Science.gov

Sample records for c4997 seismic records

  1. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume VI S-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (VI), all S-wave measurements are presented that were performed in Borehole C4997 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  2. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume III P-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    In this volume (III), all P-wave measurements are presented that were performed in Borehole C4997 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 390 to 1220 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 40 ft (later relocated to 27.5 ft due to visibility in borehole after rain) in Borehole C4997, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4997, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  3. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume V S-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (V), all S-wave measurements are presented that were performed in Borehole C4996 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  4. Method of migrating seismic records

    DOEpatents

    Ober, Curtis C.; Romero, Louis A.; Ghiglia, Dennis C.

    2000-01-01

    The present invention provides a method of migrating seismic records that retains the information in the seismic records and allows migration with significant reductions in computing cost. The present invention comprises phase encoding seismic records and combining the encoded seismic records before migration. Phase encoding can minimize the effect of unwanted cross terms while still allowing significant reductions in the cost to migrate a number of seismic records.

  5. Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4993

    SciTech Connect

    Rust, Colleen F.; Barnett, D. BRENT; Bowles, Nathan A.; Horner, Jake A.

    2007-02-28

    A core hole (C4998) and three boreholes (C4993, C4996, and C4997) were drilled to acquire stratigraphic and downhole seismic data to model potential seismic impacts and to refine design specifications and seismic criteria for the Waste Treatment Plant (WTP) under construction on the Hanford Site. Borehole C4993 was completed through the Saddle Mountains Basalt, the upper portion of the Wanapum Basalt, and associated sedimentary interbeds, to provide a continuous record of the rock penetrated by all four holes and to provide access to the subsurface for geophysical measure¬ment. Presented and compiled in this report are field-generated records for the deep mud rotary borehole C4993 at the WTP site. Material for C4993 includes borehole logs, lithologic summary, and record of rock chip samples collected during drilling through the months of August through early October. The borehole summary report also includes documentation of the mud rotary drilling, borehole logging, and sample collection.

  6. Five-day recorder seismic system

    USGS Publications Warehouse

    Criley, Ed; Eaton, Jerry P.; Ellis, Jim

    1978-01-01

    The 10-day recorder seismic system used by the USGS since 1965 has been modified substantially to improve its dynamic range and frequency response, to decrease its power consumption and physical complexity, and to make its recordings more compatible with other NCER systems to facilitate data processing. The principal changes include: 1. increasing tape speed from 15/160 ips to 15/80 ips (reducing running time from 10 days to 5 days with a 14' reel of 1 mil tape), 2. increasing the FM center frequency by a factor of 4, from 84.4 Hz to 337.6 Hz, 3. replacing the original amplifiers and FM modulators with new low-power units, 4. replacing the chronometer with a higher quality time code generator (with IRIG-C) to permit automation of data retrieval, 5. eliminating the amplifier/WWVB radio field case by incorporating these elements, along with the new TCG, in the weatherproof tape-recorder box, 6. reducing the power consumption of the motor-drive circuit by removal of a redundant component. In the new system, the tape-recorder case houses all components except the seismometers, the WWVB antenna, the 70-amp-hour 12-VDC battery (which powers the system for 5 days), and the cables to connect these external elements to the recorder box. The objectives of this report are: 1. to describe the new 5-day-recorder seismic system in terms of its constituent parts and their functions, 2. to describe modifications to parts of the original system that were retained and to document new or replacement components with appropriate circuit diagrams and constructional details, 3. to provide detailed instructions for the correct adjustment or alignment of the system in the laboratory, and 4. to provide detailed instructions for installing and operating the system in the field.

  7. Geyser's Eruptive Activity in Broadband Seismic Records

    NASA Astrophysics Data System (ADS)

    Kugaenko, Yulia; Saltykov, Vadim

    2010-05-01

    A geyser is a spring characterized by intermittent discharge of water ejected turbulently and accompanied by a vapor phase (steam). The formation of geysers is due to particular hydrogeological conditions, which exist in only a few places on Earth, so they are a fairly rare phenomenon. The reasons of geyser periodicity and specifics of the activity for every particular geyser are not completely clear yet. So almost for all known geysers it is necessary to develop the personal model. In given study we first use seismic method for detection of possible hidden feature of geyser's eruptive activity in Kamchatkan Valley of the Geysers. Broadband seismic records of geyser generated signals were obtained in hydrothermal field. The Valley of the Geysers belongs to Kronotskiy State Natural Biosphere Reserve and the UNESCO World Natural Heritage Site "Volcanoes of Kamchatka". Neither seismological nor geophysical investigations were carried out here earlier. In September, 2009 seismic observation was organized in geyser's field by 24-bit digital output broadband seismometers (GURALP CMG-6TD flat velocity response 0.033-50 Hz). Four geysers were surveyed: the fountain type Big and Giant geysers; the cone type Pearl geyser and the short-period Gap geyser. Seismometers were set as possible close to the geyser's surface vent (usually at the distance near 3-5 m). Main parameters of the eruptions for the investigated geysers: - The Giant geyser is the most powerful among the regular active geysers in Kamchatkan Valley of the Geysers. The height of the fountain reaches 30 meters, the mass of water erupted is about 40-60 tons. The main cycle of activity varies significantly: in 1945 the intervals between eruptions was near 3 hours, nowadays it is 5-6 hours. As a geyser of fountain type, the Giant geyser erupts from the 2*3 m2 pool of water. - The Big geyser was flooded by the lake after the natural catastrophe (giant mud-stone avalanche, formed by landslide, bed into Geiyzernaya

  8. Curvelet-based POCS interpolation of nonuniformly sampled seismic records

    NASA Astrophysics Data System (ADS)

    Yang, Pengliang; Gao, Jinghuai; Chen, Wenchao

    2012-04-01

    An exceedingly important inverse problem in the geophysical community is the interpolation of the seismic data, which are usually nonuniformly recorded from the wave field by the receivers. Researchers have proposed many useful methods to regularize the seismic data. Recently, sparseness-constrained seismic data interpolation has attracted much interest of geophysicists due to the surprisingly convincing results obtained. In this article, a new derivation of the projection onto convex sets (POCS) interpolation algorithm is presented from the well known iterative shrinkage-thresholding (IST) algorithm, following the line of sparsity. The curvelet transform is introduced into the POCS method to characterize the local features of seismic data. In contrast to soft thresholding in IST, hard thresholding is advocated in this curvelet-based POCS interpolation to enhance the sparse representation of seismic data. The effectiveness and the validity of our method are demonstrated by the example studies on the synthetic and real marine seismic data.

  9. Downhole Measurements of Shear- and Compression-Wave Velocities in Boreholes C4993, C4996, C4997 and C4998 at the Waste Treatment Plant DOE Hanford Site.

    SciTech Connect

    Redpath, Bruce B.

    2007-04-27

    This report describes the procedures and the results of a series of downhole measurements of shear- and compression-wave velocities performed as part of the Seismic Boreholes Project at the site of the Waste Treatment Plant (WTP). The measurements were made in several stages from October 2006 through early February 2007. Although some fieldwork was carried out in conjunction with the University of Texas at Austin (UT), all data acquired by UT personnel are reported separately by that organization.

  10. Seismic activity in the Transantarctic Mountains recorded by the TAMSEIS seismic array.

    NASA Astrophysics Data System (ADS)

    Anandakrishnan, S.; Stapley, N.; Lawrence, J. F.; Winberry, J. P.; Shore, P. J.; Voigt, D. E.; Wiens, D.; Nyblade, A.

    2004-12-01

    To investigate the links between glaciation and tectonics, we conducted a large-scale seismic deployment in Antarctica that measured local and regional seismicity of both the glaciated terrain of East Antarctica and the non-glaciated Transantarctic Mountains (TAM). The TAM are hypothesized to have formed by rift-flank uplift of the southwestern margin of the West Antarctic Rift System. Active extension of this rift and/or continued uplift of the TAM would likely result in relatively high levels of seismicity along the mountain front. In addition to seismicity from tectonic activity, we suggest that the flow of glaciers, particularly where they accelerate through the TAM, could result in glacier-induced seismicity. We recorded relatively high levels of local seismicity in the TAM. The majority of the seismicity was close to and slightly west of the TAM, beneath the East Antarctic Ice Sheet. We used the double-difference hypocenter location method (Waldhauser and Ellsworth, 2000; Waldhauser 2001) to better image clusters of events. Many of the events are shallow and cluster beneath the David Glacier (which leads to the Drygalski Ice Tongue) and the Darwin Glacier. We suggest that these events are due to fracture at the base of the glaciers, as they steepen towards the coast. We continue to investigate the possibility of surface crevassing and TAM uplift-induced seismicity (along faults which the glaciers have exploited) as the cause of the seismicity.

  11. Design and development of digital seismic amplifier recorder

    SciTech Connect

    Samsidar, Siti Alaa; Afuar, Waldy; Handayani, Gunawan

    2015-04-16

    A digital seismic recording is a recording technique of seismic data in digital systems. This method is more convenient because it is more accurate than other methods of seismic recorders. To improve the quality of the results of seismic measurements, the signal needs to be amplified to obtain better subsurface images. The purpose of this study is to improve the accuracy of measurement by amplifying the input signal. We use seismic sensors/geophones with a frequency of 4.5 Hz. The signal is amplified by means of 12 units of non-inverting amplifier. The non-inverting amplifier using IC 741 with the resistor values 1KΩ and 1MΩ. The amplification results were 1,000 times. The results of signal amplification converted into digital by using the Analog Digital Converter (ADC). Quantitative analysis in this study was performed using the software Lab VIEW 8.6. The Lab VIEW 8.6 program was used to control the ADC. The results of qualitative analysis showed that the seismic conditioning can produce a large output, so that the data obtained is better than conventional data. This application can be used for geophysical methods that have low input voltage such as microtremor application.

