelial hyperpermeability in vitro and in vivo.

    PubMed

    Wu, Fan; Guo, Xiaohua; Xu, Jing; Wang, Weiju; Li, Bingling; Huang, Qiaobing; Su, Lei; Xu, Qiulin

    2016-03-01

    We have previously reported that advanced glycation end products activated Rho-associated protein kinase and p38 mitogen-activated protein kinase, causing endothelial hyperpermeability. However, the mechanisms involved were not fully clarified. Here, we explored the role of myosin light chain kinase in advanced glycation end product-induced endothelial hyperpermeability. Myosin light chain phosphorylation significantly increased by advanced glycation end products in endothelial cells in a time- and dose-dependent manner, indicating that myosin light chain phosphorylation is involved in the advanced glycation end product pathway. Advanced glycation end products also induced myosin phosphatase-targeting subunit 1 phosphorylation, and small interfering RNA knockdown of the receptor for advanced glycation end products, or blocking myosin light chain kinase with its inhibitor, ML-7, or small interfering RNA abated advanced glycation end product-induced myosin light chain phosphorylation. Advanced glycation end product-induced F-actin rearrangement and endothelial hyperpermeability were also diminished by inhibition of receptor for advanced glycation end product or myosin light chain kinase signalling. Moreover, inhibiting myosin light chain kinase with ML-7 or blocking receptor for advanced glycation end product with its neutralizing antibody attenuated advanced glycation end product-induced microvascular hyperpermeability. Our findings suggest a novel role for myosin light chain and myosin light chain kinase in advanced glycation end product-induced endothelial hyperpermeability.

  2. Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo.

    PubMed

    Chang, Audrey N; Battiprolu, Pavan K; Cowley, Patrick M; Chen, Guohua; Gerard, Robert D; Pinto, Jose R; Hill, Joseph A; Baker, Anthony J; Kamm, Kristine E; Stull, James T

    2015-04-24

    In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca(2+) sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity.

  3. Myosin light chain kinase (MLCK) regulates cell migration in a myosin regulatory light chain phosphorylation-independent mechanism.

    PubMed

    Chen, Chen; Tao, Tao; Wen, Cheng; He, Wei-Qi; Qiao, Yan-Ning; Gao, Yun-Qian; Chen, Xin; Wang, Pei; Chen, Cai-Ping; Zhao, Wei; Chen, Hua-Qun; Ye, An-Pei; Peng, Ya-Jing; Zhu, Min-Sheng

    2014-10-10

    Myosin light chain kinase (MLCK) has long been implicated in the myosin phosphorylation and force generation required for cell migration. Here, we surprisingly found that the deletion of MLCK resulted in fast cell migration, enhanced protrusion formation, and no alteration of myosin light chain phosphorylation. The mutant cells showed reduced membrane tether force and fewer membrane F-actin filaments. This phenotype was rescued by either kinase-dead MLCK or five-DFRXXL motif, a MLCK fragment with potent F-actin-binding activity. Pull-down and co-immunoprecipitation assays showed that the absence of MLCK led to attenuated formation of transmembrane complexes, including myosin II, integrins and fibronectin. We suggest that MLCK is not required for myosin phosphorylation in a migrating cell. A critical role of MLCK in cell migration involves regulating the cell membrane tension and protrusion necessary for migration, thereby stabilizing the membrane skeleton through F-actin-binding activity. This finding sheds light on a novel regulatory mechanism of protrusion during cell migration.

  4. Risk factors for venous thromboembolism in immunoglobulin light chain amyloidosis

    PubMed Central

    Bever, Katherine M.; Masha, Luke I.; Sun, Fangui; Stern, Lauren; Havasi, Andrea; Berk, John L.; Sanchorawala, Vaishali; Seldin, David C.; Sloan, J. Mark

    2016-01-01

    Patients with immunoglobulin light chain amyloidosis are at risk for both thrombotic and bleeding complications. While the hemostatic defects have been extensively studied, less is known about thrombotic complications in this disease. This retrospective study examined the frequency of venous thromboembolism in 929 patients with immunoglobulin light chain amyloidosis presenting to a single referral center, correlated risk of venous thromboembolism with clinical and laboratory factors, and examined complications of anticoagulation in this population. Sixty-five patients (7%) were documented as having at least one venous thromboembolic event. Eighty percent of these patients had events within one year prior to or following diagnosis. Lower serum albumin was associated with increased risk of VTE, with a hazard ratio of 4.30 (CI 1.60–11.55; P=0.0038) for serum albumin less than 3 g/dL compared to serum albumin greater than 4 g/dL. Severe bleeding complications were observed in 5 out of 57 patients with venous thromboembolism undergoing treatment with anticoagulation. Prospective investigation should be undertaken to better risk stratify these patients and to determine the optimal strategies for prophylaxis against and management of venous thromboembolism. PMID:26452981

  5. Structure and diversity of Mexican axolotl lambda light chains.

    PubMed

    André, S; Guillet, F; Charlemagne, J; Fellah, J S

    2000-11-01

    We report here the structure of cDNA clones encoding axolotl light chains of the lambda type. A single IGLC gene and eight different potential IGLV genes belonging to four different families were detected. The axolotl Cgamma domain has several residues or stretches of residues that are typically conserved in mammalian, avian, and Xenopus Cgamma, but the KATLVCL stretch, which is well conserved in the Cgamma and T-cell receptor Cbeta domains of many vertebrate species, is not well conserved. All axolotl Vgamma sequences closely match several human and Xenopus Vgamma-like sequences and, although the axolotl Cgamma and Vgamma sequences are very like their tetrapod homologues, they are not closely related to nontetrapod L chains. Southern blot experiments suggested the presence of a single IGLC gene and of a limited number of IGLV genes, and analysis of IGLV-J junctions clearly indicated that at least three of the IGLJ segments can associate with IGLV1, IGLV2, or IGLV3 subgroup genes. The overall diversity of the axolotl Vgamma CDR3 junctions seems to be of the same order as that of mammalian Vgamma chains. However, a single IGLV4 segment was found among the 45 cDNAs analyzed. This suggests that the axolotl IGL locus may have a canonical tandem structure, like the mammalian IGK or IGH loci. Immunofluorescence, immunoblotting, and microsequencing experiments strongly suggested that most, if not all L chains are of the gamma type. This may explain in part the poor humoral response of the axolotl. PMID:11132150

  6. Expression of heavy chain-only antibodies can support B-cell development in light chain knockout chickens.

    PubMed

    Schusser, Benjamin; Collarini, Ellen J; Pedersen, Darlene; Yi, Henry; Ching, Kathryn; Izquierdo, Shelley; Thoma, Theresa; Lettmann, Sarah; Kaspers, Bernd; Etches, Robert J; van de Lavoir, Marie-Cecile; Harriman, William; Leighton, Philip A

    2016-09-01

    Since the discovery of antibody-producing B cells in chickens six decades ago, chickens have been a model for B-cell development in gut-associated lymphoid tissue species. Here we describe targeting of the immunoglobulin light chain locus by homologous recombination in chicken primordial germ cells (PGCs) and generation of VJCL knockout chickens. In contrast to immunoglobulin heavy chain knockout chickens, which completely lack mature B cells, homozygous light chain knockout (IgL(-/-) ) chickens have a small population of B lineage cells that develop in the bursa and migrate to the periphery. This population of B cells expresses the immunoglobulin heavy chain molecule on the cell surface. Soluble heavy-chain-only IgM and IgY proteins of reduced molecular weight were detectable in plasma in 4-week-old IgL(-/-) chickens, and antigen-specific IgM and IgY heavy chain proteins were produced in response to immunization. Circulating heavy-chain-only IgM showed a deletion of the CH1 domain of the constant region enabling the immunoglobulin heavy chain to be secreted in the absence of the light chain. Our data suggest that the heavy chain by itself is enough to support all the important steps in B-cell development in a gut-associated lymphoid tissue species.

  7. Cargo selection by specific kinesin light chain 1 isoforms

    PubMed Central

    Woźniak, Marcin J; Allan, Victoria J

    2006-01-01

    Kinesin-1 drives the movement of diverse cargoes, and it has been proposed that specific kinesin light chain (KLC) isoforms target kinesin-1 to these different structures. Here, we test this hypothesis using two in vitro motility assays, which reconstitute the movement of rough endoplasmic reticulum (RER) and vesicles present in a Golgi membrane fraction. We generated GST-tagged fusion proteins of KLC1B and KLC1D that included the tetratricopeptide repeat domain and the variable C-terminus. We find that preincubation of RER with KLC1B inhibits RER motility, whereas KLC1D does not. In contrast, Golgi fraction vesicle movement is inhibited by KLC1D but not KLC1B reagents. Both RER and vesicle movement is inhibited by preincubation with the GST-tagged C-terminal domain of ubiquitous kinesin heavy chain (uKHC), which binds to the N-terminal domain of uKHC and alters its interaction with microtubules. We propose that although the TRR domains are required for cargo binding, it is the variable C-terminal region of KLCs that are vital for targeting kinesin-1 to different cellular structures. PMID:17093494

  8. Natural history and outcome of light chain deposition disease

    PubMed Central

    Sayed, Rabya H.; Wechalekar, Ashutosh D.; Gilbertson, Janet A.; Bass, Paul; Mahmood, Shameem; Sachchithanantham, Sajitha; Fontana, Marianna; Patel, Ketna; Whelan, Carol J.; Lachmann, Helen J.; Hawkins, Philip N.

    2015-01-01

    Light chain deposition disease (LCDD) is characterized by the deposition of monotypic immunoglobulin light chains in the kidney, resulting in renal dysfunction. Fifty-three patients with biopsy-proven LCDD were prospectively followed at the UK National Amyloidosis Center. Median age at diagnosis was 56 years, and patients were followed for a median of 6.2 years (range, 1.1-14.0 years). Median renal survival from diagnosis by Kaplan-Meier analysis was 5.4 years, and median estimated patient survival was 14.0 years; 64% of patients were alive at censor. Sixty-two percent of patients required dialysis, and median survival from commencement of dialysis was 5.2 years. There was a strong association between hematologic response to chemotherapy and renal outcome, with a mean improvement in glomerular filtration rate (GFR) of 6.1 mL/min/year among those achieving a complete or very good partial hematologic response (VGPR) with chemotherapy, most of whom remained dialysis independent, compared with a mean GFR loss of 6.5 mL/min/year among those achieving only a partial or no hematologic response (P < .009), most of whom developed end-stage renal disease (ESRD; P = .005). Seven patients received a renal transplant, and among those whose underlying clonal disorder was in sustained remission, there was no recurrence of LCDD up to 9.7 years later. This study highlights the need to diagnose and treat LCDD early and to target at least a hematologic VGPR with chemotherapy, even among patients with advanced renal dysfunction, to delay progression to ESRD and prevent recurrence of LCDD in the renal allografts of those who subsequently receive a kidney transplant. PMID:26392598

  9. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis

    SciTech Connect

    Pozo-Yauner, Luis del; Wall, Jonathan S.; González Andrade, Martín; Sánchez-López, Rosana; Rodríguez-Ambriz, Sandra L.; Pérez Carreón, Julio I.; and others

    2014-01-10

    Highlights: •We evaluated the impact of mutations in the N-terminal strand of 6aJL2 protein. •Mutations destabilized the protein in a position-dependent manner. •Destabilizing mutations accelerated the fibrillogenesis by shortening the lag time. •The effect on the kinetic of fibril elongation by seeding was of different nature. •The N-terminal strand is buried in the fibrillar state of 6aJL2 protein. -- Abstract: It has been suggested that the N-terminal strand of the light chain variable domain (V{sub L}) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stability and kinetic of fibrillogenesis of the V{sub L} protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein.

  10. Variable domain structure of {kappa}IV human light chain len : high homology to the murine light chain McPC603.

    SciTech Connect

    Huang, D.-B.; Chang, C.-H.; Ainsworth, C.; Johnson, G.; Solomon, A.; Stevens, F. J.; Schiffer, M.; Center for Mechanistic Biology and Biotechnology; Univ. of Tennessee Medical Center

    1997-12-01

    Antibody light chains of the {kappa} subgroup are the predominant light chain component in human immune responses and are used almost exclusively in the antibody repertoire of mice. Human {kappa} light chains comprise four subgroups. To date, all crystallographic studies of human {kappa} light chains were carried out on proteins of the {kappa}I subgroup. The light chain produced by multiple myeloma patient Len, was of the {kappa}IV subgroup, it differed by only one residue from the germ-line gene encoded protein. The variable domain fragment of the light chain was crystallized from ammonium sulfate in space group C222{sub 1}. The crystal structure was determined by molecular replacement and refined at 1.95 Angstrom resolution to an R-factor of 0.15. Protein Len has six additional residues in its CDR1 segment compared to the {kappa}I proteins previously characterized. The {kappa}IV variable domain. Len, differs in only 23 of 113 residues from murine {kappa} light chain McPC603. The RMS deviation upon superimposing their {alpha}-carbons was 0.69 Angstrom. The CDR1 segment of the human and murine variable domains have the same length and conformation although their amino acid sequences differ in 5 out of 17 residues. Structural features were identified that could account for the significantly higher stability of the human {kappa}IV protein relative to its murine counterpart. This human {kappa}IV light chain structure is the closest human homolog to a murine light chain and can be expected to facilitate detailed structural comparisons necessary for effective humanization of murine antibodies.

  11. The morphologic spectrum and clinical significance of light chain proximal tubulopathy with and without crystal formation.

    PubMed

    Larsen, Christopher P; Bell, Jane M; Harris, Alexis A; Messias, Nidia C; Wang, Yihan H; Walker, Patrick D

    2011-11-01

    The renal diseases most frequently associated with myeloma include amyloidosis, monoclonal immunoglobulin deposition disease, and cast nephropathy. Less frequently reported is light chain proximal tubulopathy, a disease characterized by κ-restricted crystal deposits in the proximal tubule cytoplasm. Light chain proximal tubulopathy without crystal deposition is only loosely related to the typical light chain proximal tubulopathy, and little is known about this entity. A search was performed of the 10 081 native kidney biopsy samples processed by our laboratory over the past 2 years for cases that had light chain restriction limited to the proximal tubule cytoplasm. A total of 10 cases of light chain proximal tubulopathy without crystal deposition were found representing 3.1% of light chain-related diseases. Nine of these 10 showed λ-light chain restriction. Only three cases of light chain proximal tubulopathy with crystals were found accounting for 0.9% of light chain-related diseases. Two of these three were κ subtype. Plasma cell dyscrasia was unsuspected in seven of the 10 patients with light chain proximal tubulopathy without crystals at the time of renal biopsy. After the biopsy was reported, follow-up was available on 9/10 patients with 9/9 showing a plasma cell dyscrasia including 8/9 with multiple myeloma. We found that light chain proximal tubulopathy without crystal formation, despite being rarely described in the literature, is over three times more common than light chain proximal tubulopathy with crystal formation in our series. And given that it is often associated with previously unrecognized myeloma, it is a critically important diagnosis.

  12. Light-chain binding sites on renal brush-border membranes

    SciTech Connect

    Batuman, V.; Dreisbach, A.W.; Cyran, J.

    1990-05-01

    Immunoglobulin light chains are low-molecular-weight proteins filtered at the renal glomerulus and catabolized within the proximal tubular epithelium. Excessive production and urinary excretion of light chains are associated with renal dysfunction. They also interfere with proximal renal tubule epithelial functions in vitro. We studied the binding of 125I-labeled kappa- and lambda-light chains, obtained from the urine of multiple myeloma patients, to rat and human renal proximal tubular brush-border membranes. Light-chain binding to brush borders was also demonstrated immunologically by flow cytometry. Computer analysis of binding data was consistent with presence of a single class of low-affinity, high-capacity, non-cooperative binding sites with relative selectivity for light chains on both rat and human kidney brush-border membranes. The dissociation constants of light chains ranged from 1.6 X 10(-5) to 1.2 X 10(-4) M, and maximum binding capacity ranged from 4.7 +/- 1.3 X 10(-8) to 8.0 +/- 0.9 X 10(-8) (SD) mol/mg protein at 25 degrees C. Kappa- and lambda-light chains competed with each other for binding with comparable affinity constants. Competition by albumin and beta-lactoglobulin, however, was much weaker, suggesting relative site selectivity for light chains. These binding sites probably function as endocytotic receptors for light chains and possibly other low-molecular-weight proteins.

  13. A second immunoglobulin light chain isotype in the rainbow trout.

    PubMed

    Partula, S; Schwager, J; Timmusk, S; Pilström, L; Charlemagne, J

    1996-01-01

    A novel immunoglobulin (Ig) light chain isotype, termed IgL2, has been isolated from trout lymphoid tissues both by reverse transcription - polymerase chain reaction (PCR) and screening of cDNA libraries. The CL domain of the new isotype shares only 29% residues with a recently cloned trout IgL isotype, termed IgL1, which has some similarities to Ckappa and Clambda isotype domains of several vertebrate species. Using anchored PCR, a VL element rearranged to CL2 was isolated. It is a member of a new VL family (VL2) of which four members were sequenced. These differ in the sequence of CDR1 and CDR2 but are remarkably similar in CDR3, i. e., at the junction between VL and JL segments. VL elements are rearranged to novel JL elements which differ from those described for VL1-CL1 rearrangements. Two cDNA clones contained JL-CL2 segments but no VL segments. The JL segments were preceded by typical rearrangements signal sequences [RSS, nonamer-23 base pair (bp) spacer-heptamer]. Further upstream of RSS were located two to three near identical 53 bp repeats, each of which included a 16 bp sequence similar to KI and KII sequences located at similar places in human and mouse Jk1 genes. These sequences are believed to act as binding sites for the protein KLP, which could be a transcriptional factor involved in the synthesis of germline Jk transcripts. Their phylogenic conservation in vertebrates suggests that they have an important role in B-cell differentiation. Remarkably, an RNA species of about 0.7 kilobase is the predominant IgL mRNA in trout spleen and coincides in size with JLCL2 transcripts. Genomic DNA blot analysis indicates that the trout L2 locus has a cluster-like organization similar to the trout L1 locus and the IgL locus of several teleost fish. A phylogenic analysis of VL2 and CL2 corroborates their low similarity to other vertebrate IgL chains and suggests an ancient diversification of the IgL locus. PMID:8881036

  14. The ferritin light-chain homologue promoter in Aedes aegypti.

    PubMed

    Pham, D Q-D; Chavez, C A

    2005-06-01

    Promoters that direct the expression of antipathogenic molecules to primary sites of pathogenic invasions provide a means to interfere with these invasions. Thus, they have the potential to be used in mosquito control. However, exogenous elements are known to lower the fitness of most insects, and given the ability of insects to evolve rapidly, all currently known promoters could be rendered useless. As transgenic mosquitoes may be a major component in the fight against mosquito-borne diseases, the identification of new mosquito promoters is needed. The promoter of the Aedes aegypti ferritin light-chain homologue (LCH) gene, a gene whose expression is induced in gut tissues during blood feeding has been identified and mapped. Transfection data indicate that the ferritin LCH promoter is a strong promoter. DNase I footprinting data and Transfac analyses suggest that the ferritin LCH promoter contains putative GATA, E2F, NIT2, TATA and DPE sites. These data together provide the first detailed map of a known ferritin LCH gene.

  15. Immunoglobulin K light chain deficiency: A rare, but probably underestimated, humoral immune defect.

    PubMed

    Sala, Pierguido; Colatutto, Antonio; Fabbro, Dora; Mariuzzi, Laura; Marzinotto, Stefania; Toffoletto, Barbara; Perosa, Anna R; Damante, Giuseppe

    2016-04-01

    Human immunoglobulin molecules are generated by a pair of identical heavy chains, which identify the immunoglobulin class, and a pair of identical light chains, Kappa or Lambda alternatively, which characterize the immunoglobulin type. In normal conditions, Kappa light chains represent approximately 2/3 of the light chains of total immunoglobulins, both circulating and lymphocyte surface bound. Very few cases of immunoglobulin Kappa or Lambda light chain defects have been reported. Furthermore, the genetic basis of this defect has been extensively explored only in a single case. We report a case of a patient suffering of serious recurrent bacterial infections, which was caused by a very rare form of immunoglobulin disorder, consisting of a pure defect of Kappa light chain. We evaluated major serum immunoglobulin concentrations, as well as total and free Kappa and Lambda light chain concentrations. Lymphocyte phenotyping was also performed and finally we tested the Kappa chain VJ rearrangement as well as the constant Kappa region sequence. Studies performed on VJ rearrangement showed a polyclonal genetic arrangement, whereas the gene sequencing for the constant region of Kappa chain showed a homozygous T to G substitution at the position 1288 (rs200765148). This mutation causes a substitution from Cys to Gly in the protein sequence and, therefore, determines the abnormal folding of the constant region of Kappa chain. We suggest that this defect could lead to an effective reduction of the variability of total antibody repertoire and a consequent defect of an apparently normal immunoglobulin response to common antigens.

  16. Recurrent Light Chain Proximal Tubulopathy in a Kidney Allograft.

    PubMed

    Angioi, Andrea; Amer, Hatem; Fervenza, Fernando C; Sethi, Sanjeev

    2016-09-01

    We describe a rare case of light chain proximal tubulopathy developing in a kidney transplant 12 months following transplantation. The patient was known to have a monoclonal gammopathy of undetermined significance (MGUS) for more than 15 years. A kidney biopsy done to determine the cause of decline in kidney transplant function showed light chain proximal tubulopathy characterized by numerous eosinophilic and fuchsinophilic granules in proximal tubular epithelial cells, which stained for κ light chains on pronase-based immunofluorescence studies. Electron microscopy confirmed the diagnosis and showed numerous amorphous and geometrically shaped inclusions in proximal tubular epithelial cells. Evaluation of free light chains revealed markedly elevated κ light chains and bone marrow biopsy showed 5% to 10% κ light chain-restricted plasma cells. Retrospective evaluation of the native kidney biopsy performed 15 years earlier also showed numerous fuchsinophilic granules in proximal tubules that stained brightly for κ light chains on pronase-based immunofluorescence studies. The patient was treated with a regimen of bortezomib and dexamethasone with good partial hematologic response and improvement of kidney function. To summarize, we describe a case of recurrent light chain proximal tubulopathy in the transplant, which is an unusual but important cause of decreased kidney function in the setting of a monoclonal gammopathy. PMID:27321964

  17. 21 CFR 866.5550 - Immunoglobulin (light chain specific) immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Immunoglobulin (light chain specific) immunological test system. 866.5550 Section 866.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5550 Immunoglobulin (light chain specific) immunological test system....

  18. 21 CFR 866.5550 - Immunoglobulin (light chain specific) immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunoglobulin (light chain specific) immunological test system. 866.5550 Section 866.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5550 Immunoglobulin (light chain specific) immunological test system....

  19. 21 CFR 866.5550 - Immunoglobulin (light chain specific) immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Immunoglobulin (light chain specific) immunological test system. 866.5550 Section 866.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5550 Immunoglobulin (light chain specific) immunological test system....

  20. 21 CFR 866.5550 - Immunoglobulin (light chain specific) immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Immunoglobulin (light chain specific) immunological test system. 866.5550 Section 866.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5550 Immunoglobulin (light chain specific) immunological test system....

  1. 21 CFR 866.5550 - Immunoglobulin (light chain specific) immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Immunoglobulin (light chain specific) immunological test system. 866.5550 Section 866.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5550 Immunoglobulin (light chain specific) immunological test system....

  2. Deletion of the Synechocystis sp. PCC 6803 kaiAB1C1 gene cluster causes impaired cell growth under light-dark conditions.

    PubMed

    Dörrich, Anja K; Mitschke, Jan; Siadat, Olga; Wilde, Annegret

    2014-11-01

    In contrast to Synechococcus elongatus PCC 7942, few data exist on the timing mechanism of the widely used cyanobacterium Synechocystis sp. PCC 6803. The standard kaiAB1C1 operon present in this organism was shown to encode a functional KaiC protein that interacted with KaiA, similar to the S. elongatus PCC 7942 clock. Inactivation of this operon in Synechocystis sp. PCC 6803 resulted in a mutant with a strong growth defect when grown under light-dark cycles, which was even more pronounced when glucose was added to the growth medium. In addition, mutants showed a bleaching phenotype. No effects were detected in mutant cells grown under constant light. Microarray experiments performed with cells grown for 1 day under a light-dark cycle revealed many differentially regulated genes with known functions in the ΔkaiABC mutant in comparison with the WT. We identified the genes encoding the cyanobacterial phytochrome Cph1 and the light-repressed protein LrtA as well as several hypothetical ORFs with a complete inverse behaviour in the light cycle. These transcripts showed a stronger accumulation in the light but a weaker accumulation in the dark in ΔkaiABC cells in comparison with the WT. In general, we found a considerable overlap with microarray data obtained for hik31 and sigE mutants. These genes are known to be important regulators of cell metabolism in the dark. Strikingly, deletion of the ΔkaiABC operon led to a much stronger phenotype under light-dark cycles in Synechocystis sp. PCC 6803 than in Synechococcus sp. PCC 7942.

  3. The use of immunoglobulin light chain assays in the diagnosis of paraprotein-related kidney disease

    PubMed Central

    Yadav, Punit; Leung, Nelson; Sanders, Paul W.; Cockwell, Paul

    2016-01-01

    Kidney involvement is common in paraprotein-related diseases. A diversity of clinical presentations and histopathological features can occur secondary to tissue injury caused by precipitation or deposition of a clonal immunoglobulin, usually an immunoglobulin light chain. The paraprotein is either produced by multiple myeloma or by a clone of B-cell lineage that does not fulfill diagnostic criteria for multiple myeloma. The recent introduction of serum immunoglobulin free light chain assays, which accurately quantify both light chain isotypes to produce a ratio that indicates the presence or absence of a light chain paraprotein, is a major clinical development. However, as the interpretation of the assay can be challenging, the aim of this review is to clarify the role of serum and urinary light chain assays in the screening and diagnosis of paraprotein-related kidney disease. PMID:25296094

  4. Antigen nature and complexity influence human antibody light chain usage and specificity.

    PubMed

    Smith, Kenneth; Shah, Hemangi; Muther, Jennifer J; Duke, Angie L; Haley, Kathleen; James, Judith A

    2016-05-27

    Human antibodies consist of a heavy chain and one of two possible light chains, kappa (κ) or lambda (λ). Here we tested how these two possible light chains influence the overall antibody response to polysaccharide and protein antigens by measuring light chain usage in human monoclonal antibodies from antibody secreting cells obtained following vaccination with Pneumovax23. Remarkably, we found that individuals displayed restricted light chain usage to certain serotypes and that lambda antibodies have different specificities and modes of cross-reactivity than kappa antibodies. Thus, at both the monoclonal (7 kappa, no lambda) and serum levels (145μg/mL kappa, 2.82μg/mL lambda), antibodies to cell wall polysaccharide were nearly always kappa. The pneumococcal reference serum 007sp was analyzed for light chain usage to 12 pneumococcal serotypes for which it is well characterized. Similar to results at the monoclonal level, certain serotypes tended to favor one of the light chains (14 and 19A, lambda; 6A and 23F, kappa). We also explored differences in light chain usage at the serum level to a variety of antigens. We examined serum antibodies to diphtheria toxin mutant CRM197 and Epstein-Barr virus protein EBNA-1. These responses tended to be kappa dominant (average kappa-to-lambda ratios of 4.52 and 9.72 respectively). Responses to the influenza vaccine were more balanced with kappa-to-lambda ratio averages having slight strain variations: seasonal H1N1, 1.1; H3N2, 0.96; B, 0.91. We conclude that antigens with limited epitopes tend to produce antibodies with restricted light chain usage and that in most individuals, antibodies with lambda light chains have specificities different and complementary to kappa-containing antibodies.

  5. Antigen nature and complexity influence human antibody light chain usage and specificity.

    PubMed

    Smith, Kenneth; Shah, Hemangi; Muther, Jennifer J; Duke, Angie L; Haley, Kathleen; James, Judith A

    2016-05-27

    Human antibodies consist of a heavy chain and one of two possible light chains, kappa (κ) or lambda (λ). Here we tested how these two possible light chains influence the overall antibody response to polysaccharide and protein antigens by measuring light chain usage in human monoclonal antibodies from antibody secreting cells obtained following vaccination with Pneumovax23. Remarkably, we found that individuals displayed restricted light chain usage to certain serotypes and that lambda antibodies have different specificities and modes of cross-reactivity than kappa antibodies. Thus, at both the monoclonal (7 kappa, no lambda) and serum levels (145μg/mL kappa, 2.82μg/mL lambda), antibodies to cell wall polysaccharide were nearly always kappa. The pneumococcal reference serum 007sp was analyzed for light chain usage to 12 pneumococcal serotypes for which it is well characterized. Similar to results at the monoclonal level, certain serotypes tended to favor one of the light chains (14 and 19A, lambda; 6A and 23F, kappa). We also explored differences in light chain usage at the serum level to a variety of antigens. We examined serum antibodies to diphtheria toxin mutant CRM197 and Epstein-Barr virus protein EBNA-1. These responses tended to be kappa dominant (average kappa-to-lambda ratios of 4.52 and 9.72 respectively). Responses to the influenza vaccine were more balanced with kappa-to-lambda ratio averages having slight strain variations: seasonal H1N1, 1.1; H3N2, 0.96; B, 0.91. We conclude that antigens with limited epitopes tend to produce antibodies with restricted light chain usage and that in most individuals, antibodies with lambda light chains have specificities different and complementary to kappa-containing antibodies. PMID:27113164

  6. Light chain editors of anti-DNA receptors in human B cells.

    PubMed

    Kalinina, Olga; Wang, Yue; Sia, Kevin; Radic, Marko; Cazenave, Pierre-André; Weigert, Martin

    2014-02-10

    Receptor editing is a mechanism of self-tolerance used in newly generated B cells. The expressed heavy (H) or light (L) chain of an autoreactive receptor is replaced by upstream V genes which eliminate or modify autoreactivity. Editing of anti-DNA receptors has been characterized in anti-DNA transgenic mouse models including 3H9, 3H9/56R, and their revertant 3H9GL. Certain L chains, termed editors, rescue anti-DNA B cells by neutralizing or modifying DNA binding of the H chain. This editing mechanism acts on the natural H chain repertoire; endogenous H chains with anti-DNA features are expressed primarily in combination with editor L chains. We ask whether a similar set of L chains exists in the human repertoire, and if so, do they edit H chains with anti-DNA signatures? We compared the protein sequences of mouse editors to all human L chains and found several human L chains similar to mouse editors. These L chains diminish or veto anti-DNA binding when expressed with anti-DNA H chains. The human H chains expressed with these L chains also have relatively high arginine (Arg) content in the H chain complementarity determining region (H3), suggesting that receptor editing plays a role in establishing tolerance to DNA in humans.

  7. Involvement of myosin light-chain kinase in endothelial cell retraction

    SciTech Connect

    Wysolmerski, R.B.; Lagunoff, D. )

    1990-01-01

    Permeabilized bovine pulmonary artery endothelial cell monolayers were used to investigate the mechanism of endothelial cell retraction. Postconfluent endothelial cells permeabilized with saponin retracted upon exposure to ATP and Ca{sup 2+}. Retraction was accompanied by thiophosphorylation of 19,000-Da myosin light chains when adenosine 5'-(gamma-({sup 35}S)thio)triphosphate was included in the medium. Both retraction and thiophosphorylation of myosin light chains exhibited a graded quantitative dependence on Ca{sup 2+}. When permeabilized monolayers were extracted in buffer D containing 100 mM KCl and 30 mM MgCl2 for 30 min, the cells failed to retract upon exposure to ATP and Ca{sup 2+}, and no thiophosphorylation of myosin light chains occurred. The ability both to retract and to thiophosphorylate myosin light chains was restored by the addition to the permeabilized, extracted cells of myosin light-chain kinase and calmodulin together but not by either alone. These studies indicate that endothelial cell retraction, as does smooth muscle contraction, depends on myosin light-chain kinase phosphorylation of myosin light chains.

  8. Light and heavy chain deposition disease associated with CH1 deletion

    PubMed Central

    Cohen, Camille; El-Karoui, Khalil; Alyanakian, Marie-Alexandra; Noel, Laure-Hélène; Bridoux, Franck; Knebelmann, Bertrand

    2015-01-01

    Light and heavy chain deposition disease (LHCDD) is a rare complication of monoclonal gammopathy. In all documented cases, LHCDD is the association of deposits of a monoclonal light chain with a normal heavy chain, especially in the kidneys. We describe here a 78-year-old woman whose renal biopsy showed nodular glomerulosclerosis, initially diagnosed as diabetic nephropathy. Detailed kidney biopsy immunofluorescence study corrected the diagnosis to γ1-κ-LHCDD. Advanced immunoblot analysis showed deletion of CH1 in the both blood and kidney heavy chain. We report here, to our knowledge, the first case of γ1 LHCDD associated with a deletion of CH1. PMID:25815184

  9. Reconstitution of heavy chain and light chain 1 in cardiac subfragment-1 from hyperthyroid and euthyroid rabbit hearts.

    PubMed

    Ueda, S; Yamaoki, K; Nagai, R; Yazaki, Y

    1983-01-01

    It is now established that cardiac myosin from hyperthyroid rabbit hearts (TXM) exhibits high Ca2+ ATPase activity. The high Ca2+ ATPase activity of TXM was completely retained in cardiac myosin subfragment-1 (S-1) (1.33 +/- 0.04 mumol Pi/mg per min; euthyroid, 0.51 +/- 0.04). Cardiac S-1 from hyperthyroid and euthyroid rabbits (TXS-1 and NS-1) had the same pattern in SDS-polyacrylamide gel electrophoresis. The possible influence of heavy and light chains of TXM on increasing the ATPase activity was examined by reconstitution in the S-1 preparation. Crosswise reconstitution was performed using cardiac S-1 heavy chain (90,000 daltons) and light chain 1 (LC1) (27,000 daltons) from hyperthyroid and euthyroid hearts. Reconstitution was verified by using radiolabeled LC1. More than 95% of S-1 was recovered with full ATPase activity. When TXS-1 was reconstituted with LC1 from euthyroid hearts, the reconstituted molecule retained high ATPase activity. On the other hand, NS-1 reconstituted with LC1 from hyperthyroid hearts failed to increase the ATPase activity. The ATPase activity of S-1 was determined by the source of the heavy chain. These results suggest that the high Ca2+ ATPase activity of cardiac myosin and S-1 from hyperthyroid animals arises from the molecular alteration of the heavy chain induced by thyroxine administration. PMID:6304826

  10. Adult Fanconi syndrome with monoclonal abnormality of immunoglobulin light chain

    PubMed Central

    Harrison, J. F.; Blainey, J. D.

    1967-01-01

    Two adult cases of the Fanconi syndrome are described, in each of which there was abnormal urinary excretion of immunoglobulin κ-chain. The significance of this finding is discussed in relation to the recognized association between multiple myeloma and the Fanconi syndrome. Images PMID:6016886

  11. Biased Immunoglobulin Light Chain Gene Usage in the Shark.

    PubMed

    Iacoangeli, Anna; Lui, Anita; Naik, Ushma; Ohta, Yuko; Flajnik, Martin; Hsu, Ellen

    2015-10-15

    This study of a large family of κ L chain clusters in nurse shark completes the characterization of its classical Ig gene content (two H chain isotypes, μ and ω, and four L chain isotypes, κ, λ, σ, and σ-2). The shark κ clusters are minigenes consisting of a simple VL-JL-CL array, where V to J recombination occurs over an ~500-bp interval, and functional clusters are widely separated by at least 100 kb. Six out of ~39 κ clusters are prerearranged in the germline (germline joined). Unlike the complex gene organization and multistep assembly process of Ig in mammals, each shark Ig rearrangement, somatic or in the germline, appears to be an independent event localized to the minigene. This study examined the expression of functional, nonproductive, and sterile transcripts of the κ clusters compared with the other three L chain isotypes. κ cluster usage was investigated in young sharks, and a skewed pattern of split gene expression was observed, one similar in functional and nonproductive rearrangements. These results show that the individual activation of the spatially distant κ clusters is nonrandom. Although both split and germline-joined κ genes are expressed, the latter are prominent in young animals and wane with age. We speculate that, in the shark, the differential activation of the multiple isotypes can be advantageously used in receptor editing.

  12. Clathrin light chains: arrays of protein motifs that regulate coated-vesicle dynamics.

    PubMed

    Brodsky, F M; Hill, B L; Acton, S L; Näthke, I; Wong, D H; Ponnambalam, S; Parham, P

    1991-06-01

    Polymerization of clathrin triskelions into clathrin coats and subsequent disassembly by the heat shock protein hsc70 control receptor-mediated pathways of intracellular transport. The clathrin light chains are major regulatory elements in these processes. These polypeptides consist of linear arrays of functional domains with distinctive sequence motifs. Comparison of unicellular and multicellular eukaryotes reveals differences in the numbers of clathrin light chains and in the functional domains they contain. PMID:1909824

  13. Characteristics of light chains of Chara myosin revealed by immunological investigation.

    PubMed

    Kakei, Toshihito; Sumiyoshi, Hiroki; Higashi-Fujime, Sugie

    2012-01-01

    Chara myosin is plant myosin responsible for cytoplasmic streaming and moves actin filaments at 60 µm/s, which is the fastest of all myosins examined. The neck of the myosin molecule has usually mechanical and regulatory roles. The neck of Chara myosin is supposed to bind six light chains, but, at present, we have no knowledge about them. We found Ca⁺⁺-calmodulin activated Chara myosin motility and its actin-activated ATPase, and actually bound with the Chara myosin heavy chain, indicating calmodulin might be one of candidates for Chara myosin light chains. Antibody against essential light chain from Physarum myosin, and antibodies against Chara calmodulin and chicken myosin light chain from lens membranes reacted with 20 kDa and 18 kDa polypeptides of Chara myosin preparation, respectively. Correspondingly, column purified Chara myosin had light chains of 20 kDa, and 18 kDa with the molar ratio of 0.7 and 2.5 to the heavy chain, respectively.

  14. Serum-free light-chain assay: clinical utility and limitations.

    PubMed

    Bhole, Malini V; Sadler, Ross; Ramasamy, Karthik

    2014-09-01

    In the last decade, the introduction of the serum-free light-chain (sFLC) assay has been an important advance in the diagnosis and management of plasma cell dyscrasias, particularly monoclonal light-chain diseases. The immunoassay was developed to detect free light chains in serum by using anti-FLC antibodies which specifically recognised epitopes on light chains that were 'hidden' in intact immunoglobulins. Since its introduction in 2001, there have been several publications in the English language literature discussing the clinical utility as well as analytical limitations of the sFLC assay. These studies have highlighted both positive and negative aspects of the assay particularly with regard to its sensitivity and specificity and the technical challenges that can affect its performance. The contribution and significance of the sFLC assay in the management of light-chain myeloma, primary amyloid light-chain (AL) amyloidosis and non-secretory myeloma are well recognised and will be addressed in this review. The aim of this article is to also review the published literature with a view to providing a clear understanding of its utility and limitations in the diagnosis, prognosis and monitoring of plasma dyscrasias including intact immunoglobulin multiple myeloma (MM) and monoclonal gammopathy of unknown significance (MGUS). The increasing interest in using this assay in other haematological conditions will also be briefly discussed. PMID:24489083

  15. Immunoglobulin light chain immunohistochemistry revisited, with emphasis on reactive follicular hyperplasia versus follicular lymphoma.

    PubMed

    Weiss, Lawrence M; Loera, Sofia; Bacchi, Carlos E

    2010-05-01

    The identification of monotypic light chains is an important adjunct to the diagnosis of B-cell lymphoma, yet to reliably perform it on formalin-fixed paraffin sections is often difficult. We have evaluated a new set of monoclonal antibodies to kappa and lambda light chains that are reactive in paraffin sections. In reactive lymphoid tissues, polytypic staining was noted in greater than 95% of cases, with strong staining of plasma cells, moderate staining of the follicular dendritic cell network, and weak staining of mantle zone cells. Strong staining of the appropriate light chain was seen in each of the 7 cases of multiple myeloma. In a series of 58 cases of B-cell lymphoma, correlation between the results of immunohistochemistry and flow cytometry was obtained in 36 cases (62%), including 32 cases (21 kappa and 11 lambda) in which a single light chain was expressed. Monotypic staining was also seen in 6 additional cases (10%) in which flow cytometry was negative. Thirty of 46 cases (65%) of follicular lymphoma showed monotypic light chain expression, in contrast to 64 of 67 cases (95%) of reactive lymphoid hyperplasia, which showed polytypic light chain expression. These antibodies may provide an effective adjunct to the diagnosis of B-cell lymphoma in routine diagnostic work.

  16. Serum-free light-chain assay: clinical utility and limitations.

    PubMed

    Bhole, Malini V; Sadler, Ross; Ramasamy, Karthik

    2014-09-01

    In the last decade, the introduction of the serum-free light-chain (sFLC) assay has been an important advance in the diagnosis and management of plasma cell dyscrasias, particularly monoclonal light-chain diseases. The immunoassay was developed to detect free light chains in serum by using anti-FLC antibodies which specifically recognised epitopes on light chains that were 'hidden' in intact immunoglobulins. Since its introduction in 2001, there have been several publications in the English language literature discussing the clinical utility as well as analytical limitations of the sFLC assay. These studies have highlighted both positive and negative aspects of the assay particularly with regard to its sensitivity and specificity and the technical challenges that can affect its performance. The contribution and significance of the sFLC assay in the management of light-chain myeloma, primary amyloid light-chain (AL) amyloidosis and non-secretory myeloma are well recognised and will be addressed in this review. The aim of this article is to also review the published literature with a view to providing a clear understanding of its utility and limitations in the diagnosis, prognosis and monitoring of plasma dyscrasias including intact immunoglobulin multiple myeloma (MM) and monoclonal gammopathy of unknown significance (MGUS). The increasing interest in using this assay in other haematological conditions will also be briefly discussed.

  17. Plasmonic graded-chains as deep-subwavelength light concentrators

    NASA Astrophysics Data System (ADS)

    Esteves-López, Natalia; Pastawski, Horacio M.; Bustos-Marún, Raúl A.

    2015-04-01

    We have studied the plasmonic properties of aperiodic arrays of identical nanoparticles (NPs) formed by two opposite and equal graded-chains (a chain where interactions change gradually). We found that these arrays concentrate the external electromagnetic fields even in the long wavelength limit. The phenomenon was understood by identifying the system with an effective cavity where plasmonics excitations are trapped between effective band edges, resulting from the change of passband with the NP's position. Dependence of excitation concentration on several system parameters was also assessed. This includes different gradings as well as NP couplings, damping, and resonant frequencies. In the spirit of the scaling laws in condensed matter physics, we developed a theory that allows us to rationalize all these system parameters into universal curves. The theory is quite general and can also be used in many other situations (different arrays for example). Additionally, we also provided an analytical solution, in the tight-binding limit, for the plasmonic response of homogeneous linear chains of NPs illuminated by a plane wave. Our results can find applications in sensing, near field imaging, plasmon-enhanced photodetectors, as well as to increase solar cell efficiency.

  18. Plasmonic graded-chains as deep-subwavelength light concentrators.

    PubMed

    Esteves-López, Natalia; Pastawski, Horacio M; Bustos-Marún, Raúl A

    2015-04-01

    We have studied the plasmonic properties of aperiodic arrays of identical nanoparticles (NPs) formed by two opposite and equal graded-chains (a chain where interactions change gradually). We found that these arrays concentrate the external electromagnetic fields even in the long wavelength limit. The phenomenon was understood by identifying the system with an effective cavity where plasmonics excitations are trapped between effective band edges, resulting from the change of passband with the NP's position. Dependence of excitation concentration on several system parameters was also assessed. This includes different gradings as well as NP couplings, damping, and resonant frequencies. In the spirit of the scaling laws in condensed matter physics, we developed a theory that allows us to rationalize all these system parameters into universal curves. The theory is quite general and can also be used in many other situations (different arrays for example). Additionally, we also provided an analytical solution, in the tight-binding limit, for the plasmonic response of homogeneous linear chains of NPs illuminated by a plane wave. Our results can find applications in sensing, near field imaging, plasmon-enhanced photodetectors, as well as to increase solar cell efficiency. PMID:25740978

  19. Light Chain Escape in 3 Cases: Evidence of Intraclonal Heterogeneity in Multiple Myeloma from a Single Institution in Poland.

    PubMed

    Kraj, Maria; Kruk, Barbara; Endean, Kelly; Warzocha, Krzysztof; Budziszewska, Katarzyna; Dąbrowska, Monika

    2015-01-01

    We report three cases of light chain escape (LCE) at a single institution in Poland, including an interesting case of biclonal monoclonal gammopathy of undetermined significance (MGUS) that satisfied the criteria for progression to light chain multiple myeloma (LCMM) with a rapid rise in serum free light chain (FLC) levels, following steroidal treatment for simultaneous temporal artery inflammation and polymyalgia rheumatica (PMR). In the three cases discussed, progression of the disease by light chain escape was associated with rapid and severe renal impairment, highlighting the necessity for prompt detection of such free light chain-only producing clones in order to prevent the possible development of irreversible end-organ damage. Interestingly, monitoring of these three patients by serum free light chain assay (sFLC) and retrospective heavy/light chain analysis (HLC) detected this clonal evolution prior to clinical relapse and suggests that these assays represent important additional tools for more accurate monitoring of multiple myeloma patients. PMID:26881153

  20. Light Chain Escape in 3 Cases: Evidence of Intraclonal Heterogeneity in Multiple Myeloma from a Single Institution in Poland

    PubMed Central

    Kraj, Maria; Kruk, Barbara; Endean, Kelly; Warzocha, Krzysztof; Budziszewska, Katarzyna; Dąbrowska, Monika

    2015-01-01

    We report three cases of light chain escape (LCE) at a single institution in Poland, including an interesting case of biclonal monoclonal gammopathy of undetermined significance (MGUS) that satisfied the criteria for progression to light chain multiple myeloma (LCMM) with a rapid rise in serum free light chain (FLC) levels, following steroidal treatment for simultaneous temporal artery inflammation and polymyalgia rheumatica (PMR). In the three cases discussed, progression of the disease by light chain escape was associated with rapid and severe renal impairment, highlighting the necessity for prompt detection of such free light chain-only producing clones in order to prevent the possible development of irreversible end-organ damage. Interestingly, monitoring of these three patients by serum free light chain assay (sFLC) and retrospective heavy/light chain analysis (HLC) detected this clonal evolution prior to clinical relapse and suggests that these assays represent important additional tools for more accurate monitoring of multiple myeloma patients. PMID:26881153

  1. Functional Material Features of Bombyx mori Silk Light vs. Heavy Chain Proteins

    PubMed Central

    Zafar, Muhammad S.; Belton, David J.; Hanby, Benjamin; Kaplan, David L.; Perry, Carole C.

    2016-01-01

    Bombyx mori (BM) silk fibroin is composed of two different subunits; heavy chain and light chain fibroin linked by a covalent disulphide bond. Current methods of separating the two silk fractions is complicated and produces inadequate quantities of the isolated components for the study of the individual light and heavy chain silks with respect to new materials. We report a simple method of separating silk fractions using formic acid. The formic acid treatment partially releases predominately the light chain fragment (soluble fraction) and then the soluble fraction and insoluble fractions can be converted into new materials. The regenerated original (total) silk fibroin and the separated fractions (soluble vs. insoluble) had different molecular weights and showed distinctive pH stabilities against aggregation/precipitation based on particle charging. All silk fractions could be electrospun to give fibre mats with viscosity of the regenerated fractions being the controlling factor for successful electrospinning. The silk fractions could be mixed to give blends with different proportions of the two fractions to modify the diameter and uniformity of the electrospun fibres formed. The soluble fraction containing the light chain was able to modify the viscosity by thinning the insoluble fraction containing heavy chain fragments, perhaps analogous to its role in natural fibre formation where the light chain provides increased mobility and the heavy chain producing shear thickening effects. The simplicity of this new separation method should enable access to these different silk protein fractions and accelerate the identification of methods, modifications and potential applications of these materials in biomedical and industrial applications. PMID:25565556

  2. Roles of heavy and light chains in IgM polymerization.

    PubMed Central

    Bornemann, K D; Brewer, J W; Beck-Engeser, G B; Corley, R B; Haas, I G; Jäck, H M

    1995-01-01

    IgM antibodies are secreted as multisubunit polymers that consist of as many as three discrete polypeptides: mu heavy chains, light (L) chains, and joining (J) chains. We wished to determine whether L chains that are required to confer secretory competence on immunoglobulin molecules must be present for IgM to polymerize--that is, for intersubunit disulfide bonds to form between mu chains. Using a L-chain-loss variant of an IgM-secreting hybridoma, we demonstrated that mu chains were efficiently polymerized independent of L chains, in a manner similar to that observed for conventional microL complexes, and that the mu polymers incorporated J chain. These mu polymers were not secreted but remained associated with the endoplasmic reticulum-resident chaperone BiP (GRP78). This finding is consistent with the endoplasmic reticulum being the subcellular site of IgM polymerization. We conclude that mu chain alone has the potential to direct the polymerization of secreted IgM, a process necessary but not sufficient for IgM to attain secretory competence. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7761423

  3. Regulatory and essential light chains of myosin rotate equally during contraction of skeletal muscle.

    PubMed

    Borejdo, Julian; Ushakov, Dmitry S; Akopova, Irina

    2002-06-01

    Myosin head consists of a globular catalytic domain and a long alpha-helical regulatory domain. The catalytic domain is responsible for binding to actin and for setting the stage for the main force-generating event, which is a "swing" of the regulatory domain. The proximal end of the regulatory domain contains the essential light chain 1 (LC1). This light chain can interact through the N and C termini with actin and myosin heavy chain. The interactions may inhibit the motion of the proximal end. In consequence the motion of the distal end (containing regulatory light chain, RLC) may be different from the motion of the proximal end. To test this possibility, the angular motion of LC1 and RLC was measured simultaneously during muscle contraction. Engineered LC1 and RLC were labeled with red and green fluorescent probes, respectively, and exchanged with native light chains of striated muscle. The confocal microscope was modified to measure the anisotropy from 0.3 microm(3) volume containing approximately 600 fluorescent cross-bridges. Static measurements revealed that the magnitude of the angular change associated with transition from rigor to relaxation was less than 5 degrees for both light chains. Cross-bridges were activated by a precise delivery of ATP from a caged precursor. The time course of the angular change consisted of a fast phase followed by a slow phase and was the same for both light chains. These results suggest that the interactions of LC1 do not inhibit the angular motion of the proximal end of the regulatory domain and that the whole domain rotates as a rigid body.

  4. Minimum requirements for inhibition of smooth-muscle myosin light-chain kinase by synthetic peptides.

    PubMed Central

    Hunt, J T; Floyd, D M; Lee, V G; Little, D K; Moreland, S

    1989-01-01

    Although the amino acid residues that are important for peptide substrates of myosin light-chain kinase have been reported, those that are important for peptide inhibitors of this enzyme have not previously been investigated. Synthetic peptides based on the sequence Lys11-Lys12-Arg13-Ala-Ala-Arg16-Ala-Thr-Ser19 -Asn-Val21-Phe22-Ala of the chicken gizzard myosin light chain were tested as inhibitors of pig carotid-artery myosin light-chain kinase. The basic amino acid residues of the known myosin light-chain kinase inhibitor Lys-Lys-Arg-Ala-Ala-Arg-Ala-Thr-Ser-NH2 (IC50 = 14 microM) [Pearson, Misconi & Kemp (1986) J. Biol. Chem. 261, 25-27] were shown to be the important residues that contribute to inhibitor potency, as evidence by the finding that the hexapeptide Lys-Lys-Arg-Ala-Ala-Arg-NH2 had an IC50 value of 22 microM. This indicates that binding of the phosphorylatable serine residue to myosin light-chain kinase, which is of obvious importance for a substrate, does not enhance the potency of an inhibitor. With the aim of preparing more potent inhibitors, peptides Lys-Lys-Arg-Ala-Ala-Arg-Ala-Ala-Xaa-NH2 were prepared with a variety of amino acids substituted for the phosphorylatable serine residue. None of these peptides was a more potent inhibitor than the serine peptide. PMID:2920029

  5. Cell Damage in Light Chain Amyloidosis: FIBRIL INTERNALIZATION, TOXICITY AND CELL-MEDIATED SEEDING.

    PubMed

    Marin-Argany, Marta; Lin, Yi; Misra, Pinaki; Williams, Angela; Wall, Jonathan S; Howell, Kyle G; Elsbernd, Laura R; McClure, Megan; Ramirez-Alvarado, Marina

    2016-09-16

    Light chain (AL) amyloidosis is an incurable human disease characterized by the misfolding, aggregation, and systemic deposition of amyloid composed of immunoglobulin light chains (LC). This work describes our studies on potential mechanisms of AL cytotoxicity. We have studied the internalization of AL soluble proteins and amyloid fibrils into human AC16 cardiomyocytes by using real time live cell image analysis. Our results show how external amyloid aggregates rapidly surround the cells and act as a recruitment point for soluble protein, triggering the amyloid fibril elongation. Soluble protein and external aggregates are internalized into AC16 cells via macropinocytosis. AL amyloid fibrils are shown to be highly cytotoxic at low concentrations. Additionally, caspase assays revealed soluble protein induces apoptosis, demonstrating different cytotoxic mechanisms between soluble protein and amyloid aggregates. This study emphasizes the complex immunoglobulin light chain-cell interactions that result in fibril internalization, protein recruitment, and cytotoxicity that may occur in AL amyloidosis. PMID:27462073

  6. Low-power light guiding and localization in optoplasmonic chains obtained by directed self-assembly

    DOE PAGESBeta

    Ahn, Wonmi; Zhao, Xin; Hong, Yan; Reinhard, Bjorn M.

    2016-03-02

    Here, optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and,more » at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth.« less

  7. Low-Power Light Guiding and Localization in Optoplasmonic Chains Obtained by Directed Self-Assembly

    PubMed Central

    Ahn, Wonmi; Zhao, Xin; Hong, Yan; Reinhard, Björn M.

    2016-01-01

    Optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and, at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth. PMID:26931149

  8. Low-Power Light Guiding and Localization in Optoplasmonic Chains Obtained by Directed Self-Assembly.

    PubMed

    Ahn, Wonmi; Zhao, Xin; Hong, Yan; Reinhard, Björn M

    2016-01-01

    Optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and, at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth. PMID:26931149

  9. Differential Light Chain Assembly Influences Outer Arm Dynein Motor Function

    PubMed Central

    DiBella, Linda M.; Gorbatyuk, Oksana; Sakato, Miho; Wakabayashi, Ken-ichi; Patel-King, Ramila S.; Pazour, Gregory J.; Witman, George B.; King, Stephen M.

    2005-01-01

    Tctex1 and Tctex2 were originally described as potential distorters/sterility factors in the non-Mendelian transmission of t-haplotypes in mice. These proteins have since been identified as subunits of cytoplasmic and/or axonemal dyneins. Within the Chlamydomonas flagellum, Tctex1 is a subunit of inner arm I1. We have now identified a second Tctex1-related protein (here termed LC9) in Chlamydomonas. LC9 copurifies with outer arm dynein in sucrose density gradients and is missing only in those strains completely lacking this motor. Zero-length cross-linking of purified outer arm dynein indicates that LC9 interacts directly with both the IC1 and IC2 intermediate chains. Immunoblot analysis revealed that LC2, LC6, and LC9 are missing in an IC2 mutant strain (oda6-r88) that can assemble outer arms but exhibits significantly reduced flagellar beat frequency. This defect is unlikely to be due to lack of LC6, because an LC6 null mutant (oda13) exhibits only a minor swimming abnormality. Using an LC2 null mutant (oda12-1), we find that although some outer arm dynein components assemble in the absence of LC2, they are nonfunctional. In contrast, dyneins from oda6-r88, which also lack LC2, retain some activity. Furthermore, we observed a synthetic assembly defect in an oda6-r88 oda12-1 double mutant. These data suggest that LC2, LC6, and LC9 have different roles in outer arm assembly and are required for wild-type motor function in the Chlamydomonas flagellum. PMID:16195342

  10. λ Light Chain Bias Associated With Enhanced Binding and Function of Anti-HIV Env Glycoprotein Antibodies.

    PubMed

    Sajadi, Mohammad M; Farshidpour, Maham; Brown, Eric P; Ouyang, Xin; Seaman, Michael S; Pazgier, Marzena; Ackerman, Margaret E; Robinson, Harriet; Tomaras, Georgia; Parsons, Matthew S; Charurat, Manhattan; DeVico, Anthony L; Redfield, Robert R; Lewis, George K

    2016-01-01

    The humoral response to human immunodeficiency virus (HIV) remains incompletely understood. In this report, we describe biased λ light chain use during the HIV Env glycoprotein (Env) response in HIV infection and vaccination. We examined HIV Env binding (and neutralization) in the context of light chain use in subjects with acute HIV infection, chronic HIV infection, and among HIV vaccinees. In all populations tested, there was a λ chain bias for HIV Env binding antibodies, compared with other HIV antigens (such as p24) or tetanus toxoid. In subjects with chronic HIV infection, a λ bias was noted for neutralization, with λ antibodies accounting for up to 90% of all neutralization activity observed. This is the first report of antibody function in a human infection being tied to light chain use. In HIV infection, antibodies expressing λ light chains tended to have longer CDRL3s, increased light chain contact with HIV Env, and less hypermutation in the heavy chain, compared with antibodies using the κ light chain. These data also support an evolutionary model for the understanding the various κ to λ light chain ratios observed across species and suggest that the λ light chain bias against HIV provides the host an advantage in developing a more efficient humoral response.

  11. Diphosphorylated but not monophosphorylated myosin II regulatory light chain localizes to the midzone without its heavy chain during cytokinesis.

    PubMed

    Kondo, Tomo; Isoda, Rieko; Uchimura, Takashi; Sugiyama, Mutsumi; Hamao, Kozue; Hosoya, Hiroshi

    2012-01-13

    Myosin II is activated by the monophosphorylation of its regulatory light chain (MRLC) at Ser19 (1P-MRLC). Its ATPase activity is further enhanced by MRLC diphosphorylation at Thr18/Ser19 (2P-MRLC). As these phosphorylated MRLCs are colocalized with their heavy chains at the contractile ring in dividing cells, we believe that the phosphorylated MRLC acts as a subunit of the activated myosin II during cytokinesis. However, the distinct role(s) of 1P- and 2P-MRLC during cytokinesis has not been elucidated. In this study, a monoclonal antibody (4F12) specific for 2P-MRLC was raised and used to examine the roles of 2P-MRLC in cultured mammalian cells. Our confocal microscopic observations using 4F12 revealed that 2P-MRLC localized to the contractile ring, and, unexpectedly, to the midzone also. Interestingly, 2P-MRLC did not colocalize with 1P-MRLC, myosin II heavy chain, and F-actin at the midzone. These results suggest that 2P-MRLC has a role different from that of 1P-MRLC at the midzone, and is not a subunit of myosin II. PMID:22166199

  12. Purification, Characterization and Analysis of the Allergenic Properties of Myosin Light Chain in Procambarus clarkia.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Myosin light chain (MLC) plays a vital role in cell and muscle functions and has been identified as an allergen in close species. In this study, MLC with the molecular mass of 18kDa was purified from crayfish (Procambarus clarkii) muscle fibrils. Its physicochemical characterization showed that the...

  13. A molecular model for self-assembly of amyloid fibrils: Immunoglobulin light chains

    SciTech Connect

    Stevens, F.J.; Myatt, E.A.; Westholm, F.A.

    1995-08-29

    The formation and pathological deposition of amyloid fibrils are defining features of many acquired and inherited disorders, including primary or light-chain-associated amyloidosis, Alzheimer`s disease, and adult-onset diabetes. No pharmacological methods exist to block this process or to effect the removal of fibrils from tissue, and thus, little can be done to prevent organ failure and ultimate death that result from deposition of amyloid. Knowledge of the pathogenesis, treatment, or prevention of these presently incurable diseases is limited due to the relative paucity of information regarding the biophysical basis of amyloid formation. Antibody light chains of different amino acid sequence show differential amyloid-forming tendencies and, as such, can provide insight into the structural organization of amyloid fibrils as well as into basic mechanisms of protein self-assembly. We have compared primary structures of 180 human monoclonal light chains and have identified particular residues and positions within the variable domain that differentiate amyloid-from nonamyloid-associated proteins. We propose a molecular model that accounts for amyloid formation by antibody light chains and might also have implications for other forms of amyloidosis. 24 refs., 2 figs., 1 tab.

  14. Systemic immunoglobulin light-chain amyloidosis presenting hematochezia as the initial symptom.

    PubMed

    Kon, Tetsuo; Nakagawa, Naoki; Yoshikawa, Fumitsugu; Haba, Kazunao; Kitagawa, Nagako; Izumi, Michihiro; Kumazaki, Setsuo; Ishida, Satoshi; Aikawa, Ryuichi

    2016-08-01

    Immunoglobulin light-chain (AL) amyloidosis is characterized by the deposition of insoluble fibrils composed of immunoglobulin light chains secreted by monoclonal plasma cells. Given the recent advances in the therapy of AL amyloidosis, it is important to diagnose this disease as early as possible. Herein, we describe the case of a 62-year-old man with hepatitis C virus (HCV)-related cirrhosis presenting with hematochezia. Colonoscopy showed multiple submucosal hematomas within the region ranging from the transverse colon to the sigmoid colon. Kappa immunoglobulin light-chain amyloid deposition was also detected. Bone marrow examination revealed a monoclonal abnormal plasma cell population. Thus, the patient was diagnosed with systemic immunoglobulin light-chain amyloidosis. The hematochezia was conservatively managed. However, because of liver failure caused by liver cirrhosis, the patient developed massive pleural effusion and died of respiratory failure. Postmortem examination revealed amyloid deposition in the esophagus, stomach, duodenum, ileum, descending colon, pancreas, heart, and lung. In these organs, amyloid deposition was limited to the vascular wall. We concluded that AL amyloidosis can present hematochezia arising from submucosal hematoma in the large colon before other systemic symptoms appear.

  15. Systemic immunoglobulin light-chain amyloidosis presenting hematochezia as the initial symptom.

    PubMed

    Kon, Tetsuo; Nakagawa, Naoki; Yoshikawa, Fumitsugu; Haba, Kazunao; Kitagawa, Nagako; Izumi, Michihiro; Kumazaki, Setsuo; Ishida, Satoshi; Aikawa, Ryuichi

    2016-08-01

    Immunoglobulin light-chain (AL) amyloidosis is characterized by the deposition of insoluble fibrils composed of immunoglobulin light chains secreted by monoclonal plasma cells. Given the recent advances in the therapy of AL amyloidosis, it is important to diagnose this disease as early as possible. Herein, we describe the case of a 62-year-old man with hepatitis C virus (HCV)-related cirrhosis presenting with hematochezia. Colonoscopy showed multiple submucosal hematomas within the region ranging from the transverse colon to the sigmoid colon. Kappa immunoglobulin light-chain amyloid deposition was also detected. Bone marrow examination revealed a monoclonal abnormal plasma cell population. Thus, the patient was diagnosed with systemic immunoglobulin light-chain amyloidosis. The hematochezia was conservatively managed. However, because of liver failure caused by liver cirrhosis, the patient developed massive pleural effusion and died of respiratory failure. Postmortem examination revealed amyloid deposition in the esophagus, stomach, duodenum, ileum, descending colon, pancreas, heart, and lung. In these organs, amyloid deposition was limited to the vascular wall. We concluded that AL amyloidosis can present hematochezia arising from submucosal hematoma in the large colon before other systemic symptoms appear. PMID:27318996

  16. Structure of the light chain-binding domain of myosin V

    PubMed Central

    Terrak, Mohammed; Rebowski, Grzegorz; Lu, Renne C.; Grabarek, Zenon; Dominguez, Roberto

    2005-01-01

    Myosin V is a double-headed molecular motor involved in organelle transport. Two distinctive features of this motor, processivity and the ability to take extended linear steps of ≈36 nm along the actin helical track, depend on its unusually long light chain-binding domain (LCBD). The LCBD of myosin V consists of six tandem IQ motifs, which constitute the binding sites for calmodulin (CaM) and CaM-like light chains. Here, we report the 2-Å resolution crystal structure of myosin light chain 1 (Mlc1p) bound to the IQ2–IQ3 fragment of Myo2p, a myosin V from Saccharomyces cerevisiae. This structure, combined with FRET distance measurements between probes in various CaM–IQ complexes, comparative sequence analysis, and the previously determined structures of Mlc1p-IQ2 and Mlc1p-IQ4, allowed building a model of the LCBD of myosin V. The IQs of myosin V are distributed into three pairs. There appear to be specific cooperative interactions between light chains within each IQ pair, but little or no interaction between pairs, providing flexibility at their junctions. The second and third IQ pairs each present a light chain, whether CaM or a CaM-related molecule, bound in a noncanonical extended conformation in which the N-lobe does not interact with the IQ motif. The resulting free N-lobes may engage in protein–protein interactions. The extended conformation is characteristic of the single IQ of myosin VI and is common throughout the myosin superfamily. The model points to a prominent role of the LCBD in the function, regulation, and molecular interactions of myosin V. PMID:16120677

  17. Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers.

    PubMed

    Toshchevikov, V; Saphiannikova, M; Heinrich, G

    2009-04-16

    We propose a microscopic theory of light-induced deformation of side-chain azobenzene polymers taking into account the internal structure of polymer chains. Our theory is based on the fact that interaction of chromophores with the polarized light leads to the orientation anisotropy of azobenzene macromolecules which is accompanied by the appearance of mechanical stress. It is the first microscopic theory which provides the value of the light-induced stress larger than the yield stress. This result explains a possibility for the inscription of surface relief gratings in glassy side-chain azobenzene polymers. For some chemical architectures, elongation of a sample demonstrates a nonmonotonic behavior with the light intensity and can change its sign (a stretched sample starts to be uniaxially compressed), in agreement with experiments. Using a viscoplastic approach, we show that the irreversible strain of a sample, which remains after the light is switched off, decreases with increasing temperature and can disappear at certain temperature below the glass transition temperature. This theoretical prediction is also confirmed by recent experiments.

  18. Characterization of DLC-A and DLC-B, two families of cytoplasmic dynein light chain subunits.

    PubMed Central

    Gill, S R; Cleveland, D W; Schroer, T A

    1994-01-01

    Cytoplasmic dynein is a minus-end-directed, microtubule-dependent motor composed of two heavy chains (approximately 530 kDa), three intermediate chains (approximately 74 kDa), and a family of approximately 52-61 kDa light chains. Although the approximately 530 kDa subunit contains the motor and microtubule binding domains of the complex, the functions of the smaller subunits are not known. Using two-dimensional gel electrophoresis and proteolytic mapping, we show here that the light chains are composed of two major families, a higher M(r) family (58, 59, 61 kDa; dynein light chain group A [DLC-A]) and lower M(r) family (52, 53, 55, 56 kDa; dynein light chain group B [DLC-B]). Dissociation of the cytoplasmic dynein complex with potassium iodide reveals that all light chain polypeptides are tightly associated with the approximately 530 kDa heavy chain, whereas the approximately 74 kDa intermediate chain polypeptides are more readily extracted. Treatment with alkaline phosphatase alters the mobility of four of the light chain polypeptides, indicating that these subunits are phosphorylated. Sequencing of a cDNA clone encoding one member of the DLC-A family reveals a predicted globular structure that is not homologous to any known protein but does contain numerous potential phosphorylation sites and a consensus nucleotide-binding motif. Images PMID:7949421

  19. Chromophore-Assisted Light Inactivation of Mitochondrial Electron Transport Chain Complex II in Caenorhabditis elegans

    PubMed Central

    Wojtovich, Andrew P.; Wei, Alicia Y.; Sherman, Teresa A.; Foster, Thomas H.; Nehrke, Keith

    2016-01-01

    Mitochondria play critical roles in meeting cellular energy demand, in cell death, and in reactive oxygen species (ROS) and stress signaling. Most Caenorhabditis elegans loss-of-function (lf) mutants in nuclear-encoded components of the respiratory chain are non-viable, emphasizing the importance of respiratory function. Chromophore-Assisted Light Inactivation (CALI) using genetically-encoded photosensitizers provides an opportunity to determine how individual respiratory chain components contribute to physiology following acute lf. As proof-of-concept, we expressed the ‘singlet oxygen generator’ miniSOG as a fusion with the SDHC subunit of respiratory complex II, encoded by mev-1 in C. elegans, using Mos1-mediated Single Copy Insertion. The resulting mev-1::miniSOG transgene complemented mev-1 mutant phenotypes in kn1 missense and tm1081(lf) deletion mutants. Complex II activity was inactivated by blue light in mitochondria from strains expressing active miniSOG fusions, but not those from inactive fusions. Moreover, light-inducible phenotypes in vivo demonstrated that complex II activity is important under conditions of high energy demand, and that specific cell types are uniquely susceptible to loss of complex II. In conclusion, miniSOG-mediated CALI is a novel genetic platform for acute inactivation of respiratory chain components. Spatio-temporally controlled ROS generation will expand our understanding of how the respiratory chain and mitochondrial ROS influence whole organism physiology. PMID:27440050

  20. Chromophore-Assisted Light Inactivation of Mitochondrial Electron Transport Chain Complex II in Caenorhabditis elegans.

    PubMed

    Wojtovich, Andrew P; Wei, Alicia Y; Sherman, Teresa A; Foster, Thomas H; Nehrke, Keith

    2016-01-01

    Mitochondria play critical roles in meeting cellular energy demand, in cell death, and in reactive oxygen species (ROS) and stress signaling. Most Caenorhabditis elegans loss-of-function (lf) mutants in nuclear-encoded components of the respiratory chain are non-viable, emphasizing the importance of respiratory function. Chromophore-Assisted Light Inactivation (CALI) using genetically-encoded photosensitizers provides an opportunity to determine how individual respiratory chain components contribute to physiology following acute lf. As proof-of-concept, we expressed the 'singlet oxygen generator' miniSOG as a fusion with the SDHC subunit of respiratory complex II, encoded by mev-1 in C. elegans, using Mos1-mediated Single Copy Insertion. The resulting mev-1::miniSOG transgene complemented mev-1 mutant phenotypes in kn1 missense and tm1081(lf) deletion mutants. Complex II activity was inactivated by blue light in mitochondria from strains expressing active miniSOG fusions, but not those from inactive fusions. Moreover, light-inducible phenotypes in vivo demonstrated that complex II activity is important under conditions of high energy demand, and that specific cell types are uniquely susceptible to loss of complex II. In conclusion, miniSOG-mediated CALI is a novel genetic platform for acute inactivation of respiratory chain components. Spatio-temporally controlled ROS generation will expand our understanding of how the respiratory chain and mitochondrial ROS influence whole organism physiology. PMID:27440050

  1. Analysis of heavy and light chain pairings indicates that receptor editing shapes the human antibody repertoire.

    PubMed

    de Wildt, R M; Hoet, R M; van Venrooij, W J; Tomlinson, I M; Winter, G

    1999-01-22

    In the bone marrow, diversity in the primary antibody repertoire is created by the combinatorial rearrangement of different gene segments and by the association of different heavy and light chains. During the secondary response in the germinal centres, antibodies are diversified by somatic mutation and possibly by further rearrangements, or "receptor editing". Here, we have analysed the pairings of heavy and light chain variable domains (VH and VL) in 365 human IgG+ B cells from peripheral blood, and established that these pairings are largely random. The repertoire is dominated by a limited number of pairings of segments and folds. Among these pairings we identified two identical mutated heavy chains in combination with two different mutated light chains (one kappa and one lambda). This shows that receptor editing occurs in the human periphery and that the same antibody lineage can be subjected to both receptor editing and somatic hypermutation. This suggests that receptor editing may be used together with somatic mutation for the affinity maturation of antibodies. We also propose that receptor editing has shaped variable gene segment use and the evolution of V gene families.

  2. Axonemal dynein light chain-1 locates at the microtubule-binding domain of the γ heavy chain

    PubMed Central

    Ichikawa, Muneyoshi; Saito, Kei; Yanagisawa, Haru-aki; Yagi, Toshiki; Kamiya, Ritsu; Yamaguchi, Shin; Yajima, Junichiro; Kushida, Yasuharu; Nakano, Kentaro; Numata, Osamu; Toyoshima, Yoko Y.

    2015-01-01

    The outer arm dynein (OAD) complex is the main propulsive force generator for ciliary/flagellar beating. In Chlamydomonas and Tetrahymena, the OAD complex comprises three heavy chains (α, β, and γ HCs) and >10 smaller subunits. Dynein light chain-1 (LC1) is an essential component of OAD. It is known to associate with the Chlamydomonas γ head domain, but its precise localization within the γ head and regulatory mechanism of the OAD complex remain unclear. Here Ni-NTA-nanogold labeling electron microscopy localized LC1 to the stalk tip of the γ head. Single-particle analysis detected an additional structure, most likely corresponding to LC1, near the microtubule-binding domain (MTBD), located at the stalk tip. Pull-down assays confirmed that LC1 bound specifically to the γ MTBD region. Together with observations that LC1 decreased the affinity of the γ MTBD for microtubules, we present a new model in which LC1 regulates OAD activity by modulating γ MTBD's affinity for the doublet microtubule. PMID:26399296

  3. A novel antibody light chain dimer: Implications for T-cell receptor structure

    SciTech Connect

    Schiffer, M.; Chang, Chong-Hwan; Solomon, A.; Stevens, F.J.

