Sample records for c1 software engineering

  1. Appraisal Requirements for CMMI (Registered Trademark) Version 1.3 (ARC, V1.3)

    DTIC Science & Technology

    2011-04-01

    Software Engineering Institute) • Rassa, Robert C . (Raytheon Space and Airborne Systems ) • Richter, Karen (OSD/IDA) • Young, Rusty (Software...CMU/SEI-2011-TR-006 | 21 • Penn, Lynn (Lockheed Martin) • Rassa, Robert C . (Raytheon Space and Airborne Systems) • Wilson, Harold G. (Northrop...Government Contract Number FA8721-05- C -0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded

  2. Software Management Metrics

    DTIC Science & Technology

    1988-05-01

    obtained from Dr. Barry Boehm’s Software 5650, Contract No. F19628-86-C-O001, Engineering Economics [1] and from T. J. ESD/MITRE Software Center Acquisition...of References 1. Boehm, Barry W., SoJtware Engineering 3. Halstead, M. H., Elements of SoJhtare Economics, Englewood Cliffs, New Science, New York...1983, pp. 639-648. 35 35 - Bibliography Beizer, B., Software System Testing and Pressman , Roger S., Software Engineering:QualtyO Assurance, New York: Van

  3. 76 FR 70382 - Airworthiness Directives; General Electric Company (GE) CF6-80C2B Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... installing software version 8.2.Q1 to the engine electronic control unit (ECU), which increases the engine's... proposed AD would require the removal of the affected ECUs from service. We are proposing this AD to... software version 8.2.Q1 to the ECU, which increases the engine's margin to flameout. That AD was prompted...

  4. Standard CMMI Appraisal Method for Process Improvement (SCAMPI) A, Version 1.3: Method Definition Document

    DTIC Science & Technology

    2011-03-01

    performance of Federal Government Contract Number FA8721-05- C -0003 with Carnegie Mellon University for the operation of the Software Engineering... C Roles and Responsibilities 195 Appendix D Reporting Requirements and Options 201 Appendix E Managed Discovery 203 Appendix F Scoping and...Upgrade Team (SUT) • Mary Busby , Lockheed Martin • Palma Buttles-Valdez, Software Engineering Institute • Paul Byrnes, Integrated System Diagnostics

  5. Standard CMMI (Registered Trademark) Appraisal Method for Process Improvement (SCAMPI (Service Mark)) A, Version 1.3: Method Definition Document

    DTIC Science & Technology

    2011-03-01

    performance of Federal Government Contract Number FA8721-05- C -0003 with Carnegie Mellon University for the operation of the Software Engineering... C Roles and Responsibilities 195 Appendix D Reporting Requirements and Options 201 Appendix E Managed Discovery 203 Appendix F Scoping and...Upgrade Team (SUT) • Mary Busby , Lockheed Martin • Palma Buttles-Valdez, Software Engineering Institute • Paul Byrnes, Integrated System Diagnostics

  6. Object oriented development of engineering software using CLIPS

    NASA Technical Reports Server (NTRS)

    Yoon, C. John

    1991-01-01

    Engineering applications involve numeric complexity and manipulations of a large amount of data. Traditionally, numeric computation has been the concern in developing an engineering software. As engineering application software became larger and more complex, management of resources such as data, rather than the numeric complexity, has become the major software design problem. Object oriented design and implementation methodologies can improve the reliability, flexibility, and maintainability of the resulting software; however, some tasks are better solved with the traditional procedural paradigm. The C Language Integrated Production System (CLIPS), with deffunction and defgeneric constructs, supports the procedural paradigm. The natural blending of object oriented and procedural paradigms has been cited as the reason for the popularity of the C++ language. The CLIPS Object Oriented Language's (COOL) object oriented features are more versatile than C++'s. A software design methodology based on object oriented and procedural approaches appropriate for engineering software, and to be implemented in CLIPS was outlined. A method for sensor placement for Space Station Freedom is being implemented in COOL as a sample problem.

  7. Ada Implementation Guide. Software Engineering With Ada. Volume 1

    DTIC Science & Technology

    1994-04-01

    Staff, Department ofDefense Dictionary of Military and Associated Terms, Washington, D.C., 1989. STARS McDonal , C., and S . Redwine, *STARS Glossary: A...ADýA28 357> offj I Volume I I SI I t Ada Implementation II Guide 5 Software Engineering With AdaI I S DTIC QUALITY INSPECTED S 5 April 1994 g " 94...and Abbreviations ...................... I I N p a S I I I i I Libt of F4g u OW Tahl Figures 2-1 DON Directives and Instructions for Implementing Public

  8. Advanced Computing Technologies for Rocket Engine Propulsion Systems: Object-Oriented Design with C++

    NASA Technical Reports Server (NTRS)

    Bekele, Gete

    2002-01-01

    This document explores the use of advanced computer technologies with an emphasis on object-oriented design to be applied in the development of software for a rocket engine to improve vehicle safety and reliability. The primary focus is on phase one of this project, the smart start sequence module. The objectives are: 1) To use current sound software engineering practices, object-orientation; 2) To improve on software development time, maintenance, execution and management; 3) To provide an alternate design choice for control, implementation, and performance.

  9. Software Engineering Research/Developer Collaborations in 2004 (C104)

    NASA Technical Reports Server (NTRS)

    Pressburger, Tom; Markosian, Lawrance

    2005-01-01

    In 2004, six collaborations between software engineering technology providers and NASA software development personnel deployed a total of five software engineering technologies (for references, see Section 7.2) on the NASA projects. The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report (for references, see Section 7.1). Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Section 6 lists the acronyms used in this report.

  10. Software requirements specification for the GIS-T/ISTEA pooled fund study phase C linear referencing engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amai, W.; Espinoza, J. Jr.; Fletcher, D.R.

    1997-06-01

    This Software Requirements Specification (SRS) describes the features to be provided by the software for the GIS-T/ISTEA Pooled Fund Study Phase C Linear Referencing Engine project. This document conforms to the recommendations of IEEE Standard 830-1984, IEEE Guide to Software Requirements Specification (Institute of Electrical and Electronics Engineers, Inc., 1984). The software specified in this SRS is a proof-of-concept implementation of the Linear Referencing Engine as described in the GIS-T/ISTEA pooled Fund Study Phase B Summary, specifically Sheet 13 of the Phase B object model. The software allows an operator to convert between two linear referencing methods and a datummore » network.« less

  11. Knowledge-Based Software Development Tools

    DTIC Science & Technology

    1993-09-01

    GREEN, C., AND WESTFOLD, S. Knowledge-based programming self-applied. In Machine Intelligence 10, J. E. Hayes, D. Mitchie, and Y. Pao, Eds., Wiley...Technical Report KES.U.84.2, Kestrel Institute, April 1984. [181 KORF, R. E. Toward a model of representation changes. Artificial Intelligence 14, 1...Artificial Intelligence 27, 1 (February 1985), 43-96. Replinted in Readings in Artificial Intelligence and Software Engineering, C. Rich •ad R. Waters

  12. 75 FR 23574 - Airworthiness Directives; CFM International, S.A. CFM56-5B1/P, -5B2/P, -5B3/P, -5B3/P1, -5B4/P...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... high-pressure compressor (HPC) of both engines. That AD also requires removing from service any engine... monitoring of EGT margin deterioration on engines in service to prevent two engines on an airplane from... 75 [deg]C; Removes FADEC software version 5.B.Q and earlier versions from the engine as mandatory...

  13. A Review of the Suitability of Available Computer Aided Software Engineering (CASE) Tools for the Small Software Development Environment

    DTIC Science & Technology

    1989-07-11

    LITERATURE CITED [Boeh73] Boehm, Barry W., "Software and its Impact: A Quantitative Assessment," Datamation, 19, 5, (May 1973), pp 48-59. [Boeh76...Boehm, Barry W., "Software Engineering," IEEE Transactions on Computers, C-25, 12, (December 1976), pp 1226-1241. [Boeh81a] Boehm, Barry W., Software...Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs, NJ, (1981). [Boeh8lb] Boehm, Barry W., "An Experiment in Small Scale Application Software

  14. 78 FR 78939 - 36(b)(1) Arms Sales Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... Quantity or Quantities of Articles or Services under Consideration for Purchase: C-130J technical, engineering and software support; software updates and patches; familiarization training for Portable Flight... and contractor technical support services; and other related elements of logistics and program support...

  15. Statistical Software Engineering

    DTIC Science & Technology

    1998-04-13

    multiversion software subject to coincident errors. IEEE Trans. Software Eng. SE-11:1511-1517. Eckhardt, D.E., A.K Caglayan, J.C. Knight, L.D. Lee, D.F...J.C. and N.G. Leveson. 1986. Experimental evaluation of the assumption of independence in multiversion software. IEEE Trans. Software

  16. Designing Test Suites for Software Interactions Testing

    DTIC Science & Technology

    2004-01-01

    the annual cost of insufficient software testing methods and tools in the United States is between 22.2 to 59.5 billion US dollars [13, 14]. This study...10 (2004), 1–29. [21] Cheng, C., Dumitrescu, A., and Schroeder , P. Generating small com- binatorial test suites to cover input-output relationships... Proceedings of the Conference on the Future of Software Engineering (May 2000), pp. 61 – 72. [51] Hartman, A. Software and hardware testing using

  17. Guidelines for Software Engineering Education Version 1.0

    DTIC Science & Technology

    1999-11-01

    Turbo Pascal and Software Design. Sudbury, Massachusetts: Jones and Bartlett, 1997. " Deitel, Harvey M. & Deitel, Paul J. C++: How to Program . Upper...Saddle River, New Jersey: Prentice-Hall, 1997. " Deitel, Harvey M. & Deitel, Paul J. Java: How to Program . Upper Saddle River, New Jersey: Prentice-Hall

  18. cFE/CFS (Core Flight Executive/Core Flight System)

    NASA Technical Reports Server (NTRS)

    Wildermann, Charles P.

    2008-01-01

    This viewgraph presentation describes in detail the requirements and goals of the Core Flight Executive (cFE) and the Core Flight System (CFS). The Core Flight Software System is a mission independent, platform-independent, Flight Software (FSW) environment integrating a reusable core flight executive (cFE). The CFS goals include: 1) Reduce time to deploy high quality flight software; 2) Reduce project schedule and cost uncertainty; 3) Directly facilitate formalized software reuse; 4) Enable collaboration across organizations; 5) Simplify sustaining engineering (AKA. FSW maintenance); 6) Scale from small instruments to System of Systems; 7) Platform for advanced concepts and prototyping; and 7) Common standards and tools across the branch and NASA wide.

  19. Agile Software Teams: How They Engage with Systems Engineering on DoD Acquisition Programs

    DTIC Science & Technology

    2014-07-01

    under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer- ing Institute, a federally funded...issues that would preclude or limit the use of Agile methods within the DoD” [Broadus 2013]. As operational tempos increase and programs fight to...environment in which it operates . This makes software different from other disciplines that have toleranc- es, generally resulting in software engineering

  20. The SEL Adapts to Meet Changing Times

    NASA Technical Reports Server (NTRS)

    Pajerski, Rose S.; Basili, Victor R.

    1997-01-01

    Since 1976, the Software Engineering Laboratory (SEL) has been dedicated to understanding and improving the way in which one NASA organization, the Flight Dynamics Division (FDD) at Goddard Space Flight Center, develops, maintains, and manages complex flight dynamics systems. It has done this by developing and refining a continual process improvement approach that allows an organization such as the FDD to fine-tune its process for its particular domain. Experimental software engineering and measurement play a significant role in this approach. The SEL is a partnership of NASA Goddard, its major software contractor, Computer Sciences Corporation (CSC), and the University of Maryland's (LTM) Department of Computer Science. The FDD primarily builds software systems that provide ground-based flight dynamics support for scientific satellites. They fall into two sets: ground systems and simulators. Ground systems are midsize systems that average around 250 thousand source lines of code (KSLOC). Ground system development projects typically last 1 - 2 years. Recent systems have been rehosted to workstations from IBM mainframes, and also contain significant new subsystems written in C and C++. The simulators are smaller systems averaging around 60 KSLOC that provide the test data for the ground systems. Simulator development lasts up to 1 year. Most of the simulators have been built in Ada on workstations. The SEL is responsible for the management and continual improvement of the software engineering processes used on these FDD projects.

  1. CrossTalk: The Journal of Defense Software Engineering. Volume 19, Number 3

    DTIC Science & Technology

    2006-03-01

    Humphreys & Associates, Inc., 2002. 3. Humphrey , Watts S . PSP : A Self- Improvement Process for...sanderfer.html>. 5. Humphrey , Watts S . A Discipline for Software Engineering. Addison- Wesley, 1995. 6. Tuma, David, and David R. Webb. “Personal Earned Value: Why...o u r c e li n e s o f c o d e ) Figure 3: Differences for Highest Degree Attained PSP /TSP 12 CROSSTALK The Journal of Defense Software

  2. Fuzzy Logic Engine

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna

    2005-01-01

    The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.

  3. An Introduction to Object-Oriented Programming.

    DTIC Science & Technology

    1990-04-01

    therefore it is an ot ject-oriented program and 7 are (sic) an c~ect-oriented programm.er" 3.1 "BUILT-IN" LANGUAGES Sprevously def nei, a b’:i1t-in languaje ...machines. 8 3.1.2 EIFFEL Eiffel [Meye87, Meye88a, Meye88b, Meye88c] was developed by Bertrand Meyer at Interactive Software Engineering Inc. It is a...is intended to serve as both a language and environment for designing software that is easily reusable and extendible. The notion of programming as

  4. User's Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)

    NASA Technical Reports Server (NTRS)

    Frederick, Dean K.; DeCastro, Jonathan A.; Litt, Jonathan S.

    2007-01-01

    This report is a Users Guide for the NASA-developed Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) software, which is a transient simulation of a large commercial turbofan engine (up to 90,000-lb thrust) with a realistic engine control system. The software supports easy access to health, control, and engine parameters through a graphical user interface (GUI). C-MAPSS provides the user with a graphical turbofan engine simulation environment in which advanced algorithms can be implemented and tested. C-MAPSS can run user-specified transient simulations, and it can generate state-space linear models of the nonlinear engine model at an operating point. The code has a number of GUI screens that allow point-and-click operation, and have editable fields for user-specified input. The software includes an atmospheric model which allows simulation of engine operation at altitudes from sea level to 40,000 ft, Mach numbers from 0 to 0.90, and ambient temperatures from -60 to 103 F. The package also includes a power-management system that allows the engine to be operated over a wide range of thrust levels throughout the full range of flight conditions.

  5. Safety of Mixed Model Access Control in a Multilevel System

    DTIC Science & Technology

    2014-06-01

    SOFTWARE ENGINEERING from the NAVAL POSTGRADUATE SCHOOL June 2014 Author: Randall J. Arvay Approved by: James Bret Michael Dan C . Boger...5  B.  HYPOTHESIS..................................................................................................7  C .  BACKGROUND...27  C .  USE CASE ANALYSIS .................................................................................30  1.  Use Case

  6. Software Past, Present, and Future: Views from Government, Industry and Academia

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Page, Jerry; Evangelist, Michael

    2000-01-01

    Views from the NASA CIO NASA Software Engineering Workshop on software development from the past, present, and future are presented. The topics include: 1) Software Past; 2) Software Present; 3) NASA's Largest Software Challenges; 4) 8330 Software Projects in Industry Standish Groups 1994 Report; 5) Software Future; 6) Capability Maturity Model (CMM): Software Engineering Institute (SEI) levels; 7) System Engineering Quality Also Part of the Problem; 8) University Environment Trends Will Increase the Problem in Software Engineering; and 9) NASA Software Engineering Goals.

  7. Incorporating Manual and Autonomous Code Generation

    NASA Technical Reports Server (NTRS)

    McComas, David

    1998-01-01

    Code can be generated manually or using code-generated software tools, but how do you interpret the two? This article looks at a design methodology that combines object-oriented design with autonomic code generation for attitude control flight software. Recent improvements in space flight computers are allowing software engineers to spend more time engineering the applications software. The application developed was the attitude control flight software for an astronomical satellite called the Microwave Anisotropy Probe (MAP). The MAP flight system is being designed, developed, and integrated at NASA's Goddard Space Flight Center. The MAP controls engineers are using Integrated Systems Inc.'s MATRIXx for their controls analysis. In addition to providing a graphical analysis for an environment, MATRIXx includes an autonomic code generation facility called AutoCode. This article examines the forces that shaped the final design and describes three highlights of the design process: (1) Defining the manual to autonomic code interface; (2) Applying object-oriented design to the manual flight code; (3) Implementing the object-oriented design in C.

  8. In-Plant Technical Assistance for Software

    DTIC Science & Technology

    1986-09-29

    engineer who has had a few programming courses (or send him to a few), and then he will be your software engineer." ( Pressman , 1982.)* Generally, It...1984. Program Office/AFCMD Interface. AFSCR 800-42, November 1982. Pressman , Roger S., Software Engineering. McGraw-Hill, New York, 1982. Dennis...B.M.C., Norton AFB Darrah Whitlock QA Specialist, Plans & Eval. Branch Rockwell-Anaheim AFPRO Lt. Col. Barry Prins HQ/AFCMD Kirtland AFB Stan

  9. The Domain-Specific Software Architecture Program

    DTIC Science & Technology

    1992-06-01

    Kang, K.C; Cohen, S.C: Jess, J.A; Novak, W.E; Peterson, A.S. Feature- Oriented Domain Analysis ( FODA ) Feasibility Study. (CMU/SEI-90-TR-21, ADA235785...perspective of a con- trols engineer solving a problem using an iterative process of simulation and analysis . The CMU/SEI-92-SR-9 1 I ~math AnalysislP...for schedulability analysis and Markov processes for the determination of reliability. Software architectures are derived from these formal models. ORA

  10. CrossTalk: The Journal of Defense Software Engineering. Volume 21, Number 9

    DTIC Science & Technology

    2008-09-01

    including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson...SEP 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE CrossTalk: The Journal of Defense Software Engineering...The Journal of Defense Software Engineering September 2008 4 10 15 19 24 26 Securing Legacy C Applications Using Dynamic Data Flow Analysis This

  11. 2018 Ground Robotics Capabilities Conference and Exhibiton

    DTIC Science & Technology

    2018-04-11

    Transportable Robot System (MTRS) Inc 1 Non -standard Equipment (approved) Explosive Ordnance Disposal Common Robotic System-Heavy (CRS-H) Inc 1 AROC: 3-Star...and engineering • AI risk mitigation methodologies and techniques are at best immature – E.g., V&V; Probabilistic software analytics; code level...controller to minimize potential UxS mishaps and unauthorized Command and Control (C2). • PSP-10 – Ensure that software systems which exhibit non

  12. The State of Software for Evolutionary Biology.

    PubMed

    Darriba, Diego; Flouri, Tomáš; Stamatakis, Alexandros

    2018-05-01

    With Next Generation Sequencing data being routinely used, evolutionary biology is transforming into a computational science. Thus, researchers have to rely on a growing number of increasingly complex software. All widely used core tools in the field have grown considerably, in terms of the number of features as well as lines of code and consequently, also with respect to software complexity. A topic that has received little attention is the software engineering quality of widely used core analysis tools. Software developers appear to rarely assess the quality of their code, and this can have potential negative consequences for end-users. To this end, we assessed the code quality of 16 highly cited and compute-intensive tools mainly written in C/C++ (e.g., MrBayes, MAFFT, SweepFinder, etc.) and JAVA (BEAST) from the broader area of evolutionary biology that are being routinely used in current data analysis pipelines. Because, the software engineering quality of the tools we analyzed is rather unsatisfying, we provide a list of best practices for improving the quality of existing tools and list techniques that can be deployed for developing reliable, high quality scientific software from scratch. Finally, we also discuss journal as well as science policy and, more importantly, funding issues that need to be addressed for improving software engineering quality as well as ensuring support for developing new and maintaining existing software. Our intention is to raise the awareness of the community regarding software engineering quality issues and to emphasize the substantial lack of funding for scientific software development.

  13. Automating Software Design Metrics.

    DTIC Science & Technology

    1984-02-01

    INTRODUCTION 1 ", ... 0..1 1.2 HISTORICAL PERSPECTIVE High quality software is of interest to both the software engineering com- munity and its users. As...contributions of many other software engineering efforts, most notably [MCC 77] and [Boe 83b], which have defined and refined a framework for quantifying...AUTOMATION OF DESIGN METRICS Software metrics can be useful within the context of an integrated soft- ware engineering environment. The purpose of this

  14. Process Tailoring and the Software Capability Maturity Model(sm).

    DTIC Science & Technology

    1995-11-01

    A Discipline For Software Engineering, Addison-Wesley, 1995; Humphrey . This book summarizes the costs and benefits of a Personal Software Process ( PSP ...1994. [Humphrey95] Humphrey , Watts S . A Discipline For Software Engineering. Reading, MA: Addison-Wesley Publishing Company, 1995. CMUISEI-94-TR-24 43...practiced and institutionalized. 8 CMU/SEI-94-TR-24 . Leveraging mo n o s I cDocument" IRevise & Analyze Organizational LessonsApproach ’"- Define Processes

  15. Software Engineering Education Directory

    DTIC Science & Technology

    1990-04-01

    and Engineering (CMSC 735) Codes: GPEV2 * Textiooks: IEEE Tutoria on Models and Metrics for Software Management and Engameeing by Basi, Victor R...Software Engineering (Comp 227) Codes: GPRY5 Textbooks: IEEE Tutoria on Software Design Techniques by Freeman, Peter and Wasserman, Anthony 1. Software

  16. Software engineering laboratory series: Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon

    1992-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) the Software Engineering Laboratory; (2) the Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.

  17. Proceedings of the Fifteenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by GSFC and created for the purpose of investigating the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are: (1) to understand the software development process in the GSFC environment; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. Fifteen papers were presented at the Fifteenth Annual Software Engineering Workshop in five sessions: (1) SEL at age fifteen; (2) process improvement; (3) measurement; (4) reuse; and (5) process assessment. The sessions were followed by two panel discussions: (1) experiences in implementing an effective measurement program; and (2) software engineering in the 1980's. A summary of the presentations and panel discussions is given.

  18. A Framework for Software Reuse in Safety-Critical System of Systems

    DTIC Science & Technology

    2008-03-01

    environment.8 Pressman , on the other hand, defines a software component as a unit of composition with contractually specified and explicit context...2005, p654. 9 R.S. Pressman ., Software Engineering A Practitioner’s Approach, Sixth Edition, New York, NY.: McGraw-Hill, 2005, p817. 10 W.C. Lim...index.php. 79 Pressman , R.S., Software Engineering A Practitioner’s Approach, Sixth Edition, New York, NY.: McGraw-Hill, 2005. Radio Technical

  19. Software Engineering Improvement Activities/Plan

    NASA Technical Reports Server (NTRS)

    2003-01-01

    bd Systems personnel accomplished the technical responsibilities for this reporting period, as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14). Work accomplishments included development, evaluation, and enhancement of a software cost model, performing literature search and evaluation of software tools available for code analysis and requirements analysis, and participating in other relevant software engineering activities. Monthly reports were submitted. This support was provided to the Flight Software Group/ED 1 4 in accomplishing the software engineering improvement engineering activities of the Marshall Space Flight Center (MSFC) Software Engineering Improvement Plan.

  20. User's Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS): Version 2

    NASA Technical Reports Server (NTRS)

    Liu, Yuan; Frederick, Dean K.; DeCastro, Jonathan A.; Litt, Jonathan S.; Chan, William W.

    2012-01-01

    This report is a Users Guide for version 2 of the NASA-developed Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) software, which is a transient simulation of a large commercial turbofan engine (up to 90,000-lb thrust) with a realistic engine control system. The software supports easy access to health, control, and engine parameters through a graphical user interface (GUI). C-MAPSS v.2 has some enhancements over the original, including three actuators rather than one, the addition of actuator and sensor dynamics, and an improved controller, while retaining or improving on the convenience and user-friendliness of the original. C-MAPSS v.2 provides the user with a graphical turbofan engine simulation environment in which advanced algorithms can be implemented and tested. C-MAPSS can run user-specified transient simulations, and it can generate state-space linear models of the nonlinear engine model at an operating point. The code has a number of GUI screens that allow point-and-click operation, and have editable fields for user-specified input. The software includes an atmospheric model which allows simulation of engine operation at altitudes from sea level to 40,000 ft, Mach numbers from 0 to 0.90, and ambient temperatures from -60 to 103 F. The package also includes a power-management system that allows the engine to be operated over a wide range of thrust levels throughout the full range of flight conditions.

  1. Software engineering

    NASA Technical Reports Server (NTRS)

    Fridge, Ernest M., III; Hiott, Jim; Golej, Jim; Plumb, Allan

    1993-01-01

    Today's software systems generally use obsolete technology, are not integrated properly with other software systems, and are difficult and costly to maintain. The discipline of reverse engineering is becoming prominent as organizations try to move their systems up to more modern and maintainable technology in a cost effective manner. The Johnson Space Center (JSC) created a significant set of tools to develop and maintain FORTRAN and C code during development of the space shuttle. This tool set forms the basis for an integrated environment to reengineer existing code into modern software engineering structures which are then easier and less costly to maintain and which allow a fairly straightforward translation into other target languages. The environment will support these structures and practices even in areas where the language definition and compilers do not enforce good software engineering. The knowledge and data captured using the reverse engineering tools is passed to standard forward engineering tools to redesign or perform major upgrades to software systems in a much more cost effective manner than using older technologies. The latest release of the environment was in Feb. 1992.

  2. The State of Software for Evolutionary Biology

    PubMed Central

    Darriba, Diego; Flouri, Tomáš; Stamatakis, Alexandros

    2018-01-01

    Abstract With Next Generation Sequencing data being routinely used, evolutionary biology is transforming into a computational science. Thus, researchers have to rely on a growing number of increasingly complex software. All widely used core tools in the field have grown considerably, in terms of the number of features as well as lines of code and consequently, also with respect to software complexity. A topic that has received little attention is the software engineering quality of widely used core analysis tools. Software developers appear to rarely assess the quality of their code, and this can have potential negative consequences for end-users. To this end, we assessed the code quality of 16 highly cited and compute-intensive tools mainly written in C/C++ (e.g., MrBayes, MAFFT, SweepFinder, etc.) and JAVA (BEAST) from the broader area of evolutionary biology that are being routinely used in current data analysis pipelines. Because, the software engineering quality of the tools we analyzed is rather unsatisfying, we provide a list of best practices for improving the quality of existing tools and list techniques that can be deployed for developing reliable, high quality scientific software from scratch. Finally, we also discuss journal as well as science policy and, more importantly, funding issues that need to be addressed for improving software engineering quality as well as ensuring support for developing new and maintaining existing software. Our intention is to raise the awareness of the community regarding software engineering quality issues and to emphasize the substantial lack of funding for scientific software development. PMID:29385525

  3. Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Kistler, David; Bristow, John; Smith, Don

    1994-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. Nearly 200 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) The Software Engineering Laboratory; (2) The Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.

  4. Data systems and computer science: Software Engineering Program

    NASA Technical Reports Server (NTRS)

    Zygielbaum, Arthur I.

    1991-01-01

    An external review of the Integrated Technology Plan for the Civil Space Program is presented. This review is specifically concerned with the Software Engineering Program. The goals of the Software Engineering Program are as follows: (1) improve NASA's ability to manage development, operation, and maintenance of complex software systems; (2) decrease NASA's cost and risk in engineering complex software systems; and (3) provide technology to assure safety and reliability of software in mission critical applications.

  5. REDIR: Automated Static Detection of Obfuscated Anti-Debugging Techniques

    DTIC Science & Technology

    2014-03-27

    analyzing code samples that resist other forms of analysis. 2.5.6 RODS and HASTI: Software Engineering Cognitive Support Software Engineering (SE) is another...and (c) this method is resistant to common obfuscation techniques. To achieve this goal, the Data/Frame sensemaking theory guides the process of...No Starch Press, 2012. [46] C.-W. Hsu, S. W. Shieh et al., “Divergence Detector: A Fine-Grained Approach to Detecting VM-Awareness Malware,” in

  6. Software reengineering

    NASA Technical Reports Server (NTRS)

    Fridge, Ernest M., III

    1991-01-01

    Today's software systems generally use obsolete technology, are not integrated properly with other software systems, and are difficult and costly to maintain. The discipline of reverse engineering is becoming prominent as organizations try to move their systems up to more modern and maintainable technology in a cost effective manner. JSC created a significant set of tools to develop and maintain FORTRAN and C code during development of the Space Shuttle. This tool set forms the basis for an integrated environment to re-engineer existing code into modern software engineering structures which are then easier and less costly to maintain and which allow a fairly straightforward translation into other target languages. The environment will support these structures and practices even in areas where the language definition and compilers do not enforce good software engineering. The knowledge and data captured using the reverse engineering tools is passed to standard forward engineering tools to redesign or perform major upgrades to software systems in a much more cost effective manner than using older technologies. A beta vision of the environment was released in Mar. 1991. The commercial potential for such re-engineering tools is very great. CASE TRENDS magazine reported it to be the primary concern of over four hundred of the top MIS executives.

  7. Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Buhler, Melanie; Valett, Jon

    1989-01-01

    An annotated bibliography is presented of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. The bibliography was updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials were grouped into eight general subject areas for easy reference: (1) The Software Engineering Laboratory; (2) The Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. Subject and author indexes further classify these documents by specific topic and individual author.

  8. First CLIPS Conference Proceedings, volume 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The first Conference of C Language Production Systems (CLIPS) hosted by the NASA-Lyndon B. Johnson Space Center in August 1990 is presented. Articles included engineering applications, intelligent tutors and training, intelligent software engineering, automated knowledge acquisition, network applications, verification and validation, enhancements to CLIPS, space shuttle quality control/diagnosis applications, space shuttle and real-time applications, and medical, biological, and agricultural applications.

  9. Evolutionary Systems Design: Recognizing Changes in Security and Survivability Risks

    DTIC Science & Technology

    2006-09-01

    Unlimited distribution subject to the copyright. Technical Note CMU/SEI-2006-TN-027 The Software Engineering Institute is a federally...CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF...created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software

  10. Engineering Documentation and Data Control

    NASA Technical Reports Server (NTRS)

    Matteson, Michael J.; Bramley, Craig; Ciaruffoli, Veronica

    2001-01-01

    Mississippi Space Services (MSS) the facility services contractor for NASA's John C. Stennis Space Center (SSC), is utilizing technology to improve engineering documentation and data control. Two identified improvement areas, labor intensive documentation research and outdated drafting standards, were targeted as top priority. MSS selected AutoManager(R) WorkFlow from Cyco software to manage engineering documentation. The software is currently installed on over 150 desctops. The outdated SSC drafting standard was written for pre-CADD drafting methods, in other words, board drafting. Implementation of COTS software solutions to manage engineering documentation and update the drafting standard resulted in significant increases in productivity by reducing the time spent searching for documents.

  11. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert

    2005-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management andmore » software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.« less

  12. Software Reporting Metrics. Revision 2.

    DTIC Science & Technology

    1985-11-01

    MITRE Corporation and ESD. Some of the data has been obtained from Dr. Barry Boehm’s Software Engineering Economics (Ref. 1). Thanks are also given to...data level control management " SP = structured programming Barry W. Boehm, Software Engineering Economics, &©1981, p. 122. Reprinted by permission of...investigated and implemented in future prototypes. 43 REFERENCES For further reading: " 1. Boehm, Barry W. Software Engineering Economics; Englewood

  13. The Software Maintenance Spectrum: Using More than Just New Toys

    DTIC Science & Technology

    2000-04-01

    Deitel & Deitel, How to Program Java, Prentice Hall, Upper Saddle River, NJ, 1998. Bjarne Stroustrup, The C++ Programming Language, ATT Bell Labs, New... to Program Java, Prentice Hall, Upper Saddle River, NJ, 1998. Dershem, Herbert L and Michael J. Jipping, Programming Languages: Structures and Models...Chikofsky, Elliot and James Cross. Reverse Engineering and Design Recovery: A Taxonomy. IEEE Software, 7(1):13-17 (Jan 1990). Deitel & Deitel, How

  14. Training in software used by practising engineers should be included in university curricula

    NASA Astrophysics Data System (ADS)

    Silveira, A.; Perdigones, A.; García, J. L.

    2009-04-01

    Deally, an engineering education should prepare students, i.e., emerging engineers, to use problem-solving processes that synergistically combine creativity and imagination with rigour and discipline. Recently, pressures on curricula have resulted in the development of software-specific courses, often to the detriment of the understanding of theory [1]. However, it is also true that there is a demand for information technology courses by students other than computer science majors [2]. The emphasis on training engineers may be best placed on answering the needs of industry; indeed, many proposals are now being made to try to reduce the gap between the educational and industrial communities [3]. Training in the use of certain computer programs may be one way of better preparing engineering undergraduates for eventual employment in industry. However, industry's needs in this respect must first be known. The aim of this work was to determine which computer programs are used by practising agricultural engineers with the aim of incorporating training in their use into our department's teaching curriculum. The results showed that 72% of their working hours involved the use computer programs. The software packages most commonly used were Microsoft Office (used by 79% of respondents) and CAD (56%), as well as budgeting (27%), statistical (21%), engineering (15%) and GIS (13%) programs. As a result of this survey our university department opened an additional computer suite in order to provide students practical experience in the use of Microsoft Excel, budgeting and engineering software. The results of this survey underline the importance of computer software training in this and perhaps other fields of engineering. [1] D. J. Moore, and D. R. Voltmer, "Curriculum for an engineering renaissance," IEEE Trans. Educ., vol. 46, pp. 452-455, Nov. 2003. [2] N. Kock, R. Aiken, and C. Sandas, "Using complex IT in specific domains: developing and assessing a course for nonmajors," IEEE Trans. Educ., vol. 45, pp. 50- 56, Feb. 2002. [3] I. Vélez, and J. F. Sevillano, "A course to train digital hardware designers for industry," IEEE Trans. Educ., vol. 50, pp. 236-243, Aug. 2007. Acknowledgement: This work was supported in part by the Universidad Politécnica de Madrid, Spain.

  15. A Brain-Based Communication and Orientation System

    DTIC Science & Technology

    2014-10-06

    Review of the BCI Competition IV, Frontiers in Neuroscience, ( 2012): 0. doi: 10.3389/fnins.2012.00055 Eric C. Leuthardt, Xiao-Mei Pei, Jonathan...hardware and software for brain– computer interfaces ( BCIs ), Journal of Neural Engineering, (04 2011): 1. doi: 10.1088/1741-2560/8/2/025001...Cincotti, G. Schalk, Peter Brunner. Current Trends in Brain–Computer Interface ( BCI ) Research and Development, Journal of Neural Engineering, (3 2011

  16. Software And Systems Engineering Risk Management

    DTIC Science & Technology

    2010-04-01

    RSKM 2004 COSO Enterprise RSKM Framework 2006 ISO/IEC 16085 Risk Management Process 2008 ISO/IEC 12207 Software Lifecycle Processes 2009 ISO/IEC...1 Software And Systems Engineering Risk Management John Walz VP Technical and Conferences Activities, IEEE Computer Society Vice-Chair Planning...Software & Systems Engineering Standards Committee, IEEE Computer Society US TAG to ISO TMB Risk Management Working Group Systems and Software

  17. Applying object-oriented software engineering at the BaBar collaboration

    NASA Astrophysics Data System (ADS)

    Jacobsen, Bob; BaBar Collaboration Reconstruction Software Group

    1997-02-01

    The BaBar experiment at SLAC will start taking data in 1999. We are attempting to build its reconstruction software using good software engineering practices, including the use of object-oriented technology. We summarize our experience to date with analysis and design activities, training, CASE and documentation tools, C++ programming practice and similar topics. The emphasis is on the practical issues of simultaneously introducing new techniques to a large collaboration while under a deadline for system delivery.

  18. DMPL: Programming and Verifying Distributed Mixed Synchrony and Mixed Critical Software

    DTIC Science & Technology

    2016-06-16

    ference on Intelligent Robots and Systems, pages 1495–1502, Chicago, IL, September 2014. IEEE Computer Society. [21] MADARA website . http://sourceforge.net...4.6 DMPL program for 5- robot reconnaissance example 19 Figure 5.1 Generated C++ code for example DMPL program. In practice, local vari- ables (lines...examples of collision avoidance in multi- robot systems. CMU/SEI-2016-TR-005 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University vii

  19. Area navigation implementation for a microcomputer-based LORAN-C receiver

    NASA Technical Reports Server (NTRS)

    Oguri, F.

    1983-01-01

    Engineering performed to make LORAN-C a more useful and practical navigation system for general aviation is described. Development of new software, and implementation of this software on a (MOS6502) microcomputer to provide high quality practical area navigation information directly to the pilot and considered. Flight tests were performed specifically to examine the efficacy of this new software. Final results were exceptionally good and clearly demonstrate the merits of this new LORAN-C area navigation system.

  20. Design Optimization Toolkit: Users' Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilo Valentin, Miguel Alejandro

    The Design Optimization Toolkit (DOTk) is a stand-alone C++ software package intended to solve complex design optimization problems. DOTk software package provides a range of solution methods that are suited for gradient/nongradient-based optimization, large scale constrained optimization, and topology optimization. DOTk was design to have a flexible user interface to allow easy access to DOTk solution methods from external engineering software packages. This inherent flexibility makes DOTk barely intrusive to other engineering software packages. As part of this inherent flexibility, DOTk software package provides an easy-to-use MATLAB interface that enables users to call DOTk solution methods directly from the MATLABmore » command window.« less

  1. Ada (Trademark) Training Curriculum. Software Engineering Methodologies M201 Teacher’s Guide. Volume 3.

    DTIC Science & Technology

    1986-01-01

    TRAINING CURRICULUM SOFTWARE 3/5’ENGNEERNG ETHODOLOGES 281 TEACHER’S GUIDE VOLMEU SOTC N TA A 96DA0 -3CK L(U) S F TECH INC ALTHAM MA 1986 DAAB9?-83-C...La. V)W V 0 W Wx ci >A. I- 8 0 x I- W L) 0 Z I- c 0.-ZW (n .w (x a. CLV 4 WZ0 o 0 W 1r 0 X 0 ZwI La. a) >1 0 ZU z W IA. 0 w W .... WW I 14-4D - Z 0 x...WWO= z (a~ I-- (i " c w m cal x Z w WW0.WW= woC-0ww cc Q z = lW"x w’-4ww 0 X=.-U ==L~lIl Ca- LUw w C. wow m ).i~ -4,C I -s-0. s- zwi LU -4 LU 0 LU W

  2. Computer Aided Software Engineering (CASE) Environment Issues.

    DTIC Science & Technology

    1987-06-01

    tasks tend to be error prone and slowv when done by humans . Ti-.c,. are e’.el nt anidates for automation using a computer. (MacLennan. 10S1. p. 51 2...CASE r,’sourCcs; * human resources. Lonsisting of the people who use and facilitate utilization in !:1e case of manual resource, of the environment...engineering process in a given er,%irent rnizthe nature of rnanua! and human resources. CA.SU_ -esources should provide the softwvare enizincerin2 team

  3. Proceedings of the 19th Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are: (1) to understand the software development process in the GSFC environment; (2) to measure the effects of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that include this document.

  4. Annotated bibliography of Software Engineering Laboratory literature

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is presented. More than 100 publications are summarized. These publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials are grouped into five general subject areas for easy reference: (1) the software engineering laboratory; (2) software tools; (3) models and measures; (4) technology evaluations; and (5) data collection. An index further classifies these documents by specific topic.