  12. Successes and failures of recording and interpreting seismic data in structurally complex area: seismic case history

    SciTech Connect

    Morse, V.C.; Johnson, J.H.; Crittenden, J.L.; Anderson, T.D.

    1986-05-01

    There are successes and failures in recording and interpreting a single seismic line across the South Owl Creek Mountain fault on the west flank of the Casper arch. Information obtained from this type of work should help explorationists who are exploring structurally complex areas. A depth cross section lacks a subthrust prospect, but is illustrated to show that the South Owl Creek Mountain fault is steeper with less apparent displacement than in areas to the north. This cross section is derived from two-dimensional seismic modeling, using data processing methods specifically for modeling. A flat horizon and balancing technique helps confirm model accuracy. High-quality data were acquired using specifically designed seismic field parameters. The authors concluded that the methodology used is valid, and an interactive modeling program in addition to cross-line control can improve seismic interpretations in structurally complex areas.

  13. Modeling and identification of multistory buildings with seismic recordings

    NASA Astrophysics Data System (ADS)

    Gargab, Lotfi O.

    This study proposes a continuous-discrete model for one-dimensional wave propagation in a multi-story building with seismic excitation and shows its applications in forward predicting analysis and inverse system identification. In particular, the building is modeled as a series of continuous shear-beams for columns/walls in inter-stories and discrete lumped-masses for floors. Wave response at one location of the building is then derived from an impulsive motion at another location in the time and frequency domains, termed here as wave-based or generalized impulse and frequency response functions (GIRF and GFRF). The GIRF and GFRF are fundamental in relating seismic wave responses at the two locations of a building structure subjected to seismic excitation that is not fully known due to the complicated soil-structure interaction. Additionally, they play a key role in characterizing seismic structural responses, as well as in identifying dynamic parameters and subsequently diagnosing local damage of the structure. For illustration, this study examines the ten-story Millikan Library in Pasadena, California with recordings of the Yorba Linda earthquake of September 3, 2002. With the use of the proposed continuous-discrete model as well as its degenerated ones, seismic wave responses are interpreted from the perspective of wave propagation, and more importantly, validated with the recordings and pertinent discrete-model-based results. Finally, a wave-based approach for system identification with a limited number of seismic recordings is presented, which can be used to evaluate structural integrity and detect damage in post-earthquake structural condition assessment.

  14. Wide aperture seismic recording in offshore west Sicily and Bolivia

    SciTech Connect

    Tilander, N.G.; Lattimore, R.K.

    1994-12-31

    Seismic operations using the Wide Aperture Recording (WAR) technique were carried out in offshore west Sicily (16.5 km offsets) and in the Sub-Andean Cordillera of Bolivia (9.0 km offsets) where conventional offset data have traditionally proved inadequate for imaging complex subsurface structures. In both cases, noise-free wide aperture events were visible at long offsets, and were successfully stacked using both hyperbolic and linear moveout. In the Sicily datasets, the resulting seismic images disagree with earlier structural interpretations, but the lack of reliable ``calibration`` data in terms of well control or usable conventional seismic data make final evaluation and interpretation of the Sicily wide aperture data ambiguous. In Bolivia good quality seismic data are present across a portion of the WAR survey; the results show that the wide aperture technique may produce a valid structural image, provided the subsurface geometries are sufficiently broad and shallow. For tight structures, the technique is unlikely to produce valid images. In general, the authors` studies show that considerable effort is required at the data processing and interpretation stage, including full waveform and ray-trace modeling, in order to identify event arrivals and to attempt to validate the wide aperture structural images. Reliable calibration data in the form of well control or conventional seismic data are needed in order to provide an understanding of the WAR results.

  15. Robust seismic velocity change estimation using ambient noise recordings

    NASA Astrophysics Data System (ADS)

    Daskalakis, E.; Evangelidis, C. P.; Garnier, J.; Melis, N. S.; Papanicolaou, G.; Tsogka, C.

    2016-06-01

    We consider the problem of seismic velocity change estimation using ambient noise recordings. Motivated by Zhan et al., we study how the velocity change estimation is affected by seasonal fluctuations in the noise sources. More precisely, we consider a numerical model and introduce spatio-temporal seasonal fluctuations in the noise sources. We show that indeed, as pointed out by Zhan et al., the stretching method is affected by these fluctuations and produces misleading apparent velocity variations which reduce dramatically the signal to noise ratio of the method. We also show that these apparent velocity variations can be eliminated by an adequate normalization of the cross-correlation functions. Theoretically we expect our approach to work as long as the seasonal fluctuations in the noise sources are uniform, an assumption which holds for closely located seismic stations. We illustrate with numerical simulations in homogeneous and scattering media that the proposed normalization significantly improves the accuracy of the velocity change estimation. Similar behaviour is also observed with real data recorded in the Aegean volcanic arc. We study in particular the volcano of Santorini during the seismic unrest of 2011-2012 and observe a decrease in the velocity of seismic waves which is correlated with GPS measured elevation.

  16. A Comparison of Seismic Records of Calving Glaciers

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Amundson, Jason M.; O'Neel, Shad; Clinton, John F.; Luethi, Martin P.; Bassis, Jeremy; Fricker, Helen Amanda

    2010-05-01

    Glacier calving is a key process in the cryosphere's contribution to sea level rise. It is responsible for virtually all of Antarctica's ice mass loss to the ocean and about half of Greenland's negative mass balance. As glacier calving is a highly complicated and variable phenomenon, its physical laws are poorly understood. For this reason "dynamical mass loss" is one of the critical mechanisms that have yet to be incorporated into large-scale ice sheet models that aim to predict future sea level variations. As calving environments are almost always difficult to access, data pertaining to calving processes are usually gathered remotely. Seismometers have recently proven to be a valuable tool for studying calving, even though they may be located far away from the calving front. Pre-existing global and regional seismic networks thus constitute a valuable resource for the study of glacier calving as they allow for automatic detection and monitoring of calving activity. Various sources occurring nearly simultaneously give rise to calving seismicity. Potential source mechanisms include fracturing, hydraulic transients, glacier acceleration, ocean wave action, and icebergs scraping the fjord walls, bottom, or terminus. Fracturing and hydraulic transients emit seismic energy above 1 Hz and are only recorded locally, whereas glacier acceleration, iceberg scraping, and ocean waves may produce waveforms with periods of 100's or 1000's of seconds and can be recorded by far-field seismometers. We present examples of such low-frequency seismicity from Jakobshavn Isbrae, Greenland, and Columbia and Yahtse Glaciers, Alaska. Finally, we discuss the possibility of remotely investigating calving behavior by comparing the seismic signature of individual calving events from different glaciological settings.

  17. An ocean-bottom hydrophone recorder for seismic refraction experiments

    NASA Astrophysics Data System (ADS)

    Sinha, M. C.; Owen, T. R. E.; Mason, M.

    1981-06-01

    A new and inexpensive pop-up ocean-bottom hydrophone recorder has been developed for use in seismic refraction experiments. It is capable of operating in water depths of up to 4000 m and in very rugged topography, and uses an acoustic command system built by the U.K. Institute of Oceanographic Sciences for recovery. The instrument is mounted in an inexpensive cylindrical pressure case based on commercially available extruded aluminium alloy tubing, and uses glass spheres and syntactic foam for buoyancy. Hydrophone and clock signals are frequency modulated and recorded on tape cassettes, with a recording duration of three hours allowing up to 18 programmed shot windows. The prototype has made seven free descents on the Mid-Atlantic ridge and in the Gulf of Oman, and successfully recorded shots under operational conditions for the first time in September 1979. The total component cost of the prototype was £2740 (1979 prices).

  18. Multiband array detection and location of seismic sources recorded by dense seismic networks

    NASA Astrophysics Data System (ADS)

    Poiata, Natalia; Satriano, Claudio; Vilotte, Jean-Pierre; Bernard, Pascal; Obara, Kazushige

    2016-06-01

    We present a new methodology for detection and space-time location of seismic sources based on multiscale, frequency-selective coherence of the wave field recorded by dense large-scale seismic networks and local antennas. The method is designed to enhance coherence of the signal statistical features across the array of sensors and consists of three steps: signal processing, space-time imaging, and detection and location. The first step provides, for each station, a simplified representation of seismic signal by extracting multiscale non-stationary statistical characteristics, through multiband higher-order statistics or envelopes. This signal processing scheme is designed to account for a priori unknown transients, potentially associated with a variety of sources (e.g. earthquakes, tremors), and to prepare data for a better performance in posterior steps. Following space-time imaging is carried through 3-D spatial mapping and summation of station-pair time-delay estimate functions. This step produces time-series of 3-D spatial images representing the likelihood that each pixel makes part of a source. Detection and location is performed in the final step by extracting the local maxima from the 3-D spatial images. We demonstrate the efficiency of the method in detecting and locating seismic sources associated with low signal-to-noise ratio on an example of the aftershock earthquake records from local stations of International Maule Aftershock Deployment in Central Chile. The performance and potential of the method to detect, locate and characterize the energy release associated with possibly mixed seismic radiation from earthquakes and low-frequency tectonic tremors is further tested on continuous data from southwestern Japan.