    1989-01-01

    The dimeric structures of antibody light chains produced in patients with multiple myeloma (Bence Jones proteins) have for some time been studied chemically and crystallographically as models of the antigen binding fragment (Fab) of an antibody. The conformational concordance of Fabs and a Bence Jones dimer was demonstrated by the initial immunoglobulin crystallographic structures. We have recently described the structure of a second intact light chain, the lambda-type protein Loc. The Loc protein exhibits an unanticipated protruding arrangement of its complementarity-determining residues. Grooves on each side of the protrusion may function as separate binding sites. In this report, we examine the Loc structure and its intracrystalline interactions in more detail and consider aspects of this structure that may possess implications for models of a nonantibody constituent of the immunoglobulin superfamily, the T-cell antigen receptor. 26 refs., 3 figs., 1 tab.

  4. Light-chain deposition disease of the kidney: a case report.

    PubMed

    Darouich, Sihem; Goucha, Rym; Jaafoura, Mohamed Habib; Zekri, Semy; Kheder, Adel; Maiz, Hedi Ben

    2012-04-01

    A 41-year-old man was admitted for evaluation of nephrotic syndrome associated with microhematuria, hypertension, and moderate renal failure. In serum and urine samples, monoclonal IgG-lambda was detected. Bone marrow examination showed normal representation of all cell lines with normal range of plasma cells. Renal biopsy demonstrated diabetes-like nodular glomerulosclerosis. Immunofluorescence failed to demonstrate the presence of kappa or lambda light chains in the kidney. Electron microcopy showed granular electron-dense deposits along the glomerular basement membranes and in the mesangial nodules. The patient was diagnosed as having light-chain deposition disease (LCDD) without evidence of plasma cell dyscrasia. This report was designed to stress the significant challenges that remain in the diagnosis of LCDD-related glomerulopathy. The salient morphological features that help in making an accurate diagnosis are discussed. PMID:22471437

  5. Crystal Structure of a Phosphorylated Light Chain Domain of Scallop Smooth-Muscle Myosin

    SciTech Connect

    Kumar, V.S.; Robinson, H.; O-Neall-Hennessey, E.; Reshetnikova, L.; Brown, J. H.; Szent-Gyorgyi, A. G.; Cohen, C.

    2011-11-02

    We have determined the crystal structure of a phosphorylated smooth-muscle myosin light chain domain (LCD). This reconstituted LCD is of a sea scallop catch muscle myosin with its phosphorylatable regulatory light chain (RLC SmoA). In the crystal structure, Arg{sup 16}, an arginine residue that is present in this isoform but not in vertebrate smooth-muscle RLC, stabilizes the phosphorylation site. This arginine interacts with the carbonyl group of the phosphorylation-site serine in the unphosphorylated LCD (determined previously), and with the phosphate group when the serine is phosphorylated. However, the overall conformation of the LCD is essentially unchanged upon phosphorylation. This result provides additional evidence that phosphorylation of the RLC is unlikely to act as an on-switch in regulation of scallop catch muscle myosin.

  6. Light-chain deposition disease of the kidney: a case report.

    PubMed

    Darouich, Sihem; Goucha, Rym; Jaafoura, Mohamed Habib; Zekri, Semy; Kheder, Adel; Maiz, Hedi Ben

    2012-04-01

    A 41-year-old man was admitted for evaluation of nephrotic syndrome associated with microhematuria, hypertension, and moderate renal failure. In serum and urine samples, monoclonal IgG-lambda was detected. Bone marrow examination showed normal representation of all cell lines with normal range of plasma cells. Renal biopsy demonstrated diabetes-like nodular glomerulosclerosis. Immunofluorescence failed to demonstrate the presence of kappa or lambda light chains in the kidney. Electron microcopy showed granular electron-dense deposits along the glomerular basement membranes and in the mesangial nodules. The patient was diagnosed as having light-chain deposition disease (LCDD) without evidence of plasma cell dyscrasia. This report was designed to stress the significant challenges that remain in the diagnosis of LCDD-related glomerulopathy. The salient morphological features that help in making an accurate diagnosis are discussed.

  7. Light Chain Deposition Disease Presenting as Cholestatic Jaundice: A Case Report

    PubMed Central

    Kumar, Prasanna N.

    2012-01-01

    Light-chain deposition disease (LCDD) is characterized by tissue deposition of the immunoglobulin light chains in multiple organs. These deposits appear similar to amyloid on routine sections, but differ in their staining properties and ultrastructural appearance. The deposits of LCCD are non -Congophilic and do not exhibit a fibrillar ultrastructure; while, the proteinaceous substance seen in primary amyloidosis is Congo red positive and fibrillar. One of the most common organs to be involved in LCDD is the kidney. Earlier reports on cases of LCDD have mostly shown simultaneous liver and renal involvement, there are very few cases in the literature describing LCDD of the liver without renal involvement. This report describes a patient who presented with severe cholestatic jaundice and liver cell failure with normal renal function. PMID:22359728

  8. Differential effects on light chain amyloid formation depend on mutations and type of glycosaminoglycans.

    PubMed

    Blancas-Mejía, Luis M; Hammernik, Jared; Marin-Argany, Marta; Ramirez-Alvarado, Marina

    2015-02-20

    Amyloid light chain (AL) amyloidosis is a protein misfolding disease where immunoglobulin light chains sample partially folded states that lead to misfolding and amyloid formation, resulting in organ dysfunction and death. In vivo, amyloid deposits are found in the extracellular space and involve a variety of accessory molecules, such as glycosaminoglycans, one of the main components of the extracellular matrix. Glycosaminoglycans are a group of negatively charged heteropolysaccharides composed of repeating disaccharide units. In this study, we investigated the effect of glycosaminoglycans on the kinetics of amyloid fibril formation of three AL cardiac amyloidosis light chains. These proteins have similar thermodynamic stability but exhibit different kinetics of fibril formation. We also studied single restorative and reciprocal mutants and wild type germ line control protein. We found that the type of glycosaminoglycan has a different effect on the kinetics of fibril formation, and this effect seems to be associated with the natural propensity of each AL protein to form fibrils. Heparan sulfate accelerated AL-12, AL-09, κI Y87H, and AL-103 H92D fibril formation; delayed fibril formation for AL-103; and did not promote any fibril formation for AL-12 R65S, AL-103 delP95aIns, or κI O18/O8. Chondroitin sulfate A, on the other hand, showed a strong fibril formation inhibition for all proteins. We propose that heparan sulfate facilitates the formation of transient amyloidogenic conformations of AL light chains, thereby promoting amyloid formation, whereas chondroitin sulfate A kinetically traps partially unfolded intermediates, and further fibril elongation into fibrils is inhibited, resulting in formation/accumulation of oligomeric/protofibrillar aggregates. PMID:25538238

  9. Phage Display and Peptide Mapping of an Immunoglobulin Light Chain Fibril-Related Conformational Epitope†

    PubMed Central

    O’Nuallain, Brian; Allen, Amy; Ataman, Demet; Weiss, Deborah T.; Solomon, Alan; Wall, Jonathan S.

    2008-01-01

    Amyloid fibrils and partially unfolded intermediates can be distinguished serologically from native amyloidogenic precursor proteins or peptides. In this regard, we previously had reported that mAb 11-1F4, generated by immunizing mice with a thermally denatured variable domain (VL) fragment of the human κ4 Bence Jones protein Len, bound to a non-native conformational epitope located within the N-terminal 18 residues of fibrillar, as well as partially denatured, Ig light chains (O’Nuallain B. et al. (2006) Biochemistry 46, 1240–247). To define further the antibody binding site, we used random peptide phage display and epitope mapping of VL Len using wild-type and alanine-mutated Len peptides where it was shown that the antibody epitope was reliant on up to 10 of the first 15 residues of protein Len. Comparison of Vκ and Vλ N-terminal germline consensus sequences with protein Len and 11-1F4-binding phages indicated that this antibody’s cross-reactivity with light chains was related to an invariant proline at position(s) 7 and/or 8, bulky hydrophobic residues at positions 11 and 13, and additionally, to the ability to accommodate amino acid diversity at positions 1–4. Sequence alignments of the phage peptides revealed a central proline, often flanked by aromatic residues. Taken together, these results have provided evidence for the structural basis of the specificity of 11-1F4 for both κ and λ light chain fibrils. We posit that the associated binding site involves a rare type VI β-turn or touch-turn that is anchored by a cis-proline residue. The identification of an 11-1F4-related mimotope should facilitate development of pan-light chain fibril-reactive antibodies that could be used in the diagnosis and treatment of patients with AL amyloidosis. PMID:17944486

  10. EPR and CD spectroscopy of fast myosin light chain conformation during binding of trifluoperazine.

    PubMed

    Huang, W; Wilson, G J; Brown, L J; Lam, H; Hambly, B D

    1998-10-15

    The conformations of isolated rabbit fast myosin light chains (LCs) were modified using trifluoperazine (TFP), the hydrophobic calmodulin inhibitor. CD spectroscopy showed that TFP altered secondary structural content of the LCs, with half-maximal effects at TFP concentrations of approximately 14-50 microM, which is within the range required to alter muscle fiber contraction in both agonistic and antagonistic ways [Kurebayashi, N. & Ogawa, Y. (1988) J. Physiol. 403, 407-424]. EPR spectroscopy provided structural information from paramagnetic probes on C-terminal domain surfaces. In the absence of TFP, tauR (rotational correlation time) was 1.6 ns for both alkali light chains (ALCs) and 1.8 ns for light chain 2 (LC2). This was faster than expected for proteins of this size (approximately 10 ns). TFP progressively recruited the probes into populations with tauR sevenfold to 12-fold slower, with half-maximal effects at a TFP concentration of approximately 370-800 microM. The differences probably indicate that CD spectroscopy detects changes in protein conformation due to 'specific' TFP binding at the LC hydrophobic core, while less specific binding at higher TFP concentrations is required to effect conformational changes on the protein surfaces near the paramagnetic probes. TFP binding was generally not cooperative. Comparative sequence analysis between calmodulin, troponin C, and myosin LCs indicated considerable conservation between residues expected to bind TFP.

  11. What is new in diagnosis and management of light chain amyloidosis?

    PubMed

    Palladini, Giovanni; Merlini, Giampaolo

    2016-07-14

    Light chain (AL) amyloidosis is caused by a usually small plasma cell clone producing a misfolded light chain that deposits in tissues. Survival is mostly determined by the severity of heart involvement. Recent studies are clarifying the mechanisms of cardiac damage, pointing to a toxic effect of amyloidogenic light chains and offering new potential therapeutic targets. The diagnosis requires adequate technology, available at referral centers, for amyloid typing. Late diagnosis results in approximately 30% of patients presenting with advanced, irreversible organ involvement and dying in a few months despite modern treatments. The availability of accurate biomarkers of clonal and organ disease is reshaping the approach to patients with AL amyloidosis. Screening of early organ damage based on biomarkers can help identify patients with monoclonal gammopathy of undetermined significance who are developing AL amyloidosis before they become symptomatic. Staging systems and response assessment based on biomarkers facilitate the design and conduction of clinical trials, guide the therapeutic strategy, and allow the timely identification of refractory patients to be switched to rescue therapy. Treatment should be risk-adapted. Recent studies are linking specific characteristics of the plasma cell clone to response to different types of treatment, moving toward patient-tailored therapy. In addition, novel anti-amyloid treatments are being developed that might be combined with anti-plasma cell chemotherapy. PMID:27053535

  12. Tumor Stiffness Is Unrelated to Myosin Light Chain Phosphorylation in Cancer Cells

    PubMed Central

    Fry, Madeline; Greene, Madelyne; Chernaya, Olga; Hu, Wen-Yang; Chew, Teng-Leong; Mahmud, Nadim; Kadkol, Shrihari S.; Glover, Sarah; Prins, Gail; Strakova, Zuzana; de Lanerolle, Primal

    2013-01-01

    Many tumors are stiffer than their surrounding tissue. This increase in stiffness has been attributed, in part, to a Rho-dependent elevation of myosin II light chain phosphorylation. To characterize this mechanism further, we studied myosin light chain kinase (MLCK), the main enzyme that phosphorylates myosin II light chains. We anticipated that increases in MLCK expression and activity would contribute to the increased stiffness of cancer cells. However, we find that MLCK mRNA and protein levels are substantially less in cancer cells and tissues than in normal cells. Consistent with this observation, cancer cells contract 3D collagen matrices much more slowly than normal cells. Interestingly, inhibiting MLCK or Rho kinase did not affect the 3D gel contractions while blebbistatin partially and cytochalasin D maximally inhibited contractions. Live cell imaging of cells in collagen gels showed that cytochalasin D inhibited filopodia-like projections that formed between cells while a MLCK inhibitor had no effect on these projections. These data suggest that myosin II phosphorylation is dispensable in regulating the mechanical properties of tumors. PMID:24224004

  13. Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis

    PubMed Central

    Valencia-Expósito, Andrea; Grosheva, Inna; Míguez, David G.; González-Reyes, Acaimo; Martín-Bermudo, María D.

    2016-01-01

    Contractile actomyosin networks generate forces that drive tissue morphogenesis. Actomyosin contractility is controlled primarily by reversible phosphorylation of the myosin-II regulatory light chain through the action of myosin kinases and phosphatases. While the role of myosin light-chain kinase in regulating contractility during morphogenesis has been largely characterized, there is surprisingly little information on myosin light-chain phosphatase (MLCP) function in this context. Here, we use live imaging of Drosophila follicle cells combined with mathematical modelling to demonstrate that the MLCP subunit flapwing (flw) is a key regulator of basal myosin oscillations and cell contractions underlying egg chamber elongation. Flw expression decreases specifically on the basal side of follicle cells at the onset of contraction and flw controls the initiation and periodicity of basal actomyosin oscillations. Contrary to previous reports, basal F-actin pulsates similarly to myosin. Finally, we propose a quantitative model in which periodic basal actomyosin oscillations arise in a cell-autonomous fashion from intrinsic properties of motor assemblies. PMID:26888436

  14. Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis.

    PubMed

    Valencia-Expósito, Andrea; Grosheva, Inna; Míguez, David G; González-Reyes, Acaimo; Martín-Bermudo, María D

    2016-02-18

    Contractile actomyosin networks generate forces that drive tissue morphogenesis. Actomyosin contractility is controlled primarily by reversible phosphorylation of the myosin-II regulatory light chain through the action of myosin kinases and phosphatases. While the role of myosin light-chain kinase in regulating contractility during morphogenesis has been largely characterized, there is surprisingly little information on myosin light-chain phosphatase (MLCP) function in this context. Here, we use live imaging of Drosophila follicle cells combined with mathematical modelling to demonstrate that the MLCP subunit flapwing (flw) is a key regulator of basal myosin oscillations and cell contractions underlying egg chamber elongation. Flw expression decreases specifically on the basal side of follicle cells at the onset of contraction and flw controls the initiation and periodicity of basal actomyosin oscillations. Contrary to previous reports, basal F-actin pulsates similarly to myosin. Finally, we propose a quantitative model in which periodic basal actomyosin oscillations arise in a cell-autonomous fashion from intrinsic properties of motor assemblies.

  15. A novel monoclonal antibody against the constant region of goose immunoglobulin light chain.

    PubMed

    Guo, Yongli; Gao, Mingchun; Ma, Bo; Sheng, Qiaoling; Wang, Qian; Liu, Dandan; Wang, Junwei

    2014-04-01

    A monoclonal antibody (MAb) against the antigenic determinant of the constant region of goose immunoglobulin light chain (GoIgCL) was produced and characterized for the first time here. Goose immunoglobulin (Ig) in serum was purified by immunoaffinity chromatography and the resulting protein was used as immunogen to immunize BALB/c mice. At the same time, the GoIgCL gene was expressed and purified as the screening antigen for selecting MAb against GoIgCL. One hybridoma that produces antibodies against GoIgCL was selected by indirect ELISA. Then the characterization of the MAb was analyzed by ELISA, Western blot, and flow cytometry. It was found to be IgG1 with κ light chain; the MAB has high specificity to Ig in goose serum, bile, and B lymphocytes from peripheral blood, reacts only with the light chain of goose Ig, and can distinguish Ig from other birds. Therefore, the MAb generated in this study can be used as a specific reagent for detection of goose disease-specific antibodies and as a powerful tool for basic immunology research on geese.

  16. Anti-cardiolipin/beta-2 glycoprotein activities co-exist on human anti-DNA antibody light chains.

    PubMed

    Kumar, Sanjeev; Nagl, Sylvia; Kalsi, J K; Ravirajan, C T; Athwal, Dee; Latchman, David S; Pearl, Laurence H; Isenberg, David A

    2003-12-01

    We have recently shown that the human anti-DNA antibodies B3 and 33H11 also bind cardiolipin and that the anti-autoantigen activity resides predominantly on their lambda light chains. We now show that the two auto-antibodies possess strong reactivity to the plasma-protein 2-Glycoprotein I (beta2-GPI) also. Utilizing chain shuffling experiments involving an unrelated anti-p185 antibody 4D5 with insignificant reactivity to cardiolipin or to beta2-GPI, we now demonstrate that hybrid Fabs with constituent light chain, but not the heavy chain, of B3 or 33H11, exhibit anti-cardiolipin activity. Furthermore, the constructs possessing the auto-antibody-derived light chain also exhibited significant reactivity to beta2-GPI. The results suggest that anti-DNA, anti-cardiolipin and anti-beta2-GPI activities co-exist on the light chains of the antibodies studied and, importantly, these activities could be transferred to antibody constructs by their light chains alone. Computer-generated models of the three-dimensional structures of the auto-antibodies and their hybrids, suggest predominant interaction of their light chains with domain IV of beta2-GPI.

  17. Production and characterization of monoclonal antibodies specific for kappa and. gamma. light chain types of porcine immunoglobulins

    SciTech Connect

    McCauley, I.; Kim, Y.B.

    1986-03-05

    It has been difficult to raise specific antisera to the light chain types of pigs because of the difficulty in isolating sufficient pure material from polyclonal immunoglobulin. The authors have taken an approach based upon the characterization of a number of monoclonal antibodies (MoAb) raised against porcine IgG in order to obtain antisera specific for light chain types. Spleen cells from mice immunized with porcine IgG were fused with myeloma P3x63-Ag 653. Hybridomas were screened by an ELISA technique against pure porcine light chains coated on microtiter plates. Five clones specific for light chains were isolated. MoAb from these clones have been characterized by sequential immunoprecipitation of /sup 125/I labelled light chains. The pattern of reactivities show that the MoAb can be classified into two mutually exclusive groups, each of which precipitate approximately equal amounts of the labelled light chains. The type specificity of these groups has been determined by utilizing the cross-reaction between anti-human kappa and ..gamma.. with porcine light chains and the groups of MoAb in sequential immunoprecipitations. The MoAb were used in an immunofluorescence study of porcine B lymphocytes. The anti-..gamma.. MoAb stained 57% and the anti-kappa, 43% of total B lymphocytes.

  18. Thirteen is enough: the myosins of Dictyostelium discoideum and their light chains

    PubMed Central

    Kollmar, Martin

    2006-01-01

    Background Dictyostelium discoideum is one of the most famous model organisms for studying motile processes like cell movement, organelle transport, cytokinesis, and endocytosis. Members of the myosin superfamily, that move on actin filaments and power many of these tasks, are tripartite proteins consisting of a conserved catalytic domain followed by the neck region consisting of a different number of so-called IQ motifs for binding of light chains. The tails contain functional motifs that are responsible for the accomplishment of the different tasks in the cell. Unicellular organisms like yeasts contain three to five myosins while vertebrates express over 40 different myosin genes. Recently, the question has been raised how many myosins a simple multicellular organism like Dictyostelium would need to accomplish all the different motility-related tasks. Results The analysis of the Dictyostelium genome revealed thirteen myosins of which three have not been described before. The phylogenetic analysis of the motor domains of the new myosins placed Myo1F to the class-I myosins and Myo5A to the class-V myosins. The third new myosin, an orphan myosin, has been named MyoG. It contains an N-terminal extension of over 400 residues, and a tail consisting of four IQ motifs and two MyTH4/FERM (myosin tail homology 4/band 4.1, ezrin, radixin, and moesin) tandem domains that are separated by a long region containing an SH3 (src homology 3) domain. In contrast to previous analyses, an extensive comparison with 126 class-VII, class-X, class-XV, and class-XXII myosins now showed that MyoI does not group into any of these classes and should not be used as a model for class-VII myosins. The search for calmodulin related proteins revealed two further potential myosin light chains. One is a close homolog of the two EF-hand motifs containing MlcB, and the other, CBP14, phylogenetically groups to the ELC/RLC/calmodulin (essential light chain/regulatory light chain) branch of the tree

  19. Binding of nascent collagen by amyloidogenic light chains and amyloid fibrillogenesis in monolayers of human fibrocytes.

    PubMed

    Harris, D L; King, E; Ramsland, P A; Edmundson, A B

    2000-01-01

    Light (L) chain dimers expressed by multiple myeloma cells and collected as Bence-Jones proteins from the urine of human subjects were tested for their ability to form deposits in fibroblast monolayer cell cultures. Bence-Jones proteins from subjects with primary amyloidosis associated with L chains were shown to form fibrillar deposits by the in vitro assay introduced in this report. Filaments interspersed with nascent collagen could be detected after only 48 h. Deposition of L chains continued over a period of 72 h culminating in the appearance of dense fibrils with widths of 80-100 A and a variety of lengths. Formation of amyloid-like fibrils was accompanied by interference with the maturation of the collagen produced by the fibroblast cells. Fibrils composed of the Mcg lambda-type L chain were deposited between collagen fibers, thus expanding them laterally and leading to their partial disintegration. Mature collagen was completely missing from fibroblast monolayers exposed to the Sea lambda chain and the Jen kappa chain. Collagen with the characteristic striped pattern matured normally in control samples, such as those not dosed with amyloid precursors or those treated with a non-amyloidogenic Bence-Jones protein (e.g., the Hud lambda chain dimer). By immunochemical techniques using fluorescein- and gold-labeled anti-L chain antibodies, amyloidogenic L chains were shown to decorate the strands of nascent collagen. This observation suggests that amyloidogenic L chains are concentrated in the extracellular matrix by monovalent antigen-antibody type reactions. The capacity of the Mcg L chain dimer to bind collagen-derived sequences was tested by soaking crystals with a collagenase substrate, PZ-Pro-Leu-Gly-Pro-D-Arg. Difference Fourier analysis at 2.7 A resolution indicated that the PZ-peptide is a site-filling ligand. It could not be removed from the active site by perfusion of the crystal with ammonium sulfate crystallizing media. Similar experiments with the

  20. The Roadblock light chains are ubiquitous components of cytoplasmic dynein that form homo- and heterodimers.

    PubMed

    Nikulina, Karina; Patel-King, Ramila S; Takebe, Sachiko; Pfister, K Kevin; King, Stephen M

    2004-04-01

    The Roadblock/LC7 class of light chains associate with the intermediate chains at the base of the soluble dynein particle. In mammals, there are two Roadblock isoforms (Robl1 and Robl2), one of which (Robl2) is differentially expressed in a tissue-dependent manner and is especially prominent in testis. Here we define the alpha helical content of Robl and demonstrate using both the yeast two-hybrid system and in vitro biochemistry that Robl1 and Robl2 are capable of forming homo- and heterodimers. This is the first report of heterodimer formation by any cytoplasmic dynein component, and it further enlarges the number of potential cytoplasmic dynein isoforms available for binding specific cellular cargoes. In addition, we have generated an antibody that specifically recognizes Robl light chains and shows a 5-10 fold preference for Robl2 over Robl1. Using this antibody, we show that Robl is a ubiquitous cytoplasmic dynein component, being found in samples purified from brain, liver, kidney, and testis. Immunofluorescence analysis reveals that Robl is present in punctate organelles in rat neuroblastoma cells. In testis, Robl is found in Leydig cells, spermatocytes, and sperm flagella.

  1. Clathrin light chain B: gene structure and neuron-specific splicing.

    PubMed Central

    Stamm, S; Casper, D; Dinsmore, J; Kaufmann, C A; Brosius, J; Helfman, D M

    1992-01-01

    The clathrin light chains are components of clathrin coated vesicles, structural constituents involved in endocytosis and membrane recycling. The clathrin light chain B (LCB) gene encodes two isoforms, termed LCB2 and LCB3, via an alternative RNA splicing mechanism. We have determined the structure of the rat clathrin light chain B gene. The gene consists of six exons that extend over 11.9 kb. The first four exons and the last exon are common to the LCB2 and LCB3 isoforms. The fifth exon, termed EN, is included in the mRNA in brain, giving rise to the brain specific form LCB2 but is excluded in other tissues, generating the LCB3 isoform. Primary rat neuronal cell cultures express predominantly the brain specific LCB2 isoform, whereas primary rat cultures of glia express only the LCB3 isoform, suggesting that expression of the brain-specific LCB2 form is limited to neurons. Further evidence for neuronal localization of the LCB2 form is provided using a teratocarcinoma cell line, P19, which can be induced by retinoic acid to express a neuronal phenotype, concomitant with the induction of the LCB2 form. In order to determine the sequences involved in alternative splice site selection, we constructed a minigene containing the alternative spliced exon EN and its flanking intron and exon sequences. This minigene reflects the splicing pattern of the endogenous gene upon transfection in HeLa cell and primary neuronal cell cultures, indicating that this region of the LCB gene contains all the necessary information for neuron-specific splicing. Images PMID:1408826

  2. Molecular characterization of the immunoglobulin light chain variable region repertoire of human autoantibodies

    SciTech Connect

    Victor, K.D.

    1992-01-01

    The molecular structures of the light chain variable regions encoding human autoantibodies have been studied in detail. The variable region repertoire among this group of antibodies is diverse. There is no evidence for preferential utilization of specific V[sub L] gene families or over-representation of certain V[sub L] gene segments in autoantibodies. Many autoreactive antibodies utilize direct copies of known germline gene segments with little evidence of somatic mutation, supporting the conclusion that at least some germline gene segments encode autoreactivity. Additionally, the structures of several autoantibodies are clearly the product of somatic mutation. Lastly, affinity maturation has been demonstrated in two clonally related IgM rheumatoid factors suggestive of an antigen driven response. The heterogeneity of the V[sub L] region repertoire in human autoantibodies challenges evidence in the literature suggesting that the majority of human autoantibodies utilize the same or closely related germline gene segments with no evidence of somatic mutation. In addition, this study has documented that variation in the length of the light chain is a common feature in human antibodies. Length variation is confined to the V[sub k]-J[sub k] joint of CDR3 and occurs in all V[sub k] gene families. Analysis of the structures of the V[sub k]-J[sub k] joints suggests that both germline derived and non-germline encoded nucleotides (N-segments), probably the result of terminal deoxynucleotidyl transferase activity, contribute to the junctional diversity of the immunoglobulin light chain variable region. Thus, length variation at the V[sub L]-J[sub L] joint is a frequent event having the potential to expand the diversity of the antibody molecule.

  3. Recruitment of Light Chains by Homologous and Heterologous Fibrils Shows Distinctive Kinetic and Conformational Specificity.

    PubMed

    Blancas-Mejía, Luis M; Ramirez-Alvarado, Marina

    2016-05-31

    Light chain amyloidosis is a protein misfolding disease in which immunoglobulin light chains aggregate as insoluble fibrils that accumulate in extracellular deposits. Amyloid fibril formation in vitro has been described as a nucleation-polymerization, autocatalytic reaction in which nascent fibrils catalyze formation of new fibrils, recruiting soluble protein into the fibril. In this context, it is also established that preformed fibrils or "seeds" accelerate fibril formation. In some cases, seeds with a substantially different sequence are able to accelerate the reaction, albeit with a lower efficiency. In this work, we studied the recruitment and addition of monomers in the presence of seeds of five immunoglobulin light chain proteins, covering a broad range of protein stabilities and amyloidogenic properties. Our data reveal that in the presence of homologous or heterologous seeds, the fibril formation reactions become less stochastic than de novo reactions. The kinetics of the most amyloidogenic proteins (AL-T05 and AL-09) do not present significant changes in the presence of seeds. Amyloidogenic protein AL-103 presented fairly consistent acceleration with all seeds. In contrast, the less amyloidogenic proteins (AL-12 and κI) presented dramatic differential effects that are dependent on the kind of seed used. κI had a poor efficiency to elongate preformed fibrils. Together, these results indicate that fibril formation is kinetically determined by the conformation of the amyloidogenic precursor and modulated by the differential ability of each protein to either nucleate or elongate fibrils. We observe morphological and conformational properties of some seeds that do not favor elongation with some proteins, resulting in a delay in the reaction. PMID:27158939

  4. Myosin light chain kinase-dependent microvascular hyperpermeability in thermal injury.

    PubMed

    Huang, Qiaobing; Xu, Wenjuan; Ustinova, Elena; Wu, Mack; Childs, Ed; Hunter, Felicia; Yuan, Sarah

    2003-10-01

    Although the critical role of systemic inflammatory edema in the development of multiple organ failure in patients with massive burns has been fully recognized, the precise mechanisms responsible for the accumulation of blood fluid and proteins in tissues remote from the burn wound are poorly understood. The aim of this study was to test the hypothesis that circulating factors released during thermal injury cause microvascular leakage by triggering endothelial cell contraction and barrier dysfunction. A third-degree scald burn was induced in rats on the dorsal skin covering 25% total body surface area. The microcirculation and transvascular flux of albumin were observed in the rat mesentery using intravital fluorescence microscopy. The direct effect of circulating factors on microvascular barrier function was assessed by measuring the apparent permeability coefficient of albumin in isolated rat mesenteric venules during perfusion of plasma freshly withdrawn from burned rats. The in vivo study showed that the transvenular flux of albumin was significantly increased over a 6-h period with a maximal response seen at 3 h postburn. Importantly, perfusion of noninjured venules with burn plasma induced a time-dependent increase in albumin permeability. Pharmacological inhibition of protein kinase C, Src tyrosine kinases, or mast cell activation did not significantly affect the hyperpermeability response; however, blockage of myosin light chain phosphorylation with the myosin light chain kinase inhibitor ML-7 greatly attenuated the burn-induced increase in venular permeability in a dose-related pattern. The results support a role for endogenous circulating factors in microvascular leakage during burns. Myosin light chain phosphorylation-dependent endothelial contractile response may serve as an end-point effector leading to microvascular barrier dysfunction. PMID:14501951

  5. Light chain amyloidosis of the urinary bladder. A site restricted deposition of an externally produced immunoglobulin

    PubMed Central

    Livneh, A; Shtrasburg, S; Martin, B; Baniel, J; Gal, R; Pras, M

    2001-01-01

    Aims—To identify the amyloid protein in a patient with amyloidosis localised to the urinary bladder, and to see whether subtyping of the protein by sequence analysis increases the understanding of the selection of the urinary bladder as the site of amyloid deposition. Methods—A patient with gross haematuria and a congophilic mass in his urinary bladder was evaluated further. Characterisation of the amyloid protein was performed using conventional histological and immunohistochemical methods. Determination of the N-terminal amino acid sequence of the amyloid protein was performed using protein sequencers. Results—The patient's history, physical examination, and laboratory evaluation excluded the involvement of other organs, justifying a diagnosis of amyloidosis localised to the urinary bladder. Histological and immunological studies showed that the amyloid protein deposited in the urinary bladder of the patient was probably of the amyloid light chain type. No plasma cells or lymphocytes were seen in sections of the urinary bladder and lower ureter adjacent to the amyloid deposits. Molecular analysis showed the sequence NFMLTQPHSISGSPG, which assigned the amyloid protein to either the VλI or the VλVI immunoglobulin (Ig) light chain families. Conclusions—The findings suggest that the amyloid protein in this patient originated outside the urinary bladder. The heterogeneity of the Ig proteins in known cases of amyloidosis of the lower urinary tract suggests that the amino acid residues, which determine the Vλ subtyping, have no major role in restricting the deposited protein to the urinary bladder. Key Words: primary amyloidosis • urinary bladder • λ light chain • amino acid sequence PMID:11729210

  6. Light chain editing in kappa-deficient animals: a potential mechanism of B cell tolerance

    PubMed Central

    1994-01-01

    The genetic organization of the kappa and lambda light chain loci permits multiple, successive rearrangement attempts at each allele. Multiple rearrangements allow autoreactive B cells to escape clonal deletion by editing their surface receptors. Editing may also facilitate efficient B cell production by salvaging cells with nonproductive light chain (L chain) rearrangements. To study receptor editing of kappa L chains, we have characterized B cells from mice hemizygous for the targeted inactivation of kappa (JCkD/wt) which have an anti-DNA heavy chain transgene, 3H9. Hybridomas from JCkD/wt mice exhibited an increased frequency of rearrangements to downstream Jk segments (such as Jk5) compared with most surveys from normal mice, consistent with receptor editing by sequential kappa locus rearrangements in JCkD/wt. We observed an even higher frequency of rearrangements to Jk5 in 3H9 JCkD/wt animals compared with nontransgenic JCkD/wt, consistent with editing of autoreactive kappa in 3H9 JCkD/wt. We also recovered a large number of 3H9 JCkD/wt lines with Vk12/13-Jk5 rearrangements and could demonstrate by PCR and Southern analysis that up to three quarters of these lines underwent multiple kappa rearrangements. To investigate editing at the lambda locus, we used homozygous kappa-deficient animals (JCkD/JCkD and 3H9 JCkD/JCkD). The frequencies of V lambda 1 and V lambda 2 rearrangements among splenic hybridomas in 3H9 JCkD/JCkD were reduced by 75% whereas V lambda X was increased 5-10-fold, compared with nontransgenic JCkD/JCkD animals. This indicates that V lambda 1 and V lambda 2 are negatively regulated in 3H9 JCkD/JCkD, consistent with earlier studies that showed that the 3H9 heavy chain, in combination with lambda 1 binds DNA. As successive lambda rearrangements to V lambda X do not inactivate V lambda 1, the consequence of lambda editing in 3H9 JCkD/JCkD would be failed allelic exclusion at lambda. However, analysis of 18 3H9 JCkD/JCkD hybridomas with V lambda 1

  7. High sensitivity and specificity of elevated cerebrospinal fluid kappa free light chains in suspected multiple sclerosis.

    PubMed

    Hassan-Smith, G; Durant, L; Tsentemeidou, A; Assi, L K; Faint, J M; Kalra, S; Douglas, M R; Curnow, S J

    2014-11-15

    Cerebrospinal fluid (CSF) analysis is routinely used in the diagnostic work-up of multiple sclerosis (MS), by detecting CSF-specific oligoclonal bands (OCB). More recently, several studies have reported CSF free light chains (FLC) as an alternative. We show that absolute CSF κFLC concentrations were highly sensitive - more than OCB testing - and specific for clinically isolated syndrome, relapsing remitting and primary progressive MS. Measurement of κFLC alone was sufficient. Our results suggest that CSF κFLC levels measured by nephelometry, if validated in a larger series, are a preferred test to OCB analysis in the diagnostic work-up of patients suspected of having MS.

  8. Effect of specimen type on free immunoglobulin light chains analysis on the Roche Diagnostics cobas 8000 analyzer.

    PubMed

    Nelson, Louis S; Steussy, Bryan; Morris, Cory S; Krasowski, Matthew D

    2015-01-01

    The measurement of free immunoglobulin light chains is typically performed on serum; however, the use of alternative specimen types has potential benefits. Using the Freelite™ kappa and lambda free light chains assay on a Roche Diagnostics cobas 8000 c502 analyzer, we compared three specimen types (serum, EDTA-plasma and lithium heparin plasma separator gel-plasma) on 100 patients. Using Deming regression and eliminating outliers (limiting data to light chain concentrations below 400 mg/L), the three specimen types showed comparable results for kappa light chain concentration, lambda light chain concentration, and kappa/lambda ratio with slopes close to 1.0 and y-intercepts close to zero. EDTA-plasma showed slightly more positive bias relative to serum than lithium heparin. Analysis using EDTA-plasma and lithium heparin plasma showed comparable linearity, precision, and temperature stability. A single sample showing hook effect (not in the comparison set) gave comparable results using either plasma specimen type. For the Freelite™ kappa and lambda free light chains assay, both EDTA-plasma or lithium heparin-plasma can serve as acceptable substitutes for serum, at least for the Roche cobas 8000 analyzer. PMID:26682113

  9. Structural Characterization of the Partially Folded Intermediates of An Immunoglobulin Light Chain Leading to Amyloid Fibrillation And Amorphous Aggregation

    SciTech Connect

    Qin, Z.; Hu, D.; Zhu, M.; Fink, A.L.; /UC, Santa Cruz

    2007-07-12

    Immunoglobulin light chain deposition diseases involve various types of extracellular deposition of light chain variable domains, including amyloid fibrils and amorphous deposits. The decreased thermodynamic stability of the light chain is believed to be the major factor leading to fibrillation. However, the differences in the nature of the deposits among the light chain deposition diseases raise the question of whether the mechanisms leading to fibrillar or amorphous aggregation is different. In this study, we generated two partially folded intermediates of the light chain variable domain SMA in the presence of guanidine hydrochloride (GuHCl) and characterized their conformations. The more unfolded intermediate formed fibrils most rapidly, while the more native-like intermediate predominantly led to amorphous deposits. The results also show that the monomeric, rather than the dimeric state, was critical for fibrillation. The data also indicate that fibril elongation involves addition of a partially unfolded intermediate, rather than the native state. We postulate that a more highly unfolded intermediate is more suited to undergo the topological rearrangements necessary to form amyloid fibrils than a more structured one and that this also correlates with increased destabilization. In the case of light chain aggregation, it appears that more native-like intermediate conformations are more prone to form amorphous deposits.

  10. Microinjection of antibodies to the calpactin I light chain in MDBK cells causes precipition of the cytoskeletal calpactin I complex without affecting the distribution of related proteins.

    PubMed

    Glenney, J R

    1990-01-01

    The calpactin I complex is composed of two heavy chain (39K) and two light chain (11K) subunits. The heavy chain is a member of a protein family that includes lipocortins, endonexin and chromobindins while the light chain is a member of the S100 family (7 distinct members are known). We have found that the kidney epithelial cell line MDBK expresses four members of the heavy chain family and two members of the light chain protein family. Antibodies to the light chain of calpactin I were found to cause the precipitation of injected antibody together with the associated heavy chain without apparent effect on the distribution of related proteins. This suggests a differential targeting of various members of the calpactin heavy and light chain families even within the same cell.

  11. Effect of Lysine Modification on the Stability and Cellular Binding of Human Amyloidogenic Light Chains

    SciTech Connect

    O'Neill, Hugh Michael; Davern, Sandra M.; Murphy, Charles L.; Wall, Jonathan; Deborah, Weiss T.; Solomon, Alan

    2011-01-01

    AL amyloidosis is characterized by the pathologic deposition as fibrils of monoclonal light chains (i.e., Bence Jones proteins [BJPs]) in particular organs and tissues. This phenomenon has been attributed to the presence in amyloidogenic proteins of particular amino acids that cause these molecules to become unstable, as well as post-translational modifications and, in regard to the latter, we have investigated the effect of biotinylation of lysyl residues on cell binding. We utilized an experimental system designed to test if BJPs obtained from patients with AL amyloidosis or, as a control, multiple myeloma (MM), bound human fibroblasts and renal epithelial cells. As documented by fluorescent microscopy and ELISA, the amyloidogenic BJPs, as compared with MM components, bound preferentially and this reactivity increased significantly after chemical modification of their lysyl residues with sulfo-NHS-biotin. Further, based on tryptophan fluorescence and circular dichorism data, it was apparent that their conformation was altered, which we hypothesize exposed a binding site not accessible on the native protein. The results of our studies indicate that post-translational structural modifications of pathologic light chains can enhance their capacity for cellular interaction and thus may contribute to the pathogenesis of AL amyloidosis and multiple myeloma.

  12. Four structural risk factors identify most fibril-forming kappa light chains.

    SciTech Connect

    Stevens, F. J.; Biosciences Division

    2000-09-01

    Antibody light chains (LCs) comprise the most structurally diverse family of proteins involved in amyloidosis. Many antibody LCs incorporate structural features that impair their stability and solubility, leading to their assembly into fibrils and to their subsequent pathological deposition when produced in excess during multiple myeloma and primary amyloidosis. The particular amino acid variations in antibody LCs that account for fibril formation and amyloidogenesis have not been identified. This study focuses on amyloidogenesis within the Kl family of human LCs. Reanalysis of the current database of primary structures of proteins from more than 100 patients who produced Kl LCS, 37 of which were amyloidogenic, reveals apparent structural features that may contribute to amyloidosis. These features include loss of conserved residues or the gain of particular residues through mutation at sites involving a repertoire of approximately 20% of the amino acid positions in the light chain variable domain (V{sub L}). Moreover, 80% of all K1 amyloidogenic V{sub L}s are identifiable by the presence of at least one of three single-site substitutions or the acquisition of an N-linked glycosylation site through mutations. These findings suggest that it is feasible to predict fibril propensity by analysis of primary structure.

  13. CaMKII in addition to MLCK contributes to phosphorylation of regulatory light chain in cardiomyocytes.

    PubMed

    Eikemo, Hilde; Moltzau, Lise Román; Hussain, Rizwan I; Nguyen, Cam H T; Qvigstad, Eirik; Levy, Finn Olav; Skomedal, Tor; Osnes, Jan-Bjørn

    2016-02-26

    The aim was to identify kinase activities involved in the phosphorylation of regulatory light chain (RLC) in situ in cardiomyocytes. In electrically stimulated rat cardiomyocytes, phosphatase inhibition by calyculin A unmasked kinase activities evoking an increase of phosphorylated RLC (P-RLC) from about 16% to about 80% after 80 min. The phosphorylation rate in cardiomyocytes was reduced by about 40% by the myosin light chain kinase (MLCK) inhibitor, ML-7. In rat ventricular muscle strips, calyculin A induced a positive inotropic effect that correlated with P-RLC levels. The inotropic effect and P-RLC elevation were abolished by ML-7 treatment. The kinase activities phosphorylating RLC in cardiomyocytes were reduced by about 60% by the non-selective kinase inhibitor staurosporine and by about 50% by the calmodulin antagonist W7. W7 eliminated the inhibitory effect of ML-7, suggesting that the cardiac MLCK is Ca(2+)/calmodulin (CaM)-dependent. The CaM-dependent kinase II (CaMKII) inhibitor KN-93 attenuated the calyculin A-induced RLC phosphorylation by about 40%, indicating a contribution from CaMKII. The residual phosphorylation in the presence of W7 indicated that also CaM-independent kinase activities might contribute. RLC phosphorylation was insensitive to protein kinase C inhibition. In conclusion, in addition to MLCK, CaMKII phosphorylates RLC in cardiomyocytes. Involvement of other kinases cannot be excluded.

  14. A Case of Abdominal Aortic Retroperitoneal and Mesenteric Amyloid Light Chain Amyloidoma

    PubMed Central

    Yokota, Kazuhiro; Kishida, Dai; Kayano, Hidekazu; Yazaki, Masahide; Shimada, Yuki; Akiyama, Yuji

    2016-01-01

    We report the case of a Japanese woman with amyloid light chain (AL) amyloidoma in the abdominal aortic retroperitoneum and mesentery. Irregular soft tissue mass lesions with calcification in the abdominal aortic retroperitoneum and mesentery were initially detected by computed tomography at another hospital. The lesions gradually compressed the duodenum, causing symptoms of bowel obstruction. The patient was clinically diagnosed with retroperitoneal fibrosis, and prednisolone was administered at a dose of 40 mg/day. However, the lesions did not change in size and her symptoms continued. She was transferred to our hospital and underwent mesenteric biopsy for histopathology using abdominal laparotomy. The histopathological and immunohistological findings of the mesenteric specimen demonstrated lambda light chain deposition. Accordingly, the patient was finally diagnosed with AL amyloidoma with no evidence of systemic amyloidosis. After laparotomy, her general condition worsened because of complications of pneumonia and deep vein thrombosis. She died suddenly from acute myocardial infarction. We have concluded that abdominal aortic retroperitoneal and mesenteric AL amyloidoma may have very poor prognoses in accordance with previous reports. In addition, the size and location of AL amyloidoma directly influence the prognosis. We suggest that early histopathology is important for improving prognosis. PMID:27752386

  15. Immunoglobulin Light-Chain Amyloidosis: From Basics to New Developments in Diagnosis, Prognosis and Therapy.

    PubMed

    Muchtar, Eli; Buadi, Francis K; Dispenzieri, Angela; Gertz, Morie A

    2016-01-01

    Immunoglobulin amyloid light-chain (AL) amyloidosis is the most common form of systemic amyloidosis, where the culprit amyloidogenic protein is immunoglobulin light chains produced by marrow clonal plasma cells. AL amyloidosis is an infrequent disease, and since presentation is variable and often nonspecific, diagnosis is often delayed. This results in cumulative organ damage and has a negative prognostic effect. AL amyloidosis can also be challenging on the diagnostic level, especially when demonstration of Congo red-positive tissue is not readily obtained. Since as many as 31 known amyloidogenic proteins have been identified to date, determination of the amyloid type is required. While several typing methods are available, mass spectrometry has become the gold standard for amyloid typing. Upon confirming the diagnosis of amyloidosis, a pursuit for organ involvement is essential, with a focus on heart involvement, even in the absence of suggestive symptoms for involvement, as this has both prognostic and treatment implications. Details regarding initial treatment options, including stem cell transplantation, are provided in this review. AL amyloidosis management requires a multidisciplinary approach with careful patient monitoring, as organ impairment has a major effect on morbidity and treatment tolerability until a response to treatment is achieved and recovery emerges.

  16. [Clinical usefulness of serum free light chain measurement in monoclonal gammopathy].

    PubMed

    Shimazaki, Chihiro; Murakami, Hirokazu; Sawamura, Morio; Matsuda, Masayuki; Kinoshita, Tomohiro; Hata, Hiroyuki; Sugiura, Isamu; Tsushita, Keitaroh; Nagura, Eiichi; Kosugi, Hiroshi; Itoh, Junji; Shimizu, Kazuyuki

    2010-04-01

    Recently, a highly sensitive assay (FREELITE) capable of measuring serum immunoglobulin-free light chains (FLC) was developed. An abnormal kappa/lambda ratio supports the presence of clonal plasma cell expansion. Using this assay, we measured serum and urine samples of 178 healthy volunteers, 184 patients with polyclonal gamma-globulinemia and 150 patients with monoclonal gamma-globulinemia. The diagnostic sensitivity of the FLC assays for monoclonal gammopathies was 88.0% and the specificity for healthy volunteers and polyclonal gammopathies was 96.1%. The minimal detection sensitivity of this assay for serum FLC was 0.3 mg/l and was greater than 100-fold more sensitive than serum protein electrophoresis (SPE). The combination of FLC with SPE and immunoelectrophoresis identified 99% of patients with monoclonal gammopathies. Effective treatment often leads to a more rapid reduction of the involved FLC level relative to the intact immunoglobulin or total light chain concentration because the half-life of FLC is <6 hours. These observations suggest that FREELITE is useful for diagnosis, disease monitoring and assessment of response to treatment in patients with monoclonal gammopathies such as multiple myeloma and AL amyloidosis.

  17. Multiple myeloma-associated skin light chain amyloidosis: A case of misdiagnosis

    PubMed Central

    XIAO, LI; LIN, FENGXIA; XIAO, RONG; HU, CHUN; DENG, MINGYANG; LI, DAIQIANG; SHE, XIAOLING; LIU, FUYOU; SUN, LIN

    2016-01-01

    The present study reports the case of a 42-year-old male with multiple myeloma (MM)-associated skin light chain amyloidosis who presented with skin purpura as the initial symptom, which was misdiagnosis as Henoch-Schönlein purpura nephritis prior to admission to the Second Xiangya Hospital (Changsha, Hunan, China). The patient presented with purpura, papules petechiae and spontaneous ecchymosis, which was located scattered around the neck, chest and limbs, accompanied by a small amount of bleeding in the conjunctival and oral mucosa, and a swollen tongue. Upon laboratory examination, the serum immunological change showed increased serum immunoglobulin G and λ light chain levels, and a urine Bence Jones protein level of >1 g/24 h. This was accompanied with an abnormal result for immunofixation electrophoresis, and positive staining with Congo red showing apple-green birefringence in skin biopsy specimens. Thus, the patient was diagnosed with MM-associated skin amyloidosis with the initial symptom of skin purpura. Following treatment with chemotherapy consisting of prednisone and bortezomib, the skin lesions markedly improved. The present study indicates that the presentation of skin purpura in systemic amyloidosis associated with MM may be an important aid in the diagnosis and direct treatment of this disease in the clinic. PMID:27284363

  18. Inhibition of pathologic immunoglobulin free light chain production by small interfering RNA molecules

    PubMed Central

    Phipps, Jonathan E.; Kestler, Daniel P.; Foster, James S.; Kennel, Stephen J.; Donnell, Robert; Weiss, Deborah T.; Solomon, Alan; Wall, Jonathan S.

    2010-01-01

    Objectives Morbidity and mortality occurring in patients with multiple myeloma, AL amyloidosis, and light chain deposition disease can result from the pathologic deposition of monoclonal Ig light chains (LCs) in kidneys and other organs. To reduce synthesis of such components, therapy for these disorders typically has involved anti-plasma cell agents; however, this approach is not always effective and can have adverse consequences. We have investigated another means to achieve this objective; namely, RNA interference (RNAi). Materials and Methods SP2/O mouse myeloma cells were stably transfected with a construct encoding a λ6 LC (Wil) under control of the CMV promoter, while λ2-producing myeloma cell line RPMI 8226 was purchased from the ATCC. Both were treated with small interfering RNA (siRNA) directed specifically to the V, J, or C portions of the molecules and then analyzed by ELISA, flow cytometry and real time PCR. Results Transfected cells were found to constitutively express detectable quantities of mRNA and protein Wil and, after exposure to siRNAs, an ~40% reduction in mRNA and LC production was evidenced at 48 hours. An even greater effect was seen with the 8226 cells. Conclusion Our results have shown that RNAi can markedly reduce LC synthesis and provide the basis for testing the therapeutic potential of this strategy using in vivo experimental models of multiple myeloma. PMID:20637260

  19. Endothelial cell substrate stiffness influences neutrophil transmigration via myosin light chain kinase-dependent cell contraction.

    PubMed

    Stroka, Kimberly M; Aranda-Espinoza, Helim

    2011-08-11

    A vast amount of work has been dedicated to the effects of shear flow and cytokines on leukocyte transmigration. However, no studies have explored the effects of substrate stiffness on transmigration. Here, we investigated important aspects of endothelial cell contraction-mediated neutrophil transmigration using an in vitro model of the vascular endothelium. We modeled blood vessels of varying mechanical properties using fibronectin-coated polyacrylamide gels of varying physiologic stiffness, plated with human umbilical vein endothelial cell (HUVEC) monolayers, which were activated with tumor necrosis factor-α. Interestingly, neutrophil transmigration increased with increasing substrate stiffness below the endothelium. HUVEC intercellular adhesion molecule-1 expression, stiffness, cytoskeletal arrangement, morphology, and cell-substrate adhesion could not account for the dependence of transmigration on HUVEC substrate stiffness. We also explored the role of cell contraction and observed that large holes formed in endothelium on stiff substrates several minutes after neutrophil transmigration reached a maximum. Further, suppression of contraction through inhibition of myosin light chain kinase normalized the effects of substrate stiffness by reducing transmigration and eliminating hole formation in HUVECs on stiff substrates. These results provide strong evidence that neutrophil transmigration is regulated by myosin light chain kinase-mediated endothelial cell contraction and that this event depends on subendothelial cell matrix stiffness. PMID:21652678

  20. Clathrin light chains' role in selective endocytosis influences antibody isotype switching.

    PubMed

    Wu, Shuang; Majeed, Sophia R; Evans, Timothy M; Camus, Marine D; Wong, Nicole M L; Schollmeier, Yvette; Park, Minjong; Muppidi, Jagan R; Reboldi, Andrea; Parham, Peter; Cyster, Jason G; Brodsky, Frances M

    2016-08-30

    Clathrin, a cytosolic protein composed of heavy and light chain subunits, assembles into a vesicle coat, controlling receptor-mediated endocytosis. To establish clathrin light chain (CLC) function in vivo, we engineered mice lacking CLCa, the major CLC isoform in B lymphocytes, generating animals with CLC-deficient B cells. In CLCa-null mice, the germinal centers have fewer B cells, and they are enriched for IgA-producing cells. This enhanced switch to IgA production in the absence of CLCa was attributable to increased transforming growth factor β receptor 2 (TGFβR2) signaling resulting from defective endocytosis. Internalization of C-X-C chemokine receptor 4 (CXCR4), but not CXCR5, was affected in CLCa-null B cells, and CLC depletion from cell lines affected endocytosis of the δ-opioid receptor, but not the β2-adrenergic receptor, defining a role for CLCs in the uptake of a subset of signaling receptors. This instance of clathrin subunit deletion in vertebrates demonstrates that CLCs contribute to clathrin's role in vivo by influencing cargo selectivity, a function previously assigned exclusively to adaptor molecules. PMID:27540116

  1. Cloning and characterization of a dynein light chain gene from Puccinia striiformis f. sp. tritici.

    PubMed

    Liu, Jie; Zhang, Qiong; Chang, Qing; Wang, Qiuling; Han, Lina; Liu, Jia; Li, Man; Zhuang, Hua; Kang, Zhensheng

    2014-07-01

    Stripe rust is one of the most serious wheat diseases worldwide. The fungus Puccinia striiformis f. sp. tritici (Pst), the causal agent of this disease, is an obligate biotrophic basidiomycete fungus. Numerous studies have shown that dyneins play important roles during fungal growth and propagation. However, knowledge is limited regarding the function of dyneins in Pst. In this study, we cloned the dynein light chain gene PsDLC1 from Pst and characterized its expression. The function of PsDLC1 was determined by heterologous mutant complementation. Expression of PsDLC1 in Aspergillus nidulans partially complemented the defects of the ΔnudG mutant, indicating that PsDLC1 belongs to the dynein light chain LC8 family. In addition, PsDLC1 was identified in Pst using virus-induced gene silencing (VIGS). Knockdown of PsDLC1 produces no significant effect on Pst growth and development, indicating that PsDLC1 is unnecessary for Pst infection of wheat.

  2. Nonmuscle Myosin IIA Regulates Platelet Contractile Forces Through Rho Kinase and Myosin Light-Chain Kinase.

    PubMed

    Feghhi, Shirin; Tooley, Wes W; Sniadecki, Nathan J

    2016-10-01

    Platelet contractile forces play a major role in clot retraction and help to hold hemostatic clots against the vessel wall. Platelet forces are produced by its cytoskeleton, which is composed of actin and nonmuscle myosin filaments. In this work, we studied the role of Rho kinase, myosin light-chain kinase, and myosin in the generation of contractile forces by using pharmacological inhibitors and arrays of flexible microposts to measure platelet forces. When platelets were seeded onto microposts, they formed aggregates on the tips of the microposts. Forces produced by the platelets in the aggregates were measured by quantifying the deflection of the microposts, which bent in proportion to the force of the platelets. Platelets were treated with small molecule inhibitors of myosin activity: Y-27632 to inhibit the Rho kinase (ROCK), ML-7 to inhibit myosin light-chain kinase (MLCK), and blebbistatin to inhibit myosin ATPase activity. ROCK inhibition reduced platelet forces, demonstrating the importance of the assembly of actin and myosin phosphorylation in generating contractile forces. Similarly, MLCK inhibition caused weaker platelet forces, which verifies that myosin phosphorylation is needed for force generation in platelets. Platelets treated with blebbistatin also had weaker forces, which indicates that myosin's ATPase activity is necessary for platelet forces. Our studies demonstrate that myosin ATPase activity and the regulation of actin-myosin assembly by ROCK and MLCK are needed for the generation of platelet forces. Our findings illustrate and explain the importance of myosin for clot compaction in hemostasis and thrombosis. PMID:27548633

  3. Clinical responses with T lymphocytes targeting malignancy-associated κ light chains

    PubMed Central

    Ramos, Carlos A.; Savoldo, Barbara; Torrano, Vicky; Ballard, Brandon; Zhang, Huimin; Dakhova, Olga; Liu, Enli; Carrum, George; Kamble, Rammurti T.; Gee, Adrian P.; Mei, Zhuyong; Wu, Meng-Fen; Liu, Hao; Grilley, Bambi; Rooney, Cliona M.; Brenner, Malcolm K.; Heslop, Helen E.; Dotti, Gianpietro

    2016-01-01

    BACKGROUND. Treatment of B cell malignancies with adoptive transfer of T cells with a CD19-specific chimeric antigen receptor (CAR) shows remarkable clinical efficacy. However, long-term persistence of T cells targeting CD19, a pan–B cell marker, also depletes normal B cells and causes severe hypogammaglobulinemia. Here, we developed a strategy to target B cell malignancies more selectively by taking advantage of B cell light Ig chain restriction. We generated a CAR that is specific for the κ light chain (κ.CAR) and therefore recognizes κ-restricted cells and spares the normal B cells expressing the nontargeted λ light chain, thus potentially minimizing humoral immunity impairment. METHODS. We conducted a phase 1 clinical trial and treated 16 patients with relapsed or refractory κ+ non-Hodgkin lymphoma/chronic lymphocytic leukemia (NHL/CLL) or multiple myeloma (MM) with autologous T cells genetically modified to express κ.CAR (κ.CARTs). Other treatments were discontinued in 11 of the 16 patients at least 4 weeks prior to T cell infusion. Six patients without lymphopenia received 12.5 mg/kg cyclophosphamide 4 days before κ.CART infusion (0.2 × 108 to 2 × 108 κ.CARTs/m2). No other lymphodepletion was used. RESULTS. κ.CART expansion peaked 1–2 weeks after infusion, and cells remained detectable for more than 6 weeks. Of 9 patients with relapsed NHL or CLL, 2 entered complete remission after 2 and 3 infusions of κ.CARTs, and 1 had a partial response. Of 7 patients with MM, 4 had stable disease lasting 2–17 months. No toxicities attributable to κ.CARTs were observed. CONCLUSION. κ.CART infusion is feasible and safe and can lead to complete clinical responses. TRIAL REGISTRATION. ClinicalTrials.gov NCT00881920. FUNDING. National Cancer Institute (NCI) grants 3P50CA126752 and 5P30CA125123 and Leukemia and Lymphoma Society (LLS) Specialized Centers of Research (SCOR) grant 7018. PMID:27270177

  4. Purification, Characterization, and Analysis of the Allergenic Properties of Myosin Light Chain in Procambarus clarkii.

    PubMed

    Zhang, Yong-Xia; Chen, Heng-Li; Maleki, Soheila J; Cao, Min-Jie; Zhang, Ling-Jing; Su, Wen-Jin; Liu, Guang-Ming

    2015-07-15

    Myosin light chain (MLC) plays a vital role in cell and muscle functions and has been identified as an allergen in shrimp. In this study, MLC with a molecular mass of 18 kDa was purified from crayfish (Procambarus clarkii) muscle. Its physicochemical characterization showed that the purified MLC is a glycoprotein with 4.3% carbohydrate, highly stable to heat, acid-alkali, and digestion, and weakly retains IgE-binding activity when its secondary structure was altered. Serological assays suggested that conformational epitopes predominate over linear epitopes in the purified MLC. Two isoforms of the MLC gene (MLC1 and MLC2) were cloned, and the purified MLC was identified as MLC1. Analysis of the secondary and tertiary structures of the MLCs indicated that MLC1 has four conformational epitopes and three linear epitopes, whereas MLC2 had a major conformational epitope and three linear epitopes. These results are significant for understanding hypersensitization of humans to crayfish.

  5. AL (Light-Chain) Cardiac Amyloidosis: A Review of Diagnosis and Therapy.

    PubMed

    Falk, Rodney H; Alexander, Kevin M; Liao, Ronglih; Dorbala, Sharmila

    2016-09-20

    The amyloidoses are a group of protein-folding disorders in which ≥1 organ is infiltrated by proteinaceous deposits known as amyloid. The deposits are derived from 1 of several amyloidogenic precursor proteins, and the prognosis of the disease is determined both by the organ(s) involved and the type of amyloid. Amyloid involvement of the heart (cardiac amyloidosis) carries the worst prognosis of any involved organ, and light-chain (AL) amyloidosis is the most serious form of the disease. The last decade has seen considerable progress in understanding the amyloidoses. In this review, current and novel approaches to the diagnosis and treatment of cardiac amyloidosis are discussed, with particular reference to AL amyloidosis in the heart. PMID:27634125

  6. Proliferative glomerulonephritis with monoclonal immunoglobulin deposition disease: The utility of routine staining with immunoglobulin light chains

    PubMed Central

    Gowda, K. K.; Nada, R.; Ramachandran, R.; Joshi, K.; Tewari, R.; Kohli, H. S.; Jha, V.; Gupta, K. L.

    2015-01-01

    Proliferative glomerulonephritis occurring as a consequence of monoclonal glomerular deposits of IgG is uncommon. It is a form of renal involvement in monoclonal gammopathy that mimics immune complex glomerulonephritis. Here, we report the first series of proliferative glomerulonephritis with monoclonal IgG deposits (PGNMID) from the Indian subcontinent highlighting use of light chain immunofluorescence (IF) in routine renal biopsy interpretation. We retrieved 6 patients diagnosed as proliferative glomerulonephritis with monoclonal IgG deposits (PGNMID) out of 160 biopsies (3.7%) with membranoproliferative patterns over 5 1/2 years (2009–2014), one of whom had recurrence 6 months post-renal transplant. Four (67%) patients presented with rapidly progressive renal failure and two (33%) with nephrotic syndrome. None of these patients had overt multiple myeloma. The predominant histologic pattern was membranoproliferative with all the biopsies showing IgG3 Kappa deposits on IF. The deposits were primarily subendothelial on electron microscopy. PMID:26664209

  7. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility

    NASA Technical Reports Server (NTRS)

    Morfini, Gerardo; Szebenyi, Gyorgyi; Elluru, Ravindhra; Ratner, Nancy; Brady, Scott T.

    2002-01-01

    Membrane-bounded organelles (MBOs) are delivered to different domains in neurons by fast axonal transport. The importance of kinesin for fast antero grade transport is well established, but mechanisms for regulating kinesin-based motility are largely unknown. In this report, we provide biochemical and in vivo evidence that kinesin light chains (KLCs) interact with and are in vivo substrates for glycogen synthase kinase 3 (GSK3). Active GSK3 inhibited anterograde, but not retrograde, transport in squid axoplasm and reduced the amount of kinesin bound to MBOs. Kinesin microtubule binding and microtubule-stimulated ATPase activities were unaffected by GSK3 phosphorylation of KLCs. Active GSK3 was also localized preferentially to regions known to be sites of membrane delivery. These data suggest that GSK3 can regulate fast anterograde axonal transport and targeting of cargos to specific subcellular domains in neurons.

  8. Recurrent Syncope and Cardiac Arrest in a Patient with Systemic Light Chain Amyloidosis Treated with Bortezomib.

    PubMed

    Jaipaul, Navin; Pi, Alexander; Zhang, Zhiwei

    2016-05-10

    About 10-15% of patients with multiple myeloma develop light chain (AL) amyloidosis. AL amyloidosis is a systemic disease that may involve multiple organs, often including the heart. It may present clinically with bradyarrhythmia and syncope. The proteasome inhibitor bortezomib has been used with clinical efficacy in treating patients with AL amyloidosis but also implicated as a possible cause of cardiomyocyte injury. We report a case of a 48-year-old man with AL amyloidosis and increased frequency of syncope and cardiac arrest after starting bortezomib. The biologic and clinical plausibility of a heightened risk for cardiac arrest in patients with cardiac AL amyloidosis and history of syncope being treated with bortezomib is a possibility that is not well documented in the medical literature and warrants further investigation. PMID:27499835

  9. Recurrent Syncope and Cardiac Arrest in a Patient with Systemic Light Chain Amyloidosis Treated with Bortezomib

    PubMed Central

    Jaipaul, Navin; Pi, Alexander; Zhang, Zhiwei

    2016-01-01

    About 10-15% of patients with multiple myeloma develop light chain (AL) amyloidosis. AL amyloidosis is a systemic disease that may involve multiple organs, often including the heart. It may present clinically with bradyarrhythmia and syncope. The proteasome inhibitor bortezomib has been used with clinical efficacy in treating patients with AL amyloidosis but also implicated as a possible cause of cardiomyocyte injury. We report a case of a 48-year-old man with AL amyloidosis and increased frequency of syncope and cardiac arrest after starting bortezomib. The biologic and clinical plausibility of a heightened risk for cardiac arrest in patients with cardiac AL amyloidosis and history of syncope being treated with bortezomib is a possibility that is not well documented in the medical literature and warrants further investigation. PMID:27499835

  10. Kinesin's light chains inhibit the head- and microtubule-binding activity of its tail.

    PubMed

    Wong, Yao Liang; Rice, Sarah E

    2010-06-29

    Kinesin-1 is a microtubule-based motor comprising two heavy chains (KHCs) and two light chains (KLCs). Motor activity is precisely regulated to avoid futile ATP consumption and to ensure proper intracellular localization of kinesin-1 and its cargoes. The KHC tail inhibits ATPase activity by interacting with the enzymatic KHC heads, and the tail also binds microtubules. Here, we present a role for the KLCs in regulating both the head- and microtubule-binding activities of the kinesin-1 tail. We show that KLCs reduce the affinity of the head-tail interaction over tenfold and concomitantly repress the tail's regulatory activity. We also show that KLCs inhibit tail-microtubule binding by a separate mechanism. Inhibition of head-tail binding requires steric and electrostatic factors. Inhibition of tail-microtubule binding is largely electrostatic, pH dependent, and mediated partly by a highly negatively charged linker region between the KHC-interacting and cargo-binding domains of the KLCs. Our data support a model wherein KLCs promote activation of kinesin-1 for cargo transport by simultaneously suppressing tail-head and tail-microtubule interactions. KLC-mediated inhibition of tail-microtubule binding may also influence diffusional movement of kinesin-1 on microtubules, and kinesin-1's role in microtubule transport/sliding. PMID:20547877

  11. Cloning of immunoglobulin kappa light chain genes from mouse liver and myeloma MOPC 173.

    PubMed

    Steinmetz, M; Zachau, H G; Mach, B

    1979-07-25

    The organization of the kappa chain constant region gene was compared in DNA from an immunoglobulin-producing mouse myeloma (MOPC 173) and from liver. In situ hybridization using the Southern blotting technique revealed constant region gene-containing EcoRI-DNA fragments of 14 and 20 kb in the myeloma tissue whereas one EcoRI-DNA fragment with a length of 15 kb was found in liver DNA. After enrichment by RPC-5 chromatography and preparative electrophoresis the 14 kb fragment from MOPC 173 DNA and the 15 kb fragment from liver DNA were cloned in the bacteriophage lambda vector Charon 4A using in vitro packaging. Extensive characterization of the two fragments by restriction endonuclease mapping, in situ hybridization, and electron microscopy (R-loop and heteroduplex) showed that both fragments contain the constant region but no MOPC 173 variable region gene. Both fragments are homologous over a length of 12.5 kb including the constant region but differ from one another starting about 2.7 kb from the 5' end of the constant region gene. This indicates that the 14 kb EcoRI-DNA fragment from the myeloma tissue clearly resulted from somatic DNA rearrangement although it does not seem to carry the MOPC 173 variable region gene. These observations suggest that somatic DNA rearrangement of immunoglobulin light chain genes can involve both homologous chromosomes.Images

  12. Conventional Kinesin Holoenzymes Are Composed of Heavy and Light Chain Homodimers†

    PubMed Central

    DeBoer, Scott R.; You, YiMei; Szodorai, Anita; Kaminska, Agnieszka; Pigino, Gustavo; Nwabuisi, Evelyn; Wang, Bin; Estrada-Hernandez, Tatiana; Kins, Stefan; Brady, Scott T.; Morfini, Gerardo

    2009-01-01

    Conventional kinesin is a major microtubule-based motor protein responsible for anterograde transport of various membrane-bounded organelles (MBO) along axons. Structurally, this molecular motor protein is a tetrameric complex composed of two heavy (kinesin-1) chains and two light chain (KLC) subunits. The products of three kinesin-1 (kinesin-1A, -1B, and -1C, formerly KIF5A, -B, and -C) and two KLC (KLC1, KLC2) genes are expressed in mammalian nervous tissue, but the functional significance of this subunit heterogeneity remains unknown. In this work, we examine all possible combinations among conventional kinesin subunits in brain tissue. In sharp contrast with previous reports, immunoprecipitation experiments here demonstrate that conventional kinesin holoenzymes are formed of kinesin-1 homodimers. Similar experiments confirmed previous findings of KLC homodimerization. Additionally, no specificity was found in the interaction between kinesin-1s and KLCs, suggesting the existence of six variant forms of conventional kinesin, as defined by their gene product composition. Subcellular fractionation studies indicate that such variants associate with biochemically different MBOs and further suggest a role of kinesin-1s in the targeting of conventional kinesin holoenzymes to specific MBO cargoes. Taken together, our data address the combination of subunits that characterize endogenous conventional kinesin. Findings on the composition and subunit organization of conventional kinesin as described here provide a molecular basis for the regulation of axonal transport and delivery of selected MBOs to discrete subcellular locations. PMID:18361505

  13. An outer arm dynein light chain acts in a conformational switch for flagellar motility

    PubMed Central

    Patel-King, Ramila S.

    2009-01-01

    A system distinct from the central pair–radial spoke complex was proposed to control outer arm dynein function in response to alterations in the mechanical state of the flagellum. In this study, we examine the role of a Chlamydomonas reinhardtii outer arm dynein light chain that associates with the motor domain of the γ heavy chain (HC). We demonstrate that expression of mutant forms of LC1 yield dominant-negative effects on swimming velocity, as the flagella continually beat out of phase and stall near or at the power/recovery stroke switchpoint. Furthermore, we observed that LC1 interacts directly with tubulin in a nucleotide-independent manner and tethers this motor unit to the A-tubule of the outer doublet microtubules within the axoneme. Therefore, this dynein HC is attached to the same microtubule by two sites: via both the N-terminal region and the motor domain. We propose that this γ HC–LC1–microtubule ternary complex functions as a conformational switch to control outer arm activity. PMID:19620633

  14. The regulation of RhoGEF Lfc by dynein light chain Tctex-1

    NASA Astrophysics Data System (ADS)

    Balan, Marc

    Lfc is a guanine nucleotide exchange factor (GEF) that activates the small GTPase RhoA, and its GEF activity is tightly regulated through protein-protein interactions, phosphorylation, and cellular localization. Lfc is anchored to microtubules through its interaction with the dynein light chain Tctex-1, which results in inhibition of Lfc's GEF activity. Here we present a crystallographic structure of Tctex-1 in complex with Lfc with residues 143-155 of Lfc bound at the Tctex-1 dimer interface. Structural alignment of our structure with Tctex-1 in complex with the dynein intermediate chain (DIC) shows the binding site of the DIC peptide and Lfc substantially overlap. Biochemical evidence, NMR perturbations assays and intrinsic fluorescence provide structural validation and support an extension of the Lfc binding site to the andalpha;-helices that may accommodate additional contact points with Tctex-1. We postulate a potential mechanism for Lfcandrsquo;s recruitment to the microtubules through a tripartite complex with Tctex-1 and DIC.

