Sample records for c2c12 myoblasts expressing

  1. β‐Taxilin participates in differentiation of C2C12 myoblasts into myotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakane, Hiroshi; Makiyama, Tomohiko; Nogami, Satoru

    Myogenesis is required for the development of skeletal muscle. Accumulating evidence indicates that the expression of several genes are upregulated during myogenesis and these genes play pivotal roles in myogenesis. However, the molecular mechanism underlying myogenesis is not fully understood. In this study, we found that β-taxilin, which is specifically expressed in the skeletal muscle and heart tissues, was progressively expressed during differentiation of C2C12 myoblasts into myotubes, prompting us to investigate the role of β-taxilin in myogenesis. In C2C12 cells, knockdown of β-taxilin impaired the fusion of myoblasts into myotubes, and decreased the diameter of myotubes. We also foundmore » that β-taxilin interacted with dysbindin, a coiled-coil-containing protein. Knockdown of dysbindin conversely promoted the fusion of myoblasts into myotubes and increased the diameter of myotubes in C2C12 cells. Furthermore, knockdown of dysbindin attenuated the inhibitory effect of β-taxilin depletion on myotube formation of C2C12 cells. These results demonstrate that β-taxilin participates in myogenesis through suppressing the function of dysbindin to inhibit the differentiation of C2C12 myoblasts into myotubes. - Highlights: • β‐Taxilin is progressively expressed during differentiation of C2C12 cell. • Knockdown of β-taxilin impaired C2C12 myotube formation. • β‐Taxilin interacted with dysbindin. • Knockdown of dysbindin promoted C2C12 myotube formation. • The function of β-taxilin in C2C12 myotube formation depends on dysbindin.« less

  2. DRAGON, a GPI-anchored membrane protein, inhibits BMP signaling in C2C12 myoblasts.

    PubMed

    Kanomata, Kazuhiro; Kokabu, Shoichiro; Nojima, Junya; Fukuda, Toru; Katagiri, Takenobu

    2009-06-01

    Bone morphogenetic proteins (BMPs) induce osteoblastic differentiation of myoblasts via binding to cell surface receptors. Repulsive guidance molecules (RGMs) have been identified as BMP co-receptors. We report here that DRAGON/RGMb, a member of the RGM family, suppressed BMP signaling in C2C12 myoblasts via a novel mechanism. All RGMs were expressed in C2C12 cells that were differentiated into myocytes and osteoblastic cells, but RGMc was not detected in immature cells. In C2C12 cells, only DRAGON suppressed ALP and Id1 promoter activities induced by BMP-4 or by constitutively activated BMP type I receptors. This inhibition by DRAGON was dependent on the secretory form of the von Willbrand factor type D domain. DRAGON even suppressed BMP signaling induced by constitutively activated Smad1. Over-expression of neogenin did not alter the inhibitory capacity of DRAGON. Taken together, these findings indicate that DRAGON may be an inhibitor of BMP signaling in C2C12 myoblasts. We also suggest that a novel molecule(s) expressed on the cell membrane may mediate the signal transduction of DRAGON in order to suppress BMP signaling in C2C12 myoblasts.

  3. Sirtuin 1 promotes the proliferation of C2C12 myoblast cells via the myostatin signaling pathway.

    PubMed

    Wang, Liang; Zhang, Ting; Xi, Yongyong; Yang, Cuili; Sun, Chengcao; Li, Dejia

    2016-08-01

    Accumulating evidence suggests that Sirtuin (Sirt)1 serves a significant role in proliferation and differentiation of myoblast cells; however the signaling mechanisms involved remain to be established. Myostatin (MSTN), a member of transforming growth factor‑β family, is an vital regulator of myoblast, fibroblast growth and differentiation. To determine if MSTN is involved in the regulation of myoblast cell proliferation by Sirt1, the present study administrated the Sirt1 activator resveratrol, inhibitor nicotinamide (NAM) and MSTN inhibitor SB431542 to C2C12 myoblast cells. It was demonstrated that the Sirt1 activator, resveratrol, repressed, whereas the Sirt1 inhibitor, NAM, enhanced C2C12 myoblast cells proliferation in a Sirt1‑dependent manner. SB431542 promoted the proliferation of C2C12 myoblast cells and reversed the inhibition effect of NAM on C2C12 myoblast cell proliferation. Additionally, resveratrol upregulated the mRNA expression of MyoD, but inhibited the expression of MSTN. Additionally, NAM significantly repressed the expression of MyoD and the phosphorylation of P107 (p‑P107), but enhanced the expression of MSTN and the protein expression of P107. SB431542 significantly mitigated the effect of NAM on the expression of MyoD, P107 and p‑P107. Taken together, these results indicated that Sirt1 promotes the proliferation of C2C12 myoblast cells via the MSTN signaling pathway.

  4. Emodin attenuates TNF-α-induced apoptosis and autophagy in mouse C2C12 myoblasts though the phosphorylation of Akt.

    PubMed

    Chen, Dexiu; Liu, Junshan; Lu, Lu; Huang, Yanfeng; Wang, Yanjing; Wang, Mingqing; Liu, Yangyang; Xie, Dandan; Chen, Jiebing; Diao, Jianxin; Wei, Lianbo; Wang, Ming

    2016-05-01

    Emodin, a major component of Rheum palmatum, has been reported to significantly protect neural tissue against apoptosis and autophagy. However, the effects and underlying mechanisms of action of emodin in muscle atrophy are still poorly defined. In this study, we investigated the protective effects and the underlying mechanisms by which emodin acts on tumor necrosis factor alpha (TNF-α)-induced apoptosis and autophagy in mouse C2C12 myoblasts. Emodin, at various concentrations, decreased TNF-α-induced apoptosis in C2C12 myoblasts, which were analyzed by Hoechst 33342 staining and annexin V/PI analysis. Emodin also inhibited the collapse of the mitochondrial membrane potential and the generation of reactive oxygen species in TNF-α-stimulated C2C12 myoblasts. Consistent with these results, the expression of Bcl-2 was increased, whereas the expression of Bax, cleaved-caspase 3 and cleaved-PARP was decreased after emodin treatment. These data demonstrate that emodin attenuated apoptosis in TNF-α-stimulated C2C12 myoblasts through mitochondrial signaling pathways. In addition, emodin inhibited autophagy in TNF-α-stimulated C2C12 myoblasts by suppressing the expression of LC3-II, Beclin-1 and Atg7. Emodin also resulted in the upregulation of the phosphorylated forms of Akt. Taken together, these results suggest that emodin inhibited apoptosis and autophagy in TNF-α-induced C2C12 myoblasts, possibly through the activation of phosphorylated Akt. Our findings suggest that emodin could be a potential therapeutic agent in the treatment of muscle atrophy. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Actin-associated protein palladin is required for migration behavior and differentiation potential of C2C12 myoblast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ngoc Uyen Nhi; Liang, Vincent Roderick; Wang, Hao-Ven, E-mail: hvwang@mail.ncku.edu.tw

    2014-09-26

    Highlights: • Palladin is involved in myogenesis in vitro. • Palladin knockdown by siRNA increases myoblast proliferation, viability and differentiation. • Palladin knockdown decreases C2C12 myoblast migration ability. - Abstract: The actin-associated protein palladin has been shown to be involved in differentiation processes in non-muscle tissues. However, but its function in skeletal muscle has rarely been studied. Palladin plays important roles in the regulation of diverse actin-related signaling in a number of cell types. Since intact actin-cytoskeletal remodeling is necessary for myogenesis, in the present study, we pursue to investigate the role of actin-associated palladin in skeletal muscle differentiation. Palladinmore » in C2C12 myoblasts is knocked-down using specific small interfering RNA (siRNA). The results show that down-regulation of palladin decreased migratory activity of mouse skeletal muscle C2C12 myoblasts. Furthermore, the depletion of palladin enhances C2C12 vitality and proliferation. Of note, the loss of palladin promotes C2C12 to express the myosin heavy chain, suggesting that palladin has a role in the modulation of C2C12 differentiation. It is thus proposed that palladin is required for normal C2C12 myogenesis in vitro.« less

  6. DCEBIO facilitates myogenic differentiation via intermediate conductance Ca2+ activated K+ channel activation in C2C12 myoblasts.

    PubMed

    Tanaka, Shoko; Ono, Yuko; Sakamoto, Kazuho

    2017-04-01

    Membrane hyperpolarization is suggested to be a trigger for skeletal muscle differentiation. We investigated whether DCEBIO, an opener of the small/intermediate conductance Ca 2+ activated K + (SK Ca /IK Ca ) channels, increase myogenic differentiation in C2C12 skeletal myoblasts. DCEBIO significantly increased myotube formation, protein expression level of myosin heavy chain II, and mRNA expression level of myogenin in C2C12 myoblasts cultured in differentiation medium. DCEBIO induced myotube formation and hyperpolarization were reduced by the IK Ca channel blocker TRAM-34, but not by the SK Ca channel blocker apamin. These findings show that DCEBIO increases myogenic differentiation by activating IK Ca channels. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  7. Hes6 is required for actin cytoskeletal organization in differentiating C2C12 myoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, Caroline M.P.; Domaschenz, Renae; Amagase, Yoko

    Hes6 is a member of the hairy-enhancer-of-split family of transcription factors that regulate proliferating cell fate in development and is known to be expressed in developing muscle. Here we investigate its function in myogenesis in vitro. We show that Hes6 is a direct transcriptional target of the myogenic transcription factors MyoD and Myf5, indicating that it is integral to the myogenic transcriptional program. The localization of Hes6 protein changes during differentiation, becoming predominantly nuclear. Knockdown of Hes6 mRNA levels by siRNA has no effect on cell cycle exit or induction of myosin heavy chain expression in differentiating C2C12 myoblasts, butmore » F-actin filament formation is disrupted and both cell motility and myoblast fusion are reduced. The knockdown phenotype is rescued by expression of Hes6 cDNA resistant to siRNA. These results define a novel role for Hes6 in actin cytoskeletal dynamics in post mitotic myoblasts.« less

  8. Nandrolone, an anabolic steroid, stabilizes Numb protein through inhibition of mdm2 in C2C12 myoblasts.

    PubMed

    Liu, Xin-Hua; Yao, Shen; Levine, Alice C; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Collier, Lauren; Bauman, William A; Cardozo, Christopher P

    2012-01-01

    Nandrolone, an anabolic steroid, slows denervation atrophy of rat muscle, prevents denervation-induced nuclear accumulation of intracellular domain of the Notch receptor, and elevates expression of Numb. Numb acts as an inhibitor of Notch signaling and promotes myogenic differentiation of satellite cells. Turnover of Numb is regulated by mdm2, an E3 ubiquitin ligase. With these considerations in mind, we investigated the effects of nandrolone on the expression of Numb and mdm2 proteins and determined the effect of mdm2 on nandrolone-induced alterations in Numb protein in C2C12 myoblasts. When C2C12 cells were cultured in a medium favoring differentiation (Dulbecco modified Eagle medium containing 2% horse serum), nandrolone up-regulated Numb protein levels in a time-dependent manner and prolonged Numb protein half-life from 10 to 18 hours. In contrast, nandrolone reduced the expression of mdm2 protein. To determine whether the decreased mdm2 expression induced by nandrolone was responsible for the increased levels and prolonged half-life of Numb protein in this cell line, mdm2-small interfering RNA (siRNA) was employed to inhibit mdm2 expression. Compared to cells transfected with scrambled siRNA (negative control), transfection with mdm2-siRNA increased basal Numb protein expression but abolished the further increase in Numb protein levels by nandrolone. In addition, transfection of mdm2-siRNA mimicked the effect of nandrolone to prolong the half-life of Numb protein. Moreover, when C2C12 cells were forced to overexpress mdm2, there was a significant decline in the expression of both basal and inducible Numb protein. Our data suggest that nandrolone, by a novel mechanism for this agent in a muscle cell type, increases Numb protein levels in C2C12 myoblasts by stabilizing Numb protein against degradation, at least in part, via suppression of mdm2 expression.

  9. Docosahexaenoyl ethanolamide improves glucose uptake and alters endocannabinoid system gene expression in proliferating and differentiating C2C12 myoblasts

    PubMed Central

    Kim, Jeffrey; Carlson, Morgan E.; Watkins, Bruce A.

    2014-01-01

    Skeletal muscle is a major storage site for glycogen and a focus for understanding insulin resistance and type-2-diabetes. New evidence indicates that overactivation of the peripheral endocannabinoid system (ECS) in skeletal muscle diminishes insulin sensitivity. Specific n-6 and n-3 polyunsaturated fatty acids (PUFA) are precursors for the biosynthesis of ligands that bind to and activate the cannabinoid receptors. The function of the ECS and action of PUFA in skeletal muscle glucose uptake was investigated in proliferating and differentiated C2C12 myoblasts treated with either 25 μM of arachidonate (AA) or docosahexaenoate (DHA), 25 μM of EC [anandamide (AEA), 2-arachidonoylglycerol (2-AG), docosahexaenoylethanolamide (DHEA)], 1 μM of CB1 antagonist NESS0327, and CB2 inverse agonist AM630. Compared to the BSA vehicle control cell cultures in both proliferating and differentiated myoblasts those treated with DHEA, the EC derived from the n-3 PUFA DHA, had higher 24 h glucose uptake, while AEA and 2-AG, the EC derived from the n-6 PUFA AA, had lower basal glucose uptake. Adenylyl cyclase mRNA was higher in myoblasts treated with DHA in both proliferating and differentiated states while those treated with AEA or 2-AG were lower compared to the control cell cultures. Western blot and qPCR analysis showed higher expression of the cannabinoid receptors in differentiated myoblasts treated with DHA while the opposite was observed with AA. These findings indicate a compensatory effect of DHA and DHEA compared to AA-derived ligands on the ECS and associated ECS gene expression and higher glucose uptake in myoblasts. PMID:24711795

  10. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eom, Young Woo; Biomedical Research Institute, Lifeliver Co., Ltd., Suwon; Lee, Jong Eun

    2011-04-29

    Highlights: {yields} hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. {yields} Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. {yields} hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of humanmore » adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.« less

  11. MIRK/DYRK1B MEDIATES SURVIVAL DURING THE DIFFERENTIATION OF C2C12 MYOBLASTS 1

    PubMed Central

    Mercer, Stephen E.; Ewton, Daina Z.; Deng, Xiaobing; Lim, Seunghwan; Mazur, Thomas R.; Friedman, Eileen

    2005-01-01

    The kinase Mirk/dyrk1B is essential for the differentiation of C2C12 myoblasts. Mirk reinforces the G0/G1 arrest state in which differentiation occurs by directly phosphorylating and stabilizing p27kip1 and destabilizing cyclin D1. We now demonstrate that Mirk is anti-apoptotic in myoblasts. Knockdown of endogenous Mirk by RNA interference activated caspase 3 and decreased myoblast survival by 75%, while transient overexpression of Mirk increased cell survival. Mirk exerts its anti-apoptotic effects during muscle differentiation at least in part through effects on the cell cycle inhibitor and pro-survival molecule p21cip1. Overexpression and RNA interference experiments demonstrated that Mirk phosphorylates p21 within its nuclear localization domain at Ser153 causing a portion of the typically nuclear p21 to localize in the cytoplasm. Phosphomimetic GFP-p21-S153D was pancellular in both cycling C2C12 myoblasts and NIH3T3 cells. Endogenous Mirk in myotubes, and overexpressed Mirk in NIH3T3 cells were able to cause the pancellular localization of wild-type GFP-p21, but not the non-phosphorylatable mutant GFP-p21-S153A. Translocation to the cytoplasm enables p21 to block apoptosis through inhibitory interaction with pro-apoptotic molecules. Phosphomimetic p21-S153D was more effective than wild-type p21 in blocking the activation of caspase 3. Transient expression of p21-S153D also increased myoblast viability in colony forming assays, while the p21-S153A mutant had no effect. This Mirk-dependent change in p21 intracellular localization is a natural part of myoblast differentiation. Endogenous p21 localized exclusively to the nuclei of proliferating myoblasts, but was also found in the cytoplasm of post-mitotic multinucleated myotubes and adult human skeletal myofibers. PMID:15851482

  12. MicroRNA, miR-374b, directly targets Myf6 and negatively regulates C2C12 myoblasts differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhiyuan; Sun, Xiaorui; Xu, Dequan

    Myogenesis is a complex process including myoblast proliferation, differentiation and myotube formation and is controlled by myogenic regulatory factors (MRFs), MyoD, MyoG, Myf5 and Myf6 (also known as MRF4). MicroRNA is a kind of ∼22 nt-long non-coding small RNAs, and act as key transcriptional or post-transcriptional regulators of gene expression. Identification of miRNAs involved in the regulation of muscle genes could improve our understanding of myogenesis process. In this study, we investigated the regulation of Myf6 gene by miRNAs. We showed that miR-374b specifically bound to the 3'untranslated region (UTR) of Myf6 and down-regulated the expression of Myf6 gene at bothmore » mRNA and protein level. Furthermore, miR-374b is ubiquitously expressed in the tissues of adult C57BL6 mouse, and the mRNA abundance increases first and then decreases during C2C12 myoblasts differentiation. Over-expression of miR-374b impaired C2C12 cell differentiation, while inhibiting miR-374b expression by 2′-O-methyl antisense oligonucleotides promoted C2C12 cell differentiation. Taken together, our findings identified miR-374b directly targets Myf6 and negatively regulates myogenesis. - Highlights: • MiR-374b directly targets 3′UTR of Myf6. • MiR-374b negatively regulates Myf6 in C2C12 cells. • MiR-374b abundance significiently changes during C2C12 cells differentiation. • MiR-374b negatively regulates C2C12 cells differentiation.« less

  13. Phenotypic behavior of C2C12 myoblasts upon expression of the dystrophy-related caveolin-3 P104L and TFT mutants.

    PubMed

    Fanzani, Alessandro; Stoppani, Elena; Gualandi, Laura; Giuliani, Roberta; Galbiati, Ferruccio; Rossi, Stefania; Fra, Anna; Preti, Augusto; Marchesini, Sergio

    2007-10-30

    Caveolin-3 (Cav-3) is the main scaffolding protein present in myofiber caveolae. We transfected C2C12 myoblasts with dominant negative forms of Cav-3, P104L or DeltaTFT, respectively, which cause the limb-girdle muscular dystrophy 1-C. Both these forms triggered Cav-3 loss during C2C12 cell differentiation. The P104L mutation reduced myofiber formation by impaired AKT signalling, accompanied by dramatic expression of the E3 ubiquitin ligase Atrogin. On the other hand, the DeltaTFT mutation triggered hypertrophic myotubes sustained by prolonged AKT activation, but independent of increased levels of follistatin and interleukin 4 expression. These data suggest that separated mutations within the same dystrophy-related gene may cause muscle degeneration through different mechanisms.

  14. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Gia-Ming; Present address: The University of Chicago, Section of Hematology/Oncology, 900 E. 57th Street, Room 7134, Chicago, IL 60637; Bain, Lisa J., E-mail: lbain@clemson.edu

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site ofmore » myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells

  15. Developmental Changes is Expression of Beta-Adrenergic Receptors in Cultures of C2C12 Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, K. Y.; Vaughn, J. R.

    2000-01-01

    beta-Adrenergic receptor (bAR) agonists have been reported to modulate growth in several mammalian and avian species, and bAR agonists presumably exert their physiological action on skeletal muscle cells through this receptor. Because of the importance of bAR regulation on muscle protein metabolism in muscle cells, the objectives of this study were to determine the developmental expression pattern of the bAR population in C2C12 skeletal muscle cells, and to analyze changes in both the quantity and isoform expression of the major muscle protein, myosin. The number of bAR in mononucleated C2C12 cells was approximately 8,000 bAR per cell, which is comparable with the population reported in several other nonmuscle cell types. However, the bar population increased after myoblast fusion to greater than 50,000 bAR per muscle cell equivalent. The reasons for this apparent over-expression of bAR in C2C12 cells is not known. The quantity of myosin also increased after C2C12 myoblast fusion, but the quantity of myosin was less than that reported in primary muscle cell cultures. Finally, at least five different isoforms of myosin heavy chain could be resolved in C2C12 cells, and three of these exhibited either increased or decreased developmental regulation relative to the others. Thus, C2C12 myoblasts undergo developmental regulation of bAR population and myosin heavy chain isoform expression.

  16. Methylmercury exposure causes a persistent inhibition of myogenin expression and C2C12 myoblast differentiation.

    PubMed

    Prince, Lisa M; Rand, Matthew D

    2018-01-15

    Methylmercury (MeHg) is a ubiquitous environmental toxicant, best known for its selective targeting of the developing nervous system. MeHg exposure has been shown to cause motor deficits such as impaired gait and coordination, muscle weakness, and muscle atrophy, which have been associated with disruption of motor neurons. However, recent studies have suggested that muscle may also be a target of MeHg toxicity, both in the context of developmental myogenic events and of low-level chronic exposures affecting muscle wasting in aging. We therefore investigated the effects of MeHg on myotube formation, using the C2C12 mouse myoblast model. We found that MeHg inhibits both differentiation and fusion, in a concentration-dependent manner. Furthermore, MeHg specifically and persistently inhibits myogenin (MyoG), a transcription factor involved in myocyte differentiation, within the first six hours of exposure. MeHg-induced reduction in MyoG expression is contemporaneous with a reduction of a number of factors involved in mitochondrial biogenesis and mtDNA transcription and translation, which may implicate a role for mitochondria in mediating MeHg-induced change in the differentiation program. Unexpectedly, inhibition of myoblast differentiation with MeHg parallels inhibition of Notch receptor signaling. Our research establishes muscle cell differentiation as a target for MeHg toxicity, which may contribute to the underlying etiology of motor deficits with MeHg toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Nitric oxide regulates stretch-induced proliferation in C2C12 myoblasts.

    PubMed

    Soltow, Quinlyn A; Lira, Vitor A; Betters, Jenna L; Long, Jodi H D; Sellman, Jeff E; Zeanah, Elizabeth H; Criswell, David S

    2010-09-01

    Mechanical stretch of skeletal muscle activates nitric oxide (NO) production and is an important stimulator of satellite cell proliferation. Further, cyclooxygenase (COX) activity has been shown to promote satellite cell proliferation in response to stretch. Since COX-2 expression in skeletal muscle can be regulated by NO we sought to determine if NO is required for stretch-induced myoblast proliferation and whether supplemental NO can counter the effects of COX-2 and NF-kappaB inhibitors. C2C12 myoblasts were cultured for 24 h, then switched to medium containing either the NOS inhibitor, L-NAME (200 microM), the COX-2 specific inhibitor NS-398 (100 microM), the NF-kappaB inhibiting antioxidant, PDTC (5 mM), the nitric oxide donor, DETA-NONOate (10-100 microM) or no supplement (control) for 24 h. Subgroups of each treatment were exposed to 1 h of 15% cyclic stretch (1 Hz), and were then allowed to proliferate for 24 h before fixing. Proliferation was measured by BrdU incorporation during the last hour before fixing, and DAPI stain. Stretch induced a twofold increase in nuclear number compared to control, and this effect was completely inhibited by L-NAME, NS-398 or PDTC (P < 0.05). Although DETA-NONOate (10 microM) did not affect basal proliferation, the NO-donor augmented the stretch-induced increase in proliferation and rescued stretch-induced proliferation in NS-398-treated cells, but not in PDTC-treated cells. In conclusion, NO, COX-2, and NF-kappaB are necessary for stretch-induced proliferation of myoblasts. Although COX-2 and NF-kappaB are both involved in basal proliferation, NO does not affect basal growth. Thus, NO requires the synergistic effect of stretch in order to induce muscle cell proliferation.

  18. Extremely Low-Frequency Electromagnetic Fields Affect Myogenic Processes in C2C12 Myoblasts: Role of Gap-Junction-Mediated Intercellular Communication

    PubMed Central

    Rovetta, Francesca; Boniotti, Jennifer; Mazzoleni, Giovanna

    2017-01-01

    Extremely low-frequency electromagnetic fields (ELF-EMFs) can interact with biological systems. Although they are successfully used as therapeutic agents in physiatrics and rehabilitative practice, they might represent environmental pollutants and pose a risk to human health. Due to the lack of evidence of their mechanism of action, the effects of ELF-EMFs on differentiation processes in skeletal muscle were investigated. C2C12 myoblasts were exposed to ELF-EMFs generated by a solenoid. The effects of ELF-EMFs on cell viability and on growth and differentiation rates were studied using colorimetric and vital dye assays, cytomorphology, and molecular analysis of MyoD and myogenin expression, respectively. The establishment of functional gap junctions was investigated analyzing connexin 43 expression levels and measuring cell permeability, using microinjection/dye-transfer assays. The ELF-EMFs did not affect C2C12 myoblast viability or proliferation rate. Conversely, at ELF-EMF intensity in the mT range, the myogenic process was accelerated, through increased expression of MyoD, myogenin, and connexin 43. The increase in gap-junction function suggests promoting cell fusion and myotube differentiation. These data provide the first evidence of the mechanism through which ELF-EMFs may provide therapeutic benefits and can resolve, at least in part, some conditions of muscle dysfunction. PMID:28607928

  19. Nanoparticle-mediated intracellular lipid accumulation during C2C12 cell differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp; Haniu, Hisao, E-mail: hhaniu@shinshu-u.ac.jp

    2011-03-25

    Research highlights: {yields} HTT2800 has a significant effect on intracellular lipid accumulation. {yields} HTT2800 reduced muscle-specific genes and led to the emergence of adipocyte-related genes. {yields} HT2800 converts the differentiation pathway of C2C12 myoblasts to that of adipoblast-like cells. -- Abstract: In this report, we sought to elucidate whether multiwall carbon nanotubes are involved in the modulation of the proliferation and differentiation of the skeletal muscle cell line C2C12. Skeletal muscle is a major mass peripheral tissue that accounts for 40% of total body weight and 50% of energy consumption. We focused on the differentiation pathway of myoblasts after exposuremore » to a vapor-grown carbon fiber, HTT2800, which is one of the most highly purified carbon nanotubes. This treatment leads in parallel to the expression of a typical adipose differentiation program. We found that HTT2800 stimulated intracellular lipid accumulation in C2C12 cells. We have also shown by quantified PCR analysis that the expression of adipose-related genes was markedly upregulated during HTT2800 exposure. Taken together, these results suggest that HTT2800 specifically converts the differentiation pathway of C2C12 myoblasts to that of adipoblast-like cells.« less

  20. Clenbuterol Induces Cell Cycle Arrest in C2C12 Myoblasts by Delaying p27 Degradation through β-arrestin 2 Signaling

    PubMed Central

    Chen, Min; Liu, Chuncheng; Wang, Meng; Wang, Hong; Zhang, Kuo; Zheng, Yu; Yu, Zhengquan; Li, Xiangdong; Guo, Wei; Li, Ning; Meng, Qingyong

    2017-01-01

    β2-Adrenoceptor (β2-AR) agonists promote muscle growth. The aim of this study was to elucidate some effects of the selective β2-adrenoceptor agonist clenbuterol (CLB) on myoblast proliferation. We found that CLB induces cell cycle arrest in C2C12 myoblasts. This effect is partly due to the enhanced stability of p27, rather than the increased gene transcription via cAMP response element-binding protein (CREB). Specifically, CLB treatment enhanced the accumulation of p27 in the nucleus while depleting it from the cytosol via a mechanism that requires β2-AR. Surprisingly, p27 accumulation was not reversed by the protein kinase A (PKA) inhibitor H-89, but interestingly, was alleviated by the knockdown of β-arrestin 2. Thus, our work provides a basis for β2-AR agonists inhibit myoblasts proliferation through signaling via β2-AR, β-arrestin 2, and p27. PMID:29104500

  1. Stimulating effect of graphene oxide on myogenesis of C2C12 myoblasts on RGD peptide-decorated PLGA nanofiber matrices.

    PubMed

    Shin, Yong Cheol; Lee, Jong Ho; Kim, Min Jeong; Hong, Suck Won; Kim, Bongju; Hyun, Jung Keun; Choi, Yu Suk; Park, Jong-Chul; Han, Dong-Wook

    2015-01-01

    In the field of biomedical engineering, many studies have focused on the possible applications of graphene and related nanomaterials due to their potential for use as scaffolds, coating materials and delivery carriers. On the other hand, electrospun nanofiber matrices composed of diverse biocompatible polymers have attracted tremendous attention for tissue engineering and regenerative medicine. However, their combination is intriguing and still challenging. In the present study, we fabricated nanofiber matrices composed of M13 bacteriophage with RGD peptide displayed on its surface (RGD-M13 phage) and poly(lactic-co-glycolic acid, PLGA) and characterized their physicochemical properties. In addition, the effect of graphene oxide (GO) on the cellular behaviors of C2C12 myoblasts, which were cultured on PLGA decorated with RGD-M13 phage (RGD/PLGA) nanofiber matrices, was investigated. Our results revealed that the RGD/PLGA nanofiber matrices have suitable physicochemical properties as a tissue engineering scaffold and the growth of C2C12 myoblasts were significantly enhanced on the matrices. Moreover, the myogenic differentiation of C2C12 myoblasts was substantially stimulated when they were cultured on the RGD/PLGA matrices in the presence of GO. In conclusion, these findings propose that the combination of RGD/PLGA nanofiber matrices and GO can be used as a promising strategy for skeletal tissue engineering and regeneration.

  2. Effects of 1,25(OH)2 D3 and 25(OH)D3 on C2C12 Myoblast Proliferation, Differentiation, and Myotube Hypertrophy.

    PubMed

    van der Meijden, K; Bravenboer, N; Dirks, N F; Heijboer, A C; den Heijer, M; de Wit, G M J; Offringa, C; Lips, P; Jaspers, R T

    2016-11-01

    An adequate vitamin D status is essential to optimize muscle strength. However, whether vitamin D directly reduces muscle fiber atrophy or stimulates muscle fiber hypertrophy remains subject of debate. A mechanism that may affect the role of vitamin D in the regulation of muscle fiber size is the local conversion of 25(OH)D to 1,25(OH)2 D by 1α-hydroxylase. Therefore, we investigated in a murine C2C12 myoblast culture whether both 1,25(OH)2 D3 and 25(OH)D3 affect myoblast proliferation, differentiation, and myotube size and whether these cells are able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . We show that myoblasts not only responded to 1,25(OH)2 D3 , but also to the precursor 25(OH)D3 by increasing their VDR mRNA expression and reducing their proliferation. In differentiating myoblasts and myotubes 1,25(OH)2 D3 as well as 25(OH)D3 stimulated VDR mRNA expression and in myotubes 1,25(OH)2 D3 also stimulated MHC mRNA expression. However, this occurred without notable effects on myotube size. Moreover, no effects on the Akt/mTOR signaling pathway as well as MyoD and myogenin mRNA levels were observed. Interestingly, both myoblasts and myotubes expressed CYP27B1 and CYP24 mRNA which are required for vitamin D3 metabolism. Although 1α-hydroxylase activity could not be shown in myotubes, after treatment with 1,25(OH)2 D3 or 25(OH)D3 myotubes showed strongly elevated CYP24 mRNA levels compared to untreated cells. Moreover, myotubes were able to convert 25(OH)D3 to 24R,25(OH)2 D3 which may play a role in myoblast proliferation and differentiation. These data suggest that skeletal muscle is not only a direct target for vitamin D3 metabolites, but is also able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . J. Cell. Physiol. 231: 2517-2528, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  3. Inhibition of myotube formation by paraquat in the myoblast cell line C2C12.

    PubMed

    Akiyama, Koichi; Tone, Junichi; Okabe, Masaaki; Nishimoto, Sogo; Sugahara, Takuya; Kakinuma, Yoshimi

    2011-04-01

    Paraquat (PQ) is one of the most frequently used pesticides in worldwide. In most countries, PQ is used without restrictions. To investigate the effect of PQ on myogenesis, cultures of C2C12, a useful model to study differentiation of myoblasts into myotubes, were exposed to various concentrations of PQ. Myotube formation did not occur in the presence of 50 µM PQ. Although cell death was not observed at this concentration, growth inhibition was evident in the growth medium. Production of myosin heavy chain, a myogenesis marker protein, decreased dose dependently with the concentration of PQ, which was added to the C2C12 cell culture during differentiation. Inhibition of myogenesis by PQ was not reversed by the addition of ascorbic acid. These results show that PQ is a strong inhibitor of muscle differentiation in vitro.

  4. Chromatin plasticity as a differentiation index during muscle differentiation of C2C12 myoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Tomonobu M.; World Premier Initiative, iFREC, Osaka University, Osaka 565-0871; Higuchi, Sayaka

    Highlights: Black-Right-Pointing-Pointer Change in the epigenetic landscape during myogenesis was optically investigated. Black-Right-Pointing-Pointer Mobility of nuclear proteins was used to state the epigenetic status of the cell. Black-Right-Pointing-Pointer Mobility of nuclear proteins decreased as myogenesis progressed in C2C12. Black-Right-Pointing-Pointer Differentiation state diagram was developed using parameters obtained. -- Abstract: Skeletal muscle undergoes complicated differentiation steps that include cell-cycle arrest, cell fusion, and maturation, which are controlled through sequential expression of transcription factors. During muscle differentiation, remodeling of the epigenetic landscape is also known to take place on a large scale, determining cell fate. In an attempt to determine the extentmore » of epigenetic remodeling during muscle differentiation, we characterized the plasticity of the chromatin structure using C2C12 myoblasts. Differentiation of C2C12 cells was induced by lowering the serum concentration after they had reached full confluence, resulting in the formation of multi-nucleated myotubes. Upon induction of differentiation, the nucleus size decreased whereas the aspect ratio increased, indicating the presence of force on the nucleus during differentiation. Movement of the nucleus was also suppressed when differentiation was induced, indicating that the plasticity of chromatin changed upon differentiation. To evaluate the histone dynamics during differentiation, FRAP experiment was performed, which showed an increase in the immobile fraction of histone proteins when differentiation was induced. To further evaluate the change in the histone dynamics during differentiation, FCS was performed, which showed a decrease in histone mobility on differentiation. We here show that the plasticity of chromatin decreases upon differentiation, which takes place in a stepwise manner, and that it can be used as an index for the differentiation

  5. Apoptosis in differentiating C2C12 muscle cells selectively targets Bcl-2-deficient myotubes

    PubMed Central

    Schoneich, Christian; Dremina, Elena; Galeva, Nadezhda; Sharov, Victor

    2014-01-01

    Muscle cell apoptosis accompanies normal muscle development and regeneration, as well as degenerative diseases and aging. C2C12 murine myoblast cells represent a common model to study muscle differentiation. Though it was already shown that myogenic differentiation of C2C12 cells is accompanied by enhanced apoptosis in a fraction of cells, either the cell population sensitive to apoptosis or regulatory mechanisms for the apoptotic response are unclear so far. In the current study we characterize apoptotic phenotypes of different types of C2C12 cells at all stages of differentiation, and report here that myotubes of differentiated C2C12 cells with low levels of anti-apoptotic Bcl-2 expression are particularly vulnerable to apoptosis even though they are displaying low levels of pro-apoptotic proteins Bax, Bak and Bad. In contrast, reserve cells exhibit higher levels of Bcl-2 and high resistance to apoptosis. The transfection of proliferating myoblasts with Bcl-2 prior to differentiation did not protect against spontaneous apoptosis accompanying differentiation of C2C12 cell but led to Bcl-2 overexpression in myotubes and to significant protection from apoptotic cell loss caused by exposure to hydrogen peroxide. Overall, our data advocate for a Bcl-2-dependent mechanism of apoptosis in differentiated muscle cells. However, downstream processes for spontaneous and hydrogen peroxide induced apoptosis are not completely similar. Apoptosis in differentiating myoblasts and myotubes is regulated not through interaction of Bcl-2 with pro-apoptotic Bcl-2 family proteins such as Bax, Bak, and Bad. PMID:24129924

  6. Simultaneous Study of Mechanical Stretch-Induced Cell Proliferation and Apoptosis on C2C12 Myoblasts.

    PubMed

    Feng, Yu; Tian, Xiang-Yang; Sun, Peng; Cheng, Ze-Peng; Shi, Reng-Fei

    2018-06-27

    Mechanical stretch may cause myoblasts to either proliferate or undergo apoptosis. Identifying the molecular events that switch the fate of a stretched cell from proliferation to apoptosis is practically important in the field of regenerative medicine. A recent study on vascular smooth muscle cells illustrated that identification of these events may be achieved by addressing the stretch-induced opposite cellular outcomes simultaneously within a single investigation. To define conditions or a model in which both proliferation and apoptosis can be studied at the same time, we exposed in vitro cultured C2C12 myoblasts to a cyclic mechanical stretch regimen of 15% elongation at a stretching frequency of 1 Hz for 0, 2, 4, 6, or 8 h every day, consecutively, for 3 days. Both proliferation and apoptosis were observed. Moreover, as the duration of the stretch was prolonged, cell proliferation increased until it peaked at the optimal stretching duration. Afterwards, apoptosis gradually prevailed. Therefore, we established a model in which stretch-induced cell proliferation and apoptosis can be studied simultaneously. © 2018 S. Karger AG, Basel.

  7. Differential susceptibility of C2C12 myoblasts and myotubes to group II phospholipase A2 myotoxins from crotalid snake venoms.

    PubMed

    Angulo, Yamileth; Lomonte, Bruno

    2005-01-01

    Group II phospholipase A(2) (PLA(2)) myotoxins isolated from Viperidae/Crotalidae snake venoms induce a rapid cytolytic effect upon diverse cell types in vitro. Previous studies suggested that this effect could be more pronounced on skeletal muscle myotubes than on other cell types, including undifferentiated myoblasts. This study utilized the murine skeletal muscle C2C12 cell line to investigate whether differentiated myotubes are more susceptible than myoblasts, and if this characteristic is specific for the group II myotoxic PLA(2)s. The release of lactic dehydrogenase was quantified as a measure of cytolysis, 3 h after cell exposure to different group II PLA(2)s purified from Bothrops asper, Atropoides nummifer, Cerrophidion godmani, and Bothriechis schlegelii venoms. In addition, susceptibility to lysis induced by synthetic melittin and group III PLA(2) from bee (Apis mellifera) venom, as well as by anionic, cationic, and neutral detergents, was comparatively evaluated on the two cultures. Myotubes were significantly more susceptible to group II PLA(2) myotoxins, but not to the other agents tested, under the same conditions. Moreover, the increased susceptibility of myotubes over myoblasts was also demonstrated with two cytolytic synthetic peptides, derived from the C-terminal region of Lys49 PLA(2) myotoxins, that reproduce the action of their parent proteins. These results indicate that fusion and differentiation of myoblasts into myotubes induce changes that render these cells more susceptible to the toxic mechanism of group II PLA(2) myotoxins, but not to general perturbations of membrane homeostasis. Such changes are likely to involve myotoxin acceptor site(s), which remain(s) to be identified.

  8. 4,4'-Dichlorodiphenyltrichloroethane (DDT) and 4,4'-dichlorodiphenyldichloroethylene (DDE) inhibit myogenesis in C2C12 myoblasts.

    PubMed

    Kim, Jonggun; Park, Min Young; Kim, Yoo; Yoon, Kyong Sup; Clark, John Marshall; Park, Yeonhwa; Whang, Kwang-Youn

    2017-12-01

    Most countries have banned the use of 4,4'-dichlorodiphenyltrichloroethane (DDT). However, owing to its extremely high lipophilic characteristics, DDT and its metabolite 4,4'-dichlorodiphenyldichloroethylene (DDE) are ubiquitous in the environment and in many types of food. The positive correlation between exposure to insecticides, including DDT and DDE, and weight gain, resulting in impaired energy metabolism in offspring following perinatal DDT and DDE exposure, was previously reported. Therefore the influence of DDT and DDE on myogenesis using C2C12 myoblasts was investigated in this study. DDT and DDE decreased myotube formation dose- and time-dependently. Among myogenic regulatory factors, DDT and DDE mainly decreased MyoD1 and Myf5 expression. DDT and DDE treatment also altered Myostatin expression, phosphorylation of protein kinase B, p70 ribosomal protein S6 kinase, forkhead box O protein 3 and mammalian target of rapamycin, resulting in attenuation of myotube formation. These results may have significant implications for understanding the effects of developmental exposure of DDT and DDE on myogenesis and development of obesity and type 2 diabetes later in life. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Retinoid acid-induced microRNA-27b-3p impairs C2C12 myoblast proliferation and differentiation by suppressing α-dystrobrevin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Tang, Yi; Liu, Bo

    We previously reported that excess retinoic acid (RA) resulted in hypoplastic and derangement of myofilaments in embryonic tongue by inhibiting myogenic proliferation and differentiation through CamKIID pathway. Our further studies revealed that the expression of a series of miRNAs was altered by RA administration in embryonic tongue as well as in C2C12 cells. Thus, if excess RA impairs myogenic proliferation and differentiation through miRNAs is taken into account. In present study, miR-27b-3p was found up-regulated in RA-treated C2C12 cells as in embryonic tongue, and predicted to target the 3′UTR of α-dystrobrevin (DTNA). Luciferase reporter assays confirmed the direct interaction betweenmore » miR-27b-3p and the 3′UTR of DTNA. MiR-27b-3p mimics recapitulated the RA repression on DTNA expression, C2C12 proliferation and differentiation, while the miR-27b-3p inhibitor circumvented these defects resulting from excess RA. As expected, the effects of siDTNA on C2C12 were coincided with those by RA treatment or miR-27b-3p mimics. Therefore, these findings indicated that excess RA inhibited the myoblast proliferation and differentiation by up-regulating miR-27b-3p to target DTNA, which implied a new mechanism in myogenic hypoplasia. - Highlights: • A mechanism that RA results in tongue deformity by disrupting the myogenesis. • A non-muscle specific miR mediating the RA suppression on tongue myogenesis. • A target gene of non-muscle specific miR involved in RA induced tongue deformity.« less

  10. Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function.

    PubMed

    Ostrovidov, Serge; Ahadian, Samad; Ramon-Azcon, Javier; Hosseini, Vahid; Fujie, Toshinori; Parthiban, S Prakash; Shiku, Hitoshi; Matsue, Tomokazu; Kaji, Hirokazu; Ramalingam, Murugan; Bae, Hojae; Khademhosseini, Ali

    2017-02-01

    Engineered muscle tissues demonstrate properties far from native muscle tissue. Therefore, fabrication of muscle tissues with enhanced functionalities is required to enable their use in various applications. To improve the formation of mature muscle tissues with higher functionalities, we co-cultured C2C12 myoblasts and PC12 neural cells. While alignment of the myoblasts was obtained by culturing the cells in micropatterned methacrylated gelatin (GelMA) hydrogels, we studied the effects of the neural cells (PC12) on the formation and maturation of muscle tissues. Myoblasts cultured in the presence of neural cells showed improved differentiation, with enhanced myotube formation. Myotube alignment, length and coverage area were increased. In addition, the mRNA expression of muscle differentiation markers (Myf-5, myogenin, Mefc2, MLP), muscle maturation markers (MHC-IId/x, MHC-IIa, MHC-IIb, MHC-pn, α-actinin, sarcomeric actinin) and the neuromuscular markers (AChE, AChR-ε) were also upregulated. All these observations were amplified after further muscle tissue maturation under electrical stimulation. Our data suggest a synergistic effect on the C2C12 differentiation induced by PC12 cells, which could be useful for creating improved muscle tissue. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Fad24, a Positive Regulator of Adipogenesis, Is Required for S Phase Re-entry of C2C12 Myoblasts Arrested in G0 Phase and Involved in p27(Kip1) Expression at the Protein Level.

    PubMed

    Ochiai, Natsuki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2016-05-01

    Factor for adipocyte differentiation 24 (fad24) is a positive regulator of adipogenesis. We previously found that human fad24 is abundantly expressed in skeletal muscle. However, the function of fad24 in skeletal muscle remains largely unknown. Because skeletal muscle is a highly regenerative tissue, we focused on the function of fad24 in skeletal muscle regeneration. In this paper, we investigated the role of fad24 in the cell cycle re-entry of quiescent C2C12 myoblasts-mimicked satellite cells. The expression levels of fad24 and histone acetyltransferase binding to ORC1 (hbo1), a FAD24-interacting factor, were elevated at the early phase of the regeneration process in response to cardiotoxin-induced muscle injury. The knockdown of fad24 inhibited the proliferation of quiescent myoblasts, whereas fad24 knockdown did not affect differentiation. S phase entry following serum activation is abrogated by fad24 knockdown in quiescent cells. Furthermore, fad24 knockdown cells show a marked accumulation of p27(Kip1) protein. These results suggest that fad24 may have an important role in the S phase re-entry of quiescent C2C12 cells through the regulation of p27(Kip1) at the protein level.

  12. Bioenergetic Profile Experiment using C2C12 Myoblast Cells

    PubMed Central

    Nicholls, David G.; Darley-Usmar, Victor M.; Wu, Min; Jensen, Per Bo; Rogers, George W.; Ferrick, David A.

    2010-01-01

    The ability to measure cellular metabolism and understand mitochondrial dysfunction, has enabled scientists worldwide to advance their research in understanding the role of mitochondrial function in obesity, diabetes, aging, cancer, cardiovascular function and safety toxicity. Cellular metabolism is the process of substrate uptake, such as oxygen, glucose, fatty acids, and glutamine, and subsequent energy conversion through a series of enzymatically controlled oxidation and reduction reactions. These intracellular biochemical reactions result in the production of ATP, the release of heat and chemical byproducts, such as lactate and CO2 into the extracellular environment. Valuable insight into the physiological state of cells, and the alteration of the state of those cells, can be gained through measuring the rate of oxygen consumed by the cells, an indicator of mitochondrial respiration - the Oxygen Consumption Rate - or OCR. Cells also generate ATP through glycolysis, i.e.: the conversion of glucose to lactate, independent of oxygen. In cultured wells, lactate is the primary source of protons. Measuring the lactic acid produced indirectly via protons released into the extracellular medium surrounding the cells, which causes acidification of the medium provides the Extra-Cellular Acidification Rate - or ECAR. In this experiment, C2C12 myoblast cells are seeded at a given density in Seahorse cell culture plates. The basal oxygen consumption (OCR) and extracellular acidification (ECAR) rates are measured to establish baseline rates. The cells are then metabolically perturbed by three additions of different compounds (in succession) that shift the bioenergetic profile of the cell. This assay is derived from a classic experiment to assess mitochondria and serves as a framework with which to build more complex experiments aimed at understanding both physiologic and pathophysiologic function of mitochondria and to predict the ability of cells to respond to stress and

  13. Role of androgen receptor on cyclic mechanical stretch-regulated proliferation of C2C12 myoblasts and its upstream signals: IGF-1-mediated PI3K/Akt and MAPKs pathways.

    PubMed

    Ma, Yiming; Fu, Shaoting; Lu, Lin; Wang, Xiaohui

    2017-07-15

    To detect the effects of androgen receptor (AR) on cyclic mechanical stretch-modulated proliferation of C2C12 myoblasts and its pathways: roles of IGF-1, PI3K and MAPK. C2C12 were randomly divided into five groups: un-stretched control, six or 8 h of fifteen percent stretch, and six or 8 h of twenty percent stretch. Cyclic mechanical stretch of C2C12 were completed using a computer-controlled FlexCell Strain Unit. Cell proliferation and IGF-1 concentration in medium were detected by CCK8 and ELISA, respectively. Expressions of AR and IGF-1R, and expressions and activities of PI3K, p38 and ERK1/2 in stretched C2C12 cells were determined by Western blot. ①The proliferation of C2C12 cells, IGF-1 concentration in medium, expressions of AR and IGF-1R, and activities of PI3K, p38 and ERK1/2 were increased by 6 h of fifteen percent stretch, while decreased by twenty percent stretch for six or 8 h ②The fifteen percent stretch-increased proliferation of C2C12 cells was reversed by AR inhibitor, Flutamide. ③The increases of AR expression, activities of PI3K, p38 and ERK1/2 resulted from fifteen percent stretch were attenuated by IGF-1 neutralizing antibody, while twenty percent stretch-induced decreases of the above indicators were enhanced by recombinant IGF-1. ④Specific inhibitors of p38, ERK1/2 and PI3K all decreased the expression of AR in fifteen percent and twenty percent of stretched C2C12 cells. Cyclic mechanical stretch modulated the proliferation of C2C12 cells, which may be attributed to the alterations of AR via IGF-1-PI3K/Akt and IGF-1-MAPK (p38, ERK1/2) pathways in C2C12 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. An exploration of the antioxidant effects of garlic saponins in mouse-derived C2C12 myoblasts.

    PubMed

    Kang, Ji Sook; Kim, Sung Ok; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung Woo; Chang, Young-Chae; Kim, Wun-Jae; Kim, Cheol Min; Yoo, Young Hyun; Choi, Yung Hyun

    2016-01-01

    In this study, we aimed to confirm the protective effects of garlic saponins against oxidative stress-induced cellular damage and to further elucidate the underlying mechanisms in mouse-derived C2C12 myoblasts. Relative cell viability was determined by 3-(4.5-dimethylthiazol-2-yl)-2.5 diphenyltetrazolium bromide assay. Comet assay was used to measure DNA damage and oxidative stress was determined using 2',7'-dichlorofluorescein diacetate to measure intracellular reactive oxygen species (ROS) generation. Western blot analysis and small interfering RNA (siRNA)-based knockdown were used in order to investigate the possible molecular mechanisms. Our results revealed that garlic saponins prevented hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against intracellular ROS. We also observed that garlic saponins prevented H2O2-induced comet tail formation and decreased the phosphorylation levels of γH2AX expression, suggesting that they can prevent H2O2-induced DNA damage. In addition, garlic saponins increased the levels of heme oxygenase-1 (HO-1), a potent antioxidant enzyme associated with the induction and phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2) and the translocation of Nrf2 from the cytosol into the nucleus. However, the protective effects of garlic saponins on H2O2-induced ROS generation and growth inhibition were significantly reduced by zinc protoporphyrin Ⅸ, an HO-1 competitive inhibitor. In addition, the potential of garlic saponins to mediate HO-1 induction and protect against H2O2‑mediated growth inhibition was adversely affected by transient transfection with Nrf2-specific siRNA. Garlic saponins activated extracellular signal‑regulated kinase (ERK) signaling, whereas a specific ERK inhibitor was able to inhibit HO-1 upregulation, as well as Nrf2 induction and phosphorylation. Taken together, the findings of our study suggest that garlic saponins activate the Nrf2/HO-1 pathway by enabling

  15. c-Myc inhibits myoblast differentiation and promotes myoblast proliferation and muscle fibre hypertrophy by regulating the expression of its target genes, miRNAs and lincRNAs.

    PubMed

    Luo, Wen; Chen, Jiahui; Li, Limin; Ren, Xueyi; Cheng, Tian; Lu, Shiyi; Lawal, Raman Akinyanju; Nie, Qinghua; Zhang, Xiquan; Hanotte, Olivier

    2018-05-21

    The transcription factor c-Myc is an important regulator of cellular proliferation, differentiation and embryogenesis. While c-Myc can inhibit myoblast differentiation, the underlying mechanisms remain poorly understood. Here, we found that c-Myc does not only inhibits myoblast differentiation but also promotes myoblast proliferation and muscle fibre hypertrophy. By performing chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), we identified the genome-wide binding profile of c-Myc in skeletal muscle cells. c-Myc achieves its regulatory effects on myoblast proliferation and differentiation by targeting the cell cycle pathway. Additionally, c-Myc can regulate cell cycle genes by controlling miRNA expression of which dozens of miRNAs can also be regulated directly by c-Myc. Among these c-Myc-associated miRNAs (CAMs), the roles played by c-Myc-induced miRNAs in skeletal muscle cells are similar to those played by c-Myc, whereas c-Myc-repressed miRNAs play roles that are opposite to those played by c-Myc. The cell cycle, ERK-MAPK and Akt-mediated pathways are potential target pathways of the CAMs during myoblast differentiation. Interestingly, we identified four CAMs that can directly bind to the c-Myc 3' UTR and inhibit c-Myc expression, suggesting that a negative feedback loop exists between c-Myc and its target miRNAs during myoblast differentiation. c-Myc also potentially regulates many long intergenic noncoding RNAs (lincRNAs). Linc-2949 and linc-1369 are directly regulated by c-Myc, and both lincRNAs are involved in the regulation of myoblast proliferation and differentiation by competing for the binding of muscle differentiation-related miRNAs. Our findings do not only provide a genome-wide overview of the role the c-Myc plays in skeletal muscle cells but also uncover the mechanism of how c-Myc and its target genes regulate myoblast proliferation and differentiation, and muscle fibre hypertrophy.

  16. NEU3 sialidase strictly modulates GM3 levels in skeletal myoblasts C2C12 thus favoring their differentiation and protecting them from apoptosis.

    PubMed

    Anastasia, Luigi; Papini, Nadia; Colazzo, Francesca; Palazzolo, Giacomo; Tringali, Cristina; Dileo, Loredana; Piccoli, Marco; Conforti, Erika; Sitzia, Clementina; Monti, Eugenio; Sampaolesi, Maurilio; Tettamanti, Guido; Venerando, Bruno

    2008-12-26

    Membrane-bound sialidase NEU3, often referred to as the "ganglioside sialidase," has a critical regulatory function on the sialoglycosphingolipid pattern of the cell membrane, with an anti-apoptotic function, especially in cancer cells. Although other sialidases have been shown to be involved in skeletal muscle differentiation, the role of NEU3 had yet to be disclosed. Herein we report that NEU3 plays a key role in skeletal muscle differentiation by strictly modulating the ganglioside content of adjacent cells, with special regard to GM3. Induced down-regulation of NEU3 in murine C2C12 myoblasts, even when partial, totally inhibits their capability to differentiate by increasing the GM3 level above a critical point, which causes epidermal growth factor receptor inhibition (and ultimately its down-regulation) and an higher responsiveness of myoblasts to the apoptotic stimuli.

  17. Vitamin C-linker-conjugated tripeptide AHK stimulates BMP-2-induced osteogenic differentiation of mouse myoblast C2C12 cells.

    PubMed

    Jung, Jung-Il; Park, Kyeong-Yong; Lee, Yura; Park, Mira; Kim, Jiyeon

    Vitamin C-linker-conjugated Ala-His-Lys tripeptide (Vit C-AHK) is a derivative of Vitamin C-conjugated tripeptides, which were originally developed as a component of a product for collagen synthesis enhancement or human dermal fibroblast growth. Here, we investigated the effect of Vit C-AHK on bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Vit C-AHK enhanced proliferation of C2C12 cells and induction of BMP-2-induced alkaline phosphatase, a typical marker of osteoblast differentiation. Vit C-AHK also stimulated the phosphorylation and translocation of Smad1/5/8 to the nucleus and phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK1/2 and p38. In addition, Vit C-AHK enhanced the BMP-2-induced mRNA expression of osteoblast differentiation-related genes such as ALP, BMP-2, Osteocalcin, and Runx2. Our results suggest that Vit C-AHK exerts an enhancing effect on osteoblast proliferation and differentiation through activation of Smad1/5/8 and MAPK ERK1/2 and p38 signaling and without significant cytotoxicity. These results provide important data for the development of peptide-based bone-regenerative agents and treatment of bone-related disorders. Copyright © 2018 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  18. A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodaka, Manami; Yang, Zeyu; Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang

    The development of the efficient screening system of detecting compounds that promote myogenesis and prevent muscle atrophy is important. Mouse C2C12 cells are widely used to evaluate myogenesis but the procedures of the assay are not simple and the quantification is not easy. We established C2C12 cells expressing the N-terminal green fluorescence protein (GFP) and the C-terminal GFP (GFP1–10 and GFP11 cells). GFP1–10 and GFP11 cells do not exhibit GFP signals until they are fused. The signal intensity correlates with the expression of myogenic markers and myofusion. Myogenesis-promoting reagents, such as insulin-like growth factor-1 (IGF1) and β-guanidinopropionic acid (GPA), enhancemore » the signals, whereas the poly-caspase inhibitor, z-VAD-FMK, suppresses it. GFP signals are observed when myotubes formed by GFP1–10 cells are fused with single nuclear GFP11 cells, and enhanced by IGF1, GPA, and IBS008738, a recently-reported myogenesis-promoting reagent. Fusion between myotubes formed by GFP1–10 and GFP11 cells is associated with the appearance of GFP signals. IGF1 and GPA augment these signals, whereas NSC23766, Rac inhibitor, decreases them. The conditioned medium of cancer cells suppresses GFP signals during myogenesis and reduces the width of GFP-positive myotubes after differentiation. Thus the novel split GFP-based assay will provide the useful method for the study of myogenesis, myofusion, and atrophy. - Highlights: • C2C12 cells expressing split GFP proteins show GFP signals when mix-cultured. • The GFP signals correlate with myogenesis and myofusion. • The GFP signals attenuate under the condition that muscle atrophy is induced.« less

  19. Methylcobalamin promotes proliferation and migration and inhibits apoptosis of C2C12 cells via the Erk1/2 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Michio; Tanaka, Hiroyuki, E-mail: tanahiro-osk@umin.ac.jp; Okada, Kiyoshi

    2014-01-17

    Highlights: •Methylcobalamin activated the Erk1/2 signaling pathway in C2C12 cells. •Methylcobalamin promoted the proliferation and migration in C2C12 cells. •C2C12 cell apoptosis during differentiation was inhibited by methylcobalamin. -- Abstract: Methylcobalamin (MeCbl) is a vitamin B12 analog that has some positive effects on peripheral nervous disorders. Although some previous studies revealed the effects of MeCbl on neurons, its effect on the muscle, which is the final target of motoneuron axons, remains to be elucidated. This study aimed to determine the effect of MeCbl on the muscle. We found that MeCbl promoted the proliferation and migration of C2C12 myoblasts in vitromore » and that these effects are mediated by the Erk1/2 signaling pathway without affecting the activity of the Akt signaling pathway. We also demonstrated that MeCbl inhibits C2C12 cell apoptosis during differentiation. Our results suggest that MeCbl has beneficial effects on the muscle in vitro. MeCbl administration may provide a novel therapeutic approach for muscle injury or degenerating muscle after denervation.« less

  20. Crosstalk between MLO-Y4 osteocytes and C2C12 muscle cells is mediated by the Wnt/β-catenin pathway.

    PubMed

    Huang, Jian; Romero-Suarez, Sandra; Lara, Nuria; Mo, Chenglin; Kaja, Simon; Brotto, Leticia; Dallas, Sarah L; Johnson, Mark L; Jähn, Katharina; Bonewald, Lynda F; Brotto, Marco

    2017-10-01

    We examined the effects of osteocyte secreted factors on myogenesis and muscle function. MLO-Y4 osteocyte-like cell conditioned media (CM) (10%) increased ex vivo soleus muscle contractile force by ~25%. MLO-Y4 and primary osteocyte CM (1-10%) stimulated myogenic differentiation of C2C12 myoblasts, but 10% osteoblast CMs did not enhance C2C12 cell differentiation. Since WNT3a and WNT1 are secreted by osteocytes, and the expression level of Wnt3a is increased in MLO-Y4 cells by fluid flow shear stress, both were compared, showing WNT3a more potent than WNT1 in inducing myogenesis. Treatment of C2C12 myoblasts with WNT3a at concentrations as low as 0.5ng/mL mirrored the effects of both primary osteocyte and MLO-Y4 CM by inducing nuclear translocation of β-catenin with myogenic differentiation, suggesting that Wnts might be potential factors secreted by osteocytes that signal to muscle cells. Knocking down Wnt3a in MLO-Y4 osteocytes inhibited the effect of CM on C2C12 myogenic differentiation. Sclerostin (100ng/mL) inhibited both the effects of MLO-Y4 CM and WNT3a on C2C12 cell differentiation. RT-PCR array results supported the activation of the Wnt/β-catenin pathway by MLO-Y4 CM and WNT3a. These results were confirmed by qPCR showing up-regulation of myogenic markers and two Wnt/β-catenin downstream genes, Numb and Flh1 . We postulated that MLO-Y4 CM/WNT3a could modulate intracellular calcium homeostasis as the trigger mechanism for the enhanced myogenesis and contractile force. MLO-Y4 CM and WNT3a increased caffeine-induced Ca 2+ release from the sarcoplasmic reticulum (SR) of C2C12 myotubes and the expression of genes directly associated with intracellular Ca 2+ signaling and homeostasis. Together, these data show that in vitro and ex vivo , osteocytes can stimulate myogenesis and enhance muscle contractile function and suggest that Wnts could be mediators of bone to muscle signaling, likely via modulation of intracellular Ca 2+ signaling and the Wnt

  1. Sargassum horneri methanol extract rescues C2C12 murine skeletal muscle cells from oxidative stress-induced cytotoxicity through Nrf2-mediated upregulation of heme oxygenase-1.

    PubMed

    Kang, Ji Sook; Choi, Il-Whan; Han, Min Ho; Hong, Su Hyun; Kim, Sung Ok; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung Woo; Choi, Byung Tae; Kim, Cheol Min; Choi, Yung Hyun

    2015-02-05

    Sargassum horneri, an edible marine brown alga, is typically distributed along the coastal seas of Korea and Japan. Although several studies have demonstrated the anti-oxidative activity of this alga, the regulatory mechanisms have not yet been defined. The aim of the present study was to examine the cytoprotective effects of S. horneri against oxidative stress-induced cell damage in C2C12 myoblasts. We demonstrated the anti-oxidative effects of a methanol extract of S. horneri (SHME) in a hydrogen peroxide (H2O2)-stimulated C2C12 myoblast model. Cytotoxicity was determined using the 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyl-tetrazolium assay and mode of cell death by cell cycle analysis. DNA damage was measured using a comet assay and expression of phospho-histone γH2A.X (p-γH2A.X). Levels of cellular oxidative stress as reactive oxygen species (ROS) accumulation were measured using 2',7'-dichlorofluorescein diacetate. The involvement of selected genes in the oxidative stress-mediated signaling pathway was explored using Western blot analysis. SHME attenuated H2O2-induced growth inhibition and exhibited scavenging activity against intracellular ROS that were induced by H2O2. The SHME also inhibited comet tail formation, p-γH2A.X expression, and the number of sub-G1 hypodiploid cells, suggesting that it prevents H2O2-induced cellular DNA damage and apoptotic cell death. Furthermore, the SHME significantly enhanced the expression of heme oxygenase-1 (HO-1) associated with induction of nuclear factor-erythroid 2 related factor 2 (Nrf2) in a time- and concentration-dependent manner. Moreover, the protective effect of the SHME on H2O2-induced C2C12 cell damage was significantly abolished by zinc protoporphyrin IX, a HO-1 competitive inhibitor, in C2C12 cells. These findings suggest that the SHME augments cellular antioxidant defense capacity through both intrinsic free radical scavenging activity and activation of the Nrf2/HO-1 pathway, protecting C2C12 cells from H2

  2. Graphene oxide-stimulated myogenic differentiation of C2C12 cells on PLGA/RGD peptide nanofiber matrices

    NASA Astrophysics Data System (ADS)

    Shin, Y. C.; Lee, J. H.; Kim, M. J.; Hong, S. W.; Oh, J.-W.; Kim, C.-S.; Kim, B.; Hyun, J. K.; Kim, Y.-J.; Han, D.-W.

    2015-07-01

    During the last decade, much attention has been paid to graphene-based nanomaterials because they are considered as potential candidates for biomedical applications such as scaffolds for tissue engineering and substrates for the differentiation of stem cells. Until now, electrospun matrices composed of various biodegradable copolymers have been extensively developed for tissue engineering and regeneration; however, their use in combination with graphene oxide (GO) is novel and challenging. In this study, nanofiber matrices composed of poly(lactic-co-glycolic acid, PLGA) and M13 phage with RGD peptide displayed on its surface (RGD peptide-M13 phage) were prepared as extracellular matrix (ECM)-mimicking substrates. RGD peptide is a tripeptide (Arg-Gly-Asp) found on ECM proteins that promotes various cellular behaviors. The physicochemical properties of PLGA and RGD peptide-M13 phage (PLGA/RGD peptide) nanofiber matrices were characterized by atomic force microscopy, Fourier-transform infrared spectroscopy and thermogravimetric analysis. In addition, the growth of C2C12 mouse myoblasts on the PLGA/RGD peptide matrices was examined by measuring the metabolic activity. Moreover, the differentiation of C2C12 mouse myoblasts on the matrices when treated with GO was evaluated. The cellular behaviors, including growth and differentiation of C2C12 mouse myoblasts, were substantially enhanced on the PLGA/RGD peptide nanofiber matrices when treated with GO. Overall, these findings suggest that the PLGA/RGD peptide nanofiber matrices can be used in combination with GO as a novel strategy for skeletal tissue regeneration.

  3. Synthesis of Mitochondrial DNA Precursors during Myogenesis, an Analysis in Purified C2C12 Myotubes*

    PubMed Central

    Frangini, Miriam; Franzolin, Elisa; Chemello, Francesco; Laveder, Paolo; Romualdi, Chiara; Bianchi, Vera; Rampazzo, Chiara

    2013-01-01

    During myogenesis, myoblasts fuse into multinucleated myotubes that acquire the contractile fibrils and accessory structures typical of striated skeletal muscle fibers. To support the high energy requirements of muscle contraction, myogenesis entails an increase in mitochondrial (mt) mass with stimulation of mtDNA synthesis and consumption of DNA precursors (dNTPs). Myotubes are quiescent cells and as such down-regulate dNTP production despite a high demand for dNTPs. Although myogenesis has been studied extensively, changes in dNTP metabolism have not been examined specifically. In differentiating cultures of C2C12 myoblasts and purified myotubes, we analyzed expression and activities of enzymes of dNTP biosynthesis, dNTP pools, and the expansion of mtDNA. Myotubes exibited pronounced post-mitotic modifications of dNTP synthesis with a particularly marked down-regulation of de novo thymidylate synthesis. Expression profiling revealed the same pattern of enzyme down-regulation in adult murine muscles. The mtDNA increased steadily after myoblast fusion, turning over rapidly, as revealed after treatment with ethidium bromide. We individually down-regulated p53R2 ribonucleotide reductase, thymidine kinase 2, and deoxyguanosine kinase by siRNA transfection to examine how a further reduction of these synthetic enzymes impacted myotube development. Silencing of p53R2 had little effect, but silencing of either mt kinase caused 50% mtDNA depletion and an unexpected decrease of all four dNTP pools independently of the kinase specificity. We suggest that during development of myotubes the shortage of even a single dNTP may affect all four pools through dysregulation of ribonucleotide reduction and/or dissipation of the non-limiting dNTPs during unproductive elongation of new DNA chains. PMID:23297407

  4. Analysis of Nuclear Lamina Proteins in Myoblast Differentiation by Functional Complementation.

    PubMed

    Tapia, Olga; Gerace, Larry

    2016-01-01

    We describe straightforward methodology for structure-function mapping of nuclear lamina proteins in myoblast differentiation, using populations of C2C12 myoblasts in which the endogenous lamina components are replaced with ectopically expressed mutant versions of the proteins. The procedure involves bulk isolation of C2C12 cell populations expressing the ectopic proteins by lentiviral transduction, followed by depletion of the endogenous proteins using siRNA, and incubation of cells under myoblast differentiation conditions. Similar methodology may be applied to mouse embryo fibroblasts or to other cell types as well, for the identification and characterization of sequences of lamina proteins involved in functions that can be measured biochemically or cytologically.

  5. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xin-Hua; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Bauman, William A.

    2015-08-14

    Transcription factors of the nuclear factor-kappa B (NF-κB) family play a pivotal role in inflammation, immunity and cell survival responses. Recent studies revealed that NF-κB also regulates the processes of muscle atrophy. NF-κB activity is regulated by various factors, including ankyrin repeat domain 2 (AnkrD2), which belongs to the muscle ankyrin repeat protein family. Another member of this family, AnkrD1 is also a transcriptional effector. The expression levels of AnkrD1 are highly upregulated in denervated skeletal muscle, suggesting an involvement of AnkrD1 in NF-κB mediated cellular responses to paralysis. However, the molecular mechanism underlying the interactive role of AnkrD1 inmore » NF-κB mediated cellular responses is not well understood. In the current study, we examined the effect of AnkrD1 on NF-κB activity and determined the interactions between AnkrD1 expression and NF-κB signaling induced by TNFα in differentiating C2C12 myoblasts. TNFα upregulated AnkrD1 mRNA and protein levels. AnkrD1-siRNA significantly increased TNFα-induced transcriptional activation of NF-κB, whereas overexpression of AnkrD1 inhibited TNFα-induced NF-κB activity. Co-immunoprecipitation studies demonstrated that AnkrD1 was able to bind p50 subunit of NF-κB and vice versa. Finally, CHIP assays revealed that AnkrD1 bound chromatin at a NF-κB binding site in the AnrkD2 promoter and required NF-κB to do so. These results provide evidence of signaling integration between AnkrD1 and NF-κB pathways, and suggest a novel anti-inflammatory role of AnkrD1 through feedback inhibition of NF-κB transcriptional activity by which AnkrD1 modulates the balance between physiological and pathological inflammatory responses in skeletal muscle. - Highlights: • AnkrD1 is upregulated by TNFα and represses NF-κB-induced transcriptional activity. • AnkrD1 binds to p50 subunit of NF-κB and is recruited to NF-κB bound to chromatin. • AnkrD1 mediates a feed

  6. MicroRNA-27a promotes myoblast proliferation by targeting myostatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhiqing; Chen, Xiaoling; Yu, Bing

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer We identified a myogenic role for miR-27a and a new target, myostatin. Black-Right-Pointing-Pointer The miR-27a was confirmed to target myostatin 3 Prime UTR. Black-Right-Pointing-Pointer miR-27a is upregulated and myostatin is downregulated during myoblast proliferation. Black-Right-Pointing-Pointer miR-27a promotes myoblast proliferation by reducing the expression of myostatin. -- Abstract: MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs that play critical roles in skeletal muscle development as well as in regulation of muscle cell proliferation and differentiation. However, the role of miRNAs in myoblast proliferation remains poorly understood. Here we found that the expression of miR-27a was increased during proliferationmore » of C2C12 myoblasts. Moreover, overexpression of miR-27a in C2C12 cells promoted myoblast proliferation by reducing the expression of myostatin, a critical inhibitor of skeletal myogenesis. In addition, the miR-27a was confirmed to target myostatin 3 Prime UTR by a luciferase reporter analysis. Together, these results suggest that miR-27a promotes myoblast proliferation through targeting myostatin.« less

  7. Vascular Endothelial Growth Factor Modulates Skeletal Myoblast Function

    PubMed Central

    Germani, Antonia; Di Carlo, Anna; Mangoni, Antonella; Straino, Stefania; Giacinti, Cristina; Turrini, Paolo; Biglioli, Paolo; Capogrossi, Maurizio C.

    2003-01-01

    Vascular endothelial growth factor (VEGF) expression is enhanced in ischemic skeletal muscle and is thought to play a key role in the angiogenic response to ischemia. However, it is still unknown whether, in addition to new blood vessel growth, VEGF modulates skeletal muscle cell function. In the present study immunohistochemical analysis showed that, in normoperfused mouse hindlimb, VEGF and its receptors Flk-1 and Flt-1 were expressed mostly in quiescent satellite cells. Unilateral hindlimb ischemia was induced by left femoral artery ligation. At day 3 and day 7 after the induction of ischemia, Flk-1 and Flt-1 were expressed in regenerating muscle fibers and VEGF expression by these fibers was markedly enhanced. Additional in vitro experiments showed that in growing medium both cultured satellite cells and myoblast cell line C2C12 expressed VEGF and its receptors. Under these conditions, Flk-1 receptor exhibited constitutive tyrosine phosphorylation that was increased by VEGF treatment. During myogenic differentiation Flk-1 and Flt-1 were down-regulated. In a modified Boyden Chamber assay, VEGF enhanced C2C12 myoblasts migration approximately fivefold. Moreover, VEGF administration to differentiating C2C12 myoblasts prevented apoptosis, while inhibition of VEGF signaling either with selective VEGF receptor inhibitors (SU1498 and CB676475) or a neutralizing Flk-1 antibody, enhanced cell death approximately 3.5-fold. Finally, adenovirus-mediated VEGF165 gene transfer inhibited ischemia-induced apoptosis in skeletal muscle. These results support a role for VEGF in myoblast migration and survival, and suggest a novel autocrine role of VEGF in skeletal muscle repair during ischemia. PMID:14507649

  8. The role of insulin-like-growth factor binding protein 2 (IGFBP2) and phosphatase and tensin homologue (PTEN) in the regulation of myoblast differentiation and hypertrophy.

    PubMed

    Sharples, Adam P; Al-Shanti, Nasser; Hughes, David C; Lewis, Mark P; Stewart, Claire E

    2013-06-01

    The complex actions of the insulin-like-growth factor binding proteins (IGFBPs) in skeletal muscle are becoming apparent, with IGFBP2 being implicated in skeletal muscle cell proliferation and differentiation (Ernst et al., 1992; Sharples et al., 2010). Furthermore, PTEN signalling has been linked to IGFBP2 action in other cell types by co-ordinating downstream Akt signalling, a known modulator of myoblast differentiation. The present study therefore aimed to determine the interaction between IGFBP2 and PTEN on myoblast differentiation. It has previously been established that C2C12 cells have high IGFBP2 gene expression upon transfer to low serum media, and that expression reduces rapidly as cells differentiate over 72 h [1]. Wishing to establish a potential role for IGFBP2 in this model, a neutralising IGFBP2 antibody was administered to C2C12 myoblasts upon initiation of differentiation. Myoblasts subsequently displayed reduced morphological differentiation (myotube number), biochemical differentiation (creatine kinase) and myotube hypertrophy (myotube area) with an early reduction in Akt phosphorylation. Knock-down of phosphatase and tensin homologue (PTEN) using siRNA in the absence of the neutralising antibody did not improve differentiation or hypertrophy vs. control conditions, however, in the presence of the neutralising IGFBP2 antibody, differentiation was restored and importantly hypertrophy exceeded that of control levels. Overall, these data suggest that; 1) reduced early availability of IGFBP2 can inhibit myoblast differentiation at later time points, 2) knock-down of PTEN levels can restore myoblast differentiation in the presence of neutralising IGFBP2 antibody, and 3) PTEN inhibition acts as a potent inducer of myotube hypertrophy when the availability of IGFBP2 is reduced in C2C12 myoblasts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation

    PubMed Central

    Feng, Y; Niu, L-L; Wei, W; Zhang, W-Y; Li, X-Y; Cao, J-H; Zhao, S-H

    2013-01-01

    MiR-133 was found to be specifically expressed in cardiac and skeletal muscle in previous studies. There are two members in the miR-133 family: miR-133a and miR-133b. Although previous studies indicated that miR-133a was related to myogenesis, the signaling pathways regulated by miR-133 were still not very clear. In this study, we showed that both miR-133a and miR-133b were upregulated during myogenesis through Solexa sequencing. We confirmed that miR-133 could promote myoblast differentiation and inhibit cell proliferation through the regulation of the extracellular signal-regulated kinase (ERK) signaling pathway in C2C12 cells. FGFR1 and PP2AC, which both participate in signal transduction of the ERK1/2 pathway, were found to be negatively regulated by miR-133a and miR-133b at the post-transcriptional level. Also, downregulation of ERK1/2 phosphorylation by miR-133 was detected. FGFR1 and PP2AC were also found to repress C2C12 differentiation by specific siRNAs. In addition, we found that inhibition of ERK1/2 pathway activity can inhibit C2C12 cell proliferation and promote the initiation of differentiation but form short and small myotubes. Furthermore, we found that the expression of miR-133 was negatively regulated by ERK1/2 signaling pathway. In summary, we demonstrated the role of miR-133 in myoblast and further revealed a new feedback loop between miR-133 and the ERK1/2 signaling pathway involving an exquisite mechanism for regulating myogenesis. PMID:24287695

  10. A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation.

    PubMed

    Feng, Y; Niu, L-L; Wei, W; Zhang, W-Y; Li, X-Y; Cao, J-H; Zhao, S-H

    2013-11-28

    MiR-133 was found to be specifically expressed in cardiac and skeletal muscle in previous studies. There are two members in the miR-133 family: miR-133a and miR-133b. Although previous studies indicated that miR-133a was related to myogenesis, the signaling pathways regulated by miR-133 were still not very clear. In this study, we showed that both miR-133a and miR-133b were upregulated during myogenesis through Solexa sequencing. We confirmed that miR-133 could promote myoblast differentiation and inhibit cell proliferation through the regulation of the extracellular signal-regulated kinase (ERK) signaling pathway in C2C12 cells. FGFR1 and PP2AC, which both participate in signal transduction of the ERK1/2 pathway, were found to be negatively regulated by miR-133a and miR-133b at the post-transcriptional level. Also, downregulation of ERK1/2 phosphorylation by miR-133 was detected. FGFR1 and PP2AC were also found to repress C2C12 differentiation by specific siRNAs. In addition, we found that inhibition of ERK1/2 pathway activity can inhibit C2C12 cell proliferation and promote the initiation of differentiation but form short and small myotubes. Furthermore, we found that the expression of miR-133 was negatively regulated by ERK1/2 signaling pathway. In summary, we demonstrated the role of miR-133 in myoblast and further revealed a new feedback loop between miR-133 and the ERK1/2 signaling pathway involving an exquisite mechanism for regulating myogenesis.

  11. Skeletal muscle myoblasts possess a stretch-responsive local angiotensin signalling system.

    PubMed

    Johnston, Adam P W; Baker, Jeff; De Lisio, Michael; Parise, Gianni

    2011-06-01

    A paucity of information exists regarding the presence of local renin-angiotensin systems (RASs) in skeletal muscle and associated muscle stem cells. Skeletal muscle and muscle stem cells were isolated from C57BL/6 mice and examined for the presence of a local RAS using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), Western blotting and liquid chromatography-mass spectrometry (LC-MS). Furthermore, the effect of mechanical stimulation on RAS member gene expression was analysed. Whole skeletal muscle, primary myoblasts and C2C12 derived myoblasts and myotubes differentially expressed members of the RAS including angiotensinogen, angiotensin-converting enzyme (ACE), angiotensin II (Ang II) type 1 (AT(1)) and type 2 (AT(2)). Renin transcripts were never detected, however, mRNA for the 'renin-like' enzyme cathepsin D was observed and Ang I and Ang II were identified in cell culture supernatants from proliferating myoblasts. AT(1) appeared to co-localise with polymerised actin filaments in proliferating myoblasts and was primarily found in the nucleus of terminally differentiated myotubes. Furthermore, mechanical stretch of proliferating and differentiating C2C12 cells differentially induced mRNA expression of angiotensinogen, AT(1) and AT(2). Proliferating and differentiated muscle stem cells possess a local stress-responsive RAS in vitro. The precise function of a local RAS in myoblasts remains unknown. However, evidence presented here suggests that Ang II may be a regulator of skeletal muscle myoblasts.

  12. MicroRNA‑29a is involved lipid metabolism dysfunction and insulin resistance in C2C12 myotubes by targeting PPARδ.

    PubMed

    Wu, Peng; Wang, Qianyi; Jiang, Cuilian; Chen, Chen; Liu, Yun; Chen, Yajun; Zeng, Yu

    2018-06-01

    MicroRNA‑29a (miR‑29a) expression has been reported to be closely associated with skeletal muscle insulin resistance and type 2 diabetes. The present study investigated the effect of miR‑29a on palmitic acid (PA)‑induced lipid metabolism dysfunction and insulin resistance in C2C12 myotubes via overexpressing or silencing of miR‑29a expression. Mouse C2C12 myoblasts were cultured, differentiated and transfected with miR‑29a or miR‑29a inhibitor lentiviral with or without subsequent palmitic acid (PA) treatment. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis were performed to assess the mRNA and protein levels of related genes, respectively. PA treatment increased the expression of miR‑29a in a time‑ and dose‑ dependent manner. miR‑29a silencing improved insulin‑induced glucose uptake and increased glucose transporter‑4 (GLUT4) transportation to the plasma membrane by upregulating its target peroxisome proliferator‑activated receptor δ (PPARδ). Furthermore, it was observed that miR‑29a regulated the expression of genes associated with lipid metabolism, including pyruvate dehydrogenase kinase isoform, mitochondrial uncoupling protein (UCP)2, UCP3, long chain specific acyl‑CoA dehydrogenase, mitochondrial and fatty acid transport protein 2. The results confirmed that silencing miR‑29a induced a decrease in glucose transport and affected lipid metabolism in PA‑treated C2C12 cells, and therefore may be involved in insulin resistance by targeting PPARδ in skeletal muscle. Therefore, the inhibition of miR‑29a may be a potential novel strategy for treating insulin resistance and type 2 diabetes.

  13. Transient upregulation of CBFA1 in response to bone morphogenetic protein-2 and transforming growth factor beta1 in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not sufficient for osteoblast differentiation.

    PubMed

    Lee, M H; Javed, A; Kim, H J; Shin, H I; Gutierrez, S; Choi, J Y; Rosen, V; Stein, J L; van Wijnen, A J; Stein, G S; Lian, J B; Ryoo, H M

    1999-04-01

    The bone morphogenetic protein (BMP)-2 is a potent osteoinductive signal, inducing bone formation in vivo and osteoblast differentiation from non-osseous cells in vitro. The runt domain-related protein Cbfa1/PEBP2alphaA/AML-3 is a critical component of bone formation in vivo and transcriptional regulator of osteoblast differentiation. To investigate the relationship between the extracellular BMP-2 signal, Cbfa1, and osteogenesis, we examined expression of Cbfa1 and osteoblastic genes during the BMP-2 induced osteogenic transdifferentiation of the myoblastic cell line C2C12. BMP-2 treatment completely blocked myotube formation and transiently induced expression of Cbfa1 and the bone-related homeodomain protein Msx-2 concomitant with loss of the myoblast phenotype. While induction of collagen type I and alkaline phosphatase (AP) expression coincided with Cbfa1 expression, Cbfa1 mRNA was strikingly downregulated at the onset of expression of osteopontin (OPN) and osteocalcin (OCN) genes, reflecting the mature osteoblast phenotype. TGF-beta1 treatment effectively suppressed myogenesis and induced Cbfa1 expression but was insufficient to support osteoblast differentiation reflected by the absence of ALP, OPN, and OCN. We addressed whether induction of Cbfa1 in response to BMP-2 results in the transcriptional activation of the OC promoter which contains three enhancer Cbfa1 elements. Transfection studies show BMP-2 suppresses OC promoter activity in C2C12, but not in osteoblastic ROS 17/2.8 cells. Maximal suppression of OC promoter activity in response to BMP-2 requires sequences in the proximal promoter (up to nt -365) and may occur independent of the three Cbfa sites. Taken together, our results demonstrate a dissociation of Cbfa1 expression from development of the osteoblast phenotype. Our findings suggest that Cbfal may function transiently to divert a committed myoblast to a potentially osteogenic cell. However, other factors induced by BMP-2 appear to be necessary

  14. Postmitotic Expression of SOD1G93A Gene Affects the Identity of Myogenic Cells and Inhibits Myoblasts Differentiation

    PubMed Central

    Martini, Martina; Dobrowolny, Gabriella; Aucello, Michela; Musarò, Antonio

    2015-01-01

    To determine the role of mutant SOD1 gene (SOD1G93A) on muscle cell differentiation, we derived C2C12 muscle cell lines carrying a stably transfected SOD1G93A gene under the control of a myosin light chain (MLC) promoter-enhancer cassette. Expression of MLC/SOD1G93A in C2C12 cells resulted in dramatic inhibition of myoblast differentiation. Transfected SOD1G93A gene expression in postmitotic skeletal myocytes downregulated the expression of relevant markers of committed and differentiated myoblasts such as MyoD, Myogenin, MRF4, and the muscle specific miRNA expression. The inhibitory effects of SOD1G93A gene on myogenic program perturbed Akt/p70 and MAPK signaling pathways which promote differentiation cascade. Of note, the inhibition of the myogenic program, by transfected SOD1G93A gene expression, impinged also the identity of myogenic cells. Expression of MLC/SOD1G93A in C2C12 myogenic cells promoted a fibro-adipogenic progenitors (FAPs) phenotype, upregulating HDAC4 protein and preventing the myogenic commitment complex BAF60C-SWI/SNF. We thus identified potential molecular mediators of the inhibitory effects of SOD1G93A on myogenic program and disclosed potential signaling, activated by SOD1G93A, that affect the identity of the myogenic cell population. PMID:26491230

  15. Postmitotic Expression of SOD1(G93A) Gene Affects the Identity of Myogenic Cells and Inhibits Myoblasts Differentiation.

    PubMed

    Martini, Martina; Dobrowolny, Gabriella; Aucello, Michela; Musarò, Antonio

    2015-01-01

    To determine the role of mutant SOD1 gene (SOD1(G93A)) on muscle cell differentiation, we derived C2C12 muscle cell lines carrying a stably transfected SOD1(G93A) gene under the control of a myosin light chain (MLC) promoter-enhancer cassette. Expression of MLC/SOD1(G93A) in C2C12 cells resulted in dramatic inhibition of myoblast differentiation. Transfected SOD1(G93A) gene expression in postmitotic skeletal myocytes downregulated the expression of relevant markers of committed and differentiated myoblasts such as MyoD, Myogenin, MRF4, and the muscle specific miRNA expression. The inhibitory effects of SOD1(G93A) gene on myogenic program perturbed Akt/p70 and MAPK signaling pathways which promote differentiation cascade. Of note, the inhibition of the myogenic program, by transfected SOD1(G93A) gene expression, impinged also the identity of myogenic cells. Expression of MLC/SOD1(G93A) in C2C12 myogenic cells promoted a fibro-adipogenic progenitors (FAPs) phenotype, upregulating HDAC4 protein and preventing the myogenic commitment complex BAF60C-SWI/SNF. We thus identified potential molecular mediators of the inhibitory effects of SOD1(G93A) on myogenic program and disclosed potential signaling, activated by SOD1(G93A), that affect the identity of the myogenic cell population.

  16. JAZF1 promotes proliferation of C2C12 cells, but retards their myogenic differentiation through transcriptional repression of MEF2C and MRF4—Implications for the role of Jazf1 variants in oncogenesis and type 2 diabetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuasa, Katsutoshi; Aoki, Natsumi; Hijikata, Takao, E-mail: hijikata@musashino-u.ac.jp

    Single-nucleotide polymorphisms associated with type 2 diabetes (T2D) have been identified in Jazf1, which is also involved in the oncogenesis of endometrial stromal tumors. To understand how Jazf1 variants confer a risk of tumorigenesis and T2D, we explored the functional roles of JAZF1 and searched for JAZF1 target genes in myogenic C2C12 cells. Consistent with an increase of Jazf1 transcripts during myoblast proliferation and their decrease during myogenic differentiation in regenerating skeletal muscle, JAZF1 overexpression promoted cell proliferation, whereas it retarded myogenic differentiation. Examination of myogenic genes revealed that JAZF1 overexpression transcriptionally repressed MEF2C and MRF4 and their downstream genes.more » AMP deaminase1 (AMPD1) was identified as a candidate for JAZF1 target by gene array analysis. However, promoter assays of Ampd1 demonstrated that mutation of the putative binding site for the TR4/JAZF1 complex did not alleviate the repressive effects of JAZF1 on promoter activity. Instead, JAZF1-mediated repression of Ampd1 occurred through the MEF2-binding site and E-box within the Ampd1 proximal regulatory elements. Consistently, MEF2C and MRF4 expression enhanced Ampd1 promoter activity. AMPD1 overexpression and JAZF1 downregulation impaired AMPK phosphorylation, while JAZF1 overexpression also reduced it. Collectively, these results suggest that aberrant JAZF1 expression contributes to the oncogenesis and T2D pathogenesis. - Highlights: • JAZF1 promotes cell cycle progression and proliferation of myoblasts. • JAZF1 retards myogenic differentiation and hypertrophy of myotubes. • JAZF1 transcriptionally represses Mef2C and Mrf4 expression. • JAZF1 has an impact on the phosphorylation of AMPK.« less

  17. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts.

    PubMed

    Sin, Jon; Andres, Allen M; Taylor, David J R; Weston, Thomas; Hiraumi, Yoshimi; Stotland, Aleksandr; Kim, Brandon J; Huang, Chengqun; Doran, Kelly S; Gottlieb, Roberta A

    2016-01-01

    Myogenesis is a crucial process governing skeletal muscle development and homeostasis. Differentiation of primitive myoblasts into mature myotubes requires a metabolic switch to support the increased energetic demand of contractile muscle. Skeletal myoblasts specifically shift from a highly glycolytic state to relying predominantly on oxidative phosphorylation (OXPHOS) upon differentiation. We have found that this phenomenon requires dramatic remodeling of the mitochondrial network involving both mitochondrial clearance and biogenesis. During early myogenic differentiation, autophagy is robustly upregulated and this coincides with DNM1L/DRP1 (dynamin 1-like)-mediated fragmentation and subsequent removal of mitochondria via SQSTM1 (sequestosome 1)-mediated mitophagy. Mitochondria are then repopulated via PPARGC1A/PGC-1α (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha)-mediated biogenesis. Mitochondrial fusion protein OPA1 (optic atrophy 1 [autosomal dominant]) is then briskly upregulated, resulting in the reformation of mitochondrial networks. The final product is a myotube replete with new mitochondria. Respirometry reveals that the constituents of these newly established mitochondrial networks are better primed for OXPHOS and are more tightly coupled than those in myoblasts. Additionally, we have found that suppressing autophagy with various inhibitors during differentiation interferes with myogenic differentiation. Together these data highlight the integral role of autophagy and mitophagy in myogenic differentiation.

  18. Pannexin channels mediate the acquisition of myogenic commitment in C2C12 reserve cells promoted by P2 receptor activation

    PubMed Central

    Riquelme, Manuel A.; Cea, Luis A.; Vega, José L.; Puebla, Carlos; Vargas, Aníbal A.; Shoji, Kenji F.; Subiabre, Mario; Sáez, Juan C.