  5. Investigation of near-surface chemical, physical and mechanical properties of silicon carbide crystals and fibers modified by ion implantation

    NASA Astrophysics Data System (ADS)

    Spitznagel, J. A.; Wood, Susan

    1988-08-01

    The Software Engineering institute is a federally funded research and development center sponsored by the Department of Defense (DOD). It was chartered by the Undersecretary of Defense for Research and Engineering on June 15, 1984. The SEI was established and is operated by Carnegie Mellon University (CUM) under contract F19628-C-0003, which was competitively awarded on December 28, 1984, by the Air Force Electronic Systems Division. The mission of the SEI is to provide the means to bring the ablest minds and the most effective technology to bear on the rapid improvement of the quality of operational software in mission-critical computer systems; to accelerate the reduction to practice of modern software engineering techniques and methods; to promulgate the use of modern techniques and methods throughout the mission-critical systems community; and to establish standards of excellence for the practice of software engineering. This report provides a summary of the programs and projects, staff, facilities, and service accomplishments of the Software Engineering Institute during 1987.

  6. A Requirement Specification Language for AADL

    DTIC Science & Technology

    2016-06-01

    008 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Distribution Statement A: Approved for Public Release; Distribution is Unlimited...Copyright 2016 Carnegie Mellon University This material is based upon work funded and supported by the Department of Defense under Contract No...FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer- ing Institute, a federally funded research and development

  7. NoSQL Data Store Technologies

    DTIC Science & Technology

    2014-09-01

    NoSQL Data Store Technologies John Klein, Software Engineering Institute Patrick Donohoe, Software Engineering Institute Neil Ernst...REPORT TYPE N/A 3. DATES COVERED 4. TITLE AND SUBTITLE NoSQL Data Store Technologies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...distribute data 4. Data Replication – determines how a NoSQL database facilitates reliable, high performance data replication to build

  8. Software For Computer-Aided Design Of Control Systems

    NASA Technical Reports Server (NTRS)

    Wette, Matthew

    1994-01-01

    Computer Aided Engineering System (CAESY) software developed to provide means to evaluate methods for dealing with users' needs in computer-aided design of control systems. Interpreter program for performing engineering calculations. Incorporates features of both Ada and MATLAB. Designed to be flexible and powerful. Includes internally defined functions, procedures and provides for definition of functions and procedures by user. Written in C language.

  9. A Brief Study of Software Engineering Professional Continuing Education in DoD Acquisition

    DTIC Science & Technology

    2010-04-01

    Lifecycle Processes (IEEE 12207 ) (810) 37% 61% 2% Guide to the Software Engineering Body of K l d (SWEBOK) (804) 67% 31% 2% now e ge Software...Engineering-Software Measurement Process ( ISO /IEC 15939) (797) 55% 44% 2% Capability Maturity Model Integration (806) 17% 81% 2% Six Sigma Process...Improvement (804) 7% 91% 1% ISO 9000 Quality Management Systems (803) 10% 89% 1% 28 Conclusions Significant problem areas R i tequ remen s Management Very

  10. Computer-aided system design

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.

    1991-01-01

    A technique has been developed for combining features of a systems architecture design and assessment tool and a software development tool. This technique reduces simulation development time and expands simulation detail. The Architecture Design and Assessment System (ADAS), developed at the Research Triangle Institute, is a set of computer-assisted engineering tools for the design and analysis of computer systems. The ADAS system is based on directed graph concepts and supports the synthesis and analysis of software algorithms mapped to candidate hardware implementations. Greater simulation detail is provided by the ADAS functional simulator. With the functional simulator, programs written in either Ada or C can be used to provide a detailed description of graph nodes. A Computer-Aided Software Engineering tool developed at the Charles Stark Draper Laboratory (CSDL CASE) automatically generates Ada or C code from engineering block diagram specifications designed with an interactive graphical interface. A technique to use the tools together has been developed, which further automates the design process.

  11. Software System User’s Manual, Reference Manual, and Installation Guide for the Test Engineer’s Assistant System.

    DTIC Science & Technology

    1989-02-28

    AD-A259 245 RESEARCH TRIANGLE INSTITUTE I SOFTWARE SYSTEM USER’S MANUAL, REFERENCE MANUAL, AND INSTALLATION GUIDE FOR THE TEST ENGINEER’S ASSISTANT...SYSTEM U. yD"VxC - February 28, 1989 Iŕ 5 G3 ’Contract No. DAAL01-86-C-0039 W Prepared for: Department of the Army Electronics Research and...Development Command Fort Monmouth, New Jersey 07703 I Prepared by: Center for Digital Systems ResearchI Research Triangle Institute Research Triangle Park, NC

  12. Software Engineering Laboratory (SEL) data base reporting software user's guide and system description. Volume 1: Introduction and user's guide

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Reporting software programs provide formatted listings and summary reports of the Software Engineering Laboratory (SEL) data base contents. The operating procedures and system information for 18 different reporting software programs are described. Sample output reports from each program are provided.

  13. A Brief Survey of the Team Software ProcessSM (TSPSM)

    DTIC Science & Technology

    2011-10-24

    spent more than 20 years in industry as a software engineer, system designer, project leader, and development manager working on control systems...InnerWorkings, Inc. Instituto Tecnologico y de Estudios Superiores de Monterrey Siemens AG SILAC Ingenieria de Software S.A. de C.V

  14. Playing Detective: Reconstructing Software Architecture from Available Evidence

    DTIC Science & Technology

    1997-10-01

    information • PostgreSQL (based on POSTGRES [Stonebraker 90]) for model storage • IAPR [Kazman 96c], RMTool [Murphy 95], and Perl for analysis and...720-741. Stonebraker, M.; Rowe, L; & Hirohama, M. ’The Implementation of POSTGRES ." IEEE Transactions on Knowledge and Data Engineering 2,1 (March...Engineering 19,7 (July 1993): 720-741. Stonebraker, M.; Rowe, L; & Hirohama, M. "The Implementation of POSTGRES ." IEEE Transactions on Knowledge and

  15. Use of Soft Computing Technologies For Rocket Engine Control

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.; Olcmen, Semih; Polites, Michael

    2003-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to further improve overall engine system reliability and performance. Specifically, this will be presented by enhancing rocket engine control and engine health management (EHM) using SCT coupled with conventional control technologies, and sound software engineering practices used in Marshall s Flight Software Group. The principle goals are to improve software management, software development time and maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control and EHM methodologies, but to provide alternative design choices for control, EHM, implementation, performance, and sustaining engineering. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion, software engineering for embedded systems, and soft computing technologies (i.e., neural networks, fuzzy logic, and Bayesian belief networks), much of which is presented in this paper. The first targeted demonstration rocket engine platform is the MC-1 (formerly FASTRAC Engine) which is simulated with hardware and software in the Marshall Avionics & Software Testbed laboratory that

  16. Toward Reusable Graphics Components in Ada

    DTIC Science & Technology

    1993-03-01

    Then alternatives for obtaining well- engineered reusable software components were examined. Finally, the alternatives were analyzed, and the most...reusable software components. Chapter 4 describes detailed design and implementation strategies in building a well- engineered reusable set of components in...study. 2.2 The Object-Oriented Paradigm 2.2.1 The Need for Object-Oriented Techniques. Among software engineers the software crisis is a well known

  17. The Environment for Application Software Integration and Execution (EASIE) version 1.0. Volume 1: Executive overview

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Davis, John S.

    1989-01-01

    The Environment for Application Software Integration and Execution (EASIE) provides a methodology and a set of software utility programs to ease the task of coordinating engineering design and analysis codes. EASIE was designed to meet the needs of conceptual design engineers that face the task of integrating many stand-alone engineering analysis programs. Using EASIE, programs are integrated through a relational database management system. Volume 1, Executive Overview, gives an overview of the functions provided by EASIE and describes their use. Three operational design systems based upon the EASIE software are briefly described.

  18. Using Honeynets and the Diamond Model for ICS Threat Analysis

    DTIC Science & Technology

    2016-05-11

    TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Distribution Statement A: Approved for Public Release; Distribution is...Unlimited Copyright 2016 Carnegie Mellon University This material is based upon work funded and supported by Department of Homeland Security under Contract...No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and

  19. Flight Software Math Library

    NASA Technical Reports Server (NTRS)

    McComas, David

    2013-01-01

    The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.

  20. The Impact of Software on Associate Degree Programs in Electronic Engineering Technology.

    ERIC Educational Resources Information Center

    Hata, David M.

    1986-01-01

    Assesses the range and extent of computer assisted instruction software available in electronic engineering technology education. Examines the need for software skills in four areas: (1) high-level languages; (2) assembly language; (3) computer-aided engineering; and (4) computer-aided instruction. Outlines strategies for the future in three…

  1. Parametric Design and Mechanical Analysis of Beams based on SINOVATION

    NASA Astrophysics Data System (ADS)

    Xu, Z. G.; Shen, W. D.; Yang, D. Y.; Liu, W. M.

    2017-07-01

    In engineering practice, engineer needs to carry out complicated calculation when the loads on the beam are complex. The processes of analysis and calculation take a lot of time and the results are unreliable. So VS2005 and ADK are used to develop a software for beams design based on the 3D CAD software SINOVATION with C ++ programming language. The software can realize the mechanical analysis and parameterized design of various types of beams and output the report of design in HTML format. Efficiency and reliability of design of beams are improved.

  2. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  3. Emerging Software Development and Acquisition Approaches: Panacea or Villain

    DTIC Science & Technology

    2011-05-16

    2010 Carnegie Mellon University Emerging Software Development and Acquisition Approaches: Panacea or Villain Software Engineering Institute...aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services , Directorate for...Emerging Software Development and Acquisition Approaches: Panacea or Villain 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  4. CrossTalk. The Journal of Defense Software Engineering. Volume 25, Number 1, Jan/Feb 2012

    DTIC Science & Technology

    2012-01-01

    Considerations in Airborne Systems and Equipment Certification – RTCA/DO-178B,” Washington, D.C., 1992. 5. Ishikawa , Kaoru (Translator: J. H...significant, repeated issue, a formal root cause analysis process is performed. This method uses fishbone or Ishikawa diagrams [5], where possible

  5. Applying the Goal-Question-Indicator-Metric (GQIM) Method to Perform Military Situational Analysis

    DTIC Science & Technology

    2016-05-11

    www.sei.cmu.edu CMU/SEI-2016-TN-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Distribution Statement A: Approved for Public Release...Distribution is Unlimited Copyright 2016 Carnegie Mellon University This material is based upon work funded and supported by the Department of...Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally

  6. A Family of SCAMPI Appraisal Methods

    DTIC Science & Technology

    2003-01-01

    CarnegieMellon Software Engineering Institute A Family of SCAMPISM Appraisal Methods Will Hayes Gene Miluk Dave Kitson Report Documentation Page Form...COVERED 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE A Family of SCAMPIsm Appraisal Methods 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Based Management © 2003 by Carnegie Mellon University wh SEPG03 page 17 CarnegieMellon Software Engineering Institute Presentation Outline Examples of

  7. The Use of Empirical Studies in the Development of High End Computing Applications

    DTIC Science & Technology

    2009-12-01

    34, Proceeding of 5th ACM-IEEE International Symposium on Empirical Software Engineering (ISESE󈧊), Rio de Janeiro , Brazil, September, 2006. 8. Jeffrey C...Symposium on Empirical Software Engineering, (ISESE), Rio de Janeiro , September, 2006. [26] Zelkowitz M. , V. Basili, S. Asgari, L. Hochstein, J...data is consistently collected across studies. 4. Sanitization of sensitive data. The framework provides external researcher with access to the

  8. Florida specific NTCIP MIB development for actuated signal controller (ASC), closed-circuit television (CCTV), and center-to-center (C2C) communications with SunGuideSM software and ITS device test procedure development : summary of final report.

    DOT National Transportation Integrated Search

    2009-06-01

    To provide hardware, software, network, systems research, and testing for multi-million dollar traffic : operations, Intelligent Transportation Systems (ITS), and statewide communications investments, the : Traffic Engineering and Operations Office h...

  9. Florida specific NTCIP MIB development for actuated signal controller (ASC), closed-circuit television (CCTV), and center-to-center (C2C) communications with SunGuideSM software and ITS device test procedure development : executive summary.

    DOT National Transportation Integrated Search

    2009-06-01

    To provide hardware, software, network, systems research, and testing for multi-million : dollar traffic operations, Intelligent Transportation Systems (ITS), and statewide : communications investments, the Traffic Engineering and Operations Office h...

  10. Proceedings of the Twenty-Fourth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On December 1 and 2, the Software Engineering Laboratory (SEL), a consortium composed of NASA/Goddard, the University of Maryland, and CSC, held the 24th Software Engineering Workshop (SEW), the last of the millennium. Approximately 240 people attended the 2-day workshop. Day 1 was composed of four sessions: International Influence of the Software Engineering Laboratory; Object Oriented Testing and Reading; Software Process Improvement; and Space Software. For the first session, three internationally known software process experts discussed the influence of the SEL with respect to software engineering research. In the Space Software session, prominent representatives from three different NASA sites- GSFC's Marti Szczur, the Jet Propulsion Laboratory's Rick Doyle, and the Ames Research Center IV&V Facility's Lou Blazy- discussed the future of space software in their respective centers. At the end of the first day, the SEW sponsored a reception at the GSFC Visitors' Center. Day 2 also provided four sessions: Using the Experience Factory; A panel discussion entitled "Software Past, Present, and Future: Views from Government, Industry, and Academia"; Inspections; and COTS. The day started with an excellent talk by CSC's Frank McGarry on "Attaining Level 5 in CMM Process Maturity." Session 2, the panel discussion on software, featured NASA Chief Information Officer Lee Holcomb (Government), our own Jerry Page (Industry), and Mike Evangelist of the National Science Foundation (Academia). Each presented his perspective on the most important developments in software in the past 10 years, in the present, and in the future.

  11. Artificial Intelligence Software Acquisition Program. Volume 2.

    DTIC Science & Technology

    1987-12-01

    34Architect tire prototyping in the software engineering environment". 1BBA! .’ qtins Jo urnal, vol. 23, No. 1, p. 4-18, 1984. 3v Boehmi, Barry W_. Gray...on Artificial Intelligence, Sponsored by AAAI, December 1986. ..- ~[31] Pressman , Roger S. "Software Engineering: A Practitioner’s Approach". McGraw

  12. The TSO Logic and G2 Software Product

    NASA Technical Reports Server (NTRS)

    Davis, Derrick D.

    2014-01-01

    This internship assignment for spring 2014 was at John F. Kennedy Space Center (KSC), in NASAs Engineering and Technology (NE) group in support of the Control and Data Systems Division (NE-C) within the Systems Hardware Engineering Branch. (NEC-4) The primary focus was in system integration and benchmarking utilizing two separate computer software products. The first half of this 2014 internship is spent in assisting NE-C4s Electronics and Embedded Systems Engineer, Kelvin Ruiz and fellow intern Scott Ditto with the evaluation of a newly piece of software, called G2. Its developed by the Gensym Corporation and introduced to the group as a tool used in monitoring launch environments. All fellow interns and employees of the G2 group have been working together in order to better understand the significance of the G2 application and how KSC can benefit from its capabilities. The second stage of this Spring project is to assist with an ongoing integration of a benchmarking tool, developed by a group of engineers from a Canadian based organization known as TSO Logic. Guided by NE-C4s Computer Engineer, Allen Villorin, NASA 2014 interns put forth great effort in helping to integrate TSOs software into the Spaceport Processing Systems Development Laboratory (SPSDL) for further testing and evaluating. The TSO Logic group claims that their software is designed for, monitoring and reducing energy consumption at in-house server farms and large data centers, allows data centers to control the power state of servers, without impacting availability or performance and without changes to infrastructure and the focus of the assignment is to test this theory. TSOs Aaron Rallo Founder and CEO, and Chris Tivel CTO, both came to KSC to assist with the installation of their software in the SPSDL laboratory. TSOs software is installed onto 24 individual workstations running three different operating systems. The workstations were divided into three groups of 8 with each group having its own operating system. The first group is comprised of Ubuntus Debian -based Linux the second group is windows 7 Professional and the third group ran Red Hat Linux. The highlight of this portion of the assignment is to compose documentation expressing the overall impression of the software and its capabilities.

  13. Intelligent Systems and Advanced User Interfaces for Design, Operation, and Maintenance of Command Management Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.

  14. Modelling of diesel engine fuelled with biodiesel using engine simulation software

    NASA Astrophysics Data System (ADS)

    Said, Mohd Farid Muhamad; Said, Mazlan; Aziz, Azhar Abdul

    2012-06-01

    This paper is about modelling of a diesel engine that operates using biodiesel fuels. The model is used to simulate or predict the performance and combustion of the engine by simplified the geometry of engine component in the software. The model is produced using one-dimensional (1D) engine simulation software called GT-Power. The fuel properties library in the software is expanded to include palm oil based biodiesel fuels. Experimental works are performed to investigate the effect of biodiesel fuels on the heat release profiles and the engine performance curves. The model is validated with experimental data and good agreement is observed. The simulation results show that combustion characteristics and engine performances differ when biodiesel fuels are used instead of no. 2 diesel fuel.

  15. Methodology for automating software systems. Task 1 of the foundations for automating software systems

    NASA Technical Reports Server (NTRS)

    Moseley, Warren

    1989-01-01

    The early stages of a research program designed to establish an experimental research platform for software engineering are described. Major emphasis is placed on Computer Assisted Software Engineering (CASE). The Poor Man's CASE Tool is based on the Apple Macintosh system, employing available software including Focal Point II, Hypercard, XRefText, and Macproject. These programs are functional in themselves, but through advanced linking are available for operation from within the tool being developed. The research platform is intended to merge software engineering technology with artificial intelligence (AI). In the first prototype of the PMCT, however, the sections of AI are not included. CASE tools assist the software engineer in planning goals, routes to those goals, and ways to measure progress. The method described allows software to be synthesized instead of being written or built.

  16. Collected Software Engineering Papers, Volume 10

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document is a collection of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) from Oct. 1991 - Nov. 1992. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. Although these papers cover several topics related to software engineering, they do not encompass the entire scope of SEL activities and interests. Additional information about the SEL and its research efforts may be obtained from the sources listed in the bibliography at the end of this document. For the convenience of this presentation, the 11 papers contained here are grouped into 5 major sections: (1) the Software Engineering Laboratory; (2) software tools studies; (3) software models studies; (4) software measurement studies; and (5) Ada technology studies.

  17. Technology Infusion of CodeSonar into the Space Network Ground Segment

    NASA Technical Reports Server (NTRS)

    Benson, Markland J.

    2009-01-01

    This slide presentation reviews the applicability of CodeSonar to the Space Network software. CodeSonar is a commercial off the shelf system that analyzes programs written in C, C++ or Ada for defects in the code. Software engineers use CodeSonar results as an input to the existing source code inspection process. The study is focused on large scale software developed using formal processes. The systems studied are mission critical in nature but some use commodity computer systems.

  18. Insider Threat Control: Using Universal Serial Bus (USB) Device Auditing to Detect Possible Data Exfiltration by Malicious Insiders

    DTIC Science & Technology

    2013-01-01

    under Contract No. FA8721-05- C -0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded...logging capabilities or further modify the control to best suit its needs. 1.1 Audience and Structure of This Report This report is a hands -on guide...the follow- ing directory: C :\\Admin_Tools\\USB_Audit\\ When selecting a deployment path, avoid using spaces in directory names since this will cause

  19. CrossTalk: The Journal of Defense Software Engineering. Volume 25, Number 1, January/February 2012

    DTIC Science & Technology

    2012-02-01

    Equipment Certification – RTCA/DO-178B,” Washington, D.C., 1992. 5. Ishikawa , Kaoru (Translator: J. H. Loftus), Introduction to Quality Control, Tokyo...cause analysis process is performed. This method uses fishbone or Ishikawa diagrams [5], where possible causes for the outliers are listed, followed by

  20. The Development of Ada (Trademark) Software for Secure Environments

    DTIC Science & Technology

    1986-05-23

    Telecommunications environment, This paper discusses software socurity and seeks to demostrate how the Ada programming language can be utilizec as a tool...complexity 4 . We use abstraction in our lives every day to control complexity; the principles of abstraction for software engineering are ro different...systems. These features directly sup,) )-t t.ie m odernp software engineering principles d1 s I , , 1 t, thne previous section. This is not surprising

  1. Software Development in the Water Sciences: a view from the divide (Invited)

    NASA Astrophysics Data System (ADS)

    Miles, B.; Band, L. E.

    2013-12-01

    While training in statistical methods is an important part of many earth scientists' training, these scientists often learn the bulk of their software development skills in an ad hoc, just-in-time manner. Yet to carry out contemporary research scientists are spending more and more time developing software. Here I present perspectives - as an earth sciences graduate student with professional software engineering experience - on the challenges scientists face adopting software engineering practices, with an emphasis on areas of the science software development lifecycle that could benefit most from improved engineering. This work builds on experience gained as part of the NSF-funded Water Science Software Institute (WSSI) conceptualization award (NSF Award # 1216817). Throughout 2013, the WSSI team held a series of software scoping and development sprints with the goals of: (1) adding features to better model green infrastructure within the Regional Hydro-Ecological Simulation System (RHESSys); and (2) infusing test-driven agile software development practices into the processes employed by the RHESSys team. The goal of efforts such as the WSSI is to ensure that investments by current and future scientists in software engineering training will enable transformative science by improving both scientific reproducibility and researcher productivity. Experience with the WSSI indicates: (1) the potential for achieving this goal; and (2) while scientists are willing to adopt some software engineering practices, transformative science will require continued collaboration between domain scientists and cyberinfrastructure experts for the foreseeable future.

  2. 48 CFR 209.571-6 - Identification of organizational conflicts of interest.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... business units performing systems engineering and technical assistance, professional services, or... parent corporate entity, particularly the award of a subcontract for software integration or the development of a proprietary software system architecture; and (c) The performance by, or assistance of...

  3. 48 CFR 209.571-6 - Identification of organizational conflicts of interest.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... business units performing systems engineering and technical assistance, professional services, or... parent corporate entity, particularly the award of a subcontract for software integration or the development of a proprietary software system architecture; and (c) The performance by, or assistance of...

  4. 48 CFR 209.571-6 - Identification of organizational conflicts of interest.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... business units performing systems engineering and technical assistance, professional services, or... parent corporate entity, particularly the award of a subcontract for software integration or the development of a proprietary software system architecture; and (c) The performance by, or assistance of...

  5. Crosstalk: The Journal of Defense Software Engineering. Volume 18, Number 1

    DTIC Science & Technology

    2005-01-01

    d o t . o r g / a s k slashdot/04/04/12/1757244.shtml>. 5. Dibona , C., et al. Open Sources: Voices From the Open Source Rev- olution. 1st ed. O’Reilly...Volume 18, Number 1, January 2005 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) OO-ALC/MASE,6022 Fir Ave,Hill AFB,UT,84056-5820 8. PERFORMING

  6. Payload specialist station study. Volume 3: Program study cost estimates. Part 1: Work breakdown structure

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The work breakdown structure (WBS) for the Payload Specialist Station (PSS) is presented. The WBS is divided into two elements--PSS contractor and mission unique requirements. In accordance with the study ground rules, it is assumed that a single contractor, hereafter referred to as PSS Contractor will perform the following: (1) provide C and D hardware (MFDS and elements of MMSE), except for GFE; (2) identify software requirements; (3) provide GSE and ground test software; and (4) perform systems engineering and integration in support of the Aft Flight Deck (AFD) C and D concept. The PSS Contractor WBS element encompasses a core or standardized PSS concept. Payload peculiar C and D requirements identified by users will originate as a part of the WBS element mission unique requirements; these requirements will be provided to the PSS Contractor for implementation.

  7. JTIDS Software and Test Engineering

    DTIC Science & Technology

    1994-08-01

    AD-A284 134 Final Technical Report August 1994 / JTIDS SOFTWARE AND TEST ENGINEERING D TI’-C--• - Harris Corporation 5LP0 8 1994 Dennis Tebbe F W...PERFORMING ORGANIZATION Harris Corporation REPORT NUMBER P 0 Box 91000 N/A Melbourne FL 32902 a SPONOFNGIMONING AGENCY NAME($) AND ADORESS(ES) 10...Force Base, New York 94 900 186 This report has been reviewed by the Rome Laboratory Public Affairs Office (PA) and is releasable to the National

  8. CrossTalk: The Journal of Defense Software Engineering. Volume 18, Number 9

    DTIC Science & Technology

    2005-09-01

    2004. 12. Humphrey , Watts . Introduction to the Personal Software Process SM. Addison- Wesley 1997. 13. Humphrey , Watts . Introduction to the Team...Personal Software ProcessSM (PSPSM)is a software development process orig- inated by Watts Humphrey at the Software Engineering Institute (SEI) in the...meets its commitments and bring a sense of control and predictability into an apparently chaotic project.u References 1. Humphrey , Watts . Coaching

  9. Turbine Engine Control Synthesis. Volume 2. Simulation and Controller Software

    DTIC Science & Technology

    1975-03-01

    22141 0075 0 0010 129 ST039 DC 16 0076 0 FOAO 130 ST04o nr -3936 N GAIN 1OOtE) 0077 0 0670 131 T51041 C 1648 Wf l- ( 100 ,E) - - "Ŕ-󈧋-8--1FA4-- 132...Calculation 131 Equilibrium- Temperature Software 131 Initialization 132 Interpolation Interval Determination 132 Interpolation Logic 133 Filtering Logic...eNJC1 131 : * PP3.(t..PSTPbNiR(A)/TV3).U1-• 025: •v53T.KUAL-;w)*(- 4-Pt5 133: * TV*/,V4 Irflw# * S TTcTv*/18.7) 13s: v3 L’s rtVcLL,(4)aArt IaJV44/(3RTh44

  10. Video-Game-Like Engine for Depicting Spacecraft Trajectories

    NASA Technical Reports Server (NTRS)

    Upchurch, Paul R.

    2009-01-01

    GoView is a video-game-like software engine, written in the C and C++ computing languages, that enables real-time, three-dimensional (3D)-appearing visual representation of spacecraft and trajectories (1) from any perspective; (2) at any spatial scale from spacecraft to Solar-system dimensions; (3) in user-selectable time scales; (4) in the past, present, and/or future; (5) with varying speeds; and (6) forward or backward in time. GoView constructs an interactive 3D world by use of spacecraft-mission data from pre-existing engineering software tools. GoView can also be used to produce distributable application programs for depicting NASA orbital missions on personal computers running the Windows XP, Mac OsX, and Linux operating systems. GoView enables seamless rendering of Cartesian coordinate spaces with programmable graphics hardware, whereas prior programs for depicting spacecraft trajectories variously require non-Cartesian coordinates and/or are not compatible with programmable hardware. GoView incorporates an algorithm for nonlinear interpolation between arbitrary reference frames, whereas the prior programs are restricted to special classes of inertial and non-inertial reference frames. Finally, whereas the prior programs present complex user interfaces requiring hours of training, the GoView interface provides guidance, enabling use without any training.

  11. Evaluation of Software Dependability at the Architecture Definition Stage

    DTIC Science & Technology

    2010-06-01

    hi te ct ur e_ Q ua lit y R ob us tn es s Fa ul tT ol er an ce C om pl ex ity M od ifi ab ili tyM od ul ar ity C ou pl in g C ha ng e_ P ro pa ga tio...Software Engineering Research Center ( SERC ), SERC -TR-272, 19 p., May 2005 Sutcliffe, A and Gregoriades, A. Validating Functional System Requirements with

  12. Analysis of Ten Reverse Engineering Tools

    NASA Astrophysics Data System (ADS)

    Koskinen, Jussi; Lehmonen, Tero

    Reverse engineering tools can be used in satisfying the information needs of software maintainers. Especially in case of maintaining large-scale legacy systems tool support is essential. Reverse engineering tools provide various kinds of capabilities to provide the needed information to the tool user. In this paper we analyze the provided capabilities in terms of four aspects: provided data structures, visualization mechanisms, information request specification mechanisms, and navigation features. We provide a compact analysis of ten representative reverse engineering tools for supporting C, C++ or Java: Eclipse Java Development Tools, Wind River Workbench (for C and C++), Understand (for C++), Imagix 4D, Creole, Javadoc, Javasrc, Source Navigator, Doxygen, and HyperSoft. The results of the study supplement the earlier findings in this important area.

  13. Software Technology for Adaptable, Reliable Systems (STARS): UUS40 - Risk-Reduction Reasoning-Based Development Paradigm Tailored to Navy C2 Systems

    DTIC Science & Technology

    1991-07-30

    4 Management reviews, engineering and WBS -Spiral 0 -5 *Risk Management Planning -Spiral 0-5 ,41.- Unrelsi ugt .Proper initial planning -Spiral 0.1...Reusability issues for trusted systems are associated closely with maintenance issues. Reuse theory and practice for highly trusted systems will require

  14. Approximation of Engine Casing Temperature Constraints for Casing Mounted Electronics

    NASA Technical Reports Server (NTRS)

    Kratz, Jonathan L.; Culley, Dennis E.; Chapman, Jeffryes W.

    2017-01-01

    The performance of propulsion engine systems is sensitive to weight and volume considerations. This can severely constrain the configuration and complexity of the control system hardware. Distributed Engine Control technology is a response to these concerns by providing more flexibility in designing the control system, and by extension, more functionality leading to higher performing engine systems. Consequently, there can be a weight benefit to mounting modular electronic hardware on the engine core casing in a high temperature environment. This paper attempts to quantify the in-flight temperature constraints for engine casing mounted electronics. In addition, an attempt is made at studying heat soak back effects. The Commercial Modular Aero Propulsion System Simulation 40k (C-MAPSS40k) software is leveraged with real flight data as the inputs to the simulation. A two-dimensional (2-D) heat transfer model is integrated with the engine simulation to approximate the temperature along the length of the engine casing. This modification to the existing C-MAPSS40k software will provide tools and methodologies to develop a better understanding of the requirements for the embedded electronics hardware in future engine systems. Results of the simulations are presented and their implications on temperature constraints for engine casing mounted electronics is discussed.

  15. Approximation of Engine Casing Temperature Constraints for Casing Mounted Electronics

    NASA Technical Reports Server (NTRS)

    Kratz, Jonathan; Culley, Dennis; Chapman, Jeffryes

    2016-01-01

    The performance of propulsion engine systems is sensitive to weight and volume considerations. This can severely constrain the configuration and complexity of the control system hardware. Distributed Engine Control technology is a response to these concerns by providing more flexibility in designing the control system, and by extension, more functionality leading to higher performing engine systems. Consequently, there can be a weight benefit to mounting modular electronic hardware on the engine core casing in a high temperature environment. This paper attempts to quantify the in-flight temperature constraints for engine casing mounted electronics. In addition, an attempt is made at studying heat soak back effects. The Commercial Modular Aero Propulsion System Simulation 40k (C-MAPSS40k) software is leveraged with real flight data as the inputs to the simulation. A two-dimensional (2-D) heat transfer model is integrated with the engine simulation to approximate the temperature along the length of the engine casing. This modification to the existing C-MAPSS40k software will provide tools and methodologies to develop a better understanding of the requirements for the embedded electronics hardware in future engine systems. Results of the simulations are presented and their implications on temperature constraints for engine casing mounted electronics is discussed.

  16. An Architecture, System Engineering, and Acquisition Approach for Space System Software Resiliency

    NASA Astrophysics Data System (ADS)

    Phillips, Dewanne Marie

    Software intensive space systems can harbor defects and vulnerabilities that may enable external adversaries or malicious insiders to disrupt or disable system functions, risking mission compromise or loss. Mitigating this risk demands a sustained focus on the security and resiliency of the system architecture including software, hardware, and other components. Robust software engineering practices contribute to the foundation of a resilient system so that the system "can take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". Software resiliency must be a priority and addressed early in the life cycle development to contribute a secure and dependable space system. Those who develop, implement, and operate software intensive space systems must determine the factors and systems engineering practices to address when investing in software resiliency. This dissertation offers methodical approaches for improving space system resiliency through software architecture design, system engineering, increased software security, thereby reducing the risk of latent software defects and vulnerabilities. By providing greater attention to the early life cycle phases of development, we can alter the engineering process to help detect, eliminate, and avoid vulnerabilities before space systems are delivered. To achieve this objective, this dissertation will identify knowledge, techniques, and tools that engineers and managers can utilize to help them recognize how vulnerabilities are produced and discovered so that they can learn to circumvent them in future efforts. We conducted a systematic review of existing architectural practices, standards, security and coding practices, various threats, defects, and vulnerabilities that impact space systems from hundreds of relevant publications and interviews of subject matter experts. We expanded on the system-level body of knowledge for resiliency and identified a new software architecture framework and acquisition methodology to improve the resiliency of space systems from a software perspective with an emphasis on the early phases of the systems engineering life cycle. This methodology involves seven steps: 1) Define technical resiliency requirements, 1a) Identify standards/policy for software resiliency, 2) Develop a request for proposal (RFP)/statement of work (SOW) for resilient space systems software, 3) Define software resiliency goals for space systems, 4) Establish software resiliency quality attributes, 5) Perform architectural tradeoffs and identify risks, 6) Conduct architecture assessments as part of the procurement process, and 7) Ascertain space system software architecture resiliency metrics. Data illustrates that software vulnerabilities can lead to opportunities for malicious cyber activities, which could degrade the space mission capability for the user community. Reducing the number of vulnerabilities by improving architecture and software system engineering practices can contribute to making space systems more resilient. Since cyber-attacks are enabled by shortfalls in software, robust software engineering practices and an architectural design are foundational to resiliency, which is a quality that allows the system to "take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". To achieve software resiliency for space systems, acquirers and suppliers must identify relevant factors and systems engineering practices to apply across the lifecycle, in software requirements analysis, architecture development, design, implementation, verification and validation, and maintenance phases.

  17. Happy software developers solve problems better: psychological measurements in empirical software engineering

    PubMed Central

    Wang, Xiaofeng; Abrahamsson, Pekka

    2014-01-01

    For more than thirty years, it has been claimed that a way to improve software developers’ productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states—emotions and moods—deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint. PMID:24688866

  18. Happy software developers solve problems better: psychological measurements in empirical software engineering.

    PubMed

    Graziotin, Daniel; Wang, Xiaofeng; Abrahamsson, Pekka

    2014-01-01

    For more than thirty years, it has been claimed that a way to improve software developers' productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states-emotions and moods-deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint.

  19. C style guide

    NASA Technical Reports Server (NTRS)

    Doland, Jerry; Valett, Jon

    1994-01-01

    This document discusses recommended practices and style for programmers using the C language in the Flight Dynamics Division environment. Guidelines are based on generally recommended software engineering techniques, industry resources, and local convention. The Guide offers preferred solutions to common C programming issues and illustrates through examples of C Code.

  20. Ada Software Engineering Education and Training Requirements Within the U.S. Army

    DTIC Science & Technology

    1988-12-01

    Services and DoD. DoD Directive 3405.1 requires the use of Ada in all applications and DoD Directive 3405.2 establishes the policy of using Ada in...covers DoD structure and procedures, Army policies , and all aspects of software engineering theory, systems engineering, and software development and...acquisition policy , concept development, workload requirements, contracting, and maintenance. The second course covers many of the same areas

  1. Impact of Ada and object-oriented design in the flight dynamics division at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Waligora, Sharon; Bailey, John; Stark, Mike

    1995-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are (1) to understand the software development process in the GSFC environment; (2) to measure the effects of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  2. Software Engineering Guidebook

    NASA Technical Reports Server (NTRS)

    Connell, John; Wenneson, Greg

    1993-01-01

    The Software Engineering Guidebook describes SEPG (Software Engineering Process Group) supported processes and techniques for engineering quality software in NASA environments. Three process models are supported: structured, object-oriented, and evolutionary rapid-prototyping. The guidebook covers software life-cycles, engineering, assurance, and configuration management. The guidebook is written for managers and engineers who manage, develop, enhance, and/or maintain software under the Computer Software Services Contract.

  3. A Software Engineering Environment for the Navy.

    DTIC Science & Technology

    1982-03-31

    Engineering Pr.cess . - 55 ?art II: Description of A Software Engineering Env.Lonnmeut 1. Data Base ........................................ 7 -3 L.I...Methodology to Tool 1-54 2.2.2.2-6 Flow of Management: Activity to Methodology to Tool 21- 55 2.2.2.2-7 Pipelining for Activity-Specific Tools 11-56 A.1.1-1 A...testing techniques. 2.2. 2 Methodciogies and Tools: Correctness Analysis Pai e T- 4Metboioioo ies aews - Pev2.ews Jeicrmine the in ernai ’ Qolc .. ness and

  4. Proceedings of the Seventeenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Proceedings of the Seventeenth Annual Software Engineering Workshop are presented. The software Engineering Laboratory (SEL) is an organization sponsored by NASA/Goddard Space Flight Center and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. Topics covered include: the Software Engineering Laboratory; process measurement; software reuse; software quality; lessons learned; and is Ada dying.

  5. The FoReVer Methodology: A MBSE Framework for Formal Verification

    NASA Astrophysics Data System (ADS)

    Baracchi, Laura; Mazzini, Silvia; Cimatti, Alessandro; Tonetta, Stefano; Garcia, Gerald

    2013-08-01

    The need for high level of confidence and operational integrity in critical space (software) systems is well recognized in the Space industry and has been addressed so far through rigorous System and Software Development Processes and stringent Verification and Validation regimes. The Model Based Space System Engineering process (MBSSE) derived in the System and Software Functional Requirement Techniques study (SSFRT) focused on the application of model based engineering technologies to support the space system and software development processes, from mission level requirements to software implementation through model refinements and translations. In this paper we report on our work in the ESA-funded FoReVer project where we aim at developing methodological, theoretical and technological support for a systematic approach to the space avionics system development, in phases 0/A/B/C. FoReVer enriches the MBSSE process with contract-based formal verification of properties, at different stages from system to software, through a step-wise refinement approach, with the support for a Software Reference Architecture.

  6. Software IV and V Research Priorities and Applied Program Accomplishments Within NASA

    NASA Technical Reports Server (NTRS)

    Blazy, Louis J.

    2000-01-01

    The mission of this research is to be world-class creators and facilitators of innovative, intelligent, high performance, reliable information technologies that enable NASA missions to (1) increase software safety and quality through error avoidance, early detection and resolution of errors, by utilizing and applying empirically based software engineering best practices; (2) ensure customer software risks are identified and/or that requirements are met and/or exceeded; (3) research, develop, apply, verify, and publish software technologies for competitive advantage and the advancement of science; and (4) facilitate the transfer of science and engineering data, methods, and practices to NASA, educational institutions, state agencies, and commercial organizations. The goals are to become a national Center Of Excellence (COE) in software and system independent verification and validation, and to become an international leading force in the field of software engineering for improving the safety, quality, reliability, and cost performance of software systems. This project addresses the following problems: Ensure safety of NASA missions, ensure requirements are met, minimize programmatic and technological risks of software development and operations, improve software quality, reduce costs and time to delivery, and improve the science of software engineering

  7. Collected software engineering papers, volume 6

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A collection is presented of technical papers produced by participants in the Software Engineering Laboratory (SEL) during the period 1 Jun. 1987 to 1 Jan. 1989. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. For the convenience of this presentation, the twelve papers contained here are grouped into three major categories: (1) Software Measurement and Technology Studies; (2) Measurement Environment Studies; and (3) Ada Technology Studies. The first category presents experimental research and evaluation of software measurement and technology; the second presents studies on software environments pertaining to measurement. The last category represents Ada technology and includes research, development, and measurement studies.

  8. Efficient Parallel Engineering Computing on Linux Workstations

    NASA Technical Reports Server (NTRS)

    Lou, John Z.

    2010-01-01

    A C software module has been developed that creates lightweight processes (LWPs) dynamically to achieve parallel computing performance in a variety of engineering simulation and analysis applications to support NASA and DoD project tasks. The required interface between the module and the application it supports is simple, minimal and almost completely transparent to the user applications, and it can achieve nearly ideal computing speed-up on multi-CPU engineering workstations of all operating system platforms. The module can be integrated into an existing application (C, C++, Fortran and others) either as part of a compiled module or as a dynamically linked library (DLL).