  15. Structure and function of outer dynein arm intermediate and light chain complex

    PubMed Central

    Oda, Toshiyuki; Abe, Tatsuki; Yanagisawa, Haruaki; Kikkawa, Masahide

    2016-01-01

    The outer dynein arm (ODA) is a molecular complex that drives the beating motion of cilia/flagella. Chlamydomonas ODA is composed of three heavy chains (HCs), two ICs, and 11 light chains (LCs). Although the three-dimensional (3D) structure of the whole ODA complex has been investigated, the 3D configurations of the ICs and LCs are largely unknown. Here we identified the 3D positions of the two ICs and three LCs using cryo–electron tomography and structural labeling. We found that these ICs and LCs were all localized at the root of the outer-inner dynein (OID) linker, designated the ODA-Beak complex. Of interest, the coiled-coil domain of IC2 extended from the ODA-Beak to the outer surface of ODA. Furthermore, we investigated the molecular mechanisms of how the OID linker transmits signals to the ODA-Beak, by manipulating the interaction within the OID linker using a chemically induced dimerization system. We showed that the cross-linking of the OID linker strongly suppresses flagellar motility in vivo. These results suggest that the ICs and LCs of the ODA form the ODA-Beak, which may be involved in mechanosignaling from the OID linker to the HCs. PMID:26864626

  16. Cytoplasmic free calcium, myosin light chain phosphorylation, and force in phasic and tonic smooth muscle

    PubMed Central

    1988-01-01

    The time course of [Ca2+]i, tension, and myosin light chain phosphorylation were determined during prolonged depolarization with high K+ in intact tonic (rabbit pulmonary artery) and phasic (longitudinal layer of guinea pig ileum) smooth muscles. [Ca2+]i was monitored with the 340 nm/380 nm signal ratio of the fluorescent indicator fura-2. The fluorescence ratio had a similar time course in both muscle types during depolarization with 109 mM [K+]o; after a transient peak, there was a decline to 70% of its peak value in tonic smooth muscle, and to 60% in phasic smooth muscle. Tension, however, continued to increase in the pulmonary artery, while in the ileum it declined in parallel with the [Ca2+]i. On changing [K+]o from 109 to 20 mM, tension and [Ca2+]i either remained unchanged or declined in parallel in the pulmonary artery. Phosphorylation of the 20-kD myosin light chain, measured during stimulation of muscle strips with 109 mM [K+]o in another set of experiments, increased from 3% to a peak of 50% in the intact pulmonary artery, and then declined to a steady state value of 23%. In the intact ileum, a very rapid, early transient phosphorylation (up to 50%) at 2-3 s was seen. This transient declined by 30 s to a value that was close to the resting level (7%), while tension remained at 55% of its peak force. A quick release during maintained stimulation induced no detectable change in the [Ca2+]i in either type of smooth muscle. We discuss the possibility that the slowly rising tonic tension in pulmonary artery could be due to cooperativity between phosphorylated and nonphosphorylated crossbridges. PMID:3216188

  17. Crystal Structures of the Tetratricopeptide Repeat Domains of Kinesin Light Chains: Insight into Cargo Recognition Mechanisms

    SciTech Connect

    Zhu, Haizhong; Lee, Han Youl; Tong, Yufeng; Hong, Bum-Soo; Kim, Kyung-Phil; Shen, Yang; Lim, Kyung Jik; Mackenzie, Farrell; Tempel, Wolfram; Park, Hee-Won

    2012-10-23

    Kinesin-1 transports various cargos along the axon by interacting with the cargos through its light chain subunit. Kinesin light chains (KLC) utilize its tetratricopeptide repeat (TPR) domain to interact with over 10 different cargos. Despite a high sequence identity between their TPR domains (87%), KLC1 and KLC2 isoforms exhibit differential binding properties towards some cargos. We determined the structures of human KLC1 and KLC2 tetratricopeptide repeat (TPR) domains using X-ray crystallography and investigated the different mechanisms by which KLCs interact with their cargos. Using isothermal titration calorimetry, we attributed the specific interaction between KLC1 and JNK-interacting protein 1 (JIP1) cargo to residue N343 in the fourth TRP repeat. Structurally, the N343 residue is adjacent to other asparagines and lysines, creating a positively charged polar patch within the groove of the TPR domain. Whereas, KLC2 with the corresponding residue S328 did not interact with JIP1. Based on these finding, we propose that N343 of KLC1 can form 'a carboxylate clamp' with its neighboring asparagine to interact with JIP1, similar to that of HSP70/HSP90 organizing protein-1's (HOP1) interaction with heat shock proteins. For the binding of cargos shared by KLC1 and KLC2, we propose a different site located within the groove but not involving N343. We further propose a third binding site on KLC1 which involves a stretch of polar residues along the inter-TPR loops that may form a network of hydrogen bonds to JIP3 and JIP4. Together, these results provide structural insights into possible mechanisms of interaction between KLC TPR domains and various cargo proteins.

  18. PKC-mediated cerebral vasoconstriction: Role of myosin light chain phosphorylation versus actin cytoskeleton reorganization.

    PubMed

    El-Yazbi, Ahmed F; Abd-Elrahman, Khaled S; Moreno-Dominguez, Alejandro

    2015-06-15

    Defective protein kinase C (PKC) signaling has been suggested to contribute to abnormal vascular contraction in disease conditions including hypertension and diabetes. Our previous work on agonist and pressure-induced cerebral vasoconstriction implicated PKC as a major contributor to force production in a myosin light chain (LC20) phosphorylation-independent manner. Here, we used phorbol dibutyrate to selectively induce a PKC-dependent constriction in rat middle cerebral arteries and delineate the relative contribution of different contractile mechanisms involved. Specifically, we employed an ultra-sensitive 3-step western blotting approach to detect changes in the content of phosphoproteins that regulate myosin light chain phosphatase (MLCP) activity, thin filament activation, and actin cytoskeleton reorganization. Data indicate that PKC activation evoked a greater constriction at a similar level of LC20 phosphorylation achieved by 5-HT. PDBu-evoked constriction persisted in the presence of Gö6976, a selective inhibitor of Ca(2+)-dependent PKC, and in the absence of extracellular Ca(2+). Biochemical evidence indicates that either + or - extracellular Ca(2+), PDBu (i) inhibits MLCP activity via the phosphorylation of myosin targeting subunit of myosin phosphatase (MYPT1) and C-kinase potentiated protein phosphatase-1 inhibitor (CPI-17), (ii) increases the phosphorylation of paxillin and heat shock protein 27 (HSP27), and reduces G-actin content, and (iii) does not change the phospho-content of the thin filament proteins, calponin and caldesmon. PDBu-induced constriction was more sensitive to disruption of actin cytoskeleton compared to inhibition of cross-bridge cycling. In conclusion, this study provided evidence for the pivotal contribution of cytoskeletal actin polymerization in force generation following PKC activation in cerebral resistance arteries. PMID:25931148

  19. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon.

    PubMed

    Del Coso, Juan; Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts.

  20. Loss of tubular creatinine secretion as the only sign of tubular proximal cell dysfunction in light chain proximal tubulopathy

    PubMed Central

    Stehlé, Thomas; Vignon, Marguerite; Flamant, Martin; Figueres, Marie-Lucile; Rabant, Marion; Rodenas, Anita; Noël, Laure-Hélène; Arnulf, Bertrand; Vidal-Petiot, Emmanuelle

    2016-01-01

    Abstract Light chain proximal tubulopathy (LCPT) is a rare disease, characterized by cytoplasmic inclusions of light chain (usually kappa) immunoglobulins. Clinical presentation is usually a Fanconi syndrome. The proximal tubular dysfunction can be incomplete, and exceptional cases of LCPT without any tubular dysfunction have even been described. Here, we report a case of LCPT in which the only sign of proximal tubulopathy is the absence of secretion of creatinine, as assessed by the simultaneous measurement of renal clearance of creatinine and 51CrEDTA. The loss of tubular creatinine secretion as a sign of tubular proximal cell dysfunction ought to be identified in patients with light chain proximal tubulopathy as it leads to a clinically relevant underestimation of GFR by the creatinine-derived equations. The prevalence and prognostic significance of this particular proximal tubular damage in LCPT remain to be determined. PMID:27367983

  1. Purification and characterization of a stimulator of plasmin generation from the antiangiogenic agent Neovastat: identification as immunoglobulin kappa light chain.

    PubMed

    Boivin, Dominique; Provençal, Mathieu; Gendron, Sébastien; Ratel, David; Demeule, Michel; Gingras, Denis; Béliveau, Richard

    2004-11-15

    We have recently shown that Neovastat, an antiangiogenic extract from shark cartilage, stimulates the in vitro activation of plasminogen by facilitating the tissue-type plasminogen activator (tPA)-dependent conversion of plasminogen to plasmin. In this report, we describe the purification and characterization of the stimulatory molecules. Neovastat was subjected to a three-step purification procedure including gel filtration, preparative isoelectric focusing, and preparative SDS-PAGE. Two 28-kDa proteins with pIs of approximately 4.5 and 6.5 were purified to apparent homogeneity and identified as immunoglobulin (Ig) kappa light chains by N-terminal microsequencing. Ig light chains do not directly stimulate the activity of tPA or plasmin, suggesting a mechanism of action involving an interaction with plasminogen. Kinetic analysis showed that both Ig light chains accelerate the in vitro tPA-dependent conversion of plasminogen in plasmin by increasing the affinity of tPA for plasminogen by 32- and 38-fold (Km decrease from 456 nM to 12-14 nM). Shark Ig light chains also stimulated the degradation of fibrin by the tPA/plasminogen system in an in vitro assay. A direct interaction between Ig light chains and plasminogen (KA=4.0-5.5 x 10(7) M(-1); KD=18-25 nM) and with tPA (KA=2.8 x 10(7) M(-1); KD=36 nM) was demonstrated using real time binding measured by surface plasmon resonance. Ig light chain is the first molecule associated with the antiangiogenic activity of Neovastat to be purified and identified. PMID:15488468

  2. Genetically engineering cyanobacteria to convert CO₂, water, and light into the long-chain hydrocarbon farnesene.

    PubMed

    Halfmann, Charles; Gu, Liping; Gibbons, William; Zhou, Ruanbao

    2014-12-01

    Genetically engineered cyanobacteria offer a shortcut to convert CO2 and H2O directly into biofuels and high value chemicals for societal benefits. Farnesene, a long-chained hydrocarbon (C15H24), has many applications in lubricants, cosmetics, fragrances, and biofuels. However, a method for the sustainable, photosynthetic production of farnesene has been lacking. Here, we report the photosynthetic production of farnesene by the filamentous cyanobacterium Anabaena sp. PCC 7120 using only CO2, mineralized water, and light. A codon-optimized farnesene synthase gene was chemically synthesized and then expressed in the cyanobacterium, enabling it to synthesize farnesene through its endogenous non-mevalonate (MEP) pathway. Farnesene excreted from the engineered cyanobacterium volatilized into the flask head space and was recovered by adsorption in a resin column. The maximum photosynthetic productivity of farnesene was 69.1 ± 1.8 μg·L(-1)·O.D.(-1)·d(-1). Compared to the wild type, the farnesene-producing cyanobacterium also exhibited a 60 % higher PSII activity under high light, suggesting increased farnesene productivity in such conditions. We envision genetically engineered cyanobacteria as a bio-solar factory for photosynthetic production of a wide range of biofuels and commodity chemicals.

  3. Genetically engineering cyanobacteria to convert CO₂, water, and light into the long-chain hydrocarbon farnesene.

    PubMed

    Halfmann, Charles; Gu, Liping; Gibbons, William; Zhou, Ruanbao

    2014-12-01

    Genetically engineered cyanobacteria offer a shortcut to convert CO2 and H2O directly into biofuels and high value chemicals for societal benefits. Farnesene, a long-chained hydrocarbon (C15H24), has many applications in lubricants, cosmetics, fragrances, and biofuels. However, a method for the sustainable, photosynthetic production of farnesene has been lacking. Here, we report the photosynthetic production of farnesene by the filamentous cyanobacterium Anabaena sp. PCC 7120 using only CO2, mineralized water, and light. A codon-optimized farnesene synthase gene was chemically synthesized and then expressed in the cyanobacterium, enabling it to synthesize farnesene through its endogenous non-mevalonate (MEP) pathway. Farnesene excreted from the engineered cyanobacterium volatilized into the flask head space and was recovered by adsorption in a resin column. The maximum photosynthetic productivity of farnesene was 69.1 ± 1.8 μg·L(-1)·O.D.(-1)·d(-1). Compared to the wild type, the farnesene-producing cyanobacterium also exhibited a 60 % higher PSII activity under high light, suggesting increased farnesene productivity in such conditions. We envision genetically engineered cyanobacteria as a bio-solar factory for photosynthetic production of a wide range of biofuels and commodity chemicals. PMID:25301585

  4. The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions

    PubMed Central

    Blisnick, Thierry; Buisson, Johanna; Absalon, Sabrina; Marie, Alexandra; Cayet, Nadège; Bastin, Philippe

    2014-01-01

    Cilia and flagella are assembled by intraflagellar transport (IFT) of protein complexes that bring tubulin and other precursors to the incorporation site at their distal tip. Anterograde transport is driven by kinesin, whereas retrograde transport is ensured by a specific dynein. In the protist Trypanosoma brucei, two distinct genes encode fairly different dynein heavy chains (DHCs; ∼40% identity) termed DHC2.1 and DHC2.2, which form a heterodimer and are both essential for retrograde IFT. The stability of each heavy chain relies on the presence of a dynein light intermediate chain (DLI1; also known as XBX-1/D1bLIC). The presence of both heavy chains and of DLI1 at the base of the flagellum depends on the intermediate dynein chain DIC5 (FAP133/WDR34). In the IFT140RNAi mutant, an IFT-A protein essential for retrograde transport, the IFT dynein components are found at high concentration at the flagellar base but fail to penetrate the flagellar compartment. We propose a model by which the IFT dynein particle is assembled in the cytoplasm, reaches the base of the flagellum, and associates with the IFT machinery in a manner dependent on the IFT-A complex. PMID:24989795

  5. The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions.

    PubMed

    Blisnick, Thierry; Buisson, Johanna; Absalon, Sabrina; Marie, Alexandra; Cayet, Nadège; Bastin, Philippe

    2014-09-01

    Cilia and flagella are assembled by intraflagellar transport (IFT) of protein complexes that bring tubulin and other precursors to the incorporation site at their distal tip. Anterograde transport is driven by kinesin, whereas retrograde transport is ensured by a specific dynein. In the protist Trypanosoma brucei, two distinct genes encode fairly different dynein heavy chains (DHCs; ∼40% identity) termed DHC2.1 and DHC2.2, which form a heterodimer and are both essential for retrograde IFT. The stability of each heavy chain relies on the presence of a dynein light intermediate chain (DLI1; also known as XBX-1/D1bLIC). The presence of both heavy chains and of DLI1 at the base of the flagellum depends on the intermediate dynein chain DIC5 (FAP133/WDR34). In the IFT140(RNAi) mutant, an IFT-A protein essential for retrograde transport, the IFT dynein components are found at high concentration at the flagellar base but fail to penetrate the flagellar compartment. We propose a model by which the IFT dynein particle is assembled in the cytoplasm, reaches the base of the flagellum, and associates with the IFT machinery in a manner dependent on the IFT-A complex.

  6. Block of transmitter release by botulinum C1 action on syntaxin at the squid giant synapse.

    PubMed

    Marsal, J; Ruiz-Montasell, B; Blasi, J; Moreira, J E; Contreras, D; Sugimori, M; Llinás, R

    1997-12-23

    Electrophysiological, morphological, and biochemical approaches were combined to study the effect of the presynaptic injection of the light chain of botulinum toxin C1 into the squid giant synapse. Presynaptic injection was accompanied by synaptic block that occurred progressively as the toxin filled the presynaptic terminal. Neither the presynaptic action potential nor the Ca2+ currents in the presynaptic terminal were affected by the toxin. Biochemical analysis of syntaxin moiety in squid indicates that the light chain of botulinum toxin C1 lyses syntaxin in vitro, suggesting that this was the mechanism responsible for synaptic block. Ultrastructure of the injected synapses demonstrates an enormous increase in the number of presynaptic vesicles, suggesting that the release rather than the docking of vesicles is affected by biochemical lysing of the syntaxin molecule.

  7. Elevated neurofilament light chain (NFL) mRNA levels in prediabetic peripheral neuropathy.

    PubMed

    Celikbilek, Asuman; Tanik, Nermin; Sabah, Seda; Borekci, Elif; Akyol, Lutfi; Ak, Hakan; Adam, Mehmet; Suher, Murat; Yilmaz, Neziha

    2014-06-01

    Evidence suggests that peripheral nerve injury occurs during the early stages of disease with mild glycemic dysregulation. Two proteins, neuron-specific enolase (NSE) and neurofilament light chain (NFL), have been examined previously as possible markers of neuronal damage in the pathophysiology of neuropathies. Herein, we aimed to determine the potential value of circulatory NSE and NFL mRNA levels in prediabetic patients and in those with peripheral neuropathy. This prospective clinical study included 45 prediabetic patients and 30 age- and sex-matched controls. All prediabetic patients were assessed with respect to diabetes-related microvascular complications, such as peripheral neuropathy, retinopathy and nephropathy. mRNA levels of NSE and NFL were determined in the blood by real-time polymerase chain reaction. NSE mRNA levels were similar between prediabetic and control groups (p > 0.05), whereas NFL mRNA levels were significantly higher in prediabetics than in controls (p < 0.001). NSE mRNA levels did not significantly differ between prediabetic patients with and without peripheral neuropathy (p > 0.05), while NFL mRNA levels were significantly higher in prediabetics with peripheral neuropathy than in those without (p = 0.038). According to correlation analysis, NFL mRNA levels were positively correlated with the Douleur Neuropathique 4 questionnaire score in prediabetic patients (r = 0.302, p = 0.044). This is the first study to suggest blood NFL mRNA as a surrogate marker for early prediction of prediabetic peripheral neuropathy, while NSE mRNA levels may be of no diagnostic value in prediabetic patients.

  8. Comparing domain interactions within antibody Fabs with kappa and lambda light chains

    PubMed Central

    Toughiri, Raheleh; Wu, Xiufeng; Ruiz, Diana; Huang, Flora; Crissman, John W.; Dickey, Mark; Froning, Karen; Conner, Elaine M.; Cujec, Thomas P.; Demarest, Stephen J.

    2016-01-01

    ABSTRACT IgG antibodies are multi-domain proteins with complex inter-domain interactions. Human IgG heavy chains (HCs) associate with light chains (LCs) of the κ or λ isotype to form mature antibodies capable of binding antigen. The HC/LC interaction involves 4 domains: VH and CH1 from the HC and VL and CL from the LC. Human Fabs with κ LCs have been well characterized for their unfolding behaviors and demonstrate a significant level of cooperativity and stabilization when all 4 domains are intact. Very little is known regarding the thermodynamic properties of human Fabs with λ LCs. Here, we dissect the domain contributions to Fab stability for both κ and λ LC-containing Fabs. We find the cooperativity of unfolding between the constant domains, CH1/Cλ, and variable domains, VH/Vλ, within λ LC-containing Fabs is significantly weaker than that of κ LC-containing Fabs. The data suggests there may not be an evolutionary necessity for strong variable/constant domain cooperativity within λ LC-containing Fabs. After investigating the biophysical properties of Fabs with mismatched variable and constant domain subunits (e.g., VH/Vκ paired with CH1/Cλ or T cell receptor Cα/Cβ), the major role of the constant domains for both κ- and λ-containing Fabs may be to reduce the hydrophobic exposure at the VH/VL interface. Even though Fabs with these non-native pairings were thermodynamically less stable, they secreted well from mammalian cells as well behaved monodisperse proteins, which was in contrast to what was observed with the VH/Vκ and VH/Vλ scFvs that secreted as a mixture of monomer and aggregates. PMID:27454112

  9. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon

    PubMed Central

    Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts. PMID:27483374

  10. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon.

    PubMed

    Del Coso, Juan; Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts. PMID:27483374

  11. Significant Influences of Elaborately Modulating Electron Donors on Light Absorption and Multichannel Charge-Transfer Dynamics for 4-(Benzo[c][1,2,5]thiadiazol-4-ylethynyl)benzoic Acid Dyes.

    PubMed

    Wang, Erfeng; Yao, Zhaoyang; Zhang, Yiqiang; Shao, Guosheng; Zhang, Min; Wang, Peng

    2016-07-20

    4-(Benzo[c][1,2,5]thiadiazol-4-ylethynyl)benzoic acid (BTEBA) as a promising electron acceptor has been used in the highly efficient organic dye-sensitized solar cells (DSCs) recently. Because of its strong electron-deficient character, BTEBA could bring forth a remarkable decline in the energy level of the lowest unoccupied molecular orbital (LUMO) and further reduce the energy gap of dye molecules significantly. In this contribution, two metal-free organic dyes WEF1 and WEF2 were synthesized by simply combining BTEBA with two slightly tailored electron-releasing moieties: 4-hexylphenyl substituted indaceno[1,2-b:5,6-b']dithiophene (IDT) and cyclopenta[1,2-b:5,4-b']dithiophene[2',1':4,5]thieno[2,3-d]thiophene (CPDTDT), which were screened rationally from an electron-donor pool via computational simulation. With respect to those of WEF1, WEF2-sensitized solar cells demonstrate a far better short-circuit photocurrent density (JSC) and open-circuit photovoltage (VOC), resulting in a ∼50% improved power conversion efficiency of 10.0% under irradiance of 100 mW cm(-2) AM1.5G sunlight. We resorted to theoretical calculations, electrical measurements, steady-state, and time-resolved spectroscopic methods to shed light on the fatal influences of elaborately modulating electron donors on light absorption, interfacial energetics, and multichannel charge-transfer dynamics.

  12. Monitoring serum free light chains in patients with multiple myeloma who achieved negative immunofixation after allogeneic stem cell transplantation.

    PubMed

    Mösbauer, Ulrike; Ayuk, Francis; Schieder, Heike; Lioznov, Michael; Zander, Axel R; Kröger, Nicolaus

    2007-02-01

    Monitoring of serum free immunoglobulin light chains (FLC) in 26 myeloma patients who achieved immunofixation negativity after allografting showed a decrease of FLC at a median of 128 days before immunofixation negativity. In patients who subsequently relapsed, a 25% increase of FLC was observed at a median of 98 days before immunofixation positivity.

  13. Serum-free light-chain analysis in diagnosis and management of multiple myeloma and related conditions.

    PubMed

    Milani, Paolo; Palladini, Giovanni; Merlini, Giampaolo

    2016-01-01

    The introduction of the serum-free light-chain (S-FLC) assay has been a breakthrough in the diagnosis and management of plasma cell dyscrasias, particularly monoclonal light-chain diseases. The first method, proposed in 2001, quantifies serum-free light-chains using polyclonal antibodies. More recently, assays based on monoclonal antibodies have entered into clinical practice. S-FLC measurement plays a central role in the screening for multiple myeloma and related conditions, in association with electrophoretic techniques. Analysis of S-FLC is essential in assessing the risk of progression of precursor diseases to overt plasma cell dyscrasias. It is also useful for risk stratification in solitary plasmacytoma and AL amyloidosis. The S-FLC measurement is part of the new diagnostic criteria for multiple myeloma, and provides a marker to follow changes in clonal substructure over time. Finally, the evaluation of S-FLC is fundamental for assessing the response to treatment in monoclonal light chain diseases. PMID:27467897

  14. pH and light-controlled self-assembly of bistable [c2] daisy chain rotaxanes.

    PubMed

    Wolf, Adrian; Moulin, Emilie; Cid, Juan-José; Goujon, Antoine; Du, Guangyan; Busseron, Eric; Fuks, Gad; Giuseppone, Nicolas

    2015-03-11

    A logic gate based on a bistable [c2] daisy chain rotaxane decorated with lateral triarylamine units is described, giving rise to an INHIBIT logic function using proton concentration and light as inputs, and producing dual color change and supramolecular self-assembly as outputs. PMID:25661046

  15. Hematogones With Lambda Light Chain Restriction in a 4-Year-Old Boy With Burkitt Lymphoma: A Potential Diagnostic Pitfall

    PubMed Central

    Guillory, Tesha; Li, Shiyong; Bergsagel, Daniel J.; Weinzierl, Elizabeth; Bunting, Silvia T.

    2016-01-01

    Hematogones are immature normal B cell precursors with a characteristic immunophenotype profile on flow cytometry that typically do not express surface immunoglobulin light chains. In this report, we describe a case in which the hematogones exhibit light chain restriction. Our patient was a 4-year-old boy with a complicated medical history involving treatment for a presumed bilateral Wilms tumor of the kidney that on later resection was diagnosed as Burkitt lymphoma. Flow cytometry analysis of his bone marrow revealed a small distinct population of cells expressing dim cluster of differentiation (CD)10, CD19, CD22, CD38, dim CD58, human leukocyte antigen–D related (HLA-DR), and dim CD45, which are characteristic of hematogones. These cells, however, demonstrated dim surface immunoglobulin lambda light-chain restriction. Molecular study results for immunoglobulin heavy and kappa light-chain gene rearrangements were negative. We present this case to raise awareness of the potential pitfalls of working up bone marrow for involvement by B cell lymphoproliferative disorder. PMID:27069035

  16. Restricted Immunoglobulin Variable Region (Ig V) Gene Expression Accompanies Secondary Rearrangements of Light Chain Ig V Genes in Mouse Plasmacytomas

    PubMed Central

    Diaw, Lena; Siwarski, David; Coleman, Allen; Kim, Jennifer; Jones, Gary M.; Dighiero, Guillaume; Huppi, Konrad

    1999-01-01

    The many binding studies of monoclonal immunoglobulin (Ig) produced by plasmacytomas have found no universally common binding properties, but instead, groups of plasmacytomas with specific antigen-binding activities to haptens such as phosphorylcholine, dextrans, fructofuranans, or dinitrophenyl. Subsequently, it was found that plasmacytomas with similar binding chain specificities not only expressed the same idiotype, but rearranged the same light (VL) and heavy (VH) variable region genes to express a characteristic monoclonal antibody. In this study, we have examined by enzyme-linked immunosorbent assay five antibodies secreted by silicone-induced mouse plasmacytomas using a broader panel of antigens including actin, myosin, tubulin, single-stranded DNA, and double-stranded DNA. We have determined the Ig heavy and light chain V gene usage in these same plasmacytomas at the DNA and RNA level. Our studies reveal: (a) antibodies secreted by plasmacytomas bind to different antigens in a manner similar to that observed for natural autoantibodies; (b) the expressed Ig heavy genes are restricted in V gene usage to the VH-J558 family; and (c) secondary rearrangements occur at the light chain level with at least three plasmacytomas expressing both κ and λ light chain genes. These results suggest that plasmacytomas use a restricted population of B cells that may still be undergoing rearrangement, thereby bypassing the allelic exclusion normally associated with expression of antibody genes. PMID:10562316

  17. Interhead fluorescence energy transfer between probes attached to translationally equivalent sites on the regulatory light chains of scallop myosin.

    PubMed

    Chantler, P D; Tao, T

    1986-11-01

    Interhead fluorescence energy transfer studies between probes located at translationally equivalent sites on the two heads of scallop myosin indicates that the distance between such sites is no less than 50 A. Regulatory light chains, possessing either one (Mercenaria, chicken gizzard) or two (Loligo, rabbit skeletal) sulfhydryl groups, were modified either with 1,5-IAEDANS (N'-iodoacetyl-N'-(1-sulfo-5-n-naphthyl)ethylenediamine), as energy transfer donor, or with IAF (5-(iodoacetamido)fluorescein) or DABMI (4-dimethylaminophenylazophenyl-4'-maleimide), as energy transfer acceptor. The sulfhydryl groups on these light chains are located at different positions within the regulatory light-chain primary sequence; this enables one to probe a variety of locations, with respect to regulatory light-chain topology, on each myosin head. These independently modified regulatory light chains were added back to desensitized scallop myosin under a variety of conditions, including biphasic re-addition, the aim being to maximize the number of interhead energy transfer couples present. The efficiency of energy transfer was determined on the same samples by both steady-state and time-decay techniques. Results obtained by these two techniques were in good agreement with each other and indicated that the efficiency of energy transfer did not exceed 20% in any of the hybrids studied. Transfer efficiencies were invariant, irrespective of the presence or absence of MgATP, calcium or actin, either separately or in combination. Results using heavy meromyosin at low ionic strength were identical. It is shown that these results, in conjunction with the results of recent crosslinking studies performed on comparable myosin hybrids, may place certain restrictions on the configurations of the two heads of myosin.

  18. Effects of myosin light chain phosphorylation on length-dependent myosin kinetics in skinned rat myocardium.

    PubMed

    Pulcastro, Hannah C; Awinda, Peter O; Breithaupt, Jason J; Tanner, Bertrand C W

    2016-07-01

    Myosin force production is Ca(2+)-regulated by thin-filament proteins and sarcomere length, which together determine the number of cross-bridge interactions throughout a heartbeat. Ventricular myosin regulatory light chain-2 (RLC) binds to the neck of myosin and modulates contraction via its phosphorylation state. Previous studies reported regional variations in RLC phosphorylation across the left ventricle wall, suggesting that RLC phosphorylation could alter myosin behavior throughout the heart. We found that RLC phosphorylation varied across the left ventricle wall and that RLC phosphorylation was greater in the right vs. left ventricle. We also assessed functional consequences of RLC phosphorylation on Ca(2+)-regulated contractility as sarcomere length varied in skinned rat papillary muscle strips. Increases in RLC phosphorylation and sarcomere length both led to increased Ca(2+)-sensitivity of the force-pCa relationship, and both slowed cross-bridge detachment rate. RLC-phosphorylation slowed cross-bridge rates of MgADP release (∼30%) and MgATP binding (∼50%) at 1.9 μm sarcomere length, whereas RLC phosphorylation only slowed cross-bridge MgATP binding rate (∼55%) at 2.2 μm sarcomere length. These findings suggest that RLC phosphorylation influences cross-bridge kinetics differently as sarcomere length varies and support the idea that RLC phosphorylation could vary throughout the heart to meet different contractile demands between the left and right ventricles. PMID:26763941

  19. Sequence analysis of the myosin regulatory light chain gene of the vestimentiferan Riftia pachyptila.

    PubMed

    Ravaux, J; Hassanin, A; Deutsch, J; Gaill, F; Markmann-Mulisch, U

    2001-01-24

    We have isolated and characterized a cDNA (DNA complementary to RNA) clone (Rf69) from the vestimentiferan Riftia pachyptila. The cDNA insert consists of 1169 base pairs. The aminoacid sequence deduced from the longest reading frame is 193 residues in length, and clearly characterized it as a myosin regulatory light chain (RLC). The RLC primary structure is described in relation to its function in muscle contraction. The comparison with other RLCs suggested that Riftia myosin is probably regulated through its RLC either by phosphorylation like the vertebrate smooth muscle myosins, and/or by Ca2+-binding like the mollusk myosins. Riftia RLC possesses a N-terminal extension lacking in all other species besides the earthworm Lumbricus terrestris. Aminoacid sequence comparisons with a number of RLCs from vertebrates and invertebrates revealed a relatively high identity score (64%) between Riftia RLC and the homologous gene from Lumbricus. The relationships between the members of the myosin RLCs were examined by two phylogenetic methods, i.e. distance matrix and maximum parsimony. The resulting trees depict the grouping of the RLCs according to their role in myosin activity regulation. In all trees, Riftia RLC groups with RLCs that depend on Ca2+-binding for myosin activity regulation. PMID:11223252

  20. Effects of a Fluorescent Myosin Light Chain Phosphatase Inhibitor on Prostate Cancer Cells

    PubMed Central

    Grindrod, Scott; Suy, Simeng; Fallen, Shannon; Eto, Masumi; Toretsky, Jeffrey; Brown, Milton L.

    2011-01-01

    Myosin light chain phosphatase (MLCP) is an enzyme important to regulation of cell cycle and motility that is shown to be upregulated in aggressive prostate cancer cells and tissue. We developed a fluorescent small molecule inhibitor of MLCP using structure based design in recombinant protein phosphatase 1C. Several best fit compounds were synthesized and evaluated by their inhibition of MLCP/32P-MLC dephosphorylation, which resulted in the identification of novel MLCP inhibitors. Androgen dependent (AD) and castration resistant prostate cancer cell (CRPC) lines were treated with the lead inhibitor resulting in decreased growth rate, reduced DNA synthesis, and G2/M cell cycle arrest. Moreover, CRPC cell lines showed an increased sensitivity to drug treatment having GI50 values four times lower than the AD prostate cancer cell line. This was reinforced by reduced BrdU DNA incorporation into CRPC cells compared to AD cells. β-actin disruption was also seen at much lower drug concentrations in CR cells which caused a dose dependent reduction in cellular chemotaxis of PC-3 cells. Since there are currently few clinical therapeutics targeting CR prostate cancer, MLCP represents a new target for preclinical and clinical development of new potential therapeutics which inhibit this disease phenotype. PMID:22655237

  1. Functions of Myosin Light Chain-2 (MYL2) In Cardiac Muscle and Disease

    PubMed Central

    Sheikh, Farah; Lyon, Robert C.; Chen, Ju

    2015-01-01

    Myosin light chain-2 (MYL2, also called MLC-2) is an ∼19 kDa sarcomeric protein that belongs to the EF-hand calcium binding protein superfamily and exists as three major isoforms encoded by three distinct genes in mammalian striated muscle. Each of the three different MLC-2 genes (MLC-2f; fast twitch skeletal isoform, MLC-2v; cardiac ventricular and slow twitch skeletal isoform, MLC-2a; cardiac atrial isoform) has a distinct developmental expression pattern in mammals. Genetic loss-of-function studies in mice demonstrated an essential role for cardiac isoforms of MLC-2, MLC-2v and MLC-2a, in cardiac contractile function during early embryogenesis. In the adult heart, MLC-2v function is regulated by phosphorylation, which displays a specific expression pattern (high in epicardium and low in endocardium) across the heart. These data along with new data from computational models, genetic mouse models, and human studies have revealed a direct role for MLC-2v phosphorylation in cross-bridge cycling kinetics, calcium-dependent cardiac muscle contraction, cardiac torsion, cardiac function and various cardiac diseases. This review focuses on the regulatory functions of MLC-2 in the embryonic and adult heart, with an emphasis on phosphorylation-driven actions of MLC-2v in adult cardiac muscle, which provide new insights into mechanisms regulating myosin cycling kinetics and human cardiac diseases. PMID:26074085

  2. Regulatory and structural motifs of chicken gizzard myosin light chain kinase.

    PubMed Central

    Olson, N J; Pearson, R B; Needleman, D S; Hurwitz, M Y; Kemp, B E; Means, A R

    1990-01-01

    The amino acid sequence for chicken smooth muscle myosin light chain kinase (smMLCK) was deduced from a full-length cDNA. This has allowed definition of both the complete sequence of the inactive 64-kDa proteolytic fragment, which contains the pseudosubstrate autoregulatory sequence, and of the active 61-kDa Ca2+/calmodulin-independent fragment, which lacks the autoregulatory domain. Comparison of the two sequences shows that the autoregulatory domain extends from Asn-780 to Arg-808. The peptide Leu-774 to Ser-787 does not inhibit smMLCK, whereas peptides of similar or shorter length from the pseudosubstrate region (Ser-787 to Val-807) are potent inhibitors. These data define the autoregulatory region as being contained within and probably identical to the pseudosubstrate domain. The catalytic and regulatory regions are flanked by several copies of 100-amino acid segments containing one of two consensus motifs. These motifs are absent from mammalian skeletal muscle MLCK or from Dictyostelium discoideum MLCK but are present in the Caenorhabditis elegans unc-22 gene product and the titin molecule of skeletal muscle myofibrils. These results indicate that the amino acid sequence of smMLCK encodes multiple functional motifs in addition to the catalytic domain. PMID:2315320

  3. Prognostic value of serum heavy/light chain ratios in patients with POEMS syndrome.

    PubMed

    Wang, Chen; Su, Wei; Cai, Qian-Qian; Cai, Hao; Ji, Wei; Di, Qian; Duan, Ming-Hui; Cao, Xin-Xin; Zhou, Dao-Bin; Li, Jian

    2016-07-01

    POEMS syndrome is a rare plasma cell dyscrasia. Serum concentrations of the monoclonal protein in this disorder are typically low, and inapplicable to monitor disease activity in most cases, resulting in limited practical and prognostic values. Novel immunoassays measuring isotype-specific heavy/light chain (HLC) pairs showed its utility in disease monitoring and outcome prediction in several plasma cell dyscrasias. We report results of HLC measurements in 90 patients with POEMS syndrome. Sixty-six patients (73%; 95% confidence interval, 63-82%) had an abnormal HLC ratio at baseline. It could stratify the risk of disease relapse and was strongly associated with worse progression-free survival in a multivariate analysis (P = 0.021; hazard ratio [HR] 6.89, 95% CI 1.34-35.43). After therapy, HLC ratios improved, with 43 patients (48%) remaining abnormal. The post-therapeutic HLC ratio, if abnormal, also remained as an independent prognostic factor associated with worse progression-free survival (P = 0.019; HR 4.30, 95% CI 1.27-14.56). These results suggest the prognostic utility of HLC ratios in clinical management of POEMS patients.

  4. Mn2+ activates skinned smooth muscle cells in the absence of myosin light chain phosphorylation.

    PubMed

    Hoar, P E; Kerrick, W G

    1988-08-01

    Two effects of Mn2+ on skinned fibers from chicken gizzard smooth muscle were observed, dependent on the presence or absence of dithiothreitol (DTT) reducing agent. One involves protein oxidation (in the absence of DTT) with production of a "latch"-like state, and the other involves direct Mn2+ activation of contractile proteins. Cells activated by Mn2+ in the presence of ATP and the absence of Ca2+, Mg2+ and DTT did not relax when transferred to normal relaxing solutions. In contrast, when 5 mM DTT was included in the Mn2+ contracting solution to prevent protein oxidation by Mn2+, the cells still contracted when exposed to Mn2+, but relaxed rapidly when the Mn2+ was removed. In the presence of DTT both the Mn2+ activation and the relaxation following removal of Mn2+ were more rapid than normal Ca2+-activated contractions and relaxations. The skinned fibers activated by Mn2+ in the absence of DTT showed little active shortening unless DTT was added. This rigor-like state is probably due to oxidation of contractile proteins since the cells relaxed when exposed to a relaxing solution containing DTT (50 mM) and then contracted again in response to Ca2+ and relaxed normally. The Mn2+ activation was not associated with myosin light chain phosphorylation, in contrast to Ca2+-activated contractions. PMID:3186428

  5. Urine immunofixation electrophoresis remains important and is complementary to serum free light chain.

    PubMed

    Levinson, Stanley S

    2011-11-01

    Articles have debated whether or not urine analysis remains valuable for identifying monoclonal gammopathies. A general impression is that the newer serum free light chain (FLC) assay is more analytically sensitive, more quantitative and simpler to perform. Many laboratory directors may have seized on the idea of eliminating urine analysis because it is a tedious procedure and requires expert interpretation while most laboratories can perform automated serum FLC assay. Others have concluded that urine immunofixation electrophoresis (IFE) optimizes the diagnostic sensitivity and should be included when there is a clinical indication. Here, I show that papers faulting urine analysis often used inappropriate urine methodology and this helps explain why there was misinterpretation. Moreover, the literature, shows urine IFE is often more sensitive for identifying low-level monoclonal FLC than the serum assay because urine IFE is as sensitive when performed appropriately and generally more specific. Besides, the reference range for serum FLC assay is unclear which is a great problem in assessing response to treatment and in identifying diseases when there is low concentration monoclonal FLC. I conclude that urine IFE remains important and is complementary to serum FLC assay, although the best algorithms for use remains to be elucidated.

  6. Phenotypic, transcriptomic, and genomic features of clonal plasma cells in light-chain amyloidosis.

    PubMed

    Paiva, Bruno; Martinez-Lopez, Joaquin; Corchete, Luis A; Sanchez-Vega, Beatriz; Rapado, Inmaculada; Puig, Noemi; Barrio, Santiago; Sanchez, Maria-Luz; Alignani, Diego; Lasa, Marta; García de Coca, Alfonso; Pardal, Emilia; Oriol, Alberto; Garcia, Maria-Esther Gonzalez; Escalante, Fernando; González-López, Tomás J; Palomera, Luis; Alonso, José; Prosper, Felipe; Orfao, Alberto; Vidriales, Maria-Belen; Mateos, María-Victoria; Lahuerta, Juan-Jose; Gutierrez, Norma C; San Miguel, Jesús F

    2016-06-16

    Immunoglobulin light-chain amyloidosis (AL) and multiple myeloma (MM) are 2 distinct monoclonal gammopathies that involve the same cellular compartment: clonal plasma cells (PCs). Despite the fact that knowledge about MM PC biology has significantly increased in the last decade, the same does not apply for AL. Here, we used an integrative phenotypic, molecular, and genomic approach to study clonal PCs from 24 newly diagnosed patients with AL. Through principal-component-analysis, we demonstrated highly overlapping phenotypic profiles between AL and both monoclonal gammopathy of undetermined significance and MM PCs. However, in contrast to MM, highly purified fluorescence-activated cell-sorted clonal PCs from AL (n = 9) showed almost normal transcriptome, with only 38 deregulated genes vs normal PCs; these included a few tumor-suppressor (CDH1, RCAN) and proapoptotic (GLIPR1, FAS) genes. Notwithstanding, clonal PCs in AL (n = 11) were genomically unstable, with a median of 9 copy number alterations (CNAs) per case, many of such CNAs being similar to those found in MM. Whole-exome sequencing (WES) performed in 5 AL patients revealed a median of 15 nonrecurrent mutations per case. Altogether, our results show that in the absence of a unifying mutation by WES, clonal PCs in AL display phenotypic and CNA profiles similar to MM, but their transcriptome is remarkably similar to that of normal PCs. PMID:27069257

  7. Burden of cytogenetically abnormal plasma cells in light chain amyloidosis and their prognostic relevance.

    PubMed

    Kim, Seon Young; Im, Kyongok; Park, Si Nae; Kim, Jung-Ah; Yoon, Sung-Soo; Lee, Dong Soon

    2016-05-01

    We performed cytoplasmic fluorescence in situ hybridization assays of light chain amyloidosis (AL). In total, 234 patients were enrolled: 28 patients with AL, 24 with monoclonal gammopathy of undetermined significance (MGUS), and 182 with multiple myeloma (MM). Chromosomal abnormalities were detected in 13 of 22 (59%) AL patients without MM. All 13 patients demonstrated IGH rearrangement, and t(11;14)/IGH-CCND1 was most frequent (32%). Chromosome gain was not observed in AL patients without MM. These findings were dissimilar to findings in MGUS patients, in whom trisomy 9 was the most frequent abnormality. Of 6 AL patients with MM, 5 (83%) patients had cytogenetic abnormalities: 1q gain (4/6, 67%), gains of chromosome 9 (3/6, 50%), IGH rearrangement and RB1 (13q) deletions (2/6 each, 33%). The percentage of clonal plasma cells among total plasma cells was variable (median, 75%; range, 16-100%) for AL patients without MM, which was lower than the results for MM patients (median 100%). The overall survival of AL patients without MM was not significantly different according to the presence of cytogenetic abnormalities (P=0.510). In summary, among Korean AL patients, IGH rearrangement was the most frequent cytogenetic abnormality and cytogenetic aberration patterns differ compared with MGUS and MM patients. PMID:27015231

  8. AMPK regulates mitotic spindle orientation through phosphorylation of myosin regulatory light chain.

    PubMed

    Thaiparambil, Jose T; Eggers, Carrie M; Marcus, Adam I

    2012-08-01

    The proper orientation of the mitotic spindle is essential for mitosis; however, how these events unfold at the molecular level is not well understood. AMP-activated protein kinase (AMPK) regulates energy homeostasis in eukaryotes, and AMPK-null Drosophila mutants have spindle defects. We show that threonine(172) phosphorylated AMPK localizes to the mitotic spindle poles and increases when cells enter mitosis. AMPK depletion causes a mitotic delay with misoriented spindles relative to the normal division plane and a reduced number and length of astral microtubules. AMPK-depleted cells contain mitotic actin bundles, which prevent astral microtubule-actin cortex attachments. Since myosin regulatory light chain (MRLC) is an AMPK downstream target and mediates actin function, we investigated whether AMPK signals through MRLC to control spindle orientation. Mitotic levels of serine(19) phosphorylated MRLC (pMRLC(ser19)) and spindle pole-associated pMRLC(ser19) are abolished when AMPK function is compromised, indicating that AMPK is essential for pMRLC(ser19) spindle pole activity. Phosphorylation of AMPK and MRLC in the mitotic spindle is dependent upon calcium/calmodulin-dependent protein kinase kinase (CamKK) activity in LKB1-deficient cells, suggesting that CamKK regulates this pathway when LKB1 function is compromised. Taken together, these data indicate that AMPK mediates spindle pole-associated pMRLC(ser19) to control spindle orientation via regulation of actin cortex-astral microtubule attachments.

  9. Myosin light chain kinase accelerates vesicle endocytosis at the calyx of Held synapse.

    PubMed

    Yue, Hai-Yuan; Xu, Jianhua

    2014-01-01

    Neuronal activity triggers endocytosis at synaptic terminals to retrieve efficiently the exocytosed vesicle membrane, ensuring the membrane homeostasis of active zones and the continuous supply of releasable vesicles. The kinetics of endocytosis depends on Ca(2+) and calmodulin which, as a versatile signal pathway, can activate a broad spectrum of downstream targets, including myosin light chain kinase (MLCK). MLCK is known to regulate vesicle trafficking and synaptic transmission, but whether this kinase regulates vesicle endocytosis at synapses remains elusive. We investigated this issue at the rat calyx of Held synapse, where previous studies using whole-cell membrane capacitance measurement have characterized two common forms of Ca(2+)/calmodulin-dependent endocytosis, i.e., slow clathrin-dependent endocytosis and rapid endocytosis. Acute inhibition of MLCK with pharmacological agents was found to slow down the kinetics of both slow and rapid forms of endocytosis at calyces. Similar impairment of endocytosis occurred when blocking myosin II, a motor protein that can be phosphorylated upon MLCK activation. The inhibition of endocytosis was not accompanied by a change in Ca(2+) channel current. Combined inhibition of MLCK and calmodulin did not induce synergistic inhibition of endocytosis. Together, our results suggest that activation of MLCK accelerates both slow and rapid forms of vesicle endocytosis at nerve terminals, likely by functioning downstream of Ca(2+)/calmodulin.

  10. [The role of the assessment of heavy/light chain pairs of immunoglobulin in monoclonal gammopathies].

    PubMed

    Ščudla, Vlastimil; Pika, Tomáš; Minařík, Jiří

    2015-01-01

    The aim of the paper is to inform about the contribution of novel, highly sensitive analytic technique for the assessment of serum immunoglobulins (Hevylite), enabling separate quantitative assessment of heavy/light chain pairs of immunoglobulin (HLC), i. e. the monoclonal ("involved") and polyclonal ("noninvolved") isotype including their ratio (HLC-r) in monoclonal gammopathies. We particularly target the characteristics of this technique, the compari-son of its clinical contribution with standard methods used in the diagnostics, course and the detection of relapse and progression of the disease, as well as the stratification, assessment of therapeutic outcome and prognosis in monoclonal gammopathy of undetermined significance, multiple myeloma, Waldenström´s macroglobulinemia, systemic AL-amyloidosis and some non-Hodgkin lymphomas. Present results show that in comparison with existing routinely used techniques the Hevylite method enriches clinical practice with the assessment of serum levels of "uninvolved" Ig. It enables the evaluation of the depth of "immunoparesis", and the determination of HLC-r index that is needful for the stratification of MM into "risk cohorts". It also contributes to prognostic assessment and improvement of the evaluation of the depth of therapeutic response. In MGUS individuals the HLC-r index provides information about the risk of malignant transformation. We await the results of ongoing validation studies that are expected to provide specific indications for Hevylite technique for MG in routine practice.

  11. Developmental Expression of IL-2-Receptor Light Chain (CD25) in the Chicken Embryo

    PubMed Central

    Fedecka-Bruner, Barbara; Penninger, Josef; Vaigot, Pierre; Lehmann, Anne; Martínez-A., Carlos

    1991-01-01

    Thymocyte differentiation obeys the same fundamental principles in mammals as in avian species. This parallelism does not only affect the developmentally controlled acquisition of CD3, 4, 8, and TcR isotype expression, but also concerns CD25, the light chain of the interleukin-2 receptor (IL-2R). On chicken thymocytes, surface CD25, which is recognized by the monoclonal antibody INN Ch16, is first observed during day 11 of embryonic life, and peaks at day 14, when it is expressed by about one-third of all lymphoid cells. CD25 is found on subsets of all ,thymocyte populations as defined by TcRαβ, TcRγδ, 2, CD4, and CD8 expression, cortical or medullary localization, and is also present on a subset of intrathymic nurse-cell lymphocytes. These findings suggest phylogenetic conservation of the IL-2/IL-2R-triggered differentiation pathway previously described for mammalian species, thus under-lining its probable functional importance. PMID:1840381

  12. Hsp70 and antifibrillogenic peptides promote degradation and inhibit intracellular aggregation of amyloidogenic light chains.

    SciTech Connect

    Dul, J. L.; Davis, D. P.; Williamson, E. K.; Stevens, F. J.; Argon, Y.; Univ. of Chicago

    2001-02-19

    In light chain (LC) amyloidosis an immunoglobulin LC assembles into fibrils that are deposited in various tissues. Little is known about how these fibrils form in vivo. We previously showed that a known amyloidogenic LC, SMA, can give rise to amyloid fibrils in vitro when a segment of one of its {beta} sheets undergoes a conformational change, exposing an Hsp70 binding site. To examine SMA aggregation in vivo, we expressed it and its wild-type counterpart, LEN, in COS cells. While LEN is rapidly oxidized and subsequently secreted, newly synthesized SMA remains in the reduced state. Most SMA molecules are dislocated out of the ER into the cytosol, where they are ubiquitinylated and degraded by proteasomes. A parallel pathway for molecules that are not degraded is condensation into perinuclear aggresomes that are surrounded by vimentin-containing intermediate filaments and are dependent upon intact microtubules. Inhibition of proteasome activity shifts the balance toward aggresome formation. Intracellular aggregation is decreased and targeting to proteasomes improved by overexpression of the cytosolic chaperone Hsp70. Importantly, transduction into the cell of an Hsp70 target peptide, derived from the LC sequence, also reduces aggresome formation and increases SMA degradation. These results demonstrate that an amyloidogenic LC can aggregate intracellularly despite the common presentation of extracellular aggregates, and that a similar molecular surface mediates both in vitro fibril formation and in vivo aggregation. Furthermore, rationally designed peptides can be used to suppress this aggregation and may provide a feasible therapeutic approach.

  13. Dynein light chain regulates axonal trafficking and synaptic levels of Bassoon.

    PubMed

    Fejtova, Anna; Davydova, Daria; Bischof, Ferdinand; Lazarevic, Vesna; Altrock, Wilko D; Romorini, Stefano; Schöne, Cornelia; Zuschratter, Werner; Kreutz, Michael R; Garner, Craig C; Ziv, Noam E; Gundelfinger, Eckart D

    2009-04-20

    Bassoon and the related protein Piccolo are core components of the presynaptic cytomatrix at the active zone of neurotransmitter release. They are transported on Golgi-derived membranous organelles, called Piccolo-Bassoon transport vesicles (PTVs), from the neuronal soma to distal axonal locations, where they participate in assembling new synapses. Despite their net anterograde transport, PTVs move in both directions within the axon. How PTVs are linked to retrograde motors and the functional significance of their bidirectional transport are unclear. In this study, we report the direct interaction of Bassoon with dynein light chains (DLCs) DLC1 and DLC2, which potentially link PTVs to dynein and myosin V motor complexes. We demonstrate that Bassoon functions as a cargo adapter for retrograde transport and that disruption of the Bassoon-DLC interactions leads to impaired trafficking of Bassoon in neurons and affects the distribution of Bassoon and Piccolo among synapses. These findings reveal a novel function for Bassoon in trafficking and synaptic delivery of active zone material.

  14. Dynein light chain interaction with the peroxisomal import docking complex modulates peroxisome biogenesis in yeast.

    PubMed

    Chang, Jinlan; Tower, Robert J; Lancaster, David L; Rachubinski, Richard A

    2013-10-15

    Dynein is a large macromolecular motor complex that moves cargo along microtubules. A motor-independent role for the light chain of dynein, Dyn2p, in peroxisome biology in Saccharomyces cerevisiae was suggested from its interaction with Pex14p, a component of the peroxisomal matrix protein import docking complex. Here we show that cells of the yeast Yarrowia lipolytica deleted for the gene encoding the homologue of Dyn2p are impaired in peroxisome function and biogenesis. These cells exhibit compromised growth on medium containing oleic acid as the carbon source, the metabolism of which requires functional peroxisomes. Their peroxisomes have abnormal morphology, atypical matrix protein localization, and an absence of proteolytic processing of the matrix enzyme thiolase, which normally occurs upon its import into the peroxisome. We also show physical and genetic interactions between Dyn2p and members of the docking complex, particularly Pex17p. Together, our results demonstrate a role for Dyn2p in the assembly of functional peroxisomes and provide evidence that Dyn2p acts in cooperation with the peroxisomal matrix protein import docking complex to effect optimal matrix protein import.

  15. Dictyostelium discoideum myosin: Isolation and characterization of cDNAs encoding the essential light chain

    SciTech Connect

    Chisholm, R.L.; Rushforth, A.M.; Pollenz, R.S.; Kuczmarski, E.R.; Tafuri, S.R.

    1988-02-01

    The authors used an antibody specific for Dictyostelium discoideum myosin to screen a lambdagt11 cDNA expression library to obtain cDNA clones which encode the Dictyostelium essential myosin light chain (EMLC). The amino acid sequence predicted from the sequence of the cDNA clone showed 31.5% identity with the amino acid sequence of the chicken EMLC. Comparisons of the Dictyostelium EMLC, a nonmuscle cell type, with EMLC sequences from similar MLCs of skeletal- and smooth-muscle origin, showed distinct regions of homology. Much of the observed homology was localized to regions corresponding to consensus Ca/sup 2 +/-binding of E-F hand domains. Southern blot analysis suggested that the Dictyostelium genome contains a single gene encoding the EMLC. Examination of the pattern of EMLC mRNA expression showed that a significant increase in EMLC message levels occurred during the first few hours of development, coinciding with increased actin expression and immediately preceding the period of maximal chemotactic activity.

  16. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas

    PubMed Central

    Reck, Jaimee; Schauer, Alexandria M.; VanderWaal Mills, Kristyn; Bower, Raqual; Tritschler, Douglas; Perrone, Catherine A.; Porter, Mary E.

    2016-01-01

    The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms. PMID:27251063

  17. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas.

    PubMed

    Reck, Jaimee; Schauer, Alexandria M; VanderWaal Mills, Kristyn; Bower, Raqual; Tritschler, Douglas; Perrone, Catherine A; Porter, Mary E

    2016-08-01

    The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms. PMID:27251063

  18. Regulatory Light Chain Mutations Associated with Cardiomyopathy Affect Myosin Mechanics and Kinetics

    PubMed Central

    Greenberg, Michael J.; Watt, James D.; Jones, Michelle; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta; Moore, Jeffrey R.

    2009-01-01

    The myosin regulatory light chain (RLC) wraps around the alpha helical neck region of myosin. This neck region has been proposed to act as a lever arm, amplifying small conformational changes in the myosin head to generate motion. The RLC serves an important structural role, supporting the myosin neck region and a modulatory role, tuning the kinetics of the actin myosin interaction. Given the importance of the RLC, it is not surprising that mutations of the RLC can lead to familial hypertrophic cardiomyopathy (FHC), the leading cause of sudden cardiac death in people under 30. Population studies identified two FHC mutations located near the cationic binding site of the RLC, R58Q and N47K. Although these mutations are close in sequence, they differ in clinical presentation and prognosis with R58Q showing a more severe phenotype. We examined the molecular based changes in myosin that are responsible for the disease phenotype by purifying myosin from transgenic mouse hearts expressing mutant myosins and examining actin filament sliding using the in vitro motility assay. We found that both R58Q and N47K showed reductions in force compared to the wild type that could result in compensatory hypertrophy. Furthermore, we observed a higher ATPase rate and an increased activation at submaximal calcium levels for the R58Q myosin that could lead to decreased efficiency and incomplete cardiac relaxation, potentially explaining the more severe phenotype for the R58Q mutation. PMID:18929571

  19. Suppression of uninvolved immunoglobulins defined by heavy/light chain pair suppression is a risk factor for progression of MGUS

    PubMed Central

    Katzmann, JA; Clark, R; Kyle, RA; Larson, DR; Therneau, TM; Melton, LJ; Benson, JT; Colby, CL; Dispenzieri, A; Landgren, O; Kumar, S; Bradwell, AR; Cerhan, JR; Rajkumar, SV

    2013-01-01

    We hypothesized that the suppression of uninvolved immunoglobulin in monoclonal gammopathy of undetermined significance (MGUS) as detected by suppression of the isotype-specific heavy and light chain (HLC-pair suppression) increases the risk of progression to malignancy. This approach required quantitation of individual heavy/light chains (for example, IgGλ in IgGκ MGUS patients). Of 1384 MGUS patients from Southeastern Minnesota seen at the Mayo Clinic from 1960 to 1994, baseline serum samples obtained within 30 days of diagnosis were available in 999 persons. We identified HLC-pair suppression in 27% of MGUS patient samples compared with 11% of patients with suppression of uninvolved IgG, IgA or IgM. HLC-pair suppression was a significant risk factor for progression (hazard ratio (HR), 2.3; 95% confidence interval (CI) 1.5–3.7; P<0.001). On multivariate analysis, HLC-pair suppression was an independent risk factor for progression to malignancy in combination with serum M-spike size, heavy chain isotype and free light chain ratio (HR, 1.8; 95% CI, 1.1–3.00; P = 0.018). The finding that HLC-pair suppression predicts progression in MGUS and occurs several years before malignant transformation has implications for myeloma biology. PMID:22781594

  20. Diagnostic value of immunoglobulin κ light chain gene rearrangement analysis in B-cell lymphomas

    PubMed Central

    KOKOVIC, IRA; NOVAKOVIC, BARBARA JEZERSEK; NOVAKOVIC, SRDJAN

    2015-01-01

    Analysis of the immunoglobulin κ light chain (IGK) gene is an alternative method for B-cell clonality assessment in the diagnosis of mature B-cell proliferations in which the detection of clonal immunoglobulin heavy chain (IGH) gene rearrangements fails. The aim of the present study was to evaluate the added value of standardized BIOMED-2 assay for the detection of clonal IGK gene rearrangements in the diagnostic setting of suspected B-cell lymphomas. With this purpose, 92 specimens from 80 patients with the final diagnosis of mature B-cell lymphoma (37 specimens), mature T-cell lymphoma (26 specimens) and reactive lymphoid proliferation (29 specimens) were analyzed for B-cell clonality. B-cell clonality analysis was performed using the BIOMED-2 IGH and IGK gene clonality assays. The determined sensitivity of the IGK assay was 67.6%, while the determined sensitivity of the IGH assay was 75.7%. The sensitivity of combined IGH+IGK assay was 81.1%. The determined specificity of the IGK assay was 96.2% in the group of T-cell lymphomas and 96.6% in the group of reactive lesions. The determined specificity of the IGH assay was 84.6% in the group of lymphomas and 86.2% in the group of reactive lesions. The comparison of GeneScan (GS) and heteroduplex pretreatment-polyacrylamide gel electrophoresis (HD-PAGE) methods for the analysis of IGK gene rearrangements showed a higher efficacy of GS analysis in a series of 27 B-cell lymphomas analyzed by both methods. In the present study, we demonstrated that by applying the combined IGH+IGK clonality assay the overall detection rate of B-cell clonality was increased by 5.4%. Thus, we confirmed the added value of the standardized BIOMED-2 IGK assay for assessment of B-cell clonality in suspected B-cell lymphomas with inconclusive clinical and cyto/histological diagnosis. PMID:25501347

  1. Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia

    PubMed Central

    Woollacott, Ione O.C.; Dick, Katrina M.; Brotherhood, Emilie; Gordon, Elizabeth; Fellows, Alexander; Toombs, Jamie; Druyeh, Ronald; Cardoso, M. Jorge; Ourselin, Sebastien; Nicholas, Jennifer M.; Norgren, Niklas; Mead, Simon; Andreasson, Ulf; Blennow, Kaj; Schott, Jonathan M.; Fox, Nick C.; Warren, Jason D.; Zetterberg, Henrik

    2016-01-01

    Objective: To investigate serum neurofilament light chain (NfL) concentrations in frontotemporal dementia (FTD) and to see whether they are associated with the severity of disease. Methods: Serum samples were collected from 74 participants (34 with behavioral variant FTD [bvFTD], 3 with FTD and motor neuron disease and 37 with primary progressive aphasia [PPA]) and 28 healthy controls. Twenty-four of the FTD participants carried a pathogenic mutation in C9orf72 (9), microtubule-associated protein tau (MAPT; 11), or progranulin (GRN; 4). Serum NfL concentrations were determined with the NF-Light kit transferred onto the single-molecule array platform and compared between FTD and healthy controls and between the FTD clinical and genetic subtypes. We also assessed the relationship between NfL concentrations and measures of cognition and brain volume. Results: Serum NfL concentrations were higher in patients with FTD overall (mean 77.9 pg/mL [SD 51.3 pg/mL]) than controls (19.6 pg/mL [SD 8.2 pg/mL]; p < 0.001). Concentrations were also significantly higher in bvFTD (57.8 pg/mL [SD 33.1 pg/mL]) and both the semantic and nonfluent variants of PPA (95.9 and 82.5 pg/mL [SD 33.0 and 33.8 pg/mL], respectively) compared with controls and in semantic variant PPA compared with logopenic variant PPA. Concentrations were significantly higher than controls in both the C9orf72 and MAPT subgroups (79.2 and 40.5 pg/mL [SD 48.2 and 20.9 pg/mL], respectively) with a trend to a higher level in the GRN subgroup (138.5 pg/mL [SD 103.3 pg/mL). However, there was variability within all groups. Serum concentrations correlated particularly with frontal lobe atrophy rate (r = 0.53, p = 0.003). Conclusions: Increased serum NfL concentrations are seen in FTD but show wide variability within each clinical and genetic group. Higher concentrations may reflect the intensity of the disease in FTD and are associated with more rapid atrophy of the frontal lobes. PMID:27581216

  2. Myosin regulatory light chain phosphorylation enhances cardiac β-myosin in vitro motility under load.

    PubMed

    Karabina, Anastasia; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta; Moore, Jeffrey R

    2015-08-15

    Familial hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy and myofibrillar disarray, and often results in sudden cardiac death. Two HCM mutations, N47K and R58Q, are located in the myosin regulatory light chain (RLC). The RLC mechanically stabilizes the myosin lever arm, which is crucial to myosin's ability to transmit contractile force. The N47K and R58Q mutations have previously been shown to reduce actin filament velocity under load, stemming from a more compliant lever arm (Greenberg, 2010). In contrast, RLC phosphorylation was shown to impart stiffness to the myosin lever arm (Greenberg, 2009). We hypothesized that phosphorylation of the mutant HCM-RLC may mitigate distinct mutation-induced structural and functional abnormalities. In vitro motility assays were utilized to investigate the effects of RLC phosphorylation on the HCM-RLC mutant phenotype in the presence of an α-actinin frictional load. Porcine cardiac β-myosin was depleted of its native RLC and reconstituted with mutant or wild-type human RLC in phosphorylated or non-phosphorylated form. Consistent with previous findings, in the presence of load, myosin bearing the HCM mutations reduced actin sliding velocity compared to WT resulting in 31-41% reductions in force production. Myosin containing phosphorylated RLC (WT or mutant) increased sliding velocity and also restored mutant myosin force production to near WT unphosphorylated values. These results point to RLC phosphorylation as a general mechanism to increase force production of the individual myosin motor and as a potential target to ameliorate the HCM-induced phenotype at the molecular level. PMID:26116789

  3. Regulatory light chain mutants linked to heart disease modify the cardiac myosin lever arm.

    PubMed

    Burghardt, Thomas P; Sikkink, Laura A

    2013-02-19

    Myosin is the chemomechanical energy transducer in striated heart muscle. The myosin cross-bridge applies impulsive force to actin while consuming ATP chemical energy to propel myosin thick filaments relative to actin thin filaments in the fiber. Transduction begins with ATP hydrolysis in the cross-bridge driving rotary movement of a lever arm converting torque into linear displacement. Myosin regulatory light chain (RLC) binds to the lever arm and modifies its ability to translate actin. Gene sequencing implicated several RLC mutations in heart disease, and three of them are investigated here using photoactivatable GFP-tagged RLC (RLC-PAGFP) exchanged into permeabilized papillary muscle fibers. A single-lever arm probe orientation is detected in the crowded environment of the muscle fiber by using RLC-PAGFP with dipole orientation deduced from the three-spatial dimension fluorescence emission pattern of the single molecule. Symmetry and selection rules locate dipoles in their half-sarcomere, identify those at the minimal free energy, and specify active dipole contraction intermediates. Experiments were performed in a microfluidic chamber designed for isometric contraction, total internal reflection fluorescence detection, and two-photon excitation second harmonic generation to evaluate sarcomere length. The RLC-PAGFP reports apparently discretized lever arm orientation intermediates in active isometric fibers that on average produce the stall force. Disease-linked mutants introduced into RLC move intermediate occupancy further down the free energy gradient, implying lever arms rotate more to reach stall force because mutant RLC increases lever arm shear strain. A lower free energy intermediate occupancy involves a lower energy conversion efficiency in the fiber relating a specific myosin function modification to the disease-implicated mutant.

  4. Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction

    SciTech Connect

    Muthu, Priya; Wang, Li; Yuan, Chen-Ching; Kazmierczak, Katarzyna; Huang, Wenrui; Hernandez, Olga M.; Kawai, Masataka; Irving, Thomas C.; Szczesna-Cordary, Danuta

    2012-04-02

    The myosin essential light chain (ELC) is a structural component of the actomyosin cross-bridge, but its function is poorly understood, especially the role of the cardiac specific N-terminal extension in modulating actomyosin interaction. Here, we generated transgenic (Tg) mice expressing the A57G (alanine to glycine) mutation in the cardiac ELC known to cause familial hypertrophic cardiomyopathy (FHC). The function of the ELC N-terminal extension was investigated with the Tg-{Delta}43 mouse model, whose myocardium expresses a truncated ELC. Low-angle X-ray diffraction studies on papillary muscle fibers in rigor revealed a decreased interfilament spacing ({approx} 1.5 nm) and no alterations in cross-bridge mass distribution in Tg-A57G mice compared to Tg-WT, expressing the full-length nonmutated ELC. The truncation mutation showed a 1.3-fold increase in I{sub 1,1}/I{sub 1,0}, indicating a shift of cross-bridge mass from the thick filament backbone toward the thin filaments. Mechanical studies demonstrated increased stiffness in Tg-A57G muscle fibers compared to Tg-WT or Tg-{Delta}43. The equilibrium constant for the cross-bridge force generation step was smallest in Tg-{Delta}43. These results support an important role for the N-terminal ELC extension in prepositioning the cross-bridge for optimal force production. Subtle changes in the ELC sequence were sufficient to alter cross-bridge properties and lead to pathological phenotypes.

  5. Immunoparesis status in immunoglobulin light chain amyloidosis at diagnosis affects response and survival by regimen type

    PubMed Central

    Muchtar, Eli; Dispenzieri, Angela; Kumar, Shaji K.; Dingli, David; Lacy, Martha Q.; Buadi, Francis K.; Hayman, Suzanne R.; Kapoor, Prashant; Leung, Nelson; Chakraborty, Rajshekhar; Russell, Stephen; Lust, John A.; Lin, Yi; Go, Ronald S.; Zeldenrust, Steven; Kyle, Robert A.; Rajkumar, S. Vincent; Gertz, Morie A.

    2016-01-01

    Clinical tools to guide in the appropriate treatment selection in immunoglobulin light chain (AL) amyloidosis are not well developed. We evaluated the response and outcome for various regimens at first-line treatment (n=681) and first progression (n=240) stratified by the immunoparesis status at diagnosis. Immunoparesis was assessed by the average relative difference of the uninvolved immunoglobulins, classifying patients into a negative average relative difference (i.e. significant immunoparesis) or a positive average relative difference (no/modest immunoparesis). Treatment was categorized as autologous stem cell transplant and four non-transplant regimens (melphalan-based; bortezomib-based, immunomodulatory drug-based and dexamethasone alone). Patients with significant immunoparesis who underwent stem cell transplant had a significantly lower rate of very good partial response or better response (58%), progression-free survival (median 30 months) and overall survival (108 months), compared to those without significant immunoparesis (80%, 127 months, median not reached, respectively; P<0.001 for all comparisons). Among the non-transplant regimens, melphalan resulted in an unfavorable progression-free survival (11 vs. 27 months; P<0.001) and overall survival (30 vs. 74 months; P=0.001) in patients with significant immunoparesis compared to those without significant immunoparesis. In contrast, no significant difference in outcomes between the immunoparesis groups was seen for those treated with bortezomib or immunomodulatory drugs. At first progression, immunoparesis status did not impact response or survival of any regimen. Melphalan at first-line provided poorer outcomes for patients with significant immunoparesis, while bortezomib or immunomodulatory drugs were more likely to overcome the adverse prognosis associated with significant immunoparesis. PMID:27479823

  6. Early Reduction of Serum-Free Light Chains Associates with Renal Recovery in Myeloma Kidney

    PubMed Central

    Cockwell, Paul; Stringer, Stephanie; Bradwell, Arthur; Cook, Mark; Gertz, Morie A.; Dispenzieri, Angela; Winters, Jeffrey L.; Kumar, Shaji; Rajkumar, S. Vincent; Kyle, Robert A.; Leung, Nelson

    2011-01-01

    Myeloma kidney is the major cause of severe irreversible renal failure in patients with multiple myeloma. This tubulointerstitial injury is a direct consequence of high concentrations of circulating monoclonal free light chains (FLCs) produced by a clonal expansion of plasma cells. Early reduction of serum FLCs associates with renal recovery, but the target threshold of reduction to facilitate renal recovery is unknown. To determine the relationship between the achieved FLC reduction and renal recovery, we identified 39 patients with biopsy-proven myeloma kidney, the majority of whom had severe renal failure at presentation (median estimated GFR 9 ml/min per 1.73 m2). In a multivariable analysis incorporating demographic, hematologic, and renal variables, only the achieved FLC reduction significantly predicted renal recovery (P = 0.003). The relationship between renal recovery and FLC reduction was linear with no absolute threshold for FLC reduction. A 60% reduction in FLCs by day 21 associated with recovery of renal function for 80% of the population. Patient survival strongly associated with renal recovery: the median survival was 42.7 months (range 0 to 80) among those who recovered function compared with 7.8 months (range 0 to 54) among those who did not (P < 0.02). Cox-regression analysis demonstrated that the first presentation of myeloma, the kappa isotype of FLC, and renal recovery were independent predictors of survival. In conclusion, recovery of renal function in myeloma kidney depends on early reduction of serum FLCs, and this recovery associates with a significant survival advantage. PMID:21511832

  7. Constraints on intron evolution in the gene encoding the myosin alkali light chain in Drosophila

    SciTech Connect

    Leicht, B.G.; Muse, S.V.; Hanczyc, M.

    1995-01-01

    Interspecific comparisons of intron sequences reveal conserved blocks of invariant nucleotides and several other departures from the strictly neutral model of molecular evolution. To distinguish the past action of evolutionary forces in introns known to have regulatory information, we examined nucleotide sequence variation at 991 sites in a random sample of 16 Drosophila melanogaster alleles of the gene encoding the myosin alkali light chain (Mlc1). The Mlc1 gene of D. melanogaster encodes two Mlc1 isoforms via developmentally regulated alternative pre-mRNA splicing. Analyses of these data reveal that introns 4 and 5, which flank the alternatively spliced exon 5, have reduced levels of both intraspecific polymorphism and interspecific divergence relative to intron 3. No polymorphism was observed in any of the exons examined in D. melanogaster. A genealogical analysis clearly demonstrates the occurrence of intragenic recombination in the ancestral history of Mlc1. Recombination events are estimated to be 13 times more likely than mutation events over the span of the sequenced region. Although there is little evidence for pairwise linkage disequilibrium in the Mlc1 region, higher order disequilibrium. does seem to be present in the 5{prime} half of the portion of the gene that was examined. Predictions of the folding free energy of the pre-mRNA reveal that sampled alleles have a significantly higher (less stable) free energy than do randomly permuted sequences. These results are consistent with the hypothesis that introns surrounding an alternatively spliced exon are subjected to additional constraints, perhaps due to specific aspects of secondary structure required for appropriate splicing of the pre-mRNA molecule. 48 refs., 5 figs., 3 tabs.

  8. [Role of phosphatidylinositol 3-kinase and myosin light chain kinase during the activation of thrombin receptors].