    2015-01-01

    The acquisition of myoblast commitment to the myogenic linage requires rises in intracellular free Ca2+ concentration ([Ca2+]i). Putative cell membrane pathways involved in these [Ca2+]i increments are P2 receptors (P2Rs) as well as connexin (Cx) and/or pannexin (Panx) hemichannels and channels (Cx HChs and Panx Chs), respectively, which are known to permeate Ca2+. Reserve cells (RCs) are uncommitted myoblasts obtained from differentiated C2C12 cell cultures, which acquire commitment upon replating. Regarding these cells, we found that extracellular ATP increases the [Ca2+]i via P2Rs. Moreover, ATP increases the plasma membrane permeability to small molecules and a non-selective membrane current, both of which were inhibited by Cx HCh/Panx1Ch blockers. However, RCs exposed to divalent cation-free saline solution, which is known to activate Cx HChs (but not Panx Chs), did not enhance membrane permeability, thus ruling out the possible involvement of Cx HChs. Moreover, ATP-induced membrane permeability was inhibited with blockers of P2Rs that activate Panx Chs. In addition, exogenous ATP induced the expression of myogenic commitment and increased MyoD levels, which was prevented by the inhibition of P2Rs or knockdown of Panx1 Chs. Similarly, increases in MyoD levels induced by ATP released by RCs were inhibited by Panx Ch/Cx HCh blockers. Myogenic commitment acquisition thus requires a feed-forward mechanism mediated by extracellular ATP, P2Rs, and Panx Chs. PMID:26000275

  19. pPKCδ activates SC35 splicing factor during H9c2 myoblastic differentiation.

    PubMed

    Zara, Susi; Falconi, Mirella; Rapino, Monica; Zago, Michela; Orsini, Giovanna; Mazzotti, Giovanni; Cataldi, Amelia; Teti, Gabriella

    2011-01-01

    Although Protein Kinase C (PKC) isoforms' role in the neonatal and adult cardiac tissue development and ageing has been widely described "in vivo", the interaction of such enzymes with specific nuclear substrates needs to be investigated. The aim of our research has been the study of the expression, localization and interaction with the splicing factor SC35 of PKC isoforms (α, δ, ε, ζ) and their potential role in modulating the transcription machinery. H9c2 cells induced to myoblast differentiation in the presence of 1% Horse Serum (HS) have represented our experimental model. The expression of PKC isoforms, their distribution and interaction with SC35 have been evaluated by western blotting, co-immunoprecipitation and double gold immunolabeling for transmission and scanning electron microscopy. Our results show PKCδ as the most expressed isoform in differentiated cells. Surprisingly, the distribution of PKCδ and SC35 does not show any significant modification between 10%FBS and 1%HS treated samples and no co-localization is observed. Moreover the interaction between the phosphorylated form of PKCδ (pPKCδ) and SC35 increases, is distributed and co-localizes within the nucleus of differentiated H9c2. These data represent reasonable evidence of pPKCδ mediated SC35 splicing factor activation, suggesting its direct effect on transcription via interaction with the transcription machinery. Furthermore, this co-localization represents a crucial event resulting in downstream changes in transcription of components which determine the morphological modifications related to cardiomyoblast differentiated phenotype.

  20. Role of dynamin-related protein 1-mediated mitochondrial fission in resistance of mouse C2C12 myoblasts to heat injury.

    PubMed

    Yu, Tianzheng; Deuster, Patricia; Chen, Yifan

    2016-12-15

    Understanding how skeletal muscles respond to high temperatures may help develop strategies for improving exercise tolerance and preventing heat injury. Mitochondria regulate cell survival by constantly changing their morphology through fusion and fission in response to environmental stimuli. Little is known about the involvement of mitochondrial dynamics in tolerance of skeletal muscle against heat stress. Mild heat acclimation and moderate heat shock appear to have different effects on the mitochondrial morphology and fission protein Drp1 in skeletal muscle cells. Mitochondrial integrity plays a key role in cell survival under heat stress. The regulation of mitochondrial morphology is closely coupled to cell survival during stress. We examined changes in the mitochondrial morphology of mouse C2C12 skeletal muscle cells in response to heat acclimation and heat shock exposure. Acclimated cells showed a greater survival rate during heat shock exposure than non-acclimated cells, and were characterized by long interconnected mitochondria and reduced expression of dynamin-related protein 1 (Drp1) for their mitochondrial fractions. Exposure of C2C12 muscle cells to heat shock led to apoptotic death featuring activation of caspase 3/7, release of cytochrome c and loss of cell membrane integrity. Heat shock also caused excessive mitochondrial fragmentation, loss of mitochondrial membrane potential and production of reactive oxygen species in C2C12 cells. Western blot and immunofluorescence image analysis revealed translocation of Drp1 to mitochondria from the cytosol in C2C12 cells exposed to heat shock. Mitochondrial division inhibitor 1 or Drp1 gene silencer reduced mitochondrial fragmentation and increased cell viability during exposure to heat shock. These results suggest that Drp1-dependent mitochondrial fission may regulate susceptibility to heat-induced apoptosis in muscle cells and that Drp1 may serve as a target for the prevention of heat-related injury

  1. An HMGA2-IGF2BP2 Axis Regulates Myoblast Proliferation and Myogenesis

    PubMed Central

    Li, Zhizhong; Gilbert, Jason A.; Zhang, Yunyu; Zhang, Minsi; Qiu, Qiong; Ramanujan, Krishnan; Shavlakadze, Tea; Eash, John K.; Scaramozza, Annarita; Goddeeris, Matthew M.; Kirsch, David G.; Campbell, Kevin P.; Brack, Andrew S.; Glass, David J.

    2013-01-01

    Summary A group of genes that are highly and specifically expressed in proliferating skeletal myoblasts during myogenesis was identified. Expression of one of these genes, Hmga2, increases coincident with satellite cell activation, and later its expression significantly declines correlating with fusion of myoblasts into myotubes. Hmga2 knockout mice exhibit impaired muscle development and reduced myoblast proliferation, while overexpression of HMGA2 promotes myoblast growth. This perturbation in proliferation can be explained by the finding that HMGA2 directly regulates the RNA-binding protein IGF2BP2. Add-back of IGF2BP2 rescues the phenotype. IGF2BP2 in turn binds to and controls the translation of a set of mRNAs, including c-myc, Sp1, and Igf1r. These data demonstrate that the HMGA2-IGF2BP2 axis functions as a key regulator of satellite cell activation and therefore skeletal muscle development. PMID:23177649

  2. An HMGA2-IGF2BP2 axis regulates myoblast proliferation and myogenesis.

    PubMed

    Li, Zhizhong; Gilbert, Jason A; Zhang, Yunyu; Zhang, Minsi; Qiu, Qiong; Ramanujan, Krishnan; Shavlakadze, Tea; Eash, John K; Scaramozza, Annarita; Goddeeris, Matthew M; Kirsch, David G; Campbell, Kevin P; Brack, Andrew S; Glass, David J

    2012-12-11

    A group of genes that are highly and specifically expressed in proliferating skeletal myoblasts during myogenesis was identified. Expression of one of these genes, Hmga2, increases coincident with satellite cell activation, and later its expression significantly declines correlating with fusion of myoblasts into myotubes. Hmga2 knockout mice exhibit impaired muscle development and reduced myoblast proliferation, while overexpression of HMGA2 promotes myoblast growth. This perturbation in proliferation can be explained by the finding that HMGA2 directly regulates the RNA-binding protein IGF2BP2. Add-back of IGF2BP2 rescues the phenotype. IGF2BP2 in turn binds to and controls the translation of a set of mRNAs, including c-myc, Sp1, and Igf1r. These data demonstrate that the HMGA2-IGF2BP2 axis functions as a key regulator of satellite cell activation and therefore skeletal muscle development. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Necdin interacts with the Msx2 homeodomain protein via MAGE-D1 to promote myogenic differentiation of C2C12 cells.

    PubMed

    Kuwajima, Takaaki; Taniura, Hideo; Nishimura, Isao; Yoshikawa, Kazuaki

    2004-09-24

    Necdin is a potent growth suppressor that is expressed predominantly in postmitotic cells such as neurons and skeletal muscle cells. Necdin shows a significant homology to MAGE (melanoma antigen) family proteins, all of which contain a large homology domain. MAGE-D1 (NRAGE, Dlxin-1) interacts with the Dlx/Msx family homeodomain proteins via an interspersed hexapeptide repeat domain distinct from the homology domain. Here we report that necdin associates with the Msx homeodomain proteins via MAGE-D1 to modulate their function. In vitro binding and co-immunoprecipitation analyses revealed that MAGE-D1 directly interacted with necdin via the homology domain and Msx1 (or Msx2) via the repeat domain. A ternary complex of necdin, MAGE-D1, and Msx2 was formed in vitro, and an endogenous complex containing these three proteins was detected in differentiating embryonal carcinoma cells. Co-expression of necdin and MAGE-D1 released Msx-dependent transcriptional repression. C2C12 myoblast cells that were stably transfected with Msx2 cDNA showed a marked reduction in myogenic differentiation, and co-expression of necdin and MAGE-D1 canceled the Msx2-dependent repression. These results suggest that necdin and MAGE-D1 cooperate to modulate the function of Dlx/Msx homeodomain proteins in cellular differentiation. Copyright 2004 American Society for Biochemistry and Molecular Biology, Inc.

  4. Absence of PDGF-induced, PKC-independent c-fos expression in a chemically transformed C3H/10T1/2 cell clone.

    PubMed

    Vassbotn, F S; Skar, R; Holmsen, H; Lillehaug, J R

    1992-09-01

    The effect of platelet-derived growth factor (PDGF) on c-fos mRNA transcription was studied in the immortalized mouse embryo fibroblast C3H/10T1/2 Cl 8 (10T1/2) cells and the chemically transformed, tumorigenic subclone C3H/10T1/2 Cl 16 (Cl 16). In the 10T1/2 cells as well as the Cl 16 subclone, the dose-dependent PDGF stimulation of c-fos mRNA synthesis was similar in both logarithmically growing and confluent cultures. c-fos mRNA was induced severalfold by 12-O-tetradecanoylphorbol-13-acetate (TPA) in both 10T1/2 and Cl 16. Down-regulation of protein kinase C (PKC) activity by TPA pretreatment inhibited PDGF-stimulated c-fos mRNA expression in Cl 16 cells but did not affect this induction in the 10T1/2 cells. This inhibition was not a general phenomenon of 3-methylcholanthrene-mediated transformation of 10T1/2 cells since experiments with another transformed 10T1/2 cell clone, C3H/10T1/2 TPA 482, gave qualitatively the same results as the 10T1/2 cells. Receptor binding experiments showed that the nontransformed and transformed cells had a comparable number of PDGF receptors, 1.3 x 10(5) and 0.7 x 10(5) receptors per cell, respectively. Furthermore, cAMP-induced c-fos expression induced by forskolin is formerly shown to be independent of PKC down-regulation. In our experiments, forskolin induced c-fos expression in both clones. However, PKC down-regulation inhibited the forskolin-induced c-fos expression in Cl 16 cells. This apparently demonstrates cross talk between PKC and PKA in the c-fos induction pathway. The present results provide evidence for an impaired mechanism for activating c-fos expression through PKC-independent, PDGF-induced signal transduction in the chemically transformed Cl 16 fibroblasts compared to that in nontransformed 10T1/2 cells.

  5. Role of dynamin‐related protein 1‐mediated mitochondrial fission in resistance of mouse C2C12 myoblasts to heat injury

    PubMed Central

    Yu, Tianzheng; Deuster, Patricia

    2016-01-01

    Key points Understanding how skeletal muscles respond to high temperatures may help develop strategies for improving exercise tolerance and preventing heat injury.Mitochondria regulate cell survival by constantly changing their morphology through fusion and fission in response to environmental stimuli. Little is known about the involvement of mitochondrial dynamics in tolerance of skeletal muscle against heat stress.Mild heat acclimation and moderate heat shock appear to have different effects on the mitochondrial morphology and fission protein Drp1 in skeletal muscle cells. Mitochondrial integrity plays a key role in cell survival under heat stress. Abstract The regulation of mitochondrial morphology is closely coupled to cell survival during stress. We examined changes in the mitochondrial morphology of mouse C2C12 skeletal muscle cells in response to heat acclimation and heat shock exposure. Acclimated cells showed a greater survival rate during heat shock exposure than non‐acclimated cells, and were characterized by long interconnected mitochondria and reduced expression of dynamin‐related protein 1 (Drp1) for their mitochondrial fractions. Exposure of C2C12 muscle cells to heat shock led to apoptotic death featuring activation of caspase 3/7, release of cytochrome c and loss of cell membrane integrity. Heat shock also caused excessive mitochondrial fragmentation, loss of mitochondrial membrane potential and production of reactive oxygen species in C2C12 cells. Western blot and immunofluorescence image analysis revealed translocation of Drp1 to mitochondria from the cytosol in C2C12 cells exposed to heat shock. Mitochondrial division inhibitor 1 or Drp1 gene silencer reduced mitochondrial fragmentation and increased cell viability during exposure to heat shock. These results suggest that Drp1‐dependent mitochondrial fission may regulate susceptibility to heat‐induced apoptosis in muscle cells and that Drp1 may serve as a target for the prevention of

  6. Androgens Up-regulate Transcription of the Notch Inhibitor Numb in C2C12 Myoblasts via Wnt/β-Catenin Signaling to T Cell Factor Elements in the Numb Promoter*

    PubMed Central

    Liu, Xin-Hua; Wu, Yong; Yao, Shen; Levine, Alice C.; Kirschenbaum, Alexander; Collier, Lauren; Bauman, William A.; Cardozo, Christopher P.

    2013-01-01

    Androgen signaling via the androgen receptor is a key pathway that contributes to development, cell fate decisions, and differentiation, including that of myogenic progenitors. Androgens and synthetic steroids have well established anabolic actions on skeletal muscle. Wnt and Notch signaling pathways are also essential to myogenic cell fate decisions during development and tissue repair. However, the interactions among these pathways are largely unknown. Androgenic regulation of Wnt signaling has been reported. Nandrolone, an anabolic steroid, has been shown to inhibit Notch signaling and up-regulate Numb, a Notch inhibitor. To elucidate the mechanisms of interaction between nandrolone and Wnt/Notch signaling, we investigated the effects of nandrolone on Numb expression and Wnt signaling and determined the roles of Wnt signaling in nandrolone-induced Numb expression in C2C12 myoblasts. Nandrolone increased Numb mRNA and protein levels and T cell factor (Tcf) transcriptional activity via inhibition of glycogen synthase kinase 3β. Up-regulation of Numb expression by nandrolone was blocked by the Wnt inhibitors, sFRP1 and DKK1, whereas Wnt3a increased Numb mRNA and protein expression. In addition, we observed that the proximal promoter of the Numb gene had functional Tcf binding elements to which β-catenin was recruited in a manner enhanced by both nandrolone and Wnt3a. Moreover, site-directed mutagenesis indicated that the Tcf binding sites in the Numb promoter are required for the nandrolone-induced Numb transcriptional activation in this cell line. These results reveal a novel molecular mechanism underlying up-regulation of Numb transcription with a critical role for increased canonical Wnt signaling. In addition, the data identify Numb as a novel target gene of the Wnt signaling pathway by which Wnts would be able to inhibit Notch signaling. PMID:23649620

  7. Hypoxia induces adipogenic differentitation of myoblastic cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoigawa, Yoshiaki; Juntendo University School of Medicine, Tokyo; Kishimoto, Koshi N., E-mail: kishimoto@med.tohoku.ac.jp

    2010-09-03

    Research highlights: {yields} C2C12 and G8 myogenic cell lines treated by hypoxia differentiate into adipocytes. {yields} The expression of C/EBP{beta}, {alpha} and PPAR{gamma} were increased under hypoxia. {yields} Myogenic differentiation of C2C12 was inhibited under hypoxia. -- Abstract: Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes.more » We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) {beta}, {alpha} and peroxisome proliferator activating receptor (PPAR) {gamma} were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.« less

  8. Possible role of TIEG1 as a feedback regulator of myostatin and TGF-{beta} in myoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyake, Masato; Hayashi, Shinichiro; Iwasaki, Shunsuke

    2010-03-19

    Myostatin and TGF-{beta} negatively regulate skeletal muscle development and growth. Both factors signal through the Smad2/3 pathway. However, the regulatory mechanism of myostatin and TGF-{beta} signaling remains unclear. TGF-{beta} inducible early gene (TIEG) 1 is highly expressed in skeletal muscle and has been implicated in the modulation of TGF-{beta} signaling. These findings prompted us to investigate the effect of TIEG1 on myostatin and TGF-{beta} signaling using C2C12 myoblasts. Myostatin and TGF-{beta} induced the expression of TIEG1 and Smad7 mRNAs, but not TIEG2 mRNA, in proliferating C2C12 cells. When differentiating C2C12 myoblasts were stimulated by myostatin, TIEG1 mRNA was up-regulated atmore » a late stage of differentiation. In contrast, TGF-{beta} enhanced TIEG1 expression at an early stage. Overexpression of TIEG1 prevented the transcriptional activation of Smad by myostatin and TGF-{beta} in both proliferating or differentiating C2C12 cells, but the expression of Smad2 and Smad7 mRNAs was not affected. Forced expression of TIEG1 inhibited myogenic differentiation but did not cause more inhibition than the empty vector in the presence of myostatin or TGF-{beta}. These results demonstrate that TIEG1 is one possible feedback regulator of myostatin and TGF-{beta} that prevents excess action in myoblasts.« less

  9. The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuloaga, R.; Fuentes, E.N.; Molina, A.

    2013-10-18

    Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP{sub 3}/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1more » during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation.« less

  10. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm-2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  11. Transcription Factor ZBED6 Mediates IGF2 Gene Expression by Regulating Promoter Activity and DNA Methylation in Myoblasts

    NASA Astrophysics Data System (ADS)

    Huang, Yong-Zhen; Zhang, Liang-Zhi; Lai, Xin-Sheng; Li, Ming-Xun; Sun, Yu-Jia; Li, Cong-Jun; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong

    2014-04-01

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were upregulated during C2C12 differentiation. The IGF2 expression levels were negatively associated with the methylation status in beef cattle (P < 0.05). A luciferase assay for the IGF2 intron 3 and P3 promoter showed that the mutant-type 439 A-SNP-pGL3 in driving reporter gene transcription is significantly higher than that of the wild-type 439 G-SNP-pGL3 construct (P < 0.05). An over-expression assay revealed that ZBED6 regulate IGF2 expression and promote myoblast differentiation. Furthermore, knockdown of ZBED6 led to IGF2 expression change in vitro. Taken together, these results suggest that ZBED6 inhibits IGF2 activity and expression via a G to A transition disrupts the interaction. Thus, we propose that ZBED6 plays a critical role in myogenic differentiation.

  12. Growth hormone facilitates 5'-azacytidine-induced myogenic but inhibits 5'-azacytidine-induced adipogenic commitment in C3H10T1/2 mesenchymal stem cells.

    PubMed

    Jia, Dan; Zheng, Weijiang; Jiang, Honglin

    2018-06-01

    The C3H10T1/2 cells are considered mesenchymal stem cells (MSCs) because they can be induced to become the progenitor cells for myocytes, adipocytes, osteoblasts, and chondrocytes by the DNA methyltransferase inhibitor 5'-azacytidine. In this study, we determined the effect of growth hormone (GH) on the myogenic and adipogenic lineage commitment in C3H10T1/2 cells. The C3H10T1/2 cells were treated with recombinant bovine GH in the presence or absence of 5'-azacytidine for 4 days. The myogenic commitment in C3H10T1/2 cells was assessed by immunostaining them for MyoD, the marker for myoblasts, and by determining their capacity to differentiate into the multinucleated myotubes. The adipogenic commitment in C3H10T1/2 cells was assessed by determining their ability to differentiate into adipocytes. Myotubes and adipocyteswere identified by immunocytochemistry and Oil Red O staining, respectively. C3H10T1/2 cells treated with 5'-azacytidine and GH for 4 days contained a greater percentage of MyoD-positive cells than those treated with 5'-axacytidine alone (P < 0.05). The former generated more myotubes than the latter upon induced myoblast differentiation (P < 0.05). However, C3H10T1/2 cells treated with GH alone did not form any myotubes. C3H10T1/2 cells treated with 5'-azacytidine formed adipocytes upon adipocyte differentiation induction, whereas C3H10T1/2 cells treated with GH alone did not form any adipocytes. C3H10T1/2 cells treated with both 5'-azacytidine and GH formed fewer adipocytes than those treated with 5'-azacytidine alone (P < 0.05). Both GHR and IGF-I mRNA expression in C3H10T1/2 cells were increased by 5'-azacytidine (P < 0.05), but neither was affected by GH. Overall, this study showed that GH enhanced 5'-azacytidine-induced commitment in C3H10T1/2 cells to myoblasts but inhibited 5'-azacytidine-induced commitment to preadipocytes. These results support the possibility that GH stimulates skeletal muscle growth and inhibits adipose

  13. Differing Effects of Younger and Older Human Plasma on C2C12 Myocytes in Vitro.

    PubMed

    Kalampouka, Ifigeneia; van Bekhoven, Angel; Elliott, Bradley T

    2018-01-01

    Ageing is associated with a general reduction of physiological function and a reduction of muscle mass and strength. Endocrine factors such as myostatin, activin A, growth and differentiation factor 11 (GDF-11) and their inhibitory peptides influence muscle mass in health and disease. We hypothesised that myocytes cultured in plasma from older and younger individuals would show an ageing effect, with reduced proliferation and differentiation in older environments. C2C12 myoblasts were grown as standard and stimulated with media conditioned with 5% plasma from healthy male participants that were either younger ( n = 6, 18-35 years of age) or older ( n = 6, >57 years of age). Concentration of plasma myostatin (total and free), follistatin-like binding protein (FLRG), GDF-11 and activin A were quantified by ELISA. Both FLRG and activin A were elevated in older individuals (109.6 and 35.1% increase, respectively), whilst myostatin (free and total) and GDF-11 were not. Results indicated that plasma activin A and FLRG were increased in older vs. younger participants, GDF11 and myostatin did not differ. Myoblasts in vitro showed no difference in proliferation rate between ages, however scratch closure was greater in younger vs. older plasma stimulated myoblasts (78.2 vs. 87.2% of baseline scratch diameter, respectively). Myotube diameters were larger in cells stimulated with younger plasma than with older at 24 and 48 h, but not at 2 h. A significant negative correlation was noted between in vivo plasma FLRG concentration and in vitro myotube diameter 48 h following plasma stimulation ( r 2 = 0.392, p = 0.030). Here we show that myoblasts and myotubes cultured in media conditioned with plasma from younger or older individuals show an ageing effect, and further this effect moderately correlates with circulating FLRG concentration in vivo . The effect of ageing on muscle function may not be innate to the tissue, but involve a general cellular environment change. Further

  14. Bone Marrow Mesenchymal Stromal Cells Stimulate Skeletal Myoblast Proliferation through the Paracrine Release of VEGF

    PubMed Central

    Chellini, Flaminia; Mazzanti, Benedetta; Nistri, Silvia; Nosi, Daniele; Saccardi, Riccardo; Quercioli, Franco; Zecchi-Orlandini, Sandra; Formigli, Lucia

    2012-01-01

    Mesenchymal stromal cells (MSCs) are the leading cell candidates in the field of regenerative medicine. These cells have also been successfully used to improve skeletal muscle repair/regeneration; however, the mechanisms responsible for their beneficial effects remain to be clarified. On this basis, in the present study, we evaluated in a co-culture system, the ability of bone-marrow MSCs to influence C2C12 myoblast behavior and analyzed the cross-talk between the two cell types at the cellular and molecular level. We found that myoblast proliferation was greatly enhanced in the co-culture as judged by time lapse videomicroscopy, cyclin A expression and EdU incorporation. Moreover, myoblasts immunomagnetically separated from MSCs after co-culture expressed higher mRNA and protein levels of Notch-1, a key determinant of myoblast activation and proliferation, as compared with the single culture. Notch-1 intracellular domain and nuclear localization of Hes-1, a Notch-1 target gene, were also increased in the co-culture. Interestingly, the myoblastic response was mainly dependent on the paracrine release of vascular endothelial growth factor (VEGF) by MSCs. Indeed, the addition of MSC-derived conditioned medium (CM) to C2C12 cells yielded similar results as those observed in the co-culture and increased the phosphorylation and expression levels of VEGFR. The treatment with the selective pharmacological VEGFR inhibitor, KRN633, resulted in a marked attenuation of the receptor activation and concomitantly inhibited the effects of MSC-CM on C2C12 cell growth and Notch-1 signaling. In conclusion, this study provides novel evidence for a role of MSCs in stimulating myoblast cell proliferation and suggests that the functional interaction between the two cell types may be exploited for the development of new and more efficient cell-based skeletal muscle repair strategies. PMID:22815682

  15. Structure-function analysis of myomaker domains required for myoblast fusion.

    PubMed

    Millay, Douglas P; Gamage, Dilani G; Quinn, Malgorzata E; Min, Yi-Li; Mitani, Yasuyuki; Bassel-Duby, Rhonda; Olson, Eric N

    2016-02-23

    During skeletal muscle development, myoblasts fuse to form multinucleated myofibers. Myomaker [Transmembrane protein 8c (TMEM8c)] is a muscle-specific protein that is essential for myoblast fusion and sufficient to promote fusion of fibroblasts with muscle cells; however, the structure and biochemical properties of this membrane protein have not been explored. Here, we used CRISPR/Cas9 mutagenesis to disrupt myomaker expression in the C2C12 muscle cell line, which resulted in complete blockade to fusion. To define the functional domains of myomaker required to direct fusion, we established a heterologous cell-cell fusion system, in which fibroblasts expressing mutant versions of myomaker were mixed with WT myoblasts. Our data indicate that the majority of myomaker is embedded in the plasma membrane with seven membrane-spanning regions and a required intracellular C-terminal tail. We show that myomaker function is conserved in other mammalian orthologs; however, related family members (TMEM8a and TMEM8b) do not exhibit fusogenic activity. These findings represent an important step toward deciphering the cellular components and mechanisms that control myoblast fusion and muscle formation.

  16. Bisphenol A and estradiol impede myoblast differentiation through down-regulating Akt signaling pathway.

    PubMed

    Go, Ga-Yeon; Lee, Sang-Jin; Jo, Ayoung; Lee, Jae-Rin; Kang, Jong-Sun; Yang, Mihi; Bae, Gyu-Un

    2018-04-20

    Bisphenol A (BPA), one of the most widespread endocrine disrupting chemicals, is known as an artificial estrogen, which interacts with estrogen receptor (ER). In this study, we investigated the effects of BPA and estradiol on myoblast differentiation and the underlying signaling mechanism. Exposure to BPA (0.01-1 μM) in mouse myoblast C2C12 cells attenuated myogenic differentiation via the reduced expression of muscle-specific genes, such as myosin heavy chain (MHC), MyoD, and Myogenin, without the alteration of cell proliferation and viability. BPA-exposed C2C12 myoblasts also showed a reduction of Akt phosphorylation ((37-61) %, p < 0.001), a key event for myogenesis. Similarly to BPA, estradiol (0.01-1 μM) reduced the expression of muscle-specific proteins and the formation of multinucleated myotubes, and attenuated the muscle differentiation-specific phosphorylation of Akt ((42-59) %, p < 0.001). We conclude that BPA and estradiol suppress myogenic differentiation through the inhibition of Akt signaling. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The C. elegans SoxC protein SEM-2 opposes differentiation factors to promote a proliferative blast cell fate in the postembryonic mesoderm

    PubMed Central

    Tian, Chenxi; Shi, Herong; Colledge, Clark; Stern, Michael; Waterston, Robert; Liu, Jun

    2011-01-01

    The proper development of multicellular organisms requires precise regulation and coordination of cell fate specification, cell proliferation and differentiation. Abnormal regulation and coordination of these processes could lead to disease, including cancer. We have examined the function of the sole C. elegans SoxC protein, SEM-2, in the M lineage, which produces the postembryonic mesoderm. We found that SEM-2/SoxC is both necessary and sufficient to promote a proliferating blast cell fate, the sex myoblast fate, over a differentiated striated bodywall muscle fate. A number of factors control the specific expression of sem-2 in the sex myoblast precursors and their descendants. This includes direct control of sem-2 expression by a Hox-PBC complex. The crucial nature of the HOX/PBC factors in directly enhancing expression of this proliferative factor in the C. elegans M lineage suggests a possible more general link between Hox-PBC factors and SoxC proteins in regulating cell proliferation. PMID:21307099

  18. Leptin rapidly activates PPARs in C2C12 muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bendinelli, Paola; Piccoletti, Roberta; Maroni, Paola

    2005-07-08

    Experimental evidence suggests that leptin operates on the tissues, including skeletal muscle, also by modulating gene expression. Using electrophoretic mobility shift assays, we have shown that physiological doses of leptin promptly increase the binding of C2C12 cell nuclear extracts to peroxisome proliferator-activated receptor (PPAR) response elements in oligonucleotide probes and that all three PPAR isoforms participate in DNA-binding complexes. We pre-treated C2C12 cells with AACOCF{sub 3}, a specific inhibitor of cytosolic phospholipase A{sub 2} (cPLA{sub 2}), an enzyme that supplies ligands to PPARs, and found that it abrogates leptin-induced PPAR DNA-binding activity. Leptin treatment significantly increased cPLA{sub 2} activity, evaluatedmore » as the release of [{sup 3}H]arachidonic acid from pre-labelled C2C12 cells, as well as phosphorylation. Further, using MEK1 inhibitor PD-98059 we showed that leptin activates cPLA{sub 2} through ERK induction. These results support a direct effect of leptin on skeletal muscle cells, and suggest that the hormone may modulate muscle transcription also by precocious activation of PPARs through ERK-cPLA{sub 2} pathway.« less

  19. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation

    PubMed Central

    Xie, Meihua; Wang, Ling; Guo, Baolin; Wang, Zhong; Chen, Y. Eugene; Ma, Peter X.

    2015-01-01

    Myotube formation is crucial to restoring muscular functions, and biomaterials that enhance the myoblast differentiation into myotubes are highly desirable for muscular repair. Here, we report the synthesis of electroactive, ductile, and degradable copolymers and their application in enhancing the differentiation of myoblasts to myotubes. A hyperbranched ductile polylactide (HPLA) was synthesized and then copolymerized with aniline tetramer (AT) to produce a series of electroactive, ductile and degradable copolymers (HPLAAT). The HPLA and HPLAAT showed excellent ductility with strain to failure from 158.9% to 42.7% and modulus from 265.2 to 758.2 MPa. The high electroactivity of the HPLAAT was confirmed by UV spectrometer and cyclic voltammogram measurements. These HPLAAT polymers also showed improved thermal stability and controlled biodegradation rate compared to HPLA. Importantly, when applying these polymers for myotube formation, the HPLAAT significantly improved the proliferation of C2C12 myoblasts in vitro compared to HPLA. Furthermore, these polymers greatly promoted myogenic differentiation of C2C12 cells as measured by quantitative analysis of myotube number, length, diameter, maturation index, and gene expression of MyoD and TNNT. Together, our study shows that these electroactive, ductile and degradable HPLAAT copolymers represent significantly improved biomaterials for muscle tissue engineering compared to HPLA. PMID:26335860

  20. Dietary resveratrol confers apoptotic resistance to oxidative stress in myoblasts.

    PubMed

    Haramizu, Satoshi; Asano, Shinichi; Butler, David C; Stanton, David A; Hajira, Ameena; Mohamed, Junaith S; Alway, Stephen E

    2017-12-01

    High levels of reactive oxygen species (ROS) contribute to muscle cell death in aging and disuse. We have previously found that resveratrol can reduce oxidative stress in response to aging and hindlimb unloading in rodents in vivo, but it was not known if resveratrol would protect muscle stem cells during repair or regeneration when oxidative stress is high. To test the protective role of resveratrol on muscle stem cells directly, we treated the C2C12 mouse myoblast cell line with moderate (100 μM) or very high (1 mM) levels of H 2 O 2 in the presence or absence of resveratrol. The p21 promoter activity declined in myoblasts in response to high ROS, and this was accompanied a greater nuclear to cytoplasmic translocation of p21 in a dose-dependent matter in myoblasts as compared to myotubes. Apoptosis, as indicated by TdT-mediated dUTP nick-end labeling, was greater in C2C12 myoblasts as compared to myotubes (P<.05) after treatment with H 2 O 2 . Caspase-9, -8 and -3 activities were elevated significantly (P<.05) in myoblasts treated with H 2 O 2 . Myoblasts were more susceptible to ROS-induced oxidative stress than myotubes. We treated C2C12 myoblasts with 50 μM of resveratrol for periods up to 48 h to determine if myoblasts could be rescued from high-ROS-induced apoptosis by resveratrol. Resveratrol reduced the apoptotic index and significantly reduced the ROS-induced caspase-9, -8 and -3 activity in myoblasts. Furthermore, Bcl-2 and the Bax/Bcl-2 ratio were partially rescued in myoblasts by resveratrol treatment. Similarly, muscle stem cells isolated from mouse skeletal muscles showed reduced Sirt1 protein abundance with H 2 O 2 treatment, but this could be reversed by resveratrol. Reduced apoptotic susceptibility in myoblasts as compared to myotubes to ROS is regulated, at least in part, by enhanced p21 promoter activity and nuclear p21 location in myotubes. Resveratrol confers further protection against ROS by improving Sirt1 levels and increasing antioxidant

  1. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Weiwei; Wei, Wei; Yu, Shigang

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1more » preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes. - Highlights: • C2C12 myotubes inhibited proliferation and differentiation of 3T3-L1 preadipocytes. • C2C12 myotubes arrested cell cycle of 3T3-L1 preadipocytes. • C2C12 myotubes induced apoptosis of 3T3-L1 preadipocytes. • C2C12 inhibit 3T3-L1 cells by reducing the expression of glucocorticoid receptor gene.« less

  2. Degree of Suppression of Mouse Myoblast Cell Line C₂C12 Differentiation Varies According to Chondroitin Sulfate Subtype.

    PubMed

    Warita, Katsuhiko; Oshima, Nana; Takeda-Okuda, Naoko; Tamura, Jun-Ichi; Hosaka, Yoshinao Z

    2016-10-21

    Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a factor involved in the suppression of myogenic differentiation. CS comprises two repeating sugars and has different subtypes depending on the position and number of bonded sulfate groups. However, the effect of each subtype on myogenic differentiation remains unclear. In this study, we spiked cultures of C₂C 12 myoblasts, cells which are capable of undergoing skeletal muscle differentiation, with one of five types of CS (CS-A, -B, -C, -D, or -E) and induced differentiation over a fixed time. After immunostaining of the formed myotubes with an anti-MHC antibody, we counted the number of nuclei in the myotubes and then calculated the fusion index (FI) as a measure of myotube differentiation. The FI values of all the CS-treated groups were lower than the FI value of the control group, especially the group treated with CS-E, which displayed notable suppression of myotube formation. To confirm that the sugar chain in CS-E is important in the suppression of differentiation, chondroitinase ABC (ChABC), which catabolizes CS, was added to the media. The addition of ChABC led to the degradation of CS-E, and neutralized the suppression of myotube formation by CS-E. Collectively, it can be concluded that the degree of suppression of differentiation depends on the subtype of CS and that CS-E strongly suppresses myogenic differentiation. We conclude that the CS sugar chain has inhibitory action against myoblast cell fusion.

  3. Ndrg2 is a PGC-1α/ERRα target gene that controls protein synthesis and expression of contractile-type genes in C2C12 myotubes.

    PubMed

    Foletta, Victoria C; Brown, Erin L; Cho, Yoshitake; Snow, Rod J; Kralli, Anastasia; Russell, Aaron P

    2013-12-01

    The stress-responsive, tumor suppressor N-myc downstream-regulated gene 2 (Ndrg2) is highly expressed in striated muscle. In response to anabolic and catabolic signals, Ndrg2 is suppressed and induced, respectively, in mouse C2C12 myotubes. However, little is known about the mechanisms regulating Ndrg2 expression in muscle, as well as the biological role for Ndrg2 in differentiated myotubes. Here, we show that Ndrg2 is a target of a peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and estrogen-related receptor alpha (ERRα) transcriptional program and is induced in response to endurance exercise, a physiological stress known also to increase PGC-1α/ERRα activity. Analyses of global gene and protein expression profiles in C2C12 myotubes with reduced levels of NDRG2, suggest that NDRG2 affects muscle growth, contractile properties, MAPK signaling, ion and vesicle transport and oxidative phosphorylation. Indeed, suppression of NDRG2 in myotubes increased protein synthesis and the expression of fast glycolytic myosin heavy chain isoforms, while reducing the expression of embryonic myosin Myh3, other contractile-associated genes and the MAPK p90 RSK1. Conversely, enhanced expression of NDRG2 reduced protein synthesis, and furthermore, partially blocked the increased protein synthesis rates elicited by a constitutively active form of ERRα. In contrast, suppressing or increasing levels of NDRG2 did not affect mRNA expression of genes involved in mitochondrial biogenesis that are regulated by PGC-1α or ERRα. This study shows that in C2C12 myotubes Ndrg2 is a novel PGC-1α/ERRα transcriptional target, which influences protein turnover and the regulation of genes involved in muscle contraction and function. © 2013 Elsevier B.V. All rights reserved.

  4. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy.

    PubMed

    Muratore, Massimo; Srsen, Vlastimil; Waterfall, Martin; Downes, Andrew; Pethig, Ronald

    2012-09-01

    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account.

  5. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy

    PubMed Central

    Muratore, Massimo; Srsen, Vlastimil; Waterfall, Martin; Downes, Andrew; Pethig, Ronald

    2012-01-01

    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account. PMID:23940503

  6. Inward relocation of exogenous phosphatidylserine triggered by IGF-1 in non-apoptotic C2C12 cells is concentration dependent.

    PubMed

    Rauch, Cyril; Loughna, Paul T

    2005-01-01

    The plasma membrane is composed of two leaflets that are asymmetric with regard to their phospholipid composition with phosphatidylserine (PS) predominantly located within the inner leaflet whereas other phospholipids such as phosphatidylcholine (PC) are preferentially located in the outer leaflet. An intimate relationship between cellular physiology and the composition of the plasma membrane has been demonstrated, with for example apoptosis requiring PS exposure for macrophage recognition. In skeletal muscle development, differentiation also requires PS exposure in myoblasts to create cell-cell contact areas allowing the formation of multinucleate myotubes. Although it is clearly established that membrane composition/asymmetry plays an important role in cellular physiology, the role of cytokines in regulating this asymmetry is still unclear. When incubated with myoblasts, insulin-like growth factor I (IGF-1) has been shown to promote proliferation versus differentiation in a concentration dependent manner and therefore, may be a potential candidate regulating cell membrane asymmetry. We show, in non-apoptotic C2C12 cells, that relocation of an exogenous PS analogue, from the outer into the inner leaflet, is accelerated by IGF-1 in a concentration-dependent manner and that maintenance of membrane asymmetry triggered by IGF-1 is however independent of the PI3K inhibitor wortmannin. Copyright (c) 2005 John Wiley & Sons, Ltd.

  7. Classification of C2C12 cells at differentiation by convolutional neural network of deep learning using phase contrast images.

    PubMed

    Niioka, Hirohiko; Asatani, Satoshi; Yoshimura, Aina; Ohigashi, Hironori; Tagawa, Seiichi; Miyake, Jun

    2018-01-01

    In the field of regenerative medicine, tremendous numbers of cells are necessary for tissue/organ regeneration. Today automatic cell-culturing system has been developed. The next step is constructing a non-invasive method to monitor the conditions of cells automatically. As an image analysis method, convolutional neural network (CNN), one of the deep learning method, is approaching human recognition level. We constructed and applied the CNN algorithm for automatic cellular differentiation recognition of myogenic C2C12 cell line. Phase-contrast images of cultured C2C12 are prepared as input dataset. In differentiation process from myoblasts to myotubes, cellular morphology changes from round shape to elongated tubular shape due to fusion of the cells. CNN abstract the features of the shape of the cells and classify the cells depending on the culturing days from when differentiation is induced. Changes in cellular shape depending on the number of days of culture (Day 0, Day 3, Day 6) are classified with 91.3% accuracy. Image analysis with CNN has a potential to realize regenerative medicine industry.

  8. CD36 is required for myoblast fusion during myogenic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Seung-Yoon; Yun, Youngeun; Kim, In-San, E-mail: iskim@knu.ac.kr

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer CD36 expression was induced during myogenic differentiation. Black-Right-Pointing-Pointer CD36 expression was localized in multinucleated myotubes. Black-Right-Pointing-Pointer The expression of myogenic markers is attenuated in CD36 knockdown C2C12 cells. Black-Right-Pointing-Pointer Knockdown of CD36 significantly inhibited myotube formation during differentiation. -- Abstract: Recently, CD36 has been found to be involved in the cytokine-induced fusion of macrophage. Myoblast fusion to form multinucleated myotubes is required for myogenesis and muscle regeneration. Because a search of gene expression database revealed the attenuation of CD36 expression in the muscles of muscular dystrophy patients, the possibility that CD36 could be required for myoblast fusion wasmore » investigated. CD36 expression was markedly up-regulated during myoblast differentiation and localized in multinucleated myotubes. Knockdown of endogenous CD36 significantly decreased the expression of myogenic markers as well as myotube formation. These results support the notion that CD36 plays an important role in cell fusion during myogenic differentiation. Our finding will aid the elucidation of the common mechanism governing cell-to-cell fusion in various fusion models.« less

  9. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation.

    PubMed

    Xie, Meihua; Wang, Ling; Guo, Baolin; Wang, Zhong; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Myotube formation is crucial to restoring muscular functions, and biomaterials that enhance the myoblast differentiation into myotubes are highly desirable for muscular repair. Here, we report the synthesis of electroactive, ductile, and degradable copolymers and their application in enhancing the differentiation of myoblasts to myotubes. A hyperbranched ductile polylactide (HPLA) was synthesized and then copolymerized with aniline tetramer (AT) to produce a series of electroactive, ductile and degradable copolymers (HPLAAT). The HPLA and HPLAAT showed excellent ductility with strain to failure from 158.9% to 42.7% and modulus from 265.2 to 758.2 MPa. The high electroactivity of the HPLAAT was confirmed by UV spectrometer and cyclic voltammogram measurements. These HPLAAT polymers also showed improved thermal stability and controlled biodegradation rate compared to HPLA. Importantly, when applying these polymers for myotube formation, the HPLAAT significantly improved the proliferation of C2C12 myoblasts in vitro compared to HPLA. Furthermore, these polymers greatly promoted myogenic differentiation of C2C12 cells as measured by quantitative analysis of myotube number, length, diameter, maturation index, and gene expression of MyoD and TNNT. Together, our study shows that these electroactive, ductile and degradable HPLAAT copolymers represent significantly improved biomaterials for muscle tissue engineering compared to HPLA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The multifunctional RNA-binding protein hnRNPK is critical for the proliferation and differentiation of myoblasts.

    PubMed

    Xu, Yongjie; Li, Rui; Zhang, Kaili; Wu, Wei; Wang, Suying; Zhang, Pengpeng; Xu, Haixia

    2018-06-14

    HnRNPK is a multifunctional protein that participates in chromatin remodeling, transcrip-tion, RNA splicing, mRNA stability and translation. Here, we uncovered the function of hnRNPK in regulating the proliferation and differentiation of myoblasts. hnRNPK was mutated in the C2C12 myoblast cell line using the CRISPR/Cas9 system. A decreased proliferation rate was observed in hnRNPK-mutated cells, suggesting an impaired prolif-eration phenotype. Furthermore, increased G2/M phase, decreased S phase and increased sub-G1 phase cells were detected in the hnRNPK-mutated cell lines. The expression analysis of key cell cycle regulators indicated mRNA of Cyclin A2 was significantly in-creased in the mutant myoblasts compared to the control cells, while Cyclin B1, Cdc25b and Cdc25c were decreased sharply. In addition to the myoblast proliferation defect, the mutant cells exhibited defect in myotube formation. The myotube formation marker, my-osin heavy chain (MHC), was decreased sharply in hnRNPK-mutated cells compared to control myoblasts during differentiation. The deficiency in hnRNPK also resulted in the repression of Myog expression, a key myogenic regulator during differentiation. Together, our data demonstrate that hnRNPK is required for myoblast proliferation and differentia-tion and may be an essential regulator of myoblast function.

  11. Dehydrogenation reactions of cyclic C(2)B(2)N(2)H(12) and C(4)BNH(12) isomers.

    PubMed

    Matus, Myrna H; Liu, Shih-Yuan; Dixon, David A

    2010-02-25

    The energetics for different dehydrogenation pathways of C(2)B(2)N(2)H(12) and C(4)BNH(12) cycles were calculated at the B3LYP/DGDZVP2 and G3(MP2) levels with additional calculations at the CCSD(T)/complete basis set level. The heats of formation of the different isomers were calculated from the G3(MP2) relative energies and the heats of formation of the most stable isomers of c-C(2)B(2)N(2)H(6), c-C(2)B(2)N(2)H(12), and c-C(4)BNH(12) at the CCSD(T)/CBS including additional corrections together with the previously reported value for c-C(4)BNH(6). Different isomers were analyzed for c-C(2)B(2)N(2)H(x) and c-C(4)BNH(x) (x = 6 and 12), and the most stable cyclic structures were those with C-C-B-N-B-N and C-C-C-C-B-N sequences, respectively. The energetics for the stepwise loss of three H(2) were predicted, and the most feasible thermodynamic pathways were found. Dehydrogenation of the lowest energy c-C(2)B(2)N(2)H(12) isomer (6-H(12)) is almost thermoneutral with DeltaH(3dehydro) = 3.4 kcal/mol at the CCSD(T)/CBS level and -0.6 kcal/mol at the G3(MP2) level at 298 K. Dehydrogenation of the lowest energy c-C(4)BNH(12) isomer (7-H(12)) is endothermic with DeltaH(3dehydro) = 27.9 kcal/mol at the CCSD(T)/CBS level and 23.5 kcal/mol at the G3(MP2) level at 298 K. Dehydrogenation across the B-N bond is more favorable as opposed to dehydrogenation across the B-C, N-C, and C-C bonds. Resonance stabilization energies in relation to that of benzene are reported as are NICS NMR chemical shifts for correlating with the potential aromatic character of the rings.

  12. Notch3 and Mef2c Proteins Are Mutually Antagonistic via Mkp1 Protein and miR-1/206 MicroRNAs in Differentiating Myoblasts*

    PubMed Central

    Gagan, Jeffrey; Dey, Bijan K.; Layer, Ryan; Yan, Zhen; Dutta, Anindya

    2012-01-01

    The Notch signaling pathway is a well known regulator of skeletal muscle stem cells known as satellite cells. Loss of Notch1 signaling leads to spontaneous myogenic differentiation. Notch1, normally expressed in satellite cells, is targeted for proteasomal degradation by Numb during differentiation. A homolog of Notch1, Notch3, is also expressed in these cells but is not inhibited by Numb. We find that Notch3 is paradoxically up-regulated during the early stages of differentiation by an enhancer that requires both MyoD and activated Notch1. Notch3 itself strongly inhibits the myogenic transcription factor Mef2c, most likely by increasing the p38 phosphatase Mkp1, which inhibits the Mef2c activator p38 MAP kinase. Active Notch3 decreases differentiation. Mef2c, however, induces microRNAs miR-1 and miR-206, which directly down-regulate Notch3 and allow differentiation to proceed. Thus, the myogenic differentiation-induced microRNAs miR-1 and -206 are important for differentiation at least partly because they turn off Notch3. We suggest that the transient expression of Notch3 early in differentiation generates a temporal lag between myoblast activation by MyoD and terminal differentiation into myotubes directed by Mef2c. PMID:23055528

  13. SIRT2 negatively regulates insulin resistance in C2C12 skeletal muscle cells.

    PubMed

    Arora, Amita; Dey, Chinmoy Sankar

    2014-09-01

    SIRT2 is primarily a cytoplasmic protein deacetylase and is abundantly expressed in metabolically active tissues like adipocytes and brain. However, its role, if any, in regulating insulin signaling in skeletal muscle cells, is not known. We have examined the role of SIRT2 in insulin-mediated glucose disposal in normal and insulin resistant C2C12 skeletal muscle cells in vitro. SIRT2 was over expressed in insulin resistant skeletal muscle cells. Pharmacological inhibition of SIRT2 increased insulin-stimulated glucose uptake and improved phosphorylation of Akt and GSK3β in insulin resistant cells. Knockdown of endogenous SIRT2 and over expression of catalytically-inactive SIRT2 mutant under insulin-resistant condition showed similar amelioration of insulin sensitivity. Our results suggest that down-regulation of SIRT2 improved insulin sensitivity in skeletal muscle cells under insulin-resistant condition. Previously it has been reported that down-regulation of SIRT1 and SIRT3 in C2C12 cells results in impairment of insulin signaling and induces insulin resistance. However, we have observed an altogether different role of SIRT2 in skeletal muscle. This implicates a differential regulation of insulin resistance by sirtuins which otherwise share a conserved catalytic domain. The study significantly directs towards future approaches in targeting inhibition of SIRT2 for therapeutic treatment of insulin resistance which is the major risk factor in Type 2 diabetes. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Human Myoblast Fusion Requires Expression of Functional Inward Rectifier Kir2.1 Channels

    PubMed Central

    Fischer-Lougheed, Jacqueline; Liu, Jian-Hui; Espinos, Estelle; Mordasini, David; Bader, Charles R.; Belin, Dominique; Bernheim, Laurent

    2001-01-01

    Myoblast fusion is essential to skeletal muscle development and repair. We have demonstrated previously that human myoblasts hyperpolarize, before fusion, through the sequential expression of two K+ channels: an ether-à-go-go and an inward rectifier. This hyperpolarization is a prerequisite for fusion, as it sets the resting membrane potential in a range at which Ca2+ can enter myoblasts and thereby trigger fusion via a window current through α1H T channels. PMID:11352930

  15. Serum Amyloid A Induces Toll-Like Receptor 2-Dependent Inflammatory Cytokine Expression and Atrophy in C2C12 Skeletal Muscle Myotubes.

    PubMed

    Passey, Samantha L; Bozinovski, Steven; Vlahos, Ross; Anderson, Gary P; Hansen, Michelle J

    2016-01-01

    Skeletal muscle wasting is an important comorbidity of Chronic Obstructive Pulmonary Disease (COPD) and is strongly correlated with morbidity and mortality. Patients who experience frequent acute exacerbations of COPD (AECOPD) have more severe muscle wasting and reduced recovery of muscle mass and function after each exacerbation. Serum levels of the pro-inflammatory acute phase protein Serum Amyloid A (SAA) can rise more than 1000-fold in AECOPD and are predictively correlated with exacerbation severity. The direct effects of SAA on skeletal muscle are poorly understood. Here we have examined SAA effects on pro-inflammatory cachectic cytokine expression (IL-6 and TNFα) and atrophy in C2C12 myotubes. SAA increased IL-6 (31-fold) and TNFα (6.5-fold) mRNA levels compared to control untreated cells after 3h of SAA treatment, and increased secreted IL-6 protein at 24h. OxPAPC, a dual TLR2 and TLR4 inhibitor, reduced the response to SAA by approximately 84% compared to SAA alone, and the TLR2 neutralising antibody T2.5 abolished SAA-induced expression of IL-6, indicating that SAA signalling in C2C12 myotubes is primarily via TLR2. SAA also reduced myotube width by 10-13% and induced a 2.5-fold increase in the expression of the muscle atrophy gene Atrogin-1, suggesting direct effects of SAA on muscle wasting. Blocking of TLR2 inhibited the SAA-induced decrease in myotube width and Atrogin-1 gene expression, indicating that SAA induces atrophy through TLR2. These data demonstrate that SAA stimulates a robust pro-inflammatory response in skeletal muscle myotubes via the TLR2-dependent release of IL-6 and TNFα. Furthermore, the observed atrophy effects indicate that SAA could also be directly contributing to the wasting and poor recovery of muscle mass. Therapeutic strategies targeting this SAA-TLR2 axis may therefore ameliorate muscle wasting in AECOPD and a range of other inflammatory conditions associated with loss of muscle mass.

  16. Independent AMP and NAD signaling regulates C2C12 differentiation and metabolic adaptation.

    PubMed

    Hsu, Chia George; Burkholder, Thomas J

    2016-12-01

    The balance of ATP production and consumption is reflected in adenosine monophosphate (AMP) and nicotinamide adenine dinucleotide (NAD) content and has been associated with phenotypic plasticity in striated muscle. Some studies have suggested that AMPK-dependent plasticity may be an indirect consequence of increased NAD synthesis and SIRT1 activity. The primary goal of this study was to assess the interaction of AMP- and NAD-dependent signaling in adaptation of C2C12 myotubes. Changes in myotube developmental and metabolic gene expression were compared following incubation with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and nicotinamide mononucleotide (NMN) to activate AMPK- and NAD-related signaling. AICAR showed no effect on NAD pool or nampt expression but significantly reduced histone H3 acetylation and GLUT1, cytochrome C oxidase subunit 2 (COX2), and MYH3 expression. In contrast, NMN supplementation for 24 h increased NAD pool by 45 % but did not reduce histone H3 acetylation nor promote mitochondrial gene expression. The combination of AMP and NAD signaling did not induce further metabolic adaptation, but NMN ameliorated AICAR-induced myotube reduction. We interpret these results as indication that AMP and NAD contribute to C2C12 differentiation and metabolic adaptation independently.

  17. Low Oxygen Tension Enhances Expression of Myogenic Genes When Human Myoblasts Are Activated from G0 Arrest

    PubMed Central

    Sellathurai, Jeeva; Nielsen, Joachim; Hejbøl, Eva Kildall; Jørgensen, Louise Helskov; Dhawan, Jyotsna; Nielsen, Michael Friberg Bruun; Schrøder, Henrik Daa

    2016-01-01

    Objectives Most cell culture studies have been performed at atmospheric oxygen tension of 21%, however the physiological oxygen tension is much lower and is a factor that may affect skeletal muscle myoblasts. In this study we have compared activation of G0 arrested myoblasts in 21% O2 and in 1% O2 in order to see how oxygen tension affects activation and proliferation of human myoblasts. Materials and Methods Human myoblasts were isolated from skeletal muscle tissue and G0 arrested in vitro followed by reactivation at 21% O2 and 1% O2. The effect was assesses by Real-time RT-PCR, immunocytochemistry and western blot. Results and Conclusions We found an increase in proliferation rate of myoblasts when activated at a low oxygen tension (1% O2) compared to 21% O2. In addition, the gene expression studies showed up regulation of the myogenesis related genes PAX3, PAX7, MYOD, MYOG (myogenin), MET, NCAM, DES (desmin), MEF2A, MEF2C and CDH15 (M-cadherin), however, the fraction of DES and MYOD positive cells was not increased by low oxygen tension, indicating that 1% O2 may not have a functional effect on the myogenic response. Furthermore, the expression of genes involved in the TGFβ, Notch and Wnt signaling pathways were also up regulated in low oxygen tension. The differences in gene expression were most pronounced at day one after activation from G0-arrest, thus the initial activation of myoblasts seemed most sensitive to changes in oxygen tension. Protein expression of HES1 and β-catenin indicated that notch signaling may be induced in 21% O2, while the canonical Wnt signaling may be induced in 1% O2 during activation and proliferation of myoblasts. PMID:27442119

  18. Three-dimensional Myoblast Aggregates--Effects of Modeled Microgravity

    NASA Technical Reports Server (NTRS)

    Byerly, Diane; Sognier, M. A.; Marquette, M. L.

    2006-01-01

    The overall objective of these studies is to elucidate the molecular and cellular alterations that contribute to muscle atrophy in astronauts caused by exposure to microgravity conditions in space. To accomplish this, a three-dimensional model test system was developed using mouse myoblast cells (C2C12). Myoblast cells were grown as three-dimensional aggregates (without scaffolding or other solid support structures) in both modeled microgravity (Rotary Cell Culture System, Synthecon, Inc.) and at unit gravity in coated Petri dishes. Evaluation of H&E stained thin sections of the aggregates revealed the absence of any necrosis. Confocal microscopy evaluations of cells stained with the Live/Dead assay (Molecular Probes) confirmed that viable cells were present throughout the aggregates with an average of only three dead cells observed per aggregate. Preliminary results from gene array analysis (Affymetrix chip U74Av2) showed that approximately 14% of the genes were down regulated (decreased more than 3 fold) and 4% were upregulated in cells exposed to modeled microgravity for 12 hours compared to unit gravity controls. Additional studies using fluorescent phallacidin revealed a decrease in F-actin in the cells exposed to modeled microgravity compared to unit gravity. Myoblast cells grown as aggregates in modeled microgravity exhibited spontaneous differentiation into syncitia while no differentiation was seen in the unit gravity controls. These studies show that 1)the model test system developed is suitable for assessing cellular and molecular alterations in myoblasts; 2) gene expression alterations occur rapidly (within 12 hours) following exposure to modeled microgravity; and 3) modeled microgravity conditions stimulated myoblast cell differentiation. Achieving a greater understanding of the molecular alterations leading to muscle atrophy will eventually enable the development of cell-based countermeasures, which may be valuable for treatment of muscle diseases on

  19. Dehydroepiandrosterone activates AMP kinase and regulates GLUT4 and PGC-1α expression in C2C12 myotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokokawa, Takumi; Sato, Koji; Iwanaka, Nobumasa

    Exercise and caloric restriction (CR) have been reported to have anti-ageing, anti-obesity, and health-promoting effects. Both interventions increase the level of dehydroepiandrosterone (DHEA) in muscle and blood, suggesting that DHEA might partially mediate these effects. In addition, it is thought that either 5′-adenosine monophosphate-activated protein kinase (AMPK) or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mediates the beneficial effects of exercise and CR. However, the effects of DHEA on AMPK activity and PGC-1α expression remain unclear. Therefore, we explored whether DHEA in myotubes acts as an activator of AMPK and increases PGC-1α. DHEA exposure increased glucose uptake but not the phosphorylation levelsmore » of Akt and PKCζ/λ in C2C12 myotubes. In contrast, the phosphorylation levels of AMPK were elevated by DHEA exposure. Finally, we found that DHEA induced the expression of the genes PGC-1α and GLUT4. Our current results might reveal a previously unrecognized physiological role of DHEA; the activation of AMPK and the induction of PGC-1α by DHEA might mediate its anti-obesity and health-promoting effects in living organisms. - Highlights: • We assessed whether dehydroepiandrosterone (DHEA) activates AMPK and PGC-1α. • DHEA exposure increased glucose uptake in C2C12 myotubes. • The phosphorylation levels of AMPK were elevated by DHEA exposure. • DHEA induced the expression of the genes PGC-1α and GLUT4. • AMPK might mediate the anti-obesity and health-promoting effects of DHEA.« less

  20. Low-level infrared laser modulates muscle repair and chromosome stabilization genes in myoblasts.

    PubMed

    da Silva Neto Trajano, Larissa Alexsandra; Stumbo, Ana Carolina; da Silva, Camila Luna; Mencalha, Andre Luiz; Fonseca, Adenilson S

    2016-08-01

    Infrared laser therapy is used for skeletal muscle repair based on its biostimulative effect on satellite cells. However, shortening of telomere length limits regenerative potential in satellite cells, which occurs after each cell division cycle. Also, laser therapy could be more effective on non-physiologic tissues. This study evaluated low-level infrared laser exposure effects on mRNA expression from muscle injury repair and telomere stabilization genes in myoblasts in normal and stressful conditions. Laser fluences were those used in clinical protocols. C2C12 myoblast cultures were exposed to low-level infrared laser (10, 35, and 70 J/cm(2)) in standard or normal (10 %) and reduced (2 %) fetal bovine serum concentrations; total RNA was extracted for mRNA expression evaluation from muscle injury repair (MyoD and Pax7) and chromosome stabilization (TRF1 and TRF2) genes by real time quantitative polymerization chain reaction. Data show that low-level infrared laser increases the expression of MyoD and Pax7 in 10 J/cm(2) fluence, TRF1 expression in all fluences, and TRF2 expression in 70 J/cm(2) fluence in both 10 and 2 % fetal bovine serum. Low-level infrared laser increases mRNA expression from genes related to muscle repair and telomere stabilization in myoblasts in standard or normal and stressful conditions.

  1. Gene trapping in differentiating cell lines: regulation of the lysosomal protease cathepsin B in skeletal myoblast growth and fusion.

    PubMed

    Gogos, J A; Thompson, R; Lowry, W; Sloane, B F; Weintraub, H; Horwitz, M

    1996-08-01

    To identify genes regulated during skeletal muscle differentiation, we have infected mouse C2C12 myoblasts with retroviral gene trap vectors, containing a promoterless marker gene with a 5' splice acceptor signal. Integration of the vector adjacent to an actively transcribed gene places the marker under the transcriptional control of the endogenous gene, while the adjacent vector sequences facilitate cloning. The vector insertionally mutates the trapped locus and may also form fusion proteins with the endogenous gene product. We have screened several hundred clones, each containing a trapping vector integrated into a different endogenous gene. In agreement with previous estimates based on hybridization kinetics, we find that a large proportion of all genes expressed in myoblasts are regulated during differentiation. Many of these genes undergo unique temporal patterns of activation or repression during cell growth and myotube formation, and some show specific patterns of subcellular localization. The first gene we have identified with this strategy is the lysosomal cysteine protease cathepsin B. Expression from the trapped allele is upregulated during early myoblast fusion and downregulated in myotubes. A direct role for cathepsin B in myoblast growth and fusion is suggested by the observation that the trapped cells deficient in cathepsin B activity have an unusual morphology and reduced survival in low-serum media and undergo differentiation with impaired cellular fusion. The phenotype is reproduced by antisense cathepsin B expression in parental C2C12 myoblasts. The cellular phenotype is similar to that observed in cultured myoblasts from patients with I cell disease, in which there is diminished accumulation of lysosomal enzymes. This suggests that a specific deficiency of cathepsin B could contribute to the myopathic component of this illness.

  2. Overexpression of caveolin-3-enhanced protein synthesis rather than proteolysis inhibition in C2C12 myoblasts: relationship with myostatin activity.

    PubMed

    Hadj Sassi, Abdessattar; Monteil, Julien; Sauvant, Patrick; Atgié, Claude

    2012-12-01

    Caveolin-3 (cav-3), which is involved in the regulation of signal transduction and vesicular trafficking, could interact with activin receptor IIB to inhibit myostatin (MSTN) activity and may therefore play a role in muscle development and hypertrophy. MSTN is a member of the transforming growth factor-β family, identified as a negative regulator of skeletal muscle mass. The expression of MSTN is fiber-type specific and the greatest amount of MSTN is present in fiber, which is composed of myosin heavy chain (MHC) type IIb. MSTN acts through the activin receptor IIB to activate smad2/3 which leads to an increase in gene transcription involved in muscle atrophy. Muscle hypertrophy is a consequence of two mechanisms: (1) the inhibition of proteolysis such as the calcium-dependent proteolytic system calpains and calpastatin and (2) an increase in protein synthesis through the Akt/mTOR/p70s6K pathway. In order to determine which of the two processes predominates in inhibition of MSTN activity in a cav-3 context, we transfected a C2C12 cell line with plasmids containing mstn or cav-3 wild genes. The results reported in this study demonstrate that inhibition of MSTN activity by overexpression of cav-3 induces an activation of protein synthesis rather than an inhibition of proteolysis through the calcium proteolytic system. The inhibition of phosphorylation of smad-3 due to overexpression of cav-3 causes an increase in the phosphorylation of the ribosomal protein S6, promoting the synthesis of MHC type II, probably through activation of Akt/mTOR/p70s6K. These data highlight the role of protein synthesis as the predominant mechanism in muscle hypertrophy observed when the expression of MSTN is altered and confirm the value of studying the physiological role of MSTN in the growing processes of skeletal muscle.

  3. 1α,25(OH)2-Vitamin D3 Inhibits C2C12 Cell Differentiation by Activating c-Src and ERK1/2.

    PubMed

    Wang, Zhonghua; Jiang, Aijun; Mei, Jingwei; Zhang, Xinyan

    2018-05-01

    The steroid hormone 1α,25(OH)2-vitamin D3 (1,25-D3) induced some biological responses through activation of MAPK cascades in various cell types. It seems that 1,25-D3 plays different roles at different stages of proliferating, differentiating, and differentiated C2C12 cells. We wanted to detect the effect of 1,25-D3 on myogenic differentiation and the role of ERK1/2 in differentiating stage induced by 2% horse serum with 1,25-D3. In this study, cells were induced to differentiate with 2% horse serum until the 7th day (with addition of 1,25-D3 every two days). The protein level of MHC (myosin heavy chain) and phosphorylation level of Src and ERK1/2 were determined with western blot. U0126 (MEK inhibitor) and PP2 (Src specific inhibitor) were used to confirm the relationship between 1,25-D3, MHC, Src, and ERK1/2. 1,25-D3 inhibited differentiation of C2C12 cells and fusion of myotubes by phosphorylating and activating Src and ERK1/2. Phosphorylation of ERK1/2 was inhibited, not only by U0126 but also by PP2 (a Src specific inhibitor) which led to the promotion of differentiation of C2C12 cells; however, U0126 did not inhibit Src phosphorylation. These results suggested that 1,25-D3 possibly inhibited C2C12 differentiation through Src and ERK1/2, and Src played an upstream role in this signaling pathway.

  4. Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs. irreversible arrest.

    PubMed

    Subramaniam, Sindhu; Sreenivas, Prethish; Cheedipudi, Sirisha; Reddy, Vatrapu Rami; Shashidhara, Lingadahalli Subrahmanya; Chilukoti, Ravi Kumar; Mylavarapu, Madhavi; Dhawan, Jyotsna

    2014-01-01

    Most cells in adult mammals are non-dividing: differentiated cells exit the cell cycle permanently, but stem cells exist in a state of reversible arrest called quiescence. In damaged skeletal muscle, quiescent satellite stem cells re-enter the cell cycle, proliferate and subsequently execute divergent programs to regenerate both post-mitotic myofibers and quiescent stem cells. The molecular basis for these alternative programs of arrest is poorly understood. In this study, we used an established myogenic culture model (C2C12 myoblasts) to generate cells in alternative states of arrest and investigate their global transcriptional profiles. Using cDNA microarrays, we compared G0 myoblasts with post-mitotic myotubes. Our findings define the transcriptional program of quiescent myoblasts in culture and establish that distinct gene expression profiles, especially of tumour suppressor genes and inhibitors of differentiation characterize reversible arrest, distinguishing this state from irreversibly arrested myotubes. We also reveal the existence of a tissue-specific quiescence program by comparing G0 C2C12 myoblasts to isogenic G0 fibroblasts (10T1/2). Intriguingly, in myoblasts but not fibroblasts, quiescence is associated with a signature of Wnt pathway genes. We provide evidence that different levels of signaling via the canonical Wnt pathway characterize distinct cellular states (proliferation vs. quiescence vs. differentiation). Moderate induction of Wnt signaling in quiescence is associated with critical properties such as clonogenic self-renewal. Exogenous Wnt treatment subverts the quiescence program and negatively affects clonogenicity. Finally, we identify two new quiescence-induced regulators of canonical Wnt signaling, Rgs2 and Dkk3, whose induction in G0 is required for clonogenic self-renewal. These results support the concept that active signal-mediated regulation of quiescence contributes to stem cell properties, and have implications for pathological

  5. Hydro-ethanolic extract of cashew tree (Anacardium occidentale) nut and its principal compound, anacardic acid, stimulate glucose uptake in C2C12 muscle cells.

    PubMed

    Tedong, Leonard; Madiraju, Padma; Martineau, Louis C; Vallerand, Diane; Arnason, John T; Desire, Dzeufiet D P; Lavoie, Louis; Kamtchouing, Pierre; Haddad, Pierre S

    2010-12-01

    Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. The anti-diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroethanolic extract of cashew seed (CSE) and its active component, anacardic acid (AA), stimulated glucose transport into C2C12 myotubes in a concentration-dependent manner. Extracts of other parts (leaves, bark and apple) of cashew plant were inactive. Significant synergistic effect on glucose uptake with insulin was noticed at 100 μg/mL CSE. CSE and AA caused activation of adenosine monophosphate-activated protein kinase in C2C12 myotubes after 6 h of incubation. No significant effect was noticed on Akt and insulin receptor phosphorylation. Both CSE and AA exerted significant uncoupling of succinate-stimulated respiration in rat liver mitochondria. Activation of adenosine monophosphate-activated protein kinase by CSE and AA likely increases plasma membrane glucose transporters, resulting in elevated glucose uptake. In addition, the dysfunction of mitochondrial oxidative phosphorylation may enhance glycolysis and contribute to increased glucose uptake. These results collectively suggest that CSE may be a potential anti-diabetic nutraceutical. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ankyrin Repeat Domain Protein 2 and Inhibitor of DNA Binding 3 Cooperatively Inhibit Myoblast Differentiation by Physical Interaction*

    PubMed Central

    Mohamed, Junaith S.; Lopez, Michael A.; Cox, Gregory A.; Boriek, Aladin M.

    2013-01-01

    Ankyrin repeat domain protein 2 (ANKRD2) translocates from the nucleus to the cytoplasm upon myogenic induction. Overexpression of ANKRD2 inhibits C2C12 myoblast differentiation. However, the mechanism by which ANKRD2 inhibits myoblast differentiation is unknown. We demonstrate that the primary myoblasts of mdm (muscular dystrophy with myositis) mice (pMBmdm) overexpress ANKRD2 and ID3 (inhibitor of DNA binding 3) proteins and are unable to differentiate into myotubes upon myogenic induction. Although suppression of either ANKRD2 or ID3 induces myoblast differentiation in mdm mice, overexpression of ANKRD2 and inhibition of ID3 or vice versa is insufficient to inhibit myoblast differentiation in WT mice. We identified that ANKRD2 and ID3 cooperatively inhibit myoblast differentiation by physical interaction. Interestingly, although MyoD activates the Ankrd2 promoter in the skeletal muscles of wild-type mice, SREBP-1 (sterol regulatory element binding protein-1) activates the same promoter in the skeletal muscles of mdm mice, suggesting the differential regulation of Ankrd2. Overall, we uncovered a novel pathway in which SREBP-1/ANKRD2/ID3 activation inhibits myoblast differentiation, and we propose that this pathway acts as a critical determinant of the skeletal muscle developmental program. PMID:23824195

  7. Assessment of myoblast circular RNA dynamics and its correlation with miRNA during myogenic differentiation.

    PubMed

    Zhang, Pengpeng; Xu, Haixia; Li, Rui; Wu, Wei; Chao, Zhe; Li, Cencen; Xia, Wei; Wang, Lei; Yang, Jinzeng; Xu, Yongjie

    2018-06-01

    Myoblast differentiation is a highly complex process that is regulated by proteins as well as by non-coding RNAs. Circular RNAs have been identified as an emerging new class of non-coding RNA in the modulation of skeletal muscle development, whereas their expression profiles and functional regulation in myoblast differentiation remain unknown. In the present study, we performed deep RNA-sequencing of C2C12 myoblasts during cell differentiation and uncovered 37,751 unique circular RNAs derived from 6943 hosting genes. The ensuing qRT-PCR and RNA fluorescence in situ hybridization verification were carried out to confirm the RNA-sequencing results. An unbiased analysis demonstrated dynamic circular RNA expression changes in the process of myoblast differentiation, and the circular RNA abundances were independent from their cognate linear RNAs. Gene ontology analysis showed that many down-regulated circular RNAs were exclusive to cell division and the cell cycle, whereas up-regulated circular RNAs were related to the cell development process. Furthermore, interaction networks of circular RNA-microRNA were constructed. Several microRNAs well-known for myoblast regulation, such as miR-133, miR-24 and miR-23a, were in this network. In summary, this study showed that circular RNA expression dynamics changed during myoblast differentiation. Circular RNAs play a role in regulating the myoblast cell cycle and development by acting as microRNA binding sites to facilitate their regulation of gene expression during myoblast differentiation. These findings open a new avenue for future investigation of this emerging RNA class in skeletal muscle growth and development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype

    PubMed Central

    Kato, Satoshi; Tomita, Katsuro; Titus, Louisa; Boden, Scott D.

    2011-01-01

    There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1−/− knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored. PMID:21110071

  9. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype.

    PubMed

    Kato, Satoshi; Sangadala, Sreedhara; Tomita, Katsuro; Titus, Louisa; Boden, Scott D

    2011-03-01

    There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1-/- knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored.

  10. IL-12-dependent inducible expression of the CD94/NKG2A inhibitory receptor regulates CD94/NKG2C+ NK cell function.

    PubMed

    Sáez-Borderías, Andrea; Romo, Neus; Magri, Giuliana; Gumá, Mónica; Angulo, Ana; López-Botet, Miguel

    2009-01-15

    The inhibitory CD94/NKG2A and activating CD94/NKG2C killer lectin-like receptors specific for HLA-E have been reported to be selectively expressed by discrete NK and T cell subsets. In the present study, minor proportions of NK and T cells coexpressing both CD94/NKG2A and CD94/NKG2C were found in fresh peripheral blood from adult blood donors. Moreover, CD94/NKG2A surface expression was transiently detected upon in vitro stimulation of CD94/NKG2C+ NK cells in the presence of irradiated allogeneic PBMC or rIL-12. A similar effect was observed upon coculture of NKG2C+ NK clones with human CMV-infected autologous dendritic cell cultures, and it was prevented by an anti-IL-12 mAb. NKG2A inhibited the cytolytic activity of NKG2C+ NK clones upon engagement either by a specific mAb or upon interaction with a transfectant of the HLA class I-deficient 721.221 cell line expressing HLA-E. These data indicate that beyond its constitutive expression by an NK cell subset, NKG2A may be also transiently displayed by CD94/NKG2C+ NK cells under the influence of IL-12, providing a potential negative regulatory feedback mechanism.

  11. Efficacy and site-specificity of adenoviral vector integration mediated by the phage φC31 integrase.

    PubMed

    Robert, Marc-André; Zeng, Yue; Raymond, Benoît; Desfossé, Laurie; Mairey, Emilie; Tremblay, Jacques P; Massie, Bernard; Gilbert, Rénald

    2012-12-01

    Adenoviral vectors deleted of all their viral genes (helper-dependent [HD]) are efficient gene-transfer vehicles. Because transgene expression is rapidly lost in actively dividing cells, we investigated the feasibility of using phage φC31 integrase (φC31-Int) to integrate an HD carrying an attB site and the puromycin resistance gene into human cells (HeLa) and murine myoblasts (C2C12) by co-infection with a second HD-expressing φC31-Int. Because the HD genome is linear, we also investigated whether its circularization, through expression of Cre using a third HD, affects integration. Efficacy and specificity were determined by scoring the number of puromycin-resistant colonies and by sequencing integration sites. Unexpectedly, circularization of HD was unnecessary and it even reduced the integration efficacy. The maximum integration efficacy achieved was 0.5% in HeLa cells and 0.1% in C2C12 myoblasts. Up to 76% of the integration events occurred at pseudo attP sites and previously characterized hotspots were found. A small (two- to three-fold) increase in the number of γ-H2AX positive foci, accompanied by no noticeable change in γ-H2AX expression, indicated the low genotoxicity of φC31-Int. In conclusion, integration of HD mediated by φC31-Int is an attractive alternative to engineer cells, because it permits site-specific integration of large DNA fragments with low genotoxicity.

  12. Downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes

    PubMed Central

    Huang, Shujuan; Huang, Suling; Wang, Xi; Zhang, Qingli; Liu, Jia; Leng, Ying

    2017-01-01

    Dysregulation of lipid metabolism in skeletal muscle is involved in the development of insulin resistance. Mutations in lipin-1, a key lipid metabolism regulator leads to significant systemic insulin resistance in fld mice. However, the function of lipin-1 on lipid metabolism and insulin sensitivity in skeletal muscle is still unclear. Herein we demonstrated that downregulation of lipin-1 in C2C12 myotubes by siRNA transfection suppressed insulin action, characterized by reduced insulin stimulated Akt phosphorylation and glucose uptake. Correspondingly, decreased lipin-1 expression was observed in palmitate-induced insulin resistance in C2C12 myotubes, suggested that lipin-1 might play a role in the etiology of insulin resistance in skeletal muscle. The insulin resistance induced by lipin-1 downregulation was related to the disturbance of lipid homeostasis. Lipin-1 silencing reduced intracellular DAG and TAG levels, but elevated ceramide accumulation in C2C12 myotubes. Moreover, the impaired insulin stimulated Akt phosphorylation and glucose uptake caused by lipin-1 silencing could be blocked by the pretreatment with SPT inhibitor myriocin, ceramide synthase inhibitor FB1, or PP2A inhibitor okadaic acid, suggested that the increased ceramide accumulation might be responsible for the development of insulin resistance induced by lipin-1 silencing in C2C12 myotubes. Meanwhile, decreased lipin-1 expression also impaired mitochondrial function in C2C12 myotubes. Therefore, our study suggests that lipin-1 plays an important role in lipid metabolism and downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes. These results offer a molecular insight into the role of lipin-1 in the development of insulin resistance in skeletal muscle. PMID:28123341

  13. Downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes.

    PubMed

    Huang, Shujuan; Huang, Suling; Wang, Xi; Zhang, Qingli; Liu, Jia; Leng, Ying

    2017-01-01

    Dysregulation of lipid metabolism in skeletal muscle is involved in the development of insulin resistance. Mutations in lipin-1, a key lipid metabolism regulator leads to significant systemic insulin resistance in fld mice. However, the function of lipin-1 on lipid metabolism and insulin sensitivity in skeletal muscle is still unclear. Herein we demonstrated that downregulation of lipin-1 in C2C12 myotubes by siRNA transfection suppressed insulin action, characterized by reduced insulin stimulated Akt phosphorylation and glucose uptake. Correspondingly, decreased lipin-1 expression was observed in palmitate-induced insulin resistance in C2C12 myotubes, suggested that lipin-1 might play a role in the etiology of insulin resistance in skeletal muscle. The insulin resistance induced by lipin-1 downregulation was related to the disturbance of lipid homeostasis. Lipin-1 silencing reduced intracellular DAG and TAG levels, but elevated ceramide accumulation in C2C12 myotubes. Moreover, the impaired insulin stimulated Akt phosphorylation and glucose uptake caused by lipin-1 silencing could be blocked by the pretreatment with SPT inhibitor myriocin, ceramide synthase inhibitor FB1, or PP2A inhibitor okadaic acid, suggested that the increased ceramide accumulation might be responsible for the development of insulin resistance induced by lipin-1 silencing in C2C12 myotubes. Meanwhile, decreased lipin-1 expression also impaired mitochondrial function in C2C12 myotubes. Therefore, our study suggests that lipin-1 plays an important role in lipid metabolism and downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes. These results offer a molecular insight into the role of lipin-1 in the development of insulin resistance in skeletal muscle.

  14. Curcumin enhances the mitomycin C-induced cytotoxicity via downregulation of MKK1/2-ERK1/2-mediated Rad51 expression in non-small cell lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, Jen-Chung; Department of Nursing, Yuanpei University, HsinChu, Taiwan; Graduate Institute of Technology Law, National Chiao Tung University, Taiwan

    2011-09-15

    Curcumin (diferuloylmethane), a major active component of turmeric (Curcuma longa), has been reported to suppress the proliferation of a wide variety of tumor cells. Rad51 is a key protein in the homologous recombination (HR) pathway of DNA double-strand break repair, and HR represents a novel target for cancer therapy. A high expression of Rad51 has been reported in chemo- or radio-resistant carcinomas. Therefore, in the current study, we will examine whether curcumin could enhance the effects of mitomycin C (MMC), a DNA interstrand cross-linking agent, to induce cytotoxicity by decreasing Rad51 expression. Exposure of two human non-small lung cancer (NSCLC)more » cell lines (A549 and H1975) to curcumin could suppress MMC-induced MKK1/2-ERK1/2 signal activation and Rad51 protein expression. Enhancement of ERK1/2 activation by constitutively active MKK1/2 (MKK1/2-CA) increased Rad51 protein levels in curcumin and MMC co-treated human lung cells. Moreover, the synergistic cytotoxic effect induced by curcumin combined with MMC was decreased by MKK1-CA-mediated enhancement of ERK1/2 activation by a significant degree. In contrast, MKK1/2 inhibitor, U0126 was shown to augment the cytotoxicity of curcumin and MMC through downregulation of ERK1/2 activation and Rad51 expression. Depletion of endogenous Rad51 expression by siRad51 RNA transfection significantly enhanced MMC and/or curcumin induced cell death and cell growth inhibition. In contrast, an overexpression of Rad51 protected lung cancer cells from synergistic cytotoxic effects induced by curcumin and MMC. We concluded that Rad51 inhibition may be an additional action mechanism for enhancing the chemosensitization of MMC by curcumin in NSCLC. - Highlights: > Curcumin downregulates MKK-ERK-mediated Rad51 expression. > Curcumin enhances mitomycin C-induced cytotoxicity. > Rad51 protects cells from cytotoxic effects induced by curcumin and mitomycin C. > Rad51 inhibition enhances the chemosensitization of

  15. BPAG1a and b associate with EB1 and EB3 and modulate vesicular transport, Golgi apparatus structure, and cell migration in C2.7 myoblasts.

    PubMed

    Poliakova, Kseniia; Adebola, Adijat; Leung, Conrad L; Favre, Bertrand; Liem, Ronald K H; Schepens, Isabelle; Borradori, Luca

    2014-01-01

    BPAG1a and BPAG1b (BPAG1a/b) constitute two major isoforms encoded by the dystonin (Dst) gene and show homology with MACF1a and MACF1b. These proteins are members of the plakin family, giant multi-modular proteins able to connect the intermediate filament, microtubule and microfilament cytoskeletal networks with each other and to distinct cell membrane sites. They also serve as scaffolds for signaling proteins that modulate cytoskeletal dynamics. To gain better insights into the functions of BPAG1a/b, we further characterized their C-terminal region important for their interaction with microtubules and assessed the role of these isoforms in the cytoskeletal organization of C2.7 myoblast cells. Our results show that alternative splicing does not only occur at the 5' end of Dst and Macf1 pre-mRNAs, as previously reported, but also at their 3' end, resulting in expression of additional four mRNA variants of BPAG1 and MACF1. These isoform-specific C-tails were able to bundle microtubules and bound to both EB1 and EB3, two microtubule plus end proteins. In the C2.7 cell line, knockdown of BPAG1a/b had no major effect on the organization of the microtubule and microfilament networks, but negatively affected endocytosis and maintenance of the Golgi apparatus structure, which became dispersed. Finally, knockdown of BPAG1a/b caused a specific decrease in the directness of cell migration, but did not impair initial cell adhesion. These data provide novel insights into the complexity of alternative splicing of Dst pre-mRNAs and into the role of BPAG1a/b in vesicular transport, Golgi apparatus structure as well as in migration in C2.7 myoblasts.

  16. BPAG1a and b Associate with EB1 and EB3 and Modulate Vesicular Transport, Golgi Apparatus Structure, and Cell Migration in C2.7 Myoblasts

    PubMed Central

    Poliakova, Kseniia; Adebola, Adijat; Leung, Conrad L.; Favre, Bertrand; Liem, Ronald K. H.; Schepens, Isabelle; Borradori, Luca

    2014-01-01

    BPAG1a and BPAG1b (BPAG1a/b) constitute two major isoforms encoded by the dystonin (Dst) gene and show homology with MACF1a and MACF1b. These proteins are members of the plakin family, giant multi-modular proteins able to connect the intermediate filament, microtubule and microfilament cytoskeletal networks with each other and to distinct cell membrane sites. They also serve as scaffolds for signaling proteins that modulate cytoskeletal dynamics. To gain better insights into the functions of BPAG1a/b, we further characterized their C-terminal region important for their interaction with microtubules and assessed the role of these isoforms in the cytoskeletal organization of C2.7 myoblast cells. Our results show that alternative splicing does not only occur at the 5′ end of Dst and Macf1 pre-mRNAs, as previously reported, but also at their 3′ end, resulting in expression of additional four mRNA variants of BPAG1 and MACF1. These isoform-specific C-tails were able to bundle microtubules and bound to both EB1 and EB3, two microtubule plus end proteins. In the C2.7 cell line, knockdown of BPAG1a/b had no major effect on the organization of the microtubule and microfilament networks, but negatively affected endocytosis and maintenance of the Golgi apparatus structure, which became dispersed. Finally, knockdown of BPAG1a/b caused a specific decrease in the directness of cell migration, but did not impair initial cell adhesion. These data provide novel insights into the complexity of alternative splicing of Dst pre-mRNAs and into the role of BPAG1a/b in vesicular transport, Golgi apparatus structure as well as in migration in C2.7 myoblasts. PMID:25244344

  17. Effects of creatine and its analog, β-guanidinopropionic acid, on the differentiation of and nucleoli in myoblasts.

    PubMed

    Ohira, Yoshinobu; Matsuoka, Yoshikazu; Kawano, Fuminori; Ogura, Akihiko; Higo, Yoko; Ohira, Takashi; Terada, Masahiro; Oke, Yoshihiko; Nakai, Naoya

    2011-01-01

    The effects of supplementation with creatine (Cr) and its analog, β-guanidinopropionic acid (β-GPA), on the differentiation of myoblasts and the numbers of nucleoli were studied in C2C12 cells. The cells were cultured in differentiation medium for 4 d. Then Cr (1 mM) or β-GPA (1 mM) was added to the cells, and the mixture was cultured for an additional 2 d. Although the number of myotubes was not different among the groups, myotube diameters and nuclear numbers in myotubes were increased by Cr and β-GPA treatment respectively. The expression of differentiation marker proteins, myogenin, and the myosine heavy chain, was increased in the β-GPA group. Supplementation with β-GPA also increased the percentage of p21 (inhibitor for cell cycle progression)-positive myoblasts. Supplementation with Cr inhibited the decrease in nucleoli numbers, whereas β-GPA increased nucleolar sizes in the myotubes. These results suggest that β-GPA supplementation stimulated the differentiation of myoblasts into multi-nucleated myotubes through induction of p21 expression.

  18. Androgen receptor polyglutamine repeat length affects receptor activity and C2C12 cell development.

    PubMed

    Sheppard, Ryan L; Spangenburg, Espen E; Chin, Eva R; Roth, Stephen M

    2011-10-20

    Testosterone (T) has an anabolic effect on skeletal muscle and is believed to exert its local effects via the androgen receptor (AR). The AR harbors a polymorphic stretch of glutamine repeats demonstrated to inversely affect receptor transcriptional activity in prostate and kidney cells. The effects of AR glutamine repeat length on skeletal muscle are unknown. In this study we examined the effect of AR CAG repeat length on AR function in C2C12 cells. AR expression vectors harboring 14, 24, and 33 CAG repeats were used to assess AR transcriptional activity. C2C12 cell proliferation, differentiation, gene expression, myotube formation, and myonuclear fusion index were assessed. Transcriptional activity increased with increasing repeat length and in response to testosterone (AR14 = 3.91 ± 0.26, AR24 = 25.21 ± 1.72, AR33 = 36.08 ± 3.22 relative light units; P < 0.001). Ligand activation was increased for AR33 (2.10 ± 0.04) compared with AR14 (1.54 ± 0.09) and AR24 (1.57 ± 0.05, P < 0.001). AR mRNA expression was elevated in each stably transfected line. AR33 cell proliferation (20,512.3 ± 1,024.0) was decreased vs. AR14 (27,604.17 ± 1,425.3; P < 0.001) after 72 h. Decreased CK activity in AR14 cells (54.9 ± 2.9 units/μg protein) in comparison to AR33 (70.8 ± 8.1) (P < 0.05) was noted. The myonuclear fusion index was lower for AR14 (15.21 ± 3.24%) and AR33 (9.97 ± 3.14%) in comparison to WT (35.07 ± 5.60%, P < 0.001). AR14 and AR33 cells also displayed atypical myotube morphology. RT-PCR revealed genotype differences in myostatin and myogenin expression. We conclude that AR polyglutamine repeat length is directly associated with transcriptional activity and alters the growth and development of C2C12 cells. This polymorphism may contribute to the heritability of muscle mass in humans.

  19. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activates promyogenic signaling pathways, thereby promoting myoblast differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Jin; Go, Ga-Yeon; Yoo, Miran

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) regulates postnatal myogenesis by alleviating myostatin activity, but the molecular mechanisms by which it regulates myogenesis are not fully understood. In this study, we investigate molecular mechanisms of PPARβ/δ in myoblast differentiation. C2C12 myoblasts treated with a PPARβ/δ agonist, GW0742 exhibit enhanced myotube formation and muscle-specific gene expression. GW0742 treatment dramatically activates promyogenic kinases, p38MAPK and Akt, in a dose-dependent manner. GW0742-stimulated myoblast differentiation is mediated by p38MAPK and Akt, since it failed to restore myoblast differentiation repressed by inhibition of p38MAPK and Akt. In addition, GW0742 treatment enhances MyoD-reporter activities. Consistently, overexpression of PPARβ/δmore » enhances myoblast differentiation accompanied by elevated activation of p38MAPK and Akt. Collectively, these results suggest that PPARβ/δ enhances myoblast differentiation through activation of promyogenic signaling pathways. - Highlights: • A PPARβ/δ agonist, GW0742 promotes myoblast differentiation. • GW0742 activates both p38MAPK and Akt activation in myogenic differentiation. • GW0742 enhances MyoD activity for myogenic differentiation. • Overexpression of PPARβ/δ enhances myoblast differentiation via activating promyogenic signaling pathways. • This is the first finding for agonistic mechanism of PPARβ/δ in myogenesis.« less

  20. Characterization of a human MSX-2 cDNA and its fragment isolated as a transformation suppressor gene against v-Ki-ras oncogene.

    PubMed

    Takahashi, C; Akiyama, N; Matsuzaki, T; Takai, S; Kitayama, H; Noda, M

    1996-05-16

    A cDNA (termed CT124) encoding a carboxyl-terminal fragment of the human homeobox protein MSX-2 was found to induce flat reversion when expressed in v-Ki-ras-transformed NIH3T3 cells. Although the expression of endogenous MSX-2 gene is low in most of the normal adult tissues examined, it is frequently activated in carcinoma-derived cell lines. Likewise, the gene is inactive in NIH3T3 cells but is transcriptionally activated after transformation by v-Ki-ras oncogene, suggesting that the intact MSX-2 may play a positive, rather than suppressive, role in cell transformation. To test this possibility, we isolated a near full-length human MSX-2 cDNA and tested its activities in two cell systems, i.e. fibroblast and myoblast. In NIH3T3 fibroblasts, although the gene by itself failed to confer a transformed phenotype, antisense MSX-2 cDNA as well as truncated CT124 cDNA interfered with the transforming activities of v-Ki-ras oncogene. In C2C12 myoblasts, MSX-2 was found to suppress MyoD gene expression, as do activated ras oncogenes, under certain culture conditions, and CT124 was found to inhibit the activities of both MSX-2 and ras in this system as well. Our findings not only suggest that CT124 may act as a dominant suppressor of MSX-2 but also raise the possibility that MSX-2 gene may be an important downstream target for the Ras signaling pathways.