  9. Evaluation of the efficiency and fault density of software generated by code generators

    NASA Technical Reports Server (NTRS)

    Schreur, Barbara

    1993-01-01

    Flight computers and flight software are used for GN&C (guidance, navigation, and control), engine controllers, and avionics during missions. The software development requires the generation of a considerable amount of code. The engineers who generate the code make mistakes and the generation of a large body of code with high reliability requires considerable time. Computer-aided software engineering (CASE) tools are available which generates code automatically with inputs through graphical interfaces. These tools are referred to as code generators. In theory, code generators could write highly reliable code quickly and inexpensively. The various code generators offer different levels of reliability checking. Some check only the finished product while some allow checking of individual modules and combined sets of modules as well. Considering NASA's requirement for reliability, an in house manually generated code is needed. Furthermore, automatically generated code is reputed to be as efficient as the best manually generated code when executed. In house verification is warranted.

  10. Use of Soft Computing Technologies for a Qualitative and Reliable Engine Control System for Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Trevino, Luis; Brown, Terry; Crumbley, R. T. (Technical Monitor)

    2001-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to improve overall vehicle system safety, reliability, and rocket engine performance by development of a qualitative and reliable engine control system (QRECS). Specifically, this will be addressed by enhancing rocket engine control using SCT, innovative data mining tools, and sound software engineering practices used in Marshall's Flight Software Group (FSG). The principle goals for addressing the issue of quality are to improve software management, software development time, software maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control methodologies, but to provide alternative design choices for control, implementation, performance, and sustaining engineering, all relative to addressing the issue of reliability. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion (system level), software engineering for embedded flight software systems, and soft computing technologies (i.e., neural networks, fuzzy logic, data mining, and Bayesian belief networks); some of which are briefed in this paper. For this effort, the targeted demonstration rocket engine testbed is the MC-1 engine (formerly FASTRAC) which is simulated with hardware and software in the Marshall Avionics & Software Testbed (MAST) laboratory that currently resides at NASA's Marshall Space Flight Center, building 4476, and is managed by the Avionics Department. A brief plan of action for design, development, implementation, and testing a Phase One effort for QRECS is given, along with expected results. Phase One will focus on development of a Smart Start Engine Module and a Mainstage Engine Module for proper engine start and mainstage engine operations. The overall intent is to demonstrate that by employing soft computing technologies, the quality and reliability of the overall scheme to engine controller development is further improved and vehicle safety is further insured. The final product that this paper proposes is an approach to development of an alternative low cost engine controller that would be capable of performing in unique vision spacecraft vehicles requiring low cost advanced avionics architectures for autonomous operations from engine pre-start to engine shutdown.

  11. The Role of Program Structure in Software Maintenance.

    DTIC Science & Technology

    1986-05-29

    0NFDUTC We have entered an era in which it has become increasingly important to develop humlan engineering principles which will 0 significantly...Programmers use slices when debugging. Communications of the ACM1, 25, 446-452. Winer, B. J. (1971). Statistical principles in experimental desin. New York...d dir C.VIo Lir~ 7i, LE -3 C Wi nd J ir E’r~~. ..CJ .. J 1 1Lt . * . BE I N Top Iip END; END-z FU14CiT I L44 Erpt .tALk I. JjiLE;,N; VJIuiH S-taCA DU I

  12. Expedited Systems Engineering for Rapid Capability and Urgent Needs

    DTIC Science & Technology

    2012-12-31

    rapid organizations start to differ from traditional ones, and there is a shift in energy , commitment, and knowledge. These findings are motivated by...123 C.7.1 Description: Integration of Modeling and Simulation , Software Design, and...differ from traditional ones, and there is a shift in energy , commitment, and knowledge. These findings are motivated by an analysis of effective

  13. Proceedings of the Fourth International Workshop on a Research Agenda for Maintenance and Evolution of Service-Oriented Systems (MESOA 2010)

    DTIC Science & Technology

    2011-09-01

    service -oriented systems • Software -as-a- Service ( SaaS ) • social network infrastructures • Internet marketing • mobile computing • context awareness...Maintenance and Evolution of Service -Oriented Systems (MESOA 2010), organized by members of the Carnegie Mellon Software Engineering Institute’s...CMU/SEI-2011-SR-008 | 1 1 Workshop Introduction The Software Engineering Institute (SEI) started developing a service -oriented architecture

  14. Software package for performing experiments about the convolutionally encoded Voyager 1 link

    NASA Technical Reports Server (NTRS)

    Cheng, U.

    1989-01-01

    A software package enabling engineers to conduct experiments to determine the actual performance of long constraint-length convolutional codes over the Voyager 1 communication link directly from the Jet Propulsion Laboratory (JPL) has been developed. Using this software, engineers are able to enter test data from the Laboratory in Pasadena, California. The software encodes the data and then sends the encoded data to a personal computer (PC) at the Goldstone Deep Space Complex (GDSC) over telephone lines. The encoded data are sent to the transmitter by the PC at GDSC. The received data, after being echoed back by Voyager 1, are first sent to the PC at GDSC, and then are sent back to the PC at the Laboratory over telephone lines for decoding and further analysis. All of these operations are fully integrated and are completely automatic. Engineers can control the entire software system from the Laboratory. The software encoder and the hardware decoder interface were developed for other applications, and have been modified appropriately for integration into the system so that their existence is transparent to the users. This software provides: (1) data entry facilities, (2) communication protocol for telephone links, (3) data displaying facilities, (4) integration with the software encoder and the hardware decoder, and (5) control functions.

  15. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Gibbs, Norman

    1988-01-01

    The goals of the Software Engineering Institute's Education Program are as follows: to increase the number of highly qualified software engineers--new software engineers and existing practitioners; and to be the leading center of expertise for software engineering education and training. A discussion of these goals is presented in vugraph form.

  16. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Berard, Edward V.

    1988-01-01

    The following topics are discussed in the context of software engineering: early use of the term; the 1968 NATO conference; Barry Boehm's definition; four requirements fo software engineering; and additional criteria for software engineering. Additionally, the four major requirements for software engineering--computer science, mathematics, engineering disciplines, and excellent communication skills--are discussed. The presentation is given in vugraph form.

  17. IsoDesign: a software for optimizing the design of 13C-metabolic flux analysis experiments.

    PubMed

    Millard, Pierre; Sokol, Serguei; Letisse, Fabien; Portais, Jean-Charles

    2014-01-01

    The growing demand for (13) C-metabolic flux analysis ((13) C-MFA) in the field of metabolic engineering and systems biology is driving the need to rationalize expensive and time-consuming (13) C-labeling experiments. Experimental design is a key step in improving both the number of fluxes that can be calculated from a set of isotopic data and the precision of flux values. We present IsoDesign, a software that enables these parameters to be maximized by optimizing the isotopic composition of the label input. It can be applied to (13) C-MFA investigations using a broad panel of analytical tools (MS, MS/MS, (1) H NMR, (13) C NMR, etc.) individually or in combination. It includes a visualization module to intuitively select the optimal label input depending on the biological question to be addressed. Applications of IsoDesign are described, with an example of the entire (13) C-MFA workflow from the experimental design to the flux map including important practical considerations. IsoDesign makes the experimental design of (13) C-MFA experiments more accessible to a wider biological community. IsoDesign is distributed under an open source license at http://metasys.insa-toulouse.fr/software/isodes/ © 2013 Wiley Periodicals, Inc.

  18. A Database for Propagation Models and Conversion to C++ Programming Language

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.; Angkasa, Krisjani; Rucker, James

    1996-01-01

    The telecommunications system design engineer generally needs the quantification of effects of the propagation medium (definition of the propagation channel) to design an optimal communications system. To obtain the definition of the channel, the systems engineer generally has a few choices. A search of the relevant publications such as the IEEE Transactions, CCIR's, NASA propagation handbook, etc., may be conducted to find the desired channel values. This method may need excessive amounts of time and effort on the systems engineer's part and there is a possibility that the search may not even yield the needed results. To help the researcher and the systems engineers, it was recommended by the conference participants of NASA Propagation Experimenters (NAPEX) XV (London, Ontario, Canada, June 28 and 29, 1991) that a software should be produced that would contain propagation models and the necessary prediction methods of most propagation phenomena. Moreover, the software should be flexible enough for the user to make slight changes to the models without expending a substantial effort in programming. In the past few years, a software was produced to fit these requirements as best as could be done. The software was distributed to all NAPEX participants for evaluation and use, the participant reactions, suggestions etc., were gathered and were used to improve the subsequent releases of the software. The existing database program is in the Microsoft Excel application software and works fine within the guidelines of that environment, however, recently there have been some questions about the robustness and survivability of the Excel software in the ever changing (hopefully improving) world of software packages.

  19. 40 CFR 86.1830-01 - Acceptance of vehicles for emission testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... good engineering judgment. (3) Test vehicles must have air conditioning installed and operational if... whole-vehicle cycle, all emission-related hardware and software must be installed and operational during.... Manufacturers shall use good engineering judgment in making such determinations. (c) Special provisions for...

  20. 40 CFR 86.1830-01 - Acceptance of vehicles for emission testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... good engineering judgment. (3) Test vehicles must have air conditioning installed and operational if... whole-vehicle cycle, all emission-related hardware and software must be installed and operational during.... Manufacturers shall use good engineering judgment in making such determinations. (c) Special provisions for...

  1. 40 CFR 86.1830-01 - Acceptance of vehicles for emission testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... good engineering judgment. (3) Test vehicles must have air conditioning installed and operational if... whole-vehicle cycle, all emission-related hardware and software must be installed and operational during.... Manufacturers shall use good engineering judgment in making such determinations. (c) Special provisions for...

  2. Statistical modelling of software reliability

    NASA Technical Reports Server (NTRS)

    Miller, Douglas R.

    1991-01-01

    During the six-month period from 1 April 1991 to 30 September 1991 the following research papers in statistical modeling of software reliability appeared: (1) A Nonparametric Software Reliability Growth Model; (2) On the Use and the Performance of Software Reliability Growth Models; (3) Research and Development Issues in Software Reliability Engineering; (4) Special Issues on Software; and (5) Software Reliability and Safety.

  3. The Generalized Support Software (GSS) Domain Engineering Process: An Object-Oriented Implementation and Reuse Success at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Condon, Steven; Hendrick, Robert; Stark, Michael E.; Steger, Warren

    1997-01-01

    The Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center (GSFC) recently embarked on a far-reaching revision of its process for developing and maintaining satellite support software. The new process relies on an object-oriented software development method supported by a domain specific library of generalized components. This Generalized Support Software (GSS) Domain Engineering Process is currently in use at the NASA GSFC Software Engineering Laboratory (SEL). The key facets of the GSS process are (1) an architecture for rapid deployment of FDD applications, (2) a reuse asset library for FDD classes, and (3) a paradigm shift from developing software to configuring software for mission support. This paper describes the GSS architecture and process, results of fielding the first applications, lessons learned, and future directions

  4. Annotated bibliography of Software Engineering Laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon D.

    1991-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. All materials have been grouped into eight general subject areas for easy reference: The Software Engineering Laboratory; The Software Engineering Laboratory: Software Development Documents; Software Tools; Software Models; Software Measurement; Technology Evaluations; Ada Technology; and Data Collection. Subject and author indexes further classify these documents by specific topic and individual author.

  5. Software Engineering Laboratory Series: Proceedings of the Twentieth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  6. Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 15

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  7. Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 14

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  8. Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 13

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  9. Automatic Rock Detection and Mapping from HiRISE Imagery

    NASA Technical Reports Server (NTRS)

    Huertas, Andres; Adams, Douglas S.; Cheng, Yang

    2008-01-01

    This system includes a C-code software program and a set of MATLAB software tools for statistical analysis and rock distribution mapping. The major functions include rock detection and rock detection validation. The rock detection code has been evolved into a production tool that can be used by engineers and geologists with minor training.

  10. Collected software engineering papers, volume 8

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A collection of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) during the period November 1989 through October 1990 is presented. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. Although these papers cover several topics related to software engineering, they do not encompass the entire scope of SEL activities and interests. Additional information about the SEL and its research efforts may be obtained from the sources listed in the bibliography. The seven presented papers are grouped into four major categories: (1) experimental research and evaluation of software measurement; (2) studies on models for software reuse; (3) a software tool evaluation; and (4) Ada technology and studies in the areas of reuse and specification.

  11. Software for Engineering Simulations of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Shireman, Kirk; McSwain, Gene; McCormick, Bernell; Fardelos, Panayiotis

    2005-01-01

    Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.

  12. Testing Scientific Software: A Systematic Literature Review.

    PubMed

    Kanewala, Upulee; Bieman, James M

    2014-10-01

    Scientific software plays an important role in critical decision making, for example making weather predictions based on climate models, and computation of evidence for research publications. Recently, scientists have had to retract publications due to errors caused by software faults. Systematic testing can identify such faults in code. This study aims to identify specific challenges, proposed solutions, and unsolved problems faced when testing scientific software. We conducted a systematic literature survey to identify and analyze relevant literature. We identified 62 studies that provided relevant information about testing scientific software. We found that challenges faced when testing scientific software fall into two main categories: (1) testing challenges that occur due to characteristics of scientific software such as oracle problems and (2) testing challenges that occur due to cultural differences between scientists and the software engineering community such as viewing the code and the model that it implements as inseparable entities. In addition, we identified methods to potentially overcome these challenges and their limitations. Finally we describe unsolved challenges and how software engineering researchers and practitioners can help to overcome them. Scientific software presents special challenges for testing. Specifically, cultural differences between scientist developers and software engineers, along with the characteristics of the scientific software make testing more difficult. Existing techniques such as code clone detection can help to improve the testing process. Software engineers should consider special challenges posed by scientific software such as oracle problems when developing testing techniques.

  13. Computer-Aided Software Engineering - An approach to real-time software development

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.; Turkovich, John J.

    1989-01-01

    A new software engineering discipline is Computer-Aided Software Engineering (CASE), a technology aimed at automating the software development process. This paper explores the development of CASE technology, particularly in the area of real-time/scientific/engineering software, and a history of CASE is given. The proposed software development environment for the Advanced Launch System (ALS CASE) is described as an example of an advanced software development system for real-time/scientific/engineering (RT/SE) software. The Automated Programming Subsystem of ALS CASE automatically generates executable code and corresponding documentation from a suitably formatted specification of the software requirements. Software requirements are interactively specified in the form of engineering block diagrams. Several demonstrations of the Automated Programming Subsystem are discussed.

  14. Software Engineering Laboratory Series: Proceedings of the Twenty-First Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  15. Software Engineering Laboratory Series: Proceedings of the Twenty-Second Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  16. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia

    2009-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and themore » software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.« less

  17. Parallelization of Rocket Engine Simulator Software (PRESS)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet

    1997-01-01

    Parallelization of Rocket Engine System Software (PRESS) project is part of a collaborative effort with Southern University at Baton Rouge (SUBR), University of West Florida (UWF), and Jackson State University (JSU). The second-year funding, which supports two graduate students enrolled in our new Master's program in Computer Science at Hampton University and the principal investigator, have been obtained for the period from October 19, 1996 through October 18, 1997. The key part of the interim report was new directions for the second year funding. This came about from discussions during Rocket Engine Numeric Simulator (RENS) project meeting in Pensacola on January 17-18, 1997. At that time, a software agreement between Hampton University and NASA Lewis Research Center had already been concluded. That agreement concerns off-NASA-site experimentation with PUMPDES/TURBDES software. Before this agreement, during the first year of the project, another large-scale FORTRAN-based software, Two-Dimensional Kinetics (TDK), was being used for translation to an object-oriented language and parallelization experiments. However, that package proved to be too complex and lacking sufficient documentation for effective translation effort to the object-oriented C + + source code. The focus, this time with better documented and more manageable PUMPDES/TURBDES package, was still on translation to C + + with design improvements. At the RENS Meeting, however, the new impetus for the RENS projects in general, and PRESS in particular, has shifted in two important ways. One was closer alignment with the work on Numerical Propulsion System Simulator (NPSS) through cooperation and collaboration with LERC ACLU organization. The other was to see whether and how NASA's various rocket design software can be run over local and intra nets without any radical efforts for redesign and translation into object-oriented source code. There were also suggestions that the Fortran based code be encapsulated in C + + code thereby facilitating reuse without undue development effort. The details are covered in the aforementioned section of the interim report filed on April 28, 1997.

  18. Software engineering and the role of Ada: Executive seminar

    NASA Technical Reports Server (NTRS)

    Freedman, Glenn B.

    1987-01-01

    The objective was to introduce the basic terminology and concepts of software engineering and Ada. The life cycle model is reviewed. The application of the goals and principles of software engineering is applied. An introductory understanding of the features of the Ada language is gained. Topics addressed include: the software crises; the mandate of the Space Station Program; software life cycle model; software engineering; and Ada under the software engineering umbrella.

  19. Process Based on SysML for New Launchers System and Software Developments

    NASA Astrophysics Data System (ADS)

    Hiron, Emmanuel; Miramont, Philippe

    2010-08-01

    The purpose of this paper is to present the Astrium-ST engineering process based on SysML. This process is currently set-up in the frame of common CNES /Astrium-ST R&T studies related to the Ariane 5 electrical system and flight software modelling. The tool used to set up this process is Rhapsody release 7.3 from IBM-Software firm [1]. This process focuses on the system engineering phase dedicated to Software with the objective to generate both System documents (sequential system design and flight control) and Software specifications.

  20. SAAM: A Method for Analyzing the Properties of Software Architectures

    DTIC Science & Technology

    2007-05-01

    ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 10 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b . ABSTRACT unclassified c. THIS PAGE...of Software Engineering. [3] Bass, L., Clapper, B ., Hardy, E., Kazman, R., Seacord, R. “Serpent: A User Interface Management System”. Proceedings of...Forthcoming. [9] Green, J., Selby, B . “Dynamic Planning and Software Mainte- nance: A Fiscal Approach”, Naval Postgraduate School, Monterey, CA, NTIS

  1. A versatile nondestructive evaluation imaging workstation

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1994-01-01

    Ultrasonic C-scan and eddy current imaging systems are of the pointwise type evaluation systems that rely on a mechanical scanner to physically maneuver a probe relative to the specimen point by point in order to acquire data and generate images. Since the ultrasonic C-scan and eddy current imaging systems are based on the same mechanical scanning mechanisms, the two systems can be combined using the same PC platform with a common mechanical manipulation subsystem and integrated data acquisition software. Based on this concept, we have developed an IBM PC-based combined ultrasonic C-scan and eddy current imaging system. The system is modularized and provides capacity for future hardware and software expansions. Advantages associated with the combined system are: (1) eliminated duplication of the computer and mechanical hardware, (2) unified data acquisition, processing and storage software, (3) reduced setup time for repetitious ultrasonic and eddy current scans, and (4) improved system efficiency. The concept can be adapted to many engineering systems by integrating related PC-based instruments into one multipurpose workstation such as dispensing, machining, packaging, sorting, and other industrial applications.

  2. A versatile nondestructive evaluation imaging workstation

    NASA Astrophysics Data System (ADS)

    Chern, E. James; Butler, David W.

    1994-02-01

    Ultrasonic C-scan and eddy current imaging systems are of the pointwise type evaluation systems that rely on a mechanical scanner to physically maneuver a probe relative to the specimen point by point in order to acquire data and generate images. Since the ultrasonic C-scan and eddy current imaging systems are based on the same mechanical scanning mechanisms, the two systems can be combined using the same PC platform with a common mechanical manipulation subsystem and integrated data acquisition software. Based on this concept, we have developed an IBM PC-based combined ultrasonic C-scan and eddy current imaging system. The system is modularized and provides capacity for future hardware and software expansions. Advantages associated with the combined system are: (1) eliminated duplication of the computer and mechanical hardware, (2) unified data acquisition, processing and storage software, (3) reduced setup time for repetitious ultrasonic and eddy current scans, and (4) improved system efficiency. The concept can be adapted to many engineering systems by integrating related PC-based instruments into one multipurpose workstation such as dispensing, machining, packaging, sorting, and other industrial applications.

  3. Telemetry-Enhancing Scripts

    NASA Technical Reports Server (NTRS)

    Maimone, Mark W.

    2009-01-01

    Scripts Providing a Cool Kit of Telemetry Enhancing Tools (SPACKLE) is a set of software tools that fill gaps in capabilities of other software used in processing downlinked data in the Mars Exploration Rovers (MER) flight and test-bed operations. SPACKLE tools have helped to accelerate the automatic processing and interpretation of MER mission data, enabling non-experts to understand and/or use MER query and data product command simulation software tools more effectively. SPACKLE has greatly accelerated some operations and provides new capabilities. The tools of SPACKLE are written, variously, in Perl or the C or C++ language. They perform a variety of search and shortcut functions that include the following: Generating text-only, Event Report-annotated, and Web-enhanced views of command sequences; Labeling integer enumerations with their symbolic meanings in text messages and engineering channels; Systematic detecting of corruption within data products; Generating text-only displays of data-product catalogs including downlink status; Validating and labeling of commands related to data products; Performing of convenient searches of detailed engineering data spanning multiple Martian solar days; Generating tables of initial conditions pertaining to engineering, health, and accountability data; Simplified construction and simulation of command sequences; and Fast time format conversions and sorting.

  4. CrossTalk: The Journal of Defense Software Engineering. Volume 18, Number 2

    DTIC Science & Technology

    2005-02-01

    Richard J. Adams , Sergio Alvarado, Suellen Eslinger, and Joanne Tagami all with The Aerospace Corporation, and Scott A. Whitmire at ODS Software...Kiczales, G., and M. Kersten . “Show Me the Structure.” Software Develop- ment Apr. 2000. Notes 1. Please note that the M1-M11 number- ing of concepts did...VA: Integrated Computer Engineering, Inc., 2 Aug. 2000 (http://www.spmn.com). 3 Adams , Richard J., Suellen Eslinger, Karen L. Owens, and Mary A. Rich

  5. NASA Software Engineering Benchmarking Study

    NASA Technical Reports Server (NTRS)

    Rarick, Heather L.; Godfrey, Sara H.; Kelly, John C.; Crumbley, Robert T.; Wifl, Joel M.

    2013-01-01

    To identify best practices for the improvement of software engineering on projects, NASA's Offices of Chief Engineer (OCE) and Safety and Mission Assurance (OSMA) formed a team led by Heather Rarick and Sally Godfrey to conduct this benchmarking study. The primary goals of the study are to identify best practices that: Improve the management and technical development of software intensive systems; Have a track record of successful deployment by aerospace industries, universities [including research and development (R&D) laboratories], and defense services, as well as NASA's own component Centers; and Identify candidate solutions for NASA's software issues. Beginning in the late fall of 2010, focus topics were chosen and interview questions were developed, based on the NASA top software challenges. Between February 2011 and November 2011, the Benchmark Team interviewed a total of 18 organizations, consisting of five NASA Centers, five industry organizations, four defense services organizations, and four university or university R and D laboratory organizations. A software assurance representative also participated in each of the interviews to focus on assurance and software safety best practices. Interviewees provided a wealth of information on each topic area that included: software policy, software acquisition, software assurance, testing, training, maintaining rigor in small projects, metrics, and use of the Capability Maturity Model Integration (CMMI) framework, as well as a number of special topics that came up in the discussions. NASA's software engineering practices compared favorably with the external organizations in most benchmark areas, but in every topic, there were ways in which NASA could improve its practices. Compared to defense services organizations and some of the industry organizations, one of NASA's notable weaknesses involved communication with contractors regarding its policies and requirements for acquired software. One of NASA's strengths was its software assurance practices, which seemed to rate well in comparison to the other organizational groups and also seemed to include a larger scope of activities. An unexpected benefit of the software benchmarking study was the identification of many opportunities for collaboration in areas including metrics, training, sharing of CMMI experiences and resources such as instructors and CMMI Lead Appraisers, and even sharing of assets such as documented processes. A further unexpected benefit of the study was the feedback on NASA practices that was received from some of the organizations interviewed. From that feedback, other potential areas where NASA could improve were highlighted, such as accuracy of software cost estimation and budgetary practices. The detailed report contains discussion of the practices noted in each of the topic areas, as well as a summary of observations and recommendations from each of the topic areas. The resulting 24 recommendations from the topic areas were then consolidated to eliminate duplication and culled into a set of 14 suggested actionable recommendations. This final set of actionable recommendations, listed below, are items that can be implemented to improve NASA's software engineering practices and to help address many of the items that were listed in the NASA top software engineering issues. 1. Develop and implement standard contract language for software procurements. 2. Advance accurate and trusted software cost estimates for both procured and in-house software and improve the capture of actual cost data to facilitate further improvements. 3. Establish a consistent set of objectives and expectations, specifically types of metrics at the Agency level, so key trends and models can be identified and used to continuously improve software processes and each software development effort. 4. Maintain the CMMI Maturity Level requirement for critical NASA projects and use CMMI to measure organizations developing software for NASA. 5.onsolidate, collect and, if needed, develop common processes principles and other assets across the Agency in order to provide more consistency in software development and acquisition practices and to reduce the overall cost of maintaining or increasing current NASA CMMI maturity levels. 6. Provide additional support for small projects that includes: (a) guidance for appropriate tailoring of requirements for small projects, (b) availability of suitable tools, including support tool set-up and training, and (c) training for small project personnel, assurance personnel and technical authorities on the acceptable options for tailoring requirements and performing assurance on small projects. 7. Develop software training classes for the more experienced software engineers using on-line training, videos, or small separate modules of training that can be accommodated as needed throughout a project. 8. Create guidelines to structure non-classroom training opportunities such as mentoring, peer reviews, lessons learned sessions, and on-the-job training. 9. Develop a set of predictive software defect data and a process for assessing software testing metric data against it. 10. Assess Agency-wide licenses for commonly used software tools. 11. Fill the knowledge gap in common software engineering practices for new hires and co-ops.12. Work through the Science, Technology, Engineering and Mathematics (STEM) program with universities in strengthening education in the use of common software engineering practices and standards. 13. Follow up this benchmark study with a deeper look into what both internal and external organizations perceive as the scope of software assurance, the value they expect to obtain from it, and the shortcomings they experience in the current practice. 14. Continue interactions with external software engineering environment through collaborations, knowledge sharing, and benchmarking.

  6. User manual of the CATSS system (version 1.0) communication analysis tool for space station

    NASA Technical Reports Server (NTRS)

    Tsang, C. S.; Su, Y. T.; Lindsey, W. C.

    1983-01-01

    The Communication Analysis Tool for the Space Station (CATSS) is a FORTRAN language software package capable of predicting the communications links performance for the Space Station (SS) communication and tracking (C & T) system. An interactive software package was currently developed to run on the DEC/VAX computers. The CATSS models and evaluates the various C & T links of the SS, which includes the modulation schemes such as Binary-Phase-Shift-Keying (BPSK), BPSK with Direct Sequence Spread Spectrum (PN/BPSK), and M-ary Frequency-Shift-Keying with Frequency Hopping (FH/MFSK). Optical Space Communication link is also included. CATSS is a C & T system engineering tool used to predict and analyze the system performance for different link environment. Identification of system weaknesses is achieved through evaluation of performance with varying system parameters. System tradeoff for different values of system parameters are made based on the performance prediction.

  7. Enhancing requirements engineering for patient registry software systems with evidence-based components.

    PubMed

    Lindoerfer, Doris; Mansmann, Ulrich

    2017-07-01

    Patient registries are instrumental for medical research. Often their structures are complex and their implementations use composite software systems to meet the wide spectrum of challenges. Commercial and open-source systems are available for registry implementation, but many research groups develop their own systems. Methodological approaches in the selection of software as well as the construction of proprietary systems are needed. We propose an evidence-based checklist, summarizing essential items for patient registry software systems (CIPROS), to accelerate the requirements engineering process. Requirements engineering activities for software systems follow traditional software requirements elicitation methods, general software requirements specification (SRS) templates, and standards. We performed a multistep procedure to develop a specific evidence-based CIPROS checklist: (1) A systematic literature review to build a comprehensive collection of technical concepts, (2) a qualitative content analysis to define a catalogue of relevant criteria, and (3) a checklist to construct a minimal appraisal standard. CIPROS is based on 64 publications and covers twelve sections with a total of 72 items. CIPROS also defines software requirements. Comparing CIPROS with traditional software requirements elicitation methods, SRS templates and standards show a broad consensus but differences in issues regarding registry-specific aspects. Using an evidence-based approach to requirements engineering for registry software adds aspects to the traditional methods and accelerates the software engineering process for registry software. The method we used to construct CIPROS serves as a potential template for creating evidence-based checklists in other fields. The CIPROS list supports developers in assessing requirements for existing systems and formulating requirements for their own systems, while strengthening the reporting of patient registry software system descriptions. It may be a first step to create standards for patient registry software system assessments. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Groves, Paula; Valett, Jon

    1990-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: the Software Engineering Laboratory; the Software Engineering Laboratory-software development documents; software tools; software models; software measurement; technology evaluations; Ada technology; and data collection. Subject and author indexes further classify these documents by specific topic and individual author.

  9. Annotated bibliography of Software Engineering Laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon

    1993-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. Nearly 200 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: the Software Engineering Laboratory; the Software Engineering Laboratory: software development documents; software tools; software models; software measurement; technology evaluations; Ada technology; and data collection. This document contains an index of these publications classified by individual author.

  10. CrossTalk: The Journal of Defense Software Engineering. Volume 22, Number 7, Nov/Dec 2009

    DTIC Science & Technology

    2009-12-01

    an MBA, and is a Certified Corporate Trainer. Booz Allen Hamilton AF PKI SPO 4241 E Piedras DR STE 210 San Antonio,TX 78228 Phone: (210) 925-9129...Certified Secure Software Lifecycle Professional, and a Project Management Professional. General Dynamics C4 Systems AF PKI SPO 4241 E Piedras DR STE 210

  11. Preliminary Design and Implementation of a Method for Validating Evolving ADA Compilers.

    DTIC Science & Technology

    1983-03-01

    Goodenough, John B. "The Ada Compiler Validation Capability," Computer. 14 (6): 57-64 (June 1981). 7. Pressman, Roger S. Software Engineering : A Practi...COMPILERS THESIS Presented to the faculty of the School of Engineering of the Air Force Institute of Technology Air University in Partial Fulfillment...support and encouragement they have given me. ii Contents Page 1. INTRODUCTION 1 1.1 Background -- DoDls Software Problem 1 1.1.1 The proliferation of

  12. Testing Scientific Software: A Systematic Literature Review

    PubMed Central

    Kanewala, Upulee; Bieman, James M.

    2014-01-01

    Context Scientific software plays an important role in critical decision making, for example making weather predictions based on climate models, and computation of evidence for research publications. Recently, scientists have had to retract publications due to errors caused by software faults. Systematic testing can identify such faults in code. Objective This study aims to identify specific challenges, proposed solutions, and unsolved problems faced when testing scientific software. Method We conducted a systematic literature survey to identify and analyze relevant literature. We identified 62 studies that provided relevant information about testing scientific software. Results We found that challenges faced when testing scientific software fall into two main categories: (1) testing challenges that occur due to characteristics of scientific software such as oracle problems and (2) testing challenges that occur due to cultural differences between scientists and the software engineering community such as viewing the code and the model that it implements as inseparable entities. In addition, we identified methods to potentially overcome these challenges and their limitations. Finally we describe unsolved challenges and how software engineering researchers and practitioners can help to overcome them. Conclusions Scientific software presents special challenges for testing. Specifically, cultural differences between scientist developers and software engineers, along with the characteristics of the scientific software make testing more difficult. Existing techniques such as code clone detection can help to improve the testing process. Software engineers should consider special challenges posed by scientific software such as oracle problems when developing testing techniques. PMID:25125798

  13. AirShow 1.0 CFD Software Users' Guide

    NASA Technical Reports Server (NTRS)

    Mohler, Stanley R., Jr.

    2005-01-01

    AirShow is visualization post-processing software for Computational Fluid Dynamics (CFD). Upon reading binary PLOT3D grid and solution files into AirShow, the engineer can quickly see how hundreds of complex 3-D structured blocks are arranged and numbered. Additionally, chosen grid planes can be displayed and colored according to various aerodynamic flow quantities such as Mach number and pressure. The user may interactively rotate and translate the graphical objects using the mouse. The software source code was written in cross-platform Java, C++, and OpenGL, and runs on Unix, Linux, and Windows. The graphical user interface (GUI) was written using Java Swing. Java also provides multiple synchronized threads. The Java Native Interface (JNI) provides a bridge between the Java code and the C++ code where the PLOT3D files are read, the OpenGL graphics are rendered, and numerical calculations are performed. AirShow is easy to learn and simple to use. The source code is available for free from the NASA Technology Transfer and Partnership Office.

  14. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-07-01

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of themore » physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.« less

  15. Software Development for EECU Platform of Turbofan Engine

    NASA Astrophysics Data System (ADS)

    Kim, Bo Gyoung; Kwak, Dohyup; Kim, Byunghyun; Choi, Hee ju; Kong, Changduk

    2017-04-01

    The turbofan engine operation consists of a number of hardware and software. The engine is controlled by Electronic Engine Control Unit (EECU). In order to control the engine, EECU communicates with an aircraft system, Actuator Drive Unit (ADU), Engine Power Unit (EPU) and sensors on the engine. This paper tried to investigate the process form starting to taking-off and aims to design the EECU software mode and defined communication data format. The software is implemented according to the designed software mode.

  16. Software engineering methodologies and tools

    NASA Technical Reports Server (NTRS)

    Wilcox, Lawrence M.

    1993-01-01

    Over the years many engineering disciplines have developed, including chemical, electronic, etc. Common to all engineering disciplines is the use of rigor, models, metrics, and predefined methodologies. Recently, a new engineering discipline has appeared on the scene, called software engineering. For over thirty years computer software has been developed and the track record has not been good. Software development projects often miss schedules, are over budget, do not give the user what is wanted, and produce defects. One estimate is there are one to three defects per 1000 lines of deployed code. More and more systems are requiring larger and more complex software for support. As this requirement grows, the software development problems grow exponentially. It is believed that software quality can be improved by applying engineering principles. Another compelling reason to bring the engineering disciplines to software development is productivity. It has been estimated that productivity of producing software has only increased one to two percent a year in the last thirty years. Ironically, the computer and its software have contributed significantly to the industry-wide productivity, but computer professionals have done a poor job of using the computer to do their job. Engineering disciplines and methodologies are now emerging supported by software tools that address the problems of software development. This paper addresses some of the current software engineering methodologies as a backdrop for the general evaluation of computer assisted software engineering (CASE) tools from actual installation of and experimentation with some specific tools.

  17. Thermomechanical Multiaxial Fatigue Testing Capability Developed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Structural components in aeronautical gas turbine engines typically experience multiaxial states of stress under nonisothermal conditions. To estimate the durability of the various components in the engine, one must characterize the cyclic deformation and fatigue behavior of the materials used under thermal and complex mechanical loading conditions. To this end, a testing protocol and associated test control software were developed at the NASA Lewis Research Center for thermomechanical axial-torsional fatigue tests. These tests are to be performed on thin-walled, tubular specimens fabricated from the cobalt-based superalloy Haynes 188. The software is written in C and runs on an MS-DOS based microcomputer.

  18. Engineering bioinformatics: building reliability, performance and productivity into bioinformatics software.

    PubMed

    Lawlor, Brendan; Walsh, Paul

    2015-01-01

    There is a lack of software engineering skills in bioinformatic contexts. We discuss the consequences of this lack, examine existing explanations and remedies to the problem, point out their shortcomings, and propose alternatives. Previous analyses of the problem have tended to treat the use of software in scientific contexts as categorically different from the general application of software engineering in commercial settings. In contrast, we describe bioinformatic software engineering as a specialization of general software engineering, and examine how it should be practiced. Specifically, we highlight the difference between programming and software engineering, list elements of the latter and present the results of a survey of bioinformatic practitioners which quantifies the extent to which those elements are employed in bioinformatics. We propose that the ideal way to bring engineering values into research projects is to bring engineers themselves. We identify the role of Bioinformatic Engineer and describe how such a role would work within bioinformatic research teams. We conclude by recommending an educational emphasis on cross-training software engineers into life sciences, and propose research on Domain Specific Languages to facilitate collaboration between engineers and bioinformaticians.

  19. Engineering bioinformatics: building reliability, performance and productivity into bioinformatics software

    PubMed Central

    Lawlor, Brendan; Walsh, Paul

    2015-01-01

    There is a lack of software engineering skills in bioinformatic contexts. We discuss the consequences of this lack, examine existing explanations and remedies to the problem, point out their shortcomings, and propose alternatives. Previous analyses of the problem have tended to treat the use of software in scientific contexts as categorically different from the general application of software engineering in commercial settings. In contrast, we describe bioinformatic software engineering as a specialization of general software engineering, and examine how it should be practiced. Specifically, we highlight the difference between programming and software engineering, list elements of the latter and present the results of a survey of bioinformatic practitioners which quantifies the extent to which those elements are employed in bioinformatics. We propose that the ideal way to bring engineering values into research projects is to bring engineers themselves. We identify the role of Bioinformatic Engineer and describe how such a role would work within bioinformatic research teams. We conclude by recommending an educational emphasis on cross-training software engineers into life sciences, and propose research on Domain Specific Languages to facilitate collaboration between engineers and bioinformaticians. PMID:25996054

  20. National Cycle Program (NCP) Common Analysis Tool for Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Follen, G.; Naiman, C.; Evans, A.

    1999-01-01

    Through the NASA/Industry Cooperative Effort (NICE) agreement, NASA Lewis and industry partners are developing a new engine simulation, called the National Cycle Program (NCP), which is the initial framework of NPSS. NCP is the first phase toward achieving the goal of NPSS. This new software supports the aerothermodynamic system simulation process for the full life cycle of an engine. The National Cycle Program (NCP) was written following the Object Oriented Paradigm (C++, CORBA). The software development process used was also based on the Object Oriented paradigm. Software reviews, configuration management, test plans, requirements, design were all apart of the process used in developing NCP. Due to the many contributors to NCP, the stated software process was mandatory for building a common tool intended for use by so many organizations. The U.S. aircraft and airframe companies recognize NCP as the future industry standard for propulsion system modeling.

  1. Software Engineering for Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.

    2014-01-01

    The Spacecraft Software Engineering Branch of NASA Johnson Space Center (JSC) provides world-class products, leadership, and technical expertise in software engineering, processes, technology, and systems management for human spaceflight. The branch contributes to major NASA programs (e.g. ISS, MPCV/Orion) with in-house software development and prime contractor oversight, and maintains the JSC Engineering Directorate CMMI rating for flight software development. Software engineering teams work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements. They seek to infuse automation and autonomy into missions, and apply new technologies to flight processor and computational architectures. This presentation will provide an overview of key software-related projects, software methodologies and tools, and technology pursuits of interest to the JSC Spacecraft Software Engineering Branch.

  2. Software Requirements Specification for an Ammunition Management System

    DTIC Science & Technology

    1986-09-01

    thesis takes the form of a software requirements specification. Such a specification, according to Pressman [Ref. 7], establishes a complete...defined by Pressman , is depicted in Figure 1.1. 11 Figure 1.1 Generalized Software Life Cycle The common thread which binds the various phases together...application of software engineering principles requires an established methodology. This methodology, according to Pressman [Ref. 8:p. 151 is an

  3. Structuring the Chief Information Security Officer Organization

    DTIC Science & Technology

    2015-09-07

    GP9 Objectively Evaluate Adherence CERT-RMM HRM Human Resource Management CERT-RMM ID Identity Management CERT-RMM IMC Incident Management and...Detect, triage, analyze, respond to, and recover from suspicious events and security incidents Security incident management IMC IR IR-1, IR- 2, IR-3...2015-TN-007 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6 Table 2: Source Acronyms3 CERT-RMM NIST 800-53 C2M2 IMC Incident

  4. Software engineering from a Langley perspective

    NASA Technical Reports Server (NTRS)

    Voigt, Susan

    1994-01-01

    A brief introduction to software engineering is presented. The talk is divided into four sections beginning with the question 'What is software engineering', followed by a brief history of the progression of software engineering at the Langley Research Center in the context of an expanding computing environment. Several basic concepts and terms are introduced, including software development life cycles and maturity levels. Finally, comments are offered on what software engineering means for the Langley Research Center and where to find more information on the subject.