    PubMed

    Han, Yue; Gao, Hai-Li; Zhang, Wei; Bai, Xia; Dai, Lan; Sheng, Wen-Hong; Sun, Ai-Ning; Wu, De-Pei; Wang, Zhao-Yue; Ruan, Chang-Geng

    2009-06-01

    The objective of study was to compare the influences of wortmannin on platelet aggregation and platelet membrane surface glycoproteins GPIb expression after thrombin receptor activation, and to investigate the role of phosphatidylinositol 3-kinase (PI3-K) and myosin light chain kinase (MLCK) in the course of thrombin receptor activation. Peptide SFLLRN (PAR1-AP) and AYPGKF (PAR4-AP) were used for stimulating platelet, and the changes of platelet aggregation and GPIb were analyzed with 100 nmol/L wortmannin (inhibitor of PI3-K) and 10 micromol/L wortmannin (inhibitor of MLCK). The results indicated that the platelet activation was influenced by either concentration of wortmannin in response to PAR stimulation. Platelet aggregation was apparently inhibited by 10 micromol/L wortmannin through both PAR peptides, and was slightly inhibited by 100 nmol/L wortmannin only under PAR1-AP activation. In addition, GPIbalpha internalization was partly inhibited by 100 nmol/L wortmannin in response to PAR1 (p < 0.05 at 1, 2, 5 min) and PAR4 (p < 0.05 at 2, 5, 10 min) activation. Meanwhile, 10 micromol/L wortmannin induced little change for GPIbalpha centralisation in the course of PAR activation, with a delayed restoration of surface GPIbalpha observed under PAR1-AP activation, and no change of GPIbalpha redistribution existed under PAR4-AP activation. It is concluded that the different roles of PI3-K and MLCK exist in the course of thrombin receptor activation. PI3-K accelerates the short course of GPIb centralisation for two PAR signal pathways, while MLCK inhibits the restoration of GPIbalpha in PAR1 pathway. PMID:19549383

  9. Myosin light chain kinase controls voltage-dependent calcium channels in vascular smooth muscle.

    PubMed

    Martinsen, A; Schakman, O; Yerna, X; Dessy, C; Morel, N

    2014-07-01

    The Ca(2+)-dependent kinase myosin light chain kinase (MLCK) is the activator of smooth muscle contraction. In addition, it has been reported to be involved in Ca(2+) channel regulation in cultured cells, and we previously showed that the MLCK inhibitor ML-7 decreases arginine vasopressin (AVP)-induced Ca(2+) influx in rat aorta. This study was designed to investigate whether MLCK is involved in Ca(2+) regulation in resistance artery smooth muscle cell, which plays a major role in the control of blood pressure. As ML compounds were shown to have off-target effects, MLCK was downregulated by transfection with a small interfering RNA targeting MLCK (MLCK-siRNA) in rat small resistance mesenteric artery (RMA) and in the rat embryonic aortic cell line A7r5. Noradrenaline-induced contraction and Ca(2+) signal were significantly depressed in MLCK-siRNA compared to scramble-siRNA-transfected RMA. Contraction and Ca(2+) signal induced by high KCl and voltage-activated Ca(2+) current were also significantly decreased in MLCK-siRNA-transfected RMA, suggesting that MLCK depletion modifies voltage-operated Ca(2+) channels. KCl- and AVP-induced Ca(2+) signals and voltage-activated Ca(2+) current were decreased in MLCK-depleted A7r5 cells. Eventually, real-time quantitative PCR analysis indicated that in A7r5, MLCK controlled mRNA expression of CaV1.2 (L-type) and CaV3.1 (T-type) voltage-dependent Ca(2+) channels. Our results suggest that MLCK controls the transcription of voltage-dependent Ca(2+) channels in vascular smooth muscle cells. PMID:24162233

  10. Factor VII Light Chain-Targeted Lidamycin Shows Intensified Therapeutic Efficacy for Liver Cancer

    PubMed Central

    Liu, Xiujun; Xu, Shuangshuang; Li, Caihong; Zhang, Yang; Yang, Jie; Zheng, Junnian

    2012-01-01

    Abstract The overexpression of tissue factor (TF) observed in numerous cancer cells and clinical samples of human cancers makes TF an ideal target for cancer therapy. The purpose of this study is to develop a TF-targeting energized fusion protein hlFVII-LDP-AE, which is composed of a human Factor VII light chain (hlFVII) as the targeting domain conjugated to the cytotoxic antibiotic lidamycin (LDM, LDP-AE) as the effector domain. The potential efficacy of hlFVII-LDP-AE for cancer therapy was tested in vitro by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assays and in vivo with a BALB/c nude mouse xenograft model of human liver cancer line HepG2. The inhibitory concentration (IC50) value of hlFVII-LDP-AE varied from 0.15 to 0.64 nM for the various human tumor lines. hlFVII-LDP-AE showed a tumor growth inhibition rate of 90.6% at the dose of 0.6 mg/kg in in vivo animal experiments. The mechanism through which hlFVII-LDP-AE inhibits tumor growth also was determined by Hoechst 33342 staining and Tdt-mediated dUTP nick-end labeling (TUNEL) assay. hlFVII-LDP-AE causes tumor cell death through inducing chromatin condensation and cleavage of genomic DNA. These findings suggest that the hlFVII-LDP-AE protocol is efficacious and tolerated in the mouse model of human liver cancer HepG2 and has clinical applicability for treating cancer patients. PMID:22651685

  11. Structure of the Single-lobe Myosin Light Chain C in Complex with the Light Chain-binding Domains of Myosin-1C Provides Insights into Divergent IQ Motif Recognition.

    PubMed

    Langelaan, David N; Liburd, Janine; Yang, Yidai; Miller, Emily; Chitayat, Seth; Crawley, Scott W; Côté, Graham P; Smith, Steven P

    2016-09-01

    Myosin light chains are key regulators of class 1 myosins and typically comprise two domains, with calmodulin being the archetypal example. They bind IQ motifs within the myosin neck region and amplify conformational changes in the motor domain. A single lobe light chain, myosin light chain C (MlcC), was recently identified and shown to specifically bind to two sequentially divergent IQ motifs of the Dictyostelium myosin-1C. To provide a molecular basis of this interaction, the structures of apo-MlcC and a 2:1 MlcC·myosin-1C neck complex were determined. The two non-functional EF-hand motifs of MlcC pack together to form a globular four-helix bundle that opens up to expose a central hydrophobic groove, which interacts with the N-terminal portion of the divergent IQ1 and IQ2 motifs. The N- and C-terminal regions of MlcC make critical contacts that contribute to its specific interactions with the myosin-1C divergent IQ motifs, which are contacts that deviate from the traditional mode of calmodulin-IQ recognition.

  12. New Light Chain Amyloid Response Criteria Help Risk Stratification of Patients by Day 100 after Autologous Hematopoietic Cell Transplantation.

    PubMed

    D'Souza, Anita; Huang, Jiaxing; Hari, Parameswaran

    2016-04-01

    Hematologic response criteria in light chain (AL) amyloidosis were updated in 2012 to incorporate free light chain responses. These criteria have been validated in autologous hematopoietic cell transplantation in AL at 6 and 12 months after transplantation. Using a transplantation registry, we assessed day 100 responses in AL amyloidosis. We validate the prognostic significance of the new criteria at this time point. Further, we show that patients who do not achieve at least a very good partial response by this time point have equally worse outcomes, regardless of depth of response (partial versus no response). Thus, we conclude that the new criteria help identify the poor responders by day 100 after transplantation and that this subset of patients should be studied for early evaluation in consolidation trials.

  13. [Secondary monoclonal gammopathy after bone marrow autotransplantation as a cause of worse renal function in light chain immunoglobulin deposition disease].

    PubMed

    Rekhtina, I G; Mendeleeva, L P; Stolyarevich, E S; Gal'tseva, I V; Povilaitite, P E; Biryukova, L S

    2016-01-01

    The paper describes a clinical case of a female woman with nephropathy due to light chain deposition disease caused by secretion of κ Bence-Jones protein. Complete immunochemical remission was achieved after induction therapy using a bortezomib + cyclophosphamide + dexamethasone regimen. Renal function remained unchanged (glomerular filtration rate 16 ml/min), there was a reduction in proteinuria from 5.8 to 2.6 g/day. High-dose melphalan (200 mg/m2) chemotherapy with peripheral blood stem cell autotransplantation was performed as consolidation of remission. A year posttransplantation, there was no secretion of κ light chains; however, monoclonal IgG lambda emerged in a quantity of 3.2 g/l. At the same period, nephrotic syndrome became progressive (daily proteinuria 12 g) and dialysis-dependent renal failure developed. A repeat renal biopsy specimen revealed changes, suggesting that there was a decrease in renal deposits of κ light chains. Simultaneously with this, the obvious negative trend as progressive nephrosclerosis and fixation of IgG and λ light chains in the glomeruli (in the sclerotic areas) cause IgGλ monoclonal protein to be involved in the genesis of further kidney injury. Attention is also paid to different characteristics of capillary wall deposits by density (according to the electron microscopic findings), which may point to their different qualitative composition and possibly different formation duration. Papaprotein Gλ disappeared after a year without therapy, suggesting its reactivity. The findings confirm that worse renal function is caused by the action of paraprotein Gλ due to secondary (after autologous hematopoietic stem cells transplantation) monoclonal gammopathy.

  14. Papaverine Prevents Vasospasm by Regulation of Myosin Light Chain Phosphorylation and Actin Polymerization in Human Saphenous Vein

    PubMed Central

    Hocking, Kyle M.; Putumbaka, Gowthami; Wise, Eric S.; Cheung-Flynn, Joyce; Brophy, Colleen M.; Komalavilas, Padmini

    2016-01-01

    Objective Papaverine is used to prevent vasospasm in human saphenous veins (HSV) during vein graft preparation prior to implantation as a bypass conduit. Papaverine is a nonspecific inhibitor of phosphodiesterases, leading to increases in both intracellular cGMP and cAMP. We hypothesized that papaverine reduces force by decreasing intracellular calcium concentrations ([Ca2+]i) and myosin light chain phosphorylation, and increasing actin depolymerization via regulation of actin regulatory protein phosphorylation. Approach and Results HSV was equilibrated in a muscle bath, pre-treated with 1 mM papaverine followed by 5 μM norepinephrine, and force along with [Ca2+]i levels were concurrently measured. Filamentous actin (F-actin) level was measured by an in vitro actin assay. Tissue was snap frozen to measure myosin light chain and actin regulatory protein phosphorylation. Pre-treatment with papaverine completely inhibited norepinephrine-induced force generation, blocked increases in [Ca2+]i and led to a decrease in the phosphorylation of myosin light chain. Papaverine pre-treatment also led to increased phosphorylation of the heat shock-related protein 20 (HSPB6) and the vasodilator stimulated phosphoprotein (VASP), as well as decreased filamentous actin (F-actin) levels suggesting depolymerization of actin. Conclusions These results suggest that papaverine-induced force inhibition of HSV involves [Ca2+]i-mediated inhibition of myosin light chain phosphorylation and actin regulatory protein phosphorylation-mediated actin depolymerization. Thus, papaverine induces sustained inhibition of contraction of HSV by the modulation of both myosin cross-bridge formation and actin cytoskeletal dynamics and is a pharmacological alternative to high pressure distention to prevent vasospasm. PMID:27136356

  15. Amplitude of the actomyosin power stroke depends strongly on the isoform of the myosin essential light chain

    PubMed Central

    Guhathakurta, Piyali; Prochniewicz, Ewa; Thomas, David D.

    2015-01-01

    We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to determine the role of myosin essential light chains (ELCs) in structural transitions within the actomyosin complex. Skeletal muscle myosins have two ELC isoforms, A1 and A2, which differ by an additional 40–45 residues at the N terminus of A1, and subfragment 1 (S1) containing A1 (S1A1) has higher catalytic efficiency and higher affinity for actin than S1A2. ELC’s location at the junction between the catalytic and light-chain domains gives it the potential to play a central role in the force-generating power stroke. Therefore, we measured site-directed TR-FRET between a donor on actin and an acceptor near the C terminus of ELC, detecting directly the rotation of the light-chain domain (lever arm) relative to actin (power stroke), induced by the interaction of ATP-bound myosin with actin. TR-FRET resolved the weakly bound (W) and strongly bound (S) states of actomyosin during the W-to-S transition (power stroke). We found that the W states are essentially the same for the two isoenzymes, but the S states are quite different, indicating a much larger movement of S1A1. FRET from actin to a probe on the N-terminal extension of A1 showed close proximity to actin. We conclude that the N-terminal extension of A1-ELC modulates the W-to-S structural transition of acto-S1, so that the light-chain domain undergoes a much larger power stroke in S1A1 than in S1A2. These results have profound implications for understanding the contractile function of actomyosin, as needed in therapeutic design for muscle disorders. PMID:25825773

  16. Amplitude of the actomyosin power stroke depends strongly on the isoform of the myosin essential light chain.

    PubMed

    Guhathakurta, Piyali; Prochniewicz, Ewa; Thomas, David D

    2015-04-14

    We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to determine the role of myosin essential light chains (ELCs) in structural transitions within the actomyosin complex. Skeletal muscle myosins have two ELC isoforms, A1 and A2, which differ by an additional 40-45 residues at the N terminus of A1, and subfragment 1 (S1) containing A1 (S1A1) has higher catalytic efficiency and higher affinity for actin than S1A2. ELC's location at the junction between the catalytic and light-chain domains gives it the potential to play a central role in the force-generating power stroke. Therefore, we measured site-directed TR-FRET between a donor on actin and an acceptor near the C terminus of ELC, detecting directly the rotation of the light-chain domain (lever arm) relative to actin (power stroke), induced by the interaction of ATP-bound myosin with actin. TR-FRET resolved the weakly bound (W) and strongly bound (S) states of actomyosin during the W-to-S transition (power stroke). We found that the W states are essentially the same for the two isoenzymes, but the S states are quite different, indicating a much larger movement of S1A1. FRET from actin to a probe on the N-terminal extension of A1 showed close proximity to actin. We conclude that the N-terminal extension of A1-ELC modulates the W-to-S structural transition of acto-S1, so that the light-chain domain undergoes a much larger power stroke in S1A1 than in S1A2. These results have profound implications for understanding the contractile function of actomyosin, as needed in therapeutic design for muscle disorders. PMID:25825773

  17. [Secondary monoclonal gammopathy after bone marrow autotransplantation as a cause of worse renal function in light chain immunoglobulin deposition disease].

    PubMed

    Rekhtina, I G; Mendeleeva, L P; Stolyarevich, E S; Gal'tseva, I V; Povilaitite, P E; Biryukova, L S

    2016-01-01

    The paper describes a clinical case of a female woman with nephropathy due to light chain deposition disease caused by secretion of κ Bence-Jones protein. Complete immunochemical remission was achieved after induction therapy using a bortezomib + cyclophosphamide + dexamethasone regimen. Renal function remained unchanged (glomerular filtration rate 16 ml/min), there was a reduction in proteinuria from 5.8 to 2.6 g/day. High-dose melphalan (200 mg/m2) chemotherapy with peripheral blood stem cell autotransplantation was performed as consolidation of remission. A year posttransplantation, there was no secretion of κ light chains; however, monoclonal IgG lambda emerged in a quantity of 3.2 g/l. At the same period, nephrotic syndrome became progressive (daily proteinuria 12 g) and dialysis-dependent renal failure developed. A repeat renal biopsy specimen revealed changes, suggesting that there was a decrease in renal deposits of κ light chains. Simultaneously with this, the obvious negative trend as progressive nephrosclerosis and fixation of IgG and λ light chains in the glomeruli (in the sclerotic areas) cause IgGλ monoclonal protein to be involved in the genesis of further kidney injury. Attention is also paid to different characteristics of capillary wall deposits by density (according to the electron microscopic findings), which may point to their different qualitative composition and possibly different formation duration. Papaprotein Gλ disappeared after a year without therapy, suggesting its reactivity. The findings confirm that worse renal function is caused by the action of paraprotein Gλ due to secondary (after autologous hematopoietic stem cells transplantation) monoclonal gammopathy. PMID:27296267

  18. Light conditions alter accumulation of long chain polyprenols in leaves of trees and shrubs throughout the vegetation season.

    PubMed

    Bajda, Agnieszka; Chojnacki, Tadeusz; Hertel, Józefina; Swiezewska, Ewa; Wójcik, Jacek; Kaczkowska, Alicja; Marczewski, Andrzej; Bojarczuk, Tomasz; Karolewski, Piotr; Oleksyn, Jacek

    2005-01-01

    In many plants belonging to angiosperms and gymnosperms the accumulation in leaves of long chain polyprenols and polyprenyl esters during growth in natural habitats depends on the light intensity. The amount of polyprenols in leaves is also positively correlated with the thickness of the leaf blade (SLA, specific leaf area). The polyprenol content of leaves shows seasonal changes with a maximum in autumn and a minimum in early summer with the difference between poorly and well illuminated plants persisting throughout the vegetation season.

  19. Site-directed Mutagenesis Reveals Regions Implicated in the Stability and Fiber Formation of Human λ3r Light Chains*

    PubMed Central

    Villalba, Miryam I.; Canul-Tec, Juan C.; Luna-Martínez, Oscar D.; Sánchez-Alcalá, Rosalba; Olamendi-Portugal, Timoteo; Rudiño-Piñera, Enrique; Rojas, Sonia; Sánchez-López, Rosana; Fernández-Velasco, Daniel A.; Becerril, Baltazar

    2015-01-01

    Light chain amyloidosis (AL) is a disease that affects vital organs by the fibrillar aggregation of monoclonal light chains. λ3r germ line is significantly implicated in this disease. In this work, we contrasted the thermodynamic stability and aggregation propensity of 3mJL2 (nonamyloidogenic) and 3rJL2 (amyloidogenic) λ3 germ lines. Because of an inherent limitation (extremely low expression), Cys at position 34 of the 3r germ line was replaced by Tyr reaching a good expression yield. A second substitution (W91A) was introduced in 3r to obtain a better template to incorporate additional mutations. Although the single mutant (C34Y) was not fibrillogenic, the second mutation located at CDR3 (W91A) induced fibrillogenesis. We propose, for the first time, that CDR3 (position 91) affects the stability and fiber formation of human λ3r light chains. Using the double mutant (3rJL2/YA) as template, other variants were constructed to evaluate the importance of those substitutions into the stability and aggregation propensity of λ3 light chains. A change in position 7 (P7D) boosted 3rJL2/YA fibrillogenic properties. Modification of position 48 (I48M) partially reverted 3rJL2/YA fibril aggregation. Finally, changes at positions 8 (P8S) or 40 (P40S) completely reverted fibril formation. These results confirm the influential roles of N-terminal region (positions 7 and 8) and the loop 40–60 (positions 40 and 48) on AL. X-ray crystallography revealed that the three-dimensional topology of the single and double λ3r mutants was not significantly altered. This mutagenic approach helped to identify key regions implicated in λ3 AL. PMID:25505244

  20. CaMKII and at least two unidentified kinases phosphorylate regulatory light chain in non-contracting cardiomyocytes.

    PubMed

    Eikemo, Hilde; Moltzau, Lise Román; Nguyen, Cam H T; Levy, Finn Olav; Skomedal, Tor; Osnes, Jan-Bjørn

    2016-08-12

    In cardiac tissue, regulatory light chain (RLC, myosin light chain 2) phosphorylation (Ser(15)) leads to modulation of muscle contraction through Ca(2+)-sensitization. To elucidate which kinases that are involved in the basal (diastolic phase) RLC phosphorylation, we studied non-contracting adult rat cardiomyocytes. RLC kinase activities in situ were unmasked by maximally inhibiting myosin light chain phosphatase (MLCP) by calyculin A in the absence and presence of various protein kinase inhibitors. Surprisingly MLCK did not contribute to the phosphorylation of RLC in the non-contracting cardiomyocytes. Two kinase activity groups were revealed by different sensitivities to staurosporine. The fraction with the highest sensitivity to staurosporine was inhibited by KN-93, a selective CaMKII inhibitor, producing a 23% ± 7% reduction in RLC phosphorylation. Calmodulin antagonism (W7) and reduction in Ca(2+) (EGTA) combined with low concentration of staurosporine caused a larger decrease in RLC phosphorylation than staurosporine alone. These data strongly suggest that in addition to CaMKII, there is another Ca(2+)/calmodulin-dependent kinase and a Ca(2+)/calmodulin-independent kinase phosphorylating RLC. Thus the RLC phosphorylation seems to be ensured by redundant kinase activities.

  1. TCTEX1D4 Interactome in Human Testis: Unraveling the Function of Dynein Light Chain in Spermatozoa

    PubMed Central

    Freitas, Maria João; Korrodi-Gregório, Luís; Morais-Santos, Filipa; da Cruz e Silva, Edgar

    2014-01-01

    Abstract Studies were designed to identify the TCTEX1D4 interactome in human testis, with the purpose of unraveling putative protein complexes essential to male reproduction and thus novel TCTEX1D4 functions. TCTEX1D4 is a dynein light chain that belongs to the DYNT1/TCTEX1 family. In spermatozoa, it appears to be important to sperm motility, intraflagellar transport, and acrosome reaction. To contribute to the knowledge on TCTEX1D4 function in testis and spermatozoa, a yeast two-hybrid assay was performed in testis, which allowed the identification of 40 novel TCTEX1D4 interactors. Curiously, another dynein light chain, TCTEX1D2, was identified and its existence demonstrated for the first time in human spermatozoa. Immunofluorescence studies proved that TCTEX1D2 is an intra-acrosomal protein also present in the midpiece, suggesting a role in cargo movement in human spermatozoa. Further, an in silico profile of TCTEX1D4 revealed that most TCTEX1D4 interacting proteins were not previously characterized and the ones described present a very broad nature. This reinforces TCTEX1D4 as a dynein light chain that is capable of interacting with a variety of functionally different proteins. These observations collectively contribute to a deeper molecular understanding of the human spermatozoa function. PMID:24606217

  2. Myosin light chain kinase steady-state kinetics: comparison of smooth muscle myosin II and nonmuscle myosin IIB as substrates

    PubMed Central

    Alcala, Diego B.; Haldeman, Brian D.; Brizendine, Richard K.; Krenc, Agata K.; Baker, Josh E.; Rock, Ronald S.; Cremo, Christine R.

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates S19 of the myosin regulatory light chain (RLC), which is required to activate myosin's ATPase activity and contraction. Smooth muscles are known to display plasticity in response to factors such as inflammation, developmental stage, or stress, which lead to differential expression of nonmuscle and smooth muscle isoforms. Here, we compare steady-state kinetics parameters for phosphorylation of different MLCK substrates: (1) nonmuscle RLC, (2) smooth muscle RLC, and heavy meromyosin subfragments of (3) nonmuscle myosin IIB, and (4) smooth muscle myosin II. We show that MLCK has a ~2-fold higher kcat for both smooth muscle myosin II substrates compared with nonmuscle myosin IIB substrates, whereas Km values were very similar. Myosin light chain kinase has a 1.6-fold and 1.5-fold higher specificity (kcat/Km) for smooth versus nonmuscle-free RLC and heavy meromyosin, respectively, suggesting that differences in specificity are dictated by RLC sequences. Of the 10 non-identical RLC residues, we ruled out 7 as possible underlying causes of different MLCK kinetics. The remaining 3 residues were found to be surface exposed in the N-terminal half of the RLC, consistent with their importance in substrate recognition. These data are consistent with prior deletion/chimera studies and significantly add to understanding of MLCK myosin interactions. PMID:27528075

  3. TCTEX1D4 interactome in human testis: unraveling the function of dynein light chain in spermatozoa.

    PubMed

    Freitas, Maria João; Korrodi-Gregório, Luís; Morais-Santos, Filipa; Cruz e Silva, Edgar da; Fardilha, Margarida

    2014-04-01

    Studies were designed to identify the TCTEX1D4 interactome in human testis, with the purpose of unraveling putative protein complexes essential to male reproduction and thus novel TCTEX1D4 functions. TCTEX1D4 is a dynein light chain that belongs to the DYNT1/TCTEX1 family. In spermatozoa, it appears to be important to sperm motility, intraflagellar transport, and acrosome reaction. To contribute to the knowledge on TCTEX1D4 function in testis and spermatozoa, a yeast two-hybrid assay was performed in testis, which allowed the identification of 40 novel TCTEX1D4 interactors. Curiously, another dynein light chain, TCTEX1D2, was identified and its existence demonstrated for the first time in human spermatozoa. Immunofluorescence studies proved that TCTEX1D2 is an intra-acrosomal protein also present in the midpiece, suggesting a role in cargo movement in human spermatozoa. Further, an in silico profile of TCTEX1D4 revealed that most TCTEX1D4 interacting proteins were not previously characterized and the ones described present a very broad nature. This reinforces TCTEX1D4 as a dynein light chain that is capable of interacting with a variety of functionally different proteins. These observations collectively contribute to a deeper molecular understanding of the human spermatozoa function.

  4. Neurofilament light chain level is a weak risk factor for the development of MS

    PubMed Central

    Arrambide, Georgina; Eixarch, Herena; Villar, Luisa M.; Alvarez-Cermeño, José C.; Picón, Carmen; Kuhle, Jens; Disanto, Giulio; Kappos, Ludwig; Sastre-Garriga, Jaume; Pareto, Deborah; Simon, Eva; Comabella, Manuel; Río, Jordi; Nos, Carlos; Tur, Carmen; Castilló, Joaquín; Vidal-Jordana, Angela; Galán, Ingrid; Arévalo, Maria J.; Auger, Cristina; Rovira, Alex; Montalban, Xavier

    2016-01-01

    Objective: To determine the prognostic value of selected biomarkers in clinically isolated syndromes (CIS) for conversion to multiple sclerosis (MS) and disability accrual. Methods: Data were acquired from 2 CIS cohorts. The screening phase evaluated patients developing clinically definite MS (CIS-CDMS) and patients who remained as CIS during a 2-year minimum follow-up (CIS-CIS). We determined levels of neurofascin, semaphorin 3A, fetuin A, glial fibrillary acidic protein, and neurofilament light (NfL) and heavy chains in CSF (estimated mean [95% confidence interval; CI]). We evaluated associations between biomarker levels, conversion, disability, and magnetic resonance parameters. In the replication phase, we determined NfL levels (n = 155) using a 900 ng/L cutoff. Primary endpoints in uni- and multivariate analyses were CDMS and 2010 McDonald MS. Results: The only biomarker showing significant differences in the screening was NfL (CIS-CDMS 1,553.1 [1,208.7–1,897.5] ng/L and CIS-CIS 499.0 [168.8–829.2] ng/L, p < 0.0001). The strongest associations were with brain parenchymal fraction change (rs = −0.892) and percentage brain volume change (rs = −0.842) at 5 years. NfL did not correlate with disability. In the replication phase, more NfL-positive patients, according to the cutoff, evolved to MS. Every 100-ng/L increase in NfL predicted CDMS (hazard ratio [HR] = 1.009, 95% CI 1.005–1.014) and McDonald MS (HR = 1.009, 95% CI 1.005–1.013), remaining significant for CDMS in the multivariate analysis (adjusted HR = 1.005, 95% CI 1.000–1.011). This risk was lower than the presence of oligoclonal bands or T2 lesions. Conclusions: NfL is a weak independent risk factor for MS. Its role as an axonal damage biomarker may be more relevant as suggested by its association with medium-term brain volume changes. PMID:27521440

  5. Enhanced paracellular transport of insulin can be achieved via transient induction of myosin light chain phosphorylation.

    PubMed

    Taverner, Alistair; Dondi, Ruggero; Almansour, Khaled; Laurent, Floriane; Owens, Siân-Eleri; Eggleston, Ian M; Fotaki, Nikoletta; Mrsny, Randall J

    2015-07-28

    The intestinal epithelium functions to effectively restrict the causal uptake of luminal contents but has been demonstrated to transiently increase paracellular permeability properties to provide an additional entry route for dietary macromolecules. We have examined a method to emulate this endogenous mechanism as a means of enhancing the oral uptake of insulin. Two sets of stable Permeant Inhibitor of Phosphatase (PIP) peptides were rationally designed to stimulate phosphorylation of intracellular epithelial myosin light chain (MLC) and screened using Caco-2 monolayers in vitro. Apical application of PIP peptide 640, designed to disrupt protein-protein interactions between protein phosphatase 1 (PP1) and its regulator CPI-17, resulted in a reversible and non-toxic transient reduction in Caco-2 monolayer trans-epithelial electric resistance (TEER) and opening of the paracellular route to 4kDa fluorescent dextran but not 70kDa dextran in vitro. Apical application of PIP peptide 250, designed to impede MYPT1-mediated regulation of PP1, also decreased TEER in a reversible and non-toxic manner but transiently opened the paracellular route to both 4 and 70kDa fluorescent dextrans. Direct injection of PIP peptides 640 or 250 with human insulin into the lumen of rat jejunum caused a decrease in blood glucose levels that was PIP peptide and insulin dose-dependent and correlated with increased pMLC levels. Systemic levels of insulin suggested approximately 3-4% of the dose injected into the intestinal lumen was absorbed, relative to a subcutaneous injection. Measurement of insulin levels in the portal vein showed a time window of absorption that was consistent with systemic concentration-time profiles and approximately 50% first-pass clearance by the liver. Monitoring the uptake of a fluorescent form of insulin suggested its uptake occurred via the paracellular route. Together, these studies add validation to the presence of an endogenous mechanism used by the intestinal

  6. Long term outcomes of cardiac transplant for immunoglobulin light chain amyloidosis: The Mayo Clinic experience

    PubMed Central

    Grogan, Martha; Gertz, Morie; McCurdy, Arleigh; Roeker, Lindsey; Kyle, Robert; Kushwaha, Sudhir; Daly, Richard; Dearani, Joseph; Rodeheffer, Richard; Frantz, Robert; Lacy, Martha; Hayman, Suzanne; McGregor, Christopher; Edwards, Brooks; Dispenzieri, Angela

    2016-01-01

    AIM: To determine the outcome of orthotopic heart transplantation (OHT) in immunoglobulin light chain (AL) amyloidosis. METHODS: The medical records of patients with AL who underwent orthotopic heart transplantation at the Mayo Clinic in Rochester Minnesota from 1992 to 2011 were reviewed. Patients met at least one of the following at: New York Heart Association class IV heart failure, ventricular thickness > 15 mm, ejection fraction < 40%. Selection guidelines for heart transplant included age < 60 years, absence of multiple myeloma and significant extra-cardiac organ involvement. Baseline characteristics including age, gender, organ involvement, and New York Heart Association functional class were recorded. Laboratory data, waiting time until heart transplant, and type of treatment of the underlying plasma cell disorder were recorded. Survival from the time of OHT was calculated using Kaplan-Meier survival curves. Survival of patients undergoing OHT for AL was compared to that of non-amyloid patients undergoing OHT during the same time period. RESULTS: Twenty-three patients (median age 53 years) with AL received OHT. There were no deaths in the immediate perioperative period. Twenty patients have died post OHT. For the entire cohort, the median overall survival was 3.5 years (95%CI: 1.2, 8.2 years). The 1-year survival post OHT was 77%, the 2-year survival 65%, and the 5-year survival 43%. The 5-year survival for non-amyloid patients undergoing OHT during the same era was 85%. Progressive amyloidosis contributed to death in twelve patients. Of those without evidence of progressive amyloidosis, the cause of death included complications of autologous hematopoietic stem cell transplantation for 3 patients, post-transplant lymphoproliferative disorder for 2 patients; and for the remaining one death was related to each of the following causes: acute rejection; cardiac vasculopathy; metastatic melanoma; myelodysplastic syndrome; and unknown. Eight patients had

  7. [Seasonal changes in phosphorylation of myosin regulatory light chains and C-protein in myocardium of hibernating ground squirrel Citellus undulatus].

    PubMed

    Malyshev, S L; Osipova, D A; Vikhliantsev, I M; Podlubnaia, Z A

    2006-01-01

    A comparative study concerning the extent of phosphorylation of myosin regulatory light chains and C-protein from the left ventricle of hibernating ground squirrel Citellus undulatus during the periods of hibernation and activity was carried out. During hibernation, regulatory light chains of ground squirrel were found to be completely dephosphorylated. In active animals, the share of phosphorylated light chains averages 40-45% of their total amount. The extent of phosphorylation of the cardiac C-protein during hibernation is about two times higher than that in the active state. Seasonal differences in phosphorylation of the two proteins of ground squirrel myocardium are discussed in the context of adaptation to hibernation.

  8. Expression and Functional Properties of an Anti-Triazophos High-Affinity Single-Chain Variable Fragment Antibody with Specific Lambda Light Chain.

    PubMed

    Liu, Rui; Liang, Xiao; Xiang, Dandan; Guo, Yirong; Liu, Yihua; Zhu, Guonian

    2016-01-01

    Triazophos is a widely used organophosphorous insecticide that has potentially adverse effects to organisms. In the present study, a high-affinity single-chain variable fragment (scFv) antibody with specific lambda light chain was developed for residue monitoring. First, the specific variable regions were correctly amplified from a hybridoma cell line 8C10 that secreted monoclonal antibody (mAb) against triazophos. The regions were then assembled as scFv via splicing by overlap extension polymerase chain reaction. Subsequently, the recombinant anti-triazophos scFv-8C10 was successfully expressed in Escherichia coli strain HB2151 in soluble form, purified through immobilized metal ion affinity chromatography, and verified via Western blot and peptide mass fingerprinting analyses. Afterward, an indirect competitive enzyme-linked immunosorbent assay was established based on the purified anti-triazophos scFv-8C10 antibody. The assay exhibited properties similar to those based on the parent mAb, with a high sensitivity (IC50 of 1.73 ng/mL) to triazophos and no cross reaction for other organophosphorus pesticides; it was reliable in detecting triazophos residues in spiked water samples. Moreover, kinetic measurement using a surface plasmon resonance biosensor indicated that the purified scFv-8C10 antibody had a high affinity of 1.8 × 10(-10) M and exhibited good binding stability. Results indicated that the recombinant high-affinity scFv-8C10 antibody was an effective detection material that would be promising for monitoring triazophos residues in environment samples. PMID:27338340

  9. Expression and Functional Properties of an Anti-Triazophos High-Affinity Single-Chain Variable Fragment Antibody with Specific Lambda Light Chain

    PubMed Central

    Liu, Rui; Liang, Xiao; Xiang, Dandan; Guo, Yirong; Liu, Yihua; Zhu, Guonian

    2016-01-01

    Triazophos is a widely used organophosphorous insecticide that has potentially adverse effects to organisms. In the present study, a high-affinity single-chain variable fragment (scFv) antibody with specific lambda light chain was developed for residue monitoring. First, the specific variable regions were correctly amplified from a hybridoma cell line 8C10 that secreted monoclonal antibody (mAb) against triazophos. The regions were then assembled as scFv via splicing by overlap extension polymerase chain reaction. Subsequently, the recombinant anti-triazophos scFv-8C10 was successfully expressed in Escherichia coli strain HB2151 in soluble form, purified through immobilized metal ion affinity chromatography, and verified via Western blot and peptide mass fingerprinting analyses. Afterward, an indirect competitive enzyme-linked immunosorbent assay was established based on the purified anti-triazophos scFv-8C10 antibody. The assay exhibited properties similar to those based on the parent mAb, with a high sensitivity (IC50 of 1.73 ng/mL) to triazophos and no cross reaction for other organophosphorus pesticides; it was reliable in detecting triazophos residues in spiked water samples. Moreover, kinetic measurement using a surface plasmon resonance biosensor indicated that the purified scFv-8C10 antibody had a high affinity of 1.8 × 10−10 M and exhibited good binding stability. Results indicated that the recombinant high-affinity scFv-8C10 antibody was an effective detection material that would be promising for monitoring triazophos residues in environment samples. PMID:27338340

  10. Follow-up of IgD-κ multiple myeloma by monitoring free light chains and total heavy chain IgD: A case report

    PubMed Central

    De Santis, Elena; Masi, Serena; Cordone, Iole; Pisani, Francesco; Zuppi, Cecilia; Mattei, Fabrizio; Conti, Laura; Cigliana, Giovanni

    2016-01-01

    Immunoglobulin (Ig)D-κ multiple myeloma (MM) is a rare neoplastic disease characterized by an aggressive and rapidly progressing course, which constitutes only a very small proportion of all MM cases. In the present report, the clinical case of a 51-year-old Caucasian woman diagnosed with IgD-κ MM is described. The patient underwent different chemotherapeutic treatments subsequently to a single autologous stem cell transplantation. Despite the inherent difficulty of monitoring IgD levels and performing serum immunofixation electrophoresis, the clinical outcome of the patient was almost uniquely monitored by measuring the levels of κ and λ free light chains (FLCs) and total heavy chain IgD. The data suggest the non-invasive potential and usefulness of FLCs evaluation for early detection of stringent complete remission, follow-up and early detection of disease relapse. In addition, this diagnostic procedure has successfully been employed for the therapeutic monitoring of the present patient, and may represent a very helpful, non-invasive tool for the follow-up of IgD myeloma patients without the requirement of serial bone marrow aspirate. PMID:27588135

  11. Myosin‑II heavy chain and formin mediate the targeting of myosin essential light chain to the division site before and during cytokinesis

    PubMed Central

    Feng, Zhonghui; Okada, Satoshi; Cai, Guoping; Zhou, Bing; Bi, Erfei

    2015-01-01

    MLC1 is a haploinsufficient gene encoding the essential light chain for Myo1, the sole myosin‑II heavy chain in the budding yeast Saccharomyces cerevisiae. Mlc1 defines an essential hub that coordinates actomyosin ring function, membrane trafficking, and septum formation during cytokinesis by binding to IQGAP, myosin‑II, and myosin‑V. However, the mechanism of how Mlc1 is targeted to the division site during the cell cycle remains unsolved. By constructing a GFP‑tagged MLC1 under its own promoter control and using quantitative live‑cell imaging coupled with yeast mutants, we found that septin ring and actin filaments mediate the targeting of Mlc1 to the division site before and during cytokinesis, respectively. Both mechanisms contribute to and are collectively required for the accumulation of Mlc1 at the division site during cytokinesis. We also found that Myo1 plays a major role in the septin‑dependent Mlc1 localization before cytokinesis, whereas the formin Bni1 plays a major role in the actin filament–dependent Mlc1 localization during cytokinesis. Such a two‑tiered mechanism for Mlc1 localization is presumably required for the ordered assembly and robustness of cytokinesis machinery and is likely conserved across species. PMID:25631819

  12. Heavy chain (LvH) and light chain (LvL) of lipovitellin (Lv) of zebrafish can both bind to bacteria and enhance phagocytosis.

    PubMed

    Liang, Xue; Hu, Yu; Feng, Shuoqi; Zhang, Shicui; Zhang, Yu; Sun, Chen

    2016-10-01

    Lipovitellin (Lv) is an apoprotein in oviparous animals. Lv consists of a heavy chain (LvH) and a light chain (LvL) which are traditionally regarded as energy reserves for developing embryos. Recently, Lv has been shown to be involved in immune defense of developing embryos in fish. However, it remains unknown if each of LvH and LvL possesses immune activity; and if so, whether or not they function similarly. Here we clearly demonstrated that recombinant LvH (rLvH) and LvL (rLvL) from zebrafish vg1 gene bound to both the Gram-negative bacteria Escherichia coli and Vibrio anguillarum and the Gram-positive bacteria Staphylococcus aureus and Micrococcus luteus as well as the pathogen-associated molecular patterns LPS, LTA and PGN. In addition, both rLvH and rLvL were able to enhance the phagocytosis of bacteria E. coli and S. aureus by macrophages. All these data suggest that both LvH and LvL, in addition to being energy reserves, are also maternal immune-relevant factors capable of interacting with invading bacteria in zebrafish embryos/larvae. PMID:27185202

  13. Beta-2-glycoprotein specificity of human anti-phospholipid antibody resides on the light chain: a novel mechanism for acquisition of cross-reactivity by an autoantibody.

    PubMed

    Kumar, Sanjeev; Nagl, Sylvia; Kalsi, Jatinderpal K; Ravirajan, Chelliah T; Athwal, Dee; Latchman, David S; Pearl, Laurence H; Isenberg, David A

    2005-01-01

    We have recently shown that the anti-cardiolipin activity of human anti-phospholipid antibody UK4 (lambda) resides on its heavy chain. We now show that UK4 possesses strong reactivity to the plasma-protein beta2-Glycoprotein I (beta2-GPI) also. Utilizing chain shuffling experiments involving an unrelated anti-p185 antibody 4D5 (kappa) with no reactivity to beta2-GPI, we now demonstrate that both the constructs possessing the auto-antibody-derived light chain exhibited significant binding to beta2-GPI. However, the construct possessing UK4 heavy chain in association with 4D5 light chain, exhibited no anti-beta2-GPI activity. Furthermore, there was a low increase (approximately 10%) in the binding of UK4 to cardiolipin in the presence of beta2-GPI. The results demonstrate that anti-beta2-GPI activity resides on UK4 light chain and, importantly, this activity could be transferred to a novel antibody construct via the light chain alone. Computer-generated models of the three-dimensional structures of UK4 and its hybrids, suggest predominant interaction of UK4 light chain with domain IV of beta2-GPI. Molecular docking experiments highlight a number of potential sites on beta2-GPI for interaction of UK4 and indicate as to how beta2-GPI recognition may occur primarily via the autoantibody light chain. The study provides first demonstration of the occurrence of anti-phospholipid and anti-beta2-GPI activities separately on heavy and light chains of an autoantibody. The possible mechanisms that such antibodies may employ to recognise their antigens, are discussed.

  14. Development and application of in vivo molecular traps reveals that dynein light chain occupancy differentially affects dynein-mediated processes.

    PubMed

    Varma, Dileep; Dawn, Amrita; Ghosh-Roy, Anindya; Weil, Sarah J; Ori-McKenney, Kassandra M; Zhao, Yanqiu; Keen, James; Vallee, Richard B; Williams, John C

    2010-02-23

    The ability to rapidly and specifically regulate protein activity combined with in vivo functional assays and/or imaging can provide unique insight into underlying molecular processes. Here we describe the application of chemically induced dimerization of FKBP to create nearly instantaneous high-affinity bivalent ligands capable of sequestering cellular targets from their endogenous partners. We demonstrate the specificity and efficacy of these inducible, dimeric "traps" for the dynein light chains LC8 (Dynll1) and TcTex1 (Dynlt1). Both light chains can simultaneously bind at adjacent sites of dynein intermediate chain at the base of the dynein motor complex, yet their specific function with respect to the dynein motor or other interacting proteins has been difficult to dissect. Using these traps in cultured mammalian cells, we observed that induction of dimerization of either the LC8 or TcTex1 trap rapidly disrupted early endosomal and lysosomal organization. Dimerization of either trap also disrupted Golgi organization, but at a substantially slower rate. Using either trap, the time course for disruption of each organelle was similar, suggesting a common regulatory mechanism. However, despite the essential role of dynein in cell division, neither trap had a discernable effect on mitotic progression. Taken together, these studies suggest that LC occupancy of the dynein motor complex directly affects some, but not all, dynein-mediated processes. Although the described traps offer a method for rapid inhibition of dynein function, the design principle can be extended to other molecular complexes for in vivo studies.

  15. Combined use of free light chain and heavy/light chain ratios allow diagnosis and monitoring of patients with monoclonal gammopathies: Experience of a single institute, with three exemplar case reports

    PubMed Central

    Gagliardi, Alfredo; Carbone, Claudio; Russo, Angela; Cuccurullo, Rosanna; Lucania, Anna; Cioppa, Paola Della; Misso, Gabriella; Caraglia, Michele; Tommasino, Catello; Mastrullo, Lucia

    2016-01-01

    Monoclonal gammopathies are characterized by serum monoclonal component (MC) plus an intact immunoglobulin and a free light chain (FLC), or a combination of both. The measurement of FLC with Freelite® is the standard practice recommended by International Myeloma Working Group guidelines. Recently, Hevylite® heavy/light chains (HLC) assays were introduced to specifically target junctional epitopes between the heavy and light chains of intact immunoglobulins, allowing the independent quantification of the involved (MC) and uninvolved (polyclonal immunoglobulin background) HLC isotype. Between January 2012 and March 2014, 90 patients were examined: 49 multiple myeloma (MM), 6 smoldering MM (SMM) and 35 monoclonal gammopathy of undetermined significance (MGUS). Of these 90 patients, 300 samples were collected at different times. The diagnostic and monitoring contribution of Hevylite A and G assays was assessed in all 90 patients examined. Additionally, 3 representative cases were selected. The Hevylite absolute values and ratio demonstrated high sensitivity and specificity with respect to serum protein electrophoresis and serum immunofixation. The combined use of Hevylite A and G with Freelite was particularly useful in dubious cases with more than one MC or with co-migrating components, as well as in the course of monitoring to assess the independent change of FLC and HLC, possibly reflecting the presence of clonal heterogeneity in the cohort. From this study, it can be concluded that FLC and HLC are independent, useful markers to monitor the MC and to assess with greater specificity and sensitivity the effect of therapy, thereby providing clinical support. Further studies are required to assess the prognostic potential of Hevylite in MGUS and SMM.

  16. Combined use of free light chain and heavy/light chain ratios allow diagnosis and monitoring of patients with monoclonal gammopathies: Experience of a single institute, with three exemplar case reports

    PubMed Central

    Gagliardi, Alfredo; Carbone, Claudio; Russo, Angela; Cuccurullo, Rosanna; Lucania, Anna; Cioppa, Paola Della; Misso, Gabriella; Caraglia, Michele; Tommasino, Catello; Mastrullo, Lucia

    2016-01-01

    Monoclonal gammopathies are characterized by serum monoclonal component (MC) plus an intact immunoglobulin and a free light chain (FLC), or a combination of both. The measurement of FLC with Freelite® is the standard practice recommended by International Myeloma Working Group guidelines. Recently, Hevylite® heavy/light chains (HLC) assays were introduced to specifically target junctional epitopes between the heavy and light chains of intact immunoglobulins, allowing the independent quantification of the involved (MC) and uninvolved (polyclonal immunoglobulin background) HLC isotype. Between January 2012 and March 2014, 90 patients were examined: 49 multiple myeloma (MM), 6 smoldering MM (SMM) and 35 monoclonal gammopathy of undetermined significance (MGUS). Of these 90 patients, 300 samples were collected at different times. The diagnostic and monitoring contribution of Hevylite A and G assays was assessed in all 90 patients examined. Additionally, 3 representative cases were selected. The Hevylite absolute values and ratio demonstrated high sensitivity and specificity with respect to serum protein electrophoresis and serum immunofixation. The combined use of Hevylite A and G with Freelite was particularly useful in dubious cases with more than one MC or with co-migrating components, as well as in the course of monitoring to assess the independent change of FLC and HLC, possibly reflecting the presence of clonal heterogeneity in the cohort. From this study, it can be concluded that FLC and HLC are independent, useful markers to monitor the MC and to assess with greater specificity and sensitivity the effect of therapy, thereby providing clinical support. Further studies are required to assess the prognostic potential of Hevylite in MGUS and SMM. PMID:27698801

  17. Four things to know about myosin light chains as reporters for non-muscle myosin-2 dynamics in live cells.

    PubMed

    Heissler, Sarah M; Sellers, James R

    2015-02-01

    The interplay between non-muscle myosins-2 and filamentous actin results in cytoplasmic contractility which is essential for eukaryotic life. Concomitantly, there is tremendous interest in elucidating the physiological function and temporal localization of non-muscle myosin-2 in cells. A commonly used method to study the function and localization of non-muscle myosin-2 is to overexpress a fluorescent protein (FP)-tagged version of the regulatory light chain (RLC) which binds to the myosin-2 heavy chain by mass action. Caveats about this approach include findings from recent studies indicating that the RLC does not bind exclusively to the non-muscle myosin-2 heavy chain. Rather, it can also associate with the myosin heavy chains of several other classes as well as other targets than myosin. In addition, the presence of the FP moiety may compromise myosin's enzymatic and mechanical performance. This and other factors to be discussed in this commentary raise questions about the possible complications in using FP-RLC as a marker for the dynamic localization and regulatory aspects of non-muscle myosin-2 motor functions in cell biological experiments.

  18. Tyrosine phosphorylation/dephosphorylation of myosin II essential light chains of Entamoeba histolytica trophozoites regulates their motility.

    PubMed

    Bonilla-Moreno, Raúl; Pérez-Yépez, Eloy-Andrés; Villegas-Sepúlveda, Nicolás; Morales, Fernando O; Meza, Isaura

    2016-08-01

    Entamoeba histolytica trophozoites dwell in the human intestine as comensals although under still unclear circumstances become invasive and destroy the host tissues. For these activities, trophozoites relay on remarkable motility provided by the cytoskeleton organization. Amebic actin and some of its actin-associated proteins are well known, while components of the myosin II molecule, although predicted from the E. histolytica genome, need biochemical and functional characterization. Recently, an amebic essential light myosin II chain, named EhMLCI, was identified and reported to be phosphorylated in tyrosines. The phosphorylated form of the protein was associated with the soluble assembly incompetent conformation of the heavy myosin chains, while the non-phosphorylated protein was identified with filamentous heavy chains, organized in an assembly competent conformation. It was postulated that EhMLCI tyrosine phosphorylation could act as a negative regulator of myosin II activity by its phosphorylation/dephosphorylation cycles. To test this hypothesis, we constructed an expression vector containing an EhMLCI DNA sequence where two tyrosine residues, with strong probability of phosphorylation and fall within the single EF-hand domain that interacts with the N-terminus of myosin II heavy chains, were replaced by phenylalanines. Transfected trophozoites, expressing the mutant MutEhMLCI protein cannot process it, thereby not incorporated into the phosphorylation/dephosphorylation cycles required for myosin II activity, results in motility defective trophozoites. PMID:27318258

  19. Interactions of Yeast Dynein with Dynein Light Chain and Dynactin: GENERAL IMPLICATIONS FOR INTRINSICALLY DISORDERED DUPLEX SCAFFOLDS IN MULTIPROTEIN ASSEMBLIES.

    PubMed

    Jie, Jing; Löhr, Frank; Barbar, Elisar

    2015-09-25

    Intrinsically disordered protein (IDP) duplexes composed of two IDP chains cross-linked by bivalent partner proteins form scaffolds for assembly of multiprotein complexes. The N-terminal domain of dynein intermediate chain (N-IC) is one such IDP that forms a bivalent scaffold with multiple dynein light chains including LC8, a hub protein that promotes duplex formation of diverse IDP partners. N-IC also binds a subunit of the dynein regulator, dynactin. Here we characterize interactions of a yeast ortholog of N-IC (N-Pac11) with yeast LC8 (Dyn2) or with the intermediate chain-binding subunit of yeast dynactin (Nip100). Residue level changes in Pac11 structure are monitored by NMR spectroscopy, and binding energetics are monitored by isothermal titration calorimetry (ITC). N-Pac11 is monomeric and primarily disordered except for a single α-helix (SAH) at the N terminus and a short nascent helix, LH, flanked by the two Dyn2 recognition motifs. Upon binding Dyn2, the only Pac11 residues making direct protein-protein interactions are in and immediately flanking the recognition motifs. Dyn2 binding also orders LH residues of Pac11. Upon binding Nip100, only Pac11 SAH residues make direct protein-protein interactions, but LH residues at a distant sequence position and L1 residues in an adjacent linker are also ordered. The long distance, ligand-dependent ordering of residues reveals new elements of dynamic structure within IDP linker regions.

  20. Tyrosine phosphorylation/dephosphorylation of myosin II essential light chains of Entamoeba histolytica trophozoites regulates their motility.

    PubMed

    Bonilla-Moreno, Raúl; Pérez-Yépez, Eloy-Andrés; Villegas-Sepúlveda, Nicolás; Morales, Fernando O; Meza, Isaura

    2016-08-01

    Entamoeba histolytica trophozoites dwell in the human intestine as comensals although under still unclear circumstances become invasive and destroy the host tissues. For these activities, trophozoites relay on remarkable motility provided by the cytoskeleton organization. Amebic actin and some of its actin-associated proteins are well known, while components of the myosin II molecule, although predicted from the E. histolytica genome, need biochemical and functional characterization. Recently, an amebic essential light myosin II chain, named EhMLCI, was identified and reported to be phosphorylated in tyrosines. The phosphorylated form of the protein was associated with the soluble assembly incompetent conformation of the heavy myosin chains, while the non-phosphorylated protein was identified with filamentous heavy chains, organized in an assembly competent conformation. It was postulated that EhMLCI tyrosine phosphorylation could act as a negative regulator of myosin II activity by its phosphorylation/dephosphorylation cycles. To test this hypothesis, we constructed an expression vector containing an EhMLCI DNA sequence where two tyrosine residues, with strong probability of phosphorylation and fall within the single EF-hand domain that interacts with the N-terminus of myosin II heavy chains, were replaced by phenylalanines. Transfected trophozoites, expressing the mutant MutEhMLCI protein cannot process it, thereby not incorporated into the phosphorylation/dephosphorylation cycles required for myosin II activity, results in motility defective trophozoites.

  1. Evidence indicating independent assortment of framework and complementarity-determining segments of the variable regions of rabbit light chains. Delineation of a possible J minigene.

    PubMed

    Kabat, E A; Wu, T T; Bilofsky, H

    1980-07-01

    Amino acid sequences of rabbit light chains show considerable evidence of independent assortment of framework (FR) and complementarity-determining (CDR) segments. This suggests that they are coded for by independent genetic units (minigaenes) and that individual light chains are assembled somatically by recombining these units. Identical FR sets with multiple members generally comprise chains with different specificities, whereas identical CDR sets tend to have chains of a single specificity. A J segment, which, by analogy with mouse light chains, is made up of the last two residues of CDR3 plus all of FR4, contained 18 different sets and could contribute to diversity generated by CDR3. The longest segment, FR3, had a very large number of sets. Evidence is presented showing that the number of sets could be substantially reduced by permitting FR3 to be formed by two independently assorting segments comprising residues 57-68 and 69-88.

  2. Construction of multiple recombinant SLA-I proteins by linking heavy chains and light chains in vitro and analyzing their secondary and 3-dimensional structures.

    PubMed

    Gao, Feng-shan; Bai, Jing; Zhang, Qiang; Xu, Chong-bo; Li, Yanmin

    2012-07-10

    Six breeds of swine were used to study the structure of swine leukocyte antigen class I (SLA-I). SLA-I complexes were produced by linking SLA-2 genes and β(2)m genes via a linker encoding a 15 amino acid glycine-rich sequence, (G4S)3, using splicing overlap extension (SOE)-PCR in vitro. The six recombinant SLA-2-linker-β(2)m genes were each inserted into p2X vectors and their expression induced in Escherichia coli TB1. The expressed proteins were detected by SDS-PAGE and western blotting. The maltose binding protein (MBP)-SLA-I fusion proteins were purified by amylose affinity chromatography followed by cleavage with factor Xa and separation of the SLA-I protein monomers from the MBP using a DEAE Ceramic Hyper D F column. The purified SLA-I monomers were detected by circular dichroism (CD) spectroscopy and the 3-dimensional (3D) structure of the constructed single-chain SLA-I molecules were analyzed by homology modeling. Recombinant SLA-2-Linker-β(2)m was successfully amplified from all six breeds of swine by SOE-PCR and expressed as fusion proteins of 84.1 kDa in pMAL-p2X, followed by confirmation by western blotting. After purification and cleavage of the MBP-SLA-I fusion proteins, SLA-I monomeric proteins of 41.6 kDa were separated. CD spectroscopy demonstrated that the SLA-I monomers had an α-helical structure, and the average α-helix, β-sheet, turn and random coil contents were 21.6%, 37.9%, 15.0% and 25.5%, respectively. Homology modeling of recombinant single-chain SLA-I molecules showed that the heavy chain and light chain constituted SLA-I complex with an open antigenic peptide-binding groove. It was concluded that the expressed SLA-I proteins in pMAL-p2X folded correctly and could be used to bind and screen nonameric peptides in vitro.

  3. Block of transmitter release by botulinum C1 action on syntaxin at the squid giant synapse

    PubMed Central

    Marsal, Jordi; Ruiz-Montasell, Bonaventura; Blasi, Joan; Moreira, Jorge E.; Contreras, Diego; Sugimori, Mutsuyuki; Llinás, Rodolfo

    1997-01-01

    Electrophysiological, morphological, and biochemical approaches were combined to study the effect of the presynaptic injection of the light chain of botulinum toxin C1 into the squid giant synapse. Presynaptic injection was accompanied by synaptic block that occurred progressively as the toxin filled the presynaptic terminal. Neither the presynaptic action potential nor the Ca2+ currents in the presynaptic terminal were affected by the toxin. Biochemical analysis of syntaxin moiety in squid indicates that the light chain of botulinum toxin C1 lyses syntaxin in vitro, suggesting that this was the mechanism responsible for synaptic block. Ultrastructure of the injected synapses demonstrates an enormous increase in the number of presynaptic vesicles, suggesting that the release rather than the docking of vesicles is affected by biochemical lysing of the syntaxin molecule. PMID:9405706

  4. MRC OX-2 antigen: a lymphoid/neuronal membrane glycoprotein with a structure like a single immunoglobulin light chain.

    PubMed Central

    Clark, M J; Gagnon, J; Williams, A F; Barclay, A N

    1985-01-01

    The MRC OX-2 antigen is a rat cell surface glycoprotein of mol. wt. 41 000-47 000 found on neurones, thymocytes, B cells, follicular dendritic cells and endothelium. We now report the amino sequence for this antigen as deduced from the nucleotide sequence of cDNA clones detected by use of an oligonucleotide probe. The sequence contains 248 amino acid residues of which 202 residues are likely to be outside the cell with two domains that show homology with immunoglobulins. The N-terminal domain fits best with Ig V domains and Thy-1 antigen while the C-terminal part is like an Ig C domain. Thus the structure overall is similar to an Ig light chain or the T cell receptor beta chain. Three glycosylation sites are identified on each of the MRC OX-2 antigen domains. Images Fig. 1. Fig. 2. PMID:2862025

  5. Short-term acclimation of the photosynthetic electron transfer chain to changing light: a mathematical model.

    PubMed

    Ebenhöh, Oliver; Fucile, Geoffrey; Finazzi, Giovanni; Rochaix, Jean-David; Goldschmidt-Clermont, Michel

    2014-04-19

    Photosynthetic eukaryotes house two photosystems with distinct light absorption spectra. Natural fluctuations in light quality and quantity can lead to unbalanced or excess excitation, compromising photosynthetic efficiency and causing photodamage. Consequently, these organisms have acquired several distinct adaptive mechanisms, collectively referred to as non-photochemical quenching (NPQ) of chlorophyll fluorescence, which modulates the organization and function of the photosynthetic apparatus. The ability to monitor NPQ processes fluorometrically has led to substantial progress in elucidating the underlying molecular mechanisms. However, the relative contribution of distinct NPQ mechanisms to variable light conditions in different photosynthetic eukaryotes remains unclear. Here, we present a mathematical model of the dynamic regulation of eukaryotic photosynthesis using ordinary differential equations. We demonstrate that, for Chlamydomonas, our model recapitulates the basic fluorescence features of short-term light acclimation known as state transitions and discuss how the model can be iteratively refined by comparison with physiological experiments to further our understanding of light acclimation in different species.

  6. The importance of screening for serum free light chains in suspected cases of multiple myeloma and their impact on the kidney

    PubMed Central

    Talbot, B; Wright, D; Basnayake, K

    2014-01-01

    Multiple myeloma (MM) is the second most common haematological malignancy in the UK. We present a case series of three patients with light chain only myeloma who had normal serum protein electrophoretic studies at screening and were diagnosed using serum and urine free light chain assessment. This series reiterates the importance of thorough and robust screening for MM in patients presenting with renal disease. We review the up to date literature and we highlight the need to screen patients for MM with a combination of serum electrophoresis/immunofixation and either urinary or serum free light chain measurement and to maintain a high index of suspicion regardless of the presence or absence of proteinuria. We also discuss the emerging role of the serum free light chain assay. PMID:25326567

  7. Evaluation of strategies to control Fab light chain dimer during mammalian expression and purification: A universal one-step process for purification of correctly assembled Fab.

    PubMed

    Spooner, Jennifer; Keen, Jenny; Nayyar, Kalpana; Birkett, Neil; Bond, Nicholas; Bannister, David; Tigue, Natalie; Higazi, Daniel; Kemp, Benjamin; Vaughan, Tristan; Kippen, Alistair; Buchanan, Andrew

    2015-07-01

    Fabs are an important class of antibody fragment as both research reagents and therapeutic agents. There are a plethora of methods described for their recombinant expression and purification. However, these do not address the issue of excessive light chain production that forms light chain dimers nor do they describe a universal purification strategy. Light chain dimer impurities and the absence of a universal Fab purification strategy present persistent challenges for biotechnology applications using Fabs, particularly around the need for bespoke purification strategies. This study describes methods to address light chain dimer formation during Fab expression and identifies a novel CH 1 affinity resin as a simple and efficient one-step purification for correctly assembled Fab.

  8. Genomic clone for sandbar shark lambda light chain: generation of diversity in the absence of gene rearrangement.

    PubMed Central

    Hohman, V S; Schuchman, D B; Schluter, S F; Marchalonis, J J

    1993-01-01

    While the general structure of immunoglobulin chains has remained relatively unchanged throughout evolution, the organization of the genes encoding these molecules differs substantially. To understand how the rearranging immunoglobulin system arose, it is necessary to examine living representatives of the most early vertebrate phyla. Elasmo-branches, which include the sharks, skates, and rays, are the most primitive phylogenetic class of vertebrates from which immunoglobulin DNA sequences have been obtained. In the sandbar shark (Carcharhinus plumbeus), the genes are arranged in individual clusters in which a single variable (V), joining (J), and constant (C) region gene, along with upstream regulatory elements, span a distance of approximately 4.4 kb or approximately 5.8 kb. We report the complete sequence of a genomic clone encoding sandbar shark lambda light chain. A unique finding of our study is that the V and J genes are fused in the germ line. Three additional clones have been shown by DNA sequencing to also have fused V and J genes. The four clones have complementarity-determining regions 3 of various lengths and amino acid sequence variability similar to the products of rearranged genes. Furthermore, analysis by polymerase chain reaction technology revealed an additional 26 genomic clones demonstrating fusion of the V and J segments. Therefore, VJ fusion is the prominent organizational feature of sandbar shark immunoglobulin light chain genes. This finding raises questions concerning the necessity of recombination to produce an antibody repertoire capable of reacting against a diverse array of antigens. Images Fig. 1 Fig. 2 Fig. 3 PMID:8234330

  9. Myosin light chain phosphorylation in sup 32 P-labeled rabbit aorta stimulated by phorbol 12,13-dibutyrate and phenylephrine

    SciTech Connect

    Singer, H.A.; Oren, J.W.; Benscoter, H.A. )

    1989-12-15

    The mechanism(s) of force development in vascular smooth muscle following pharmacological activation of protein kinase C by phorbol esters are not known. In this study, we examined the myosin light chain phosphorylation response following stimulation by phorbol 12,13-dibutyrate (PDB) or phenylephrine in rabbit aorta which had been incubated with 32PO4 in order to label ATP pools. Through tryptic phosphopeptide mapping of myosin light chain from intact tissue and comparison to controls using purified components, we inferred that Ca2+-dependent force stimulated by PDB was associated with small increases in serine-19 phosphorylation, consistent with a contractile mechanism involving indirect activation of myosin light chain kinase. Additional residues, consistent with the in vitro substrate specificity of protein kinase C, were also observed to be phosphorylated in response to PDB and represented proportionately a larger fraction of the total phosphorylated myosin light chain in Ca2+-depleted tissues. Stimulation by an alpha 1-adrenergic agonist (phenylephrine) resulted in phosphorylation of residues which were consistent with an activation mechanism involving myosin light chain kinase only. These results indicate that in rabbit aorta the contractile effects of PDB may be partially mediated by Ca2+-dependent activation of myosin light chain kinase. However, the data do not rule out a component of the PDB-stimulated contractile response which is independent of myosin light chain phosphorylation on the serine-19 residue. In addition, activation by a more physiological stimulus, phenylephrine, does not result in protein kinase C-mediated myosin light chain phosphorylation.

  10. Quantitative analysis of the free energy coupling in the system calmodulin, calcium, smooth muscle myosin light chain kinase.

    PubMed

    Mamar-Bachi, A; Cox, J A

    1987-12-01

    Interactions between Ca2+, calmodulin and turkey gizzard myosin light chain kinase have been studied by equilibrium gel filtration and analyzed in terms of the theory of free energy coupling as formulated by Huang and King for calmodulin-regulated systems (Current Topics in Cellular Regulation 27, 1966-1971, 1985). Direct binding studies revealed that upon interaction with the enzyme, calmodulin acquires strong positive cooperativity in Ca2+-binding. The determination of the Ca2+-binding constants is inherently approximative due to the apparent homotropic cooperativity; therefore a statistical chi 2 analysis was carried out to delimit the formation-, and subsequently the stoichiometric Ca2+-binding constants. Whereas the first two stoichiometric Ca2+-binding constants of enzyme-bound CaM do not differ or are at the upmost 10-fold higher than those in free calmodulin, the third Ca2+ ion binds with an at least 70-fold and more likely 3000-fold higher affinity constant. The binding constant for the fourth Ca2+ is only 5-fold higher than the corresponding one in free calmodulin, thus creating a plateau at 3 bound Ca2+ in the isotherm. Direct binding of Ca2+-free calmodulin to myosin light chain kinase at 10(-7) M free Ca2+ yielded a l/l stoichiometry and an affinity constant of 2.2 x 10(5) M-1. It is thus anticipated that in resting smooth muscle ([Ca2+] less than or equal to 10(-7) M) more than half of the enzyme is bound to metal-free calmodulin. Analysis of the enzymatic activation of myosin light chain kinase at different concentrations of calmodulin and Ca2+ revealed that this Ca2+-free complex is inactive and that activation is concomitant with the formation of the enzyme.calmodulin.Ca3 complex.

  11. [Effect of myosin alkali light chains on myosin subfragment 1 interaction with actin in solution and in ghost muscle fiber].

    PubMed

    Levistkiĭ, D I; Borovikov, Iu S; Nikolaeva, O P; Golitsyna, N L; Poglazov, B F

    1990-09-01

    At low ionic strength (7-25 mM) Mg2(+)-ATPase of myosin subfragment 1 (S1) isoforms containing alkali light chain A1 [S1(A1)] is activated by actin 1.5-2.5 times as strongly as Mg2(+)-ATPase of S1 isoforms containing alkali light chain A2[S1(A2)]. Data from analytical ultracentrifugation suggest that at low ionic strength in the absence of ATP in solution S1(A1) displays a higher affinity for F-actin than S1(A2). Such a higher affinity of S1(A1) for F-actin was also demonstrated by experiments, in which the interaction of S1 isoforms fluorescently labeled by 1.5-IAEDANS with F-actin of ghost fibers (single glycerinated muscle fibers containing F-actin but devoid of myosin) was studied. Using polarization microfluorimetry, it was shown that the interaction of both S1 isoforms with ghost fiber F-actin induces similar changes in the parameters of polarized tryptophan fluorescence. At the same time the mobility of the fluorescent probe, 1.5-IAEDANS, specifically attached to the SH-group of Cys-374 in the C-terminal region of action is markedly decreased by S1(A1) and is only slightly affected by S1(A2). The data obtained suggest that S1(A1) and S1(A2) interact with the C-terminal region of the actin molecule in different ways, i.e. S1(A1) is attached more firmly than S1(A2). This may be due to the existence of contacts between the alkali light chain of A1 of S1(A1) and the C-terminal region of actin as well as to the absence of such contacts in the case of S1(A2).

  12. β-Arrestin Regulation of Myosin Light Chain Phosphorylation Promotes AT1aR-mediated Cell Contraction and Migration

    PubMed Central

    Simard, Elie; Kovacs, Jeffrey J.; Miller, William E.; Kim, Jihee; Grandbois, Michel; Lefkowitz, Robert J.

    2013-01-01

    Over the last decade, it has been established that G-protein-coupled receptors (GPCRs) signal not only through canonical G-protein-mediated mechanisms, but also through the ubiquitous cellular scaffolds β-arrestin-1 and β-arrestin-2. Previous studies have implicated β-arrestins as regulators of actin reorganization in response to GPCR stimulation while also being required for membrane protrusion events that accompany cellular motility. One of the most critical events in the active movement of cells is the cyclic phosphorylation and activation of myosin light chain (MLC), which is required for cellular contraction and movement. We have identified the myosin light chain phosphatase Targeting Subunit (MYPT-1) as a binding partner of the β-arrestins and found that β-arrestins play a role in regulating the turnover of phosphorylated myosin light chain. In response to stimulation of the angiotensin Type 1a Receptor (AT1aR), MLC phosphorylation is induced quickly and potently. We have found that β-arrestin-2 facilitates dephosphorylation of MLC, while, in a reciprocal fashion, β-arrestin 1 limits dephosphorylation of MLC. Intriguingly, loss of either β-arrestin-1 or 2 blocks phospho-MLC turnover and causes a decrease in the contraction of cells as monitored by atomic force microscopy (AFM). Furthermore, by employing the β-arrestin biased ligand [Sar1,Ile4,Ile8]-Ang, we demonstrate that AT1aR-mediated cellular motility involves a β-arrestin dependent component. This suggests that the reciprocal regulation of MLC phosphorylation status by β-arrestins-1 and 2 causes turnover in the phosphorylation status of MLC that is required for cell contractility and subsequent chemotaxic motility. PMID:24255721

  13. Renal Light Chain Deposition Associated with the Formation of Intracellular Crystalline Inclusion Bodies in Podocytes: A Rare Case Report.

    PubMed

    Wang, Yuan-da; Dong, Zhe-yi; Zhang, Xue-guang; Zhang, Wei; Yin, Zhong; Qiu, Qiang; Chen, Xiang-mei

    2016-01-01

    We herein report the case of an elderly woman with bone pain and proteinuria as the main clinical manifestations. The patient was diagnosed with the IgG κ type of multiple myeloma. Her renal pathology consisted of widespread κ light chain protein deposition associated with the formation of large quantities of rod-like crystals in podocytes. This phenomenon is very rare. We explored the significance of this crystal formation via a detailed and descriptive analysis and also performed a literature review, thus providing data to increase the available information about this type of disease.

  14. Production of anti TNF-α antibodies in eukaryotic cells using different combinations of vectors carrying heavy and light chains.

    PubMed

    Balabashin, Dmitriy; Kovalenko, Elena; Toporova, Viktoria; Aliev, Teimur; Panina, Anna; Svirshchevskaya, Elena; Dolgikh, Dmitry; Kirpichnikov, Mikhail

    2015-10-01

    Tumor necrosis factor-α (TNF-α) plays a key role in rheumatoid arthritis and some other autoimmune diseases. Therapy with anti-TNF-α recombinant antibodies (Ab) appears to be highly effective. Production of new hyper-producing eukaryotic cell lines can decrease the treatment cost, which currently is very high. However, due to the complexity of protein transcription, translation, processing, and secretion in mammalian cells, the stages at which antibody expression is affected are still poorly determined. The aim of this work was to compare the productivity of two cell lines developed in CHO DG44 cells, deficient in dihydrofolate reductase, transfected with vectors carrying either heavy (H) or light (L) chains of chimeric antibody under different combinations of selective elements. Both H and L chains were cloned either in pOptiVEC or pcDNA3.3 vectors and different combinations were used to produce HL and LH cell lines. We have shown that Ab production has been low and comparable between HL and LH cells until selection on methotrexate (MTX) when LH but not HL cells have responded with 3.5 times increased productivity. Flow cytometry analysis has demonstrated that intracellular concentration of full size Abs in LH cells was 5.6 times higher than in HL ones due to higher amount of H chain synthesis. No differences in viability between HL and LH cells have been found. We have concluded that the expression of H chain in the pOptiVEC vector, which is responsible for MTX resistance, has led to the suppression of H chain synthesis and limitation in full Ab assembly.

  15. C1-inhibitor and transplantation.

    PubMed

    Kirschfink, Michael

    2002-09-01

    Excessive activation of the protein cascade systems has been associated with post-transplantation inflammatory disorders. There is increasing evidence that complement not only significantly contributes to ischemia/reperfusion injury upon cold storage of the organ but also, although to a different degree, to allograft rejection. Complement activation is most fulminant in hyperacute rejection but seems also to contribute to acute transplant rejection. Therapeutic substitution of appropriate regulators, therefore, appears to be a reasonable approach to reduce undesirable inflammatory reactions in the grafted organ. C1-inhibitor, a multifunctional regulator of the various kinin-generating cascade systems (for review see: E. Hack, chapter in this issue), is frequently reduced in patients suffering from severe inflammatory disorders. Studies applying pathophysiologically relevant animal models of allo- and xenotransplantation as well as promising first clinical results from successful allotransplantation now provide evidence that C1-inhibitor may also serve as an effective means to protect the grafted organ against inflammatory tissue injury. In xenotransplantation, complement inhibition by specific regulators such as C1-inhibitor may help to overcome hyperacute graft rejection. After a brief introduction on the significance of complement to allo- and xenotransplantation the following review will focus on the impact of C1-inhibitor treatment on transplantation-associated inflammatory disorders, where complement contributes to the pathogenesis.

  16. A Ras-like domain in the light intermediate chain bridges the dynein motor to a cargo-binding region

    PubMed Central

    Schroeder, Courtney M; Ostrem, Jonathan ML; Hertz, Nicholas T; Vale, Ronald D

    2014-01-01

    Cytoplasmic dynein, a microtubule-based motor protein, transports many intracellular cargos by means of its light intermediate chain (LIC). In this study, we have determined the crystal structure of the conserved LIC domain, which binds the motor heavy chain, from a thermophilic fungus. We show that the LIC has a Ras-like fold with insertions that distinguish it from Ras and other previously described G proteins. Despite having a G protein fold, the fungal LIC has lost its ability to bind nucleotide, while the human LIC1 binds GDP preferentially over GTP. We show that the LIC G domain binds the dynein heavy chain using a conserved patch of aromatic residues, whereas the less conserved C-terminal domain binds several Rab effectors involved in membrane transport. These studies provide the first structural information and insight into the evolutionary origin of the LIC as well as revealing how this critical subunit connects the dynein motor to cargo. DOI: http://dx.doi.org/10.7554/eLife.03351.001 PMID:25272277

  17. Direct reduction of antigen receptor expression in polyclonal B cell populations developing in vivo results in light chain receptor editing.