  19. Monitoring Klyuchevskoy group of volcanoes (Kamchatka) using seismic noise records

    NASA Astrophysics Data System (ADS)

    Gómez-García, Clara; Brenguier, Florent; Shapiro, Nikolai M.; Droznin, Dmitry V.; Droznina, Svetlana Y.; Chebrov, Victor N.; Gordeev, Evgenii I.

    2016-04-01

    In the last decade, extraction of Green functions from seismic ambient noise has been used extensive and efficiently in different contexts and scales: from imaging to monitoring the Earth's interior and from global to local scales. By using coda waves of noise cross-correlations to estimate travel time perturbations, we can assign changes in delay times to changes in the medium's velocity. Due to this technique attribute of continuous recording of the medium, it can accurately detect very small seismic velocity changes linked to small disturbances in volcano interiors. However, cross-correlation functions (CCF) do not necessary converge to media Green function: measurements of waveforms perturbations within a volcanic edifice are affected by the noise fluctuation. The Klyuchevskoy volcanic group, located above the edge of the Pacific Plate subducting beneath Kamchatka, is one of the most active clusters of volcanoes in the word. It is characterized by strongly localized volcanic tremor sources, which often dominate the recorded wavefield. To monitor and get measurements of temporal changes of these active volcanoes, we use coda waves of daily CCF from a total of 19 seismic stations from the seismic network operated by the Kamchatka Branch of the Geophysical Service (KBGS) of the Russian Academy of Sciences. Our study period goes from January 2009 to July 2013 in which two eruptions occurred: one from the Klyuchevskoy volcano (2009-2010) and the other from the Tolbachik volcano (2012-2013). After a quality checking of the records and testing different filters, we filter data in the frequency range 0.08 - 7 Hz and we use the Moving Window Cross Spectrum (MWCS) method to measure the relative time shifts. As both eruptions are characterized by emissions of seismic tremors, we avoid the choice of an arbitrary reference CCF: we compute velocity changes between all pairs of daily CCF. We retrieve a continuous velocity change time series for each station pair using a

  20. Seismic Record Processing Program (SRP), Version 1.03

    SciTech Connect

    Karabalis, D.L.; Cokkinides, G.J.; Rizos, D.C.

    1992-04-01

    The Seismic Record Processing Program (SRP) is an interactive computer code developed for the calculation of artificial earthquake records that comply with the US Nuclear Regulatory Commission Standard Review Plan. The basic objective of SRP is the calculation of artificial seismic time histories that correspond to Design Response Spectra specified in the US Atomic Energy Commission Regulatory Guide 1.60 and/or the Power Spectral Density (PSD) requirements of the NRC Standard Review Plan. However, SRP is a general computer code and can accommodate any arbitrarily specified Target Response Spectra (TRS) or PSD requirements. In addition, among its other futures, SRP performs quadratic baseline correction and calculates correlations factors for a set of up to three earthquake records. This manual is prepared in two parts. The first part describes the methodologies and criteria used while the second is a user`s manual. In section 1 of the first part, the techniques used for the adjustment of a given earthquake record to a required TRS family of curves for a set of specified damping ratios are presented. Similarly, in section 2 of the first part, the PSD of an earthquake record is compared to a target PSD and adjusted accordingly. Sections 3 and 4 of the first part deal with the subjects of baseline correction and correlation of earthquake records, respectively. The second part is the user`s manual. The user`s manual contains a list of the computer hardware requirements, instructions for the program installation, a description of the user generated input files, and a description of all the program menus and commands.

  1. Optimum stacking of seismic records with irregular noise

    NASA Astrophysics Data System (ADS)

    Tyapkin, Yuriy; Ursin, Bjorn

    2005-09-01

    Conventional straight stacking has proved to be an effective tool to extract the signal from a multichannel seismic record. However, it maximizes the signal-to-noise ratio only when a rather simple and generally rare model of the record is true. For this reason, some authors try to optimize stacking using more complicated record models. They assume that either the signal amplitudes are allowed to vary from trace to trace in any manner with the noise variances being constant or vice versa. However, in practice, it is commonly the case that these model assumptions are seriously violated. Then, methods based on them become ineffective or even deleterious. We show that these methods produce signal estimates distorted to a considerable extent right up to being absolutely uncorrelated with the sought-for actual signal. This fact motivates our search for new methods for better estimating seismic signals. We therefore introduce a more realistic model that supposes a signal with an identical shape on each trace to be embedded in spatially uncorrelated irregular noise. The signal amplitudes and the noise autocorrelations are allowed to vary across the traces in an arbitrary manner. Given this model, a solution to the maximum likelihood estimation of the signal shape is derived. The effectiveness of the method is highly dependent on the accuracy of determining the signal amplitudes and the noise autocorrelations prior to stacking. We therefore supply the method with estimates of the required parameters. When the noise autocorrelations are trace independent to within a scale factor, the variance, the method becomes much easier to embody and yields the well-known optimum weighted stack (OWS). We compare the performance of the OWS theoretically with that of the straight stack and show that the optimum procedure has obvious advantages over the conventional one. This paper is mainly focused on further developing the OWS. With the complicated record model used, the shortcomings of

  2. Seismicity in West Iberia: small scale seismicity recording from a Dense Seismic Broadband Deployment in Portugal (WILAS Project)

    NASA Astrophysics Data System (ADS)

    Afonso Dias, Nuno; Custódio, Susana; Silveira, Graça; Carrilho, Fernando; Haberland, Christian; Lima, Vânia; Rio, Inês; Góngora, Eva; Marreiros, Célia; Morais, Iolanda; Vales, Dina; Fonseca, João; Caldeira, Bento; Villaseñor, Antonio

    2013-04-01

    Over the last years several projects targeted the lithospheric structure and its correlation with the surface topography, e.g. EarthSCOPE/USArray or TOPO-EUROPE. Two projects focused on the Iberian Peninsula, one giving particular attention to the southern collision margin (TOPO-MED) and the other to the central cratonic Massif (TOPO-IBERIA/IBERArray). These projects mostly rely on deployed dense seismic broadband (BB) networks with an average inter-station spacing of 60km, which strongly increases the available network spatial coverage. The seismicity recording in such networks is critical to access current rates of lithospheric deformation. Within the scope of project WILAS - West Iberia Lithosphere and Astenosphere Structure (PTDC/CTE-GIX/097946/2008), a 3-year project funded by the Portuguese Science & Technology Foundation (FCT), we deployed a temporary network of 30 BB stations in Portugal between 2010 and 2012, doubling the total number of operating BB stations. Together with the permanent and TOPO-IBERIA stations, the resulting networks provided a full and dense coverage of the Iberian Peninsula. The majority of the permanent stations in Portugal, aimed at the seismic surveillance, are located in the southern part of the country in result of the active tectonic convergence between Iberia and Africa. Therefore, the temporary stations were mainly deployed in the north of Portugal. These temporary stations allowed an improvement of the earthquake detection threshold. The detection of seismic events was based on the analysis of daily spectrograms of the entire network, the new events detected being analysed and included in the catalogue. The new detected events are located mainly in the north, with magnitudes as low as 0.5 ML and in the offshore in the Estremadura Spur. Some additional events were also located south of Portugal, between the Gorringe Bank and the Gulf of Cadiz, in this case the lower magnitudes being ~2.0ML. Focal mechanisms will also be

  3. Finding Trapped Miners by Using a Prototype Seismic Recording System Made from Music-Recording Hardware

    USGS Publications Warehouse

    Pratt, Thomas L.

    2009-01-01

    The goal of this project was to use off-the-shelf music recording equipment to build and test a prototype seismic system to listen for people trapped in underground chambers (mines, caves, collapsed buildings). Previous workers found that an array of geophones is effective in locating trapped miners; displaying the data graphically, as well as playing it back into an audio device (headphones) at high speeds, was found to be effective for locating underground tapping. The desired system should record the data digitally to allow for further analysis, be capable of displaying the data graphically, allow for rudimentary analysis (bandpass filter, deconvolution), and allow the user to listen to the data at varying speeds. Although existing seismic reflection systems are adequate to record, display and analyze the data, they are relatively expensive and difficult to use and do not have an audio playback option. This makes it difficult for individual mines to have a system waiting on the shelf for an emergency. In contrast, music recording systems, like the one I used to construct the prototype system, can be purchased for about 20 percent of the cost of a seismic reflection system and are designed to be much easier to use. The prototype system makes use of an ~$3,000, 16-channel music recording system made by Presonus, Inc., of Baton Rouge, Louisiana. Other manufacturers make competitive systems that would serve equally well. Connecting the geophones to the recording system required the only custom part of this system - a connector that takes the output from the geophone cable and breaks it into 16 microphone inputs to be connected to the music recording system. The connector took about 1 day of technician time to build, using about $300 in off-the-shelf parts. Comparisons of the music recording system and a standard seismic reflection system (A 24-channel 'Geode' system manufactured by Geometrics, Inc., of San Jose, California) were carried out at two locations. Initial

  4. Recorded seismic response of Pacific Park Plaza. II. System identification

    USGS Publications Warehouse

    Safak, F.; Celebi, M.