  1. Effects of Cyclic Mechanical Stretch on the Proliferation of L6 Myoblasts and Its Mechanisms: PI3K/Akt and MAPK Signal Pathways Regulated by IGF-1 Receptor.

    PubMed

    Fu, Shaoting; Yin, Lijun; Lin, Xiaojing; Lu, Jianqiang; Wang, Xiaohui

    2018-06-02

    Myoblast proliferation is crucial to skeletal muscle hypertrophy and regeneration. Our previous study indicated that mechanical stretch altered the proliferation of C2C12 myoblasts, associated with insulin growth factor 1 (IGF-1)-mediated phosphoinositide 3-kinase (PI3K)/Akt (also known as protein kinase B) and mitogen-activated protein kinase (MAPK) pathways through IGF-1 receptor (IGF-1R). The purpose of this study was to explore the same stretches on the proliferation of L6 myoblasts and its association with IGF-1-regulated PI3K/Akt and MAPK activations. L6 myoblasts were divided into three groups: control, 15% stretch, and 20% stretch. Stretches were achieved using FlexCell Strain Unit. Cell proliferation and IGF-1 concentration were detected by CCK8 and ELISA, respectively. IGF-1R expression, and expressions and activities of PI3K, Akt, and MAPKs (including extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38) were determined by Western blot. We found that 15% stretch promoted, while 20% stretch inhibited L6 myoblast proliferation. A 15% stretch increased IGF-1R level, although had no effect on IGF-1 secretion of L6 myoblasts, and PI3K/Akt and ERK1/2 (not p38) inhibitors attenuated 15% stretch-induced pro-proliferation. Exogenous IGF-1 reversed 20% stretch-induced anti-proliferation, accompanied with increases in IGF-1R level as well as PI3K/Akt and MAPK (ERK1/2 and p38) activations. In conclusion, stretch regulated L6 myoblasts proliferation, which may be mediated by the changes in PI3K/Akt and MAPK activations regulated by IGF-1R, despite no detectable IGF-1 from stretched L6 myoblasts.

  2. Normal myoblast fusion requires myoferlin

    PubMed Central

    Doherty, Katherine R.; Cave, Andrew; Davis, Dawn Belt; Delmonte, Anthony J.; Posey, Avery; Earley, Judy U.; Hadhazy, Michele; McNally, Elizabeth M.

    2014-01-01

    Summary Muscle growth occurs during embryonic development and continues in adult life as regeneration. During embryonic muscle growth and regeneration in mature muscle, singly nucleated myoblasts fuse to each other to form myotubes. In muscle growth, singly nucleated myoblasts can also fuse to existing large, syncytial myofibers as a mechanism of increasing muscle mass without increasing myofiber number. Myoblast fusion requires the alignment and fusion of two apposed lipid bilayers. The repair of muscle plasma membrane disruptions also relies on the fusion of two apposed lipid bilayers. The protein dysferlin, the product of the Limb Girdle Muscular Dystrophy type 2 locus, has been shown to be necessary for efficient, calcium-sensitive, membrane resealing. We now show that the related protein myoferlin is highly expressed in myoblasts undergoing fusion, and is expressed at the site of myoblasts fusing to myotubes. Like dysferlin, we found that myoferlin binds phospholipids in a calcium-sensitive manner that requires the first C2A domain. We generated mice with a null allele of myoferlin. Myoferlin null myoblasts undergo initial fusion events, but they form large myotubes less efficiently in vitro, consistent with a defect in a later stage of myogenesis. In vivo, myoferlin null mice have smaller muscles than controls do, and myoferlin null muscle lacks large diameter myofibers. Additionally, myoferlin null muscle does not regenerate as well as wild-type muscle does, and instead displays a dystrophic phenotype. These data support a role for myoferlin in the maturation of myotubes and the formation of large myotubes that arise from the fusion of myoblasts to multinucleate myotubes. PMID:16280346

  3. Differences in the Expression and Distribution of Flotillin-2 in Chick, Mice and Human Muscle Cells

    PubMed Central

    Possidonio, Ana Claudia Batista; Soares, Carolina Pontes; Portilho, Débora Morueco; Midlej, Victor; Benchimol, Marlene; Butler-Browne, Gillian; Costa, Manoel Luis; Mermelstein, Claudia

    2014-01-01

    Myoblasts undergo a series of changes in the composition and dynamics of their plasma membranes during the initial steps of skeletal muscle differentiation. These changes are crucial requirements for myoblast fusion and allow the formation of striated muscle fibers. Membrane microdomains, or lipid rafts, have been implicated in myoblast fusion. Flotillins are scaffold proteins that are essential for the formation and dynamics of lipid rafts. Flotillins have been widely studied over the last few years, but still little is known about their role during skeletal muscle differentiation. In the present study, we analyzed the expression and distribution of flotillin-2 in chick, mice and human muscle cells grown in vitro. Primary cultures of chick myogenic cells showed a decrease in the expression of flotillin-2 during the first 72 hours of muscle differentiation. Interestingly, flotillin-2 was found to be highly expressed in chick myogenic fibroblasts and weakly expressed in chick myoblasts and multinucleated myotubes. Flotillin-2 was distributed in vesicle-like structures within the cytoplasm of chick myogenic fibroblasts, in the mouse C2C12 myogenic cell line, and in neonatal human muscle cells. Cryo-immunogold labeling revealed the presence of flotillin-2 in vesicles and in Golgi stacks in chick myogenic fibroblasts. Further, brefeldin A induced a major reduction in the number of flotillin-2 containing vesicles which correlates to a decrease in myoblast fusion. These results suggest the involvement of flotillin-2 during the initial steps of skeletal myogenesis. PMID:25105415

  4. Differences in the expression and distribution of flotillin-2 in chick, mice and human muscle cells.

    PubMed

    Possidonio, Ana Claudia Batista; Soares, Carolina Pontes; Portilho, Débora Morueco; Midlej, Victor; Benchimol, Marlene; Butler-Browne, Gillian; Costa, Manoel Luis; Mermelstein, Claudia

    2014-01-01

    Myoblasts undergo a series of changes in the composition and dynamics of their plasma membranes during the initial steps of skeletal muscle differentiation. These changes are crucial requirements for myoblast fusion and allow the formation of striated muscle fibers. Membrane microdomains, or lipid rafts, have been implicated in myoblast fusion. Flotillins are scaffold proteins that are essential for the formation and dynamics of lipid rafts. Flotillins have been widely studied over the last few years, but still little is known about their role during skeletal muscle differentiation. In the present study, we analyzed the expression and distribution of flotillin-2 in chick, mice and human muscle cells grown in vitro. Primary cultures of chick myogenic cells showed a decrease in the expression of flotillin-2 during the first 72 hours of muscle differentiation. Interestingly, flotillin-2 was found to be highly expressed in chick myogenic fibroblasts and weakly expressed in chick myoblasts and multinucleated myotubes. Flotillin-2 was distributed in vesicle-like structures within the cytoplasm of chick myogenic fibroblasts, in the mouse C2C12 myogenic cell line, and in neonatal human muscle cells. Cryo-immunogold labeling revealed the presence of flotillin-2 in vesicles and in Golgi stacks in chick myogenic fibroblasts. Further, brefeldin A induced a major reduction in the number of flotillin-2 containing vesicles which correlates to a decrease in myoblast fusion. These results suggest the involvement of flotillin-2 during the initial steps of skeletal myogenesis.

  5. On spectral temperatures of negative pions produced in d{sup 12}C, {sup 4}He{sup 12}C, and {sup 12}C{sup 12}C collisions at 4.2 A GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olimov, Kh. K., E-mail: olimov@comsats.edu.pk; Haseeb, Mahnaz Q., E-mail: mahnazhaseeb@comsats.edu.pk

    2013-05-15

    The experimental transverse momentum distributions of negative pions produced in d{sup 12}C, {sup 4}He{sup 12}C, and {sup 12}C{sup 12}C collisions at 4.2 A GeV/c were analyzed in the framework of Hagedorn Thermodynamic Model. The spectral temperatures of {pi}{sup -} mesons as well as their relative contributions to the total multiplicity of {pi}{sup -} mesons were extracted from fitting the p{sub t} spectra by two-temperature Hagedorn function. The results were compared systematically with the earlier results obtained from analysis of non-invariant center-of-mass energy spectra of negative pions produced in the analyzed collisions.

  6. Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes.

    PubMed

    Rovetta, Francesca; Stacchiotti, Alessandra; Faggi, Fiorella; Catalani, Simona; Apostoli, Pietro; Fanzani, Alessandro; Aleo, Maria Francesca

    2013-09-01

    Severe poisoning has recently been diagnosed in humans having hip implants composed of cobalt-chrome alloys due to the release of particulate wear debris on polyethylene and ceramic implants which stimulates macrophagic infiltration and destroys bone and soft tissue, leading to neurological, sensorial and muscular impairments. Consistent with this premise, in this study, we focused on the mechanisms underlying the toxicity of Co(II) ions on skeletal muscle using mouse skeletal C2C12 myotubes as an in vitro model. As detected using propidium iodide incorporation, increasing CoCl2 doses (from 5 to 200μM) affected the viability of C2C12 myotubes, mainly by cell necrosis, which was attenuated by necrostatin-1, an inhibitor of the necroptotic branch of the death domain receptor signaling pathway. On the other hand, apoptosis was hardly detectable as supported by the lack of caspase-3 and -8 activation, the latter resulting in only faint activation after exposure to higher CoCl2 doses for prolonged time points. Furthermore, CoCl2 treatment resulted in atrophy of the C2C12 myotubes which was characterized by the increased expression of HSP25 and GRP94 stress proteins and other typical `pro-atrophic molecular hallmarks, such as early activation of the NF-kB pathway and down-regulation of AKT phosphorylation, followed by the activation of the proteasome and autophagy systems. Overall, these results suggested that cobalt may impact skeletal muscle homeostasis as an inducer of cell necrosis and myofiber atrophy. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Development of mRuby2-Transfected C3H10T1/2 Fibroblasts for Musculoskeletal Tissue Engineering

    PubMed Central

    Yang, Yunzhi Peter

    2015-01-01

    Mouse C3H10T1/2 fibroblasts are multipotent, mesenchymal stem cell (MSC)-like progenitor cells that are widely used in musculoskeletal research. In this study, we have established a clonal population of C3H10T1/2 cells stably-transfected with mRuby2, an orange-red fluorescence reporter gene. Flow cytometry analysis and fluorescence imaging confirmed successful transfection of these cells. Cell counting studies showed that untransfected C3H10T1/2 cells and mRuby2-transfected C3H10T1/2 cells proliferated at similar rates. Adipogenic differentiation experiments demonstrated that untransfected C3H10T1/2 cells and mRuby2-transfected C3H10T1/2 cells stained positive for Oil Red O and showed increased expression of adipogenic genes including adiponectin and lipoprotein lipase. Chondrogenic differentiation experiments demonstrated that untransfected C3H10T1/2 cells and mRuby2-transfected C3H10T1/2 cells stained positive for Alcian Blue and showed increased expression of chondrogenic genes including aggrecan. Osteogenic differentiation experiments demonstrated that untransfected C3H10T1/2 cells and mRuby2-transfected C3H10T1/2 cells stained positive for alkaline phosphatase (ALP) as well as Alizarin Red and showed increased expression of osteogenic genes including alp, ocn and osf-1. When seeded on calcium phosphate-based ceramic scaffolds, mRuby2-transfected C3H10T1/2 cells maintained even fluorescence labeling and osteogenic differentiation. In summary, mRuby2-transfected C3H10T1/2 cells exhibit mRuby2 fluorescence and showed little-to-no difference in terms of cell proliferation and differentiation as untransfected C3H10T1/2 cells. These cells will be available from American Type Culture Collection (ATCC; CRL-3268™) and may be a valuable tool for preclinical studies. PMID:26407291

  8. Development of mRuby2-Transfected C3H10T1/2 Fibroblasts for Musculoskeletal Tissue Engineering.

    PubMed

    Ker, Dai Fei Elmer; Sharma, Rashmi; Wang, Evelyna Tsi Hsin; Yang, Yunzhi Peter

    2015-01-01

    Mouse C3H10T1/2 fibroblasts are multipotent, mesenchymal stem cell (MSC)-like progenitor cells that are widely used in musculoskeletal research. In this study, we have established a clonal population of C3H10T1/2 cells stably-transfected with mRuby2, an orange-red fluorescence reporter gene. Flow cytometry analysis and fluorescence imaging confirmed successful transfection of these cells. Cell counting studies showed that untransfected C3H10T1/2 cells and mRuby2-transfected C3H10T1/2 cells proliferated at similar rates. Adipogenic differentiation experiments demonstrated that untransfected C3H10T1/2 cells and mRuby2-transfected C3H10T1/2 cells stained positive for Oil Red O and showed increased expression of adipogenic genes including adiponectin and lipoprotein lipase. Chondrogenic differentiation experiments demonstrated that untransfected C3H10T1/2 cells and mRuby2-transfected C3H10T1/2 cells stained positive for Alcian Blue and showed increased expression of chondrogenic genes including aggrecan. Osteogenic differentiation experiments demonstrated that untransfected C3H10T1/2 cells and mRuby2-transfected C3H10T1/2 cells stained positive for alkaline phosphatase (ALP) as well as Alizarin Red and showed increased expression of osteogenic genes including alp, ocn and osf-1. When seeded on calcium phosphate-based ceramic scaffolds, mRuby2-transfected C3H10T1/2 cells maintained even fluorescence labeling and osteogenic differentiation. In summary, mRuby2-transfected C3H10T1/2 cells exhibit mRuby2 fluorescence and showed little-to-no difference in terms of cell proliferation and differentiation as untransfected C3H10T1/2 cells. These cells will be available from American Type Culture Collection (ATCC; CRL-3268™) and may be a valuable tool for preclinical studies.

  9. Betaine supplement enhances skeletal muscle differentiation in murine myoblasts via IGF-1 signaling activation

    PubMed Central

    2013-01-01

    Background Betaine (BET) is a component of many foods, including spinach and wheat. It is an essential osmolyte and a source of methyl groups. Recent studies have hypothesized that BET might play a role in athletic performance. However, BET effects on skeletal muscle differentiation and hypertrophy are still poorly understood. Methods We examined BET action on neo myotubes maturation and on differentiation process, using C2C12 murine myoblastic cells. We used RT2-PCR array, Western blot and immunofluorescence analysis to study the BET effects on morphological features of C2C12 and on signaling pathways involved in muscle differentiation and hypertrophy. Results We performed a dose–response study, establishing that 10 mM BET was the dose able to stimulate morphological changes and hypertrophic process in neo myotubes. RT2-PCR array methodology was used to identify the expression profile of genes encoding proteins involved in IGF-1 pathway. A dose of 10 mM BET was found to promote IGF-1 receptor (IGF-1 R) expression. Western blot and immunofluorescence analysis, performed in neo myotubes, pointed out that 10 mM BET improved IGF-1 signaling, synthesis of Myosin Heavy Chain (MyHC) and neo myotubes length. In addition, we investigated BET role on myoblasts proliferation and differentiation. During proliferation, BET did not modify C2C12 proliferative rate, but promoted myogenic induction, enhancing MyoD protein content and cellular elongation. During differentiation, BET caused an increase of muscle-specific markers and IGF-1 R protein levels. Conclusions Our findings provide the first evidence that BET could promote muscle fibers differentiation and increase myotubes size by IGF-1 pathway activation, suggesting that BET might represent a possible new drug/integrator strategy, not only in sport performance but also in clinical conditions characterized by muscle function impairment. PMID:23870626

  10. In Vitro Selective Anti-Proliferative Effect of Zinc Oxide Nanoparticles Against Co-Cultured C2C12 Myoblastoma Cancer and 3T3-L1 Normal Cells.

    PubMed

    Chandrasekaran, Murugesan; Pandurangan, Muthuraman

    2016-07-01

    The zinc oxide (ZnO) nanoparticle has been widely used in biomedical applications and cancer therapy and has been reported to induce a selective cytotoxic effect on cancer cell proliferation. The present study investigated the cytotoxicity of ZnO nanoparticles against co-cultured C2C12 myoblastoma cancer cells and 3T3-L1 adipocytes. Our results showed that the ZnO nanoparticles could be cytotoxic to C2C12 myoblastoma cancer cells than 3T3-L1 cells. The messenger RNA (mRNA) expressions of p53 and bax were significantly increased 114.3 and 118.2 % in the C2C12 cells, whereas 42.5 and 40 % were increased in 3T3-L1 cells, respectively. The mRNA expression of bcl-2 was reduced 38.2 and 28.5 % in the C2C12 and 3T3-L1 cells, respectively, whereas the mRNA expression of caspase-3 was increased 80.7 and 51.6 % in the C2C12 and 3T3-L1 cells, respectively. The protein expressions of p53, bax, and caspase-3 were significantly increased 40, 81.8, and 80 % in C2C12 cells, whereas 20.3, 28.2, and 37.9 % were increased in 3T3-L1 cells, respectively. The mRNA expression of bcl-2 was significantly reduced 32.2 and 22.7 % in C2C12 and 3T3-L1 cells, respectively. Caspase-3 enzyme activity and reactive oxygen species (ROS) were increased in co-cultured C2C12 cells compared to 3T3-L1 cells. Taking all these data together, it may suggest that ZnO nanoparticles severely induce apoptosis in C2C12 myoblastoma cancer cells than 3T3-L1 cells.

  11. Progranulin compensates for blocked IGF-1 signaling to promote myotube hypertrophy in C2C12 myoblasts via the PI3K/Akt/mTOR pathway.

    PubMed

    Hu, Shao-Yang; Tai, Chen-Chen; Li, Yen-Hsing; Wu, Jen-Leih

    2012-09-21

    It is well known that growth hormone (GH)-induced IGF-1 signaling plays a dominant role in postnatal muscle growth. Our previous studies have identified a growth factor, progranulin (PGRN), that is co-induced with IGF-1 upon GH administration. This result prompted us to explore the function of PGRN and its association with IGF-1. In the present study, we demonstrated that, similar to IGF-1, PGRN can promote C2C12 myotube hypertrophy via the PI(3)K/Akt/mTOR pathway. Moreover, PGRN can rescue the muscle atrophy phenotypes in C2C12 myotube when IGF-1 signaling is blocked. This result shows that PGRN can substitute for IGF-1 signaling in the regulation of muscle growth. Our findings provide new insights into IGF-1-modulated complicated networks that regulate muscle growth. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. 12. 'Portal Strut for 1 208'101/2' C. to C. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. 'Portal Strut for 1 - 208'-10-1/2' C. to C. End Pins S. Tr. Thro. Skew Span, 6th Crossing of Sacramento River, So. Pac. Co., The Phoenix Bridge Co., C.O. 836D, Drawing No. 12, Scale - 1' = 1', Engineer - B.M. Krohn, May 22nd `01, J.C.S.' - Southern Pacific Railroad Shasta Route, Bridge No. 301.85, Milepost 301.85, Pollard Flat, Shasta County, CA

  13. Enhancement of C2C12 differentiation by perfluorocarbon-mediated oxygen delivery.

    PubMed

    Fujita, Hideaki; Shimizu, Kazunori; Morioka, Yuki; Nagamori, Eiji

    2010-09-01

    We have studied the effect of enhanced oxygen delivery by perfluorocarbons on the differentiation of C2C12 cells. The extent of differentiation was assessed by means of phase contrast/fluorescence microscopy, active tension measurement and the glucose consumption/lactate production rates. We found that enhanced oxygen delivery is suitable for full differentiation of C2C12 cells. Copyright 2010 The Society for Biotechnology, Japan. All rights reserved.

  14. Analysis and theoretical modeling of 18O enriched carbon dioxide spectrum by CRDS near 1.35 μm: (II) 16O13C18O, 16O13C17O, 12C18O2, 17O12C18O, 12C17O2, 13C18O2 and 17O13C18O

    NASA Astrophysics Data System (ADS)

    Karlovets, E. V.; Campargue, A.; Kassi, S.; Tashkun, S. A.; Perevalov, V. I.

    2017-04-01

    This contribution is the second part of the analysis of the room temperature absorption spectrum of 18O enriched carbon dioxide by very high sensitivity Cavity Ring Down spectroscopy between 6977 and 7918 cm-1 (1.43-1.26 μm). Overall, more than 8600 lines belonging to 166 bands of eleven carbon dioxide isotopologues were rovibrationnally assigned. In a first part (Kassi et al. J Quant Spectrosc Radiat Transfer 187 (2017) 414-425, http://dx.doi.org/10.1016/j.jqsrt.2016.09.002), the results relative to mono-substituted isotopologues, 16O12C18O, 16O12C17O, 12C16O2 and 13C16O2, were presented. This second contribution is devoted to the multiply-substituted isotopologues or clumped isotopologues of particular importance in geochemistry: 16O13C18O, 16O13C17O, 12C18O2, 17O12C18O, 12C17O2, 13C18O2 and 17O13C18O. On the basis of the predictions of effective Hamiltonian models, a total of 3195 transitions belonging to 73 bands were rovibrationnally assigned for these seven species. Among the 73 observed bands, 55 are newly reported. All the identified bands correspond to ΔP=10 and 11 series of transitions, where P= 2V1+V2+3V3 is the polyad number (Vi are vibrational quantum numbers). The accurate spectroscopic parameters of 70 bands have been determined from the standard band-by-band analysis. Global fits of the measured line intensities of the ΔP=10 series of transitions of 17O12C18O and 16O13C18O and of the ΔP=11 series of transitions of 12C18O2, 17O12C18O, 16O13C18O and 13C18O2 were performed to determine the corresponding sets of the effective dipole moment parameters.

  15. Differentiation of C2C12 myoblasts expressing lamin A mutated at a site responsible for Emery-Dreifuss muscular dystrophy is improved by inhibition of the MEK-ERK pathway and stimulation of the PI3-kinase pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favreau, Catherine; Delbarre, Erwan; Courvalin, Jean-Claude

    2008-04-01

    Mutation R453W in A-type lamins, that are major nuclear envelope proteins, generates Emery-Dreifuss muscular dystrophy. We previously showed that mouse myoblasts expressing R453W-lamin A incompletely exit the cell cycle and differentiate into myocytes with a low level of multinucleation. Here we attempted to improve differentiation by treating these cells with a mixture of PD98059, an extracellular-regulated kinase (ERK) kinase (also known as mitogen-activated kinase, MEK) inhibitor, and insulin-like growth factor-II, an activator of phosphoinositide 3-kinase. We show that mouse myoblasts expressing R453W-lamin A were sensitive to the drug treatment as shown by (i) an increase in multinucleation, (ii) downregulation ofmore » proliferation markers (cyclin D1, hyperphosphorylated Rb), (iii) upregulation of myogenin, and (iv) sustained activation of p21 and cyclin D3. However, nuclear matrix anchorage of p21 and cyclin D3 in a complex with hypophosphorylated Rb that is critical to trigger cell cycle arrest and myogenin induction was deficient and incompletely restored by drug treatment. As the turn-over of R453W-lamin A at the nuclear envelope was greatly enhanced, we propose that R453W-lamin A impairs the capacity of the nuclear lamina to serve as scaffold for substrates of the MEK-ERK pathway and for MyoD-induced proteins that play a role in the differentiation process.« less

  16. Lipoic Acid Exerts Antioxidant and Anti-inflammatory Effects in Response to Heat Shock in C2C12 Myotubes.

    PubMed

    Lee, Cheng-Tse; Chang, Li-Ching; Wu, Pei-Fung

    2016-06-01

    This study explored that lipoic acid treatment for 24 h significantly upregulated and promoted heat shock-induced catalase expression and downregulated GPx1 messenger RNA (mRNA) expression, indicating that lipoic acid exhibits antioxidant activity in the decomposition of hydrogen peroxide by upregulating catalase expression. Moreover, lipoic acid treatment for 3 h increased and promoted heat shock-induced interleukin (IL)-6 mRNA and protein levels and that for 24 h downregulated IL-6 mRNA expression, suggesting a dual effect of lipoic acid on IL-6 regulation. Lipoic acid alone failed to increase or reduce tumor necrosis factor (TNF)-α mRNA and protein levels, whereas heat shock alone downregulated TNF-α mRNA and protein expression. These data suggest that lipoic acid does not have a proinflammatory role and that heat shock acts as an anti-inflammatory agent by downregulating TNF-α expression in C2C12 myotubes. Moreover, lipoic acid or heat shock alone upregulated the IL-6 receptor (IL-6R-α) and glycoprotein 130 (gp130) mRNA expression followed by IL-6 expression; these data indicate that the regulation of lipoic acid or heat shock is mediated by IL-6R signaling, thus suggesting that C2C12 myotubes possesses a mechanism for regulating IL-6R and gp130 expression following lipoic acid treatment or heat shock.

  17. Synthesis of 1,2-cis-2-C-branched aryl-C-glucosides via desulfurization of carbohydrate based hemithioacetals

    PubMed Central

    Mebrahtu, Fanuel M; Manana, Mandlenkosi M; Madumo, Kagiso; Sokamisa, Mokela S

    2015-01-01

    Summary 1-C and 2-C-branched carbohydrates are present as substructures in a number of biologically important compounds. Although the synthesis of such carbohydrate derivatives is extensively studied, the synthesis of 1,2-cis-2-C-branched C-, S-, and N-glycosides is less explored. In this article a synthetic strategy for the synthesis of 1,2-cis-2-C-branched-aryl-C-glucosides is reported via a hydrogenolytic desulfurization of suitably orientated carbohydrate based hemithioacetals. 1,2-cis-2-Hydroxymethyl and 2-carbaldehyde of aryl-C-glucosides have been synthesized using the current strategy in very good yields. The 2-carbaldehyde-aryl-C-glucosides have been identified as suitable substrates for the stereospecific preparation of 2,3-unsaturated-aryl-C-glycosides (Ferrier products). PMID:26124859

  18. Conditions Inducing Excessive O-GlcNAcylation Inhibit BMP2-Induced Osteogenic Differentiation of C2C12 Cells.

    PubMed

    Gu, Hanna; Song, Mina; Boonanantanasarn, Kanitsak; Baek, Kyunghwa; Woo, Kyung Mi; Ryoo, Hyun-Mo; Baek, Jeong-Hwa

    2018-01-09

    Hyperglycemic conditions in diabetic patients can affect various cellular functions, including the modulation of osteogenic differentiation. However, the molecular mechanisms by which hyperglycemia affects osteogenic differentiation are yet to be clarified. This study aimed to investigate whether the aberrant increase in protein O -linked-β- N -acetylglucosamine glycosylation ( O -GlcNAcylation) contributes to the suppression of osteogenic differentiation due to hyperglycemia. To induce osteogenic differentiation, C2C12 cells were cultured in the presence of recombinant human bone morphogenetic protein 2 (BMP2). Excessive protein O -GlcNAcylation was induced by treating C2C12 cells with high glucose, glucosamine, or N -acetylglucosamine concentrations or by O -GlcNAc transferase (OGT) overexpression. The effect of O -GlcNAcylation on osteoblast differentiation was then confirmed by examining the expression levels of osteogenic marker gene mRNAs, activity of alkaline phosphatase, and transcriptional activity of Runx2, a critical transcription factor for osteoblast differentiation and bone formation. Cell treatment with high glucose, glucosamine or N -acetylglucosamine increased O -GlcNAcylation of Runx2 and the total levels of O -GlcNAcylated proteins, which led to a decrease in the transcriptional activity of Runx2, expression levels of osteogenic marker genes (Runx2, osterix, alkaline phosphatase, and type I collagen), and activity of alkaline phosphatase. These inhibitory effects were rescued by lowering protein O -GlcNAcylation levels by adding STO45849, an OGT inhibitor, or by overexpressing β- N -acetylglucosaminidase. Our findings suggest that excessive protein O -GlcNAcylation contributes to high glucose-suppressed osteogenic differentiation.

  19. Low-molecular-weight fucoidan regulates myogenic differentiation through the mitogen-activated protein kinase pathway in C2C12 cells.

    PubMed

    Kim, Kui-Jin; Lee, Ok-Hwan; Lee, Boo-Yong

    2011-12-01

    Low-molecular-weight fucoidan (LMWF) has been broadly studied in recent years due to its numerous biological properties. Nevertheless, there have been no reports about the effects of LMWF on myogenic differentiation (MyoD). The objective of the present study was to demonstrate the impact of LMWF on myogenesis in C2C12 cells. The ultimate aim was to establish whether LMWF regulates myogenesis similar to heparin as a partial regulator of myogenesis. LMWF was prepared at a minimal size by ultra-filtration compared with crude fucoidan. We treated C2C12 cells with LMWF and/or heparin during MyoD. The data from the present study are the first to suggest that LMWF suppresses the expression of the myogenic regulatory factors and the myocyte enhancer factors as well as the morphological changes that occur during differentiation. Additionally, the expression of the mitogen-activated protein kinase (MAPK) family was significantly inhibited by LMWF when compared with controls. The LMWF-treated group showed significantly decreased expression of reactive oxygen species (ROS) enzymes compared with control cells. Heparin was used as a positive control because it has been reported to activate MyoD. Taken together, these results suggest that LMWF might regulate MyoD through the MAPK pathway and by regulating ROS activity in C2C12 cells.

  20. Characterization of porcine SKIP gene in skeletal muscle development: polymorphisms, association analysis, expression and regulation of cell growth in C2C12 cells.

    PubMed

    Xiong, Qi; Chai, Jin; Deng, Changyan; Jiang, Siwen; Liu, Yang; Huang, Tao; Suo, Xiaojun; Zhang, Nian; Li, Xiaofeng; Yang, Qianping; Chen, Mingxin; Zheng, Rong

    2012-12-01

    Skeletal muscle and kidney-enriched inositol phosphatase (SKIP) was identified as a 5'-inositol phosphatase that hydrolyzes phosphatidylinositol (3,4,5)-triphosphate (PI(3,4,5)P3) to PI(3,4)P2 and negatively regulates insulin-induced phosphatidylinositol 3-kinase signaling in skeletal muscle. In this study, two new single nucleotide polymorphisms (SNPs) in porcine SKIP introns 1 and 6 were detected. The C1092T locus in intron 1 showed significant associations with some meat traits, whereas the A17G locus in intron 6 showed significant associations with some carcass traits. Expression analysis showed that porcine SKIP is upregulated at d 65 of gestation and Meishan fetuses have higher and prolonged expression of SKIP compared to Large White at d 100 of gestation. Ectopic expression of porcine SKIP decreased insulin-induced cell proliferation and promoted serum starvation-induced cell cycle arrest in G0/G1 phase in C2C12. Our results suggest that SKIP plays a negative regulatory role in skeletal muscle development partly by preventing cell proliferation. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  1. Gravitational force modulates G2/M phase exit in mechanically unloaded myoblasts

    PubMed Central

    Benavides Damm, Tatiana; Franco-Obregón, Alfredo; Egli, Marcel

    2013-01-01

    Prolonged spaceflight gives rise to muscle loss and reduced strength, a condition commonly referred to as space atrophy. During exposure to microgravity, skeletal muscle myoblasts are mechanically unloaded and respond with attenuated cell proliferation, slowed cell cycle progression, and modified protein expression. To elucidate the underlying mechanisms by which muscle mass declines in response to prolonged microgravity exposure, we grew C2C12 mouse muscle cells under conditions of simulated microgravity (SM) and analyzed their proliferative capacity, cell cycle progression, and cyclin B and D expression. We demonstrated that the retarded cell growth observed in SM was correlated with an approximate 16 h delay in G2/M phase progression, where cells accumulated specifically between the G2 checkpoint and the onset of anaphase, concomitantly with a positive expression for cyclin B. The effect was specific for gravitational mechanical unloading as cells grown under conditions of hypergravity (HG, 4 g) for similar durations of time exhibited normal proliferation and normal cell cycle progression. Our results show that SM and HG exert phenomenological distinct responses over cell cycle progression. The deficits of SM can be restored by terrestrial gravitational force, whereas the effects of HG are indistinguishable from the 1 g control. This suggests that the mechanotransduction apparatus of cells responds differently to mechanical unloading and loading. PMID:23974110

  2. MicroRNA-128 targets myostatin at coding domain sequence to regulate myoblasts in skeletal muscle development.

    PubMed

    Shi, Lei; Zhou, Bo; Li, Pinghua; Schinckel, Allan P; Liang, Tingting; Wang, Han; Li, Huizhi; Fu, Lingling; Chu, Qingpo; Huang, Ruihua

    2015-09-01

    MicroRNAs (miRNAs or miRs) play a critical role in skeletal muscle development. In a previous study we observed that miR-128 was highly expressed in skeletal muscle. However, its function in regulating skeletal muscle development is not clear. Our hypothesis was that miR-128 is involved in the regulation of the proliferation and differentiation of skeletal myoblasts. In this study, through bioinformatics analyses, we demonstrate that miR-128 specifically targeted mRNA of myostatin (MSTN), a critical inhibitor of skeletal myogenesis, at coding domain sequence (CDS) region, resulting in down-regulating of myostatin post-transcription. Overexpression of miR-128 inhibited proliferation of mouse C2C12 myoblast cells but promoted myotube formation; whereas knockdown of miR-128 had completely opposite effects. In addition, ectopic miR-128 regulated the expression of myogenic factor 5 (Myf5), myogenin (MyoG), paired box (Pax) 3 and 7. Furthermore, an inverse relationship was found between the expression of miR-128 and MSTN protein expression in vivo and in vitro. Taken together, these results reveal that there is a novel pathway in skeletal muscle development in which miR-128 regulates myostatin at CDS region to inhibit proliferation but promote differentiation of myoblast cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. PDGF-induced migration of synthetic vascular smooth muscle cells through c-Src-activated L-type Ca2+ channels with full-length CaV1.2 C-terminus.

    PubMed

    Guo, Xiaoguang; Kashihara, Toshihide; Nakada, Tsutomu; Aoyama, Toshifumi; Yamada, Mitsuhiko

    2018-06-01

    In atherosclerosis, vascular smooth muscle cells (VSMC) migrate from the media toward the intima of the arteries in response to cytokines, such as platelet-derived growth factor (PDGF). However, molecular mechanism underlying the PDGF-induced migration of VSMCs remains unclear. The migration of rat aorta-derived synthetic VSMCs, A7r5, in response to PDGF was potently inhibited by a Ca V 1.2 channel inhibitor, nifedipine, and a Src family tyrosine kinase (SFK)/Abl inhibitor, bosutinib, in a less-than-additive manner. PDGF significantly increased Ca V 1.2 channel currents without altering Ca V 1.2 protein expression levels in A7r5 cells. This reaction was inhibited by C-terminal Src kinase, a selective inhibitor of SFKs. In contractile VSMCs, the C-terminus of Ca V 1.2 is proteolytically cleaved into proximal and distal C-termini (PCT and DCT, respectively). Clipped DCT is noncovalently reassociated with PCT to autoinhibit the channel activity. Conversely, in synthetic A7r5 cells, full-length Ca V 1.2 (Ca V 1.2FL) is expressed much more abundantly than truncated Ca V 1.2. In a heterologous expression system, c-Src activated Ca V 1.2 channels composed of Ca V 1.2FL but not truncated Ca V 1.2 (Ca V 1.2Δ1763) or Ca V 1.2Δ1763 plus clipped DCT. Further, c-Src enhanced the coupling efficiency between the voltage-sensing domain and activation gate of Ca V 1.2FL channels by phosphorylating Tyr1709 and Tyr1758 in PCT. Compared with Ca V 1.2Δ1763, c-Src could more efficiently bind to and phosphorylate Ca V 1.2FL irrespective of the presence or absence of clipped DCT. Therefore, in atherosclerotic lesions, phenotypic switching of VSMCs may facilitate pro-migratory effects of PDGF on VSMCs by suppressing posttranslational Ca V 1.2 modifications.

  4. Culture Conditions Affect Expression of DUX4 in FSHD Myoblasts.

    PubMed

    Pandey, Sachchida Nand; Khawaja, Hunain; Chen, Yi-Wen

    2015-05-08

    Facioscapulohumeral muscular dystrophy (FSHD) is believed to be caused by aberrant expression of double homeobox 4 (DUX4) due to epigenetic changes of the D4Z4 region at chromosome 4q35. Detecting DUX4 is challenging due to its stochastic expression pattern and low transcription level. In this study, we examined different cDNA synthesis strategies and the sensitivity for DUX4 detection. In addition, we investigated the effects of dexamethasone and knockout serum replacement (KOSR) on DUX4 expression in culture. Our data showed that DUX4 was consistently detected in cDNA samples synthesized using Superscript III. The sensitivity of DUX4 detection was higher in the samples synthesized using oligo(dT) primers compared to random hexamers. Adding dexamethasone to the culture media significantly suppressed DUX4 expression in immortalized (1.3 fold, p < 0.01) and primary (4.7 fold, p < 0.01) FSHD myoblasts, respectively. Culture medium with KOSR increased DUX4 expression and the response is concentration dependent. The findings suggest that detection strategies and culture conditions should be carefully considered when studying DUX4 in cultured cells.

  5. Dexamethasone induces dysferlin in myoblasts and enhances their myogenic differentiation

    PubMed Central

    Belanto, Joseph J.; Diaz-Perez, Silvia V.; Magyar, Clara E.; Maxwell, Michele M.; Yilmaz, Yasemin; Topp, Kasey; Boso, Guney; Jamieson, Catriona H.; Cacalano, Nicholas A.; Jamieson, Christina A.M.

    2010-01-01

    Glucocorticoids are beneficial in many muscular dystrophies but they are ineffective in treating dysferlinopathy, a rare muscular dystrophy caused by loss of dysferlin. We sought to understand the molecular basis for this disparity by studying the effects of a glucocorticoid on differentiation of the myoblast cell line, C2C12, and dysferlin-deficient C2C12s. We found that pharmacologic doses of dexamethasone enhanced the myogenic fusion efficiency of C2C12s and increased the induction of dysferlin, along with specific myogenic transcription factors, sarcolemmal and structural proteins. In contrast, the dysferlin-deficient C2C12 cell line demonstrated a reduction in long myotubes and early induction of particular muscle differentiation proteins, most notably, myosin heavy chain. Dexamethasone partially reversed the defect in myogenic fusion in the dysferlin-deficient C2C12 cells. We hypothesize that a key therapeutic benefit of glucocorticoids may be the up-regulation of dysferlin as an important component of glucocorticoid-enhanced myogenic differentiation. PMID:20080405

  6. Sulforaphane prevents doxorubicin-induced oxidative stress and cell death in rat H9c2 cells

    PubMed Central

    LI, BO; KIM, DO SUNG; YADAV, RAJ KUMAR; KIM, HYUNG RYONG; CHAE, HAN JUNG

    2015-01-01

    Sulforaphane, a natural isothiocyanate compound found in cruciferous vegetables, has been shown to exert cardioprotective effects during ischemic heart injury. However, the effects of sulforaphane on cardiotoxicity induced by doxorubicin are unknown. Thus, in the present study, H9c2 rat myoblasts were pre-treated with sulforaphane and its effects on cardiotoxicity were then examined. The results revealed that the pre-treatment of H9c2 rat myoblasts with sulforaphane decreased the apoptotic cell number (as shown by trypan blue exclusion assay) and the expression of pro-apoptotic proteins (Bax, caspase-3 and cytochrome c; as shown by western blot analysis and immunostaining), as well as the doxorubicin-induced increase in mitochondrial membrane potential (measured by JC-1 assay). Furthermore, sulforaphane increased the mRNA and protein expression of heme oxygenase-1 (HO-1, measured by RT-qPCR), which consequently reduced the levels of reactive oxygen species (ROS, measured using MitoSOX Red reagent) in the mitochondria which were induced by doxorubicin. The cardioprotective effects of sulforaphane were found to be mediated by the activation of the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor-2 (Nrf2)/antioxidant-responsive element (ARE) pathway, which in turn mediates the induction of HO-1. Taken together, the findings of this study demonstrate that sulforaphane prevents doxorubicin-induced oxidative stress and cell death in H9c2 cells through the induction of HO-1 expression. PMID:25936432

  7. Sulforaphane prevents doxorubicin-induced oxidative stress and cell death in rat H9c2 cells.

    PubMed

    Li, Bo; Kim, Do Sung; Yadav, Raj Kumar; Kim, Hyung Ryong; Chae, Han Jung

    2015-07-01

    Sulforaphane, a natural isothiocyanate compound found in cruciferous vegetables, has been shown to exert cardioprotective effects during ischemic heart injury. However, the effects of sulforaphane on cardiotoxicity induced by doxorubicin are unknown. Thus, in the present study, H9c2 rat myoblasts were pre-treated with sulforaphane and its effects on cardiotoxicity were then examined. The results revealed that the pre-treatment of H9c2 rat myoblasts with sulforaphane decreased the apoptotic cell number (as shown by trypan blue exclusion assay) and the expression of pro-apoptotic proteins (Bax, caspase-3 and cytochrome c; as shown by western blot analysis and immunostaining), as well as the doxorubicin-induced increase in mitochondrial membrane potential (measured by JC-1 assay). Furthermore, sulforaphane increased the mRNA and protein expression of heme oxygenase-1 (HO-1, measured by RT-qPCR), which consequently reduced the levels of reactive oxygen species (ROS, measured using MitoSOX Red reagent) in the mitochondria which were induced by doxorubicin. The cardioprotective effects of sulforaphane were found to be mediated by the activation of the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor-2 (Nrf2)/antioxidant-responsive element (ARE) pathway, which in turn mediates the induction of HO-1. Taken together, the findings of this study demonstrate that sulforaphane prevents doxorubicin-induced oxidative stress and cell death in H9c2 cells through the induction of HO-1 expression.

  8. Enhancement of mitomycin C-induced cytotoxicity by curcumin results from down-regulation of MKK1/2-ERK1/2-mediated thymidine phosphorylase expression.

    PubMed

    Weng, Shao-Hsing; Tsai, Min-Shao; Chiu, Yu-Fan; Kuo, Ya-Hsun; Chen, Huang-Jen; Lin, Yun-Wei

    2012-03-01

    Curcumin (diferuloylmethane), a phenolic compound obtained from the rhizome of Curcuma longa, has been found to inhibit cell proliferation in various human cancer cell lines, including non-small cell lung cancer (NSCLC). Thymidine phosphorylase (TP) is considered an attractive therapeutic target, because increased TP expression can suppress cancer cell death induced by DNA-damaging agents. Mitomycin C (MMC), a chemotherapeutic agent used to treat NSCLC, inhibits tumour growth through DNA cross-linking and breaking. Whether MMC can affect TP expression in NSCLC is unknown. Therefore, in this study, we suggested that curcumin enhances the effects of MMC-mediated cytotoxicity by decreasing TP expression and ERK1/2 activation. Exposure of human NSCLC cell lines H1975 and H1650 to curcumin decreased MMC-elicited phosphorylated MKK1/2-ERK1/2 protein levels. Moreover, curcumin significantly decreased MMC-induced TP protein levels by increasing TP mRNA and protein instability. Enhancement of ERK1/2 activation by constitutively active MKK1/2 (MKK1/2-CA) increased TP protein levels and cell viability in curcumin- and MMC-co-treated cells. In contrast, U0126, a MKK1/2 inhibitor, augmented the cytotoxic effect and the down-regulation of TP by curcumin and MMC. Specific inhibition of TP by siRNA significantly enhanced MMC-induced cell death and cell growth inhibition. Our results suggest that suppression of TP expression or administration of curcumin along with MMC may be a novel lung cancer therapeutic modality in the future. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  9. Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration

    PubMed Central

    Park, Seung-Yoon; Yun, Youngeun; Lim, Jung-Suk; Kim, Mi-Jin; Kim, Sang-Yeob; Kim, Jung-Eun; Kim, In-San

    2016-01-01

    Myoblast fusion is essential for the formation of skeletal muscle myofibres. Studies have shown that phosphatidylserine is necessary for myoblast fusion, but the underlying mechanism is not known. Here we show that the phosphatidylserine receptor stabilin-2 acts as a membrane protein for myoblast fusion during myogenic differentiation and muscle regeneration. Stabilin-2 expression is induced during myogenic differentiation, and is regulated by calcineurin/NFAT signalling in myoblasts. Forced expression of stabilin-2 in myoblasts is associated with increased myotube formation, whereas deficiency of stabilin-2 results in the formation of small, thin myotubes. Stab2-deficient mice have myofibres with small cross-sectional area and few myonuclei and impaired muscle regeneration after injury. Importantly, myoblasts lacking stabilin-2 have reduced phosphatidylserine-dependent fusion. Collectively, our results show that stabilin-2 contributes to phosphatidylserine-dependent myoblast fusion and provide new insights into the molecular mechanism by which phosphatidylserine mediates myoblast fusion during muscle growth and regeneration. PMID:26972991

  10. IGF-1 prevents simvastatin-induced myotoxicity in C2C12 myotubes.

    PubMed

    Bonifacio, Annalisa; Sanvee, Gerda M; Brecht, Karin; Kratschmar, Denise V; Odermatt, Alex; Bouitbir, Jamal; Krähenbühl, Stephan

    2017-05-01

    Statins are generally well tolerated, but treatment with these drugs may be associated with myopathy. The mechanisms of statin-associated myopathy are not completely understood. Statins inhibit AKT phosphorylation by an unclear mechanism, whereas insulin-like growth factor (IGF-1) activates the IGF-1/AKT signaling pathway and promotes muscle growth. The aims of the study were to investigate mechanisms of impaired AKT phosphorylation by simvastatin and to assess effects of IGF-1 on simvastatin-induced myotoxicity in C2C12 myotubes. C2C12 mouse myotubes were exposed to 10 μM simvastatin and/or 10 ng/mL IGF-1 for 18 h. Simvastatin inhibited the IGF-1/AKT signaling pathway, resulting in increased breakdown of myofibrillar proteins, impaired protein synthesis and increased apoptosis. Simvastatin inhibited AKT S473 phosphorylation, indicating reduced activity of mTORC2. In addition, simvastatin impaired stimulation of AKT T308 phosphorylation by IGF-1, indicating reduced activation of the IGF-1R/PI3K pathway by IGF-1. Nevertheless, simvastatin-induced myotoxicity could be at least partially prevented by IGF-1. The protective effects of IGF-1 were mediated by activation of the IGF-1R/AKT signaling cascade. Treatment with IGF-1 also suppressed muscle atrophy markers, restored protein synthesis and inhibited apoptosis. These results were confirmed by normalization of myotube morphology and protein content of C2C12 cells exposed to simvastatin and treated with IGF-1. In conclusion, impaired activity of AKT can be explained by reduced function of mTORC2 and of the IGF-1R/PI3K pathway. IGF-1 can prevent simvastatin-associated cytotoxicity and metabolic effects on C2C12 cells. The study gives insight into mechanisms of simvastatin-associated myotoxicity and provides potential targets for therapeutic intervention.

  11. Inhibition of integrin-linked kinase expression by emodin through crosstalk of AMPKα and ERK1/2 signaling and reciprocal interplay of Sp1 and c-Jun.

    PubMed

    Tang, Qing; Zhao, Shunyu; Wu, Jingjing; Zheng, Fang; Yang, LiJun; Hu, JingHeng; Hann, Swei Sunny

    2015-07-01

    Despite the anti-cancer effect of emodin observed in several cancers, the underlying molecular mechanism remains to be elucidated. In this study, we showed that emodin-inhibited NSCLC cell growth and increased phosphorylation of AMPKα and ERK1/2. In addition, emodin-inhibited ILK protein expression. The overexpression of ILK reversed the effect of emodin on cell growth inhibition. Furthermore, the blockade of AMPK by compound C abrogated, while metformin, an activator of AMPK, strengthened the effect of emodin on the inhibition of ILK expression. Interestingly, the inhibitor of MAPK extracellular signaling-regulated kinase (ERK) kinase (MEK)/ERK1/2 (PD98059) attenuated emodin-induced phosphorylation of AMPKα. Moreover, emodin reduced the protein expression of Sp1 and AP-1 subunit c-Jun. Exogenous expression of Sp1 and c-Jun diminished emodin-reduced ILK protein expression. Emodin suppressed ILK promoter activity, which was not observed in cells overexpression of Sp1 and treated with compound C. Intriguingly, exogenous expression of c-Jun overcame the emodin-inhibited Sp1 protein expression. Collectively, our results demonstrate that emodin inhibits ILK expression through AMPKα-mediated reduction of Sp1 and c-Jun. Metformin enhances the effects of emodin. Exogenous expression of Sp1 and c-Jun resists emodin-inhibited ILK promoter activity and protein expression. In addition, the overexpression of c-Jun diminishes emodin-induced AMPKα signaling. Thus, the crosstalk of AMPKα and MEK/ERK1/2 signaling and the reciprocal interaction between Sp1 and c-Jun proteins contribute to the overall responses of emodin. This novel signaling axis may be a therapeutic potential for prevention and treatment of NSCLC. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Signals of Ezh2, Src, and Akt Involve in Myostatin-Pax7 Pathways Regulating the Myogenic Fate Determination during the Sheep Myoblast Proliferation and Differentiation

    PubMed Central

    Li, Li; Liu, Ruizao; Zhang, Li; Zhao, Fuping; Lu, Jian; Zhang, Xiaoning; Du, Lixin

    2015-01-01

    Myostatin and Pax7 have been well documented individually, however, the mechanism by which Myostatin regulates Pax7 is seldom reported. Here, based on muscle transcriptome analysis in Texel (Myostatin mutant) and Ujumqin (wild type) sheep across the five fetal stages, we constructed and examined the Myostatin-Pax7 pathways in muscle. Then we validated the signals by RNAi in the proliferating and differentiating sheep myoblasts in vitro at mRNA, protein, and cell morphological levels. We reveal that Myostatin signals to Pax7 at least through Ezh2, Src, and Akt during the sheep myoblast proliferation and differentiation. Other signals such as p38MAPK, mTOR, Erk1/2, Wnt, Bmp2, Smad, Tgfb1, and p21 are most probably involved in the Myostatin-affected myogenic events. Myostatin knockdown significantly reduces the counts of nucleus and myotube, but not the fusion index of myoblasts during cell differentiation. In addition, findings also indicate that Myostatin is required for normal myogenic differentiation of the sheep myoblasts, which is different from the C2C12 myoblasts. We expand the regulatory network of Myostatin-Pax7 pathways and first illustrate that Myostatin as a global regulator participates in the epigenetic events involved in myogenesis, which contributes to understand the molecular mechanism of Myostatin in regulation of myogenesis. PMID:25811841

  13. Let-7b Regulates Myoblast Proliferation by Inhibiting IGF2BP3 Expression in Dwarf and Normal Chicken

    PubMed Central

    Lin, Shumao; Luo, Wen; Ye, Yaqiong; Bekele, Endashaw J.; Nie, Qinghua; Li, Yugu; Zhang, Xiquan

    2017-01-01

    The sex-linked dwarf chicken is caused by the mutation of growth hormone receptor (GHR) gene and characterized by shorter shanks, lower body weight, smaller muscle fiber diameter and fewer muscle fiber number. However, the precise regulatory pathways that lead to the inhibition of skeletal muscle growth in dwarf chickens still remain unclear. Here we found a let-7b mediated pathway might play important role in the regulation of dwarf chicken skeletal muscle growth. Let-7b has higher expression in the skeletal muscle of dwarf chicken than in normal chicken, and the expression of insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), which is a translational activator of IGF2, showed opposite expression trend to let-7b. In vitro cellular assays validated that let-7b directly inhibits IGF2BP3 expression through binding to its 3′UTR region, and the protein level but not mRNA level of IGF2 would be reduced in let-7b overexpressed chicken myoblast. Let-7b can inhibit cell proliferation and induce cell cycle arrest in chicken myoblast through let-7b-IGF2BP3-IGF2 signaling pathway. Additionally, let-7b can also regulate skeletal muscle growth through let-7b-GHR-GHR downstream genes pathway, but this pathway is non-existent in dwarf chicken because of the deletion mutation of GHR 3′UTR. Notably, as the loss binding site of GHR for let-7b, let-7b has enhanced its binding and inhibition on IGF2BP3 in dwarf myoblast, suggesting that the miRNA can balance its inhibiting effect through dynamic regulate its binding to target genes. Collectively, these results not only indicate that let-7b can inhibit skeletal muscle growth through let-7b-IGF2BP3-IGF2 signaling pathway, but also show that let-7b regulates myoblast proliferation by inhibiting IGF2BP3 expression in dwarf and normal chickens. PMID:28736533

  14. Measurement and significance of the equilibrium reaction C-13/+/ + /C-12/O yields C-12/+/ + /C-13/O for alteration of the C-13/C-12 ratio in interstellar molecules

    NASA Technical Reports Server (NTRS)

    Watson, W. D.; Anicich, V. G.; Huntress, W. T., Jr.

    1976-01-01

    Laboratory measurements using the ion-cyclotron resonance technique yield a rate constant of 2 by 10 to the -10th power cu cm/sec at 300 K for the isotope exchange C-13(+) + (C-12)O yields C-12(+) + (C-13)O. According to the usual ideas about ion-molecule reactions, this rate constant should also be appropriate at temperatures not exceeding about 100 K. Then the observed C-13/C-12 ratio obtained from radio observation of interstellar molecules may be either larger or smaller than the actual value in the interstellar medium by factors of 2 or so. If the ratio is altered from the actual interstellar value, it will not be the same in all molecules, and CO will tend to have the highest value. The chief astronomical uncertainty for the occurrence of this isotope fractionation is the abundance of 'unobservable' molecules which can react rapidly with C(+): e.g., O2, H2O, CO2, and CH4. If their abundance is greater than about one-tenth that of CO, the isotope fractionation will be inhibited.

  15. Persistent induction of c-fos and c-jun expression by asbestos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heintz, N.H.; Mossman, B.T.; Janssen, Y.M.

    To investigate the mechanisms of asbestos-induced carcinogenesis, expression of c-fos and c-jun protooncogenes was examined in rat pleural mesothelial cells and hamster tracheal epithelial cells after exposure to crocidolite or chrysotile asbestos. In contrast to phorbol 12-myristate 13-acetate, which induces rapid and transient increases in c-fos and c-jun mRNA, asbestos causes 2- to 5-fold increases in c-fos and c-jun mRNA that persist for at least 24 hr in mesothelial cells. The induction of c-fos and c-jun mRNA by asbestos in mesothelial cells is dose-dependent and is most pronounced with crocidolite, the type of asbestos most pathogenic in the causation ofmore » pleural mesothelioma. Induction of c-jun gene expression by asbestos occurs in tracheal epithelial cells but is not accompanied by a corresponding induction of c-fos gene expression. In both cell types, asbestos induces increases in protein factors that bind specifically to the DNA sites that mediate gene expression by the AP-1 family of transcription factors. The persistent induction of AP-1 transcription factors by asbestos suggests a model of asbestos-induced carcinogenesis involving chronic stimulation of cell proliferation through activation of the early response gene pathway that includes c-jun and/or c-fos. 30 refs., 5 figs.« less

  16. Leptin and leucine synergistically regulate protein metabolism in C2C12 myotubes and mouse skeletal muscles.

    PubMed

    Mao, Xiangbing; Zeng, Xiangfang; Huang, Zhimin; Wang, Junjun; Qiao, Shiyan

    2013-07-28

    Leucine and leptin play important roles in regulating protein synthesis and degradation in skeletal muscles in vitro and in vivo. However, the objective of the present study was to determine whether leptin and leucine function synergistically in regulating protein metabolism of skeletal muscles. In the in vitro experiment, C2C12 myotubes were cultured for 2 h in the presence of 5 mm-leucine and/or 50 ng/ml of leptin. In the in vivo experiment, C57BL/6 and ob/ob mice were randomly assigned to be fed a non-purified diet supplemented with 3 % L-leucine or 2·04 % L-alanine (isonitrogenous control) for 14 d. Ob/ob mice were injected intraperitoneally with sterile PBS or recombinant mouse leptin (0·1 μg/g body weight) for 14 d. In C57BL/6 mice, dietary leucine supplementation increased (P< 0·05) plasma leptin, leptin receptor expression and protein synthesis in skeletal muscles, but reduced (P< 0·05) plasma urea and protein degradation in skeletal muscles. Dietary leucine supplementation and leptin injection increased the relative weight of the gastrocnemius and soleus muscles in ob/ob mice. Moreover, leucine and leptin treatments stimulated (P< 0·05) protein synthesis and inhibited (P< 0·05) protein degradation in C2C12 myotubes and skeletal muscles of ob/ob mice. There were interactions (P< 0·05) between the leucine and leptin treatments with regard to protein metabolism in C2C12 myotubes and soleus muscles of ob/ob mice but not in the gastrocnemius muscles of ob/ob mice. Collectively, these results suggest that leptin and leucine synergistically regulate protein metabolism in skeletal muscles both in vitro and in vivo.

  17. Nicotinic receptor-dependent and -independent effects of galantamine, an acetylcholinesterase inhibitor, on the non-neuronal acetylcholine system in C2C12 cells.

    PubMed

    Oikawa, Shino; Mano, Asuka; Iketani, Mitsue; Kakinuma, Yoshihiko

    2015-11-01

    We previously reported that satellite cells possess the ability to produce angiogenic factors, including fibroblast growth factor (FGF)-2 and vascular endothelial growth factor (VEGF) in vivo. However, whether C2C12 cells possess a non-neuronal cholinergic system (NNCS) or non-neuronal ACh (NNA) remains to be studied; therefore, we investigated the system using C2C12 cells and its regulatory mechanisms. C2C12 cells synthesized ACh, the level of which was comparable with that of cardiomyocytes, and the synthesis was augmented by the acetylcholinesterase inhibitor galantamine. The ChAT promoter activity was upregulated by nicotine or galantamine, partly through nicotinic receptors for both agents as well as through a non-nicotinic receptor pathway for galantamine. Further, VEGF secretion by C2C12 cells was also increased by nicotine or galantamine through nicotinic receptors as well as partly through non-nicotinic pathways in the case of galantamine. These results suggest that C2C12 cells are equipped with NNCS or NNA, which is positively regulated through nicotinic or non-nicotinic pathways, particularly in the case of galantamine. These results provide a novel concept that myogenic cells expressing NNA can be a therapeutic target for regulating angiogenic factor synthesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Effect of High Temperature- and High Pressure-Treated Red Ginseng on Lipolysis and Lipid Oxidation in C2C12 Myotubes.

    PubMed

    Yu, Seok-Yeong; Lee, Jin-Ha; Cho, MyoungLae; Lee, Jong Seok; Hong, Hee-Do; Lee, Young-Chul; Kim, Young-Chan; Cho, Chang-Won; Kim, Kyung-Tack; Lee, Ok-Hwan

    2016-01-01

    Korean red ginseng (KRG), a highly valuable medicinal herb in oriental societies, has biological activity similar to that of Panax ginseng. Recently, it has been discovered that the biological activities of red ginseng can vary according to heating and steaming processes under different conditions that change the principal components of KRG and result in changes in biological activity. This study evaluated and compared the effects of high temperature- and high pressure-treated red ginseng (HRG) and commercial red ginseng (RG) on β-oxidation in C2C12 myotubes. HRG enhanced the phosphorylation levels of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), but RG did not affect the phosphorylation of AMPK in C2C12 myotubes. HRG also promoted the nuclear translocation of forkhead box protein O1 (FoxO1), and the translocation exerted an increase in the protein expression of adipose triglyceride lipase (ATGL). As a consequence, HRG increased the mRNA expression level of carnitine palmitoyltransferase 1 (CPT-1) compared to the control. Taken together, our results indicated that HRG promotes the lipolysis of triglycerides and mitochondrial β-oxidation of fatty acids in C2C12 myotubes, suggesting that alterations to the principal components by high temperature and pressure may positively influence the nutraceutical functions of HRG.

  19. Constitutive hypophosphorylation of extracellular signal-regulated kinases-1/2 and down-regulation of c-Jun in human gastric adenocarcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, William Ka Kei; Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong; Institute of Digestive Diseases, Chinese University of Hong Kong, Hong Kong

    2008-08-22

    Hyperphosphorylation of extracellular signal-regulated protein kinases-1/2 (ERK1/2) is known to promote cancer cell proliferation. We therefore investigated the constitutive phosphorylation levels of ERK1/2 and the expression of its downstream targets c-Fos, c-Jun, and cyclooxygenase-2 (COX-2) in biopsied human gastric cancer tissues. Results showed that ERK1/2 phosphorylation and c-Jun expression were significantly lowered in gastric cancer compared with the non-cancer adjacent tissues. The expression of c-Fos, however, was not altered while COX-2 was significantly up-regulated. To conclude, we demonstrate that hypophosphorylation of ERK1/2 may occur in gastric cancer. Such discovery may have implication in the application of pathway-directed therapy for thismore » malignant disease.« less

  20. Leptin rapidly induces the expression of metabolic and myokine genes in C2C12 muscle cells to regulate nutrient partition and oxidation.

    PubMed

    Nozhenko, Yuriy; Rodríguez, Ana M; Palou, Andreu

    2015-01-01

    Skeletal muscle can experience pronounced metabolic adaptations in response to extrinsic stimuli, and expresses leptin receptor (OB-Rb). We aimed to further the understanding of leptin effects on muscle cells, by studying the expression of key energy metabolism genes in C2C12 myotubes. We performed a dose-time-dependent study with physiological concentrations of leptin: 5, 10 and 50 ng/ml, for 0, 30', 3h, 6h, 12h and 24h, also monitoring time-course changes in non-treated cells. mRNA levels were analyzed by RT-qPCR and peroxisome proliferator activated receptor γ coactivator 1α (PGC1α) protein levels by western blot. The most significant effects were observed with 50 ng/ml leptin. In the short-term (30' and/or 3h), leptin significantly induced the expression of PGC1α, muscle carnitine palmitoyl transferase 1 (mCPT1), uncoupling protein 3 (UCP3), OB-Rb, Insulin receptor (InsR) and interleukins 6 and 15 (IL6, IL15). There was a decrease in mRNA levels of pyruvate dehydrogenase kinase 4 (PDK4) and mCPT1 in the long-term (24h). PGC1α protein levels were increased (24h). Leptin rapidly induces the expression of genes important for its own response and the control of metabolic fuels, with the rapid responses of the genes encoding the master regulator PGC1α, mCPT1, UCP3, PDK4 and the signaling secretory molecule IL6 particularly interesting. © 2015 S. Karger AG, Basel.

  1. Acute, but not chronic, leptin treatment induces acyl-CoA oxidase in C2C12 myotubes.

    PubMed

    Ceci, Roberta; Sabatini, Stefania; Duranti, Guglielmo; Savini, Isabella; Avigliano, Luciana; Rossi, Antonello

    2007-09-01

    The product of the obesity gene (ob), leptin, has a well-recognized role in regulating energy homeostasis. During the period of weight maintenance, circulating leptin concentration reflects total body fat mass. On the other hand, overnutrition is accompanied by progressive hyperleptinemia. In overnourished animals, the elevation in circulating fatty acids results in increased uptake and excessive deposition of lipids within muscle cells. Consequently, triglicerydes overload seems to strongly correlate to the impairment of insulin signaling in skeletal muscle, the primary target for insulin stimulated glucose disposal. High levels of leptin in the course of fat storage may protect non-adipose tissues from lipid accumulation. Here, we aim to evaluate in vitro the relationship between leptin treatment and expression of acyl-CoA oxidase (ACOX), a peroxisomal key enzyme involved in fatty acid catabolism. We also evaluate the adaptive response of cells to a putative oxidative insult, resulting from H(2)O(2) production. The effects of increasing levels of leptin, at different times, were assessed on mouse C2C12 myotubes by semiquantitative PCR. Activation pathway was investigated by using extracellular signal-regulated kinase (ERK) and cytosolic phospholipase A(2) (cPLA(2)) inhibitors. Cellular adaptive response to oxidative stress was evaluated by measuring glutathione concentration, oxidized/reduced glutathione ratio and the main antioxidant enzymatic activities. A 1.8-fold increase in ACOX mRNA expression was evident at 20 ng/ml leptin, a dose comparable to that found in hyperleptinemic subjects. The induction was dose-dependent, with an increase of 3-fold at 100 ng/ml; the ability of leptin to stimulate ACOX mRNA reached a maximum at 20 min and was lost in myotubes continuously exposed for more than 1 h. ACOX enzymatic activity followed mRNA changes: it was doubled after 1 h treatment and remained elevated for 24 h. ERK and cPLA(2) pathway is involved, since their

  2. HGF potentiates extracellular matrix-driven migration of human myoblasts: involvement of matrix metalloproteinases and MAPK/ERK pathway.

    PubMed

    González, Mariela Natacha; de Mello, Wallace; Butler-Browne, Gillian S; Silva-Barbosa, Suse Dayse; Mouly, Vincent; Savino, Wilson; Riederer, Ingo

    2017-10-10

    The hepatocyte growth factor (HGF) is required for the activation of muscle progenitor cells called satellite cells (SC), plays a role in the migration of proliferating SC (myoblasts), and is present as a soluble factor during muscle regeneration, along with extracellular matrix (ECM) molecules. In this study, we aimed at determining whether HGF is able to interact with ECM proteins, particularly laminin 111 and fibronectin, and to modulate human myoblast migration. We evaluated the expression of the HGF-receptor c-Met, laminin, and fibronectin receptors by immunoblotting, flow cytometry, or immunofluorescence and used Transwell assays to analyze myoblast migration on laminin 111 and fibronectin in the absence or presence of HGF. Zymography was used to check whether HGF could modulate the production of matrix metalloproteinases by human myoblasts, and the activation of MAPK/ERK pathways was evaluated by immunoblotting. We demonstrated that human myoblasts express c-Met, together with laminin and fibronectin receptors. We observed that human laminin 111 and fibronectin have a chemotactic effect on myoblast migration, and this was synergistically increased when low doses of HGF were added. We detected an increase in MMP-2 activity in myoblasts treated with HGF. Conversely, MMP-2 inhibition decreased the HGF-associated stimulation of cell migration triggered by laminin or fibronectin. HGF treatment also induced in human myoblasts activation of MAPK/ERK pathways, whose specific inhibition decreased the HGF-associated stimulus of cell migration triggered by laminin 111 or fibronectin. We demonstrate that HGF induces ERK phosphorylation and MMP production, thus stimulating human myoblast migration on ECM molecules. Conceptually, these data state that the mechanisms involved in the migration of human myoblasts comprise both soluble and insoluble moieties. This should be taken into account to optimize the design of therapeutic cell transplantation strategies by improving

  3. Low molecular weight guluronate prevents TNF-α-induced oxidative damage and mitochondrial dysfunction in C2C12 skeletal muscle cells.

    PubMed

    Dun, Yun-lou; Zhou, Xiao-lin; Guan, Hua-shi; Yu, Guang-li; Li, Chun-xia; Hu, Ting; Zhao, Xia; Cheng, Xiao-lei; He, Xiao-xi; Hao, Jie-jie

    2015-09-01

    Muscle wasting is associated with a variety of chronic or inflammatory disorders. Evidence suggests that inflammatory cytokines play a vital role in muscle inflammatory pathology and this may result in oxidative damage and mitochondrial dysfunction in skeletal muscle. In our study, we used microwave degradation to prepare a water-soluble low molecular weight guluronate (LMG) of 3000 Da from Fucus vesiculosus obtained from Canada, the Atlantic Ocean. We demonstrated the structural characteristics, using HPLC, FTIR and NMR of LMG and investigated its effects on oxidative damage and mitochondrial dysfunction in C2C12 skeletal muscle cells induced by tumor necrosis factor alpha (TNF-α), a cell inflammatory cytokine. The results indicated that LMG could alleviate mitochondrial reactive oxygen species (ROS) production, increase the activities of antioxidant enzymes (GSH and SOD), promote mitochondrial membrane potential (MMP) and upregulate the expression of mitochondrial respiratory chain protein in TNF-α-induced C2C12 cells. LMG supplement also increased the mitochondrial DNA copy number and mitochondrial biogenesis related genes in TNF-α-induced C2C12 cells. LMG may exert these protective effects through the nuclear factor kappa B (NF-κB) signaling pathway. These suggest that LMG is capable of protecting TNF-α-induced C2C12 cells against oxidative damage and mitochondrial dysfunction.

  4. C-13/C-12 of atmospheric CO2 in the Amazon basin - Forest and river sources

    NASA Technical Reports Server (NTRS)

    Quay, Paul; King, Stagg; Wilbur, Dave; Richey, Jeffrey; Wofsy, Steven

    1989-01-01

    Results are presented of measurements of the CO2 concentrations and C-13/C-12 ratios in CO2 in air samples collected from within the Amazonian rain forest and over the Amazon river between 1982 and 1987. Results indicate the presence of a diurnal cycle in the CO2 concentration and the C-13/C-12 ratio. It was found that the CO2 input to air in the forest was derived from the soil respiration, and the CO2 input to air over the Amazon river was derived from the degassing of CO2 from the river. It was also found that plants growing at heights lower than 7 m assimilate soil-derived CO2 with a low C-13/C-12 ratio.

  5. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp; Haniu, Hisao; Matsuda, Yoshikazu

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases,more » including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance.« less

  6. 26 CFR 1.412(c)(1)-2 - Shortfall method.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Shortfall method. 1.412(c)(1)-2 Section 1.412(c... (CONTINUED) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.412(c)(1)-2 Shortfall method. (a) In general—(1) Shortfall method. The shortfall method is a funding method that adapts a plan's...

  7. Screening effects on 12C+12C fusion reaction

    NASA Astrophysics Data System (ADS)

    Koyuncu, F.; Soylu, A.

    2018-05-01

    One of the important reactions for nucleosynthesis in the carbon burning phase in high-mass stars is the 12C+12C fusion reaction. In this study, we investigate the influences of the nuclear potentials and screening effect on astrophysically interesting 12C+12C fusion reaction observables at sub-barrier energies by using the microscopic α–α double folding cluster (DFC) potential and the proximity potential. In order to model the screening effects on the experimental data, a more general exponential cosine screened Coulomb (MGECSC) potential including Debye and quantum plasma cases has been considered in the calculations for the 12C+12C fusion reaction. In the calculations of the reaction observables, the semi-classical Wentzel-Kramers-Brillouin (WKB) approach and coupled channel (CC) formalism have been used. Moreover, in order to investigate how the potentials between 12C nuclei produce molecular cluster states of 24Mg, the normalized resonant energy states of 24Mg cluster bands have been calculated for the DFC potential. By analyzing the results produced from the fusion of 12C+12C, it is found that taking into account the screening effects in terms of MGECSC is important for explaining the 12C+12C fusion data, and the microscopic DFC potential is better than the proximity potential in explaining the experimental data, also considering that clustering is dominant for the structure of the 24Mg nucleus. Supported by the Turkish Science and Research Council (TÜBİTAK) with (117R015)

  8. 17 CFR 240.15c1-2 - Fraud and misrepresentation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Fraud and misrepresentation. 240.15c1-2 Section 240.15c1-2 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION... Securities Exchange Act of 1934 Rules Relating to Over-The-Counter Markets § 240.15c1-2 Fraud and...

  9. Mesenchymal Stromal Cell Secreted Sphingosine 1-Phosphate (S1P) Exerts a Stimulatory Effect on Skeletal Myoblast Proliferation

    PubMed Central

    Tani, Alessia; Anderloni, Giulia; Pierucci, Federica; Matteini, Francesca; Chellini, Flaminia; Zecchi Orlandini, Sandra; Meacci, Elisabetta

    2014-01-01

    Bone-marrow-derived mesenchymal stromal cells (MSCs) have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P), a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK), blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF) involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration. PMID:25264785

  10. Spectral temperatures of {Delta}{sup 0}(1232) resonances produced in p{sup 12}C and d{sup 12}C collisions at 4.2 GeV/c per nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Imran; Olimov, Kh. K., E-mail: olimov@comsats.edu.pk

    The reconstructed experimental transverse momentum (p{sub t}) distributions of {Delta}{sup 0}(1232) resonances produced in p{sup 12}C and d{sup 12}C collisions at 4.2 A GeV/c and the corresponding spectra calculated using Modified FRITIOF model were analyzed in the framework of Hagedorn Thermodynamic Model. The spectral temperatures of {Delta}{sup 0}(1232) resonances were extracted from fitting their p{sub t} spectra with one-temperature Hagedorn function. The extracted spectral temperatures of {Delta}{sup 0}(1232) were compared with the corresponding temperatures of {pi}{sup -} mesons in p{sup 12}C and d{sup 12}C collisions at 4.2 A GeV/c obtained similarly from fitting the p{sub t} spectra of {pi}{sup -}more » by one-temperature Hagedorn function. The spectral temperatures of {Delta}{sup 0}(1232) resonances agreed within uncertainties with the corresponding temperatures of {pi}{sup -} mesons produced in p{sup 12}C and d{sup 12}C collisions at 4.2 A GeV/c.« less

  11. Prolyl Hydroxylase EGLN3 Regulates Skeletal Myoblast Differentiation through an NF-κB-dependent Pathway

    PubMed Central

    Fu, Jian; Taubman, Mark B.

    2010-01-01

    The egg-laying abnormal-9 (EGLN) prolyl hydroxylases have been shown to regulate the stability and thereby the activity of the α subunits of hypoxia-inducible factor (HIF) through its ability to catalyze their hydroxylation. We have previously shown that EGLN3 promotes differentiation of C2C12 skeletal myoblasts. However, the mechanism underlying this effect remains to be fully elucidated. Here, we report that exposure of C2C12 cells to dimethyl oxalylglycine (DMOG), desferrioxamine, and hypoxia, all inhibitors of prolyl hydroxylase activity, led to repression of C2C12 myogenic differentiation. Inactivation of HIF by expression of a HIF dominant-negative mutant or deletion of HIF-1α by RNA interference did not affect the inhibitory effect of DMOG, suggesting that the effect of DMOG is HIF-independent. Pharmacologic inactivation of EGLN3 hydroxylase resulted in activation of the canonical NF-κB pathway. The inhibitory effect of DMOG on myogenic differentiation was markedly impaired in C2C12 cells expressing a dominant-negative mutant of IκBα. Exogenous expression of wild-type EGLN3, but not its catalytically inactive mutant, significantly inhibited NF-κB activation induced by overexpressed TRAF2 or IκB kinase 2. In contrast, deletion of EGLN3 by small interfering RNAs led to activation of NF-κB. These data suggest that EGLN3 is a negative regulator of NF-κB, and its prolyl hydroxylase activity is required for this effect. Furthermore, wild-type EGLN3, but not its catalytically inactive mutant, potentiated myogenic differentiation. This study demonstrates a novel role for EGLN3 in the regulation of NF-κB and suggests that it is involved in mediating myogenic differentiation, which is HIF-independent. PMID:20089853

  12. Extracorporeal circulation as a new experimental pathway for myoblast implantation in mdx mice.

    PubMed

    Torrente, Y; D'Angelo, M G; Del Bo, R; DeLiso, A; Casati, R; Benti, R; Corti, S; Comi, G P; Gerundini, P; Anichini, A; Scarlato, G; Bresolin, N

    1999-01-01

    The deficiency of dystrophin, a sarcolemmal associated protein, is responsible for Duchenne muscular dystrophy (DMD). Gene replacement is attractive as a potential therapy. In this article, we describe a new method for myoblast transplantation and expression of dystrophin in skeletal muscle tissue of dystrophin-deficient mdx mouse through iliac vessels extracorporeal circulation. We evaluated the extracorporeal circulation as an alternative route of delivering myoblasts to the target tissue. Two series of experiments were performed with the extracorporeal circulation. In a first series, L6 rat myoblasts, transfected with LacZ reporter gene, were perfused in limbs of 15 rats. In the second series, the muscle limbs of three 6-8-week-old mdx were perfused with myoblasts of donor C57BL10J mice. Before these perfusions, the right tibialis anterior (TA) muscle of the rats and mdx was injected three times at several sites with bupivacaine (BPVC) and hyaluronidase. The ability of injected cells to migrate in the host tissue was assessed in rats by technetium-99m cell labeling. No radioactivity was detected in the lungs, bowels, and liver of animals treated with extracorporeal circulation. The tissue integration and viability of the myoblasts were ultimately confirmed by genetic and histochemical analysis of LacZ reporter gene. Following a single extracorporeal perfusion of myoblasts from donor C57BL10J, sarcolemmal expression of dystrophin was observed in clusters of myofibers in tibialis anterior muscles previously treated with BPVC and hyaluronidase. Furthermore, large clusters of dystrophin-positive fibers were observed in muscles up to 21 days after repeated treatments. These clusters represented an average of 4.2% of the total muscle fibers. These results demonstrate that the extracorporeal circulation allows selective myoblast-mediated gene transfer to muscles, opening new perspectives in muscular dystrophy gene therapy.

  13. Transcription factor ZBED6 mediates IGF2 gene expression by regulating promoter activity and DNA methylation in myoblasts

    USDA-ARS?s Scientific Manuscript database

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were up regulated during C2C12 differentiation. The IGF2 expression levels wer...

  14. The 12C/13C Isotopic Ratio In Titan's Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Nixon, Conor A.; Achterberg, R. K.; Vinatier, S.; Bezard, B.; Coustenis, A.; Teanby, N. A.; Irwin, P. G.; Cassini CIRS Team

    2007-10-01

    Isotopic ratios in planetary atmospheres are of considerable interest, yielding insights both about currently occurring processes, and also the formation and early evolution of the body. Before Cassini, ground-based measurements of Titan's 12C/13C in HCN showed no firm evidence of deviation from the terrestrial inorganic standard (88.9) - albeit with large error bars of 20% - contrasting the enrichment in nitrogen (15N/14N≈4.5 terrestrial). Since 2004, the Composite Infrared Spectrometer (CIRS) instrument on Cassini has recorded spectra of Titan's stratosphere globally, including the emissions of multiple isotopologues for certain hydrocarbons. We selected spectra for analysis from four flybys (T4, T12, T19, T22), covering five latitudes from 65°S to 71°N. By means of a radiative transfer code and inversion scheme, we have first modeled the ν4 band of 12CH4 at 1304 cm-1 to retrieve stratospheric temperatures, and subsequently the emissions of 13CH4, 12C2H2, 13C12CH2, 12C2H6 and 13C12CH6. Our results indicate 12C/13C = 81.2±2.0 for all three species combined over all five latitudes, in excellent agreement with the Huygens GCMS value of 12CH4/13CH4 = 82.3±1.0 (Niemann et al. 2005), some 9% lower than terrestrial inorganic, and lower than in ethane on Saturn (91 (-13) (+26)) and Jupiter (99 (-23) (+43)) (Sada et al. 1996). No latitude variation was detected, however the 12C/13C in the C2 species (83.9±3.1 in acetylene, 89.9±7.2 in ethane) were consistently higher than in methane (78.0±2.7) after considering random errors. Although it is possible that this is a real chemical or physical (condensation) effect, it is more likely due to systematic errors in our temperature profile, as our spectra do not yield independent temperature information at 10 mbar where the emissions of 13C12CH2 and 13C12CH6 originate, and we default to the Huygens probe temperatures. In future, this problem may be resolved by modeling CIRS limb spectra.

  15. The Activity of Differentiation Factors Induces Apoptosis in Polyomavirus Large T-Expressing Myoblasts

    PubMed Central

    Fimia, Gian Maria; Gottifredi, Vanesa; Bellei, Barbara; Ricciardi, Maria Rosaria; Tafuri, Agostino; Amati, Paolo; Maione, Rossella

    1998-01-01

    It is commonly accepted that pathways that regulate proliferation/differentiation processes, if altered in their normal interplay, can lead to the induction of programmed cell death. In a previous work we reported that Polyoma virus Large Tumor antigen (PyLT) interferes with in vitro terminal differentiation of skeletal myoblasts by binding and inactivating the retinoblastoma antioncogene product. This inhibition occurs after the activation of some early steps of the myogenic program. In the present work we report that myoblasts expressing wild-type PyLT, when subjected to differentiation stimuli, undergo cell death and that this cell death can be defined as apoptosis. Apoptosis in PyLT-expressing myoblasts starts after growth factors removal, is promoted by cell confluence, and is temporally correlated with the expression of early markers of myogenic differentiation. The block of the initial events of myogenesis by transforming growth factor β or basic fibroblast growth factor prevents PyLT-induced apoptosis, while the acceleration of this process by the overexpression of the muscle-regulatory factor MyoD further increases cell death in this system. MyoD can induce PyLT-expressing myoblasts to accumulate RB, p21, and muscle- specific genes but is unable to induce G00 arrest. Several markers of different phases of the cell cycle, such as cyclin A, cdk-2, and cdc-2, fail to be down-regulated, indicating the occurrence of cell cycle progression. It has been frequently suggested that apoptosis can result from an unbalanced cell cycle progression in the presence of a contrasting signal, such as growth factor deprivation. Our data involve differentiation pathways, as a further contrasting signal, in the generation of this conflict during myoblast cell apoptosis. PMID:9614186

  16. Identification of high-risk Listeria monocytogenes serotypes in lineage I (serotype 1/2a, 1/2c, 3a and 3c) using multiplex PCR

    USDA-ARS?s Scientific Manuscript database

    Aims: Using molecular subtyping techniques, Listeria monocytogenes is divided into three major phylogenetic lineages, and a multiplex PCR method can differentiate five L. monocytogenes subgroups: 1/2a-3a, 1/2c-3c, 1/2b-3b-7, 4b-4d-4e, and 4a-4c. In the current study, we conducted genome comparison...

  17. Prostaglandin E2 promotes proliferation of skeletal muscle myoblasts via EP4 receptor activation.

    PubMed

    Mo, Chenglin; Zhao, Ruonan; Vallejo, Julian; Igwe, Orisa; Bonewald, Lynda; Wetmore, Lori; Brotto, Marco

    2015-01-01

    We recently demonstrated that conditioned media (CM) from osteocytes enhances myogenic differentiation of myoblasts, suggesting that signaling from bone may be important for skeletal muscle myogenesis. The effect of CM was closely mimicked by prostaglandin E2 (PGE2), a bioactive lipid mediator in various physiological or pathological conditions. PGE2 is secreted at high levels by osteocytes and such secretion is further enhanced under loading conditions. Although four types of receptors, EP1 to EP4, mediate PGE2 signaling, it is unknown whether these receptors play a role in myogenesis. Therefore, in this study, the expression of EPs in mouse primary myoblasts was characterized, followed by examination of their roles in myoblast proliferation by treating myoblasts with PGE2 or specific agonists. All four PGE2 receptor mRNAs were detectable by quantitative real-time PCR (qPCR), but only PGE2 and EP4 agonist CAY 10598 significantly enhance myoblast proliferation. EP1/EP3 agonist 17-phenyl trinor PGE2 (17-PT PGE2) and EP2 agonist butaprost did not have any significant effects. Moreover, treatment with EP4 antagonist L161,982 dose-dependently inhibited myoblast proliferation. These results were confirmed by cell cycle analysis and the gene expression of cell cycle regulators. Concomitant with the inhibition of myoblast proliferation, treatment with L161,982 significantly increased intracellular reactive oxygen species (ROS) levels. Cotreatment with antioxidant N-acetyl cysteine (NAC) or sodium ascorbate (SA) successfully reversed the inhibition of myoblast proliferation and ROS overproduction caused by L161,982. Therefore, PGE2 signaling via the EP4 receptor regulates myogenesis by promoting myoblast proliferation and blocking this receptor results in increased ROS production in myoblasts.

  18. Prostaglandin E2 promotes proliferation of skeletal muscle myoblasts via EP4 receptor activation

    PubMed Central

    Mo, Chenglin; Zhao, Ruonan; Vallejo, Julian; Igwe, Orisa; Bonewald, Lynda; Wetmore, Lori; Brotto, Marco

    2015-01-01

    We recently demonstrated that conditioned media (CM) from osteocytes enhances myogenic differentiation of myoblasts, suggesting that signaling from bone may be important for skeletal muscle myogenesis. The effect of CM was closely mimicked by prostaglandin E2 (PGE2), a bioactive lipid mediator in various physiological or pathological conditions. PGE2 is secreted at high levels by osteocytes and such secretion is further enhanced under loading conditions. Although four types of receptors, EP1 to EP4, mediate PGE2 signaling, it is unknown whether these receptors play a role in myogenesis. Therefore, in this study, the expression of EPs in mouse primary myoblasts was characterized, followed by examination of their roles in myoblast proliferation by treating myoblasts with PGE2 or specific agonists. All four PGE2 receptor mRNAs were detectable by quantitative real-time PCR (qPCR), but only PGE2 and EP4 agonist CAY 10598 significantly enhance myoblast proliferation. EP1/EP3 agonist 17-phenyl trinor PGE2 (17-PT PGE2) and EP2 agonist butaprost did not have any significant effects. Moreover, treatment with EP4 antagonist L161,982 dose-dependently inhibited myoblast proliferation. These results were confirmed by cell cycle analysis and the gene expression of cell cycle regulators. Concomitant with the inhibition of myoblast proliferation, treatment with L161,982 significantly increased intracellular reactive oxygen species (ROS) levels. Cotreatment with antioxidant N-acetyl cysteine (NAC) or sodium ascorbate (SA) successfully reversed the inhibition of myoblast proliferation and ROS overproduction caused by L161,982. Therefore, PGE2 signaling via the EP4 receptor regulates myogenesis by promoting myoblast proliferation and blocking this receptor results in increased ROS production in myoblasts. PMID:25785867

  19. Myocyte enhancer factor 2A promotes proliferation and its inhibition attenuates myogenic differentiation via myozenin 2 in bovine skeletal muscle myoblast

    PubMed Central

    Wang, Ya-Ning; Yang, Wu-Cai; Li, Pei-Wei; Wang, Hong-Bao; Zhang, Ying-Ying

    2018-01-01

    Myocyte enhancer factor 2A (MEF2A) is widely distributed in various tissues or organs and plays crucial roles in multiple biological processes. To examine the potential effects of MEF2A on skeletal muscle myoblast, the functional role of MFE2A in myoblast proliferation and differentiation was investigated. In this study, we found that the mRNA expression level of Mef2a was dramatically increased during the myogenesis of bovine skeletal muscle primary myoblast. Overexpression of MEF2A significantly promoted myoblast proliferation, while knockdown of MEF2A inhibited the proliferation and differentiation of myoblast. RT-PCR and western blot analysis revealed that this positive effect of MEF2A on the proliferation of myoblast was carried out by triggering cell cycle progression by activating CDK2 protein expression. Besides, MEF2A was found to be an important transcription factor that bound to the myozenin 2 (MyoZ2) proximal promoter and performed upstream of MyoZ2 during myoblast differentiation. This study provides the first experimental evidence that MEF2A is a positive regulator in skeletal muscle myoblast proliferation and suggests that MEF2A regulates myoblast differentiation via regulating MyoZ2. PMID:29698438

  20. Extended reaction scope of thiamine diphosphate dependent cyclohexane-1,2-dione hydrolase: from C-C bond cleavage to C-C bond ligation.

    PubMed

    Loschonsky, Sabrina; Wacker, Tobias; Waltzer, Simon; Giovannini, Pier Paolo; McLeish, Michael J; Andrade, Susana L A; Müller, Michael

    2014-12-22

    ThDP-dependent cyclohexane-1,2-dione hydrolase (CDH) catalyzes the CC bond cleavage of cyclohexane-1,2-dione to 6-oxohexanoate, and the asymmetric benzoin condensation between benzaldehyde and pyruvate. One of the two reactivities of CDH was selectively knocked down by mutation experiments. CDH-H28A is much less able to catalyze the CC bond formation, while the ability for CC bond cleavage is still intact. The double variant CDH-H28A/N484A shows the opposite behavior and catalyzes the addition of pyruvate to cyclohexane-1,2-dione, resulting in the formation of a tertiary alcohol. Several acyloins of tertiary alcohols are formed with 54-94 % enantiomeric excess. In addition to pyruvate, methyl pyruvate and butane-2,3-dione are alternative donor substrates for CC bond formation. Thus, the very rare aldehyde-ketone cross-benzoin reaction has been solved by design of an enzyme variant. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A Novel Role for the RNA–Binding Protein FXR1P in Myoblasts Cell-Cycle Progression by Modulating p21/Cdkn1a/Cip1/Waf1 mRNA Stability

    PubMed Central

    Davidovic, Laetitia; Durand, Nelly; Khalfallah, Olfa; Tabet, Ricardo; Barbry, Pascal; Mari, Bernard; Sacconi, Sabrina; Moine, Hervé; Bardoni, Barbara

    2013-01-01

    The Fragile X-Related 1 gene (FXR1) is a paralog of the Fragile X Mental Retardation 1 gene (FMR1), whose absence causes the Fragile X syndrome, the most common form of inherited intellectual disability. FXR1P plays an important role in normal muscle development, and its absence causes muscular abnormalities in mice, frog, and zebrafish. Seven alternatively spliced FXR1 transcripts have been identified and two of them are skeletal muscle-specific. A reduction of these isoforms is found in myoblasts from Facio-Scapulo Humeral Dystrophy (FSHD) patients. FXR1P is an RNA–binding protein involved in translational control; however, so far, no mRNA target of FXR1P has been linked to the drastic muscular phenotypes caused by its absence. In this study, gene expression profiling of C2C12 myoblasts reveals that transcripts involved in cell cycle and muscular development pathways are modulated by Fxr1-depletion. We observed an increase of p21—a regulator of cell-cycle progression—in Fxr1-knocked-down mouse C2C12 and FSHD human myoblasts. Rescue of this molecular phenotype is possible by re-expressing human FXR1P in Fxr1-depleted C2C12 cells. FXR1P muscle-specific isoforms bind p21 mRNA via direct interaction with a conserved G-quadruplex located in its 3′ untranslated region. The FXR1P/G-quadruplex complex reduces the half-life of p21 mRNA. In the absence of FXR1P, the upregulation of p21 mRNA determines the elevated level of its protein product that affects cell-cycle progression inducing a premature cell-cycle exit and generating a pool of cells blocked at G0. Our study describes a novel role of FXR1P that has crucial implications for the understanding of its role during myogenesis and muscle development, since we show here that in its absence a reduced number of myoblasts will be available for muscle formation/regeneration, shedding new light into the pathophysiology of FSHD. PMID:23555284

  2. A microplate assay for measuring cell death in C2C12 cells.

    PubMed

    Lima, Tanes; Silveira, Leonardo

    2018-03-22

    The main goal of this study was to develop a straightforward and rapid microplate assay for measuring propidium iodide (PI) in C2C12 cells. The PI method proves to be an efficient quantitative assay for analyzing cell viability through PI fluorescence analysis. Importantly, the protocol takes less than 30 minutes, and the results are reproducible. C2C12 cells were exposed to an increasing concentration of palmitate for a period of 24 hours to induce cell death, and the PI fluorescence increased in a concentration-dependent manner. Evaluation of mitochondrial function and reactive oxygen species production validated the deleterious effects of palmitate treatment. Also, the microplate PI assay demonstrated high sensitivity as indicated by the detection of modest fluctuations in cell viability in response to catalase overexpression in palmitate-treated cells. The microplate PI assay, therefore, offers an accurate method to be used for in vitro studies.