    PubMed

    Shen, Shixue; Manser, Tim

    2012-01-01

    Secondary Ab V region gene segment rearrangement, termed receptor editing, is a major mechanism contributing to B lymphocyte self-tolerance. However, the parameters that determine whether a B cell undergoes editing are a current subject of debate. We tested the role that the level of BCR expression plays in the regulation of receptor editing in a polyclonal population of B cells differentiating in vivo. Expression of a short hairpin RNA for κ L chain RNA in B cells resulted in reduction in levels of this RNA and surface BCRs. Strikingly, fully mature and functional B cells that developed in vivo and efficiently expressed the short hairpin RNA predominantly expressed BCRs containing λ light chains. This shift in L chain repertoire was accompanied by inhibition of development, increased Rag gene expression, and increased λ V gene segment-cleavage events at the immature B cell stage. These data demonstrated that reducing the translation of BCRs that are members of the natural repertoire at the immature B cell stage is sufficient to promote editing.

  18. TNF causes changes in glomerular endothelial permeability and morphology through a Rho and myosin light chain kinase-dependent mechanism.

    PubMed

    Xu, Chang; Wu, Xiaoyan; Hack, Bradley K; Bao, Lihua; Cunningham, Patrick N

    2015-12-01

    A key function of the endothelium is to serve as a regulated barrier between tissue compartments. We have previously shown that tumor necrosis factor (TNF) plays a crucial role in lipopolysaccharide (LPS)-induced acute kidney injury, in part by causing injury to the renal endothelium through its receptor TNFR1. Here, we report that TNF increased permeability to albumin in primary culture mouse renal endothelial cells, as well as human glomerular endothelial cells. This process occurred in association with changes in the actin cytoskeleton and was associated with gaps between previously confluent cells in culture and decreases in the tight junction protein occludin. This process was dependent on myosin light chain activation, as seen by its prevention with Rho-associated kinase and myosin light chain kinase (MLCK) inhibitors. Surprisingly, permeability was not blocked by inhibition of apoptosis with caspase inhibitors. Additionally, we found that the renal glycocalyx, which plays an important role in barrier function, was also degraded by TNF in a Rho and MLCK dependent fashion. TNF treatment caused a decrease in the size of endothelial fenestrae, dependent on Rho and MLCK, although the relevance of this to changes in permeability is uncertain. In summary, TNF-induced barrier dysfunction in renal endothelial cells is crucially dependent upon the Rho/MLCK signaling pathway.

  19. IgD multiple myeloma: Clinical, biological features and prognostic value of the serum free light chain assay.

    PubMed

    Djidjik, R; Lounici, Y; Chergeulaïne, K; Berkouk, Y; Mouhoub, S; Chaib, S; Belhani, M; Ghaffor, M

    2015-09-01

    IgD multiple myeloma (MM) is a rare subtype of myeloma, it affects less than 2% of patients with MM. To evaluate the clinical and prognostic attributes of serum free light chains (sFLCs) analysis, we examined 17 cases of IgD MM. From 1998 to 2012, we obtained 1250 monoclonal gammapathies including 590 multiple myeloma and 17 patients had IgD MM. With preponderance of men patients with a mean age at diagnosis of: 59±12years. Patients with IgD MM have a short survival (Median survival=9months). The presenting features included: bone pain (75%), lymphadenopathy (16%), hepatomegaly (25%), splenomegaly (8%), associated AL amyloidosis (6%), renal impairment function (82%), infections (47%), hypercalcemia (37%) and anemia (93%). Serum electrophoresis showed a subtle M-spike (Mean=13.22±10g/L) in all patients associated to a hypogammaglobulinemia. There was an over-representation of Lambda light chain (65%); high serum β2-microglobulin in 91% and Bence Jones proteinuria was identified in 71%. The median rate of sFLCs κ was 19.05mg/L and 296.75mg/L for sFLCs λ. sFLCR was abnormal in 93% of patients and it showed concordance between baseline sFLCR and the survival (P=0.034). The contribution of FLC assay is crucial for the prognosis of patients with IgD MM.

  20. In situ characterization of protein aggregates in human tissues affected by light chain amyloidosis: a FTIR microspectroscopy study

    PubMed Central

    Ami, Diletta; Lavatelli, Francesca; Rognoni, Paola; Palladini, Giovanni; Raimondi, Sara; Giorgetti, Sofia; Monti, Luca; Doglia, Silvia Maria; Natalello, Antonino; Merlini, Giampaolo

    2016-01-01

    Light chain (AL) amyloidosis, caused by deposition of amyloidogenic immunoglobulin light chains (LCs), is the most common systemic form in industrialized countries. Still open questions, and premises for developing targeted therapies, concern the mechanisms of amyloid formation in vivo and the bases of organ targeting and dysfunction. Investigating amyloid material in its natural environment is crucial to obtain new insights on the molecular features of fibrillar deposits at individual level. To this aim, we used Fourier transform infrared (FTIR) microspectroscopy for studying in situ unfixed tissues (heart and subcutaneous abdominal fat) from patients affected by AL amyloidosis. We compared the infrared response of affected tissues with that of ex vivo and in vitro fibrils obtained from the pathogenic LC derived from one patient, as well as with that of non amyloid-affected tissues. We demonstrated that the IR marker band of intermolecular β-sheets, typical of protein aggregates, can be detected in situ in LC amyloid-affected tissues, and that FTIR microspectroscopy allows exploring the inter- and intra-sample heterogeneity. We extended the infrared analysis to the characterization of other biomolecules embedded within the amyloid deposits, finding an IR pattern that discloses a possible role of lipids, collagen and glycosaminoglycans in amyloid deposition in vivo. PMID:27373200

  1. Quantification of β region IgA paraproteins - should we include immunochemical "heavy/light chain" measurements? Counterpoint.

    PubMed

    Paolini, Lucia

    2016-06-01

    Serum protein electrophoresis (SPE), serum immunofixation (s-IFE), free light chain measurement (FLC) and nephelometric measurements of total immunoglobulin in serum (IgTot) are some of the laboratory tests required for the management of plasma cell proliferative disorders. The monoclonal protein is usually visible on SPE as a spike (M-spike) in the γ region and the derived densitogram is used to quantify it relative to serum total protein concentration. IgA M-protein, however, often migrates in the β region on SPE and its quantification can be masked by other serum proteins that migrate in this region. The immunoassay Hevylite™ (heavy/light chain, HLC) seems to solve this problem: it quantifies the involved/uninvolved isotype, calculating the ratio IgAκ/IgAλ, considered indicative of clonal proliferation. However, this test seems redundant in the case of artifacts on SPE such as obvious hemolysis or lipemia, or if the IgA M-spike is clearly visible in the β region. In conclusion whereas the IgA HLC assay does not represent an alternative to SPE and s-IFE in the diagnostic patient workup, it may prove to be an alternative to SPE, s-IFE and total IgA quantification in risk stratification and evaluation of response to therapy in patients affected by MM and other monoclonal plasma proliferative disorders.

  2. European trial of free light chain removal by extended haemodialysis in cast nephropathy (EuLITE): A randomised control trial

    PubMed Central

    Hutchison, Colin A; Cook, Mark; Heyne, Nils; Weisel, Katja; Billingham, Lucinda; Bradwell, Arthur; Cockwell, Paul

    2008-01-01

    Background Renal failure is a frequent complication of multiple myeloma and when severe is associated with a greatly increased morbidity and mortality. The principal cause of severe renal failure is cast nephropathy, a direct consequence of high concentrations of monoclonal free light chains (FLCs) in patients' sera. FLC removal by extended haemodialysis, using a high cut-off dialyser, has recently been described as a novel therapeutic option. Methods The EUropean trial of free LIght chain removal by exTEnded haemodialysis in cast nephropathy (EuLITE) trial is a prospective, randomised, multicentre, open label clinical trial to investigate the clinical benefits of FLC removal haemodialysis in patients with cast nephropathy, dialysis dependent acute renal failure and de novo multiple myeloma. Recruitment commenced in May 2008. In total, 90 patients will be recruited. Participants will be randomised, centrally, upon enrolment, to either trial chemotherapy and FLC removal haemodialysis or trial chemotherapy and standard high flux haemodialysis. Trial chemotherapy consists of bortezomib, doxorubicin and dexamethasone. FLC removal haemodialysis is undertaken with two Gambro HCO 1100 dialysers in series using an intensive treatment schedule. The primary outcome for the study is independence of dialysis at 3 months. Secondary outcomes are: duration of dialysis, reduction in serum FLC concentrations; myeloma response and survival. Hypothesis FLC removal haemodialysis will increase the rate of renal recovery in patients with severe renal failure secondary to cast nephropathy in de novo multiple myeloma. Trial registration ISRCTN45967602 PMID:18822172

  3. The importance of complete tissue homogenization for accurate stoichiometric measurement of myosin light chain phosphorylation in airway smooth muscle.

    PubMed

    Wang, Lu; Paré, Peter D; Seow, Chun Y

    2015-02-01

    The standard method for measuring the phosphorylation of the regulatory myosin light chain (MLC20) in smooth muscle is extraction of the light chain using a urea extraction buffer, urea-glycerol gel electrophoresis of the soluble portion of the extract (supernatant) and Western blot analysis. The undissolved portion of the tissue during extraction (the pellet) is usually discarded. Because the pellet contains a finite amount of MLC20, omission of the pellet could result in inaccurate measurement of MLC20 phosphorylation. In this study we compared the level of tracheal smooth muscle MLC20 phosphorylation in the supernatant alone, with that in the complete tissue homogenate (supernatant and pellet) using the standard method. The supernatant fraction showed the well-known double bands representing phosphorylated and un-phosphorylated MLC20. The dissolved pellet fraction showed varying amounts of un-phosphorylated and phosphorylated MLC20. There was a small but statistically significant overestimation of the percent MLC20 phosphorylation if the pellet was not taken into consideration. The overestimation was 7% ± 2% (mean ± SEM) (p < 0.05) in unstimulated muscle and 2% ± 1% (p < 0.05) in acetylcholine (10(-6) mol/L) stimulated muscle. This finding suggests that for accurate estimation of the stoichiometry of MLC20 phosphorylation it is necessary to consider the contribution from the pellet portion of the muscle tissue homogenate.

  4. [The concurrence of light-chain deposition disease, AL-amyloidosis, and cast nephropathy in a patient with multiple myeloma].

    PubMed

    Rekhtina, I G; Zakharova, E V; Stoliarevich, E S; Sinitsina, M N; Denisova, E N

    2015-01-01

    Despite of the fact that their clinical manifestations are similar, AL-amyloidosis (AL-A) and light chain deposition disease (LCDD) are individual nosological entities in view of considerable differences in their pathogenesis and pathomorphology. The paper describes a rare case of the concurrence of LCDD and AL-A in a patient with multiple myeloma. Clinically, there was dialysis-dependent renal failure, flail leg syndrome, myocardiopathy, and rhabdomyolysis. At the disease onset, his nephrobiopsy specimen could diagnose LCDD and myeloma or cast nephropathy. The disease was characterized by an aggressive course. Despite the administration of innovative agents, the patient had a short-term remission and died from disease progression. Autopsy additionally revealed amyloid deposition in the heart and kidney. The development of AL-A in the presence of prior LCDD may reflect the progression of the tumor and the appearance of an additional subclone of plasma cells that produce amyloidogenic light chains. The uncommonness of this case is that renal amyloid was found in the tubular casts and absent in the glomeruli, which may be considered as a special form--tubular AL-amyloidosis. PMID:26281203

  5. Surrogate light chain expression beyond the pre-B cell stage promotes tolerance in a dose-dependent fashion.

    PubMed

    Kil, Laurens P; Corneth, Odilia B J; de Bruijn, Marjolein J W; Asmawidjaja, Patrick S; Krause, Arndt; Lubberts, Erik; van Loo, Pieter Fokko; Hendriks, Rudi W

    2015-02-01

    While surrogate light chain (SLC) expression is normally terminated in differentiating pre-B cells, co-expression of SLC and conventional light chains has been reported in a small population of autoreactive peripheral human B cells that accumulate in arthritic joints. Despite this association with autoimmunity the contribution of SLC expressing mature B cells to disease development is still unknown. We studied the pathogenicity of SLC(+) B cells in a panel of mice that transgenically express the SLC components VpreB and λ5 throughout B cell development. Here we report that although VpreB or λ5 expression mildly activated mature B cells, only moderate VpreB expression levels - in the absence of λ5 - enhanced IgG plasma cell formation. However, no autoantibody production was detectable in VpreB or λ5 transgenic mice and VpreB expression could not accelerate autoimmunity. Instead, moderate VpreB expression partially protected mice from induced autoimmune arthritis. In support of a tolerogenic role of SLC-transgenic B cells, we observed that in a dose-dependent manner SLC expression beyond the pre-B cell stage enhanced clonal deletion among immature and transitional B cells and rendered mature B cells anergic. These findings suggest that SLC expression does not propagate autoimmunity, but instead may impose tolerance.

  6. TNF causes changes in glomerular endothelial permeability and morphology through a Rho and myosin light chain kinase-dependent mechanism.

    PubMed

    Xu, Chang; Wu, Xiaoyan; Hack, Bradley K; Bao, Lihua; Cunningham, Patrick N

    2015-12-01

    A key function of the endothelium is to serve as a regulated barrier between tissue compartments. We have previously shown that tumor necrosis factor (TNF) plays a crucial role in lipopolysaccharide (LPS)-induced acute kidney injury, in part by causing injury to the renal endothelium through its receptor TNFR1. Here, we report that TNF increased permeability to albumin in primary culture mouse renal endothelial cells, as well as human glomerular endothelial cells. This process occurred in association with changes in the actin cytoskeleton and was associated with gaps between previously confluent cells in culture and decreases in the tight junction protein occludin. This process was dependent on myosin light chain activation, as seen by its prevention with Rho-associated kinase and myosin light chain kinase (MLCK) inhibitors. Surprisingly, permeability was not blocked by inhibition of apoptosis with caspase inhibitors. Additionally, we found that the renal glycocalyx, which plays an important role in barrier function, was also degraded by TNF in a Rho and MLCK dependent fashion. TNF treatment caused a decrease in the size of endothelial fenestrae, dependent on Rho and MLCK, although the relevance of this to changes in permeability is uncertain. In summary, TNF-induced barrier dysfunction in renal endothelial cells is crucially dependent upon the Rho/MLCK signaling pathway. PMID:26634902

  7. Crystal structure of human dynein light chain Dnlc2A: Structural insights into the interaction with IC74

    SciTech Connect

    Liu Junfeng; Wang Zhanxin; Wang Xinquan; Tang Qun; An Xiaomin; Gui Lulu; Liang Dongcai . E-mail: dcliang@sun5.ibp.ac.cn

    2006-10-27

    The human light chain of the motor protein dynein, Dnlc2A, is also a novel TGF-{beta}-signaling component, which is altered with high frequency in epithelial ovarian cancer. It is an important mediator of dynein and the development of cancer, owing to its ability to bind to the dynein intermediate light chain (DIC) IC74 and to regulate TGF-{beta}-dependent transcriptional events. Here we report the 2.1-A crystal structure of Dnlc2A using single anomalous diffraction. The proteins form a homodimer in solution and interact mainly through the helix {alpha}{sub 2}, strand {beta}{sub 3}, and the loop following this strand in each protein to generate a 10-stranded {beta}-sheet core. The surface of the {beta}-sheet core is mainly positively charged and predicted (by software PPI-Pred) to be the site that interacts with other partners. At the same time, the residues 79-82, 88, and 90 of each molecule formed two holes in the core. Residue 89 of each molecule, which is crucial for the DIC binding function of Dnlc2A, is within the holes. On the basis of these observations, we propose that the homodimer is the structural and functional unit maintained by hydrogen bonding interactions and hydrophobic packing, and that the patch of the surface of the {beta}-sheet core is the main area of interaction with other partners. Furthermore, the two holes would be the key sites to interact with IC74.

  8. [EXPRESSION OF THE LIGHT CHAINS OF IMMUNOGLOBULINS IN NORMAL B-CELLS AND SOME B-CELL LYMPHOMAS].

    PubMed

    Khudoleeva, O A; Vorobjev, I A

    2015-01-01

    The quantitative method of determining the level of expression of immunoglobulin light chains on uncompensated data was suggested and used to examine disorders in light chain expression in various B-cell tumors. The average level of expression of the lambda isotype was 4 times higher than the level of expression of kappa isotype. The level of surface and cytoplasmic expression of LC IG varied within wide limits for different people, but there was a high degree of correlation between the levels of expression of kappa and lambda isotypes LC IG as well as between expression of the surface and cytoplasmic forms of each in isotype the same individual. In the majority of B-cell non-Hodgkin's lymphomas correlation between the expression of LC IG on the surface and in the cytoplasm of the cells was diminished. Expression of LC IG in CLL was significantly reduced on the surface of the cells and to a lesser extent--in the cytoplasm. In the case of marginal zone cell lymphoma, LC IG expression level was reduced on the surface of circulating cells and to a lesser extent--in the cytoplasm. In the case of mantle cell lymphoma and DLBCL, expression level of LC IG on the cell surface and in the cytoplasm was the same as in normal B-cells. However, in some cases DLBCL, no LC IG was expressed both on the surface and in the cytoplasm. PMID:26863766

  9. In situ characterization of protein aggregates in human tissues affected by light chain amyloidosis: a FTIR microspectroscopy study.

    PubMed

    Ami, Diletta; Lavatelli, Francesca; Rognoni, Paola; Palladini, Giovanni; Raimondi, Sara; Giorgetti, Sofia; Monti, Luca; Doglia, Silvia Maria; Natalello, Antonino; Merlini, Giampaolo

    2016-01-01

    Light chain (AL) amyloidosis, caused by deposition of amyloidogenic immunoglobulin light chains (LCs), is the most common systemic form in industrialized countries. Still open questions, and premises for developing targeted therapies, concern the mechanisms of amyloid formation in vivo and the bases of organ targeting and dysfunction. Investigating amyloid material in its natural environment is crucial to obtain new insights on the molecular features of fibrillar deposits at individual level. To this aim, we used Fourier transform infrared (FTIR) microspectroscopy for studying in situ unfixed tissues (heart and subcutaneous abdominal fat) from patients affected by AL amyloidosis. We compared the infrared response of affected tissues with that of ex vivo and in vitro fibrils obtained from the pathogenic LC derived from one patient, as well as with that of non amyloid-affected tissues. We demonstrated that the IR marker band of intermolecular β-sheets, typical of protein aggregates, can be detected in situ in LC amyloid-affected tissues, and that FTIR microspectroscopy allows exploring the inter- and intra-sample heterogeneity. We extended the infrared analysis to the characterization of other biomolecules embedded within the amyloid deposits, finding an IR pattern that discloses a possible role of lipids, collagen and glycosaminoglycans in amyloid deposition in vivo. PMID:27373200

  10. Selection of RNA Aptamers Against Botulinum Neurotoxin Type A Light Chain Through a Non-Radioactive Approach.

    PubMed

    Chang, Tzuu-Wang; Janardhanan, Pavithra; Mello, Charlene M; Singh, Bal Ram; Cai, Shuowei

    2016-09-01

    Botulinum neurotoxin (BoNT), a category A agent, is the most toxic molecule known to mankind. The endopeptidase activity of light chain domain of BoNT is the cause for the inhibition of the neurotransmitter release and the flaccid paralysis that leads to lethality in botulism. Currently, antidotes are not available to reverse the flaccid paralysis caused by BoNT. In the present study, a non-radioactive-based systematic evolution of ligands by exponential enrichment (SELEX) process is developed by utilizing surface plasmon resonance to monitor the binding enrichment. Two RNA aptamers have been identified as strong binders against light chain of botulinum neurotoxin type A. These two aptamers showed strong inhibition activity on LCA, with IC50 in nanomolar range. Inhibition kinetic studies reveal mid nanomolar KI and non-competitive nature of their inhibition, suggesting that they have strong potential as antidotes that can reverse the symptom caused by BoNT/A. More importantly, we observed that the 2'-fluorine-pyrimidine-modified RNA aptamers identified here do not change their binding and biological activities. This observation could lead to a cost-effective way for SELEX, by using regular nucleotide during SELEX, and 2'-fluorine-pyrimidine-modified nucleotide for final application to enhance their RNase-resistance. PMID:27085355

  11. Resonant transmission of light in chains of high-index dielectric particles

    NASA Astrophysics Data System (ADS)

    Savelev, Roman S.; Filonov, Dmitry S.; Petrov, Mihail I.; Krasnok, Alexander E.; Belov, Pavel A.; Kivshar, Yuri S.

    2015-10-01

    We study numerically, analytically, and experimentally the resonant transmission of light in a waveguide formed by a periodic array of high-index dielectric nanoparticles with a side-coupled resonator. We demonstrate that a resonator with high enough Q -factor provides the conditions for the Fano-type interference allowing one to control the resonant transmission of light. We suggest a practical realization of this resonant effect based on the quadrupole resonance of a dielectric particle and demonstrate it experimentally for ceramic disks at microwave frequencies.

  12. A Single Mutation at the Sheet Switch Region Results in Conformational Changes Favoring 6 Light-Chain Fibrillogenesis

    SciTech Connect

    Hernández-Santoyo, A.; Del Pozo Yauner, L; Fuentes-Silva, D; Ortiz, E; Rudiño-Piñera, E; Sánchez-López, R; Horjales, E; Becerril, B; Rodríguez-Romero, A

    2010-01-01

    Systemic amyloid light-chain (LC) amyloidosis is a disease process characterized by the pathological deposition of monoclonal LCs in tissue. All LC subtypes are capable of fibril formation although {lambda} chains, particularly those belonging to the {lambda}6 type, are overrepresented. Here, we report the thermodynamic and in vitro fibrillogenic properties of several mutants of the {lambda}6 protein 6aJL2 in which Pro7 and/or His8 was substituted by Ser or Pro. The H8P and H8S mutants were almost as stable as the wild-type protein and were poorly fibrillogenic. In contrast, the P7S mutation decreased the thermodynamic stability of 6aJL2 and greatly enhanced its capacity to form amyloid-like fibrils in vitro. The crystal structure of the P7S mutant showed that the substitution induced both local and long-distance effects, such as the rearrangement of the VL (variable region of the light chain)-VL interface. This mutant crystallized in two orthorhombic polymorphs, P2{sub 1}2{sub 1}2{sub 1} and C222{sub 1}. In the latter, a monomer that was not arranged in the typical Bence-Jones dimer was observed for the first time. Crystal-packing analysis of the C222{sub 1} lattice showed the establishment of intermolecular {beta}-{beta} interactions that involved the N-terminus and {beta}-strand B and that these could be relevant in the mechanism of LC fibril formation. Our results strongly suggest that Pro7 is a key residue in the conformation of the N-terminal sheet switch motif and, through long-distance interactions, is also critically involved in the contacts that stabilized the VL interface in {lambda}6 LCs.

  13. Molecular characterization and expression analysis of four isotypes of immunoglobulin light chain genes in orange-spotted grouper, Epinephelus coioides.

    PubMed

    Wu, Ming-Shan; Cheng, Chao-An; Lin, Chih-Hung; Lee, Chiou-Yueh; Tseng, Shih-Jou; Tzeng, Chyng-Shyan; Chang, Chi-Yao

    2013-03-01

    To date, many immunoglobulin (Ig) genes have been identified in diverse teleost species, but the contributions of different types of light chain (IgL) to the immune response remain unclear. Screening of a stimulated kidney cDNA library from orange-spotted grouper (Osg, Epinephelus coioides) resulted in the identification of 26 full Ig light chain (OsgIgL) coding sequences. These 26 OsgIgLs encoded peptides from 235 to 248 amino acid residues and could be grouped into five variable (V(L)) and four constant (C(L)) isotypes. The C(L) regions contained three conserved cysteine residues that may participate in intra- or inter-chain disulfide bond formation. The four C(L) isotypes could be sub-grouped into two serological types: κ (C(L)-I, C(L)-II and C(L)-III) and σ (C(L)-IV), by phylogenetic analysis. The OsgIgL genes were found to be expressed in various tissues, with greatest levels of expression observed in the head-kidney and spleen. The major expression type was C(L)-I, which comprised 92% and 91% of total OsgIgL gene expression in the head-kidney and spleen, respectively. Transcription of all four C(L) isotypes was differentially affected in response to various immunostimulators, including lipopolysaccharide (LPS), poly I:C and grouper iridovirus (GIV). Induction of OsgIgL genes in response to immunostimulators was particularly dramatic in the spleen, suggesting this organ holds particular importance for the regulation of OsgIgL expression. Furthermore, vaccination of grouper with formalin-inactivated GIV also induced differential patterns of expression in all four OsgIgL isotypes. In summary, the significant and diverse patterns of transcriptional induction observed for OsgIgL isotypes in the spleen and head-kidney imply that each isotype may have unique roles in the immune response.

  14. Surrogate or conventional light chains are required for membrane immunoglobulin mu to activate the precursor B cell transition [published erratum appears in J Exp Med 1997 Jan 6;185(1):183

    PubMed Central

    1996-01-01

    To examine the role of light chains in early B cell development we combined RAG-1 and lambda 5 mutations to produce mice that expressed neither conventional nor surrogate light chains (RAG-1-/-, lambda 5-/- ). Unique heavy and light chain genes were then introduced into the double and single mutant backgrounds. Membrane immunoglobulin (Ig)mu (mIg mu) associated with Ig alpha-Ig beta but was unable to activate the pre-B cell transition in RAG-1-/-lambda 5-/- mice. Either lambda 5 or kappa light chains were sufficient to complement this deficiency. Therefore light chains are absolutely required for a functional Ig signaling module in early B cell development. Our data provide direct evidence for the existence of two pathways for induction of early B cell development: one which is activated through surrogate light chains and mIg mu, and an alternative pathway which uses conventional light chains and mIg mu. PMID:8920890

  15. A new era for homolytic aromatic substitution: replacing Bu3SnH with efficient light-induced chain reactions.

    PubMed

    Gurry, Michael; Aldabbagh, Fawaz

    2016-04-28

    Herein is a pertinent review of recent photochemical homolytic aromatic substitution (HAS) literature. Issues with using the reductant Bu3SnH in an oxidative process where the net loss of a hydrogen atom occurs is discussed. Nowadays more efficient light-induced chain reactions are used resulting in HAS becoming a synthetic mechanism of choice rivaling organometallic, transition-metal and electrophilic aromatic substitution protocols. The review includes aromatic substitution as part of a tandem or cascade reaction, Pschorr reaction, as well as HAS facilitated by ipso-substitution, and Smiles rearrangement. Recently visible-light photoredox catalysis, which is carried out at room temperature has become one of the most important means of aromatic substitution. The main photoredox catalysts used are polypyridine complexes of Ru(ii) and Ir(iii), although eosin Y is an alternative allowing metal-free HAS. Other radical initiator-free aromatic substitutions have used 9-mesityl-10-methylacridinium ion and N,N-bis(2,6-diisopropylphenyl)perylene-3,4,9,10-bis(dicarboximide) as the photoredox catalyst, UV-light, photoinduced electron-transfer, zwitterionic semiquinone radical anions, and Barton ester intermediates.

  16. A new era for homolytic aromatic substitution: replacing Bu3SnH with efficient light-induced chain reactions.

    PubMed

    Gurry, Michael; Aldabbagh, Fawaz

    2016-04-28

    Herein is a pertinent review of recent photochemical homolytic aromatic substitution (HAS) literature. Issues with using the reductant Bu3SnH in an oxidative process where the net loss of a hydrogen atom occurs is discussed. Nowadays more efficient light-induced chain reactions are used resulting in HAS becoming a synthetic mechanism of choice rivaling organometallic, transition-metal and electrophilic aromatic substitution protocols. The review includes aromatic substitution as part of a tandem or cascade reaction, Pschorr reaction, as well as HAS facilitated by ipso-substitution, and Smiles rearrangement. Recently visible-light photoredox catalysis, which is carried out at room temperature has become one of the most important means of aromatic substitution. The main photoredox catalysts used are polypyridine complexes of Ru(ii) and Ir(iii), although eosin Y is an alternative allowing metal-free HAS. Other radical initiator-free aromatic substitutions have used 9-mesityl-10-methylacridinium ion and N,N-bis(2,6-diisopropylphenyl)perylene-3,4,9,10-bis(dicarboximide) as the photoredox catalyst, UV-light, photoinduced electron-transfer, zwitterionic semiquinone radical anions, and Barton ester intermediates. PMID:27056571

  17. Neuregulin1-β decreases interleukin-1β-induced RhoA activation, myosin light chain phosphorylation, and endothelial hyperpermeability.

    PubMed

    Wu, Limin; Ramirez, Servio H; Andrews, Allison M; Leung, Wendy; Itoh, Kanako; Wu, Jiang; Arai, Ken; Lo, Eng H; Lok, Josephine

    2016-01-01

    Neuregulin-1 (NRG1) is an endogenous growth factor with multiple functions in the embryonic and postnatal brain. The NRG1 gene is large and complex, transcribing more than twenty transmembrane proteins and generating a large number of isoforms in tissue and cell type-specific patterns. Within the brain, NRG1 functions have been studied most extensively in neurons and glia, as well as in the peripheral vasculature. Recently, NRG1 signaling has been found to be important in the function of brain microvascular endothelial cells, decreasing IL-1β-induced increases in endothelial permeability. In the current experiments, we have investigated the pathways through which the NRG1-β isoform acts on IL-1β-induced endothelial permeability. Our data show that NRG1-β increases barrier function, measured by transendothelial electrical resistance, and decreases IL-1β-induced hyperpermeability, measured by dextran-40 extravasation through a monolayer of brain microvascular endothelial cells plated on transwells. An investigation of key signaling proteins suggests that the effect of NRG1-β on endothelial permeability is mediated through RhoA activation and myosin light chain phosphorylation, events which affect filamentous actin morphology. In addition, AG825, an inhibitor of the erbB2-associated tyrosine kinase, reduces the effect of NRG1-β on IL-1β-induced RhoA activation and myosin light chain phosphorylation. These data add to the evidence that NRG1-β signaling affects changes in the brain microvasculature in the setting of neuroinflammation. We propose the following events for neuregulin-1-mediated effects on Interleukin-1 β (IL-1β)-induced endothelial hyperpermeability: IL-1β leads to RhoA activation, resulting in an increase in phosphorylation of myosin light chain (MLC). Phosphorylation of MLC is known to result in actin contraction and alterations in the f-actin cytoskeletal structure. These changes are associated with increased endothelial permeability

  18. Catalytic Features of the Botulinum Neurotoxin A Light Chain Revealed by High Resolution Structure of an Inhibitory Peptide Complex

    SciTech Connect

    Silvaggi,N.; Wilson, D.; Tzipori, S.; Allen, K.

    2008-01-01

    The Clostridium botulinum neurotoxin serotype A light chain (BoNT/A-LC) is a Zn(II)-dependent metalloprotease that blocks the release of acetylcholine at the neuromuscular junction by cleaving SNAP-25, one of the SNARE proteins required for exocytosis. Because of the potential for use of the toxin in bioterrorism and the increasingly widespread application of the toxin in the medical field, there is significant interest in the development of small-molecule inhibitors of the metalloprotease. Efforts to design such inhibitors have not benefited from knowledge of how peptides bind to the active site since the enzyme-peptide structures available previously either were not occupied in the vicinity of the catalytic Zn(II) ion or did not represent the product of SNAP-25 substrate cleavage. Herein we report the 1.4 Angstroms-resolution X-ray crystal structure of a complex between the BoNT/A-LC and the inhibitory peptide N-Ac-CRATKML, the first structure of the light chain with an inhibitory peptide bound at the catalytic Zn(II) ion. The peptide is bound with the Cys S? atom coordinating the metal ion. Surprisingly, the cysteine sulfur is oxidized to the sulfenic acid form. Given the unstable nature of this species in solution, is it likely that oxidation occurs on the enzyme. In addition to the peptide-bound structure, we report two structures of the unliganded light chain with and without the Zn(II) cofactor bound at 1.25 and 1.20 Angstroms resolution, respectively. The two structures are nearly identical, confirming that the Zn(II) ion plays a purely catalytic role. Additionally, the structure of the Zn(II)-bound uncomplexed enzyme allows identification of the catalytic water molecule and a second water molecule that occupies the same position as the peptidic oxygen in the tetrahedral intermediate. This observation suggests that the enzyme active site is prearranged to stabilize the tetrahedral intermediate of the protease reaction.

  19. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain.

    PubMed

    Lima, V V; Lobato, N S; Filgueira, F P; Webb, R C; Tostes, R C; Giachini, F R

    2014-10-01

    O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2 ± 2 vs 7.9 ± 1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4 ± 2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3 ± 2 vs 7.5 ± 2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1 ± 2 vs 7.4 ± 2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca(2+)/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction. PMID:25140811

  20. Effect of nucleotides and actin on the orientation of the light chain-binding domain in myosin subfragment 1.

    PubMed

    Smyczynski, C; Kasprzak, A A

    1997-10-28

    The X-ray structure of myosin head (S1) reveals the presence of a long alpha-helical structure that supports both the essential and the regulatory light chains. It has been proposed that small structural changes in the catalytic domain of S1 are amplified by swinging the long alpha-helix (the "lever arm") to produce approximately 11 nm steps. To probe the spatial position of the putative lever in various S1 states, we have measured, by fluorescence resonance energy transfer (FRET), the effect of nucleotides and actin on the distances between Cys-177 of the essential light chain A1 (which is attached to the alpha-helix) and three loci in the catalytic domain. Cys-177 (donor) was labeled with 1,5-IAEDANS. The trinitrophenylated ADP analog (TNP-ADP, acceptor) was used to measure the distance to the active site. Lys-553 at the actin-binding site, labeled with a fluorescein derivative, and Lys-83 modified with trinitrobenzenesulfonic acid served as two other acceptors. FRET measurements were performed for S1 alone, for its complexes with MgADP and MgATP, for the analogs of the transition state of the ATPase reaction, S1.ADP.BeFx, S1.ADP.AlF4, and S1.ADP.VO4, and for acto-S1 in the absence and in the presence of ADP. When the transition state and acto-S1 complexes were formed, the change in the Cys-177 --> Lys-83 distance was <1.1 A, for the distance Cys-177 --> Lys-553, the change was +/-2.5 A. These distance changes correspond to rotations by <10 degrees and approximately 25 degrees, respectively. For the Cys-177 --> TNP-ADP the interprobe separation decreased by approximately 6 A in the presence of BeFx and AlF4- but only 1.9 A in the presence of vanadate; we do not interpret the 6 A change as resulting from the lever rotation. Using the coordinates of the acto-S1 complex, we have computed the expected changes in these distances resulting from rotation of the lever. These changes were much greater than the ones observed. The above results are inconsistent with models

  1. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain.

    PubMed

    Lima, V V; Lobato, N S; Filgueira, F P; Webb, R C; Tostes, R C; Giachini, F R

    2014-10-01

    O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2 ± 2 vs 7.9 ± 1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4 ± 2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3 ± 2 vs 7.5 ± 2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1 ± 2 vs 7.4 ± 2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca(2+)/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction.

  2. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain

    PubMed Central

    Lima, V.V.; Lobato, N.S.; Filgueira, F.P.; Webb, R.C.; Tostes, R.C.; Giachini, F.R.

    2014-01-01

    O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2±2 vs 7.9±1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4±2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3±2 vs 7.5±2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1±2 vs 7.4±2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca2+/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction. PMID:25140811

  3. Induction of light chain replacement in human plasma cells by caffeine is independent from both the upregulation of RAG protein expression and germ line transcription.

    PubMed

    Tachibana, H; Haruta, H; Ueda, K; Chiwata, T; Yamada, K

    2000-02-25

    When some human plasma cell lines are cultured with concanavalin A, the original light chain is replaced with another light chain which results from secondary VJ recombination (light chain shifting). We examined various intracellular factors involved in the induction of light chain shifting. Light chain shifting can be induced upon treatment with agents with phosphatase inhibitory activity such as caffeine and okadaic acid. Although the plasma cells used express both RAG-1 and RAG-2, the expression level of these proteins was not affected by caffeine or okadaic acid. Transcription of the germ line locus, which correlates to the locus activation for rearrangement, is also not influenced by phosphatase inhibition. However, the amount of signal broken-ended DNA intermediates generated during V(D)J rearrangement was shown to increase upon caffeine or okadaic acid treatment. The inhibitory activity of caffeine on phosphatase was the same as okadaic acid. However, caffeine exhibited much higher activity for VJ coding joint formation than okadaic acid. Therefore, although phosphatase inhibition might act, in part, on a mechanism by which V(D)J recombinase activity is regulated within the human plasma cells, other factor(s) are probably also involved in the process.

  4. Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody.

    PubMed

    Vlasak, Josef; Bussat, Marie C; Wang, Shiyi; Wagner-Rousset, Elsa; Schaefer, Mark; Klinguer-Hamour, Christine; Kirchmeier, Marc; Corvaïa, Nathalie; Ionescu, Roxana; Beck, Alain

    2009-09-15

    Despite technological advances, detection of deamidation in large proteins remains a challenge and the use of orthogonal methods is needed for unequivocal assignment. By a combination of cation-exchange separation, papain digestion, and a panel of mass spectrometry techniques we identified asparagine deamidation in light chain complementarity determining region 1 (CDR1) of a humanized IgG1 monoclonal antibody. The reaction yields both Asp and isoAsp, which were assigned by Edman degradation and by isoAsp detection using protein isoaspartate methyltransferase. The deamidated antibody variants were less potent in antigen binding compared to the nondegraded antibody. Changes in near-UV CD spectra, susceptibility to papain cleavage in an adjacent CDR2 loop, and the tendency of the newly formed isoAsp to undergo isomerization suggest local perturbations in the structure of the isoAsp-containing antibody.

  5. Resonance Assignments and Secondary Structure Analysis of Dynein Light Chain 8 by Magic-angle Spinning NMR Spectroscopy

    SciTech Connect

    Sun, Shangjin; Butterworth, Andrew H.; Paramasivam, Sivakumar; Yan, Si; Lightcap, Christine M.; Williams, John C.; Polenova, Tatyana E.

    2011-08-04

    Dynein light chain LC8 is the smallest subunit of the dynein motor complex and has been shown to play important roles in both dynein-dependent and dynein-independent physiological functions via its interaction with a number of its binding partners. It has also been linked to pathogenesis including roles in viral infections and tumorigenesis. Structural information for LC8-target proteins is critical to understanding the underlying function of LC8 in these complexes. However, some LC8-target interactions are not amenable to structural characterization by conventional structural biology techniques owing to their large size, low solubility, and crystallization difficulties. Here, we report magic-angle spinning (MAS) NMR studies of the homodimeric apo-LC8 protein as a first effort in addressing more complex, multi-partner, LC8-based protein assemblies. We have established site-specific backbone and side-chain resonance assignments for the majority of the residues of LC8, and show TALOS+-predicted torsion angles ø and ψ in close agreement with most residues in the published LC8 crystal structure. Data obtained through these studies will provide the first step toward using MAS NMR to examine the LC8 structure, which will eventually be used to investigate protein–protein interactions in larger systems that cannot be determined by conventional structural studies.

  6. The effect of anti-inflammatory properties of ferritin light chain on lipopolysaccharide-induced inflammatory response in murine macrophages.

    PubMed

    Fan, Yumei; Zhang, Jie; Cai, Linlin; Wang, Shengnan; Liu, Caizhi; Zhang, Yongze; You, Linhao; Fu, Yujian; Shi, Zhenhua; Yin, Zhimin; Luo, Lan; Chang, Yanzhong; Duan, Xianglin

    2014-11-01

    Ferritin light chain (FTL) reduces the free iron concentration by forming ferritin complexes with ferritin heavy chain (FTH). Thus, FTL competes with the Fenton reaction by acting as an antioxidant. In the present study, we determined that FTL influences the lipopolysaccharide (LPS)-induced inflammatory response. FTL protein expression was regulated by LPS stimulation in RAW264.7 cells. To investigate the role of FTL in LPS-activated murine macrophages, we established stable FTL-expressing cells and used shRNA to silence FTL expression in RAW264.7 cells. Overexpression of FTL significantly decreased the LPS-induced production of tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), nitric oxide (NO) and prostaglandin E2 (PGE2). Additionally, overexpression of FTL decreased the LPS-induced increase of the intracellular labile iron pool (LIP) and reactive oxygen species (ROS). Moreover, FTL overexpression suppressed the LPS-induced activation of MAPKs and nuclear factor-κB (NF-κB). In contrast, knockdown of FTL by shRNA showed the reverse effects. Therefore, our results indicate that FTL plays an anti-inflammatory role in response to LPS in murine macrophages and may have therapeutic potential for treating inflammatory diseases.

  7. Resonance Assignments and Secondary Structure Analysis of Dynein Light Chain 8 by Magic Angle Spinning NMR Spectroscopy

    PubMed Central

    Sun, Shangjin; Butterworth, Andrew H.; Paramasivam, Sivakumar; Yan, Si; Lightcap, Christine M.; Williams, John C.; Polenova, Tatyana

    2012-01-01

    Dynein light chain LC8 is the smallest subunit of the dynein motor complex and has been shown to play important roles in both dynein dependent and dynein independent physiological functions via its interaction with a number of its binding partners. It has also been linked to pathogenesis including roles in viral infections and tumorigenesis. Structural information for LC8-target proteins is critical to understanding the underlying function of LC8 in these complexes. However, some LC8-target interactions are not amenable for structural characterization by conventional structural biology techniques due to their large size, low solubility and crystallization difficulties. Here, we report magic angle spinning (MAS) NMR studies of the homodimeric apo-LC8 protein as a first effort in addressing more complex, multi-partner LC8-based protein assemblies. We have established site-specific backbone and side chain resonance assignments for the majority of the residues of LC8, and show TALOS+ predicted torsion angles ϕ and ψ in close agreement with most residues in the published LC8 crystal structure. Data obtained through these studies will provide the first step toward using MAS NMR to examine the LC8 structure, which will eventually be used to investigate protein-protein interactions in larger systems, which cannot be determined by conventional structural studies. PMID:23243318

  8. Cardiac myosin light chain phosphorylation and inotropic effects of a biased ligand, TRV120023, in a dilated cardiomyopathy model

    PubMed Central

    Tarigopula, Madhusudhan; Davis, Robert T.; Mungai, Paul T.; Ryba, David M.; Wieczorek, David F.; Cowan, Conrad L.; Violin, Jonathan D.; Wolska, Beata M.; Solaro, R. John

    2015-01-01

    Aims Therapeutic approaches to treat familial dilated cardiomyopathy (DCM), which is characterized by depressed sarcomeric tension and susceptibility to Ca2+-related arrhythmias, have been generally unsuccessful. Our objective in the present work was to determine the effect of the angiotensin II type 1 receptor (AT1R) biased ligand, TRV120023, on contractility of hearts of a transgenic mouse model of familial DCM with mutation in tropomyosin at position 54 (TG-E54K). Our rationale is based on previous studies, which have supported the hypothesis that biased G-protein-coupled receptor ligands, signalling via β-arrestin, increase cardiac contractility with no effect on Ca2+ transients. Our previous work demonstrated that the biased ligand TRV120023 is able to block angiotensin-induced hypertrophy, while promoting an increase in sarcomere Ca2+ response. Methods and results We tested the hypothesis that the depression in cardiac function associated with DCM can be offset by infusion of the AT1R biased ligand, TRV120023. We intravenously infused saline, TRV120023, or the unbiased ligand, losartan, for 15 min in TG-E54K and non-transgenic mice to obtain left ventricular pressure–volume relations. Hearts were analysed for sarcomeric protein phosphorylation. Results showed that the AT1R biased ligand increases cardiac performance in TG-E54K mice in association with increased myosin light chain-2 phosphorylation. Conclusion Treatment of mice with an AT1R biased ligand, acting via β-arrestin signalling, is able to induce an increase in cardiac contractility associated with an increase in ventricular myosin light chain-2 phosphorylation. AT1R biased ligands may prove to be a novel inotropic approach in familial DCM. PMID:26045475

  9. Phospholipase C and myosin light chain kinase inhibition define a common step in actin regulation during cytokinesis

    PubMed Central

    Wong, Raymond; Fabian, Lacramioara; Forer, Arthur; Brill, Julie A

    2007-01-01

    Background Phosphatidylinositol 4,5-bisphosphate (PIP2) is required for successful completion of cytokinesis. In addition, both PIP2 and phosphoinositide-specific phospholipase C (PLC) have been localized to the cleavage furrow of dividing mammalian cells. PLC hydrolyzes PIP2 to yield diacylglycerol (DAG) and inositol trisphosphate (IP3), which in turn induces calcium (Ca2+) release from the ER. Several studies suggest PIP2 must be hydrolyzed continuously for continued cleavage furrow ingression. The majority of these studies employ the N-substituted maleimide U73122 as an inhibitor of PLC. However, the specificity of U73122 is unclear, as its active group closely resembles the non-specific alkylating agent N-ethylmaleimide (NEM). In addition, the pathway by which PIP2 regulates cytokinesis remains to be elucidated. Results Here we compared the effects of U73122 and the structurally unrelated PLC inhibitor ET-18-OCH3 (edelfosine) on cytokinesis in crane-fly and Drosophila spermatocytes. Our data show that the effects of U73122 are indeed via PLC because U73122 and ET-18-OCH3 produced similar effects on cell morphology and actin cytoskeleton organization that were distinct from those caused by NEM. Furthermore, treatment with the myosin light chain kinase (MLCK) inhibitor ML-7 caused cleavage furrow regression and loss of both F-actin and phosphorylated myosin regulatory light chain from the contractile ring in a manner similar to treatment with U73122 and ET-18-OCH3. Conclusion We have used multiple inhibitors to examine the roles of PLC and MLCK, a predicted downstream target of PLC regulation, in cytokinesis. Our results are consistent with a model in which PIP2 hydrolysis acts via Ca2+ to activate myosin via MLCK and thereby control actin dynamics during constriction of the contractile ring. PMID:17509155

  10. Immunoglobulin heavy/light chain analysis enhances the detection of residual disease and monitoring of multiple myeloma patients

    PubMed Central

    Batinić, Josip; Perić, Zinaida; Šegulja, Dragana; Last, James; Prijić, Sanja; Dubravčić, Klara; Volarić, Lidija; Sertić, Dubravka; Radman, Ivo; Bašić-Kinda, Sandra; Matišić, Danica; Batinić, Drago; Labar, Boris; Nemet, Damir

    2015-01-01

    Aim To evaluate the clinical utility of incorporating a novel heavy/light chain immunoassay (HLC) into the existing methods for the assessment of multiple myeloma (MM) patients. Methods Convenience sera samples from 90 previously treated IgG and IgA MM patients in different disease stages were analyzed. The study was conducted in Clinical Hospital Center Zagreb between 2011 and 2013. The collected sera were analyzed by standard laboratory techniques (serum protein electrophoresis, quantification of total immunoglobulins, serum immunofixation, serum free light chain [FLC] assay) and HLC assay. Results HLC ratios outside the normal range were found in 58 of 90 patients, including 28 out of 61 patients with total immunoglobulin measurements within the normal range and 5 out of 23 patients in complete response. Both elevated HLC isotype level and abnormal HLC ratio correlated with the parameters of tumor burden, including percentage of plasma cells in the bone marrow (P < 0.001 and P = 0.002, respectively) and an abnormal serum FLC ratio (for both P < 0.001). In addition, abnormal HLC isotype level correlated with serum beta-2-microglobulin level (P = 0.038). In terms of prognosis, abnormal HLC isotype level and abnormal HLC ratio were significantly associated with shorter overall survival (P < 0.001 and P = 0.002, respectively). Interestingly, suppression of the uninvolved (polyclonal) isotype pair, but not other non-myeloma immunoglobulin isotypes, was also associated with a shorter overall survival (P = 0.021). In a multivariate analysis, an abnormal HLC ratio and β2-microglobulin level >3.5mg/L were independent risk factors for survival. Conclusion The new HLC assay has greater sensitivity in detecting monoclonal protein, correlates with tumor burden markers, and affects patients' outcome. PMID:26088851

  11. Anti-nociceptive effect of a conjugate of substance P and light chain of botulinum neurotoxin type A.

    PubMed

    Mustafa, Golam; Anderson, Ethan M; Bokrand-Donatelli, Yvonne; Neubert, John K; Caudle, Robert M

    2013-11-01

    Neuropathic pain is a debilitating condition resulting from damage to sensory transmission pathways in the peripheral and central nervous system. A potential new way of treating chronic neuropathic pain is to target specific pain-processing neurons based on their expression of particular receptor molecules. We hypothesized that a toxin-neuropeptide conjugate would alter pain by first being taken up by specific receptors for the neuropeptide expressed on the neuronal cells. Then, once inside the cell the toxin would inhibit the neurons' activity without killing the neurons, thereby providing pain relief without lesioning the nervous system. In an effort to inactivate the nociceptive neurons in the trigeminal nucleus caudalis in mice, we targeted the NK1 receptor (NK1R) using substance P (SP). The catalytically active light chain of botulinum neurotoxin type A (LC/A) was conjugated with SP. Our results indicate that the conjugate BoNT/A-LC:SP is internalized in cultured NK1R-expressing neurons and also cleaves the target of botulinum toxin, a component-docking motif necessary for release of neurotransmitters called SNAP-25. The conjugate was next tested in a murine model of Taxol-induced neuropathic pain. An intracisternal injection of BoNT/A-LC:SP decreased thermal hyperalgesia as measured by the operant orofacial nociception assay. These findings indicate that conjugates of the light chain of botulinum toxin are extremely promising agents for use in suppressing neuronal activity for extended time periods, and that BoNT/A-LC:SP may be a useful agent for treating chronic pain.

  12. Microalgae Synthesize Hydrocarbons from Long-Chain Fatty Acids via a Light-Dependent Pathway.

    PubMed

    Sorigué, Damien; Légeret, Bertrand; Cuiné, Stéphan; Morales, Pablo; Mirabella, Boris; Guédeney, Geneviève; Li-Beisson, Yonghua; Jetter, Reinhard; Peltier, Gilles; Beisson, Fred

    2016-08-01

    Microalgae are considered a promising platform for the production of lipid-based biofuels. While oil accumulation pathways are intensively researched, the possible existence of a microalgal pathways converting fatty acids into alka(e)nes has received little attention. Here, we provide evidence that such a pathway occurs in several microalgal species from the green and the red lineages. In Chlamydomonas reinhardtii (Chlorophyceae), a C17 alkene, n-heptadecene, was detected in the cell pellet and the headspace of liquid cultures. The Chlamydomonas alkene was identified as 7-heptadecene, an isomer likely formed by decarboxylation of cis-vaccenic acid. Accordingly, incubation of intact Chlamydomonas cells with per-deuterated D31-16:0 (palmitic) acid yielded D31-18:0 (stearic) acid, D29-18:1 (oleic and cis-vaccenic) acids, and D29-heptadecene. These findings showed that loss of the carboxyl group of a C18 monounsaturated fatty acid lead to heptadecene formation. Amount of 7-heptadecene varied with growth phase and temperature and was strictly dependent on light but was not affected by an inhibitor of photosystem II. Cell fractionation showed that approximately 80% of the alkene is localized in the chloroplast. Heptadecane, pentadecane, as well as 7- and 8-heptadecene were detected in Chlorella variabilis NC64A (Trebouxiophyceae) and several Nannochloropsis species (Eustigmatophyceae). In contrast, Ostreococcus tauri (Mamiellophyceae) and the diatom Phaeodactylum tricornutum produced C21 hexaene, without detectable C15-C19 hydrocarbons. Interestingly, no homologs of known hydrocarbon biosynthesis genes were found in the Nannochloropsis, Chlorella, or Chlamydomonas genomes. This work thus demonstrates that microalgae have the ability to convert C16 and C18 fatty acids into alka(e)nes by a new, light-dependent pathway. PMID:27288359

  13. Pseudo-Peritoneal Carcinomatosis Presentation of a Crystal-Storing Histiocytosis With an Unmutated Monoclonal κ Light Chain

    PubMed Central

    Aline-Fardin, Aude; Bender, Sebastien; Fabiani, Bettina; Buob, David; Brahimi, Said; Verpont, Marie Christine; Mothy, Mohamad; Ronco, Pierre; Boffa, Jean Jacques; Aucouturier, Pierre; Garderet, Laurent

    2015-01-01

    Abstract Crystal-storing histiocytosis (CSH) is a rare complication of monoclonal gammopathies caused by accumulation of crystalline material inside macrophages, and it may result in a variety of clinical manifestations depending on the involved organs. Although immunoglobulin κ light chains (LCs) seem to be the most frequent pathogenic component, very few molecular data are currently available. A 69-year-old man presented with a very poor performance status. Remarkable features were mesenteric lymph node enlargement and proteinuria, including a monoclonal κ LC. Light and electron microscopy studies revealed the presence of crystals within macrophages in the lymph nodes, bone marrow, and kidney, leading to the diagnosis of CSH. The pathogenic κ LC variable domain sequence was identical to the germline Vk3-20∗01/Jk2∗01 gene segments, without any somatic mutation, suggesting an extra-follicular B cell proliferation. The patient was successfully treated with 4 cycles of bortezomib and dexamethasone. After a 12-month follow-up, he remains in hematological and renal remission. CSH may present as pseudo-peritoneal carcinomatosis and relate to a monoclonal κ LC encoded by an unmutated gene. Bortezomib-based therapy proved efficacious in this case. PMID:26266355

  14. Pseudo-Peritoneal Carcinomatosis Presentation of a Crystal-Storing Histiocytosis With an Unmutated Monoclonal κ Light Chain.

    PubMed

    Aline-Fardin, Aude; Bender, Sebastien; Fabiani, Bettina; Buob, David; Brahimi, Said; Verpont, Marie Christine; Mothy, Mohamad; Ronco, Pierre; Boffa, Jean Jacques; Aucouturier, Pierre; Garderet, Laurent

    2015-08-01

    Crystal-storing histiocytosis (CSH) is a rare complication of monoclonal gammopathies caused by accumulation of crystalline material inside macrophages, and it may result in a variety of clinical manifestations depending on the involved organs. Although immunoglobulin κ light chains (LCs) seem to be the most frequent pathogenic component, very few molecular data are currently available.A 69-year-old man presented with a very poor performance status. Remarkable features were mesenteric lymph node enlargement and proteinuria, including a monoclonal κ LC. Light and electron microscopy studies revealed the presence of crystals within macrophages in the lymph nodes, bone marrow, and kidney, leading to the diagnosis of CSH. The pathogenic κ LC variable domain sequence was identical to the germline Vk3-2001/Jk201 gene segments, without any somatic mutation, suggesting an extra-follicular B cell proliferation.The patient was successfully treated with 4 cycles of bortezomib and dexamethasone. After a 12-month follow-up, he remains in hematological and renal remission.CSH may present as pseudo-peritoneal carcinomatosis and relate to a monoclonal κ LC encoded by an unmutated gene. Bortezomib-based therapy proved efficacious in this case.

  15. Light Chain Deposition Disease in an Older Adult Patient Successfully Treated with Long-term Administration of Bortezomib, Melphalan and Prednisone.

    PubMed

    Hiyamuta, Hiroto; Yamada, Shunsuke; Matsukuma, Yuta; Tsuchimoto, Akihiro; Nakano, Toshiaki; Taniguchi, Masatomo; Masutani, Kosuke; Yoshimoto, Goichi; Muta, Tsuyoshi; Akashi, Koichi; Kitazono, Takanari; Tsuruya, Kazuhiko

    2016-01-01

    A 70-year-old woman was admitted to our hospital because of fatigue and renal dysfunction and was diagnosed with light chain deposition disease (LCDD) with multiple organ involvement (kidney, thyroid gland, heart and eyes). After chemotherapy with bortezomib, cyclophosphamide and dexamethasone, hepatobiliary enzyme levels increased abruptly. A liver biopsy showed light chain deposition in Disse spaces. After two years of treatment with bortezomib, melphalan and prednisone (VMP) administered at shorter intervals relative to regular cycles, the patient showed a hematological and organ response. This case indicates that a relatively low dose intensity VMP regimen is preferable for elderly patients with LCDD with multiple organ involvement. PMID:27181540

  16. The enzymatic nature of C'1r. Conversion of C'1s to C'1 esterase and digestion of amino acid esters by C'1r.

    PubMed

    Naff, G B; Ratnoff, O S

    1968-10-01

    Human C'1, a macromolecular complex composed of three subunits, is the zymogen for at least two distinct enzymes. Preparations of one subunit, C'1r, functioned as a protease which converted another subunit, C'1s, to C'1 esterase. The conversion of C'1s to C'1 esterase by C'1r was blocked by Liquoid, phenyl methylsulfonyl fluoride, and calcium ions, but not by soybean trypsin inhibitor, hirudin, or heparin. Preparations of C'1r also possessed two additional functions, i.e., the ability to hydrolyze certain synthetic amino acid esters and to participate in immune hemolysis. Evidence was presented which indicates that these three functions are properties of a single entity, C'1r, but not of the same portion of its molecular structure. These observations suggest that C'1r has at least two active sites, one for its reaction with C'1q, an additional subunit of C'1, and one for its reaction with C'1s; together, the three subcomponents, C'1q, C'1r, and C'1s, form a single functional unit, the first component of complement.

  17. The LC7 Light Chains of Chlamydomonas Flagellar Dyneins Interact with Components Required for Both Motor Assembly and Regulation

    PubMed Central

    DiBella, Linda M.; Sakato, Miho; Patel-King, Ramila S.; Pazour, Gregory J.; King, Stephen M.

    2004-01-01

    Members of the LC7/Roadblock family of light chains (LCs) have been found in both cytoplasmic and axonemal dyneins. LC7a was originally identified within Chlamydomonas outer arm dynein and associates with this motor's cargo-binding region. We describe here a novel member of this protein family, termed LC7b that is also present in the Chlamydomonas flagellum. Levels of LC7b are reduced ∼20% in axonemes isolated from strains lacking inner arm I1 and are ∼80% lower in the absence of the outer arms. When both dyneins are missing, LC7b levels are diminished to <10%. In oda9 axonemal extracts that completely lack outer arms, LC7b copurifies with inner arm I1, whereas in ida1 extracts that are devoid of I1 inner arms it associates with outer arm dynein. We also have observed that some LC7a is present in both isolated axonemes and purified 18S dynein from oda1, suggesting that it is also a component of both the outer arm and inner arm I1. Intriguingly, in axonemal extracts from the LC7a null mutant, oda15, which assembles ∼30% of its outer arms, LC7b fails to copurify with either dynein, suggesting that it interacts with LC7a. Furthermore, both the outer arm γ heavy chain and DC2 from the outer arm docking complex completely dissociate after salt extraction from oda15 axonemes. EDC cross-linking of purified dynein revealed that LC7b interacts with LC3, an outer dynein arm thioredoxin; DC2, an outer arm docking complex component; and also with the phosphoprotein IC138 from inner arm I1. These data suggest that LC7a stabilizes both the outer arms and inner arm I1 and that both LC7a and LC7b are involved in multiple intradynein interactions within both dyneins. PMID:15304520

  18. Metachronous/concomitant B-cell neoplasms with discordant light-chain or heavy-chain isotype restrictions: evidence of distinct B-cell neoplasms rather than clonal evolutions.

    PubMed

    Wei, Qiang; Sebastian, Siby; Papavassiliou, Paulie; Rehder, Catherine; Wang, Endi

    2014-10-01

    Metachronous/concomitant B-cell neoplasms with distinct morphology are usually considered clonally related. We retrospectively analyzed 4 cases of metachronous/concomitant B-cell neoplasms with discordant light-chain/heavy-chain restrictions. The primary diagnoses included chronic lymphocytic leukemia (CLL; n = 2), lymphoplasmacytic lymphoma (n = 1), and pediatric follicular lymphoma (FL; n = 1). The respective secondary diagnoses included diffuse large B-cell lymphoma (DLBCL; n = 2), plasmablastic myeloma, and pediatric FL. The secondary B-cell neoplasm occurred after the primary diagnosis in 3 cases, with the median interval of 120 months (range, 21-216), whereas the remaining 1 case had the 2 neoplasms (CLL/DLBCL) diagnosed concurrently. Histology suggested aggressive transformation in 3 cases and recurrence in 1 case (FL). Nonetheless, 3 cases showed discordant light-chain restrictions between the 2 B-cell neoplasms, whereas in the remaining case (lymphoplasmacytic lymphoma/plasmablastic myeloma), the 2 neoplasms shared κ light-chain restriction but expressed different heavy-chain isotypes (IgM versus IgA). The 2 CLL/DLBCL cases had polymerase chain reaction-based IGH/K gene rearrangement study and amplicon sequence analysis performed, which demonstrated distinct clonal amplicons between the 2 B-cell neoplasms in each case. Concomitant/metachronous B-cell neoplasms may be clonally unrelated, which can be confirmed by immunoglobulin isotype analysis and/or genotypic studies. We advocate analysis of clonal identities in large cell transformation or recurrent disease compared with primary indolent B-cell neoplasm because of a potential difference in prognosis between clonally related and unrelated secondary B-cell neoplasms.

  19. A Heterologous Reporter Defines the Role of the Tetanus Toxin Interchain Disulfide in Light-Chain Translocation

    PubMed Central

    Zuverink, Madison; Chen, Chen; Przedpelski, Amanda; Blum, Faith C.

    2015-01-01

    Botulinum neurotoxins (BoNTs) and tetanus toxin (TeNT) are the most potent toxins for humans and elicit unique pathologies due to their ability to traffic within motor neurons. BoNTs act locally within motor neurons to elicit flaccid paralysis, while retrograde TeNT traffics to inhibitory neurons within the central nervous system (CNS) to elicit spastic paralysis. BoNT and TeNT are dichain proteins linked by an interchain disulfide bond comprised of an N-terminal catalytic light chain (LC) and a C-terminal heavy chain (HC) that encodes an LC translocation domain (HCT) and a receptor-binding domain (HCR). LC translocation is the least understood property of toxin action, but it involves low pH, proteolysis, and an intact interchain disulfide bridge. Recently, Pirazzini et al. (FEBS Lett 587:150–155, 2013, http://dx.doi.org/10.1016/j.febslet.2012.11.007) observed that inhibitors of thioredoxin reductase (TrxR) blocked TeNT and BoNT action in cerebellar granular neurons. In the current study, an atoxic TeNT LC translocation reporter was engineered by fusing β-lactamase to the N terminus of TeNT [βlac-TeNT(RY)] to investigate LC translocation in primary cortical neurons and Neuro-2a cells. βlac-TeNT(RY) retained the interchain disulfide bond, showed ganglioside-dependent binding to neurons, required acidification to promote βlac translocation, and was sensitive to auranofin, an inhibitor of thioredoxin reductase. Mutation of βlac-TeNT(RY) at C439S and C467S eliminated the interchain disulfide bond and inhibited βlac translocation. These data support the requirement of an intact interchain disulfide for LC translocation and imply that disulfide reduction is a prerequisite for LC delivery into the host cytosol. The data also support a model that LC translocation proceeds from the C to the N terminus. βlac-TeNT(RY) is the first reporter system to measure translocation by an AB single-chain toxin in intact cells. PMID:25895970

  20. Differential roles of regulatory light chain and myosin binding protein-C phosphorylations in the modulation of cardiac force development

    SciTech Connect

    Colson, Brett A.; Locher, Matthew R.; Bekyarova, Tanya; Patel, Jitandrakumar R.; Fitzsimons, Daniel P.; Irving, Thomas C.; Moss, Richard L.

    2010-05-25

    Phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) and myosin binding protein-C (cMyBP-C) by protein kinase A (PKA) independently accelerate the kinetics of force development in ventricular myocardium. However, while MLCK treatment has been shown to increase the Ca{sup 2+} sensitivity of force (pCa{sub 50}), PKA treatment has been shown to decrease pCa{sub 50}, presumably due to cardiac troponin I phosphorylation. Further, MLCK treatment increases Ca{sup 2+}-independent force and maximum Ca{sup 2+}-activated force, whereas PKA treatment has no effect on either force. To investigate the structural basis underlying the kinase-specific differential effects on steady-state force, we used synchrotron low-angle X-ray diffraction to compare equatorial intensity ratios (I{sub 1,1}/I{sub 1,0}) to assess the proximity of myosin cross-bridge mass relative to actin and to compare lattice spacings (d{sub 1,0}) to assess the inter-thick filament spacing in skinned myocardium following treatment with either MLCK or PKA. As we showed previously, PKA phosphorylation of cMyBP-C increases I{sub 1,1}/I{sub 1,0} and, as hypothesized, treatment with MLCK also increased I{sub 1,1}/I{sub 1,0}, which can explain the accelerated rates of force development during activation. Importantly, interfilament spacing was reduced by {approx}2 nm ({Delta} 3.5%) with MLCK treatment, but did not change with PKA treatment. Thus, RLC or cMyBP-C phosphorylation increases the proximity of cross-bridges to actin, but only RLC phosphorylation affects lattice spacing, which suggests that RLC and cMyBP-C modulate the kinetics of force development by similar structural mechanisms; however, the effect of RLC phosphorylation to increase the Ca{sup 2+} sensitivity of force is mediated by a distinct mechanism, most probably involving changes in interfilament spacing.

  1. Mining the antibodyome for HIV-1-neutralizing antibodies with next-generation sequencing and phylogenetic pairing of heavy/light chains.

    PubMed

    Zhu, Jiang; Ofek, Gilad; Yang, Yongping; Zhang, Baoshan; Louder, Mark K; Lu, Gabriel; McKee, Krisha; Pancera, Marie; Skinner, Jeff; Zhang, Zhenhai; Parks, Robert; Eudailey, Joshua; Lloyd, Krissey E; Blinn, Julie; Alam, S Munir; Haynes, Barton F; Simek, Melissa; Burton, Dennis R; Koff, Wayne C; Mullikin, James C; Mascola, John R; Shapiro, Lawrence; Kwong, Peter D

    2013-04-16

    Next-generation sequencing of antibody transcripts from HIV-1-infected individuals with broadly neutralizing antibodies could provide an efficient means for identifying somatic variants and characterizing their lineages. Here, we used 454 pyrosequencing and identity/divergence grid sampling to analyze heavy- and light-chain sequences from donor N152, the source of the broadly neutralizing antibody 10E8. We identified variants with up to 28% difference in amino acid sequence. Heavy- and light-chain phylogenetic trees of identified 10E8 variants displayed similar architectures, and 10E8 variants reconstituted from matched and unmatched phylogenetic branches displayed significantly lower autoreactivity when matched. To test the generality of phylogenetic pairing, we analyzed donor International AIDS Vaccine Initiative 84, the source of antibodies PGT141-145. Heavy- and light-chain phylogenetic trees of PGT141-145 somatic variants also displayed remarkably similar architectures; in this case, branch pairings could be anchored by known PGT141-145 antibodies. Altogether, our findings suggest that phylogenetic matching of heavy and light chains can provide a means to approximate natural pairings.

  2. [The effect of phosphorylation of myosin light chains on the structural state of tropomyosin in thin filaments, decorated with heavy meromyosin].

    PubMed

    Vorovikov, Iu S; Szczesna, D; Kakol, I

    1989-06-01

    The structural state of tropomyosin (TM) modified by 5-(iodoacetamidoethyl)-aminonaphthalene-1-sulfonate (1.5-IAEDANS) upon F-actin decoration with myosin subfragment 1 (S1) and heavy meromyosin (HMM) in glycerinated myosin- and troponin-free muscle fibers was studied. HMM preparations contained native phosphorylated myosin light chains, while S1 preparations did not. The changes in the polarized fluorescence of 1.5-IAEDANS-TM during the F-actin interaction with S1 were independent of light chains phosphorylation and Ca2+ concentration, but were dependent on these factors during the F-actin interaction with HMM. The binding of myosin heads to F-actin is supposed to initiate conformational changes in TM which are accompanied by changes in the flexibility and molecular arrangement of TM. In the presence of light chains, the structural changes in TM depend on light chains phosphorylation and Ca2+ concentration. The conformational changes in TM seem to be responsible for the mechanisms of coupling of the myosin and tropomyosin modulation system during the actin-myosin interaction in skeletal muscles.

  3. Generation of immunoglobulin light chain gene diversity in Raja erinacea is not associated with somatic rearrangement, an exception to a central paradigm of B cell immunity

    PubMed Central

    1995-01-01

    In all vertebrate species examined to date, rearrangement and somatic modification of gene segmental elements that encode portions of the antigen-combining sites of immunoglobulins are integral components of the generation of antibody diversity. In the phylogenetically primitive cartilaginous fishes, gene segments encoding immunoglobulin heavy and light chain loci are arranged in multiple clusters, in which segmental elements are separated by only 300-400 bp. In some cases, segmental elements are joined in the germline of nonlymphoid cells (joined genes). Both genomic library screening and direct amplification of genomic DNA have been used to characterize at least 89 different type I light chain gene clusters in the skate, Raja. Analyses of predicted nucleotide sequences and predicted peptide structures are consistent with the distribution of genes into different sequence groups. Predicted amino acid sequence differences are preferentially distributed in complementarity-determining versus framework regions, and replacement-type substitutions exceed neutral substitutions. When specific germline sequences are related to the sequences of individual cDNAs, it is apparent that the joined genes are expressed and are potentially somatically mutated. No evidence was found for the presence of any type I light chain gene in Raja that is not germline joined. The type I light chain gene clusters in Raja appear to represent a novel gene system in which combinatorial and junctional diversity are absent. PMID:7790811

  4. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle.

    PubMed

    Poetter, K; Jiang, H; Hassanzadeh, S; Master, S R; Chang, A; Dalakas, M C; Rayment, I; Sellers, J R; Fananapazir, L; Epstein, N D

    1996-05-01

    The muscle myosins and hexomeric proteins consisting of two heavy chains and two pairs of light chains, the latter called essential (ELC) and regulatory (RLC). The light chains stabilize the long alpha helical neck of the myosin head. Their function in striated muscle, however, is only partially understood. We report here the identification of distinct missense mutations in a skeletal/ventricular ELC and RLC, each of which are associated with a rare variant of cardiac hypertrophy as well as abnormal skeletal muscle. We show that myosin containing the mutant ELC has abnormal function, map the mutant residues on the three-dimensional structure of myosin and suggest that the mutations disrupt the stretch activation response of the cardiac papillary muscles.

  5. A Toxoplasma gondii class XIV myosin, expressed in Sf9 cells with a parasite co-chaperone, requires two light chains for fast motility.

    PubMed

    Bookwalter, Carol S; Kelsen, Anne; Leung, Jacqueline M; Ward, Gary E; Trybus, Kathleen M

    2014-10-31

    Many diverse myosin classes can be expressed using the baculovirus/Sf9 insect cell expression system, whereas others have been recalcitrant. We hypothesized that most myosins utilize Sf9 cell chaperones, but others require an organism-specific co-chaperone. TgMyoA, a class XIVa myosin from the parasite Toxoplasma gondii, is required for the parasite to efficiently move and invade host cells. The T. gondii genome contains one UCS family myosin co-chaperone (TgUNC). TgMyoA expressed in Sf9 cells was soluble and functional only if the heavy and light chain(s) were co-expressed with TgUNC. The tetratricopeptide repeat domain of TgUNC was not essential to obtain functional myosin, implying that there are other mechanisms to recruit Hsp90. Purified TgMyoA heavy chain complexed with its regulatory light chain (TgMLC1) moved actin in a motility assay at a speed of ∼1.5 μm/s. When a putative essential light chain (TgELC1) was also bound, TgMyoA moved actin at more than twice that speed (∼3.4 μm/s). This result implies that two light chains bind to and stabilize the lever arm, the domain that amplifies small motions at the active site into the larger motions that propel actin at fast speeds. Our results show that the TgMyoA domain structure is more similar to other myosins than previously appreciated and provide a molecular explanation for how it moves actin at fast speeds. The ability to express milligram quantities of a class XIV myosin in a heterologous system paves the way for detailed structure-function analysis of TgMyoA and identification of small molecule inhibitors.

  6. A new method to specifically label thiophosphorylatable proteins with extrinsic probes. Labeling of serine-19 of the regulatory light chain of smooth muscle myosin.