    1992-01-01

    This is the second of two companion papers on the recorded seismic response of the Pacific Park Plaza building, in Emeryville, Calif., during the October 17, 1989, Ms = 7.1 (surface-wave magnitude) Loma Prieta earthquake. In this second part, the recorded data are analyzed in more detail by using system-identification techniques. The three-dimensional behavior and the coupled modes of the building are determined, and the effects of soil-structure interaction are investigated. The study shows that the response of the building is nonlinear at the beginning, and becomes linear after 17 sec into the earthquake. The dominant motion of the building follows an elliptical path oriented in the southeast-northwest direction. Some of the modes are complex, with nonproportional damping, and there are phase differences among modal response components. The fundamental mode of the building is a translation in the southeast-northwest direction at 0.4 Hz, with 13% damping. The wing displacements relative to the center core are large, about 50% of the center core displacements, and indicate significant torsion in the center core. The soil-structure interaction is characterized by a vibration at 0.7 Hz. This is believed to be the fundamental frequency of the surrounding soil medium. The rocking motions of the building are negligible.

  5. Seismic records of the 2010 and 2011 tsunamis

    NASA Astrophysics Data System (ADS)

    Okal, E.

    2012-04-01

    We examine records of the 2010 Maule and 2011 Tohoku tsunamis obtained on horizontal components of seismometers deployed in the vicinity of coastlines, in particular on small oceanic islands. We have shown (Okal, 2007) that such records can be interpreted by simply assuming that the instrument functions as an OBS (if its distance from a deep basin is small with respect to the tsunami wavelength), recording the horizontal motion of the solid Earth induced by the continuation of the tsunami wave in the solid medium, modified by terms representing the tilt of the ocean floor, and a change in the gravity potential associated with the passage of the wave, as theorized 30 years ago by J.F. Gilbert for classical spheroidal modes. Following the Tohoku tsunami, we report the first observation of a tsunami by an OBS in the farfield, as part of the Neptune Canada project, and use a detection on a nearby station at Forks, Washington, to confirm the validity of this interpretation by inverting their spectral amplitudes into the moment of the earthquake within 15% of its CMT value, this experiment justifying a posteriori our 2007 model. We use extended datasets obtained throughout the Pacific Basin to recover the seismic moment of the two events of 2010 and 2011, and conclude that neither shows growth at ultra-long periods, confirming that neither of the two shocks features a hidden long-period component, in contrast with the three super-mega events (1960 Chile, 1964 Alaska, 2004 Sumatra). Results at higher frequenices (5 mHz) are much more scattered and suggest a non-linear response of small island edifices, which can reach spectacular characteristics (such as at Pitcairn in 2010).

  6. Wide-angle seismic recordings from the 1998 Seismic Hazards Investigation of Puget Sound (SHIPS), western Washington and British Columbia

    USGS Publications Warehouse

    Brocher, Thomas M.; Parsons, Tom; Creager, Ken C.; Crosson, Robert S.; Symons, Neill P.; Spence, George D.; Zelt, Barry C.; Hammer, Philip T.C.; Hyndman, Roy D.; Mosher, David C.; Trehu, Anne M.; Miller, Kate C.; Brink, Uri S. ten; Fisher, Michael A.; Pratt, Thomas L.; Alvarez, Marcos G.; Beaudoin, Bruce C.; Louden, Keith E.; Weaver, Craig S.

    1999-01-01

    This report describes the acquisition and processing of deep-crustal wide-angle seismic reflection and refraction data obtained in the vicinity of Puget Lowland, the Strait of Juan de Fuca, and Georgia Strait, western Washington and southwestern British Columbia, in March 1998 during the Seismic Hazards Investigation of Puget Sound (SHIPS). As part of a larger initiative to better understand lateral variations in crustal structure along the Cascadia margin, SHIPS participants acquired 1000 km of deep-crustal multichannel seismic-reflection profiles and 1300 km of wideangle airgun shot lines in this region using the R/V Thompson and R/V Tully. The Tully was used to record airgun shots fired by the Thompson in two different geometries: (1) expanding spread profiles (ESPs) and (2) constant offset profiles (COPs). Prior to this reflection survey, we deployed 257 Reftek and 15 ocean-bottom seismic recorders to record the airgun signals at far offsets. All data were recorded digitally on large-capacity hard disks. Although most of these stations only recorded the vertical component of motion, 95 of these seismographs recorded signals from an oriented 3-component seismometer. By recording signals generated by the Thompson's marine air gun array, operated in two differing geometries having a total volume of 110 and 79 liters (6730 and 4838 cu. in.), respectively, the arrays of wide-angle recorders were designed to (1) image the crustal structure, particularly in the vicinity of crustal faults and Cenozoic sedimentary basins, (2) determine the geometry of the Moho, and (3) image the subducting Gorda and Juan de Fuca plates. Nearly 33,300 air gun shots were recorded along several seismic lines. In this report, we illustrate the expanding spread profiles acquired using the Thompson and Tully, describe the land and ocean-bottom recording of the air gun signals, discuss the processing of the land recorder data into common receiver gathers, and illustrate the processed wide

  7. Dense Seismic Recordings of Two Surface-Detonated Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Koper, K. D.; Hale, J. M.; Burlacu, R.; Goddard, K. J.; Trow, A.; Linville, L. M.; Stein, J. R.; Drobeck, D.; Leidig, M.

    2015-12-01

    In the summer of 2015 two controlled chemical explosions were carried out near Dugway, Utah. The 2 June 2015 explosion consisted of 30,000 lbs of ammonium nitrate fuel oil (ANFO) and the 22 July 2015 explosion consisted of 60,000 lbs of ANFO. The explosion centroids were 1-2 m above the Earth's surface and both created significant craters in the soft desert alluvium. To better understand the seismic source associated with surface explosions, we deployed an array of wireless, three-component, short-period (5 Hz corner frequency) seismometers for several days around each shot. For the first explosion, 46 receivers were deployed in a "lollipop" geometry that had a sparse ring at a radius of 1 km, and a dense stem with 100 m spacing for distances of 0.5-4.5 km. For the second explosion, 48 receivers were deployed similarly, but with a dense ring spaced in azimuthal increments of 10 degrees at a distance of 1 km, and a sparse stem (~500 m spacing) that extended to a distance of nearly 6 km. A rich variety of phases were recorded including direct P waves, refracted and reflected P waves, nearly monochromatic air-coupled Rayleigh waves, normally dispersed fundamental mode Rayleigh waves (Rg), primary airblast arrivals, some secondary airblast arrivals, and possibly tertiary airblast arrivals. There is also evidence of converted S waves on the radial components and possibly direct S energy on the radial and transverse components, although the transverse energy does not always possess a simple, coherent move-out with distance, implying that it might have a scattering origin. To aid in the phase identification, especially of the apparent SH and Love energy, we are currently performing tau-p, f-k, and particle motion analysis.

  8. Monitoring seismic velocity changes caused by the 2014 Northern Aegean earthquake using continuous ambient noise records

    NASA Astrophysics Data System (ADS)

    Evangelidis, Christos; Daskalakis, Emmanouil; Tsogka, Chrysoula

    2016-04-01

    The 24 May 2014 Northern Aegean earthquake (6.9 Mw), an event on the Northern Aegean Trough (NAT), ruptured on two different fault segments with a total ruptured length of ~100 km. For the second delayed segment, rupture propagated eastward from the hypocenter for ˜65 km with a supershear velocity (5.5 km/s). Low-aftershock seismicity on the supershear segment implies a simple and linear fault geometry there. An effort to monitor temporal seismic velocity changes across the ruptured area of the Northern Aegean earthquake is underway. In recent years, neighboring seismic broadband stations near active faults have been successfully used to detect such changes. The crosscorrelation functions (CCF) of ambient noise records between stations yields the corresponding traveltimes for those inter-station paths. Moreover, the auto-correlation functions (ACF) at each station produce the seismic responce for a coincident source and receiver position. Possible temporal changes of the measured traveltimes from CCFs and ACFs correspond to seismic velocity changes. Initially, we investigate the characteristics and sources of the ambient seismic noise as recorded at permanent seismic stations installed around NAT at the surrounding islands and in mainland Greece and Turkey. The microseismic noise levels show a clear seasonal variation at all stations. The noise levels across the double frequency band (DF; period range 4-8 s) reflect the local sea-weather conditions within a range of a few hundred kilometers. Three years of continuous seismic records framing the main shock have been analysed from ~15 stations within a radius of 100 km from the epicentre. We observe a clear decrease of seismic velocities most likely corresponding to the co-seismic shaking. The spatial variation of this velocity drop is imaged from all inter-station paths that correspond to CCF measurements and for station sites that correspond to ACF measurements. Thus, we explore a possible correlation between co-seismic

  9. Integrated Observation and Database System for Seismic Records using Web GIS and Data Interoperation

    NASA Astrophysics Data System (ADS)

    Tobita, Jun; Fukuwa, Nobuo; Kurata, Kazumi

    A Web-GIS based system is developed for utilization of seismic records observed by a number of organizations and its effective integration by data interoperation technology on the Internet. Various data on ground, building and regional conditions are collected and viewed on the Web GIS, such as geological condition on shallow and deep soil, structural specification on the observed buildings, estimated distribution of seismic intensity and seismic waves, and indices on disaster mitigation potential of the area. Further aspects on utilization of the system for aseismic structural design, regional disaster mitigation and disaster education are also discussed. New ways for low-cost and efficient seismic observation procedure are introduced using the developed system with assistance of school teachers and students, engineers, building users and the persons who are interested in the seismic observation and disaster mitigation.