  5. The need for scientific software engineering in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Luty, Brock; Rose, Peter W.

    2017-03-01

    Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.

  6. The need for scientific software engineering in the pharmaceutical industry.

    PubMed

    Luty, Brock; Rose, Peter W

    2017-03-01

    Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.

  7. Software Engineering Laboratory (SEL). Data base organization and user's guide, revision 1

    NASA Technical Reports Server (NTRS)

    Lo, P. S.; Wyckoff, D.; Page, J.; Mcgarry, F. E.

    1983-01-01

    The structure of the Software Engineering Laboratory (SEL) data base is described. It defines each data base file in detail and provides information about how to access and use the data for programmers and other users. Several data base reporting programs are described also.

  8. Collected software engineering papers, volume 9

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document is a collection of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) from November 1990 through October 1991. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. This is the ninth such volume of technical papers produced by the SEL. Although these papers cover several topics related to software engineering, they do not encompass the entire scope of SEL activities and interests. For the convenience of this presentation, the eight papers contained here are grouped into three major categories: (1) software models studies; (2) software measurement studies; and (3) Ada technology studies. The first category presents studies on reuse models, including a software reuse model applied to maintenance and a model for an organization to support software reuse. The second category includes experimental research methods and software measurement techniques. The third category presents object-oriented approaches using Ada and object-oriented features proposed for Ada. The SEL is actively working to understand and improve the software development process at GSFC.

  9. Providing the Persistent Data Storage in a Software Engineering Environment Using Java/COBRA and a DBMS

    NASA Technical Reports Server (NTRS)

    Dhaliwal, Swarn S.

    1997-01-01

    An investigation was undertaken to build the software foundation for the WHERE (Web-based Hyper-text Environment for Requirements Engineering) project. The TCM (Toolkit for Conceptual Modeling) was chosen as the foundation software for the WHERE project which aims to provide an environment for facilitating collaboration among geographically distributed people involved in the Requirements Engineering process. The TCM is a collection of diagram and table editors and has been implemented in the C++ programming language. The C++ implementation of the TCM was translated into Java in order to allow the editors to be used for building various functionality of the WHERE project; the WHERE project intends to use the Web as its communication back- bone. One of the limitations of the translated software (TcmJava), which militated against its use in the WHERE project, was persistent data management mechanisms which it inherited from the original TCM; it was designed to be used in standalone applications. Before TcmJava editors could be used as a part of the multi-user, geographically distributed applications of the WHERE project, a persistent storage mechanism must be built which would allow data communication over the Internet, using the capabilities of the Web. An approach involving features of Java, CORBA (Common Object Request Broker), the Web, a middle-ware (Java Relational Binding (JRB)), and a database server was used to build the persistent data management infrastructure for the WHERE project. The developed infrastructure allows a TcmJava editor to be downloaded and run from a network host by using a JDK 1.1 (Java Developer's Kit) compatible Web-browser. The aforementioned editor establishes connection with a server by using the ORB (Object Request Broker) software and stores/retrieves data in/from the server. The server consists of a CORBA object or objects depending upon whether the data is to be made persistent on a single server or multiple servers. The CORBA object providing the persistent data server is implemented using the Java progranu-ning language. It uses the JRB to store/retrieve data in/from a relational database server. The persistent data management system provides transaction and user management facilities which allow multi-user, distributed access to the stored data in a secure manner.

  10. Experimentation in software engineering

    NASA Technical Reports Server (NTRS)

    Basili, V. R.; Selby, R. W.; Hutchens, D. H.

    1986-01-01

    Experimentation in software engineering supports the advancement of the field through an iterative learning process. In this paper, a framework for analyzing most of the experimental work performed in software engineering over the past several years is presented. A variety of experiments in the framework is described and their contribution to the software engineering discipline is discussed. Some useful recommendations for the application of the experimental process in software engineering are included.

  11. SAGA: A project to automate the management of software production systems

    NASA Technical Reports Server (NTRS)

    Campbell, Roy H.; Beckman-Davies, C. S.; Benzinger, L.; Beshers, G.; Laliberte, D.; Render, H.; Sum, R.; Smith, W.; Terwilliger, R.

    1986-01-01

    Research into software development is required to reduce its production cost and to improve its quality. Modern software systems, such as the embedded software required for NASA's space station initiative, stretch current software engineering techniques. The requirements to build large, reliable, and maintainable software systems increases with time. Much theoretical and practical research is in progress to improve software engineering techniques. One such technique is to build a software system or environment which directly supports the software engineering process, i.e., the SAGA project, comprising the research necessary to design and build a software development which automates the software engineering process. Progress under SAGA is described.

  12. STS-51 pad abort. OV103-engine 2033 (ME-2) fuel flowmeter sensor open circuit

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The STS-51 initial launch attempt of Discovery (OV-103) was terminated on KSC launch pad 39B on 12 Aug. 1993 at 9:12 AM E.S.T. due to a sensor redundancy failure in the liquid hydrogen system of ME-2 (Engine 2033). The event description and time line are summarized. Propellant loading was initiated on 12 Aug. 1993 at 12:00 AM EST. All space shuttle main engine (SSME) chill parameters and Launch Commit Criteria (LCC) were nominal. At engine start plus 1.34 seconds a Failure Identification (FID) was posted against Engine 2033 for exceeding the 1800 spin intra-channel (A1-A2) Fuel Flowrate sensor channel qualification limit. The engine was shut down at 1.50 seconds followed by Engines 2032 and 2030. All shut down sequences were nominal and the mission was safely aborted. SSME Avionics hardware and software performed nominally during the incident. A review of vehicle data table (VDT) data and controller software logic revealed no failure indications other than the single FID 111-101, Fuel Flowrate Intra-Channel Test Channel A disqualification. Software logic was executed according to requirements and there was no anomalous controller software operation. Immediately following the abort, a Rocketdyne/NASA failure investigation team was assembled. The team successfully isolated the failure cause to an open circuit in a Fuel Flowrate Sensor. This type of failure has occurred eight previous times in ground testing. The sensor had performed acceptably on three previous flights of the engine and SSME flight history shows 684 combined fuel flow rate sensor channel flights without failure. The disqualification of an Engine 2 (SSME No. 2033) Fuel Flowrate sensor channel was a result of an instrumentation failure and not engine performance. All other engine operations were nominal. This disqualification resulted in an engine shutdown and safe sequential shutdown of all three engines prior to ignition of the solid boosters.

  13. Distributed Engine Control Empirical/Analytical Verification Tools

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan; Hettler, Eric; Yedavalli, Rama; Mitra, Sayan

    2013-01-01

    NASA's vision for an intelligent engine will be realized with the development of a truly distributed control system featuring highly reliable, modular, and dependable components capable of both surviving the harsh engine operating environment and decentralized functionality. A set of control system verification tools was developed and applied to a C-MAPSS40K engine model, and metrics were established to assess the stability and performance of these control systems on the same platform. A software tool was developed that allows designers to assemble easily a distributed control system in software and immediately assess the overall impacts of the system on the target (simulated) platform, allowing control system designers to converge rapidly on acceptable architectures with consideration to all required hardware elements. The software developed in this program will be installed on a distributed hardware-in-the-loop (DHIL) simulation tool to assist NASA and the Distributed Engine Control Working Group (DECWG) in integrating DCS (distributed engine control systems) components onto existing and next-generation engines.The distributed engine control simulator blockset for MATLAB/Simulink and hardware simulator provides the capability to simulate virtual subcomponents, as well as swap actual subcomponents for hardware-in-the-loop (HIL) analysis. Subcomponents can be the communication network, smart sensor or actuator nodes, or a centralized control system. The distributed engine control blockset for MATLAB/Simulink is a software development tool. The software includes an engine simulation, a communication network simulation, control algorithms, and analysis algorithms set up in a modular environment for rapid simulation of different network architectures; the hardware consists of an embedded device running parts of the CMAPSS engine simulator and controlled through Simulink. The distributed engine control simulation, evaluation, and analysis technology provides unique capabilities to study the effects of a given change to the control system in the context of the distributed paradigm. The simulation tool can support treatment of all components within the control system, both virtual and real; these include communication data network, smart sensor and actuator nodes, centralized control system (FADEC full authority digital engine control), and the aircraft engine itself. The DECsim tool can allow simulation-based prototyping of control laws, control architectures, and decentralization strategies before hardware is integrated into the system. With the configuration specified, the simulator allows a variety of key factors to be systematically assessed. Such factors include control system performance, reliability, weight, and bandwidth utilization.

  14. Parallelization of Rocket Engine System Software (Press)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet

    1996-01-01

    The main goal is to assess parallelization requirements for the Rocket Engine Numeric Simulator (RENS) project which, aside from gathering information on liquid-propelled rocket engines and setting forth requirements, involve a large FORTRAN based package at NASA Lewis Research Center and TDK software developed by SUBR/UWF. The ultimate aim is to develop, test, integrate, and suitably deploy a family of software packages on various aspects and facets of rocket engines using liquid-propellants. At present, all project efforts by the funding agency, NASA Lewis Research Center, and the HBCU participants are disseminated over the internet using world wide web home pages. Considering obviously expensive methods of actual field trails, the benefits of software simulators are potentially enormous. When realized, these benefits will be analogous to those provided by numerous CAD/CAM packages and flight-training simulators. According to the overall task assignments, Hampton University's role is to collect all available software, place them in a common format, assess and evaluate, define interfaces, and provide integration. Most importantly, the HU's mission is to see to it that the real-time performance is assured. This involves source code translations, porting, and distribution. The porting will be done in two phases: First, place all software on Cray XMP platform using FORTRAN. After testing and evaluation on the Cray X-MP, the code will be translated to C + + and ported to the parallel nCUBE platform. At present, we are evaluating another option of distributed processing over local area networks using Sun NFS, Ethernet, TCP/IP. Considering the heterogeneous nature of the present software (e.g., first started as an expert system using LISP machines) which now involve FORTRAN code, the effort is expected to be quite challenging.

  15. Model-based engineering for medical-device software.

    PubMed

    Ray, Arnab; Jetley, Raoul; Jones, Paul L; Zhang, Yi

    2010-01-01

    This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software. 1.

  16. FLOWER IPv4/IPv6 Network Flow Summarization software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickless, Bill; Curtis, Darren; Christy, Jason

    FLOWER was written as a refactoring/reimplementation of the existing Flo software used by the Cooperative Protection Program (CPP) to provide network flow summaries for analysis by the Operational Analysis Center (OAC) and other US Department of Energy cyber security elements. FLOWER is designed and tested to operate at 10 gigabits/second, nearly 10 times faster than competing solutions. FLOWER output is optimized for importation into SQL databases for categorization and analysis. FLOWER is written in C++ using current best software engineering practices.

  17. 77 FR 10950 - Airworthiness Directives; General Electric Company (GE) Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ...) for all GE CF6-80C2B series turbofan engines. That AD currently requires installing software version 8.... This new AD requires the removal of the affected ECUs from service. This AD was prompted by two reports... ECUs from service. Comments We gave the public the opportunity to participate in developing this AD...

  18. Software development environments: Status and trends

    NASA Technical Reports Server (NTRS)

    Duffel, Larry E.

    1988-01-01

    Currently software engineers are the essential integrating factors tying several components together. The components consist of process, methods, computers, tools, support environments, and software engineers. The engineers today empower the tools versus the tools empowering the engineers. Some of the issues in software engineering are quality, managing the software engineering process, and productivity. A strategy to accomplish this is to promote the evolution of software engineering from an ad hoc, labor intensive activity to a managed, technology supported discipline. This strategy may be implemented by putting the process under management control, adopting appropriate methods, inserting the technology that provides automated support for the process and methods, collecting automated tools into an integrated environment and educating the personnel.

  19. Proceedings of Tenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Papers are presented on the following topics: measurement of software technology, recent studies of the Software Engineering Lab, software management tools, expert systems, error seeding as a program validation technique, software quality assurance, software engineering environments (including knowledge-based environments), the Distributed Computing Design System, and various Ada experiments.

  20. The National Shipbuilding Research Program. A Shipyard Program for NPDES Compliance

    DTIC Science & Technology

    2000-11-15

    INNOVATION MARINE INDUSTRY STANDARDS WELDING INDUSTRIAL ENGINEERING EDUCATION AND TRAINING THE NATIONAL SHIPBUILDING RESEARCH PROGRAM November 15, 2000 NSRP...software as provided with this report. Software Requirements (both optional): TecPlot Version 7.0 or later Available from: Amtec Engineering, Inc. 13920 SE...Region Atlantic Marine 4 Avondale 6 Bath Iron Works 1 Electric Boat Corp. 1 Ingalls 4 NASSCO 9 Newport News 3 Puget Sound Naval Shipyard 10 Table 1

  1. In the soft-to-hard technical spectrum: Where is software engineering?

    NASA Technical Reports Server (NTRS)

    Leibfried, Theodore F.; Macdonald, Robert B.

    1992-01-01

    In the computer journals and tabloids, there have been a plethora of articles written about the software engineering field. But while advocates of the need for an engineering approach to software development, it is impressive how many authors have treated the subject of software engineering without adequately addressing the fundamentals of what engineering as a discipline consists of. A discussion is presented of the various related facets of this issue in a logical framework to advance the thesis that the software development process is necessarily an engineering process. The purpose is to examine more of the details of the issue of whether or not the design and development of software for digital computer processing systems should be both viewed and treated as a legitimate field of professional engineering. Also, the type of academic and professional level education programs that would be required to support a software engineering discipline is examined.

  2. The research and practice of spacecraft software engineering

    NASA Astrophysics Data System (ADS)

    Chen, Chengxin; Wang, Jinghua; Xu, Xiaoguang

    2017-06-01

    In order to ensure the safety and reliability of spacecraft software products, it is necessary to execute engineering management. Firstly, the paper introduces the problems of unsystematic planning, uncertain classified management and uncontinuous improved mechanism in domestic and foreign spacecraft software engineering management. Then, it proposes a solution for software engineering management based on system-integrated ideology in the perspective of spacecraft system. Finally, a application result of spacecraft is given as an example. The research can provides a reference for executing spacecraft software engineering management and improving software product quality.

  3. Software Engineering Seminar (7th) 28 April - 2 May 1980, Elgin Air Force Base, Florida.

    DTIC Science & Technology

    1982-02-02

    Wendell D. Thomas PMTC, Point Mugu, GA Jose Rodriguez, Jr. AFWTF, Rosevelt Roads, PR J. Paul Welch AD/KRA, Eglin AFB, FL Gwendolyn E. Hunt PNTC, Point... Eglin Air Force Base, Florida. It was agreed by the DR&GG membership, since many member ranges and centers were committing an increasing amount of...COMPLETION 1 OCTOBER 1981 ACTUAL COMPLETION 16 OCTOBER 1981 110 4 1%i ’I/) w 2M <U U) u < w DU C/- z U z W(0 U) 0 W 0 C-) ZU U 0 4J -i ix o z .... W W

  4. The Software Engineering Laboratory: An operational software experience factory

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Caldiera, Gianluigi; Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon

    1992-01-01

    For 15 years, the Software Engineering Laboratory (SEL) has been carrying out studies and experiments for the purpose of understanding, assessing, and improving software and software processes within a production software development environment at NASA/GSFC. The SEL comprises three major organizations: (1) NASA/GSFC, Flight Dynamics Division; (2) University of Maryland, Department of Computer Science; and (3) Computer Sciences Corporation, Flight Dynamics Technology Group. These organizations have jointly carried out several hundred software studies, producing hundreds of reports, papers, and documents, all of which describe some aspect of the software engineering technology that was analyzed in the flight dynamics environment at NASA. The studies range from small, controlled experiments (such as analyzing the effectiveness of code reading versus that of functional testing) to large, multiple project studies (such as assessing the impacts of Ada on a production environment). The organization's driving goal is to improve the software process continually, so that sustained improvement may be observed in the resulting products. This paper discusses the SEL as a functioning example of an operational software experience factory and summarizes the characteristics of and major lessons learned from 15 years of SEL operations.

  5. Software Engineering Laboratory (SEL) compendium of tools, revision 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A set of programs used to aid software product development is listed. Known as software tools, such programs include requirements analyzers, design languages, precompilers, code auditors, code analyzers, and software librarians. Abstracts, resource requirements, documentation, processing summaries, and availability are indicated for most tools.

  6. Modeling software systems by domains

    NASA Technical Reports Server (NTRS)

    Dippolito, Richard; Lee, Kenneth

    1992-01-01

    The Software Architectures Engineering (SAE) Project at the Software Engineering Institute (SEI) has developed engineering modeling techniques that both reduce the complexity of software for domain-specific computer systems and result in systems that are easier to build and maintain. These techniques allow maximum freedom for system developers to apply their domain expertise to software. We have applied these techniques to several types of applications, including training simulators operating in real time, engineering simulators operating in non-real time, and real-time embedded computer systems. Our modeling techniques result in software that mirrors both the complexity of the application and the domain knowledge requirements. We submit that the proper measure of software complexity reflects neither the number of software component units nor the code count, but the locus of and amount of domain knowledge. As a result of using these techniques, domain knowledge is isolated by fields of engineering expertise and removed from the concern of the software engineer. In this paper, we will describe kinds of domain expertise, describe engineering by domains, and provide relevant examples of software developed for simulator applications using the techniques.

  7. Software support environment design knowledge capture

    NASA Technical Reports Server (NTRS)

    Dollman, Tom

    1990-01-01

    The objective of this task is to assess the potential for using the software support environment (SSE) workstations and associated software for design knowledge capture (DKC) tasks. This assessment will include the identification of required capabilities for DKC and hardware/software modifications needed to support DKC. Several approaches to achieving this objective are discussed and interim results are provided: (1) research into the problem of knowledge engineering in a traditional computer-aided software engineering (CASE) environment, like the SSE; (2) research into the problem of applying SSE CASE tools to develop knowledge based systems; and (3) direct utilization of SSE workstations to support a DKC activity.

  8. MI1AENG1

    Atmospheric Science Data Center

    2014-09-03

    MI1AENG1 MISR Level 1A Engineering Data File Type 1: Reformatted Annotated Level 1A product for the camera engineering data, which represents indicators of sampled measurements. ... Status Production Report Read Software Files :  Data Product Specification Versioning ...

  9. Microsoft Excel Software Usage for Teaching Science and Engineering Curriculum

    ERIC Educational Resources Information Center

    Singh, Gurmukh; Siddiqui, Khalid

    2009-01-01

    In this article, our main objective is to present the use of Microsoft Software Excel 2007/2003 for teaching college and university level curriculum in science and engineering. In particular, we discuss two interesting and fascinating examples of interactive applications of Microsoft Excel targeted for undergraduate students in: 1) computational…

  10. Modular Rocket Engine Control Software (MRECS)

    NASA Technical Reports Server (NTRS)

    Tarrant, C.; Crook, J.

    1998-01-01

    The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for advanced engine control systems that will result in lower software maintenance (operations) costs. It effectively accommodates software requirement changes that occur due to hardware technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives, benefits, and status of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishments are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software architecture, reuse software, and reduced software reverification time related to software changes. MRECS was recently modified to support a Space Shuttle Main Engine (SSME) hot-fire test. Cold Flow and Flight Readiness Testing were completed before the test was cancelled. Currently, the program is focused on supporting NASA MSFC in accomplishing development testing of the Fastrac Engine, part of NASA's Low Cost Technologies (LCT) Program. MRECS will be used for all engine development testing.

  11. 49 CFR 512.5 - How many copies should I submit?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... format, a copy of any special software required to review materials for which confidential treatment is... confidential treatment is claimed has been redacted. (c) Any person submitting blueprints or engineering...

  12. 49 CFR 512.5 - How many copies should I submit?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... format, a copy of any special software required to review materials for which confidential treatment is... confidential treatment is claimed has been redacted. (c) Any person submitting blueprints or engineering...

  13. 49 CFR 512.5 - How many copies should I submit?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... format, a copy of any special software required to review materials for which confidential treatment is... confidential treatment is claimed has been redacted. (c) Any person submitting blueprints or engineering...

  14. 49 CFR 512.5 - How many copies should I submit?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... format, a copy of any special software required to review materials for which confidential treatment is... confidential treatment is claimed has been redacted. (c) Any person submitting blueprints or engineering...

  15. Repository-Based Software Engineering Program: Working Program Management Plan

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Repository-Based Software Engineering Program (RBSE) is a National Aeronautics and Space Administration (NASA) sponsored program dedicated to introducing and supporting common, effective approaches to software engineering practices. The process of conceiving, designing, building, and maintaining software systems by using existing software assets that are stored in a specialized operational reuse library or repository, accessible to system designers, is the foundation of the program. In addition to operating a software repository, RBSE promotes (1) software engineering technology transfer, (2) academic and instructional support of reuse programs, (3) the use of common software engineering standards and practices, (4) software reuse technology research, and (5) interoperability between reuse libraries. This Program Management Plan (PMP) is intended to communicate program goals and objectives, describe major work areas, and define a management report and control process. This process will assist the Program Manager, University of Houston at Clear Lake (UHCL) in tracking work progress and describing major program activities to NASA management. The goal of this PMP is to make managing the RBSE program a relatively easy process that improves the work of all team members. The PMP describes work areas addressed and work efforts being accomplished by the program; however, it is not intended as a complete description of the program. Its focus is on providing management tools and management processes for monitoring, evaluating, and administering the program; and it includes schedules for charting milestones and deliveries of program products. The PMP was developed by soliciting and obtaining guidance from appropriate program participants, analyzing program management guidance, and reviewing related program management documents.

  16. Software Engineering Technology Infusion Within NASA

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1996-01-01

    Abstract technology transfer is of crucial concern to both government and industry today. In this paper, several software engineering technologies used within NASA are studied, and the mechanisms, schedules, and efforts at transferring these technologies are investigated. The goals of this study are: 1) to understand the difference between technology transfer (the adoption of a new method by large segments of an industry) as an industry-wide phenomenon and the adoption of a new technology by an individual organization (called technology infusion); and 2) to see if software engineering technology transfer differs from other engineering disciplines. While there is great interest today in developing technology transfer models for industry, it is the technology infusion process that actually causes changes in the current state of the practice.

  17. Teaching Agile Software Engineering Using Problem-Based Learning

    ERIC Educational Resources Information Center

    El-Khalili, Nuha H.

    2013-01-01

    Many studies have reported the utilization of Problem-Based Learning (PBL) in teaching Software Engineering courses. However, these studies have different views of the effectiveness of PBL. This paper presents the design of an Advanced Software Engineering course for undergraduate Software Engineering students that uses PBL to teach them Agile…

  18. Software Engineering Frameworks: Textbooks vs. Student Perceptions

    ERIC Educational Resources Information Center

    McMaster, Kirby; Hadfield, Steven; Wolthuis, Stuart; Sambasivam, Samuel

    2012-01-01

    This research examines the frameworks used by Computer Science and Information Systems students at the conclusion of their first semester of study of Software Engineering. A questionnaire listing 64 Software Engineering concepts was given to students upon completion of their first Software Engineering course. This survey was given to samples of…

  19. Real World Software Engineering

    DTIC Science & Technology

    1994-07-15

    Corvision Cortex Corporation Daisys S /Cubed, Inc. Design/IDF & CPN Meta Software Corp. 22 EasyCase Professional Evergreen CASE Tools 8522 150th 4th Ave NE...Final RSUoTL 28 Sep 92-31 May 94 4. TITLE AND SUBTITLE S . FUNDING NUMBERS Real World Software Engineering 6. AUTHOR( S ) Donald Gotterbarn Robert Riser . a...nin• Sm-i t’h 7. PERFORMING ORGANIZATION NAME( S ) AND AOORESS(ES1 8. PERFORMING ORGANIZATION REPORT NUMBER East Tennessee State University Department

  20. ASSIP Study of Real-Time Safety-Critical Embedded Software-Intensive System Engineering Practices

    DTIC Science & Technology

    2008-02-01

    and assessment 2. product engineering processes 3. tooling processes 6 | CMU/SEI-2008-SR-001 Slide 1 Process Standards IEC/ ISO 12207 Software...and technical effort to align with 12207 IEC/ ISO 15026 System & Software Integrity Levels Generic Safety SAE ARP 4754 Certification Considerations...Process Frameworks in revision – ISO 9001, ISO 9004 – ISO 15288/ ISO 12207 harmonization – RTCA DO-178B, MOD Standard UK 00-56/3, … • Methods & Tools

  1. Proceedings of the Workshop on Software Engineering Foundations for End-User Programming (SEEUP 2009)

    DTIC Science & Technology

    2009-11-01

    interest of scientific and technical information exchange. This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a...an interesting conti- nuum between how many different requirements a program must satisfy: the more complex and diverse the requirements, the more... Gender differences in approaches to end-user software development have also been reported in debugging feature usage [1] and in end-user web programming

  2. CrossTalk, The Journal of Defense Software Engineering. Volume 27, Number 3. May/June 2014

    DTIC Science & Technology

    2014-06-01

    field of software engineering. by Delores M. Etter, Jennifer Webb, and John Howard The Problem of Prolific Process What is the optimal amount and...Programming Will Never Be Obsolete The creativity of software developers will always be needed to solve problems of the future and to then translate those...utilized to address some of the complex problems associated with biometric database construction. 1. A Next Generation Multispectral Iris Biometric

  3. Information Processing in Mammalian Visual Cortex.

    DTIC Science & Technology

    1986-02-26

    cortex (VI). We used contours from the same hemisphere that had previously been mapped by LeVay et al. (1985) using our standard manual procedure...hardware being constructed by engineer Herb Adams and the software developed by Dave Bilitch. The major system components include: 1) a rat head-holding...Edelman et al.), Neurosci. Res. Found., pp. 585-612. Kirkpatrick et al. (1983) Science 200: 671-680. LeVay , S., M. Connolly, J. Houde, and D. C. Van

  4. Performing Verification and Validation in Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1999-01-01

    The implementation of reuse-based software engineering not only introduces new activities to the software development process, such as domain analysis and domain modeling, it also impacts other aspects of software engineering. Other areas of software engineering that are affected include Configuration Management, Testing, Quality Control, and Verification and Validation (V&V). Activities in each of these areas must be adapted to address the entire domain or product line rather than a specific application system. This paper discusses changes and enhancements to the V&V process, in order to adapt V&V to reuse-based software engineering.

  5. The Many Faces of a Software Engineer in a Research Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinovici, Maria C.; Kirkham, Harold

    2013-10-14

    The ability to gather, analyze and make decisions based on real world data is changing nearly every field of human endeavor. These changes are particularly challenging for software engineers working in a scientific community, designing and developing large, complex systems. To avoid the creation of a communications gap (almost a language barrier), the software engineers should possess an ‘adaptive’ skill. In the science and engineering research community, the software engineers must be responsible for more than creating mechanisms for storing and analyzing data. They must also develop a fundamental scientific and engineering understanding of the data. This paper looks atmore » the many faces that a software engineer should have: developer, domain expert, business analyst, security expert, project manager, tester, user experience professional, etc. Observations made during work on a power-systems scientific software development are analyzed and extended to describe more generic software development projects.« less

  6. A Language Translator for a Computer Aided Rapid Prototyping System.

    DTIC Science & Technology

    1988-03-01

    PROBLEM ................... S B. THE TRADITIONAL "WATERFALL LIFE CYCLE" .. ............... 14 C. RAPID PROTOTYPING...feature of everyday life for almost the entire industrialized world. Few governments or businesses function without the aid of computer systems. Com...engineering. B. TIE TRADITIONAL "WATERFALL LIFE CYCLE" I. Characteristics The traditional method of software engineering is the "waterfall life cycle

  7. Collected software engineering papers, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Topics addressed include: summaries of the software engineering laboratory (SEL) organization, operation, and research activities; results of specific research projects in the areas of resource models and software measures; and strategies for data collection for software engineering research.

  8. CSS/EMW/SOF (Combat Service Support/Engineering and Mine Warfare/Special Operations Forces) Mission Area Materiel Plan (MAMP) Software.

    DTIC Science & Technology

    1986-09-01

    receive much benefit . [] 2. The MAMP program prioritization algorithm is the responsibility of TRADOC. This study analyzed the perceived deficiencies...C o I 0 w m a 0 0 - 0.. -W >. m a -a ZZ II w u3 c w Ir 0 ccD I j cnC 0 o w a w W a- Im 3 El0 1>1- - < OUU4 0 .0.. 3.0 I * T- ui l. IT w3 >0 . I- *, wWE ...34Related" else if deftpe - 3 then print "Non-Materiel" else if def tqjpe - 4 then print " Health Service’ alse print skip I line printcolum-81

  9. Managing the Software Development Process

    NASA Technical Reports Server (NTRS)

    Lubelczky, Jeffrey T.; Parra, Amy

    1999-01-01

    The goal of any software development project is to produce a product that is delivered on time, within the allocated budget, and with the capabilities expected by the customer and unfortunately, this goal is rarely achieved. However, a properly managed project in a mature software engineering environment can consistently achieve this goal. In this paper we provide an introduction to three project success factors, a properly managed project, a competent project manager, and a mature software engineering environment. We will also present an overview of the benefits of a mature software engineering environment based on 24 years of data from the Software Engineering Lab, and suggest some first steps that an organization can take to begin benefiting from this environment. The depth and breadth of software engineering exceeds this paper, various references are cited with a goal of raising awareness and encouraging further investigation into software engineering and project management practices.

  10. Proceedings of the Eighth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The four major topics of discussion included: the NASA Software Engineering Laboratory, software testing, human factors in software engineering and software quality assessment. As in the past years, there were 12 position papers presented (3 for each topic) followed by questions and very heavy participation by the general audience.

  11. From Bridges and Rockets, Lessons for Software Systems

    NASA Technical Reports Server (NTRS)

    Holloway, C. Michael

    2004-01-01

    Although differences exist between building software systems and building physical structures such as bridges and rockets, enough similarities exist that software engineers can learn lessons from failures in traditional engineering disciplines. This paper draws lessons from two well-known failures the collapse of the Tacoma Narrows Bridge in 1940 and the destruction of the space shuttle Challenger in 1986 and applies these lessons to software system development. The following specific applications are made: (1) the verification and validation of a software system should not be based on a single method, or a single style of methods; (2) the tendency to embrace the latest fad should be overcome; and (3) the introduction of software control into safety-critical systems should be done cautiously.

  12. [Stressor and stress reduction strategies for computer software engineers].

    PubMed

    Asakura, Takashi

    2002-07-01

    First, in this article we discuss 10 significant occupational stressors for computer software engineers, based on the review of the scientific literature on their stress and mental health. The stressors include 1) quantitative work overload, 2) time pressure, 3) qualitative work load, 4) speed and diffusion of technological innovation, and technological divergence, 5) low discretional power, 6) underdeveloped career pattern, 7) low earnings/reward from jobs, 8) difficulties in managing a project team for software development and establishing support system, 9) difficulties in customer relations, and 10) personality characteristics. In addition, we delineate their working and organizational conditions that cause such occupational stressors in order to find strategies to reduce those stressors in their workplaces. Finally, we suggest three stressor and stress reduction strategies for software engineers.

  13. Open environments to support systems engineering tool integration: A study using the Portable Common Tool Environment (PCTE)

    NASA Technical Reports Server (NTRS)

    Eckhardt, Dave E., Jr.; Jipping, Michael J.; Wild, Chris J.; Zeil, Steven J.; Roberts, Cathy C.

    1993-01-01

    A study of computer engineering tool integration using the Portable Common Tool Environment (PCTE) Public Interface Standard is presented. Over a 10-week time frame, three existing software products were encapsulated to work in the Emeraude environment, an implementation of the PCTE version 1.5 standard. The software products used were a computer-aided software engineering (CASE) design tool, a software reuse tool, and a computer architecture design and analysis tool. The tool set was then demonstrated to work in a coordinated design process in the Emeraude environment. The project and the features of PCTE used are described, experience with the use of Emeraude environment over the project time frame is summarized, and several related areas for future research are summarized.

  14. Common Database Interface for Heterogeneous Software Engineering Tools.

    DTIC Science & Technology

    1987-12-01

    SUB-GROUP Database Management Systems ;Programming(Comuters); 1e 05 Computer Files;Information Transfer;Interfaces; 19. ABSTRACT (Continue on reverse...Air Force Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Information Systems ...Literature ..... 8 System 690 Configuration ......... 8 Database Functionis ............ 14 Software Engineering Environments ... 14 Data Manager

  15. Evaluation of space shuttle main engine fluid dynamic frequency response characteristics

    NASA Technical Reports Server (NTRS)

    Gardner, T. G.

    1980-01-01

    In order to determine the POGO stability characteristics of the space shuttle main engine liquid oxygen (LOX) system, the fluid dynamic frequency response functions between elements in the SSME LOX system was evaluated, both analytically and experimentally. For the experimental data evaluation, a software package was written for the Hewlett-Packard 5451C Fourier analyzer. The POGO analysis software is documented and consists of five separate segments. Each segment is stored on the 5451C disc as an individual program and performs its own unique function. Two separate data reduction methods, a signal calibration, coherence or pulser signal based frequency response function blanking, and automatic plotting features are included in the program. The 5451C allows variable parameter transfer from program to program. This feature is used to advantage and requires only minimal user interface during the data reduction process. Experimental results are included and compared with the analytical predictions in order to adjust the general model and arrive at a realistic simulation of the POGO characteristics.

  16. A Bibliography of Externally Published Works by the SEI Engineering Techniques Program

    DTIC Science & Technology

    1992-08-01

    media, and virtual reality * model- based engineering * programming languages * reuse * software architectures * software engineering as a discipline...Knowledge- Based Engineering Environments." IEEE Expert 3, 2 (May 1988): 18-23, 26-32. Audience: Practitioner [Klein89b] Klein, D.V. "Comparison of...Terms with Software Reuse Terminology: A Model- Based Approach." ACM SIGSOFT Software Engineering Notes 16, 2 (April 1991): 45-51. Audience: Practitioner

  17. A report on NASA software engineering and Ada training requirements

    NASA Technical Reports Server (NTRS)

    Legrand, Sue; Freedman, Glenn B.; Svabek, L.

    1987-01-01

    NASA's software engineering and Ada skill base are assessed and information that may result in new models for software engineering, Ada training plans, and curricula are provided. A quantitative assessment which reflects the requirements for software engineering and Ada training across NASA is provided. A recommended implementation plan including a suggested curriculum with associated duration per course and suggested means of delivery is also provided. The distinction between education and training is made. Although it was directed to focus on NASA's need for the latter, the key relationships to software engineering education are also identified. A rationale and strategy for implementing a life cycle education and training program are detailed in support of improved software engineering practices and the transition to Ada.

  18. Collected software engineering papers, volume 7

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A collection is presented of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) during the period Dec. 1988 to Oct. 1989. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. For the convenience of this presentation, the seven papers contained here are grouped into three major categories: (1) Software Measurement and Technology Studies; (2) Measurement Environment Studies; and (3) Ada Technology Studies. The first category presents experimental research and evaluation of software measurement and technology; the second presents studies on software environments pertaining to measurement. The last category represents Ada technology and includes research, development, and measurement studies.

  19. C++ and operating systems performance - A case study

    NASA Technical Reports Server (NTRS)

    Russo, Vincent F.; Madany, Peter W.; Campbell, Roy H.

    1990-01-01

    Object-oriented design and programming has many software engineering advantages. Its application to large systems, however, has previously been constrained by performance concerns. The Choices operating system, which has over 75,000 lines of code, is object-oriented and programmed in C++. This paper is a case study of the performance of Choices.

  20. Teaching Undergraduate Software Engineering Using Open Source Development Tools

    DTIC Science & Technology

    2012-01-01

    ware. Some example appliances are: a LAMP stack, Redmine, MySQL database, Moodle, Tom- cat on Apache, and Bugzilla. Some of the important features...Ada, C, C++, PHP , Py- thon, etc., and also supports a wide range of SDKs such as Google’s Android SDK and the Google Web Toolkit SDK. Additionally

  1. Probabilistic consensus scoring improves tandem mass spectrometry peptide identification.

    PubMed

    Nahnsen, Sven; Bertsch, Andreas; Rahnenführer, Jörg; Nordheim, Alfred; Kohlbacher, Oliver

    2011-08-05

    Database search is a standard technique for identifying peptides from their tandem mass spectra. To increase the number of correctly identified peptides, we suggest a probabilistic framework that allows the combination of scores from different search engines into a joint consensus score. Central to the approach is a novel method to estimate scores for peptides not found by an individual search engine. This approach allows the estimation of p-values for each candidate peptide and their combination across all search engines. The consensus approach works better than any single search engine across all different instrument types considered in this study. Improvements vary strongly from platform to platform and from search engine to search engine. Compared to the industry standard MASCOT, our approach can identify up to 60% more peptides. The software for consensus predictions is implemented in C++ as part of OpenMS, a software framework for mass spectrometry. The source code is available in the current development version of OpenMS and can easily be used as a command line application or via a graphical pipeline designer TOPPAS.

  2. International Assessment of Research and Development in Simulation-Based Engineering and Science. Panel Report

    DTIC Science & Technology

    2009-01-01

    University of California, Berkeley. In this session, Dennis Gannon of Indiana University described the use of high performance computing for storm...Software Development (Session Introduction) Dennis Gannon Indiana University Software for Mesoscale Storm Prediction: Using Supercomputers for On...Ho, D. Ierardi, I. Kolossvary, J. Klepeis, T. Layman, C. McLeavey , M. Moraes, R. Mueller, E. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles

  3. Commercial Mobile Alert Service (CMAS) Scenarios

    DTIC Science & Technology

    2012-05-01

    Commercial Mobile Alert Service (CMAS) Scenarios The WEA Project Team May 2012 SPECIAL REPORT CMU/SEI-2012-SR-020 CERT® Division, Software ...Homeland Security under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally...DISTRIBUTES IT “AS IS.” References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise

  4. Ada Software Design Methods Formulation.

    DTIC Science & Technology

    1982-10-01

    Programmer technical 2018 Principle Scientific Programmer technical 2020 Principle Scientif:c Programmer tnchnical 3001 Junior Programns. entry level...0.570 156 6010-. I---. 0.684 7 1031------------- 0.481 77 3119-. 0.620 94 4034-. ----- 0.696 90 4027-. -- ’---- 0.759 31 2018 -. I-’" 0.823 142 5063-. I...1094-2 0-117 cluster 4 2007 Senior Scientific Programmer technical 2016 Scientific Programmer technical 1080 Senior Software Engineer technical 2018

  5. The Impact of Ada and Object-Oriented Design in NASA Goddard's Flight Dynamics Division

    NASA Technical Reports Server (NTRS)

    Waligora, Sharon; Bailey, John; Stark, Mike

    1996-01-01

    This paper presents the highlights and key findings of 10 years of use and study of Ada and object-oriented design in NASA Goddard's Flight Dynamics Division (FDD). In 1985, the Software Engineering Laboratory (SEL) began investigating how the Ada language might apply to FDD software development projects. Although they began cautiously using Ada on only a few pilot projects, they expected that, if the Ada pilots showed promising results, the FDD would fully transition its entire development organization from FORTRAN to Ada within 10 years. However, 10 years later, the FDD still produced 80 percent of its software in FORTRAN and had begun using C and C++, despite positive results on Ada projects. This paper presents the final results of a SEL study to quantify the impact of Ada in the FDD, to determine why Ada has not flourished, and to recommend future directions regarding Ada. Project trends in both languages are examined as are external factors and cultural issues that affected the infusion of this technology. The detailed results of this study were published in a formal study report in March of 1995. This paper supersedes the preliminary results of this study that were presented at the Eighteenth Annual Software Engineering Workshop in 1993.