    PubMed

    Facemyer, K C; Cremo, C R

    1992-01-01

    We present a new method to specifically and stably label proteins by attaching extrinsic probes to amino acids that are thiophosphorylated by protein kinases and ATP gamma S. The method was demonstrated for labeling of a thiophosphorylatable serine of the isolated regulatory light chain of smooth muscle myosin. We stoichiometrically blocked the single thiol (Cys-108) either by forming a reversible intermolecular disulfide bond or by reacting with iodoacetic acid. The protein was stoichiometrically thiophosphorylated at Ser-19 by myosin light chain kinase and ATP gamma S. The nucleophilic sulfur of the protein phosphorothioate was coupled at pH 7.9 and 25 degrees C to the fluorescent haloacetate [3H]-5-[[2-[(iodoacetyl)-amino]ethyl]amino]naphthalene-1- sulfonic acid ([3H]IAEDANS) by displacement of the iodide. Typical labeling efficiencies were 70-100%. The labeling was specific for the thiophosphorylated Ser-19, as determined from the sequences of two labeled peptides isolated from a tryptic digest of the labeled protein. [3H]IAEDANS attached to the thiophosphorylated Ser-19 was stable at pH 3-10 at 25 degrees C, and to boiling in high concentrations of reductant. The labeled light chains were efficiently exchanged for unlabeled regulatory light chains of the whole myosin molecule. The resulting labeled myosin had normal ATPase activities in the absence of actin, indicating that the modification of Ser-19 and the exchange of the labeled light chain into myosin did not significantly disrupt the protein. The labeled myosin partially retained the elevated actin-activated Mg(2+)-ATPase activity which is characteristic of thiophosphorylated myosin. This indicates that labeling of the thiophosphate group with [3H]IAEDANS did not completely disrupt the functional properties of the thiophosphorylated protein in the presence of actin.

  7. Regulation of cell wall synthesis by the clathrin light chain is essential for viability in Schizosaccharomyces pombe.

    PubMed

    de León, Nagore; Sharifmoghadam, Mohammad Reza; Hoya, Marta; Curto, M-Ángeles; Doncel, Cristina; Valdivieso, M-Henar

    2013-01-01

    The regulation of cell wall synthesis by the clathrin light chain has been addressed. Schizosaccharomyces pombe clc1Δ mutant was inviable in the absence of osmotic stabilization; when grown in sorbitol-supplemented medium clc1Δ cells grew slowly, formed aggregates, and had strong defects in morphology. Additionally, clc1Δ cells exhibited an altered cell wall composition. A mutant that allowed modulating the amount of Clc1p was created to analyze in more detail the dependence of cell wall synthesis on clathrin. A 40% reduction in the amount of Clc1p did not affect acid phosphatase secretion and bulk lipid internalization. Under these conditions, β(1,3)glucan synthase activity and cell wall synthesis were reduced. Also, the delivery of glucan synthases to the cell surface, and the secretion of the Eng1p glucanase were defective. These results suggest that the defects in the cell wall observed in the conditional mutant were due to a defective secretion of enzymes involved in the synthesis/remodelling of this structure, rather than to their endocytosis. Our results show that a reduction in the amount of clathrin that has minor effects on general vesicle trafficking has a strong impact on cell wall synthesis, and suggest that this is the reason for the lethality of clc1Δ cells in the absence of osmotic stabilization. PMID:23977061

  8. A Differentiation-dependent Splice Variant of Myosin Light Chain Kinase, MLCK1, Regulates Epithelial Tight Junction Permeability*

    PubMed Central

    Clayburgh, Daniel R.; Rosen, Shari; Witkowski, Edwina D.; Wang, Fengjun; Blair, Stephanie; Dudek, Steven; Garcia, Joe G. N.; Alverdy, John C.; Turner, Jerrold R.

    2005-01-01

    Activation of Na+-nutrient cotransport leads to increased tight junction permeability in intestinal absorptive (villus) enterocytes. This regulation requires myosin II regulatory light chain (MLC) phosphorylation mediated by MLC kinase (MLCK). We examined the spatiotemporal segregation of MLCK isoform function and expression along the crypt-villus axis and found that long MLCK, which is expressed as two alternatively spliced isoforms, accounts for 97 ± 4% of MLC kinase activity in interphase intestinal epithelial cells. Expression of the MLCK1 isoform is limited to well differentiated enterocytes, both in vitro and in vivo, and this expression correlates closely with development of Na+-nutrient cotransport-dependent tight junction regulation. Consistent with this role, MLCK1 is localized to the perijunctional actomyosin ring. Furthermore, specific knockdown of MLCK1 using siRNA reduced tight junction permeability in monolayers with active Na+-glucose cotransport, confirming a functional role for MLCK1. These results demonstrate unique physiologically relevant patterns of expression and subcellular localization for long MLCK isoforms and show that MLCK1 is the isoform responsible for tight junction regulation in absorptive enterocytes. PMID:15507455

  9. A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability.

    PubMed

    Clayburgh, Daniel R; Rosen, Shari; Witkowski, Edwina D; Wang, Fengjun; Blair, Stephanie; Dudek, Steven; Garcia, Joe G N; Alverdy, John C; Turner, Jerrold R

    2004-12-31

    Activation of Na(+)-nutrient cotransport leads to increased tight junction permeability in intestinal absorptive (villus) enterocytes. This regulation requires myosin II regulatory light chain (MLC) phosphorylation mediated by MLC kinase (MLCK). We examined the spatiotemporal segregation of MLCK isoform function and expression along the crypt-villus axis and found that long MLCK, which is expressed as two alternatively spliced isoforms, accounts for 97 +/- 4% of MLC kinase activity in interphase intestinal epithelial cells. Expression of the MLCK1 isoform is limited to well differentiated enterocytes, both in vitro and in vivo, and this expression correlates closely with development of Na(+)-nutrient cotransport-dependent tight junction regulation. Consistent with this role, MLCK1 is localized to the perijunctional actomyosin ring. Furthermore, specific knockdown of MLCK1 using siRNA reduced tight junction permeability in monolayers with active Na(+)-glucose cotransport, confirming a functional role for MLCK1. These results demonstrate unique physiologically relevant patterns of expression and subcellular localization for long MLCK isoforms and show that MLCK1 is the isoform responsible for tight junction regulation in absorptive enterocytes.

  10. Tarantula Myosin Free Head Regulatory Light Chain Phosphorylation Stiffens N-terminal Extension Releasing it and Blocking its Docking Back

    PubMed Central

    Alamo, Lorenzo; Li, Xiaochuan (Edward); Espinoza-Fonseca, L. Michel; Pinto, Antonio; Thomas, David D.; Lehman, William; Padrón, Raúl

    2015-01-01

    Molecular dynamics simulations of smooth and striated muscle myosin regulatory light chain (RLC) N-terminal extension (NTE) showed that diphosphorylation induces a disorder-to-order transition. Our goal here was to further explore the effects of mono- and diphosphorylation on the straightening and rigidification of the tarantula myosin RLC NTE. For that we used MD simulations followed by persistence length analysis to explore the consequences of secondary and tertiary structure changes occurring on RLC NTE following phosphorylation. Static and dynamic persistence lengths analysis of tarantula RLC NTE peptides suggest that diphosphorylation produces an important 24-fold straightening and a 16-fold rigidification of the RLC NTE, while monophosphorylation has a less profound effect. This new information on myosin structural mechanics, not fully revealed by previous EM and MD studies, add support to a cooperative phosphorylation-dependent activation mechanism as proposed for the tarantula thick filament. Our results suggest that the RLC NTE straightening and rigidification after Ser45 phosphorylation leads to a release of the constitutively Ser35 monophosphorylated free head swaying away from the thick filament shaft in the relaxed state. This is so because the stiffened diphosphorylated RLC NTE would hinder the docking back of the free head after swaying away, becoming released and mobile and unable to recover its original interacting position on activation. PMID:26038302

  11. Neurofilament Light Chain in Blood and CSF as Marker of Disease Progression in Mouse Models and in Neurodegenerative Diseases.

    PubMed

    Bacioglu, Mehtap; Maia, Luis F; Preische, Oliver; Schelle, Juliane; Apel, Anja; Kaeser, Stephan A; Schweighauser, Manuel; Eninger, Timo; Lambert, Marius; Pilotto, Andrea; Shimshek, Derya R; Neumann, Ulf; Kahle, Philipp J; Staufenbiel, Matthias; Neumann, Manuela; Maetzler, Walter; Kuhle, Jens; Jucker, Mathias

    2016-07-01

    A majority of current disease-modifying therapeutic approaches for age-related neurodegenerative diseases target their characteristic proteopathic lesions (α-synuclein, Tau, Aβ). To monitor such treatments, fluid biomarkers reflecting the underlying disease process are crucial. We found robust increases of neurofilament light chain (NfL) in CSF and blood in murine models of α-synucleinopathies, tauopathy, and β-amyloidosis. Blood and CSF NfL levels were strongly correlated, and NfL increases coincided with the onset and progression of the corresponding proteopathic lesions in brain. Experimental induction of α-synuclein lesions increased CSF and blood NfL levels, while blocking Aβ lesions attenuated the NfL increase. Consistently, we also found NfL increases in CSF and blood of human α-synucleinopathies, tauopathies, and Alzheimer's disease. Our results suggest that CSF and particularly blood NfL can serve as a reliable and easily accessible biomarker to monitor disease progression and treatment response in mouse models and potentially in human proteopathic neurodegenerative diseases. PMID:27292537

  12. Top-Down Targeted Proteomics Reveals Decrease in Myosin Regulatory Light-Chain Phosphorylation That Contributes to Sarcopenic Muscle Dysfunction.

    PubMed

    Gregorich, Zachery R; Peng, Ying; Cai, Wenxuan; Jin, Yutong; Wei, Liming; Chen, Albert J; McKiernan, Susan H; Aiken, Judd M; Moss, Richard L; Diffee, Gary M; Ge, Ying

    2016-08-01

    Sarcopenia, the loss of skeletal muscle mass and function with advancing age, is a significant cause of disability and loss of independence in the elderly and thus, represents a formidable challenge for the aging population. Nevertheless, the molecular mechanism(s) underlying sarcopenia-associated muscle dysfunction remain poorly understood. In this study, we employed an integrated approach combining top-down targeted proteomics with mechanical measurements to dissect the molecular mechanism(s) in age-related muscle dysfunction. Top-down targeted proteomic analysis uncovered a progressive age-related decline in the phosphorylation of myosin regulatory light chain (RLC), a critical protein involved in the modulation of muscle contractility, in the skeletal muscle of aging rats. Top-down tandem mass spectrometry analysis identified a previously unreported bis-phosphorylated proteoform of fast skeletal RLC and localized the sites of decreasing phosphorylation to Ser14/15. Of these sites, Ser14 phosphorylation represents a previously unidentified site of phosphorylation in RLC from fast-twitch skeletal muscle. Subsequent mechanical analysis of single fast-twitch fibers isolated from the muscles of rats of different ages revealed that the observed decline in RLC phosphorylation can account for age-related decreases in the contractile properties of sarcopenic fast-twitch muscles. These results strongly support a role for decreasing RLC phosphorylation in sarcopenia-associated muscle dysfunction and suggest that therapeutic modulation of RLC phosphorylation may represent a new avenue for the treatment of sarcopenia. PMID:27362462

  13. Abnormal FISH in patients with immunoglobulin light chain amyloidosis is a risk factor for cardiac involvement and for death

    PubMed Central

    Warsame, R; Kumar, S K; Gertz, M A; Lacy, M Q; Buadi, F K; Hayman, S R; Leung, N; Dingli, D; Lust, J A; Ketterling, R P; Lin, Y; Russell, S; Hwa, L; Kapoor, P; Go, R S; Zeldenrust, S R; Kyle, R A; Rajkumar, S V; Dispenzieri, A

    2015-01-01

    Importance of interphase fluorescent in situ hybridization (FISH) with cytoplasmic staining of immunoglobulin FISH (cIg-FISH) on bone marrow is not well understood in light chain amyloidosis (AL). This is in contrast with multiple myeloma where prognostic and treatment related decisions are dependent on cytogenetic testing. This retrospective study reviewed 401 AL patients with cIg-FISH testing performed at our institution between 2004 and 2012. Eighty-one percent of patients had an abnormal cIg-FISH. Common abnormalities involved translocations of chromosome 14q32 (52%), specifically: t(11;14) (43%), t(14;16) (3%) and t(4;14) (2%). Other common abnormalities include monosomy 13/deletion 13q (30%), trisomies 9 (20%), 15 (14%), 11 (10%) and 3 (10%). Median overall survival for this cohort of patients is 3.5 years. When plasma cell burden was greater than 10% trisomies predicted for worse survival (44 vs 19 months), and when it was ⩽10% t(11;14) predicted for worse survival (53 months vs not reached). Abnormal cIg-FISH was significantly associated with advanced cardiac involvement, and remained a prognostic factor on multivariate analysis. This large AL cohort demonstrates that abnormal FISH at diagnosis is prognostic for survival and advanced cardiac disease. Particularly, trisomies and t(11;14) affect survival when degree of plasma cell burden is considered. PMID:25933374

  14. Immunoglobulin-free light chain monomer-dimer patterns help to distinguish malignant from premalignant monoclonal gammopathies: a pilot study.

    PubMed

    Kaplan, Batia; Golderman, Sizilia; Aizenbud, Boris; Esev, Konstantin; Kukuy, Olga; Leiba, Merav; Livneh, Avi; Ben-Zvi, Ilan

    2014-09-01

    Multiple myeloma (MM) and AL amyloidosis (AL) are two malignant forms of monoclonal gammopathies. For the purposes of prognosis and treatment, it is important to distinguish these diseases from the premalignant forms of monoclonal gammopathies, such as monoclonal gammopathy of unknown significance (MGUS) and smoldering myeloma (SMM). Routine serum/urine tests for monoclonal protein are insufficient for differential diagnosis. Thus, invasive procedures, such as tissue aspiration or biopsy, are applied. In this study, we aimed at characterization of serum-free light chain (FLC) monomer-dimer patterns to distinguish the malignant from the premalignant forms of monoclonal gammopathies. A quantitative Western blotting was applied to estimate the FLC monomer and dimer levels in AL, MM, MGUS, and SMM patients, and in control subjects (healthy individuals and patients with AA amyloidosis). AL and MM patients displayed an abnormally increased dimerization of monoclonal FLC, accompanied by higher clonality values of FLC dimers, as compared to that of monomers. These abnormalities of FLC patterns were not observed in patients with MGUS, SMM, AA amyloidosis, and healthy individuals. Analysis of FLC patterns helped to differentiate AL and MM from MGUS and SMM, a goal difficult to achieve using routine serum tests. Also, our technique might serve as a complimentary diagnostic tool in the cases with suspected AL amyloidosis, where the diagnosis of MM is excluded, while the results of amyloid typing by routine immunohistochemical techniques are inconclusive. PMID:24866208

  15. Utility of Serum Free Light Chain Measurements in Multiple Myeloma Patients Not Achieving Complete Response to Therapy

    PubMed Central

    Moustafa, Muhamad Alhaj; Rajkumar, S. Vincent; Dispenzieri, Angela; Gertz, Morie A.; Lacy, Martha Q.; Buadi, Francis K.; Hwa, Yi Lisa; Dingli, David; Kapoor, Prashant; Hayman, Suzanne R.; Lust, John A.; Kyle, Robert A.; Kumar, Shaji K.

    2015-01-01

    Normalization of the serum free light chain ratio (FLCr) with the absence of bone marrow monoclonal plasma cells following achievement of a complete response (CR) to therapy denotes a stringent CR in multiple myeloma (MM), and is associated with improved overall survival (OS). However, its value in patients achieving

  16. Tarantula myosin free head regulatory light chain phosphorylation stiffens N-terminal extension, releasing it and blocking its docking back.

    PubMed

    Alamo, Lorenzo; Li, Xiaochuan Edward; Espinoza-Fonseca, L Michel; Pinto, Antonio; Thomas, David D; Lehman, William; Padrón, Raúl

    2015-08-01

    Molecular dynamics simulations of smooth and striated muscle myosin regulatory light chain (RLC) N-terminal extension (NTE) showed that diphosphorylation induces a disorder-to-order transition. Our goal here was to further explore the effects of mono- and diphosphorylation on the straightening and rigidification of the tarantula myosin RLC NTE. For that we used MD simulations followed by persistence length analysis to explore the consequences of secondary and tertiary structure changes occurring on RLC NTE following phosphorylation. Static and dynamic persistence length analysis of tarantula RLC NTE peptides suggest that diphosphorylation produces an important 24-fold straightening and a 16-fold rigidification of the RLC NTE, while monophosphorylation has a less profound effect. This new information on myosin structural mechanics, not fully revealed by previous EM and MD studies, add support to a cooperative phosphorylation-dependent activation mechanism as proposed for the tarantula thick filament. Our results suggest that the RLC NTE straightening and rigidification after Ser45 phosphorylation leads to a release of the constitutively Ser35 monophosphorylated free head swaying away from the thick filament shaft. This is so because the stiffened diphosphorylated RLC NTE would hinder the docking back of the free head after swaying away, becoming released and mobile and unable to recover its original interacting position on activation. PMID:26038302

  17. Microtubule-associated protein light chain 3 is involved in melanogenesis via regulation of MITF expression in melanocytes

    PubMed Central

    Yun, Woo Jin; Kim, Eun-Young; Park, Ji-Eun; Jo, Soo Youn; Bang, Seung Hyun; Chang, Eun-Ju; Chang, Sung Eun

    2016-01-01

    Although autophagy plays a role in melanogenesis by regulating melanosome degradation and biogenesis in melanocytes, a detailed understanding of the regulatory functions of autophagy factors is lacking. Here, we report a mechanistic link between microtubule-associated protein light chain 3 (LC3) activation and melanogenesis. We observed high expression of LC3 in melanosome-associated pigment-rich melanocytic nevi of sun-exposed skin, as indicated by patterns of melanosomal protein MART1 expression. Rapamycin-induced autophagy significantly increased the melanin index, tyrosinase activity and expression of several proteins linked to melanosome biogenesis, including microphthalmia transcription factor (MITF), pre-melanosome protein and tyrosinase, in Melan-a melanocytes. siRNA-mediated knockdown of LC3, but not beclin-1 or ATG5, decreased melanin content and tyrosinase activity. LC3 knockdown also markedly inhibited MITF expression and subsequent rapamycin-induced melanosome formation. More importantly, LC3 knockdown suppressed α-MSH-mediated melanogenesis by attenuating cAMP response element-binding protein (CREB) phosphorylation and MITF expression in Melan-a cells via decreased extracellular signal-regulated kinase (ERK) activity. Overexpression of constitutively active ERK reversed the effect of LC3 knockdown on CREB phosphorylation and MITF expression. These findings demonstrate that LC3 contributes to melanogenesis by increasing ERK-dependent MITF expression, thereby providing a mechanistic insight into the signaling network that links autophagy to melanogenesis. PMID:26814135

  18. Neurofilament Light Chain in Blood and CSF as Marker of Disease Progression in Mouse Models and in Neurodegenerative Diseases.

    PubMed

    Bacioglu, Mehtap; Maia, Luis F; Preische, Oliver; Schelle, Juliane; Apel, Anja; Kaeser, Stephan A; Schweighauser, Manuel; Eninger, Timo; Lambert, Marius; Pilotto, Andrea; Shimshek, Derya R; Neumann, Ulf; Kahle, Philipp J; Staufenbiel, Matthias; Neumann, Manuela; Maetzler, Walter; Kuhle, Jens; Jucker, Mathias

    2016-07-01

    A majority of current disease-modifying therapeutic approaches for age-related neurodegenerative diseases target their characteristic proteopathic lesions (α-synuclein, Tau, Aβ). To monitor such treatments, fluid biomarkers reflecting the underlying disease process are crucial. We found robust increases of neurofilament light chain (NfL) in CSF and blood in murine models of α-synucleinopathies, tauopathy, and β-amyloidosis. Blood and CSF NfL levels were strongly correlated, and NfL increases coincided with the onset and progression of the corresponding proteopathic lesions in brain. Experimental induction of α-synuclein lesions increased CSF and blood NfL levels, while blocking Aβ lesions attenuated the NfL increase. Consistently, we also found NfL increases in CSF and blood of human α-synucleinopathies, tauopathies, and Alzheimer's disease. Our results suggest that CSF and particularly blood NfL can serve as a reliable and easily accessible biomarker to monitor disease progression and treatment response in mouse models and potentially in human proteopathic neurodegenerative diseases.

  19. A Chlamydomonas Homologue of the Putative Murine t Complex Distorter Tctex-2 Is an Outer Arm Dynein Light Chain

    PubMed Central

    Patel-King, Ramila S.; Benashski, Sharon E.; Harrison, Alistair; King, Stephen M.

    1997-01-01

    Molecular analysis of a 19,000-Mr protein from the Chlamydomonas flagellum reveals that it is homologous to the t complex–encoded protein Tctex-2, which is a candidate for one of the distorter products that cause the extreme transmission ratio distortion (meiotic drive) of the murine t complex. The 19,000-Mr protein is extracted from the axoneme with 0.6 M NaCl and comigrates with the outer dynein arm in sucrose density gradients. This protein also is specifically missing in axonemes prepared from a mutant that does not assemble the outer arm. These data raise the possibility that Tctex-2 is a sperm flagellar dynein component. Combined with the recent identification of Tctex-1 (another distorter candidate) as a light chain of cytoplasmic dynein, these results lead to a biochemical model for how differential defects in spermiogenesis that result in the phenomenon of meiotic drive might be generated in wild-type vs t-bearing sperm. PMID:9166408

  20. Dynein light chain binding to a 3′-untranslated sequence mediates parathyroid hormone mRNA association with microtubules

    PubMed Central

    Epstein, Eyal; Sela-Brown, Alin; Ringel, Israel; Kilav, Rachel; King, Stephen M.; Benashski, Sharon E.; Yisraeli, Joel K.; Silver, Justin; Naveh-Many, Tally

    2000-01-01

    The 3′-untranslated region (UTR) of mRNAs binds proteins that determine mRNA stability and localization. The 3′-UTR of parathyroid hormone (PTH) mRNA specifically binds cytoplasmic proteins. We screened an expression library for proteins that bind the PTH mRNA 3′-UTR, and the sequence of 1 clone was identical to that of the dynein light chain LC8, a component of the dynein complexes that translocate cytoplasmic components along microtubules. Recombinant LC8 binds PTH mRNA 3′-UTR, as shown by RNA electrophoretic mobility shift assay. We showed that PTH mRNA colocalizes with microtubules in the parathyroid gland, as well as with a purified microtubule preparation from calf brain, and that this association was mediated by LC8. To our knowledge, this is the first report of a dynein complex protein binding an mRNA. The dynein complex may be the motor that is responsible for transporting mRNAs to specific locations in the cytoplasm and for the consequent is asymmetric distribution of translated proteins in the cell. PMID:10683380

  1. The role of the N-terminus of the myosin essential light chain in cardiac muscle contraction

    PubMed Central

    Kazmierczak, Katarzyna; Xu, Yuanyuan; Jones, Michelle; Guzman, Georgianna; Hernandez, Olga M.; Kerrick, W. Glenn L.; Szczesna-Cordary, Danuta

    2011-01-01

    Summary To study the regulation of cardiac muscle contraction by the myosin essential light chain (ELC) and the physiological significance of its N-terminal extension, we generated transgenic (Tg) mice partially replacing the endogenous mouse ventricular ELC with either the human ventricular ELC wild type (Tg-WT) or its 43 amino acid N-terminal truncation mutant (Tg-Δ43) in the murine hearts. The mutant protein is similar in sequence to the short ELC variant present in skeletal muscle and the ELC protein distribution in Tg-Δ43 ventricles resembles that of fast skeletal muscle. Cardiac muscle preparations from Tg-Δ43 mice demonstrate reduced force per cross-sectional area of muscle, which is likely caused by a reduced number of force generating myosin cross-bridges and/or by decreased force per cross-bridge. As the mice grow older, the contractile force per cross-sectional area further decreases in Tg-Δ43 mice and the mutant hearts develop a phenotype of non-pathologic hypertrophy while still maintaining normal cardiac performance. The myocardium of older Tg-Δ43 mice also exhibits reduced myosin content. Our results suggest that the role of the N-terminal ELC extension is to maintain the integrity of myosin and to modulate force generation by decreasing myosin neck region compliance and promoting strong cross-bridge formation and/or by enhancing myosin attachment to actin. PMID:19361417

  2. Dynein Light Intermediate Chain 2 Facilitates the Metaphase to Anaphase Transition by Inactivating the Spindle Assembly Checkpoint

    PubMed Central

    Mahale, Sagar P.; Sharma, Amit; Mylavarapu, Sivaram V. S.

    2016-01-01

    The multi-functional molecular motor cytoplasmic dynein performs diverse essential roles during mitosis. The mechanistic importance of the dynein Light Intermediate Chain homologs, LIC1 and LIC2 is unappreciated, especially in the context of mitosis. LIC1 and LIC2 are believed to exist in distinct cytoplasmic dynein complexes as obligate subunits. LIC1 had earlier been reported to be required for metaphase to anaphase progression by inactivating the kinetochore-microtubule attachment-sensing arm of the spindle assembly checkpoint (SAC). However, the functional importance of LIC2 during mitosis remains elusive. Here we report prominent novel roles for the LIC2 subunit of cytoplasmic dynein in regulating the spindle assembly checkpoint. LIC2 depletion in mammalian cells led to prolonged metaphase arrest in the presence of an active SAC and also to stretched kinetochores, thus implicating it in SAC inactivation. Quantitative fluorescence microscopy of SAC components revealed accumulation of both attachment- and tension-sensing checkpoint proteins at metaphase kinetochores upon LIC2 depletion. These observations support a stronger and more diverse role in checkpoint inactivation for LIC2 in comparison to its close homolog LIC1. Our study uncovers a novel functional hierarchy during mitotic checkpoint inactivation between the closely related but homologous LIC subunits of cytoplasmic dynein. These subtle functional distinctions between dynein subpopulations could be exploited to study specific aspects of the spindle assembly checkpoint, which is a key mediator of fidelity in eukaryotic cell division. PMID:27441562

  3. A mutation in the atrial-specific myosin light chain gene (MYL4) causes familial atrial fibrillation

    PubMed Central

    Orr, Nathan; Arnaout, Rima; Gula, Lorne J.; Spears, Danna A.; Leong-Sit, Peter; Li, Qiuju; Tarhuni, Wadea; Reischauer, Sven; Chauhan, Vijay S.; Borkovich, Matthew; Uppal, Shaheen; Adler, Arnon; Coughlin, Shaun R.; Stainier, Didier Y. R.; Gollob, Michael H.

    2016-01-01

    Atrial fibrillation (AF), the most common arrhythmia, is a growing epidemic with substantial morbidity and economic burden. Mechanisms underlying vulnerability to AF remain poorly understood, which contributes to the current lack of highly effective therapies. Recognizing mechanistic subtypes of AF may guide an individualized approach to patient management. Here, we describe a family with a previously unreported syndrome characterized by early-onset AF (age <35 years), conduction disease and signs of a primary atrial myopathy. Phenotypic penetrance was complete in all mutation carriers, although complete disease expressivity appears to be age-dependent. We show that this syndrome is caused by a novel, heterozygous p.Glu11Lys mutation in the atrial-specific myosin light chain gene MYL4. In zebrafish, mutant MYL4 leads to disruption of sarcomeric structure, atrial enlargement and electrical abnormalities associated with human AF. These findings describe the cause of a rare subtype of AF due to a primary, atrial-specific sarcomeric defect. PMID:27066836

  4. Chlamydia trachomatis inclusion membrane protein CT850 interacts with the dynein light chain DYNLT1 (Tctex1).

    PubMed

    Mital, Jeffrey; Lutter, Erika I; Barger, Alexandra C; Dooley, Cheryl A; Hackstadt, Ted

    2015-06-26

    Chlamydia trachomatis actively subverts the minus-end directed microtubule motor, dynein, to traffic along microtubule tracks to the Microtubule Organizing Center (MTOC) where it remains within a membrane bound replicative vacuole for the duration of its intracellular development. Unlike most substrates of the dynein motor, disruption of the dynactin cargo-linking complex by over-expression of the p50 dynamitin subunit does not inhibit C. trachomatis transport. A requirement for chlamydial protein synthesis to initiate this process suggests that a chlamydial product supersedes a requirement for p50 dynamitin. A yeast 2-hybrid system was used to screen the chlamydia inclusion membrane protein CT850 against a HeLa cell cDNA library and identified an interaction with the dynein light chain DYNLT1 (Tctex1). This interaction was at least partially dependent upon an (R/K-R/K-X-X-R/K) motif that is characteristic of DYNLT1 binding domains. CT850 expressed ectopically in HeLa cells localized at the MTOC and this localization is similarly dependent upon the predicted DYNLT1 binding domain. Furthermore, DYNLT1 is enriched at focal concentrations of CT850 on the chlamydial inclusion membrane that are known to interact with dynein and microtubules. Depletion of DYNLT1 disrupts the characteristic association of the inclusion membrane with centrosomes. Collectively, the results suggest that CT850 interacts with DYNLT1 to promote appropriate positioning of the inclusion at the MTOC.

  5. Slow motility in hair cells of the frog amphibian papilla: Myosin light chain-mediated shape change

    PubMed Central

    Farahbakhsh, Nasser A.; Narins, Peter M.

    2008-01-01

    Using video, fluorescence and confocal microscopy, quantitative analysis and modeling, we investigated intracellular processes mediating the calcium/calmodulin (Ca2+/CaM)-dependent slow motility in hair cells dissociated from the rostral region of amphibian papilla, one of the two auditory organs in frogs. The time course of shape changes in these hair cells during the period of pretreatment with several specific inhibitors, as well as their response to the calcium ionophore, ionomycin, were recorded and compared. These cells respond to ionomycin with a tri-phasic shape change: an initial phase of iso-volumetric length decrease; a period of concurrent shortening and swelling; and the final phase of increase in both length and volume. We found that both the myosin light chain kinase inhibitor, ML-7, and antagonists of the multifunctional Ca2+/CaM-dependent kinases, KN-62 and KN-93, inhibit the iso-volumetric shortening phase of the response to ionomycin. The type 1 protein phosphatase inhibitors, calyculin A and okadaic acid induce minor shortening on their own, but do not significantly alter the phase 1 response. However, they appear to counter effects of the inhibitors of Ca2+/CaM-dependent kinases. We hypothesize that an active actomyosin-based process mediates the iso-volumetric shortening in the frog rostral amphibian papillar hair cells. PMID:18534795

  6. Slow motility in hair cells of the frog amphibian papilla: myosin light chain-mediated shape change.

    PubMed

    Farahbakhsh, Nasser A; Narins, Peter M

    2008-07-01

    Using video, fluorescence and confocal microscopy, quantitative analysis and modeling, we investigated intracellular processes mediating the calcium/calmodulin (Ca(2+)/CaM)-dependent slow motility in hair cells dissociated from the rostral region of amphibian papilla, one of the two auditory organs in frogs. The time course of shape changes in these hair cells during the period of pretreatment with several specific inhibitors, as well as their response to the calcium ionophore, ionomycin, were recorded and compared. These cells respond to ionomycin with a tri-phasic shape change: an initial phase of iso-volumetric length decrease; a period of concurrent shortening and swelling; and the final phase of increase in both length and volume. We found that both the myosin light chain kinase inhibitor, ML-7, and antagonists of the multifunctional Ca(2+)/CaM-dependent kinases, KN-62 and KN-93, inhibit the iso-volumetric shortening phase of the response to ionomycin. The type 1 protein phosphatase inhibitors, calyculin A and okadaic acid induce minor shortening on their own, but do not significantly alter phase 1 response. However, they appear to counter effects of the inhibitors of Ca(2+)/CaM-dependent kinases. We hypothesize that an active actomyosin-based process mediates the iso-volumetric shortening in the frog rostral amphibian papillar hair cells.

  7. Dynein Light Intermediate Chain 2 Facilitates the Metaphase to Anaphase Transition by Inactivating the Spindle Assembly Checkpoint.

    PubMed

    Mahale, Sagar P; Sharma, Amit; Mylavarapu, Sivaram V S

    2016-01-01

    The multi-functional molecular motor cytoplasmic dynein performs diverse essential roles during mitosis. The mechanistic importance of the dynein Light Intermediate Chain homologs, LIC1 and LIC2 is unappreciated, especially in the context of mitosis. LIC1 and LIC2 are believed to exist in distinct cytoplasmic dynein complexes as obligate subunits. LIC1 had earlier been reported to be required for metaphase to anaphase progression by inactivating the kinetochore-microtubule attachment-sensing arm of the spindle assembly checkpoint (SAC). However, the functional importance of LIC2 during mitosis remains elusive. Here we report prominent novel roles for the LIC2 subunit of cytoplasmic dynein in regulating the spindle assembly checkpoint. LIC2 depletion in mammalian cells led to prolonged metaphase arrest in the presence of an active SAC and also to stretched kinetochores, thus implicating it in SAC inactivation. Quantitative fluorescence microscopy of SAC components revealed accumulation of both attachment- and tension-sensing checkpoint proteins at metaphase kinetochores upon LIC2 depletion. These observations support a stronger and more diverse role in checkpoint inactivation for LIC2 in comparison to its close homolog LIC1. Our study uncovers a novel functional hierarchy during mitotic checkpoint inactivation between the closely related but homologous LIC subunits of cytoplasmic dynein. These subtle functional distinctions between dynein subpopulations could be exploited to study specific aspects of the spindle assembly checkpoint, which is a key mediator of fidelity in eukaryotic cell division. PMID:27441562

  8. Dynein Light Chain 1 Regulates Dynamin-mediated F-Actin Assembly during Sperm Individualization in DrosophilaD⃞

    PubMed Central

    Ghosh-Roy, Anindya; Desai, Bela S.; Ray, Krishanu

    2005-01-01

    Toward the end of spermiogenesis, spermatid nuclei are compacted and the clonally related spermatids individualize to become mature and active sperm. Studies in Drosophila showed that caudal end-directed movement of a microfilament-rich structure, called investment cone, expels the cytoplasmic contents of individual spermatids. F-actin dynamics plays an important role in this process. Here we report that the dynein light chain 1 (DLC1) of Drosophila is involved in two separate cellular processes during sperm individualization. It is enriched around spermatid nuclei during postelongation stages and plays an important role in the dynein-dynactin–dependent rostral retention of the nuclei during this period. In addition, DDLC1 colocalizes with dynamin along investment cones and regulates F-actin assembly at this organelle by retaining dynamin along the cones. Interestingly, we found that this process does not require the other subunits of cytoplasmic dynein-dynactin complex. Altogether, these observations suggest that DLC1 could independently regulate multiple cellular functions and established a novel role of this protein in F-actin assembly in Drosophila. PMID:15829565

  9. Structures of Clostridium Botulinum Neurotoxin Serotype A Light Chain Complexed with Small-Molecule Inhibitors Highlight Active-Site Flexibility

    SciTech Connect

    Silvaggi,N.; Boldt, G.; Hixon, M.; Kennedy, J.; Tzipori, S.; Janda, K.; Allen, K.

    2007-01-01

    The potential for the use of Clostridial neurotoxins as bioweapons makes the development of small-molecule inhibitors of these deadly toxins a top priority. Recently, screening of a random hydroxamate library identified a small-molecule inhibitor of C. botulinum Neurotoxin Serotype A Light Chain (BoNT/A-LC), 4-chlorocinnamic hydroxamate, a derivative of which has been shown to have in vivo efficacy in mice and no toxicity. We describe the X-ray crystal structures of BoNT/A-LC in complexes with two potent small-molecule inhibitors. The structures of the enzyme with 4-chlorocinnamic hydroxamate or 2,4-dichlorocinnamic hydroxamate bound are compared to the structure of the enzyme complexed with L-arginine hydroxamate, an inhibitor with modest affinity. Taken together, this suite of structures provides surprising insights into the BoNT/A-LC active site, including unexpected conformational flexibility at the S1' site that changes the electrostatic environment of the binding pocket. Information gained from these structures will inform the design and optimization of more effective small-molecule inhibitors of BoNT/A-LC.

  10. High prevalence of immunoglobulin light chain gene aberrations as revealed by FISH in multiple myeloma and MGUS.

    PubMed

    Türkmen, Seval; Binder, Anastasia; Gerlach, Antje; Niehage, Sylke; Theodora Melissari, Maria; Inandiklioglu, Nihal; Dörken, Bernd; Burmeister, Thomas

    2014-08-01

    Multiple myeloma (MM) is a malignant B-cell neoplasm characterized by an uncontrolled proliferation of aberrant plasma cells in the bone marrow. Chromosome aberrations in MM are complex and represent a hallmark of the disease, involving many chromosomes that are altered both numerically and structurally. Nearly half of the cases are nonhyperdiploid and show IGH translocations with the following partner genes: CCND1, FGFR3 and MMSET, MAF, MAFB, and CCND3. The remaining 50% are grouped into a hyperdiploid group that is characterized by multiple trisomies involving chromosomes 3, 5, 7, 9, 11, 15, 19, and 21. In this study, we analyzed the immunoglobulin light chain kappa (IGK, 2p12) and lambda (IGL, 22q11) loci in 150 cases, mostly with MM but in a few cases monoclonal gammopathy of undetermined significance (MGUS), without IGH translocations. We identified aberrations in 27% (= 40 patients) including rearrangements (12%), gains (12%), and deletions (4.6%). In 6 of 18 patients with IGK or/and IGL rearrangements, we detected a MYC rearrangement which suggests that MYC is the translocation partner in the majority of these cases. PMID:24729354

  11. Lighting.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  12. Compensatory Aspects of Allele Diversity at Immunoglobulin Loci: Gene Correlations in Rabbit Populations Devoid of Light Chain Diversity (Oryctolagus Cuniculus L.; Kerguelen Islands)

    PubMed Central

    van-der-Loo, W.; Bousses, P.; Arthur, C. P.; Chapuis, J. L.

    1996-01-01

    Is there a selective advantage of increased diversity at one immunoglobulin locus when diversity at another locus is low? A previous paper demonstrated excess heterozygosity at the rabbit light chain b locus when heterozygosity was low at the heavy chain constant region e locus. Here we consider the reverse situation by analyzing allele distributions at heavy chain loci in populations fixed for the light chain b locus. We analyzed the a locus that encodes the predominantly expressed heavy chain variable region, and the d and e loci that control different parts of the Ig gamma class constant region. While there was excess heterozygosity, genetic differentiation between localities was extensive and was most pronounced for females. This was in marked contrast with observations in areas where b-locus diversity was important and confirms a negative correlation between e- and b-locus heterozygosity. Trigenic disequilibria corresponded to a significant negative correlation between e- and a-locus heterozygosity due mainly to strong variation among localities within the context of pronounced (digenic) linkage disequilibria. Although substantial, the average increase in a/e-locus single heterozygosity implemented by higher order disequilibria within localities was not significant. PMID:8913759

  13. Role of kinesin light chain-2 of kinesin-1 in the traffic of Na,K-ATPase-containing vesicles in alveolar epithelial cells

    PubMed Central

    Trejo, Humberto E.; Lecuona, Emilia; Grillo, Doris; Szleifer, Igal; Nekrasova, Oksana E.; Gelfand, Vladimir I.; Sznajder, Jacob I.

    2010-01-01

    Recruitment of the Na,K-ATPase to the plasma membrane of alveolar epithelial cells results in increased active Na+ transport and fluid clearance in a process that requires an intact microtubule network. However, the microtubule motors involved in this process have not been identified. In the present report, we studied the role of kinesin-1, a plus-end microtubule molecular motor that has been implicated in the movement of organelles in the Na,K-ATPase traffic. We determined by confocal microscopy and biochemical assays that kinesin-1 and the Na,K-ATPase are present in the same membranous cellular compartment. Knockdown of kinesin-1 heavy chain (KHC) or the light chain-2 (KLC2), but not of the light chain-1 (KLC1), decreased the movement of Na,K-ATPase-containing vesicles when compared to sham siRNA-transfected cells (control group). Thus, a specific isoform of kinesin-1 is required for microtubule-dependent recruitment of Na,K-ATPase to the plasma membrane, which is of physiological significance—Trejo, H. E., Lecuona, E., Grillo, D., Szleifer, I., Nekrasova, O. E., Gelfand, V. I., Sznajder, J. I. Role of kinesin light chain-2 of kinesin-1 in the traffic of Na,K-ATPase-containing vesicles in alveolar epithelial cells. PMID:19773350

  14. Structural basis of light chain amyloidogenicity: comparison of the thermodynamic properties, fibrillogenic potential and tertiary structural features of four Vlambda6 proteins.

    PubMed

    Wall, Jonathan S; Gupta, Vibha; Wilkerson, Matthew; Schell, Maria; Loris, Remy; Adams, Paul; Solomon, Alan; Stevens, Fred; Dealwis, Chris

    2004-01-01

    Primary (AL) amyloidosis results from the pathologic deposition of monoclonal light chains as amyloid fibrils. Studies of recombinant-derived variable region (VL) fragments of these proteins have shown an inverse relationship between thermodynamic stability and fibrillogenic potential. Further, ionic interactions within the VL domain were predicted to influence the kinetics of light chain fibrillogenicity, as evidenced from our analyses of a relatively stable Vlambda6 protein (Jto) with a long range electrostatic interaction between Asp and Arg side chains at position 29 and 68, respectively, and an unstable, highly fibrillogenic Vlambda6 protein (Wil) that had neutral amino acids at these locations. To test this hypothesis, we have generated two Jto-related mutants designed to disrupt the interaction between Asp 29 and Arg 68 (JtoD29A and JtoR68S). Although the thermodynamic stabilities of unfolding for these two molecules were identical, they exhibited very different kinetics of fibril formation: the rate of JtoD29A fibrillogenesis was slow and comparable to the parent molecule, whereas that of JtoR68S was significantly faster. High-resolution X-ray diffraction analyses of crystals prepared from the two mutants having the same space group and unit cell dimensions revealed no significant main-chain conformational changes. However, several notable side-chain alterations were observed in JtoR68S, as compared with JtoD29A, that resulted in the solvent exposure of a greater hydrophobic surface and modifications in the electrostatic potential surface. We posit that these differences contributed to the enhanced fibrillogenic potential of the Arg 68 mutant, since both Jto mutants lacked the intrachain ionic interaction and were equivalently unstable. The information gleaned from our studies has provided insight into structural parameters that in addition to overall thermodynamic stability, contribute to the fibril forming propensity of immunoglobulin light chains.

  15. Structural basis of light chain amyloidogenicity: comparison of the thermodynamic properties, fibrillogenic potential and tertiary structural features of four vλ6 proteins

    SciTech Connect

    Wall, J.S.; Gupta, V.; Wilkerson, M.; Schell, M.; Loris, R.; Adams, P.; Solomon, A.; Stevens, F.; Dealwis, C.

    2004-04-01

    Primary (AL) amyloidosis results from the pathologic deposition of monoclonal light chains as amyloid fibrils. Studies of recombinant-derived variable region (V{sub L}) fragments of these proteins have shown an inverse relationship between thermodynamic stability and fibrillogenic potential. Further, ionic interactions within the V{sub L} domain were predicted to influence the kinetics of light chain fibrillogenicity, as evidenced from our analyses of a relatively stable V{sub {lambda}}6 protein (Jto) with a long range electrostatic interaction between Asp and Arg side chains at position 29 and 68, respectively, and an unstable, highly fibrillogenic V{sub {lambda}}6 protein (Wil) that had neutral amino acids at these locations. To test this hypothesis, we have generated two Jto-related mutants designed to disrupt the interaction between Asp 29 and Arg 68 (JtoD29A and JtoR68S). Although the thermodynamic stabilities of unfolding for these two molecules were identical, they exhibited very different kinetics of fibril formation: the rate of JtoD29A fibrillogenesis was slow and comparable to the parent molecule, whereas that of JtoR68S was significantly faster. High-resolution X-ray diffraction analyses of crystals prepared from the two mutants having the same space group and unit cell dimensions revealed no significant main-chain conformational changes. However, several notable side-chain alterations were observed in JtoR68S, as compared with JtoD29A, that resulted in the solvent exposure of a greater hydrophobic surface and modifications in the electrostatic potential surface. We posit that these differences contributed to the enhanced fibrillogenic potential of the Arg 68 mutant, since both Jto mutants lacked the intrachain ionic interaction and were equivalently unstable. The information gleaned from our studies has provided insight into structural parameters that in addition to overall thermodynamic stability, contribute to the fibril forming propensity of

  16. New surface-modified zinc oxide nanoparticles with aminotriethylene oxide chains linked by 1,2,3-triazole ring: Preparation, and visible light-emitting and noncytotoxic properties

    NASA Astrophysics Data System (ADS)

    Sato, Moriyuki; Shimatani, Kanako; Iwasaki, Yuko; Morito, Shigekazu; Tanaka, Hidekazu; Fujita, Yasuhisa; Nakamura, Morihiko

    2011-11-01

    Novel surface-modified, visible light-emitting and noncytotoxic ZnO nanoparticles (NPs) (ZPAZ) having aminotriethylene oxide chains linked by 1,4- and/or 1,5-disubstituted 1,2,3-triazole rings were prepared from ZnO NPs (ZPA) with ethynyl groups on the surfaces and an azide derivative of triethylene oxide chain linking terminal amino group (ATA) via 1,3-dipolar azide/alkyne click reaction by heating without Cu(I) catalyst. FTIR spectroscopy, elemental analysis, XRD analysis and TEM observation suggested that the resulting ZPA and ZPAZ NPs have the particle sizes below 10 nm in diameters, triethylene oxide chains linking the terminal amino groups and wurtzite crystal structure. UV-vis absorption spectrum of the ZPAZ NPs in methanol showed maximum absorption band at 346.5 nm, supporting the TEM observation. PL spectra depicted that the ZPA and ZPAZ NPs display broad light green and lightly greenish yellow visible light emitting bands in methanol. Zeta potentials measured in distilled water suggested that the ZPAZ NPs have a low tendency to aggregate and possess better stability than the ZPA NPs. Cytotoxicity assay revealed that the ZPAZ NPs, having water-dispersion properties, are noncytotoxic at low concentrations and almost all RAW264.7 cells are alive after 24 h of treatment.

  17. Activation of smooth muscle myosin light chain kinase by calmodulin. Role of LYS(30) and GLY(40).

    PubMed

    Van Lierop, Jacquelyn E; Wilson, David P; Davis, Jonathan P; Tikunova, Svetlana; Sutherland, Cindy; Walsh, Michael P; Johnson, J David

    2002-02-22

    Calmodulin (CaM)-dependent myosin light chain kinase (MLCK) plays a key role in activation of smooth muscle contraction. A soybean isoform of CaM, SCaM-4 (77% identical to human CaM) fails to activate MLCK, whereas SCaM-1 (90.5% identical to human CaM) is as effective as CaM. We exploited this difference to gain insights into the structural requirements in CaM for activation of MLCK. A chimera (domain I of SCaM-4 and domains II-IV of SCaM-1) behaved like SCaM4, and analysis of site-specific mutants of SCaM-1 indicated that K30E and G40D mutations were responsible for the reduction in activation of MLCK. Competition experiments showed that SCaM-4 binds to the CaM-binding site of MLCK with high affinity. Replacement of CaM in skinned smooth muscle by exogenous CaM or SCaM-1, but not SCaM-4, restored Ca(2+)-dependent contraction. K30E/M36I/G40D SCaM-1 was a poor activator of contraction, but site-specific mutants, K30E, M36I and G40D, each restored Ca(2+)-induced contraction to CaM-depleted skinned smooth muscle, consistent with their capacity to activate MLCK. Interpretation of these results in light of the high-resolution structures of (Ca(2+))(4)-CaM, free and complexed with the CaM-binding domain of MLCK, indicates that a surface domain containing Lys(30) and Gly(40) and residues from the C-terminal domain is created upon binding to MLCK, formation of which is required for activation of MLCK. Interactions between this activation domain and a region of MLCK distinct from the known CaM-binding domain are required for removal of the autoinhibitory domain from the active site, i.e., activation of MLCK, or this domain may be required to stabilize the conformation of (Ca(2+))(4)-CaM necessary for MLCK activation.

  18. Identification of dynein light chain road block-1 as a novel interaction partner with the human reduced folate carrier.

    PubMed

    Ashokkumar, Balasubramaniem; Nabokina, Svetlana M; Ma, Thomas Y; Said, Hamid M

    2009-09-01

    The reduced folate carrier (RFC) is a major folate transport system in mammalian cells. RFC is highly expressed in the intestine and believed to play a role in folate absorption. Studies from our laboratory and others have characterized different aspects of the intestinal folate absorption process, but little is known about possible existence of accessory protein(s) that interacts with RFC and influences its physiology and/or cell biology. We investigated this issue by employing a bacterial two-hybrid system to screen a BacterioMatch II human intestinal cDNA library using the large intracellular loop between transmembrane domains 6 and 7 of the human RFC (hRFC) as bait. Our screening has resulted in the identification of dynein light chain road block-1 (DYNLRB1) as an interacting partner with hRFC. Existence of a direct protein-protein interaction between hRFC and DYNLRB1 was confirmed by in vitro pull-down assay and in vivo mammalian two-hybrid luciferase assay and coimmunoprecipitation analysis. Furthermore, confocal imaging of live human intestinal epithelial HuTu-80 cells demonstrated colocalization of DYNLRB1 with hRFC. Coexpression of DYNLRB1 with hRFC led to a significant (P < 0.05) increase in folate uptake. On the other hand, inhibiting the endogenous DYNLRB1 with gene-specific small interfering RNA or pharmacologically with a specific inhibitor (vanadate) led to a significant (P < 0.05) decrease in folate uptake. This study demonstrates for the first time the identification of DYNLRB1 as an interacting protein partner with hRFC. Furthermore, DYNLRB1 appears to influence the function and cell biology of hRFC.

  19. Diffusion of myosin light chain kinase on actin: A mechanism to enhance myosin phosphorylation rates in smooth muscle.

    PubMed

    Hong, Feng; Brizendine, Richard K; Carter, Michael S; Alcala, Diego B; Brown, Avery E; Chattin, Amy M; Haldeman, Brian D; Walsh, Michael P; Facemyer, Kevin C; Baker, Josh E; Cremo, Christine R

    2015-10-01

    Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot-labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto-myosin and MLCK-myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting "stuck" on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle.

  20. The essential light chain N-terminal extension alters force and fiber kinetics in mouse cardiac muscle.

    PubMed

    Miller, Mark S; Palmer, Bradley M; Ruch, Stuart; Martin, Lisa A; Farman, Gerrie P; Wang, Yuan; Robbins, Jeffrey; Irving, Thomas C; Maughan, David W

    2005-10-14

    The functional significance of the actin-binding region at the N terminus of the cardiac myosin essential light chain (ELC) remains elusive. In a previous experiment, the endogenous ventricular ELC was replaced with a protein containing a 10-amino acid deletion at positions 5-14 (ELC1vDelta5-14, referred to as 1vDelta5-14), a region that interacts with actin. 1vDelta5-14 mice showed no discernable mutant phenotype in skinned ventricular strips. However, because the myofilament lattice swells upon skinning, the mutant phenotype may have been concealed by the inability of the ELC to reach the actin-binding site. Using the same mouse model, we repeated earlier measurements and performed additional experiments on skinned strips osmotically compressed to the intact lattice spacing as determined by x-ray diffraction. 1vDelta5-14 mice exhibited decreased maximum isometric tension without a change in calcium sensitivity. The decreased force was most evident in 5-6-month-old mice compared with 13-15-month-old mice and may account for the greater ventricular wall thickness in young 1vDelta5-14 mice compared with age-matched controls. No differences were observed in unloaded shortening velocity at maximum calcium activation. However, 1vDelta5-14 mice exhibited a significant difference in the frequency at which minimum complex modulus amplitude occurred, indicating a change in cross-bridge kinetics. We hypothesize that the ELC N-terminal extension interaction with actin inhibits the reversal of the power stroke, thereby increasing isometric force. Our results strongly suggest that an interaction between residues 5-14 of the ELC N terminus and the C-terminal residues of actin enhances cardiac performance.

  1. A shrimp pacifastin light chain-like inhibitor: molecular identification and role in the control of the prophenoloxidase system.

    PubMed

    Sangsuriya, Pakkakul; Charoensapsri, Walaiporn; Chomwong, Sudarat; Senapin, Saengchan; Tassanakajon, Anchalee; Amparyup, Piti

    2016-01-01

    Pacifastin is a recently classified family of serine proteinase inhibitors that play essential roles in various biological processes, including in the regulation of the melanization cascade. Here, a novel pacifastin-related gene, termed PmPacifastin-like, was identified from a reverse suppression subtractive hybridization (SSH) cDNA library created from hemocytes of the prophenoloxidase PmproPO1/2 co-silenced black tiger shrimp Penaeus monodon. The full-length sequences of PmPacifastin-like and its homologue LvPacifastin-like from the Pacific white shrimp Litopenaeus vannamei were determined. Sequence analysis revealed that both sequences contained thirteen conserved pacifastin light chain domains (PLDs), followed by two putative kunitz domains. Expression analysis demonstrated that the PmPacifastin-like transcript was expressed in all tested shrimp tissues and larval developmental stages, and its expression responded to Vibrio harveyi challenge. To gain insight into the functional roles of PmPacifastin-like protein, the in vivo RNA interference experiment was employed; the results showed that PmPacifastin-like depletion strongly increased PO activity. Interestingly, suppression of PmPacifastin-like also down-regulated the expression of the proPO-activating enzyme PmPPAE2 transcript; the PmPacifastin-like transcript was down-regulated after the PmproPO1/2 transcripts were silenced. Taken together, these results suggest that PmPacifastin-like is important in the shrimp proPO system and may play an essential role in shrimp immune defense against bacterial infection. These results also expand the knowledge of how pacifastin-related protein participates in the negative regulation of the proPO system in shrimp.

  2. Diffusion of myosin light chain kinase on actin: A mechanism to enhance myosin phosphorylation rates in smooth muscle

    PubMed Central

    Hong, Feng; Brizendine, Richard K.; Carter, Michael S.; Alcala, Diego B.; Brown, Avery E.; Chattin, Amy M.; Haldeman, Brian D.; Walsh, Michael P.; Facemyer, Kevin C.; Baker, Josh E.

    2015-01-01

    Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot–labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto–myosin and MLCK–myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting “stuck” on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle. PMID:26415568

  3. Phosphorylated Myosin Light Chain 2 (p-MLC2) as a Molecular Marker of Antemortem Coronary Artery Spasm

    PubMed Central

    Li, Liliang; Li, Yuhua; Lin, Junyi; Jiang, Jieqing; He, Meng; Sun, Daming; Zhao, Ziqin; Shen, Yiwen; Xue, Aimin

    2016-01-01

    Background It is not uncommon that only mild coronary artery stenosis is grossly revealed after a system autopsy. While coronary artery spasm (CAS) is the suspected mechanism of these deaths, no specific biomarker has been identified to suggest antemortem CAS. Material/Methods To evaluate the potential of using phosphorylated myosin light chain 2 (p-MLC2) as a diagnostic marker of antemortem CAS, human vascular smooth muscle cells (VSMCs) were cultured and treated with common vasoconstrictors, including prostaglandins F2α (PGF2α), acetylcholine (ACh), and 5-hydroxy tryptamine (5-HT). The p-MLC2 level was examined in the cultured cells using Western blot analysis and in a rat model of spasm provocation tests using immunohistochemistry (IHC). Effects of increased p-MLC2 level on VSMCs contractile activities were assessed in vitro using confocal immunofluorescence assay. Four fatal cases with known antemortem CAS were collected and subject to p-MLC2 detection. Results The p-MLC2 was significantly increased in VSMCs after treatments with vasoconstrictors and in the spasm provocation tests. Myofilament was well-organized and densely stained in VSMCs with high p-MLC2 level, but disarrayed in VSMCs with low p-MLC2 level. Three of the 4 autopsied cases showed strongly positive staining of p-MLC2 at the stenosed coronary segment and the adjacent interstitial small arteries. The fourth case was autopsied at the 6th day after death and showed negative-to-mild positive staining of p-MLC2. Conclusions p-MLC2 might be a useful marker for diagnosis of antemortem CAS. Autopsy should be performed as soon as possible to collect coronary arteries for detection of p-MLC2. PMID:27643564

  4. Interleukin-18 facilitates neutrophil transmigration via myosin light chain kinase-dependent disruption of occludin, without altering epithelial permeability.

    PubMed

    Lapointe, Tamia K; Buret, Andre G

    2012-02-01

    Compromised epithelial barrier function and tight junction alterations are hallmarks of a number of gastrointestinal disorders, including inflammatory bowel disease (IBD). Increased levels of IL-18 have been observed in mucosal samples from Crohn's disease and ulcerative colitis patients. Remarkably, several reports have demonstrated that immunological or genetic blockage of IL-18 ameliorates the severity of colitis in multiple in vivo models of IBD. Nevertheless, the effects of IL-18 on intestinal epithelial barrier function remain unclear. We hypothesized that IL-18 could disrupt intestinal epithelial barrier structure and function, thus contributing to tissue damage in the context of IBD. The aims of the present study were to determine the effects of IL-18 on epithelial barrier structure and function and to characterize the mechanisms involved in these modulatory properties. Human colonic epithelial Caco-2 monolayers were coincubated with IL-18 for 24 h and processed for immunocytochemistry, immunoblotting, quantitative PCR, and permeability measurements (transepithelial resistance, FITC-dextran fluxes, and bacterial translocation). Our findings indicate that IL-18 selectively disrupts tight junctional occludin, without affecting the distribution pattern of claudin-4, claudin-5, zonula occludens-1, or E-cadherin. This effect coincided with a significant increase in myosin light chain kinase (MLCK) protein levels and activity. Pharmacological inhibition of MLCK and NF-κB prevented IL-18-induced loss of occludin. Although too subtle to alter paracellular permeability, these fine changes correlated with an MLCK-dependent increase in neutrophil transepithelial migration. In conclusion, our data suggest that IL-18 may potentiate inflammation in the context of IBD by facilitating neutrophil transepithelial migration via MLCK-dependent disruption of tight junctional occludin.

  5. Non–Muscle Myosin Light Chain Kinase Isoform Is a Viable Molecular Target in Acute Inflammatory Lung Injury

    PubMed Central

    Mirzapoiazova, Tamara; Moitra, Jaideep; Moreno-Vinasco, Liliana; Sammani, Saad; Turner, Jerry R.; Chiang, Eddie T.; Evenoski, Carrie; Wang, Ting; Singleton, Patrick A.; Huang, Yong; Lussier, Yves A.; Watterson, D. Martin; Dudek, Steven M.; Garcia, Joe G. N.

    2011-01-01

    Acute lung injury (ALI) and mechanical ventilator-induced lung injury (VILI), major causes of acute respiratory failure with elevated morbidity and mortality, are characterized by significant pulmonary inflammation and alveolar/vascular barrier dysfunction. Previous studies highlighted the role of the non–muscle myosin light chain kinase isoform (nmMLCK) as an essential element of the inflammatory response, with variants in the MYLK gene that contribute to ALI susceptibility. To define nmMLCK involvement further in acute inflammatory syndromes, we used two murine models of inflammatory lung injury, induced by either an intratracheal administration of lipopolysaccharide (LPS model) or mechanical ventilation with increased tidal volumes (the VILI model). Intravenous delivery of the membrane-permeant MLC kinase peptide inhibitor, PIK, produced a dose-dependent attenuation of both LPS-induced lung inflammation and VILI (∼50% reductions in alveolar/vascular permeability and leukocyte influx). Intravenous injections of nmMLCK silencing RNA, either directly or as cargo within angiotensin-converting enzyme (ACE) antibody–conjugated liposomes (to target the pulmonary vasculature selectively), decreased nmMLCK lung expression (∼70% reduction) and significantly attenuated LPS-induced and VILI-induced lung inflammation (∼40% reduction in bronchoalveolar lavage protein). Compared with wild-type mice, nmMLCK knockout mice were significantly protected from VILI, with significant reductions in VILI-induced gene expression in biological pathways such as nrf2-mediated oxidative stress, coagulation, p53-signaling, leukocyte extravasation, and IL-6–signaling. These studies validate nmMLCK as an attractive target for ameliorating the adverse effects of dysregulated lung inflammation. PMID:20139351

  6. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.

    PubMed

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-05-24

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.

  7. Molecular cloning, characterisation and mRNA expression analysis of the sheep myosin light chain 1 gene.

    PubMed

    Zhang, Chunlan; Wang, Guizhi; Ji, Zhibin; Liu, Zhaohua; Hou, Lei; Liu, Guanqing; Wang, Jianmin

    2015-09-10

    The complete cDNA sequence of the sheep MYL1 (Myosin light chain 1) gene was cloned using RT-PCR, 5' RACE and 3' RACE. We obtained two alternatively spliced isoforms of the MYL1 gene, MYL1a and MYL1b, which are 849 and 1046bp in length and encode proteins composed of 150 and 192 amino acid residues, respectively. And the GenBank accession numbers of MYL1a and MYL1b full-length cDNA sequences that we cloned are KJ700419 and KJ710701, respectively. Neither protein was predicted to have a signal peptide, but both were predicted to have several N-glycosylation and phosphorylation sites. More than half of the secondary structure of these proteins was predicted to be α-helical. The human MYL2 protein (1m8q.1.C) is the most similar in tertiary structure. Sequence alignment showed that the sheep MYL1a protein shares more than 92% amino acid sequence similar with Mus musculus, Homo sapiens, Rattus norvegicus, Sus scrofa and Gallus gallus and that the MYL1b protein shares more than 93% amino acid sequence similar with M. musculus, H. sapiens, R. norvegicus, Bos taurus and Oryctolagus cuniculus. Transcription profile analyses of various tissues indicated that the sheep MYL1a and MYL1b mRNAs were highly but differentially expressed in the longissimus dorsi. Moreover, the expression levels of these genes in the longissimus dorsi differed between Dorper and Small-tailed Han sheep. These results serve as a foundation for further investigations of the function of the sheep MYL1 gene. PMID:25911560

  8. Phosphorylated Myosin Light Chain 2 (p-MLC2) as a Molecular Marker of Antemortem Coronary Artery Spasm.

    PubMed

    Li, Liliang; Li, Yuhua; Lin, Junyi; Jiang, Jieqing; He, Meng; Sun, Daming; Zhao, Ziqin; Shen, Yiwen; Xue, Aimin

    2016-01-01

    BACKGROUND It is not uncommon that only mild coronary artery stenosis is grossly revealed after a system autopsy. While coronary artery spasm (CAS) is the suspected mechanism of these deaths, no specific biomarker has been identified to suggest antemortem CAS. MATERIAL AND METHODS To evaluate the potential of using phosphorylated myosin light chain 2 (p-MLC2) as a diagnostic marker of antemortem CAS, human vascular smooth muscle cells (VSMCs) were cultured and treated with common vasoconstrictors, including prostaglandins F2α (PGF2α), acetylcholine (ACh), and 5-hydroxy tryptamine (5-HT). The p-MLC2 level was examined in the cultured cells using Western blot analysis and in a rat model of spasm provocation tests using immunohistochemistry (IHC). Effects of increased p-MLC2 level on VSMCs contractile activities were assessed in vitro using confocal immunofluorescence assay. Four fatal cases with known antemortem CAS were collected and subject to p-MLC2 detection. RESULTS The p-MLC2 was significantly increased in VSMCs after treatments with vasoconstrictors and in the spasm provocation tests. Myofilament was well-organized and densely stained in VSMCs with high p-MLC2 level, but disarrayed in VSMCs with low p-MLC2 level. Three of the 4 autopsied cases showed strongly positive staining of p-MLC2 at the stenosed coronary segment and the adjacent interstitial small arteries. The fourth case was autopsied at the 6th day after death and showed negative-to-mild positive staining of p-MLC2. CONCLUSIONS p-MLC2 might be a useful marker for diagnosis of antemortem CAS. Autopsy should be performed as soon as possible to collect coronary arteries for detection of p-MLC2. PMID:27643564

  9. Immunoglobulin Free Light Chains and GAGs Mediate Multiple Myeloma Extracellular Vesicles Uptake and Secondary NfκB Nuclear Translocation

    PubMed Central

    Di Noto, Giuseppe; Chiarini, Marco; Paolini, Lucia; Mazzoldi, Elena Laura; Giustini, Viviana; Radeghieri, Annalisa; Caimi, Luigi; Ricotta, Doris

    2014-01-01

    Multiple myeloma (MM) is a hematological malignancy caused by a microenviromentally aided persistence of plasma cells in the bone marrow. Monoclonal plasma cells often secrete high amounts of immunoglobulin free light chains (FLCs) that could induce tissue damage. Recently, we showed that FLCs are internalized in endothelial and myocardial cell lines and secreted in extracellular vesicles (EVs). MM serum derived EVs presented phenotypic differences if compared with monoclonal gammopathy of undetermined significance (MGUS) serum derived EVs suggesting their involvement in MM pathogenesis or progression. To investigate the effect of circulating EVs on endothelial and myocardial cells, we purified MM and MGUS serum derived EVs with differential ultracentrifugation protocols and tested their biological activity. We found that MM and MGUS EVs induced different proliferation and internalization rates in endothelial and myocardial cells, thus we tried to find specific targets in MM EVs docking and processing. Pre-treatment of EVs with anti-FLCs antibodies or heparin blocked the MM EVs uptake, highlighting that FLCs and glycosaminoglycans are involved. Indeed, only MM EVs exposure induced a strong nuclear factor kappa B nuclear translocation that was completely abolished after anti-FLCs antibodies and heparin pre-treatment. The protein tyrosine kinase c-src is present on MM circulating EVs and redistributes to the cell plasma membrane after MM EVs exposure. The anti-FLCs antibodies and heparin pre-treatments were able to block the intracellular re-distribution of the c-src kinase and the subsequent c-src kinase containing EVs production. Our results open new insights in EVs cellular biology and in MM therapeutic and diagnostic approaches. PMID:25386176

  10. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments

    PubMed Central

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-01-01

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease. PMID:27162358

  11. Berberine ameliorates severe acute pancreatitis‑induced intestinal barrier dysfunction via a myosin light chain phosphorylation‑dependent pathway.

    PubMed

    Liang, Hong-Yin; Chen, Tao; Yan, Hong-Tao; Huang, Zhu; Tang, Li-Jun

    2014-05-01

    Berberine is a traditional drug used to treat gastrointestinal disorders in China and has been demonstrated to attenuate intestinal barrier dysfunction in certain animal models. However, the effects of berberine on pancreatitis-induced intestinal barrier dysfunction are yet to be fully elucidated. This study aimed to investigate the effect of berberine pretreatment on the attenuation of intestinal barrier dysfunction induced by severe acute pancreatitis (SAP). A total of 36 rats were randomly divided into Sham, SAP and SAP plus berberine groups. Pancreatitis was induced using retrograde injection of 3% Na-taurocholate into the pancreatic duct. Histological examinations of the pancreas were performed and intestinal barrier dysfunction was characterized by histological measurements and the assessment of serum diamine oxidase activity and endotoxin levels. Zonula occludens-1 and occludin mRNA and protein expression, as well as myosin light chain (MLC) phosphorylation, were assessed. SAP rat models were successfully established. Berberine treatment was found to have no significant effect on the histological changes in the pancreas, but was observed to ameliorate the intestinal mucosal barrier damage and membrane permeability associated with SAP. Although berberine exerted minimal effects on tight junction proteins in the ilea of SAP rats, it was observed to significantly inhibit SAP-induced MLC phosphorylation. To the best of our knowledge, this is the first study to demonstrate that berberine attenuates SAP‑induced intestinal barrier dysfunction in vivo. In addition, this study shows that the effect of berberine on intestinal barrier function may be associated with the inhibition of SAP‑induced upregulation of MLC phosphorylation.

  12. Kinesin Light Chain 1 Suppression Impairs Human Embryonic Stem Cell Neural Differentiation and Amyloid Precursor Protein Metabolism

    PubMed Central

    Killian, Rhiannon L.; Flippin, Jessica D.; Herrera, Cheryl M.; Almenar-Queralt, Angels; Goldstein, Lawrence S. B.

    2012-01-01

    The etiology of sporadic Alzheimer disease (AD) is largely unknown, although evidence implicates the pathological hallmark molecules amyloid beta (Aβ) and phosphorylated Tau. Work in animal models suggests that altered axonal transport caused by Kinesin-1 dysfunction perturbs levels of both Aβ and phosphorylated Tau in neural tissues, but the relevance of Kinesin-1 dependent functions to the human disease is unknown. To begin to address this issue, we generated human embryonic stem cells (hESC) expressing reduced levels of the kinesin light chain 1 (KLC1) Kinesin-1 subunit to use as a source of human neural cultures. Despite reduction of KLC1, undifferentiated hESC exhibited apparently normal colony morphology and pluripotency marker expression. Differentiated neural cultures derived from KLC1-suppressed hESC contained neural rosettes but further differentiation revealed obvious morphological changes along with reduced levels of microtubule-associated neural proteins, including Tau and less secreted Aβ, supporting the previously established connection between KLC1, Tau and Aβ. Intriguingly, KLC1-suppressed neural precursors (NPs), isolated using a cell surface marker signature known to identify cells that give rise to neurons and glia, unlike control cells, failed to proliferate. We suggest that KLC1 is required for normal human neural differentiation, ensuring proper metabolism of AD-associated molecules APP and Tau and for proliferation of NPs. Because impaired APP metabolism is linked to AD, this human cell culture model system will not only be a useful tool for understanding the role of KLC1 in regulating the production, transport and turnover of APP and Tau in neurons, but also in defining the essential function(s) of KLC1 in NPs and their progeny. This knowledge should have important implications for human neurodevelopmental and neurodegenerative diseases. PMID:22272245

  13. Proline-rich region of non-muscle myosin light chain kinase modulates kinase activity and endothelial cytoskeletal dynamics.

    PubMed

    Belvitch, Patrick; Adyshev, Djanybek; Elangovan, Venkateswaran R; Brown, Mary E; Naureckas, Caitlin; Rizzo, Alicia N; Siegler, Jessica H; Garcia, Joe G N; Dudek, Steven M

    2014-09-01

    Disruption of the pulmonary endothelial barrier and subsequent vascular leak is a hallmark of acute lung injury. Dynamic rearrangements in the endothelial cell (EC) peripheral membrane and underlying cytoskeleton are critical determinants of barrier function. The cytoskeletal effector protein non-muscle myosin light chain kinase (nmMLCK) and the actin-binding regulatory protein cortactin are important regulators of the endothelial barrier. In the present study we functionally characterize a proline-rich region of nmMLCK previously identified as the possible site of interaction between nmMLCK and cortactin. A mutant nmMLCK construct deficient in proline residues at the putative sites of cortactin binding (amino acids 973, 976, 1019, 1022) was generated. Co-immunoprecipitation studies in human lung EC transfected with wild-type or mutant nmMLCK demonstrated similar levels of cortactin interaction at baseline and after stimulation with the barrier-enhancing agonist, sphingosine 1-phosphate (S1P). In contrast, binding studies utilizing recombinant nmMLCK fragments containing the wild-type or proline-deficient sequence demonstrated a two-fold increase in cortactin binding (p<0.01) to the mutant construct. Immunofluorescent microscopy revealed an increased stress fiber density in ECs expressing GFP-labeled mutant nmMLCK at baseline (p=0.02) and after thrombin (p=0.01) or S1P (p=0.02) when compared to wild-type. Mutant nmMLCK demonstrated an increase in kinase activity in response to thrombin (p<0.01). Kymographic analysis demonstrated an increased EC membrane retraction distance and velocity (p<0.01) in response to the barrier disrupting agent thrombin in cells expressing the mutant vs. the wild-type nmMLCK construct. These results provide evidence that critical prolines within nmMLCK (amino acids 973, 976, 1019, 1022) regulate cytoskeletal and membrane events associated with pulmonary endothelial barrier function. PMID:25072537

  14. Recombinant enterokinase light chain with affinity tag: expression from Saccharomyces cerevisiae and its utilities in fusion protein technology.

    PubMed

    Choi, S I; Song, H W; Moon, J W; Seong, B L

    2001-12-20

    Enterokinase and recombinant enterokinase light chain (rEK(L)) have been used widely to cleave fusion proteins with the target sequence of (Asp)(4)-Lys. In this work, we show that their utility as a site-specific cleavage agent is compromised by sporadic cleavage at other sites, albeit at low levels. Further degradation of the fusion protein in cleavage reaction is due to an intrinsic broad specificity of the enzyme rather than to the presence of contaminating proteases. To offer facilitated purification from fermentation broth and efficient removal of rEK(L) after cleavage reaction, thus minimizing unwanted cleavage of target protein, histidine affinity tag was introduced into rEK(L). Utilizing the secretion enhancer peptide derived from the human interleukin 1 beta, the recombinant EK(L) was expressed in Saccharomyces cerevisiae and efficiently secreted into culture medium. The C-terminal His-tagged EK(L) was purified in a single-step procedure on nickel affinity chromatography. It retained full enzymatic activity similar to that of EK(L), whereas the N-terminal His-tagged EK(L) was neither efficiently purified nor had any enzymatic activity. After cleavage reaction of fusion protein, the C-terminal His-tagged EK(L) was efficiently removed from the reaction mixture by a single passage through nickel-NTA spin column. The simple affinity tag renders rEK(L) extremely useful for purification, post-cleavage removal, recovery, and recycling and will broaden the utility and the versatility of the enterokinase for the production of recombinant proteins. PMID:11745150

  15. Kinetic and Motor Functions Mediated by Distinct Regions of the Regulatory Light Chain of Smooth Muscle Myosin1,2

    PubMed Central

    Ni, Shaowei; Hong, Feng; Brewer, Paul D.; Ikebe, Mitsuo; Onishi, Hirofumi; Baker, Jonathan E.; Facemyer, Kevin C.; Cremo, Christine R.