  10. Attenuation (1/Q) estimation in reflection seismic records

    NASA Astrophysics Data System (ADS)

    Raji, Wasiu; Rietbrock, Andreas

    2013-08-01

    Despite its numerous potential applications, the lack of a reliable method for determining attenuation (1/Q) in seismic data is an issue when utilizing attenuation for hydrocarbon exploration. In this paper, a new method for measuring attenuation in reflection seismic data is presented. The inversion process involves two key stages: computation of the centroid frequency for the individual signal using a variable window length and fast Fourier transform; and estimation of the difference in the centroid frequency and travel time for paired incident and transmitted signals. The new method introduces a shape factor and a constant which allows several spectral shapes to be used to represent a real seismic signal without altering the mathematical model. Application of the new method to synthetic data shows that it can provide reliable estimates of Q using any of the spectral shapes commonly assumed for real seismic signals. Tested against two published methods of Q measurement, the new method shows less sensitivity to interference from noise and change of frequency bandwidth. The method is also applied to a 3D data set from the Gullfaks field, North Sea, Norway. The trace length is divided into four intervals: AB, BC, CD, and DE. Results show that interval AB has the lowest 1/Q value, and that interval BC has the highest 1/Q value. The values of 1/Q measured in the CDP stack using the new method are consistent with those measured using the classical spectral ratio method.

  11. Seismic hazard from instrumentally recorded, historical and simulated earthquakes: Application to the Tibet-Himalayan region

    NASA Astrophysics Data System (ADS)

    Sokolov, Vladimir; Ismail-Zadeh, Alik

    2015-08-01

    We present a new approach to assessment of regional seismic hazard, which accounts for observed (instrumentally recorded and historic) earthquakes, as well as for seismic events simulated for a significantly longer period of time than that of observations. We apply this approach to probabilistic seismic hazard analysis (PSHA) for the Tibet-Himalayan region. The large magnitude synthetic events, which are consistent with the geophysical and geodetic data, together with the observed earthquakes are employed for the Monte-Carlo PSHA. Earthquake scenarios for hazard assessment are generated stochastically to sample the magnitude and spatial distribution of seismicity, as well as the distribution of ground motion for each seismic event. The peak ground acceleration values, which are estimated for the return period of 475 yr, show that the hazard level associated with large events in the Tibet-Himalayan region significantly increases if the long record of simulated seismicity is considered in the PSHA. The magnitude and the source location of the 2008 Wenchuan M = 7.9 earthquake are among the range of those described by the seismic source model accepted in our analysis. We analyze the relationship between the ground motion data obtained in the earthquake's epicentral area and the obtained PSHA estimations using a deaggregation technique. The proposed approach provides a better understanding of ground shaking due to possible large-magnitude events and could be useful for risk assessment, earthquake engineering purposes, and emergency planning.

  12. Analysis of earthquake data recorded by digital field seismic systems, Jackass Flats, Nevada

    SciTech Connect

    Tarr, A.C.; Rogers, A.M.

    1986-12-31

    Analysis of 59 time series from ten small magnitude earthquakes recorded in 1981 by portable digital seismic systems at the southern Nevada Test Site (NTS) yielded several significant results. We find that moment magnitude (M/sub L/) (local magnitude determined from seismic moment) correlates closely with coda duration magnitudes M/sub d/ determined by the Southern Great Basin Seismic Network (SGBSN). Further, local magnitude M/sub W A/ computed from displacement seismograms simulating Wood-Anderson response are, on average, 0.38 magnitude units larger than M/sub d/ and 0.44 magnitude units larger than (M/sub L/). Another result is that stress drops for the ten earthquakes are significantly smaller than typical stress drops for earthquakes of similar seismic moment in California. Similarly, determinations of the peak ground motion parameter Rv are up to 10 to 20 times smaller than a previously determined empirical formula relating Rv to seismic moment. We conclude that seismic waves from southern Nevada Test Site earthquakes suffer from significant anelastic attenuation, possibly in the near-surface crust under the recording sites, yielding reduced amplitude and frequency of the peak ground motion and shifting the apparent corner frequency of the source spectrum to lower values, thereby producing unexpectedly low stress drops.

  13. Unsupervised pattern recognition in continuous seismic wavefield records using Self-Organizing Maps

    NASA Astrophysics Data System (ADS)

    Köhler, Andreas; Ohrnberger, Matthias; Scherbaum, Frank

    2010-09-01

    Modern acquisition of seismic data on receiver networks worldwide produces an increasing amount of continuous wavefield recordings. In addition to manual data inspection, seismogram interpretation requires therefore new processing utilities for event detection, signal classification and data visualization. The use of machine learning techniques automatises decision processes and reveals the statistical properties of data. This approach is becoming more and more important and valuable for large and complex seismic records. Unsupervised learning allows the recognition of wavefield patterns, such as short-term transients and long-term variations, with a minimum of domain knowledge. This study applies an unsupervised pattern recognition approach for the discovery, imaging and interpretation of temporal patterns in seismic array recordings. For this purpose, the data is parameterized by feature vectors, which combine different real-valued wavefield attributes for short time windows. Standard seismic analysis tools are used as feature generation methods, such as frequency-wavenumber, polarization and spectral analysis. We use Self-Organizing Maps (SOMs) for a data-driven feature selection, visualization and clustering procedure. The application to continuous recordings of seismic signals from an active volcano (Mount Merapi, Java, Indonesia) shows that volcano-tectonic and rockfall events can be detected and distinguished by clustering the feature vectors. Similar results are obtained in terms of correctly classifying events compared to a previously implemented supervised classification system. Furthermore, patterns in the background wavefield, that is the 24-hr cycle due to human activity, are intuitively visualized by means of the SOM representation. Finally, we apply our technique to an ambient seismic vibration record, which has been acquired for local site characterization. Disturbing wavefield patterns are identified which affect the quality of Love wave dispersion

  14. SLAMMER: Seismic LAndslide Movement Modeled using Earthquake Records

    USGS Publications Warehouse

    Jibson, Randall W.; Rathje, Ellen M.; Jibson, Matthew W.; Lee, Yong W.

    2013-01-01

    This program is designed to facilitate conducting sliding-block analysis (also called permanent-deformation analysis) of slopes in order to estimate slope behavior during earthquakes. The program allows selection from among more than 2,100 strong-motion records from 28 earthquakes and allows users to add their own records to the collection. Any number of earthquake records can be selected using a search interface that selects records based on desired properties. Sliding-block analyses, using any combination of rigid-block (Newmark), decoupled, and fully coupled methods, are then conducted on the selected group of records, and results are compiled in both graphical and tabular form. Simplified methods for conducting each type of analysis are also included.

  15. Rupture Process for Hayward Microearthquakes Inferred from Borehole Seismic Recordings

    NASA Astrophysics Data System (ADS)

    Taira, T.; Dreger, D. S.; Nadeau, R. M.

    2014-12-01

    The Hayward fault (HF) in the San Francisco Bay Area, California is one of the major strands of the San Andreas fault system, extending for about 70 km. Crustal deformation along the HF is characterized by a wide variety of fault slip behaviors from aseismic creep to stick-slip earthquake including a Mw ~6.8 earthquake in 1868. We here document the high-resolution imaging of the rupture models for the recent M 3+ HF earthquakes by making use of waveforms from the Hayward Fault Network (HFN). The HFN is an array of borehole seismic instrumentation and provides an unprecedented high-resolution coverage of the earthquake source study for HF earthquakes. Using the finite-source rupture inversion with an empirical Green's function approach, we find a variety of rupture propagations including subevents, directivity, and high stress drop. Our finite-source modeling reveals a complex slip distribution for the 2013 Mw 3.2 Orinda earthquake that is characterized by a patch of slip with a maximum slip of 4 cm concentrated near the hypocenter at about 6.6 km depth, with a large secondary patch of slip (peak slip of 2 cm) centered up-dip and southeast from the hypocenter at a distance of about 400 m away. The two subevents release 43% and 23% of the total seismic moment (6.7 x 1013 N m) and the inferred peak stress drops are 18 MPa and 10 MPa. The 2011 Mw 4.0 Berkeley and 2012 Mw 4.0 El Cerrito earthquakes are marked by high stress drop. The inferred peak and mean stress drops are about 130-165 MPa and 45 MPa, respectively, which suggests that there are locally high levels of the fault strength on the HF. Our finite-source modeling suggests that the radiation efficiency determined for these two earthquakes is very low (< 0.1) and implies that majority of energy is dissipated during the earthquake rupture process.