  3. Bis-Indole-Derived NR4A1 Ligands and Metformin Exhibit NR4A1-Dependent Glucose Metabolism and Uptake in C2C12 Cells.

    PubMed

    Mohankumar, Kumaravel; Lee, Jehoon; Wu, Chia Shan; Sun, Yuxiang; Safe, Stephen

    2018-05-01

    Treatment of C2C12 muscle cells with metformin or the NR4A1 ligand 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) induced NR4A1 and Glut4 messenger RNA and protein expression. Similar results were observed with buttressed (3- or 3,5-substituted) analogs of DIM-C-pPhOH, including 1,1-bis(3'-indolyl)-1-(3-chloro-4-hydroxy-5-methoxyphenyl)methane (DIM-C-pPhOH-3-Cl-5-OCH3), and the buttressed analogs were more potent than DIM-C-pPhOH NR4A1 agonists. Metformin and the bis-indole substituted analogs also induced expression of several glycolytic genes and Rab4, which has previously been linked to enhancing cell membrane accumulation of Glut4 and overall glucose uptake in C2C12 cells, and these responses were also observed after treatment with metformin and the NR4A1 ligands. The role of NR4A1 in mediating the responses induced by the bis-indoles and metformin was determined by knockdown of NR4A1, and this resulted in attenuating the gene and protein expression and enhanced glucose uptake responses induced by these compounds. Our results demonstrate that the bis-indole-derived NR4A1 ligands represent a class of drugs that enhance glucose uptake in C2C12 muscle cells, and we also show that the effects of metformin in this cell line are NR4A1-dependent.

  4. Foliar extracts from transgenic tomato plants expressing the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease virus elicit a protective response in guinea pigs.

    PubMed

    Pan, Li; Zhang, Yongguang; Wang, Yonglu; Wang, Baoqin; Wang, Wenxiu; Fang, Yuzhen; Jiang, Shoutian; Lv, Jianliang; Wang, Wei; Sun, Yuan; Xie, Qingge

    2008-01-15

    The expression of recombinant antigens in transgenic plants is increasingly used as an alternative method of producing experimental immunogens. In this report, we describe the production of transgenic tomato plants that express the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease (FMDV). P1-2A3C was inserted into the plant binary vector, pBin438, and transformed into tomato plants using Agrobacterium tumefaciens strain, GV3101. The presence of P1-2A3C was confirmed by PCR, transcription was verified by RT-PCR, and recombinant protein expression was confirmed by sandwich-ELISA and Western blot analyses. Guinea pigs immunized intramuscularly with foliar extracts from P1-2A3C-transgenic tomato plants were found to develop a virus-specific antibody response against FMDV. Vaccinated guinea pigs were fully protected against a challenge infection, while guinea pigs injected with untransformed plant extracts failed to elicit an antibody response and were not protected against challenge. These results demonstrate that transgenic tomato plants expressing the FMDV structural polyprotein, P1-2A, and the protease, 3C, can be used as a source of recombinant antigen for vaccine production.

  5. Short-hairpin Mediated Myostatin Knockdown Resulted in Altered Expression of Myogenic Regulatory Factors with Enhanced Myoblast Proliferation in Fetal Myoblast Cells of Goats.

    PubMed

    Kumar, Rohit; Singh, Satyendra Pal; Mitra, Abhijit

    2018-01-02

    Myostatin (MSTN) is a well-known negative regulator of skeletal muscle development. Reduced expression due to natural mutations in the coding region and knockout as well as knockdown of MSTN results in an increase in the muscle mass. In the present study, we demonstrated as high as 60 and 52% downregulation (p < 0.01) of MSTN mRNA and protein in the primary fetal myoblast cells of goats using synthetic shRNAs (n = 3), without any interferon response. We, for the first time, evaluated the effect of MSTN knockdown on the expression of MRFs (namely, MyoD, Myf5), follistatin (FST), and IGFs (IGF-1 & IGF-2) in goat myoblast cells. MSTN knockdown caused an upregulation (p < 0.05) of MyoD and downregulation (p < 0.01) of MYf5 and FST expression. Moreover, we report up to ∼four fold (p < 0.001) enhanced proliferation in myoblasts after four days of culture. The anti-MSTN shRNA demonstrated in the present study could be used for the production of transgenic goats to increase the muscle mass.

  6. Zein nanoparticle as a novel BMP6 derived peptide carrier for enhanced osteogenic differentiation of C2C12 cells.

    PubMed

    Hadavi, Mahvash; Hasannia, Sadegh; Faghihi, Shahab; Mashayekhi, Farhad; Homazadeh, Homayoun; Mostofi, Seyed Behrooz

    2018-01-26

    Zein nanoparticles as a carrier system for BMP6-derived peptide were prepared by liquid-liquid phase separation procedure and characterized with SEM, DLS, FTIR and thermogravimetric methods. After peptide encapsulation, nanoparticle size increased from 236.3 ± 92.2 nm to 379.4 ± 116.8 nm. The encapsulation efficiency of peptide was 72.6% and the release of peptide from Zein nanoparticles was partly sustained in trypsin containing phosphate buffered saline (pH 7.4) for up to 14 days. Peptide-loaded nanoparticles showed similar cell viability compared with blank ones. ALP activity of C2C12 cells treated with peptide-loaded nanoparticles (500 µg/mL) was evaluated 7, 14, 21 and 28 days after culture. In peptide-loaded nanoparticles, ALP activity was significantly higher (p < .05) compared with other groups at day 14. Alizarin Red S staining showed, C2C12 cells behind peptide-loaded nanoparticles had significantly (p < .05) higher calcium deposition at day 21. The results of RT-qPCR show that the BMP-6 peptide activated expression of RUNX2 as a transcription factor. In turn, RUNX2 regulates SPP1 and BGLAP gene expression, as osteogenic marker genes. The results confirm that the peptide-loaded Zein nanoparticles, as osteoinductive material, may be used to repair small area of bone defects, with low load bearing.

  7. Effects of N-acetylcysteine and L-arginine in the antioxidant system of C2C12 cells.

    PubMed

    Da Silva, E P; Lambertucci, R H

    2015-06-01

    The aim of this study was to evaluate the effects of N-acetylcysteine or L-arginine in the antioxidant system of skeletal muscle cells in culture. We used C2C12 cells which were supplemented or not with N-acetylcysteine or L-arginine at different time points. Antioxidant enzymes' activities and protein expression were evaluated. Additionally, superoxide production by cytochrome c reduction method was carried out. It was observed that the supplementation with either N-acetylcysteine or L-arginine was capable to acutely reduce superoxide production (after 30 and 60 minutes). Surprisingly, N-acetylcysteine supplementation also induced an increased production of superoxide during the period of 24 hours. Moreover, both supplements were capable to improve the activity and protein expression of some antioxidants enzymes. In conclusion, we have found new evidences showing that N-acetylcysteine or L-arginine supplementation can provide some benefits to the antioxidant system of skeletal muscle cells in culture. Further studies have to be carried out to evaluate if such benefits could also occur in an in vivo model, with possible benefits for athletes' health and performance.

  8. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System.

    PubMed

    Chaturvedi, Vishal; Dye, Danielle E; Kinnear, Beverley F; van Kuppevelt, Toin H; Grounds, Miranda D; Coombe, Deirdre R

    2015-01-01

    Decellularisation of skeletal muscle provides a system to study the interactions of myoblasts with muscle extracellular matrix (ECM). This study describes the efficient decellularisation of quadriceps muscle with the retention of matrix components and the use of this matrix for myoblast proliferation and differentiation under serum free culture conditions. Three decellularisation approaches were examined; the most effective was phospholipase A2 treatment, which removed cellular material while maximizing the retention of ECM components. Decellularised muscle matrices were then solubilized and used as substrates for C2C12 mouse myoblast serum free cultures. The muscle matrix supported myoblast proliferation and differentiation equally as well as collagen and fibronectin. Immunofluorescence analyses revealed that myoblasts seeded on muscle matrix and fibronectin differentiated to form long, well-aligned myotubes, while myoblasts seeded on collagen were less organized. qPCR analyses showed a time dependent increase in genes involved in skeletal muscle differentiation and suggested that muscle-derived matrix may stimulate an increased rate of differentiation compared to collagen and fibronectin. Decellularized whole muscle three-dimensional scaffolds also supported cell adhesion and spreading, with myoblasts aligning along specific tracts of matrix proteins within the scaffolds. Thus, under serum free conditions, intact acellular muscle matrices provided cues to direct myoblast adhesion and migration. In addition, myoblasts were shown to rapidly secrete and organise their own matrix glycoproteins to create a localized ECM microenvironment. This serum free culture system has revealed that the correct muscle ECM facilitates more rapid cell organisation and differentiation than single matrix glycoprotein substrates.

  9. Expression of CYP2A6, KIF12, and SULT1C1 in liver of sheep with divergent sheepmeat flavour and odour

    NASA Astrophysics Data System (ADS)

    Listyarini, K.; Jakaria; Furqon, A.; Sumantri, C.; Uddin, M. J.; Gunawan, A.

    2018-05-01

    The aim of this study was to investigate the expression of some of the key enzymes involved in liver sample of sheep with high and low sheepmeat flavour and odour. The study was conducted with Indonesian Javanese fat tailed sheep. Sheep having a fat branched chain fatty acids 4-methylnonanoic (MNA) greater and less than 215 μg g-1 and 229 will be defined as low and sheep meat odour, respectively. For the flavour, sheep having a fat skatole level less than 0.25 μg g-1 and greater than 0.25 μg g-1 will be defined as low and high flavour samples, respectively. The enzymes investigated were cytochrome P450 2A13 (CYP2A6), kinesin-like protein KIF12 (KIF12), and sulfotransferase 1C1 (SULT1C1). Expression of CYP2A6 in liver had differ between animals with high and low sheep meat flavour. Expression of CYP2A6, which catalyses the first stage of oxidation degradation, was increased in high sheep meat flavour and odour (P > 0.05). Similar pattern, the expression of SULT1C1, which catalyse the second stage of conjugation steroid catabolism, was increase in high sheep meat flavour and odour (P > 0.05). In contrast, the expression of KIF12 was decreased in high sheep meat flavour and odour animals. It is suggested that accumulation sheep meat flavour and odour in liver tissue of Indonesian Javanese fat tailed might be related to a high rate of oxidation in metabolic stage I and conjugation degradation in metabolic stage II.

  10. [The effect of Foxc2 overexpression on the osteogenic properties of C3H10T1/2 cells].

    PubMed

    Wang, Min-Jiao; Si, Jia-Wen; Li, Hong-Liang; Ouyang, Ning-Juan; Shen, Guo-Fang

    2016-08-01

    To investigate the effect of Foxc2 overexpression on osteogenic and adipogenic differentiation of C3H10T1/2 cells. C3H10T1/2 cells were transfected with plenti-Foxc2 and selected with puromycin for stable clones. The expression of Foxc2 was determined by real-time PCR and Western blot. Cell proliferation was detected by CCK-8 kit. Cell cycle and apoptosis were detected by flow cytometry. The level of osteogenic biomarkers Runx2, OPN, OCN and adipogenic biomarker PPARγ were quantified by real-time PCR and Western blot. Alkaline phosphatase (ALP) staining and oil red staining were conducted to evaluate the effect of Foxc2 overexpression on osteogenic and adipogenic differentiation. Statistical analysis was performed using SPSS 17.0 software package. C3H10T1/2-Foxc2 cell line was successfully constructed and verified by direct sequencing and Foxc2 overexpression in vitro. Cell proliferation was reduced and cell cycle was blocked in G1/G0 phase. Enhanced ALP staining and reduced oil red staining were observed in C3H10T1/2-Foxc2 cells as compared with the control. Foxc2 overexpression up-regulated Runx2, OPN, OCN during osteogenic differentiation and down-regulated PPARγduring adipogenic differentiation. C3H10T1/2 cell line stably expressing Foxc2 gene was successfully established, cell proliferation was reduced, osteogenesis biomarkers were up-regulated during the osteogenesis by overexpression Foxc2, PPARγwas down-regulated during adipogenesis.

  11. Comparative Proteomic Study of Fatty Acid-treated Myoblasts Reveals Role of Cox-2 in Palmitate-induced Insulin Resistance

    PubMed Central

    Chen, Xiulan; Xu, Shimeng; Wei, Shasha; Deng, Yaqin; Li, Yiran; Yang, Fuquan; Liu, Pingsheng

    2016-01-01

    Accumulated studies demonstrate that saturated fatty acids (FAs) such as palmitic acid (PA) inhibit insulin signaling in skeletal muscle cells and monounsaturated fatty acids such as oleic acid (OA) reverse the effect of PA on insulin signaling. The detailed molecular mechanism of these opposite effects remains elusive. Here we provide a comparative proteomic study of skeletal myoblast cell line C2C12 that were untreated or treated with PA, and PA plus OA. A total of 3437 proteins were quantified using SILAC in this study and 29 proteins fall into the pattern that OA reverses PA effect. Expression of some these proteins were verified using qRT-PCR and Western blot. The most significant change was cyclooxygenase-2 (Cox-2). In addition to whole cell comparative proteomic study, we also compared lipid droplet (LD)-associated proteins and identified that Cox-2 was one of three major altered proteins under the FA treatment. This finding was then confirmed using immunofluorescence. Finally, Cox-2 selective inhibitor, celecoxib protected cells from PA-reduced insulin signaling Akt phosphorylation. Together, these results not only provide a dataset of protein expression change in FA treatment but also suggest that Cox-2 and lipid droplets (LDs) are potential players in PA- and OA-mediated cellular processes. PMID:26899878

  12. Cross section measurements in the 12C+12C system

    NASA Astrophysics Data System (ADS)

    Courtin, S.; Jiang, C. L.; Fruet, G.; Heine, M.; Jenkins, D. G.; Adsley, P.; Morris, L. G.; Regan, P. H.; Rudigier, M.; Montanari, D.; Della Negra, S.; de Séréville, N.; Haas, F.; Hammache, F.; Kirsebom, O. S.; Lesrel, J.; Meyer, A.; Montanari, D.; Auranen, K.; Avila, M. L.; Ayangeakaa, A. D.; Back, B. B.; Bottoni, S.; Carpenter, M.; Dickerson, C.; DiGiovine, B.; Greene, J. P.; Henderson, D. J.; Hoffman, C. R.; Janssens, R. V. F.; Kay, B. P.; Kuvin, S. A.; Lauritsen, T.; Pardo, R. C.; Rehm, K. E.; Santiago-Gonzalez, D.; Sethi, J.; Seweryniak, D.; Talwar, R.; Ugalde, C.; Zhu, S.; Deibel, C. M.; Marley, S. T.; Bourgin, D.; Stodel, C.; Lefebvre-Schuhl, A.; Almaraz-Calderon, S.; Fang, X.; Tang, X. D.; Alcorta, M.; Bucher, B.; Albers, M.; Bertone, P.

    2018-01-01

    The 12C+12C fusion reaction is one of the most important for nuclear astrophysics since it determines the carbon ignition in stellar environments. Two experiments which make use of the gamma-particle coincidence technique to measure the 12C+12C S-factors at deep sub barrier energies are discussed. Results are presented showing a decrease of the S-factor below Ec.m. = 3 MeV.

  13. The calcineurin pathway links hyperpolarization (Kir2.1)-induced Ca2+ signals to human myoblast differentiation and fusion.

    PubMed

    Konig, Stéphane; Béguet, Anne; Bader, Charles R; Bernheim, Laurent

    2006-08-01

    In human myoblasts triggered to differentiate, a hyperpolarization, resulting from K+ channel (Kir2.1) activation, allows the generation of an intracellular Ca2+ signal. This signal induces an increase in expression/activity of two key transcription factors of the differentiation process, myogenin and MEF2. Blocking hyperpolarization inhibits myoblast differentiation. The link between hyperpolarization-induced Ca2+ signals and the four main regulatory pathways involved in myoblast differentiation was the object of this study. Of the calcineurin, p38-MAPK, PI3K and CaMK pathways, only the calcineurin pathway was inhibited when Kir2.1-linked hyperpolarization was blocked. The CaMK pathway, although Ca2+ dependent, is unaffected by changes in membrane potential or block of Kir2.1 channels. Concerning the p38-MAPK and PI3K pathways, their activity is present already in proliferating myoblasts and they are unaffected by hyperpolarization or Kir2.1 channel block. We conclude that the Kir2.1-induced hyperpolarization triggers human myoblast differentiation via the activation of the calcineurin pathway, which, in turn, induces expression/activity of myogenin and MEF2.

  14. The 12C/13C Ratio in Sgr B2(N): Constraints for Galactic Chemical Evolution and Isotopic Chemistry

    NASA Astrophysics Data System (ADS)

    Halfen, D. T.; Woolf, N. J.; Ziurys, L. M.

    2017-08-01

    A study has been conducted of 12C/13C ratios in five complex molecules in the Galactic center. H2CS, CH3CCH, NH2CHO, CH2CHCN, and CH3CH2CN and their 13C-substituted species have been observed in numerous transitions at 1, 2, and 3 mm, acquired in a spectral-line survey of Sgr B2(N), conducted with the telescopes of the Arizona Radio Observatory (ARO). Between 22 and 54 individual, unblended lines for the 12C species and 2-54 for 13C-substituted analogs were modeled in a global radiative transfer analysis. All five molecules were found to consistently exhibit two velocity components near V LSR ˜ 64 and 73 km s-1, with column densities ranging from N tot ˜ 3 × 1014 - 4 × 1017 cm-2 and ˜2 × 1013 - 1 × 1017 cm-2 for the 12C and 13C species, respectively. Based on 14 different isotopic combinations, ratios were obtained in the range 12C/13C = 15 ± 5 to 33 ± 13, with an average value of 24 ± 7, based on comparison of column densities. These measurements better anchor the 12C/13C ratio at the Galactic center, and suggest a slightly revised isotope gradient of 12C/13C = 5.21(0.52) D GC + 22.6(3.3). As indicated by the column densities, no preferential 13C enrichment was found on the differing carbon sites of CH3CCH, CH2CHCN, and CH3CH2CN. Because of the elevated temperatures in Sgr B2(N), 13C isotopic substitution is effectively “scrambled,” diminishing chemical fractionation effects. The resulting ratios thus reflect stellar nucleosynthesis and Galactic chemical evolution, as is likely the case for most warm clouds.

  15. THE GALACTIC R CORONAE BOREALIS STARS: THE C{sub 2} SWAN BANDS, THE CARBON PROBLEM, AND THE {sup 12}C/{sup 13}C RATIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hema, B. P.; Pandey, Gajendra; Lambert, David L., E-mail: hema@iiap.res.in, E-mail: pandey@iiap.res.in, E-mail: dll@astro.as.utexas.edu

    2012-03-10

    Observed spectra of R Coronae Borealis (RCB) and hydrogen-deficient carbon (HdC) stars are analyzed by synthesizing the C{sub 2} Swan bands (1, 0), (0, 0), and (0, 1) using our detailed line list and the Uppsala model atmospheres. The (0, 1) and (0, 0) C{sub 2} bands are used to derive the {sup 12}C abundance, and the (1, 0) {sup 12}C{sup 13}C band to determine the {sup 12}C/{sup 13}C ratios. The carbon abundance derived from the C{sub 2} Swan bands is about the same for the adopted models constructed with different carbon abundances over the range 8.5 (C/He = 0.1%)more » to 10.5 (C/He = 10%). Carbon abundances derived from C I lines are about a factor of four lower than the carbon abundance of the adopted model atmosphere over the same C/He interval, as reported by Asplund et al., who dubbed the mismatch between adopted and derived C abundance as the 'carbon problem'. In principle, the carbon abundances obtained from C{sub 2} Swan bands and that assumed for the model atmosphere can be equated for a particular choice of C/He that varies from star to star. Then, the carbon problem for C{sub 2} bands is eliminated. However, such C/He ratios are in general less than those of the extreme helium stars, the seemingly natural relatives to the RCB and HdC stars. A more likely solution to the C{sub 2} carbon problem may lie in a modification of the model atmosphere's temperature structure. The derived carbon abundances and the {sup 12}C/{sup 13}C ratios are discussed in light of the double degenerate and the final flash scenarios.« less

  16. The C. elegans VIG-1 and FRM-1 modulate carbachol-stimulated ERK1/2 activation in chinese hamster ovary cells expressing the muscarinic acetylcholine receptor GAR-3.

    PubMed

    Shin, Youngmi; Cho, Nam Jeong

    2014-04-01

    Many neurotransmitter receptors are known to interact with a variety of intracellular proteins that modulate signaling processes. In an effort to understand the molecular mechanism by which acetylcholine (ACh) signaling is modulated, we searched for proteins that interact with GAR-3, the Caenorhabditis elegans homolog of muscarinic ACh receptors. We isolated two proteins, VIG-1 and FRM-1, in a yeast two-hybrid screen of a C. elegans cDNA library using the third intracellular (i3) loop of GAR-3 as bait. To test whether these proteins regulate ACh signaling, we utilized Chinese hamster ovary (CHO) cells stably expressing GAR-3 (GAR-3/CHO cells). Previously we have shown that the cholinergic agonist carbachol stimulates extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation in an atropine-sensitive manner in this cell line. When VIG-1 was transiently expressed in GAR-3/CHO cells, carbachol-stimulated ERK1/2 activation was substantially reduced. In contrast, transient expression of FRM-1 significantly enhanced carbachol-stimulated ERK1/2 activation. Neither VIG-1 nor FRM-1 expression appeared to alter the affinity between GAR-3 and carbachol. In support of this notion, expression of these proteins did not affect GAR-3-mediated phospholipase C activation. To verify the modulation of ERK1/2 activity by VIG-1 and FRM-1, we used an i3 loop deletion mutant of GAR-3 (termed GAR-3Δi3). Carbachol treatment evoked robust ERK1/2 activation in CHO cells stably expressing the deletion mutant (GAR-3Δi3/CHO cells). However, transient expression of either VIG-1 or FRM-1 had little effect on carbachol-stimulated ERK1/2 activation in GAR-3Δi3/CHO cells. Taken together, these results indicate that VIG-1 and FRM-1 regulate GAR-3-mediated ERK1/2 activation by interacting with the i3 loop of GAR-3.

  17. IP{sub 3}-dependent intracellular Ca{sup 2+} release is required for cAMP-induced c-fos expression in hippocampal neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenting; Tingare, Asmita; Ng, David Chi-Heng

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer cAMP-induced c-fos expression in hippocampal neurons requires a submembraneous Ca{sup 2+} pool. Black-Right-Pointing-Pointer The submembraneous Ca{sup 2+} pool derives from intracellular ER stores. Black-Right-Pointing-Pointer Expression of IP{sub 3}-metabolizing enzymes inhibits cAMP-induced c-fos expression. Black-Right-Pointing-Pointer SRE-mediated and CRE-mediated gene expression is sensitive to IP{sub 3}-metabolizing enzymes. Black-Right-Pointing-Pointer Intracellular Ca{sup 2+} release is required for cAMP-induced nuclear translocation of TORC1. -- Abstract: Ca{sup 2+} and cAMP are widely used in concert by neurons to relay signals from the synapse to the nucleus, where synaptic activity modulates gene expression required for synaptic plasticity. Neurons utilize different transcriptional regulators to integrate informationmore » encoded in the spatiotemporal dynamics and magnitude of Ca{sup 2+} and cAMP signals, including some that are Ca{sup 2+}-responsive, some that are cAMP-responsive and some that detect coincident Ca{sup 2+} and cAMP signals. Because Ca{sup 2+} and cAMP can influence each other's amplitude and spatiotemporal characteristics, we investigated how cAMP acts to regulate gene expression when increases in intracellular Ca{sup 2+} are buffered. We show here that cAMP-mobilizing stimuli are unable to induce expression of the immediate early gene c-fos in hippocampal neurons in the presence of the intracellular Ca{sup 2+} buffer BAPTA-AM. Expression of enzymes that attenuate intracellular IP{sub 3} levels also inhibited cAMP-dependent c-fos induction. Synaptic activity induces c-fos transcription through two cis regulatory DNA elements - the CRE and the SRE. We show here that in response to cAMP both CRE-mediated and SRE-mediated induction of a luciferase reporter gene is attenuated by IP{sub 3} metabolizing enzymes. Furthermore, cAMP-induced nuclear translocation of the CREB coactivator TORC1 was

  18. C3-C4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis.

    PubMed

    Khoshravesh, Roxana; Stinson, Corey R; Stata, Matt; Busch, Florian A; Sage, Rowan F; Ludwig, Martha; Sage, Tammy L

    2016-05-01

    Photorespiratory glycine shuttling and decarboxylation in bundle sheath (BS) cells exhibited by C2 species is proposed to be the evolutionary bridge to C4 photosynthesis in eudicots. To evaluate this in grasses, we compare anatomy, cellular localization of glycine decarboxylase (GDC), and photosynthetic physiology of a suspected C2 grass, Homolepis aturensis, with these traits in known C2 grasses, Neurachne minor and Steinchisma hians, and C3 S laxum that is sister to S hians We also use publicly available genome and RNA-sequencing data to examine the evolution of GDC subunits and enhance our understanding of the evolution of BS-specific GDC expression in C2 and C4 grasses. Our results confirm the identity of H aturensis as a C2 species; GDC is confined predominantly to the organelle-enriched BS cells in H aturensis and S hians and to mestome sheath cells of N minor Phylogenetic analyses and data obtained from immunodetection of the P-subunit of GDC are consistent with the hypothesis that the BS dominant levels of GDC in C2 and C4 species are due to changes in expression of a single GLDP gene in M and BS cells. All BS mitochondria and peroxisomes and most chloroplasts in H aturensis and S hians are situated centripetally in a pattern identical to C2 eudicots. In S laxum, which has C3-like gas exchange patterns, mitochondria and peroxisomes are positioned centripetally as they are in S hians This subcellular phenotype, also present in eudicots, is posited to initiate a facilitation cascade leading to C2 and C4 photosynthesis. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. 40 CFR 721.3025 - Fatty acids C12-18, C18 unsaturated, C12-18 alkyl esters (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acids C12-18, C18 unsaturated... Significant New Uses for Specific Chemical Substances § 721.3025 Fatty acids C12-18, C18 unsaturated, C12-18... chemical substance identified generically as fatty acids C12-18, C18 unsaturated, C12-18 alkyl esters (PMNs...

  20. Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors

    PubMed Central

    2013-01-01

    Background In sea urchin larvae the circumesophageal fibers form a prominent muscle system of mesodermal origin. Although the morphology and later development of this muscle system has been well-described, little is known about the molecular signature of these cells or their precise origin in the early embryo. As an invertebrate deuterostome that is more closely related to the vertebrates than other commonly used model systems in myogenesis, the sea urchin fills an important phylogenetic gap and provides a unique perspective on the evolution of muscle cell development. Results Here, we present a comprehensive description of the development of the sea urchin larval circumesophageal muscle lineage beginning with its mesodermal origin using high-resolution localization of the expression of several myogenic transcriptional regulators and differentiation genes. A few myoblasts are bilaterally distributed at the oral vegetal side of the tip of the archenteron and first appear at the late gastrula stage. The expression of the differentiation genes Myosin Heavy Chain, Tropomyosin I and II, as well as the regulatory genes MyoD2, FoxF, FoxC, FoxL1, Myocardin, Twist, and Tbx6 uniquely identify these cells. Interestingly, evolutionarily conserved myogenic factors such as Mef2, MyoR and Six1/2 are not expressed in sea urchin myoblasts but are found in other mesodermal domains of the tip of the archenteron. The regulatory states of these domains were characterized in detail. Moreover, using a combinatorial analysis of gene expression we followed the development of the FoxF/FoxC positive cells from the onset of expression to the end of gastrulation. Our data allowed us to build a complete map of the Non-Skeletogenic Mesoderm at the very early gastrula stage, in which specific molecular signatures identify the precursors of different cell types. Among them, a small group of cells within the FoxY domain, which also express FoxC and SoxE, have been identified as plausible myoblast

  1. The in vitro preconditioning of myoblasts to enhance subsequent survival in an in vivo tissue engineering chamber model.

    PubMed

    Tilkorn, Daniel J; Davies, E Michele; Keramidaris, Effie; Dingle, Aaron M; Gerrand, Yi-Wen; Taylor, Caroline J; Han, Xiao Lian; Palmer, Jason A; Penington, Anthony J; Mitchell, Christina A; Morrison, Wayne A; Dusting, Gregory J; Mitchell, Geraldine M

    2012-05-01

    The effects of in vitro preconditioning protocols on the ultimate survival of myoblasts implanted in an in vivo tissue engineering chamber were examined. In vitro testing: L6 myoblasts were preconditioned by heat (42 °C; 1.5 h); hypoxia (<8% O(2); 1.5 h); or nitric oxide donors: S-nitroso-N-acetylpenicillamine (SNAP, 200 μM, 1.5 h) or 1-[N-(2-aminoethyl)-N-(2-aminoethyl)amino]-diazen-1-ium-1,2-diolate (DETA-NONOate, 500 μM, 7 h). Following a rest phase preconditioned cells were exposed to 24 h hypoxia, and demonstrated minimal overall cell loss, whilst controls (not preconditioned, but exposed to 24 h hypoxia) demonstrated a 44% cell loss. Phosphoimmunoblot analysis of pro-survival signaling pathways revealed significant activation of serine threonine kinase Akt with DETA-NONOate (p < 0.01) and heat preconditioning (p < 0.05). DETA-NONOate also activated ERK 1/2 signaling (p < 0.05). In vivo implantation: 100,000 preconditioned (heat, hypoxia, or DETA-NONOate) myoblasts were implanted in SCID mouse tissue engineering chambers. 100,000 (not preconditioned) myoblasts were implanted in control chambers. At 3 weeks, morphometric assessment of surviving myoblasts indicated myoblast percent volume (p = 0.012) and myoblasts/mm(2) (p = 0.0005) overall significantly increased in preconditioned myoblast chambers compared to control, with DETA-NONOate-preconditioned myoblasts demonstrating the greatest increase in survival (p = 0.007 and p = 0.001 respectively). DETA-NONOate therefore has potential therapeutic benefits to significantly improve survival of transplanted cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Changes in vegetation phenology are not reflected in atmospheric CO2 and 13 C/12 C seasonality.

    PubMed

    Gonsamo, Alemu; D'Odorico, Petra; Chen, Jing M; Wu, Chaoyang; Buchmann, Nina

    2017-10-01

    Northern terrestrial ecosystems have shown global warming-induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO 2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystem on the atmospheric CO 2 and 13 C/ 12 C seasonality. Here, we use four CO 2 observation stations in the Northern Hemisphere, namely Alert, La Jolla, Point Barrow, and Mauna Loa Observatory, to determine how changes in vegetation productivity and phenology, respiration, and air temperature affect both the atmospheric CO 2 and 13 C/ 12 C seasonality. Since the 1960s, the only significant long-term trend of CO 2 and 13 C/ 12 C seasonality was observed at the northern most station, Alert, where the spring CO 2 drawdown dates advanced by 0.65 ± 0.55 days yr -1 , contributing to a nonsignificant increase in length of the CO 2 uptake period (0.74 ± 0.67 days yr -1 ). For Point Barrow station, vegetation phenology changes in well-watered ecosystems such as the Canadian and western Siberian wetlands contributed the most to 13 C/ 12 C seasonality while the CO 2 seasonality was primarily linked to nontree vegetation. Our results indicate significant increase in the Northern Hemisphere soil respiration. This means, increased respiration of 13 C depleted plant materials cancels out the 12 C gain from enhanced vegetation activities during the start and end of growing season. These findings suggest therefore that parallel warming-induced increases both in photosynthesis and respiration contribute to the long-term stability of CO 2 and 13 C/ 12 C seasonality under changing climate and vegetation activity. The summer photosynthesis and the soil respiration in the dormant seasons have become more vigorous which lead to increased peak-to-through CO 2 amplitude. As the relative magnitude of the increased

  3. 11 CFR 100.11 - State (2 U.S.C. 431(12)).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false State (2 U.S.C. 431(12)). 100.11 Section 100.11 Federal Elections FEDERAL ELECTION COMMISSION GENERAL SCOPE AND DEFINITIONS (2 U.S.C. 431) General Definitions § 100.11 State (2 U.S.C. 431(12)). State means each State of the United States, the District of...

  4. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12.

    PubMed

    Morishima, Nobuhiro; Nakanishi, Keiko; Takenouchi, Hiromi; Shibata, Takehiko; Yasuhiko, Yukuto

    2002-09-13

    Activation of caspase-12 from procaspase-12 is specifically induced by insult to the endoplasmic reticulum (ER) (Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A., and Yuan, J. (2000) Nature 403, 98-103), yet the functional consequences of caspase-12 activation have been unclear. We have shown that recombinant caspase-12 specifically cleaves and activates procaspase-9 in cytosolic extracts. The activated caspase-9 catalyzes cleavage of procaspase-3, which is inhibitable by a caspase-9-specific inhibitor. Although cytochrome c released from mitochondria has been believed to be required for caspase-9 activation during apoptosis (Zou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X. (1997) Cell 90, 405-413, Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., and Wang, X. (1997) Cell 91, 479-489), caspase-9 as well as caspase-12 and -3 are activated in cytochrome c-free cytosols in murine myoblast cells under ER stress. These results suggest that caspase-12 can activate caspase-9 without involvement of cytochrome c. To examine the role of caspase-12 in the activation of downstream caspases, we used a caspase-12-binding protein, which we identified in a yeast two-hybrid screen, for regulation of caspase-12 activation. The binding protein protects procaspase-12 from processing in vitro. Stable expression of the binding protein renders procaspase-12 insensitive to ER stress, thereby suppressing apoptosis and the activation of caspase-9 and -3. These data suggest that procaspase-9 is a substrate of caspase-12 and that ER stress triggers a specific cascade involving caspase-12, -9, and -3 in a cytochrome c-independent manner.

  5. Reassessment of the 13C/12C and 14C/12C isotopic fractionation ratio and its impact on high-precision radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Fahrni, Simon M.; Southon, John R.; Santos, Guaciara M.; Palstra, Sanne W. L.; Meijer, Harro A. J.; Xu, Xiaomei

    2017-09-01

    The vast majority of radiocarbon measurement results (14C/12C isotopic ratios or sample activities) are corrected for isotopic fractionation processes (measured as 13C/12C isotopic ratios) that occur in nature, in sample preparation and measurement. In 1954 Harmon Craig suggested a value of 2.0 for the fractionation ratio b that is used to correct 14C/12C ratios for shifts in the 13C/12C ratios and this value has been applied by the radiocarbon community ever since. While theoretical considerations suggest moderate deviations of b from 2.0, some measurements have suggested larger differences (e.g. b = 2.3, measured by Saliège and Fontes in 1984). With the high precision attained in radiocarbon measurements today (±2‰), even a relatively small deviation of b from 2.0 can impact the accuracy of radiocarbon data, and it is, therefore, of interest to re-evaluate the fractionation corrections. In the present study, the fractionation ratio b was determined by independent experiments on the chemical reduction of carbon dioxide (CO2) to elemental carbon (graphitization reaction) and on the photosynthetic uptake of CO2 by C3 and C4 plants. The results yielded b = 1.882 ± 0.019 for the reduction of CO2 to solid graphite and b = 1.953 ± 0.025 for the weighted mean of measurements involving C3 and C4 photosynthesis pathways. In addition, the analysis of over 9600 full-sized OX-I and OX-II normalizing standards measured between 2002 and 2012 confirms b values lower than 2.0. The obtained values are in good agreement with quantum mechanical estimates of the equilibrium fractionation and classic kinetic fractionation as well as with results from other light three-isotope systems (oxygen, magnesium, silicon and sulfur). While the value of the fractionation ratio varies with the relative importance of kinetic and equilibrium fractionation, the values obtained in the present study cluster around b = 1.9. Our findings suggest that a significant fraction of all samples

  6. An increase in the 12C + 12C fusion rate from resonances at astrophysical energies.

    PubMed

    Tumino, A; Spitaleri, C; La Cognata, M; Cherubini, S; Guardo, G L; Gulino, M; Hayakawa, S; Indelicato, I; Lamia, L; Petrascu, H; Pizzone, R G; Puglia, S M R; Rapisarda, G G; Romano, S; Sergi, M L; Spartá, R; Trache, L

    2018-05-01

    Carbon burning powers scenarios that influence the fate of stars, such as the late evolutionary stages of massive stars 1 (exceeding eight solar masses) and superbursts from accreting neutron stars 2,3 . It proceeds through the 12 C +  12 C fusion reactions that produce an alpha particle and neon-20 or a proton and sodium-23-that is, 12 C( 12 C, α) 20 Ne and 12 C( 12 C, p) 23 Na-at temperatures greater than 0.4 × 10 9 kelvin, corresponding to astrophysical energies exceeding a megaelectronvolt, at which such nuclear reactions are more likely to occur in stars. The cross-sections 4 for those carbon fusion reactions (probabilities that are required to calculate the rate of the reactions) have hitherto not been measured at the Gamow peaks 4 below 2 megaelectronvolts because of exponential suppression arising from the Coulomb barrier. The reference rate 5 at temperatures below 1.2 × 10 9 kelvin relies on extrapolations that ignore the effects of possible low-lying resonances. Here we report the measurement of the 12 C( 12 C, α 0,1 ) 20 Ne and 12 C( 12 C, p 0,1 ) 23 Na reaction rates (where the subscripts 0 and 1 stand for the ground and first excited states of 20 Ne and 23 Na, respectively) at centre-of-mass energies from 2.7 to 0.8 megaelectronvolts using the Trojan Horse method 6,7 and the deuteron in 14 N. The cross-sections deduced exhibit several resonances that are responsible for very large increases of the reaction rate at relevant temperatures. In particular, around 5 × 10 8 kelvin, the reaction rate is boosted to more than 25 times larger than the reference value 5 . This finding may have implications such as lowering the temperatures and densities 8 required for the ignition of carbon burning in massive stars and decreasing the superburst ignition depth in accreting neutron stars to reconcile observations with theoretical models 3 .

  7. C3–C4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis

    PubMed Central

    Khoshravesh, Roxana; Stinson, Corey R.; Stata, Matt; Busch, Florian A.; Sage, Rowan F.; Ludwig, Martha; Sage, Tammy L.

    2016-01-01

    Photorespiratory glycine shuttling and decarboxylation in bundle sheath (BS) cells exhibited by C2 species is proposed to be the evolutionary bridge to C4 photosynthesis in eudicots. To evaluate this in grasses, we compare anatomy, cellular localization of glycine decarboxylase (GDC), and photosynthetic physiology of a suspected C2 grass, Homolepis aturensis, with these traits in known C2 grasses, Neurachne minor and Steinchisma hians, and C3 S. laxum that is sister to S. hians. We also use publicly available genome and RNA-sequencing data to examine the evolution of GDC subunits and enhance our understanding of the evolution of BS-specific GDC expression in C2 and C4 grasses. Our results confirm the identity of H. aturensis as a C2 species; GDC is confined predominantly to the organelle-enriched BS cells in H. aturensis and S. hians and to mestome sheath cells of N. minor. Phylogenetic analyses and data obtained from immunodetection of the P-subunit of GDC are consistent with the hypothesis that the BS dominant levels of GDC in C2 and C4 species are due to changes in expression of a single GLDP gene in M and BS cells. All BS mitochondria and peroxisomes and most chloroplasts in H. aturensis and S. hians are situated centripetally in a pattern identical to C2 eudicots. In S. laxum, which has C3-like gas exchange patterns, mitochondria and peroxisomes are positioned centripetally as they are in S. hians. This subcellular phenotype, also present in eudicots, is posited to initiate a facilitation cascade leading to C2 and C4 photosynthesis. PMID:27073202

  8. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts

    PubMed Central

    Loperfido, Mariana; Jarmin, Susan; Dastidar, Sumitava; Di Matteo, Mario; Perini, Ilaria; Moore, Marc; Nair, Nisha; Samara-Kuko, Ermira; Athanasopoulos, Takis; Tedesco, Francesco Saverio; Dickson, George; Sampaolesi, Maurilio; VandenDriessche, Thierry; Chuah, Marinee K.

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.6 kb; MD2: 4 kb). PB transposons encoding microdystrophins were transfected in C2C12 myoblasts, yielding 65±2% MD1 and 66±2% MD2 expression in differentiated multinucleated myotubes. A hyperactive PB (hyPB) transposase was then deployed to enable transposition of the large-size PB transposon (17 kb) encoding the full-length DYS and green fluorescence protein (GFP). Stable GFP expression attaining 78±3% could be achieved in the C2C12 myoblasts that had undergone transposition. Western blot analysis demonstrated expression of the full-length human DYS protein in myotubes. Subsequently, dystrophic mesoangioblasts from a Golden Retriever muscular dystrophy dog were transfected with the large-size PB transposon resulting in 50±5% GFP-expressing cells after stable transposition. This was consistent with correction of the differentiated dystrophic mesoangioblasts following expression of full-length human DYS. These results pave the way toward a novel non-viral gene therapy approach for DMD using PB transposons underscoring their potential to deliver large therapeutic genes. PMID:26682797

  9. Progestin effects on expression of AKR1C1-AKR1C3, SRD5A1 and PGR in the Z-12 endometriotic epithelial cell line.

    PubMed

    Beranič, Nataša; Lanišnik Rižner, Tea

    2013-02-25

    Endometriosis is defined as the presence of endometrial glands and stroma outside the uterine cavity. This disease is associated with diminished protective effects of progesterone, which are usually explained by inadequate activation of progesterone receptors and also enhanced pre-receptor metabolism of progesterone. Endometriosis is often treated with progestins, which act as progesterone receptor agonists, although their exact mechanisms of action are not completely understood. The aim of the present study was to investigate how the progestins medroxyprogesterone acetate, dydrogesterone and dienogest, as well as progesterone, impact on the expression of genes of pre-receptor progesterone metabolism in Z-12 epithelial cell line, a model system of peritoneal endometriosis. Our data demonstrate that these progestins affect local pre-receptor metabolism to a different extent. The most favorable effects were seen for dydrogesterone and dienogest, where the first, dydrogesterone, significantly reduced SRD5A1, AKR1C2 and AKR1C3 expression, and additionally had a nonsignificant impact on progesterone receptor B (PR-B) protein levels. This might slow down the first step of pre-receptor metabolism, the conversion of progesterone to 5α-dihydroprogestrone by SRD5A1, and it might also affect further reduction of 3-keto and 20-keto groups catalyzed by AKR1C2 and AKR1C3. Similarly favorable effects were seen for dienogest, which promoted significant reduction of AKR1C1 and AKR1C2 expression and also showed no effect on PR-B protein levels. Different effects were seen for progesterone, which significantly decreased SRD5A1, PR-B and HSD17B2 protein levels. In contrast, treatment with medroxyprogesterone acetate resulted in increased AKR1C1 expression and decreased levels of PR-B, which might lead to enhanced progesterone metabolism and reduced signaling through progesterone receptors. Altogether, our data in this Z-12 cell model suggest that the beneficial effects of treatment

  10. Betaine supplement enhances skeletal muscle differentiation in murine myoblasts via IGF-1 signaling activation.

    PubMed

    Senesi, Pamela; Luzi, Livio; Montesano, Anna; Mazzocchi, Nausicaa; Terruzzi, Ileana

    2013-07-19

    Betaine (BET) is a component of many foods, including spinach and wheat. It is an essential osmolyte and a source of methyl groups. Recent studies have hypothesized that BET might play a role in athletic performance. However, BET effects on skeletal muscle differentiation and hypertrophy are still poorly understood. We examined BET action on neo myotubes maturation and on differentiation process, using C2C12 murine myoblastic cells. We used RT2-PCR array, Western blot and immunofluorescence analysis to study the BET effects on morphological features of C2C12 and on signaling pathways involved in muscle differentiation and hypertrophy. We performed a dose-response study, establishing that 10 mM BET was the dose able to stimulate morphological changes and hypertrophic process in neo myotubes. RT2-PCR array methodology was used to identify the expression profile of genes encoding proteins involved in IGF-1 pathway. A dose of 10 mM BET was found to promote IGF-1 receptor (IGF-1 R) expression. Western blot and immunofluorescence analysis, performed in neo myotubes, pointed out that 10 mM BET improved IGF-1 signaling, synthesis of Myosin Heavy Chain (MyHC) and neo myotubes length. Our findings provide the first evidence that BET could promote muscle fibers differentiation and increase myotubes size by IGF-1 pathway activation, suggesting that BET might represent a possible new drug/integrator strategy, not only in sport performance but also in clinical conditions characterized by muscle function impairment.

  11. MURC, a muscle-restricted coiled-coil protein, is involved in the regulation of skeletal myogenesis.

    PubMed

    Tagawa, Masashi; Ueyama, Tomomi; Ogata, Takehiro; Takehara, Naofumi; Nakajima, Norio; Isodono, Koji; Asada, Satoshi; Takahashi, Tomosaburo; Matsubara, Hiroaki; Oh, Hidemasa

    2008-08-01

    Skeletal myogenesis is a multistep process by which multinucleated mature muscle fibers are formed from undifferentiated, mononucleated myoblasts. However, the molecular mechanisms of skeletal myogenesis have not been fully elucidated. Here, we identified muscle-restricted coiled-coil (MURC) protein as a positive regulator of myogenesis. In skeletal muscle, MURC was localized to the cytoplasm with accumulation in the Z-disc of the sarcomere. In C2C12 myoblasts, MURC expression occurred coincidentally with myogenin expression and preceded sarcomeric myosin expression during differentiation into myotubes. RNA interference (RNAi)-mediated knockdown of MURC impaired differentiation in C2C12 myoblasts, which was accompanied by impaired myogenin expression and ERK activation. Overexpression of MURC in C2C12 myoblasts resulted in the promotion of differentiation with enhanced myogenin expression and ERK activation during differentiation. During injury-induced muscle regeneration, MURC expression increased, and a higher abundance of MURC was observed in immature myofibers compared with mature myofibers. In addition, ERK was activated in regenerating tissue, and ERK activation was detected in MURC-expressing immature myofibers. These findings suggest that MURC is involved in the skeletal myogenesis that results from modulation of myogenin expression and ERK activation. MURC may play pivotal roles in the molecular mechanisms of skeletal myogenic differentiation.

  12. A New Protein Phosphatase 2C (FsPP2C1) Induced by Abscisic Acid Is Specifically Expressed in Dormant Beechnut Seeds1

    PubMed Central

    Lorenzo, Oscar; Rodríguez, Dolores; Nicolás, Gregorio; Rodríguez, Pedro L.; Nicolás, Carlos

    2001-01-01

    An abscisic acid (ABA)-induced cDNA fragment encoding a putative protein phosphatase 2C (PP2C) was obtained by means of differential reverse transcriptase-polymerase chain reaction approach. The full-length clone was isolated from a cDNA library constructed using mRNA from ABA-treated beechnut (Fagus sylvatica) seeds. This clone presents all the features of plant type PP2C and exhibits homology to members of this family such as AthPP2CA (61%), ABI1 (48%), or ABI2 (47%), therefore it was named FsPP2C1. The expression of FsPP2C1 is detected in dormant seeds and increases after ABA treatment, when seeds are maintained dormant, but it decreases and tends to disappear when dormancy is being released by stratification or under gibberellic acid treatment. Moreover, drought stress seems to have no effect on FsPP2C1 transcript accumulation. The FsPP2C1 transcript expression is tissue specific and was found to accumulate in ABA-treated seeds rather than in other ABA-treated vegetative tissues examined. These results suggest that the corresponding protein could be related to ABA-induced seed dormancy. By expressing FsPP2C1 in Escherichia coli as a histidine tag fusion protein, we have obtained direct biochemical evidence supporting Mg2+-dependent phosphatase activity of this protein. PMID:11299374

  13. Requirement of MEF2A, C, and D for skeletal muscle regeneration

    PubMed Central

    Liu, Ning; Nelson, Benjamin R.; Bezprozvannaya, Svetlana; Shelton, John M.; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N.

    2014-01-01

    Regeneration of adult skeletal muscle following injury occurs through the activation of satellite cells, an injury-sensitive muscle stem cell population that proliferates, differentiates, and fuses with injured myofibers. Members of the myocyte enhancer factor 2 (MEF2) family of transcription factors play essential roles in muscle differentiation during embryogenesis, but their potential contributions to adult muscle regeneration have not been systematically explored. To investigate the potential involvement of MEF2 factors in muscle regeneration, we conditionally deleted the Mef2a, c, and d genes, singly and in combination, within satellite cells in mice, using tamoxifen-inducible Cre recombinase under control of the satellite cell-specific Pax7 promoter. We show that deletion of individual Mef2 genes has no effect on muscle regeneration in response to cardiotoxin injury. However, combined deletion of the Mef2a, c, and d genes results in a blockade to regeneration. Satellite cell-derived myoblasts lacking MEF2A, C, and D proliferate normally in culture, but cannot differentiate. The absence of MEF2A, C, and D in satellite cells is associated with aberrant expression of a broad collection of known and unique protein-coding and long noncoding RNA genes. These findings reveal essential and redundant roles of MEF2A, C, and D in satellite cell differentiation and identify a MEF2-dependent transcriptome associated with skeletal muscle regeneration. PMID:24591619

  14. Mibefradil (Ro 40-5967) inhibits several Ca2+ and K+ currents in human fusion-competent myoblasts

    PubMed Central

    Liu, Jian-Hui; Bijlenga, Philippe; Occhiodoro, Teresa; Fischer-Lougheed, Jacqueline; Bader, Charles R; Bernheim, Laurent

    1999-01-01

    The effect of mibefradil (Ro 40-5967), an inhibitor of T-type Ca2+ current (ICa(T)), on myoblast fusion and on several voltage-gated currents expressed by fusion-competent myoblasts was examined.At a concentration of 5 μM, mibefradil decreases myoblast fusion by 57%. At this concentration, the peak amplitudes of ICa(T) and L-type Ca2+ current (ICa(L)) measured in fusion-competent myoblasts are reduced by 95 and 80%, respectively. The IC50 of mibefradil for ICa(T) and ICa(L) are 0.7 and 2 μM, respectively.At low concentrations, mibefradil increased the amplitude of ICa(L) with respect to control.Mibefradil blocked three voltage-gated K+ currents expressed by human fusion-competent myoblasts: a delayed rectifier K+ current, an ether-à-go-go K+ current, and an inward rectifier K+ current, with a respective IC50 of 0.3, 0.7 and 5.6 μM.It is concluded that mibefradil can interfere with myoblast fusion, a mechanism fundamental to muscle growth and repair, and that the interpretation of the effect of mibefradil in a given system should take into account the action of this drug on ionic currents other than Ca2+ currents. PMID:10051142

  15. Cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser.

    PubMed

    Alexsandra da Silva Neto Trajano, Larissa; da Silva, Camila Luna; de Carvalho, Simone Nunes; Cortez, Erika; Mencalha, André Luiz; de Souza da Fonseca, Adenilson; Stumbo, Ana Carolina

    2016-07-01

    Low-level infrared laser is considered safe and effective for treatment of muscle injuries. However, the mechanism involved on beneficial effects of laser therapy are not understood. The aim was to evaluate cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser at therapeutic fluences. C2C12 myoblast cultures at different (2 and 10 %) fetal bovine serum (FBS) concentrations were exposed to low-level infrared laser (808 nm, 100 mW) at different fluences (10, 35, and 70 J/cm(2)) and evaluated after 24, 48, and 72 h. Cell viability was evaluated by WST-1 assay; reactive oxygen species (ROS), apoptosis, and necrosis were evaluated by flow cytometry. Cell viability was decreased atthe lowest FBS concentration. Laser exposure increased the cell viability in myoblast cultures at 2 % FBS after 48 and 72 h, but no significant increase in ROS was observed. Apoptosis was decreased at the higher fluence and necrosis was increased at lower fluence in myoblast cultures after 24 h of laser exposure at 2 % FBS. No laser-induced alterations were obtained at 10 % FBS. Results show that level of reactive oxygen species is not altered, at least to those evaluated in this study, but low-level infrared laser exposure affects cell viability, apoptosis, and necrosis in myoblast cultures depending on laser fluence and physiologic conditions of cells.

  16. An ether -à-go-go K+ current, Ih-eag, contributes to the hyperpolarization of human fusion-competent myoblasts

    PubMed Central

    Bijlenga, Philippe; Occhiodoro, Teresa; Liu, Jian-Hui; Bader, Charles R; Bernheim, Laurent; Fischer-Lougheed, Jacqueline

    1998-01-01

    Two early signs of human myoblast commitment to fusion are membrane potential hyperpolarization and concomitant expression of a non-inactivating delayed rectifier K+ current, IK(NI). This current closely resembles the outward K+ current elicited by rat ether-à-go-go (r-eag) channels in its range of potential for activation and unitary conductance.It is shown that activation kinetics of IK(NI), like those of r-eag, depend on holding potential and on [Mg2+]o, and that IK(NI), like r-eag, is reversibly inhibited by a rise in [Ca2+].Forced expression of an isolated human ether-à-go-go K+ channel (h-eag) cDNA in undifferentiated myoblasts generates single-channel and whole-cell currents with remarkable similarity to IK(NI).h-eag current (Ih-eag) is reversibly inhibited by a rise in [Ca2+]i, and the activation kinetics depend on holding potential and [Mg2+]o.Forced expression of h-eag hyperpolarizes undifferentiated myoblasts from −9 to −50 mV, the threshold for the activation of both Ih-eag and IK(NI). Similarly, the higher the density of IK(NI), the more hyperpolarized the resting potential of fusion-competent myoblasts.It is concluded that h-eag constitutes the channel underlying IK(NI) and that it contributes to the hyperpolarization of fusion-competent myoblasts. To our knowledge, this is the first demonstration of a physiological role for a mammalian eag K+ channel. PMID:9763622

  17. Comparison of characteristics of {Delta}{sup 0}(1232) produced in p{sup 12}C and d{sup 12}C collisions at 4.2 A GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olimov, Kh. K., E-mail: olimov@comsats.edu.pk; Haseeb, Mahnaz Q., E-mail: mahnazhaseeb@comsats.edu.pk; Khan, Imran

    2012-04-15

    Reconstructed momentum, transverse momentum, kinetic energy, rapidity, and emission angle distributions along with their mean values were compared for {Delta}{sup 0}(1232) resonances produced in p{sup 12}C and d{sup 12}C collisions at 4.2 A GeV/c. Mean momentum, transverse momentum, and rapidity of protons and negative pions coming from {Delta}{sup 0}(1232) decay were extracted and compared with the corresponding mean values for protons and {pi}{sup -} mesons in experiment and the relevant model calculations.

  18. 1,25-DIHYDROXYVITAMIN D3 INDUCES MONOCYTIC DIFFERENTIATION OF HUMAN MYELOID LEUKEMIA CELLS BY REGULATING C/EBPβ EXPRESSION THROUGH MEF2C

    PubMed Central

    Zheng, Ruifang; Wang, Xuening; Studzinski, George P.

    2015-01-01

    Myogenic enhancer factor2 (Mef2) consists of a family of transcription factors involved in morphogenesis of skeletal, cardiac and smooth muscle cells. Among the four isoforms (Mef2A, 2B, 2C, and 2D), Mef2C was also found to play important roles in hematopoiesis. At myeloid progenitor level, Mef2C expression favors monocytic differentiation. Previous studies from our laboratory demonstrated that ERK5 was activated in 1,25-dihydroxyvitamin D3 (1,25D)-induced monocytic differentiation in AML cells and ERK5 activation was accompanied by increased Mef2C phosphorylation. We therefore examined the role of Mef2C in 1,25D-induced monocytic differentiation in AML cell lines (HL60, U937 and THP1) and found that knockdown of Mef2C with small interfering RNA (siRNA) significantly decreases the expression of the monocytic marker, CD14, without affecting the expression of the general myeloid marker, CD11b. CCAAT/Enhancer-binding protein (C/EBP) β, which can bind to CD14 promoter and increase its transcription, has been shown to be the downstream effector of 1,25D-induced monocytic differentiation in AML cells. When Mef2C was knocked down, expression of C/EBPβ was reduced at both mRNA and protein levels. The protein expression levels of cell cycle regulators, p27Kip1 and cyclin D1, were not affected by Mef2C knockdown, nor the monopoiesis related transcription factor, ATF2 (Activating Transcription Factor 2). Thus, we conclude that 1,25D-induced monocytic differentiation, and CD14 expression in particular, is mediated through activation of ERK5-Mef2C-C/EBPβ signaling pathway, and that Mef2C does not seem to modulate cell cycle progression. PMID:25448741

  19. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis.

    PubMed

    Goh, Qingnian; Dearth, Christopher L; Corbett, Jacob T; Pierre, Philippe; Chadee, Deborah N; Pizza, Francis X

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Intercellular Adhesion Molecule-1 Expression by Skeletal Muscle Cells Augments Myogenesis

    PubMed Central

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2014-01-01

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. PMID:25281303

  1. A gene-trap strategy identifies quiescence-induced genes in synchronized myoblasts.

    PubMed

    Sambasivan, Ramkumar; Pavlath, Grace K; Dhawan, Jyotsna

    2008-03-01

    Cellular quiescence is characterized not only by reduced mitotic and metabolic activity but also by altered gene expression. Growing evidence suggests that quiescence is not merely a basal state but is regulated by active mechanisms. To understand the molecular programme that governs reversible cell cycle exit, we focused on quiescence-related gene expression in a culture model of myogenic cell arrest and activation. Here we report the identification of quiescence-induced genes using a gene-trap strategy. Using a retroviral vector, we generated a library of gene traps in C2C12 myoblasts that were screened for arrest-induced insertions by live cell sorting (FACS-gal). Several independent gene- trap lines revealed arrest-dependent induction of betagal activity, confirming the efficacy of the FACS screen. The locus of integration was identified in 15 lines. In three lines,insertion occurred in genes previously implicated in the control of quiescence, i.e. EMSY - a BRCA2--interacting protein, p8/com1 - a p300HAT -- binding protein and MLL5 - a SET domain protein. Our results demonstrate that expression of chromatin modulatory genes is induced in G0, providing support to the notion that this reversibly arrested state is actively regulated.

  2. Arginine supplementation induces myoblast fusion via augmentation of nitric oxide production.

    PubMed

    Long, Jodi H D; Lira, Vitor A; Soltow, Quinlyn A; Betters, Jenna L; Sellman, Jeff E; Criswell, David S

    2006-01-01

    The semi-essential amino acid, L-arginine (L-Arg), is the substrate for endogenous synthesis of nitric oxide, a molecule that is involved in myoblast proliferation and fusion. Since L-Arg supply may limit nitric oxide synthase (NOS) activity in endothelial cells, we examined L-Arg supplementation in differentiating mouse myoblasts and tested the hypothesis that L-Arg exerts direct effects on myoblast fusion via augmentation of endogenous nitric oxide production. C(2)C(12) myoblasts in differentiation media received one of the following treatments for 120 h: 1 mM L-Arg, 0.1 mM N-nitro-L-arginine methyl ester (L-NAME), L-Arg + L-NAME, 10 mM L-Lysine, or no supplement (Control). Cultures were fixed and stained with hematoxylin and eosin for microphotometric image analysis of myotube density, nuclear density, and fusion index (% of total nuclei in myotubes). Endogenous production of nitric oxide during the treatment period peaked between 24 and 48 h. L-Arg amplified nitric oxide production between 0 and 24 h and increased myotube density, total nuclei number, and nuclear fusion index. These L-Arg effects were prevented by the NOS inhibitor, L-NAME. Further, L-Lysine, a competitive inhibitor of L-Arg uptake, repressed nitric oxide production and reduced myotube density and fusion index. In summary, L-Arg augments myotube formation and increases nitric oxide production in a process limited by cellular L-Arg uptake.

  3. Biomechanical analysis of a novel hook-screw technique for C1-2 stabilization.

    PubMed

    Reis, Marco Túlio; Nottmeier, Eric W; Reyes, Phillip M; Baek, Seungwon; Crawford, Neil R

    2012-09-01

    The Food and Drug Administration has not cleared the following medical devices for the use described in this study. The following medical devices are being discussed for an off-label use: cervical lateral mass screws. As an alternative for cases in which the anatomy and spatial relationship between C-2 and a vertebral artery precludes insertion of C-2 pedicle/pars or C1-2 transarticular screws, a technique that includes opposing laminar hooks (claw) at C-2 combined with C-1 lateral mass screws may be used. The biomechanical stability of this alternate technique was compared with that of a standard screw-rod technique in vitro. Flexibility tests were performed in 7 specimens (occiput to C-3) in the following 6 different conditions: 1) intact; 2) after creating instability and attaching a posterior cable/graft at C1-2; 3) after removing the graft and attaching a construct comprising C-1 lateral mass screws and C-2 laminar claws; 4) after reattaching the posterior cable-graft at C1-2 (posterior hardware still in place); 5) after removing the posterior cable-graft and laminar hooks and placing C-2 pedicle screws interconnected to C-1 lateral mass screws via rod; and 6) after reattaching the posterior cable-graft at C1-2 (screw-rod construct still in place). All types of stabilization significantly reduced the range of motion, lax zone, and stiff zone compared with the intact condition. There was no significant biomechanical difference in terms of range of motion or lax zone between the screw-rod construct and the screw-claw-rod construct in any direction of loading. The screw-claw-rod technique restricts motion much like the standard Harms technique, making it an acceptable alternative technique when aberrant arterial anatomy precludes the placement of C-2 pars/pedicle screws or C1-2 transarticular screws.

  4. Cyclic stretch induced miR-146a upregulation delays C2C12 myogenic differentiation through inhibition of Numb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuang Wei; Department of Stomatology, Guangzhou General Hospital, Guangzhou Military Command, Guangzhou 510010; Tan Jiali

    2009-01-09

    Proliferation and differentiation of muscle stem cells must be tightly regulated by intrinsic and extrinsic signals for effective regeneration and adaptive response. MicroRNAs have been implicated as potent regulators in diverse biological processes at the level of posttranscriptional repression. In this study, we found that miR-146a was significantly upregulated upon a 48-h cyclic stretch of 5% elongation/10cycles/min. Importantly, miR-146 was predicted to base-pair with sequences in the 3' UTR of Numb, which promotes satellite cell differentiation towards muscle cells by inhibiting Notch signaling. Through reporter assay and exogenous expression experiment, we confirmed Numb was inhibited by miR-146a. Inhibition of miR-146amore » by antago-miR-146a rescued the expression of Numb and facilitated the differentiation of C2C12 at a cost of compromised proliferation. Thus, for the first time, we propose a role of miR-146a in skewing the balance of muscle differentiation and proliferation through inhibiting the expression of Numb.« less

  5. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis.

    PubMed

    Phillips, A L; Ward, D A; Uknes, S; Appleford, N E; Lange, T; Huttly, A K; Gaskin, P; Graebe, J E; Hedden, P

    1995-07-01

    Using degenerate oligonucleotide primers based on a pumpkin (Cucurbita maxima) gibberellin (GA) 20-oxidase sequence, six different fragments of dioxygenase genes were amplified by polymerase chain reaction from arabidopsis thaliana genomic DNA. One of these was used to isolate two different full-length cDNA clones, At2301 and At2353, from shoots of the GA-deficient Arabidopsis mutant ga1-2. A third, related clone, YAP169, was identified in the Database of Expressed Sequence Tags. The cDNA clones were expressed in Escherichia coli as fusion proteins, each of which oxidized GA12 at C-20 to GA15, GA24, and the C19 compound GA9, a precursor of bioactive GAs; the C20 tricarboxylic acid compound GA25 was formed as a minor product. The expression products also oxidized the 13-hydroxylated substrate GA53, but less effectively than GA12. The three cDNAs hybridized to mRNA species with tissue-specific patterns of accumulation, with At2301 being expressed in stems and inflorescences, At2353 in inflorescences and developing siliques, and YAP169 in siliques only. In the floral shoots of the ga1-2 mutant, transcript levels corresponding to each cDNA decreased dramatically after GA3 application, suggesting that GA biosynthesis may be controlled, at least in part, through down-regulation of the expression of the 20-oxidase genes.

  6. Genetic and molecular characterization of the guaC-nadC-aroP region of Escherichia coli K-12.

    PubMed

    Roberts, R E; Lienhard, C I; Gaines, C G; Smith, J M; Guest, J R

    1988-01-01

    The guaC (GMP reductase), nadC (quinolinate phosphoribosyltransferase), and aroP (aromatic amino acid permease) genes of Escherichia coli K-12 were located in the 2.5-min region of the chromosome (muT-guaC-nadC-aroP-aceE) by a combination of linkage analysis, deletion mapping, restriction analysis, and plasmid subcloning. The guaC locus expressed a product of Mr 37,000 with a clockwise transcriptional polarity, and the GMP reductase activities of guaC+ plasmid-containing strains were amplified 15- to 20-fold.

  7. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts.

    PubMed

    Loperfido, Mariana; Jarmin, Susan; Dastidar, Sumitava; Di Matteo, Mario; Perini, Ilaria; Moore, Marc; Nair, Nisha; Samara-Kuko, Ermira; Athanasopoulos, Takis; Tedesco, Francesco Saverio; Dickson, George; Sampaolesi, Maurilio; VandenDriessche, Thierry; Chuah, Marinee K

    2016-01-29

    Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.6 kb; MD2: 4 kb). PB transposons encoding microdystrophins were transfected in C2C12 myoblasts, yielding 65±2% MD1 and 66±2% MD2 expression in differentiated multinucleated myotubes. A hyperactive PB (hyPB) transposase was then deployed to enable transposition of the large-size PB transposon (17 kb) encoding the full-length DYS and green fluorescence protein (GFP). Stable GFP expression attaining 78±3% could be achieved in the C2C12 myoblasts that had undergone transposition. Western blot analysis demonstrated expression of the full-length human DYS protein in myotubes. Subsequently, dystrophic mesoangioblasts from a Golden Retriever muscular dystrophy dog were transfected with the large-size PB transposon resulting in 50±5% GFP-expressing cells after stable transposition. This was consistent with correction of the differentiated dystrophic mesoangioblasts following expression of full-length human DYS. These results pave the way toward a novel non-viral gene therapy approach for DMD using PB transposons underscoring their potential to deliver large therapeutic genes. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. 26 CFR 1.412(c)(1)-2 - Shortfall method.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 5 2013-04-01 2013-04-01 false Shortfall method. 1.412(c)(1)-2 Section 1.412(c... Shortfall method. (a) In general—(1) Shortfall method. The shortfall method is a funding method that adapts a plan's underlying funding method for purposes of section 412. As such, the use of the shortfall...

  9. 26 CFR 1.412(c)(1)-2 - Shortfall method.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 5 2012-04-01 2011-04-01 true Shortfall method. 1.412(c)(1)-2 Section 1.412(c... Shortfall method. (a) In general—(1) Shortfall method. The shortfall method is a funding method that adapts a plan's underlying funding method for purposes of section 412. As such, the use of the shortfall...

  10. 26 CFR 1.412(c)(1)-2 - Shortfall method.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 5 2014-04-01 2014-04-01 false Shortfall method. 1.412(c)(1)-2 Section 1.412(c... Shortfall method. (a) In general—(1) Shortfall method. The shortfall method is a funding method that adapts a plan's underlying funding method for purposes of section 412. As such, the use of the shortfall...

  11. 26 CFR 1.412(c)(1)-2 - Shortfall method.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 5 2011-04-01 2011-04-01 false Shortfall method. 1.412(c)(1)-2 Section 1.412(c... Shortfall method. (a) In general—(1) Shortfall method. The shortfall method is a funding method that adapts a plan's underlying funding method for purposes of section 412. As such, the use of the shortfall...

  12. One-pot synthesis of 4,8-dibromobenzo[1,2-c;4,5-c']bis[1,2,5]thiadiazole.

    PubMed

    Tam, Teck Lip; Li, Hairong; Wei, Fengxia; Tan, Ke Jie; Kloc, Christian; Lam, Yeng Ming; Mhaisalkar, Subodh G; Grimsdale, Andrew C

    2010-08-06

    A one-step synthesis of 4,8-dibromobenzo[1,2-c;4,5-c']bis[1,2,5]thiadiazole with use of 1,2,4,5-tetraaminobenzene tetrahydrobromide and thionyl bromide in good yield is reported. This unit can then be used in the synthesis of low bandgap materials via palladium-catalyzed coupling reactions. The approach offers a quick and easy way to prepare low bandgap materials as compared to the current literature methods.

  13. The {sup 12}C/{sup 13}C Ratio in Sgr B2(N): Constraints for Galactic Chemical Evolution and Isotopic Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halfen, D. T.; Ziurys, L. M.; Woolf, N. J., E-mail: halfend@email.arizona.edu

    A study has been conducted of {sup 12}C/{sup 13}C ratios in five complex molecules in the Galactic center. H{sub 2}CS, CH{sub 3}CCH, NH{sub 2}CHO, CH{sub 2}CHCN, and CH{sub 3}CH{sub 2}CN and their {sup 13}C-substituted species have been observed in numerous transitions at 1, 2, and 3 mm, acquired in a spectral-line survey of Sgr B2(N), conducted with the telescopes of the Arizona Radio Observatory (ARO). Between 22 and 54 individual, unblended lines for the {sup 12}C species and 2–54 for {sup 13}C-substituted analogs were modeled in a global radiative transfer analysis. All five molecules were found to consistently exhibit twomore » velocity components near V {sub LSR} ∼ 64 and 73 km s{sup −1}, with column densities ranging from N {sub tot} ∼ 3 × 10{sup 14} − 4 × 10{sup 17} cm{sup −2} and ∼2 × 10{sup 13} − 1 × 10{sup 17} cm{sup −2} for the {sup 12}C and {sup 13}C species, respectively. Based on 14 different isotopic combinations, ratios were obtained in the range {sup 12}C/{sup 13}C = 15 ± 5 to 33 ± 13, with an average value of 24 ± 7, based on comparison of column densities. These measurements better anchor the {sup 12}C/{sup 13}C ratio at the Galactic center, and suggest a slightly revised isotope gradient of {sup 12}C/{sup 13}C = 5.21(0.52) D {sub GC} + 22.6(3.3). As indicated by the column densities, no preferential {sup 13}C enrichment was found on the differing carbon sites of CH{sub 3}CCH, CH{sub 2}CHCN, and CH{sub 3}CH{sub 2}CN. Because of the elevated temperatures in Sgr B2(N), {sup 13}C isotopic substitution is effectively “scrambled,” diminishing chemical fractionation effects. The resulting ratios thus reflect stellar nucleosynthesis and Galactic chemical evolution, as is likely the case for most warm clouds.« less

  14. 40 CFR 721.10556 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS No. 675869-05-3...-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers. 721.10556 Section 721.10556 Protection of...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers. (a) Chemical substance...

  15. 40 CFR 721.10556 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS No. 675869-05-3...-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers. 721.10556 Section 721.10556 Protection of...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers. (a) Chemical substance...

  16. 40 CFR 721.10558 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS No. 675869-05-3...-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers. 721.10558 Section 721.10558 Protection of...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers. (a) Chemical substance...

  17. 40 CFR 721.10558 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS No. 675869-05-3...-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers. 721.10558 Section 721.10558 Protection of...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers. (a) Chemical substance...

  18. Methionine Regulates mTORC1 via the T1R1/T1R3-PLCβ-Ca2+-ERK1/2 Signal Transduction Process in C2C12 Cells.

    PubMed

    Zhou, Yuanfei; Ren, Jiao; Song, Tongxing; Peng, Jian; Wei, Hongkui

    2016-10-11

    The mammalian target of rapamycin complex 1 (mTORC1) integrates amino acid (AA) availability to support protein synthesis and cell growth. Taste receptor type 1 member (T1R) is a G protein-coupled receptor that functions as a direct sensor of extracellular AA availability to regulate mTORC1 through Ca 2+ stimulation and extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation. However, the roles of specific AAs in T1R1/T1R3-regulated mTORC1 are poorly defined. In this study, T1R1 and T1R3 subunits were expressed in C2C12 myotubes, and l-AA sensing was accomplished by T1R1/T1R3 to activate mTORC1. In response to l-AAs, such as serine (Ser), arginine (Arg), threonine (Thr), alanine (Ala), methionine (Met), glutamine (Gln), and glycine (Gly), Met induced mTORC1 activation and promoted protein synthesis. Met also regulated mTORC1 via T1R1/T1R3-PLCβ-Ca 2+ -ERK1/2 signal transduction. Results revealed a new role for Met-regulated mTORC1 via an AA receptor. Further studies should be performed to determine the role of T1R1/T1R3 in mediating extracellular AA to regulate mTOR signaling and to reveal its mechanism.

  19. The 12C/ 13C isotopic ratio in Titan hydrocarbons from Cassini/CIRS infrared spectra

    NASA Astrophysics Data System (ADS)

    Nixon, C. A.; Achterberg, R. K.; Vinatier, S.; Bézard, B.; Coustenis, A.; Irwin, P. G. J.; Teanby, N. A.; de Kok, R.; Romani, P. N.; Jennings, D. E.; Bjoraker, G. L.; Flasar, F. M.

    2008-06-01

    We have analyzed infrared spectra of Titan recorded by the Cassini Composite Infrared Spectrometer (CIRS) to measure the isotopic ratio 12C/ 13C in each of three chemical species in Titan's stratosphere: CH 4, C 2H 2 and C 2H 6. This is the first measurement of 12C/ 13C in any C 2 molecule on Titan, and the first measurement of 12CH 4/ 13CH 4 (non-deuterated) on Titan by remote sensing. Our spectra cover five widely-spaced latitudes, 65° S to 71° N and we have searched for both latitude variability of 12C/ 13C within a given species, and also for differences between the 12C/ 13C in the three gases. For CH 4 alone, we find C12/C13=76.6±2.7 (1- σ), essentially in agreement with the 12CH 4/ 13CH 4 measured by the Huygens Gas Chromatograph/Mass Spectrometer instrument (GCMS) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784]: 82.3±1.0, and also with measured values in H 13CN and 13CH 3D by CIRS at lower precision [Bézard, B., Nixon, C., Kleiner, I., Jennings, D., 2007. Icarus 191, 397-400; Vinatier, S., Bézard, B., Nixon, C., 2007. Icarus 191, 712-721]. For the C 2 species, we find C12/C13=84.8±3.2 in C 2H 2 and 89.8±7.3 in C 2H 6, a possible trend of increasingly value with molecular mass, although these values are both compatible with the Huygens GCMS value to within error bars. There are no convincing trends in latitude. Combining all fifteen measurements, we obtain a value of C12/C13=80.8±2.0, also compatible with GCMS. Therefore, the evidence is mounting that 12C/ 13C is some 8% lower on Titan than on the Earth (88.9, inorganic standard), and lower than typical for the outer planets ( 88±7 [Sada, P.V., McCabe, G.H., Bjoraker, G.L., Jennings, D.E., Reuter, D.C., 1996. Astrophys. J. 472, 903-907]). There is no current model for this enrichment, and we discuss several mechanisms that may be at work.

  20. Toxic mechanisms of 3-monochloropropane-1,2-diol on progesterone production in R2C rat leydig cells.

    PubMed

    Sun, Jianxia; Bai, Shun; Bai, Weibin; Zou, Feiyan; Zhang, Lei; Su, Zhijian; Zhang, Qihao; Ou, Shiyi; Huang, Yadong

    2013-10-16

    3-Monochloropropane-1,2-diol (3-MCPD) is a well-known food processing contaminant that has been shown to impede the male reproductive function. However, its mechanism of action remains to be elucidated. In this study, the effects of 3-MCPD on progesterone production were investigated using R2C Leydig cells. 3-MCPD caused concentration-dependent inhibition of cell viability at the IC25, IC50, and IC75 levels of 1.027, 1.802, and 3.160 mM, respectively. Single cell gel/comet assay and atomic force microscopy assay showed that 3-MCPD significantly induced early apoptosis. In addition, 3-MCPD significantly reduced progesterone production by reducing the expression of cytochrome P450 side-chain cleavage enzyme, steroidogenic acute regulatory protein, and 3β-hydroxysteroid dehydrogenase in R2C cells. The change in steroidogenic acute regulatory protein expression was highly consistent with progesterone production. Furthermore, the mitochondrial membrane potential and cAMP significantly decreased.

  1. The Complement C3a-C3aR Axis Promotes Development of Thoracic Aortic Dissection via Regulation of MMP2 Expression.

    PubMed

    Ren, Weihong; Liu, Yan; Wang, Xuerui; Piao, Chunmei; Ma, Youcai; Qiu, Shulan; Jia, Lixin; Chen, Boya; Wang, Yuan; Jiang, Wenjian; Zheng, Shuai; Liu, Chang; Dai, Nan; Lan, Feng; Zhang, Hongjia; Song, Wen-Chao; Du, Jie

    2018-03-01

    Thoracic aortic dissection (TAD), once ruptured, is devastating to patients, and no effective pharmaceutical therapy is available. Anaphylatoxins released by complement activation are involved in a variety of diseases. However, the role of the complement system in TAD is unknown. We found that plasma levels of C3a, C4a, and C5a were significantly increased in patients with TAD. Elevated circulating C3a levels were also detected in the developmental process of mouse TAD, which was induced by β-aminopropionitrile monofumarate (BAPN) treatment, with enhanced expression of C1q and properdin in mouse dissected aortas. These findings indicated activation of classical and alternative complement pathways. Further, expression of C3aR was obviously increased in smooth muscle cells of human and mouse dissected aortas, and knockout of C3aR notably inhibited BAPN-induced formation and rupture of TAD in mice. C3aR antagonist administered pre- and post-BAPN treatment attenuated the development of TAD. We found that C3aR knockout decreased matrix metalloproteinase 2 (MMP2) expression in BAPN-treated mice. Additionally, recombinant C3a stimulation enhanced MMP2 expression and activation in smooth muscle cells that were subjected to mechanical stretch. Finally, we generated MMP2-knockdown mice by in vivo MMP2 short hairpin RNA delivery using recombinant adeno-associated virus and found that MMP2 deficiency significantly reduced the formation of TAD. Therefore, our study suggests that the C3a - C3aR axis contributes to the development of TAD via regulation of MMP2 expression. Targeting the C3a-C3aR axis may represent a strategy for inhibiting the formation of TAD. Copyright © 2018 by The American Association of Immunologists, Inc.

  2. Chronic Vitamin C Deficiency Promotes Redox Imbalance in the Brain but Does Not Alter Sodium-Dependent Vitamin C Transporter 2 Expression

    PubMed Central

    Paidi, Maya D.; Schjoldager, Janne G.; Lykkesfeldt, Jens; Tveden-Nyborg, Pernille

    2014-01-01

    Vitamin C (VitC) has several roles in the brain acting both as a specific and non-specific antioxidant. The brain upholds a very high VitC concentration and is able to preferentially retain VitC even during deficiency. The accumulation of brain VitC levels much higher than in blood is primarily achieved by the sodium dependent VitC transporter (SVCT2). This study investigated the effects of chronic pre-and postnatal VitC deficiency as well as the effects of postnatal VitC repletion, on brain SVCT2 expression and markers of oxidative stress in young guinea pigs. Biochemical analyses demonstrated significantly decreased total VitC and an increased percentage of dehydroascorbic acid, as well as increased lipid oxidation (malondialdehyde), in the brains of VitC deficient animals (p < 0.0001) compared to controls. VitC repleted animals were not significantly different from controls. No significant changes were detected in either gene or protein expression of SVCT2 between groups or brain regions. In conclusion, chronic pre-and postnatal VitC deficiency increased brain redox imbalance but did not increase SVCT2 expression. Our findings show potential implications for VitC deficiency induced negative effects of redox imbalance in the brain and provide novel insight to the regulation of VitC in the brain during deficiency. PMID:24787032

  3. The 12C/13C Isotopic Ratio in Planetary Nebulae as Deduced from IUE Data

    NASA Astrophysics Data System (ADS)

    Miskey, C. L.; Feibelman, W. A.; Bruhweiler, F. C.

    2000-05-01

    The relative abundances of C, N, and O and the isotopic ratio of 12C/13C represent tracers of nucleosynthesis in intermediate stars with main-sequence masses between 0.6 and 8.0 solar masses in our Galaxy. Determining these abundances and the isotopic 12C/13C ratio in planetary nebulae (PNe) represent perhaps the best means to discern exactly how the ISM is enriched by CNO stellar nucleosynthesis. Walsh et al. (1996) and Clegg et al. (1997), using the Hubble Space Telescope, have derived the isotopic 12C/13C abundance ratio in the galactic carbon-rich PN, NGC 3918, and placed marginal constraints on it for the Magellanic PNe, N2 (SMC) and N122 (LMC). This was done using the well-known 12C 3P-1S (J=1-0 and J=2-0) transitions of C+2 at 1906.68 Angstroms and 1908.77 Angstroms and a J=0-0 transition at 1909.6 Angstroms, which is strictly forbidden in 12C. The finite nuclear spin of 13C (I=1/2) permits a corresponding F=1/2-1/2 electric dipole transition not seen in 12C. Since the 1909.6 Angstroms line is well separated from the other two 12C transitions, it provides an important means of determining 12C/13C in planetary nebulae. We have just completed a search of archival International Ultraviolet Explorer (IUE) high-dispersion spectra of approximately three dozen PNe, and derived 12C/13C ratios of 39 and 23 for the galactic PNe, NGC 2440 and NGC 6302, respectively. These are values much lower than the solar value of 89. In the other objects, the limited S/N of the IUE data indicate 12C/13C ratio upper limits much higher than 50. The implications of these results and their pertinence to stellar evolution are discussed.

  4. Transcriptional regulation of IGF-I expression in skeletal muscle

    NASA Technical Reports Server (NTRS)

    McCall, G. E.; Allen, D. L.; Haddad, F.; Baldwin, K. M.

    2003-01-01

    The present study investigated the role of transcription in the regulation of insulin-like growth factor (IGF)-I expression in skeletal muscle. RT-PCR was used to determine endogenous expression of IGF-I pre-mRNA and mRNA in control (Con) and functionally overloaded (FO) rat plantaris. The transcriptional activities of five different-length IGF-I promoter fragments controlling transcription of a firefly luciferase (FLuc) reporter gene were tested in vitro by transfection of myoblasts or in vivo during FO by direct gene transfer into the plantaris. Increased endogenous IGF-I gene transcription during 7 days of plantaris FO was evidenced by an approximately 140-160% increase (P < 0.0001) in IGF-I pre-mRNA (a transcriptional marker). IGF-I mRNA expression also increased by approximately 90% (P < 0.0001), and it was correlated (R = 0.93; P < 0.0001) with the pre-mRNA increases. The three longest IGF-I exon 1 promoters induced reporter gene expression in proliferating C2C12 and L6E9 myoblasts. In differentiated L6E9 myotubes, promoter activity increased approximately two- to threefold over myoblasts. Overexpression of calcineurin and MyoD increased the activity of the -852/+192 promoter in C2C12 myotubes by approximately 5- and approximately 18-fold, respectively. However, FO did not induce these exogenous promoter fragments. Nevertheless, the present findings are consistent with the hypothesis that the IGF-I gene is transcriptionally regulated during muscle hypertrophy in vivo as evidenced by the induction of the endogenous IGF-I pre-mRNA during plantaris FO. The exon 1 promoter region of the IGF-I gene is sufficient to direct inducible expression in vitro; however, an in vivo response to FO may require elements outside the -852/+346 region of the exon 1 IGF-I promoter or features inherent to the endogenous IGF-I gene.

  5. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation,more » myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes

  6. Bradykinin mediates myogenic differentiation in murine myoblasts through the involvement of SK1/Spns2/S1P2 axis.

    PubMed

    Bruno, Gennaro; Cencetti, Francesca; Bernacchioni, Caterina; Donati, Chiara; Blankenbach, Kira Vanessa; Thomas, Dominique; Meyer Zu Heringdorf, Dagmar; Bruni, Paola

    2018-05-01

    Skeletal muscle tissue retains a remarkable regenerative capacity due to the activation of resident stem cells that in pathological conditions or after tissue damage proliferate and commit themselves into myoblasts. These immature myogenic cells undergo differentiation to generate new myofibers or repair the injured ones, giving a strong contribution to muscle regeneration. Cytokines and growth factors, potently released after tissue injury by leukocytes and macrophages, are not only responsible of the induction of the initial inflammatory response, but can also affect skeletal muscle regeneration. Growth factors exploit sphingosine kinase (SK), the enzyme that catalyzes the production of sphingosine 1-phosphate (S1P), to exert their biological effects in skeletal muscle. In this paper we show for the first time that bradykinin (BK), the leading member of kinin/kallikrein system, is able to induce myogenic differentiation in C2C12 myoblasts. Moreover, evidence is provided that SK1, the specific S1P-transporter spinster homolog 2 (Spns2) and S1P 2 receptor are involved in the action exerted by BK, since pharmacological inhibition/antagonism or specific down-regulation significantly alter BK-induced myogenic differentiation. Moreover, the molecular mechanism initiated by BK involves a rapid translocation of SK1 to plasma membrane, analyzed by time-lapse immunofluorescence analysis. The present study highlights the role of SK1/Spns2/S1P receptor 2 signaling axis in BK-induced myogenic differentiation, thus confirming the crucial involvement of this pathway in skeletal muscle cell biology. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  8. Wild-type myoblasts rescue the ability of myogenin-null myoblasts to fuse in vivo.

    PubMed

    Myer, A; Wagner, D S; Vivian, J L; Olson, E N; Klein, W H

    1997-05-15

    Skeletal muscle is formed via a complex series of events during embryogenesis. These events include commitment of mesodermal precursor cells, cell migration, cell-cell recognition, fusion of myoblasts, activation of structural genes, and maturation. In mice lacking the bHLH transcription factor myogenin, myoblasts are specified and positioned correctly, but few fuse to form multinucleated fibers. This indicates that myogenin is critical for the fusion process and subsequent differentiation events of myogenesis. To further define the nature of the myogenic defects in myogenin-null mice, we investigated whether myogenin-null myoblasts are capable of fusing with wild-type myoblasts in vivo using chimeric mice containing mixtures of myogenin-null and wild-type cells. Chimeric embryos demonstrated that myogenin-null myoblasts readily fused in the presence of wild-type myoblasts. However, chimeric myofibers did not express wild-type levels of muscle-specific gene products, and myofibers with a high percentage of mutant nuclei appeared abnormal, suggesting that the wild-type nuclei could not fully rescue mutant nuclei in the myofibers. These data demonstrate that myoblast fusion can be uncoupled from complete myogenic differentiation and that myogenin regulates a specific subset of genes with diverse function. Thus, myogenin appears to control not only transcription of muscle structural genes but also the extracellular environment in which myoblast fusion takes place. We propose that myogenin regulates the expression of one or more extracellular or cell surface proteins required to initiate the muscle differentiation program.

  9. Xin, an actin binding protein, is expressed within muscle satellite cells and newly regenerated skeletal muscle fibers.

    PubMed

    Hawke, Thomas J; Atkinson, Daniel J; Kanatous, Shane B; Van der Ven, Peter F M; Goetsch, Sean C; Garry, Daniel J

    2007-11-01

    Xin is a muscle-specific actin binding protein of which its role and regulation within skeletal muscle is not well understood. Here we demonstrate that Xin mRNA is robustly upregulated (>16-fold) within 12 h of skeletal muscle injury and is localized to the muscle satellite cell population. RT-PCR confirmed the expression pattern of Xin during regeneration, as well as within primary muscle myoblast cultures, but not other known stem cell populations. Immunohistochemical staining of single myofibers demonstrate Xin expression colocalized with the satellite cell marker Syndecan-4 further supporting the mRNA expression of Xin in satellite cells. In situ hybridization of regenerating muscle 5-7 days postinjury illustrates Xin expression within newly regenerated myofibers. Promoter-reporter assays demonstrate that known myogenic transcription factors [myocyte enhancer factor-2 (MEF2), myogenic differentiation-1 (MyoD), and myogenic factor-5 (Myf-5)] transactivate Xin promoter constructs supporting the muscle-specific expression of Xin. To determine the role of Xin within muscle precursor cells, proliferation, migration, and differentiation analysis using Xin, short hairpin RNA (shRNA) were undertaken in C2C12 myoblasts. Reducing endogenous Xin expression resulted in a 26% increase (P < 0.05) in cell proliferation and a 20% increase (P < 0.05) in myoblast migratory capacity. Skeletal muscle myosin heavy chain protein levels were increased (P < 0.05) with Xin shRNA administration; however, this was not accompanied by changes in myoglobin protein (another marker of differentiation) nor overt morphological differences relative to differentiating control cells. Taken together, the present findings support the hypothesis that Xin is expressed within muscle satellite cells during skeletal muscle regeneration and is involved in the regulation of myoblast function.

  10. Fiber type conversion alters inactivation of voltage-dependent sodium currents in murine C2C12 skeletal muscle cells.