  6. Vertical Interaction in Open Software Engineering Communities

    DTIC Science & Technology

    2009-03-01

    Program in CASOS (NSF,DGE-9972762), the Office of Naval Research under Dynamic Network Analysis program (N00014-02-1-0973, the Air Force Office of...W91WAW07C0063) for research in the area of dynamic network analysis. Additional support was provided by CASOS - the center for Computational Analysis of Social...methods across the domain. For a given project, de - velopers can choose from dozens of models, tools, platforms, and languages for specification, design

  7. STS-55 pad abort: Engine 2011 oxidizer preburner augmented spark igniter check valve leak

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The STS-55 initial launch attempt of Columbia (OV102) was terminated on KSC launch pad A March 22, 1993 at 9:51 AM E.S.T. due to violation of an ME-3 (Engine 2011) Launch Commit Criteria (LCC) limit exceedance. The event description and timeline are summarized. Propellant loading was initiated on 22 March, 1993 at 1:15 AM EST. All SSME chill parameters and launch commit criteria (LCC) were nominal. At engine start plus 1.44 seconds, a Failure Identification (FID) was posted against Engine 2011 for exceeding the 50 psia Oxidizer Preburner (OPB) purge pressure redline. The engine was shut down at 1.50 seconds followed by Engines 2034 and 2030. All shut down sequences were nominal and the mission was safely aborted. The OPB purge pressure redline violation and the abort profile/overlay for all three engines are depicted. SSME Avionics hardware and software performed nominally during the incident. A review of vehicle data table (VDT) data and controller software logic revealed no failure indications other than the single FID 013-414, OPB purge pressure redline exceeded. Software logic was executed according to requirements and there was no anomalous controller software operation. Immediately following the abort, a Rocketdyne/NASA failure investigation team was assembled. The team successfully isolated the failure cause to the oxidizer preburner augmented spark igniter purge check valve not being fully closed due to contamination. The source of the contaminant was traced to a cut segment from a rubber O-ring which was used in a fine clean tool during valve production prior to 1992. The valve was apparently contaminated during its fabrication in 1985. The valve had performed acceptably on four previous flights of the engine, and SSME flight history shows 780 combined check valve flights without failure. The failure of an Engine 3 (SSME No. 2011) check valve to close was sensed by onboard engine instruments even though all other engine operations were normal. This resulted in an engine shutdown and safe sequential shutdown of all three engines prior to ignition of the solid boosters.

  8. V&V Within Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1996-01-01

    Verification and Validation (V&V) is used to increase the level of assurance of critical software, particularly that of safety-critical and mission-critical software. V&V is a systems engineering discipline that evaluates the software in a systems context, and is currently applied during the development of a specific application system. In order to bring the effectiveness of V&V to bear within reuse-based software engineering, V&V must be incorporated within the domain engineering process.

  9. Professional Ethics of Software Engineers: An Ethical Framework.

    PubMed

    Lurie, Yotam; Mark, Shlomo

    2016-04-01

    The purpose of this article is to propose an ethical framework for software engineers that connects software developers' ethical responsibilities directly to their professional standards. The implementation of such an ethical framework can overcome the traditional dichotomy between professional skills and ethical skills, which plagues the engineering professions, by proposing an approach to the fundamental tasks of the practitioner, i.e., software development, in which the professional standards are intrinsically connected to the ethical responsibilities. In so doing, the ethical framework improves the practitioner's professionalism and ethics. We call this approach Ethical-Driven Software Development (EDSD), as an approach to software development. EDSD manifests the advantages of an ethical framework as an alternative to the all too familiar approach in professional ethics that advocates "stand-alone codes of ethics". We believe that one outcome of this synergy between professional and ethical skills is simply better engineers. Moreover, since there are often different software solutions, which the engineer can provide to an issue at stake, the ethical framework provides a guiding principle, within the process of software development, that helps the engineer evaluate the advantages and disadvantages of different software solutions. It does not and cannot affect the end-product in and of-itself. However, it can and should, make the software engineer more conscious and aware of the ethical ramifications of certain engineering decisions within the process.

  10. Engineering Complex Embedded Systems with State Analysis and the Mission Data System

    NASA Technical Reports Server (NTRS)

    Ingham, Michel D.; Rasmussen, Robert D.; Bennett, Matthew B.; Moncada, Alex C.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer s intent, potentially leading to software errors. This problem is addressed by a systems engineering methodology called State Analysis, which provides a process for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using State Analysis and how these requirements inform the design of the system software, using representative spacecraft examples.

  11. Research on Visualization Design Method in the Field of New Media Software Engineering

    NASA Astrophysics Data System (ADS)

    Deqiang, Hu

    2018-03-01

    In the new period of increasingly developed science and technology, with the increasingly fierce competition in the market and the increasing demand of the masses, new design and application methods have emerged in the field of new media software engineering, that is, the visualization design method. Applying the visualization design method to the field of new media software engineering can not only improve the actual operation efficiency of new media software engineering but more importantly the quality of software development can be enhanced by means of certain media of communication and transformation; on this basis, the progress and development of new media software engineering in China are also continuously promoted. Therefore, the application of visualization design method in the field of new media software engineering is analysed concretely in this article from the perspective of the overview of visualization design methods and on the basis of systematic analysis of the basic technology.

  12. Component-specific modeling

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.

    1985-01-01

    Accomplishments are described for the second year effort of a 3-year program to develop methodology for component specific modeling of aircraft engine hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models; (2) geometry model generators; (3) remeshing; (4) specialty 3-D inelastic stuctural analysis; (5) computationally efficient solvers, (6) adaptive solution strategies; (7) engine performance parameters/component response variables decomposition and synthesis; (8) integrated software architecture and development, and (9) validation cases for software developed.

  13. SMART: Analyzing the Reuse Potential of Legacy Systems in Service- Oriented Architecture (SOA) Environments

    DTIC Science & Technology

    2009-04-09

    technical faculty for the Master in Software Engineering program at CMU. Grace holds a B.Sc. in Systems Engineering and an Executive MBA from Icesi...University in Cali, Colombia ; and a Master in Software Engineering from Carnegie Mellon University. 3 Version 1.7.3—SEI Webinar—April 2009 © 2009 Carnegie...Resources and Training SMART Report • http://www.sei.cmu.edu/publications/documents/08.reports/08tn008.html Public Courses • Migration of Legacy

  14. Component-specific modeling. [jet engine hot section components

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.

    1992-01-01

    Accomplishments are described for a 3 year program to develop methodology for component-specific modeling of aircraft hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models, (2) geometry model generators, (3) remeshing, (4) specialty three-dimensional inelastic structural analysis, (5) computationally efficient solvers, (6) adaptive solution strategies, (7) engine performance parameters/component response variables decomposition and synthesis, (8) integrated software architecture and development, and (9) validation cases for software developed.

  15. Towards understanding software: 15 years in the SEL

    NASA Technical Reports Server (NTRS)

    Mcgarry, Frank; Pajerski, Rose

    1990-01-01

    For 15 years, the Software Engineering Laboratory (SEL) at GSFC has been carrying out studies and experiments for the purpose of understanding, assessing, and improving software, and software processes within a production software environment. The SEL comprises three major organizations: (1) the GSFC Flight Dynamics Division; (2) the University of Maryland Computer Science Department; and (3) the Computer Sciences Corporation Flight Dynamics Technology Group. These organizations have jointly carried out several hundred software studies, producing hundreds of reports, papers, and documents: all describing some aspect of the software engineering technology that has undergone analysis in the flight dynamics environment. The studies range from small controlled experiments (such as analyzing the effectiveness of code reading versus functional testing) to large, multiple-project studies (such as assessing the impacts of Ada on a production environment). The key findings that NASA feels have laid the foundation for ongoing and future software development and research activities are summarized.

  16. ICESat (GLAS) Science Processing Software Document Series. Volume 1; Science Software Management Plan; 3.0

    NASA Technical Reports Server (NTRS)

    Hancock, David W., III

    1999-01-01

    This document provides the Software Management Plan for the GLAS Standard Data Software (SDS) supporting the GLAS instrument of the EOS ICESat Spacecraft. The SDS encompasses the ICESat Science Investigator-led Processing System (I-SIPS) Software and the Instrument Support Terminal (IST) Software. For the I-SIPS Software, the SDS will produce Level 0, Level 1, and Level 2 data products as well as the associated product quality assessments and descriptive information. For the IST Software, the SDS will accommodate the GLAS instrument support areas of engineering status, command, performance assessment, and instrument health status.

  17. Complexity, Systems, and Software

    DTIC Science & Technology

    2014-08-14

    2014 Carnegie Mellon University Complexity, Systems, and Software Software Engineering Institute Carnegie Mellon University Pittsburgh, PA...this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services , Directorate for Information...OMB control number. 1. REPORT DATE 29 OCT 2014 2. REPORT TYPE N/A 3. DATES COVERED 4. TITLE AND SUBTITLE Complexity, Systems, and Software

  18. Improved Real-Time Monitoring Using Multiple Expert Systems

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Angelino, Robert; Quan, Alan G.; Veregge, John; Childs, Cynthia

    1993-01-01

    Monitor/Analyzer of Real-Time Voyager Engineering Link (MARVEL) computer program implements combination of techniques of both conventional automation and artificial intelligence to improve monitoring of complicated engineering system. Designed to support ground-based operations of Voyager spacecraft, also adapted to other systems. Enables more-accurate monitoring and analysis of telemetry, enhances productivity of monitoring personnel, reduces required number of such personnel by performing routine monitoring tasks, and helps ensure consistency in face of turnover of personnel. Programmed in C language and includes commercial expert-system software shell also written in C.

  19. Appendix C: Rapid development approaches for system engineering and design

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Conventional system architectures, development processes, and tool environments often produce systems which exceed cost expectations and are obsolete before they are fielded. This paper explores some of the reasons for this and provides recommendations for how we can do better. These recommendations are based on DoD and NASA system developments and on our exploration and development of system/software engineering tools.

  20. State analysis requirements database for engineering complex embedded systems

    NASA Technical Reports Server (NTRS)

    Bennett, Matthew B.; Rasmussen, Robert D.; Ingham, Michel D.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer's intent, potentially leading to software errors. This problem is addressed by a systems engineering tool called the State Analysis Database, which provides a tool for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using the State Analysis Database.

  1. The making of the mechanical universe

    NASA Technical Reports Server (NTRS)

    Blinn, James

    1989-01-01

    The Mechanical Universe project required the production of over 550 different animated scenes, totaling about 7 and 1/2 hours of screen time. The project required the use of a wide range of techniques and motivated the development of several different software packages. A documentation is presented of many aspects of the project, encompassing artistic design issues, scientific simulations, software engineering, and video engineering.

  2. Engineering designer transcription activator-like effector nucleases (TALENs) by REAL or REAL-Fast assembly.

    PubMed

    Reyon, Deepak; Khayter, Cyd; Regan, Maureen R; Joung, J Keith; Sander, Jeffry D

    2012-10-01

    Engineered transcription activator-like effector nucleases (TALENs) are broadly useful tools for performing targeted genome editing in a wide variety of organisms and cell types including plants, zebrafish, C. elegans, rat, human somatic cells, and human pluripotent stem cells. Here we describe detailed protocols for the serial, hierarchical assembly of TALENs that require neither PCR nor specialized multi-fragment ligations and that can be implemented by any laboratory. These restriction enzyme and ligation (REAL)-based protocols can be practiced using plasmid libraries and user-friendly, Web-based software that both identifies target sites in sequences of interest and generates printable graphical guides that facilitate assembly of TALENs. With the described platform of reagents, protocols, and software, researchers can easily engineer multiple TALENs within 2 weeks using standard cloning techniques. 2012 by John Wiley & Sons, Inc.

  3. Capturing Requirements for Autonomous Spacecraft with Autonomy Requirements Engineering

    NASA Astrophysics Data System (ADS)

    Vassev, Emil; Hinchey, Mike

    2014-08-01

    The Autonomy Requirements Engineering (ARE) approach has been developed by Lero - the Irish Software Engineering Research Center within the mandate of a joint project with ESA, the European Space Agency. The approach is intended to help engineers develop missions for unmanned exploration, often with limited or no human control. Such robotics space missions rely on the most recent advances in automation and robotic technologies where autonomy and autonomic computing principles drive the design and implementation of unmanned spacecraft [1]. To tackle the integration and promotion of autonomy in software-intensive systems, ARE combines generic autonomy requirements (GAR) with goal-oriented requirements engineering (GORE). Using this approach, software engineers can determine what autonomic features to develop for a particular system (e.g., a space mission) as well as what artifacts that process might generate (e.g., goals models, requirements specification, etc.). The inputs required by this approach are the mission goals and the domain-specific GAR reflecting specifics of the mission class (e.g., interplanetary missions).

  4. Assertion Mechanisms in Programming Languages.

    DTIC Science & Technology

    1979-11-01

    the Construction and Verific3tion of ALPHAPD Programs ", IEEE Transactions on Software Engineering , voL. 2, no. 4, p. 253-265, 1 1-7t [Zelkooitz a...be true at a point in program execut ion. The languaje designer has several options when considering the semantics of an assertion mechanism... Software Engineering , vol. SE-i, no. 2, p. 156-173, June 1975. [Hansen] G. J. Hansen, G. A. Shoults and J. D. Coinmeat, "Construction of a Transportaole

  5. The TAME Project: Towards improvement-oriented software environments

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Rombach, H. Dieter

    1988-01-01

    Experience from a dozen years of analyzing software engineering processes and products is summarized as a set of software engineering and measurement principles that argue for software engineering process models that integrate sound planning and analysis into the construction process. In the TAME (Tailoring A Measurement Environment) project at the University of Maryland, such an improvement-oriented software engineering process model was developed that uses the goal/question/metric paradigm to integrate the constructive and analytic aspects of software development. The model provides a mechanism for formalizing the characterization and planning tasks, controlling and improving projects based on quantitative analysis, learning in a deeper and more systematic way about the software process and product, and feeding the appropriate experience back into the current and future projects. The TAME system is an instantiation of the TAME software engineering process model as an ISEE (integrated software engineering environment). The first in a series of TAME system prototypes has been developed. An assessment of experience with this first limited prototype is presented including a reassessment of its initial architecture.

  6. Impacts of Technological Changes in the Cyber Environment on Software/Systems Engineering Workforce Development

    DTIC Science & Technology

    2010-04-01

    for decoupled parallel development Ref: Barry Boehm 12 Impacts of Technological Changes in the Cyber Environment on Software/Systems Engineering... Pressman , R.S., Software Engineering: A Practitioner’s Approach, 13 Impacts of Technological Changes in the Cyber Environment on Software/Systems

  7. Data collection procedures for the Software Engineering Laboratory (SEL) database

    NASA Technical Reports Server (NTRS)

    Heller, Gerard; Valett, Jon; Wild, Mary

    1992-01-01

    This document is a guidebook to collecting software engineering data on software development and maintenance efforts, as practiced in the Software Engineering Laboratory (SEL). It supersedes the document entitled Data Collection Procedures for the Rehosted SEL Database, number SEL-87-008 in the SEL series, which was published in October 1987. It presents procedures to be followed on software development and maintenance projects in the Flight Dynamics Division (FDD) of Goddard Space Flight Center (GSFC) for collecting data in support of SEL software engineering research activities. These procedures include detailed instructions for the completion and submission of SEL data collection forms.

  8. Modular Rocket Engine Control Software (MRECS)

    NASA Technical Reports Server (NTRS)

    Tarrant, Charlie; Crook, Jerry

    1997-01-01

    The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for a generic, advanced engine control system that will result in lower software maintenance (operations) costs. It effectively accommodates software requirements changes that occur due to hardware. technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives and benefits of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishment are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software, architecture, reuse software, and reduced software reverification time related to software changes. Currently, the program is focused on supporting MSFC in accomplishing a Space Shuttle Main Engine (SSME) hot-fire test at Stennis Space Center and the Low Cost Boost Technology (LCBT) Program.

  9. Software Engineering Improvement Plan

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In performance of this task order, bd Systems personnel provided support to the Flight Software Branch and the Software Working Group through multiple tasks related to software engineering improvement and to activities of the independent Technical Authority (iTA) Discipline Technical Warrant Holder (DTWH) for software engineering. To ensure that the products, comments, and recommendations complied with customer requirements and the statement of work, bd Systems personnel maintained close coordination with the customer. These personnel performed work in areas such as update of agency requirements and directives database, software effort estimation, software problem reports, a web-based process asset library, miscellaneous documentation review, software system requirements, issue tracking software survey, systems engineering NPR, and project-related reviews. This report contains a summary of the work performed and the accomplishments in each of these areas.

  10. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Freedman, Glenn B.

    1988-01-01

    The purpose of this panel is to explore the emerging field of software engineering from a variety of perspectives: university programs; industry training and definition; government development; and technology transfer. In doing this, the panel will address the issues of distinctions among software engineering, computer science, and computer hardware engineering as they relate to the challenges of large, complex systems.

  11. Atrioventricular junction (AVJ) motion tracking: a software tool with ITK/VTK/Qt.

    PubMed

    Pengdong Xiao; Shuang Leng; Xiaodan Zhao; Hua Zou; Ru San Tan; Wong, Philip; Liang Zhong

    2016-08-01

    The quantitative measurement of the Atrioventricular Junction (AVJ) motion is an important index for ventricular functions of one cardiac cycle including systole and diastole. In this paper, a software tool that can conduct AVJ motion tracking from cardiovascular magnetic resonance (CMR) images is presented by using Insight Segmentation and Registration Toolkit (ITK), The Visualization Toolkit (VTK) and Qt. The software tool is written in C++ by using Visual Studio Community 2013 integrated development environment (IDE) containing both an editor and a Microsoft complier. The software package has been successfully implemented. From the software engineering practice, it is concluded that ITK, VTK, and Qt are very handy software systems to implement automatic image analysis functions for CMR images such as quantitative measure of motion by visual tracking.

  12. Engineering and algorithm design for an image processing Api: a technical report on ITK--the Insight Toolkit.

    PubMed

    Yoo, Terry S; Ackerman, Michael J; Lorensen, William E; Schroeder, Will; Chalana, Vikram; Aylward, Stephen; Metaxas, Dimitris; Whitaker, Ross

    2002-01-01

    We present the detailed planning and execution of the Insight Toolkit (ITK), an application programmers interface (API) for the segmentation and registration of medical image data. This public resource has been developed through the NLM Visible Human Project, and is in beta test as an open-source software offering under cost-free licensing. The toolkit concentrates on 3D medical data segmentation and registration algorithms, multimodal and multiresolution capabilities, and portable platform independent support for Windows, Linux/Unix systems. This toolkit was built using current practices in software engineering. Specifically, we embraced the concept of generic programming during the development of these tools, working extensively with C++ templates and the freedom and flexibility they allow. Software development tools for distributed consortium-based code development have been created and are also publicly available. We discuss our assumptions, design decisions, and some lessons learned.

  13. Unique Approach to Threat Analysis Mapping: A Malware Centric Methodology for Better Understanding the Adversary Landscape

    DTIC Science & Technology

    2016-04-05

    Unlimited http://www.sei.cmu.edu CMU/SEI-2016-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Distribution Statement A...Approved for Public Release; Distribution is Unlimited Copyright 2016 Carnegie Mellon University

 This material is based upon work funded and supported...by Department of Homeland Security under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software

  14. SIMOGEN - An Object-Oriented Language for Simulation

    DTIC Science & Technology

    1989-03-01

    program generator must also be written in the same prcgramming languaje . In this case, the C language was chosen, for the following main reasons...3), March 88. 4. PRESTO: A System for Object-Oriented Parallel Programing B N Bershad, E D Lazowska & H M Levy Software Practice and Experience, Vol...U.S. Depare nt of Defence ANSI/ML-STD 1815A. 7. Object-oriented Development Grady Booch Transactions on Software Engineering , February 86. 8. A

  15. What's Happening in the Software Engineering Laboratory?

    NASA Technical Reports Server (NTRS)

    Pajerski, Rose; Green, Scott; Smith, Donald

    1995-01-01

    Since 1976 the Software Engineering Laboratory (SEL) has been dedicated to understanding and improving the way in which one NASA organization the Flight Dynamics Division (FDD) at Goddard Space Flight Center, develops, maintains, and manages complex flight dynamics systems. This paper presents an overview of recent activities and studies in SEL, using as a framework the SEL's organizational goals and experience based software improvement approach. It focuses on two SEL experience areas : (1) the evolution of the measurement program and (2) an analysis of three generations of Cleanroom experiments.

  16. RICIS research

    NASA Technical Reports Server (NTRS)

    Mckay, Charles W.; Feagin, Terry; Bishop, Peter C.; Hallum, Cecil R.; Freedman, Glenn B.

    1987-01-01

    The principle focus of one of the RICIS (Research Institute for Computing and Information Systems) components is computer systems and software engineering in-the-large of the lifecycle of large, complex, distributed systems which: (1) evolve incrementally over a long time; (2) contain non-stop components; and (3) must simultaneously satisfy a prioritized balance of mission and safety critical requirements at run time. This focus is extremely important because of the contribution of the scaling direction problem to the current software crisis. The Computer Systems and Software Engineering (CSSE) component addresses the lifestyle issues of three environments: host, integration, and target.

  17. Applying formal methods and object-oriented analysis to existing flight software

    NASA Technical Reports Server (NTRS)

    Cheng, Betty H. C.; Auernheimer, Brent

    1993-01-01

    Correctness is paramount for safety-critical software control systems. Critical software failures in medical radiation treatment, communications, and defense are familiar to the public. The significant quantity of software malfunctions regularly reported to the software engineering community, the laws concerning liability, and a recent NRC Aeronautics and Space Engineering Board report additionally motivate the use of error-reducing and defect detection software development techniques. The benefits of formal methods in requirements driven software development ('forward engineering') is well documented. One advantage of rigorously engineering software is that formal notations are precise, verifiable, and facilitate automated processing. This paper describes the application of formal methods to reverse engineering, where formal specifications are developed for a portion of the shuttle on-orbit digital autopilot (DAP). Three objectives of the project were to: demonstrate the use of formal methods on a shuttle application, facilitate the incorporation and validation of new requirements for the system, and verify the safety-critical properties to be exhibited by the software.

  18. Solid waste projection model: Model version 1. 0 technical reference manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, M.L.; Crow, V.L.; Buska, D.E.

    1990-11-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software utilized in developing Version 1.0 of the modeling unit of SWPM. This document is intended for use by experienced software engineers and supports programming, code maintenance, and model enhancement. Those interested in using SWPM should refer to the SWPM Modelmore » User's Guide. This document is available from either the PNL project manager (D. L. Stiles, 509-376-4154) or the WHC program monitor (B. C. Anderson, 509-373-2796). 8 figs.« less

  19. Proceedings of the Annual Ada Software Engineering Education and Training Symposium (3rd) Held in Denver, Colorado on June 14-16, 1988

    DTIC Science & Technology

    1988-06-01

    Based Software Engineering Project Course .............. 83 SSoftware Engineering, Software Engineering Concepts: The Importance of Object-Based...quality assurance, and independent system testing . The Chief Programmer is responsible for all software development activities, including prototyping...during the Requirements Analysis phase, the Preliminary Design, the Detailed Design, Coding and Unit Testing , CSC Integration and Testing , and informal

  20. Software Engineering Laboratory Ada performance study: Results and implications

    NASA Technical Reports Server (NTRS)

    Booth, Eric W.; Stark, Michael E.

    1992-01-01

    The SEL is an organization sponsored by NASA/GSFC to investigate the effectiveness of software engineering technologies applied to the development of applications software. The SEL was created in 1977 and has three organizational members: NASA/GSFC, Systems Development Branch; The University of Maryland, Computer Sciences Department; and Computer Sciences Corporation, Systems Development Operation. The goals of the SEL are as follows: (1) to understand the software development process in the GSFC environments; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that include the Ada Performance Study Report. This paper describes the background of Ada in the Flight Dynamics Division (FDD), the objectives and scope of the Ada Performance Study, the measurement approach used, the performance tests performed, the major test results, and the implications for future FDD Ada development efforts.

  1. Guidance and Control Software,

    DTIC Science & Technology

    1980-05-01

    commitments of function, cost, and schedule . The phrase "software engineering" was intended to contrast with the phrase "computer science" the latter aims...the software problems of cost, delivery schedule , and quality were gradually being recognized at the highest management levels. Thus, in a project... schedule dates. Although the analysis of software problems indicated that the entire software development process (figure 1) needed new methods, only

  2. Multidisciplinary and Active/Collaborative Approaches in Teaching Requirements Engineering

    ERIC Educational Resources Information Center

    Rosca, Daniela

    2005-01-01

    The requirements engineering course is a core component of the curriculum for the Master's in Software Engineering programme, at Monmouth University (MU). It covers the process, methods and tools specific to this area, together with the corresponding software quality issues. The need to produce software engineers with strong teamwork and…

  3. A Knowledge Engineering Approach to Analysis and Evaluation of Construction Schedules

    DTIC Science & Technology

    1990-02-01

    software engineering discipline focusing on constructing KBSs. It is an incremental and cyclical process that requires the interaction of a domain expert(s...the U.S. Army Coips of Engineers ; and (3) the project management software developer, represented by Pinnell Engineering , Inc. Since the primary...the programming skills necessary to convert the raw knowledge intn a form a computer can understand. knowledge engineering : The software engineering

  4. Air Force Space Command. Space and Missile Systems Center Standard. Configuration Management

    DTIC Science & Technology

    2008-06-13

    Aerospace Corporation report number TOR-2006( 8583 )-1. 3. Beneficial comments (recommendations, additions, deletions) and any pertinent data that...Engineering Drawing Practices IEEE STD 610.12 Glossary of Software Engineering Terminology, September 28,1990 ISO /IEC 12207 Software Life...item, regardless of media, formally designated and fixed at a specific time during the configuration item’s life cycle. (Source: ISO /IEC 12207

  5. Unmanned Systems Safety Guide for DoD Acquisition

    DTIC Science & Technology

    2007-06-27

    Weapons release authorization validation. • Weapons release verification . • Weapons release abort/back-out, including clean -up or reset of weapons...conditions, clean room, stress) and other environments (e.g. software engineering environment, electromagnetic) related to system utilization. Error 22 (1...A solid or liquid energetic substance (or a mixture of substances) which is in itself capable, OUSD (AT&L) Systems and Software Engineering

  6. Flight software issues in onboard automated planning: lessons learned on EO-1

    NASA Technical Reports Server (NTRS)

    Tran, Daniel; Chien, Steve; Rabideau, Gregg; Cichy, Benjamin

    2004-01-01

    This paper focuses on the onboard planner and scheduler CASPER, whose core planning engine is based on the ground system ASPEN. Given the challenges of developing flight software, we discuss several of the issues encountered in preparing the planner for flight, including reducing the code image size, determining what data to place within the engineering telemetry packet, and performing long term planning.

  7. Questioning the Role of Requirements Engineering in the Causes of Safety-Critical Software Failures

    NASA Technical Reports Server (NTRS)

    Johnson, C. W.; Holloway, C. M.

    2006-01-01

    Many software failures stem from inadequate requirements engineering. This view has been supported both by detailed accident investigations and by a number of empirical studies; however, such investigations can be misleading. It is often difficult to distinguish between failures in requirements engineering and problems elsewhere in the software development lifecycle. Further pitfalls arise from the assumption that inadequate requirements engineering is a cause of all software related accidents for which the system fails to meet its requirements. This paper identifies some of the problems that have arisen from an undue focus on the role of requirements engineering in the causes of major accidents. The intention is to provoke further debate within the emerging field of forensic software engineering.

  8. Integrating open-source software applications to build molecular dynamics systems.

    PubMed

    Allen, Bruce M; Predecki, Paul K; Kumosa, Maciej

    2014-04-05

    Three open-source applications, NanoEngineer-1, packmol, and mis2lmp are integrated using an open-source file format to quickly create molecular dynamics (MD) cells for simulation. The three software applications collectively make up the open-source software (OSS) suite known as MD Studio (MDS). The software is validated through software engineering practices and is verified through simulation of the diglycidyl ether of bisphenol-a and isophorone diamine (DGEBA/IPD) system. Multiple simulations are run using the MDS software to create MD cells, and the data generated are used to calculate density, bulk modulus, and glass transition temperature of the DGEBA/IPD system. Simulation results compare well with published experimental and numerical results. The MDS software prototype confirms that OSS applications can be analyzed against real-world research requirements and integrated to create a new capability. Copyright © 2014 Wiley Periodicals, Inc.

  9. Computer systems and software engineering

    NASA Technical Reports Server (NTRS)

    Mckay, Charles W.

    1988-01-01

    The High Technologies Laboratory (HTL) was established in the fall of 1982 at the University of Houston Clear Lake. Research conducted at the High Tech Lab is focused upon computer systems and software engineering. There is a strong emphasis on the interrelationship of these areas of technology and the United States' space program. In Jan. of 1987, NASA Headquarters announced the formation of its first research center dedicated to software engineering. Operated by the High Tech Lab, the Software Engineering Research Center (SERC) was formed at the University of Houston Clear Lake. The High Tech Lab/Software Engineering Research Center promotes cooperative research among government, industry, and academia to advance the edge-of-knowledge and the state-of-the-practice in key topics of computer systems and software engineering which are critical to NASA. The center also recommends appropriate actions, guidelines, standards, and policies to NASA in matters pertinent to the center's research. Results of the research conducted at the High Tech Lab/Software Engineering Research Center have given direction to many decisions made by NASA concerning the Space Station Program.

  10. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix C: Data base plots for SSME tests 902-214 through 902-314

    NASA Technical Reports Server (NTRS)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is reported. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is included to estimate spectral trends with SSME power level. Flow Dynamic Environments in High Performance Rocket Engines are described.

  11. TriBITS lifecycle model. Version 1.0, a lean/agile software lifecycle model for research-based computational science and engineering and applied mathematical software.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willenbring, James M.; Bartlett, Roscoe Ainsworth; Heroux, Michael Allen

    2012-01-01

    Software lifecycles are becoming an increasingly important issue for computational science and engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process - respecting the competing needs of research vs. production - cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for manymore » CSE software projects that are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Here, we advocate three to four phases or maturity levels that address the appropriate handling of many issues associated with the transition from research to production software. The goals of this lifecycle model are to better communicate maturity levels with customers and to help to identify and promote Software Engineering (SE) practices that will help to improve productivity and produce better software. An important collection of software in this domain is Trilinos, which is used as the motivation and the initial target for this lifecycle model. However, many other related and similar CSE (and non-CSE) software projects can also make good use of this lifecycle model, especially those that use the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.« less

  12. Computer Sciences and Data Systems, volume 1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: software engineering; university grants; institutes; concurrent processing; sparse distributed memory; distributed operating systems; intelligent data management processes; expert system for image analysis; fault tolerant software; and architecture research.

  13. Software Engineering: Tools of the Profession

    DTIC Science & Technology

    1976-09-01

    Sequencing Discipline Each of the flowcharts share the property that they have a single entry (at the top) and a single exit (at the bottom) . The three...structures is what Dijkstra refers to as a "sequencing discipline". Flowcharts of programs using only these 20 <u CU -H CO J2 CD G 01 S 0) o jj O CO 8...4-1 3 CD CO a* 0) C-O 21 decompositions show a straight- line program (restricted topology) as compared with flowcharts of programs allowing multiple

  14. DARPA Agreement HR0011-06-1-0028 (Robert C. Byrd Institute for Advanced Flexible Manufacturing)

    DTIC Science & Technology

    2011-12-13

    cutting edge design software, state-of-the-art computer labs, manufacturing staff expertise, training resources, as well as video-teleconference...started its own Design Works labs in an effort to provide manufacturers, entrepreneurs, students, machinists and engineers with access to a one-stop...shop and turn their ideas and talent into new products. From a concept drawn on a napkin or the back of an envelope to a 3D design to a working

  15. Annotated bibliography of Software Engineering Laboratory (SEL) literature

    NASA Technical Reports Server (NTRS)

    Card, D.

    1982-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is presented. More than 75 publications are summarized. An index of these publications by subject is also included. These publications cover many areas of software engineering and range from research reports to software documentation.

  16. Towards a Controlled Vocabulary on Software Engineering Education

    ERIC Educational Resources Information Center

    Pizard, Sebastián; Vallespir, Diego

    2017-01-01

    Software engineering is the discipline that develops all the aspects of the production of software. Although there are guidelines about what topics to include in a software engineering curricula, it is usually unclear which are the best methods to teach them. In any science discipline the construction of a classification schema is a common…

  17. AADL and Model-based Engineering

    DTIC Science & Technology

    2014-10-20

    and MBE Feiler, Oct 20, 2014 © 2014 Carnegie Mellon University We Rely on Software for Safe Aircraft Operation Embedded software systems ...D eveloper Compute Platform Runtime Architecture Application Software Embedded SW System Engineer Data Stream Characteristics Latency...confusion Hardware Engineer Why do system level failures still occur despite fault tolerance techniques being deployed in systems ? Embedded software

  18. Intelligent Agents for Design and Synthesis Environments: My Summary

    NASA Technical Reports Server (NTRS)

    Norvig, Peter

    1999-01-01

    This presentation gives a summary of intelligent agents for design synthesis environments. We'll start with the conclusions, and work backwards to justify them. First, an important assumption is that agents (whatever they are) are good for software engineering. This is especially true for software that operates in an uncertain, changing environment. The "real world" of physical artifacts is like that: uncertain in what we can measure, changing in that things are always breaking down, and we must interact with non-software entities. The second point is that software engineering techniques can contribute to good design. There may have been a time when we wanted to build simple artifacts containing little or no software. But modern aircraft and spacecraft are complex, and rely on a great deal of software. So better software engineering leads to better designed artifacts, especially when we are designing a series of related artifacts and can amortize the costs of software development. The third point is that agents are especially useful for design tasks, above and beyond their general usefulness for software engineering, and the usefulness of software engineering to design.

  19. NASA software documentation standard software engineering program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Software Documentation Standard (hereinafter referred to as Standard) can be applied to the documentation of all NASA software. This Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. This basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.

  20. GEOSTATISTICS FOR WASTE MANAGEMENT: A USER'S MANUAL FOR THE GEOPACK (VERSION 1.0) GEOSTATISTICAL SOFTWARE SYSTEM

    EPA Science Inventory

    GEOPACK, a comprehensive user-friendly geostatistical software system, was developed to help in the analysis of spatially correlated data. The software system was developed to be used by scientists, engineers, regulators, etc., with little experience in geostatistical techniques...

  1. Generic domain models in software engineering

    NASA Technical Reports Server (NTRS)

    Maiden, Neil

    1992-01-01

    This paper outlines three research directions related to domain-specific software development: (1) reuse of generic models for domain-specific software development; (2) empirical evidence to determine these generic models, namely elicitation of mental knowledge schema possessed by expert software developers; and (3) exploitation of generic domain models to assist modelling of specific applications. It focuses on knowledge acquisition for domain-specific software development, with emphasis on tool support for the most important phases of software development.

  2. Improving Software Engineering on NASA Projects

    NASA Technical Reports Server (NTRS)

    Crumbley, Tim; Kelly, John C.

    2010-01-01

    Software Engineering Initiative: Reduces risk of software failure -Increases mission safety. More predictable software cost estimates and delivery schedules. Smarter buyer of contracted out software. More defects found and removed earlier. Reduces duplication of efforts between projects. Increases ability to meet the challenges of evolving software technology.

  3. Technical Writing for Software Engineers

    DTIC Science & Technology

    1990-05-01

    Writing models 3. Analogies: Software Development and Composing 3.1 Art / Science /Design 3.2 General Correspondence Between the Disciplines 3.3...The first subsection describes a dialogue common to both fields, one that considers these disciplines as art , science , and design. The second notes...find additional similarities between software development and composing in these and other sources. 3.1 Art / Science /Design Ongoing discussions about

  4. Technical Writing for Software Engineers

    DTIC Science & Technology

    1991-11-01

    3 Analogies: Software Development and Composing 3.1 Art / Science /Design 3.2 General Correspondences Between the Disciplines 3.3 Specific Analogies...domains. The first subsection describes a dialogue common to both fields, one that considers these disciplines as art , science , and design. The second...will find additional similarities between software development and composing in these and other sources. 3.1 Art / Science /Design Ongoing discussions

  5. BanTeC: a software tool for management of corneal transplantation.

    PubMed

    López-Alvarez, P; Caballero, F; Trias, J; Cortés, U; López-Navidad, A

    2005-11-01

    Until recently, all cornea information at our tissue bank was managed manually, no specific database or computer tool had been implemented to provide electronic versions of documents and medical reports. The main objective of the BanTeC project was therefore to create a computerized system to integrate and classify all the information and documents used in the center in order to facilitate management of retrieved, transplanted corneal tissues. We used the Windows platform to develop the project. Microsoft Access and Microsoft Jet Engine were used at the database level and Data Access Objects was the chosen data access technology. In short, the BanTeC software seeks to computerize the tissue bank. All the initial stages of the development have now been completed, from specification of needs, program design and implementation of the software components, to the total integration of the final result in the real production environment. BanTeC will allow the generation of statistical reports for analysis to improve our performance.

  6. Software Engineering Laboratory (SEL) programmer workbench phase 1 evaluation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Phase 1 of the SEL programmer workbench consists of the design of the following three components: communications link, command language processor, and collection of software aids. A brief description, and evaluation, and recommendations are presented for each of these three components.

  7. Orion GN and C Model Based Development: Experience and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Jackson, Mark C.; Henry, Joel R.

    2012-01-01

    The Orion Guidance Navigation and Control (GN&C) team is charged with developing GN&C algorithms for the Exploration Flight Test One (EFT-1) vehicle. The GN&C team is a joint team consisting primarily of Prime Contractor (Lockheed Martin) and NASA personnel and contractors. Early in the GN&C development cycle the team selected MATLAB/Simulink as the tool for developing GN&C algorithms and Mathworks autocode tools as the means for converting GN&C algorithms to flight software (FSW). This paper provides an assessment of the successes and problems encountered by the GN&C team from the perspective of Orion GN&C developers, integrators, FSW engineers and management. The Orion GN&C approach to graphical development, including simulation tools, standards development and autocode approaches are scored for the main activities that the team has completed through the development phases of the program.

  8. Software technology insertion: A study of success factors

    NASA Technical Reports Server (NTRS)

    Lydon, Tom

    1990-01-01

    Managing software development in large organizations has become increasingly difficult due to increasing technical complexity, stricter government standards, a shortage of experienced software engineers, competitive pressure for improved productivity and quality, the need to co-develop hardware and software together, and the rapid changes in both hardware and software technology. The 'software factory' approach to software development minimizes risks while maximizing productivity and quality through standardization, automation, and training. However, in practice, this approach is relatively inflexible when adopting new software technologies. The methods that a large multi-project software engineering organization can use to increase the likelihood of successful software technology insertion (STI), especially in a standardized engineering environment, are described.

  9. Defense AT&L Magazine: A Publication of the Defense Acquisition University. Volume 34, Number 3, DAU 184

    DTIC Science & Technology

    2005-01-01

    developed a partnership with the Defense Acquisition University to in- tegrate DISA’s systems engineering processes, software , and network...in place, with processes being implemented: deployment management; systems engineering ; software engineering ; configuration man- agement; test and...CSS systems engineering is a transition partner with Carnegie Mellon University’s Software Engineering Insti- tute and its work on the capability

  10. Software Engineering Principles.

    DTIC Science & Technology

    1980-07-01

    IC’ a It, It, Io It, It, o H 10 ~ Iro I0 E10 10 1 1 0 I 11. 1. 1. 10 1 0 1 0 1 c6 of a" I a f C f I 1 11 1 16 D , O f o 4 o I c1 w t I A, t I m 1 1 ca ...V. 4 4 4 I lbl. b 1 0 40 4 0 1 4 43c 4 40 ’ 10 40 4 I 10 4 4 1 4 4 40 Ic 1 011 1 If 0 . in44 3 4 4 3 4 4 I Io3 .4 4i I InI I I I 4 3 I CA I 4 I 4 3 I4...I 60 60 10 601 60. 6I I0 60 1~ 1 W 1 W 601 I3 Er- 6I 614 664;n3 6 W l. 60 l. 6 1 3 6 64 lb 46 lb l lb 6 M it I CA 0 6 lb. lbaa 1 0 r5 g m I . n lb lm

  11. Shuttle avionics software trials, tribulations and success

    NASA Technical Reports Server (NTRS)

    Henderson, O. L.