  16. Performance of an island seismic station for recording T-phases

    SciTech Connect

    Hanson, J. A., LLNL

    1998-05-01

    As part of the International Monitoring System (IMS) a worldwide hydroacoustic network consisting of 6 hydrophone and 5 island seismic stations has been planned which will monitor for underwater or low altitude atmospheric explosions. Data from this network is to be integrated with other IMS networks monitoring the Comprehensive Nuclear Test-Ban Treaty. The seismic (T-phase) stations are significantly less sensitive than hydrophones to ocean borne acoustic waves. T-phase signal strength at seismic stations depends on the amplitude of the signal in the water column, the hydroacoustic-seismic conversion efficiency, and loss on the seismic portion of the path through the island. In order to understand how these factors influence the performance of T-phase stations seismic and hydroacoustic data are examined from instruments currently deployed on or around Ascension Island in the South Atlantic Ocean. T-phase recordings for the last 3 years have been collected from the GSN seismic station ASCN on Ascension Island. Surrounding the island are 5 hydrophones which are part of the U.S. Air Force Missile Impact Locating System (MILS). Data from this system have been obtained for some of the events observed at ASCN. Four of the hydrophones are located within 30 km of the coast while the fifth instrument is 100 km to the south. Amplitude spectral estimates of the signal-to-noise levels (SNL) are computed and generally peak between 3 and 8 Hz for both the seismometer and hydrophone data. The seismic SNL generally decays to 1 between 10 and 15 Hz while the hydrophone SNL is still large well above 20 Hz. The ratios of the hydrophone-to-seismometer SNL, at their peak in energy, range between 10 and 100 (20-40 dB) unless a hydrophone is partially blocked by the Ascension Island landmass.

  17. Seismic reading taken at MSC recording impact of Apollo 13 S-IVB with surface

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A seismic reading taken from instruments at the Manned Spacecraft Center (MSC) recording impact of the Apollo 13 S-IVB/Instrument Unit with lunar surface. The expended Saturn third stage and instrument unit impacted the lunar surface at 7:09 p.m., April 14, 1970. The location of the impact was 2.4 degrees south latitude and 27.9 degrees west longitude, about 76 nautical miles west-northwest of the Apollo 12 Lunar Surface Experiment package deployment site. The S-IVB/IU impact was picked up by the Passive Seismic Experiment, a component of the package and transmitted to instruments at the Mission Control Center.

  18. Development and programming of Geophonino: A low cost Arduino-based seismic recorder for vertical geophones

    NASA Astrophysics Data System (ADS)

    Soler-Llorens, J. L.; Galiana-Merino, J. J.; Giner-Caturla, J.; Jauregui-Eslava, P.; Rosa-Cintas, S.; Rosa-Herranz, J.

    2016-09-01

    The commercial data acquisition systems used for seismic exploration are usually expensive equipment. In this work, a low cost data acquisition system (Geophonino) has been developed for recording seismic signals from a vertical geophone. The signal goes first through an instrumentation amplifier, INA155, which is suitable for low amplitude signals like the seismic noise, and an anti-aliasing filter based on the MAX7404 switched-capacitor filter. After that, the amplified and filtered signal is digitized and processed by Arduino Due and registered in an SD memory card. Geophonino is configured for continuous registering, where the sampling frequency, the amplitude gain and the registering time are user-defined. The complete prototype is an open source and open hardware system. It has been tested by comparing the registered signals with the ones obtained through different commercial data recording systems and different kind of geophones. The obtained results show good correlation between the tested measurements, presenting Geophonino as a low-cost alternative system for seismic data recording.

  19. UK National Data Centre archive of seismic recordings of (presumed) underground nuclear tests 1964-1996

    NASA Astrophysics Data System (ADS)

    Young, John; Peacock, Sheila

    2016-04-01

    The year 1996 has particular significance for forensic seismologists. This was the year when the Comprehensive Test Ban Treaty (CTBT) was signed in September at the United Nations, setting an international norm against nuclear testing. Blacknest, as a long time seismic centre for research into detecting and identifying underground explosions using seismology, provided significant technical advice during the CTBT negotiations. Since 1962 seismic recordings of both presumed nuclear explosions and earthquakes from the four seismometer arrays Eskdalemuir, Scotland (EKA), Yellowknife, Canada (YKA), Gauribidanur, India (GBA), and Warramunga, Australia (WRA) have been copied, digitised, and saved. There was a possibility this archive would be lost. It was decided to process the records and catalogue them for distribution to other groups and institutions. This work continues at Blacknest but the archive is no longer under threat. In addition much of the archive of analogue tape recordings has been re-digitised with modern equipment, allowing sampling rates of 100 rather than 20 Hz.

  20. Spatial coherence of the seismic wavefield continuously recorded by the USArray

    NASA Astrophysics Data System (ADS)

    Seydoux, L.; Shapiro, N. M.; Rosny, J.; Landès, M.

    2016-09-01

    We use a method based on the array covariance matrix eigenvalues to study the level of spatial coherence and of isotropy of the seismic wavefield continuously recorded during 2010 by the USArray. First, we observe that the raw data are often dominated by local sources. To remove their influence, we apply spectral and temporal normalizations to the input signals. We notice that this widely used preprocessing in ambient-noise seismology does not fully homogenize the seismic wavefield and that some strongly coherent arrivals persist. Among these persistent signals generated by teleseismic sources we detect (1) seismic waves emitted by strong earthquakes, (2) a nearly continuous quasi-monochromatic signal at 26 s period, and (3) multiday coherent wave trends in the spectral band of oceanic microseisms (0.07-0.2 Hz). For the latter, beamforming analysis shows that while most of the signals are composed of surface waves, some are dominated by body waves likely generated in the deep ocean.

  1. The Ocean-Continent Boundary Effect on Seismic Noise Recorded on Land

    NASA Astrophysics Data System (ADS)

    Stutzmann, E.; Gualtieri, L.; Capdeville, Y.; Farra, V.; Mangeney, A.

    2014-12-01

    Seismic noise in the period band 3-10s is generated at the surface of the ocean by the interaction of ocean gravity waves. Noise signal is dominated by Rayleigh waves and is recorded worldwide, both on the ocean seafloor and on continent. Microseismic Rayleigh waves, like any other elastic wave, loose energy when traveling from the ocean to the continent. Thus, the noise records on continent are affected by the propagation of microseismic waves, especially across the boundary between the ocean and the continent, the main structural boundary along the source-receiver path. At the ocean-continent boundary, Rayleigh waves dissipate a significant amount of energy (e.g. McGarr, 1969) and noise Love waves may be generated (e.g. Gregersen, 1977). In order to investigate the effect of the ocean-continent boundary on seismic noise records, we simulate the propagation of the seismic wavefield across the seafloor using the spectral-element method in the secondary microseismic period band (3-10s). A single noise source is located at the surface of the ocean and the signal is recorded at the seafloor, both in deep and shallow ocean regions and on continent. The seismograms computed in a model with continental slope are compared to those computed in a model with flat seafloor, for varying periods and slopes. In the presence of the continental slope, the seismic records are affected by a secondary virtual source, generated by the seafloor topography. The effect of the spatial distribution of noise sources is also investigated.

  2. Catalog of seismic records obtained in support of the ERDA/Nevada Operations Office, October 1963 through June 1976

    USGS Publications Warehouse

    Navarro, R.; Sembera, E.D.; Jungblut, W.L.

    1977-01-01

    The United States Geological Survey (USGS), Branch of Earthquake Hazards (BEH), Las Vegas, Nevada has provided ERDA, Nevada Operations Office, with seismic monitoring support to the underground nuclear weapons test program conducted at the Nevada Test Site (NTS) since September 1961. Activities from September 15, 1961 to September 13, 1963 are summarized in the report, "Seismic Dats Summary Nuclear Detonation Program, 1961 thru 1963", (Mickey and Shugart 1964) which lists seismic records obtained from all announced underground nuclear tests conducted during that period.

  3. Weather-related Ground Motions Recorded by Taiwan Broadband Seismic Network Stations

    NASA Astrophysics Data System (ADS)

    Yang, C. F.; Chi, W. C.; Lai, Y. J.

    2015-12-01

    Broadband seismometers record ground motions, which can be induced by weather-related processes. Analyzing such signals might help to better understand those natural processes. Here, we used continuous seismic data, meteorological data and stream data to analyze the weather-related ground motions during typhoon cases and rainy season case in Taiwan. We detected some long period seismic signals at the station Mahsi (MASB) during three meteorological cases (Typhoon Kalmaegi in 2008, Typhoon Morakot in 2009 and the East Asian rainy season in 2012). The amplitude of the seismic waveform correlated with the amount of the precipitation and the derivative of water level and discharge in the nearby river. According to the relationships of waveforms in main and minor rainfall events, we derived apparent source time functions (ASTFs) and used the ASTFs to estimate and quantify the precipitation of main rainfall events in the cases. The estimated precipitation has high correlation coefficients (> 0.82) with the observation. It shows that the long period seismic data may be applied to rainfall monitoring.

  4. Large-explosive source, wide-recording aperture, seismic profiling on the Columbia Plateau, Washington

    SciTech Connect

    Jarchow, C.M. . Dept. of Geophysics); Catchings, R.D.; Lutter, W.J. )

    1994-02-01

    Clear subsurface seismic images have been obtained at low cost on the Columbia Plateau, Washington. The Columbia Plateau is perhaps the most notorious of all bad-data'' areas because large impedance contrasts in surface flood basalts severely degrade the seismic wavefield. This degradation was mitigated in this study via a large-explosive source, wide-recording aperture shooting method. The shooting method emphasizes the wide-angle portion of the wavefield, where Fermat's principle guarantees reverberation will not interfere with the seismic manifestations of crucial geologic interfaces. The basalt diving wave, normally discarded in standard common midpoint (CMP) seismic profiling, can be used to image basalt velocity structure via travel-time inversion. Maximum depth-penetration of the diving wave tightly constrains basalt-sediment interface depth. An arrival observed only at shot-receiver offsets greater than 15 km can be used to determine the velocity and geometry of basement via simultaneous inversion. The results from this study suggest that previous geologic hypotheses and hydrocarbon play concepts for the Columbia Plateau may have been in error.