    PubMed

    Zebedin, Eva; Sandtner, Walter; Galler, Stefan; Szendroedi, Julia; Just, Herwig; Todt, Hannes; Hilber, Karlheinz

    2004-08-01

    Each skeletal muscle of the body contains a unique composition of "fast" and "slow" muscle fibers, each of which is specialized for certain challenges. This composition is not static, and the muscle fibers are capable of adapting their molecular composition by altered gene expression (i.e., fiber type conversion). Whereas changes in the expression of contractile proteins and metabolic enzymes in the course of fiber type conversion are well described, little is known about possible adaptations in the electrophysiological properties of skeletal muscle cells. Such adaptations may involve changes in the expression and/or function of ion channels. In this study, we investigated the effects of fast-to-slow fiber type conversion on currents via voltage-gated Na+ channels in the C(2)C(12) murine skeletal muscle cell line. Prolonged treatment of cells with 25 nM of the Ca2+ ionophore A-23187 caused a significant shift in myosin heavy chain isoform expression from the fast toward the slow isoform, indicating fast-to-slow fiber type conversion. Moreover, Na+ current inactivation was significantly altered. Slow inactivation less strongly inhibited the Na+ currents of fast-to-slow fiber type-converted cells. Compared with control cells, the Na+ currents of converted cells were more resistant to block by tetrodotoxin, suggesting enhanced relative expression of the cardiac Na+ channel isoform Na(v)1.5 compared with the skeletal muscle isoform Na(v)1.4. These results imply that fast-to-slow fiber type conversion of skeletal muscle cells involves functional adaptation of their electrophysiological properties.

  11. BPN, a marine-derived PTP1B inhibitor, activates insulin signaling and improves insulin resistance in C2C12 myotubes.

    PubMed

    Xu, Qi; Luo, Jiao; Wu, Ning; Zhang, Renshuai; Shi, Dayong

    2018-01-01

    Insulin resistance is a key feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator of insulin signaling cascade and has attracted intensive investigation in recent T2DM therapy study. BPN, a marine-derived bromophenol compound, was isolated from the red alga Rhodomela confervoides. This study investigated the effects of BPN on the insulin signaling pathway in insulin-resistant C2C12 myotubes by inhibiting PTP1B. Molecular docking study and analysis of small- molecule interaction with PTP1B all showed BPN inhibited PTP1B activity via binding to the catalytic site through hydrogen bonds. We then found that BPN permeated into C2C12 myotubes, on the one hand, activated insulin signaling in an insulin-independent manner in C2C12 cells; on the other hand, ameliorated palmitate-induced insulin resistance through augmenting insulin sensitivity. Moreover, our studies also showed that PTP1B inhibition by BPN increased glucose uptake in normal and insulin-resistant C2C12 myotubes through glucose transporter 4 (GLUT4) translocation. Taken together, BPN activates insulin signaling and alleviates insulin resistance and represents a potential candidate for further development as an antidiabetic agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C.

    PubMed

    Peng, Chaohua; Zhu, Gaochun; Liu, Xiangqian; Li, He

    2018-04-30

    Huntington's disease (HD) is a neurodegenerative disease caused by a polyglutamine expansion in the huntingtin (Htt) protein. Mutant Htt causes synaptic transmission dysfunctions by interfering in the expression of synaptic proteins, leading to early HD symptoms. Synaptic vesicle proteins 2 (SV2s), a family of synaptic vesicle proteins including 3 members, SV2A, SV2B, and SV2C, plays important roles in synaptic physiology. Here, we investigated whether the expression of SV2s is affected by mutant Htt in the brains of HD transgenic (TG) mice and Neuro2a mouse neuroblastoma cells (N2a cells) expressing mutant Htt. Western blot analysis showed that the protein levels of SV2A and SV2B were not significantly changed in the brains of HD TG mice expressing mutant Htt with 82 glutamine repeats. However, in the TG mouse brain there was a dramatic decrease in the protein level of SV2C, which has a restricted distribution pattern in regions particularly vulnerable in HD. Immunostaining revealed that the immunoreactivity of SV2C was progressively weakened in the basal ganglia and hippocampus of TG mice. RT-PCR demonstrated that the mRNA level of SV2C progressively declined in the TG mouse brain without detectable changes in the mRNA levels of SV2A and SV2B, indicating that mutant Htt selectively inhibits the transcriptional expression of SV2C. Furthermore, we found that only SV2C expression was progressively inhibited in N2a cells expressing a mutant Htt containing 120 glutamine repeats. These findings suggest that the synaptic dysfunction in HD results from the mutant Htt-mediated inhibition of SV2C transcriptional expression. These data also imply that the restricted distribution and decreased expression of SV2C contribute to the brain region-selective pathology of HD.

  13. Dexamethasone-Induced Skeletal Muscle Atrophy Increases O-GlcNAcylation in C2C12 Cells.

    PubMed

    Massaccesi, Luca; Goi, Giancarlo; Tringali, Cristina; Barassi, Alessandra; Venerando, Bruno; Papini, Nadia

    2016-08-01

    Skeletal muscle atrophy is a well-known adverse effect of chronic treatment with glucocorticoids and it also occurs when stress conditions such as sepsis and cachexia increase the release of endogenous glucocorticoids. Although the mechanisms of action of these hormones have been elucidated, the possible molecular mechanisms causing atrophy are not yet fully understood. The involvement of the O-GlcNAcylation process has recently been reported in disuse atrophy. O-GlcNAcylation, a regulatory post-translational modification of nuclear and cytoplasmic proteins consists in the attachment of O-GlcNAc residues on cell proteins and is regulated by two enzymes: O-GlcNAc-transferase (OGT) and O-GlcNAcase (OGA). O-GlcNAcylation plays a crucial role in many cellular processes and it seems to be related to skeletal muscle physiological function. The aim of this study is to investigate the involvement of O-GlcNAcylation in glucocorticoid-induced atrophy by using an "in vitro" model, achieved by treatment of C2C12 with 10 μM dexamethasone for 48 h. In atrophic condition, we observed that O-GlcNAc levels in cell proteins increased and concomitantly protein phosphorylation on serine and threonine residues decreased. Analysis of OGA expression at mRNA and protein levels showed a reduction in this enzyme in atrophic myotubes, whereas no significant changes of OGT expression were found. Furthermore, inhibition of OGA activity by Thiamet G induced atrophy marker expression. Our current findings suggest that O-GlcNAcylation is involved in dexamethasone-induced atrophy. In particular, we propose that the decrease in OGA content causes an excessive and mostly durable level of O-GlcNAc residues on sarcomeric proteins that might modify their function and stability. J. Cell. Biochem. 117: 1833-1842, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Ethane's 12C/13C Ratio in Titan: Implications for Methane Replenishment

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Nixon, C. A.; Romani, P. N.; Bjoraker, G. L.; Sada, P. V.; Lunsford, A. W.; Boyle, R. J.; Hesman, B. E.; McCabe, G. H.

    2009-01-01

    As the .main destination of carbon in the destruction of methane in the atmosphere of Titan, ethane provides information about the carbon isotopic composition of the reservoir from which methane is replenished. If the amount of methane entering the atmosphere is presently equal to the amount converted to ethane, the 12C/13C ratio in ethane should be close to the ratio in the reservoir. We have measured the 12C/13C ratio in ethane both with Cassini CIRS(exp 1) and from the ground and find that it is very close to the telluric standard and outer planet values (89), consistent with a primordial origin for the methane reservoir. The lower 12C/13C ratio measured for methane by Huygens GCMS (82.3) can be explained if the conversion of CH4 to CH3 (and C2H6) favors 12C over 13C with a carbon kinetic isotope effect of 1.08. The time required for the atmospheric methane to reach equilibrium, i.e., for replenishment to equal destruction, is approximately 5 methane atmospheric lifetimes.

  15. Biosphere model simulations of interannual variability in terrestrial 13C/12C exchange

    NASA Astrophysics Data System (ADS)

    van der Velde, I. R.; Miller, J. B.; Schaefer, K.; Masarie, K. A.; Denning, S.; White, J. W. C.; Tans, P. P.; Krol, M. C.; Peters, W.

    2013-09-01

    Previous studies suggest that a large part of the variability in the atmospheric ratio of 13CO2/12CO2originates from carbon exchange with the terrestrial biosphere rather than with the oceans. Since this variability is used to quantitatively partition the total carbon sink, we here investigate the contribution of interannual variability (IAV) in biospheric exchange to the observed atmospheric 13C variations. We use the Simple Biosphere - Carnegie-Ames-Stanford Approach biogeochemical model, including a detailed isotopic fractionation scheme, separate 12C and 13C biogeochemical pools, and satellite-observed fire disturbances. This model of 12CO2 and 13CO2 thus also produces return fluxes of 13CO2from its differently aged pools, contributing to the so-called disequilibrium flux. Our simulated terrestrial 13C budget closely resembles previously published model results for plant discrimination and disequilibrium fluxes and similarly suggests that variations in C3 discrimination and year-to-year variations in C3and C4 productivity are the main drivers of their IAV. But the year-to-year variability in the isotopic disequilibrium flux is much lower (1σ=±1.5 PgC ‰ yr-1) than required (±12.5 PgC ‰ yr-1) to match atmospheric observations, under the common assumption of low variability in net ocean CO2 fluxes. This contrasts with earlier published results. It is currently unclear how to increase IAV in these drivers suggesting that SiBCASA still misses processes that enhance variability in plant discrimination and relative C3/C4productivity. Alternatively, 13C budget terms other than terrestrial disequilibrium fluxes, including possibly the atmospheric growth rate, must have significantly different IAV in order to close the atmospheric 13C budget on a year-to-year basis.

  16. Discovery of a new series of imidazo[1,2-a]pyridine compounds as selective c-Met inhibitors.

    PubMed

    Liu, Tong-Chao; Peng, Xia; Ma, Yu-Chi; Ji, Yin-Chun; Chen, Dan-Qi; Zheng, Ming-Yue; Zhao, Dong-Mei; Cheng, Mao-Sheng; Geng, Mei-Yu; Shen, Jing-Kang; Ai, Jing; Xiong, Bing

    2016-05-01

    Aberrant c-Met activation plays a critical role in cancer formation, progression and dissemination, as well as in development of resistance to anticancer drugs. Therefore, c-Met has emerged as an attractive target for cancer therapy. The aim of this study was to develop new c-Met inhibitors and elaborate the structure-activity relationships of identified inhibitors. Based on the predicted binding modes of Compounds 5 and 14 in docking studies, a new series of c-Met inhibitor-harboring 3-((1H-pyrrolo[3,2-c]pyridin-1-yl)sulfonyl)imidazo[1,2-a]pyridine scaffolds was discovered. Potent inhibitors were identified through extensive optimizations combined with enzymatic and cellular assays. A promising compound was further investigated in regard to its selectivity, its effects on c-Met signaling, cell proliferation and cell scattering in vitro. The most potent Compound 31 inhibited c-Met kinase activity with an IC50 value of 12.8 nmol/L, which was >78-fold higher than those of a panel of 16 different tyrosine kinases. Compound 31 (8, 40, 200 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and ERK signaling cascades in c-Met aberrant human EBC-1 cancer cells. In 12 human cancer cell lines harboring different background levels of c-Met expression/activation, Compound 31 potently inhibited c-Met-driven cell proliferation. Furthermore, Compound 31 dose-dependently impaired c-Met-mediated cell scattering of MDCK cells. This series of c-Met inhibitors is a promising lead for development of novel anticancer drugs.

  17. Discovery of a new series of imidazo[1,2-a]pyridine compounds as selective c-Met inhibitors

    PubMed Central

    Liu, Tong-chao; Peng, Xia; Ma, Yu-chi; Ji, Yin-chun; Chen, Dan-qi; Zheng, Ming-yue; Zhao, Dong-mei; Cheng, Mao-sheng; Geng, Mei-yu; Shen, Jing-kang; Ai, Jing; Xiong, Bing

    2016-01-01

    Aim: Aberrant c-Met activation plays a critical role in cancer formation, progression and dissemination, as well as in development of resistance to anticancer drugs. Therefore, c-Met has emerged as an attractive target for cancer therapy. The aim of this study was to develop new c-Met inhibitors and elaborate the structure-activity relationships of identified inhibitors. Methods: Based on the predicted binding modes of Compounds 5 and 14 in docking studies, a new series of c-Met inhibitor-harboring 3-((1H-pyrrolo[3,2-c]pyridin-1-yl)sulfonyl)imidazo[1,2-a]pyridine scaffolds was discovered. Potent inhibitors were identified through extensive optimizations combined with enzymatic and cellular assays. A promising compound was further investigated in regard to its selectivity, its effects on c-Met signaling, cell proliferation and cell scattering in vitro. Results: The most potent Compound 31 inhibited c-Met kinase activity with an IC50 value of 12.8 nmol/L, which was >78-fold higher than those of a panel of 16 different tyrosine kinases. Compound 31 (8, 40, 200 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and ERK signaling cascades in c-Met aberrant human EBC-1 cancer cells. In 12 human cancer cell lines harboring different background levels of c-Met expression/activation, Compound 31 potently inhibited c-Met-driven cell proliferation. Furthermore, Compound 31 dose-dependently impaired c-Met-mediated cell scattering of MDCK cells. Conclusion: This series of c-Met inhibitors is a promising lead for development of novel anticancer drugs. PMID:27041462

  18. Conformational restriction through C alpha i <--> C alpha i cyclization: Ac12c, the largest cycloaliphatic C alpha,alpha- disubstituted glycine known.

    PubMed

    Saviano, M; Iacovino, R; Menchise, V; Benedetti, E; Bonora, G M; Gatos, M; Graci, L; Formaggio, F; Crisma, M; Toniolo, C

    2000-02-01

    Two complete series of N-protected, monodispersed oligopeptide esters to the pentamer level from 1-aminocyclododecane-1-carboxylic acid (Ac(12)c), an alpha-amino acid conformationally constrained through C(alpha)(i) <--> C(alpha)(i) cyclization, and either L-Ala or Aib residues, along with the N-protected Ac(12)c homopeptide alkylamide series from monomer to trimer, have been synthesized by solution methods and fully characterized. The solution-preferred conformations of these peptides have been assessed by Fourier transform ir absorption and (1)H-nmr techniques. Moreover, the molecular structures of one derivative (Z-Ac(12)c-OH) and three peptides [the tripeptide ester Z-L-Ala-Ac(12)c-L-Ala-OMe, the tripeptide alkylamide Z-(Ac(12)c)(3)-NHiPr, and the tetrapeptide ester Z-(Aib)(2)-Ac(12)c-Aib-OtBu (Aib, alpha-aminoisobutyric acid)] have been determined in the crystal state by x-ray diffraction. The results obtained point to the conclusion that beta-bends and 3(10)-helices are preferentially adopted by peptides based on Ac(12)c, the largest cycloaliphatic C-disubstituted glycine known. A comparison with the structural tendencies extracted from published works on peptides from Aib, the prototype of C-disubstituted glycines, and the other extensively studied members of the class of 1-aminocycloalkane-1-carboxylic acids (Ac(n) c, with n = 3-9), is made and the implications for the use of the Ac(12)c residue in the Ac(n) c scan approach of conformationally restricted analogues of bioactive peptides are briefly discussed. Copyright 2000 John Wiley & Sons, Inc.

  19. The developmental expression of the CDK inhibitor p57(kip2) (Cdkn1c) in the early mouse placenta.

    PubMed

    Saunders, Ann Catherine Eugenia; McGonnigal, Bethany; Uzun, Alper; Padbury, James

    2016-05-01

    p57(kip2) (encoded by the Cdkn1c gene) is a member of the cip/kip family of cyclin-dependent kinase inhibitors that mediates cell cycle arrest in G1, allowing cells to differentiate. In the placenta, p57(kip2) is involved in endoreduplication, formation of trophoblast giant cells, trophoblast invasion, and expansion of placental cell layers. Here, we quantitatively and qualitatively define the cell- and region-specific expression of mouse placental p57(kip2) using laser-capture microdissection, in situ hybridization, and immunohistochemistry. Cdkn1c RNA was quantified by real-time quantitative PCR. Co-expression of Pl1 was used to identify trophoblast giant cells while Tbpba was used to identify spongiotrophoblast cells. Timed sacrifices were also carried out at embryonic days E7.5, E8.5, E9.5, and E12.5 to profile the expression in embryos and their placentas. At E8.5, intense expression of Cdkn1c was seen in invasive TGCs and the ectoplacental cone. Cdkn1c expression was more diffuse and more abundant in the labyrinth that in the junctional zone at both E9.5 and E12.5. Immunohistochemistry revealed robust p57(kip2) staining in trophoblast giant cells and in the ectoplacental cone at E8.5. p57(kip2) protein was seen in giant cells and throughout the labyrinth, although its abundance was reduced in the junctional zone at E9.5, and became more diffuse by E12.5. The early and intense expression in trophoblast giant cells is consistent with a role for p57(kip2) in the invasive phenotype of these cells. Mol. Reprod. Dev. 83: 405-412, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Neuronal Tryptophan Hydroxylase Expression in BALB/cJ and C57Bl/6J Mice

    PubMed Central

    Bach, Helene; Arango, Victoria; Huang, Yung-Yu; Leong, Sharlene; Mann, J. John; Underwood, Mark D.

    2014-01-01

    BALB/c is an inbred stress-sensitive mouse strain exhibiting low brain serotonin (5-HT) content and a 5-HT biosynthetic enzyme tryptophan hydroxylase (Tph2) variant reported to have lower catalytic activity compared to other inbred base strains. To evaluate other mechanisms that may explain low 5-HT, we compared BALB/cJ mice and a control inbred strain C57Bl/6J mice, for expression of Tph2 mRNA, TPH2 protein and regional levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA). Tph2 mRNA and TPH2 protein in brainstem dorsal raphe nuclei (DRN) was assayed by in situ hybridization and immunocytochemistry respectively. 5-HT and 5-HIAA were determined by high pressure liquid chromatography (HPLC). BALB/cJ mice had 20% less Tph2 mRNA and 28% fewer TPH2 immunolabeled neurons than C57Bl/6J mice (t = -2.59, p = 0.02). The largest difference in Tph2 transcript expression was in rostral DRN (t = 2.731, p = 0.008). 5-HT was 15% lower in the midbrain of BALB/cJ compared to C57Bl/6J mice (p < 0.05). The behavioral differences in BALB/cJ mice relative to the C57Bl/6J strain may be due in part, to fewer 5-HT neurons and lower Tph2 gene expression resulting in less 5-HT neurotransmission. Future studies quantifying expression per neuron are needed to determine whether less expression is explained by fewer neurons or also less expression per neuron, or both. PMID:21740442

  1. Neuronal tryptophan hydroxylase expression in BALB/cJ and C57Bl/6J mice.

    PubMed

    Bach, Helene; Arango, Victoria; Huang, Yung-Yu; Leong, Sharlene; Mann, J John; Underwood, Mark D

    2011-09-01

    BALB/c is an inbred stress-sensitive mouse strain exhibiting low brain serotonin (5-HT) content and a 5-HT biosynthetic enzyme tryptophan hydroxylase (Tph2) variant reported to have lower catalytic activity compared with other inbred base strains. To evaluate other mechanisms that may explain low 5-HT, we compared BALB/cJ mice and a control inbred strain C57Bl/6J mice, for expression of Tph2 mRNA, TPH2 protein and regional levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid. Tph2 mRNA and TPH2 protein in brainstem dorsal raphe nuclei was assayed by in situ hybridization and immunocytochemistry respectively. 5-HT and 5-hydroxyindoleacetic acid were determined by HPLC. BALB/cJ mice had 20% less Tph2 mRNA and 28% fewer TPH2 immunolabeled neurons than C57Bl/6J mice (t = -2.59, p = 0.02). The largest difference in Tph2 transcript expression was in rostral dorsal raphe nuclei (t = 2.731, p = 0.008). 5-HT was 15% lower in the midbrain and 18% lower in the cerebral cortex of BALB/cJ compared with C57Bl/6J mice (p < 0.05). The behavioral differences in BALB/cJ mice relative to the C57Bl/6J strain may be due in part, to fewer 5-HT neurons and lower Tph2 gene expression resulting in less 5-HT neurotransmission. Future studies quantifying expression per neuron are needed to determine whether less expression is explained by fewer neurons or also less expression per neuron, or both. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  2. Off-target effect of the Epac agonist 8-pCPT-2'-O-Me-cAMP on P2Y12 receptors in blood platelets.

    PubMed

    Herfindal, Lars; Nygaard, Gyrid; Kopperud, Reidun; Krakstad, Camilla; Døskeland, Stein Ove; Selheim, Frode

    2013-08-09

    The primary target of the cAMP analogue 8-pCPT-2'-O-Me-cAMP is exchange protein directly activated by cAMP (Epac). Here we tested potential off-target effects of the Epac activator on blood platelet activation signalling. We found that the Epac analogue 8-pCPT-2'-O-Me-cAMP inhibits agonist-induced-GPCR-stimulated, but not collagen-stimulated, P-selectin surface expression on Epac1 deficient platelets. In human platelets, 8-pCPT-2'-O-Me-cAMP inhibited P-selectin expression elicited by the PKC activator PMA. This effect was abolished in the presence of the extracellular ADP scavenger system CP/CPK. In silico modelling of 8-pCPT-2'O-Me-cAMP binding into the purinergic platelet receptor P2Y12 revealed that the analogue docks similar to the P2Y12 antagonist 2MeSAMP. The 8-pCPT-2'-O-Me-cAMP analogue per se, did not provoke Rap 1 (Rap 1-GTP) activation or phosphorylation on the vasodilator-stimulated phosphoprotein (VASP) at Ser-157. In addition, the protein kinase A (PKA) antagonists Rp-cAMPS and Rp-8-Br-cAMPS failed to block the inhibitory effect of 8-pCPT-2'-O-Me-cAMP on thrombin- and TRAP-induced Rap 1 activation, thus suggesting that PKA is not involved. We conclude that the 8-pCPT-2'-O-Me-cAMP analogue is able to inhibit agonist-induced-GPCR-stimulated P-selectin independent from Epac1; the off-target effect of the analogue appears to be mediated by antagonistic P2Y12 receptor binding. This has implications when using cAMP analogues on specialised system involving such receptors. We found, however that the Epac agonist 8-Br-2'-O-Me-cAMP did not affect platelet activation at similar concentrations. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Skeletal muscle cells express ICAM-1 after muscle overload and ICAM-1 contributes to the ensuing hypertrophic response.

    PubMed

    Dearth, Christopher L; Goh, Qingnian; Marino, Joseph S; Cicinelli, Peter A; Torres-Palsa, Maria J; Pierre, Philippe; Worth, Randall G; Pizza, Francis X

    2013-01-01

    We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells.

  4. Skeletal Muscle Cells Express ICAM-1 after Muscle Overload and ICAM-1 Contributes to the Ensuing Hypertrophic Response

    PubMed Central

    Dearth, Christopher L.; Goh, Qingnian; Marino, Joseph S.; Cicinelli, Peter A.; Torres-Palsa, Maria J.; Pierre, Philippe; Worth, Randall G.; Pizza, Francis X.

    2013-01-01

    We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells. PMID:23505517

  5. Measurement of the ^12C+^12C Fusion Reaction with MUSIC

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Almaraz-Calderon, S.; Henderson, D.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Esbensen, H.; Fernandez-Niello, J. O.; Jiang, C. L.; Lighthall, J. C.; Marley, S. T.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.

    2012-10-01

    The fusion of the ^12C+^12C system is of great interest in nuclear structure and nuclear astrophysics. Above the Coulomb barrier, the excitation function of this system exhibits oscillations, which are not well understood. There is also a significant discrepancy between the experimental fusion cross-section and recent coupled-channel calculations that is not present in other carbon systems. To address these issues, we have re-measured the fusion excitation function for ^12,13C+^12C in the energy range of 10 MeV < Ecm < 20 MeV using a Multi-Sampling Ionization Chamber (MUSIC) detector. The gas of the ionization chamber (CH4) served as both the target material and the counter gas. One of the main advantages of this method is that the excitation function is measured over a large range of energies using only one beam energy. This method has been proven to be successful and it will be used to measure fusion reactions in other light systems. The experimental results will be presented and compared to previous experimental data and theoretical models.

  6. The C-12/C-13 Ratio as a Chemistry Indicator

    NASA Technical Reports Server (NTRS)

    Wirstroem, Eva; Geppert, Wolf; Persson, Carina; Charnley, Steven

    2011-01-01

    Isotopic ratios of elements are considered powerful tools, e.g. in tracing the origin of solar system body materials, or the degree of nucleosynthesis processing throughout the Galaxy. In interstellar molecules, some isotopic ratios like H/D and C-12/C-13 can also be used as indicators of their chemical origin. Isotope fractionation in gas-phase chemical reactions and gas-dust interaction makes observations of the ratio between C-12 and C-13 isotopologues suitable to distinguish between different formation scenarios. We will present observations of the C-12/C-13 ratio in methanol and formaldehyde towards a sample of embedded, massive young stellar objects. In relation to this we also present results from theoretical modeling showing the usefulness of the C-12/C-13 ratio as a chemistry indicator.

  7. Specificity and mechanism of protein kinase C activation by sn-1,2-diacylglycerols.

    PubMed Central

    Ganong, B R; Loomis, C R; Hannun, Y A; Bell, R M

    1986-01-01

    The specificity of protein kinase C activation by sn-1,2-diacylglycerols and analogues was investigated by using a Triton X-100 mixed micellar assay [Hannun, Y. A., Loomis, C. R. & Bell, R. M. (1985) J. Biol. Chem. 260, 10039-10043]. Analogues containing acyl or alkyl chains eight carbons in length were synthesized because sn-1,2-dioctanoylglycerol is an effective cell-permeant activator of protein kinase C. These analogues were tested as activators and antagonists of rat brain protein kinase C to determine the exact structural features important for activity. The analogues established that activation of protein kinase C by diacylglycerols is highly specific. Several analogues established that both carbonyl moieties of the oxygen esters are required for maximal activity and that the 3-hydroxyl moiety is also required. None of the analogues were antagonists. These data, combined with previous investigations, permitted formulation of a model of protein kinase C activation. A three-point attachment of sn-1,2-diacylglycerol to the surface-bound protein kinase C-phosphatidylserine-Ca2+ complex is envisioned to cause activation. Direct ligation of diacylglycerol to Ca2+ is proposed to be an essential step in the mechanism of activation of protein kinase C. Images PMID:3456578

  8. Acute high-caffeine exposure increases autophagic flux and reduces protein synthesis in C2C12 skeletal myotubes.

    PubMed

    Hughes, M A; Downs, R M; Webb, G W; Crocker, C L; Kinsey, S T; Baumgarner, Bradley L

    2017-04-01

    Caffeine is a highly catabolic dietary stimulant. High caffeine concentrations (1-10 mM) have previously been shown to inhibit protein synthesis and increase protein degradation in various mammalian cell lines. The purpose of this study was to examine the effect of short-term caffeine exposure on cell signaling pathways that regulate protein metabolism in mammalian skeletal muscle cells. Fully differentiated C2C12 skeletal myotubes either received vehicle (DMSO) or 5 mM caffeine for 6 h. Our analysis revealed that caffeine promoted a 40% increase in autolysosome formation and a 25% increase in autophagic flux. In contrast, caffeine treatment did not significantly increase the expression of the skeletal muscle specific ubiquitin ligases MAFbx and MuRF1 or 20S proteasome activity. Caffeine treatment significantly reduced mTORC1 signaling, total protein synthesis and myotube diameter in a CaMKKβ/AMPK-dependent manner. Further, caffeine promoted a CaMKII-dependent increase in myostatin mRNA expression that did not significantly contribute to the caffeine-dependent reduction in protein synthesis. Our results indicate that short-term caffeine exposure significantly reduced skeletal myotube diameter by increasing autophagic flux and promoting a CaMKKβ/AMPK-dependent reduction in protein synthesis.

  9. HMGA2 promotes adipogenesis by activating C/EBPβ-mediated expression of PPARγ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Yang; Shen, Wanjing; Ma, Lili

    Adipogenesis is orchestrated by a highly ordered network of transcription factors including peroxisome-proliferator activated receptor-gamma (PPARγ) and CCAAT-enhancer binding protein (C/EBP) family proteins. High mobility group protein AT-hook 2 (HMGA2), an architectural transcription factor, has been reported to play an essential role in preadipocyte proliferation, and its overexpression has been implicated in obesity in mice and humans. However, the direct role of HMGA2 in regulating the gene expression program during adipogenesis is not known. Here, we demonstrate that HMGA2 is required for C/EBPβ-mediated expression of PPARγ, and thus promotes adipogenic differentiation. We observed a transient but marked increase of Hmga2more » transcript at an early phase of differentiation of mouse 3T3-L1 preadipocytes. Importantly, Hmga2 knockdown greatly impaired adipocyte formation, while its overexpression promoted the formation of mature adipocytes. We found that HMGA2 colocalized with C/EBPβ in the nucleus and was required for the recruitment of C/EBPβ to its binding element at the Pparγ2 promoter. Accordingly, HMGA2 and C/EBPβ cooperatively enhanced the Pparγ2 promoter activity. Our results indicate that HMGA2 is an essential constituent of the adipogenic transcription factor network, and thus its function may be affected during the course of obesity. - Highlights: • Overexpression of HMGA2 has been implicated in obesity in mice and humans. • HMGA2 is required for adipocyte formation. • HMGA2 colocalizes with C/EBPβ and is required for C/EBPβ recruitment to Pparγ2 promoter. • HMGA2 and C/EBPβ cooperatively enhance the Pparγ2 promoter activity.« less

  10. Requirement of ClC-3 in G0/G1 to S Phase Transition Induced by IGF-1 via ERK1/2-Cyclins Cascade in Multiple Myeloma Cells.

    PubMed

    Du, Yu; Tu, Yong-Sheng; Tang, Yong-Bo; Huang, Yun-Ying; Zhou, Fang-Min; Tian, Tian; Li, Xiao-Yan

    2018-06-01

    ClC-3 is involved in the proliferation and migration of several cancer cells. However, ClC-3 expression and its role of cell-cycle control in multiple myeloma (MM) has not yet been investigated. MM cells were treated with different concentrations of IGF (30, 100, 300 ng/mL), and their proliferation was examined by CCK-8. The effects of ClC-3 on cell cycle progression was detected by flow cytometry. Western blot was used to analyze the relative levels of ClC3, CD138, P21, P27, CDK, p-Erk1/2, and t-Erk1/2 protein expression. Transfection of RPMI8226 with gpClC-3 cDNA and siRNA alters the expression of ClC-3. We compared the expression of ClC-3 in primary myeloma cells and in MM cell lines (U266 and RPMI8266) with that in normal plasma cells (PCs) from normal subjects and found that myeloma cells from patients and MM cell lines had significantly higher expression of ClC-3. Additionally, silencing of ClC-3 with the small interfering RNA (siRNA) that targets human ClC-3 decreased proliferation of RPMI8226 after IGF-1 treatment and slowed cell cycle progression from G0/G1 to S phase, which was associated with diminished phosphorylation of ERK1/2, down-expression of cyclin E, cyclin D1 and up-regulation of p27 and p21. By contrast, overexpression of ClC-3 potentiated cell proliferation induced by IGF-1, raised the percentage of S phase cells, enhanced phosphorylation of ERK1/2, downregulated p27 and p21 and upregulated cyclin E and cyclin D1. ClC-3 accelerated G0/G1 to S phase transition in the cell cycle by modulating ERK1/2 kinase activity and expression of G1/S transition related proteins, making ClC-3 an attractive therapeutic target in MM.

  11. Infrared Spectroscopy of C_6D_6-Rg_n(n=1,2)

    NASA Astrophysics Data System (ADS)

    George, Jobin; Yousefi, Mahdi; Rezaei, Mojtaba; McKellar, Bob; Moazzen-Ahmadi, Nasser

    2014-06-01

    Benzene-noble gas complexes were one of the earliest topics of interest in spectroscopic investigation of van der Waals (vdW) complexes. Smalley et al. observed C_6H_6-(He)1,2 vdW complexes in the late 1970s by means of electronic spectroscopy. A recent study on the same species was done by M. Hayashi et al. Here, we present the infrared observation of C_6D_6-Rg_n (n=1,2) with the rare gas being He, Ne, or Ar, in the regions of νb{12} fundamental band of C_6D_6 (˜2289 wn) and the νb{2} + νb{13} combination band (˜2275 wn) which are coupled by a Fermi resonance. The spectra were observed at a resolution of 60 MHz using a tunable optical parametric oscillator to probe a pulsed supersonic-jet expansion from a slit nozzle. In the case of C_6D_6-Rg dimers, the spectra were assigned to a symmetric top with C6v symmetry with the rare gas atom being located on the C6 symmetry axis. To observe C_6D_6-Rg_2 trimers, the nozzle was cooled using a closed-cycle methanol refrigerator and the spectra were simulated with a rotational temperature of 1.3K. The spectra of the C_6D_6-Rg_2 trimers were in agreement with a D6h symmetry structure, where the rare gas atoms are positioned above and below the C_6D_6 plane. Data analysis and observation are presently ongoing. S. M. Beck, M. G. Liverman, D. L. Monts and R. E. Smalley, J. Chem. Phys. 70, 232 (1979). M. Hayashi, Y. Ohshima, Chem. Phys. 419, 131 (2013).

  12. Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration.

    PubMed

    Sassoli, Chiara; Vallone, Larissa; Tani, Alessia; Chellini, Flaminia; Nosi, Daniele; Zecchi-Orlandini, Sandra

    2018-06-01

    Satellite cell-mediated skeletal muscle repair/regeneration is compromised in cases of extended damage. Bone marrow mesenchymal stromal cells (BM-MSCs) hold promise for muscle healing but some criticisms hamper their clinical application, including the need to avoid animal serum contamination for expansion and the scarce survival after transplant. In this context, platelet-rich plasma (PRP) could offer advantages. Here, we compare the effects of PRP or standard culture media on C2C12 myoblast, satellite cell and BM-MSC viability, survival, proliferation and myogenic differentiation and evaluate PRP/BM-MSC combination effects in promoting myogenic differentiation. PRP induced an increase of mitochondrial activity and Ki67 expression comparable or even greater than that elicited by standard media and promoted AKT signaling activation in myoblasts and BM-MSCs and Notch-1 pathway activation in BM-MSCs. It stimulated MyoD, myogenin, α-sarcomeric actin and MMP-2 expression in myoblasts and satellite cell activation. Notably, PRP/BM-MSC combination was more effective than PRP alone. We found that BM-MSCs influenced myoblast responses through a paracrine activation of AKT signaling, contributing to shed light on BM-MSC action mechanisms. Our results suggest that PRP represents a good serum substitute for BM-MSC manipulation in vitro and could be beneficial towards transplanted cells in vivo. Moreover, it might influence muscle resident progenitors' fate, thus favoring the endogenous repair/regeneration mechanisms. Finally, within the limitations of an in vitro experimentation, this study provides an experimental background for considering the PRP/BM-MSC combination as a potential therapeutic tool for skeletal muscle damage, combining the beneficial effects of BM-MSCs and PRP on muscle tissue, while potentiating BM-MSC functionality.

  13. Permeability of C2C12 myotube membranes is influenced by stretch velocity.

    PubMed

    Burkholder, Thomas J

    2003-05-30

    Mechanical signals are critical to the growth and maintenance of skeletal muscle, but the mechanism by which these signals are transduced by the cell remains unknown. This work examined the hypothesis that stretch conditions influence membrane permeability consistent with a role for membrane permeability in mechanotransduction. C2C12 myotubes were grown in conditions that encourage uniform alignment and subjected to uniform mechanical deformation in the presence of fluorescein labeled dextran to evaluate membrane permeability as a function of stretch amplitude and velocity. Within a physiologically relevant range of conditions, a complex interaction between the two aspects of stretch was observed, with velocity contributing most strongly at large stretch amplitudes. This suggests that membrane viscosity could contribute to mechanotransduction.

  14. Nardosinone protects H9c2 cardiac cells from angiotensin II-induced hypertrophy.

    PubMed

    Du, Meng; Huang, Kun; Gao, Lu; Yang, Liu; Wang, Wen-Shuo; Wang, Bo; Huang, Kai; Huang, Dan

    2013-12-01

    Pathological cardiac hypertrophy induced by angiotensin II (AngII) can subsequently give rise to heart failure, a leading cause of mortality. Nardosinone is a pharmacologically active compound extracted from the roots of Nardostachys chinensis, a well-known traditional Chinese medicine. In order to investigate the effects of nardosinone on AngII-induced cardiac cell hypertrophy and the related mechanisms, the myoblast cell line H9c2, derived from embryonic rat heart, was treated with nardosinone (25, 50, 100, and 200 μmol/L) or AngII (1 μmol/L). Then cell surface area and mRNA expression of classical markers of hypertrophy were detected. The related protein levels in PI3K/Akt/mTOR and MEK/ERK signaling pathways were examined by Western blotting. It was found that pretreatment with nardosinone could significantly inhibit the enlargement of cell surface area induced by AngII. The mRNA expression of ANP, BNP and β-MHC was obviously elevated in AngII-treated H9c2 cells, which could be effectively blocked by nardosinone at the concentration of 100 μmol/L. Further study revealed that the protective effects of nardosinone might be mediated by repressing the phosphorylation of related proteins in PI3K/Akt and MEK/ERK signaling pathways. It was suggested that the inhibitory effect of nardosinone on Ang II-induced hypertrophy in H9c2 cells might be mediated by targeting PI3K/Akt and MEK/ERK signaling pathways.

  15. First Direct Measurement of C 12 ( C 12 , n ) Mg 23 at Stellar Energies

    DOE PAGES

    Bucher, B.; Tang, X. D.; Fang, X.; ...

    2015-06-25

    Neutrons produced by the carbon fusion reaction 12C( 12C,n) 23Mg play an important role in stellar nucleosynthesis. However, past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. Here in this paper, we present the first direct measurement that extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction 12C( 12C,p) 23Na . The new reaction rate has been determined with a well-defined uncertainty that exceeds the precision required by astrophysics models. Using our constrained rate,more » we find that 12C ( 12C,n) 23Mg is crucial to the production of Na and Al in pop-III pair instability supernovae. It also plays a nonnegligible role in the production of weak s -process elements, as well as in the production of the important galactic γ-ray emitter 60Fe.« less

  16. Expressional studies of the aldehyde oxidase (AOX1) gene during myogenic differentiation in C2C12 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamli, Majid Rasool; Kim, Jihoe; Pokharel, Smritee

    2014-08-08

    Highlights: • AOX1 contributes to the formation of myotube. • Silencing of AOX1 reduces myotube formation. • AOX1 regulates MyoG gene expression. • AOX1 contributes to myogenesis via H{sub 2}O{sub 2}. - Abstract: Aldehyde oxidases (AOXs), which catalyze the hydroxylation of heterocycles and oxidation of a wide variety of aldehydic compounds, have been present throughout evolution from bacteria to humans. While humans have only a single functional aldehyde oxidase (AOX1) gene, rodents are endowed with four AOXs; AOX1 and three aldehyde oxidase homologs (AOH1, AOH2 and AOH3). In continuation of our previous study conducted to identify genes differentially expressed duringmore » myogenesis using a microarray approach, we investigated AOX1 with respect to its role in myogenesis to conceptualize how it is regulated in C2C12 cells. The results obtained were validated by silencing of the AOX1 gene. Analysis of their fusion index revealed that formation of myotubes showed a marked reduction of up to 40% in AOX1{sub kd} cells. Expression of myogenin (MYOG), one of the marker genes used to study myogenesis, was also found to be reduced in AOX1{sub kd} cells. AOX1 is an enzyme of pharmacological and toxicological importance that metabolizes numerous xenobiotics to their respective carboxylic acids. Hydrogen peroxide (H{sub 2}O{sub 2}) produced as a by-product in this reaction is considered to be involved as a part of the signaling mechanism during differentiation. An observed reduction in the level of H{sub 2}O{sub 2} among AOX1{sub kd} cells confirmed production of H{sub 2}O{sub 2} in the reaction catalyzed by AOX1. Taken together, these findings suggest that AOX1 acts as a contributor to the process of myogenesis by influencing the level of H{sub 2}O{sub 2}.« less

  17. Differential roles of HIC-5 isoforms in the regulation of cell death and myotube formation during myogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Zhengliang; Deblis, Ryan; Glenn, Honor

    2007-11-15

    Hic-5 is a LIM-Only member of the paxillin superfamily of focal adhesion proteins. It has been shown to regulate a range of biological processes including: senescence, tumorigenesis, steroid hormone action, integrin signaling, differentiation, and apoptosis. To better understand the roles of Hic-5 during development, we initiated a detailed analysis of Hic-5 expression and function in C{sub 2}C{sub 12} myoblasts, a well-established model for myogenesis. We have found that: (1) myoblasts express at least 6 distinct Hic-5 isoforms; (2) the two predominant isoforms, Hic-5{alpha} and Hic-5{beta}, are differentially expressed during myogenesis; (3) any experimentally induced change in Hic-5 expression results inmore » a substantial increase in apoptosis during differentiation; (4) ectopic expression of Hic-5{alpha} is permissive to differentiation while expression of either Hic-5{beta} or antisense Hic-5 blocks myoblast fusion but not chemodifferentiation; (5) Hic-5 localizes to focal adhesions in C{sub 2}C{sub 12} myoblasts and perturbation of Hic-5 leads to defects in cell spreading; (6) alterations in Hic-5 expression interfere with the normal dynamics of laminin expression; and (7) ectopic laminin, but not fibronectin, can rescue the Hic-5-induced blockade of myoblast survival and differentiation. Our data demonstrate differential roles for individual Hic-5 isoforms during myogenesis and support the hypothesis that Hic-5 mediates these effects via integrin signaling.« less

  18. Platelets Express Activated P2Y12 Receptor in Patients With Diabetes Mellitus.

    PubMed

    Hu, Liang; Chang, Lin; Zhang, Yan; Zhai, Lili; Zhang, Shenghui; Qi, Zhiyong; Yan, Hongmei; Yan, Yan; Luo, Xinping; Zhang, Si; Wang, Yiping; Kunapuli, Satya P; Ye, Hongying; Ding, Zhongren

    2017-08-29

    Platelets from patients with diabetes mellitus are hyperactive. Hyperactivated platelets may contribute to cardiovascular complications and inadequate responses to antiplatelet agents in the setting of diabetes mellitus. However, the underlying mechanism of hyperactivated platelets is not completely understood. We measured P2Y 12 expression on platelets from patients with type 2 diabetes mellitus and on platelets from rats with diabetes mellitus. We also assayed platelet P2Y 12 activation by measuring cAMP and VASP phosphorylation. The antiplatelet and antithrombotic effects of AR-C78511 and cangrelor were compared in rats. Finally, we explored the role of the nuclear factor-κB pathway in regulating P2Y 12 receptor expression in megakaryocytes. Platelet P2Y 12 levels are 4-fold higher in patients with type 2 diabetes mellitus compared with healthy subjects. P2Y 12 expression correlates with ADP-induced platelet aggregation (r=0.89, P <0.01). P2Y 12 in platelets from patients with diabetes mellitus is constitutively activated. Although both AR-C78511, a potent P2Y 12 inverse agonist, and cangrelor have similar antiplatelet efficacy on platelets from healthy subjects, AR-C78511 exhibits more powerful antiplatelet effects on diabetic platelets than cangrelor (aggregation ratio 36±3% versus 49±5%, respectively, P <0.05). Using a FeCl 3 -injury mesenteric arteriole thrombosis model in rats and an arteriovenous shunt thrombosis model in rats, we found that the inverse agonist AR-C78511 has greater antithrombotic effects on GK rats with diabetes mellitus than cangrelor (thrombus weight 4.9±0.3 mg versus 8.3±0.4 mg, respectively, P <0.01). We also found that a pathway involving high glucose-reactive oxygen species-nuclear factor-κB increases platelet P2Y 12 receptor expression in diabetes mellitus. Platelet P2Y 12 receptor expression is significantly increased and the receptor is constitutively activated in patients with type 2 diabetes mellitus, which contributes to

  19. Attenuation of p38-mediated miR-1/133 expression facilitates myoblast proliferation during the early stage of muscle regeneration.

    PubMed

    Zhang, Duo; Li, Xihua; Chen, Chuchu; Li, Yuyin; Zhao, Lei; Jing, Yanyan; Liu, Wei; Wang, Xiaoyun; Zhang, Ying; Xia, Hongfeng; Chang, Yaning; Gao, Xiang; Yan, Jun; Ying, Hao

    2012-01-01

    Myoblast proliferation following myotrauma is regulated by multiple factors including growth factors, signal pathways, transcription factors, and miRNAs. However, the molecular mechanisms underlying the orchestration of these regulatory factors remain unclear. Here we show that p38 signaling is required for miR-1/133a clusters transcription and both p38 activity and miR-1/133 expression are attenuated during the early stage of muscle regeneration in various animal models. Additionally, we show that both miR-1 and miR-133 reduce Cyclin D1 expression and repress myoblast proliferation by inducing G1 phase arrest. Furthermore, we demonstrate that miR-133 inhibits mitotic progression by targeting Sp1, which mediates Cyclin D1 transcription, while miR-1 suppresses G1/S phase transition by targeting Cyclin D1. Finally, we reveal that proproliferative FGF2, which is elevated during muscle regeneration, attenuates p38 signaling and miR-1/133 expression. Taken together, our results suggest that downregulation of p38-mediated miR-1/133 expression by FGF2 and subsequent upregulation of Sp1/Cyclin D1 contribute to the increased myoblast proliferation during the early stage of muscle regeneration.

  20. SVCT2 vitamin C transporter expression in progenitor cells of the postnatal neurogenic niche

    PubMed Central

    Pastor, Patricia; Cisternas, Pedro; Salazar, Katterine; Silva-Alvarez, Carmen; Oyarce, Karina; Jara, Nery; Espinoza, Francisca; Martínez, Agustín D.; Nualart, Francisco

    2013-01-01

    Known as a critical antioxidant, recent studies suggest that vitamin C plays an important role in stem cell generation, proliferation and differentiation. Vitamin C also enhances neural differentiation during cerebral development, a function that has not been studied in brain precursor cells. We observed that the rat neurogenic niche is structurally organized at day 15 of postnatal development, and proliferation and neural differentiation increase at day 21. In the human brain, a similar subventricular niche was observed at 1-month of postnatal development. Using immunohistochemistry, sodium-vitamin C cotransporter 2 (SVCT2) expression was detected in the subventricular zone (SVZ) and rostral migratory stream (RMS). Low co-distribution of SVCT2 and βIII-tubulin in neuroblasts or type-A cells was detected, and minimal co-localization of SVCT2 and GFAP in type-B or precursor cells was observed. Similar results were obtained in the human neurogenic niche. However, BrdU-positive cells also expressed SVCT2, suggesting a role of vitamin C in neural progenitor proliferation. Primary neurospheres prepared from rat brain and the P19 teratocarcinoma cell line, which forms neurospheres in vitro, were used to analyze the effect of vitamin C in neural stem cells. Both cell types expressed functional SVCT2 in vitro, and ascorbic acid (AA) induced their neural differentiation, increased βIII-tubulin and SVCT2 expression, and amplified vitamin C uptake. PMID:23964197

  1. Betaglycan expression is transcriptionally up-regulated during skeletal muscle differentiation. Cloning of murine betaglycan gene promoter and its modulation by MyoD, retinoic acid, and transforming growth factor-beta.

    PubMed

    Lopez-Casillas, Fernando; Riquelme, Cecilia; Perez-Kato, Yoshiaki; Ponce-Castaneda, M Veronica; Osses, Nelson; Esparza-Lopez, Jose; Gonzalez-Nunez, Gerardo; Cabello-Verrugio, Claudio; Mendoza, Valentin; Troncoso, Victor; Brandan, Enrique

    2003-01-03

    Betaglycan is a membrane-anchored proteoglycan co-receptor that binds transforming growth factor beta (TGF-beta) via its core protein and basic fibroblast growth factor through its glycosaminoglycan chains. In this study we evaluated the expression of betaglycan during the C(2)C(12) skeletal muscle differentiation. Betaglycan expression, as determined by Northern and Western blot, was up-regulated during the conversion of myoblasts to myotubes. The mouse betaglycan gene promoter was cloned, and its sequence showed putative binding sites for SP1, Smad3, Smad4, muscle regulatory factor elements such as MyoD and MEF2, and retinoic acid receptor. Transcriptional activity of the mouse betaglycan promoter reporter was also up-regulated in differentiating C(2)C(12) cells. We found that MyoD, but not myogenin, stimulated this transcriptional activity even in the presence of high serum. Betaglycan promoter activity was increased by RA and inhibited by the three isoforms of TGF-beta. On the other hand, basic fibroblast growth factor, BMP-2, and hepatocyte growth factor/scatter factor, which are inhibitors of myogenesis, had little effect. In myotubes, up-regulated betaglycan was also detectable by TGF-beta affinity labeling and immunofluorescence microscopy studies. The latter indicated that betaglycan was localized both on the cell surface and in the ECM. Forced expression of betaglycan in C(2)C(12) myoblasts increases their responsiveness to TGF-beta2, suggesting that it performs a TGF-beta presentation function in this cell lineage. These results indicate that betaglycan expression is up-regulated during myogenesis and that MyoD and RA modulate its expression by a mechanism that is independent of myogenin.

  2. 76 FR 71961 - Elba Express Company, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-11-000] Elba Express Company, L.L.C.; Notice of Application Take notice that on October 31, 2011, Elba Express Company, L.L.C... directed to Glenn A. Sheffield, Director, Rates & Regulatory Affairs, Elba Express Company, L.L.C., 569...

  3. MUC1-C activates EZH2 expression and function in human cancer cells.

    PubMed

    Rajabi, Hasan; Hiraki, Masayuki; Tagde, Ashujit; Alam, Maroof; Bouillez, Audrey; Christensen, Camilla L; Samur, Mehmet; Wong, Kwok-Kin; Kufe, Donald

    2017-08-07

    The EZH2 histone methyltransferase is a member of the polycomb repressive complex 2 (PRC2) that is highly expressed in diverse human cancers and is associated with a poor prognosis. MUC1-C is an oncoprotein that is similarly overexpressed in carcinomas and has been linked to epigenetic regulation. A role for MUC1-C in regulating EZH2 and histone methylation is not known. Here, we demonstrate that targeting MUC1-C in diverse human carcinoma cells downregulates EZH2 and other PRC2 components. MUC1-C activates (i) the EZH2 promoter through induction of the pRB→E2F pathway, and (ii) an NF-κB p65 driven enhancer in exon 1. We also show that MUC1-C binds directly to the EZH2 CXC region adjacent to the catalytic SET domain and associates with EZH2 on the CDH1 and BRCA1 promoters. In concert with these results, targeting MUC1-C downregulates EZH2 function as evidenced by (i) global and promoter-specific decreases in H3K27 trimethylation (H3K27me3), and (ii) activation of tumor suppressor genes, including BRCA1. These findings highlight a previously unreported role for MUC1-C in activating EZH2 expression and function in cancer cells.

  4. Expression, purification, crystallization and preliminary X-ray analysis of conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708.

    PubMed

    Yamamura, Akihiro; Maruoka, Shintaro; Ohtsuka, Jun; Miyakawa, Takuya; Nagata, Koji; Kataoka, Michihiko; Kitamura, Nahoko; Shimizu, Sakayu; Tanokura, Masaru

    2009-11-01

    Conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708 is a member of the NADPH-dependent aldo-keto reductase (AKR) superfamily and catalyzes the stereospecific reduction of ketopantoyl lactone to d-pantoyl lactone. A diffraction-quality crystal of recombinant CPR-C2 was obtained by the sitting-drop vapour-diffusion method using PEG 3350 as the precipitant. The crystal diffracted X-rays to 1.7 angstrom resolution on beamline NW12A of the Photon Factory-Advanced Ring (Tsukuba, Japan). The crystal belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 55.02, b = 68.30, c = 68.93 angstrom. The Matthews coefficient (V(M) = 1.76 angstrom(3) Da(-1)) indicated that the crystal contained one CPR-C2 molecule per asymmetric unit.

  5. FHL1B Interacts with Lamin A/C and Emerin at the Nuclear Lamina and is Misregulated in Emery-Dreifuss Muscular Dystrophy.

    PubMed

    Ziat, Esma; Mamchaoui, Kamel; Beuvin, Maud; Nelson, Isabelle; Azibani, Feriel; Spuler, Simone; Bonne, Gisèle; Bertrand, Anne T

    2016-11-29

    Emery-Dreifuss muscular dystrophy (EDMD) is associated with mutations in EMD and LMNA genes, encoding for the nuclear envelope proteins emerin and lamin A/C, indicating that EDMD is a nuclear envelope disease. We recently reported mutations in FHL1 gene in X-linked EDMD. FHL1 encodes FHL1A, and the two minor isoforms FHL1B and FHL1C. So far, none have been described at the nuclear envelope. To gain insight into the pathophysiology of EDMD, we focused our attention on the poorly characterized FHL1B isoform. The amount and the localisation of FHL1B were evaluated in control and diseased human primary myoblasts using immunofluorescence and western blotting. We found that in addition to a cytoplasmic localization, this isoform strongly accumulated at the nuclear envelope of primary human myoblasts, like but independently of lamin A/C and emerin. During myoblast differentiation, we observed a major reduction of FHL1B protein expression, especially in the nucleus. Interestingly, we found elevated FHL1B expression level in myoblasts from an FHL1-related EDMD patient where the FHL1 mutation only affects FHL1A, as well as in myoblasts from an LMNA-related EDMD patient. Altogether, the specific localization of FHL1B and its modulation in disease-patient's myoblasts confirmed FHL1-related EDMD as a nuclear envelope disease.

  6. C/EBPβ Mediates Growth Hormone-Regulated Expression of Multiple Target Genes

    PubMed Central

    Cui, Tracy X.; Lin, Grace; LaPensee, Christopher R.; Calinescu, Anda-Alexandra; Rathore, Maanjot; Streeter, Cale; Piwien-Pilipuk, Graciela; Lanning, Nathan; Jin, Hui; Carter-Su, Christin; Qin, Zhaohui S.

    2011-01-01

    Regulation of c-Fos transcription by GH is mediated by CCAAT/enhancer binding protein β (C/EBPβ). This study examines the role of C/EBPβ in mediating GH activation of other early response genes, including Cyr61, Btg2, Socs3, Zfp36, and Socs1. C/EBPβ depletion using short hairpin RNA impaired responsiveness of these genes to GH, as seen for c-Fos. Rescue with wild-type C/EBPβ led to GH-dependent recruitment of the coactivator p300 to the c-Fos promoter. In contrast, rescue with C/EBPβ mutated at the ERK phosphorylation site at T188 failed to induce GH-dependent recruitment of p300, indicating that ERK-mediated phosphorylation of C/EBPβ at T188 is required for GH-induced recruitment of p300 to c-Fos. GH also induced the occupancy of phosphorylated C/EBPβ and p300 on Cyr61, Btg2, and Socs3 at predicted C/EBP-cAMP response element-binding protein motifs in their promoters. Consistent with a role for ERKs in GH-induced expression of these genes, treatment with U0126 to block ERK phosphorylation inhibited their GH-induced expression. In contrast, GH-dependent expression of Zfp36 and Socs1 was not inhibited by U0126. Thus, induction of multiple early response genes by GH in 3T3-F442A cells is mediated by C/EBPβ. A subset of these genes is regulated similarly to c-Fos, through a mechanism involving GH-stimulated ERK 1/2 activation, phosphorylation of C/EBPβ, and recruitment of p300. Overall, these studies suggest that C/EBPβ, like the signal transducer and activator of transcription proteins, regulates multiple genes in response to GH. PMID:21292824

  7. Cessation of cyclic stretch induces atrophy of C2C12 myotubes.

    PubMed

    Soltow, Quinlyn A; Zeanah, Elizabeth H; Lira, Vitor A; Criswell, David S

    2013-05-03

    Cyclic stretch of differentiated myotubes mimics the loading pattern of mature skeletal muscle. We tested a cell culture model of disuse atrophy by the cessation of repetitive bouts of cyclic stretch in differentiated C2C12 myotubes. Myotubes were subjected to cyclic strain (12%, 0.7 Hz, 1 h/d) on collagen-I-coated Bioflex plates using a computer-controlled vacuum stretch apparatus (Flexcell Int.) for 2 (2dSTR) or 5 (5dSTR) consecutive days. Control cultures were maintained in the Bioflex plates without cyclic stretch for 2d or 5d. Additionally, some cultures were stretched for 2 d followed by cessation of stretch for 3d (2dSTR3dCES). Cyclic stretching (5dSTR) increased myotube diameter and overall myotube area by ~2-fold (P<0.05) compared to non-stretched controls, while cessation of stretch (2dSTR3dCES) resulted in ~80% smaller myotubes than 5dSTR cells, and 40-50% smaller than non-stretched controls (P<0.05). Further, the calpain-dependent cleavage products of αII-spectrin (150 kDa) and talin increased (3.5-fold and 2.2-fold, respectively; P<0.05) in 2dSTR3dCES myotubes, compared to non-stretched controls. The 1h cyclic stretching protocol acutely increased the phosphorylation of Akt (+4.5-fold; P<0.05) and its downstream targets, FOXO3a (+4.2-fold; P<0.05) and GSK-3β (+1.8-fold; P<0.05), which returned to baseline by 48 h after cessation of stretch. Additionally, nitric oxide production increased during stretch and co-treatment with the NOS inhibitor, l-NAME, inhibited the effects of stretch and cessation of stretch. We conclude that cessation of cyclic stretching causes myotube atrophy by activating calpains and decreasing activation of Akt. Stretch-induced myotube growth, as well as activation of atrophy signaling with cessation of stretch, are dependent on NOS activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Chronic stress targets posttranscriptional mechanisms to rapidly upregulate α1C-subunit of Cav1.2b calcium channels in colonic smooth muscle cells.

    PubMed

    Li, Qingjie; Sarna, Sushil K

    2011-01-01

    Chronic stress elevates plasma norepinephrine, which enhances expression of the α(1C)-subunit of Ca(v)1.2b channels in colonic smooth muscle cells within 1 h. Transcriptional upregulation usually does not explain such rapid protein synthesis. We investigated whether chronic stress-induced release of norepinephrine utilizes posttranscriptional mechanisms to enhance the α(1C)-subunit. We performed experiments on colonic circular smooth muscle strips and in conscious rats, using a 9-day chronic intermittent stress protocol. Incubation of rat colonic muscularis externa with norepinephrine enhanced α(1C)-protein expression within 45 min, without a concomitant increase in α(1C) mRNA, indicating posttranscriptional regulation of α(1C)-protein by norepinephrine. We found that norepinephrine activates the PI3K/Akt/GSK-3β pathway to concurrently enhance α(1C)-protein translation and block its polyubiquitination and proteasomal degradation. Incubation of colonic muscularis externa with norepinephrine or LiCl, which inhibits GSK-3β, enhanced p-GSK-3β and α(1C)-protein time dependently. Using enrichment of phosphoproteins and ubiquitinated proteins, we found that both norepinephrine and LiCl decrease α(1C) phosphorylation and polyubiquitination. Concurrently, they suppress eIF2α (Ser51) phosphorylation and 4E-BP1 expression, which stimulates gene-specific translation. The antagonism of two upstream kinases, PI3K and Akt, inhibits the induction of α(1C)-protein by norepinephrine. Cyanopindolol (β(3)-AR-antagonist) almost completely suppresses and propranolol (β(1/2)-AR antagonist) partially suppresses norepinephrine-induced α(1C)-protein expression, whereas phentolamine and prazosin (α-AR and α(1)-AR antagonist, respectively) have no significant effect. Experiments in conscious animals showed that chronic stress activates the PI3K/Akt/GSK-3β signaling. We conclude that norepinephrine released by chronic stress rapidly enhances the protein expression of α(1C

  9. Oncogenic exon 2 mutations in Mediator subunit MED12 disrupt allosteric activation of cyclin C-CDK8/19.

    PubMed

    Park, Min Ju; Shen, Hailian; Spaeth, Jason M; Tolvanen, Jaana H; Failor, Courtney; Knudtson, Jennifer F; McLaughlin, Jessica; Halder, Sunil K; Yang, Qiwei; Bulun, Serdar E; Al-Hendy, Ayman; Schenken, Robert S; Aaltonen, Lauri A; Boyer, Thomas G

    2018-03-30

    Somatic mutations in exon 2 of the RNA polymerase II transcriptional Mediator subunit MED12 occur at high frequency in uterine fibroids (UFs) and breast fibroepithelial tumors as well as recurrently, albeit less frequently, in malignant uterine leimyosarcomas, chronic lymphocytic leukemias, and colorectal cancers. Previously, we reported that UF-linked mutations in MED12 disrupt its ability to activate cyclin C (CycC)-dependent kinase 8 (CDK8) in Mediator, implicating impaired Mediator-associated CDK8 activity in the molecular pathogenesis of these clinically significant lesions. Notably, the CDK8 paralog CDK19 is also expressed in myometrium, and both CDK8 and CDK19 assemble into Mediator in a mutually exclusive manner, suggesting that CDK19 activity may also be germane to the pathogenesis of MED12 mutation-induced UFs. However, whether and how UF-linked mutations in MED12 affect CDK19 activation is unknown. Herein, we show that MED12 allosterically activates CDK19 and that UF-linked exon 2 mutations in MED12 disrupt its CDK19 stimulatory activity. Furthermore, we find that within the Mediator kinase module, MED13 directly binds to the MED12 C terminus, thereby suppressing an apparent UF mutation-induced conformational change in MED12 that otherwise disrupts its association with CycC-CDK8/19. Thus, in the presence of MED13, mutant MED12 can bind, but cannot activate, CycC-CDK8/19. These findings indicate that MED12 binding is necessary but not sufficient for CycC-CDK8/19 activation and reveal an additional step in the MED12-dependent activation process, one critically dependent on MED12 residues altered by UF-linked exon 2 mutations. These findings confirm that UF-linked mutations in MED12 disrupt composite Mediator-associated kinase activity and identify CDK8/19 as prospective therapeutic targets in UFs. © 2018 Park et al.

  10. Astrophysical SE2 factor of the 12C(α, γ)16O reaction through the 12C(11B, 7Li)16O transfer reaction

    NASA Astrophysics Data System (ADS)

    Guo, B.; Du, X. C.; Li, Z. H.; Li, Y. J.; Pang, D. Y.; Su, J.; Yan, S. Q.; Fan, Q. W.; Gan, L.; Han, Z. Y.; Li, E. T.; Li, X. Y.; Lian, G.; Liu, J. C.; Pei, C. J.; Qiao, L. H.; Shen, Y. P.; Su, Y.; Wang, Y. B.; Zeng, S.; Zhou, Y.; Liu, W. P.

    2016-02-01

    The 12C(α, γ)16O reaction plays a key role in the evolution of stars with masses of M > 0.55 M⊙. At the Gamow peak (Ec.m. = 300 ke V, T9 = 0.2), the cross section of the 12C(α, γ)16O reaction is so small (about 10-17 barn) that the direct measurement in ground laboratory is not feasible with the existing technology. Up to now, the cross sections at lower energies can only be extrapolated from the data at higher energies. However, two subthreshold resonances, locating at Ex = 7.117 MeV and Ex = 6.917 MeV, make this extrapolation more complicated. In this work the 6.917 MeV subthreshold resonance in the 12C(α, γ)16O reaction was investigated via the 12C(11B, 7Li)16O reaction. The experiment was performed using the Q3D magnetic spectrograph at HI-13 tandem accelerator. We measured the angular distribution of the 12C(11B, 7Li)16O transfer reaction leading to the 6.917 MeV state. Based on DWBA analysis, we derived the square of ANC of the 6.917 MeV level in 16O to be (2.45± 0.28) ×1010 fm-1, with which the reduced-α width can be computed. Finally, we calculated the astrophysical SE2 factor of the 6.917 MeV resonance to be 67.6 ± 7.7 ke V b.

  11. Proteolytic cleavage and PKA phosphorylation of α1C subunit are not required for adrenergic regulation of CaV1.2 in the heart.

    PubMed

    Katchman, Alexander; Yang, Lin; Zakharov, Sergey I; Kushner, Jared; Abrams, Jeffrey; Chen, Bi-Xing; Liu, Guoxia; Pitt, Geoffrey S; Colecraft, Henry M; Marx, Steven O

    2017-08-22

    Calcium influx through the voltage-dependent L-type calcium channel (Ca V 1.2) rapidly increases in the heart during "fight or flight" through activation of the β-adrenergic and protein kinase A (PKA) signaling pathway. The precise molecular mechanisms of β-adrenergic activation of cardiac Ca V 1.2, however, are incompletely known, but are presumed to require phosphorylation of residues in α 1C and C-terminal proteolytic cleavage of the α 1C subunit. We generated transgenic mice expressing an α 1C with alanine substitutions of all conserved serine or threonine, which is predicted to be a potential PKA phosphorylation site by at least one prediction tool, while sparing the residues previously shown to be phosphorylated but shown individually not to be required for β-adrenergic regulation of Ca V 1.2 current (17-mutant). A second line included these 17 putative sites plus the five previously identified phosphoregulatory sites (22-mutant), thus allowing us to query whether regulation requires their contribution in combination. We determined that acute β-adrenergic regulation does not require any combination of potential PKA phosphorylation sites conserved in human, guinea pig, rabbit, rat, and mouse α 1C subunits. We separately generated transgenic mice with inducible expression of proteolytic-resistant α 1C Prevention of C-terminal cleavage did not alter β-adrenergic stimulation of Ca V 1.2 in the heart. These studies definitively rule out a role for all conserved consensus PKA phosphorylation sites in α 1C in β-adrenergic stimulation of Ca V 1.2, and show that phosphoregulatory sites on α 1C are not redundant and do not each fractionally contribute to the net stimulatory effect of β-adrenergic stimulation. Further, proteolytic cleavage of α 1C is not required for β-adrenergic stimulation of Ca V 1.2.

  12. Arsenic trioxide phosphorylates c-Fos to transactivate p21{sup WAF1/CIP1} expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Zimiao; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Huang, H.-S.

    2008-12-01

    An infamous poison, arsenic also has been used as a drug for nearly 2400 years; in recently years, arsenic has been effective in the treatment of acute promyelocytic leukemia. Increasing evidence suggests that opposite effects of arsenic trioxide (ATO) on tumors depend on its concentrations. For this reason, the mechanisms of action of the drug should be elucidated, and it should be used therapeutically only with extreme caution. Previously, we demonstrated the opposing effects of ERK1/2 and JNK on p21{sup WAF1/CIP1} (p21) expression in response to ATO in A431 cells. In addition, JNK phosphorylates c-Jun (Ser{sup 63/73}) to recruit TGIF/HDAC1more » to suppress p21 gene expression. Presently, we demonstrated that a high concentration of ATO sustains ERK1/2 phosphorylation, and increases c-Fos biosynthesis and stability, which enhances p21 gene expression. Using site-directed mutagenesis, a DNA affinity precipitation assay, and functional assays, we demonstrated that phosphorylation of the C-terminus of c-Fos (Thr{sup 232}, Thr{sup 325}, Thr{sup 331}, and Ser{sup 374}) plays an important role in its binding to the p21 promoter, and in conjunction with N-terminus phosphorylation of c-Fos (Ser{sup 70}) to transactivate p21 promoter expression. In conclusion, a high concentration of ATO can sustain ERK1/2 activation to enhance c-Fos expression, then dimerize with dephosphorylated c-Jun (Ser{sup 63/73}) and recruit p300/CBP to the Sp1 sites (- 84/- 64) to activate p21 gene expression in A431 cells.« less

  13. Immunohistochemical study of C-kit expression in subtypes of renal cell carcinoma.

    PubMed

    Norouzinia, Farahnaz; Abbasi, Fariba; Dindarian, Sina; Mohammadi, Sedra; Meisami, Farid; Bagheri, Mahdi; Mohammadi, Hozan

    2018-01-01

    Renal cell carcinomas (RCCs) include about 2% of adult neoplasms and 90-95% of all renal tumors. Mostly, it is possible to distinguish RCC subtypes using hematoxylin-eosin staining. However, overlapping morphologic features cause some difficulties in making a precise diagnosis. In order to render an accurate diagnosis, additional methods such as immunohistochemical staining for c-kit have been recommended. In this study, we aimed to investigate c-kit gene expression in various subtypes of RCC. We reviewed 65 diagnosed RCC cases. Formalin- fixed, paraffin- embedded specimens were available for the cases. The expression of c-kit was evaluated using immunohistochemistry. The correlation between c-kit expression and clinicopathological parameters including patients' age and gender in addition to grade, stage, and size of the tumor were investigated. Six cases of 39 clear cell types (15.4%), 8 of 13 papillary types (61.5%), 11 of 12 chromophobe types (91.7%), and no sarcomatoid type were positive for c-kit expression. Based on chi-square test results, there was a significant relationship between RCC subtypes and c-kit expression (p=0.001). There was no significant correlation between age, sex, grade, stage, and size of the tumor and c-kit expression. The expression of c-kit in RCC may have diagnostic significance in subtypes of RCC especially papillary and chromophobe subtypes of RCC.

  14. Co-transplantation of plasmid-transfected myoblasts and myotubes into rat brains enables high levels of gene expression long-term

    NASA Technical Reports Server (NTRS)

    Jiao, S.; Williams, P.; Safda, N.; Schultz, E.; Wolff, J. A.

    1993-01-01

    We have previously proposed the use of primary muscle cells as a "platform," or "vehicle" for intracerebral transgene expression. Brain grafts of minced muscle, or cultured muscle cells persisted in rat brains for at least 6 mo without any decrease in graft size, or tumor formation. Stable, but moderate levels of intracerebral transgene expression were obtained by transplanting plasmid-transfected myotubes in culture. In the present study, high and stable levels of intracerebral transgene expression were achieved by the co-transplantation of plasmid-transfected myoblasts and myotubes in culture. Approximately 5 X 10(5) myoblasts and myotubes were transfected with 10 micrograms pRSVL plasmid DNA, and 30 micrograms Lipofectin (BRL), respectively. They were mixed together (total cell number was 1 million), and stereotactically injected into the caudate nucleus of an adult rat brain. The activity of luciferase, the product of transgene expression, was stable for at least 4 mo, and much higher than the levels in myotube grafts, or co-grafts of myoblasts and minced muscle. Presumably, the myotubes served as a framework on which the myoblasts can form myotubes. The sections of brains transplanted with co-graft of myoblasts, and myotubes transfected with pRSVLac-Z were stained immunofluorescently for beta-galactosidase activity. The muscle grafts contained beta-galactosidase positive myofibers 4 mo after transplantation. Such high and stable levels of in vivo expression after postnatal gene transfer have rarely been achieved. Primary muscle cells are useful vehicle for transgene expression in brains, and potentially valuable for gene therapy of degenerative neurological disorders.

  15. LASER BIOLOGY AND MEDICINE: Laser analysis of the 13C/12C isotope ratio in CO2 in exhaled air

    NASA Astrophysics Data System (ADS)

    Stepanov, E. V.

    2002-11-01

    Tunable diode lasers (TDLs) are applied to the diagnostics of gastroenterological diseases using respiratory tests and preparations enriched with the stable 13C isotope. This method of the analysis of the 13C/12C isotope ratio in CO2 in exhaled air is based on the selective measurement of the resonance absorption at the vibrational — rotational structure of 12CO2 and 13CO2. The CO2 transmission spectra in the region of 4.35 μm were measured with a PbEuSe double-heterostructure TDL. The accuracy of carbon isotope ratio measurements in CO2 of exhaled air performed with the TDL was ~0.5%. The data of clinical tests of the developed laser-based analyser are presented.

  16. Bit-1 is an essential regulator of myogenic differentiation

    PubMed Central

    Griffiths, Genevieve S.; Doe, Jinger; Jijiwa, Mayumi; Van Ry, Pam; Cruz, Vivian; de la Vega, Michelle; Ramos, Joe W.; Burkin, Dean J.; Matter, Michelle L.

    2015-01-01

    Muscle differentiation requires a complex signaling cascade that leads to the production of multinucleated myofibers. Genes regulating the intrinsic mitochondrial apoptotic pathway also function in controlling cell differentiation. How such signaling pathways are regulated during differentiation is not fully understood. Bit-1 (also known as PTRH2) mutations in humans cause infantile-onset multisystem disease with muscle weakness. We demonstrate here that Bit-1 controls skeletal myogenesis through a caspase-mediated signaling pathway. Bit-1-null mice exhibit a myopathy with hypotrophic myofibers. Bit-1-null myoblasts prematurely express muscle-specific proteins. Similarly, knockdown of Bit-1 expression in C2C12 myoblasts promotes early differentiation, whereas overexpression delays differentiation. In wild-type mice, Bit-1 levels increase during differentiation. Bit-1-null myoblasts exhibited increased levels of caspase 9 and caspase 3 without increased apoptosis. Bit-1 re-expression partially rescued differentiation. In Bit-1-null muscle, Bcl-2 levels are reduced, suggesting that Bcl-2-mediated inhibition of caspase 9 and caspase 3 is decreased. Bcl-2 re-expression rescued Bit-1-mediated early differentiation in Bit-1-null myoblasts and C2C12 cells with knockdown of Bit-1 expression. These results support an unanticipated yet essential role for Bit-1 in controlling myogenesis through regulation of Bcl-2. PMID:25770104

  17. Fibromodulin modulates myoblast differentiation by controlling calcium channel.

    PubMed

    Lee, Eun Ju; Nam, Joo Hyun; Choi, Inho

    2018-06-16

    Fibromodulin (FMOD) is a proteoglycan present in extracellular matrix (ECM). Based on our previous findings that FMOD controls myoblast differentiation by regulating the gene expressions of collagen type I alpha 1 (COL1α1) and integral membrane protein 2 A (Itm2a), we undertook this study to investigate relationships between FMOD and calcium channels and to understand further the mechanism by which they control myoblast differentiation. Gene expression studies and luciferase reporter assays showed FMOD affected calcium channel gene expressions by regulating calcium channel gene promoter, and patch-clamp experiments showed both L- and T-type calcium channel currents were almost undetectable in FMOD knocked down cells. In addition, gene knock-down studies demonstrated the COL1α1 and Itm2a genes both regulate the expressions of calcium channel genes. Studies using a cardiotoxin-induced mouse muscle injury model demonstrated calcium channels play important roles in the regeneration of muscle tissue, possibly by promoting the differentiation of muscle stem cells (MSCs). Summarizing, the study demonstrates ECM components secreted by myoblasts during differentiation provide an essential environment for muscle differentiation and regeneration. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Myomaker: A membrane activator of myoblast fusion and muscle formation

    PubMed Central

    Millay, Douglas P.; O’Rourke, Jason R.; Sutherland, Lillian B.; Bezprozvannaya, Svetlana; Shelton, John M.; Bassel-Duby, Rhonda; Olson, Eric N.

    2013-01-01

    Summary Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibers. However, the identity of myogenic proteins that directly govern this fusion process has remained elusive. Here, we discovered a muscle-specific membrane protein, named Myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is down-regulated thereafter. Over-expression of Myomaker in myoblasts dramatically enhances fusion and genetic disruption of Myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibers. Remarkably, forced expression of Myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacologic perturbation of the actin cytoskeleton abolishes the activity of Myomaker, consistent with prior studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein both necessary and sufficient for mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation. PMID:23868259

  19. Quantitative Expression of C-Type Lectin Receptors in Humans and Mice

    PubMed Central

    Lech, Maciej; Susanti, Heni Eka; Römmele, Christoph; Gröbmayr, Regina; Günthner, Roman; Anders, Hans-Joachim

    2012-01-01

    C-type lectin receptors and their adaptor molecules are involved in the recognition of glycosylated self-antigens and pathogens. However, little is known about the species- and organ-specific expression profiles of these molecules. We therefore determined the mRNA expression levels of Dectin-1, MR1, MR2, DC-SIGN, Syk, Card-9, Bcl-10, Malt-1, Src, Dec-205, Galectin-1, Tim-3, Trem-1, and DAP-12 in 11 solid organs of human and mice. Mouse organs revealed lower mRNA levels of most molecules compared to spleen. However, Dec-205 and Galectin-1 in thymus, Src in brain, MR2, Card-9, Bcl-10, Src, and Dec-205 in small intestine, MR2, Bcl-10, Src, Galectin-1 in kidney, and Src and Galectin-1 in muscle were at least 2-fold higher expressed compared to spleen. Human lung, liver and heart expressed higher mRNA levels of most genes compared to spleen. Dectin-1, MR1, Syk and Trem-1 mRNA were strongly up-regulated upon ischemia-reperfusion injury in murine kidney. Tim3, DAP-12, Card-9, DC-SIGN and MR2 were further up-regulated during renal fibrosis. Murine kidney showed higher DAP-12, Syk, Card-9 and Dectin-1 mRNA expression during the progression of lupus nephritis. Thus, the organ-, and species-specific expression of C-type lectin receptors is different between mice and humans which must be considered in the interpretation of related studies. PMID:22949850

  20. Towards Understanding the DO-178C / ED-12C Assurance Case

    NASA Technical Reports Server (NTRS)

    Holloway, C M.

    2012-01-01

    This paper describes initial work towards building an explicit assurance case for DO-178C / ED-12C. Two specific questions are explored: (1) What are some of the assumptions upon which the guidance in the document relies, and (2) What claims are made concerning test coverage analysis?

  1. N-WASP and WAVE2 acting downstream of phosphatidylinositol 3-kinase are required for myogenic cell migration induced by hepatocyte growth factor.

    PubMed

    Kawamura, Kazuhiro; Takano, Kazunori; Suetsugu, Shiro; Kurisu, Shusaku; Yamazaki, Daisuke; Miki, Hiroaki; Takenawa, Tadaomi; Endo, Takeshi

    2004-12-24

    During skeletal muscle regeneration caused by injury, muscle satellite cells proliferate and migrate toward the site of muscle injury. This migration is mainly induced by hepatocyte growth factor (HGF) secreted by intact myofibers and also released from injured muscle. However, the intracellular machinery for the satellite cell migration has not been elucidated. To examine the mechanisms of satellite cell migration, we utilized satellite cell-derived mouse C2C12 skeletal muscle cells. HGF induced reorganization of actin cytoskeleton to form lamellipodia in C2C12 myoblasts. HGF treatment facilitated both nondirectional migration of the myoblasts in phagokinetic track assay and directional chemotactic migration toward HGF in a three-dimensional migration chamber assay. Endogenous N-WASP and WAVE2 were concentrated in the lamellipodia at the leading edge of the migrating cells. Moreover, exogenous expression of wild-type N-WASP or WAVE2 promoted lamellipodial formation and migration. By contrast, expression of the dominant-negative mutant of N-WASP or WAVE2 and knockdown of N-WASP or WAVE2 expression by the RNA interference prevented the HGF-induced lamellipodial formation and migration. When the cells were treated with LY294002, an inhibitor of phosphatidylinositol 3-kinase, the HGF-induced lamellipodial formation and migration were abrogated. These results imply that both N-WASP and WAVE2, which are activated downstream of phosphati-dylinositol 3-kinase, are required for the migration through the lamellipodial formation of C2C12 cells induced by HGF.

  2. T-type α1H Ca2+ channels are involved in Ca2+ signaling during terminal differentiation (fusion) of human myoblasts

    PubMed Central

    Bijlenga, Philippe; Liu, Jian-Hui; Espinos, Estelle; Haenggeli, Charles-Antoine; Fischer-Lougheed, Jacqueline; Bader, Charles R.; Bernheim, Laurent

    2000-01-01

    Mechanisms underlying Ca2+ signaling during human myoblast terminal differentiation were studied using cell cultures. We found that T-type Ca2+ channels (T-channels) are expressed in myoblasts just before fusion. Their inhibition by amiloride or Ni2+ suppresses fusion and prevents an intracellular Ca2+ concentration increase normally observed at the onset of fusion. The use of antisense oligonucleotides indicates that the functional T-channels are formed by α1H subunits. At hyperpolarized potentials, these channels allow a window current sufficient to increase [Ca2+]i. As hyperpolarization is a prerequisite to myoblast fusion, we conclude that the Ca2+ signal required for fusion is produced when the resting potential enters the T-channel window. A similar mechanism could operate in other cell types of which differentiation implicates membrane hyperpolarization. PMID:10861024

  3. Identification of VP1/2A and 2C as Virulence Genes of Hepatitis A Virus and Demonstration of Genetic Instability of 2C

    PubMed Central

    Emerson, Suzanne U.; Huang, Ying K.; Nguyen, Hanh; Brockington, Alicia; Govindarajan, Sugantha; St. Claire, Marisa; Shapiro, Max; Purcell, Robert H.

    2002-01-01

    Fourteen different chimeric virus genomes were constructed from two infectious cDNA clones encoding a virulent and an attenuated isolate, respectively, of the HM175 strain of hepatitis A virus. The ability of each recombinant virus to infect tamarins and to cause acute hepatitis was determined. Comparisons of the genotype and phenotype of each virus suggested that VP1/2A and 2C genes were responsible for virulence. The 2C gene derived from the attenuated parent virus was unstable, and one or more mutations arose in this gene during the first passage in tamarins. PMID:12163575

  4. Investigation of c-KIT and Ki67 expression in normal, preneoplastic and neoplastic canine prostate.

    PubMed

    Fonseca-Alves, Carlos Eduardo; Kobayashi, Priscilla Emiko; Palmieri, Chiara; Laufer-Amorim, Renée

    2017-12-06

    c-KIT expression has been related to bone metastasis in human prostate cancer, but whether c-KIT expression can be similarly classified in canine prostatic tissue is unknown. This study assessed c-KIT and Ki67 expression in canine prostate cancer (PC). c-KIT gene and protein expression and Ki67 expression were evaluated in forty-four canine prostatic tissues by immunohistochemistry, RT-qPCR and western blot. Additionally, we have investigated c-KIT protein expression by immunoblotting in two primary canine prostate cancer cell lines. Eleven normal prostates, 12 proliferative inflammatory atrophy (PIA) prostates, 18 PC, 3 metastatic lesions and two prostate cancer cell cultures (PC1 and PC2) were analysed. The prostatic tissue exhibited varying degrees of membranous, cytoplasmic or membranous/cytoplasmic c-KIT staining. Four normal prostates, 4 PIA and 5 prostatic carcinomas showed positive c-KIT expression. No c-KIT immunoexpression was observed in metastases. Canine prostate cancer and PIA samples contained a higher number of Ki67-positive cells compared to normal samples. The median relative quantification (RQ) for c-KIT expression in normal, PIA and prostate cancer and metastatic samples were 0.6 (0.1-2.5), 0.7 (0.09-2.1), 0.7 (0.09-5.1) and 0.1 (0.07-0.6), respectively. A positive correlation between the number of Ki67-positive cells and c-KIT transcript levels was observed in prostate cancer samples. In the cell line, PC1 was negative for c-KIT protein expression, while PC2 was weakly positive. The present study identified a strong correlation between c-KIT expression and proliferative index, suggesting that c-KIT may influence cell proliferation. Therefore, c-KIT heterogeneous protein expression among the samples (five positive and thirteen negative prostate cancer samples) indicates a personalized approach for canine prostate cancer.

  5. Attenuation of p38-Mediated miR-1/133 Expression Facilitates Myoblast Proliferation during the Early Stage of Muscle Regeneration

    PubMed Central

    Zhang, Duo; Li, Xihua; Chen, Chuchu; Li, Yuyin; Zhao, Lei; Jing, Yanyan; Liu, Wei; Wang, Xiaoyun; Zhang, Ying; Xia, Hongfeng; Chang, Yaning; Gao, Xiang; Yan, Jun; Ying, Hao

    2012-01-01

    Myoblast proliferation following myotrauma is regulated by multiple factors including growth factors, signal pathways, transcription factors, and miRNAs. However, the molecular mechanisms underlying the orchestration of these regulatory factors remain unclear. Here we show that p38 signaling is required for miR-1/133a clusters transcription and both p38 activity and miR-1/133 expression are attenuated during the early stage of muscle regeneration in various animal models. Additionally, we show that both miR-1 and miR-133 reduce Cyclin D1 expression and repress myoblast proliferation by inducing G1 phase arrest. Furthermore, we demonstrate that miR-133 inhibits mitotic progression by targeting Sp1, which mediates Cyclin D1 transcription, while miR-1 suppresses G1/S phase transition by targeting Cyclin D1. Finally, we reveal that proproliferative FGF2, which is elevated during muscle regeneration, attenuates p38 signaling and miR-1/133 expression. Taken together, our results suggest that downregulation of p38-mediated miR-1/133 expression by FGF2 and subsequent upregulation of Sp1/Cyclin D1 contribute to the increased myoblast proliferation during the early stage of muscle regeneration. PMID:22911796

  6. Transarticular screw fixation of C1-2 for the treatment of arthropathy-associated occipital neuralgia.

    PubMed

    Pakzaban, Peyman

    2011-02-01

    Two patients with occipital neuralgia due to severe arthropathy of the C1-2 facet joint were treated using atlantoaxial fusion with transarticular screws without decompression of the C-2 nerve root. Both patients experienced immediate postoperative relief of occipital neuralgia. The resultant motion elimination at C1-2 eradicated not only the movement-evoked pain, but also the paroxysms of true occipital neuralgia occurring at rest. A possible pathophysiological explanation for this improvement is presented in the context of the ignition theory of neuralgic pain. This represents the first report of C1-2 transarticular screw fixation for the treatment of arthropathy-associated occipital neuralgia.

  7. Expression of progesterone metabolizing enzyme genes (AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2) is altered in human breast carcinoma

    PubMed Central

    Lewis, Michael J; Wiebe, John P; Heathcote, J Godfrey

    2004-01-01

    Background Recent evidence suggests that progesterone metabolites play important roles in regulating breast cancer. Previous studies have shown that tumorous tissues have higher 5α-reductase (5αR) and lower 3α-hydroxysteroid oxidoreductase (3α-HSO) and 20α-HSO activities. The resulting higher levels of 5α-reduced progesterone metabolites such as 5α-pregnane-3,20-dione (5αP) in tumorous tissue promote cell proliferation and detachment, whereas the 4-pregnene metabolites, 4-pregnen-3α-ol-20-one (3αHP) and 4-pregnen-20α-ol-3-one (20αDHP), more prominent in normal tissue, have the opposite (anti-cancer-like) effects. The aim of this study was to determine if the differences in enzyme activities between tumorous and nontumorous breast tissues are associated with differences in progesterone metabolizing enzyme gene expression. Methods Semi-quantitative RT-PCR was used to compare relative expression (as a ratio of 18S rRNA) of 5αR type 1 (SRD5A1), 5αR type 2 (SRD5A2), 3α-HSO type 2 (AKR1C3), 3α-HSO type 3 (AKR1C2) and 20α-HSO (AKR1C1) mRNAs in paired (tumorous and nontumorous) breast tissues from 11 patients, and unpaired tumor tissues from 17 patients and normal tissues from 10 reduction mammoplasty samples. Results Expression of 5αR1 and 5αR2 in 11/11 patients was higher (mean of 4.9- and 3.5-fold, respectively; p < 0.001) in the tumor as compared to the paired normal tissues. Conversely, expression of 3α-HSO2, 3α-HSO3 and 20α-HSO was higher (2.8-, 3.9- and 4.4-fold, respectively; p < 0.001) in normal than in tumor sample. The mean tumor:normal expression ratios for 5αR1 and 5αR2 were about 35–85-fold higher than the tumor:normal expression ratios for the HSOs. Similarly, in the unmatched samples, the tumor:normal ratios for 5αR were significantly higher than the ratios for the HSOs. Conclusions The study shows changes in progesterone metabolizing enzyme gene expression in human breast carcinoma. Expression of SRD5A1 (5αR1) and SRD5A2 (5αR2

  8. Expression of progesterone metabolizing enzyme genes (AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2) is altered in human breast carcinoma.

    PubMed

    Lewis, Michael J; Wiebe, John P; Heathcote, J Godfrey

    2004-06-22

    Recent evidence suggests that progesterone metabolites play important roles in regulating breast cancer. Previous studies have shown that tumorous tissues have higher 5alpha-reductase (5alphaR) and lower 3alpha-hydroxysteroid oxidoreductase (3alpha-HSO) and 20alpha-HSO activities. The resulting higher levels of 5alpha-reduced progesterone metabolites such as 5alpha-pregnane-3,20-dione (5alphaP) in tumorous tissue promote cell proliferation and detachment, whereas the 4-pregnene metabolites, 4-pregnen-3alpha-ol-20-one (3alphaHP) and 4-pregnen-20alpha-ol-3-one (20alphaDHP), more prominent in normal tissue, have the opposite (anti-cancer-like) effects. The aim of this study was to determine if the differences in enzyme activities between tumorous and nontumorous breast tissues are associated with differences in progesterone metabolizing enzyme gene expression. Semi-quantitative RT-PCR was used to compare relative expression (as a ratio of 18S rRNA) of 5alphaR type 1 (SRD5A1), 5alphaR type 2 (SRD5A2), 3alpha-HSO type 2 (AKR1C3), 3alpha-HSO type 3 (AKR1C2) and 20alpha-HSO (AKR1C1) mRNAs in paired (tumorous and nontumorous) breast tissues from 11 patients, and unpaired tumor tissues from 17 patients and normal tissues from 10 reduction mammoplasty samples. Expression of 5alphaR1 and 5alphaR2 in 11/11 patients was higher (mean of 4.9- and 3.5-fold, respectively; p < 0.001) in the tumor as compared to the paired normal tissues. Conversely, expression of 3alpha-HSO2, 3alpha-HSO3 and 20alpha-HSO was higher (2.8-, 3.9- and 4.4-fold, respectively; p < 0.001) in normal than in tumor sample. The mean tumor:normal expression ratios for 5alphaR1 and 5alphaR2 were about 35-85-fold higher than the tumor:normal expression ratios for the HSOs. Similarly, in the unmatched samples, the tumor:normal ratios for 5alphaR were significantly higher than the ratios for the HSOs. The study shows changes in progesterone metabolizing enzyme gene expression in human breast carcinoma. Expression of

  9. 40 CFR 721.10175 - 1-Propanaminium, N-(3-aminopropyl)-2-hydroxy-N,N-dimethyl-3-sulfo-, N-(C12-18 and C18-unsatd...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1-Propanaminium, N-(3-aminopropyl)-2... 1-Propanaminium, N-(3-aminopropyl)-2-hydroxy-N,N-dimethyl-3-sulfo-, N-(C12-18 and C18-unsatd. acyl... chemical substance identified as 1-Propanaminium, N-(3-aminopropyl)-2-hydroxy-N,N-dimethyl-3-sulfo-, N-(C12...

  10. 12C(n , 2 n )11C cross section from threshold to 26.5 MeV

    NASA Astrophysics Data System (ADS)

    Yuly, M.; Eckert, T.; Hartshaw, G.; Padalino, S. J.; Polsin, D. N.; Russ, M.; Simone, A. T.; Brune, C. R.; Massey, T. N.; Parker, C. E.; Fitzgerald, R.; Sangster, T. C.; Regan, S. P.