    2009-01-01

    To understand the importance of selected regions of the regulatory light chain (RLC) for phosphorylation-dependent regulation of smooth muscle myosin (SMM), we expressed three heavy meromyosins (HMMs) containing the following RLC mutants; K12E in a critical region of the phosphorylation domain, GTDP95-98/AAAA in the central hinge, and R160C a putative binding residue for phosphorylated S19. Single-turnover actin-activated Mg2+-ATPase (Vmax and Katpase) and in vitro actin sliding velocities were examined for both unphosphorylated (up-) and phosphorylated (p-) states. Turnover rates for the upstate (0.007-0.030 s-1) and velocities (no motion) for all constructs were not significantly different from the up-wild type (WT) indicating that they were completely turned off. The apparent binding constants for actin in the presence of ATP (Katpase) were too weak to measure as expected for fully regulated constructs. For p-HMM containing GTDP/AAAA, we found that both ATPase and motility were normal. The data suggest that the native sequence in the central hinge between the two lobes of the RLC is not required for turning the HMM off and on both kinetically and mechanically. For p-HMM containing R160C, all parameters were normal, suggesting that R160C is not involved in coordination of the phosphorylated S19. For p-HMM containing K12E, the Vmax was 64% and actin sliding velocity was ∼50% of WT, suggesting that K12 is an important residue for the ability to sense or to promote the conformational changes required for kinetic and mechanical activation. PMID:19635597

  16. Successful Treatment of Amyloid Light-chain Amyloidosis in a Charcot-Marie-Tooth Disease Patient with Lenalidomide, Cyclophosphamide, and Dexamethasone.

    PubMed

    Kikukawa, Yoshitaka; Hata, Hiroyuki; Ueda, Mitsuharu; Yamashita, Taro; Nasu, Singo; Ide, Kazuhiko; Ueno, Shikiko; Ando, Yukio; Mitsuya, Hiroaki; Okuno, Yutaka

    2016-01-01

    A 70-year-old woman with Charcot-Marie-Tooth disease (CMT) suffered from nephrotic syndrome and a renal biopsy revealed non-AA amyloid depositions that contained immunoglobulin light chain λ. Her serum λ free LC was elevated to 80.8 mg/L and she was diagnosed with primary amyloid light-chain (AL) amyloidosis. She was subsequently treated with lenalidomide, cyclophosphamide, and dexamethasone (RCD). After 14 cycles of RCD, she achieved complete remission. Her serum albumin levels gradually normalized to 3.1 g/dL. No exacerbation of neurologic symptoms related to CMT was observed. Thus, RCD may be a well-tolerated and effective regimen for treating AL amyloidosis in patients with CMT disease. PMID:27629972

  17. The nondigestible disaccharide epilactose increases paracellular Ca absorption via rho-associated kinase- and myosin light chain kinase-dependent mechanisms in rat small intestines.

    PubMed

    Suzuki, Takuya; Nishimukai, Megumi; Takechi, Maki; Taguchi, Hidenori; Hamada, Shigeki; Yokota, Atsushi; Ito, Susumu; Hara, Hiroshi; Matsui, Hirokazu

    2010-02-10

    We previously showed that epilactose, a nondigestible disaccharide, increased calcium (Ca) absorption in the small intestines of rats. Here, we explored the mechanism(s) underlying the epilactose-mediated promotion of Ca absorption in a ligated intestinal segment of anesthetized rats. The addition of epilactose to the luminal solution increased Ca absorption and chromium (Cr)-EDTA permeability, a paracellular indicator, with a strong correlation (R = 0.93) between these changes. Epilactose induced the phosphorylation of myosin regulatory light chains (MLCs), which is known to activate the paracellular route, without any change in the association of tight junction proteins with the actin cytoskeleton. The epilactose-mediated promotion of the Ca absorption was suppressed by specific inhibitors of myosin light chain kinase (MLCK) and Rho-associated kinase (ROCK). These results indicate that epilactose increases paracellular Ca absorption in the small intestine of rats through the induction of MLC phosphorylation via MLCK- and ROCK-dependent mechanisms.

  18. Confocal Cornea Microscopy Detects Involvement of Corneal Nerve Fibers in a Patient with Light-Chain Amyloid Neuropathy Caused by Multiple Myeloma: A Case Report

    PubMed Central

    Sturm, Dietrich; Schmidt-Wilcke, Tobias; Greiner, Tineke; Maier, Christoph; Schargus, Marc; Tegenthoff, Martin; Vorgerd, Matthias

    2016-01-01

    Changes in the subbasal corneal plexus detected by confocal cornea microscopy (CCM) have been described for various types of neuropathy. An involvement of these nerves within light-chain (AL) amyloid neuropathy (a rare cause of polyneuropathy) has never been shown. Here, we report on a case of a patient suffering from neuropathy caused by AL amyloidosis and underlying multiple myeloma. Small-fiber damage was detected by CCM. PMID:27482195

  19. Dynamin-1-like protein (Dnm1L) interaction with kinesin light chain 1 (KLC1) through the tetratricopeptide repeat (TPR) domains.

    PubMed

    Jang, Won Hee; Jeong, Young Joo; Choi, Sun Hee; Kim, Sang-Jin; Urm, Sang-Hwa; Seog, Dae-Hyun

    2014-01-01

    Kinesin light chain 1 (KLC1) mediates binding of KIF5 motor to specific cargo. Using the yeast two-hybrid screening, we found that mitochondrial fission protein dynamin-1-like protein (Dnm1L) interacted with KLC1, but not KIF5. Dnm1L and KLC1 were co-localized in cultured cells. These results suggest that KLC1 may play a potential role in post-fission mitochondrial transport.

  20. Immunoglobulin heavy/light chain ratios improve paraprotein detection and monitoring, identify residual disease and correlate with survival in multiple myeloma patients

    PubMed Central

    Ludwig, H; Milosavljevic, D; Zojer, N; Faint, J M; Bradwell, A R; Hübl, W; Harding, S J

    2013-01-01

    The novel heavy/light chain (HLC) assay was used for the detection and measurement of monoclonal immunoglobulins, response evaluation and prognostication. This test allows identification and quantification of the different light chain types of each immunoglobulin class (for example, IgGκ and IgGλ) and enables calculation of ratios of monoclonal/polyclonal immunoglobulin (HLC ratio). Sequential sera of 156 patients with IgG or IgA myeloma started on first-line therapy and followed for a median of 46.1 months were analyzed. Results were compared with those obtained with conventional techniques (serum protein electrophoresis (SPEP), immunofixation electrophoresis (IFE), nephelometry (NEPH), and the free light chain test (FLC)). Our data show that the HLC assay allowed quantification of monoclonal proteins not accurately measurable by SPEP or NEPH. When both HLC and FLC testing were applied for response assessment, clonal excess was noted in 14/31 patients with complete response (CR). HLC ratio indicated presence of disease in 8/31 patients who achieved CR and, in sequential studies indicated evolving relapse in three patients before IFE became positive. Highly abnormal HLC ratios at presentation were significantly associated with shorter overall survival (40.5 months vs median not reached, P=0.016). Multivariate analysis revealed HLC ratio (P=0.03) and β2-microglobulin (P<0.01) as independent risk factors for survival. PMID:22955329

  1. The novel zinc finger protein dASCIZ regulates mitosis in Drosophila via an essential role in dynein light-chain expression.

    PubMed

    Zaytseva, Olga; Tenis, Nora; Mitchell, Naomi; Kanno, Shin-ichiro; Yasui, Akira; Heierhorst, Jörg; Quinn, Leonie M

    2014-02-01

    The essential zinc finger protein ASCIZ (also known as ATMIN, ZNF822) plays critical roles during lung organogenesis and B cell development in mice, where it regulates the expression of dynein light chain (DYNLL1/LC8), but its functions in other species including invertebrates are largely unknown. Here we report the identification of the Drosophila ortholog of ASCIZ (dASCIZ) and show that loss of dASCIZ function leads to pronounced mitotic delays with centrosome and spindle positioning defects during development, reminiscent of impaired dynein motor functions. Interestingly, similar mitotic and developmental defects were observed upon knockdown of the DYNLL/LC8-type dynein light chain Cutup (Ctp), and dASCIZ loss-of-function phenotypes could be suppressed by ectopic Ctp expression. Consistent with a genetic function of dASCIZ upstream of Ctp, we show that loss of dASCIZ led to reduced endogenous Ctp mRNA and protein levels and dramatically reduced Ctp-LacZ reporter gene activity in vivo, indicating that dASCIZ regulates development and mitosis as a Ctp transcription factor. We speculate that the more severe mitotic defects in the absence of ASCIZ in flies compared to mice may be due to redundancy with a second, ASCIZ-independent, Dynll2 gene in mammals in contrast to a single Ctp gene in Drosophila. Altogether, our data demonstrate that ASCIZ is an evolutionary highly conserved transcriptional regulator of dynein light-chain levels and a novel regulator of mitosis in flies.

  2. Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains

    PubMed Central

    1992-01-01

    Recent biochemical studies of p190, a calmodulin (CM)-binding protein purified from vertebrate brain, have demonstrated that this protein, purified as a complex with bound CM, shares a number of properties with myosins (Espindola, F. S., E. M. Espreafico, M. V. Coelho, A. R. Martins, F. R. C. Costa, M. S. Mooseker, and R. E. Larson. 1992. J. Cell Biol. 118:359-368). To determine whether or not p190 was a member of the myosin family of proteins, a set of overlapping cDNAs encoding the full-length protein sequence of chicken brain p190 was isolated and sequenced. Verification that the deduced primary structure was that of p190 was demonstrated through microsequence analysis of a cyanogen bromide peptide generated from chick brain p190. The deduced primary structure of chicken brain p190 revealed that this 1,830-amino acid (aa) 212,509-D) protein is a member of a novel structural class of unconventional myosins that includes the gene products encoded by the dilute locus of mouse and the MYO2 gene of Saccharomyces cerevisiae. We have named the p190-CM complex "myosin-V" based on the results of a detailed sequence comparison of the head domains of 29 myosin heavy chains (hc), which has revealed that this myosin, based on head structure, is the fifth of six distinct structural classes of myosin to be described thus far. Like the presumed products of the mouse dilute and yeast MYO2 genes, the head domain of chicken myosin-V hc (aa 1-764) is linked to a "neck" domain (aa 765-909) consisting of six tandem repeats of an approximately 23-aa "IQ-motif." All known myosins contain at least one such motif at their head-tail junctions; these IQ-motifs may function as calmodulin or light chain binding sites. The tail domain of chicken myosin-V consists of an initial 511 aa predicted to form several segments of coiled-coil alpha helix followed by a terminal 410-aa globular domain (aa, 1,421-1,830). Interestingly, a portion of the tail domain (aa, 1,094-1,830) shares 58% amino acid

  3. Surrogate light chain is required for central and peripheral B-cell tolerance and inhibits anti-DNA antibody production by marginal zone B cells.

    PubMed

    Ren, Weicheng; Grimsholm, Ola; Bernardi, Angelina I; Höök, Nina; Stern, Anna; Cavallini, Nicola; Mårtensson, Inga-Lill

    2015-04-01

    Selection of the primary antibody repertoire takes place in pro-/pre-B cells, and subsequently in immature and transitional B cells. At the first checkpoint, μ heavy (μH) chains assemble with surrogate light (SL) chain into a precursor B-cell receptor. In mice lacking SL chain, μH chain selection is impaired, and serum autoantibody levels are elevated. However, whether the development of autoantibody-producing cells is due to an inability of the resultant B-cell receptors to induce central and/or peripheral B-cell tolerance or other factors is unknown. Here, we show that receptor editing is defective, and that a higher proportion of BM immature B cells are prone to undergoing apoptosis. Furthermore, transitional B cells are also more prone to undergoing apoptosis, with a stronger selection pressure to enter the follicular B-cell pool. Those that enter the marginal zone (MZ) B-cell pool escape selection and survive, possibly due to the B-lymphopenia and elevated levels of B-cell activating factor. Moreover, the MZ B cells are responsible for the elevated IgM anti-dsDNA antibody levels detected in these mice. Thus, the SL chain is required for central and peripheral B-cell tolerance and inhibits anti-DNA antibody production by MZ B cells.

  4. Macromolecular substrate-binding exosites on both the heavy and light chains of factor XIa mediate the formation of the Michaelis complex required for factor IX-activation.

    PubMed

    Sinha, Dipali; Marcinkiewicz, Mariola; Navaneetham, Duraiswamy; Walsh, Peter N

    2007-08-28

    Binding of factor IX (FIX) to an exosite on the heavy chain of factor XIa (FXIa) is essential for the optimal activation of FIX (Sinha, D., Seaman, F. S., and Walsh, P. N. (1987) Biochemistry 26, 3768-3775). To gain further insight into the mechanisms of activation of FIX by FXIa, we have investigated the kinetic properties of FXIa-light chain (FXIa-LC) with its active site occupied by either a reversible inhibitor of serine proteases (p-aminobenzamidine, PAB) or a small peptidyl substrate (S-2366) and have examined FIX cleavage products resulting from activation by FXIa or FXIa-LC. PAB inhibited the hydrolysis of S-2366 by FXIa-LC in a classically competitive fashion. In contrast, PAB was found to be a noncompetitive inhibitor of the activation of the macromolecular substrate FIX. Occupancy of the active site of the FXIa-LC by S-2366 also resulted in noncompetitive inhibition of FIX activation. These results demonstrate the presence of an exosite for FIX binding on the FXIa-LC remote from its active site. Furthermore, examination of the cleavage products of FIX indicated that in the absence of either Ca2+ or the heavy chain of FXIa there was substantial accumulation of the inactive intermediate FIXalpha, indicating a slower rate of cleavage of the scissile bond Arg180-Val181. We conclude that binding to two substrate-binding exosites one on the heavy chain and the other on the light chain of FXIa is required to mediate the formation of the Michaelis complex and efficient cleavages of the two spatially separated scissile bonds of FIX. PMID:17676929

  5. Expression of v-rel induces mature B-cell lines that reflect the diversity of avian immunoglobulin heavy- and light-chain rearrangements.

    PubMed Central

    Barth, C F; Humphries, E H

    1988-01-01

    The infection of newly hatched chickens with reticuloendotheliosis virus strain T (REV-T) and a nonimmunosuppressive helper virus, chicken syncytial virus, induces rapidly metastatic B-cell lymphomas. In vivo analysis of these tumors with monoclonal antibodies detected the expression of the B-cell surface markers immunoglobulin M (IgM), CIa, Bu2, and CLA-1, but not IgG, Bu1, or a T-cell surface marker, CT-1. Cell lines derived from tumors exhibited the same pattern of staining, suggesting that expression of cell surface markers does not change during in vitro cell line development. All cell lines examined synthesized IgM in varying amounts. Northern (RNA blot) analysis confirmed abundant expression of v-rel mRNA, and Southern analysis revealed rearrangement of both heavy- and light-chain immunoglobulin loci. Analysis of the light-chain locus demonstrated that 20 of 22 lines contained a single rearranged allele. With respect to specific restriction enzyme sites within the V lambda 1 gene, the active allele in any given clone was either diversified or nondiversified. In contrast, examination of the heavy-chain loci within these lines demonstrated that 16 of the 22 had both alleles rearranged. Further diversification of the V lambda 1 locus did not occur after prolonged in vitro passage of the cell lines. We propose that v-rel expression arrests diversification of the light-chain locus in these lymphoid cells, allowing the production of stable, clonal B-cell populations. The development of these and similar cell lines will make it possible to identify specific stages of avian lymphoid ontogeny and to study the mechanism of rearrangement and diversification in the avian B lymphocyte. Images PMID:2854197

  6. Interactions of a potent cyclic peptide inhibitor with the light chain of botulinum neurotoxin A: insights from x-ray crystallography

    DOE PAGESBeta

    Kumaran, D.; Adler, M.; Levit, M.; Krebs, M.; Sweeney, R.; Swaminathan, S.

    2015-10-17

    The seven antigenically distinct serotypes (A to G) of botulinum neurotoxin (BoNT) are responsible for the deadly disease botulism. BoNT serotype A (BoNT/A) exerts its lethal action by cleaving the SNARE protein SNAP-25, leading to inhibition of neurotransmitter release, flaccid paralysis and autonomic dysfunction. BoNTs are dichain proteins: the heavy chain is responsible for neurospecific binding, internalization and translocation, and the light chain is responsible for substrate cleavage. Because of their extreme toxicity and prior history of weaponization, the BoNTs are considered to be potential bioterrorism agents. No post-symptomatic therapeutic interventions are available for BoNT intoxication other than critical care;more » therefore it is imperative to develop specific antidotes against this neurotoxin. To this end, a cyclic peptide inhibitor (CPI-1) was synthesized and found to inhibit BoNT/A light chain (Balc) with high affinity. When tested in a cell-free Förster resonance excitation transfer (FRET) assay, CPI-1 was found to have a Ki of 13.9 nM using full-length Balc448 and 42.1 nM using a truncated crystallizable form of light chain (Balc424). Co-crystallization of CPI-1 with Balc424 revealed that in the Balc-CPI-1 complex, the inhibitor adopts a helical conformation, occupies a high percentage of the active site cavity and interacts in an amphipathic manner with critical active site residues. The data suggest that CPI-1 prevents SNAP-25 from accessing the Balc active site by blocking both the substrate binding path at the surface and the Zn2+ binding region involved in catalysis. This is in contrast to linear peptide inhibitors described to date which block only the latter« less

  7. Interactions of a potent cyclic peptide inhibitor with the light chain of botulinum neurotoxin A: insights from x-ray crystallography

    SciTech Connect

    Kumaran, D.; Adler, M.; Levit, M.; Krebs, M.; Sweeney, R.; Swaminathan, S.

    2015-10-17

    The seven antigenically distinct serotypes (A to G) of botulinum neurotoxin (BoNT) are responsible for the deadly disease botulism. BoNT serotype A (BoNT/A) exerts its lethal action by cleaving the SNARE protein SNAP-25, leading to inhibition of neurotransmitter release, flaccid paralysis and autonomic dysfunction. BoNTs are dichain proteins: the heavy chain is responsible for neurospecific binding, internalization and translocation, and the light chain is responsible for substrate cleavage. Because of their extreme toxicity and prior history of weaponization, the BoNTs are considered to be potential bioterrorism agents. No post-symptomatic therapeutic interventions are available for BoNT intoxication other than critical care; therefore it is imperative to develop specific antidotes against this neurotoxin. To this end, a cyclic peptide inhibitor (CPI-1) was synthesized and found to inhibit BoNT/A light chain (Balc) with high affinity. When tested in a cell-free Förster resonance excitation transfer (FRET) assay, CPI-1 was found to have a Ki of 13.9 nM using full-length Balc448 and 42.1 nM using a truncated crystallizable form of light chain (Balc424). Co-crystallization of CPI-1 with Balc424 revealed that in the Balc-CPI-1 complex, the inhibitor adopts a helical conformation, occupies a high percentage of the active site cavity and interacts in an amphipathic manner with critical active site residues. The data suggest that CPI-1 prevents SNAP-25 from accessing the Balc active site by blocking both the substrate binding path at the surface and the Zn2+ binding region involved in catalysis. This is in contrast to linear peptide inhibitors described to date which block only the latter

  8. Interactions of a potent cyclic peptide inhibitor with the light chain of botulinum neurotoxin A: Insights from X-ray crystallography.

    PubMed

    Kumaran, Desigan; Adler, Michael; Levit, Matthew; Krebs, Michael; Sweeney, Richard; Swaminathan, Subramanyam

    2015-11-15

    The seven antigenically distinct serotypes (A-G) of botulinum neurotoxin (BoNT) are responsible for the deadly disease botulism. BoNT serotype A (BoNT/A) exerts its lethal action by cleaving the SNARE protein SNAP-25, leading to inhibition of neurotransmitter release, flaccid paralysis and autonomic dysfunction. BoNTs are dichain proteins consisting of a ∼ 100 kDa heavy chain and a ∼ 50 kDa light chain; the former is responsible for neurospecific binding, internalization and translocation, and the latter for cleavage of neuronal SNARE proteins. Because of their extreme toxicity and history of weaponization, the BoNTs are regarded as potential biowarfare/bioterrorism agents. No post-symptomatic therapeutic interventions are available for BoNT intoxication other than intensive care; therefore it is imperative to develop specific antidotes against this neurotoxin. To this end, a cyclic peptide inhibitor (CPI-1) was evaluated in a FRET assay for its ability to inhibit BoNT/A light chain (Balc). CPI was found to be highly potent, exhibiting a Ki of 12.3 nM with full-length Balc448 and 39.2 nM using a truncated crystallizable form of the light chain (Balc424). Cocrystallization studies revealed that in the Balc424-CPI-1 complex, the inhibitor adopts a helical conformation, occupies a high percentage of the active site cavity and interacts in an amphipathic manner with critical active site residues. The data suggest that CPI-1 prevents SNAP-25 from accessing the Balc active site by blocking both the substrate binding path at the surface and the Zn(2+) binding region involved in catalysis. This differs from linear peptide inhibitors described to date which block only the latter. PMID:26522088

  9. Curtiss SB2C-1 Helldiver

    NASA Technical Reports Server (NTRS)

    1944-01-01

    Curtiss SB2C-1 Helldiver: This Curtiss SB2C-1 Helldiver was flown by the NACA at Langley with an early radio-control system. Flying controls such as a spring tab were also examined with this airframe. Helldivers were also operated by the U. S. Army as A-25 Shrikes.

  10. C1 neurons: the body's EMTs.

    PubMed

    Guyenet, Patrice G; Stornetta, Ruth L; Bochorishvili, Genrieta; Depuy, Seth D; Burke, Peter G R; Abbott, Stephen B G

    2013-08-01

    The C1 neurons reside in the rostral and intermediate portions of the ventrolateral medulla (RVLM, IVLM). They use glutamate as a fast transmitter and synthesize catecholamines plus various neuropeptides. These neurons regulate the hypothalamic pituitary axis via direct projections to the paraventricular nucleus and regulate the autonomic nervous system via projections to sympathetic and parasympathetic preganglionic neurons. The presympathetic C1 cells, located in the RVLM, are probably organized in a roughly viscerotopic manner and most of them regulate the circulation. C1 cells are variously activated by hypoglycemia, infection or inflammation, hypoxia, nociception, and hypotension and contribute to most glucoprivic responses. C1 cells also stimulate breathing and activate brain stem noradrenergic neurons including the locus coeruleus. Based on the various effects attributed to the C1 cells, their axonal projections and what is currently known of their synaptic inputs, subsets of C1 cells appear to be differentially recruited by pain, hypoxia, infection/inflammation, hemorrhage, and hypoglycemia to produce a repertoire of stereotyped autonomic, metabolic, and neuroendocrine responses that help the organism survive physical injury and its associated cohort of acute infection, hypoxia, hypotension, and blood loss. C1 cells may also contribute to glucose and cardiovascular homeostasis in the absence of such physical stresses, and C1 cell hyperactivity may contribute to the increase in sympathetic nerve activity associated with diseases such as hypertension. PMID:23697799

  11. Identification of a 34-kD polypeptide as a light chain of microtubule- associated protein-1 (MAP-1) and its association with a MAP-1 peptide that binds to microtubules

    PubMed Central

    1986-01-01

    We examined the association of a 34-kD light chain component to the heavy chains of MAP-1 using a monoclonal antibody that specifically binds the 34-kD component and labels neuronal microtubules in a specific and saturable manner. Immunoprecipitation of MAP-1 heavy chains together with the 34-kD component by the antibody indicates that the 34-kD polypeptide forms a complex with MAP-1 heavy chains. Both major isoforms of MAP-1 heavy chains (MAP-1A and MAP-1B) were found in the immunoprecipitate. Digestion of MAP-1 with alpha-chymotrypsin and analysis of the chymotryptic peptides reveals a 120-kD fragment of the MAP-1 heavy chain that binds to microtubules and is precipitable with the 34-kD light chain antibody, suggesting that the 34-kD light chain also binds to this domain of the molecule. Since microtubules that contain the 120-kD fragment lack the long lateral projections characteristic of microtubules with intact MAP-1, the 34-kD light chains may be localized at or near the microtubule surface. PMID:3512577

  12. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway.

    PubMed

    Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Hunter, C Neil; Bocian, David F; Holten, Dewey; Niedzwiedzki, Dariusz M

    2016-06-23

    Six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = NC═C + NC═O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial (∼2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids. PMID:27285777

  13. Molecular cloning and nucleotide sequences of the complementary DNAs to chicken skeletal muscle myosin two alkali light chain mRNAs.

    PubMed Central

    Nabeshima, Y; Fujii-Kuriyama, Y; Muramatsu, M; Ogata, K

    1982-01-01

    We report here the molecular cloning and sequence analysis of DNAs complementary to mRNAs for myosin alkali light chain of chicken embryo and adult leg skeletal muscle. pSMA2-1 contained an 818 base-pair insert that includes the entire coding region and 5' and 3' untranslated regions of A2 mRNA. pSMA1-1 contained a 848 base-pair insert that included the 3' untranslated region and almost all of the coding region except for the N-terminal 13 amino acid residues of the A1 light chain. The 741 nucleotide sequences of A1 and A2 mRNAs corresponding to C-terminal 141 amino acid residues and 3' untranslated regions were identical. The 5' terminal nucleotide sequences corresponding to N-terminal 35 amino acid residues of A1 chain were quite different from the sequences corresponding to N-terminal 8 amino acid residues and of the 5' untranslated region of A2 mRNA. These findings are discussed in relation to the structures of the genes for A1 and A2 mRNA. PMID:6128725

  14. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway

    PubMed Central

    2016-01-01

    Six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = NC=C + NC=O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial (∼2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids. PMID:27285777

  15. C1q Nephropathy: The Unique Underrecognized Pathological Entity

    PubMed Central

    Devasahayam, Joe; Erode-Singaravelu, Gowrishankar; Bhat, Zeenat; Oliver, Tony; Chandran, Arul; Zeng, Xu; Dakshinesh, Paramesh; Pillai, Unni

    2015-01-01

    C1q nephropathy is a rare glomerular disease with characteristic mesangial C1q deposition noted on immunofluorescence microscopy. It is histologically defined and poorly understood. Light microscopic features are heterogeneous and comprise minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), and proliferative glomerulonephritis. Clinical presentation is also diverse, and ranges from asymptomatic hematuria or proteinuria to frank nephritic or nephrotic syndrome in both children and adults. Hypertension and renal insufficiency at the time of diagnosis are common findings. Optimal treatment is not clear and is usually guided by the underlying light microscopic lesion. Corticosteroids are the mainstay of treatment, with immunosuppressive agents reserved for steroid resistant cases. The presence of nephrotic syndrome and FSGS appear to predict adverse outcomes as opposed to favorable outcomes in those with MCD. Further research is needed to establish C1q nephropathy as a universally recognized distinct clinical entity. In this paper, we discuss the current understanding of pathogenesis, histopathology, clinical features, therapeutic options, and outcomes of C1q nephropathy. PMID:26640759

  16. Light-Induced ESR Studies of Quadrimolecular Recombination Kinetics of Photogenerated Charge Carriers in Regioregular Poly(3-alkylthiophene)/C60 Composites: Alkyl Chain Dependence

    NASA Astrophysics Data System (ADS)

    Tanaka, Hisaaki; Hasegawa, Naoki; Sakamoto, Tomotaka; Marumoto, Kazuhiro; Kuroda, Shin-ichi

    2007-08-01

    Light-induced ESR (LESR) measurements have been performed on the composites of regioregular poly(3-alkylthiophene) (RR-P3AT) and C60 by using polymers having different alkyl chains (CmH2m+1 with m=6, 8, 10, 12). The quadrimolecular recombination (QR) kinetics of photogenerated charge carriers, previously reported, have been confirmed for all the composites from the excitation power (Iex) dependence of the LESR intensity showing an ˜Iex0.25 dependence. The time decay of LESR intensity is also consistent with the QR model. Considering that only bimolecular recombination is observed in regiorandom polymer composites, the occurrence of QR strongly suggests the formation of doubly charged states, either bipolarons or polaron pairs on the regioregular polymer chains. On the other hand, the QR rate constant γ has been found to exhibit weak alkyl chain dependence, contrary to the case of the field-effect mobility of pure regioregular polymers with systematic alkyl chain dependence. This implies the significant contribution of the polymer and fullerene interface in determining γ.

  17. Phosphorylation by protein kinase C of the 20,000-dalton light chain of myosin in intact and chemically skinned vascular smooth muscle.

    PubMed

    Sutton, T A; Haeberle, J R

    1990-02-15

    In the present study we tested the hypothesis that phosphorylation of the 20,000-dalton light chain subunit of smooth muscle myosin (LC20) by the calcium-activated and phospholipid-dependent protein kinase C regulates contraction of chemically-permeabilized (glycerinated) porcine carotid artery smooth muscle. Purified protein kinase C and oleic acid were used to phosphorylate LC20 in glycerinated muscles in the presence of a CaEGTA/EGTA buffer system (pCa 8) to prevent activation of myosin light chain kinase. Phosphorylation of the light chain to 1.3 mol of PO4/mol of LC20 did not stimulate contraction. Tryptic digests of glycerinated carotid artery LC20 contained two major phosphopeptides which contained phosphoserine but not phosphothreonine. Incubation of glycerinated muscles with calcium (20 microM) and calmodulin (10 microM) resulted in contraction and LC20 phosphorylation to 1.1 mol of PO4/mol of LC20; tryptic digests of LC20 from these muscles contained a single phosphopeptide which could be distinguished by phosphopeptide mapping from the two phosphopeptides derived from muscles phosphorylated with protein kinase C. Further phosphorylation of Ca2+/calmodulin-activated muscles to 2.0 mol of PO4/mol of LC20, by incubation with protein kinase C, had no effect on either the level of isometric force or the lightly-loaded shortening velocity (after-load = 0.1 peak active force); removal of Ca2+ and calmodulin, but not protein kinase C and oleic acid, resulted in normal relaxation in spite of maintained phosphorylation to 1.2 mol of PO4/mol of LC20. Comparison of LC20 phosphopeptide maps from glycerinated muscles incubated with protein kinase C plus Ca2+/calmodulin (2.0 mol of PO4/mol of LC20) to maps from intact muscles stimulated with 10(-6) M phorbol 12,13-dibutyrate (0.05 mol of PO4/mol of LC20) showed that the same three phosphopeptides were present in both the intact and glycerinated muscles. These findings show that phosphorylation of LC20 by protein kinase

  18. A nationwide study of acquired C1-inhibitor deficiency in France: Characteristics and treatment responses in 92 patients.

    PubMed

    Gobert, Delphine; Paule, Romain; Ponard, Denise; Levy, Pierre; Frémeaux-Bacchi, Véronique; Bouillet, Laurence; Boccon-Gibod, Isabelle; Drouet, Christian; Gayet, Stéphane; Launay, David; Martin, Ludovic; Mekinian, Arsène; Leblond, Véronique; Fain, Olivier

    2016-08-01

    Acquired angioedema (AAE) due to C1-inhibitor (C1INH) deficiency is rare. Treatment options for acute attacks are variable and used off-label. Successful treatment of the associated lymphoma with rituximab seems to prevent acute attacks in subjects with AAE. The aim of this study was to describe AAE manifestations, its associated diseases, and patients' responses to treatments in a representative cohort.A retrospective nationwide study was conducted in France. The inclusion criteria were recurrent angioedema attacks and an acquired decrease in functional C1INH <50% of the reference value.A total of 92 cases were included, with a median age at onset of 62 years. Facial edema and abdominal pain were the most frequent symptoms. Fifteen patients were hospitalized in the intensive care unit because of laryngeal edema, and 1 patient died. Anti-C1INH antibodies were present in 43 patients. The associated diseases were primarily non-Hodgkin lymphoma (n = 44, with 24 splenic marginal zone lymphomas) and monoclonal gammopathy of undetermined significance (n = 24). Three patients had myeloma, 1 had amyloid light-chain (of immunoglobulin) (AL) amyloidosis, 1 patient had a bronchial adenocarcinoma, and 19 patients had no associated disease. Icatibant relieved the symptoms in all treated patients (n = 26), and plasma-derived C1INH concentrate in 19 of 21 treated patients. Six patients experienced thromboembolic events under tranexamic acid prophylaxis. Rituximab prevented angioedema in 27 of 34 patients as a monotherapy or in association with chemotherapy. Splenectomy controlled AAE in 7 patients treated for splenic marginal zone lymphoma. After a median follow-up of 4.2 years, angioedema was on remission in 52 patients.AAE cases are primarily associated with indolent lymphoma-especially splenic marginal zone lymphoma-and monoclonal gammopathy of undetermined significance but not with autoimmune diseases or other conditions. Icatibant and plasma-derived C1INH concentrate control

  19. A Markov Chain-based quantitative study of angular distribution of photons through turbid slabs via isotropic light scattering

    NASA Astrophysics Data System (ADS)

    Li, Xuesong; Northrop, William F.

    2016-04-01

    This paper describes a quantitative approach to approximate multiple scattering through an isotropic turbid slab based on Markov Chain theorem. There is an increasing need to utilize multiple scattering for optical diagnostic purposes; however, existing methods are either inaccurate or computationally expensive. Here, we develop a novel Markov Chain approximation approach to solve multiple scattering angular distribution (AD) that can accurately calculate AD while significantly reducing computational cost compared to Monte Carlo simulation. We expect this work to stimulate ongoing multiple scattering research and deterministic reconstruction algorithm development with AD measurements.

  20. Structure and function of C1-inhibitor.

    PubMed

    Wagenaar-Bos, Ineke G A; Hack, C Erik

    2006-11-01

    C1-INH belongs to the family of serpins. Structural studies have yielded a clear understanding of the biochemical principle underlying the functional activities of these proteins. Although the crystal structure of C1-INH has yet to be revealed, homology modeling has provided a three-dimensional model of the serpin part of C1-INH. This model has helped us understand the biochemical consequences of mutations of the C1-INH gene as they occur in patients who have HAE. The structure of the N-terminal domain of C1-INH remains unknown; however, this part of the molecule is unlikely to be important in the inhibitory activity of C1-INH toward its target proteases. Mutations in this part have not been described in patients who have HAE, except for a deletion containing two cysteine residues involved in the stabilization of the serpin domain. Recent studies suggest some anti-inflammatory functions for this N-terminal part, possibly explaining the effects of C1-INH in diseases other than HAE.

  1. Tumor necrosis factor and immune interferon synergistically increase transcription of HLA class I heavy- and light-chain genes in vascular endothelium

    SciTech Connect

    Johnson, D.R.; Pober, J.S. )

    1990-07-01

    Tumor necrosis factor and immune interferon synergistically increase cell-surface expression of class I major histocompatibility complex molecules in cultured human endothelial cells. The authors report that tumor necrosis factor and interferon {gamma} each independently increase mRNA levels and together cause a greater-than-additive (i.e., synergistic) increase in steady-state mRNA levels and transcriptional rates of the class I heavy- and light-chain genes. HLA heavy-chain mRNA is equally stable in cytokine-treated and -untreated endothelial cells. Interferon {gamma} does not increase tumor necrosis factor receptor number or affinity on human endothelial cells. They conclude that the synergistic increase in class I major histocompatibility complex cell-surface expression results principally from the synergistic increase in transcriptional rates. They propose that this increase is caused by the cooperative binding of independently activated transcription factors to the promoter/enhancer sequences of class I genes.

  2. Biochemical and functional characterization of the interaction between pentraxin 3 and C1q.

    PubMed

    Nauta, Alma J; Bottazzi, Barbara; Mantovani, Alberto; Salvatori, Giovanni; Kishore, Uday; Schwaeble, Wilhelm J; Gingras, Alexandre R; Tzima, Sotiria; Vivanco, Fernando; Egido, Jesús; Tijsma, Odette; Hack, Erik C; Daha, Mohamed R; Roos, Anja

    2003-02-01

    Pentraxin 3 (PTX3) is a recently characterized member of the pentraxin family of acute-phase proteins produced during inflammation. Classical short pentraxins, C-reactive protein, and serum amyloid P component can bind to C1q and thereby activate the classical complement pathway. Since PTX3 can also bind C1q, the present study was designed to define the interaction between PTX3 and C1q and to examine the functional consequences of this interaction. A dose-dependent binding of both C1q and the C1 complex to PTX3 was observed. Experiments with recombinant globular head domains of human C1q A, B, and C chains indicated that C1q interacts with PTX3 via its globular head region. Binding of C1q to immobilized PTX3 induced activation of the classical complement pathway as assessed by C4 deposition. Furthermore, PTX3 enhanced C1q binding and complement activation on apoptotic cells. However, in the fluid-phase, pre-incubation of PTX3 with C1q resulted in inhibition of complement activation by blocking the interaction of C1q with immunoglobulins. These results indicate that PTX3 can both inhibit and activate the classical complement pathway by binding C1q, depending on the way it is presented. PTX3 may therefore be involved in the regulation of the innate immune response.

  3. Systemic lupus erythematosus: molecular cloning and analysis of 22 individual recombinant monoclonal kappa light chains specifically hydrolyzing human myelin basic protein.

    PubMed

    Timofeeva, Anna M; Buneva, Valentina N; Nevinsky, Georgy A

    2015-10-01

    Antibodies hydrolyzing myelin basic protein (MBP) can play an important role in the pathogenesis of multiple sclerosis (MS) and systemic lupus erythematosus (SLE). An immunoglobulin light chain phagemid library derived from peripheral blood lymphocytes of patients with SLE was used. Small pools of phage particles displaying light chains with different affinities for MBP were isolated by affinity chromatography on MBP-Sepharose, and the fraction eluted with 0.5 M NaCl was used for preparation of individual monoclonal light chains (MLChs, 26-27 kDa). Seventy-two of 440 individual colonies were randomly chosen, expressed in Escherichia coli in a soluble form, and MLChs were purified by metal chelating chromatography. Twenty-two of 72 MLChs have high affinity and efficiently hydrolyze only MBP (not other control proteins) demonstrating various pH optima in a 5.7-9.0 range and different substrate specificity in the hydrolysis of four different MBP oligopeptides. Four MLChs demonstrated serine protease-like and three thiol protease-like activities, while 11 MLChs were metalloproteases. The activity of three MLChs was inhibited by both phenylmethylsulfonyl fluoride (PMSF) and Ethylenediaminetetraacetic acid (EDTA), two other by EDTA and iodoacetamide, and one by PMSF, EDTA, and iodoacetamide. The ratio of relative activity in the presence of Ca(2+), Mg(2+), Mn(2+), Ni(2+), Zn(2+), Cu(2+), and Co(2+) was individual for each of 22 MLCh preparations. It is the first examples of human MLChs, which probably can possess two or even three different proteolytic activities. These observations suggest an extreme diversity of anti-MBP abzymes in SLE patients. The immune systems of individual SLE patients can generate a variety of anti-MBP abzymes, which can attack MBP of myelin-proteolipid sheath of axons and play an important role in MS and SLE pathogenesis.

  4. High serum-free light chain levels and their rapid reduction in response to therapy define an aggressive multiple myeloma subtype with poor prognosis.

    PubMed

    van Rhee, Frits; Bolejack, Vanessa; Hollmig, Klaus; Pineda-Roman, Mauricio; Anaissie, Elias; Epstein, Joshua; Shaughnessy, John D; Zangari, Maurizio; Tricot, Guido; Mohiuddin, Abid; Alsayed, Yazan; Woods, Gail; Crowley, John; Barlogie, Bart

    2007-08-01

    Serum-free light chain (SFLC) levels are useful for diagnosing nonsecretory myeloma and monitoring response in light-chain-only disease, especially in the presence of renal failure. As part of a tandem autotransplantation trial for newly diagnosed multiple myeloma, SFLC levels were measured at baseline, within 7 days of starting the first cycle, and before both the second induction cycle and the first transplantation. SFLC baseline levels higher than 75 mg/dL (top tertile) identified 33% of 301 patients with higher near-complete response rate (n-CR) to induction therapy (37% vs 20%, P = .002) yet inferior 24-month overall survival (OS: 76% vs 91%, P < .001) and event-free survival (EFS: 73% vs 90%, P < .001), retaining independent prognostic significance for both EFS (HR = 2.40, P = .008) and OS (HR = 2.43, P = .016). Baseline SFLC higher than 75 mg/dL was associated with light-chain-only secretion (P < .001), creatinine level 176.8 microM (2 mg/dL) or higher (P < .001), beta-2-microglobulin 297.5 nM/L (3.5 mg/L) or higher (P < .001), lactate dehydrogenase 190 U/L or higher (P < .001), and bone marrow plasmacytosis higher than 30% (P = .003). Additional independent adverse implications were conferred by top-tertile SFLC reductions before cycle 2 (OS: HR = 2.97, P = .003; EFS: HR = 2.56, P = .003) and before transplantation (OS: HR = 3.31, P = .001; EFS: HR = 2.65, P = .003). Unlike baseline and follow-up analyses of serum and urine M-proteins, high SFLC levels at baseline-reflecting more aggressive disease-and steeper reductions after therapy identified patients with inferior survival.

  5. Curtiss SB2C-1 Helldiver

    NASA Technical Reports Server (NTRS)

    1943-01-01

    Curtiss SB2C-1 Helldiver: The front canopy came off this Curtiss SB2C-1 Helldiver while it was in flight, injuring pilot Herbert H. Hoover, but he recovered the plane back to the NACA at Langley Field. SB2Cs were license-built by Fairchild as SBFs and by Canadian Car and Foundry as SBWs. Helldivers were also flown by the British and Australians.

  6. 29 CFR 2575.502c-1 - Adjusted civil penalty under section 502(c)(1).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ACT OF 1974 ADJUSTMENT OF CIVIL PENALTIES UNDER ERISA TITLE I Adjustment of Civil Penalties Under ERISA Title I § 2575.502c-1 Adjusted civil penalty under section 502(c)(1). In accordance with the... section 502(c)(1) of the Employee Retirement Income Security Act of 1974, as amended (ERISA), is...

  7. 29 CFR 2575.502c-1 - Adjusted civil penalty under section 502(c)(1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ACT OF 1974 ADJUSTMENT OF CIVIL PENALTIES UNDER ERISA TITLE I Adjustment of Civil Penalties Under ERISA Title I § 2575.502c-1 Adjusted civil penalty under section 502(c)(1). In accordance with the... section 502(c)(1) of the Employee Retirement Income Security Act of 1974, as amended (ERISA), is...

  8. 29 CFR 2575.502c-1 - Adjusted civil penalty under section 502(c)(1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ACT OF 1974 ADJUSTMENT OF CIVIL PENALTIES UNDER ERISA TITLE I Adjustment of Civil Penalties Under ERISA Title I § 2575.502c-1 Adjusted civil penalty under section 502(c)(1). In accordance with the... section 502(c)(1) of the Employee Retirement Income Security Act of 1974, as amended (ERISA), is...

  9. 29 CFR 2575.502c-1 - Adjusted civil penalty under section 502(c)(1).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ACT OF 1974 ADJUSTMENT OF CIVIL PENALTIES UNDER ERISA TITLE I Adjustment of Civil Penalties Under ERISA Title I § 2575.502c-1 Adjusted civil penalty under section 502(c)(1). In accordance with the... section 502(c)(1) of the Employee Retirement Income Security Act of 1974, as amended (ERISA), is...

  10. 29 CFR 2575.502c-1 - Adjusted civil penalty under section 502(c)(1).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ACT OF 1974 ADJUSTMENT OF CIVIL PENALTIES UNDER ERISA TITLE I Adjustment of Civil Penalties Under ERISA Title I § 2575.502c-1 Adjusted civil penalty under section 502(c)(1). In accordance with the... section 502(c)(1) of the Employee Retirement Income Security Act of 1974, as amended (ERISA), is...

  11. Role of the N-terminal region of the skeletal muscle myosin light chain kinase target sequence in its interaction with calmodulin.

    PubMed Central

    Findlay, W. A.; Gradwell, M. J.; Bayley, P. M.

    1995-01-01

    The binding of calmodulin (CaM) to four synthetic peptide analogues of the skeletal muscle myosin light chain kinase (sk-MLCK) target sequence has been studied using 1H-NMR. The 18-residue peptide WFF is anchored to CaM via the interaction of the Trp 4 side chain with the C-domain and the Phe 17 side chain with the N-domain of the protein. A peptide corresponding to the first 10 residues (WF10) does not provide the second anchoring residue and is not long enough to span both domains of CaM. 1H-NMR spectroscopy indicates that the WF10 peptide interacts specifically with the C-domain of CaM, and the chemical shifts of the bound Trp side chain are very similar in the CaM:WF10 and CaM:WFF complexes. Binding of the C-domain of CaM to the strongly basic region around Trp 4 of this MLCK sequence may be an important step in target recognition. Comparison of 1H-NMR spectra of CaM bound to WFF, a Trp 4-->Phe analogue (FFF), or a Trp 4-->Phe/Phe 17-->Trp analogue (FFW) suggests that all three peptides bind to CaM in the same orientation, i.e., with the peptide side chain in position 4 interacting with the C-domain and the side chain in position 17 interacting with the N-domain. This indicates that a Trp residue in position 4 is not an absolute requirement for binding this target sequence and that interchanging the Trp 4 and Phe 17 residues does not reverse the orientation of the bound peptide, in confirmation of the deduction from previous indirect studies using circular dichroism (Findlay WA, Martin SR, Beckingham K, Bayley PM, 1995, Biochemistry 34:2087-2094). Molecular modeling/energy minimization studies indicate that only minor local changes in the protein structure are required to accommodate binding of the bulkier Trp 17 side chain of the FFW peptide to the N-domain of CaM. PMID:8563635

  12. Positive Mode LC-MS/MS Analysis of Chondroitin Sulfate Modified Glycopeptides Derived from Light and Heavy Chains of The Human Inter-α-Trypsin Inhibitor Complex.

    PubMed

    Gomez Toledo, Alejandro; Nilsson, Jonas; Noborn, Fredrik; Sihlbom, Carina; Larson, Göran

    2015-12-01

    The inter-α-trypsin inhibitor complex is a macromolecular arrangement of structurally related heavy chain proteins covalently cross-linked to the chondroitin sulfate (CS) chain of the proteoglycan bikunin. The inter-α-trypsin inhibitor complex is abundant in plasma and associated with inflammation, kidney diseases, cancer and diabetes. Bikunin is modified at Ser-10 by a single low-sulfated CS chain of 23-55 monosaccharides with 4-9 sulfate groups. The innermost four monosaccharides (GlcAβ3Galβ3Galβ4Xylβ-O-) compose the linkage region, believed to be uniform with a 4-O-sulfation to the outer Gal. The cross-linkage region of the bikunin CS chain is located in the nonsulfated nonreducing end, (GalNAcβ4GlcAβ3)(n), to which heavy chains (H1-H3) may be bound in GalNAc to Asp ester linkages. In this study we employed a glycoproteomics protocol to enrich and analyze light and heavy chain linkage and cross-linkage region CS glycopeptides derived from the IαI complex of human plasma, urine and cerebrospinal fluid samples. The samples were trypsinized, enriched by strong anion exchange chromatography, partially depolymerized with chondroitinase ABC and analyzed by LC-MS/MS using higher-energy collisional dissociation. The analyses demonstrated that the CS linkage region of bikunin is highly heterogeneous. In addition to sulfation of the Gal residue, Xyl phosphorylation was observed although exclusively in urinary samples. We also identified novel Neu5Ac and Fuc modifications of the linkage region as well as the presence of mono- and disialylated core 1 O-linked glycans on Thr-17. Heavy chains H1 and H2 were identified cross-linked to GalNAc residues one or two GlcA residues apart and H1 was found linked to either the terminal or subterminal GalNAc residues. The fragmentation behavior of CS glycopeptides under variable higher-energy collisional dissociation conditions displays an energy dependence that may be used to obtain complementary structural details. Finally

  13. Markov chain formalism for polarized light transfer in plane-parallel atmospheres, with numerical comparison to the Monte Carlo method.

    PubMed

    Xu, Feng; Davis, Anthony B; West, Robert A; Esposito, Larry W

    2011-01-17

    Building on the Markov chain formalism for scalar (intensity only) radiative transfer, this paper formulates the solution to polarized diffuse reflection from and transmission through a vertically inhomogeneous atmosphere. For verification, numerical results are compared to those obtained by the Monte Carlo method, showing deviations less than 1% when 90 streams are used to compute the radiation from two types of atmospheres, pure Rayleigh and Rayleigh plus aerosol, when they are divided into sublayers of optical thicknesses of less than 0.03.

  14. Antibody light-chain-restricted recognition of the site of immune pressure in the RV144 HIV-1 vaccine trial is phylogenetically conserved.

    PubMed

    Wiehe, Kevin; Easterhoff, David; Luo, Kan; Nicely, Nathan I; Bradley, Todd; Jaeger, Frederick H; Dennison, S Moses; Zhang, Ruijun; Lloyd, Krissey E; Stolarchuk, Christina; Parks, Robert; Sutherland, Laura L; Scearce, Richard M; Morris, Lynn; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Rerks-Ngarm, Supachai; Sinangil, Faruk; Phogat, Sanjay; Michael, Nelson L; Kim, Jerome H; Kelsoe, Garnett; Montefiori, David C; Tomaras, Georgia D; Bonsignori, Mattia; Santra, Sampa; Kepler, Thomas B; Alam, S Munir; Moody, M Anthony; Liao, Hua-Xin; Haynes, Barton F

    2014-12-18

    In HIV-1, the ability to mount antibody responses to conserved, neutralizing epitopes is critical for protection. Here we have studied the light chain usage of human and rhesus macaque antibodies targeted to a dominant region of the HIV-1 envelope second variable (V2) region involving lysine (K) 169, the site of immune pressure in the RV144 vaccine efficacy trial. We found that humans and rhesus macaques used orthologous lambda variable gene segments encoding a glutamic acid-aspartic acid (ED) motif for K169 recognition. Structure determination of an unmutated ancestor antibody demonstrated that the V2 binding site was preconfigured for ED motif-mediated recognition prior to maturation. Thus, light chain usage for recognition of the site of immune pressure in the RV144 trial is highly conserved across species. These data indicate that the HIV-1 K169-recognizing ED motif has persisted over the diversification between rhesus macaques and humans, suggesting an evolutionary advantage of this antibody recognition mode.

  15. Bruton's Tyrosine Kinase Regulates the Activation of Gene Rearrangements at the λ Light Chain Locus in Precursor B Cells in the Mouse

    PubMed Central

    Dingjan, Gemma M.; Middendorp, Sabine; Dahlenborg, Katarina; Maas, Alex; Grosveld, Frank; Hendriks, Rudolf W.

    2001-01-01

    Bruton's tyrosine kinase (Btk) is a nonreceptor tyrosine kinase involved in precursor B (pre-B) cell receptor signaling. Here we demonstrate that Btk-deficient mice have an ∼50% reduction in the frequency of immunoglobulin (Ig) λ light chain expression, already at the immature B cell stage in the bone marrow. Conversely, transgenic mice expressing the activated mutant BtkE41K showed increased λ usage. As the κ/λ ratio is dependent on (a) the level and kinetics of κ and λ locus activation, (b) the life span of pre-B cells, and (c) the extent of receptor editing, we analyzed the role of Btk in these processes. Enforced expression of the Bcl-2 apoptosis inhibitor did not alter the Btk dependence of λ usage. Crossing 3-83μδ autoantibody transgenic mice into Btk-deficient mice showed that Btk is not essential for receptor editing. Also, Btk-deficient surface Ig+ B cells that were generated in vitro in interleukin 7-driven bone marrow cultures manifested reduced λ usage. An intrinsic defect in λ locus recombination was further supported by the finding in Btk-deficient mice of reduced λ usage in the fraction of pre-B cells that express light chains in their cytoplasm. These results implicate Btk in the regulation of the activation of the λ locus for V(D)J recombination in pre-B cells. PMID:11369788

  16. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-{kappa}{beta} and myosin light-chain kinase pathways

    SciTech Connect

    Zhang, Ying; Li, Jianguo

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Carbachol reduced the lipopolysaccharide-induced intestinal barrier breakdown. Black-Right-Pointing-Pointer Carbachol ameliorated the lipopolysaccharide-induced ileal tight junction damage. Black-Right-Pointing-Pointer Carbachol prevented the LPS-induced NF-{kappa}{beta} and myosin light-chain kinase activation. Black-Right-Pointing-Pointer Carbachol exerted its beneficial effects in an {alpha}7 nicotinic receptor-dependent manner. -- Abstract: Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-{kappa}{beta}) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the {alpha}7 nicotinic acetylcholine receptor ({alpha}7nAchR) antagonist {alpha}-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-{kappa}{beta} and MLCK pathways in an {alpha}7nAchR-dependent manner.

  17. Formation of assemblies on cell membranes by secreted proteins: molecular studies of free λ light chain aggregates found on the surface of myeloma cells.

    PubMed

    Hutchinson, Andrew T; Malik, Ansha; Berkahn, Mark B; Agostino, Mark; To, Joyce; Tacchi, Jessica L; Djordjevic, Steven P; Turnbull, Lynne; Whitchurch, Cynthia B; Edmundson, Allen B; Jones, Darren R; Raison, Robert L; Ramsland, Paul A

    2013-09-15

    We have described the presence of cell-membrane-associated κFLCs (free immunoglobulin light chains) on the surface of myeloma cells. Notably, the anti-κFLC mAb (monoclonal antibody) MDX-1097 is being assessed in clinical trials as a therapy for κ light chain isotype multiple myeloma. Despite the clinical potential of anti-FLC mAbs, there have been limited studies on characterizing membrane-associated FLCs at a molecular level. Furthermore, it is not known whether λFLCs can associate with cell membranes of myeloma cells. In the present paper, we describe the presence of λFLCs on the surface of myeloma cells. We found that cell-surface-associated λFLCs are bound directly to the membrane and in an aggregated form. Subsequently, membrane interaction studies revealed that λFLCs interact with saturated zwitterionic lipids such as phosphatidylcholine and phosphatidylethanolamine, and using automated docking, we characterize a potential recognition site for these lipids. Atomic force microscopy confirmed that membrane-associated λFLCs are aggregated. Given the present findings, we propose a model whereby individual FLCs show modest affinity for zwitterionic lipids, with aggregation stabilizing the interaction due to multivalency. Notably, this is the first study to image FLCs bound to phospholipids and provides important insights into the possible mechanisms of membrane association by this unique myeloma surface antigen.

  18. Evaluation of serum markers in the LRF CLL4 trial: β2-microglobulin but not serum free light chains, is an independent marker of overall survival.

    PubMed

    Pratt, Guy; Thomas, Peter; Marden, Nicola; Alexander, Denis; Davis, Zadie; Hussey, David; Parry, Helen; Harding, Stephen; Catovsky, Daniel; Begley, Joe; Oscier, David

    2016-10-01

    Chronic lymphocytic leukemia (CLL) is characterized by heterogeneous clinical behavior and there is a need for improved biomarkers. The current study evaluated the prognostic significance of serum free light chains (sFLC, kappa, and lambda) and other serum markers (bar, serum thymidine kinase (sTK), soluble CD23, and LDH) together with established biomarkers in 289 patients enrolled into the LRF CLL4 trial. In a multivariable analysis of serum markers alone, higher big and kappa light chains were statistically significant in predicting disease progression and higher blg, and sTK in predicting mortality. In multivariable analysis for overall survival the following were independently significant: β2M levels, immunoglobulin gene (IGHV) mutational status (>98% homology), age, 17p13 deletions (>10%), and CD38 expression. β2M is the only serum marker that retained clear independent value as a biomarker in the LRF CLL4 trial and remains powerfully prognostic requiring evaluation in any future method of risk stratifying patients.

  19. A small-molecule inhibitor of T. gondii motility induces the posttranslational modification of myosin light chain-1 and inhibits myosin motor activity.

    PubMed

    Heaslip, Aoife T; Leung, Jacqueline M; Carey, Kimberly L; Catti, Federica; Warshaw, David M; Westwood, Nicholas J; Ballif, Bryan A; Ward, Gary E

    2010-01-15

    Toxoplasma gondii is an obligate intracellular parasite that enters cells by a process of active penetration. Host cell penetration and parasite motility are driven by a myosin motor complex consisting of four known proteins: TgMyoA, an unconventional Class XIV myosin; TgMLC1, a myosin light chain; and two membrane-associated proteins, TgGAP45 and TgGAP50. Little is known about how the activity of the myosin motor complex is regulated. Here, we show that treatment of parasites with a recently identified small-molecule inhibitor of invasion and motility results in a rapid and irreversible change in the electrophoretic mobility of TgMLC1. While the precise nature of the TgMLC1 modification has not yet been established, it was mapped to the peptide Val46-Arg59. To determine if the TgMLC1 modification is responsible for the motility defect observed in parasites after compound treatment, the activity of myosin motor complexes from control and compound-treated parasites was compared in an in vitro motility assay. TgMyoA motor complexes containing the modified TgMLC1 showed significantly decreased motor activity compared to control complexes. This change in motor activity likely accounts for the motility defects seen in the parasites after compound treatment and provides the first evidence, in any species, that the mechanical activity of Class XIV myosins can be modulated by posttranslational modifications to their associated light chains.

  20. Urine of patients with early prostate cancer contains lower levels of light chain fragments of inter-alpha-trypsin inhibitor and saposin B but increased expression of an inter-alpha-trypsin inhibitor heavy chain 4 fragment.

    PubMed

    Jayapalan, Jaime J; Ng, Keng L; Shuib, Adawiyah S; Razack, Azad H A; Hashim, Onn H

    2013-06-01

    The present study was aimed at the identification of proteins that are differentially expressed in the urine of patients with prostate cancer (PCa), those with benign prostatic hyperplasia (BPH) and age-matched healthy male control subjects. Using a combination of 2DE and MS/MS, significantly lower expression of urinary saposin B and two different fragments of inter-alpha-trypsin inhibitor light chain (ITIL) was demonstrated in the PCa patients compared to the controls. However, only one of the ITIL fragments was significantly different between the PCa and BPH patients. When image analysis was performed on urinary proteins that were transferred onto NC membranes and detected using a lectin that binds to O-glycans, a truncated fragment of inter-alpha-trypsin inhibitor heavy chain 4 was the sole protein found to be significantly enhanced in the PCa patients compared to the controls. Together, these urinary peptide fragments might be useful complementary biomarkers to indicate PCa as well as to distinguish it from BPH, although further epidemiological evidence on the specificity and sensitivity of the protein candidates is required. PMID:23417432

  1. Urine of patients with early prostate cancer contains lower levels of light chain fragments of inter-alpha-trypsin inhibitor and saposin B but increased expression of an inter-alpha-trypsin inhibitor heavy chain 4 fragment.

    PubMed

    Jayapalan, Jaime J; Ng, Keng L; Shuib, Adawiyah S; Razack, Azad H A; Hashim, Onn H

    2013-06-01

    The present study was aimed at the identification of proteins that are differentially expressed in the urine of patients with prostate cancer (PCa), those with benign prostatic hyperplasia (BPH) and age-matched healthy male control subjects. Using a combination of 2DE and MS/MS, significantly lower expression of urinary saposin B and two different fragments of inter-alpha-trypsin inhibitor light chain (ITIL) was demonstrated in the PCa patients compared to the controls. However, only one of the ITIL fragments was significantly different between the PCa and BPH patients. When image analysis was performed on urinary proteins that were transferred onto NC membranes and detected using a lectin that binds to O-glycans, a truncated fragment of inter-alpha-trypsin inhibitor heavy chain 4 was the sole protein found to be significantly enhanced in the PCa patients compared to the controls. Together, these urinary peptide fragments might be useful complementary biomarkers to indicate PCa as well as to distinguish it from BPH, although further epidemiological evidence on the specificity and sensitivity of the protein candidates is required.

  2. C57BL/6 x BALB/c hybridomas produce IgA which assembles into molecules with covalent bonds between heavy chains (H) and light chains (L), and into molecules lacking covalent bonds between H and L.

    PubMed

    Wims, L A; Sharon, J; Newman, B; Kabat, E A; Morrison, S L

    1985-12-01

    Examination of the gel electrophoresis patterns of 14C-biosynthetically labeled immunoglobulin from C57BL/6 X BALB/c IgA hybridomas reveals that each of the monoclonal cell populations produces two different forms of IgA: molecules with heavy chains (H) and light chains (L) joined by disulfide bonds, as well as molecules with H and L being noncovalently associated. The possible origin of this was explored: Southern blot analysis of the hybridoma DNA indicated that only one alpha gene is expressed by each cell line; hybridoma cells labeled in the presence of the N-glycosylation inhibitor tunicamycin exhibit both forms; and electrophoresis of biosynthetically labeled spleen cell IgA from C57BL/6, BALB/c and (C57BL/6 X BALB/c) F1 mice shows that BALB/c mice produce only the noncovalently associated form, while C57BL/6 and (C57BL/6 X BALB/c) F1 mice produce both. Possible mechanisms by which two types of IgA may be assembled by the same hybridoma cell are discussed.

  3. Aurora B but Not Rho/MLCK Signaling Is Required for Localization of Diphosphorylated Myosin II Regulatory Light Chain to the Midzone in Cytokinesis

    PubMed Central

    Kondo, Tomo; Isoda, Rieko; Ookusa, Takayuki; Kamijo, Keiju; Hamao, Kozue; Hosoya, Hiroshi

    2013-01-01

    Non-muscle myosin II is stimulated by monophosphorylation of its regulatory light chain (MRLC) at Ser19 (1P-MRLC). MRLC diphosphorylation at Thr18/Ser19 (2P-MRLC) further enhances the ATPase activity of myosin II. Phosphorylated MRLCs localize to the contractile ring and regulate cytokinesis as subunits of activated myosin II. Recently, we reported that 2P-MRLC, but not 1P-MRLC, localizes to the midzone independently of myosin II heavy chain during cytokinesis in cultured mammalian cells. However, the mechanism underlying the distinct localization of 1P- and 2P-MRLC during cytokinesis is unknown. Here, we showed that depletion of the Rho signaling proteins MKLP1, MgcRacGAP, or ECT2 inhibited the localization of 1P-MRLC to the contractile ring but not the localization of 2P-MRLC to the midzone. In contrast, depleting or inhibiting a midzone-localizing kinase, Aurora B, perturbed the localization of 2P-MRLC to the midzone but not the localization of 1P-MRLC to the contractile ring. We did not observe any change in the localization of phosphorylated MRLC in myosin light-chain kinase (MLCK)-inhibited cells. Furrow regression was observed in Aurora B- and 2P-MRLC-inhibited cells but not in 1P-MRLC-perturbed dividing cells. Furthermore, Aurora B bound to 2P-MRLC in vitro and in vivo. These results suggest that Aurora B, but not Rho/MLCK signaling, is essential for the localization of 2P-MRLC to the midzone in dividing HeLa cells. PMID:23951055

  4. Role of κ→λ light-chain constant-domain switch in the structure and functionality of A17 reactibody

    SciTech Connect

    Ponomarenko, Natalia; Belogurov, Alexey Jr; Fedorova, Olga S.; Dubina, Michael; Golovin, Andrey; Lamzin, Victor; Makarov, Alexander A.; Wilmanns, Matthias

    2014-03-01

    Catalytic antibody variants with κ and λ light-chain constant domains show differences in their crystal structures which lead to subtle changes in catalytic efficiency and thermodynamic parameters as well as in their affinity for peptide substrates. The engineering of catalytic function in antibodies requires precise information on their structure. Here, results are presented that show how the antibody domain structure affects its functionality. The previously designed organophosphate-metabolizing reactibody A17 has been re-engineered by replacing its constant κ light chain by the λ chain (A17λ), and the X-ray structure of A17λ has been determined at 1.95 Å resolution. It was found that compared with A17κ the active centre of A17λ is displaced, stabilized and made more rigid owing to interdomain interactions involving the CDR loops from the V{sub L} and V{sub H} domains. These V{sub L}/V{sub H} domains also have lower mobility, as deduced from the atomic displacement parameters of the crystal structure. The antibody elbow angle is decreased to 126° compared with 138° in A17κ. These structural differences account for the subtle changes in catalytic efficiency and thermodynamic parameters determined with two organophosphate ligands, as well as in the affinity for peptide substrates selected from a combinatorial cyclic peptide library, between the A17κ and A17λ variants. The data presented will be of interest and relevance to researchers dealing with the design of antibodies with tailor-made functions.

  5. Heavy-light chain interrelations of MS-associated immunoglobulins probed by deep sequencing and rational variation.

    PubMed

    Lomakin, Yakov A; Zakharova, Maria Yu; Stepanov, Alexey V; Dronina, Maria A; Smirnov, Ivan V; Bobik, Tatyana V; Pyrkov, Andrey Yu; Tikunova, Nina V; Sharanova, Svetlana N; Boitsov, Vitali M; Vyazmin, Sergey Yu; Kabilov, Marsel R; Tupikin, Alexey E; Krasnov, Alexey N; Bykova, Nadezda A; Medvedeva, Yulia A; Fridman, Marina V; Favorov, Alexander V; Ponomarenko, Natalia A; Dubina, Michael V; Boyko, Alexey N; Vlassov, Valentin V; Belogurov, Alexey A; Gabibov, Alexander G

    2014-12-01

    The mechanisms triggering most of autoimmune diseases are still obscure. Autoreactive B cells play a crucial role in the development of such pathologies and, in particular, production of autoantibodies of different specificities. The combination of deep-sequencing technology with functional studies of antibodies selected from highly representative immunoglobulin combinatorial libraries may provide unique information on specific features in the repertoires of autoreactive B cells. Here, we have analyzed cross-combinations of the variable regions of human immunoglobulins against the myelin basic protein (MBP) previously selected from a multiple sclerosis (MS)-related scFv phage-display library. On the other hand, we have performed deep sequencing of the sublibraries of scFvs against MBP, Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1), and myelin oligodendrocyte glycoprotein (MOG). Bioinformatics analysis of sequencing data and surface plasmon resonance (SPR) studies have shown that it is the variable fragments of antibody heavy chains that mainly determine both the affinity of antibodies to the parent autoantigen and their cross-reactivity. It is suggested that LMP1-cross-reactive anti-myelin autoantibodies contain heavy chains encoded by certain germline gene segments, which may be a hallmark of the EBV-specific B cell subpopulation involved in MS triggering.

  6. 42 CFR 52c.1 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MINORITY BIOMEDICAL RESEARCH SUPPORT PROGRAM § 52c.1 Applicability. The regulations in this part apply to grants (under the Minority... Service (PHS) Act (42 U.S.C. 241(a)(3)) to increase the numbers of ethnic minority faculty, students,...

  7. 42 CFR 52c.1 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MINORITY BIOMEDICAL RESEARCH SUPPORT PROGRAM § 52c.1 Applicability. The regulations in this part apply to grants (under the Minority... Service (PHS) Act (42 U.S.C. 241(a)(3)) to increase the numbers of ethnic minority faculty, students,...

  8. 42 CFR 52c.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MINORITY BIOMEDICAL RESEARCH SUPPORT PROGRAM § 52c.1 Applicability. The regulations in this part apply to grants (under the Minority... Service (PHS) Act (42 U.S.C. 241(a)(3)) to increase the numbers of ethnic minority faculty, students,...

  9. 42 CFR 52c.1 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MINORITY BIOMEDICAL RESEARCH SUPPORT PROGRAM § 52c.1 Applicability. The regulations in this part apply to grants (under the Minority... Service (PHS) Act (42 U.S.C. 241(a)(3)) to increase the numbers of ethnic minority faculty, students,...

  10. 42 CFR 52c.1 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MINORITY BIOMEDICAL RESEARCH SUPPORT PROGRAM § 52c.1 Applicability. The regulations in this part apply to grants (under the Minority... Service (PHS) Act (42 U.S.C. 241(a)(3)) to increase the numbers of ethnic minority faculty, students,...

  11. Protein engineering studies on C1r and C1s.

    PubMed

    Závodszky, P; Gál, P; Cseh, S; Schumaker, V N

    1993-12-01

    1. C1r and C1s cDNAs were placed downstream the strong polyhedrin promoter in the Autographa californica nuclear polyhedrosis virus and the recombinant proteins were expressed in insect cells, in biologically active form. The yield of expression is high enough to get recombinant components for chemical and functional studies (5 micrograms/ml cell culture supernatant). 2. The biological activity and the post-translational modifications of the recombinant subcomponents were checked. The rC1r and rC1s proved to be biologically active in the hemolytic assay, although their glycosylations were different compared to that of the serum proteins. The insect cells are able to beta-hydroxylate the Asn residue of the EGF domain in the C1r but with a low efficiency. It is clear now, that this post-translational modification does not play a role in the Ca2+ dependent C1r-C1s interaction. 3. Two deletion mutants of C1r cDNA were constructed in order to clarify the role of domain I and II. The results show that both, domain I, and II are absolutely necessary for the tetramer formation and both have a regulatory role in the autoactivation. The autoactivation of the mutants is accelerated significantly. 4. Hybrid cDNA constructions were also made, and one of them was expressed. In the C1s alpha R hybrid the C1s alpha part cannot dimerize in presence of Ca2+, but it can form a tetramer with C1r2, that can bind to C1q. This observation indicates that the function of the C1s alpha part in the hybrid is modulated by the C1r part (gamma B) of the molecule. 5. In order to control the autoactivation process point mutant cDNAs were constructed through altering the Arg-Ile bond in the catalytic domain of the C1r. The Gln-Ile construction is a stable zymogen while the Arg-Phe mutant has a lower rate of autoactivation. These results do justify our approach of using domain-domain interchange, domain deletion and point mutations in combination, to reveal the structural background of C1 function

  12. Characterization of recombinant human C1 inhibitor secreted in milk of transgenic rabbits.

    PubMed

    van Veen, Harrie A; Koiter, Jaco; Vogelezang, Carla J M; van Wessel, Noucha; van Dam, Tijtje; Velterop, Ingeborg; van Houdt, Kristina; Kupers, Luc; Horbach, Danielle; Salaheddine, Mourad; Nuijens, Jan H; Mannesse, Maurice L M

    2012-12-31

    C1 inhibitor (C1INH) is a single-chain glycoprotein that inhibits activation of the contact system of coagulation and the complement system. C1INH isolated from human blood plasma (pd-hC1INH) is used for the management of hereditary angioedema (HAE), a disease caused by heterozygous deficiency of C1INH, and is a promise for treatment of ischemia-reperfusion injuries like acute myocardial or cerebral infarction. To obtain large quantities of C1INH, recombinant human C1INH (rhC1INH) was expressed in the milk of transgenic rabbits (12 g/l) harboring genomic human C1INH sequences fused to 5' bovine αS(1) casein promoter sequences. Recombinant hC1INH was isolated from milk to a specific activity of 6.1 U/mg and a purity of 99%; by size-exclusion chromatography the 1% impurities consisted of multimers and N-terminal cleaved C1INH species. Mass spectrometric analysis of purified rhC1INH revealed a relative molecular mass (M(r)) of 67,200. Differences in M(r) on SDS PAGE and mass spectrometric analysis between rhC1INH and pd-hC1INH are explained by differential glycosylation (calculated carbohydrate contents of 21% and 28%, respectively), since protein sequencing analysis of rhC1INH revealed intact N- and C-termini. Host-related impurity analysis by ELISA revealed trace amounts of rabbit protein (approximately 10 ppm) in purified batches, but not endogenous rabbit C1INH. The kinetics of inhibition of the target proteases C1s, Factor XIIa, kallikrein and Factor XIa by rhC1INH and pd-hC1INH, indicated comparable inhibitory potency and specificity. Recently, rhC1INH (Ruconest(®)) has been approved by the European Medicines Agency for the treatment of acute attacks of HAE. PMID:22995741

  13. AEOLUS: A MARKOV CHAIN MONTE CARLO CODE FOR MAPPING ULTRACOOL ATMOSPHERES. AN APPLICATION ON JUPITER AND BROWN DWARF HST LIGHT CURVES

    SciTech Connect

    Karalidi, Theodora; Apai, Dániel; Schneider, Glenn; Hanson, Jake R.; Pasachoff, Jay M.

    2015-11-20

    Deducing the cloud cover and its temporal evolution from the observed planetary spectra and phase curves can give us major insight into the atmospheric dynamics. In this paper, we present Aeolus, a Markov chain Monte Carlo code that maps the structure of brown dwarf and other ultracool atmospheres. We validated Aeolus on a set of unique Jupiter Hubble Space Telescope (HST) light curves. Aeolus accurately retrieves the properties of the major features of the Jovian atmosphere, such as the Great Red Spot and a major 5 μm hot spot. Aeolus is the first mapping code validated on actual observations of a giant planet over a full rotational period. For this study, we applied Aeolus to J- and H-band HST light curves of 2MASS J21392676+0220226 and 2MASS J0136565+093347. Aeolus retrieves three spots at the top of the atmosphere (per observational wavelength) of these two brown dwarfs, with a surface coverage of 21% ± 3% and 20.3% ± 1.5%, respectively. The Jupiter HST light curves will be publicly available via ADS/VIZIR.