  5. Co-located atmospheric infrasonic and seismic recordings of rocket launches

    NASA Astrophysics Data System (ADS)

    D'Spain, Gerald L.; Hedlin, Michael A. H.; Orcutt, John A.; Kuperman, William A.; de Groot-Hedlin, Catherine; Rovner, Galina L.; Berger, Lewis P.

    2002-11-01

    Atmospheric infrasound data and co-located, three-component seismic data have been collected by the eight microbarometers of the International Monitoring System (IMS) station and the IRIS seismic station at Pinon Flat (PFO) plus five additional microbarometer/space filter systems at five Anza seismic stations located within 40-km range of PFO in Southern California. Characteristics of the infrasound and seismic recordings from this large-horizontal-aperture array of signals from 400-km-distant rocket launches at Vandenberg Air Force Base are analyzed using waveguide invariant theory. The Navy standard Gaussian Ray Bundle (GRAB) underwater acoustic propagation code (with slight modifications), along with launch trajectory information and atmospheric data collected at the time of the launches, is used to to examine the predictability of the signal arrival structure. The predictions take into account the signal-distorting effects caused by phase delays across the spatial aperture of the space filters, which cause each infrasound array element to be directional over the frequency band of interest. [Work supported by the Defense Threat Reduction Agency.

  6. Seismic interferometry by multidimensional deconvolution applied to ambient noise recorded in Malargüe, Argentina

    NASA Astrophysics Data System (ADS)

    Weemstra, Cornelis; Draganov, Deyan; Ruigrok, Elmer; Wapenaar, Kees; Gomez, Martin

    2016-04-01

    Seismic interferometry refers to the principle of generating new responses. These new responses are conventionally obtained by simple crosscorrelation of recordings made by separate receivers: a first receiver acts as `virtual source' whose response is retrieved at the other receivers. The recorded wavefields may be passive (e.g. seismic noise) or active (e.g. in an industrial context). The newly retrieved responses can be used to extract receiver-receiver phase velocities, which often serve as input parameter for tomographic inverse problems. More recently, the coda of the newly retrieved responses have been found to correlate with temporally varying parameters such as hydrocarbon production and precipitation. For all applications, however, the accuracy of the retrieved responses is of great importance. Irregularities in the illumination patttern often degrade this accuracy: correct response retrieval relies on a uniform illumination of the receivers. Reformulating the theory underlying seismic interferometry by crosscorrelation as a multidimensional deconvolution (MDD) process, allows the removal of the imprint of the illumination pattern on the retrieved responses by means of a so-called point-spread function (PSF). We use a seismic array in Malargüe, Argentina, to assess the feasibility of SI by MDD on ambient seismic noise recordings. The array, which has an aperture of approximately 60 km, is located just east of the Andean mountain range. The shape of the array lends itself well for the application of SI by MDD: its T-shape allows the construction of a PSF along one of the two receiver lines. These receivers act as the virtual sources and their responses are retrieved by the receivers along the other (perpendicular) line of receivers. A frequency-dependent analysis of the slowness along both lines allows us to select time windows during which most ambient seismic surface waves propagate in a favorable direction, that is, traversing the line of virtual

  7. Impact of wind on ambient noise recorded by seismic array in northern Poland

    NASA Astrophysics Data System (ADS)

    Lepore, Simone; Markowicz, Krzysztof; Grad, Marek

    2016-06-01

    Seismic interferometry and beam-forming techniques were applied to the ambient noise recorded during January 2014 at the `13 BB star' array composed of thirteen seismic stations located in northern Poland. The circular and symmetric geometry of the array allowed the evaluation of the azimuths of noise sources and the velocities of recovered surface waves with a good reliability. After having pre-processed the raw records of the ambient noise in time- and frequency-domain, we studied the associated power spectral density to identify the frequency bands suitable for the recovery of the surface waves. Then the cross-correlation was performed between all the station pairs of the array to retrieve the Green's function, from which the velocity range of the surface waves can be determined. Making use of that analysis, the direction of the noise wavefield was linked to the maximum amplitude of the beam-power, estimated by the mixing in the frequency-domain of all the corresponding noise records. The results were related day by day to the mean wind velocity around Europe at 10 m above ground level obtained from global surveys carried out during the same month. Significant correlation between the direction of maximum beam-power associated to the ambient noise recorded at `13 BB star' and the average wind velocity was found.

  8. Recordings from the deepest borehole in the New Madrid Seismic Zone

    USGS Publications Warehouse

    Wang, Z.; Woolery, E.W.

    2006-01-01

    The recordings at the deepest vertical strong-motion array (VSAS) from three small events, the 21 October 2004 Tiptonville, Tennessee, earthquake; the 10 February 2005 Arkansas earthquake; and the 2 June 2005 Ridgely, Tennessee, earthquake show some interesting wave-propagation phenomena through the soils: the S-wave is attenuated from 260 m to 30 m depth and amplified from 30 m to the surface. The S-wave arrival times from the three events yielded different shear-wave velocity estimates for the soils. These different estimates may be the result of different incident angles of the S-waves due to different epicentral distances. The epicentral distances are about 22 km, 110 km, and 47 km for the Tiptonville, Arkansas, and Ridgely earthquakes, respectively. These recordings show the usefulness of the borehole strong-motion array. The vertical strong-motion arrays operated by the University of Kentucky have started to accumulate recordings that will provide a database for scientists and engineers to study the effects of the near-surface soils on the strong ground motion in the New Madrid Seismic Zone. More information about the Kentucky Seismic and Strong-Motion Network can be found at www.uky.edu/KGS/geologichazards. The digital recordings are available at ftp://kgsweb.uky.edu.

  9. Factors limiting the sensitivity and dynamic range of a seismic system employing analog magnetic tape recording and a seismic amplifier with adjustable gain settings and several output levels

    USGS Publications Warehouse

    Eaton, Jerry P.; Van Schaack, John R.

    1977-01-01

    In the course of modernizing the low-speed-tape-recorder portable seismic systems and considering the possibilities for the design of a cassette-tape-recorder seismic refraction system, the factors that limit the sensitivity and dynamic range of such systems have been reviewed. These factors will first be stated briefly, and then their influence on systems such as the new 5-day-tape seismic system will be examined in more detail. To fix ideas, we shall assume that the system consists of the following elements: 1. A seismic sensor: usually a moving coil inertial seismometer with a period of about 1 second, a coil resistance of about 5000 ohms, and an effective motor constant of 1.0 V/cm/sec (across a 10K load terminating the seismometer sensitivity-and-damping-adjustment resistive network). 2. A seismic amplifier/voltage controlled oscillator unit made up of the following components: a) A fixed gain preamplifier with an input resistance of 10K and an internal noise level of 0.5 muVpp referred to the preamp input (0.1 Hz <= freq. <= 30 hz). b) An adjustable gain (0 to 42 db in 6 db steps) intermediate amplifier c) One or more fixed gain output amplifiers. d) Two sections of 6 db/octave bandpass filter serving to couple the 3 amplifier stages together. e) Voltage controlled oscillators for each output amplifier to produce modulated FM carriers for recording on separate tape tracks or modulated FM subcarriers for subsequent multiplexing and direct recording on tape in the California Network format. 3. An analog magnetic tape recorder: e.g. the PI 5100 (15/80 ips recording in the FM mode or in the direct mode with the 'broad-band' variant-of the Cal Net multiplex system, or 15/16 ips recording in the direct mode with the standard Cal Net multiplex system), or the Sony TC-126 cassette recorder operating in the direct record mode with the standard Cal Net multiplex system. 4. Appropriate magnetic tape playback equipment: e.g., the Bell and Howell 3700-B for the PI-5100 or

  10. The CSMS (Configurable Seismic Monitoring System) Poorboy deployment: Seismic recording in Pinedale, Wyoming, of the Bullion NTS (Nevada Test Site) nuclear test under the verification provisions of the new TTBT protocol

    SciTech Connect

    Harben, P.E.; Rock, D.W.; Carlson, R.C.

    1990-07-10

    The Configurable Seismic Monitoring System (CSMS), developed at the Lawrence Livermore National Laboratory (LLNL) was deployed in a 13-m deep vault on the AFTAC facility at Pinedale, Wyoming to record the Bullion nuclear test. The purpose of the exercise was to meet all provisions of the new TTBT protocol on in-country seismic recording at a Designated Seismic Station (DSS). The CSMS successfully recorded the Bullion event consistent with and meeting all requirements in the new treaty protocol. In addition, desirable seismic system features not specified in the treaty protocol were determined; treaty protocol ambiguities were identified, and useful background noise recordings at the Pinedale site were obtained. 10 figs.

  11. Recording of remote ground explosions in the Barents Region by the Seismic &Infrasound Integrated Array "Apatity"

    NASA Astrophysics Data System (ADS)

    Vinogradov, Y.; Vinogradov, A.