    1985-01-01

    The early problems and the solutions developed to provide the required quality software needed to support the space shuttle engine development program are described. The decision to use a programmable digital control system on the space shuttle engine was primarily based upon the need for a flexible control system capable of supporting the total engine mission on a large complex pump fed engine. The mission definition included all control phases from ground checkout through post shutdown propellant dumping. The flexibility of the controller through reprogrammable software allowed the system to respond to the technical challenges and innovation required to develop both the engine and controller hardware. This same flexibility, however, placed a severe strain on the capability of the software development and verification organization. The overall development program required that the software facility accommodate significant growth in both the software requirements and the number of software packages delivered. This challenge was met by reorganization and evolution in the process of developing and verifying software.

  12. 48 CFR 227.7103-6 - Contract clauses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... expense). Do not use the clause when the only deliverable items are computer software or computer software... architect-engineer and construction contracts. (b)(1) Use the clause at 252.227-7013 with its Alternate I in... Software Previously Delivered to the Government, in solicitations when the resulting contract will require...

  13. 48 CFR 227.7103-6 - Contract clauses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... expense). Do not use the clause when the only deliverable items are computer software or computer software... architect-engineer and construction contracts. (b)(1) Use the clause at 252.227-7013 with its Alternate I in... Software Previously Delivered to the Government, in solicitations when the resulting contract will require...

  14. Analyzing a Mature Software Inspection Process Using Statistical Process Control (SPC)

    NASA Technical Reports Server (NTRS)

    Barnard, Julie; Carleton, Anita; Stamper, Darrell E. (Technical Monitor)

    1999-01-01

    This paper presents a cooperative effort where the Software Engineering Institute and the Space Shuttle Onboard Software Project could experiment applying Statistical Process Control (SPC) analysis to inspection activities. The topics include: 1) SPC Collaboration Overview; 2) SPC Collaboration Approach and Results; and 3) Lessons Learned.

  15. Shaping Software Engineering Curricula Using Open Source Communities: A Case Study

    ERIC Educational Resources Information Center

    Bowring, James; Burke, Quinn

    2016-01-01

    This paper documents four years of a novel approach to teaching a two-course sequence in software engineering as part of the ABET-accredited computer science curriculum at the College of Charleston. This approach is team-based and centers on learning software engineering in the context of open source software projects. In the first course, teams…

  16. Proceedings of the Thirteenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics covered in the workshop included studies and experiments conducted in the Software Engineering Laboratory (SEL), a cooperative effort of NASA Goddard Space Flight Center, the University of Maryland, and Computer Sciences Corporation; software models; software products; and software tools.

  17. CrossTalk: The Journal of Defense Software Engineering. Volume 21, Number 1

    DTIC Science & Technology

    2008-01-01

    project manage- ment and the individual components of the software life-cycle model ; it will be awarded for...software professionals that had been formally educated in software project manage- ment. The study indicated that our industry is lacking in program managers...soft- ware developments get bigger, more complicated, and more dependent on senior software pro- fessionals to get the project on the right path

  18. Current Methods for Evaluation of Physical Security System Effectiveness.

    DTIC Science & Technology

    1981-05-01

    It also helps the user modify a data set before further processing. (c) Safeguards Engineering and Analysis Data Base (SEAD)--To complete SAFE’s...graphic display software in addition to a Fortran compiler, and up to about (3 35,000 words of storage. For a fairly complex problem, a single run through...operational software . 94 BIBLIOGRAPHY Lenz, J.E., "The PROSE (Protection System Evaluator) Model," Proc. 1979 Winter Simulation Conference, IEEE, 1979

  19. Averting Denver Airports on a Chip

    NASA Technical Reports Server (NTRS)

    Sullivan, Kevin J.

    1995-01-01

    As a result of recent advances in software engineering capabilities, we are now in a more stable environment. De-facto hardware and software standards are emerging. Work on software architecture and design patterns signals a consensus on the importance of early system-level design decisions, and agreements on the uses of certain paradigmatic software structures. We now routinely build systems that would have been risky or infeasible a few years ago. Unfortunately, technological developments threaten to destabilize software design again. Systems designed around novel computing and peripheral devices will spark ambitious new projects that will stress current software design and engineering capabilities. Micro-electro-mechanical systems (MEMS) and related technologies provide the physical basis for new systems with the potential to produce this kind of destabilizing effect. One important response to anticipated software engineering and design difficulties is carefully directed engineering-scientific research. Two specific problems meriting substantial research attention are: A lack of sufficient means to build software systems by generating, extending, specializing, and integrating large-scale reusable components; and a lack of adequate computational and analytic tools to extend and aid engineers in maintaining intellectual control over complex software designs.

  20. SOFTWARE ENGINEERING INSTITUTE (SEI)

    EPA Science Inventory

    The Software Engineering Institute (SEI) is a federally funded research and development center established in 1984 by the U.S. Department of Defense and operated by Carnegie Mellon University. SEI has a broad charter to provide leadership in the practice of software engineering t...

  1. 7 Processes that Enable NASA Software Engineering Technologies: Value-Added Process Engineering

    NASA Technical Reports Server (NTRS)

    Housch, Helen; Godfrey, Sally

    2011-01-01

    The presentation reviews Agency process requirements and the purpose, benefits, and experiences or seven software engineering processes. The processes include: product integration, configuration management, verification, software assurance, measurement and analysis, requirements management, and planning and monitoring.

  2. DataRocket: Interactive Visualisation of Data Structures

    NASA Astrophysics Data System (ADS)

    Parkes, Steve; Ramsay, Craig

    2010-08-01

    CodeRocket is a software engineering tool that provides cognitive support to the software engineer for reasoning about a method or procedure and for documenting the resulting code [1]. DataRocket is a software engineering tool designed to support visualisation and reasoning about program data structures. DataRocket is part of the CodeRocket family of software tools developed by Rapid Quality Systems [2] a spin-out company from the Space Technology Centre at the University of Dundee. CodeRocket and DataRocket integrate seamlessly with existing architectural design and coding tools and provide extensive documentation with little or no effort on behalf of the software engineer. Comprehensive, abstract, detailed design documentation is available early on in a project so that it can be used for design reviews with project managers and non expert stakeholders. Code and documentation remain fully synchronised even when changes are implemented in the code without reference to the existing documentation. At the end of a project the press of a button suffices to produce the detailed design document. Existing legacy code can be easily imported into CodeRocket and DataRocket to reverse engineer detailed design documentation making legacy code more manageable and adding substantially to its value. This paper introduces CodeRocket. It then explains the rationale for DataRocket and describes the key features of this new tool. Finally the major benefits of DataRocket for different stakeholders are considered.

  3. IEEE Conference on Software Engineering Education and Training (CSEE&T 2012) Proceedings (25th, Nanjing, Jiangsu, China, April 17-19, 2012)

    ERIC Educational Resources Information Center

    IEEE Conference on Software Engineering Education and Training, Proceedings (MS), 2012

    2012-01-01

    The Conference on Software Engineering Education and Training (CSEE&T) is the premier international peer-reviewed conference, sponsored by the Institute of Electrical and Electronics Engineers, Inc. (IEEE) Computer Society, which addresses all major areas related to software engineering education, training, and professionalism. This year, as…

  4. Molecular Cloning Designer Simulator (MCDS): All-in-one molecular cloning and genetic engineering design, simulation and management software for complex synthetic biology and metabolic engineering projects.

    PubMed

    Shi, Zhenyu; Vickers, Claudia E

    2016-12-01

    Molecular Cloning Designer Simulator (MCDS) is a powerful new all-in-one cloning and genetic engineering design, simulation and management software platform developed for complex synthetic biology and metabolic engineering projects. In addition to standard functions, it has a number of features that are either unique, or are not found in combination in any one software package: (1) it has a novel interactive flow-chart user interface for complex multi-step processes, allowing an integrated overview of the whole project; (2) it can perform a user-defined workflow of cloning steps in a single execution of the software; (3) it can handle multiple types of genetic recombineering, a technique that is rapidly replacing classical cloning for many applications; (4) it includes experimental information to conveniently guide wet lab work; and (5) it can store results and comments to allow the tracking and management of the whole project in one platform. MCDS is freely available from https://mcds.codeplex.com.

  5. Milestones in Software Engineering and Knowledge Engineering History: A Comparative Review

    PubMed Central

    del Águila, Isabel M.; Palma, José; Túnez, Samuel

    2014-01-01

    We present a review of the historical evolution of software engineering, intertwining it with the history of knowledge engineering because “those who cannot remember the past are condemned to repeat it.” This retrospective represents a further step forward to understanding the current state of both types of engineerings; history has also positive experiences; some of them we would like to remember and to repeat. Two types of engineerings had parallel and divergent evolutions but following a similar pattern. We also define a set of milestones that represent a convergence or divergence of the software development methodologies. These milestones do not appear at the same time in software engineering and knowledge engineering, so lessons learned in one discipline can help in the evolution of the other one. PMID:24624046

  6. Milestones in software engineering and knowledge engineering history: a comparative review.

    PubMed

    del Águila, Isabel M; Palma, José; Túnez, Samuel

    2014-01-01

    We present a review of the historical evolution of software engineering, intertwining it with the history of knowledge engineering because "those who cannot remember the past are condemned to repeat it." This retrospective represents a further step forward to understanding the current state of both types of engineerings; history has also positive experiences; some of them we would like to remember and to repeat. Two types of engineerings had parallel and divergent evolutions but following a similar pattern. We also define a set of milestones that represent a convergence or divergence of the software development methodologies. These milestones do not appear at the same time in software engineering and knowledge engineering, so lessons learned in one discipline can help in the evolution of the other one.

  7. A software engineering approach to expert system design and verification

    NASA Technical Reports Server (NTRS)

    Bochsler, Daniel C.; Goodwin, Mary Ann

    1988-01-01

    Software engineering design and verification methods for developing expert systems are not yet well defined. Integration of expert system technology into software production environments will require effective software engineering methodologies to support the entire life cycle of expert systems. The software engineering methods used to design and verify an expert system, RENEX, is discussed. RENEX demonstrates autonomous rendezvous and proximity operations, including replanning trajectory events and subsystem fault detection, onboard a space vehicle during flight. The RENEX designers utilized a number of software engineering methodologies to deal with the complex problems inherent in this system. An overview is presented of the methods utilized. Details of the verification process receive special emphasis. The benefits and weaknesses of the methods for supporting the development life cycle of expert systems are evaluated, and recommendations are made based on the overall experiences with the methods.

  8. CMMI (registered trademark) for Services, Version 1.2

    DTIC Science & Technology

    2009-02-01

    background in information technology, especially those familiar with disciplines like service - oriented architecture (SOA) or software as a service ( SaaS ). In... services , the Software Engineering Institute (SEI) has found several dimensions that an organization can focus on to improve its business. Figure...International Business Machines) and the SEI [Humphrey 1989]. Humphrey’s book, Managing the Software Process, provides a CMMI for Services Version 1.2

  9. Consistent Evolution of Software Artifacts and Non-Functional Models

    DTIC Science & Technology

    2014-11-14

    induce bad software performance)? 15. SUBJECT TERMS EOARD, Nano particles, Photo-Acoustic Sensors, Model-Driven Engineering ( MDE ), Software Performance...Università degli Studi dell’Aquila, Via Vetoio, 67100 L’Aquila, Italy Email: vittorio.cortellessa@univaq.it Web : http: // www. di. univaq. it/ cortelle/ Phone...Model-Driven Engineering ( MDE ), Software Performance Engineering (SPE), Change Propagation, Performance Antipatterns. For sake of readability of the

  10. A self-referential HOWTO on release engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galassi, Mark C.

    Release engineering is a fundamental part of the software development cycle: it is the point at which quality control is exercised and bug fixes are integrated. The way in which software is released also gives the end user her first experience of a software package, while in scientific computing release engineering can guarantee reproducibility. For these reasons and others, the release process is a good indicator of the maturity and organization of a development team. Software teams often do not put in place a release process at the beginning. This is unfortunate because the team does not have early andmore » continuous execution of test suites, and it does not exercise the software in the same conditions as the end users. I describe an approach to release engineering based on the software tools developed and used by the GNU project, together with several specific proposals related to packaging and distribution. I do this in a step-by-step manner, demonstrating how this very paper is written and built using proper release engineering methods. Because many aspects of release engineering are not exercised in the building of the paper, the accompanying software repository also contains examples of software libraries.« less

  11. The Effect of AOP on Software Engineering, with Particular Attention to OIF and Event Quantification

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Filman, Robert; Korsmeyer, David (Technical Monitor)

    2003-01-01

    We consider the impact of Aspect-Oriented Programming on Software Engineering, and, in particular, analyze two AOP systems, one of which does component wrapping and the other, quantification over events, for their software engineering effects.

  12. Second Generation Product Line Engineering Takes Hold in the DoD

    DTIC Science & Technology

    2014-01-01

    Feature- Oriented Domain Analysis ( FODA ) Feasibility Study” (CMU/SEI-90- TR-021, ADA235785). Pittsburgh, PA: Software Engineering Institute...software product line engineering and software architecture documentation and analysis . Clements is co-author of three practitioner-oriented books about

  13. Knowledge Management tools integration within DLR's concurrent engineering facility

    NASA Astrophysics Data System (ADS)

    Lopez, R. P.; Soragavi, G.; Deshmukh, M.; Ludtke, D.

    The complexity of space endeavors has increased the need for Knowledge Management (KM) tools. The concept of KM involves not only the electronic storage of knowledge, but also the process of making this knowledge available, reusable and traceable. Establishing a KM concept within the Concurrent Engineering Facility (CEF) has been a research topic of the German Aerospace Centre (DLR). This paper presents the current KM tools of the CEF: the Software Platform for Organizing and Capturing Knowledge (S.P.O.C.K.), the data model Virtual Satellite (VirSat), and the Simulation Model Library (SimMoLib), and how their usage improved the Concurrent Engineering (CE) process. This paper also exposes the lessons learned from the introduction of KM practices into the CEF and elaborates a roadmap for the further development of KM in CE activities at DLR. The results of the application of the Knowledge Management tools have shown the potential of merging the three software platforms with their functionalities, as the next step towards the fully integration of KM practices into the CE process. VirSat will stay as the main software platform used within a CE study, and S.P.O.C.K. and SimMoLib will be integrated into VirSat. These tools will support the data model as a reference and documentation source, and as an access to simulation and calculation models. The use of KM tools in the CEF aims to become a basic practice during the CE process. The settlement of this practice will result in a much more extended knowledge and experience exchange within the Concurrent Engineering environment and, consequently, the outcome of the studies will comprise higher quality in the design of space systems.

  14. Software Management Environment (SME) concepts and architecture, revision 1

    NASA Technical Reports Server (NTRS)

    Hendrick, Robert; Kistler, David; Valett, Jon

    1992-01-01

    This document presents the concepts and architecture of the Software Management Environment (SME), developed for the Software Engineering Branch of the Flight Dynamic Division (FDD) of GSFC. The SME provides an integrated set of experience-based management tools that can assist software development managers in managing and planning flight dynamics software development projects. This document provides a high-level description of the types of information required to implement such an automated management tool.

  15. Evan Weaver | NREL

    Science.gov Websites

    Evan Weaver Photo of Evan Weaver Evan Weaver Researcher III-Software Engineering Evan.Weaver , he works as a software engineer developing whole-building energy modeling tools. Prior to joining NREL, he worked in the biomedical industry as a software engineer, specializing in graphical user

  16. Requirements Engineering in Building Climate Science Software

    ERIC Educational Resources Information Center

    Batcheller, Archer L.

    2011-01-01

    Software has an important role in supporting scientific work. This dissertation studies teams that build scientific software, focusing on the way that they determine what the software should do. These requirements engineering processes are investigated through three case studies of climate science software projects. The Earth System Modeling…

  17. Software Technology for Adaptable, Reliable Systems (STARS)

    DTIC Science & Technology

    1994-03-25

    Tmeline(3), SECOMO(3), SEER(3), GSFC Software Engineering Lab Model(l), SLIM(4), SEER-SEM(l), SPQR (2), PRICE-S(2), internally-developed models(3), APMSS(1...3 " Timeline - 3 " SASET (Software Architecture Sizing Estimating Tool) - 2 " MicroMan 11- 2 * LCM (Logistics Cost Model) - 2 * SPQR - 2 * PRICE-S - 2

  18. Manager's handbook for software development, revision 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Methods and aids for the management of software development projects are presented. The recommendations are based on analyses and experiences of the Software Engineering Laboratory (SEL) with flight dynamics software development. The management aspects of the following subjects are described: organizing the project, producing a development plan, estimating costs, scheduling, staffing, preparing deliverable documents, using management tools, monitoring the project, conducting reviews, auditing, testing, and certifying.

  19. Second Generation Weather Impacts Decision Aid Applications and Web Services Overview

    DTIC Science & Technology

    2013-07-01

    ABSTRACT Unclassified c . THIS PAGE Unclassified 19b. TELEPHONE NUMBER (Include area code) (575) 678-0634 Standard Form 298 (Rev. 8/98...Chesley, C . H.; Spillane, A. R.; Eure, S. L.; Shaw, P. J. Engineering Plan of the Integrated Weather Effects Decision Aids (IWEDA) Software Program...Planning Tool. Proceedings of the 1992 Battlefield Atmospherics Conference, 1992; pp. 501−509. 6. Chesley, C . H.; Johnson, J. S.; Maunz, W. G.; Spillane, A

  20. Glossary of Software Engineering Laboratory terms

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A glossary of terms used in the Software Engineering Laboratory (SEL) is given. The terms are defined within the context of the software development environment for flight dynamics at the Goddard Space Flight Center. A concise reference for clarifying the language employed in SEL documents and data collection forms is given. Basic software engineering concepts are explained and standard definitions for use by SEL personnel are established.

  1. Software Engineering Institute, Annual Report 2001

    DTIC Science & Technology

    2002-03-01

    PSP and TSP written by Watts S . Humphrey for the Addison- Wesley SEI Series in...become SCAMPI Lead Assessors. SEI A n n u a l R epo r t fy20 0 1 • 25 CMM Pioneer: Watts S . Humphrey The effort to create the original concepts of the SW...CMM was led by SEI Fellow Watts S . Humphrey , who has had a profound impact on the field of software engineering. In February 2000, a new

  2. A Systematic Process for Developing High Quality SaaS Cloud Services

    NASA Astrophysics Data System (ADS)

    La, Hyun Jung; Kim, Soo Dong

    Software-as-a-Service (SaaS) is a type of cloud service which provides software functionality through Internet. Its benefits are well received in academia and industry. To fully utilize the benefits, there should be effective methodologies to support the development of SaaS services which provide high reusability and applicability. Conventional approaches such as object-oriented methods do not effectively support SaaS-specific engineering activities such as modeling common features, variability, and designing quality services. In this paper, we present a systematic process for developing high quality SaaS and highlight the essentiality of commonality and variability (C&V) modeling to maximize the reusability. We first define criteria for designing the process model and provide a theoretical foundation for SaaS; its meta-model and C&V model. We clarify the notion of commonality and variability in SaaS, and propose a SaaS development process which is accompanied with engineering instructions. Using the proposed process, SaaS services with high quality can be effectively developed.

  3. A Software Engineering Approach based on WebML and BPMN to the Mediation Scenario of the SWS Challenge

    NASA Astrophysics Data System (ADS)

    Brambilla, Marco; Ceri, Stefano; Valle, Emanuele Della; Facca, Federico M.; Tziviskou, Christina

    Although Semantic Web Services are expected to produce a revolution in the development of Web-based systems, very few enterprise-wide design experiences are available; one of the main reasons is the lack of sound Software Engineering methods and tools for the deployment of Semantic Web applications. In this chapter, we present an approach to software development for the Semantic Web based on classical Software Engineering methods (i.e., formal business process development, computer-aided and component-based software design, and automatic code generation) and on semantic methods and tools (i.e., ontology engineering, semantic service annotation and discovery).

  4. Software Engineering Education: Some Important Dimensions

    ERIC Educational Resources Information Center

    Mishra, Alok; Cagiltay, Nergiz Ercil; Kilic, Ozkan

    2007-01-01

    Software engineering education has been emerging as an independent and mature discipline. Accordingly, various studies are being done to provide guidelines for curriculum design. The main focus of these guidelines is around core and foundation courses. This paper summarizes the current problems of software engineering education programs. It also…

  5. Software development to implement the TxDOT culvert rating guide.

    DOT National Transportation Integrated Search

    2013-05-01

    This implementation project created CULVLR: Culvert Load Rating, Version 1.0.0, a Windows-based : desktop application software package that automates the process by which Texas Department of Transportation : (TxDOT) engineers and their consultants ...

  6. Earth Global Reference Atmospheric Model (Earth-GRAM) GRAM Virtual Meeting

    NASA Technical Reports Server (NTRS)

    White, Patrick

    2017-01-01

    What is Earth-GRAM? Provide monthly mean and standard deviation for any point in atmosphere; Monthly, Geographic, and Altitude Variation. Earth-GRAM is a C++ software package; Currently distributed as Earth-GRAM 2016. Atmospheric variables included: pressure, density, temperature, horizontal and vertical winds, speed of sound, and atmospheric constituents. Used by engineering community because of ability to create dispersions inatmosphere at a rapid runtime; Often embedded in trajectory simulation software. Not a forecast model. Does not readily capture localized atmospheric effects.

  7. Software Engineering Laboratory (SEL) data base reporting software user's guide and system description. Volume 2: Program descriptions

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The structure and functions of each reporting software program for the Software Engineering Laboratory data base are described. Baseline diagrams, module descriptions, and listings of program generation files are included.

  8. Software engineering standards and practices

    NASA Technical Reports Server (NTRS)

    Durachka, R. W.

    1981-01-01

    Guidelines are presented for the preparation of a software development plan. The various phases of a software development project are discussed throughout its life cycle including a general description of the software engineering standards and practices to be followed during each phase.

  9. TGeoCad: an Interface between ROOT and CAD Systems

    NASA Astrophysics Data System (ADS)

    Luzzi, C.; Carminati, F.

    2014-06-01

    In the simulation of High Energy Physics experiment a very high precision in the description of the detector geometry is essential to achieve the required performances. The physicists in charge of Monte Carlo Simulation of the detector need to collaborate efficiently with the engineers working at the mechanical design of the detector. Often, this collaboration is made hard by the usage of different and incompatible software. ROOT is an object-oriented C++ framework used by physicists for storing, analyzing and simulating data produced by the high-energy physics experiments while CAD (Computer-Aided Design) software is used for mechanical design in the engineering field. The necessity to improve the level of communication between physicists and engineers led to the implementation of an interface between the ROOT geometrical modeler used by the virtual Monte Carlo simulation software and the CAD systems. In this paper we describe the design and implementation of the TGeoCad Interface that has been developed to enable the use of ROOT geometrical models in several CAD systems. To achieve this goal, the ROOT geometry description is converted into STEP file format (ISO 10303), which can be imported and used by many CAD systems.

  10. Proceedings of the International Workshop on the Foundations of Service-Oriented Architecture (FSOA 2007)

    DTIC Science & Technology

    2008-06-01

    agenda are summarized. x | CMU/SEI-2008-SR-011 SOFTWARE ENGINEERING INSTITUTE | 1 1 Introduction Service -oriented architecture (SOA... service -provision software systems. In this po- sition paper, we investigate an initial classification of challenge areas related to service orientation...decade we have witnessed a significant growth of software applications that are de- livered in the form of services utilizing a network infrastructure

  11. Sandia Engineering Analysis Code Access System v. 2.0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjaardema, Gregory D.

    The Sandia Engineering Analysis Code Access System (SEACAS) is a suite of preprocessing, post processing, translation, visualization, and utility applications supporting finite element analysis software using the Exodus database file format.

  12. Environmental Control System Software & Hardware Development

    NASA Technical Reports Server (NTRS)

    Vargas, Daniel Eduardo

    2017-01-01

    ECS hardware: (1) Provides controlled purge to SLS Rocket and Orion spacecraft. (2) Provide mission-focused engineering products and services. ECS software: (1) NASA requires Compact Unique Identifiers (CUIs); fixed-length identifier used to identify information items. (2) CUI structure; composed of nine semantic fields that aid the user in recognizing its purpose.

  13. Socio-Cultural Challenges in Global Software Engineering Education

    ERIC Educational Resources Information Center

    Hoda, Rashina; Babar, Muhammad Ali; Shastri, Yogeshwar; Yaqoob, Humaa

    2017-01-01

    Global software engineering education (GSEE) is aimed at providing software engineering (SE) students with knowledge, skills, and understanding of working in globally distributed arrangements so they can be prepared for the global SE (GSE) paradigm. It is important to understand the challenges involved in GSEE for improving the quality and…

  14. Experiences with Integrating Simulation into a Software Engineering Curriculum

    ERIC Educational Resources Information Center

    Bollin, Andreas; Hochmuller, Elke; Mittermeir, Roland; Samuelis, Ladislav

    2012-01-01

    Software Engineering education must account for a broad spectrum of knowledge and skills software engineers will be required to apply throughout their professional life. Covering all the topics in depth within a university setting is infeasible due to curricular constraints as well as due to the inherent differences between educational…

  15. An Engineering Context for Software Engineering

    DTIC Science & Technology

    2008-09-01

    medium in which I can plant the ideas from this dissertation. I have also written a book on requirements development that is used at NPS by myself and...Addison-Wesley, Anniversary ed., 1995. [Bry00] Bryant, A., “Metaphor, Myth, and Mimicry : The Bases of Software Engineering,” Annals of Software

  16. CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 5, May 2007

    DTIC Science & Technology

    2007-05-01

    zation Program. Washington: GSA, DoD, and NASA , 2005 <http:// www.arnet.gov/far/>. 11. Department of Commerce. NIST. FIPS Pub 200, Minimum Security...on this Web site. The NASA Goddard Space Flight Center (GSFC) SwA http://sw-assurance.gsfc.nasa.gov The NASA GSFC SwA Web site pro- vides tools...OCT2006 c STAR WARS TO STAR TREK NOV2006 c MANAGEMENT BASICS DEC2006 c REQUIREMENTS ENG. JAN2007 c PUBLISHER’S CHOICE FEB2007 c CMMI MAR2007 c

  17. G.I. Joe Meets Barbie, Software Engineer Meets Caregiver: Males and Females in B.C.'s Public Schools and Beyond. BCTF Research Report.

    ERIC Educational Resources Information Center

    Schaefer, Anne C.

    Following a referral from the March 2000 Annual General Meeting of the British Columbia (B.C.) Teachers' Federation, the Spring 2000 Representative Assembly passed a motion that recommended research be collected, conducted, and disseminated on the current status of students in the province. This research report identifies current information on…

  18. A Taxonomy of Operational Risks

    DTIC Science & Technology

    2005-09-01

    the operational organization. Con - tractual constraints or requirements can impose risk if the mission delivers products or services under contract...Carnegie Mellon Software Engineering Institute A Taxonomy of Operational Risks CMU/SEI-2005-TN-036 Brian P. Gallagher Pamela J. Case DIST...Operational Risks CMU/SEI-2005-TN-036 Brian P. Gallagher Pamela J. Case Rita C. Creel Susan Kushner Ray C. Williams September2005 Acquisition Support Program

  19. Selection of software for mechanical engineering undergraduates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheah, C. T.; Yin, C. S.; Halim, T.

    A major problem with the undergraduate mechanical course is the limited exposure of students to software packages coupled with the long learning curve on the existing software packages. This work proposes the use of appropriate software packages for the entire mechanical engineering curriculum to ensure students get sufficient exposure real life design problems. A variety of software packages are highlighted as being suitable for undergraduate work in mechanical engineering, e.g. simultaneous non-linear equations; uncertainty analysis; 3-D modeling software with the FEA; analysis tools for the solution of problems in thermodynamics, fluid mechanics, mechanical system design, and solid mechanics.

  20. SHINE Virtual Machine Model for In-flight Updates of Critical Mission Software

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2008-01-01

    This software is a new target for the Spacecraft Health Inference Engine (SHINE) knowledge base that compiles a knowledge base to a language called Tiny C - an interpreted version of C that can be embedded on flight processors. This new target allows portions of a running SHINE knowledge base to be updated on a "live" system without needing to halt and restart the containing SHINE application. This enhancement will directly provide this capability without the risk of software validation problems and can also enable complete integration of BEAM and SHINE into a single application. This innovation enables SHINE deployment in domains where autonomy is used during flight-critical applications that require updates. This capability eliminates the need for halting the application and performing potentially serious total system uploads before resuming the application with the loss of system integrity. This software enables additional applications at JPL (microsensors, embedded mission hardware) and increases the marketability of these applications outside of JPL.

  1. Proceedings of the Ninth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Experiences in measurement, utilization, and evaluation of software methodologies, models, and tools are discussed. NASA's involvement in ever larger and more complex systems, like the space station project, provides a motive for the support of software engineering research and the exchange of ideas in such forums. The topics of current SEL research are software error studies, experiments with software development, and software tools.

  2. FMT (Flight Software Memory Tracker) For Cassini Spacecraft-Software Engineering Using JAVA

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.; Uffelman, Hal; Wax, Allan H.

    1997-01-01

    The software engineering design of the Flight Software Memory Tracker (FMT) Tool is discussed in this paper. FMT is a ground analysis software set, consisting of utilities and procedures, designed to track the flight software, i.e., images of memory load and updatable parameters of the computers on-board Cassini spacecraft. FMT is implemented in Java.

  3. Requirements: Towards an understanding on why software projects fail

    NASA Astrophysics Data System (ADS)

    Hussain, Azham; Mkpojiogu, Emmanuel O. C.

    2016-08-01

    Requirement engineering is at the foundation of every successful software project. There are many reasons for software project failures; however, poorly engineered requirements process contributes immensely to the reason why software projects fail. Software project failure is usually costly and risky and could also be life threatening. Projects that undermine requirements engineering suffer or are likely to suffer from failures, challenges and other attending risks. The cost of project failures and overruns when estimated is very huge. Furthermore, software project failures or overruns pose a challenge in today's competitive market environment. It affects the company's image, goodwill, and revenue drive and decreases the perceived satisfaction of customers and clients. In this paper, requirements engineering was discussed. Its role in software projects success was elaborated. The place of software requirements process in relation to software project failure was explored and examined. Also, project success and failure factors were also discussed with emphasis placed on requirements factors as they play a major role in software projects' challenges, successes and failures. The paper relied on secondary data and empirical statistics to explore and examine factors responsible for the successes, challenges and failures of software projects in large, medium and small scaled software companies.

  4. Software List | College of Engineering & Applied Science

    Science.gov Websites

    A B C D E F G H I J K L M N O P Q R S T U V W X Y Z D2L PAWS Email My UW-System About UWM UWM Jobs D2L PAWS Email My UW-System University of Wisconsin-Milwaukee College ofEngineering & Olympiad Girls Who Code Club FIRST Tech Challenge NSF I-Corps Site of Southeastern Wisconsin UW-Milwaukee

  5. Multimedia Software Laboratory | College of Engineering & Applied Science

    Science.gov Websites

    A B C D E F G H I J K L M N O P Q R S T U V W X Y Z D2L PAWS Email My UW-System About UWM UWM Jobs D2L PAWS Email My UW-System University of Wisconsin-Milwaukee College ofEngineering & Olympiad Girls Who Code Club FIRST Tech Challenge NSF I-Corps Site of Southeastern Wisconsin UW-Milwaukee

  6. Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications

    NASA Technical Reports Server (NTRS)

    OKeefe, Matthew (Editor); Kerr, Christopher L. (Editor)

    1998-01-01

    This report contains the abstracts and technical papers from the Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications, held June 15-18, 1998, in Scottsdale, Arizona. The purpose of the workshop is to bring together software developers in meteorology and oceanography to discuss software engineering and code design issues for parallel architectures, including Massively Parallel Processors (MPP's), Parallel Vector Processors (PVP's), Symmetric Multi-Processors (SMP's), Distributed Shared Memory (DSM) multi-processors, and clusters. Issues to be discussed include: (1) code architectures for current parallel models, including basic data structures, storage allocation, variable naming conventions, coding rules and styles, i/o and pre/post-processing of data; (2) designing modular code; (3) load balancing and domain decomposition; (4) techniques that exploit parallelism efficiently yet hide the machine-related details from the programmer; (5) tools for making the programmer more productive; and (6) the proliferation of programming models (F--, OpenMP, MPI, and HPF).

  7. Proceedings of the 14th Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Several software related topics are presented. Topics covered include studies and experiment at the Software Engineering Laboratory at the Goddard Space Flight Center, predicting project success from the Software Project Management Process, software environments, testing in a reuse environment, domain directed reuse, and classification tree analysis using the Amadeus measurement and empirical analysis.

  8. Software Process Improvement through the Removal of Project-Level Knowledge Flow Obstacles: The Perceptions of Software Engineers

    ERIC Educational Resources Information Center

    Mitchell, Susan Marie

    2012-01-01

    Uncontrollable costs, schedule overruns, and poor end product quality continue to plague the software engineering field. Innovations formulated with the expectation to minimize or eliminate cost, schedule, and quality problems have generally fallen into one of three categories: programming paradigms, software tools, and software process…

  9. RICIS Software Engineering 90 Symposium: Aerospace Applications and Research Directions Proceedings Appendices

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers presented at RICIS Software Engineering Symposium are compiled. The following subject areas are covered: flight critical software; management of real-time Ada; software reuse; megaprogramming software; Ada net; POSIX and Ada integration in the Space Station Freedom Program; and assessment of formal methods for trustworthy computer systems.

  10. Specification Technology Guidelines.

    DTIC Science & Technology

    1985-08-01

    Chicago, Ill., October 27-31, 1980. 0. Marca , D. and D. Thornhill, "Modeling Software Configurability Require- ments," in Requirements Engineering...Environments, ed. Y. Ohno, pp. 51- 58, North-Holland Publishing Company, 1082. B-7 L7 - 0 Marca , D. and C. McGowan, "Static and Dynamic Data Modeling for

  11. Technology transfer in software engineering

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1989-01-01

    The University of Houston-Clear Lake is the prime contractor for the AdaNET Research Project under the direction of NASA Johnson Space Center. AdaNET was established to promote the principles of software engineering to the software development industry. AdaNET will contain not only environments and tools, but also concepts, principles, models, standards, guidelines and practices. Initially, AdaNET will serve clients from the U.S. government and private industry who are working in software development. It will seek new clients from those who have not yet adopted the principles and practices of software engineering. Some of the goals of AdaNET are to become known as an objective, authoritative source of new software engineering information and parts, to provide easy access to information and parts, and to keep abreast of innovations in the field.

  12. Software Acquisition Risk Management Key Process Area (KPA) - A Guidebook Version 1.0.

    DTIC Science & Technology

    1997-08-01

    Budget - Software Project Management Practices and Techniques. McGraw-Hill International (UK) Limited, 1992. [Boehm 81 ] Boehm, Barry . Software...Engineering Economics. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1981. [Boehm 89] Boehm, Barry . IEEE Tutorial on Software Risk Management. New York: IEEE...95] [Mayrhauser 90] [Moran 90] [Myers 96] [NRC 89] [Osborn 53] [Paulk 95] [ Pressman 92] [Pulford 96] [Scholtes 88] [Sisti 94] [STSC 96

  13. Effective Software Engineering Leadership for Development Programs

    ERIC Educational Resources Information Center

    Cagle West, Marsha

    2010-01-01

    Software is a critical component of systems ranging from simple consumer appliances to complex health, nuclear, and flight control systems. The development of quality, reliable, and effective software solutions requires the incorporation of effective software engineering processes and leadership. Processes, approaches, and methodologies for…

  14. Development of a comprehensive software engineering environment

    NASA Technical Reports Server (NTRS)

    Hartrum, Thomas C.; Lamont, Gary B.

    1987-01-01

    The generation of a set of tools for software lifecycle is a recurring theme in the software engineering literature. The development of such tools and their integration into a software development environment is a difficult task because of the magnitude (number of variables) and the complexity (combinatorics) of the software lifecycle process. An initial development of a global approach was initiated in 1982 as the Software Development Workbench (SDW). Continuing efforts focus on tool development, tool integration, human interfacing, data dictionaries, and testing algorithms. Current efforts are emphasizing natural language interfaces, expert system software development associates and distributed environments with Ada as the target language. The current implementation of the SDW is on a VAX-11/780. Other software development tools are being networked through engineering workstations.

  15. CrossTalk: The Journal of Defense Software Engineering. Volume 21, Number 8

    DTIC Science & Technology

    2008-08-01

    effort. No one ever replaced the dirty string and no one washed the cup ... The BASE -1 system came up on time, under budget, and exceeded all operating...the base where he worked was written, maintained, and com- pletely understood by one individual. Unfortunately, that individual was in a bad car ...sponsor: Software Engineering and System Assurance. USN co- sponsor: Naval Air Systems Command. USAF co- sponsors: Oklahoma City-Air Logistics Center

  16. Using Six Sigma to Accelerate the Adoption of CMMI for Optimal Results

    DTIC Science & Technology

    2004-10-01

    Findings Path forward © 2004 by Carnegie Mellon University Version 1.0 page 5 Carnegie Mellon S oftware Engineer ing Inst itute Software & IT Best...Related Technology ( COBIT ) Secondary priority • architecture best practices and Design for Six Sigma Primary audiences • Software Engineering Process Groups...itute Context of Findings While our focus was on CMMI, ITIL, and COBIT , we gathered information on other technologies “in play.” • The list included

  17. Computational structural mechanics engine structures computational simulator

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1989-01-01

    The Computational Structural Mechanics (CSM) program at Lewis encompasses: (1) fundamental aspects for formulating and solving structural mechanics problems, and (2) development of integrated software systems to computationally simulate the performance/durability/life of engine structures.

  18. Summary of Research, Academic Departments, 1983-1984.

    DTIC Science & Technology

    1984-10-01

    miagnetoelast ic strain gauiges. hydraulic (ollrols svsteiiis, robotics, aiiol gas tul-ili( engine (lilic(’. Th’lis wear, e’Ii phasis has beent placed...gatige, the( gifligV id~ itsSsigiifI Co(lifltioflihlg. High Level Real-Time Software for Hydraulic Control Systems in Deep Submergence Vehicles h~iSiAt...Simulation of a Hydraulic Control System At )VISUMt: ASSOCIATII PiiOtISSOt1 IAIU IIB V. I I)L SKA\\ Theo Jriluialrv pourpose of’ this l’C51’drch is to) wxIihi

  19. A Recommended Framework for the Network-Centric Acquisition Process

    DTIC Science & Technology

    2009-09-01

    ISO /IEC 12207 , Systems and Software Engineering-Software Life-Cycle Processes  ANSI/EIA 632, Processes for Engineering a System. There are...engineering [46]. Some of the process models presented in the DAG are:  ISO /IEC 15288, Systems and Software Engineering-System Life-Cycle Processes...e.g., ISO , IA, Security, etc.). Vetting developers helps ensure that they are using industry best industry practices and maximize the IA compliance

  20. Software Engineering Education Directory. Software Engineering Curriculum Project

    DTIC Science & Technology

    1991-05-01

    1986 with a questionnaire mailed to schools selected from Peterson’s Graduate Programs in Engineering and Applied Sciences 1986. We contacted schools...the publi- cation more complete. To discuss any issues related to this report, please contact: Education Program Software Engineering Institute...considered to be required course reading. How to Use This Section This portion of the directory is organized by state (in the U.S.), province (in

  1. Simulating Humans as Integral Parts of Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Bruins, Anthony C.; Rice, Robert; Nguyen, Lac; Nguyen, Heidi; Saito, Tim; Russell, Elaine

    2006-01-01

    The Collaborative-Virtual Environment Simulation Tool (C-VEST) software was developed for use in a NASA project entitled "3-D Interactive Digital Virtual Human." The project is oriented toward the use of a comprehensive suite of advanced software tools in computational simulations for the purposes of human-centered design of spacecraft missions and of the spacecraft, space suits, and other equipment to be used on the missions. The C-VEST software affords an unprecedented suite of capabilities for three-dimensional virtual-environment simulations with plug-in interfaces for physiological data, haptic interfaces, plug-and-play software, realtime control, and/or playback control. Mathematical models of the mechanics of the human body and of the aforementioned equipment are implemented in software and integrated to simulate forces exerted on and by astronauts as they work. The computational results can then support the iterative processes of design, building, and testing in applied systems engineering and integration. The results of the simulations provide guidance for devising measures to counteract effects of microgravity on the human body and for the rapid development of virtual (that is, simulated) prototypes of advanced space suits, cockpits, and robots to enhance the productivity, comfort, and safety of astronauts. The unique ability to implement human-in-the-loop immersion also makes the C-VEST software potentially valuable for use in commercial and academic settings beyond the original space-mission setting.