    2018-02-01

    The 12C(n ,2 n )11C cross section was measured from just below threshold to 26.5 MeV using the Pelletron accelerator at Ohio University. Monoenergetic neutrons, produced via the 3H(d ,n )4He reaction, were allowed to strike targets of polyethylene and graphite. Activation of both targets was measured by counting positron annihilations resulting from the β+ decay of 11C. Annihilation gamma rays were detected, both in coincidence and singly, using back-to-back NaI detectors. The incident neutron flux was determined indirectly via 1H(n ,p ) protons elastically scattered from the polyethylene target. Previous measurements fall into upper and lower bands; the results of the present measurement are consistent with the upper band.

  11. Betulinic acid exerts anti-hepatitis C virus activity via the suppression of NF-κB- and MAPK-ERK1/2-mediated COX-2 expression.

    PubMed

    Lin, Chun-Kuang; Tseng, Chin-Kai; Chen, Kai-Hsun; Wu, Shih-Hsiung; Liaw, Chih-Chuang; Lee, Jin-Ching

    2015-06-23

    This study was designed to evaluate the effect of betulinic acid (BA), extracted from Avicennia marina, on the replication of hepatitis C virus (HCV) and to investigate the mechanism of this BA-mediated anti-HCV activity. HCV replicon and infectious systems were used to evaluate the anti-HCV activity of BA. Exogenous COX-2 or knock-down of COX-2 expression was used to investigate the role of COX-2 in the anti-HCV activity of BA. The effects of BA on the phosphorylation of NF-κB and on kinases in the MAPK signalling pathway were determined. The anti-HCV activity of BA in combination with other HCV inhibitors was also determined to assess its use as an anti-HCV supplement. BA inhibited HCV replication in both Ava5 replicon cells and in a cell culture-derived infectious HCV particle system. Treatment with a combination of BA and IFN-α, the protease inhibitor telaprevir or the NS5B polymerase inhibitor sofosbuvir resulted in the synergistic suppression of HCV RNA replication. Exogenous overexpression of COX-2 gradually attenuated the inhibitory effect of BA on HCV replication, suggesting that BA reduces HCV replication by suppressing the expression of COX-2. In particular, BA down-regulated HCV-induced COX-2 expression by reducing the phosphorylation of NF-κB and ERK1/2 of the MAPK signalling pathway. BA inhibits HCV replication by suppressing the NF-κB- and ERK1/2-mediated COX-2 pathway and may serve as a promising compound for drug development or as a potential supplement for use in the treatment of HCV-infected patients. © 2015 The British Pharmacological Society.

  12. Expression, purification, crystallization and preliminary X-ray analysis of conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708

    PubMed Central

    Yamamura, Akihiro; Maruoka, Shintaro; Ohtsuka, Jun; Miyakawa, Takuya; Nagata, Koji; Kataoka, Michihiko; Kitamura, Nahoko; Shimizu, Sakayu; Tanokura, Masaru

    2009-01-01

    Conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708 is a member of the NADPH-dependent aldo-keto reductase (AKR) superfamily and catalyzes the stereospecific reduction of ketopantoyl lactone to d-pantoyl lactone. A diffraction-quality crystal of recombinant CPR-C2 was obtained by the sitting-drop vapour-diffusion method using PEG 3350 as the precipitant. The crystal diffracted X-rays to 1.7 Å resolution on beamline NW12A of the Photon Factory-Advanced Ring (Tsukuba, Japan). The crystal belonged to space group P212121, with unit-cell parameters a = 55.02, b = 68.30, c = 68.93 Å. The Matthews coefficient (V M = 1.76 Å3 Da−1) indicated that the crystal contained one CPR-C2 molecule per asymmetric unit. PMID:19923737

  13. Ratios of N15/C12 and He4/C12 inclusive electroproduction cross sections in the nucleon resonance region

    NASA Astrophysics Data System (ADS)

    Bosted, P. E.; Fersch, R.; Adams, G.; Amarian, M.; Anefalos, S.; Anghinolfi, M.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Beard, K.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Biselli, A. S.; Bonner, B. E.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Cazes, A.; Chen, S.; Cole, P. L.; Collins, P.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Crede, V.; Cummings, J. P.; de Masi, R.; de Vita, R.; de Sanctis, E.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dharmawardane, K. V.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feuerbach, R. J.; Forest, T. A.; Fradi, A.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kalantarians, N.; Keith, C.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Li, Ji; Lima, A. C. S.; Livingston, K.; Lu, H.; Lukashin, K.; MacCormick, M.; Markov, N.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Moteabbed, M.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Shvedunov, N. V.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strauch, S.; Suleiman, R.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z.

    2008-07-01

    The (W,Q2) dependence of the ratio of inclusive electron scattering cross sections for N15/C12 was determined in the kinematic ranges 0.82 GeV and 0.22<1 GeV2 using 2.285 GeV electrons and the CLAS detector at Jefferson Lab. The ratios exhibit only slight resonance structure, in agreement with a simple phenomenological model and an extrapolation of deep-inelastic scattering ratios to low Q2. Ratios of He4/C12 using 1.6 to 2.5 GeV electrons were measured with very high statistical precision and were used to correct for He in the N and C targets. The (W,Q2) dependence of the He4/C12 ratios is in good agreement with that of the phenomenological model and exhibit significant resonance structure centered at W=0.94,1.23, and 1.5 GeV.

  14. Pseudomonas aeruginosa biofilm-associated homoserine lactone C12 rapidly activates apoptosis in airway epithelia

    PubMed Central

    Schwarzer, Christian; Fu, Zhu; Patanwala, Maria; Hum, Lauren; Lopez-Guzman, Mirielle; Illek, Beate; Kong, Weidong; Lynch, Susan V.; Machen, Terry E.

    2014-01-01

    Pseudomonas aeruginosa (PA) forms biofilms in lungs of cystic fibrosis CF) patients, a process regulated by quorum sensing molecules including N-(3-oxododecanoyl)-L-homoserine lactone, C12. C12 (10–100 μM) rapidly triggered events commonly associated with the intrinsic apoptotic pathway in JME (CFΔF508CFTR, nasal surface) epithelial cells: depolarization of mitochondrial (mito) membrane potential (Δψmito) and release of cytochrome C (cytoC) from mitos into cytosol and activation of caspases 3/7, 8 and 9. C12 also had novel effects on the endoplasmic reticulum (release of both Ca2+ and ER-targeted GFP and oxidized contents into the cytosol). Effects began within 5 minutes and were complete in 1–2 hrs. C12 caused similar activation of caspases and release of cytoC from mitos in Calu-3 (wtCFTR, bronchial gland) cells, showing that C12-triggered responses occurred similarly in different airway epithelial types. C12 had nearly identical effects on three key aspects of the apoptosis response (caspase 3/7, depolarization of Δψmito and reduction of redox potential in the ER) in JME and CFTR-corrected JME cells (adenoviral expression), showing that CFTR was likely not an important regulator of C12-triggered apoptosis in airway epithelia. Exposure of airway cultures to biofilms from PAO1wt caused depolarization of Δψmito and increases in Cacyto like 10–50 μM C12. In contrast, biofilms from PAO1ΔlasI (C12 deficient) had no effect, suggesting that C12 from P. aeruginosa biofilms may contribute to accumulation of apoptotic cells that cannot be cleared from CF lungs. A model to explain the effects of C12 is proposed. PMID:22233488

  15. Hydride CVD Hetero-epitaxy of B 12P 2 on 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, C. D.; Saw, C. K.; Padavala, Balabalaji

    Icosahedral boron phosphide (B 12P 2) is a wide bandgap semiconductor (3.35 eV) that has been reported to “self-heal” from high-energy electron bombardment, making it attractive for potential use in radioisotope batteries, radiation detection, or in electronics in high radiation environments. Our study focused on improving B 12P 2 hetero-epitaxial films by growing on 4H-SiC substrates over the temperature range of 1250–1450 °C using B 2H 6 and PH 3 precursors in a H 2 carrier gas. Furthermore, XRD scans and Laue transmission photographs revealed that the epitaxial relationship was (0001)<11more » $$\\bar{2}$$0> B12P2|| (0001)<11$$\\bar{2}$$0> 4H-SiC. The film morphology and crystallinity were investigated as a function of growth temperature and growth time. At 1250 °C, films tended to form rough, polycrystalline layers, but at 1300 and 1350 °C, films were continuous and comparatively smooth (R RMS≤7 nm). At 1400 or 1450 °C, the films grew in islands that coalesced as the films became thicker. Using XRD rocking curves to evaluate the crystal quality, 1300 °C was the optimum growth temperature tested. Finally, at 1300 °C, the rocking curve FWHM decreased with increasing film thickness from 1494 arcsec for a 1.1 μm thick film to 954 arcsec for a 2.7 µm thick film, suggesting a reduction in defects with thickness.« less

  16. Hydride CVD Hetero-epitaxy of B 12P 2 on 4H-SiC

    DOE PAGES

    Frye, C. D.; Saw, C. K.; Padavala, Balabalaji; ...

    2016-11-27

    Icosahedral boron phosphide (B 12P 2) is a wide bandgap semiconductor (3.35 eV) that has been reported to “self-heal” from high-energy electron bombardment, making it attractive for potential use in radioisotope batteries, radiation detection, or in electronics in high radiation environments. Our study focused on improving B 12P 2 hetero-epitaxial films by growing on 4H-SiC substrates over the temperature range of 1250–1450 °C using B 2H 6 and PH 3 precursors in a H 2 carrier gas. Furthermore, XRD scans and Laue transmission photographs revealed that the epitaxial relationship was (0001)<11more » $$\\bar{2}$$0> B12P2|| (0001)<11$$\\bar{2}$$0> 4H-SiC. The film morphology and crystallinity were investigated as a function of growth temperature and growth time. At 1250 °C, films tended to form rough, polycrystalline layers, but at 1300 and 1350 °C, films were continuous and comparatively smooth (R RMS≤7 nm). At 1400 or 1450 °C, the films grew in islands that coalesced as the films became thicker. Using XRD rocking curves to evaluate the crystal quality, 1300 °C was the optimum growth temperature tested. Finally, at 1300 °C, the rocking curve FWHM decreased with increasing film thickness from 1494 arcsec for a 1.1 μm thick film to 954 arcsec for a 2.7 µm thick film, suggesting a reduction in defects with thickness.« less

  17. Expression of C-type lectin receptor mRNA in chronic otitis media with cholesteatoma.

    PubMed

    Kim, Sang Hoon; Han, Seung-Ho; Byun, Jae Yong; Park, Moon Suh; Kim, Young Il; Yeo, Seung Geun

    2017-06-01

    The levels of expression of various C-type lectin receptors (CLRs) messenger ribo nucleic acids (mRNAs) were significantly higher in cholesteatomas than in normal skin, suggesting that these CLRs may be involved in the pathogenesis of cholesteatoma. Altered expression of pattern recognition receptors may be associated with immune responses in patients with cholesteatoma. This study assessed the levels of expression of CLR mRNAs in normal skin and in cholesteatoma. Cholesteatoma specimens were obtained from 38 patients with acquired cholesteatoma. The levels of expression of various CLR mRNAs were assessed quantitatively using real-time RT-PCR (Reverse transcription polymerase chain reaction) and correlated with age, sex, the presence of bacteria, hearing level, frequency of surgery, and degree of ossicle destruction. The levels of CD206 (cluster of differentiation 206), DEC-205 (Dendritic and epithelial cell-205), MGL (monoacylglycerol lipase), CLEC5A (C-type lectin domain family 5 member A), Dectin-2 (dendrite cell-associated C-type lectin-2), BDCA2 (Blood dendritic cell antigen 2), Mincle, DCIR (dendritic cell immunoreceptor), Dectin-1, MICL (Myeloid inhibitory C type-like lectin), and CLEC12B (C-type lectin domain family 12, member B) mRNAs were significantly higher in cholesteatoma than in control skin samples (p < 0.05). The levels of CLEC5A (C-type lectin domain family 5 member) and Dectin-1 mRNAs were significantly higher in cholesteatomas with ≥2 than ≤1 destroyed ossicles (p < 0.05), and the levels of MGL, Mincle, Dectin-1, and CLEC12B mRNAs were significantly higher in recurrent than initial cholesteatoma specimens (p < 0.05). The level of CLEC5A mRNAs was significantly higher in patients with severe than mild-to-moderate hearing loss (p < 0.05).

  18. Pim-2 protects H9c2 cardiomyocytes from hypoxia/reoxygenation-induced apoptosis via downregulation of Bim expression.

    PubMed

    Xu, Yan; Xing, Yawei; Xu, Yanjie; Huang, Chahua; Bao, Huihui; Hong, Kui; Cheng, Xiaoshu

    2016-12-01

    We know that silencing Bim, a pro-apoptosis protein, significantly attenuates glucose and oxygen-deprived induced apoptosis in cardiomyocytes. However, the mechanisms underlying the regulation of the Bim activation in the heart have remained unknown. Pim-2 is one of three Pim serine/threonine kinase family members thought to be involved in cell survival and proliferation. H9c2 cardiomyocytes were subjected to a hypoxia/reoxygenation (H/R) condition in vitro, mimicking ischemic/reperfusion injury in vivo. H/R augmented the expression of Bim, Cyt C, and Pim-2 and induced H9c2 cell apoptosis. Overexpression of Pim-2 attenuated apoptosis which induced by H/R in H9c2 cells, via downregulation of Bim and Cyt C expression. Silencing of Pim-2 promoted H/R-induced apoptosis via upregulation of Bim and Cyt C expression. Co-IP revealed the interaction between Pim-2 and Bim protein, with Bim Ser 65 phosphorylated by Pim-2. Furthermore, blocking proteasome activity by MG132 prevented Bim degradation, and Bim S65A mutation could reverse the anti-apoptotic role of Pim-2 which induced by H/R. These data demonstrated that Pim-2 is a novel Bim-interacting protein, which negatively regulates Bim degradation and protects H9c2 cardiomyocytes from H/R-induced apoptosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Losartan enhances the success of myoblast transplantation.

    PubMed

    Fakhfakh, Raouia; Lamarre, Yann; Skuk, Daniel; Tremblay, Jacques P

    2012-01-01

    Duchenne muscular dystrophy is a recessive X-linked genetic disease caused by dystrophin gene mutations. Cell therapy can be a potential approach aiming to introduce a functional dystrophin in the dystrophic patient myofibers. However, this strategy produced so far limited results. Transforming growth factor-β (TGF-β) is a negative regulator of skeletal muscle development and is responsible for limiting myogenic regeneration. The combination of TGF-β signaling inhibition with myoblast transplantation can be an effective therapeutic approach in dystrophin-deficient patients. Our aim was to verify whether the success of human myoblast transplantation in immunodeficient dystrophic mice is enhanced with losartan, a molecule that downregulates TGF-β expression. In vitro, blocking TGF-β activity with losartan increased proliferation and fusion and decreased apoptosis in human myoblasts. In vivo, human myoblasts were transplanted in mice treated with oral losartan. Immunodetection of human dystrophin in tibialis anterior cross sections 1 month posttransplantation revealed more human dystrophin-positive myofibers in these mice than in nontreated dystrophic mice. Thus, blocking the TGF-β signal with losartan treatment improved the success of myoblast transplantation probably by increasing myoblast proliferation and fusion, decreasing macrophage activation, and changing the expression of myogenic regulator factors.

  20. Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c.

    PubMed

    Tenenhouse, Harriet S; Martel, Josée; Gauthier, Claude; Segawa, Hiroko; Miyamoto, Ken-ichi

    2003-12-01

    The present study was undertaken to define the mechanisms governing the regulation of the novel renal brush-border membrane (BBM) Na-phosphate (Pi) cotransporter designated type IIc (Npt2c). To address this issue, the renal expression of Npt2c was compared in two hypophosphatemic mouse models with impaired renal BBM Na-Pi cotransport. In mice homozygous for the disrupted Npt2a gene (Npt2-/-), BBM Npt2c protein abundance, relative to actin, was increased 2.8-fold compared with Npt2+/+ littermates, whereas a corresponding increase in renal Npt2c mRNA abundance, relative to beta-actin, was not evident. In contrast, in X-linked Hyp mice, which harbor a large deletion in the Phex gene, the renal abundance of both Npt2c protein and mRNA was significantly decreased by 80 and 50%, respectively, relative to normal littermates. Pi deprivation elicited a 2.5-fold increase in BBM Npt2c protein abundance in Npt2+/+ mice but failed to elicit a further increase in Npt2c protein in Npt2-/- mice. Pi restriction led to an increase in BBM Npt2c protein abundance in both normal and Hyp mice without correcting its renal expression in the mutants. In summary, we report that BBM Npt2c protein expression is differentially regulated in Npt2-/- mice and Hyp mice and that the Npt2c response to low-Pi challenge differs in both hypophosphatemic mouse strains. We demonstrate that Npt2c protein is maximally upregulated in Npt2-/- mice and suggest that Npt2c likely accounts for residual BBM Na-Pi cotransport in the knockout model. Finally, our data indicate that loss of Phex function abrogates renal Npt2c protein expression.

  1. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation.

    PubMed

    Wallace, Marita A; Della Gatta, Paul A; Ahmad Mir, Bilal; Kowalski, Greg M; Kloehn, Joachim; McConville, Malcom J; Russell, Aaron P; Lamon, Séverine

    2016-01-01

    Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. These findings position STARS as an important regulator of skeletal muscle growth and regeneration.

  2. Role of an inward rectifier K+ current and of hyperpolarization in human myoblast fusion

    PubMed Central

    Liu, J-H; Bijlenga, P; Fischer-Lougheed, J; Occhiodoro, T; Kaelin, A; Bader, C R; Bernheim, L

    1998-01-01

    The role of K+ channels and membrane potential in myoblast fusion was evaluated by examining resting membrane potential and timing of expression of K+ currents at three stages of differentiation of human myogenic cells: undifferentiated myoblasts, fusion-competent myoblasts (FCMBs), and freshly formed myotubes. Two K+ currents contribute to a hyperpolarization of myoblasts prior to fusion: IK(NI), a non-inactivating delayed rectifier, and IK(IR), an inward rectifier. IK(NI) density is low in undifferentiated myoblasts, increases in FCMBs and declines in myotubes. On the other hand, IK(IR) is expressed in 28 % of the FCMBs and in all myotubes. IK(IR) is reversibly blocked by Ba2+ or Cs+. Cells expressing IK(IR) have resting membrane potentials of −65 mV. A block by Ba2+ or Cs+ induces a depolarization to a voltage determined by IK(NI) (−32 mV). Cs+ and Ba2+ ions reduce myoblast fusion. It is hypothesized that the IK(IR)-mediated hyperpolarization allows FCMBs to recruit Na+, K+ and T-type Ca2+ channels which are present in these cells and would otherwise be inactivated. FCMBs, rendered thereby capable of firing action potentials, could amplify depolarizing signals and may accelerate fusion. PMID:9705997

  3. 40 CFR 721.10283 - Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega.-hydroxy-, C12-13-branched and linear...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)], .alpha.-sulfo-.omega.-hydroxy-, C12-13-branched and linear alkyl ethers, sodium salts. 721.10283 Section... Substances § 721.10283 Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega.-hydroxy-, C12-13-branched and.... (1) The chemical substance identified as poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega...

  4. 40 CFR 721.10283 - Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega.-hydroxy-, C12-13-branched and linear...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)], .alpha.-sulfo-.omega.-hydroxy-, C12-13-branched and linear alkyl ethers, sodium salts. 721.10283 Section... Substances § 721.10283 Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega.-hydroxy-, C12-13-branched and.... (1) The chemical substance identified as poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega...

  5. 40 CFR 721.10283 - Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega.-hydroxy-, C12-13-branched and linear...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)], .alpha.-sulfo-.omega.-hydroxy-, C12-13-branched and linear alkyl ethers, sodium salts. 721.10283 Section... Substances § 721.10283 Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega.-hydroxy-, C12-13-branched and.... (1) The chemical substance identified as poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega...

  6. 1,2-Dichlorohexafluoro-cyclobutane (1,2-c-C4F6Cl2, R-316c) a potent ozone depleting substance and greenhouse gas: atmospheric loss processes, lifetimes, and ozone depletion and global warming potentials for the (E) and (Z) stereoisomers.

    PubMed

    Papadimitriou, Vassileios C; McGillen, Max R; Smith, Shona C; Jubb, Aaron M; Portmann, Robert W; Hall, Bradley D; Fleming, Eric L; Jackman, Charles H; Burkholder, James B

    2013-10-31

    The atmospheric processing of (E)- and (Z)-1,2-dichlorohexafluoro-cyclobutane (1,2-c-C4F6Cl2, R-316c) was examined in this work as the ozone depleting (ODP) and global warming (GWP) potentials of this proposed replacement compound are presently unknown. The predominant atmospheric loss processes and infrared absorption spectra of the R-316c isomers were measured to provide a basis to evaluate their atmospheric lifetimes and, thus, ODPs and GWPs. UV absorption spectra were measured between 184.95 to 230 nm at temperatures between 214 and 296 K and a parametrization for use in atmospheric modeling is presented. The Cl atom quantum yield in the 193 nm photolysis of R-316c was measured to be 1.90 ± 0.27. Hexafluorocyclobutene (c-C4F6) was determined to be a photolysis co-product with molar yields of 0.7 and 1.0 (±10%) for (E)- and (Z)-R-316c, respectively. The 296 K total rate coefficient for the O((1)D) + R-316c reaction, i.e., O((1)D) loss, was measured to be (1.56 ± 0.11) × 10(-10) cm(3) molecule(-1) s(-1) and the reactive rate coefficient, i.e., R-316c loss, was measured to be (1.36 ± 0.20) × 10(-10) cm(3) molecule(-1) s(-1) corresponding to a ~88% reactive yield. Rate coefficient upper-limits for the OH and O3 reaction with R-316c were determined to be <2.3 × 10(-17) and <2.0 × 10(-22) cm(3) molecule(-1) s(-1), respectively, at 296 K. The quoted uncertainty limits are 2σ and include estimated systematic errors. Local and global annually averaged lifetimes for the (E)- and (Z)-R-316c isomers were calculated using a 2-D atmospheric model to be 74.6 ± 3 and 114.1 ± 10 years, respectively, where the estimated uncertainties are due solely to the uncertainty in the UV absorption spectra. Stratospheric photolysis is the predominant atmospheric loss process for both isomers with the O((1)D) reaction making a minor, ~2% for the (E) isomer and 7% for the (Z) isomer, contribution to the total atmospheric loss. Ozone depletion potentials for (E)- and (Z)-R-316c

  7. 1,2-Dichlorohexafluoro-Cyclobutane (1,2-c-C4F6Cl2, R-316c) a Potent Ozone Depleting Substance and Greenhouse Gas: Atmospheric Loss Processes, Lifetimes, and Ozone Depletion and Global Warming Potentials for the (E) and (Z) stereoisomers

    NASA Technical Reports Server (NTRS)

    Papadimitriou, Vassileios C.; McGillen, Max R.; Smith, Shona C.; Jubb, Aaron M.; Portmann, Robert W.; Hall, Bradley D.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-01-01

    The atmospheric processing of (E)- and (Z)-1,2-dichlorohexafluorocyclobutane (1,2-c-C4F6Cl2, R-316c) was examined in this work as the ozone depleting (ODP) and global warming (GWP) potentials of this proposed replacement compound are presently unknown. The predominant atmospheric loss processes and infrared absorption spectra of the R-316c isomers were measured to provide a basis to evaluate their atmospheric lifetimes and, thus, ODPs and GWPs. UV absorption spectra were measured between 184.95 to 230 nm at temperatures between 214 and 296 K and a parametrization for use in atmospheric modeling is presented. The Cl atom quantum yield in the 193 nm photolysis of R- 316c was measured to be 1.90 +/- 0.27. Hexafluorocyclobutene (c-C4F6) was determined to be a photolysis co-product with molar yields of 0.7 and 1.0 (+/-10%) for (E)- and (Z)-R-316c, respectively. The 296 K total rate coefficient for the O(1D) + R-316c reaction, i.e., O(1D) loss, was measured to be (1.56 +/- 0.11) × 10(exp -10)cu cm/ molecule/s and the reactive rate coefficient, i.e., R-316c loss, was measured to be (1.36 +/- 0.20) × 10(exp -10)cu cm/molecule/s corresponding to a approx. 88% reactive yield. Rate coefficient upper-limits for the OH and O3 reaction with R-316c were determined to be <2.3 × 10(exp -17) and <2.0 × 10(exp -22)cu cm/molecule/s, respectively, at 296 K. The quoted uncertainty limits are 2(sigma) and include estimated systematic errors. Local and global annually averaged lifetimes for the (E)- and (Z)-R-316c isomers were calculated using a 2-D atmospheric model to be 74.6 +/- 3 and 114.1 +/-10 years, respectively, where the estimated uncertainties are due solely to the uncertainty in the UV absorption spectra. Stratospheric photolysis is the predominant atmospheric loss process for both isomers with the O(1D) reaction making a minor, approx. 2% for the (E) isomer and 7% for the (Z) isomer, contribution to the total atmospheric loss. Ozone depletion potentials for (E)- and (Z

  8. Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease.

    PubMed

    Dunn, Amy R; Stout, Kristen A; Ozawa, Minagi; Lohr, Kelly M; Hoffman, Carlie A; Bernstein, Alison I; Li, Yingjie; Wang, Minzheng; Sgobio, Carmelo; Sastry, Namratha; Cai, Huaibin; Caudle, W Michael; Miller, Gary W

    2017-03-14

    Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction.

  9. Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol.

    PubMed

    Seo, Jong-Su; Keum, Young-Soo; Hu, Yuting; Lee, Sung-Eun; Li, Qing X

    2007-02-01

    Burkholderia sp. C3 was isolated from a polycyclic aromatic hydrocarbon (PAH)-contaminated site in Hilo, Hawaii, USA, and studied for its degradation of phenanthrene as a sole carbon source. The initial 3,4-C dioxygenation was faster than 1,2-C dioxygenation in the first 3-day culture. However, 1-hydroxy-2-naphthoic acid derived from 3,4-C dioxygenation degraded much slower than 2-hydroxy-1-naphthoic acid derived from 1,2-C dioxygenation. Slow degradation of 1-hydroxy-2-naphthoic acid relative to 2-hydroxy-1-naphthoic acid may trigger 1,2-C dioxygenation faster after 3 days of culture. High concentrations of 5,6- and 7,8-benzocoumarins indicated that meta-cleavage was the major degradation mechanism of phenanthrene-1,2- and -3,4-diols. Separate cultures with 2-hydroxy-1-naphthoic acid and 1-hydroxy-2-naphthoic acid showed that the degradation rate of the former to naphthalene-1,2-diol was much faster than that of the latter. The two upper metabolic pathways of phenanthrene are converged into naphthalene-1,2-diol that is further metabolized to 2-carboxycinnamic acid and 2-hydroxybenzalpyruvic acid by ortho- and meta-cleavages, respectively. Transformation of naphthalene-1,2-diol to 2-carboxycinnamic acid by this strain represents the first observation of ortho-cleavage of two rings-PAH-diols by a Gram-negative species.

  10. Raman spectroscopy of isotopically pure ({sup 12}C, {sup 13}C) and isotopically mixed ({sup 12.5}C) diamond single crystals at ultrahigh pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enkovich, P. V., E-mail: enkovich@hppi.troitsk.ru; Brazhkin, V. V.; Lyapin, S. G.

    The Raman scattering by isotopically pure {sup 12}C and {sup 13}C diamond single crystals and by isotopically mixed {sup 12.5}C diamond single crystals is studied at a high accuracy. The studies are performed over a wide pressure range up to 73 GPa using helium as a hydrostatic pressure-transferring medium. It is found that the quantum effects, which determine the difference between the ratio of the Raman scattering frequencies in the {sup 12}C and {sup 13}C diamonds and the classical ratio (1.0408), increase to 30 GPa and then decrease. Thus, inversion in the sign of the quantum contribution to the physicalmore » properties of diamond during compression is detected. Our data suggest that the maximum possible difference between the bulk moduli of the {sup 12}C and {sup 13}C diamonds is 0.15%. The investigation of the isotopically mixed {sup 12.5}C diamond shows that the effective mass, which determines the Raman frequency, decreases during compression from 12.38 au at normal pressure to 12.33 au at 73 GPa.« less

  11. Expression of c-Jun and Bcl-2 family proteins in apoptotic photoreceptors of RCS rats.

    PubMed

    Katai, Naomichi; Yanagidaira, Tomoko; Senda, Nami; Murata, Toshinori; Yoshimura, Nagahisa

    2006-01-01

    To determine if c-Jun and Bcl-2 family proteins play a role in photoreceptor apoptosis in Royal College of Surgeons (RCS) rats. RCS and Sprague-Dawley rats were used. Cryosections of retinas harvested at various postnatal periods were immunostained with antibodies against c-Jun, Bcl-2, and Bax. Double staining with TdT-dUTP nick-end labeling (TUNEL) or propidium iodide (PI) and antibodies was also done. To study the time course of gene and protein expression, semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and immunoblotting analyses were carried out. TUNEL-positive photoreceptors of RCS rats were stained strongly with antibodies against c-Jun and Bax. The number of immunoreactive cells increased on days 21 and 28 after birth (P21 and P28) and decreased on P45. Semiquantitative RT-PCR analysis showed that mRNAs for c-Jun and Bax were upregulated at P21 and P28, but those for Bcl-2 were unchanged. On immunoblotting, a 43-kDa band was revealed by the anti-c-Jun antibody and a 21-kDa band, by the anti-Bax antibody. Protein expression of c-Jun and Bax were increased at both P21 and P28. The temporal profiles of immunoreactivity, protein expression, and mRNA expression were similar. c-Jun and Bax may play a role in photoreceptor apoptosis in RCS rats.

  12. c-myc, c-fos, and c-jun regulation in the regenerating livers of normal and H-2K/c-myc transgenic mice.

    PubMed Central

    Morello, D; Fitzgerald, M J; Babinet, C; Fausto, N

    1990-01-01

    We investigated the mechanisms of regulation of c-myc, c-fos, and c-jun at the early stages of liver regeneration in mice. We show that the transient increase in steady-state levels of c-myc mRNA at the start of liver regeneration is most probably regulated by posttranscriptional mechanisms. Although there was a marked increase in c-myc transcriptional initiation shortly after partial hepatectomy, a block in elongation prevented the completion of most transcripts. To gain further information on the mechanism of regulation of c-myc expression during liver regeneration, we used transgenic mice harboring the human c-myc gene driven by the H-2K promoter. In these animals, the murine c-myc responded to the growth stimulus generated by partial hepatectomy, whereas the expression of the transgene was constitutive and did not change in the regenerating liver. However, the mRNA from both genes increased markedly after cycloheximide injection, suggesting that the regulation of c-myc mRNA abundance in the regenerating liver differs from that occurring after protein synthesis inhibition. Furthermore, we show that in normal mice c-fos and c-jun mRNA levels and transcriptional rates increase within 30 min after partial hepatectomy. c-fos transcriptional elongation was restricted in nongrowing liver, but the block was partially relieved in the regenerating liver. Nevertheless, for both c-fos and c-jun, changes in steady-state mRNA detected after partial hepatectomy were much greater than the transcriptional increase. In the regenerating liver of H-2K/c-myc mice, c-fos and c-jun expression was diminished, whereas mouse c-myc expression was enhanced in comparison with that in nontransgenic animals. Images PMID:2111449

  13. Transcutaneous electrical nerve stimulation on Yongquan acupoint reduces CFA-induced thermal hyperalgesia of rats via down-regulation of ERK2 phosphorylation and c-Fos expression.

    PubMed

    Yang, Lin; Yang, Lianxue; Gao, Xiulai

    2010-07-01

    Activation of extracellular signal-regulated kinase-1/2 (ERK1/2) and its involvement in regulating gene expression in spinal dorsal horn, cortical and subcortical neurons by peripheral noxious stimulation contribute to pain hypersensitivity. Transcutaneous electrical nerve stimulation (TENS) is a treatment used in physiotherapy practice to promote analgesia in acute and chronic inflammatory conditions. In this study, a total number of 114 rats were used for three experiments. Effects of complete Freund's adjuvant (CFA)-induced inflammatory pain hypersensitivity and TENS analgesia on ERK1/2 phosphorylation and c-Fos protein expression were examined by using behavioral test, Western blot, and immunostaining methods. We found that CFA injection caused an area of localized swelling, erythema, hypersensitivity to thermal stimuli, the decreased response time of hind paw licking (HPL), as well as upregulation of c-Fos protein expression and ERK2 phosphorylation in the ipsilateral spinal dorsal horn and the contralateral primary somatosensory area of cortex and the amygdala of rats. TENS on Yongquan acupoint for 20 min produced obvious analgesic effects as demonstrated with increased HPL to thermal stimuli of CFA-treated rats. In addition, TENS application suppressed the CFA-induced ERK2 activation and c-Fos protein expression. These results suggest that down-regulation of ERK2 phosphorylation and c-Fos expression were involved in TENS inhibition on CFA-induced thermal hyperalgesia of rats.

  14. X(3872), IG(JPC) = 0+(1++), as the χc1(2P) charmonium

    NASA Astrophysics Data System (ADS)

    Achasov, N. N.; Rogozina, E. V.

    2015-09-01

    Contrary to almost standard opinion that the X(3872) resonance is the D∗0D¯0 + c.c. molecule or the qcq¯c¯ four-quark state, we discuss the scenario where the X(3872) resonance is the cc¯ = χc1(2P) charmonium which “sits on” the D∗0D¯0 threshold. We explain the shift of the mass of the X(3872) resonance with respect to the prediction of a potential model for the mass of the χc1(2P) charmonium by the contribution of the virtual D∗D¯ + c.c. intermediate states into the self energy of the X(3872) resonance. This allows us to estimate the coupling constant of the X(7872) resonance with the D∗0D¯0 channel, the branching ratio of the X(3872) → D∗0D¯0 + c.c. decay, and the branching ratio of the X(3872) decay into all non-D∗0D¯0 + c.c. states. We predict a significant number of unknown decays of X(3872) via two gluon: X(3872) →gluon gluon →hadrons. We suggest a physically clear program of experimental researches for verification of our assumption.

  15. CRYOPRESERVATION EFFECTS ON RECOMBINANT MYOBLASTS ENCAPSULATED IN ADHESIVE ALGINATE HYDROGELS

    PubMed Central

    Ahmad, Hajira F.; Sambanis, Athanassios

    2013-01-01

    Cell encapsulation in hydrogels is widely used in tissue engineering applications, including encapsulation of islets or other insulin-secreting cells in pancreatic substitutes. Use of adhesive, bio-functionalized hydrogels is receiving increasing attention, as cell-matrix interactions in 3-D can be important for various cell processes. With pancreatic substitutes, studies have indicated benefits of 3-D adhesion on the viability and/or function of insulin-secreting cells. As long-term storage of microencapsulated cells is critical for their clinical translation, cryopreservation of cells in hydrogels is actively being investigated. Previous studies have examined the cryopreservation response of cells encapsulated in non-adhesive hydrogels using conventional freezing and/or vitrification (ice-free cryopreservation), however, none have systematically compared the two cryopreservation methods with cells encapsulated within an adhesive 3-D environment. The latter would be significant, as evidence suggests adhesion influences cellular response to cryopreservation. Thus, the objective of this study was to determine the response to conventional freezing and vitrification of insulin-secreting cells encapsulated in an adhesive biomimetic hydrogel. Recombinant insulin-secreting C2C12 myoblasts were encapsulated in oxidized RGD-alginate and cultured 1 or 4 days post-encapsulation, cryopreserved, and assessed up to 3 days post-warming for metabolic activity and insulin secretion, and one day post-warming for cell morphology. Besides certain transient differences of the vitrified group relative to the Fresh control, both conventional freezing and vitrification maintained metabolism, secretion and morphology of the recombinant C2C12 cells. Thus, due to a simpler procedure and slightly superior results, conventional freezing is recommended over vitrification for the cryopreservation of C2C12 cells in oxidized RGD-modified alginate. PMID:23499987

  16. Apigenin suppresses migration and invasion of transformed cells through down-regulation of C-X-C chemokine receptor 4 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Kuang, Lisha; Hitron, John Andrew

    Environmental exposure to arsenic is known to cause various cancers. There are some potential relationships between cell malignant transformation and C-X-C chemokine receptor type 4 (CXCR4) expressions. Metastasis, one of the major characteristics of malignantly transformed cells, contributes to the high mortality of cells. CXCR4 and its natural chemokine ligand C-X-C motif ligand 12 (CXCL12) play a critical role in metastasis. Therefore, identification of nutritional factors which are able to inhibit CXCR4 is important for protection from environmental arsenic-induced carcinogenesis and for abolishing metastasis of malignantly transformed cells. The present study demonstrates that apigenin (4′,5,7-trihydroxyflavone), a natural dietary flavonoid, suppressedmore » CXCR4 expression in arsenic-transformed Beas-2B cells (B-AsT) and several other types of transformed/cancer cells in a dose- and time-dependent manner. Neither proteasome nor lysosome inhibitor had any effect in reducing the apigenin-induced down-regulation of CXCR4, indicating that apigenin-induced down-regulation of CXCR4 is not due to proteolytic degradation. The down-regulation of CXCR4 is mainly due to the inhibition of nuclear factor κB (NF-κB) transcriptional activity. Apigenin also abolished migration and invasion of transformed cells induced by CXCL12. In a xenograft mouse model, apigenin down-regulated CXCR4 expression and suppressed tumor growth. Taken together, our results show that apigenin is a novel inhibitor of CXCR4 expression. This dietary flavonoid has the potential to suppress migration and invasion of transformed cells and prevent environmental arsenic-induced carcinogenesis. - Highlights: • Apigenin has a potential in preventing environmental arsenic induced carcinogenesis. • Apigenin suppresses CXCR4 in malignant transformed cells in vitro and in vivo. • The down-regulation of CXCR4 is mainly due to inhibition of NF-κB activity.« less

  17. Distraction Arthrodesis of the C1-C2 Facet Joint with Preservation of the C2 Root for the Management of Intractable Occipital Neuralgia Caused by C2 Root Compression.

    PubMed

    Yeom, Jin S; Riew, K Daniel; Kang, Sung Shik; Yi, Jemin; Lee, Gun Woo; Yeom, Arim; Chang, Bong-Soon; Lee, Choon-Ki; Kim, Ho-Joong

    2015-10-15

    Prospective observational cohort study. To compare the outcomes of our new technique, distraction arthrodesis of C1-C2 facet joint with C2 root preservation (Study group), to those of conventional C1-C2 fusion with C2 root transection (Control group) for the management of intractable occipital neuralgia caused by C2 root compression. We are not aware of any report concerning C2 root decompression during C1-C2 fusion. Inclusion criteria were visual analogue scale (VAS) score for occipital neuralgia 7 or more; C2 root compression at the collapsed C1-C2 neural foramen; and follow-up 12 months or more. The Study group underwent surgery with our new technique including (1) C1-C2 facet joint distraction and bone block insertion while preserving the C2 root; and (2) use of C1 posterior arch screws instead of conventional lateral mass screws during C1-C2 segmental screw fixation. The Control group underwent C2 root transection with C1-C2 segmental screw fixation and fusion. We compared the prospectively collected outcomes data. There were 15 patients in the Study group and 8 in the Control group. Although there was no significant difference in the VAS score for the occipital neuralgia between the 2 groups preoperatively (8.2 ± 0.9 vs. 7.9 ± 0.6, P = 0.39), it was significantly lower in the Study group at 1, 3, and 6 months postoperatively (P < 0.01, respectively). At 12 months, it was 0.4 ± 0.6 versus 2.5 ± 2.6 (P = 0.01). There was no significant difference in improvement in the VAS score for neck pain and neck disability index and Japanese Orthopedic Association recovery rate, which are minimally influenced by occipital neuralgia. Our novel technique of distraction arthrodesis with C2 root preservation can be an effective option for the management of intractable occipital neuralgia caused by C2 root compression.

  18. Possible involvement of MSX-2 homeoprotein in v-ras-induced transformation.

    PubMed

    Takahashi, C; Akiyama, N; Kitayama, H; Takai, S; Noda, M

    1997-04-01

    A truncated MSX-2 homeoprotein was found to induce flat reversion when expressed in v-Ki-ras-transformed NIH3T3 cells. Although the expression of endogenous MSX-2 gene is low in most of the normal adult tissues examined, it is frequently activated in carcinoma-derived cell lines. Likewise, the gene is inactive in untransformed cells but is transcriptionally activated after transformation by v-Ki-ras oncogene, suggesting that the intact MSX-2 may play a positive, rather than suppressive, role in cell transformation. To test this possibility, we isolated a full-length human MSX-2 cDNA and tested its activities in two cell systems: fibroblast and myoblast. In NIH3T3 fibroblasts, although the gene by itself failed to confer a transformed phenotype, antisense MSX-2 cDNA as well as truncated MSX-2 cDNA interfered with the transforming activities of both v-Ki-ras and v-raf oncogene. In C2C12 myoblasts, MSX-2 was found to suppress MyoD gene expression, as do activated ras oncogenes, under certain culture conditions, and truncated MSX-2 cDNA was found to inhibit the activities of both MSX-2 and ras in this system as well. Our findings not only suggest that the truncated version MSX-2 may act as a dominant suppressor of intact MSX-2 but also raise the possibility that MSX-2 gene may be an important downstream target for the Ras signaling pathways.

  19. Ruminant Methane δ (13C/12C) - Values: Relation to Atmospheric Methane

    NASA Astrophysics Data System (ADS)

    Rust, Fleet

    1981-03-01

    The δ (13C/12C) - values of methane produced by fistulated steers, dairy cattle, and wethers, and dairy and beef cattle herds show a bimodal distribution that appears to be correlated with the plant type (C3 or C4, that is, producing either a three- or a four-carbon acid in the first step of photosynthesis) consumed by the animals. These results indicate that cattle and sheep, on a global basis, release methane with an average δ (13C/12C) value of -60 and -63 per mil, respectively. Together they are a source of atmospheric methane whose δ (13C/12C) is similar to published values for marsh gas and cannot explain the 20 per mil higher values for atmospheric methane.

  20. SRS-sensor 13C/12C isotops measurements for detecting Helicobacter Pylori

    NASA Astrophysics Data System (ADS)

    Grishkanich, Aleksandr; Chubchenko, Yan; Elizarov, Valentin; Zhevlakov, Aleksandr; Konopelko, Leonid

    2018-02-01

    We developed SRS-sensor 13C/12C isotops measurements detecting Helicobacter Pylori for medical diagnostics of human health. Measuring of absolute 13C/12C isotope amount ratios allows to explore the topical problems of the modern world, alcoholic beverages and tobacco, medical diagnostics of human health. SRS method is used to measure the ratio of carbon isotopes in the exhaled carbon dioxide, which is used to diagnose the human infection of Helicobacter pylori and the influence of the Helicobacter pylori bacterium on the occurrence of gastritis, gastric and duodenal ulcers. A method for the analysis of human infection with Helicobacter pylori was developed on the basis of measurements of the ratio of 13C / 12C carbon isotopes in human exhaled air with a high level of measurement accuracy. The article reviews the work in the field of provision comparability of absolute 13C/12C isotope amount ratios in the environment and food. The analysis of the technical and metrological characteristics of traditional and perspective instruments for measuring isotope ratios is presented. The provision of comparability of absolute 13C/12C isotope amount ratios is carried by gravimetrically prepared reference standards. The key features and emerging issues are discussed.

  1. Association between alcohol dehydrogenase 1C gene *1/*2 polymorphism and pancreatitis risk: a meta-analysis.

    PubMed

    Fang, F; Pan, J; Su, G H; Xu, L X; Li, G; Li, Z H; Zhao, H; Wang, J

    2015-11-30

    Numerous studies have focused on the relationship be-tween alcohol dehydrogenase 1C gene (ADH1C) *1/*2 polymorphism (Ile350Val, rs698, also known as ADH1C *1/*2) and pancreatitis risk, but the results have been inconsistent. Thus, we conducted a meta-anal-ysis to more precisely estimate this association. Relevant publications were searched in several widely used databases and 9 eligible studies were included in the meta-analysis. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association. Significant associations between ADH1C *1/*2 poly-morphism and pancreatitis risk were observed in both overall meta-analysis for 12 vs 22 (OR = 1.53, 95%CI = 1.12-2.10) and 11 + 12 vs 22 (OR = 1.44, 95%CI = 1.07-1.95), and the chronic alcoholic pancre-atitis subgroup for 12 vs 22 (OR = 1.64, 95%CI = 1.17-2.29) and 11 + 12 vs 22 (OR = 1.53, 95%CI = 1.11-2.11). Significant pancreatitis risk variation was also detected in Caucasians for 11 + 12 vs 22 (OR = 1.45, 95%CI = 1.07-1.98). In conclusion, the ADH1C *1/*2 polymorphism is likely associated with pancreatitis risk, particularly chronic alcoholic pancreatitis risk, with the *1 allele functioning as a risk factor.

  2. Comparative c-type cytochrome expression analysis in Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C grown with soluble and insoluble oxidised metal electron acceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissen, Silke; Liu, Xiaoxin; Chourey, Karuna

    2012-01-01

    The genomes of Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C encode 40 and 69 putative c-type cytochrome genes, respectively. Deletion mutant and biochemical studies have assigned specific functions to a few c-type cytochromes involved in electron transfer to oxidised metals in Shewanella oneidensis strain MR-1. Although promising, the genetic approach is limited to gene deletions that produce a distinct phenotype, and organism for which a genetic system is available. To more comprehensively investigate and compare c-type cytochrome expression in Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C, proteomic measurements were used to characterise lysates of cells grownmore » with soluble Fe(III) (as ferric citrate) and insoluble Mn(IV) (as MnO2) as electron acceptors. Strain MR-1 expressed 19 and 20, and strain 2CP-C expressed 27 and 25 c-type cytochromes when grown with Fe(III) and Mn(IV), respectively. The majority of c-type cytochromes (77% for strain MR-1 and 63% for strain 2CP-C) were expressed under both growth conditions; however, the analysis also revealed unique c-type cytochromes that were specifically expressed in cells grown with soluble Fe(III) or insoluble Mn(IV). Proteomic characterisation proved to be a promising approach for determining the c-type cytochrome complement expressed under different growth conditions, and will help elucidating the specific functions of more c-type cytochromes that are the basis for Shewanella and Anaeromyxobacter respiratory versatility.« less

  3. KRAS-G12C mutation is associated with poor outcome in surgically resected lung adenocarcinoma.

    PubMed

    Nadal, Ernest; Chen, Guoan; Prensner, John R; Shiratsuchi, Hiroe; Sam, Christine; Zhao, Lili; Kalemkerian, Gregory P; Brenner, Dean; Lin, Jules; Reddy, Rishindra M; Chang, Andrew C; Capellà, Gabriel; Cardenal, Felipe; Beer, David G; Ramnath, Nithya

    2014-10-01

    The aim of this study was to examine the effects of KRAS mutant subtypes on the outcome of patients with resected lung adenocarcinoma (AC). Using clinical and sequencing data, we identified 179 patients with resected lung AC for whom KRAS mutational status was determined. A multivariate Cox model was used to identify factors associated with disease-free survival (DFS) and overall survival (OS). Publicly available mutation and gene-expression data from lung cancer cell lines and lung AC were used to assess whether distinct KRAS mutant variants have a different profile. Patients with KRAS mutation had a significantly shorter DFS compared with those with KRAS wild-type (p = 0.009). Patients with KRAS-G12C mutant tumors had significantly shorter DFS compared with other KRAS mutants and KRAS wild-type tumors (p < 0.001). In the multivariate Cox model, KRAS-G12C remained as an independent prognostic marker for DFS (Hazard ratio = 2.46, 95% confidence interval 1.51-4.00, p < 0.001) and for OS (Hazard ratio = 2.35, 95% confidence interval 1.35-4.10, p = 0.003). No genes were statistically significant when comparing the mutational or transcriptional profile of lung cancer cell lines and lung AC harboring KRAS-G12C with other KRAS mutant subtypes. Gene set enrichment analysis revealed that KRAS-G12C mutants overexpressed epithelial to mesenchymal transition genes and expressed lower levels of genes predicting KRAS dependency. KRAS-G12C mutation is associated with worse DFS and OS in resected lung AC. Gene-expression profiles in lung cancer cell lines and surgically resected lung AC revealed that KRAS-G12C mutants had an epithelial to mesenchymal transition and a KRAS-independent phenotype.

  4. Ribbon structure stabilized by C10 and C12 turns in αγ hybrid peptide.

    PubMed

    Wani, Naiem Ahmad; Kant, Rajni; Gupta, Vivek Kumar; Aravinda, Subrayashastry; Rai, Rajkishor

    2016-04-01

    The present study describes the synthesis and crystallographic analysis of αγ hybrid peptides, Boc-Gpn-L-Pro-NHMe (1), Boc-Aib-Gpn-L-Pro-NHMe (2), and Boc-L-Pro-Aib-Gpn-L-Pro-NHMe (3). Peptides 1 and 2 adopt expanded 12-membered (C12 ) helical turn over γα segment. Peptide 3 promotes the ribbon structure stabilized by type II β-turn (C10 ) followed by the expanded C12 helical γα turn. Both right-handed and left-handed helical conformations for Aib residue are observed in peptides 2 and 3, respectively. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  5. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells.

    PubMed

    Tsukahara, Tamotsu; Haniu, Hisao; Matsuda, Yoshikazu

    2013-04-12

    Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA-PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Fractographic Analysis of HfB2-SiC and ZrB2-SiC Composites

    NASA Technical Reports Server (NTRS)

    Mecholsky, J.J., Jr.; Ellerby, D. T.; Johnson, S. M.; Stackpoole, M. M.; Loehman, R. E.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Hafnium diboride-silicon carbide and zirconium diboride-silicon carbide composites are potential materials for high temperature leading edge applications on reusable launch vehicles. In order to establish material constants necessary for evaluation of in-situ fracture, bars fractured in four point flexure were examined using fractographic principles. The fracture toughness was determined from measurements of the critical crack sizes and the strength values, and the crack branching constants were established to use in forensic fractography of materials for future flight applications. The fracture toughnesses range from about 13 MPam (sup 1/2) at room temperature to about 6 MPam (sup 1/2) at 1400 C for ZrB2-SiC composites and from about 11 MPam (sup 1/2) at room temperature to about 4 MPam (sup 1/2) at 1400 C for HfB2-SiC composites.

  7. Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli

    PubMed Central

    2012-01-01

    Background With the increasing stress from oil price and environmental pollution, aroused attention has been paid to the microbial production of chemicals from renewable sources. The C12/14 and C16/18 alcohols are important feedstocks for the production of surfactants and detergents, which are widely used in the most respected consumer detergents, cleaning products and personal care products worldwide. Though bioproduction of fatty alcohols has been carried out in engineered E. coli, several key problems have not been solved in earlier studies, such as the quite low production of C16/18 alcohol, the lack of optimization of the fatty alcohol biosynthesis pathway, and the uncharacterized performance of the engineered strains in scaled-up system. Results We improved the fatty alcohol production by systematically optimizing the fatty alcohol biosynthesis pathway, mainly targeting three key steps from fatty acyl-acyl carrier proteins (ACPs) to fatty alcohols, which are sequentially catalyzed by thioesterase, acyl-coenzyme A (CoA) synthase and fatty acyl-CoA reductase. By coexpression of thioesterase gene BTE, acyl-CoA synthase gene fadD and fatty acyl-CoA reductase gene acr1, 210.1 mg/L C12/14 alcohol was obtained. A further optimization of expression level of BTE, fadD and acr1 increased the C12/14 alcohol production to 449.2 mg/L, accounting for 75.0% of the total fatty alcohol production (598.6 mg/L). In addition, by coexpression of thioesterase gene ‘tesA, acyl-CoA synthase gene fadD and fatty acyl-CoA reductase gene FAR, 101.5 mg/L C16/18 alcohol was obtained, with C16/18 alcohol accounting for 89.2% of the total fatty alcohol production. Conclusions To our knowledge, this is the first report on selective production of C12/14 and C16/18 alcohols by microbial fermentation. This work achieved high-specificity production of both C12/14 and C16/18 alcohols. The encouraging 598.6 mg/L of fatty alcohols represents the highest titer reported so far. In

  8. Increasing α7β1-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression

    PubMed Central

    Liu, Jianming; Burkin, Dean J.; Kaufman, Stephen J.

    2008-01-01

    The dystrophin-glycoprotein complex maintains the integrity of skeletal muscle by associating laminin in the extracellular matrix with the actin cytoskeleton. Several human muscular dystrophies arise from defects in the components of this complex. The α7β1-integrin also binds laminin and links the extracellular matrix with the cytoskeleton. Enhancement of α7-integrin levels alleviates pathology in mdx/utrn−/− mice, a model of Duchenne muscular dystrophy, and thus the integrin may functionally compensate for the absence of dystrophin. To test whether increasing α7-integrin levels affects transcription and cellular functions, we generated α7-integrin-inducible C2C12 cells and transgenic mice that overexpress the integrin in skeletal muscle. C2C12 myoblasts with elevated levels of integrin exhibited increased adhesion to laminin, faster proliferation when serum was limited, resistance to staurosporine-induced apoptosis, and normal differentiation. Transgenic expression of eightfold more integrin in skeletal muscle did not result in notable toxic effects in vivo. Moreover, high levels of α7-integrin in both myoblasts and in skeletal muscle did not disrupt global gene expression profiles. Thus increasing integrin levels can compensate for defects in the extracellular matrix and cytoskeleton linkage caused by compromises in the dystrophin-glycoprotein complex without triggering apparent overt negative side effects. These results support the use of integrin enhancement as a therapy for muscular dystrophy. PMID:18045857

  9. Bis-guanylhydrazone diimidazo[1,2-a:1,2-c]pyrimidine as a novel and specific G-quadruplex binding motif.

    PubMed

    Sparapani, Silvia; Bellini, Stefania; Gunaratnam, Mekala; Haider, Shozeb M; Andreani, Aldo; Rambaldi, Mirella; Locatelli, Alessandra; Morigi, Rita; Granaiola, Massimiliano; Varoli, Lucilla; Burnelli, Silvia; Leoni, Alberto; Neidle, Stephen

    2010-08-21

    A bis-guanylhydrazone derivative of diimidazo[1,2-a:1,2-c]pyrimidine has unexpectedly been found to be a potent stabiliser of several quadruplex DNAs, whereas there is no significant interaction with duplex DNA. Molecular modeling suggests that the guanylhydrazone groups play an active role in quadruplex binding.

  10. The 12C(n, 2n)11C cross section from threshold to 26.5 MeV

    PubMed Central

    Eckert, T.; Hartshaw, G.; Padalino, S. J.; Polsin, D. N.; Russ, M.; Simone, A. T.; Brune, C. R.; Massey, T. N.; Parker, C. E.; Fitzgerald, R.; Sangster, T. C.; Regan, S. P.

    2018-01-01

    The 12C(n, 2n)11C cross section was measured from just below threshold to 26.5 MeV using the Pelletron accelerator at Ohio University. Monoenergetic neutrons, produced via the 3H(d,n)4He reaction, were allowed to strike targets of polyethylene and graphite. Activation of both targets was measured by counting positron annihilations resulting from the β+ decay of 11C. Annihilation gamma rays were detected, both in coincidence and singly, using back-to-back NaI detectors. The incident neutron flux was determined indirectly via 1H(n,p) protons elastically scattered from the polyethylene target. Previous measurements fall into upper and lower bands; the results of the present measurement are consistent with the upper band. PMID:29732443

  11. The 12C(n, 2n)11C cross section from threshold to 26.5 MeV.

    PubMed

    Yuly, M; Eckert, T; Hartshaw, G; Padalino, S J; Polsin, D N; Russ, M; Simone, A T; Brune, C R; Massey, T N; Parker, C E; Fitzgerald, R; Sangster, T C; Regan, S P

    2018-02-01

    The 12 C(n, 2n) 11 C cross section was measured from just below threshold to 26.5 MeV using the Pelletron accelerator at Ohio University. Monoenergetic neutrons, produced via the 3 H(d,n) 4 He reaction, were allowed to strike targets of polyethylene and graphite. Activation of both targets was measured by counting positron annihilations resulting from the β + decay of 11 C. Annihilation gamma rays were detected, both in coincidence and singly, using back-to-back NaI detectors. The incident neutron flux was determined indirectly via 1 H(n,p) protons elastically scattered from the polyethylene target. Previous measurements fall into upper and lower bands; the results of the present measurement are consistent with the upper band.

  12. Implication of anti-inflammatory macrophages in regenerative moto-neuritogenesis: promotion of myoblast migration and neural chemorepellent semaphorin 3A expression in injured muscle.

    PubMed

    Sakaguchi, Shohei; Shono, Jun-ichi; Suzuki, Takahiro; Sawano, Shoko; Anderson, Judy E; Do, Mai-Khoi Q; Ohtsubo, Hideaki; Mizunoya, Wataru; Sato, Yusuke; Nakamura, Mako; Furuse, Mitsuhiro; Yamada, Koji; Ikeuchi, Yoshihide; Tatsumi, Ryuichi

    2014-09-01

    Regenerative mechanisms that regulate intramuscular motor innervation are thought to reside in the spatiotemporal expression of axon-guidance molecules. Our previous studies proposed a heretofore unexplored role of resident myogenic stem cell (satellite cell)-derived myoblasts as a key presenter of a secreted neural chemorepellent semaphorin 3A (Sema3A); hepatocyte growth factor (HGF) triggered its expression exclusively at the early-differentiation phase. In order to verify this concept, the present study was designed to clarify a paracrine source of HGF release. In vitro experiments demonstrated that activated anti-inflammatory macrophages (CD206-positive M2) produce HGF and thereby promote myoblast chemoattraction and Sema3A expression. Media from pro-inflammatory macrophage cultures (M1) did not show any significant effect. M2 also enhanced the expression of myoblast-differentiation markers in culture, and infiltrated predominantly at the early-differentiation phase (3-5 days post-injury); M2 were confirmed to produce HGF as monitored by in vivo/ex vivo immunocytochemistry of CD11b/CD206/HGF-positive cells and by HGF in situ hybridization of cardiotoxin- or crush-injured tibialis anterior muscle, respectively. These studies advance our understanding of the stage-specific activation of Sema3A expression signaling. Findings, therefore, encourage the idea that M2 contribute to spatiotemporal up-regulation of extracellular Sema3A concentrations by producing HGF that, in turn, stimulates a burst of Sema3A secretion by myoblasts that are recruited to site of injury. This model may ensure a coordinated delay in re-attachment of motoneuron terminals onto damaged fibers early in muscle regeneration, and thus synchronize the recovery of muscle-fiber integrity and the early resolution of inflammation after injury. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Formation of {Co(dppe)}22-η(2):η(2)-η(2):η(2)-[(C60)2]} Dimers Bonded by Single C-C Bonds and Bridging η(2)-Coordinated Cobalt Atoms.

    PubMed

    Konarev, Dmitri V; Troyanov, Sergey I; Ustimenko, Kseniya A; Nakano, Yoshiaki; Shestakov, Alexander F; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2015-05-18

    Coordination of two bridging cobalt atoms to fullerenes by the η(2) type in {Co(dppe)}22-η(2):η(2)-η(2):η(2)-[(C60)2]}·3C6H4Cl2 [1; dppe = 1,2-bis(diphenylphosphino)ethane] triggers fullerene dimerization with the formation of two intercage C-C bonds of 1.571(4) Å length. Coordination-induced fullerene dimerization opens a path to the design of fullerene structures bonded by both covalent C-C bonds and η(2)-coordination-bridged metal atoms.

  14. CHEK2*1100delC Variant and BRCA1/2-Negative Familial Breast Cancer - A Family-Based Genetic Association Study

    DTIC Science & Technology

    2007-10-01

    AD_________________ Award Number: DAMD17-03-1-0774 TITLE: CHEK2 *1100delC Variant and BRCA1/2...NUMBER CHEK2 *1100delC Variant and BRCA1/2-Negative Familial Breast Cancer - A Family- Based Genetic Association Study 5b. GRANT NUMBER DAMD17...association between the CHEK2 *1100delC gene variant and breast cancer among BRCA1/2-negative families. Vital to DNA replication and normal growth of breast

  15. 40 CFR 180.1284 - Ammonium salts of higher fatty acids (C8-C18 saturated; C8-C12 unsaturated); exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ammonium salts of higher fatty acids... Ammonium salts of higher fatty acids (C8-C18 saturated; C8-C12 unsaturated); exemption from the requirement of a tolerance. Ammonium salts of C8-C18 saturated and C8-C12 unsaturated higher fatty acids are...

  16. 40 CFR 180.1284 - Ammonium salts of higher fatty acids (C8-C18 saturated; C8-C12 unsaturated); exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Ammonium salts of higher fatty acids... Ammonium salts of higher fatty acids (C8-C18 saturated; C8-C12 unsaturated); exemption from the requirement of a tolerance. Ammonium salts of C8-C18 saturated and C8-C12 unsaturated higher fatty acids are...

  17. Effects of oxidative stress-induced changes in the actin cytoskeletal structure on myoblast damage under compressive stress: confocal-based cell-specific finite element analysis.

    PubMed

    Yao, Yifei; Lacroix, Damien; Mak, Arthur F T

    2016-12-01

    Muscle cells are frequently subjected to both mechanical and oxidative stresses in various physiological and pathological situations. To explore the mechanical mechanism of muscle cell damage under loading and oxidative stresses, we experimentally studied the effects of extrinsic hydrogen peroxides on the actin cytoskeletal structure in C2C12 myoblasts and presented a finite element (FE) analysis of how such changes in the actin cytoskeletal structure affected a myoblast's capability to resist damage under compression. A confocal-based cell-specific FE model was built to parametrically study the effects of stress fiber density, fiber cross-sectional area, fiber tensile prestrain, as well as the elastic moduli of the stress fibers, actin cortex, nucleus and cytoplasm. The results showed that a decrease in the elastic moduli of both the stress fibers and actin cortex could increase the average tensile strain on the actin cortex-membrane structure and reduce the apparent cell elastic modulus. Assuming the cell would die when a certain percentage of membrane elements were strained beyond a threshold, a lower elastic modulus of actin cytoskeleton would compromise the compressive resistance of a myoblast and lead to cell death more readily. This model was used with a Weibull distribution function to successfully describe the extent of myoblasts damaged in a monolayer under compression.

  18. Fractionation of carbon (13C/12C) isotopes in glycine decarboxylase reaction.

    PubMed

    Ivlev, A A; Bykova, N V; Igamberdiev, A U

    1996-05-20

    Fractionation of carbon isotopes (13C/12C) by glycine decarboxylase (GDC) was investigated in mitochondrial preparations isolated from photosynthetic tissues of different plants (Pisum, Medicago, Triticum, Hordeum, Spinacia, Brassica, Wolffia). 20 mM glycine was supplied to mitochondria, and the CO2 formed was absorbed and analyzed for isotopic content. CO2 evolved by mitochondria of Pisum was enriched up to 8% in 12C compared to the carboxylic atom of glycine. CO2 evolved by mitochondria of the other plants investigated was enriched by 5-16% in 13C. Carbon isotope effects were sensitive to reaction conditions (pH and the presence of GDC cofactors). Theoretical treatment of the reaction mechanism enabled us to conclude that the value and even the sign of the carbon isotope effect in glycine decarboxylation depend on the contribution of the enzyme-substrate binding step and of the decarboxylation step itself to the overall reaction rate. Therefore, the fractionation of carbon isotopes in GDC reaction was revealed which provides essential isotopic effects in plants in addition to the well-known effect of carbon isotope fractionation by the central photosynthetic enzyme, ribulose-1,5-biphosphate carboxylase.

  19. Cytochrome P450-2C11 mRNA is not expressed in endothelial cells dissected from rat renal arterioles.

    PubMed

    Heil, Sandra G; De Vriese, An S; Kluijtmans, Leo A J; Dijkman, Henry; van Strien, Denise; Akkers, Robert; Blom, Henk J

    2005-01-01

    Cytochrome P450 (CYP) isoenzymes (CYP2C and CYP2J) are involved in the production of epoxyeicosatrienoic acids, which are postulated as endothelium-derived hyperpolarizing factors (EDHFs). We hypothesized that if CYP2C11 is involved in the EDHF-mediated responses, its mRNA should be expressed in endothelial cells. We, therefore, examined the mRNA expression of CYP2C11 in endothelial cells of renal arterioles. Laser microdissection was applied to isolate endothelial cells from the renal arterioles of 4 male and 4 female Wistar rats. As a positive control of CYP2C11 expression, hepatocytes were also dissected from these rats. RNA was isolated and real-time quantitative polymerase chain reaction (Q-PCR) analysis was applied. Q-PCR analysis showed that CYP2C11 mRNA was not expressed in laser microdissected endothelial cells of renal arterioles of male and female rats. CYP2C11 mRNA expression was highly abundant in hepatocytes dissected from male livers, but in female livers hardly any CYP2C11 mRNA was detected. We have shown that endothelial cells can be dissected from small renal arterioles by laser microdissection to study the mRNA expression of specific genes by Q-PCR. Using this novel tool, we demonstrated that the CYP2C11 mRNA was not expressed in the endothelial cells of renal arterioles. Therefore, we speculate that CYP2C11 does not contribute to the EDHF-mediated responses in renal arterioles. Copyright (c) 2005 S. Karger AG, Basel.

  20. Identification of expressed genes in cDNA library of hemocytes from the RLO-challenged oyster, Crassostrea ariakensis Gould with special functional implication of three complement-related fragments (CaC1q1, CaC1q2 and CaC3).

    PubMed

    Xu, Ting; Xie, Jiasong; Li, Jianming; Luo, Ming; Ye, Shigen; Wu, Xinzhong

    2012-06-01

    A SMARTer™ cDNA library of hemocyte from Rickettsia-like organism (RLO) challenged oyster, Crassostrea ariakensis Gould was constructed. Random clones (400) were selected and single-pass sequenced, resulted in 200 unique sequences containing 96 known genes and 104 unknown genes. The 96 known genes were categorized into 11 groups based on their biological process. Furthermore, we identified and characterized three complement-related fragments (CaC1q1, CaC1q2 and CaC3). Tissue distribution analysis revealed that all of three fragments were ubiquitously expressed in all tissues studied including hemocyte, gills, mantle, digestive glands, gonads and adductor muscle, while the highest level was seen in the hemocyte. Temporal expression profile in the hemocyte monolayers reveled that the mRNA expression levels of three fragments presented huge increase after the RLO incubation at 3 h and 6 h in post-challenge, respectively. And the maximal expression levels at 3 h in post-challenge are about 256, 104 and 64 times higher than the values detected in the control of CaC1q1, CaC1q2 and CaC3, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Direct targeting of SUZ12/ROCK2 by miR-200b/c inhibits cholangiocarcinoma tumourigenesis and metastasis

    PubMed Central

    Peng, F; Jiang, J; Yu, Y; Tian, R; Guo, X; Li, X; Shen, M; Xu, M; Zhu, F; Shi, C; Hu, J; Wang, M; Qin, R

    2013-01-01

    Background: The multidrug resistance and distant metastasis of cholangiocarcinoma result in high postoperative recurrence and low long-term survival rates. It has been demonstrated that the ectopic expression of miR-200 suppresses the multidrug resistance and metastasis of cancer. However, the expression and function of miR-200 in cholangiocarcinoma has not yet been described. Methods: In this study, we identified dysregulated microRNAs (miRNAs, miR) in cholangiocarcinoma tissue by microarray analysis, and subsequent real-time PCR and northern blot analyses validated the expression of candidate miR. We performed functional analyses and investigated the relationship between miR-200b/c expression and the properties of cholangiocarcinoma cells. A dual luciferase assay was applied to examine the effect of miRNAs on the 3′-UTR of target genes, and we demonstrated the function of the target gene by siRNA transfection identifying the downstream pathway via western blotting. Results: We found significantly downregulated expression of four miR-200 family members (miR-200a/b/c/429) and then confirmed that ectopic miR-200b/200c inhibits the migration and invasion of cholangiocarcinoma cells both in vitro and in vivo. We found that miR-200b/c influenced the tumourigenesis of cholangiocarcinoma cells including their tumour-initiating capacity, sphere formation, and drug resistance. We further found that miR-200b/c regulated migration and invasion capacities by directly targeting rho-kinase 2 and regulated tumorigenic properties by directly targeting SUZ12 (a subunit of a polycomb repressor complex). Conclusion: Our study shows that miR-200b/c has a critical role in the regulation of the tumorigenic and metastatic capacity of cholangiocarcinoma and reveals the probable underlying mechanisms. PMID:24169343

  2. Intercellular adhesion molecule-1 augments myoblast adhesion and fusion through homophilic trans-interactions.

    PubMed

    Pizza, Francis X; Martin, Ryan A; Springer, Evan M; Leffler, Maxwell S; Woelmer, Bryce R; Recker, Isaac J; Leaman, Douglas W

    2017-07-11

    The overall objective of the study was to identify mechanisms through which intercellular adhesion molecule-1 (ICAM-1) augments the adhesive and fusogenic properties of myogenic cells. Hypotheses were tested using cultured myoblasts and fibroblasts, which do not constitutively express ICAM-1, and myoblasts and fibroblasts forced to express full length ICAM-1 or a truncated form lacking the cytoplasmic domain of ICAM-1. ICAM-1 mediated myoblast adhesion and fusion were quantified using novel assays and cell mixing experiments. We report that ICAM-1 augments myoblast adhesion to myoblasts and myotubes through homophilic trans-interactions. Such adhesive interactions enhanced levels of active Rac in adherent and fusing myoblasts, as well as triggered lamellipodia, spreading, and fusion of myoblasts through the signaling function of the cytoplasmic domain of ICAM-1. Rac inhibition negated ICAM-1 mediated lamellipodia, spreading, and fusion of myoblasts. The fusogenic property of ICAM-1-ICAM-1 interactions was restricted to myogenic cells, as forced expression of ICAM-1 by fibroblasts did not augment their fusion to ICAM-1+ myoblasts/myotubes. We conclude that ICAM-1 augments myoblast adhesion and fusion through its ability to self-associate and initiate Rac-mediated remodeling of the actin cytoskeleton.

  3. Activation of cAMP-dependent signaling pathway induces mouse organic anion transporting polypeptide 2 expression.

    PubMed

    Chen, Chuan; Cheng, Xingguo; Dieter, Matthew Z; Tanaka, Yuji; Klaassen, Curtis D

    2007-04-01

    Rodent Oatp2 is a hepatic uptake transporter for such compounds as cardiac glycosides. In the present study, we found that fasting resulted in a 2-fold induction of Oatp2 expression in liver of mice. Because the cAMP-protein kinase A (PKA) signaling pathway is activated during fasting, the role of this pathway in Oatp2 induction during fasting was examined. In Hepa-1c1c7 cells, adenylyl cyclase activator forskolin as well as two cellular membrane-permeable cAMP analogs, dibutyryl cAMP and 8-bromo-cAMP, induced Oatp2 mRNA expression in a time- and dose-dependent manner. These three chemicals induced reporter gene activity in cells transfected with a luciferase reporter gene construct containing a 7.6-kilobase (kb) 5'-flanking region of mouse Oatp2. Transient transfection of cells with 5'-deletion constructs derived from the 7.6-kb Oatp2 promoter reporter gene construct, as well as 7.6-kb constructs in which a consensus cAMP response element (CRE) half-site CGTCA (-1808/-1804 bp) was mutated or deleted, confirms that this CRE site was required for the induction of luciferase activity by forskolin. Luciferase activity driven by the Oatp2 promoter containing this CRE site was induced in cells cotransfected with a plasmid encoding the protein kinase A catalytic subunit. Cotransfection of cells with a plasmid encoding the dominant-negative CRE binding protein (CREB) completely abolished the inducibility of the reporter gene activity by forskolin. In conclusion, induction of Oatp2 expression in liver of fasted mice may be caused by activation of the cAMP-dependent signaling pathway, with the CRE site (-1808/-1804) and CREB being the cis- and trans-acting factors mediating the induction, respectively.

  4. STIM1- and Orai1-dependent store-operated calcium entry regulates human myoblast differentiation.

    PubMed

    Darbellay, Basile; Arnaudeau, Serge; König, Stéphane; Jousset, Hélène; Bader, Charles; Demaurex, Nicolas; Bernheim, Laurent

    2009-02-20

    Our previous work on human myoblasts suggested that a hyperpolarization followed by a rise in [Ca(2+)](in) involving store-operated Ca(2+) entry (SOCE) channels induced myoblast differentiation. Advances in the understanding of the SOCE pathway led us to examine more precisely its role in post-natal human myoblast differentiation. We found that SOCE orchestrated by STIM1, the endoplasmic reticulum Ca(2+) sensor activating Orai Ca(2+) channels, is crucial. Silencing STIM1, Orai1, or Orai3 reduced SOCE amplitude and myoblast differentiation, whereas Orai2 knockdown had no effect. Conversely, overexpression of STIM1 with Orai1 increased SOCE and accelerated myoblast differentiation. STIM1 or Orai1 silencing decreased resting [Ca(2+)](in) and intracellular Ca(2+) store content, but correction of these parameters did not rescue myoblast differentiation. Remarkably, SOCE amplitude correlated linearly with the expression of two early markers of myoblast differentiation, MEF2 and myogenin, regardless of the STIM or Orai isoform that was silenced. Unexpectedly, we found that the hyperpolarization also depends on SOCE, placing SOCE upstream of K(+) channel activation in the signaling cascade that controls myoblast differentiation. These findings indicate that STIM1 and Orai1 are key molecules for the induction of human myoblast differentiation.

  5. Breast tumors from CHEK2 1100delC-mutation carriers: genomic landscape and clinical implications.

    PubMed

    Muranen, Taru A; Greco, Dario; Fagerholm, Rainer; Kilpivaara, Outi; Kämpjärvi, Kati; Aittomäki, Kristiina; Blomqvist, Carl; Heikkilä, Päivi; Borg, Ake; Nevanlinna, Heli

    2011-09-20

    Checkpoint kinase 2 (CHEK2) is a moderate penetrance breast cancer risk gene, whose truncating mutation 1100delC increases the risk about twofold. We investigated gene copy-number aberrations and gene-expression profiles that are typical for breast tumors of CHEK2 1100delC-mutation carriers. In total, 126 breast tumor tissue specimens including 32 samples from patients carrying CHEK2 1100delC were studied in array-comparative genomic hybridization (aCGH) and gene-expression (GEX) experiments. After dimensionality reduction with CGHregions R package, CHEK2 1100delC-associated regions in the aCGH data were detected by the Wilcoxon rank-sum test. The linear model was fitted to GEX data with R package limma. Genes whose expression levels were associated with CHEK2 1100delC mutation were detected by the bayesian method. We discovered four lost and three gained CHEK2 1100delC-related loci. These include losses of 1p13.3-31.3, 8p21.1-2, 8p23.1-2, and 17p12-13.1 as well as gains of 12q13.11-3, 16p13.3, and 19p13.3. Twenty-eight genes located on these regions showed differential expression between CHEK2 1100delC and other tumors, nominating them as candidates for CHEK2 1100delC-associated tumor-progression drivers. These included CLCA1 on 1p22 as well as CALCOCO1, SBEM, and LRP1 on 12q13. Altogether, 188 genes were differentially expressed between CHEK2 1100delC and other tumors. Of these, 144 had elevated and 44, reduced expression levels.Our results suggest the WNT pathway as a driver of tumorigenesis in breast tumors of CHEK2 1100delC-mutation carriers and a role for the olfactory receptor protein family in cancer progression. Differences in the expression of the 188 CHEK2 1100delC-associated genes divided breast tumor samples from three independent datasets into two groups that differed in their relapse-free survival time. We have shown that copy-number aberrations of certain genomic regions are associated with CHEK2 mutation 1100delC. On these regions, we identified

  6. Breast tumors from CHEK2 1100delC-mutation carriers: genomic landscape and clinical implications

    PubMed Central

    2011-01-01

    Introduction Checkpoint kinase 2 (CHEK2) is a moderate penetrance breast cancer risk gene, whose truncating mutation 1100delC increases the risk about twofold. We investigated gene copy-number aberrations and gene-expression profiles that are typical for breast tumors of CHEK2 1100delC-mutation carriers. Methods In total, 126 breast tumor tissue specimens including 32 samples from patients carrying CHEK2 1100delC were studied in array-comparative genomic hybridization (aCGH) and gene-expression (GEX) experiments. After dimensionality reduction with CGHregions R package, CHEK2 1100delC-associated regions in the aCGH data were detected by the Wilcoxon rank-sum test. The linear model was fitted to GEX data with R package limma. Genes whose expression levels were associated with CHEK2 1100delC mutation were detected by the bayesian method. Results We discovered four lost and three gained CHEK2 1100delC-related loci. These include losses of 1p13.3-31.3, 8p21.1-2, 8p23.1-2, and 17p12-13.1 as well as gains of 12q13.11-3, 16p13.3, and 19p13.3. Twenty-eight genes located on these regions showed differential expression between CHEK2 1100delC and other tumors, nominating them as candidates for CHEK2 1100delC-associated tumor-progression drivers. These included CLCA1 on 1p22 as well as CALCOCO1, SBEM, and LRP1 on 12q13. Altogether, 188 genes were differentially expressed between CHEK2 1100delC and other tumors. Of these, 144 had elevated and 44, reduced expression levels. Our results suggest the WNT pathway as a driver of tumorigenesis in breast tumors of CHEK2 1100delC-mutation carriers and a role for the olfactory receptor protein family in cancer progression. Differences in the expression of the 188 CHEK2 1100delC-associated genes divided breast tumor samples from three independent datasets into two groups that differed in their relapse-free survival time. Conclusions We have shown that copy-number aberrations of certain genomic regions are associated with CHEK2 mutation

  7. Cell Surface Expression of Biologically Active Influenza C Virus HEF Glycoprotein Expressed from cDNA

    PubMed Central

    Pekosz, Andrew; Lamb, Robert A.

    1999-01-01

    The hemagglutinin, esterase, and fusion (HEF) glycoprotein of influenza C virus possesses receptor binding, receptor destroying, and membrane fusion activities. The HEF cDNAs from influenza C/Ann Arbor/1/50 (HEF-AA) and influenza C/Taylor/1223/47 (HEF-Tay) viruses were cloned and expressed, and transport of HEF to the cell surface was monitored by susceptibility to cleavage by exogenous trypsin, indirect immunofluorescence microscopy, and flow cytometry. Previously it has been found in studies with the C/Johannesburg/1/66 strain of influenza C virus (HEF-JHB) that transport of HEF to the cell surface is severely inhibited, and it is thought that the short cytoplasmic tail, Arg-Thr-Lys, is involved in blocking HEF cell surface expression (F. Oeffner, H.-D. Klenk, and G. Herrler, J. Gen. Virol. 80:363–369, 1999). As the cytoplasmic tail amino acid sequences of HEF-AA and HEF-Tay are identical to that of HEF-JHB, the data indicate that cell surface expression of HEF-AA and HEF-Tay is not inhibited by this amino acid sequence. Furthermore, the abundant cell surface transport of HEF-AA and HEF-Tay indicates that their cell surface expression does not require coexpression of another viral protein. The HEF-AA and HEF-Tay HEF glycoproteins bound human erythrocytes, promoted membrane fusion in a low-pH and trypsin-dependent manner, and displayed esterase activity, indicating that the HEF glycoprotein alone mediates all three known functions at the cell surface. PMID:10482635

  8. Evaluation of tyrosine-kinase receptor c-KIT (c-KIT) mutations, mRNA and protein expression in canine leukemia: might c-KIT represent a therapeutic target?

    PubMed

    Giantin, M; Aresu, L; Aricò, A; Gelain, M E; Riondato, F; Martini, V; Comazzi, S; Dacasto, M

    2013-04-15

    The tyrosine-kinase receptor c-KIT (c-KIT) plays an important role in proliferation, survival and differentiation of progenitor cells in normal hematopoietic cells. In human hematological malignancies, c-KIT is mostly expressed by progenitor cell neoplasia and seldom by those involving mature cells. Tyrosine kinase inhibitors (TKIs) are actually licensed for the first- and second-line treatment of human hematologic disorders. Aim of the present study was to evaluate c-KIT mRNA and protein expression and complementary DNA (cDNA) mutations in canine leukemia. Eleven acute lymphoblastic leukemia (ALL) and acute undifferentiated leukemia (AUL) and 12 chronic lymphocytic leukemia (CLL) were enrolled in this study. The amounts of c-KIT mRNA and protein were determined, in peripheral blood samples, by using quantitative real time RT-PCR, flow cytometry and immunocytochemistry, respectively. The presence of mutations on c-KIT exons 8-11 and 17 were investigated by cDNA sequencing. Higher amounts of c-KIT mRNA were found in ALL/AUL compared to CLL, and this latter showed a lower pattern of gene expression. Transcriptional data were confirmed at the protein level. No significant gain-of-function mutations were ever observed in both ALL/AUL and CLL. Among canine hematological malignancies, ALL/AUL typically show a very aggressive biological behavior, partly being attributable to the lack of efficacious therapeutic options. The high level of c-KIT expression found in canine ALL/AUL might represent the rationale for using TKIs in future clinical trials. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Identification, expression, and pharmacology of a Cys{sub 23}-Ser{sub 23} substitution in the human 5-HT{sub 2C} receptor gene (HTR2C)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lappalainen, J.; Ozaki, N.; Goldman, D.

    1995-05-20

    The function of brain serotonin-2C (5-HT{sub 2C}) receptors, including behavioral and neurochemical responses to 5-HT{sub 2C} agonist challenge, has been suggested to be abnormal in individuals with neuropsychiatric disorders. Thus, it is important to identify polymorphisms and functional variants within this gene. Using SSCP analysis, the authors identified a Cys{sub 23}-Ser{sub 23} substitution (designated 5-HT{sub 2Ccys} and 5-HT{sub 2Cser}) in the first hydrophobic region of the human 5-HT{sub 2C} receptor. Allele frequencies in unrelated Caucasians were 0.13 and 0.87 for 5-HT{sub 2Cser} and 5-HT{sub 2Ccys}, respectively. DNAs from informative CEPH families were typed for this polymorphism and analyzed with respectmore » to 20 linked markers on the X chromosome. Linkage analysis placed the 5-HT{sub 2C} receptor gene (HTR2C) on Xq24. To evaluate whether this amino acid substitution causes a variant function of this receptor, recombinant human 5-HT{sub 2Ccys} and 5-HT{sub 2Cser} receptors were expressed in Xenopus oocytes and tested for responses to 5-HT using electrophysiological techniques. Concentration-response curves for 5-HT were not significantly different in oocytes expressing either form of the receptor, suggesting that the 5-HT{sub 2Ccys} and 5-HT{sub 2Cser} receptor proteins may not differ in their responses to serotonin under baseline physiological conditions. 43 refs., 3 figs., 1 tab.« less

  10. Redox regulation of cardiomyocyte cell cycling via an ERK1/2 and c-Myc-dependent activation of cyclin D2 transcription

    PubMed Central

    Murray, Thomas V.A.; Smyrnias, Ioannis; Schnelle, Moritz; Mistry, Rajesh K.; Zhang, Min; Beretta, Matteo; Martin, Daniel; Anilkumar, Narayana; de Silva, Shana M.; Shah, Ajay M.; Brewer, Alison C.

    2015-01-01

    Adult mammalian cardiomyocytes have a very limited capacity to proliferate, and consequently the loss of cells after cardiac stress promotes heart failure. Recent evidence suggests that administration of hydrogen peroxide (H2O2), can regulate redox-dependent signalling pathway(s) to promote cardiomyocyte proliferation in vitro, but the potential relevance of such a pathway in vivo has not been tested. We have generated a transgenic (Tg) mouse model in which the H2O2-generating enzyme, NADPH oxidase 4 (Nox4), is overexpressed within the postnatal cardiomyocytes, and observed that the hearts of 1–3 week old Tg mice pups are larger in comparison to wild type (Wt) littermate controls. We demonstrate that the cardiomyocytes of Tg mouse pups have increased cell cycling capacity in vivo as determined by incorporation of 5-bromo-2′-deoxyuridine. Further, microarray analyses of the transcriptome of these Tg mouse hearts suggested that the expression of cyclin D2 is significantly increased. We investigated the molecular mechanisms which underlie this more proliferative phenotype in isolated neonatal rat cardiomyocytes (NRCs) in vitro, and demonstrate that Nox4 overexpression mediates an H2O2-dependent activation of the ERK1/2 signalling pathway, which in turn phosphorylates and activates the transcription factor c-myc. This results in a significant increase in cyclin D2 expression, which we show to be mediated, at least in part, by cis-acting c-myc binding sites within the proximal cyclin D2 promoter. Overexpression of Nox4 in NRCs results in an increase in their proliferative capacity that is ablated by the silencing of cyclin D2. We further demonstrate activation of the ERK1/2 signalling pathway, increased phosphorylation of c-myc and significantly increased expression of cyclin D2 protein in the Nox4 Tg hearts. We suggest that this pathway acts to maintain the proliferative capacity of cardiomyocytes in Nox4 Tg pups in vivo and so delays their exit from the cell

  11. Mesodermal expression of the C. elegans HMX homolog mls-2 requires the PBC homolog CEH-20

    PubMed Central

    Jiang, Yuan; Shi, Herong; Amin, Nirav M.; Sultan, Ibrahim; Liu, Jun

    2008-01-01

    Metazoan development proceeds primarily through the regulated expression of genes encoding transcription factors and components of cell signaling pathways. One way to decipher the complex developmental programs is to assemble the underlying gene regulatory networks by dissecting the cis-regulatory modules that direct temporal-spatial expression of developmental genes and identify corresponding trans-regulatory factors. Here, we focus on the regulation of a HMX homoebox gene called mls-2, which functions at the intersection of a network that regulates cleavage orientation, cell proliferation and fate specification in the C. elegans postembryonic mesoderm. In addition to its transient expression in the postembryonic mesodermal lineage, the M lineage, mls-2 expression is detected in a subset of embryonic cells, in three pairs of head neurons and transiently in the somatic gonad. Through mutational analysis of the mls-2 promoter, we identified two elements (E1 and E2) involved in regulating the temporal-spatial expression of mls-2. In particular, we showed that one of the elements (E1) required for mls-2 expression in the M lineage contains two critical putative PBC-Hox binding sites that are evolutionarily conserved in C. briggsae and C. remanei. Furthermore, the C. elegans PBC homolog CEH-20 is required for mls-2 expression in the M lineage. Our data suggests that mls-2 might be a direct target of CEH-20 in the M lineage and that the regulation of CEH-20 on mls-2 is likely Hox-independent. PMID:18316179

  12. The A2Πi˜X2Σ+ interaction in CO +: Deperturbation analyses of B- A and A- X bands of 12C 16O +, 13C 16O + and 14C 16O +

    NASA Astrophysics Data System (ADS)

    Coxon, John A.; Kępa, Ryszard; Piotrowska, Izabela

    2010-08-01

    The 1-0, 6-0 and 6-1 bands of the A2Πi→X2Σ+ system of 13C 16O + and the 2-0 and 2-1 bands of the A2Πi→X2Σ+ system of 14C 16O + have been recorded at high resolution for the first time. The 0-2 and 5-0 bands of the A → X system of 12C 16O + have also been recorded at higher resolution than in previous work. The spectra were excited in an air-cooled hollow cathode discharge and photographed using a 2-m plane grating spectrograph. The spectral resolution and the Doppler-broadened line widths are both ˜0.12 cm -1, and the experimental measurement precision of resolved lines is ˜0.02 cm -1. The measured line positions, sometimes in combination with literature data on the B2Σ+→A2Πi transition, have been employed in deperturbation analyses of level crossings in the near-degenerate A(0)˜ X(10) and A(5)˜ X(14) interactions in 12C 16O +, the A(1)˜ X(11) and A(6)˜ X(15) interactions in 13C 16O +, and the A(2)˜ X(12) interaction in 14C 16O +. No radial dependence of the electronic perturbation matrix elements HSO( r) and HRE( r) could be detected over the narrow range of r-centroids (1.477-1.501 Å), and the mean values of these parameters are HSO = -49.06(15) cm -1 and HRE = 0.211(2). Using iteratively improved RKR potentials and FC-overlap integrals, the mean HSO and HRE were employed in least-squares analyses of A → X literature data involving A( υ) levels of the three isotopologues that are affected by interactions with one or two distant X( υ∗) levels. The fitted parameters of the A2Πi state ( B υ, A υ, A Dυ, p υ, q υ) exhibit υ-dependences that are much smoother than those employing perturbed parameters determined in previous investigations. In addition, a significant electronic isotope effect has been characterized. The separations Te( A)- Te( X) of the minima of the A and X states of 13C 16O + and 14C 16O + are less than that of 12C 16O + by 0.39 and 0.73 cm -1, respectively. Although Born-Oppenheimer breakdown of this magnitude is

  13. Mechanically induced c-fos expression is mediated by cAMP in MC3T3-E1 osteoblasts

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Hughes-Fulford, M.

    1999-01-01

    In serum-deprived MC3T3-E1 osteoblasts, mechanical stimulation caused by mild (287 x g) centrifugation induced a 10-fold increase in mRNA levels of the proto-oncogene, c-fos. Induction of c-fos was abolished by the cAMP-dependent protein kinase inhibitor H-89, suggesting that the transient c-fos mRNA increase is mediated by cAMP. Down-regulation of protein kinase C (PKC) activity by chronic TPA treatment failed to significantly reduce c-fos induction, suggesting that TPA-sensitive isoforms of PKC are not responsible for c-fos up-regulation. In addition, 287 x g centrifugation increased intracellular prostaglandin E2 (PGE2) levels 2.8-fold (P<0. 005). Since we have previously shown that prostaglandin E2 (PGE2) can induce c-fos expression via a cAMP-mediated mechanism, we asked whether the increase in c-fos mRNA was due to centrifugation-induced PGE2 release. Pretreatment with the cyclooxygenase inhibitors indomethacin and flurbiprofen did not hinder the early induction of c-fos by mechanical stimulation. We conclude that c-fos expression induced by mild mechanical loading is dependent primarily on cAMP, not PKC, and initial induction of c-fos is not necessarily dependent on the action of newly synthesized PGE2.