  14. LC8 dynein light chain (DYNLL1) binds to the C-terminal domain of ATM-interacting protein (ATMIN/ASCIZ) and regulates its subcellular localization

    SciTech Connect

    Rapali, Peter; Garcia-Mayoral, Maria Flor; Martinez-Moreno, Monica; Tarnok, Krisztian; Schlett, Katalin; Albar, Juan Pablo; Bruix, Marta; Nyitray, Laszlo; Rodriguez-Crespo, Ignacio

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer We have screened a human library with dynein light chain DYNLL1 (DLC8) as bait. Black-Right-Pointing-Pointer Dynein light chain DYNLL1 binds to ATM-kinase interacting protein (ATMIN). Black-Right-Pointing-Pointer ATMIN has 17 SQ/TQ motifs, a motif frequently found in DYNLL1-binding partners. Black-Right-Pointing-Pointer The two proteins interact in vitro, with ATMIN displaying at least five binding sites. Black-Right-Pointing-Pointer The interaction of ATMIN and DYNNL1 in transfected cells can also be observed. -- Abstract: LC8 dynein light chain (now termed DYNLL1 and DYNLL2 in mammals), a dimeric 89 amino acid protein, is a component of the dynein multi-protein complex. However a substantial amount of DYNLL1 is not associated to microtubules and it can thus interact with dozens of cellular and viral proteins that display well-defined, short linear motifs. Using DYNLL1 as bait in a yeast two-hybrid screen of a human heart library we identified ATMIN, an ATM kinase-interacting protein, as a DYNLL1-binding partner. Interestingly, ATMIN displays at least 18 SQ/TQ motifs in its sequence and DYNLL1 is known to bind to proteins with KXTQT motifs. Using pepscan and yeast two-hybrid techniques we show that DYNLL1 binds to multiple SQ/TQ motifs present in the carboxy-terminal domain of ATMIN. Recombinant expression and purification of the DYNLL1-binding region of ATMIN allowed us to obtain a polypeptide with an apparent molecular mass in gel filtration close to 400 kDa that could bind to DYNLL1 in vitro. The NMR data-driven modelled complexes of DYNLL1 with two selected ATMIN peptides revealed a similar mode of binding to that observed between DYNLL1 and other peptide targets. Remarkably, co-expression of mCherry-DYNLL1 and GFP-ATMIN mutually affected intracellular protein localization. In GFP-ATMIN expressing-cells DNA damage induced efficiently nuclear foci formation, which was partly impeded by the presence of mCherry-DYNLL1

  15. Identification of the t Complex–encoded Cytoplasmic Dynein Light Chain Tctex1 in Inner Arm I1 Supports the Involvement of Flagellar Dyneins in Meiotic Drive

    PubMed Central

    Harrison, Alistair; Olds-Clarke, Patricia; King, Stephen M.

    1998-01-01

    The cytoplasmic dynein light chain Tctex1 is a candidate for one of the distorter products involved in the non-Mendelian transmission of mouse t haplotypes. It has been unclear, however, how the t-specific mutations in this protein, which is found associated with cytoplasmic dynein in many tissues, could result in a male germ cell–specific phenotype. Here, we demonstrate that Tctex1 is not only a cytoplasmic dynein component, but is also present both in mouse sperm and Chlamydomonas flagella. Genetic and biochemical dissection of the Chlamydomonas flagellum reveal that Tctex1 is a previously undescribed component of inner dynein arm I1. Combined with the recent identification of another putative t complex distorter, Tctex2, within the outer dynein arm, these results support the hypothesis that transmission ratio distortion (meiotic drive) of mouse t haplotypes involves dysfunction of both flagellar inner and outer dynein arms but does not require the cytoplasmic isozyme. PMID:9490726

  16. A quenched c = 1 critical matrix model

    SciTech Connect

    Qiu, Zongan; Rey, Soo-Jong

    1990-12-01

    We study a variant of the Penner-Distler-Vafa model, proposed as a c = 1 quantum gravity: `quenched` matrix model with logarithmic potential. The model is exactly soluble, and exhibits a two-cut branching as observed in multicritical unitary matrix models and multicut Hermitian matrix models. Using analytic continuation of the power in the conventional polynomial potential, we also show that both the Penner-Distler-Vafa model and our `quenched` matrix model satisfy Virasoro algebra constraints.

  17. A quenched c = 1 critical matrix model

    SciTech Connect

    Qiu, Zongan; Rey, Soo-Jong.

    1990-12-01

    We study a variant of the Penner-Distler-Vafa model, proposed as a c = 1 quantum gravity: quenched' matrix model with logarithmic potential. The model is exactly soluble, and exhibits a two-cut branching as observed in multicritical unitary matrix models and multicut Hermitian matrix models. Using analytic continuation of the power in the conventional polynomial potential, we also show that both the Penner-Distler-Vafa model and our quenched' matrix model satisfy Virasoro algebra constraints.

  18. Cooperative Research in C1 Chemistry

    SciTech Connect

    Gerald P. Huffman

    2000-10-27

    C1 chemistry refers to the conversion of simple carbon-containing materials that contain one carbon atom per molecule into valuable products. The feedstocks for C1 chemistry include natural gas, carbon dioxide, carbon monoxide, methanol and synthesis gas (a mixture of carbon monoxide and hydrogen). Synthesis gas, or syngas, is produced primarily by the reaction of natural gas, which is principally methane, with steam. It can also be produced by gasification of coal, petroleum coke, or biomass. The availability of syngas from coal gasification is expected to increase significantly in the future because of increasing development of integrated gasification combined cycle (IGCC) power generation. Because of the abundance of remote natural gas, the advent of IGCC, and environmental advantages, C1 chemistry is expected to become a major area of interest for the transportation fuel and chemical industries in the relatively near future. The CFFLS will therefore perform a valuable national service by providing science and engineering graduates that are trained in this important area. Syngas is the source of most hydrogen. Approximately 10 trillion standard cubic feet (SCF) of hydrogen are manufactured annually in the world. Most of this hydrogen is currently used for the production of ammonia and in a variety of refining and chemical operations. However, utilization of hydrogen in fuel cells is expected to grow significantly in the next century. Syngas is also the feedstock for all methanol and Fischer-Tropsch plants. Currently, world consumption of methanol is over 25 million tons per year. There are many methanol plants in the U.S. and throughout the world. Methanol and oxygenated transportation fuel products play a significant role in the CFFLS C1 program. Currently, the only commercial Fischer-Tropsch plants are overseas, principally in South Africa (SASOL). However, new plants are being built or planned for a number of locations. One possible location for future F

  19. Notes on Liouville theory at c{<=}1

    SciTech Connect

    McElgin, Will

    2008-03-15

    The continuation of the Liouville conformal field theory to c{<=}1 is considered. The viability of an interpretation involving a timelike boson which is the conformal factor for two-dimensional asymptotically de Sitter geometries is examined. The conformal bootstrap leads to a three-point function with a unique analytic factor which is the same as that which appears along with the fusion coefficients in the minimal models. A corresponding nonanalytic factor produces a well-defined metric on fields only when the central charge is restricted to those of the topological minimal models, and when the conformal dimensions satisfy h>(c-1)/24. However, the theories considered here have a continuous spectrum which excludes the degenerate representations appearing in the minimal models. The c=1 theory has been investigated previously using similar techniques, and is identical to a nonrational conformal field theory (CFT) which arises as a limit of unitary minimal models. When coupled to unitary matter fields, the nonunitary theories with c{<=}-2 produce string amplitudes which are similar to those of the minimal string.

  20. Heterogeneity of myofibrillar proteins in lobster fast and slow muscles: variants of troponin, paramyosin, and myosin light chains comprise four distinct protein assemblages

    SciTech Connect

    Mykles, D.L.

    1985-01-01

    Fast and slow muscles from the claws and abdomen of the American lobster Homarus americanus were examined for adenosine triphosphatase (ATPase) activity and for differences in myofibrillar proteins. Both myosin and actomyosin ATPase were correlated with fiber composition and contractile speed. Four distinct patterns of myofibrilla proteins observed in sodium dodecyl sulfate-polyacrylamide gels were distinguished by different assemblages of regulatory and contractile protein variants. A total of three species of troponin-T, five species of troponin-I, and three species of troponin-C were observed. Lobster myosins contained two groups of light chains (LC), termed alpha and beta. There were three ..cap alpha..-LC variants and two ..beta..-LC variants. There were no apparent differences in myosin heavy chain, actin, and tropomyosin. Only paramyosin showed a pattern completely consistent with muscle fiber type: slow fibers contained a species (105 kD) slightly smaller than the principle variant (110 kD) in fast fibers. It is proposed that the type of paramyosin present could provide a biochemical marker to identify the fiber composition of muscles that have not been fully characterized. The diversity of troponin and myosin LC variants suggests that subtle differences in physiological performance exist within the broader categories of fast- and slow-twitch muscles. 31 references, 6 figures, 2 tables.

  1. Somatic mutation and CDR3 lengths of immunoglobulin kappa light chains expressed in patients with rheumatoid arthritis and in normal individuals.

    PubMed Central

    Bridges, S L; Lee, S K; Johnson, M L; Lavelle, J C; Fowler, P G; Koopman, W J; Schroeder, H W

    1995-01-01

    Immunoglobulin secretion by plasma cells infiltrating synovial membranes is a prominent feature of RA. Previous analyses of a cDNA library generated from synovium of RA patient BC revealed immunoglobulin kappa light chain transcripts with extensive somatic mutation, frequent N region addition, and unexpected variation in the lengths of CDR3 regions which form the center of the antigen binding site. To determine if these characteristics are present in other individuals, we performed reverse transcription-polymerase chain reaction amplification and sequenced > or = 10 V kappa-containing amplicons from nine tissue samples: synovia of three individuals with long-standing RA (including patient BC), PBLs of two of these individuals, and PBLs or splenocytes of four normal individuals. Increased levels of somatic mutation in PBLs appeared to correlate with increased age, which may reflect accumulation of circulating memory cells and/or decreased bone marrow production of naive B lymphocytes. Two of three RA synovial samples and both RA PBL samples exhibited increased proportions of clones with unusual CDR3 lengths. Enrichment for these antibody binding sites could be due to abnormal regulation of the emerging repertoire or to selection for B lymphocytes bearing antibodies of unusual specificity, and may play a role in the pathogenesis of RA. Images PMID:7635977

  2. Dissect Kif5b in nuclear positioning during myogenesis: The light chain binding domain and the autoinhibitory peptide are both indispensable

    SciTech Connect

    Wang, Zai; Xue, Wenqian; Li, Xiuling; Lin, Raozhou; Cui, Ju; Huang, Jian-Dong

    2013-03-08

    Highlights: ► Kif5b localizes at myonuclear membrane and is responsible for nuclear dispersion. ► Kif5b stalk/tail domain contains signal for nuclear membrane targeting. ► Kif5b stalk/tail domain directly binds to a nesprin 4 in vitro. ► KLC binding domain and autoinhibitory peptide are both functionally indispensable. -- Abstract: The microtubule motor kinesin-1 is responsible for the nuclear positioning during myogenesis. Here we show that the coiled-coil stalk/tail domain containing the kinesin light chain (KLC) binding sites targets to the perinuclear region like endogenous Kif5b, while the globular tail domain cannot. To investigate which fragments of kinesin heavy chain (Kif5b) is responsible for the myonuclear positioning, we transfect Kif5b expression constructs into Kif5b deficient myoblasts and test their ability to rescue the myonuclear phenotype. We find that the KLC binding domain and the autoinhibitory peptide in the globular tail region are both indispensable for the nuclear membrane localization of Kif5b and the kinesin-1-mediated myonuclear positioning. These results suggest that while the KLC binding domain may directly targets Kif5b to the myonuclear membrane, the autoinhibitory peptide may play an indirect role in regulating the kinesin-1-mediated myonuclear positioning.

  3. N-acetyl-D-glucosamine kinase interacts with dynein light-chain roadblock type 1 at Golgi outposts in neuronal dendritic branch points

    PubMed Central

    Islam, Md Ariful; Sharif, Syeda Ridita; Lee, HyunSook; Seog, Dae-Hyun; Moon, Il Soo

    2015-01-01

    N-acetylglucosamine kinase (GlcNAc kinase or NAGK) is a ubiquitously expressed enzyme in mammalian cells. Recent studies have shown that NAGK has an essential structural, non-enzymatic role in the upregulation of dendritogenesis. In this study, we conducted yeast two-hybrid screening to search for NAGK-binding proteins and found a specific interaction between NAGK and dynein light-chain roadblock type 1 (DYNLRB1). Immunocytochemistry (ICC) on hippocampal neurons using antibodies against NAGK and DYNLRB1 or dynein heavy chain showed some colocalization, which was increased by treating the live cells with a crosslinker. A proximity ligation assay (PLA) of NAGK-dynein followed by tubulin ICC showed the localization of PLA signals on microtubule fibers at dendritic branch points. NAGK-dynein PLA combined with Golgi ICC showed the colocalization of PLA signals with somal Golgi facing the apical dendrite and with Golgi outposts in dendritic branch points and distensions. NAGK-Golgi PLA followed by tubulin or DYNLRB1 ICC showed that PLA signals colocalize with DYNLRB1 at dendritic branch points and at somal Golgi, indicating a tripartite interaction between NAGK, dynein and Golgi. Finally, the ectopic introduction of a small peptide derived from the C-terminal amino acids 74–96 of DYNLRB1 resulted in the stunting of hippocampal neuron dendrites in culture. Our data indicate that the NAGK-dynein-Golgi tripartite interaction at dendritic branch points functions to regulate dendritic growth and/or branching. PMID:26272270

  4. Sequencing of the human IG light chain loci from a hydatidiform mole BAC library reveals locus-specific signatures of genetic diversity

    PubMed Central

    Graves, Tina A.; Warren, Rene L.; Malig, Maika; Schein, Jacqueline; Wilson, Richard K.; Holt, Robert A.; Eichler, Evan E.; Breden, Felix

    2014-01-01

    Germline variation at immunoglobulin (IG) loci is critical for pathogen-mediated immunity, but establishing complete haplotype sequences in these regions has been problematic because of complex sequence architecture and diploid source DNA. We sequenced BAC clones from the effectively haploid human hydatidiform mole cell line, CHM1htert, across the light chain IG loci, kappa (IGK) and lambda (IGL), creating single haplotype representations of these regions. The IGL haplotype generated here is 1.25 Mb of contiguous sequence, including four novel V alleles and one novel C allele and an 11.9 kb insertion. The CH17 IGK haplotype consists of two 644 kb proximal and 466 kb distal contigs separated by a large gap of unknown size; these assemblies added 49 kb of unique sequence extending into this gap. Our analysis also resulted in the characterization of seven novel IGKV alleles and a 16.7 kb region exhibiting signatures of interlocus sequence exchange between distal and proximal IGKV gene clusters. Genetic diversity in IGK/IGL was compared to that of the IG heavy chain (IGH) locus within the same haploid genome, revealing 3-fold (IGK) and 6-fold (IGL) higher diversity in the IGH locus, potentially associated with increased levels of segmental duplication and the telomeric location of IGH. PMID:25338678

  5. A Comprehensive Analysis of the Phylogeny, Genomic Organization and Expression of Immunoglobulin Light Chain Genes in Alligator sinensis, an Endangered Reptile Species.

    PubMed

    Wang, Xifeng; Cheng, Gang; Lu, Yan; Zhang, Chenglin; Wu, Xiaobing; Han, Haitang; Zhao, Yaofeng; Ren, Liming

    2016-01-01

    Crocodilians are evolutionarily distinct reptiles that are distantly related to lizards and are thought to be the closest relatives of birds. Compared with birds and mammals, few studies have investigated the Ig light chain of crocodilians. Here, employing an Alligator sinensis genomic bacterial artificial chromosome (BAC) library and available genome data, we characterized the genomic organization of the Alligator sinensis IgL gene loci. The Alligator sinensis has two IgL isotypes, λ and κ, the same as Anolis carolinensis. The Igλ locus contains 6 Cλ genes, each preceded by a Jλ gene, and 86 potentially functional Vλ genes upstream of (Jλ-Cλ)n. The Igκ locus contains a single Cκ gene, 6 Jκs and 62 functional Vκs. All VL genes are classified into a total of 31 families: 19 Vλ families and 12 Vκ families. Based on an analysis of the chromosomal location of the light chain genes among mammals, birds, lizards and frogs, the data further confirm that there are two IgL isotypes in the Alligator sinensis: Igλ and Igκ. By analyzing the cloned Igλ/κ cDNA, we identified a biased usage pattern of V families in the expressed Vλ and Vκ. An analysis of the junctions of the recombined VJ revealed the presence of N and P nucleotides in both expressed λ and κ sequences. Phylogenetic analysis of the V genes revealed V families shared by mammals, birds, reptiles and Xenopus, suggesting that these conserved V families are orthologous and have been retained during the evolution of IgL. Our data suggest that the Alligator sinensis IgL gene repertoire is highly diverse and complex and provide insight into immunoglobulin gene evolution in vertebrates.

  6. A Comprehensive Analysis of the Phylogeny, Genomic Organization and Expression of Immunoglobulin Light Chain Genes in Alligator sinensis, an Endangered Reptile Species

    PubMed Central

    Lu, Yan; Zhang, Chenglin; Wu, Xiaobing; Han, Haitang; Zhao, Yaofeng; Ren, Liming

    2016-01-01

    Crocodilians are evolutionarily distinct reptiles that are distantly related to lizards and are thought to be the closest relatives of birds. Compared with birds and mammals, few studies have investigated the Ig light chain of crocodilians. Here, employing an Alligator sinensis genomic bacterial artificial chromosome (BAC) library and available genome data, we characterized the genomic organization of the Alligator sinensis IgL gene loci. The Alligator sinensis has two IgL isotypes, λ and κ, the same as Anolis carolinensis. The Igλ locus contains 6 Cλ genes, each preceded by a Jλ gene, and 86 potentially functional Vλ genes upstream of (Jλ-Cλ)n. The Igκ locus contains a single Cκ gene, 6 Jκs and 62 functional Vκs. All VL genes are classified into a total of 31 families: 19 Vλ families and 12 Vκ families. Based on an analysis of the chromosomal location of the light chain genes among mammals, birds, lizards and frogs, the data further confirm that there are two IgL isotypes in the Alligator sinensis: Igλ and Igκ. By analyzing the cloned Igλ/κ cDNA, we identified a biased usage pattern of V families in the expressed Vλ and Vκ. An analysis of the junctions of the recombined VJ revealed the presence of N and P nucleotides in both expressed λ and κ sequences. Phylogenetic analysis of the V genes revealed V families shared by mammals, birds, reptiles and Xenopus, suggesting that these conserved V families are orthologous and have been retained during the evolution of IgL. Our data suggest that the Alligator sinensis IgL gene repertoire is highly diverse and complex and provide insight into immunoglobulin gene evolution in vertebrates. PMID:26901135

  7. L-type calcium channels play a critical role in maintaining lens transparency by regulating phosphorylation of aquaporin-0 and myosin light chain and expression of connexins.

    PubMed

    Maddala, Rupalatha; Nagendran, Tharkika; de Ridder, Gustaaf G; Schey, Kevin L; Rao, Ponugoti Vasantha

    2013-01-01

    Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs) and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V) 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations reveal a crucial

  8. A Comprehensive Analysis of the Phylogeny, Genomic Organization and Expression of Immunoglobulin Light Chain Genes in Alligator sinensis, an Endangered Reptile Species.

    PubMed

    Wang, Xifeng; Cheng, Gang; Lu, Yan; Zhang, Chenglin; Wu, Xiaobing; Han, Haitang; Zhao, Yaofeng; Ren, Liming

    2016-01-01

    Crocodilians are evolutionarily distinct reptiles that are distantly related to lizards and are thought to be the closest relatives of birds. Compared with birds and mammals, few studies have investigated the Ig light chain of crocodilians. Here, employing an Alligator sinensis genomic bacterial artificial chromosome (BAC) library and available genome data, we characterized the genomic organization of the Alligator sinensis IgL gene loci. The Alligator sinensis has two IgL isotypes, λ and κ, the same as Anolis carolinensis. The Igλ locus contains 6 Cλ genes, each preceded by a Jλ gene, and 86 potentially functional Vλ genes upstream of (Jλ-Cλ)n. The Igκ locus contains a single Cκ gene, 6 Jκs and 62 functional Vκs. All VL genes are classified into a total of 31 families: 19 Vλ families and 12 Vκ families. Based on an analysis of the chromosomal location of the light chain genes among mammals, birds, lizards and frogs, the data further confirm that there are two IgL isotypes in the Alligator sinensis: Igλ and Igκ. By analyzing the cloned Igλ/κ cDNA, we identified a biased usage pattern of V families in the expressed Vλ and Vκ. An analysis of the junctions of the recombined VJ revealed the presence of N and P nucleotides in both expressed λ and κ sequences. Phylogenetic analysis of the V genes revealed V families shared by mammals, birds, reptiles and Xenopus, suggesting that these conserved V families are orthologous and have been retained during the evolution of IgL. Our data suggest that the Alligator sinensis IgL gene repertoire is highly diverse and complex and provide insight into immunoglobulin gene evolution in vertebrates. PMID:26901135

  9. Microalgae Synthesize Hydrocarbons from Long-Chain Fatty Acids via a Light-Dependent Pathway1[OPEN

    PubMed Central

    Légeret, Bertrand; Mirabella, Boris; Guédeney, Geneviève; Jetter, Reinhard; Peltier, Gilles

    2016-01-01

    Microalgae are considered a promising platform for the production of lipid-based biofuels. While oil accumulation pathways are intensively researched, the possible existence of a microalgal pathways converting fatty acids into alka(e)nes has received little attention. Here, we provide evidence that such a pathway occurs in several microalgal species from the green and the red lineages. In Chlamydomonas reinhardtii (Chlorophyceae), a C17 alkene, n-heptadecene, was detected in the cell pellet and the headspace of liquid cultures. The Chlamydomonas alkene was identified as 7-heptadecene, an isomer likely formed by decarboxylation of cis-vaccenic acid. Accordingly, incubation of intact Chlamydomonas cells with per-deuterated D31-16:0 (palmitic) acid yielded D31-18:0 (stearic) acid, D29-18:1 (oleic and cis-vaccenic) acids, and D29-heptadecene. These findings showed that loss of the carboxyl group of a C18 monounsaturated fatty acid lead to heptadecene formation. Amount of 7-heptadecene varied with growth phase and temperature and was strictly dependent on light but was not affected by an inhibitor of photosystem II. Cell fractionation showed that approximately 80% of the alkene is localized in the chloroplast. Heptadecane, pentadecane, as well as 7- and 8-heptadecene were detected in Chlorella variabilis NC64A (Trebouxiophyceae) and several Nannochloropsis species (Eustigmatophyceae). In contrast, Ostreococcus tauri (Mamiellophyceae) and the diatom Phaeodactylum tricornutum produced C21 hexaene, without detectable C15-C19 hydrocarbons. Interestingly, no homologs of known hydrocarbon biosynthesis genes were found in the Nannochloropsis, Chlorella, or Chlamydomonas genomes. This work thus demonstrates that microalgae have the ability to convert C16 and C18 fatty acids into alka(e)nes by a new, light-dependent pathway. PMID:27288359

  10. Lighting

    SciTech Connect

    Audin, L.

    1994-12-31

    EPAct covers a vast territory beyond lighting and, like all legislation, also contains numerous {open_quotes}favors,{close_quotes} compromises, and even some sleight-of-hand. Tucked away under Title XIX, for example, is an increase from 20% to 28% tax on gambling winnings, effective January 1, 1993 - apparently as a way to help pay for new spending listed elsewhere in the bill. Overall, it is a landmark piece of legislation, about a decade overdue. It remains to be seen how the Federal Government will enforce upgrading of state (or even their own) energy codes. There is no mention of funding for {open_quotes}energy police{close_quotes} in EPAct. Merely creating such a national standard, however, provides a target for those who sincerely wish to create an energy-efficient future.

  11. Evidence for an Interaction between the SH3 Domain and the N-terminal Extension of the Essential Light Chain in Class II Myosins

    PubMed Central

    Lowey, Susan; Saraswat, Lakshmi D.; Liu, HongJun; Volkmann, Niels; Hanein, Dorit

    2009-01-01

    SUMMARY The function of the src-homology 3 (SH3) domain in class II myosins, a distinct β-barrel structure, remains unknown. Here we provide evidence, using electron cryomicroscopy, in conjunction with light scattering, fluorescence and kinetic analyses, that the SH3 domain facilitates the binding of the N-terminal extension of the essential light chain isoform (ELC-1) to actin. The 41-residue extension contains four conserved lysines followed by a repeating sequence of seven Pro/Ala residues. It is widely believed that the highly charged region interacts with actin, while the Pro/Ala-rich sequence forms a rigid tether that bridges the ~9 nm distance between the myosin lever arm and the thin filament. In order to localize the N-terminus of ELC in the actomyosin complex, an engineered Cys was reacted with undecagold-maleimide, and the labeled ELC was exchanged into myosin subfragment-1 (S1). Electron cryomicroscopy of S1-bound actin filaments, together with computer-based docking of the skeletal S1 crystal structure into 3D reconstructions, showed a well-defined peak for the gold cluster near the SH3 domain. Given that SH3 domains are known to bind proline-rich ligands, we suggest that the N-terminal extension of ELC interacts with actin and modulates myosin kinetics by binding to the SH3 domain during the ATPase cycle. PMID:17597155

  12. COOPERATIVE RESEARCH IN C1 CHEMISTRY

    SciTech Connect

    Gerald P. Huffman

    2001-04-30

    Faculty and students from five universities (Kentucky, West Virginia, Utah, Pittsburgh and Auburn) are collaborating on a basic research program to develop novel C1 chemistry processes for the production of clean, high quality transportation fuel. An Industrial Advisory Board (IAB) with members from Chevron, Eastman Chemical, Energy International, Teir Associates, and the Department of Defense has been formed to provide practical guidance to the program. The program has two principal objectives. (1) Develop technology for conversion of C1 source materials (natural gas, synthesis gas, carbon dioxide and monoxide, and methanol) into clean, high efficiency transportation fuel. (2) Develop novel processes for producing hydrogen from natural gas and other hydrocarbons. Some of the principal accomplishments of the program in its first two years are: (1) The addition of acetylenic compounds in Fischer-Tropsch synthesis is found to produce significant amounts of oxygenated products in FT diesel fuels. Such oxygenated products should decrease particulate matter (PM) emissions. (2) Nanoscale, binary, Fe-based catalysts supported on alumina have been shown to have significant activity for the decomposition of methane into pure hydrogen and potentially valuable multi-walled carbon nanotubes. (3) Catalytic synthesis processes have been developed for synthesis of diethyl carbonate, higher ethers, and higher alcohols from C1 source materials. Testing of the effect of adding these oxygenates to diesel fuel on PM emissions has begun using a well-equipped small diesel engine test facility. (4) Supercritical fluid (SCF) FT synthesis has been conducted under SCF hexane using both Fe and Co catalysts. There is a marked effect on the hydrocarbon product distribution, with a shift to higher carbon number products. These and other results are summarized.

  13. A C1-inhibitor-complex assay (INCA): a method to detect C1 activation in vitro and in vivo.

    PubMed

    Hack, C E; Hannema, A J; Eerenberg-Belmer, A J; Out, T A; Aalberse, R C

    1981-10-01

    A radioimmunoassay (the C1-inhibitor-complex assay, INCA) is described for the detection of complexes that are composed of at least C1s and C1-inhibitor. This INCA is based on demonstrating that C1s and C1-inhibitor (C1-In) are linked: after an incubation with anti-C1s-Sepharose, bound C1sC1-In complexes are detected by 125I-anti-C1-In. C1sC1-In complexes were prepared by the addition of a slight excess of C1s to normal human serum (NHS). As little as 2 ng C1-In bound to C1s was detected. Additional free C1s in serum hardly influenced the detection of C1sC1-In complexes. Complexes presumably composed of C1rC1s(C1-In)2 were generated by the addition of aggregated IgG to NHS. This generation was inhibited by lowering the temperature to 0 degrees C, and by EDTA, and depended on the concentration of aggregated IgG. These complexes had a sedimentation value of approximately 9S. Complexes of C1s and C1-In were also generated in NHS by the addition of DNP-albumin and protein A, but not by zymosan. The INCA was applied to blood samples from normal donors and patients. Sixteen out of 19 samples from patients with acute glomerulonephritis contained increased amounts of C1rC1s(C1-In)2 complexes as compared with the amounts in blood samples from normal donors. The INCA provides a useful tool to assess the activation of C1 in the presence of C1-In, both in vitro and in vivo.

  14. Effects of anti-heat diet and inverse lighting on growth performance, immune organ, microorganism and short chain fatty acids of broiler chickens under heat stress.

    PubMed

    Ryu, Seung-Tae; Park, Byung-Sung; Bang, Han-Tae; Kang, Hwan-Ku; Hwangbo, Jong

    2016-03-01

    The present study investigated the effects of night restricted feeding of extreme heat diet (EHD) containing heat stress resistance nutrients, with inverse lighting program, on their growth performance in broiler chickens exposed to extreme heat stress (33 ± 2°C). EHD 1 contained soy oil, molasses, methionine and lysine. EHD 2 contained all nutrients of EHD 1 and vitamin C additionally. Three hundred broiler chickens (Ross 308) were randomized into four dietary treatment groups according to a randomized block design on the day they were hatched. The treatment groups were: T1 (EHD 1, 10:00-19:00 dark, 19:00-10:00 light), T2 (EHD 2, 10:00-19:00 dark, 19:00-10:00 light), T3 (EHD 1, 09:00-18:00 dark, 18:00-09:00 light) and T4 (EHD 2, 09:00-18:00 dark, 18:00-09:00 light). The body weight gain of the broilers increased most significantly in T2, followed by T1, T4 and T3 (p < 0.05). Weights of the immune system, thymus and bursa of Fabricius recorded higher in T1 and T2 than in T3 and T4. The spleen was higher in T1, T2 and T3 than in T4 (p < 0.05). Blood triglyceride, total cholesterol and blood sugar were higher in T1 and T2 than in T3 and T4 (p < 0.05). LDL-C recorded high in the order of T4, T3, T2 and T1, but HDL-C showed the inverse order (p < 0.05). IgG, IgA and IgM were higher in T1 and T2 than in T3 and T4, however, the corticosterone concentration showed the inverse order (p<0.05). Lactobacillus in feces was higher in T1 and T2 than in T3 and T4, but total aerobic bacteria, E. coli, Coliform bacteria was higher in T4 and T3 than in T2 and T1 (p < 0.05). Contents of acetic acid, propionic acid and total Short chain fatty acid were significantly higher in the order of T2, T1, T3 and T4. Butyric acid, isobutyric acid, valeric acid and isovaleric acid were higher in T4 and T3 than in T1 and T2 (p < 0.05). PMID:27097436

  15. Effects of anti-heat diet and inverse lighting on growth performance, immune organ, microorganism and short chain fatty acids of broiler chickens under heat stress.

    PubMed

    Ryu, Seung-Tae; Park, Byung-Sung; Bang, Han-Tae; Kang, Hwan-Ku; Hwangbo, Jong

    2016-03-01

    The present study investigated the effects of night restricted feeding of extreme heat diet (EHD) containing heat stress resistance nutrients, with inverse lighting program, on their growth performance in broiler chickens exposed to extreme heat stress (33 ± 2°C). EHD 1 contained soy oil, molasses, methionine and lysine. EHD 2 contained all nutrients of EHD 1 and vitamin C additionally. Three hundred broiler chickens (Ross 308) were randomized into four dietary treatment groups according to a randomized block design on the day they were hatched. The treatment groups were: T1 (EHD 1, 10:00-19:00 dark, 19:00-10:00 light), T2 (EHD 2, 10:00-19:00 dark, 19:00-10:00 light), T3 (EHD 1, 09:00-18:00 dark, 18:00-09:00 light) and T4 (EHD 2, 09:00-18:00 dark, 18:00-09:00 light). The body weight gain of the broilers increased most significantly in T2, followed by T1, T4 and T3 (p < 0.05). Weights of the immune system, thymus and bursa of Fabricius recorded higher in T1 and T2 than in T3 and T4. The spleen was higher in T1, T2 and T3 than in T4 (p < 0.05). Blood triglyceride, total cholesterol and blood sugar were higher in T1 and T2 than in T3 and T4 (p < 0.05). LDL-C recorded high in the order of T4, T3, T2 and T1, but HDL-C showed the inverse order (p < 0.05). IgG, IgA and IgM were higher in T1 and T2 than in T3 and T4, however, the corticosterone concentration showed the inverse order (p<0.05). Lactobacillus in feces was higher in T1 and T2 than in T3 and T4, but total aerobic bacteria, E. coli, Coliform bacteria was higher in T4 and T3 than in T2 and T1 (p < 0.05). Contents of acetic acid, propionic acid and total Short chain fatty acid were significantly higher in the order of T2, T1, T3 and T4. Butyric acid, isobutyric acid, valeric acid and isovaleric acid were higher in T4 and T3 than in T1 and T2 (p < 0.05).

  16. Preliminary crystallographic studies of a Schistosoma mansoni antigen (Sm21.7) dynein light-chain (DLC) domain

    PubMed Central

    Costa, M. A. F.; Rodrigues, F. T. G.; Chagas, B. C. A.; Rezende, C. M. F.; Goes, A. M.; Nagem, R. A. P.

    2014-01-01

    Schistosomiasis is an inflammatory chronic disease that represents a major health problem in tropical and subtropical countries. The drug of choice for treatment, praziquantel, is effective in killing adult worms but fails to kill immature forms and prevent reinfection. One prominent antigen candidate for an anti-schistosomiasis vaccine is the protein Sm21.7 (184 amino-acid residues) from Schistosoma mansoni, a tegumental protein capable of reducing the worm burden in a murine immunization model. In the present work, the Sm21.7 gene was cloned and expressed in Escherichia coli and the full-length protein was purified to homogeneity. Crystals of recombinant Sm21.7 suitable for X-ray diffraction were obtained using PEG monomethyl ether 2000 as a precipitant. X-ray diffraction images of a native crystal (at 2.05 Å resolution) and a quick-cryosoaked NaI derivative (at 1.95 Å resolution) were collected on the W01B-MX2 beamline at the Laboratório Nacional de Luz Síncrotron (LNLS, Brazilian Synchrotron Light Laboratory/MCT). Both crystals belonged to the hexagonal space group P6122, with similar unit-cell parameters a = b = 108.5, c = 55.8 Å. SIRAS-derived phases were used to generate the first electron-density map, from which a partial three-dimensional model of Sm21.7 (from Gln89 to Asn184) was automatically constructed. Anaysis of dissolved crystals by SDS–PAGE confirmed that the protein was cleaved in the crystallization drop and only the Sm21.7 C-terminal domain was crystallized. The structure of the Sm21.7 C-terminal domain will help in the localization of the epitopes responsible for its protective immune responses, constituting important progress in the development of an anti-schistosomiasis vaccine. PMID:24915098

  17. C1q protein binds to the apoptotic nucleolus and causes C1 protease degradation of nucleolar proteins.

    PubMed

    Cai, Yitian; Teo, Boon Heng Dennis; Yeo, Joo Guan; Lu, Jinhua

    2015-09-11

    In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus.

  18. Microbial growth on C1 compounds

    PubMed Central

    Kemp, M. B.; Quayle, J. R.

    1967-01-01

    1. A study has been made of the incorporation of carbon from [14C]formaldehyde and [14C]formate by cultures of Pseudomonas methanica growing on methane. 2. The distribution of radioactivity within the non-volatile constituents of the ethanol-soluble fractions of the cells, after incubation with labelled compounds for periods of up to 1min., has been analysed by chromatography and radioautography. 3. Radioactivity was fixed from [14C]formaldehyde mainly into the phosphates of the sugars, glucose, fructose, sedoheptulose and allulose. 4. Very little radioactivity was fixed from [14C]formate; after 1min. the only products identified were serine and malate. 5. The distribution of radioactivity within the carbon skeleton of glucose, obtained from short-term incubations with [14C]methanol of Pseudomonas methanica growing on methane, has been investigated. At the earliest time of sampling over 70% of the radioactivity was located in C-1; as the time increased the radioactivity spread throughout the molecule. 6. The results have been interpreted in terms of a variant of the pentose phosphate cycle, involving the condensation of formaldehyde with C-1 of ribose 5-phosphate to give allulose phosphate. PMID:6030306

  19. Functional humanization of an anti-CD16 Fab fragment: obstacles of switching from murine {lambda} to human {lambda} or {kappa} light chains.

    PubMed

    Schlapschy, Martin; Fogarasi, Marton; Gruber, Helga; Gresch, Oliver; Schäfer, Claudia; Aguib, Yasmine; Skerra, Arne

    2009-03-01

    An alphaCD30xalphaCD16 bispecific monoclonal antibody (MAb) was previously shown to induce remission of Hodgkin's disease refractory to chemo- and radiotherapy through specific activation of natural killer (NK) cells, but the appearance of a human anti-mouse antibody (HAMA) response prevented its use for prolonged therapy. Here, we describe an effort to humanize the Fab arm directed against FcgammaRIII (CD16), which-in context with the previously humanized CD30 Fab fragment-provides the necessary component for the design of a clinically useful bispecific antibody. Thus, the CDRs of the anti-CD16 mouse IgG1/lambda MAb A9 were grafted onto human Ig sequences. In a first attempt, the murine V(lambda) domain was converted to a humanized lambda chain, which led, however, to complete loss of antigen-binding activity and extremely poor folding efficiency upon periplasmic expression in Escherichia coli. Hence, its CDRs were transplanted onto a human kappa light chain in a second attempt, which resulted in a functional recombinant Fab fragment, yet with 100-fold decreased antigen affinity. In the next step, an in vitro affinity maturation was performed, wherein random mutations were introduced into the humanized V(H) and V(kappa) domains through error-prone PCR, followed by a filter sandwich colony screening assay for increased binding activity towards the bacterially produced extracellular CD16 fragment. Finally, an optimized Fab fragment was obtained, which carries nine additional amino acid exchanges and exhibits an affinity that is within a factor of 2 identical to that of the original murine A9 Fab fragment. The resulting humanized Fab fragment was fully functional with respect to binding of the recombinant CD16 antigen in enzyme-linked immunosorbent assay and in cytofluorimetry with CD16-positive granulocytes, thus providing a promising starting point for the preparation of a fully human bispecific antibody that permits the therapeutic recruitment of NK cells.

  20. Effectiveness of Haemodiafiltration with Heat Sterilized High-Flux Polyphenylene HF Dialyzer in Reducing Free Light Chains in Patients with Myeloma Cast Nephropathy

    PubMed Central

    2015-01-01

    Introduction In cases of myeloma cast nephropathy in need of haemodialysis (HD), reduction of free light chains using HD with High-Cut-Off filters (HCO-HD), in combination with chemotherapy, may be associated with better renal recovery. The aim of the present study is to evaluate the effectiveness of haemodiafiltration (HDF) in reducing free light chain levels using a less expensive heat sterilized high-flux polyphenylene HF dialyzer (HF-HDF). Methods In a single-centre prospective cohort study, 327 dialysis sessions were performed using a 2.2 m2 heat sterilized high-flux polyphenylene HF dialyzer (Phylther HF22SD), a small (1.1m2) or large (2.1 m2) high-cut-off (HCO) dialyzer (HCOS and HCOL) in a cohort of 16 patients presenting with dialysis-dependent acute cast nephropathy and elevated free light chains (10 kappa, 6 lambda). The outcomes of the study were the mean reduction ratio (RR) of kappa and lambda, the proportion of treatments with an RR of at least 0.65, albumin loss and the description of patient outcomes. Statistical analysis was performed using linear and logistic regression through generalized estimating equation analysis so as to take into account repeated observation within subjects and adjust for session duration. Results There were no significant differences in the estimated marginal mean of kappa RR, which were respectively 0.67, 0.69 and 0.70 with HCOL-HD, HCOS-HDF and HF-HDF (P = 0.950). The estimated marginal mean of the proportions of treatments with a kappa RR ≥0.65 were 68%, 63% and 71% with HCOL-HD, HCOS-HDF and HF-HDF, respectively (P = 0.913). The estimated marginal mean of lambda RR were higher with HCOL-HDF (0.78), compared to HCOL-HD and HF-HDF (0.62, and 0.61 respectively). The estimated marginal mean proportion of treatments with a lambda RR ≥0.65 were higher with HCOL-HDF (81%), compared to 57% in HF-HDF (P = 0.042). The median albumin loss were 7, 21 and 63 g/session with HF-HDF, HCOL-HD and HCOL-HDF respectively (P = 0

  1. C1IV:. Gravitational Wave Data Analysis

    NASA Astrophysics Data System (ADS)

    Sathyaprakash, B. S.

    2002-09-01

    Resonant bar detectors are routinely searching for astronomical sources of gravitational waves and to setting upper limits on event rates. Interferometric detectors are beginning to operate at sensitivity levels good enough to set meaningful upper limits and begin astrophysical searches. With the long baseline interferometers scheduled to take data at unprecedented sensitivity levels the next few years will be a very exciting period for gravitational waves. In session C1iv there were talks focusing on gravitational wave searches (Krolak and Sintes), setting upper limits on astrophysical signals (Brady and Whelan), theoretical developments in modelling binary black holes (Iyer), testing general relativity with gravitational wave data (Will) and tools for gravitational wave data analysis (Schutz). There was also a one-hour round-table discussion on setting upper limits chaired by Andersson.

  2. Ca2+ sensitization due to myosin light chain phosphatase inhibition and cytoskeletal reorganization in the myogenic response of skeletal muscle resistance arteries

    PubMed Central

    Moreno-Domínguez, Alejandro; Colinas, Olaia; El-Yazbi, Ahmed; Walsh, Emma J; Hill, Michael A; Walsh, Michael P; Cole, William C

    2013-01-01

    The myogenic response of resistance arteries to intravascular pressure elevation is a fundamental physiological mechanism of crucial importance for blood pressure regulation and organ-specific control of blood flow. The importance of Ca2+ entry via voltage-gated Ca2+ channels leading to phosphorylation of the 20 kDa myosin regulatory light chains (LC20) in the myogenic response is well established. Recent studies, however, have suggested a role for Ca2+ sensitization via activation of the RhoA/Rho-associated kinase (ROK) pathway in the myogenic response. The possibility that enhanced actin polymerization is also involved in myogenic vasoconstriction has been suggested. Here, we have used pressurized resistance arteries from rat gracilis and cremaster skeletal muscles to assess the contribution to myogenic constriction of Ca2+ sensitization due to: (1) phosphorylation of the myosin targeting subunit of myosin light chain phosphatase (MYPT1) by ROK; (2) phosphorylation of the 17 kDa protein kinase C (PKC)-potentiated protein phosphatase 1 inhibitor protein (CPI-17) by PKC; and (3) dynamic reorganization of the actin cytoskeleton evoked by ROK and PKC. Arterial diameter, MYPT1, CPI-17 and LC20 phosphorylation, and G-actin content were determined at varied intraluminal pressures ± H1152, GF109203X or latrunculin B to suppress ROK, PKC and actin polymerization, respectively. The myogenic response was associated with an increase in MYPT1 and LC20 phosphorylation that was blocked by H1152. No change in phospho-CPI-17 content was detected although the PKC inhibitor, GF109203X, suppressed myogenic constriction. Basal LC20 phosphorylation at 10 mmHg was high at ∼40%, increased to a maximal level of ∼55% at 80 mmHg, and exhibited no additional change on further pressurization to 120 and 140 mmHg. Myogenic constriction at 80 mmHg was associated with a decline in G-actin content by ∼65% that was blocked by inhibition of ROK or PKC. Taken together, our findings indicate

  3. Ca2+ sensitization due to myosin light chain phosphatase inhibition and cytoskeletal reorganization in the myogenic response of skeletal muscle resistance arteries.

    PubMed

    Moreno-Domínguez, Alejandro; Colinas, Olaia; El-Yazbi, Ahmed; Walsh, Emma J; Hill, Michael A; Walsh, Michael P; Cole, William C

    2013-03-01

    Abstract  The myogenic response of resistance arteries to intravascular pressure elevation is a fundamental physiological mechanism of crucial importance for blood pressure regulation and organ-specific control of blood flow. The importance of Ca(2+) entry via voltage-gated Ca(2+) channels leading to phosphorylation of the 20 kDa myosin regulatory light chains (LC20) in the myogenic response is well established. Recent studies, however, have suggested a role for Ca(2+) sensitization via activation of the RhoA/Rho-associated kinase (ROK) pathway in the myogenic response. The possibility that enhanced actin polymerization is also involved in myogenic vasoconstriction has been suggested. Here, we have used pressurized resistance arteries from rat gracilis and cremaster skeletal muscles to assess the contribution to myogenic constriction of Ca(2+) sensitization due to: (1) phosphorylation of the myosin targeting subunit of myosin light chain phosphatase (MYPT1) by ROK; (2) phosphorylation of the 17 kDa protein kinase C (PKC)-potentiated protein phosphatase 1 inhibitor protein (CPI-17) by PKC; and (3) dynamic reorganization of the actin cytoskeleton evoked by ROK and PKC. Arterial diameter, MYPT1, CPI-17 and LC20 phosphorylation, and G-actin content were determined at varied intraluminal pressures ± H1152, GF109203X or latrunculin B to suppress ROK, PKC and actin polymerization, respectively. The myogenic response was associated with an increase in MYPT1 and LC20 phosphorylation that was blocked by H1152. No change in phospho-CPI-17 content was detected although the PKC inhibitor, GF109203X, suppressed myogenic constriction. Basal LC20 phosphorylation at 10 mmHg was high at ∼40%, increased to a maximal level of ∼55% at 80 mmHg, and exhibited no additional change on further pressurization to 120 and 140 mmHg. Myogenic constriction at 80 mmHg was associated with a decline in G-actin content by ∼65% that was blocked by inhibition of ROK or PKC. Taken together, our

  4. New Isoform of Cardiac Myosin Light Chain Kinase and the Role of Cardiac Myosin Phosphorylation in α1-Adrenoceptor Mediated Inotropic Response

    PubMed Central

    Taniguchi, Masaya; Okamoto, Ryuji; Ito, Masaaki; Goto, Itaru; Fujita, Satoshi; Konishi, Katsuhisa; Mizutani, Hideo; Dohi, Kaoru; Hartshorne, David J.; Itoh, Takeo

    2015-01-01

    Background & Aims Cardiac myosin light chain kinase (cMLCK) plays an obligatory role in maintaining the phosphorylation levels of regulatory myosin light chain (MLC2), which is thought to be crucial for regulation of cardiac function. To test this hypothesis, the role played by ventricular MLC2 (MLC2v) phosphorylation was investigated in the phenylephrine-induced increase in twitch tension using the naturally-occurring mouse strain, C57BL/6N, in which cMLCK is down regulated. Methods and Results By Western blot and nanoLC-MS/MS analysis, cMLCKs with molecular mass of 61-kDa (cMLCK-2) and/or 86-kDa were identified in mice heart. Among various mouse strains, C57BL/6N expressed cMLCK-2 alone and the closest relative strain C57BL/6J expressed both cMLCKs. The levels of MLC2v phosphorylation was significantly lower in C57BL/6N than in C57BL/6J. The papillary muscle twitch tension induced by electrical field stimulation was smaller in C57BL/6N than C57BL/6J. Phenylephrine had no effect on MLC2v phosphorylation in either strains but increased the twitch tension more potently in C57BL/6J than in C57BL/6N. Calyculin A increased papillary muscle MLC2v phosphorylation to a similar extent in both strains but increased the phenylephrine-induced inotropic response only in C57BL/6N. There was a significant positive correlation between the phenylephrine-induced inotropic response and the levels of MLC2v phosphorylation within ranges of 15–30%. Conclusions We identified a new isoform of cMLCK with a molecular mass of 61kDa(cMLCK-2) in mouse heart. In the C57BL/6N strain, only cMLCK-2 was expressed and the basal MLC2v phosphorylation levels and the phenylephrine-induced inotropic response were both smaller. We suggest that a lower phenylephrine-induced inotropic response may be caused by the lower basal MLC2v phosphorylation levels in this strain. PMID:26512720

  5. Plasma levels of C1- inhibitor complexes and cleaved C1- inhibitor in patients with hereditary angioneurotic edema.

    PubMed

    Cugno, M; Nuijens, J; Hack, E; Eerenberg, A; Frangi, D; Agostoni, A; Cicardi, M

    1990-04-01

    C1- inhibitor (C1(-)-Inh) catabolism in plasma of patients with hereditary angioneurotic edema (HANE) was assessed by measuring the complexes formed by C1(-)-Inh with its target proteases (C1-s, Factor XIIa, and kallikrein) and a modified (cleaved) inactive form of C1(-)-Inh (iC1(-)-Inh). This study was performed in plasma from 18 healthy subjects and 30 patients with HANE in remission: 20 with low antigen concentration (type I) and 10 (from 5 different kindreds) with dysfunctional protein (type II). Both type-I and type-II patients had increased C1(-)-C1(-)-Inh complexes (P less than 0.0001), which in type I inversely correlated with the levels of C1(-)-Inh (P less than 0.001). iC1(-)-Inh was normal in all type-I patients and in type-II patients from three families with increased C1(-)-Inh antigen, whereas iC1(-)-Inh was higher than 20 times the normal values in patients from the remaining two families with C1(-)-Inh antigen in the normal range. None of the subjects had an increase of either Factor XIIa-C1(-)-Inh or kallikrein-C1(-)-Inh complexes. This study shows that the hypercatabolism of C1(-)-Inh in HANE patients at least in part occurs via the formation of complexes with C1- and that genetically determined differences in catabolism of dysfunctional C1(-)-Inh proteins are present in type-II patients.

  6. Structure–Function Analysis of the Non-Muscle Myosin Light Chain Kinase (nmMLCK) Isoform by NMR Spectroscopy and Molecular Modeling: Influence of MYLK Variants

    PubMed Central

    Shen, Kui; Ramirez, Benjamin; Mapes, Brandon; Shen, Grace R.; Gokhale, Vijay; Brown, Mary E.; Santarsiero, Bernard; Ishii, Yoshitaka; Dudek, Steven M.; Wang, Ting; Garcia, Joe G. N.

    2015-01-01

    The MYLK gene encodes the multifunctional enzyme, myosin light chain kinase (MLCK), involved in isoform-specific non-muscle and smooth muscle contraction and regulation of vascular permeability during inflammation. Three MYLK SNPs (P21H, S147P, V261A) alter the N-terminal amino acid sequence of the non-muscle isoform of MLCK (nmMLCK) and are highly associated with susceptibility to acute lung injury (ALI) and asthma, especially in individuals of African descent. To understand the functional effects of SNP associations, we examined the N-terminal segments of nmMLCK by 1H-15N heteronuclear single quantum correlation (HSQC) spectroscopy, a 2-D NMR technique, and by in silico molecular modeling. Both NMR analysis and molecular modeling indicated SNP localization to loops that connect the immunoglobulin-like domains of nmMLCK, consistent with minimal structural changes evoked by these SNPs. Molecular modeling analysis identified protein-protein interaction motifs adversely affected by these MYLK SNPs including binding by the scaffold protein 14-3-3, results confirmed by immunoprecipitation and western blot studies. These structure-function studies suggest novel mechanisms for nmMLCK regulation, which may confirm MYLK as a candidate gene in inflammatory lung disease and advance knowledge of the genetic underpinning of lung-related health disparities. PMID:26111161

  7. Analytical Detection of Immunoglobulin Heavy Chain Gene Rearrangements in Gastric Lymphoid Infiltrates by Peak Area Analysis of the Melting Curve in the LightCycler System

    PubMed Central

    Retamales, Eduardo; Rodriguez, Luis; Guzman, Leda; Aguayo, Francisco; Palma, Mariana; Backhouse, Claudia; Argandona, Jorge; Riquelme, Erick; Corvalan, Alejandro

    2007-01-01

    Because it is difficult to differentiate gastric mucosa-associated lymphoid tissue (MALT) lymphoma from chronic gastritis in gastric lymphoid infiltrates, molecular detection of monoclonality through immunoglobulin heavy chain (IgH) gene rearrangements is commonly performed. However, heterogeneity in the performance and results obtained from IgH gene rearrangements has been reported. To improve the accuracy in the diagnosis of gastric lymphoid infiltrates, we developed an analytical approach based on one-peak area analysis of the melting curve in the LightCycler System. Using a training-testing approach, the likelihood ratio method was selected to find a discriminative function of 4.64 in the training set (10 gastric MALT lymphomas and 10 chronic gastritis cases). This discriminative function was validated in the testing set (five gastric MALT lymphomas, six abnormal lymphocytic infiltrates with subsequently demonstrated gastric MALT lymphomas, and six cases of chronic gastritis). All but one case of gastric MALT lymphoma, as well as abnormal lymphocytic infiltrates, clustered under 4.64, and all chronic gastritis cases clustered above 4.64. These results were validated by conventional electrophoreses confirming one or two sharp bands in cases of gastric MALT lymphomas and a smear of multiple bands in cases of chronic gastritis. Analytical detection of IgH gene rearrangement in gastric lymphoid infiltrates by one-peak area analysis correctly distinguishes gastric MALT lymphomas from chronic gastritis, even in cases with diagnosis of abnormal lymphocytic infiltrates. PMID:17591935

  8. Translation termination factors function outside of translation: yeast eRF1 interacts with myosin light chain, Mlc1p, to effect cytokinesis.

    PubMed

    Valouev, I A; Urakov, V N; Kochneva-Pervukhova, N V; Smirnov, V N; Ter-Avanesyan, M D

    2004-07-01

    The translation termination factor eRF1 recognizes stop codons at the A site of the ribosome and induces peptidyl-tRNA hydrolysis at the peptidyl transferase centre. Recent data show that, besides translation, yeast eRF1 is also involved in cell cycle regulation. To clarify the mechanisms of non-translational functions of eRF1, we performed a genetic screen for its novel partner proteins. This screen revealed the gene for myosin light chain, Mlc1p, acting as a dosage suppressor of a temperature-sensitive mutation in the SUP45 gene encoding eRF1. eRF1 and Mlc1p are able to interact with each other and, similarly to depletion of Mlc1p, mutations in the SUP45 gene may affect cytokinesis. Immunofluorescent staining performed to determine localization of Mlc1p has shown that the sup45 mutation, which arrests cytokinesis, redistributed Mlc1p, causing its disappearance from the bud tip and the bud neck. The data obtained demonstrate that yeast eRF1 has an important non-translational function effecting cytokinesis via interaction with Mlc1p.

  9. Phosphorylation and the N-terminal extension of the regulatory light chain help orient and align the myosin heads in Drosophila flight muscle

    SciTech Connect

    Farman, Gerrie P.; Miller, Mark S.; Reedy, Mary C.; Soto-Adames, Felipe N.; Vigoreaux, Jim O.; Maughan, David W.; Irving, Thomas C.

    2010-02-02

    X-ray diffraction of the indirect flight muscle (IFM) in living Drosophila at rest and electron microscopy of intact and glycerinated IFM was used to compare the effects of mutations in the regulatory light chain (RLC) on sarcomeric structure. Truncation of the RLC N-terminal extension (Dmlc2{sup {Delta}2-46}) or disruption of the phosphorylation sites by substituting alanines (Dmlc2{sup S66A, S67A}) decreased the equatorial intensity ratio (I{sub 20}/I{sub 10}), indicating decreased myosin mass associated with the thin filaments. Phosphorylation site disruption (Dmlc2{sup S66A, S67A}), but not N-terminal extension truncation (Dmlc2{sup {Delta}2-46}), decreased the 14.5 nm reflection intensity, indicating a spread of the axial distribution of the myosin heads. The arrangement of thick filaments and myosin heads in electron micrographs of the phosphorylation mutant (Dmlc2{sup S66A, S67A}) appeared normal in the relaxed and rigor states, but when calcium activated, fewer myosin heads formed cross-bridges. In transgenic flies with both alterations to the RLC (Dmlc2{sup {Delta}2-46; S66A, S67A}), the effects of the dual mutation were additive. The results suggest that the RLC N-terminal extension serves as a 'tether' to help pre-position the myosin heads for attachment to actin, while phosphorylation of the RLC promotes head orientations that allow optimal interactions with the thin filament.

  10. Dynein Light Chain LC8 Is Required for RNA Polymerase I-Mediated Transcription in Trypanosoma brucei, Facilitating Assembly and Promoter Binding of Class I Transcription Factor A.

    PubMed

    Kirkham, Justin K; Park, Sung Hee; Nguyen, Tu N; Lee, Ju Huck; Günzl, Arthur

    2016-01-01

    Dynein light chain LC8 is highly conserved among eukaryotes and has both dynein-dependent and dynein-independent functions. Interestingly, LC8 was identified as a subunit of the class I transcription factor A (CITFA), which is essential for transcription by RNA polymerase I (Pol I) in the parasite Trypanosoma brucei. Given that LC8 has never been identified with a basal transcription factor and that T. brucei relies on RNA Pol I for expressing the variant surface glycoprotein (VSG), the key protein in antigenic variation, we investigated the CITFA-specific role of LC8. Depletion of LC8 from mammalian-infective bloodstream trypanosomes affected cell cycle progression, reduced the abundances of rRNA and VSG mRNA, and resulted in rapid cell death. Sedimentation analysis, coimmunoprecipitation of recombinant proteins, and bioinformatic analysis revealed an LC8 binding site near the N terminus of the subunit CITFA2. Mutation of this site prevented the formation of a CITFA2-LC8 heterotetramer and, in vivo, was lethal, affecting assembly of a functional CITFA complex. Gel shift assays and UV cross-linking experiments identified CITFA2 as a promoter-binding CITFA subunit. Accordingly, silencing of LC8 or CITFA2 resulted in a loss of CITFA from RNA Pol I promoters. Hence, we discovered an LC8 interaction that, unprecedentedly, has a basal function in transcription.

  11. Rho-kinase/myosin light chain kinase pathway plays a key role in the impairment of bile canaliculi dynamics induced by cholestatic drugs

    PubMed Central

    Sharanek, Ahmad; Burban, Audrey; Burbank, Matthew; Le Guevel, Rémy; Li, Ruoya; Guillouzo, André; Guguen-Guillouzo, Christiane

    2016-01-01

    Intrahepatic cholestasis represents a frequent manifestation of drug-induced liver injury; however, the mechanisms underlying such injuries are poorly understood. In this study of human HepaRG and primary hepatocytes, we found that bile canaliculi (BC) underwent spontaneous contractions, which are essential for bile acid (BA) efflux and require alternations in myosin light chain (MLC2) phosphorylation/dephosphorylation. Short exposure to 6 cholestatic compounds revealed that BC constriction and dilation were associated with disruptions in the ROCK/MLCK/myosin pathway. At the studied concentrations, cyclosporine A and chlorpromazine induced early ROCK activity, resulting in permanent MLC2 phosphorylation and BC constriction. However, fasudil reduced ROCK activity and caused rapid, substantial and permanent MLC2 dephosphorylation, leading to BC dilation. The remaining compounds (1-naphthyl isothiocyanate, deoxycholic acid and bosentan) caused BC dilation without modulating ROCK activity, although they were associated with a steady decrease in MLC2 phosphorylation via MLCK. These changes were associated with a common loss of BC contractions and failure of BA clearance. These results provide the first demonstration that cholestatic drugs alter BC dynamics by targeting the ROCK/MLCK pathway; in addition, they highlight new insights into the mechanisms underlying bile flow failure and can be used to identify new predictive biomarkers of drug-induced cholestasis. PMID:27169750

  12. Regulation of platelet myosin light chain (MYL9) by RUNX1: implications for thrombocytopenia and platelet dysfunction in RUNX1 haplodeficiency

    PubMed Central

    Jalagadugula, Gauthami; Mao, Guangfen; Kaur, Gurpreet; Goldfinger, Lawrence E.; Dhanasekaran, Danny N.

    2010-01-01

    Mutations in transcription factor RUNX1 are associated with familial platelet disorder, thrombocytopenia, and predisposition to leukemia. We have described a patient with thrombocytopenia and impaired agonist-induced platelet aggregation, secretion, and glycoprotein (GP) IIb-IIIa activation, associated with a RUNX1 mutation. Platelet myosin light chain (MLC) phosphorylation and transcript levels of its gene MYL9 were decreased. Myosin IIA and MLC phosphorylation are important in platelet responses to activation and regulate thrombopoiesis by a negative regulatory effect on premature proplatelet formation. We addressed the hypothesis that MYL9 is a transcriptional target of RUNX1. Chromatin immunoprecipitation (ChIP) using megakaryocytic cells revealed RUNX1 binding to MYL9 promoter region −729/−542 basepairs (bp), which contains 4 RUNX1 sites. Electrophoretic mobility shift assay showed RUNX1 binding to each site. In transient ChIP assay, mutation of these sites abolished binding of RUNX1 to MYL9 promoter construct. In reporter gene assays, deletion of each RUNX1 site reduced activity. MYL9 expression was inhibited by RUNX1 short interfering RNA (siRNA) and enhanced by RUNX1 overexpression. RUNX1 siRNA decreased cell spreading on collagen and fibrinogen. Our results constitute the first evidence that the MYL9 gene is a direct target of RUNX1 and provide a mechanism for decreased platelet MYL9 expression, MLC phosphorylation, thrombocytopenia, and platelet dysfunction associated with RUNX1 mutations. PMID:20876458

  13. All-Trans Retinoic Acid Inhibits Human Colorectal Cancer Cells RKO Migration via Downregulating Myosin Light Chain Kinase Expression through MAPK Signaling Pathway.

    PubMed

    Zuo, Li; Yang, Xiaoping; Lu, Man; Hu, Ruolei; Zhu, Huaqing; Zhang, Sumei; Zhou, Qing; Chen, Feihu; Gui, Shuyu; Wang, Yuan

    2016-10-01

    All-trans-retinoic acid (ATRA) inhibits the invasive and metastatic potentials of various cancer cells. However, the underlying mechanism is unclear. Here, we demonstrate that ATRA inhibited colorectal cancer cells RKO (human colon adenocarcinoma cell) migration by downregulating cell movement and increasing cell adhesion. ATRA inhibited the expression and activation of myosin light chain kinase (MLCK) in RKO cells, while the expression level of MLC phosphatase (MLCP) had no change in RKO cells treated with or without ATRA. The expression and activity of MLC was also inhibited in RKO cells exposed to ATRA. Intriguingly, ATRA increased the expression of occludin messenger RNA (mRNA) and protein and its localization on cell membrane. However, ATRA did not change the expression of zonula occludens 1 (ZO-1), but increased the accumulation of ZO-1 on RKO cells membrane. ML-7, an inhibitor of MLCK, significantly inhibited RKO cell migration. Furthermore, knockdown of endogenous MLCK expression inhibited RKO migration. Mechanistically, we showed that MAPK-specific inhibitor PD98059 enhanced the inhibitory effect of ATRA on RKO migration. In contrast, phorbol 12-myristate 13-acetate (PMA) attenuated the effects of ATRA in RKO cells. Moreover, knocking down endogenous extracellular signal-regulated kinase (ERK) expression inhibited MLCK expression in the RKO cells. In conclusion, ATRA inhibits RKO migration by reducing MLCK expression via extracellular signal-regulated kinase 1/Mitogen-activated protein kinase (ERK1/MAPK) signaling pathway. PMID:27564600

  14. The flow cytometry-defined light chain cytoplasmic immunoglobulin index and an associated 12-gene expression signature are independent prognostic factors in multiple myeloma.

    PubMed

    Papanikolaou, X; Alapat, D; Rosenthal, A; Stein, C; Epstein, J; Owens, R; Yaccoby, S; Johnson, S; Bailey, C; Heuck, C; Tian, E; Joiner, A; van Rhee, F; Khan, R; Zangari, M; Jethava, Y; Waheed, S; Davies, F; Morgan, G; Barlogie, B

    2015-08-01

    As part of Total Therapy (TT) 3b, baseline marrow aspirates were subjected to two-color flow cytometry of nuclear DNA content and cytoplasmic immunoglobulin (DNA/CIG) as well as plasma cell gene expression profiling (GEP). DNA/CIG-derived parameters, GEP and standard clinical variables were examined for their effects on overall survival (OS) and progression-free survival (PFS). Among DNA/CIG parameters, the percentage of the light chain-restricted (LCR) cells and their cytoplasmic immunoglobulin index (CIg) were linked to poor outcome. In the absence of GEP data, low CIg <2.8, albumin <3.5 g/dl and age ⩾65 years were significantly associated with inferior OS and PFS. When GEP information was included, low CIg survived the model along with GEP70-defined high risk and low albumin. Low CIg was linked to beta-2-microglobulin >5.5 mg/l, a percentage of LCR cells exceeding 50%, C-reactive protein ⩾8 mg/l and GEP-derived high centrosome index. Further analysis revealed an association of low CIg with 12 gene probes implicated in cell cycle regulation, differentiation and drug transportation from which a risk score was developed in TT3b that held prognostic significance also in TT3a, TT2 and HOVON trials, thus validating its general applicability. Low CIg is a powerful new prognostic variable and has identified potentially drug-able targets. PMID:25753926

  15. The Rho-GTPase effector ROCK regulates meiotic maturation of the bovine oocyte via myosin light chain phosphorylation and cofilin phosphorylation.

    PubMed

    Lee, So-Rim; Xu, Yong-Nan; Jo, Yu-Jin; Namgoong, Suk; Kim, Nam-Hyung

    2015-11-01

    Oocyte meiosis involves a unique asymmetric division involving spindle movement from the central cytoplasm to the cortex, followed by polar body extrusion. ROCK is a Rho-GTPase effector involved in various cellular functions in somatic cells as well as oocyte meiosis. ROCK was previously shown to promote actin organization by phosphorylating several downstream targets, including LIM domain kinase (LIMK), phosphorylated cofilin (p-cofilin), and myosin light chain (MLC). In this study, we investigated the roles of ROCK and MLC during bovine oocyte meiosis. We found that ROCK was localized around the nucleus at the oocyte's germinal-vesicle (GV) stage, but spreads to the rest of the cytoplasm in later developmental stages. On the other hand, phosphorylated MLC (p-MLC) localized at the cortex, and its abundance decreased by the metaphase-II stage. Disrupting ROCK activity, via RNAi or the chemical inhibitor Y-27632, blocked both cell cycle progression and polar body extrusion. ROCK inhibition also resulted in decreased cortical actin, p-cofilin, and p-MLC levels. Similar to the phenotype associated with inhibition of ROCK activity, inhibition of MLC kinase by the chemical inhibitor ML-7 caused defects in polar body extrusion. Collectively, our results suggest that the ROCK/MLC/actomyosin as well as ROCK/LIMK/cofilin pathways regulate meiotic spindle migration and cytokinesis during bovine oocyte maturation. PMID:26175189

  16. Activation of Endothelial Pro-resolving Anti-Inflammatory Pathways by Circulating Microvesicles from Non-muscular Myosin Light Chain Kinase-Deficient Mice

    PubMed Central

    Gaceb, Abderahim; Vergori, Luisa; Martinez, M. C.; Andriantsitohaina, Ramaroson

    2016-01-01

    Microvesicles, small membrane vesicles released from cells, have beneficial and/or deleterious effects in sepsis. We previously reported that non-muscle myosin light chain kinase (nmMLCK) deletion protects mice against endotoxic shock by reducing inflammation. Here, we have evaluated the consequences of nmMLCK deletion on microvesicle phenotypes and their effects on mouse aortic endothelial cells in association with vascular inflammation and endothelial dysfunction during endotoxic shock induced by lipopolysaccharide in mice. Treatment with lipopolysaccharide induced an increase in levels of circulating microvesicles in wild type but not in nmMLCK-deficient mice. Microvesicles from nmMLCK-deficient mice (MVsnmMLCK-/-) prevented the inflammatory effects of lipopolysaccharide with concomitant increase of anti- inflammatory and reduction of pro-inflammatory secretome in mouse aortic endothelial cells. In addition, MVsnmMLCK-/- reduced the efficacy of lipopolysaccharide to increase aortic oxidative and nitrosative stresses as well as macrophage infiltration in the aorta. Moreover, MVsnmMLCK-/- prevented ex vivo endothelial dysfunction, vascular hyporeactivity, and in vivo overproduction of nitric oxide in heart and liver in response to lipopolysaccharide. Altogether, these findings provide evidence that nmMLCK deletion generates circulating microvesicles displaying protective effects by activating endothelial pro-resolving anti-inflammatory pathways allowing the effective down-regulation of oxidative and nitrative stresses associated with endotoxic shock. Thus, nmMLCK plays a pivotal role in susceptibility to sepsis via the control of cellular activation and release of circulating microvesicles. PMID:27708581

  17. Overexpression of the dynein light chain km23-1 in human ovarian carcinoma cells inhibits tumor formation in vivo and causes mitotic delay at prometaphase/metaphase.

    PubMed

    Pulipati, Nageswara R; Jin, Qunyan; Liu, Xin; Sun, Baodong; Pandey, Manoj K; Huber, Jonathan P; Ding, Wei; Mulder, Kathleen M

    2011-08-01

    km23-1 is a dynein light chain that was identified as a TGFβ receptor-interacting protein. To investigate whether km23-1 controls human ovarian carcinoma cell (HOCC) growth, we established a tet-off inducible expression system in SKOV-3 cells in which the expression of km23-1 is induced upon doxycycline removal. We found that forced expression of km23-1 inhibited both anchorage-dependent and anchorage-independent growth of SKOV-3 cells. More importantly, induction of km23-1 expression substantially reduced the tumorigenicity of SKOV-3 cells in a xenograft model in vivo. Fluorescence-activated cell sorting analysis of SKOV-3 and IGROV-1 HOCCs demonstrated that the cells were accumulating at G2/M. Phospho-MEK, phospho-ERK and cyclin B1 were elevated, as was the mitotic index, suggesting that km23-1 suppresses HOCCs growth by inducing a mitotic delay. Immunofluorescence analyses demonstrated that the cells were accumulating at prometaphase/metaphase with increases in multipolar and multinucleated cells. Further, although the mitotic spindle assembly checkpoint protein BubR1 was present at the prometaphase kinetochore in Dox+/- cells, it was inappropriately retained at the metaphase kinetochore in Dox- cells. Thus, the mechanism by which high levels of km23-1 suppress ovarian carcinoma growth in vitro and inhibit ovary tumor formation in vivo appears to involve a BubR1-related mitotic delay.

  18. The Rho-GTPase effector ROCK regulates meiotic maturation of the bovine oocyte via myosin light chain phosphorylation and cofilin phosphorylation.

    PubMed

    Lee, So-Rim; Xu, Yong-Nan; Jo, Yu-Jin; Namgoong, Suk; Kim, Nam-Hyung

    2015-11-01

    Oocyte meiosis involves a unique asymmetric division involving spindle movement from the central cytoplasm to the cortex, followed by polar body extrusion. ROCK is a Rho-GTPase effector involved in various cellular functions in somatic cells as well as oocyte meiosis. ROCK was previously shown to promote actin organization by phosphorylating several downstream targets, including LIM domain kinase (LIMK), phosphorylated cofilin (p-cofilin), and myosin light chain (MLC). In this study, we investigated the roles of ROCK and MLC during bovine oocyte meiosis. We found that ROCK was localized around the nucleus at the oocyte's germinal-vesicle (GV) stage, but spreads to the rest of the cytoplasm in later developmental stages. On the other hand, phosphorylated MLC (p-MLC) localized at the cortex, and its abundance decreased by the metaphase-II stage. Disrupting ROCK activity, via RNAi or the chemical inhibitor Y-27632, blocked both cell cycle progression and polar body extrusion. ROCK inhibition also resulted in decreased cortical actin, p-cofilin, and p-MLC levels. Similar to the phenotype associated with inhibition of ROCK activity, inhibition of MLC kinase by the chemical inhibitor ML-7 caused defects in polar body extrusion. Collectively, our results suggest that the ROCK/MLC/actomyosin as well as ROCK/LIMK/cofilin pathways regulate meiotic spindle migration and cytokinesis during bovine oocyte maturation.

  19. Hepatitis E virus ORF1 encoded macro domain protein interacts with light chain subunit of human ferritin and inhibits its secretion.

    PubMed

    Ojha, Nishant Kumar; Lole, Kavita S

    2016-06-01

    Hepatitis E Virus (HEV) is the major causative agent of acute hepatitis in developing countries. Its genome has three open reading frames (ORFs)-called as ORF1, ORF2, and ORF3. ORF1 encodes nonstructural polyprotein having multiple domains, namely: Methyltransferase, Y domain, Protease, Macro domain, Helicase, and RNA-dependent RNA polymerase. In the present study, we show that HEV-macro domain specifically interacts with light