  2. Band gap engineering of hydrogenated amorphous carbon thin films for solar cell application

    NASA Astrophysics Data System (ADS)

    Dwivedi, Neeraj; Kumar, Sushil; Dayal, Saurabh; Rauthan, C. M. S.; Panwar, O. S.; Malik, Hitendra K.

    2012-10-01

    In this work, self bias variation, nitrogen introduction and oxygen plasma (OP) treatment approaches have been used for tailoring the band gap of hydrogenated amorphous carbon (a-C:H) thin films. The band gap of a-C:H and modified a- C:H films is varied in the range from 1.25 eV to 3.45 eV, which is found to be nearly equal to the full solar spectrum (1 eV- 3.5 eV). Hence, such a-C:H and modified a-C:H films are found to be potential candidate for the development of full spectrum solar cells. Besides this, computer aided simulation with considering variable band gap a-C:H and modified a- C:H films as window layer for amorphous silicon p-i-n solar cells is also performed by AFORS-HET software and maximum efficiency as ~14 % is realized. Since a-C:H is hard material, hence a-C:H and modified a-C:H films as window layer may avoid the use of additional hard and protective coating particularly in n-i-p configuration.

  3. The Personal Software Process (PSPSM): An Empirical Study of the Impact of PSP on Individual Engineers.

    DTIC Science & Technology

    1997-12-01

    Watts Humphrey and is described in his book A Discipline for Software Engineering [ Humphrey 95]. Its intended use is to guide the planning and...Pat; Humphrey , Watts S .; Khajenoori, Soheil; Macke, Susan; & Matvya, Annette. "Introducing the Personal Software Process: Three Industry Case... Humphrey 95] Humphrey , Watts S . A Discipline for Software Engineering. Reading, Ma.: Addison-Wesley, 1995. [Mauchly 40] Mauchly, J.W. "Significance

  4. United States Air Force Summer Research Program 1991. Summer Faculty Research Program (SFRP) Reports. Volume 4. Rome Laboratory, Arnold Engineering Development Center, F. J. Seiler Research Laboratory

    DTIC Science & Technology

    1992-01-09

    Herschfelder, J. 0., C . F. Curtis, and R. B. Bird, "Molecular Theory of Gases and Liquids", John Willey and Sons, New York, (1954), Chs. 7 and 8. 12...AL iryLt’ AND SLOTME 5- FUIING NUERS 1991 Sumn~er FAculty Resezrzi! ?ro-rz~ (SFBZF) Volne 2SbV0d. 4 F496202-4:4#- C -CO076 MtrGary_ Soore ___________ 7...Engineering Tools for Parallel Software Development Dr. John Antonio 2 (Report Not Available at this Time) Dr. Abdul Aziz Bhatti 3 A Taxonomy for

  5. DB90: A Fortran Callable Relational Database Routine for Scientific and Engineering Computer Programs

    NASA Technical Reports Server (NTRS)

    Wrenn, Gregory A.

    2005-01-01

    This report describes a database routine called DB90 which is intended for use with scientific and engineering computer programs. The software is written in the Fortran 90/95 programming language standard with file input and output routines written in the C programming language. These routines should be completely portable to any computing platform and operating system that has Fortran 90/95 and C compilers. DB90 allows a program to supply relation names and up to 5 integer key values to uniquely identify each record of each relation. This permits the user to select records or retrieve data in any desired order.

  6. Large-scale visualization projects for teaching software engineering.

    PubMed

    Müller, Christoph; Reina, Guido; Burch, Michael; Weiskopf, Daniel

    2012-01-01

    The University of Stuttgart's software engineering major complements the traditional computer science major with more practice-oriented education. Two-semester software projects in various application areas offered by the university's different computer science institutes are a successful building block in the curriculum. With this realistic, complex project setting, students experience the practice of software engineering, including software development processes, technologies, and soft skills. In particular, visualization-based projects are popular with students. Such projects offer them the opportunity to gain profound knowledge that would hardly be possible with only regular lectures and homework assignments.

  7. 48 CFR 227.7206 - Contracts for architect-engineer services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Rights in Computer Software and Computer Software Documentation 227.7206 Contracts for architect-engineer services. Follow 227.7107 when contracting for architect-engineer services. ...-engineer services. 227.7206 Section 227.7206 Federal Acquisition Regulations System DEFENSE ACQUISITION...

  8. 48 CFR 227.7206 - Contracts for architect-engineer services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Rights in Computer Software and Computer Software Documentation 227.7206 Contracts for architect-engineer services. Follow 227.7107 when contracting for architect-engineer services. ...-engineer services. 227.7206 Section 227.7206 Federal Acquisition Regulations System DEFENSE ACQUISITION...

  9. 48 CFR 227.7206 - Contracts for architect-engineer services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Rights in Computer Software and Computer Software Documentation 227.7206 Contracts for architect-engineer services. Follow 227.7107 when contracting for architect-engineer services. ...-engineer services. 227.7206 Section 227.7206 Federal Acquisition Regulations System DEFENSE ACQUISITION...

  10. 48 CFR 227.7206 - Contracts for architect-engineer services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Rights in Computer Software and Computer Software Documentation 227.7206 Contracts for architect-engineer services. Follow 227.7107 when contracting for architect-engineer services. ...-engineer services. 227.7206 Section 227.7206 Federal Acquisition Regulations System DEFENSE ACQUISITION...

  11. 48 CFR 227.7206 - Contracts for architect-engineer services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-engineer services. 227.7206 Section 227.7206 Federal Acquisition Regulations System DEFENSE ACQUISITION... Rights in Computer Software and Computer Software Documentation 227.7206 Contracts for architect-engineer services. Follow 227.7107 when contracting for architect-engineer services. ...

  12. A Novel Coupling Pattern in Computational Science and Engineering Software

    EPA Science Inventory

    Computational science and engineering (CSE) software is written by experts of certain area(s). Due to the specialization, existing CSE software may need to integrate other CSE software systems developed by different groups of experts. The coupling problem is one of the challenges...

  13. A Novel Coupling Pattern in Computational Science and Engineering Software

    EPA Science Inventory

    Computational science and engineering (CSE) software is written by experts of certain area(s). Due to the specialization,existing CSE software may need to integrate other CSE software systems developed by different groups of experts. Thecoupling problem is one of the challenges f...

  14. The Assistant for Specifying the Quality Software (ASQS) Operational Concept Document. Volume 1

    DTIC Science & Technology

    1990-09-01

    Assistant in which the manager supplies system-specific characteristics and needs and the Assistant fills in the software quality concepts and methods. The...member(s) of the Computer Resources Working Group (CRWG) to aid in performing a software quality engineering study. Figure 3.4-1 outlines the...need to recovery from faults more likely than need _o provide alternative functions or interfaces), and more on Autcncmy - 27 - that Modularity

  15. Modeling a distributed environment for a petroleum reservoir engineering application with software product line

    NASA Astrophysics Data System (ADS)

    de Faria Scheidt, Rafael; Vilain, Patrícia; Dantas, M. A. R.

    2014-10-01

    Petroleum reservoir engineering is a complex and interesting field that requires large amount of computational facilities to achieve successful results. Usually, software environments for this field are developed without taking care out of possible interactions and extensibilities required by reservoir engineers. In this paper, we present a research work which it is characterized by the design and implementation based on a software product line model for a real distributed reservoir engineering environment. Experimental results indicate successfully the utilization of this approach for the design of distributed software architecture. In addition, all components from the proposal provided greater visibility of the organization and processes for the reservoir engineers.

  16. EOS MLS Level 1B Data Processing Software. Version 3

    NASA Technical Reports Server (NTRS)

    Perun, Vincent S.; Jarnot, Robert F.; Wagner, Paul A.; Cofield, Richard E., IV; Nguyen, Honghanh T.; Vuu, Christina

    2011-01-01

    This software is an improvement on Version 2, which was described in EOS MLS Level 1B Data Processing, Version 2.2, NASA Tech Briefs, Vol. 33, No. 5 (May 2009), p. 34. It accepts the EOS MLS Level 0 science/engineering data, and the EOS Aura spacecraft ephemeris/attitude data, and produces calibrated instrument radiances and associated engineering and diagnostic data. This version makes the code more robust, improves calibration, provides more diagnostics outputs, defines the Galactic core more finely, and fixes the equator crossing. The Level 1 processing software manages several different tasks. It qualifies each data quantity using instrument configuration and checksum data, as well as data transmission quality flags. Statistical tests are applied for data quality and reasonableness. The instrument engineering data (e.g., voltages, currents, temperatures, and encoder angles) is calibrated by the software, and the filter channel space reference measurements are interpolated onto the times of each limb measurement with the interpolates being differenced from the measurements. Filter channel calibration target measurements are interpolated onto the times of each limb measurement, and are used to compute radiometric gain. The total signal power is determined and analyzed by each digital autocorrelator spectrometer (DACS) during each data integration. The software converts each DACS data integration from an autocorrelation measurement in the time domain into a spectral measurement in the frequency domain, and estimates separately the spectrally, smoothly varying and spectrally averaged components of the limb port signal arising from antenna emission and scattering effects. Limb radiances are also calibrated.

  17. Implementing large projects in software engineering courses

    NASA Astrophysics Data System (ADS)

    Coppit, David

    2006-03-01

    In software engineering education, large projects are widely recognized as a useful way of exposing students to the real-world difficulties of team software development. But large projects are difficult to put into practice. First, educators rarely have additional time to manage software projects. Second, classrooms have inherent limitations that threaten the realism of large projects. Third, quantitative evaluation of individuals who work in groups is notoriously difficult. As a result, many software engineering courses compromise the project experience by reducing the team sizes, project scope, and risk. In this paper, we present an approach to teaching a one-semester software engineering course in which 20 to 30 students work together to construct a moderately sized (15KLOC) software system. The approach combines carefully coordinated lectures and homeworks, a hierarchical project management structure, modern communication technologies, and a web-based project tracking and individual assessment system. Our approach provides a more realistic project experience for the students, without incurring significant additional overhead for the instructor. We present our experiences using the approach the last 2 years for the software engineering course at The College of William and Mary. Although the approach has some weaknesses, we believe that they are strongly outweighed by the pedagogical benefits.

  18. MODIS. Volume 1: MODIS level 1A software baseline requirements

    NASA Technical Reports Server (NTRS)

    Masuoka, Edward; Fleig, Albert; Ardanuy, Philip; Goff, Thomas; Carpenter, Lloyd; Solomon, Carl; Storey, James

    1994-01-01

    This document describes the level 1A software requirements for the moderate resolution imaging spectroradiometer (MODIS) instrument. This includes internal and external requirements. Internal requirements include functional, operational, and data processing as well as performance, quality, safety, and security engineering requirements. External requirements include those imposed by data archive and distribution systems (DADS); scheduling, control, monitoring, and accounting (SCMA); product management (PM) system; MODIS log; and product generation system (PGS). Implementation constraints and requirements for adapting the software to the physical environment are also included.

  19. 48 CFR 50.201 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... requirements or such other requirements as defined and specified by the Secretary of Homeland Security: (1) Is... otherwise cause, for which a SAFETY Act designation has been issued. For purposes of defining a QATT..., engineering services, software development services, software integration services, threat assessments...

  20. 48 CFR 50.201 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... requirements or such other requirements as defined and specified by the Secretary of Homeland Security: (1) Is... otherwise cause, for which a SAFETY Act designation has been issued. For purposes of defining a QATT..., engineering services, software development services, software integration services, threat assessments...

  1. 48 CFR 50.201 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... requirements or such other requirements as defined and specified by the Secretary of Homeland Security: (1) Is... otherwise cause, for which a SAFETY Act designation has been issued. For purposes of defining a QATT..., engineering services, software development services, software integration services, threat assessments...

  2. 48 CFR 50.201 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... requirements or such other requirements as defined and specified by the Secretary of Homeland Security: (1) Is... otherwise cause, for which a SAFETY Act designation has been issued. For purposes of defining a QATT..., engineering services, software development services, software integration services, threat assessments...

  3. 48 CFR 50.201 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... requirements or such other requirements as defined and specified by the Secretary of Homeland Security: (1) Is... otherwise cause, for which a SAFETY Act designation has been issued. For purposes of defining a QATT..., engineering services, software development services, software integration services, threat assessments...

  4. Model-Driven Development for scientific computing. An upgrade of the RHEEDGr program

    NASA Astrophysics Data System (ADS)

    Daniluk, Andrzej

    2009-11-01

    Model-Driven Engineering (MDE) is the software engineering discipline, which considers models as the most important element for software development, and for the maintenance and evolution of software, through model transformation. Model-Driven Architecture (MDA) is the approach for software development under the Model-Driven Engineering framework. This paper surveys the core MDA technology that was used to upgrade of the RHEEDGR program to C++0x language standards. New version program summaryProgram title: RHEEDGR-09 Catalogue identifier: ADUY_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUY_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 21 263 No. of bytes in distributed program, including test data, etc.: 1 266 982 Distribution format: tar.gz Programming language: Code Gear C++ Builder Computer: Intel Core Duo-based PC Operating system: Windows XP, Vista, 7 RAM: more than 1 MB Classification: 4.3, 7.2, 6.2, 8, 14 Does the new version supersede the previous version?: Yes Nature of problem: Reflection High-Energy Electron Diffraction (RHEED) is a very useful technique for studying growth and surface analysis of thin epitaxial structures prepared by the Molecular Beam Epitaxy (MBE). The RHEED technique can reveal, almost instantaneously, changes either in the coverage of the sample surface by adsorbates or in the surface structure of a thin film. Solution method: The calculations are based on the use of a dynamical diffraction theory in which the electrons are taken to be diffracted by a potential, which is periodic in the dimension perpendicular to the surface. Reasons for new version: Responding to the user feedback the graphical version of the RHEED program has been upgraded to C++0x language standards. Also, functionality and documentation of the program have been improved. Summary of revisions: Model-Driven Architecture (MDA) is the approach defined by the Object Management Group (OMG) for software development under the Model-Driven Engineering framework [1]. The MDA approach shifts the focus of software development from writing code to building models. By adapting a model-centric approach, the MDA approach hopes to automate the generation of system implementation artifacts directly from the model. The following three models are the core of the MDA: (i) the Computation Independent Model (CIM), which is focused on basic requirements of the system, (ii) the Platform Independent Model (PIM), which is used by software architects and designers, and is focused on the operational capabilities of a system outside the context of a specific platform, and (iii) the Platform Specific Model (PSM), which is used by software developers and programmers, and includes details relating to the system for a specific platform. Basic requirements for the calculation of the RHEED intensity rocking curves in the one-beam condition have been described in Ref. [2]. Fig. 1 shows the PIM for the present version of the program. Fig. 2 presents the PSM for the program. The TGraph2D.bpk package has been recompiled to Graph2D0x.bpl and upgraded according to C++0x language standards. Fig. 3 shows the PSM of the Graph2D component, which is manifested by the Graph2D0x.bpl package presently. This diagram is a graphic presentation of the static view, which shows a collection of declarative model elements and their relationships. Installation instructions of the Graph2D0x package can be found in the new distribution. The program requires the user to provide the appropriate parameters for the crystal structure under investigation. These parameters are loaded from the parameters.ini file at run-time. Instructions for the preparation of the .ini files can be found in the new distribution. The program enables carrying out one-dimensional dynamical calculations for the fcc lattice, with a two-atoms basis and fcc lattice, with one atom basis but yet the zeroth Fourier component of the scattering potential in the TRHEED1D::crystPotUg() function can be modified according to users' specific application requirements. A graphical user interface (GUI) for the program has been reconstructed. The program has been compiled with English/USA regional and language options. Unusual features: The program is distributed in the form of main projects RHEEDGr_09.cbproj and Graph2D0x.cbproj with associated files, and should be compiled using Code Gear C++ Builder 2009 compilers. Running time: The typical running time is machine and user-parameters dependent. References: OMG, Model Driven Architecture Guide Version 1.0.1, 2003, http://www.omg.org/cgi-bin/doc?omg/03-06-01. A. Daniluk, Comput. Phys. Comm. 166 (2005) 123.

  5. A Role-Playing Game for a Software Engineering Lab: Developing a Product Line

    ERIC Educational Resources Information Center

    Zuppiroli, Sara; Ciancarini, Paolo; Gabbrielli, Maurizio

    2012-01-01

    Software product line development refers to software engineering practices and techniques for creating families of similar software systems from a basic set of reusable components, called shared assets. Teaching how to deal with software product lines in a university lab course is a challenging task, because there are several practical issues that…

  6. On the Prospects and Concerns of Integrating Open Source Software Environment in Software Engineering Education

    ERIC Educational Resources Information Center

    Kamthan, Pankaj

    2007-01-01

    Open Source Software (OSS) has introduced a new dimension in software community. As the development and use of OSS becomes prominent, the question of its integration in education arises. In this paper, the following practices fundamental to projects and processes in software engineering are examined from an OSS perspective: project management;…

  7. Ten recommendations for software engineering in research.

    PubMed

    Hastings, Janna; Haug, Kenneth; Steinbeck, Christoph

    2014-01-01

    Research in the context of data-driven science requires a backbone of well-written software, but scientific researchers are typically not trained at length in software engineering, the principles for creating better software products. To address this gap, in particular for young researchers new to programming, we give ten recommendations to ensure the usability, sustainability and practicality of research software.

  8. Model Driven Engineering

    NASA Astrophysics Data System (ADS)

    Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan

    A relevant initiative from the software engineering community called Model Driven Engineering (MDE) is being developed in parallel with the Semantic Web (Mellor et al. 2003a). The MDE approach to software development suggests that one should first develop a model of the system under study, which is then transformed into the real thing (i.e., an executable software entity). The most important research initiative in this area is the Model Driven Architecture (MDA), which is Model Driven Architecture being developed under the umbrella of the Object Management Group (OMG). This chapter describes the basic concepts of this software engineering effort.

  9. Architecture independent environment for developing engineering software on MIMD computers

    NASA Technical Reports Server (NTRS)

    Valimohamed, Karim A.; Lopez, L. A.

    1990-01-01

    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management.

  10. NASA Software Documentation Standard

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Software Documentation Standard (hereinafter referred to as "Standard") is designed to support the documentation of all software developed for NASA; its goal is to provide a framework and model for recording the essential information needed throughout the development life cycle and maintenance of a software system. The NASA Software Documentation Standard can be applied to the documentation of all NASA software. The Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. The basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.

  11. Training, Quality Assurance Factors, and Tools Investigation: a Work Report and Suggestions on Software Quality Assurance

    NASA Technical Reports Server (NTRS)

    Lee, Pen-Nan

    1991-01-01

    Previously, several research tasks have been conducted, some observations were obtained, and several possible suggestions have been contemplated involving software quality assurance engineering at NASA Johnson. These research tasks are briefly described. Also, a brief discussion is given on the role of software quality assurance in software engineering along with some observations and suggestions. A brief discussion on a training program for software quality assurance engineers is provided. A list of assurance factors as well as quality factors are also included. Finally, a process model which can be used for searching and collecting software quality assurance tools is presented.

  12. EngineSim: Turbojet Engine Simulator Adapted for High School Classroom Use

    NASA Technical Reports Server (NTRS)

    Petersen, Ruth A.

    2001-01-01

    EngineSim is an interactive educational computer program that allows users to explore the effect of engine operation on total aircraft performance. The software is supported by a basic propulsion web site called the Beginner's Guide to Propulsion, which includes educator-created, web-based activities for the classroom use of EngineSim. In addition, educators can schedule videoconferencing workshops in which EngineSim's creator demonstrates the software and discusses its use in the educational setting. This software is a product of NASA Glenn Research Center's Learning Technologies Project, an educational outreach initiative within the High Performance Computing and Communications Program.

  13. Evaluating software development characteristics: Assessment of software measures in the Software Engineering Laboratory. [reliability engineering

    NASA Technical Reports Server (NTRS)

    Basili, V. R.

    1981-01-01

    Work on metrics is discussed. Factors that affect software quality are reviewed. Metrics is discussed in terms of criteria achievements, reliability, and fault tolerance. Subjective and objective metrics are distinguished. Product/process and cost/quality metrics are characterized and discussed.

  14. Are Earth System model software engineering practices fit for purpose? A case study.

    NASA Astrophysics Data System (ADS)

    Easterbrook, S. M.; Johns, T. C.

    2009-04-01

    We present some analysis and conclusions from a case study of the culture and practices of scientists at the Met Office and Hadley Centre working on the development of software for climate and Earth System models using the MetUM infrastructure. The study examined how scientists think about software correctness, prioritize their requirements in making changes, and develop a shared understanding of the resulting models. We conclude that highly customized techniques driven strongly by scientific research goals have evolved for verification and validation of such models. In a formal software engineering context these represents costly, but invaluable, software integration tests with considerable benefits. The software engineering practices seen also exhibit recognisable features of both agile and open source software development projects - self-organisation of teams consistent with a meritocracy rather than top-down organisation, extensive use of informal communication channels, and software developers who are generally also users and science domain experts. We draw some general conclusions on whether these practices work well, and what new software engineering challenges may lie ahead as Earth System models become ever more complex and petascale computing becomes the norm.

  15. Software engineering and Ada in design

    NASA Technical Reports Server (NTRS)

    Oneill, Don

    1986-01-01

    Modern software engineering promises significant reductions in software costs and improvements in software quality. The Ada language is the focus for these software methodology and tool improvements. The IBM FSD approach, including the software engineering practices that guide the systematic design and development of software products and the management of the software process are examined. The revised Ada design language adaptation is revealed. This four level design methodology is detailed including the purpose of each level, the management strategy that integrates the software design activity with the program milestones, and the technical strategy that maps the Ada constructs to each level of design. A complete description of each design level is provided along with specific design language recording guidelines for each level. Finally, some testimony is offered on education, tools, architecture, and metrics resulting from project use of the four level Ada design language adaptation.

  16. EST Express: PHP/MySQL based automated annotation of ESTs from expression libraries

    PubMed Central

    Smith, Robin P; Buchser, William J; Lemmon, Marcus B; Pardinas, Jose R; Bixby, John L; Lemmon, Vance P

    2008-01-01

    Background Several biological techniques result in the acquisition of functional sets of cDNAs that must be sequenced and analyzed. The emergence of redundant databases such as UniGene and centralized annotation engines such as Entrez Gene has allowed the development of software that can analyze a great number of sequences in a matter of seconds. Results We have developed "EST Express", a suite of analytical tools that identify and annotate ESTs originating from specific mRNA populations. The software consists of a user-friendly GUI powered by PHP and MySQL that allows for online collaboration between researchers and continuity with UniGene, Entrez Gene and RefSeq. Two key features of the software include a novel, simplified Entrez Gene parser and tools to manage cDNA library sequencing projects. We have tested the software on a large data set (2,016 samples) produced by subtractive hybridization. Conclusion EST Express is an open-source, cross-platform web server application that imports sequences from cDNA libraries, such as those generated through subtractive hybridization or yeast two-hybrid screens. It then provides several layers of annotation based on Entrez Gene and RefSeq to allow the user to highlight useful genes and manage cDNA library projects. PMID:18402700

  17. EST Express: PHP/MySQL based automated annotation of ESTs from expression libraries.

    PubMed

    Smith, Robin P; Buchser, William J; Lemmon, Marcus B; Pardinas, Jose R; Bixby, John L; Lemmon, Vance P

    2008-04-10

    Several biological techniques result in the acquisition of functional sets of cDNAs that must be sequenced and analyzed. The emergence of redundant databases such as UniGene and centralized annotation engines such as Entrez Gene has allowed the development of software that can analyze a great number of sequences in a matter of seconds. We have developed "EST Express", a suite of analytical tools that identify and annotate ESTs originating from specific mRNA populations. The software consists of a user-friendly GUI powered by PHP and MySQL that allows for online collaboration between researchers and continuity with UniGene, Entrez Gene and RefSeq. Two key features of the software include a novel, simplified Entrez Gene parser and tools to manage cDNA library sequencing projects. We have tested the software on a large data set (2,016 samples) produced by subtractive hybridization. EST Express is an open-source, cross-platform web server application that imports sequences from cDNA libraries, such as those generated through subtractive hybridization or yeast two-hybrid screens. It then provides several layers of annotation based on Entrez Gene and RefSeq to allow the user to highlight useful genes and manage cDNA library projects.

  18. CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 6, June 2007

    DTIC Science & Technology

    2007-06-01

    California. He has co-authored the book Software Cost Estimation With COCOMO II with Barry Boehm and others. Clark helped define the COCOMO II model...Software Engineering at the University of Southern California. She worked with Barry Boehm and Chris Abts to develop and calibrate a cost-estimation...2003/02/ schorsch.html>. 2. See “Software Engineering, A Practitioners Approach” by Roger Pressman for a good description of coupling, cohesion

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peck, T; Sparkman, D; Storch, N

    ''The LLNL Site-Specific Advanced Simulation and Computing (ASCI) Software Quality Engineering Recommended Practices VI.I'' document describes a set of recommended software quality engineering (SQE) practices for ASCI code projects at Lawrence Livermore National Laboratory (LLNL). In this context, SQE is defined as the process of building quality into software products by applying the appropriate guiding principles and management practices. Continual code improvement and ongoing process improvement are expected benefits. Certain practices are recommended, although projects may select the specific activities they wish to improve, and the appropriate time lines for such actions. Additionally, projects can rely on the guidance ofmore » this document when generating ASCI Verification and Validation (VSrV) deliverables. ASCI program managers will gather information about their software engineering practices and improvement. This information can be shared to leverage the best SQE practices among development organizations. It will further be used to ensure the currency and vitality of the recommended practices. This Overview is intended to provide basic information to the LLNL ASCI software management and development staff from the ''LLNL Site-Specific ASCI Software Quality Engineering Recommended Practices VI.I'' document. Additionally the Overview provides steps to using the ''LLNL Site-Specific ASCI Software Quality Engineering Recommended Practices VI.I'' document. For definitions of terminology and acronyms, refer to the Glossary and Acronyms sections in the ''LLNL Site-Specific ASCI Software Quality Engineering Recommended Practices VI.I''.« less

  20. Spectrophotometer-Based Color Measurements

    DTIC Science & Technology

    2017-10-24

    public release; distribution is unlimited. AD U.S. ARMY ARMAMENT RESEARCH , DEVELOPMENT AND ENGINEERING CENTER Weapons and Software Engineering Center...for public release; distribution is unlimited. UNCLASSIFIED i CONTENTS Page Summary 1 Introduction 1 Methods , Assumptions, and Procedures 1...Values for Federal Color Standards 15 Distribution List 25 TABLES 1 Instrument precision 3 2 Method precision and operator variability 4 3

  1. The Effective Use of Professional Software in an Undergraduate Mining Engineering Curriculum

    ERIC Educational Resources Information Center

    Kecojevic, Vladislav; Bise, Christopher; Haight, Joel

    2005-01-01

    The use of professional software is an integral part of a student's education in the mining engineering curriculum at The Pennsylvania State University. Even though mining engineering represents a limited market across U.S. educational institutions, the goal still exists for using this type of software to enrich the learning environment with…

  2. The Curiosity Mars Rover's Fault Protection Engine

    NASA Technical Reports Server (NTRS)

    Benowitz, Ed

    2014-01-01

    The Curiosity Rover, currently operating on Mars, contains flight software onboard to autonomously handle aspects of system fault protection. Over 1000 monitors and 39 responses are present in the flight software. Orchestrating these behaviors is the flight software's fault protection engine. In this paper, we discuss the engine's design, responsibilities, and present some lessons learned for future missions.

  3. A Guideline of Using Case Method in Software Engineering Courses

    ERIC Educational Resources Information Center

    Zainal, Dzulaiha Aryanee Putri; Razali, Rozilawati; Shukur, Zarina

    2014-01-01

    Software Engineering (SE) education has been reported to fall short in producing high quality software engineers. In seeking alternative solutions, Case Method (CM) is regarded as having potential to solve the issue. CM is a teaching and learning (T&L) method that has been found to be effective in Social Science education. In principle,…

  4. Success Factors for Using Case Method in Teaching and Learning Software Engineering

    ERIC Educational Resources Information Center

    Razali, Rozilawati; Zainal, Dzulaiha Aryanee Putri

    2013-01-01

    The Case Method (CM) has long been used effectively in Social Science education. Its potential use in Applied Science such as Software Engineering (SE) however has yet to be further explored. SE is an engineering discipline that concerns the principles, methods and tools used throughout the software development lifecycle. In CM, subjects are…

  5. Network Profiling Using Flow

    DTIC Science & Technology

    2012-08-01

    Software Engineering Institute, a federally funded research and development center. Any opinions, findings and conclusions or recommendations...CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF...required for any other external and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at permission

  6. Four Pillars of Service-Oriented Architecture

    DTIC Science & Technology

    2007-09-01

    ic A lig n m e n t Figure 1: Pillars of SOA-Based Systems Development Service -Oriented Architectures 12 CROSSTALK The Journal of Defense Software ...et al. “On the Business Value and Technical Challenges of Adopting Web Services .” Journal of Software Maintenance and Evolution 16 (2004): 16, 31-50...10 CROSSTALK The Journal of Defense Software Engineering September 2007 Acornerstone of DoD policy forfuture software and systems policy is the

  7. IPAD project overview

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1980-01-01

    To respond to national needs for improved productivity in engineering design and manufacturing, a NASA supported joint industry/government project is underway denoted Integrated Programs for Aerospace-Vehicle Design (IPAD). The objective is to improve engineering productivity through better use of computer technology. It focuses on development of technology and associated software for integrated company-wide management of engineering information. The project has been underway since 1976 under the guidance of an Industry Technical Advisory Board (ITAB) composed of representatives of major engineering and computer companies and in close collaboration with the Air Force Integrated Computer-Aided Manufacturing (ICAM) program. Results to date on the IPAD project include an in-depth documentation of a representative design process for a large engineering project, the definition and design of computer-aided design software needed to support that process, and the release of prototype software to integrate selected design functions. Ongoing work concentrates on development of prototype software to manage engineering information, and initial software is nearing release.

  8. The East-German Research Landscape in Transition. Part C. Research at East-German Universities

    DTIC Science & Technology

    1993-03-10

    Software-Systemlosungen fUr Aufgaben der Qualit ~ tssicherung und Pr~zisionsmeBtechnik. Beratung zur automatisierten ProzeBsteuerung und rechnergestUtzten... Qualit ~ tssicherung Beratung zu Schnittstellenproblemen und zur Lichtzeichentechnik Beratung zu Auswahl und Einsatz von metrischen Bi...49 (351) 463-2786 with seventeen institutes. C45.wp-09 05 MAR 93 #4350 DEPARTMENT FOR CIVIL ENGINEERING. WATER- AND FOREST TECHNOLOGY Fakult~t fUr Bau

  9. Extreme C2 and Multi-Touch, Multi-User Collaborative User Interfaces

    DTIC Science & Technology

    2008-06-01

    Organization: Office of the Chief Engineer , Space and Naval Warfare Systems Center Charleston Address: PO Box 190022 N. Charleston, SC 29419 843...collaborative development technique can increase the adaptability and quality of software, something of high value in the complex domain of enterprise...concept to C2 should be able to produce similar benefits for planning in military operations, particularly complex, multi- faceted operations. This

  10. A Discussion of the Software Quality Assurance Role

    NASA Technical Reports Server (NTRS)

    Kandt, Ronald Kirk

    2010-01-01

    The basic idea underlying this paper is that the conventional understanding of the role of a Software Quality Assurance (SQA) engineer is unduly limited. This is because few have asked who the customers of a SQA engineer are. Once you do this, you can better define what tasks a SQA engineer should perform, as well as identify the knowledge and skills that such a person should have. The consequence of doing this is that a SQA engineer can provide greater value to his or her customers. It is the position of this paper that a SQA engineer providing significant value to his or her customers must not only assume the role of an auditor, but also that of a software and systems engineer. This is because software engineers and their managers particularly value contributions that directly impact products and their development. These ideas are summarized as lessons learned, based on my experience at Jet Propulsion Laboratory (JPL).

  11. An Investigation of an Open-Source Software Development Environment in a Software Engineering Graduate Course

    ERIC Educational Resources Information Center

    Ge, Xun; Huang, Kun; Dong, Yifei

    2010-01-01

    A semester-long ethnography study was carried out to investigate project-based learning in a graduate software engineering course through the implementation of an Open-Source Software Development (OSSD) learning environment, which featured authentic projects, learning community, cognitive apprenticeship, and technology affordances. The study…

  12. Implementing Large Projects in Software Engineering Courses

    ERIC Educational Resources Information Center

    Coppit, David

    2006-01-01

    In software engineering education, large projects are widely recognized as a useful way of exposing students to the real-world difficulties of team software development. But large projects are difficult to put into practice. First, educators rarely have additional time to manage software projects. Second, classrooms have inherent limitations that…

  13. Software Requirements Engineering Methodology (Development)

    DTIC Science & Technology

    1979-06-01

    Higher Order Software [20]; and the Michael Jackson Design Methodology [21]. Although structured programming constructs have proven to be more useful...reviewed here. Similarly, the manual techniques for software design (e.g., HIPO Diagrams, Nassi-Schneidermann charts, Top-Down Design, the Michael ... Jackson Design Methodology, Yourdon’s Structured Design) are not addressed. 6.1.3 Research Programs There are a number of research programs underway

  14. Engineering and Software Engineering

    NASA Astrophysics Data System (ADS)

    Jackson, Michael

    The phrase ‘software engineering' has many meanings. One central meaning is the reliable development of dependable computer-based systems, especially those for critical applications. This is not a solved problem. Failures in software development have played a large part in many fatalities and in huge economic losses. While some of these failures may be attributable to programming errors in the narrowest sense—a program's failure to satisfy a given formal specification—there is good reason to think that most of them have other roots. These roots are located in the problem of software engineering rather than in the problem of program correctness. The famous 1968 conference was motivated by the belief that software development should be based on “the types of theoretical foundations and practical disciplines that are traditional in the established branches of engineering.” Yet after forty years of currency the phrase ‘software engineering' still denotes no more than a vague and largely unfulfilled aspiration. Two major causes of this disappointment are immediately clear. First, too many areas of software development are inadequately specialised, and consequently have not developed the repertoires of normal designs that are the indispensable basis of reliable engineering success. Second, the relationship between structural design and formal analytical techniques for software has rarely been one of fruitful synergy: too often it has defined a boundary between competing dogmas, at which mutual distrust and incomprehension deprive both sides of advantages that should be within their grasp. This paper discusses these causes and their effects. Whether the common practice of software development will eventually satisfy the broad aspiration of 1968 is hard to predict; but an understanding of past failure is surely a prerequisite of future success.

  15. Software Safety Risk in Legacy Safety-Critical Computer Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice L.; Baggs, Rhoda

    2007-01-01

    Safety Standards contain technical and process-oriented safety requirements. Technical requirements are those such as "must work" and "must not work" functions in the system. Process-Oriented requirements are software engineering and safety management process requirements. Address the system perspective and some cover just software in the system > NASA-STD-8719.13B Software Safety Standard is the current standard of interest. NASA programs/projects will have their own set of safety requirements derived from the standard. Safety Cases: a) Documented demonstration that a system complies with the specified safety requirements. b) Evidence is gathered on the integrity of the system and put forward as an argued case. [Gardener (ed.)] c) Problems occur when trying to meet safety standards, and thus make retrospective safety cases, in legacy safety-critical computer systems.

  16. Using Transom Jack in the Human Engineering Analysis of the Materials Science Research Rack-1 and Quench Module Insert

    NASA Technical Reports Server (NTRS)

    Dunn, Mariea C.; Alves, Jeffrey R.; Hutchinson, Sonya L.

    1999-01-01

    This paper describes the human engineering analysis performed on the Materials Science Research Rack-1 and Quench Module Insert (MSRR-1/QMI) using Transom Jack (Jack) software. The Jack software was used to model a virtual environment consisting of the MSRR-1/QMI hardware configuration and human figures representing the 95th percentile male and 5th percentile female. The purpose of the simulation was to assess the human interfaces in the design for their ability to meet the requirements of the Pressurized Payloads Interface Requirements Document - International Space Program, Revision C (SSP 57000). Jack was used in the evaluation because of its ability to correctly model anthropometric body measurements and the physical behavior of astronauts working in microgravity, which is referred to as the neutral body posture. The Jack model allows evaluation of crewmember interaction with hardware through task simulation including but not limited to collision avoidance behaviors, hand/eye coordination, reach path planning, and automatic grasping to part contours. Specifically, this virtual simulation depicts the human figures performing the QMI installation and check-out, sample cartridge insertion and removal, and gas bottle drawer removal. These tasks were evaluated in terms of adequate clearance in reach envelopes, adequate accessibility in work envelopes, appropriate line of sight in visual envelopes, and accommodation of full size range for male and female stature maneuverability. The results of the human engineering analysis virtual simulation indicate that most of the associated requirements of SSP 57000 were met. However, some hardware design considerations and crew procedures modifications are recommended to improve accessibility, provide an adequate work envelope, reduce awkward body posture, and eliminate permanent protrusions.