  14. Are we there yet? A Practitioner's View of DO-178C/ED-12C

    NASA Astrophysics Data System (ADS)

    Daniels, Dewi

    RTCA DO-178B/EUROCAE ED-12B is the industry-accepted guidance for determining that the software aspects of airborne systems and equipment comply with airworthiness requirements. DO-178B/ED-12B, published in 1992, is being updated to DO-178C/ED-12C. Nearly six years in the making, DO- 178C/ED-12C is expected to be completed in December 2010. It will be accompanied by a new set of supplements providing additional and much-needed guidance on tool qualification, model based development and verification, objectoriented technologies, and formal methods. Written by a member of the DO-178C/ED-12C editorial team who is also a practising software developer and verifier, this paper provides a practitioner's view of the new standard and its supplements. It explains how they will affect your organisation, focusing on the practical implications of the many changes between DO-178B/ED-12B and DO-178C/ED-12C.

  15. Myomaker is a membrane activator of myoblast fusion and muscle formation.

    PubMed

    Millay, Douglas P; O'Rourke, Jason R; Sutherland, Lillian B; Bezprozvannaya, Svetlana; Shelton, John M; Bassel-Duby, Rhonda; Olson, Eric N

    2013-07-18

    Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibres. However, the identity of muscle-specific proteins that directly govern this fusion process in mammals has remained elusive. Here we identify a muscle-specific membrane protein, named myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is downregulated thereafter. Overexpression of myomaker in myoblasts markedly enhances fusion, and genetic disruption of myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibres. Remarkably, forced expression of myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacological perturbation of the actin cytoskeleton abolishes the activity of myomaker, consistent with previous studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein that controls mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation.

  16. Heterologous expression of 2-methylisoborneol / 2 methylenebornane biosynthesis genes in Escherichia coli yields novel C11-terpenes

    PubMed Central

    Wortmann, Hannah; Dickschat, Jeroen S.; Schrader, Jens

    2018-01-01

    The structural diversity of terpenoids is limited by the isoprene rule which states that all primary terpene synthase products derive from methyl-branched building blocks with five carbon atoms. With this study we discover a broad spectrum of novel terpenoids with eleven carbon atoms as byproducts of bacterial 2-methylisoborneol or 2-methylenebornane synthases. Both enzymes use 2-methyl-GPP as substrate, which is synthesized from GPP by the action of a methyltransferase. We used E. coli strains that heterologously produce different C11-terpene synthases together with the GPP methyltransferase and the mevalonate pathway enzymes. With this de novo approach, 35 different C11-terpenes could be produced. In addition to eleven known compounds, it was possible to detect 24 novel C11-terpenes which have not yet been described as terpene synthase products. Four of them, 3,4-dimethylcumene, 2-methylborneol and the two diastereomers of 2-methylcitronellol could be identified. Furthermore, we showed that an E. coli strain expressing the GPP-methyltransferase can produce the C16-terpene 6-methylfarnesol which indicates the condensation of 2-methyl-GPP and IPP to 6-methyl-FPP by the E. coli FPP-synthase. Our study demonstrates the broad range of unusual terpenes accessible by expression of GPP-methyltransferases and C11-terpene synthases in E. coli and provides an extended mechanism for C11-terpene synthases. PMID:29672609

  17. NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chuen-Mao, E-mail: chuenmao@mail.cgu.edu.tw; Heart Failure Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Lee, I-Ta

    TNF-α plays a mediator role in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression in rat embryonic-heart derived H9c2 cells are largely not defined. We demonstrated that in H9c2 cells, TNF-α induced MMP-9 mRNA and protein expression associated with an increase in the secretion of pro-MMP-9. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of ROS (N-acetyl-L-cysteine, NAC), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)],more » MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), NF-κB (Bay11-7082), or PYK2 (PF-431396) and transfection with siRNA of TNFR1, p47{sup phox}, p42, p38, JNK1, p65, or PYK2. Moreover, TNF-α markedly induced NADPH oxidase-derived ROS generation in these cells. TNF-α-enhanced p42/p44 MAPK, p38 MAPK, JNK1/2, and NF-κB (p65) phosphorylation and in vivo binding of p65 to the MMP-9 promoter were inhibited by U0126, SB202190, SP600125, NAC, DPI, or APO. In addition, TNF-α-mediated PYK2 phosphorylation was inhibited by NAC, DPI, or APO. PYK2 inhibition could reduce TNF-α-stimulated MAPKs and NF-κB activation. Thus, in H9c2 cells, we are the first to show that TNF-α-induced MMP-9 expression is mediated through a TNFR1/NADPH oxidase/ROS/PYK2/MAPKs/NF-κB cascade. We demonstrated that NADPH oxidase-derived ROS generation is involved in TNF-α-induced PYK2 activation in these cells. Understanding the regulation of MMP-9 expression and NADPH oxidase activation by TNF-α on H9c2 cells may provide potential therapeutic targets of chronic heart failure. - Highlights: • TNF-α induces MMP-9 secretion and expression via a TNFR1-dependent pathway. • TNF-α induces ROS/PYK2-dependent MMP-9 expression in H9c2 cells. • TNF

  18. Metabolic responses to BRL37344 and clenbuterol in soleus muscle and C2C12 cells via different atypical pharmacologies and β2-adrenoceptor mechanisms

    PubMed Central

    Ngala, R A; O'Dowd, J; Wang, S J; Agarwal, A; Stocker, C; Cawthorne, M A; Arch, J R S

    2008-01-01

    Background and purpose: Picomolar concentrations of the β3-adrenoceptor agonist BRL37344 stimulate 2-deoxyglucose uptake in soleus muscle via undefined receptors. Higher concentrations alter uptake, apparently via β2-adrenoceptors. Effects of BRL37344 and β2-adrenoceptor agonists are compared. Experimental approach: Mouse soleus muscles were incubated with 2-deoxy[1-14C]-glucose, [1-14C]-palmitate or [2-14C]-pyruvate, and BRL37344, β2-adrenoceptor agonists and selective β-adrenoceptor antagonists. Formation of 2-deoxy[1-14C]-glucose-6-phosphate or 14CO2 was measured. 2-Deoxy[1-14C]-glucose uptake and β-adrenoceptor mRNA were measured in C2C12 cells. Key results: 10 pM BRL37344, 10 pM clenbuterol and 100 pM salbutamol stimulated 2-deoxyglucose uptake in soleus muscle by 33–54%. The effect of BRL37344 was prevented by 1 μM atenolol but not by 300 nM CGP20712A or IC3118551, or 1 μM SR59230A; that of clenbuterol was prevented by ICI118551 but not atenolol. 10 nM BRL37344 st4mulated 2-deoxyglucose uptake, whereas 100 nM clenbuterol and salbutamol inhibited uptake. These effects were blocked by ICI118551. Similar results were obtained in C2C12 cells, in which only β2-adrenoceptor mRNA could be detected by RT-PCR. 10 nM BRL37344 and 10 pM clenbuterol stimulated muscle palmitate oxidation. In the presence of palmitate, BRL37344 no longer stimulated 2-deoxyglucose uptake and the effect of clenbuterol was not significant. Conclusions and implications: Stimulation of glucose uptake by 10 pM BRL37344 and clenbuterol involves different atypical pharmacologies. Nanomolar concentrations of BRL37344 and clenbuterol, probably acting via β2-adrenoceptors, have opposite effects on glucose uptake. The agonists preferentially stimulate fat rather than carbohydrate oxidation, but stimulation of endogenous fat oxidation cannot explain why 100 nM clenbuterol inhibited 2-deoxyglucose uptake. PMID:18552870

  19. The C. elegans Spalt-like protein SEM-4 functions through the SoxC transcription factor SEM-2 to promote a proliferative blast cell fate in the postembryonic mesoderm.

    PubMed

    Shen, Qinfang; Shi, Herong; Tian, Chenxi; Ghai, Vikas; Liu, Jun

    2017-09-01

    Proper development of a multicellular organism relies on well-coordinated regulation of cell fate specification, cell proliferation and cell differentiation. The C. elegans postembryonic mesoderm provides a useful system for uncovering factors involved in these processes and for further dissecting their regulatory relationships. The single Spalt-like zinc finger containing protein SEM-4/SALL is known to be involved in specifying the proliferative sex myoblast (SM) fate. We have found that SEM-4/SALL is sufficient to promote the SM fate and that it does so in a cell autonomous manner. We further showed that SEM-4/SALL acts through the SoxC transcription factor SEM-2 to promote the SM fate. SEM-2 is known to promote the SM fate by inhibiting the expression of two BWM-specifying transcription factors. In light of recent findings in mammals showing that Sall4, one of the mammalian homologs of SEM-4, contributes to pluripotency regulation by inhibiting differentiation, our work suggests that the function of SEM-4/SALL proteins in regulating pluripotency versus differentiation appears to be evolutionarily conserved. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Dienogest inhibits C-C motif chemokine ligand 20 expression in human endometriotic epithelial cells.

    PubMed

    Mita, Shizuka; Nakakuki, Masanori; Ichioka, Masayuki; Shimizu, Yutaka; Hashiba, Masamichi; Miyazaki, Hiroyasu; Kyo, Satoru

    2017-07-01

    C-C motif chemokine ligand 20 is thought to contribute to the development of endometriosis by recruiting Th17 lymphocytes into endometriotic foci. The present study investigated the effects of dienogest, a progesterone receptor agonist used to treat endometriosis, on C-C motif chemokine ligand 20 expression by endometriotic cells. Effects of dienogest on mRNA expression and protein secretion of C-C motif chemokine ligand 20 induced by interleukin 1β were assessed in three immortalized endometriotic epithelial cell lines, parental cells (EMosis-CC/TERT1), and stably expressing human progesterone receptor isoform A (EMosis-CC/TERT1/PRA+) or isoform B (EMosis-CC/TERT1/PRA-/PRB+). Dienogest markedly inhibited interleukin 1β-stimulated C-C motif chemokine ligand 20 mRNA expression and protein secretion in EMosis-CC/TERT1/PRA-/PRB+, which was abrogated by the progesterone receptor antagonist RU486. In EMosis-CC/TERT1/PRA+, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA and protein. In EMosis-CC/TERT1, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA, but had no effect on C-C motif chemokine ligand 20 protein. Dienogest inhibited interleukin 1β-induced up-regulation of C-C motif chemokine ligand 20 in endometriotic epithelial cells, mainly mediated by progesterone receptor B. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Polycystin-1 C-terminal Cleavage Is Modulated by Polycystin-2 Expression*

    PubMed Central

    Bertuccio, Claudia A.; Chapin, Hannah C.; Cai, Yiqiang; Mistry, Kavita; Chauvet, Veronique; Somlo, Stefan; Caplan, Michael J.

    2009-01-01

    Autosomal dominant polycystic kidney disease is caused by mutations in the genes encoding polycystin-1 (PC-1) and polycystin-2 (PC-2). PC-1 cleavage releases its cytoplasmic C-terminal tail (CTT), which enters the nucleus. To determine whether PC-1 CTT cleavage is influenced by PC-2, a quantitative cleavage assay was utilized, in which the DNA binding and activation domains of Gal4 and VP16, respectively, were appended to PC-1 downstream of its CTT domain (PKDgalvp). Cells cotransfected with the resultant PKDgalvp fusion protein and PC-2 showed an increase in luciferase activity and in CTT expression, indicating that the C-terminal tail of PC-1 is cleaved and enters the nucleus. To assess whether CTT cleavage depends upon Ca2+ signaling, cells transfected with PKDgalvp alone or together with PC-2 were incubated with several agents that alter intracellular Ca2+ concentrations. PC-2 enhancement of luciferase activity was not altered by any of these treatments. Using a series of PC-2 C-terminal truncated mutations, we identified a portion of the PC-2 protein that is required to stimulate PC-1 CTT accumulation. These data demonstrate that release of the CTT from PC-1 is influenced and stabilized by PC-2. This effect is independent of Ca2+ but is regulated by sequences contained within the PC-2 C-terminal tail, suggesting a mechanism through which PC-1 and PC-2 may modulate a novel signaling pathway. PMID:19491093

  2. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2-C12 hydrocarbons.

    PubMed

    Liu, Chengtang; Mu, Yujing; Zhang, Chenglong; Zhang, Zhibo; Zhang, Yuanyuan; Liu, Junfeng; Sheng, Jiujiang; Quan, Jiannong

    2016-01-04

    A liquid nitrogen-free GC-FID system equipped with a single column has been developed for measuring atmospheric C2-C12 hydrocarbons. The system is consisted of a cooling unit, a sampling unit and a separation unit. The cooling unit is used to meet the temperature needs of the sampling unit and the separation unit. The sampling unit includes a dehydration tube and an enrichment tube. No breakthrough of the hydrocarbons was detected when the temperature of the enrichment tube was kept at -90 °C and sampling volume was 400 mL. The separation unit is a small round oven attached on the cooling column. A single capillary column (OV-1, 30 m × 0.32 mm I.D.) was used to separate the hydrocarbons. An optimal program temperature (-60 ∼ 170 °C) of the oven was achieved to efficiently separate C2-C12 hydrocarbons. There were good linear correlations (R(2)=0.993-0.999) between the signals of the hydrocarbons and the enrichment amount of hydrocarbons, and the relative standard deviation (RSD) was less than 5%, and the method detection limits (MDLs) for the hydrocarbons were in the range of 0.02-0.10 ppbv for sampling volume of 400 mL. Field measurements were also conducted and more than 50 hydrocarbons from C2 to C12 were detected in Beijing city. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. IL-12-producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion.

    PubMed

    Rölle, Alexander; Pollmann, Julia; Ewen, Eva-Maria; Le, Vu Thuy Khanh; Halenius, Anne; Hengel, Hartmut; Cerwenka, Adelheid

    2014-12-01

    Human cytomegalovirus (HCMV) infection is the most common cause of congenital viral infections and a major source of morbidity and mortality after organ transplantation. NK cells are pivotal effector cells in the innate defense against CMV. Recently, hallmarks of adaptive responses, such as memory-like features, have been recognized in NK cells. HCMV infection elicits the expansion of an NK cell subset carrying an activating receptor heterodimer, comprising CD94 and NKG2C (CD94/NKG2C), a response that resembles the clonal expansion of adaptive immune cells. Here, we determined that expansion of this NKG2C(+) subset and general NK cell recovery rely on signals derived from CD14(+) monocytes. In a coculture system, a subset of CD14(+) cells with inflammatory monocyte features produced IL-12 in response to HCMV-infected fibroblasts, and neutralization of IL-12 in this model substantially reduced CD25 upregulation and NKG2C(+) subset expansion. Finally, blockade of CD94/NKG2C on NK cells or silencing of the cognate ligand HLA-E in infected fibroblasts greatly impaired expansion of NKG2C(+) NK cells. Together, our results reveal that IL-12, CD14(+) cells, and the CD94/NKG2C/HLA-E axis are critical for the expansion of NKG2C(+) NK cells in response to HCMV infection. Moreover, strategies targeting the NKG2C(+) NK cell subset have the potential to be exploited in NK cell-based intervention strategies against viral infections and cancer.

  4. Quantum partner-dance in the 12C + 12C system yields sub-Coulomb fusion resonances

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, Alexis; Wiescher, Michael

    2014-03-01

    A preliminary study of the 12C + 12C sub-Coulomb fusion reaction using the time-dependent wave-packet method is presented. The theoretical sub-Coulomb fusion resonances seem to correspond well with observations. The present method might be a more suitable tool for expanding the cross-section predictions towards lower energies than the commonly used potential-model approximation.

  5. Lack of prognostic significance of C-erbB-2 expression in low- and high- grade astrocytomas.

    PubMed

    Muallaoglu, Saik; Besen, Ali Ayberk; Ata, Alper; Mertsoylu, Huseyin; Arican, Ali; Kayaselcuk, Fazilet; Ozyilkan, Ozgur

    2014-01-01

    Astrocytic tumors, the most common primary glial tumors of the central nervous system, are classified from low to high grade according to the degree of anaplasia and presence of necrosis. Despite advances in therapeutic management of high grade astrocytic tumors, prognosis remains poor. In the present study, the frequency and prognostic significance of c-erb-B2 in astrocytic tumors was investigated. Records of 72 patients with low- and high-grade astrocytic tumors were evaluated. The expression of C-erbB-2 was determined immunohistochemically and intensity was recorded as 0 to 3+. Tumors with weak staining (1+) or no staining (0) were considered Her-2 negative, while tumors with moderate (2+) and strong (3+) staining were considered Her-2 positive. Of the 72 patients, 41 (56.9%) had glioblastoma (GBM), 10 (13.9%) had diffuse astrocytoma, 15 (20.8%) had anaplastic astrocytoma, 6 (8.3%) had pilocytic astrocytoma. C-erbB-2 overexpression was detected in the tumor specimens of 17 patients (23.6%). Six (8.3%) tumors, all GBMs, exhibited strong staining, 2 (2.7%) specimens, both GBMs, exhibited moderate staining, and 9 specimens, 5 of them GBMs (12.5%), exhibited weak staining. No staining was observed in diffuse astrocytoma and pilocytic astrocytoma specimens. Median overall survival of patients with C-erbB-2 negative and C-erbB-2 positive tumors were 30 months (95%CI: 22.5-37.4 months) and 16.9 months (95%CI: 4.3-29.5 months), respectively (p=0.244). Although there was no difference in survival, C-erbB-2 overexpression was observed only in the GBM subtype.

  6. 40 CFR 721.3152 - Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates (salts). 721.3152 Section 721... Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates... ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates...

  7. 40 CFR 721.3152 - Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates (salts). 721.3152 Section 721... Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates... ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates...

  8. 40 CFR 721.3152 - Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates (salts). 721.3152 Section 721... Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates... ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates...

  9. 40 CFR 721.3152 - Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates (salts). 721.3152 Section 721... Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates... ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates...

  10. A lower limit on the surface C-12/C-13 ratio in Alpha Orionis

    NASA Technical Reports Server (NTRS)

    Gautier, T. N., III; Fink, U.; Larson, H. P.; Thompson, R. I.

    1976-01-01

    The second overtone CO bands near 1.6 microns were analyzed in Alpha Ori using synthetic spectra. No firm identification of (C-13)O was made, which allowed a lower limit of 20 to be set on the C-12/C-13 ratio. A rather low microturbulent velocity of 2 km/s was found to match the spectrum of Alpha Ori best.

  11. Toxicokinetics of 1,2-diethylbenzene in male Sprague-Dawley rats-part 1: excretion and metabolism of [(14)C]1,2-diethylbenzene.

    PubMed

    Payan, J P; Beydon, D; Cossec, B; Ensminger, A; Fabry, J P; Ferrari, E

    1999-12-01

    The excretion and metabolism of neurotoxic 1,2-diethylbenzene (1, 2-DEB) was studied in male Sprague-Dawley rats after i.v. (1 mg/kg) or oral (1 or 100 mg/kg) administration of 1,2-diethyl[U-(14)C]benzene ([(14)C]1,2-DEB). Whatever the treatment, radioactivity was mainly excreted in urine (65-76% of the dose) and to a lower extent in feces (15-23% of the dose), or via exhaled air (3-5% of the dose). However, experiments with rats fitted with a biliary cannula demonstrated that about 52 to 64% of the administered doses (1 or 100 mg/kg) were initially excreted in bile. Biliary metabolites were extensively reabsorbed from the gut and ultimately excreted in urine after several enterohepatic circulations. Insignificant amounts of unchanged 1,2-DEB were recovered in the different excreta (urine, bile, and feces). As reported previously, presence of 1-(2'-ethylphenyl)ethanol (EPE) was confirmed in urine and demonstrated in bile and feces. The two main [(14)C]1,2-DEB metabolites accounted for 57 to 79% of urinary and biliary radioactivity, respectively. Beta-Glucuronidase hydrolysis and electron impact mass spectra results strongly supported their glucuronide structure. Additionally, these two main metabolites were thought to be the glucuronide conjugates of the two potential enantiomers of EPE. The results indicate that the main initial conversion step of the primary metabolic pathway of 1,2-DEB appears to be the hydroxylation of the alpha-carbon atom of the side chain. The presence of two glucuronide conjugates of EPE in the urine in a ratio different from one suggests that the metabolic conversion of 1, 2-DEB is under stereochemical control.

  12. Fibroblast growth factor and cyclic AMP (cAMP) synergistically activate gene expression at a cAMP response element.

    PubMed Central

    Tan, Y; Low, K G; Boccia, C; Grossman, J; Comb, M J

    1994-01-01

    Growth factors and cyclic AMP (cAMP) are known to activate distinct intracellular signaling pathways. Fibroblast growth factor (FGF) activates ras-dependent kinase cascades, resulting in the activation of MAP kinases, whereas cAMP activates protein kinase A. In this study, we report that growth factors and cAMP act synergistically to stimulate proenkephalin gene expression. Positive synergy between growth factor- and cAMP-activated signaling pathways on gene expression has not been previously reported, and we suggest that these synergistic interactions represent a useful model for analyzing interactions between these pathways. Transfection and mutational studies indicate that both FGF-dependent gene activation and cAMP-dependent gene activation require cAMP response element 2 (CRE-2), a previously characterized cAMP-dependent regulatory element. Furthermore, multiple copies of this element are sufficient to confer FGF regulation upon a minimal promoter, indicating that FGF and cAMP signaling converge upon transcription factors acting at CRE-2. Among many different ATF/AP-1 factors tested, two factors, ATF-3 and c-Jun, stimulate proenkephalin transcription in an FGF- or Ras-dependent fashion. Finally, we show that ATF-3 and c-Jun form heterodimeric complexes in SK-N-MC cells and that the levels of both proteins are increased in response to FGF but not cAMP. Together, these results indicate that growth factor- and cAMP-dependent signaling pathways converge at CRE-2 to synergistically stimulate gene expression and that ATF-3 and c-Jun regulate proenkephalin transcription in response to both growth factor- and cAMP-dependent intracellular signaling pathways. Images PMID:7935470

  13. Gene expression profiling assigns CHEK2 1100delC breast cancers to the luminal intrinsic subtypes.

    PubMed

    Nagel, Jord H A; Peeters, Justine K; Smid, Marcel; Sieuwerts, Anieta M; Wasielewski, Marijke; de Weerd, Vanja; Trapman-Jansen, Anita M A C; van den Ouweland, Ans; Brüggenwirth, Hennie; van I Jcken, Wilfred F J; Klijn, Jan G M; van der Spek, Peter J; Foekens, John A; Martens, John W M; Schutte, Mieke; Meijers-Heijboer, Hanne

    2012-04-01

    CHEK2 1100delC is a moderate-risk cancer susceptibility allele that confers a high breast cancer risk in a polygenic setting. Gene expression profiling of CHEK2 1100delC breast cancers may reveal clues to the nature of the polygenic CHEK2 model and its genes involved. Here, we report global gene expression profiles of a cohort of 155 familial breast cancers, including 26 CHEK2 1100delC mutant tumors. In line with previous work, all CHEK2 1100delC mutant tumors clustered among the hormone receptor-positive breast cancers. In the hormone receptor-positive subset, a 40-gene CHEK2 signature was subsequently defined that significantly associated with CHEK2 1100delC breast cancers. The identification of a CHEK2 gene signature implies an unexpected biological homogeneity among the CHEK2 1100delC breast cancers. In addition, all 26 CHEK2 1100delC tumors classified as luminal intrinsic subtype breast cancers, with 8 luminal A and 18 luminal B tumors. This biological make-up of CHEK2 1100delC breast cancers suggests that a relatively limited number of additional susceptibility alleles are involved in the polygenic CHEK2 model. Identification of these as-yet-unknown susceptibility alleles should be aided by clues from the 40-gene CHEK2 signature.

  14. Training with Inedible Food in "Aplysia" Causes Expression of C/EBP in the Buccal but Not Cerebral Ganglion

    ERIC Educational Resources Information Center

    Levitan, David; Lyons, Lisa C.; Perelman, Alexander; Green, Charity L.; Motro, Benny; Eskin, Arnold; Susswein, Abraham J.

    2008-01-01

    Training with inedible food in "Aplysia" increased expression of the transcription factor C/EBP in the buccal ganglia, which primarily have a motor function, but not in the cerebral or pleural ganglia. C/EBP mRNA increased immediately after training, as well as 1-2 h later. The increased expression of C/EBP protein lagged the increase in mRNA.…

  15. Human muscle economy myoblast differentiation and excitation-contraction coupling use the same molecular partners, STIM1 and STIM2.

    PubMed

    Darbellay, Basile; Arnaudeau, Serge; Ceroni, Dimitri; Bader, Charles R; Konig, Stephane; Bernheim, Laurent

    2010-07-16

    Our recent work identified store-operated Ca(2+) entry (SOCE) as the critical Ca(2+) source required for the induction of human myoblast differentiation (Darbellay, B., Arnaudeau, S., König, S., Jousset, H., Bader, C., Demaurex, N., and Bernheim, L. (2009) J. Biol. Chem. 284, 5370-5380). The present work indicates that STIM2 silencing, similar to STIM1 silencing, reduces myoblast SOCE amplitude and differentiation. Because myoblasts in culture can be induced to differentiate into myotubes, which spontaneously contract in culture, we used the same molecular tools to explore whether the Ca(2+) mechanism of excitation-contraction coupling also relies on STIM1 and STIM2. Live cell imaging of early differentiating myoblasts revealed a characteristic clustering of activated STIM1 and STIM2 during the first few hours of differentiation. Thapsigargin-induced depletion of endoplasmic reticulum Ca(2+) content caused STIM1 and STIM2 redistribution into clusters, and co-localization of both STIM proteins. Interaction of STIM1 and STIM2 was revealed by a rapid increase in fluorescence resonance energy transfer between CFP-STIM1 and YFP-STIM2 after SOCE activation and confirmed by co-immunoprecipitation of endogenous STIM1 and STIM2. Although both STIM proteins clearly contribute to SOCE and are required during the differentiation process, STIM1 and STIM2 are functionally largely redundant as overexpression of either STIM1 or STIM2 corrected most of the impact of STIM2 or STIM1 silencing on SOCE and differentiation. With respect to excitation-contraction, we observed that human myotubes rely also on STIM1 and STIM2 to refill their endoplasmic reticulum Ca(2+)-content during repeated KCl-induced Ca(2+) releases. This indicates that STIM2 is a necessary partner of STIM1 for excitation-contraction coupling. Thus, both STIM proteins are required and interact to control SOCE during human myoblast differentiation and human myotube excitation-contraction coupling.

  16. Human Muscle Economy Myoblast Differentiation and Excitation-Contraction Coupling Use the Same Molecular Partners, STIM1 and STIM2*

    PubMed Central

    Darbellay, Basile; Arnaudeau, Serge; Ceroni, Dimitri; Bader, Charles R.; Konig, Stephane; Bernheim, Laurent

    2010-01-01

    Our recent work identified store-operated Ca2+ entry (SOCE) as the critical Ca2+ source required for the induction of human myoblast differentiation (Darbellay, B., Arnaudeau, S., König, S., Jousset, H., Bader, C., Demaurex, N., and Bernheim, L. (2009) J. Biol. Chem. 284, 5370–5380). The present work indicates that STIM2 silencing, similar to STIM1 silencing, reduces myoblast SOCE amplitude and differentiation. Because myoblasts in culture can be induced to differentiate into myotubes, which spontaneously contract in culture, we used the same molecular tools to explore whether the Ca2+ mechanism of excitation-contraction coupling also relies on STIM1 and STIM2. Live cell imaging of early differentiating myoblasts revealed a characteristic clustering of activated STIM1 and STIM2 during the first few hours of differentiation. Thapsigargin-induced depletion of endoplasmic reticulum Ca2+ content caused STIM1 and STIM2 redistribution into clusters, and co-localization of both STIM proteins. Interaction of STIM1 and STIM2 was revealed by a rapid increase in fluorescence resonance energy transfer between CFP-STIM1 and YFP-STIM2 after SOCE activation and confirmed by co-immunoprecipitation of endogenous STIM1 and STIM2. Although both STIM proteins clearly contribute to SOCE and are required during the differentiation process, STIM1 and STIM2 are functionally largely redundant as overexpression of either STIM1 or STIM2 corrected most of the impact of STIM2 or STIM1 silencing on SOCE and differentiation. With respect to excitation-contraction, we observed that human myotubes rely also on STIM1 and STIM2 to refill their endoplasmic reticulum Ca2+-content during repeated KCl-induced Ca2+ releases. This indicates that STIM2 is a necessary partner of STIM1 for excitation-contraction coupling. Thus, both STIM proteins are required and interact to control SOCE during human myoblast differentiation and human myotube excitation-contraction coupling. PMID:20436167

  17. The Inhibitory Effect of C-phycocyanin Containing Protein Extract (C-PC Extract) on Human Matrix Metalloproteinases (MMP-2 and MMP-9) in Hepatocellular Cancer Cell Line (HepG2).

    PubMed

    Kunte, Mugdha; Desai, Krutika

    2017-06-01

    Spirulina platensis :have been studied for several biological activities. In the current study C-phycocyanin containing protein extract (C-PC extract) of Spirulina platensis have been studied for its effect on human matrix metalloproteinases (MMP-1, MMP-2 and MMP-9) and tissue inhibitors of MMPs (TIMP-1 and TIMP-2). In the present study, breast cancer cell line (MDA-MB 231) and hepatocellular cancer cell line (HepG2) were examined for inhibition of MMPs at different levels of expression after C-PC extract treatment. Herein, we have demonstrated that C-PC extract significantly reduced activity of MMP-2 by 55.13% and MMP-9 by 57.9% in HepG2 cells at 15 μg concentration. Additionally, the treatment has reduced mRNA expression of MMP-2 and MMP-9 at 20 μg concentration by 1.65-folds and 1.66-folds respectively. The C-PC extract treatment have also downregulated a mRNA expression of TIMP-2 by 1.12 folds at 20 μg concentration in HepG2 cells. Together, these results indicate that C-PC, extract successfully inhibited MMP-2 and -9 at different levels of expression and TIMP-2 at a mRNA expression level; however, extract did not have any effect on MMP-1 expressed in MDA-MB231 and TIMP-1 expressed in HepG2 cells as well as the exact mechanism of inhibition of MMP-2, MMP-9 and TIMP-2 remained unclear.

  18. Thermochemistry analyses for transformation of C6 glucose compound into C9, C12 and C15 alkanes using density functional theory

    NASA Astrophysics Data System (ADS)

    Verma, Anand Mohan; Kishore, Nanda

    2017-02-01

    The hydrolysis of cellulose fraction of biomass yields C6 glucose which further can be transformed into long-chain hydrocarbons by C-C coupling. In this study, C6 glucose is transformed into three chain alkanes, namely, C9, C12 and C15 using C-C coupling reactions under the gas and aqueous phase milieus. The geometry optimisation and vibrational frequency calculations are carried out at well-known hybrid-GGA functional, B3LYP with the basis set of 6-31+g(d,p) under the density functional theory framework. The single point energetics are calculated at M05-2X/6-311+g(3df,2p) level of theory. All thermochemical properties are calculated over a wide range of temperature between 300 and 900 K at an interval of 100 K. The thermochemistry suggested that the aqueous phase behaviour is suitable for the hydrolysis of sugar into long-chain alkanes compared to gas-phase environment. The hydrodeoxygenation reactions under each reaction pathway are found as most favourable reactions in both phases; however, aqueous phase dominates over gas phase in all discussed thermodynamic parameters.

  19. Interatomic interactions in M2(C8H4O4)2C6H12N2 (M = Zn, Cu, Co, Ni) metal-organic framework polymers: X-ray photoelectron spectroscopy, QTAIM and ELF study

    NASA Astrophysics Data System (ADS)

    Kozlova, S. G.; Ryzhikov, M. R.; Samsonenko, D. G.; Kalinkin, A. V.

    2017-12-01

    Interatomic interactions in M2(C8H4O4)2C6H12N2 (M = Co, Ni, Cu, Zn) metal-organic framework polymers have been studied with the methods of quantum chemistry and X-ray photoelectron spectroscopy. Interactions of C6H12N2 molecules and C8H4O42- anions with metal atoms are shown to be of closed-shell type. C6H12N2 molecules are positively charged, the value of the charge slightly depends on the type of the metal atoms. Msbnd M interactions are described as "intermediate interactions" with some covalence contribution which reaches maximum for the interactions between cobalt atoms. The obtained quantum-chemical data agree with those obtained from photoelectron spectroscopy measurements.

  20. C/EBPβ LIP and c-Jun synergize to regulate expression of the murine progesterone receptor.

    PubMed

    Wang, Weizhong; Do, Han Ngoc; Aupperlee, Mark D; Durairaj, Srinivasan; Flynn, Emily E; Miksicek, Richard J; Haslam, Sandra Z; Schwartz, Richard C

    2018-06-02

    CCAAT/enhancer binding protein β (C/EBPβ) is required for murine mammary ductal morphogenesis and alveologenesis. Progesterone is critical for proliferation and alveologenesis in adult mammary glands, and there is a similar requirement for progesterone receptor isoform B (PRB) in alveologenesis. We examined C/EBPβ regulation of PR expression. All three C/EBPβ isoforms, including typically inhibitory LIP, transactivated the PR promoter. LIP, particularly, strongly synergized with c-Jun to drive PR transcription. Endogenous C/EBPβ and c-Jun stimulated a PR promoter-reporter and these two factors showed promoter occupancy on the endogenous PR gene. Additionally, LIP overexpression elevated endogenous PR protein expression. In pregnancy, both PRB and the relative abundance of LIP among C/EBPβ isoforms increase. Consistent with a role in PRB expression, in vivo C/EBPβ and PR isoform A expression showed mutually exclusive localization in mammary epithelium, while C/EBPβ and PRB largely co-localized. We suggest a critical role for C/EBPβ, particularly LIP, in PRB expression. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Enhancement of Palmarumycins C(12) and C(13) production in liquid culture of endophytic fungus Berkleasmium sp. Dzf12 after treatments with metal ions.

    PubMed

    Mou, Yan; Luo, Haiyu; Mao, Ziling; Shan, Tijiang; Sun, Weibo; Zhou, Kaiyi; Zhou, Ligang

    2013-01-07

    The influences of eight metal ions (i.e., Na+, Ca2+, Ag+, Co2+, Cu2+, Al3+, Zn2+, and Mn4+) on mycelia growth and palmarumycins C(12) and C(13) production in liquid culture of the endophytic fungus Berkleasmium sp. Dzf12 were investigated. Three metal ions, Ca2+, Cu2+ and Al3+ were exhibited as the most effective to enhance mycelia growth and palmarumycin production. When calcium ion (Ca2+) was applied to the medium at 10.0 mmol/L on day 3, copper ion (Cu2+) to the medium at 1.0 mmol/L on day 3, aluminum ion (Al3+) to the medium at 2.0 mmol/L on day 6, the maximal yields of palmarumycins C(12) plus C(13) were obtained as 137.57 mg/L, 146.28 mg/L and 156.77 mg/L, which were 3.94-fold, 4.19-fold and 4.49-fold in comparison with that (34.91 mg/L) of the control, respectively. Al3+ favored palmarumycin C(12) production when its concentration was higher than 4 mmol/L. Ca2+ had an improving effect on mycelia growth of Berkleasmium sp. Dzf12. The combination effects of Ca2+, Cu2+ and Al3+ on palmarumycin C(13) production were further studied by employing a statistical method based on the central composite design (CCD) and response surface methodology (RSM). By solving the quadratic regression equation between palmarumycin C(13) and three metal ions, the optimal concentrations of Ca2+, Cu2+ and Al3+ in medium for palmarumycin C(13) production were determined as 7.58, 1.36 and 2.05 mmol/L, respectively. Under the optimum conditions, the predicted maximum palmarumycin C(13) yield reached 208.49 mg/L. By optimizing the combination of Ca2+, Cu2+ and Al3+ in medium, palmarumycin C(13) yield was increased to 203.85 mg/L, which was 6.00-fold in comparison with that (33.98 mg/L) in the original basal medium. The results indicate that appropriate metal ions (i.e., Ca2+, Cu2+ and Al3+) could enhance palmarumycin production. Application of the metal ions should be an effective strategy for palmarumycin production in liquid culture of the endophytic fungus Berkleasmium sp. Dzf12.

  2. miR-708-5p and miR-34c-5p are involved in nNOS regulation in dystrophic context.

    PubMed

    Guilbaud, Marine; Gentil, Christel; Peccate, Cécile; Gargaun, Elena; Holtzmann, Isabelle; Gruszczynski, Carole; Falcone, Sestina; Mamchaoui, Kamel; Ben Yaou, Rabah; Leturcq, France; Jeanson-Leh, Laurence; Piétri-Rouxel, France

    2018-04-27

    Duchenne (DMD) and Becker (BMD) muscular dystrophies are caused by mutations in the DMD gene coding for dystrophin, a protein being part of a large sarcolemmal protein scaffold that includes the neuronal nitric oxide synthase (nNOS). The nNOS was shown to play critical roles in a variety of muscle functions and alterations of its expression and location in dystrophic muscle fiber leads to an increase of the muscle fatigability. We previously revealed a decrease of nNOS expression in BMD patients all presenting a deletion of exons 45 to 55 in the DMD gene (BMDd45-55), impacting the nNOS binding site of dystrophin. Since several studies showed deregulation of microRNAs (miRNAs) in dystrophinopathies, we focused on miRNAs that could target nNOS in dystrophic context. By a screening of 617 miRNAs in BMDd45-55 muscular biopsies using TLDA and an in silico study to determine which one could target nNOS, we selected four miRNAs. In order to select those that targeted a sequence of 3'UTR of NOS1, we performed luciferase gene reporter assay in HEK393T cells. Finally, expression of candidate miRNAs was modulated in control and DMD human myoblasts (DMDd45-52) to study their ability to target nNOS. TLDA assay and the in silico study allowed us to select four miRNAs overexpressed in muscle biopsies of BMDd45-55 compared to controls. Among them, only the overexpression of miR-31, miR-708, and miR-34c led to a decrease of luciferase activity in an NOS1-3'UTR-luciferase assay, confirming their interaction with the NOS1-3'UTR. The effect of these three miRNAs was investigated on control and DMDd45-52 myoblasts. First, we showed a decrease of nNOS expression when miR-708 or miR-34c were overexpressed in control myoblasts. We then confirmed that DMDd45-52 cells displayed an endogenous increased of miR-31, miR-708, and miR-34c and a decreased of nNOS expression, the same characteristics observed in BMDd45-55 biopsies. In DMDd45-52 cells, we demonstrated that the inhibition of miR-708

  3. Investigation of the Herzberg (C1Σ+→A1Π) band system in 12C17O

    NASA Astrophysics Data System (ADS)

    Hakalla, Rafał

    2015-10-01

    The C→A (0,1), (0,2) and (0,3) rovibronic bands of the less-abundant 12C17O isotopologue are studied in high resolution using a high-accuracy dispersive optical spectroscopy in the region of 22,800-26,100 cm-1. Calibration with respect to simultaneously recorded thorium atomic lines, obtained from several overlapped orders of the spectrum in the visible range, as well as a stainless steel hollow-cathode molecular lamp with two anodes, yields an absolute accuracy of wavenumbers measurements of about 0.0025 cm-1 for the CO spectra. All 261 spectra lines of the Herzberg band system in 12C17O, up to Jmax=34, were precisely measured and rotationally analyzed. As a result, the merged rotational constants and rotational equilibrium constants for the C1Σ+ Rydberg state, as well as the band origins, the isotope shifts, the RKR turning points, Franck-Condon factors, relative intensities, and r-centroids of the C→A system in the 12C17O isotopologue were obtained. An experimental RKR potential energy curve and vibrational levels of the C1Σ+ state in 12C17O together with highly excited k3Π, c3Π, E1Π, B1Σ+ and D‧1Σ+ states lying in the region between the first dissociation limit and the ionization potential of CO were plotted. A detailed investigation of possible perturbations that should occur in the C1Σ+(υ=0) Rydberg state of less-abundant 12C17O isotopologue in the close vicinity of the k3Π(υ=1, 2) and c3Π(υ=0) states in the region 92,000 cm-1 was performed. In the A1Π, υ=3 state of 12C17O, extensive, multi-state rotational perturbations were found and analyzed. Also, a global isotopic analysis of the C1Σ+ Rydberg state was carried out in the 12C16O, 12C17O, 13C16O, 12C18O, 13C17O, and 13C18O as well as in 14C16O and 14C18O isotopologues. This analysis enabled us to determine, amongst others, the vibrational equilibrium constants in 12C17O for the C1Σ+ state, to improve these constants in the 12C16O, 13C16O, 12C18O, 13C17O, and 13C18O isotopologues and

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Long; Shi, Songting; Zhang, Juan

    Highlights: Black-Right-Pointing-Pointer Expression of Id3 but not Id1 is induced by Wnt3a stimulation in C2C12 cells. Black-Right-Pointing-Pointer Wnt3a induces Id3 expression via canonical Wnt/{beta}-catenin pathway. Black-Right-Pointing-Pointer Wnt3a-induced Id3 expression does not depend on BMP signaling activation. Black-Right-Pointing-Pointer Induction of Id3 expression is critical determinant in Wnt3a-induced cell proliferation and differentiation. -- Abstract: Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a {beta}-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However,more » Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/{beta}-catenin induced gene in myoblast cell fate determination.« less

  5. YF-12C on ramp

    NASA Technical Reports Server (NTRS)

    1973-01-01

    62 flights. It was lost in a non-fatal crash on 24 June 1971. It was replaced by the YF-12C. The Lockheed A-12 family, known as the Blackbirds, were designed by Clarence 'Kelly' Johnson. They were constructed mostly of titanium to withstand aerodynamic heating. Fueled by JP-7, the Blackbirds were capable of cruising at Mach 3.2 and attaining altitudes in excess of 80,000 feet. The first version, a CIA reconnaissance aircraft that first flew in April 1962 was called the A-12. An interceptor version was developed in 1963 under the designation YF-12A. A USAF reconnaissance variant, called the SR-71, was first flown in 1964. The A-12 and SR-71 designs included leading and trailing edges made of high-temperature fiberglass-asbestos laminates. The NASA YF-12 research program was ambitious; the aircraft flew an average of once a week unless down for extended maintenance or modification. Program expenses averaged $3.1 million per year just to run the flight tests. NASA crews for the YF-12 included pilots Fitzhugh Fulton and Donald Mallick, anf flight test engineers Victor Horton and Ray Young. Other NASA test pilots checked out in the YF-12A included John Manke, William Dana, Gary Krier, Einar Enevoldson, Tom McMurtry, Steve Ishmael, and Michael Swann. Only Fulton, Mallick, Ray, and Horton flew the YF-12C.

  6. Orosomucoid binds insulin and IGF1 and reduces hormone stimulated protein synthesis and glucose metabolism in C2C12 myotubes

    USDA-ARS?s Scientific Manuscript database

    Previous research has indicated that orosomuciod (ORM1) may enhance insulin response in 3T3-L1 adipocytes. The present study was undertaken to determine if ORM1 can modify muscle metabolism by examining glucose oxidation and protein synthesis in the C2C12 muscle cell line. Cells were used for expe...

  7. Decline in c-myc mRNA expression but not the induction of c-fos mRNA expression is associated with differentiation of SH-SY5Y human neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalava, A.M.; Heikkilae, J.E.; Akerman, K.E.O.

    1988-11-01

    The induction of differentiation in SH-SY5Y human neuroblastoma cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is accompanied by a rapid and a transient expression of c-fos mRNA and a down-regulation of c-myc RNA. The TPA-induced expression of c-fos mRNA was inhibited by H-7, a specific inhibitor of protein kinase C (PK-C). Dioctanoylglycerol (DiC{sub 8}) failed to induce differentiation of SH-SY5Y cells or to down-regulate c-myc mRNA but it did induce the expression of c-fos mRNA. Treatment of IMR-32 human neuroblastoma cells with TPA did not cause differentiation although c-fos mRNA was induced. Since PK-C in SH-SY5Y cells was activated by both TPA andmore » DiC{sub 8} it is suggested that the activation of PK-C alone is not sufficient to induce differentiation in SH-SY5Y cells. The down-regulation of c-myc mRNA rather than the induction of c-fos mRNA seems to be associated with differentiation process in SH-SY5Y cells.« less

  8. Melatonin protects against uric acid-induced mitochondrial dysfunction, oxidative stress, and triglyceride accumulation in C2C12 myotubes.

    PubMed

    Maarman, Gerald J; Andrew, Brittany M; Blackhurst, Dee M; Ojuka, Edward O

    2017-04-01

    Excess uric acid has been shown to induce oxidative stress, triglyceride accumulation, and mitochondrial dysfunction in the liver and is an independent predictor of type-2 diabetes. Skeletal muscle plays a dominant role in type 2 diabetes and presents a large surface area to plasma uric acid. However, the effects of uric acid on skeletal muscle are underinvestigated. Our aim was therefore to characterize the effects of excessive uric acid on oxidative stress, triglyceride content, and mitochondrial function in skeletal muscle C 2 C 12 myotubes and assess how these are modulated by the antioxidant molecule melatonin. Differentiated C 2 C 12 myotubes were exposed to 750 µM uric acid or uric acid + 10 nM melatonin for 72 h. Compared with control, uric acid increased triglyceride content by ~237%, oxidative stress by 32%, and antioxidant capacity by 135%. Uric acid also reduced endogenous ROUTINE respiration, complex II-linked oxidative phosphorylation, and electron transfer system capacities. Melatonin counteracted the effects of uric acid without further altering antioxidant capacity. Our data demonstrate that excess uric acid has adverse effects on skeletal muscle similar to those previously reported in hepatocytes and suggest that melatonin at a low physiological concentration of 10 nM may be a possible therapy against some adverse effects of excess uric acid. NEW & NOTEWORTHY Few studies have investigated the effects of uric acid on skeletal muscle. This study shows that hyperuricemia induces mitochondrial dysfunction and triglyceride accumulation in skeletal muscle. The findings may explain why hyperuricemia is an independent predictor of diabetes. Copyright © 2017 the American Physiological Society.

  9. Effect of fluoride exposure on mRNA expression of cav1.2 and calcium signal pathway apoptosis regulators in PC12 cells.

    PubMed

    Liao, Qiuxia; Zhang, Rui; Wang, Xiaoyu; Nian, Weiwei; Ke, Lulu; Ouyang, Wei; Zhang, Zigui

    2017-09-01

    This study investigated the effects of fluoride exposure on the mRNA expression of Cav1.2 calcium signaling pathway and apoptosis regulatory molecules in PC12 cells. The viability of PC12 cell receiving high fluoride (5.0mM) and low fluoride (0.5mM) alone or fluoride combined with L-type calcium channel (LTCC) agonist/inhibitor (5umol/L FPL6417/2umol/L nifedipine) was detected using cell counting kit-8 at different time points (2, 4, 6, 8, 12, 10, and 24h). Changes in the cell configuration were observed after exposing the cells to fluoride for 24h. The expression levels of molecules related to the LTCC were examined, particularly, Cav1.2, c-fos, CAMK II, Bax, and Bcl-2. Fluoride poisoning induced severe cell injuries, such as decreased PC12 cell activity, enhanced cell apoptosis, high c-fos, CAMKII, and Bax mRNA expression levels. Bcl-2 expression level was also reduced. Meanwhile, high fluoride, high fluoride with FPL64176, and low fluoride with FPL64176 enhanced the Cav1.2 expression level. In contrast, low fluoride, high fluoride with nifedipine, and low fluoride with nifedipine reduced the Cav1.2 expression level. Thus, Cav1.2 may be an important molecular target for the fluorosis treatment, and the LTCC inhibitor nifedipine may be an effective drug for fluorosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Investigating {sup 13}C+{sup 12}C reaction by the activation method. Sensitivity tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesneanu, Daniela, E-mail: chesneanu@nipne.ro; Trache, L.; Margineanu, R.

    2015-02-24

    We have performed experiments to check the limits of sensitivity of the activation method using the new 3 MV Tandetron accelerator and the low and ultra-low background laboratories of the “Horia Hulubei” National Institute of Physics and Nuclear Engineering (IFIN-HH). We have used the {sup 12}C+{sup 13}C reaction at beam energies E{sub lab}= 6, 7 and 8 MeV. The knowledge of this fusion cross section at deep sub-barrier energies is of interest for astrophysical applications, as it provides an upper limit for the fusion cross section of {sup 12}C+{sup 12}C over a wide energy range. A {sup 13}C beam withmore » intensities 0.5–2 particleμA was provided by the accelerator and used to bombard graphite targets, resulting in activation with {sup 24}Na from the {sup 12}C({sup 13}C,p) reaction. The 1369 and 2754 keV gamma-rays from {sup 24}Na de-activation were clearly observed in the spectra obtained in two different laboratories used for measurements at low and ultralow background: one at the surface and one located underground in the Unirea salt mine from Slanic Prahova, Romania. In the underground laboratory, for E{sub lab} = 6 MeV we have measured an activity of 0.085 ± 0.011 Bq, corresponding to cross sections of 1–3 nb. This demonstrates that it is possible to measure {sup 12}C targets irradiated at lower energies for at least 10 times lower cross sections than before β–γ coincidences will lead us another factor of 10 lower, proving that this installations can be successfully used for nuclear astrophysics measurements.« less

  11. Emodin Inhibits Homocysteine-Induced C-Reactive Protein Generation in Vascular Smooth Muscle Cells by Regulating PPARγ Expression and ROS-ERK1/2/p38 Signal Pathway

    PubMed Central

    Pang, Xiaoming; Liu, Juntian; Li, Yuxia; Zhao, Jingjing; Zhang, Xiaolu

    2015-01-01

    Atherosclerosis is an inflammatory disease. As an inflammatory molecule, C-reactive protein (CRP) plays a direct role in atherogenesis. It is known that the elevated plasma homocysteine (Hcy) level is an independent risk factor for atherosclerosis. We previously reported that Hcy produces a pro-inflammatory effect by inducing CRP expression in vascular smooth muscle cells (VSMCs). In the present study, we observed effect of emodin on Hcy-induced CRP expression in rat VSMCs and molecular mechanisms. The in vitro results showed that pretreatment of VSMCs with emodin inhibited Hcy-induced mRNA and protein expression of CRP in a concentration-dependent manner. The in vivo experiments displayed that emodin not only inhibited CRP expression in the vessel walls in mRNA and protein levels, but also reduced the circulating CRP level in hyperhomocysteinemic rats. Further study revealed that emodin diminished Hcy-stimulated generation of reactive oxygen species (ROS), attenuated Hcy-activated phosphorylation of ERK1/2 and p38, and upregulated Hcy-inhibited expression of peroxisome proliferator-activated receptor gamma (PPARγ) in VSMCs. These demonstrate that emodin is able to inhibit Hcy-induced CRP generation in VSMCs, which is related to interfering with ROS-ERK1/2/p38 signal pathway and upregulating PPARγ expression. The present study provides new evidence for the anti-inflammatory and anti-atherosclerotic effects of emodin. PMID:26131983

  12. Stabilization of Giant Fullerenes C2(41)-C90, D3(85)-C92, C1(132)-C94, C2(157)-C96, and C1(175)-C98 by Encapsulation of a Large La2C2 Cluster: The Importance of Cluster-Cage Matching.

    PubMed

    Zhao, Shasha; Zhao, Pei; Cai, Wenting; Bao, Lipiao; Chen, Muqing; Xie, Yunpeng; Zhao, Xiang; Lu, Xing

    2017-04-05

    Successful isolation and unambiguous crystallographic assignment of a series of higher carbide cluster metallofullerenes present new insights into the molecular structures and cluster-cage interactions of endohedral metallofullerenes. These new species are identified as La 2 C 2 @C 2 (41)-C 90 , La 2 C 2 @D 3 (85)-C 92 , La 2 C 2 @C 1 (132)-C 94 , La 2 C 2 @C 2 (157)-C 96 , and La 2 C 2 @C 1 (175)-C 98 . This is the first report for these new cage structures except for D 3 (85)-C 92 . Our experimental and theoretical results demonstrate that La 2 C 92-106 are more inclined to exist stably in the carbide form La 2 C 2 @C 90-104 rather than as the dimetallofullerenes La 2 @C 92-106 , which are rationalized by considering a synergistic effect of inserting a C 2 unit into the cage, which ensures strong metal-cage interactions by partially neutralizing the charges from the metal ions and by fulfilling the coordination requirement of the La 3+ ions as much as possible.

  13. Identification of a c-Type Cytochrome Specific for Manganese Dioxide (MnO2) Reduction in Anaeromyxobacter dehalogenans Strain 2CP-C

    NASA Astrophysics Data System (ADS)

    Pfiffner, S. M.; Nissen, S.; Liu, X.; Chourey, K.; Vishnivetskaya, T. A.; Hettich, R.; Loeffler, F.

    2014-12-01

    Anaeromyxobacter dehalogenans is a metabolically versatile Deltaproteobacterium and conserves energy from the reduction of various electron acceptors, including insoluble MnO2 and ferric oxides/oxyhydroxides (FeOOH). The goal of this study was to identify c-type cytochromes involved in electron transfer to MnO2. The characterization of deletion mutants has revealed a number of c-type cytochromes involved in electron transfer to solid metal oxides in Shewanella spp. and Geobacter spp; however, a genetic system for Anaeromyxobacter is not available. The A. dehalogenans str. 2CP-C genome encodes 68 putative c-type cytochromes, which all lack functional assignments. To identify c-type cytochromes involved in electron transfer to solid MnO2, protein expression profiles of A. dehalogenans str. 2CP-C cells grown with acetate as electron donor and MnO2, ferric citrate, FeOOH, nitrate or fumarate as electron acceptors were compared. Whole cell proteomes were analyzed after trypsin proteolysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Distinct c-type cytochrome expression patterns were observed with cells grown with different electron acceptors. A. dehalogenans str. 2CP-C grown with MnO2 expressed 25 out of the 68 c-type cytochromes encoded on the genome. The c-type cytochrome Adeh_1278 was only expressed in strain 2CP-C grown with MnO2. Reverse transcription PCR confirmed that the Adeh_1278 gene was transcribed in MnO2-grown cells but not in cells grown with other terminal electron acceptors. The expression of the Adeh_1278 gene correlated with Mn(IV) reduction activity. Adeh_1278 has three heme binding motifs and is predicted to be located in the periplasm. The identification of Adeh_1278 as a protein uniquely expressed when MnO2 serves as electron acceptor suggests its utility as a biomarker for MnO2 reduction. This example demonstrates the value of the LC-MS/MS approach for identifying specific proteins of interest and making functional assignments

  14. Expression of fusion IL2-B7.1(IgV+C) and effects on T lymphocytes.

    PubMed

    Kong, Linghong; Li, Yaochen; Yang, Ye; Li, Kangsheng

    2007-12-01

    The search for an effective immunotherapeutic treatment for tumors is an important area of cancer research. To prepare a more effective form of the bifunctional fusion protein IL2-B7.1(IgV+C) and analyze its effect on the stimulation of T lymphocyte proliferation, we used DNAStar 5.03 software to predict the structural diversity and biochemical character of IL2-B7.1(IgV+C). We then prepared fusion protein IL2-B7.1(IgV+C) by establishing its prokaryotic expression system, and tested its effect on the stimulation of T lymphocytes in vitro. The results indicated that IL2-B7.1(IgV+C) correctly formed a secondary structure in which both IL2 and B7.1(IgV+C) maintained their original hydrophilicity and epitopes. Western blot analysis revealed that IL2-B7.1(IgV+C) was efficiently expressed. Our analysis of CTLL-2 and T-cell proliferation showed that recombinant human (rh) IL2-B7.1(IgV+C) exerted the combined stimulating effects of both rhIL2 and rh B7.1(IgV+C) on cell proliferation, and that these effects could be blocked by adding either anti-IL2 or anti-B7.1 monoclonal antibodies. A >2-fold increase in [3H]TdR incorporation compared with that of cells treated with recombinant protein IL2, or B7.1(IgV+C) alone, revealed that rhIL2-B7.1(IgV+C) had dose-dependent synergetic effects on T-cell activation in the presence of anti-CD3 monoclonal antibody. We concluded that the augmented potency of rhIL2-B7.1(IgV+C) resulted in a stronger stimulation of T-cell proliferation than either rhB7.1(IgV+C) or rhIL2 alone.

  15. Regulation of hemeoxygenase-1 gene expression by Nrf2 and c-Jun in tertiary butylhydroquinone-stimulated rat primary astrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jin-Sun; Kim, Hee-Sun, E-mail: hskimp@ewha.ac.kr

    2014-05-16

    Highlights: • tBHQ increased HO-1 mRNA and protein levels in rat primary astrocytes. • tBHQ enhanced HO-1 gene transcription in an ARE-dependent manner. • tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. • Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. • Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction. - Abstract: Hemeoxygenase-1 (HO-1) is a phase II antioxidant enzyme that is primarily involved in detoxification and cytoprotection in a variety of tissues. However, the mechanism underlying HO-1 gene expression remains unclear. In the present study, we investigatedmore » the regulation of HO-1 expression in primary cultured astrocytes by using the natural antioxidant compound tertiary butylhydroquinone (tBHQ). We found that tBHQ increased HO-1 mRNA and protein levels. Promoter analysis revealed that tBHQ enhanced HO-1 gene transcription in an antioxidant response element (ARE)-dependent manner. In addition, tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. Small interfering RNA (siRNA) experiments demonstrated that Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. Thus, Nrf2 knockdown reduced the basal level of HO-1 expression but did not affect the fold induction by tBHQ. On the other hand, knockdown of c-Jun diminished tBHQ-mediated induction of HO-1 without affecting basal expression. The data suggest that Nrf2 generally modulates the basal expression of HO-1, while c-Jun mediates HO-1 induction in response to tBHQ. The results of co-immunoprecipitation assays demonstrated a physical interaction between Nrf2 and c-Jun in tBHQ-treated astrocytes. The results suggest that Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction in tBHQ-treated rat primary astrocytes.« less

  16. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis.

    PubMed

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-06

    Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Gene expression profiles associated with depression in patients with chronic hepatitis C (CH-C)

    PubMed Central

    Birerdinc, Aybike; Afendy, Arian; Stepanova, Maria; Younossi, Issah; Baranova, Ancha; Younossi, Zobair M

    2012-01-01

    The standard treatment for CH-C, pegylated interferon-α and ribavirin (PEG-IFN + RBV), is associated with depression. Recent studies have proposed a new role for cytokines in the pathogenesis of depression. We aimed to assess differential gene expression related to depression in CH-C patients treated with PEG-IFN + RBV. We included 67 CH-C patients being treated with PEG-IFN+RBV. Of the entire study cohort, 22% had pre-existing depression, while another 37% developed new depression in course of the treatment. Pretreatment blood samples were collected into PAXgene™ RNA tubes, the RNAs extracted from peripheral blood mononuclear cells (PBMCs) were used for one step RT-PCR to profile 160 mRNAs. Differentially expressed genes were separated into up- and down-regulated genes according to presence or absence of depression at baseline (pre-existing depression) or following the initiation of treatment (treatment-related depression). The mRNA expression profile associated with any depression and with treatment-related depression included four and six genes, respectively. Our data demonstrate a significant down-regulation of TGF-β1 and the shift of Th1-Th2 cytokine balance in the depression associated with IFN-based treatment of HCV infection. We propose that TGF-β1 plays an important role in the imbalance of Th1/Th2 in patients with CH-C and depression. With further validation, TGF-β1 and other components of Th1/Th2 regulation pathway may provide a future marker for CH-C patients predisposed to depression. PMID:23139898

  18. Gene expression profiles associated with depression in patients with chronic hepatitis C (CH-C).

    PubMed

    Birerdinc, Aybike; Afendy, Arian; Stepanova, Maria; Younossi, Issah; Baranova, Ancha; Younossi, Zobair M

    2012-09-01

    The standard treatment for CH-C, pegylated interferon-α and ribavirin (PEG-IFN + RBV), is associated with depression. Recent studies have proposed a new role for cytokines in the pathogenesis of depression. We aimed to assess differential gene expression related to depression in CH-C patients treated with PEG-IFN + RBV. We included 67 CH-C patients being treated with PEG-IFN+RBV. Of the entire study cohort, 22% had pre-existing depression, while another 37% developed new depression in course of the treatment. Pretreatment blood samples were collected into PAXgene™ RNA tubes, the RNAs extracted from peripheral blood mononuclear cells (PBMCs) were used for one step RT-PCR to profile 160 mRNAs. Differentially expressed genes were separated into up- and down-regulated genes according to presence or absence of depression at baseline (pre-existing depression) or following the initiation of treatment (treatment-related depression). The mRNA expression profile associated with any depression and with treatment-related depression included four and six genes, respectively. Our data demonstrate a significant down-regulation of TGF-β1 and the shift of Th1-Th2 cytokine balance in the depression associated with IFN-based treatment of HCV infection. We propose that TGF-β1 plays an important role in the imbalance of Th1/Th2 in patients with CH-C and depression. With further validation, TGF-β1 and other components of Th1/Th2 regulation pathway may provide a future marker for CH-C patients predisposed to depression.

  19. Myostatin regulates miR-431 expression via the Ras-Mek-Erk signaling pathway.

    PubMed

    Wu, Rimao; Li, Hu; Li, Tingting; Zhang, Yong; Zhu, Dahai

    2015-05-29

    MicroRNAs (miRNAs) play critical regulatory roles in controlling myogenic development both in vitro and in vivo; however, the molecular mechanisms underlying transcriptional regulation of miRNA genes in skeletal muscle cells are largely unknown. Here, using a microarray hybridization approach, we identified myostatin-regulated miRNA genes in skeletal muscle tissues by systematically searching miRNAs that are differentially expressed between wild-type and myostatin-null mice during development. We found that 116 miRNA genes were differentially expressed in muscles between these mice across different developmental stages. We further characterized myostatin-regulated miR-431 was upregulated in skeletal muscle tissues of myostatin-null mice. In functional studies, we found that overexpression of miR-431 in C2C12 myoblast cells attenuated myostatin-induced suppression of myogenic differentiation. Mechanistic studies further demonstrated that myostatin acted through the Ras-Mek-Erk signaling pathway to transcriptionally regulate miR-431 expression C2C12 cells. Our findings provide new insight into the mechanisms underlying transcriptional regulation of miRNA genes by myostatin during skeletal muscle development. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Broncho Vaxom (OM-85) modulates rhinovirus docking proteins on human airway epithelial cells via Erk1/2 mitogen activated protein kinase and cAMP

    PubMed Central

    Pasquali, Christian; Stolz, Daiana; Tamm, Michael

    2017-01-01

    Background Bronchial epithelial cells (BEC) are primary target for Rhinovirus infection through attaching to cell membrane proteins. OM-85, a bacterial extract, improves recovery of asthma and COPD patients after viral infections, but only part of the mechanism was addressed, by focusing on defined immune cells. Objective We therefore determined the effect of OM-85 on isolated primary human BEC of controls (n = 8), asthma patients (n = 10) and COPD patients (n = 9). Methods BEC were treated with OM-85 alone (24 hours) or infected with Rhinovirus. BEC survival was monitored by manual cell counting and Rhinovirus replication by lytic activity. Immuno-blotting and ELISA were used to determine the expression of Rhinovirus interacting proteins: intracellular adhesion molecule (ICAM), major histocompatibility complex class II (MHC-2), complement component C1q receptor (C1q-R), inducible T-Cell co-stimulator (ICOS), its ligand ICOSL, and myeloid differentiation primary response gene 88 (Myd88); as well as for signal transducers Erk1/2, p38, JNK mitogen activated protein kinases MAPK), and cAMP. Results OM-85 significantly reduced Rhinovirus-induced BEC death and virus replication. OM-85 significantly increased the expression of virus interacting proteins C1q-R and β-defensin in all 3 probes and groups, which was prevented by either Erk1/2 MAPK or cAMP inhibition. In addition, OM-85 significantly reduced Rhinovirus induced expression of ICAM1 involving p38 MAPK. In BEC OM-85 had no significant effect on the expression of ICOS, ICOSL and MHC-2 membrane proteins nor on the adaptor protein MyD88. Conclusion The OM-85-induced increased of C1q-R and β-defensin, both important for antigen presentation and phagocytosis, supports its activity in host cell’s defence against Rhinovirus infection. PMID:29182620

  1. Broncho Vaxom (OM-85) modulates rhinovirus docking proteins on human airway epithelial cells via Erk1/2 mitogen activated protein kinase and cAMP.

    PubMed

    Roth, Michael; Pasquali, Christian; Stolz, Daiana; Tamm, Michael

    2017-01-01

    Bronchial epithelial cells (BEC) are primary target for Rhinovirus infection through attaching to cell membrane proteins. OM-85, a bacterial extract, improves recovery of asthma and COPD patients after viral infections, but only part of the mechanism was addressed, by focusing on defined immune cells. We therefore determined the effect of OM-85 on isolated primary human BEC of controls (n = 8), asthma patients (n = 10) and COPD patients (n = 9). BEC were treated with OM-85 alone (24 hours) or infected with Rhinovirus. BEC survival was monitored by manual cell counting and Rhinovirus replication by lytic activity. Immuno-blotting and ELISA were used to determine the expression of Rhinovirus interacting proteins: intracellular adhesion molecule (ICAM), major histocompatibility complex class II (MHC-2), complement component C1q receptor (C1q-R), inducible T-Cell co-stimulator (ICOS), its ligand ICOSL, and myeloid differentiation primary response gene 88 (Myd88); as well as for signal transducers Erk1/2, p38, JNK mitogen activated protein kinases MAPK), and cAMP. OM-85 significantly reduced Rhinovirus-induced BEC death and virus replication. OM-85 significantly increased the expression of virus interacting proteins C1q-R and β-defensin in all 3 probes and groups, which was prevented by either Erk1/2 MAPK or cAMP inhibition. In addition, OM-85 significantly reduced Rhinovirus induced expression of ICAM1 involving p38 MAPK. In BEC OM-85 had no significant effect on the expression of ICOS, ICOSL and MHC-2 membrane proteins nor on the adaptor protein MyD88. The OM-85-induced increased of C1q-R and β-defensin, both important for antigen presentation and phagocytosis, supports its activity in host cell's defence against Rhinovirus infection.

  2. 12 CFR 563c.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of Financial Statements § 563c.2 Definitions. (See also 17 CFR 210.1-02.) (a) Registrant. The term “registrant” means an applicant, a savings association, or any other person required to prepare financial... recently completed fiscal year (for purposes of determining whether financial statements of a business...

  3. Chloride Channelopathies of ClC-2

    PubMed Central

    Bi, Miao Miao; Hong, Sen; Zhou, Hong Yan; Wang, Hong Wei; Wang, Li Na; Zheng, Ya Juan

    2014-01-01

    Chloride channels (ClCs) have gained worldwide interest because of their molecular diversity, widespread distribution in mammalian tissues and organs, and their link to various human diseases. Nine different ClCs have been molecularly identified and functionally characterized in mammals. ClC-2 is one of nine mammalian members of the ClC family. It possesses unique biophysical characteristics, pharmacological properties, and molecular features that distinguish it from other ClC family members. ClC-2 has wide organ/tissue distribution and is ubiquitously expressed. Published studies consistently point to a high degree of conservation of ClC-2 function and regulation across various species from nematodes to humans over vast evolutionary time spans. ClC-2 has been intensively and extensively studied over the past two decades, leading to the accumulation of a plethora of information to advance our understanding of its pathophysiological functions; however, many controversies still exist. It is necessary to analyze the research findings, and integrate different views to have a better understanding of ClC-2. This review focuses on ClC-2 only, providing an analytical overview of the available literature. Nearly every aspect of ClC-2 is discussed in the review: molecular features, biophysical characteristics, pharmacological properties, cellular function, regulation of expression and function, and channelopathies. PMID:24378849

  4. MURF2B, a Novel LC3-Binding Protein, Participates with MURF2A in the Switch between Autophagy and Ubiquitin Proteasome System during Differentiation of C2C12 Muscle Cells

    PubMed Central

    Pizon, Véronique; Rybina, Sofia; Gerbal, Fabien; Delort, Florence; Vicart, Patrick; Baldacci, Giuseppe; Karsenti, Eric

    2013-01-01

    The ubiquitin proteasome system and macroautophagy are proteolytic pathways essential in the maintenance of cellular homeostasis during differentiation and remodelling of skeletal muscle. In both pathways, proteins to be degraded are tagged with polyubiquitin. In skeletal muscles, the MURF2 proteins display E3 ubiquitin ligase structure suggesting that they may covalently attach ubiquitin polypeptides to still unknown target proteins. So far only MURF2A isoforms were studied and shown to interact with p62/SQSTM1, a protein implicated in macroautophagic and ubiquitin proteasome system degradations. Here, we analyzed the MURF2B and MURF2A proteins and show that the ratio of the isoforms changes during differentiation of muscle C2C12 cells and that the shift of the isoforms expression follows the sequential activation of autophagic or proteasomal degradation. We also show that MURF2B has a functional domain needed for its interaction with LC3, a protein needed for autophagic vesicles formation. Using specific MURF2 RNAi cells we observed that MURF2A and MURF2B are both needed for the formation of autophagosomes and that in the absence of MURF2B, the cells expressing MURF2A display an activated ubiquitin proteasome system implicated in the degradation of p62/SQSTM1 by UPS. Altogether, our results indicate that MURF2A and MURF2B proteins could participate in the molecular switch between the two ubiquitin degradative pathways. PMID:24124537

  5. Genome-wide gene expression perturbation induced by loss of C2 chromosome in allotetraploid Brassica napus L.

    PubMed Central

    Zhu, Bin; Shao, Yujiao; Pan, Qi; Ge, Xianhong; Li, Zaiyun

    2015-01-01

    Aneuploidy with loss of entire chromosomes from normal complement disrupts the balanced genome and is tolerable only by polyploidy plants. In this study, the monosomic and nullisomic plants losing one or two copies of C2 chromosome from allotetraploid Brassica napus L. (2n = 38, AACC) were produced and compared for their phenotype and transcriptome. The monosomics gave a plant phenotype very similar to the original donor, but the nullisomics had much smaller stature and also shorter growth period. By the comparative analyses on the global transcript profiles with the euploid donor, genome-wide alterations in gene expression were revealed in two aneuploids, and their majority of differentially expressed genes (DEGs) resulted from the trans-acting effects of the zero and one copy of C2 chromosome. The higher number of up-regulated genes than down-regulated genes on other chromosomes suggested that the genome responded to the C2 loss via enhancing the expression of certain genes. Particularly, more DEGs were detected in the monosomics than nullisomics, contrasting with their phenotypes. The gene expression of the other chromosomes was differently affected, and several dysregulated domains in which up- or downregulated genes obviously clustered were identifiable. But the mean gene expression (MGE) for homoeologous chromosome A2 reduced with the C2 loss. Some genes and their expressions on C2 were correlated with the phenotype deviations in the aneuploids. These results provided new insights into the transcriptomic perturbation of the allopolyploid genome elicited by the loss of individual chromosome. PMID:26442076

  6. Simultaneous measurement of neuronal and glial metabolism in rat brain in vivo using co-infusion of [1,6- 13C 2]glucose and [1,2- 13C 2]acetate

    NASA Astrophysics Data System (ADS)

    Deelchand, Dinesh K.; Nelson, Christopher; Shestov, Alexander A.; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2009-02-01

    In this work the feasibility of measuring neuronal-glial metabolism in rat brain in vivo using co-infusion of [1,6- 13C 2]glucose and [1,2- 13C 2]acetate was investigated. Time courses of 13C spectra were measured in vivo while infusing both 13C-labeled substrates simultaneously. Individual 13C isotopomers (singlets and multiplets observed in 13C spectra) were quantified automatically using LCModel. The distinct 13C spectral pattern observed in glutamate and glutamine directly reflected the fact that glucose was metabolized primarily in the neuronal compartment and acetate in the glial compartment. Time courses of concentration of singly and multiply-labeled isotopomers of glutamate and glutamine were obtained with a temporal resolution of 11 min. Although dynamic metabolic modeling of these 13C isotopomer data will require further work and is not reported here, we expect that these new data will allow more precise determination of metabolic rates as is currently possible when using either glucose or acetate as the sole 13C-labeled substrate.

  7. 40 CFR 180.1250 - C8, C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false C8, C10, and C12 fatty acid monoesters..., C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the requirement of a tolerance. The C8, C10, and C12 straight-chain fatty acid monoesters of glycerol (glycerol...

  8. 40 CFR 180.1250 - C8, C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false C8, C10, and C12 fatty acid monoesters..., C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the requirement of a tolerance. The C8, C10, and C12 straight-chain fatty acid monoesters of glycerol (glycerol...

  9. Amyloidosis in transgenic mice expressing murine amyloidogenic apolipoprotein A-II (Apoa2c).

    PubMed

    Ge, Fengxia; Yao, Junjie; Fu, Xiaoying; Guo, Zhanjun; Yan, Jingmin; Zhang, Beiru; Zhang, Huanyu; Tomozawa, Hiroshi; Miyazaki, Junichi; Sawashita, Jinko; Mori, Masayuki; Higuchi, Keiichi

    2007-07-01

    In mice, apolipoprotein A-II (apoA-II) self-associates to form amyloid fibrils (AApoAII) in an age-associated manner. We postulated that the two most important factors in apoA-II amyloidosis are the Apoa2(c) allele, which codes for the amyloidogenic protein APOA2C (Gln5, Ala38) and transmission of amyloid fibrils. To characterize further the contribution of the Apoa2(c) allele to amyloidogenesis and improve detection of amyloidogenic materials, we established transgenic mice that overexpress APOA2C protein under the cytomegalovirus (CMV) immediate early gene (CMV-IE) enhancer/chicken beta promoter. Compared to transgene negative (Tg(-/-)) mice that express apoA-II protein mainly in the liver, mice homozygous (Tg(+/+)) and heterozygous (Tg(+/-)) for the transgene express a high level of apoA-II protein in many tissues. They also have higher plasma concentrations of apoA-II, higher ratios of ApoA-II/apolipoprotein A-I (ApoA-I) and higher concentrations of high-density lipoprotein (HDL) cholesterol. Following injection of AApoAII fibrils into Tg(+/+) mice, amyloid deposition was observed in the testis, liver, kidney, heart, lungs, spleen, tongue, stomach and intestine but not in the brain. In Tg(+/+) mice, but not in Tg(-/-) mice, amyloid deposition was induced by injection of less than 10(-8) mug AApoAII fibrils. Furthermore, deposition in Tg(+/+) mice occurred more rapidly and to a greater extent than in Tg(-/-) mice. These studies indicate that increased levels of APOA2C protein lead to earlier and greater amyloid deposition and enhanced sensitivity to the transmission of amyloid fibrils in transgenic mice. This transgenic mouse model should prove valuable for studies of amyloidosis.

  10. Experimental Energy Levels and Partition Function of the 12C2 Molecule

    NASA Astrophysics Data System (ADS)

    Furtenbacher, Tibor; Szabó, István; Császár, Attila G.; Bernath, Peter F.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2016-06-01

    The carbon dimer, the 12C2 molecule, is ubiquitous in astronomical environments. Experimental-quality rovibronic energy levels are reported for 12C2, based on rovibronic transitions measured for and among its singlet, triplet, and quintet electronic states, reported in 42 publications. The determination utilizes the Measured Active Rotational-Vibrational Energy Levels (MARVEL) technique. The 23,343 transitions measured experimentally and validated within this study determine 5699 rovibronic energy levels, 1325, 4309, and 65 levels for the singlet, triplet, and quintet states investigated, respectively. The MARVEL analysis provides rovibronic energies for six singlet, six triplet, and two quintet electronic states. For example, the lowest measurable energy level of the {{a}}{}3{{{\\Pi }}}{{u}} state, corresponding to the J = 2 total angular momentum quantum number and the F 1 spin-multiplet component, is 603.817(5) cm-1. This well-determined energy difference should facilitate observations of singlet-triplet intercombination lines, which are thought to occur in the interstellar medium and comets. The large number of highly accurate and clearly labeled transitions that can be derived by combining MARVEL energy levels with computed temperature-dependent intensities should help a number of astrophysical observations as well as corresponding laboratory measurements. The experimental rovibronic energy levels, augmented, where needed, with ab initio variational ones based on empirically adjusted and spin-orbit coupled potential energy curves obtained using the Duo code, are used to obtain a highly accurate partition function, and related thermodynamic data, for 12C2 up to 4000 K.

  11. Influence of HLA-C Expression Level on HIV Control

    PubMed Central

    Apps, Richard; Qi, Ying; Carlson, Jonathan M.; Chen, Haoyan; Gao, Xiaojiang; Thomas, Rasmi; Yuki, Yuko; Del Prete, Greg Q.; Goulder, Philip; Brumme, Zabrina L.; Brumme, Chanson J.; John, Mina; Mallal, Simon; Nelson, George; Bosch, Ronald; Heckerman, David; Stein, Judy L.; Soderberg, Kelly A.; Moody, M. Anthony; Denny, Thomas N.; Zeng, Xue; Fang, Jingyuan; Moffett, Ashley; Lifson, Jeffrey D.; Goedert, James J.; Buchbinder, Susan; Kirk, Gregory D.; Fellay, Jacques; McLaren, Paul; Deeks, Steven G.; Pereyra, Florencia; Walker, Bruce; Michael, Nelson L.; Weintrob, Amy; Wolinsky, Steven; Liao, Wilson; Carrington, Mary

    2013-01-01

    A variant upstream of human leukocyte antigen C (HLA-C) shows the most significant genome-wide effect on HIV control in European Americans and is also associated with the level of HLA-C expression. We characterized the differential cell surface expression levels of all common HLA-C allotypes and tested directly for effects of HLA-C expression on outcomes of HIV infection in 5243 individuals. Increasing HLA-C expression was associated with protection against multiple outcomes independently of individual HLA allelic effects in both African and European Americans, regardless of their distinct HLA-C frequencies and linkage relationships with HLA-B and HLA-A. Higher HLA-C expression was correlated with increased likelihood of cytotoxic T lymphocyte responses and frequency of viral escape mutation. In contrast, high HLA-C expression had a deleterious effect in Crohn’s disease, suggesting a broader influence of HLA expression levels in human disease. PMID:23559252

  12. CYP2C9 and CYP2C19 genetic polymorphisms: frequencies in the south Indian population.

    PubMed

    Jose, Rosemary; Chandrasekaran, Adithan; Sam, Soya Sisy; Gerard, Nathalie; Chanolean, Shashindran; Abraham, Benny K; Satyanarayanamoorthy, K; Peter, Anitha; Rajagopal, Krishnamoorthy

    2005-02-01

    The aim of the study was to establish the frequencies of CYP2C9*1, *2, *3 and CYP2C19*1, *2 and *3 in the south Indian population and to compare them with the inter-racial distribution of the CYP2C9 and CYP2C19 genetic polymorphisms. Genotyping analyses of CYP2C9 and CYP2C19 were conducted in unrelated, healthy volunteers from the three south Indian states of Andhra Pradesh, Karnataka and Kerala, by the polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP). The allele frequencies of the populations of these three states were then pooled with our previous genotyping data of Tamilians (also in south India), to arrive at the distribution of CYP2C9 and CYP2C19 alleles in the south Indian population. Frequencies of CYP2C9 and CYP2C19 alleles and genotypes among various populations were compared using the two-tailed Fisher's exact test. The frequencies of CYP2C9*1, *2 and *3 in the south Indian population were 0.88 (95% CI 0.85-0.91), 0.04 (95% CI 0.02-0.06) and 0.08 (95% CI 0.06-0.11), respectively. The frequencies of CYP2C9 genotypes *1/*1, *1/*2, *1/*3, *2/*2, *2/*3 and *3/*3 were 0.78 (95% CI 0.74-0.82), 0.05 (95% CI 0.03-0.07), 0.15 (95% CI 0.12-0.18), 0.01 (95% CI 0.0-0.02), 0.01 (95% CI 0.0-0.02) and 0.0, respectively. CYP2C19*1, *2 and *3 frequencies were 0.64 (95% CI 0.60-0.68), 0.35 (95% CI 0.31-0.39) and 0.01 (95% CI 0.0-0.03), respectively. As a result of a significant heterogeneity, the data on CYP2C19 genotype frequencies were not pooled. The frequency of CYP2C9*2 mutant alleles in south Indians was higher than in Chinese and Caucasians, while CYP2C9*3 was similar to Caucasians. CYP2C19*2 was higher than in other major populations reported so far. The relatively high CYP2C19 poor-metabolizer genotype frequency of 12.6% indicates that over 28 million south Indians are poor metabolizers of CYP2C19 substrates.

  13. Kinetics of the R + NO2 reactions (R = i-C3H7, n-C3H7, s-C4H9, and t-C4H9) in the temperature range 201-489 K.

    PubMed

    Rissanen, Matti P; Arppe, Suula L; Eskola, Arkke J; Tammi, Matti M; Timonen, Raimo S

    2010-04-15

    The bimolecular rate coefficients of four alkyl radical reactions with NO(2) have been measured in direct time-resolved experiments. Reactions were studied under pseudo-first-order conditions in a temperature-controlled tubular flow reactor coupled to a laser photolysis/photoionization mass spectrometer (LP-PIMS). The measured reaction rate coefficients are independent of helium bath gas pressure within the experimental ranges covered and exhibit negative temperature dependence. For i-C(3)H(7) + NO(2) and t-C(4)H(9) + NO(2) reactions, the dependence of ordinate (logarithm of reaction rate coefficients) on abscissa (1/T or log(T)) was nonlinear. The obtained results (in cm(3) s(-1)) can be expressed by the following equations: k(n-C(3)H(7) + NO(2)) = ((4.34 +/- 0.08) x 10(-11)) (T/300 K)(-0.14+/-0.08) (203-473 K, 1-7 Torr), k(i-C(3)H(7) + NO(2)) = ((3.66 +/- 2.54) x 10(-12)) exp(656 +/- 201 K/T)(T/300 K)(1.26+/-0.68) (220-489 K, 1-11 Torr), k(s-C(4)H(9) + NO(2)) = ((4.99 +/- 0.16) x 10(-11))(T/300 K)(-1.74+/-0.12) (241-485 K, 2 - 12 Torr) and k(t-C(4)H(9) + NO(2)) = ((8.64 +/- 4.61) x 10(-12)) exp(413 +/- 154 K/T)(T/300 K)(0.51+/-0.55) (201-480 K, 2-11 Torr), where the uncertainties shown refer only to the 1 standard deviations obtained from the fitting procedure. The estimated overall uncertainty in the determined bimolecular rate coefficients is about +/-20%.

  14. A Pitx2-MicroRNA Pathway Modulates Cell Proliferation in Myoblasts and Skeletal-Muscle Satellite Cells and Promotes Their Commitment to a Myogenic Cell Fate

    PubMed Central

    Lozano-Velasco, Estefanía; Vallejo, Daniel; Esteban, Francisco J.; Doherty, Chris; Hernández-Torres, Francisco; Franco, Diego

    2015-01-01

    The acquisition of a proliferating-cell status from a quiescent state as well as the shift between proliferation and differentiation are key developmental steps in skeletal-muscle stem cells (satellite cells) to provide proper muscle regeneration. However, how satellite cell proliferation is regulated is not fully understood. Here, we report that the c-isoform of the transcription factor Pitx2 increases cell proliferation in myoblasts by downregulating microRNA 15b (miR-15b), miR-23b, miR-106b, and miR-503. This Pitx2c-microRNA (miRNA) pathway also regulates cell proliferation in early-activated satellite cells, enhancing Myf5+ satellite cells and thereby promoting their commitment to a myogenic cell fate. This study reveals unknown functions of several miRNAs in myoblast and satellite cell behavior and thus may have future applications in regenerative medicine. PMID:26055324

  15. A Recombinant Adenovirus Expressing P12A and 3C Protein of the Type O Foot-and-Mouth Disease Virus Stimulates Systemic and Mucosal Immune Responses in Mice

    PubMed Central

    Gao, Peng

    2016-01-01

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of cloven-hoofed animals which causes severe economic losses. The replication-deficient, human adenovirus-vectored FMD vaccine has been proven effective against FMD. However, the role of T-cell-mediated antiviral responses and the mucosae-mediated antiviral responses induced by the adenovirus-vectored FMD vaccine was rarely examined. Here, the capsid protein precursor P1-2A and viral protease 3C of the type O FMDV were expressed in replicative-deficient human adenovirus type 5 vector. BALB/c mice immunized intramuscularly and intraperitoneally with recombinant adenovirus rAdv-P12A3C elicited higher FMDV-specific IgG antibodies, IFN-γ, and IL-4 cytokines than those in mice immunized with inactivated FMDV vaccine. Moreover, BALB/c mice immunized with recombinant adenovirus rAdv-P12A3C by oral and intraocular-nasal immunization induced high FMDV-specific IgA antibodies. These results show that the recombinant adenovirus rAdv-P12A3C could resist FMDV comprehensively. This study highlights the potential of rAdv-P12A3C to serve as a type O FMDV vaccine. PMID:27478836

  16. Resveratrol stimulates c-Fos gene transcription via activation of ERK1/2 involving multiple genetic elements.

    PubMed

    Thiel, Gerald; Rössler, Oliver G

    2018-06-05

    The polyphenol resveratrol is found in many plant and fruits and is a constituent of our diet. Resveratrol has been proposed to have chemopreventive and anti-inflammatory activities. On the cellular level, resveratrol activates stimulus-regulated transcription factors. To identify resveratrol-responsive elements within a natural gene promoter, the molecular pathway leading to c-Fos gene expression by resveratrol was dissected. The c-Fos gene encodes a basic region leucine zipper transcription factor and is a prototype of an immediate-early gene that is regulated by a wide range of signaling molecules. We analyzed chromatin-integrated c-Fos promoter-luciferase reporter genes where transcription factor binding sites were destroyed by point mutations or deletion mutagenesis. The results show that mutation of the binding sites for serum response factor (SRF), activator protein-1 (AP-1) and cAMP response element binding protein (CREB) significantly reduced reporter gene transcription following stimulation of the cells with resveratrol. Inactivation of the binding sites for signal transducer and activator of transcription (STAT) or ternary complex factors did not influence resveratrol-regulated c-Fos promoter activity. Thus, the c-Fos promoter contains three resveratrol-responsive elements, the cAMP response element (CRE), and the binding sites for SRF and AP-1. Moreover, we show that the transcriptional activation potential of the c-Fos protein is increased in resveratrol-stimulated cells, indicating that the biological activity of c-Fos is elevated by resveratrol stimulation. Pharmacological and genetic experiments revealed that the protein kinase ERK1/2 is the signal transducer that connects resveratrol treatment with the c-Fos gene. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Monthly Atmospheric 13C/12C Isotopic Ratios for 11 SIO Stations (1977-2008)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeling, R. F.; Piper, S. C.; Bollenbacher, A. F.

    Stable isotopic measurements for atmospheric 13C/12C and 18O/16O at global sampling sites were initiated by Dr. C.D. Keeling and co-workers at Scripps Institution of Oceanography (SIO) in 1977. These isotopic measurements complement the continuing global atmospheric and oceanic CO2 measurements initiated by Keeling in 1957. This work is currently being continued under the direction of R.F. Keeling, who also runs a parallel program at SIO to measure changes in atmospheric O2 and Ar abundances (Scripps O2 Program). A more complete set of 13CO2 data is found online at http://scrippsco2.ucsd.edu/data/atmospheric_co2.html

  18. 12. 'Erection Plan, 1 180'01/4' c. to c. End ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. 'Erection Plan, 1 - 180'-0-1/4' c. to c. End Pins Sing. Tr. Thro' Span, 16th Crossing over Sacramento River, Pacific System, Southern Pacific Co., Phoenix Bridge Co., C.O. #842, Drawing #13, Scale 1/8' & 1' = 1'-0', Eng'r C. Scheidl, Draftsman D. Sharp, Scale 1' = 1'-0', May 1st 1901.' - Southern Pacific Railroad Shasta Route, Bridge No. 324.99, Milepost 324.99, Shasta Springs, Siskiyou County, CA

  19. IL-12–producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion

    PubMed Central

    Rölle, Alexander; Pollmann, Julia; Ewen, Eva-Maria; Le, Vu Thuy Khanh; Halenius, Anne; Hengel, Hartmut; Cerwenka, Adelheid

    2014-01-01

    Human cytomegalovirus (HCMV) infection is the most common cause of congenital viral infections and a major source of morbidity and mortality after organ transplantation. NK cells are pivotal effector cells in the innate defense against CMV. Recently, hallmarks of adaptive responses, such as memory-like features, have been recognized in NK cells. HCMV infection elicits the expansion of an NK cell subset carrying an activating receptor heterodimer, comprising CD94 and NKG2C (CD94/NKG2C), a response that resembles the clonal expansion of adaptive immune cells. Here, we determined that expansion of this NKG2C+ subset and general NK cell recovery rely on signals derived from CD14+ monocytes. In a coculture system, a subset of CD14+ cells with inflammatory monocyte features produced IL-12 in response to HCMV-infected fibroblasts, and neutralization of IL-12 in this model substantially reduced CD25 upregulation and NKG2C+ subset expansion. Finally, blockade of CD94/NKG2C on NK cells or silencing of the cognate ligand HLA-E in infected fibroblasts greatly impaired expansion of NKG2C+ NK cells. Together, our results reveal that IL-12, CD14+ cells, and the CD94/NKG2C/HLA-E axis are critical for the expansion of NKG2C+ NK cells in response to HCMV infection. Moreover, strategies targeting the NKG2C+ NK cell subset have the potential to be exploited in NK cell–based intervention strategies against viral infections and cancer. PMID:25384219

  20. High-Resolution Study of the C-D Stretching Bands of 12C 6D 6 and 13C 6D 6

    NASA Astrophysics Data System (ADS)

    Pliva, J.; Johns, J. W. C.; Goodman, L.

    1994-01-01

    The perpendicular C-D stretching bands ν 12 (species E1 u) were measured for two isotopomers of benzene with D6 h symmetry. 12C 6D 6 and 13C 6D 6, on a high-resolution Fourier transform spectrometer. Both bands show effects of fairly strong perturbations by states resulting from combinations of low-frequency vibrations. The ν 12 state of 12C 6D 6 is in Fermi resonance with the combination ν 2 + ν 3 whose pP lines, enhanced by the resonance, are observed just below the pP branches of ν 12. An x, y-type Coriolis interaction with an unidentified state of symmetry E2 u, and another anharmonic interaction with an unknown E1 u state, have also been detected in the spectrum. These interactions were included, along with the Fermi resonance and the rotational l-resonance and -doubling, in the Hamiltonian used in the analysis of this band. For the ν 12 band of the 13C 6D 6 isotopomer, a strong perturbation by an anharmonic resonance with the E1 u state ν 7 + ν 11 + ν 14 and a much weaker perturbation. presumably by a z-type Coriolis interaction with an unidentified perturber, have been observed and taken into account in the analysis. Spectroscopic constants are reported for the ν 12 states of the two isotopic species, and parameters obtained for the various perturbers and coupling constants are also listed. It is found that the ζ sum for the E1 u vibrations of all D6 h isotopomers of benzene differs slightly from the theoretical value of ∑ζ t = -1.

  1. Immunohistochemistry Study of P53 and C-erbB-2 Expression in Trophoblastic Tissue and Their Predictive Values in Diagnosing Malignant Progression of Simple Molar Pregnancy

    PubMed Central

    Hasanzadeh, Malihe; Sharifi, Norrie; Farazestanian, Marjaneh; Nazemian, Seyed Saman; Madani Sani, Faezeh

    2016-01-01

    Background Finding a tumor marker to predict the aggressive behavior of molar pregnancy in early stages has yet been a topic for studies. Objectives In this survey we planned to study patients with molar pregnancy to 1) assess the p53 and c-erbB-2 expression in trophoblastic tissue, 2) to study the relationship between their expression intensity and progression of a molar pregnancy to gestational trophoblastic neoplasia, and 3) to determine a cut off value for the amount of p53 and c-erbB-2 expression which might correlate with aggressive behavior of molar pregnancy. Patients and Methods In a prospective cross sectional study by using a high accuracy technique EnVision Tm system for immunohistochemistry staining of molar pregnancy samples, we evaluated p53 and c-erbB-2 expression in cytotrophoblast and syncytiotrophoblast and the correlation of their expression with progression of molar pregnancy to gestational trophoblastic neoplasia (GTN). Normal prostatic tissue and Breast cancer tissue were used as positive controls. Results We studied 28 patients with simple molar pregnancy (SMP) and 30 with GTN. Cytotrophobalst had significantly higher expression of p53 and c-erbB-2 and syncytiotrophoblast had greater expression of p53 in GTN group as compared to SMP group. The cut off values for percentage of p53 positive immunostained cytotrophoblast and syncytiotrophoblast were 5.5% and 2.5%. In c-erbB-2 positive membranous stained cytotrophoblast the cut off was 12.5%. Conclusions Our data suggests that over expression of p53 and c-erbB-2 is associated with malignant progression of molar pregnancy. We encountered that high expression of p53 and c-erbB-2 in trophoblastic cells could predict gestational trophoblastic neoplasia during the early stages. PMID:27703642

  2. Positive expression of p53, c-erbB2 and MRP proteins is correlated with survival rates of NSCLC patients.

    PubMed

    Xu, Yujin; Wang, Liancong; Zheng, Xiao; Liu, Guan; Wang, Yuezhen; Lai, Xiaojing; Li, Jianqiang

    2013-05-01

    The incidence of lung cancer is one of the leading causes of mortality. This study aimed to investigate the prognostic and predictive importance of p53, c-erbB2 and multidrug resistance proteins (MRP) expression and its correlation with clinicopathological characteristics of patients with non-small cell lung cancer (NSCLC). Expression of p53, c-erbB2 and MRP proteins in 152 tumor samples from resected primary NSCLCs was detected by immunohistochemical staining. The correlation of proteins, survival and clinicopathological characteristics was investigated in 152 patients undergoing potentially curative surgery. The positive rates of p53, c-erbB2 and MRP expression were 53.9 (82/152), 44.1 (67/152) and 43.4% (66/152), respectively. Overall survival rates of patients were markedly correlated with the overexpression of p53, c-erbB2 and MRP proteins. One, 2- and 3-year survival rates of patients exhibiting a positive expression of these proteins were 72.6, 54.8 and 32.2%, respectively. These rates were lower compared with those of patients with a negative expression of these proteins (92.1, 78.5 and 63.4%) (P=0.02, 0.01 or 0.00, respectively). Results of Cox's regression analysis showed that c-erbB2 expression and cell differentiation were independent prognostic factors in patients with NSCLC. These findings suggest that the positive expression of p53, c-erbB2 and MRP proteins is correlated with the survival rates of NSCLC patients. Detection of positive p53, c-erbB2 and MRP expression may be a useful predictive indicator of prognosis. Positive c-erbB2 expression is an independent prognostic factor, with a potential to be used as a predictive indicator of chemotherapy efficacy in NSCLC patients.

  3. [Parallel analysis of c-Fos protein and interleukin-2 expression in hypothalamic cells under different influence].

    PubMed

    Barabanova, S V; Artiukhina, Z E; Ovchinnikova, K T; Abramova, T V; Kazakova, T B; Khavinson, V Kh; Malinin, V V; Korneva, E A

    2007-02-01

    The objective of this work was to perform a parallel analysis of activation of the rat anterior hypothalamus cells as judged by c-Fos protein expression, and of the expression of interleukin-2 (IL-2) under different influences, i. e., mild stress (handling) and adaptation to it, and intranasal administration of saline and the peptides Vilon (Lys-Glu) and Epithalon (Ala-Glu-Asp-Gly). Changes in the counts of cells positive for c-Fos- and IL-2 proteins were studied in structures of the lateral (LHA) area, anterior (AHN), supraoptic (SO) and paraventricular (PVH) nuclei of Wistar rat hypothalamus. Quantity of the interleukin-2-positive and c-Fos-positive cells was calculated. The findings were: a negative correlation between the activation of cells and the amount of IL-2 in the cells in the hypothalamic structures under study, and the specific patterns of changes in the counts of cells positive for c-Fos and IL-2 under stress and adaptation to stress.

  4. Comparison of Ion Chemistries in Octafluoro-2-butene (2-C4F8) and in Octfluorocyclobutane (c-C4F8)

    NASA Astrophysics Data System (ADS)

    Jiao, Charles; Dejoseph, Charles; Garscadden, Alan

    2007-10-01

    2-C4F8 is one of the promising candidates to replace c-C4F8 that has been widely used for dielectric etching but is not environmentally friendly. In this study we have investigated electron impact ionization and ion-molecule reactions of 2-C4F8 using Fourier transform mass spectrometry (FTMS), and compared the results with those of c-C4F8 we have studied previously. Electron impact ionization of 2-C4F8 produces 15 ionic species including C4F7,8^+, C3F3,5,6^+, C2F4^+ and CF1-3^+ as the major ions. The total ionization cross section of 2-C4F8 reaches a maximum of 1.8x10-15 cm^2 at 90 eV. The ionization is dominated by the channel forming the parent ion C4F8^+ from 12 to 18 eV, and by the channel forming C3F5^+ from 18 to 70 eV. After 70 eV, CF3^+ becomes the dominant product ion. Among the major ions generated from the electron impact ionization of 2-C4F8, only CF^+, CF2^+ and CF3^+ are found to react with 2-C4F8, via F^- abstraction or charge transfer mechanism. The charge transfer reaction of Ar^++2-C4F8 produces primarily C4F7^+.

  5. Both high expression of pyruvate kinase M2 and vascular endothelial growth factor-C predicts poorer prognosis in human breast cancer.

    PubMed

    Lin, Yang; Liu, Fangfang; Fan, Yu; Qian, Xiaolong; Lang, Ronggang; Gu, Feng; Gu, Jun; Fu, Li

    2015-01-01

    Pyruvate kinase M2 (PKM2) and vascular endothelial growth factor-C (VEGF-C) have been known to play an important role in tumorigenesis and tumor progression in breast cancer. However, the association between PKM2 and VEGF-C in breast cancer remains unclear. In the present study, a total of 218 specimens from breast cancer patients and 26 paired breast tumors with adjacent normal tissues as well as two breast cancer cell lines were enrolled to investigate the correlation between PKM2 and VEGF-C. We found that PKM2 and VEGF-C mRNA levels were both significantly increasing in breast tumors compared with adjacent normal tissues. Knockdown of PKM2 mRNA expression resulted in VEGF-C mRNA and protein down-regulated as well as cell proliferation inhibited. A positive correlation between PKM2 and VEGF-C expression was identified by immunohistochemical analyses of 218 specimens of patients with breast cancer (P=0.023). PKM2 high expression was significantly correlated with histological grade (P=0.030), lymph node stage (P=0.001), besides VEGF-C high expression was significantly associated with lymphovascular invasion (P=0.012). While combined high expression of PKM2 and VEGF-C was found to be associated with worse histological grade, more lymph node metastasis, more lymphovascular invasion, shorter progression free survival (PFS), and poorer overall survival (OS) in human breast cancer. The results of the present study suggested that PKM2 expression was correlated with VEGF-C expression, and combination of PKM2 and VEGF-C levels had the better prognostic significance in predicting the poor outcome of patients with breast cancer.

  6. The closo-Si{sub 12}C{sub 12} molecule from cluster to crystal: A theoretical prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Xiaofeng F., E-mail: xiaofeng.duan@wpafb.af.mil, E-mail: larry.burggraf@us.af.mil; Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433; Burggraf, Larry W., E-mail: xiaofeng.duan@wpafb.af.mil, E-mail: larry.burggraf@us.af.mil

    2016-03-21

    The structure of closo-Si{sub 12}C{sub 12} is unique among stable Si{sub n}C{sub m} isomers (n, m > 4) because of its high symmetry, π–π stacking of C{sub 6} rings and unsaturated silicon atoms at symmetrical peripheral positions. Dimerization potential surfaces reveal various dimerization reactions that form between two closo-Si{sub 12}C{sub 12} molecules through Si–Si bonds at unsaturated Si atoms. As a result the closo-Si{sub 12}C{sub 12} molecule is capable of polymerization to form stable 1D polymer chains, 2D crystal layers, and 3D crystals. 2D crystal structures formed by side-side polymerization satisfy eight Si valences on each monomer without large distortionmore » of the monomer structure. 3D crystals are formed by stacking 2D structures in the Z direction, preserving registry of C{sub 6} rings in monomer moiety.« less

  7. Hesperidin Suppresses Renin-Angiotensin System Mediated NOX2 Over-Expression and Sympathoexcitation in 2K-1C Hypertensive Rats.

    PubMed

    Wunpathe, Chutamas; Potue, Prapassorn; Maneesai, Putcharawipa; Bunbupha, Sarawoot; Prachaney, Parichat; Kukongviriyapan, Upa; Kukongviriyapan, Veerapol; Pakdeechote, Poungrat

    2018-05-13

    Hesperidin, a flavonoid derived from citrus fruits, possesses several beneficial effects including anti-oxidation and anti-inflammation. The aim of this study was to investigate the effects of hesperidin on the renin-angiotensin system (RAS) cascade that mediated oxidative stress and sympathoexcitation in two-kidney, one-clipped (2K-1C) hypertensive rats. 2K-1C hypertension was induced in male Sprague-Dawley rats. Hypertensive rats were treated with hesperidin at 20[Formula: see text]mg/kg or 40[Formula: see text]mg/kg or losartan at 10[Formula: see text]mg/kg beginning at three weeks after surgery and then continued for four weeks ([Formula: see text]/group). Hesperidin reduced blood pressure in a dose-dependent manner in hypertensive rats compared to untreated rats ([Formula: see text]). Increased plasma angiotensin converting enzyme (ACE) activity and angiotensin II levels, as well as, upregulated AT 1 receptor protein expression in aortic tissues were attenuated in hypertensive rats treated with hesperidin. Hesperidin suppressed oxidative stress markers and NADPH oxidase over-expression, and restored plasma nitric oxide metabolites in 2K-1C rats. This was associated with improvement of the vascular response to acetylcholine in isolated mesenteric vascular beds and aortic rings from 2K-1C rats treated with hesperidin ([Formula: see text]). Enhancement of nerve-mediated vasoconstriction related to high plasma noradrenaline in the 2K-1C group was alleviated by hesperidin treatment ([Formula: see text]). Furthermore, losartan exhibited antihypertensive effects by suppressing the RAS cascade and oxidative stress and improved vascular dysfunction observed in 2K-1C rats ([Formula: see text]). Based on these results, it can be presumed that hesperidin is an antihypertensive agent. Its antihypertensive action might be associated with reducing RAS cascade-induced NOX2 over-expression and sympathoexcitation in 2K-1C hypertensive rats.

  8. Communication Between the Calcium and cAMP Pathways Regulate the Expression of the TSH Receptor: TRPC2 in the Center of Action

    PubMed Central

    Löf, Christoffer; Sukumaran, Pramod; Viitanen, Tero; Vainio, Minna; Kemppainen, Kati; Pulli, Ilari; Näsman, Johnny; Kukkonen, Jyrki P.

    2012-01-01

    Transient receptor potential (TRP) cation channels are widely expressed and function in many physiologically important processes. Perturbations in the expression or mutations of the channels have implications for diseases. Many thyroid disorders, as excessive growth or disturbed thyroid hormone production, can be a result of dysregulated TSH signaling. In the present study, we found that of TRP canonicals (TRPCs), only TRPC2 was expressed in Fischer rat thyroid low-serum 5% cells (FRTL-5 cells). To investigate the physiological importance of the channel, we developed stable TRPC2 knockdown cells using short hairpin RNA (shTRPC2 cells). In these cells, the ATP-evoked entry of calcium was significantly decreased. This led to increased cAMP production, because inhibitory signals from calcium to adenylate cyclase 5/6 were decreased. Enhanced cAMP signaling projected to Ras-related protein 1-MAPK kinase 1 (MAPK/ERK kinase 1) pathway leading to phosphorylation of ERK1/2. The activated ERK1/2 pathway increased the expression of the TSH receptor. In contrast, secretion of thyroglobulin was decreased in shTRPC2 cells, due to improper folding and glycosylation of the protein. We show here a novel role for TRPC2 in regulating thyroid cell function. PMID:23015753

  9. Complete matrix properties of [001](c) and [011](c) poled 0.33Pb(In(1/2)Nb(1/2))O(3)-0.38Pb(Mg(1/3)Nb(2/3))O(3)-0.29PbTiO(3) single crystals.

    PubMed

    Sun, Enwei; Zhang, Rui; Wu, Fengmin; Cao, Wenwu

    2013-03-15

    The elastic, piezoelectric, and dielectric properties of [001](c) and [011](c) poled 0.33Pb(In(1/2)Nb(1/2))O(3)-0.38Pb(Mg(1/3)Nb(2/3))O(3)-0.29PbTiO(3) single crystals have been fully characterized at room temperature, and the temperature and frequency dependence of the dielectric susceptibility ε(33) were also measured. The depoling temperature of this crystal is more than 20 °C higher than that of the corresponding binary 0.71Pb(Mg(1/3)Nb(2/3))O(3)-0.29PbTiO(3) system. From the measured P-E hysteresis loops, the coercive fields along [001](c) and [011](c) directions have been determined to be 6.0 kV/cm and 6.6 kV/cm, respectively, which indicate that these domain engineered ternary relaxor-based ferroelectric single crystals are excellent candidates for high-power applications.

  10. Changes in the proteome of Escherichia coli during growth at 15 degrees C after incubation at 2, 6 or 8 degrees C for 4 days.

    PubMed

    Jones, T H; Johns, M W; Gill, C O

    2008-06-10

    For better understanding of the complex behaviour of Escherichia coli at chiller temperatures, log phase E. coli grown at 15 degrees C were incubated at 8, 6, or 2 degrees C for 4 days, and were then incubated at 15 degrees C for 12 h. Cultures were sampled after incubation at the lower temperatures, and during subsequent incubation at 15 degrees C. Proteins extracted from the samples were separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Spots of 45 previously identified proteins that were differentially expressed at 15 or < or =8 degrees C were quantified by image analysis. After incubation at 8 or 6 degrees C for 4 days cells were growing with or without formation of elongated cells (filaments), respectively, but growth did not occur at 2 degrees C. In cells incubated at 8 or 6 degrees C proteins associated with the stress response and energy generation were upregulated and proteins associated with protein synthesis were downregulated, while protein levels in cells incubated at 2 degrees C were little changed. When cells were then incubated at 15 degrees C, the levels of differentially expressed proteins in cells that had been incubated at 8 or 6 degrees C decreased or increased towards the levels found in cells growing at 15 degrees C, but some proteins were still under or over expressed after 12 h. In cells incubated at 15 degrees C after incubation at 2 degrees C, the levels of many of the proteins declined but the levels of proteins associated with protein synthesis increased. The findings indicate that the physiological states of log phase E. coli incubated at < or =2 degrees C or at higher chiller temperature are different, but that for both states incubation at an above chiller temperature for >3 generations is required before protein levels adjusted to those usual for the higher temperature. Cells in these different physiological states may respond differently to other stresses encountered during warming of chilled foods.

  11. Ruminant methane delta(/sup 13/C//sup 12/C) values: relation to atmospheric methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rust, F.

    1981-03-06

    The delta(/sup 13/C//sup 12/C) - values of methane produced by fistulated steers, dairy cattle, and wethers, and dairy and beef cattle herds show a bimodal distribution that appears to be correlated with the plant type (C/sub 3/ or C/sub 4/, that is, producing either a three- or a four-carbon acid in the first step of photosynthesis) consumed by the animals. These results indicate that cattle and sheep, on a global basis, release methane with an average delta(/sup 13/C//sup 12/C) value of -60 and -63 per mil, respectively. Together they are a source of atmospheric methane whose delta(/sup 13/C//sup 12/C) ismore » similar to published values for marsh gas and cannot explain the 20 per mil higher values for atmospheric methane.« less

  12. [Cloning, expression and identification of functional fragment rC3B of human complement C3 in E. Coli].

    PubMed

    Gan, Hui; Zhou, Yong; Sun, Ping; Zhu, Xiao-Xia; Wang, Quan-Li; Zhan, Lin-Sheng

    2007-08-01

    This study was purposed to verify the binding part of human complement C3 to complement receptor III (CRIII) in monocytes, the peptide rC3B, including the binding-site, was expressed, purified and identified. rC3B, the binding part of human complement C3 to CRIII, was selected by computer-aided modeling and summarizing researches published. Then, rC3B gene fragment was amplified by PCR, and cloned into prokaryotic vector pQE30a. The fusion protein rC3B was expressed in E.coli M15 and purified by Ni(2+)-chelating affinity chromatography. The activity of rC3B was identified by Western blot and adherence assay with monocytes. The results showed that rC3B fragment was obtained, and a prokaryotic expression vector pQE30-rC3B was constructed. rC3B was efficiently expressed and purified. In Western blot, the target protein showed the activity of binding with C3 antibody, while the purified protein showed the activity of adherence with monocytes. It is concluded that the recombinant C3B was obtained and identified, and this study lay the basis for the further functional analysis of C3.

  13. TSA increases C/EBP‑α expression by increasing its lysine acetylation in hepatic stellate cells.

    PubMed

    Tao, Li-Li; Ding, Di; Yin, Wei-Hua; Peng, Ji-Ying; Hou, Chen-Jian; Liu, Xiu-Ping; Chen, Yao-Li

    2017-11-01

    CCAAT enhancer binding protein‑α (C/EBP‑α) is a transcription factor expressed only in certain tissues, including the liver. It has been previously demonstrated that C/EBP‑α may induce apoptosis in hepatic stellate cells (HSCs), raising the question of whether acetylation of C/EBP‑α is associated with HSCs, and the potential associated mechanism. A total of three histone deacetylase inhibitors (HDACIs), including trichostatin A (TSA), suberoylanilide hydroxamic acid and nicotinamide, were selected to determine whether acetylation affects C/EBP‑α expression. A Cell Counting Kit‑8 assay was used to determine the rate of proliferation inhibition following treatment with varying doses of the three HDACIs in HSC‑T6 and BRL‑3A cells. Western blot analysis was used to examine Caspase‑3, ‑8, ‑9, and ‑12 levels in HSC‑T6 cells treated with adenoviral‑C/EBP‑α and/or TSA. Following treatment with TSA, a combination of reverse transcription‑quantitative polymerase chain reaction and western blot analyses was used to determine the inherent C/EBP‑α mRNA and protein levels in HSC‑T6 cells at 0, 1, 2, 4, 8, 12, 24, 36 and 48 h. Nuclear and cytoplasmic proteins were extracted to examine C/EBP‑α distribution. Co‑immunoprecipitation analysis was used to examine the lysine acetylation of C/EBP‑α. It was observed that TSA inhibited the proliferation of HSC‑T6 cells to a greater extent compared with BRL‑3A cells, following treatment with the three HDACIs. TSA induced apoptosis in HSC‑T6 cells and enhanced the expression of C/EBP‑α. Following treatment of HSC‑T6 cells with TSA, inherent C/EBP‑α expression increased in a time‑dependent manner, and its lysine acetylation simultaneously increased. Therefore, the results of the present study suggested that TSA may increase C/EBP‑α expression by increasing its lysine acetylation in HSCs.

  14. Cisplatin triggers atrophy of skeletal C2C12 myotubes via impairment of Akt signalling pathway and subsequent increment activity of proteasome and autophagy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanzani, Alessandro, E-mail: fanzani@med.unibs.it; Zanola, Alessandra; Rovetta, Francesca

    2011-02-01

    Cisplatin (cisPt) is an antineoplastic drug which causes an array of adverse effects on different organs and tissues, including skeletal muscle. In this work we show that cisPt behaves as a potent trigger to activate protein hypercatabolism in skeletal C2C12 myotubes. Within 24 h of 50 {mu}M cisPt administration, C2C12 myotubes displayed unchanged cell viability but showed a subset of hallmark signs typically recognized during atrophy, including severe reduction in body size, repression of Akt phosphorylation, transcriptional up-regulation of atrophy-related genes, such as atrogin-1, gabarap, beclin-1 and bnip-3, and loss of myogenic markers. As a consequence, proteasomal activity and formationmore » of autophagosomes were remarkably increased in cisPt-treated myotubes, but forced stimulation of Akt pathway, as obtained through insulin administration or delivery of a constitutively activated Akt form, was sufficient to counter the cisPt-induced protein breakdown, leading to rescue of atrophic size. Overall, these results indicate that cisPt induces atrophy of C2C12 myotubes via activation of proteasome and autophagy systems, suggesting that the Akt pathway represents one sensitive target of cisPt molecular action in skeletal muscle.« less

  15. Repression of myoblast proliferation and fibroblast growth factor receptor 1 promoter activity by KLF10 protein.

    PubMed

    Parakati, Rajini; DiMario, Joseph X

    2013-05-10

    FGFR1 gene expression regulates myoblast proliferation and differentiation, and its expression is controlled by Krüppel-like transcription factors. KLF10 interacts with the FGFR1 promoter, repressing its activity and cell proliferation. KLF10 represses FGFR1 promoter activity and thereby myoblast proliferation. A model of transcriptional control of chicken FGFR1 gene regulation during myogenesis is presented. Skeletal muscle development is controlled by regulation of myoblast proliferation and differentiation into muscle fibers. Growth factors such as fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate cell proliferation and differentiation in numerous tissues, including skeletal muscle. Transcriptional regulation of FGFR1 gene expression is developmentally regulated by the Sp1 transcription factor, a member of the Krüppel-like factor (KLF) family of transcriptional regulators. Here, we show that another KLF transcription factor, KLF10, also regulates myoblast proliferation and FGFR1 promoter activity. Expression of KLF10 reduced myoblast proliferation by 86%. KLF10 expression also significantly reduced FGFR1 promoter activity in myoblasts and Sp1-mediated FGFR1 promoter activity in Drosophila SL2 cells. Southwestern blot, electromobility shift, and chromatin immunoprecipitation assays demonstrated that KLF10 bound to the proximal Sp factor binding site of the FGFR1 promoter and reduced Sp1 complex formation with the FGFR1 promoter at that site. These results indicate that KLF10 is an effective repressor of myoblast proliferation and represses FGFR1 promoter activity in these cells via an Sp1 binding site.

  16. Adipolin/C1qdc2/CTRP12 protein functions as an adipokine that improves glucose metabolism.

    PubMed

    Enomoto, Takashi; Ohashi, Koji; Shibata, Rei; Higuchi, Akiko; Maruyama, Sonomi; Izumiya, Yasuhiro; Walsh, Kenneth; Murohara, Toyoaki; Ouchi, Noriyuki

    2011-10-07

    Obesity is a major risk factor for the development of insulin resistance and type 2 diabetes. Adipose tissue secretes various bioactive molecules, referred to as adipokines, whose dysregulation can mediate changes in glucose homeostasis and inflammatory responses. Here, we identify C1qdc2/CTRP12 as an insulin-sensitizing adipokine that is abundantly expressed by fat tissues and designate this adipokine as adipolin (adipose-derived insulin-sensitizing factor). Adipolin expression in adipose tissue and plasma was reduced in rodent models of obesity. Adipolin expression was also decreased in cultured 3T3-L1 adipocytes by treatment with inducers of endoplasmic reticulum stress and inflammation. Systemic administration of adipolin ameliorated glucose intolerance and insulin resistance in diet-induced obese mice. Adipolin administration also reduced macrophage accumulation and proinflammatory gene expression in the adipose tissue of obese mice. Conditioned medium from adipolin-expressing cells diminished the expression of proinflammatory cytokines in response to stimulation with LPS or TNFα in cultured macrophages. These data suggest that adipolin functions as an anti-inflammatory adipokine that exerts beneficial actions on glucose metabolism. Therefore, adipolin represents a new target molecule for the treatment of insulin resistance and diabetes.

  17. Adipolin/C1qdc2/CTRP12 Protein Functions as an Adipokine That Improves Glucose Metabolism*

    PubMed Central

    Enomoto, Takashi; Ohashi, Koji; Shibata, Rei; Higuchi, Akiko; Maruyama, Sonomi; Izumiya, Yasuhiro; Walsh, Kenneth; Murohara, Toyoaki; Ouchi, Noriyuki

    2011-01-01

    Obesity is a major risk factor for the development of insulin resistance and type 2 diabetes. Adipose tissue secretes various bioactive molecules, referred to as adipokines, whose dysregulation can mediate changes in glucose homeostasis and inflammatory responses. Here, we identify C1qdc2/CTRP12 as an insulin-sensitizing adipokine that is abundantly expressed by fat tissues and designate this adipokine as adipolin (adipose-derived insulin-sensitizing factor). Adipolin expression in adipose tissue and plasma was reduced in rodent models of obesity. Adipolin expression was also decreased in cultured 3T3-L1 adipocytes by treatment with inducers of endoplasmic reticulum stress and inflammation. Systemic administration of adipolin ameliorated glucose intolerance and insulin resistance in diet-induced obese mice. Adipolin administration also reduced macrophage accumulation and proinflammatory gene expression in the adipose tissue of obese mice. Conditioned medium from adipolin-expressing cells diminished the expression of proinflammatory cytokines in response to stimulation with LPS or TNFα in cultured macrophages. These data suggest that adipolin functions as an anti-inflammatory adipokine that exerts beneficial actions on glucose metabolism. Therefore, adipolin represents a new target molecule for the treatment of insulin resistance and diabetes. PMID:21849507

  18. Atmospheric chemistry of C 2F 5CHO: reaction with Cl atoms and OH radicals, IR spectrum of C 2F 5C(O)O 2NO 2

    NASA Astrophysics Data System (ADS)

    Sulbaek Andersen, M. P.; Hurley, M. D.; Wallington, T. J.; Ball, J. C.; Martin, J. W.; Ellis, D. A.; Mabury, S. A.; Nielsen, O. J.

    2003-09-01

    Smog chamber/FTIR techniques were used to measure k(Cl + C 2F 5CHO)=(1.96 ± 0.28) × 10 -12 and k(OH + C 2F 5CHO)=(5.26 ± 0.80) × 10 -13 cm 3 molecule -1 s -1 in 700 Torr of N 2 or air at 296 ± 2 K. The Cl initiated oxidation of C 2F 5CHO in the presence of NO in air diluent gave COF 2, CF 3ONO 2, and C 2F 5C(O)O 2NO 2 in molar yields of 180 ± 19%, 6.1 ± 0.6%, and 1.0 ± 0.3%, respectively. The IR spectrum for C 2F 5C(O)O 2NO 2 is reported. Results are discussed with respect to the potential for the atmospheric degradation of fluorinated aldehydes, C nF 2 n+1 CHO, to contribute to the observed environmental burden of fluorinated carboxylic acids, C nF 2 n+1 C(O)OH.

  19. Abelson tyrosine-protein kinase 2 regulates myoblast proliferation and controls muscle fiber length

    PubMed Central

    Lee, Jennifer K; Hallock, Peter T

    2017-01-01

    Muscle fiber length is nearly uniform within a muscle but widely different among different muscles. We show that Abelson tyrosine-protein kinase 2 (Abl2) has a key role in regulating myofiber length, as a loss of Abl2 leads to excessively long myofibers in the diaphragm, intercostal and levator auris muscles but not limb muscles. Increased myofiber length is caused by enhanced myoblast proliferation, expanding the pool of myoblasts and leading to increased myoblast fusion. Abl2 acts in myoblasts, but as a consequence of expansion of the diaphragm muscle, the diaphragm central tendon is reduced in size, likely contributing to reduced stamina of Abl2 mutant mice. Ectopic muscle islands, each composed of myofibers of uniform length and orientation, form within the central tendon of Abl2+/− mice. Specialized tendon cells, resembling tendon cells at myotendinous junctions, form at the ends of these muscle islands, suggesting that myofibers induce differentiation of tendon cells, which reciprocally regulate myofiber length and orientation. PMID:29231808

  20. Abelson tyrosine-protein kinase 2 regulates myoblast proliferation and controls muscle fiber length.

    PubMed

    Lee, Jennifer K; Hallock, Peter T; Burden, Steven J

    2017-12-12

    Muscle fiber length is nearly uniform within a muscle but widely different among different muscles. We show that Abelson tyrosine-protein kinase 2 (Abl2) has a key role in regulating myofiber length, as a loss of Abl2 leads to excessively long myofibers in the diaphragm, intercostal and levator auris muscles but not limb muscles. Increased myofiber length is caused by enhanced myoblast proliferation, expanding the pool of myoblasts and leading to increased myoblast fusion. Abl2 acts in myoblasts, but as a consequence of expansion of the diaphragm muscle, the diaphragm central tendon is reduced in size, likely contributing to reduced stamina of Abl2 mutant mice. Ectopic muscle islands, each composed of myofibers of uniform length and orientation, form within the central tendon of Abl2 +/- mice. Specialized tendon cells, resembling tendon cells at myotendinous junctions, form at the ends of these muscle islands, suggesting that myofibers induce differentiation of tendon cells, which reciprocally regulate myofiber length and orientation.

  1. Expression of c-Kit isoforms in multiple myeloma: differences in signaling and drug sensitivity.

    PubMed

    Montero, Juan Carlos; López-Pérez, Ricardo; San Miguel, Jesús F; Pandiella, Atanasio

    2008-06-01

    c-Kit is expressed in the plasma cells from 30% of patients with multiple myeloma. Two different isoforms of c-Kit, characterized by the presence or absence of the tetrapeptide sequence GNNK in the extracellular domain, have been described. However, their expression and function in myeloma cells are unknown. We explored the function and expression of these c-Kit isoforms in myeloma cells. Expression of c-Kit isoforms was investigated by reverse transcriptase polymerase chain reaction in fresh plasma cells from patients and cell lines. The function of these c-Kit isoforms was analyzed upon expression in myeloma cells. Signaling was investigated by western blotting using antibodies specific for activated forms of several signaling proteins. The impact of c-Kit on the action of drugs commonly used in the treatment of multiple myeloma was investigated by MTT proliferation assays. Fresh plasma cells from patients as well as myeloma cell lines expressed the two isoforms of c-Kit. Retroviral infection of myeloma cells with vectors that code for c-Kit-GNNK+ or c-Kit-GNNK- forms demonstrated differences in the kinetics of phosphorylation between these isoforms. Stem cell factor-induced activation of the GNNK- form was faster and more pronounced than that of the GNNK+ form, whose activation, however, lasted for longer. The c-Kit receptors weakly activated the Erk1/2 and Erk5 pathways. Both receptors, however, efficiently coupled to the PI3K/Akt pathway, and stimulated p70S6K activation. The latter was sensitive to the mTOR inhibitor, rapamycin. Studies of drug sensitivity indicated that cells expressing the GNNK- form were more resistant to the anti-myeloma action of bortezomib and melphalan. Our data indicate that c-Kit expression in multiple myeloma cells is functional, and coupled to survival pathways that may modulate cell death in response to therapeutic compounds used in the treatment of this disease.

  2. High Resolution Spectrum of the 13C12C12C Lowest Bending Mode

    NASA Astrophysics Data System (ADS)

    Endres, C. P.; Lutter, V.; Kötting, J.; Krieg, J.; Thorwirth, S.; Schlemmer, S.; Giesen, T. F.; Harding, M. E.; Vazquez, J.

    2012-06-01

    Linear C_3 is a floppy molecule which possesses an extremely low lying bending mode, ν_2, at roughly 60 cm-1 or 1.9 THz. Based on highly accurate laboratory data C_3 has been detected in various astronomical sources most recently with the HIFI instrument aboard the Herschel satellite. Although C_3 turns out to be quite abundant in interstellar environments which makes a search for 13C substituted isotopologs feasible, other isotopologs could not be detected so far, because no accurate transition frequencies have been available for these species in this frequency range. Relative abundance ratios of C_3 isotopologs might give important hints on its building mechanism and further constraints for chemical networks. In this work, the spectrum of the ν_2 lowest bending mode of 13CCC has been investigated. We used laser ablation of 13C enriched carbon samples to record absorption spectra in a supersonic jet expansion. The radiation in our setup is generated by a synthesizer referenced to a Rubidium standard in combination with a frequency multiplier chain and detected by a liquid Helium cooled InSb bolometer. The laboratory search has been supported by high-level coupled-cluster calculations, which turns out to compare very favorably with obtained experimental molecular parameters. Schmuttenmaer, C. A., Cohen, R. C., Pugliano, N., Heath, et al., Science 249, 897-900 (1990) Giesen, T. F., van Orden, A. O., Cruzan, J. D., and Provencal, R. A., et al., Astrophys. J. 551, L181-L184 (2001) Gendriesch, R. and Pehl, K. and Giesen, T. and Winnewisser, G. and Lewen, F., Z. Naturforsch. 58a, 129-138 (2003) Van Orden, A., Cruzan, J. D., Provencal, R. A., et al. in Proc. Airborne Astronomy Symp., ASP Conf. Ser. 73, 67 (1995) ernicharo, J. and Goicoechea, J. R. and Caux, E., Astrophys. J. Lett. 534, L199-L202 (2000) Mookerjea, B., Giesen, T., Stutzki, J., Cernicharo, J., et al., Astron. Astrophys. 521, L13 (2010)

  3. Molecular cloning, structural analysis and expression of complement component Bf/C2 genes in the nurse shark, Ginglymostoma cirratum.

    PubMed

    Shin, Dong-Ho; Webb, Barbara; Nakao, Miki; Smith, Sylvia L

    2007-01-01

    Factor B and C2 are serine proteases that provide the catalytic subunits of C3 and C5 convertases of the alternative (AP) and classical (CP) complement pathways. Two Bf/C2 cDNAs, GcBf/C2-1 and -2 (previously referred to as nsBf/C2-A and nsBf/C2-B), were isolated from the nurse shark, Ginglymostoma cirratum. GcBf/C2-1 and -2 are 3364 and 3082bp in length and encode a leader peptide, three CCPs, one VWFA, the serine protease domain and have a putative factor D/C1s/MASP cleavage site. Southern blots show that there might be up to two Bf/C2-like genes for each of the two GcBf/C2 isoforms. GcBf/C2-1 and -2 are constitutively expressed, albeit at different levels, in all nine tissues examined. Expression in erythrocytes is a novel finding. Structural analysis has revealed that the localization of glycosylation sites in the SP domain of both putative proteins indicates that the molecular organization of the shark molecules is more like C2 than factor B. Phylogenetic analysis indicates that GcBf/C2-1 and -2 and TrscBf of Triakis scyllia (another shark species) originated from a common ancestor and share a remote ancestor with Bf and C2 of mammals and bony fish.

  4. The Oligo-Acyl Lysyl Antimicrobial Peptide C12K-2β12 Exhibits a Dual Mechanism of Action and Demonstrates Strong In Vivo Efficacy against Helicobacter pylori

    PubMed Central

    Makobongo, Morris O.; Gancz, Hanan; Carpenter, Beth M.; McDaniel, Dennis P.

    2012-01-01

    Helicobacter pylori has developed antimicrobial resistance to virtually all current antibiotics. Thus, there is a pressing need to develop new anti-H. pylori therapies. We recently described a novel oligo-acyl-lysyl (OAK) antimicrobial peptidomimetic, C12K-2β12, that shows potent in vitro bactericidal activity against H. pylori. Herein, we define the mechanism of action and evaluate the in vivo efficacy of C12K-2β12 against H. pylori after experimental infection of Mongolian gerbils. We demonstrate using a 1-N-phenylnaphthylamine (fluorescent probe) uptake assay and electron microscopy that C12K-2β12 rapidly permeabilizes the bacterial membrane and creates pores that cause bacterial cell lysis. Furthermore, using nucleic acid binding assays, Western blots, and confocal microscopy, we show that C12K-2β12 can cross the bacterial membranes into the cytoplasm and tightly bind to bacterial DNA, RNA, and proteins, a property that may result in inhibition of enzymatic activities and macromolecule synthesis. To define the in vivo efficacy of C12K-2β12, H. pylori-infected gerbils were orogastrically treated with increasing doses and concentrations of C12K-2β12 1 day or 1 week postinfection. The efficacy of C12K-2β12 was strongest in animals that received the largest number of doses at the highest concentration, indicating dose-dependent activity of the peptide (P < 0.001 by analysis of variance [ANOVA]) regardless of the timing of the treatment with C12K-2β12. Overall, our results demonstrate a dual mode of action of C12K-2β12 against the H. pylori membrane and cytoplasmic components. Moreover, and consistent with the previously reported in vitro efficacy, C12K-2β12 shows significant in vivo efficacy against H. pylori when used as monotherapy. Therefore, OAK peptides may be a valuable resource for therapeutic treatment of H. pylori infection. PMID:22064541

  5. Effects of ultraviolet B irradiation, proinflammatory cytokines and raised extracellular calcium concentration on the expression of ATP2A2 and ATP2C1.

    PubMed

    Mayuzumi, N; Ikeda, S; Kawada, H; Fan, P S; Ogawa, H

    2005-04-01

    Darier disease (DD) and Hailey-Hailey disease (HHD) are autosomal dominantly inherited skin disorders that histologically share the characteristics of suprabasal separation and acantholysis of epidermal keratinocytes. Various mutations in the DD gene (ATP2A2) and the HHD gene (ATP2C1) (respectively encoding the calcium pumps of the sarco/endoplasmic reticulum and the Golgi apparatus) have recently been described in multiple families with DD and HHD. Mutations in ATP2A2 or ATP2C1 have been suggested as causing the conditions via the mechanism of haploinsufficiency. Ultraviolet (UV) B irradiation is thought to be an aggravating factor in both diseases. To examine the effects of various stimuli on ATP2A2 and ATP2C1 mRNA expression, and to examine the role of calcium pumps during keratinocyte differentiation. The effects of UVB irradiation, of UVB-inducible inflammatory cytokines produced by keratinocytes and of high-calcium medium (1.8 mmol L(-1) as opposed to 0.08 mmol L(-1) Ca2+) on ATP2A2 and ATP2C1 mRNA expression were quantified in cultured normal human keratinocytes using reverse transcription-polymerase chain reaction. Expression of ATP2A2 and ATP2C1 mRNA was suppressed immediately after exposure to UVB irradiation, and modulation of mRNA expression was achieved in keratinocytes cultured with proinflammatory cytokines. The mRNA expression of both genes was increased significantly after the shift to high extracellular Ca2+ concentration. The results suggest that modulation of ATP2A2 and ATP2C1 mRNA expression by UV or cytokines might contribute to the clinical presentations unique to DD and HHD, and that the controlled expression of these genes plays an important role in keratinocyte homeostasis, function and differentiation.

  6. Bone-induced c-kit expression in prostate cancer: a driver of intraosseous tumor growth

    PubMed Central

    Mainetti, Leandro E.; Zhe, Xiaoning; Diedrich, Jonathan; Saliganan, Allen D.; Cho, Won Jin; Cher, Michael L.; Heath, Elisabeth; Fridman, Rafael; Kim, Hyeong-Reh Choi; Bonfil, R. Daniel

    2014-01-01

    Loss of BRCA2 function stimulates prostate cancer (PCa) cell invasion and is associated with more aggressive and metastatic tumors in PCa patients. Concurrently, the receptor tyrosine kinase c-kit is highly expressed in skeletal metastases of PCa patients and induced in PCa cells placed into the bone microenvironment in experimental models. However, the precise requirement of c-kit for intraosseous growth of PCa and its relation to BRCA2 expression remain unexplored. Here, we show that c-kit expression promotes migration and invasion of PCa cells. Alongside, we found that c-kit expression in PCa cells parallels BRCA2 downregulation. Gene rescue experiments with human BRCA2 transgene in c-kit-transfected PCa cells resulted in reduction of c-kit protein expression and migration and invasion, suggesting a functional significance of BRCA2 downregulation by c-kit. The inverse association between c-kit and BRCA2 gene expressions in PCa cells was confirmed using laser capture microdissection in experimental intraosseous tumors and bone metastases of PCa patients. Inhibition of bone-induced c-kit expression in PCa cells transduced with lentiviral short hairpin RNA reduced intraosseous tumor incidence and growth. Overall, our results provide evidence of a novel pathway that links bone-induced c-kit expression in PCa cells to BRCA2 downregulation and supports bone metastasis. PMID:24798488

  7. Quantitative evaluation method for differentiation of C2C12 myoblasts by ultrasonic microscopy

    NASA Astrophysics Data System (ADS)

    Takanashi, Kyoichi; Washiya, Mamoru; Ota, Kazuki; Yoshida, Sachiko; Hozumi, Naohiro; Kobayashi, Kazuto

    2017-07-01

    Cell differentiation was evaluated by ultrasonic microscopy. However, there were some regions that showed a lower acoustic impedance than the culture liquid. It was considered that, in such regions, the cells were not perfectly in contact with the film substrate. Hence, a waveform analysis was performed, and compensated acoustic impedances in such regions were in a reasonable range of values. By the same analysis, the displacements of partially floated cells were also successfully calculated. The elapsed day transitions of the compensated acoustic impedances and displacements were successfully evaluated. In the process of differentiation, actin fibers comprising the cytoskeleton are supposed to loosen in order to induce cellular fusion. In addition, the progress in cell differentiation accompanied by a change into a three-dimensional structure can partially be assessed by the displacement between a cell and a cultured film. Hence, we believe that cell differentiation can be evaluated using an ultrasonic microscope.

  8. Compound C Stimulates Heme Oxygenase-1 Gene Expression via the Nrf2-ARE Pathway to Preserve Human Endothelial Cell Survival

    PubMed Central

    Liu, Xiao-ming; Peyton, Kelly J.; Shebib, Ahmad R.; Wang, Hong; Durante, William

    2011-01-01

    We recently identified adenosine monophosphate-activated protein kinase (AMPK) as a novel inducer of heme oxygenase-1 (HO-1) and surprisingly found that compound C (6-[4-(2-piperidin-1-yl-ethoxy)-phenyl]3-pyridin-4-yl-pyrazolo[1,5-a] pyrimidine), a cell-permeable inhibitor of AMPK, could also elevate HO-1 suggesting other AMPK-independent actions for this agent. In this study, we investigated the biochemical mechanism by which compound C stimulates HO-1 expression in human endothelial cells (ECs) and determined the biological significance of the induction of HO-1 by compound C in these cells. Compound C stimulated a concentration- and time-dependent increase in HO-1 expression and an increase in HO-1 promoter activity that was abrogated by mutating the antioxidant responsive elements (AREs) in the HO-1 promoter or by overexpressing a dominant negative mutant of NF-E2-related factor-2 (Nrf2). Compound C also stimulated Nrf2 expression and this was associated with an increase in the production of reactive oxygen species and with a decline in intracellular glutathione levels. Interestingly, the glutathione donor N-acetyl-L-cysteine or the NADPH oxidase inhibitor apocynin blocked the induction of HO-1 by compound C. Finally, compound C stimulated EC death and this was potentiated by silencing HO-1 expression and reversed by the administration of CO, biliverdin, or bilirubin. In conclusion, this study demonstrates that compound C stimulates HO-1 gene expression in human vascular endothelium via the activation of the Nrf2/ARE signaling pathway to counteract compound C-mediated cell death. The ability of compound C to induce HO-1 expression may contribute to the pleiotropic actions of this agent and suggest caution when using compound C to probe for AMPK functions. PMID:21635873

  9. Determination of 13C/12C Isotope Ratio in Alcohols of Different Origin by 1н Nuclei NMR-Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dzhimak, S. S.; Basov, A. A.; Buzko, V. Yu.; Kopytov, G. F.; Kashaev, D. V.; Shashkov, D. I.; Shlapakov, M. S.; Baryshev, M. G.

    2017-02-01

    A new express method of indirect assessment of 13C/12C isotope ratio on 1H nuclei is developed to verify the authenticity of ethanol origin in alcohol-water-based fluids and assess the facts of various alcoholic beverages falsification. It is established that in water-based alcohol-containing systems, side satellites for the signals of ethanol methyl and methylene protons in the NMR spectra on 1H nuclei, correspond to the protons associated with 13C nuclei. There is a direct correlation between the intensities of the signals of ethanol methyl and methylene protons' 1H- NMR and their side satellites, therefore, the data obtained can be used to assess 13C/12C isotope ratio in water-based alcohol-containing systems. The analysis of integrated intensities of main and satellite signals of methyl and methylene protons of ethanol obtained by NMR on 1H nuclei makes it possible to differentiate between ethanol of synthetic and natural origin. Furthermore, the method proposed made it possible to differentiate between wheat and corn ethanol.

  10. C-12/C-13 Ratio in Ethane on Titan and Implications for Methane's Replenishment

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Romani, Paul N.; Bjoraker, Gordon L.; Sada, Pedro V.; Nixon, Conor A.; Lunsford, Allen W.; Boyle, Robert J.; Hesman, Brigette E.; McCabe, George H.

    2009-01-01

    The C-12/C-13 abundance ratio in ethane in the atmosphere of Titan has been measured at 822 cm(sup -1) from high spectral resolution ground-based observations. The value 89(8), coincides with the telluric standard and also agrees with the ratio seen in the outer planets. It is almost identical to the result for ethane on Titan found by the composite infrared spectrometer (CIRS) on Cassini. The C-12/C-13 ratio for ethane is higher than the ratio measured in atmospheric methane by Cassini/Huygens GCMS, 82.3(l), representing an enrichment of C-12 in the ethane that might be explained by a kinetic isotope effect of approximately 1.1 in the formation of methyl radicals. If methane is being continuously resupplied to balance photochemical destruction, then we expect the isotopic composition in the ethane product to equilibrate at close to the same C-12/C-13 ratio as that in the supply. The telluric value of the ratio in ethane then implies that the methane reservoir is primordial.

  11. Niemann-Pick type C2 protein regulates liver cancer progression via modulating ERK1/2 pathway: Clinicopathological correlations and therapeutical implications.

    PubMed

    Liao, Yi-Jen; Fang, Cheng-Chieh; Yen, Chia-Hung; Hsu, Shih-Ming; Wang, Chung-Kwe; Huang, Shiu-Feng; Liang, Yu-Chih; Lin, Ying-Yu; Chu, Yu-Tseng; Arthur Chen, Yi-Ming

    2015-09-15

    Primary hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the third leading cause of cancer-related death. It is important to identify new targets for early diagnosis and treatment of HCC. Niemann-Pick type C2 (NPC2) plays an important role in the regulation of intracellular cholesterol homeostasis via direct binding with free cholesterol. However, little is known about the significance of NPC2 in HCC tumorigenesis. In this study, we showed that NPC2 is abundantly expressed in normal liver, but is downregulated in human HCC tissues. The patients with NPC2 downregulation expressed much higher α-fetoprotein, multiple tumor type, vascular invasion, later pathological stage and shorter survival rate. Knockdown NPC2 in liver cancer cell lines promote cell proliferation, migration and xenograft tumorigenesis. In contrast, NPC2 overexpression inhibits HuH7 promoted tumor growth. Furthermore, administration of hepatotropic adeno-associated virus 8 (AAV8) delivered NPC2 decreased the inflammatory infiltration, the expression of two early HCC markers-glypican 3 and survivin and suppressed the spontaneous HCC development in mice. To identify the NPC2-dependent mechanism, we emphasized on the status of MAPK/ERK signaling. MEK1/2 inhibitor treatment demonstrated that the expression of NPC2 affected the activation of ERK1/2 but not MEK1/2. In addition, cholesterol trafficking inhibitor treatment did not alter the cell proliferation and the activation of MEK/ERK. In conclusion, our study demonstrates that NPC2 may play an important role in negatively regulate cell proliferation and ERK1/2 activation that were independent of cholesterol accumulation. AAV-NPC2 may thus represent a new treatment strategy for liver cancer. © 2015 UICC.

  12. Overexpression of connexin 43 using a retroviral vector improves electrical coupling of skeletal myoblasts with cardiac myocytes in vitro

    PubMed Central

    Tolmachov, Oleg; Ma, Yu-Ling; Themis, Michael; Patel, Pravina; Spohr, Hilmar; MacLeod, Kenneth T; Ullrich, Nina D; Kienast, Yvonne; Coutelle, Charles; Peters, Nicholas S

    2006-01-01

    Background Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically into the myocardium. Therefore, in pursuit of improved cardiac integration of skeletal muscle grafts we sought to modify primary skeletal myoblasts by overexpression of the main gap-junctional protein connexin 43 and to study electrical coupling of connexin 43 overexpressing myoblasts to cardiac myocytes in vitro. Methods To create an efficient means for overexpression of connexin 43 in skeletal myoblasts we constructed a bicistronic retroviral vector MLV-CX43-EGFP expressing the human connexin 43 cDNA and the marker EGFP gene. This vector was employed to transduce primary rat skeletal myoblasts in optimised conditions involving a concomitant use of the retrovirus immobilising protein RetroNectin® and the polycation transduction enhancer Transfectam®. The EGFP-positive transduced cells were then enriched by flow cytometry. Results More than four-fold overexpression of connexin 43 in the transduced skeletal myoblasts, compared with non-transduced cells, was shown by Western blotting. Functionality of the overexpressed connexin 43 was demonstrated by microinjection of a fluorescent dye showing enhanced gap-junctional intercellular transfer in connexin 43 transduced myoblasts compared with transfer in non-transduced myoblasts. Rat cardiac myocytes were cultured in multielectrode array culture dishes together with connexin 43/EGFP transduced skeletal myoblasts, control non-transduced skeletal myoblasts or alone. Extracellular field action potential activation rates in the co-cultures of connexin 43 transduced skeletal myoblasts with cardiac myocytes were significantly higher than

  13. Overexpression of connexin 43 using a retroviral vector improves electrical coupling of skeletal myoblasts with cardiac myocytes in vitro.

    PubMed

    Tolmachov, Oleg; Ma, Yu-Ling; Themis, Michael; Patel, Pravina; Spohr, Hilmar; Macleod, Kenneth T; Ullrich, Nina D; Kienast, Yvonne; Coutelle, Charles; Peters, Nicholas S

    2006-06-06

    Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically into the myocardium. Therefore, in pursuit of improved cardiac integration of skeletal muscle grafts we sought to modify primary skeletal myoblasts by overexpression of the main gap-junctional protein connexin 43 and to study electrical coupling of connexin 43 overexpressing myoblasts to cardiac myocytes in vitro. To create an efficient means for overexpression of connexin 43 in skeletal myoblasts we constructed a bicistronic retroviral vector MLV-CX43-EGFP expressing the human connexin 43 cDNA and the marker EGFP gene. This vector was employed to transduce primary rat skeletal myoblasts in optimised conditions involving a concomitant use of the retrovirus immobilising protein RetroNectin and the polycation transduction enhancer Transfectam. The EGFP-positive transduced cells were then enriched by flow cytometry. More than four-fold overexpression of connexin 43 in the transduced skeletal myoblasts, compared with non-transduced cells, was shown by Western blotting. Functionality of the overexpressed connexin 43 was demonstrated by microinjection of a fluorescent dye showing enhanced gap-junctional intercellular transfer in connexin 43 transduced myoblasts compared with transfer in non-transduced myoblasts. Rat cardiac myocytes were cultured in multielectrode array culture dishes together with connexin 43/EGFP transduced skeletal myoblasts, control non-transduced skeletal myoblasts or alone. Extracellular field action potential activation rates in the co-cultures of connexin 43 transduced skeletal myoblasts with cardiac myocytes were significantly higher than in the co-cultures of non

  14. 12 CFR Appendix C to Part 202 - Sample Notification Forms

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Sample Notification Forms C Appendix C to Part... CREDIT OPPORTUNITY ACT (REGULATION B) Pt. 202, App. C Appendix C to Part 202—Sample Notification Forms 1. This appendix contains ten sample notification forms. Forms C-1 through C-4 are intended for use in...

  15. 12 CFR Appendix C to Part 202 - Sample Notification Forms

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Sample Notification Forms C Appendix C to Part... CREDIT OPPORTUNITY ACT (REGULATION B) Pt. 202, App. C Appendix C to Part 202—Sample Notification Forms 1. This appendix contains ten sample notification forms. Forms C-1 through C-4 are intended for use in...

  16. Expression of the nifA gene of Herbaspirillum seropedicae: role of the NtrC and NifA binding sites and of the -24/-12 promoter element.

    PubMed

    Souza, E M; Pedrosa, F O; Rigo, L U; Machado, H B; Yates, M G

    2000-06-01

    The nifA promoter of Herbaspirillum seropedicae contains potential NtrC, NifA and IHF binding sites together with a -12/-24 sigma(N)-dependent promoter. This region has now been investigated by deletion mutagenesis for the effect of NtrC and NifA on the expression of a nifA::lacZ fusion. A 5' end to the RNA was identified at position 641, 12 bp downstream from the -12/-24 promoter. Footprinting experiments showed that the G residues at positions -26 and -9 are hypermethylated, and that the region from -10 to +10 is partially melted under nitrogen-fixing conditions, confirming that this is the active nifA promoter. In H. seropedicae nifA expression from the sigma(N)-dependent promoter is repressed by fixed nitrogen but not by oxygen and is probably activated by the NtrC protein. NifA protein is apparently not essential for nifA expression but it can still bind the NifA upstream activating sequence.

  17. Curvature-correction-based time-domain CMOS smart temperature sensor with an inaccuracy of -0.8 °C-1.2 °C after one-point calibration from -40 °C to 120 °C

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chi; Lin, Shih-Hao; Lin, Yi

    2014-06-01

    This paper proposes a time-domain CMOS smart temperature sensor featuring on-chip curvature correction and one-point calibration support for thermal management systems. Time-domain inverter-based temperature sensors, which exhibit the advantages of low power and low cost, have been proposed for on-chip thermal monitoring. However, the curvature is large for the thermal transfer curve, which substantially affects the accuracy as the temperature range increases. Another problem is that the inverter is sensitive to process variations, resulting in difficulty for the sensors to achieve an acceptable accuracy for one-point calibration. To overcome these two problems, a temperature-dependent oscillator with curvature correction is proposed to increase the linearity of the oscillatory width, thereby resolving the drawback caused by a costly off-chip second-order master curve fitting. For one-point calibration support, an adjustable-gain time amplifier was adopted to eliminate the effect of process variations, with the assistance of a calibration circuit. The proposed circuit occupied a small area of 0.073 mm2 and was fabricated in a TSMC CMOS 0.35-μm 2P4M digital process. The linearization of the oscillator and the effect cancellation of process variations enabled the sensor, which featured a fixed resolution of 0.049 °C/LSB, to achieve an optimal inaccuracy of -0.8 °C to 1.2 °C after one-point calibration of 12 test chips from -40 °C to 120 °C. The power consumption was 35 μW at a sample rate of 10 samples/s.

  18. Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development.

    PubMed

    Simeone, A; Mavilio, F; Acampora, D; Giampaolo, A; Faiella, A; Zappavigna, V; D'Esposito, M; Pannese, M; Russo, G; Boncinelli, E

    1987-07-01

    Two human cDNA clones (HHO.c1.95 and HHO.c8.5111) containing a homeobox region have been characterized, and the respective genomic regions have been partially analyzed. Expression of the corresponding genes, termed c1 and c8, was evaluated in different organs and body parts during human embryonic/fetal development. HHO.c1.95 apparently encodes a 217-amino acid protein containing a class I homeodomain that shares 60 out of 61 amino acid residues with the Antennapedia homeodomain of Drosophila melanogaster. HHO.c8.5111 encodes a 153-amino acid protein containing a homeodomain identical to that of the frog AC1 gene. Clones HHO.c1 and HHO.c8 detect by blot-hydridization one and two specific polyadenylylated transcripts, respectively. These are differentially expressed in spinal cord, backbone rudiments, limb buds (or limbs), heart, and skin of human embryos and early fetuses in the 5- to 9-week postfertilization period, thus suggesting that the c1 and c8 genes play a key role in a variety of developmental processes. Together, the results of the embryonic/fetal expression of c1 and c8 and those of two previously analyzed genes (c10 and c13) indicate a coherent pattern of expression of these genes in early human ontogeny.

  19. The Brain In Vivo Expresses the 2′,3′-cAMP-Adenosine Pathway

    PubMed Central

    Verrier, Jonathan D.; Jackson, Travis C.; Bansal, Rashmi; Kochanek, Patrick M.; Puccio, Ava M.; Okonkwo, David O.; Jackson, Edwin K.

    2012-01-01

    Although multiple biochemical pathways produce adenosine, studies suggest that the 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMP/3′-AMP → adenosine) contributes to adenosine production in some cells/tissues/organs. To determine whether the 2′,3′-cAMP-adenosine pathway exists in vivo in the brain, we delivered to the brain (gray matter and white matter separately) via the inflow perfusate of a microdialysis probe either 2′,3′-cAMP, 3′,5′-cAMP, 2′-AMP, 3′-AMP, or 5′-AMP and measured the recovered metabolites in the microdialysis outflow perfusate with mass spectrometry. In both gray and white matter, 2′,3′-cAMP increased 2′-AMP, 3′-AMP and adenosine, and 3′,5′-cAMP increased 5′-AMP and adenosine. In both brain regions, 2′-AMP, 3-AMP and 5′-AMP were converted to adenosine. Microdialysis experiments in 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) wild-type mice demonstrated that traumatic brain injury (TBI; controlled cortical impact model) activated the brain 2,3′-cAMP-adenosine pathway; similar experiments in CNPase knockout mice indicated that CNPase was involved in the metabolism of endogenous 2′,3′-cAMP to 2′-AMP and to adenosine. In CSF from TBI patients, 2′,3′-cAMP was significantly increased in the initial 12 hours after injury and strongly correlated with CSF levels of 2′-AMP, 3′-AMP, adenosine and inosine. We conclude that in vivo, 2′,3′-cAMP is converted to 2′-AMP/3′-AMP, and these AMPs are metabolized to adenosine. This pathway exists endogenously in both mice and humans. PMID:22360621

  20. Signal mingle: Micropatterns of BMP-2 and fibronectin on soft biopolymeric films regulate myoblast shape and SMAD signaling.

    PubMed

    Fitzpatrick, Vincent; Fourel, Laure; Destaing, Olivier; Gilde, Flora; Albigès-Rizo, Corinne; Picart, Catherine; Boudou, Thomas

    2017-01-30

    In vivo, bone morphogenetic protein 2 (BMP-2) exists both in solution and bound to the extracellular matrix (ECM). While these two modes of presentation are known to influence cell behavior distinctly, their role in the niche microenvironment and their functional relevance in the genesis of a biological response has sparsely been investigated at a cellular level. Here we used the natural affinity of BMP-2 for fibronectin (FN) to engineer cell-sized micropatterns of BMP-2. This technique allowed the simultaneous control of the spatial presentation of fibronectin-bound BMP-2 and cell spreading. These micropatterns induced a specific actin and adhesion organization around the nucleus, and triggered the phosphorylation and nuclear translocation of SMAD1/5/8 in C2C12 myoblasts and mesenchymal stem cells, an early indicator of their osteoblastic trans-differentiation. We found that cell spreading itself potentiated a BMP-2-dependent phosphorylation of SMAD1/5/8. Finally, we demonstrated that FN/BMP-2-mediated early SMAD signaling depended on LIM kinase 2 and ROCK, rather than myosin II activation. Altogether, our results show that FN/BMP-2 micropatterns are a useful tool to study the mechanisms underlying BMP-2-mediated mechanotransduction. More broadly, our approach could be adapted to other combinations of ECM proteins and growth factors, opening an exciting avenue to recreate tissue-specific niches in vitro.

  1. Signal mingle: Micropatterns of BMP-2 and fibronectin on soft biopolymeric films regulate myoblast shape and SMAD signaling

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Vincent; Fourel, Laure; Destaing, Olivier; Gilde, Flora; Albigès-Rizo, Corinne; Picart, Catherine; Boudou, Thomas

    2017-01-01

    In vivo, bone morphogenetic protein 2 (BMP-2) exists both in solution and bound to the extracellular matrix (ECM). While these two modes of presentation are known to influence cell behavior distinctly, their role in the niche microenvironment and their functional relevance in the genesis of a biological response has sparsely been investigated at a cellular level. Here we used the natural affinity of BMP-2 for fibronectin (FN) to engineer cell-sized micropatterns of BMP-2. This technique allowed the simultaneous control of the spatial presentation of fibronectin-bound BMP-2 and cell spreading. These micropatterns induced a specific actin and adhesion organization around the nucleus, and triggered the phosphorylation and nuclear translocation of SMAD1/5/8 in C2C12 myoblasts and mesenchymal stem cells, an early indicator of their osteoblastic trans-differentiation. We found that cell spreading itself potentiated a BMP-2-dependent phosphorylation of SMAD1/5/8. Finally, we demonstrated that FN/BMP-2-mediated early SMAD signaling depended on LIM kinase 2 and ROCK, rather than myosin II activation. Altogether, our results show that FN/BMP-2 micropatterns are a useful tool to study the mechanisms underlying BMP-2-mediated mechanotransduction. More broadly, our approach could be adapted to other combinations of ECM proteins and growth factors, opening an exciting avenue to recreate tissue-specific niches in vitro.

  2. Live cell imaging reveals marked variability in myoblast proliferation and fate

    PubMed Central

    2013-01-01

    Background During the process of muscle regeneration, activated stem cells termed satellite cells proliferate, and then differentiate to form new myofibers that restore the injured area. Yet not all satellite cells contribute to muscle repair. Some continue to proliferate, others die, and others become quiescent and are available for regeneration following subsequent injury. The mechanisms that regulate the adoption of different cell fates in a muscle cell precursor population remain unclear. Methods We have used live cell imaging and lineage tracing to study cell fate in the C2 myoblast line. Results Analyzing the behavior of individual myoblasts revealed marked variability in both cell cycle duration and viability, but similarities between cells derived from the same parental lineage. As a consequence, lineage sizes and outcomes differed dramatically, and individual lineages made uneven contributions toward the terminally differentiated population. Thus, the cohort of myoblasts undergoing differentiation at the end of an experiment differed dramatically from the lineages present at the beginning. Treatment with IGF-I increased myoblast number by maintaining viability and by stimulating a fraction of cells to complete one additional cell cycle in differentiation medium, and as a consequence reduced the variability of the terminal population compared with controls. Conclusion Our results reveal that heterogeneity of responses to external cues is an intrinsic property of cultured myoblasts that may be explained in part by parental lineage, and demonstrate the power of live cell imaging for understanding how muscle differentiation is regulated. PMID:23638706

  3. Boron nitride nanotube-functionalised myoblast/microfibre constructs: a nanotech-assisted tissue-engineered platform for muscle stimulation.

    PubMed

    Danti, Serena; Ciofani, Gianni; Pertici, Gianni; Moscato, Stefania; D'Alessandro, Delfo; Ciabatti, Elena; Chiellini, Federica; D'Acunto, Mario; Mattoli, Virgilio; Berrettini, Stefano

    2015-07-01

    In this communication, we introduce boron nitride nanotube (BNNT)-functionalised muscle cell/microfibre mesh constructs, obtained via tissue engineering, as a three-dimensional (3D) platform to study a wireless stimulation system for electrically responsive cells and tissues. Our stimulation strategy exploits the piezoelectric behaviour of some classes of ceramic nanoparticles, such as BNNTs, able to polarize under mechanical stress, e.g. using low-frequency ultrasound (US). In the microfibre scaffolds, C2C12 myoblasts were able to differentiate into viable myotubes and to internalize BNNTs, also upon US irradiation, so as to obtain a nanotech-assisted 3D in vitro model. We then tested our stimulatory system on 2D and 3D cellular models by investigating the expression of connexin 43 (Cx43), as a molecule involved in cell crosstalk and mechanotransduction, and myosin, as a myogenic differentiation marker. Cx43 gene expression revealed a marked model dependency. In control samples (without US and/or BNNTs), Cx43 was upregulated under 2D culture conditions (10.78 ± 1.05-fold difference). Interactions with BNNTs increased Cx43 expression in 3D samples. Cx43 mRNA dropped in 2D under the 'BNNTs + US' regimen, while it was best enhanced in 3D samples (3.58 ± 1.05 vs 13.74 ± 1.42-fold difference, p = 0.0001). At the protein level, the maximal expressions of Cx43 and myosin were detected in the 3D model. In contrast with the 3D model, in 2D cultures, BNNTs and US exerted a synergistic depletive effect upon myosin synthesis. These findings indicate that model dimensionality and stimulatory regimens can strongly affect the responses of signalling and differentiation molecules, proving the importance of developing proper in vitro platforms for biological modelling. Copyright © 2014 John Wiley & Sons, Ltd.

  4. δ-Catenin Increases the Stability of EGFR by Decreasing c-Cbl Interaction and Enhances EGFR/Erk1/2 Signaling in Prostate Cancer.

    PubMed

    Shrestha, Nensi; Shrestha, Hridaya; Ryu, Taeyong; Kim, Hangun; Simkhada, Shishli; Cho, Young-Chang; Park, So-Yeon; Cho, Sayeon; Lee, Kwang-Youl; Lee, Jae-Hyuk; Kim, Kwonseop

    2018-04-30

    δ-Catenin, a member of the p120-catenin subfamily of armadillo proteins, reportedly increases during the late stage of prostate cancer. Our previous study demonstrates that δ-catenin increases the stability of EGFR in prostate cancer cell lines. However, the molecular mechanism behind δ-catenin-mediated enhanced stability of EGFR was not explored. In this study, we hypothesized that δ-catenin enhances the protein stability of EGFR by inhibiting its lysosomal degradation that is mediated by c-casitas b-lineage lymphoma (c-Cbl), a RING domain E3 ligase. c-Cbl monoubiquitinates EGFR and thus facilitates its internalization, followed by lysosomal degradation. We observed that δ-catenin plays a key role in EGFR stability and downstream signaling. δ-Catenin competes with c-Cbl for EGFR binding, which results in a reduction of binding between c-Cbl and EGFR and thus decreases the ubiquitination of EGFR. This in turn increases the expression of membrane bound EGFR and enhances EGFR/Erk1/2 signaling. Our findings add a new perspective on the role of δ-catenin in enhancing EGFR/Erk1/2 signaling-mediated prostate cancer.

  5. 40 CFR 721.5358 - 2-propanol, 1,1′,1′-nitrilotris-, compds. with ethanol 2-[2-(C12-14-alkyloxy) ethoxy] derivs...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, compds. with ethanol 2-[2-(C12-14-alkyloxy) ethoxy] derivs. hydrogen sulfates. 721.5358 Section 721.5358...-propanol, 1,1′,1′-nitrilotris-, compds. with ethanol 2-[2-(C12-14-alkyloxy) ethoxy] derivs. hydrogen.... hydrogen sulfates (PMN P-99-928; CAS No. 222975-06-6) is subject to reporting under this section for the...

  6. 40 CFR 721.5358 - 2-propanol, 1,1′,1′-nitrilotris-, compds. with ethanol 2-[2-(C12-14- alkyloxy) ethoxy] derivs...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-, compds. with ethanol 2-[2-(C12-14- alkyloxy) ethoxy] derivs. hydrogen sulfates. 721.5358 Section 721.5358...-propanol, 1,1′,1′-nitrilotris-, compds. with ethanol 2-[2-(C12-14- alkyloxy) ethoxy] derivs. hydrogen.... hydrogen sulfates (PMN P-99-928; CAS No. 222975-06-6) is subject to reporting under this section for the...

  7. 40 CFR 721.5358 - 2-propanol, 1,1′,1′-nitrilotris-, compds. with ethanol 2-[2-(C12-14-alkyloxy) ethoxy] derivs...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-, compds. with ethanol 2-[2-(C12-14-alkyloxy) ethoxy] derivs. hydrogen sulfates. 721.5358 Section 721.5358...-propanol, 1,1′,1′-nitrilotris-, compds. with ethanol 2-[2-(C12-14-alkyloxy) ethoxy] derivs. hydrogen.... hydrogen sulfates (PMN P-99-928; CAS No. 222975-06-6) is subject to reporting under this section for the...

  8. 40 CFR 721.5358 - 2-propanol, 1,1′,1′-nitrilotris-, compds. with ethanol 2-[2-(C12-14-alkyloxy) ethoxy] derivs...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-, compds. with ethanol 2-[2-(C12-14-alkyloxy) ethoxy] derivs. hydrogen sulfates. 721.5358 Section 721.5358...-propanol, 1,1′,1′-nitrilotris-, compds. with ethanol 2-[2-(C12-14-alkyloxy) ethoxy] derivs. hydrogen.... hydrogen sulfates (PMN P-99-928; CAS No. 222975-06-6) is subject to reporting under this section for the...

  9. 40 CFR 721.5358 - 2-propanol, 1,1′,1′-nitrilotris-, compds. with ethanol 2-[2-(C12-14- alkyloxy) ethoxy] derivs...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-, compds. with ethanol 2-[2-(C12-14- alkyloxy) ethoxy] derivs. hydrogen sulfates. 721.5358 Section 721.5358...-propanol, 1,1′,1′-nitrilotris-, compds. with ethanol 2-[2-(C12-14- alkyloxy) ethoxy] derivs. hydrogen.... hydrogen sulfates (PMN P-99-928; CAS No. 222975-06-6) is subject to reporting under this section for the...

  10. Sorting receptor Rer1 controls surface expression of muscle acetylcholine receptors by ER retention of unassembled alpha-subunits.

    PubMed

    Valkova, Christina; Albrizio, Marina; Röder, Ira V; Schwake, Michael; Betto, Romeo; Rudolf, Rüdiger; Kaether, Christoph

    2011-01-11

    The nicotinic acetylcholine receptor of skeletal muscle is composed of five subunits that are assembled in a stepwise manner. Quality control mechanisms ensure that only fully assembled receptors reach the cell surface. Here, we show that Rer1, a putative Golgi-ER retrieval receptor, is involved in the biogenesis of acetylcholine receptors. Rer1 is expressed in the early secretory pathway in the myoblast line C2C12 and in mouse skeletal muscle, and up-regulated during myogenesis. Upon down-regulation of Rer1 in C2C12 cells, unassembled acetylcholine receptor α-subunits escape from the ER and are transported to the plasma membrane and lysosomes, where they are degraded. As a result, the amount of fully assembled receptor at the cell surface is reduced. In vivo Rer1 knockdown and genetic inactivation of one Rer1 allele lead to significantly smaller neuromuscular junctions in mice. Our data show that Rer1 is a functionally important unique factor that controls surface expression of muscle acetylcholine receptors by localizing unassembled α-subunits to the early secretory pathway.

  11. Functional TRPV2 and TRPV4 channels in human cardiac c-kit(+) progenitor cells.

    PubMed

    Che, Hui; Xiao, Guo-Sheng; Sun, Hai-Ying; Wang, Yan; Li, Gui-Rong

    2016-06-01

    The cellular physiology and biology of human cardiac c-kit(+) progenitor cells has not been extensively characterized and remains an area of active research. This study investigates the functional expression of transient receptor potential vanilloid (TRPV) and possible roles for this ion channel in regulating proliferation and migration of human cardiac c-kit(+) progenitor cells. We found that genes coding for TRPV2 and TRPV4 channels and their proteins are significantly expressed in human c-kit(+) cardiac stem cells. Probenecid, an activator of TRPV2, induced an increase in intracellular Ca(2+) (Ca(2+) i ), an effect that may be attenuated or abolished by the TRPV2 blocker ruthenium red. The TRPV4 channel activator 4α-phorbol 12-13-dicaprinate induced Ca(2+) i oscillations, which can be inhibited by the TRPV4 blocker RN-1734. The alteration of Ca(2+) i by probenecid or 4α-phorbol 12-13-dicprinate was dramatically inhibited in cells infected with TRPV2 short hairpin RNA (shRNA) or TRPV4 shRNA. Silencing TRPV2, but not TRPV4, significantly reduced cell proliferation by arresting cells at the G0/G1 boundary of the cell cycle. Cell migration was reduced by silencing TRPV2 or TRPV4. Western blot revealed that silencing TRPV2 decreased expression of cyclin D1, cyclin E, pERK1/2 and pAkt, whereas silencing TRPV4 only reduced pAkt expression. Our results demonstrate for the first time that functional TRPV2 and TRPV4 channels are abundantly expressed in human cardiac c-kit(+) progenitor cells. TRPV2 channels, but not TRPV4 channels, participate in regulating cell cycle progression; moreover, both TRPV2 and TRPV4 are involved in migration of human cardiac c-kit(+) progenitor cells. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. Anesthetics inhibit extracellular signal-regulated Kinase1/2 phosphorylation via NMDA receptor, phospholipase C and protein kinase C in mouse hippocampal slices.

    PubMed

    Haiying, Gao; Mingjie, Han; Lingyu, Zhang; Qingxiang, Wang; Haisong, Wang; Bingxi, Zhang

    2017-02-01

    Extracellular signal-regulated kinase 1/2 (ERK1/2) has been implicated in learning and memory; however, whether intravenous anesthetics modulate ERK1/2 remains unknown. The aim of this study was to examine the effect of several intravenous anesthetics on the phosphorylation of ERK1/2 in the hippocampus of adult mice. Western blotting was used to examine cellular levels of phosphorylated and unphosphorylated ERK1/2 in mouse hippocampus slices, which were incubated with or without anesthetics including propofol, etomidate, ketamine and midazolam, a protein kinase C (PKC) activator or inhibitor, or phospholipase C (PLC) activator or inhibitor. Propofol, etomidate, ketamine and midazolam reduced phosphorylation of ERK1/2 in a time-dependent manner. Washing out propofol after 5 min increased ERK1/2 phosphorylation. The anesthetic-induced depression of ERK1/2 phosphorylation was blocked by 0.1 μM phorbol-12-myristate 13-acetate (an activator of PKC), 50 μM U73122 (an inhibitor of PLC). The anesthetic-induced depression of ERK1 phosphorylation was blocked by 1 mMN-methyl-d-aspartate (NMDA). Whereas 100 μM chelerythrine (an inhibitor of PKC) and 100 μM carbachol (an activator of PLC) and 20 μM PD-98059 (an inhibitor of MEK) had additive effects on propofol-induced inhibition of ERK1/2 phosphorylation. In contrast, 10 μM MK801 (a NMDA receptor antagonist) did not block anesthetic-induced inhibition of ERK1/2 phosphorylation. Intravenous anesthetics markedly decreased phosphorylation of ERK1/2 in mouse hippocampal slices, most likely via the NMDA receptor, and PLC- and PKC-dependent pathways. Thus, ERK1/2 represents a target for anesthetics in the brain. Copyright © 2016. Published by Elsevier Ltd.

  13. Tumor Necrosis Factor Alpha and Insulin-Like Growth Factor 1 Induced Modifications of the Gene Expression Kinetics of Differentiating Skeletal Muscle Cells

    PubMed Central

    Meyer, Swanhild U.; Krebs, Stefan; Thirion, Christian; Blum, Helmut; Krause, Sabine; Pfaffl, Michael W.

    2015-01-01

    Introduction TNF-α levels are increased during muscle wasting and chronic muscle degeneration and regeneration processes, which are characteristic for primary muscle disorders. Pathologically increased TNF-α levels have a negative effect on muscle cell differentiation efficiency, while IGF1 can have a positive effect; therefore, we intended to elucidate the impact of TNF-α and IGF1 on gene expression during the early stages of skeletal muscle cell differentiation. Methodology/Principal Findings This study presents gene expression data of the murine skeletal muscle cells PMI28 during myogenic differentiation or differentiation with TNF-α or IGF1 exposure at 0 h, 4 h, 12 h, 24 h, and 72 h after induction. Our study detected significant coregulation of gene sets involved in myoblast differentiation or in the response to TNF-α. Gene expression data revealed a time- and treatment-dependent regulation of signaling pathways, which are prominent in myogenic differentiation. We identified enrichment of pathways, which have not been specifically linked to myoblast differentiation such as doublecortin-like kinase pathway associations as well as enrichment of specific semaphorin isoforms. Moreover to the best of our knowledge, this is the first description of a specific inverse regulation of the following genes in myoblast differentiation and response to TNF-α: Aknad1, Cmbl, Sepp1, Ndst4, Tecrl, Unc13c, Spats2l, Lix1, Csdc2, Cpa1, Parm1, Serpinb2, Aspn, Fibin, Slc40a1, Nrk, and Mybpc1. We identified a gene subset (Nfkbia, Nfkb2, Mmp9, Mef2c, Gpx, and Pgam2), which is robustly regulated by TNF-α across independent myogenic differentiation studies. Conclusions This is the largest dataset revealing the impact of TNF-α or IGF1 treatment on gene expression kinetics of early in vitro skeletal myoblast differentiation. We identified novel mRNAs, which have not yet been associated with skeletal muscle differentiation or response to TNF-α. Results of this study may facilitate

  14. Multiple C-terminal tail Ca2+/CaMs regulate CaV1.2 function but do not mediate channel dimerization

    PubMed Central

    Kim, Eun Young; Rumpf, Christine H; Van Petegem, Filip; Arant, Ryan J; Findeisen, Felix; Cooley, Elizabeth S; Isacoff, Ehud Y; Minor, Daniel L

    2010-01-01

    Interactions between voltage-gated calcium channels (CaVs) and calmodulin (CaM) modulate CaV function. In this study, we report the structure of a Ca2+/CaM CaV1.2 C-terminal tail complex that contains two PreIQ helices bridged by two Ca2+/CaMs and two Ca2+/CaM–IQ domain complexes. Sedimentation equilibrium experiments establish that the complex has a 2:1 Ca2+/CaM:C-terminal tail stoichiometry and does not form higher order assemblies. Moreover, subunit-counting experiments demonstrate that in live cell membranes CaV1.2s are monomers. Thus, contrary to previous proposals, the crystallographic dimer lacks physiological relevance. Isothermal titration calorimetry and biochemical experiments show that the two Ca2+/CaMs in the complex have different properties. Ca2+/CaM bound to the PreIQ C-region is labile, whereas Ca2+/CaM bound to the IQ domain is not. Furthermore, neither of lobes of apo-CaM interacts strongly with the PreIQ domain. Electrophysiological studies indicate that the PreIQ C-region has a role in calcium-dependent facilitation. Together, the data show that two Ca2+/CaMs can bind the CaV1.2 tail simultaneously and indicate a functional role for Ca2+/CaM at the C-region site. PMID:20953164

  15. Multiple C-terminal tail Ca(2+)/CaMs regulate Ca(V)1.2 function but do not mediate channel dimerization.

    PubMed

    Kim, Eun Young; Rumpf, Christine H; Van Petegem, Filip; Arant, Ryan J; Findeisen, Felix; Cooley, Elizabeth S; Isacoff, Ehud Y; Minor, Daniel L

    2010-12-01

    Interactions between voltage-gated calcium channels (Ca(V)s) and calmodulin (CaM) modulate Ca(V) function. In this study, we report the structure of a Ca(2+)/CaM Ca(V)1.2 C-terminal tail complex that contains two PreIQ helices bridged by two Ca(2+)/CaMs and two Ca(2+)/CaM-IQ domain complexes. Sedimentation equilibrium experiments establish that the complex has a 2:1 Ca(2+)/CaM:C-terminal tail stoichiometry and does not form higher order assemblies. Moreover, subunit-counting experiments demonstrate that in live cell membranes Ca(V)1.2s are monomers. Thus, contrary to previous proposals, the crystallographic dimer lacks physiological relevance. Isothermal titration calorimetry and biochemical experiments show that the two Ca(2+)/CaMs in the complex have different properties. Ca(2+)/CaM bound to the PreIQ C-region is labile, whereas Ca(2+)/CaM bound to the IQ domain is not. Furthermore, neither of lobes of apo-CaM interacts strongly with the PreIQ domain. Electrophysiological studies indicate that the PreIQ C-region has a role in calcium-dependent facilitation. Together, the data show that two Ca(2+)/CaMs can bind the Ca(V)1.2 tail simultaneously and indicate a functional role for Ca(2+)/CaM at the C-region site.

  16. [Construction, identification and expression of three kinds of shuttle plasmids of adenovirus expression vector of hepatitis C virus structure gene].

    PubMed

    Cao, Yi-zhan; Hao, Chun-qiu; Feng, Zhi-hua; Zhou, Yong-xing; Li, Jin-ge; Jia, Zhan-sheng; Wang, Ping-zhong

    2003-02-01

    To construct three recombinant shuttle plasmids of adenovirus expression vector which can express hepatitis C virus(HCV) different structure genes(C, C+E1, C+E1+E2) in order to pack adenovirus expression vectors which can express HCV different structure gene effectively. The different HCV structure genes derived from the plasmid pBRTM/HCV1-3011 by using polymerase chain reaction (PCR) were inserted into the backward position of cytomegalovirus(CMV) immediate early promotor element of shuttle plasmid(pAd.CMV-Link.1) of adenovirus expression vector respectively, then the three recombinant plasmids (pAd.HCV-C, pAd.HCV-CE1, pAd.HCV-S) were obtained. The recombinant plasmids were identified by endonuclease, PCR and sequencing. HCV structure genes were expressed transiently with Lipofectamine 2000 coated in HepG2 cells which were confirmed by immunofluorescence and Western-Blot. Insert DNAs of the three recombinant plasmids' were confirmed to be HCV different structure genes by endonuclease, PCR and sequencing. The three recombinant plasmids can express HCV structure gene (C, C+E1, C+E1+E2) transiently in HepG2 cells which were confirmed by immunofluorescence and Western-Blot. The three recombinant shuttle plasmids of adenovirus expression vector can express HCV structure gene(C, C+E1, C+E1+E2) transiently. This should be useful to pack adenovirus expression vector which can express HCV structure genes.

  17. A proximal promoter region of Arabidopsis DREB2C confers tissue-specific expression under heat stress.

    PubMed

    Chen, Huan; Je, Jihyun; Song, Chieun; Hwang, Jung Eun; Lim, Chae Oh

    2012-09-01

    The dehydration-responsive element-binding factor 2C (DREB2C) is a member of the CBF/DREB subfamily of proteins, which contains a single APETALA2/Ethylene responsive element-binding factor (AP2/ERF) domain. To identify the expression pattern of the DREB2C gene, which contains multiple transcription cis-regulatory elements in its promoter, an approximately 1.4 kb upstream DREB2C sequence was fused to the β-glucuronidase reporter gene (GUS) and the recombinant p1244 construct was transformed into Arabidopsis thaliana (L.) Heynh. The promoter of the gene directed prominent GUS activity in the vasculature in diverse young dividing tissues. Upon applying heat stress (HS), GUS staining was also enhanced in the vasculature of the growing tissues. Analysis of a series of 5'-deletions of the DREB2C promoter revealed that a proximal upstream sequence sufficient for the tissue-specific spatial and temporal induction of GUS expression by HS is localized in the promoter region between -204 and -34 bps relative to the transcriptional start site. Furthermore, electrophoretic mobility shift assay (EMSA) demonstrated that nuclear protein binding activities specific to a -120 to -32 bp promoter fragment increased after HS. These results indicate that the TATA-proximal region and some latent trans-acting factors may cooperate in HS-induced activation of the Arabidopsis DREB2C promoter. © 2012 Institute of Botany, Chinese Academy of Sciences.

  18. Aspergillus fumigatus Increased PAR-2 Expression and Elevated Proinflammatory Cytokines Expression Through the Pathway of PAR-2/ERK1/2 in Cornea.

    PubMed

    Niu, Yawen; Zhao, Guiqiu; Li, Cui; Lin, Jing; Jiang, Nan; Che, Chengye; Zhang, Jie; Xu, Qiang

    2018-01-01

    To determine the role of protease-activated receptor-2 (PAR-2) in cornea infected by Aspergillus fumigatus. PAR-2 was tested in normal and infected corneas of C57BL/6 mice. Mice corneas were infected with A. fumigatus with or without pretreatment of PAR-2 antagonist (FSLLRY-NH2). Polymorphonuclear neutrophilic leukocytes (PMNs) were stimulated with 75% ethanol-killed A. fumigatus with or without pretreatment of FSLLRY-NH2. Disease severity was documented by clinical score and photographs with a slit lamp. PCR, Western blot, and ELISA tested expression of PAR-2, IL-1β, TNF-α, IFN-γ, MIP-2, and p-ERK1/2. PMN infiltration was assessed by myeloperoxidase assay and immunofluorescent staining. PAR-2 expression was significantly elevated by A. fumigatus, whereas the upregulation was significantly inhibited by FSLLRY-NH2 in mice corneas. FSLLRY-NH2 decreased disease response, PMN infiltration, and proinflammatory cytokine expression compared with infected control. In PMNs, PAR-2 expression was also significantly increased by A. fumigatus, which was significantly inhibited by FSLLRY-NH2. FSLLRY-NH2 significantly inhibited proinflammatory cytokine protein expression, as compared with that in infected control cells, which may be modified by p-ERK1/2. These data provide evidence that A. fumigatus increased PAR-2 expression and elevated disease, PMN infiltration, and proinflammatory cytokine expression through PAR-2, which may be modified by p-ERK1/2.

  19. Creation of Dystrophin Expressing Chimeric Cells of Myoblast Origin as a Novel Stem Cell Based Therapy for Duchenne Muscular Dystrophy.

    PubMed

    Siemionow, M; Cwykiel, J; Heydemann, A; Garcia-Martinez, J; Siemionow, K; Szilagyi, E

    2018-04-01

    Over the past decade different stem cell (SC) based approaches were tested to treat Duchenne Muscular Dystrophy (DMD), a lethal X-linked disorder caused by mutations in dystrophin gene. Despite research efforts, there is no curative therapy for DMD. Allogeneic SC therapies aim to restore dystrophin in the affected muscles; however, they are challenged by rejection and limited engraftment. Thus, there is a need to develop new more efficacious SC therapies. Chimeric Cells (CC), created via ex vivo fusion of donor and recipient cells, represent a promising therapeutic option for tissue regeneration and Vascularized Composite Allotransplantation (VCA) due to tolerogenic properties that eliminate the need for lifelong immunosuppression. This proof of concept study tested feasibility of myoblast fusion for Dystrophin Expressing. Chimeric Cell (DEC) therapy through in vitro characterization and in vivo assessment of engraftment, survival, and efficacy in the mdx mouse model of DMD. Murine DEC were created via ex vivo fusion of normal (snj) and dystrophin-deficient (mdx) myoblasts using polyethylene glycol. Efficacy of myoblast fusion was confirmed by flow cytometry and dystrophin immunostaining, while proliferative and myogenic differentiation capacity of DEC were assessed in vitro. Therapeutic effect after DEC transplant (0.5 × 10 6 ) into the gastrocnemius muscle (GM) of mdx mice was assessed by muscle functional tests. At 30 days post-transplant dystrophin expression in GM of injected mdx mice increased to 37.27 ± 12.1% and correlated with improvement of muscle strength and function. Our study confirmed feasibility and efficacy of DEC therapy and represents a novel SC based approach for treatment of muscular dystrophies.

  20. Aldo-keto reductases AKR1C1, AKR1C2 and AKR1C3 may enhance progesterone metabolism in ovarian endometriosis.

    PubMed

    Hevir, N; Vouk, K; Sinkovec, J; Ribič-Pucelj, M; Rižner, T Lanišnik

    2011-05-30

    Endometriosis is a very common disease that is characterized by increased formation of estradiol and disturbed progesterone action. This latter is usually explained by a lack of progesterone receptor B (PR-B) expression, while the role of pre-receptor metabolism of progesterone is not yet fully understood. In normal endometrium, progesterone is metabolized by reductive 20α-hydroxysteroid dehydrogenases (20α-HSDs), 3α/β-HSDs and 5α/β-reductases. The aldo-keto reductases 1C1 and 1C3 (AKR1C1 and AKR1C3) are the major reductive 20α-HSDs, while the oxidative reaction is catalyzed by 17β-HSD type 2 (HSD17B2). Also, 3α-HSD and 3β-HSD activities have been associated with the AKR1C isozymes. Additionally, 5α-reductase types 1 and 2 (SRD5A1, SRD5A2) and 5β-reductase (AKR1D1) are responsible for the formation of 5α- and 5β-reduced pregnanes. In this study, we examined the expression of PR-AB and the progesterone metabolizing enzymes in 31 specimens of ovarian endometriosis and 28 specimens of normal endometrium. Real-time PCR analysis revealed significantly decreased mRNA levels of PR-AB, HSD17B2 and SRD5A2, significantly increased mRNA levels of AKR1C1, AKR1C2, AKR1C3 and SRD5A1, and negligible mRNA levels of AKR1D1. Immunohistochemistry staining of endometriotic tissue compared to control endometrium showed significantly lower PR-B levels in epithelial cells and no significant differences in stromal cells, there were no significant differences in the expression of AKR1C3 and significantly higher AKR1C2 levels were seen only in stromal cells. Our expression analysis data at the mRNA level and partially at the cellular level thus suggest enhanced metabolism of progesterone by SRD5A1 and the 20α-HSD and 3α/β-HSD activities of AKR1C1, AKR1C2 and AKR1C3. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.