  17. "Test" is a Four Letter Word

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G M

    2005-05-03

    For a number of years I had the pleasure of teaching Testing Seminars all over the world and meeting and learning from others in our field. Over a twelve year period, I always asked the following questions to Software Developers, Test Engineers, and Managers who took my two or three day seminar on Software Testing: 'When was the first time you heard the word test'? 'Where were you when you first heard the word test'? 'Who said the word test'? 'How did the word test make you feel'? Most of the thousands of responses were similar to 'It was mymore » third grade teacher at school, and I felt nervous and afraid'. Now there were a few exceptions like 'It was my third grade teacher, and I was happy and excited to show how smart I was'. But by and large, my informal survey found that 'testing' is a word to which most people attach negative meanings, based on its historical context. So why is this important to those of us in the software development business? Because I have found that a preponderance of software developers do not get real excited about hearing that the software they just wrote is going to be 'tested' by the Test Group. Typical reactions I have heard over the years run from: 'I'm sure there is nothing wrong with the software, so go ahead and test it, better you find defects than our customers'. to these extremes: 'There is no need to test my software because there is nothing wrong with it'. 'You are not qualified to test my software because you don't know as much as I do about it'. 'If any Test Engineers come into our office again to test our software we will throw them through the third floor window'. So why is there such a strong negative reaction to testing? It is primitive. It goes back to grade school for many of us. It is a negative word that congers up negative emotions. In other words, 'test' is a four letter word. How many of us associate 'Joy' with 'Test'? Not many. It is hard for most of us to reprogram associations learned at an early age. So what can we do about it (short of hypnotic therapy for software developers)? Well one concept I have used (and still use) is to not call testing 'testing'. Call it something else. Ever wonder why most of the Independent Software Testing groups are called Software Quality Assurance groups? Now you know. Software Quality Assurance is not such a negatively charged phrase, even though Software Quality Assurance is much more than simply testing. It was a real blessing when the concept of Validation and Verification came about for software. Now I define Validation to mean assuring that the product produced does the right thing (usually what the customer wants it to do), and verification means that the product was built the right way (in accordance with some good design principles and practices). So I have deliberately called the System Test Group the Verification and Validation Group, or V&V Group, as a way of avoiding the negative image problem. I remember once having a conversation with a developer colleague who said, in the heat of battle, that it was fine to V&V his code, just don't test it! Once again V&V includes many things besides testing, but it just doesn't sound like an onerous thing to do to software. In my current job, working at a highly regarded national laboratory with world renowned physicists, I have again encountered the negativity about testing software. Except here they don't take kindly to Software Quality Assurance or Software Verification and Validation either. After all, software is just a trivial tool to automate algorithms that implement physics models. Testing, SQA, and V&V take time and get in the way of completing ground breaking science experiments. So I have again had to change the name of software testing to something less negative in the physics world. I found (the hard way) that if I requested more time to do software experimentation, the physicist's resistance melted. And so the conversation continues, 'We have time to run more software experiments. Just don't waste any time testing the software'! In case the concept of not calling testing 'testing' appeals to you, and there may be an opportunity for you to take the sting out of the name at your place of employment, I have compiled a table of things that testing could be called besides 'testing'. Of course we can embellish this by adding some good sounding prefixes and suffixes also. To come up with alternate names for testing, pick a word from columns A, B, and C in the table below. For instance Unified Acceptance Trials (A2,B7,C3) or Tailored Observational Demonstration (A6,B5,C5) or Agile Criteria Scoring (A3,B8,C8) or Rapid Requirement Proof (A1,B9,C7) or Satisfaction Assurance (B10,C1). You can probably think of some additional combinations appropriate for your industry.« less

  18. Proceedings of the Eighteenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The workshop provided a forum for software practitioners from around the world to exchange information on the measurement, use, and evaluation of software methods, models, and tools. This year, approximately 450 people attended the workshop, which consisted of six sessions on the following topics: the Software Engineering Laboratory, measurement, technology assessment, advanced concepts, process, and software engineering issues in NASA. Three presentations were given in each of the topic areas. The content of those presentations and the research papers detailing the work reported are included in these proceedings. The workshop concluded with a tutorial session on how to start an Experience Factory.

  19. New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiss, T.; Chaney, L.; Meyer, J.

    Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic systemmore » simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.« less

  20. More Than A SketchUp

    NASA Technical Reports Server (NTRS)

    Davis, Derrick D.

    2014-01-01

    This 2014 summer internship assignment at John F. Kennedy Space Center (K.S.C) was conducted with the National Aeronautics and Space Administration (NASA) Engineering and Technology (NE) group in support of the Control and Data Systems Division (NE-C) within the Test, Operations & Support Software Engineering Branch (NE-C2). The primary focus of this project was to assist Branch Chief Laurie B. Griffin, to support NASA's Small Payload Launch Integrated Testing Services (SPLITS) mission, by mastering the capabilities of 3-D modeling software called SketchUp. I used SketchUp to create a virtual environment for different laboratories of the NE-00 Division. My mission was to have these models uploaded into a K.S.C Partnerships Website and be used as a visual aid to viewers who browsed the site. The leads of this project were Kay L. Craig, Business and Industry Specialist (AD-A) and Steven E. Cain, (FA-C). I teamed with fellow intern Tait Sorenson of the Flight Structures and Thermal Protection Systems Branch (NE-M5) and met with many K.S.C lab managers willing to display their lab's structure and capabilities. The information collected during these lab tours was vital to the building of the K.S.C Partnerships Website. To accomplish this goal Sorenson and I later teamed with fellow Marketing intern Marlee Pereda-Ramos, of the Spaceport Planning Office In Center Planning And Development (AD-A) Along with Ramos, Tait and I toured an array of laboratories and got first hand exposure to their functions and capabilities.

  1. Earth Global Reference Atmospheric Model (GRAM) Overview and Updates: DOLWG Meeting

    NASA Technical Reports Server (NTRS)

    White, Patrick

    2017-01-01

    What is Earth-GRAM (Global Reference Atmospheric Model): Provides monthly mean and standard deviation for any point in atmosphere - Monthly, Geographic, and Altitude Variation; Earth-GRAM is a C++ software package - Currently distributed as Earth-GRAM 2016; Atmospheric variables included: pressure, density, temperature, horizontal and vertical winds, speed of sound, and atmospheric constituents; Used by engineering community because of ability to create dispersions in atmosphere at a rapid runtime - Often embedded in trajectory simulation software; Not a forecast model; Does not readily capture localized atmospheric effects.

  2. European Software Engineering Process Group Conference (2nd Annual), EUROPEAN SEPG󈨥. Delegate Material, Conference

    DTIC Science & Technology

    1997-06-19

    states, and six of the top ten suppliers of software with the lowest defect levels are also EU member states Kerry Hanson, Director TI ex White House OST...6,M 0"M *" changes Defects reported by customers STeraQuest S ofOR Wednsday 18 Jlue (C303) 5-3 lE’s IDEAL Model organizational analyze lss.ons exeute...Indicator used to track non discretionary maintenance, enhancements, and defect corrections as well as the number of open trouble reports. 17 *Enterprise

  3. Proceedings of the Twenty-Third Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Twenty-third Annual Software Engineering Workshop (SEW) provided 20 presentations designed to further the goals of the Software Engineering Laboratory (SEL) of the NASA-GSFC. The presentations were selected on their creativity. The sessions which were held on 2-3 of December 1998, centered on the SEL, Experimentation, Inspections, Fault Prediction, Verification and Validation, and Embedded Systems and Safety-Critical Systems.

  4. Reverse Engineering and Software Products Reuse to Teach Collaborative Web Portals: A Case Study with Final-Year Computer Science Students

    ERIC Educational Resources Information Center

    Medina-Dominguez, Fuensanta; Sanchez-Segura, Maria-Isabel; Mora-Soto, Arturo; Amescua, Antonio

    2010-01-01

    The development of collaborative Web applications does not follow a software engineering methodology. This is because when university students study Web applications in general, and collaborative Web portals in particular, they are not being trained in the use of software engineering techniques to develop collaborative Web portals. This paper…

  5. A Structured Approach for Reviewing Architecture Documentation

    DTIC Science & Technology

    2009-12-01

    as those found in ISO 12207 [ ISO /IEC 12207 :2008] (for software engineering), ISO 15288 [ ISO /IEC 15288:2008] (for systems engineering), the Rational...Open Distributed Processing - Reference Model: Foundations ( ISO /IEC 10746-2). 1996. [ ISO /IEC 12207 :2008] International Organization for...Standardization & International Electrotechnical Commission. Sys- tems and software engineering – Software life cycle processes ( ISO /IEC 12207 ). 2008. [ ISO

  6. Changes in Transferable Knowledge Resulting from Study in a Graduate Software Engineering Curriculum

    ERIC Educational Resources Information Center

    Bareiss, Ray; Sedano, Todd; Katz, Edward

    2012-01-01

    This paper presents the initial results of a study of the evolution of students' knowledge of software engineering from the beginning to the end of a master's degree curriculum in software engineering. Students were presented with a problem involving the initiation of a complex new project at the beginning of the program and again at the end of…

  7. The Relationship between Job Satisfaction and Intent to Turnover among Software Engineers in the Information Technology Industry

    ERIC Educational Resources Information Center

    Agada, Chuks N.

    2013-01-01

    The focus of this study was to examine the relationship between job satisfaction and intent to turnover among software engineers in the information technology (IT) industry. The population that was analyzed in this study was software engineers in the IT industry to determine whether there is a relationship between job satisfaction and intent to…

  8. RICIS Software Engineering 90 Symposium: Aerospace Applications and Research Directions Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers presented at RICIS Software Engineering Symposium are compiled. The following subject areas are covered: synthesis - integrating product and process; Serpent - a user interface management system; prototyping distributed simulation networks; and software reuse.

  9. Software Engineering Laboratory (SEL) data and information policy

    NASA Technical Reports Server (NTRS)

    Mcgarry, Frank

    1991-01-01

    The policies and overall procedures that are used in distributing and in making available products of the Software Engineering Laboratory (SEL) are discussed. The products include project data and measures, project source code, reports, and software tools.

  10. Modernizing Systems and Software: How Evolving Trends in Future Trends in Systems and Software Technology Bode Well for Advancing the Precision of Technology

    DTIC Science & Technology

    2009-04-23

    of Code Need for increased functionality will be a forcing function to bring the fields of software and systems engineering... of Software-Intensive Systems is Increasing 3 How Evolving Trends in Systems and Software Technologies Bode Well for Advancing the Precision of ...Engineering in Continued Partnership 4 How Evolving Trends in Systems and Software Technologies Bode Well for Advancing the

  11. Assessing students' performance in software requirements engineering education using scoring rubrics

    NASA Astrophysics Data System (ADS)

    Mkpojiogu, Emmanuel O. C.; Hussain, Azham

    2017-10-01

    The study investigates how helpful the use of scoring rubrics is, in the performance assessment of software requirements engineering students and whether its use can lead to students' performance improvement in the development of software requirements artifacts and models. Scoring rubrics were used by two instructors to assess the cognitive performance of a student in the design and development of software requirements artifacts. The study results indicate that the use of scoring rubrics is very helpful in objectively assessing the performance of software requirements or software engineering students. Furthermore, the results revealed that the use of scoring rubrics can also produce a good achievement assessments direction showing whether a student is either improving or not in a repeated or iterative assessment. In a nutshell, its use leads to the performance improvement of students. The results provided some insights for further investigation and will be beneficial to researchers, requirements engineers, system designers, developers and project managers.

  12. Framework Support For Knowledge-Based Software Development

    NASA Astrophysics Data System (ADS)

    Huseth, Steve

    1988-03-01

    The advent of personal engineering workstations has brought substantial information processing power to the individual programmer. Advanced tools and environment capabilities supporting the software lifecycle are just beginning to become generally available. However, many of these tools are addressing only part of the software development problem by focusing on rapid construction of self-contained programs by a small group of talented engineers. Additional capabilities are required to support the development of large programming systems where a high degree of coordination and communication is required among large numbers of software engineers, hardware engineers, and managers. A major player in realizing these capabilities is the framework supporting the software development environment. In this paper we discuss our research toward a Knowledge-Based Software Assistant (KBSA) framework. We propose the development of an advanced framework containing a distributed knowledge base that can support the data representation needs of tools, provide environmental support for the formalization and control of the software development process, and offer a highly interactive and consistent user interface.

  13. Concept document of the repository-based software engineering program: A constructive appraisal

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A constructive appraisal of the Concept Document of the Repository-Based Software Engineering Program is provided. The Concept Document is designed to provide an overview of the Repository-Based Software Engineering (RBSE) Program. The Document should be brief and provide the context for reading subsequent requirements and product specifications. That is, all requirements to be developed should be traceable to the Concept Document. Applied Expertise's analysis of the Document was directed toward assuring that: (1) the Executive Summary provides a clear, concise, and comprehensive overview of the Concept (rewrite as necessary); (2) the sections of the Document make best use of the NASA 'Data Item Description' for concept documents; (3) the information contained in the Document provides a foundation for subsequent requirements; and (4) the document adequately: identifies the problem being addressed; articulates RBSE's specific role; specifies the unique aspects of the program; and identifies the nature and extent of the program's users.

  14. Investigation of a Verification and Validation Tool with a Turbofan Aircraft Engine Application

    NASA Technical Reports Server (NTRS)

    Uth, Peter; Narang-Siddarth, Anshu; Wong, Edmond

    2018-01-01

    The development of more advanced control architectures for turbofan aircraft engines can yield gains in performance and efficiency over the lifetime of an engine. However, the implementation of these increasingly complex controllers is contingent on their ability to provide safe, reliable engine operation. Therefore, having the means to verify the safety of new control algorithms is crucial. As a step towards this goal, CoCoSim, a publicly available verification tool for Simulink, is used to analyze C-MAPSS40k, a 40,000 lbf class turbo-fan engine model developed at NASA for testing new control algorithms. Due to current limitations of the verification software, several modifications are made to C-MAPSS40k to achieve compatibility with CoCoSim. Some of these modifications sacrifice fidelity to the original model. Several safety and performance requirements typical for turbofan engines are identified and constructed into a verification framework. Preliminary results using an industry standard baseline controller for these requirements are presented. While verification capabilities are demonstrated, a truly comprehensive analysis will require further development of the verification tool.

  15. Engine Structures Modeling Software System (ESMOSS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Engine Structures Modeling Software System (ESMOSS) is the development of a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components, and substructures which can be transferred to finite element analysis programs such as NASTRAN. The NASA Lewis Engine Structures Program is concerned with the development of technology for the rational structural design and analysis of advanced gas turbine engines with emphasis on advanced structural analysis, structural dynamics, structural aspects of aeroelasticity, and life prediction. Fundamental and common to all of these developments is the need for geometric and analytical model descriptions at various engine assembly levels which are generated using ESMOSS.

  16. Increasing the reliability of ecological models using modern software engineering techniques

    Treesearch

    Robert M. Scheller; Brian R. Sturtevant; Eric J. Gustafson; Brendan C. Ward; David J. Mladenoff

    2009-01-01

    Modern software development techniques are largely unknown to ecologists. Typically, ecological models and other software tools are developed for limited research purposes, and additional capabilities are added later, usually in an ad hoc manner. Modern software engineering techniques can substantially increase scientific rigor and confidence in ecological models and...

  17. Effects of the Meetings-Flow Approach on Quality Teamwork in the Training of Software Capstone Projects

    ERIC Educational Resources Information Center

    Chen, Chung-Yang; Hong, Ya-Chun; Chen, Pei-Chi

    2014-01-01

    Software development relies heavily on teamwork; determining how to streamline this collaborative development is an essential training subject in computer and software engineering education. A team process known as the meetings-flow (MF) approach has recently been introduced in software capstone projects in engineering programs at various…

  18. SpaceWire Driver Software for Special DSPs

    NASA Technical Reports Server (NTRS)

    Clark, Douglas; Lux, James; Nishimoto, Kouji; Lang, Minh

    2003-01-01

    A computer program provides a high-level C-language interface to electronics circuitry that controls a SpaceWire interface in a system based on a space qualified version of the ADSP-21020 digital signal processor (DSP). SpaceWire is a spacecraft-oriented standard for packet-switching data-communication networks that comprise nodes connected through bidirectional digital serial links that utilize low-voltage differential signaling (LVDS). The software is tailored to the SMCS-332 application-specific integrated circuit (ASIC) (also available as the TSS901E), which provides three highspeed (150 Mbps) serial point-to-point links compliant with the proposed Institute of Electrical and Electronics Engineers (IEEE) Standard 1355.2 and equivalent European Space Agency (ESA) Standard ECSS-E-50-12. In the specific application of this software, the SpaceWire ASIC was combined with the DSP processor, memory, and control logic in a Multi-Chip Module DSP (MCM-DSP). The software is a collection of low-level driver routines that provide a simple message-passing application programming interface (API) for software running on the DSP. Routines are provided for interrupt-driven access to the two styles of interface provided by the SMCS: (1) the "word at a time" conventional host interface (HOCI); and (2) a higher performance "dual port memory" style interface (COMI).

  19. Interpreting CMMI High Maturity for Small Organizations

    DTIC Science & Technology

    2008-09-01

    Stoddard September, 2008 Congreso Internacional en Ingeniería de Software y sus Aplicaciones (International Congress of Software Engineering d...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Congreso Internacional en Ingeniería de Software y sus Aplicaciones (International Congress of...de Software y sus Aplicaciones (International Congress of Software Engineering and its Applications) Why This Workshop? CMMI Process Performance

  20. OHD/HL - Staff

    Science.gov Websites

    Laboratory Branches Hydrologic Software Engineering Branch (HSEB) Hydrologic Science and Modeling Branch (HSMB) General Info Publications Documentation Software Standard and Guidelines Contact Us HL Staff resources and services. Staff Directory Chief, Hydrology Laboratory; Chief, Hydrologic Software Engineering

  1. A subscale facility for liquid rocket propulsion diagnostics at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Raines, N. G.; Bircher, F. E.; Chenevert, D. J.

    1991-01-01

    The Diagnostics Testbed Facility (DTF) at NASA's John C. Stennis Space Center in Mississippi was designed to provide a testbed for the development of rocket engine exhaust plume diagnostics instrumentation. A 1200-lb thrust liquid oxygen/gaseous hydrogen thruster is used as the plume source for experimentation and instrument development. Theoretical comparative studies have been performed with aerothermodynamic codes to ensure that the DTF thruster (DTFT) has been optimized to produce a plume with pressure and temperature conditions as much like the plume of the Space Shuttle Main Engine as possible. Operation of the DTFT is controlled by an icon-driven software program using a series of soft switches. Data acquisition is performed using the same software program. A number of plume diagnostics experiments have utilized the unique capabilities of the DTF.

  2. ETICS: the international software engineering service for the grid

    NASA Astrophysics Data System (ADS)

    Meglio, A. D.; Bégin, M.-E.; Couvares, P.; Ronchieri, E.; Takacs, E.

    2008-07-01

    The ETICS system is a distributed software configuration, build and test system designed to fulfil the needs of improving the quality, reliability and interoperability of distributed software in general and grid software in particular. The ETICS project is a consortium of five partners (CERN, INFN, Engineering Ingegneria Informatica, 4D Soft and the University of Wisconsin-Madison). The ETICS service consists of a build and test job execution system based on the Metronome software and an integrated set of web services and software engineering tools to design, maintain and control build and test scenarios. The ETICS system allows taking into account complex dependencies among applications and middleware components and provides a rich environment to perform static and dynamic analysis of the software and execute deployment, system and interoperability tests. This paper gives an overview of the system architecture and functionality set and then describes how the EC-funded EGEE, DILIGENT and OMII-Europe projects are using the software engineering services to build, validate and distribute their software. Finally a number of significant use and test cases will be described to show how ETICS can be used in particular to perform interoperability tests of grid middleware using the grid itself.

  3. Software for Better Documentation of Other Software

    NASA Technical Reports Server (NTRS)

    Pinedo, John

    2003-01-01

    The Literate Programming Extraction Engine is a Practical Extraction and Reporting Language- (PERL-)based computer program that facilitates and simplifies the implementation of a concept of self-documented literate programming in a fashion tailored to the typical needs of scientists. The advantage for the programmer is that documentation and source code are written side-by-side in the same file, reducing the likelihood that the documentation will be inconsistent with the code and improving the verification that the code performs its intended functions. The advantage for the user is the knowledge that the documentation matches the software because they come from the same file. This program unifies the documentation process for a variety of programming languages, including C, C++, and several versions of FORTRAN. This program can process the documentation in any markup language, and incorporates the LaTeX typesetting software. The program includes sample Makefile scripts for automating both the code-compilation (when appropriate) and documentation-generation processes into a single command-line statement. Also included are macro instructions for the Emacs display-editor software, making it easy for a programmer to toggle between editing in a code or a documentation mode.

  4. Engineering Safety- and Security-Related Requirements for Software-Intensive Systems

    DTIC Science & Technology

    2010-04-27

    Requirements Negative (shall not) Requirements Hardware Requirements equ remen s System / Documentation Requirements eve oper Requirements Operational ...Validation Actual / Proposed Defensibility C li Operational Vulnerability Analysis VulnerabilityVulnerability Safety Vulnerability performs System ...including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

  5. Supporting C2 Research and Evaluation: An Infrastructure and its Potential Impact

    DTIC Science & Technology

    2011-06-01

    Potential Impact,” Empirical Software Engineering, Vol. 10 No. 4, pp. 405-435, 2005. http://sir.unl.edu [16] J. O. Engene , Terrorism in Western...Evaluation and Conference: Proceedings of the 3rd-6th DARPA Workshops, Morgan Kaufman Publishers, 1996. … [16] J. O. Engene , Terrorism in Western Europe

  6. ICESat (GLAS) Science Processing Software Document Series. Volume 3; GLAS Science Software Requirements Document; Ver 2.1

    NASA Technical Reports Server (NTRS)

    Jester, Peggy L.; Lee, Jeffrey; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    This document addresses the software requirements of the Geoscience Laser Altimeter System (GLAS) Standard Data Software (SDS) supporting the GLAS instrument on the EOS ICESat Spacecraft. This Software Requirements Document represents the initial collection of the technical engineering information for the GLAS SDS. This information is detailed within the second of four main volumes of the Standard documentation, the Product Specification volume. This document is a "roll-out" from the governing volume outline containing the Concept and Requirements sections.

  7. Naming in a Programming Support Environment.

    DTIC Science & Technology

    1984-02-01

    and Control, 1974. 10. T. E. Cheatham. An Overview of the Harvard Program Development System. I; Software Engineering Environments, H. Hunke, Ed.. North...Holland Publishing Compary, 1981, pp. 253-266. 11. T. E. Cheatham. Comparing Programming Support Environments. In Software Engineering Environments...Company. 1981. Third Edition 16. F. DeRemer and H Kron Programming -inthe Large Versus Programming -in-theSmall. IEEE Transactions on Software Engineering

  8. Data and Analysis Center for Software: An IAC in Transition.

    DTIC Science & Technology

    1983-06-01

    reviewed and is approved for publication. * APPROVEDt Proj ect Engineer . JOHN J. MARCINIAK, Colonel, USAF Chief, Command and Control Division . FOR THE CO...SUPPLEMENTARY NOTES RADC Project Engineer : John Palaimo (COEE) It. KEY WORDS (Conilnuo n rever*e aide if necessary and identify by block numober...Software Engineering Software Technology Information Analysis Center Database Scientific and Technical Information 20. ABSTRACT (Continue on reverse side It

  9. Interoperability in the e-Government Context

    DTIC Science & Technology

    2012-01-01

    Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. Any opinions...Hanscom AFB, MA 01731-2125 NO WARRANTY THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS... Software Engineering Institute at permission@sei.cmu.edu. * These restrictions do not apply to U.S. government entities. CMU/SEI-2011-TN-014 | i Table

  10. IEEE Computer Society/Software Engineering Institute Watts S. Humphrey Software Process Achievement (SPA) Award 2016: Nationwide

    DTIC Science & Technology

    2017-04-05

    Information Technology at Nationwide v Abstract vi 1 Business Imperatives 1 1.1 Deliver the Right Work 1 1.2 Deliver the Right Way 1 1.3 Deliver with...an Engaged Workforce 1 2 Challenges and Opportunities 2 2.1 Responding to Demand 2 2.2 Standards and Capabilities 2 2.3 Information Technology ...release and unlimited distribution. Information Technology at Nationwide Nationwide Information Technology (IT) is comprised of seven offices

  11. Introduction to the Security Engineering Risk Analysis (SERA) Framework

    DTIC Science & Technology

    2014-11-01

    military aircraft has increased from 8% to 80%. At the same time, the size of software in military aircraft has grown from 1,000 lines of code in the F...4A to 1.7 million lines of code in the F-22. This growth trend is expected to con- tinue over time [NASA 2009]. As software exerts more control of...their root causes can be traced to the software’s requirements, architecture, design, or code . Studies have shown that the cost of addressing a software

  12. An Investigation of Wing Lift Augmentation with Spanwise Tip Blowing.

    DTIC Science & Technology

    1987-04-22

    ON8 Michael R. Mendenhall Steven C. CarusoS Co) D Daniel J. Lesieutre Nielsen Engineering & Research, Inc. 510 Clyde Avenue Mountain View, CA 94043...Augmentation with Spanwise Tip Blowing 12. PERSONALAUTHOR(S) Michael R. Mendenhall, Steven C. Caruso, Daniel J. Lesieutre, and Robert E. Childs 13a. TYPE OF...hardware and associated electronics for the flowfield survey 99 traverse rig mechanism. Mrs. Susana N. Nazario contributed tne software necessary for the

  13. Software Safety Risk in Legacy Safety-Critical Computer Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice; Baggs, Rhoda

    2007-01-01

    Safety-critical computer systems must be engineered to meet system and software safety requirements. For legacy safety-critical computer systems, software safety requirements may not have been formally specified during development. When process-oriented software safety requirements are levied on a legacy system after the fact, where software development artifacts don't exist or are incomplete, the question becomes 'how can this be done?' The risks associated with only meeting certain software safety requirements in a legacy safety-critical computer system must be addressed should such systems be selected as candidates for reuse. This paper proposes a method for ascertaining formally, a software safety risk assessment, that provides measurements for software safety for legacy systems which may or may not have a suite of software engineering documentation that is now normally required. It relies upon the NASA Software Safety Standard, risk assessment methods based upon the Taxonomy-Based Questionnaire, and the application of reverse engineering CASE tools to produce original design documents for legacy systems.

  14. Software Engineering Research/Developer Collaborations in 2005

    NASA Technical Reports Server (NTRS)

    Pressburger, Tom

    2006-01-01

    In CY 2005, three collaborations between software engineering technology providers and NASA software development personnel deployed three software engineering technologies on NASA development projects (a different technology on each project). The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report. Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Also included is an acronym list.

  15. 48 CFR 227.7103-6 - Contract clauses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... private expense). Do not use the clause when the only deliverable items are computer software or computer software documentation (see 227.72), commercial items developed exclusively at private expense (see 227... the clause in architect-engineer and construction contracts. (b)(1) Use the clause at 252.227-7013...

  16. 48 CFR 227.7103-6 - Contract clauses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... private expense). Do not use the clause when the only deliverable items are computer software or computer software documentation (see 227.72), commercial items developed exclusively at private expense (see 227... the clause in architect-engineer and construction contracts. (b)(1) Use the clause at 252.227-7013...

  17. Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, part 1

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr. (Compiler)

    1989-01-01

    Control/Structures Integration program software needs, computer aided control engineering for flexible spacecraft, computer aided design, computational efficiency and capability, modeling and parameter estimation, and control synthesis and optimization software for flexible structures and robots are among the topics discussed.

  18. Certified Binaries for Software Components

    DTIC Science & Technology

    2007-09-01

    is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally funded research and development center sponsored...by the U.S. Department of Defense. Copyright 2007 Carnegie Mellon University. NO WARRANTY THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

  19. Framework Programmable Platform for the Advanced Software Development Workstation (FPP/ASDW). Demonstration framework document. Volume 1: Concepts and activity descriptions

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J.; Blinn, Thomas M.; Dewitte, Paul S.; Crump, John W.; Ackley, Keith A.

    1992-01-01

    The Framework Programmable Software Development Platform (FPP) is a project aimed at effectively combining tool and data integration mechanisms with a model of the software development process to provide an intelligent integrated software development environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The Advanced Software Development Workstation (ASDW) program is conducting research into development of advanced technologies for Computer Aided Software Engineering (CASE).

  20. An information model for use in software management estimation and prediction

    NASA Technical Reports Server (NTRS)

    Li, Ningda R.; Zelkowitz, Marvin V.

    1993-01-01

    This paper describes the use of cluster analysis for determining the information model within collected software engineering development data at the NASA/GSFC Software Engineering Laboratory. We describe the Software Management Environment tool that allows managers to predict development attributes during early phases of a software project and the modifications we propose to allow it to develop dynamic models for better predictions of these attributes.

  1. Using UML Modeling to Facilitate Three-Tier Architecture Projects in Software Engineering Courses

    ERIC Educational Resources Information Center

    Mitra, Sandeep

    2014-01-01

    This article presents the use of a model-centric approach to facilitate software development projects conforming to the three-tier architecture in undergraduate software engineering courses. Many instructors intend that such projects create software applications for use by real-world customers. While it is important that the first version of these…

  2. R-189 (C-620) air compressor control logic software documentation. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, K.E.

    1995-06-08

    This relates to FFTF plant air compressors. Purpose of this document is to provide an updated Computer Software Description for the software to be used on R-189 (C-620-C) air compressor programmable controllers. Logic software design changes were required to allow automatic starting of a compressor that had not been previously started.

  3. Survey on Intelligent Assistance for Workplace Learning in Software Engineering

    NASA Astrophysics Data System (ADS)

    Ras, Eric; Rech, Jörg

    Technology-enhanced learning (TEL) systems and intelligent assistance systems aim at supporting software engineers during learning and work. A questionnaire-based survey with 89 responses from industry was conducted to find out what kinds of services should be provided and how, as well as to determine which software engineering phases they should focus on. In this paper, we present the survey results regarding intelligent assistance for workplace learning in software engineering. We analyzed whether specific types of assistance depend on the organization's size, the respondent's role, and the experience level. The results show a demand for TEL that supports short-term problem solving and long-term competence development at the workplace.

  4. Automated software development workstation

    NASA Technical Reports Server (NTRS)

    Prouty, Dale A.; Klahr, Philip

    1988-01-01

    A workstation is being developed that provides a computational environment for all NASA engineers across application boundaries, which automates reuse of existing NASA software and designs, and efficiently and effectively allows new programs and/or designs to be developed, catalogued, and reused. The generic workstation is made domain specific by specialization of the user interface, capturing engineering design expertise for the domain, and by constructing/using a library of pertinent information. The incorporation of software reusability principles and expert system technology into this workstation provide the obvious benefits of increased productivity, improved software use and design reliability, and enhanced engineering quality by bringing engineering to higher levels of abstraction based on a well tested and classified library.

  5. V & V Within Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1996-01-01

    Verification and validation (V&V) is used to increase the level of assurance of critical software, particularly that of safety-critical and mission critical software. This paper describes the working group's success in identifying V&V tasks that could be performed in the domain engineering and transition levels of reuse-based software engineering. The primary motivation for V&V at the domain level is to provide assurance that the domain requirements are correct and that the domain artifacts correctly implement the domain requirements. A secondary motivation is the possible elimination of redundant V&V activities at the application level. The group also considered the criteria and motivation for performing V&V in domain engineering.

  6. Reengineering legacy software to object-oriented systems

    NASA Technical Reports Server (NTRS)

    Pitman, C.; Braley, D.; Fridge, E.; Plumb, A.; Izygon, M.; Mears, B.

    1994-01-01

    NASA has a legacy of complex software systems that are becoming increasingly expensive to maintain. Reengineering is one approach to modemizing these systems. Object-oriented technology, other modem software engineering principles, and automated tools can be used to reengineer the systems and will help to keep maintenance costs of the modemized systems down. The Software Technology Branch at the NASA/Johnson Space Center has been developing and testing reengineering methods and tools for several years. The Software Technology Branch is currently providing training and consulting support to several large reengineering projects at JSC, including the Reusable Objects Software Environment (ROSE) project, which is reengineering the flight analysis and design system (over 2 million lines of FORTRAN code) into object-oriented C++. Many important lessons have been learned during the past years; one of these is that the design must never be allowed to diverge from the code during maintenance and enhancement. Future work on open, integrated environments to support reengineering is being actively planned.

  7. An MDA Based Ontology Platform: AIR

    NASA Astrophysics Data System (ADS)

    Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan

    In the past few years, software engineering has witnessed two major shifts: model-driven engineering has entered the mainstream, and some leading development tools have become open and extensible.1 AI has always been a spring of new ideas that have been adopted in software engineering, but most of its gems have stayed buried in laboratories, available only to a limited number of AI practitioners. Should AI tools be integrated into mainstream tools and could it be done? We think that it is feasible, and that both communities can benefit from this integration. In fact, some efforts in this direction have already been made, both by major industrial standardization bodies such as the OMG, and by academic laboratories.

  8. Resilience Engineering in Critical Long Term Aerospace Software Systems: A New Approach to Spacecraft Software Safety

    NASA Astrophysics Data System (ADS)

    Dulo, D. A.

    Safety critical software systems permeate spacecraft, and in a long term venture like a starship would be pervasive in every system of the spacecraft. Yet software failure today continues to plague both the systems and the organizations that develop them resulting in the loss of life, time, money, and valuable system platforms. A starship cannot afford this type of software failure in long journeys away from home. A single software failure could have catastrophic results for the spaceship and the crew onboard. This paper will offer a new approach to developing safe reliable software systems through focusing not on the traditional safety/reliability engineering paradigms but rather by focusing on a new paradigm: Resilience and Failure Obviation Engineering. The foremost objective of this approach is the obviation of failure, coupled with the ability of a software system to prevent or adapt to complex changing conditions in real time as a safety valve should failure occur to ensure safe system continuity. Through this approach, safety is ensured through foresight to anticipate failure and to adapt to risk in real time before failure occurs. In a starship, this type of software engineering is vital. Through software developed in a resilient manner, a starship would have reduced or eliminated software failure, and would have the ability to rapidly adapt should a software system become unstable or unsafe. As a result, long term software safety, reliability, and resilience would be present for a successful long term starship mission.

  9. San Antonio I Software Workshop Proceedings. DoD Software for the 1990s, Held in San Antonio, Texas on 28 January - 1 February 1991

    DTIC Science & Technology

    1991-12-01

    management and engineering issues common to the military-industrial complex, - to learn from past experience, - to understand future software...prospective policy documents. - :Prepare a draft issue paper and presentation for the DAE. These items should address the key implementation issues with...respect to MCCR software metrics and establish a clear need for DAE support. Long Term Actions ( past 12-18 mcnths) ... Draft final implementation

  10. Seven Processes that Enable NASA Software Engineering Technologies

    NASA Technical Reports Server (NTRS)

    Housch, Helen; Godfrey, Sally

    2011-01-01

    This slide presentation reviews seven processes that NASA uses to ensure that software is developed, acquired and maintained as specified in the NPR 7150.2A requirement. The requirement is to ensure that all software be appraised for the Capability Maturity Model Integration (CMMI). The enumerated processes are: (7) Product Integration, (6) Configuration Management, (5) Verification, (4) Software Assurance, (3) Measurement and Analysis, (2) Requirements Management and (1) Planning & Monitoring. Each of these is described and the group(s) that are responsible is described.

  11. Software Assurance in Acquisition: Mitigating Risks to the Enterprise. A Reference Guide for Security-Enhanced Software Acquisition and Outsourcing

    DTIC Science & Technology

    2009-02-01

    management, available at <http://www.iso.org/ iso /en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=39612&ICS1=35&ICS2=40 &ICS3=>. ISO /IEC 27001 . Information...Management of the Systems Engineering Process. [ ISO /IEC 27001 ] ISO /IEC 27001 :2005. Information technology -- Security techniques -- Information security...software life cycles [ ISO /IEC 15026]. Software assurance is a key element of national security and homeland security. It is critical because dramatic

  12. Complexity Measure for the Prototype System Description Language (PSDL)

    DTIC Science & Technology

    2002-06-01

    Albrecht, A. and Gaffney , J., Software Function Source Lines of Code and Development Effort Prediction, IEEE Transactions on Software Engineering...Through Meausrement”; Proceedings of the IEEE, Vol. 77, No. 4, April 89. Schach, Stephen, R., Software Engineering, Second Edition, IRWIN, Burr Ridge

  13. The Hidden Job Requirements for a Software Engineer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinovici, Maria C.; Kirkham, Harold; Glass, Kevin A.

    In a world increasingly operated by computers, where innovation depends on software, the software engineer’s role is changing continuously and gaining new dimensions. In commercial software development as well as scientific research environments, the way software developers are perceived is changing, because they are more important to the business than ever before. Nowadays, their job requires skills extending beyond the regular job description posted by HR, and more is expected. To advance and thrive in their new roles, the software engineers must embrace change, and practice the themes of the new era (integration, collaboration and optimization). The challenges may bemore » somehow intimidating for freshly graduated software engineers. Through this paper the authors hope to set them on a path for success, by helping them relinquish their fear of the unknown.« less

  14. The software and algorithms for hyperspectral data processing

    NASA Astrophysics Data System (ADS)

    Shyrayeva, Anhelina; Martinov, Anton; Ivanov, Victor; Katkovsky, Leonid

    2017-04-01

    Hyperspectral remote sensing technique is widely used for collecting and processing -information about the Earth's surface objects. Hyperspectral data are combined to form a three-dimensional (x, y, λ) data cube. Department of Aerospace Research of the Institute of Applied Physical Problems of the Belarusian State University presents a general model of the software for hyperspectral image data analysis and processing. The software runs in Windows XP/7/8/8.1/10 environment on any personal computer. This complex has been has been written in C++ language using QT framework and OpenGL for graphical data visualization. The software has flexible structure that consists of a set of independent plugins. Each plugin was compiled as Qt Plugin and represents Windows Dynamic library (dll). Plugins can be categorized in terms of data reading types, data visualization (3D, 2D, 1D) and data processing The software has various in-built functions for statistical and mathematical analysis, signal processing functions like direct smoothing function for moving average, Savitzky-Golay smoothing technique, RGB correction, histogram transformation, and atmospheric correction. The software provides two author's engineering techniques for the solution of atmospheric correction problem: iteration method of refinement of spectral albedo's parameters using Libradtran and analytical least square method. The main advantages of these methods are high rate of processing (several minutes for 1 GB data) and low relative error in albedo retrieval (less than 15%). Also, the software supports work with spectral libraries, region of interest (ROI) selection, spectral analysis such as cluster-type image classification and automatic hypercube spectrum comparison by similarity criterion with similar ones from spectral libraries, and vice versa. The software deals with different kinds of spectral information in order to identify and distinguish spectrally unique materials. Also, the following advantages should be noted: fast and low memory hypercube manipulation features, user-friendly interface, modularity, and expandability.

  15. Warfighting Concepts to Future Weapon System Designs (WARCON)

    DTIC Science & Technology

    2003-09-12

    34* Software design documents rise to litigation. "* A Material List "Cost information that may support, or may * Final Engineering Process Maps be...document may include design the system as derived from the engineering design, software development, SRD. MTS Technologies, Inc. 26 FOR OFFICIAL USE...document, early in the development phase. It is software engineers produce the vision of important to establish a standard, formal the design effort. As

  16. Using CLIPS in the domain of knowledge-based massively parallel programming

    NASA Technical Reports Server (NTRS)

    Dvorak, Jiri J.

    1994-01-01

    The Program Development Environment (PDE) is a tool for massively parallel programming of distributed-memory architectures. Adopting a knowledge-based approach, the PDE eliminates the complexity introduced by parallel hardware with distributed memory and offers complete transparency in respect of parallelism exploitation. The knowledge-based part of the PDE is realized in CLIPS. Its principal task is to find an efficient parallel realization of the application specified by the user in a comfortable, abstract, domain-oriented formalism. A large collection of fine-grain parallel algorithmic skeletons, represented as COOL objects in a tree hierarchy, contains the algorithmic knowledge. A hybrid knowledge base with rule modules and procedural parts, encoding expertise about application domain, parallel programming, software engineering, and parallel hardware, enables a high degree of automation in the software development process. In this paper, important aspects of the implementation of the PDE using CLIPS and COOL are shown, including the embedding of CLIPS with C++-based parts of the PDE. The appropriateness of the chosen approach and of the CLIPS language for knowledge-based software engineering are discussed.

  17. Building Safer Systems With SpecTRM

    NASA Technical Reports Server (NTRS)

    2003-01-01

    System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.

  18. The Use of the Software MATLAB To Improve Chemical Engineering Education.

    ERIC Educational Resources Information Center

    Damatto, T.; Maegava, L. M.; Filho, R. Maciel

    In all the Brazilian Universities involved with the project "Prodenge-Reenge", the main objective is to improve teaching and learning procedures for the engineering disciplines. The Chemical Engineering College of Campinas State University focused its effort on the use of engineering softwares. The work developed by this project has…

  19. 48 CFR 27.409 - Solicitation provisions and contract clauses

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... section); (ii) For the acquisition of existing data, commercial computer software, or other existing data... United States (see paragraph (i)(1) of this section); (v) For architect-engineer services or construction... software, use the clause with its Alternate III. Any greater or lesser rights regarding the use...

  20. 48 CFR 27.409 - Solicitation provisions and contract clauses

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... section); (ii) For the acquisition of existing data, commercial computer software, or other existing data... United States (see paragraph (i)(1) of this section); (v) For architect-engineer services or construction... software, use the clause with its Alternate III. Any greater or lesser rights regarding the use...

Top