    2003-04-01

    Since 1996, Kola Regional Seismological Centre (KRSC) has been engaged in infrasonic research and development. As part of this effort, a small-aperture microbarographic array was installed in conjunction with the seismic array near lake Imandra in the Kola Peninsula; the digitised data are transmitted in real time to the Processing Centre in Apatity; a data processing includes frequency-wavenumber analysis of the array recordings, estimation of phase velocity and azimuth, and evaluation of group velocity based on travel time calculations. The whole system was named the Seismic and InfraSound Integrated Array (SISIA) "Apatity". We present some examples of coupled recordings for selected events in the Kola Peninsula and adjacent regions. Explosions at large mines in the Barents region are routinely detected by the seismic systems installed in northern Fennoscandia and NW Russia. Seismic and infrasound emission from Khibiny, Pechenga, Kovdor and Olenegorsk mines in the Murmansk County are recording by SISIA "Apatity", and the presented 19 reference records show a high sensitivity of the system and a good accuracy for localisation of events within distance range of 30 to 220 km. A capability of the SISIA for detection of events in a remote zone (more than 220 km) was evaluated in case study performed in September 04 - 09, 2002. A set of explosions caused by ammunition demolition in Northern Finland, at a distance of 300 km from the array, have been successfully recorded in Apatity. Three separate phase arrivals for each of five events were identified as follows: the Tropospheric arrival (Iw), the Stratospheric arrival (Is) and the Thermospheric arrival (It). Was found, that all 15 estimates of azimuth are very consistent, ranging from 278 to 288 degrees (true azimuth is 284 degrees). The observed group velocities (average travel velocities) range between 326-336 m/s for the Iw arrival, 300-305 m/s for the Is arrival and 244-254 m/s for the It arrival. The phase

  12. Mapping the sources of the seismic wave field at Kilauea volcano, Hawaii, using data recorded on multiple seismic Antennas

    USGS Publications Warehouse

    Almendros, J.; Chouet, B.; Dawson, P.; Huber, Caleb G.

    2002-01-01

    Seismic antennas constitute a powerful tool for the analysis of complex wave fields. Well-designed antennas can identify and separate components of a complex wave field based on their distinct propagation properties. The combination of several antennas provides the basis for a more complete understanding of volcanic wave fields, including an estimate of the location of each individual wave-field component identified simultaneously by at least two antennas. We used frequency-slowness analyses of data from three antennas to identify and locate the different components contributing to the wave fields recorded at Kilauea volcano, Hawaii, in February 1997. The wave-field components identified are (1) a sustained background volcanic tremor in the form of body waves generated in a shallow hydrothermal system located below the northeastern edge of the Halemaumau pit crater; (2) surface waves generated along the path between this hydrothermal source and the antennas; (3) back-scattered surface wave energy from a shallow reflector located near the southeastern rim of Kilauea caldera; (4) evidence for diffracted wave components originating at the southeastern edge of Halemaumau; and (5) body waves reflecting the activation of a deeper tremor source between 02 hr 00 min and 16 hr 00 min Hawaii Standard Time on 11 February.

  13. Effect of the water-saturated sediment layer on recording seismic signals with a bottom seismometer

    NASA Astrophysics Data System (ADS)

    Levchenko, D. G.

    2006-10-01

    Recording seismic signals on the bottom is accompanied by specific distortions caused by resonance phenomena. In the literature, such distortions are explained by the natural vibration of the heavy housing of a seismometer on a soft elastic sediment layer. Meanwhile, there are experimental results that contradict this model. In the present paper, we consider the rheological properties of the bottom sediments, which in fact were not taken into account previously. The model of a viscoplastic medium was used (the Bingham model), and the parameters of the model were experimentally determined. The estimates show that, in the frequency range from 0.003 to 30 Hz used in broadband bottom seismology, the effect of the mass of the seismometer on the results of recording on a soft bottom is negligible. Large errors can be introduced only when a seismometer is placed on rubberlike media such as peat soil, algae aggregations, etc. Resonance phenomena in recording signals on the bottom can occur when seismic waves propagate through a layer of water-saturated sediments. These phenomena are more pronounced for shear waves, whereas the distortions of the longitudinal waves propagating through the water-saturated layer are relatively weak.

  14. Analysis of the 23 June 2001 Southern Peru Earthquake Using Locally Recorded Seismic Data

    NASA Astrophysics Data System (ADS)

    Tavera, H.; Comte, D.; Boroschek, R.; Dorbath, L.; Portugal, D.; Haessler, H.; Montes, H.; Bernal, I.; Antayhua, Y.; Salas, H.; Inza, A.; Rodriguez, S.; Glass, B.; Correa, E.; Balmaceda, I.; Meneses, C.

    2001-12-01

    The 23 June 2001, Mw=8.4 southern Peru earthquake ruptured the northern and central part of the previous large earthquake occurred on 13 August 1868, Mw ~9. A detailed analysis of the aftershock sequence was possible due to the deployment of a temporary seismic network along the coast in the Arequipa and Moquegua districts, complementing the Peruvian permanent stations. The deployed temporary network included 10 short period three component stations from the U. of Chile-IRD-France and 7 broad-band seismic stations from the Instituto Geofísico del Perú. This network operated during the first weeks after the mainshock and recorded the major aftershocks like the larger one occurred on 7 July 2001, Mw=7.5, this event defines the southern limit of the rupture area of the 2001 Peruvian earthquake. The majority of the aftershocks shows a thrusting fault focal mechanisms according with the average convergence direction of the subducting Nazca plate, however, normal faulting events are also present in the aftershock sequence like the 5 July 2001, Mw=6.6 one. The depth distribution of the events permitted a detailed definition of the Wadati-Benioff zone in the region. The segment between Ilo and Tacna did not participated in the rupture process of the 2001 southern Peru earthquake. Seismicity located near the political Peruvian-Chilean boundary was reliable determined using the data recorded by the northern Chile permanent network. Analysis of the mainshock and aftershock acelerograms recorded in Arica, northern Chile are also included. The occurrence of the 1995 Antofagasta (Mw=8.0) and the 2001 southern Peru earthquakes suggests that the probability of having a major earthquake in the northern Chile region increased, considering that the previous large earthquake in this region happened in 1877 (Mw ~9), and since that time no earthquake with magnitude Mw>8 had occurred inside of the 1877 estimated rupture area (between Arica and Antofagasta).

  15. Earthquake recordings from the 2002 Seattle Seismic Hazard Investigation of Puget Sound (SHIPS), Washington State

    USGS Publications Warehouse

    Pratt, Thomas L.; Meagher, Karen L.; Brocher, Thomas M.; Yelin, Thomas; Norris, Robert; Hultgrien, Lynn; Barnett, Elizabeth; Weaver, Craig S.

    2003-01-01

    This report describes seismic data obtained during the fourth Seismic Hazard Investigation of Puget Sound (SHIPS) experiment, termed Seattle SHIPS . The experiment was designed to study the influence of the Seattle sedimentary basin on ground shaking during earthquakes. To accomplish this, we deployed seismometers over the basin to record local earthquakes, quarry blasts, and teleseisms during the period of January 26 to May 27, 2002. We plan to analyze the recordings to compute spectral amplitudes at each site, to determine the variability of ground motions over the basin. During the Seattle SHIPS experiment, seismometers were deployed at 87 sites in a 110-km-long east-west line, three north-south lines, and a grid throughout the Seattle urban area (Figure 1). At each of these sites, an L-22, 2-Hz velocity transducer was installed and connected to a REF TEK Digital Acquisition System (DAS), both provided by the Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL) of the Incorporated Research Institutes for Seismology (IRIS). The instruments were installed on January 26 and 27, and were retrieved gradually between April 18 and May 27. All instruments continuously sampled all three components of motion (velocity) at a sample rate of 50 samples/sec. To ensure accurate computations of amplitude, we calibrated the geophones in situ to obtain the instrument responses. In this report, we discuss the acquisition of these data, we describe the processing and merging of these data into 1-hour long traces and into windowed events, we discuss the geophone calibration process and its results, and we display some of the earthquake recordings.

  16. Correlation between calculated stress distribution and recorded seismicity in Northern Israel and its surrounding

    NASA Astrophysics Data System (ADS)

    Wetzler, N.; Kurzon, I.; Rosenthal, M.; Segev, A.; Rybakov, M.; Ben-Avraham, Z.; Lyakhovsky, V.

    2015-12-01

    We study the relationship between crustal structure, tectonic slip, and seismicity. A detailed 3-D layered crustal model is constructed including the geometry and mechanical properties of the main geological units of the study area, Northern Israel and its surrounding. Boundary condition of the 3-D model had been set according to the regional GPS measurements and including localized weak zones extrapolated from the mapped faults. The regional crustal model is converted to 1-D seismic velocity model that was applied in second order relocation software (hypoDD), to obtain more accurate earthquake location. We compare earthquake record of the past 30 years with areas of uplifted shear stress in the crustal model, and compare it with a reference 3-D model with flat layers and similar rock properties. Numerical simulation shows spatial distribution of the zones with increased shear stress associated with differential gravitational load, weak zones geometry, and tectonic load. The obtained zones with high stress are well correlated with earthquake locations. Our results and interpretation highlight the importance and advantages of utilizing detailed crustal structure for assessment of regional seismic hazards.

  17. Preliminary study for active monitoring of the plate boundary using ACROSS: Synthetic and observed seismic records

    NASA Astrophysics Data System (ADS)

    Tsuruga, K.; Kasahara, J.; Hasada, Y.; Kunitomo, T.; Ikuta, R.; Watanabe, T.; Yamaoka, K.; Fujii, N.; Kumazawa, M.; Nagao, H.; Nakajima, T.; Saiga, A.; Satomura, M.

    2005-12-01

    ACROSS (Accurately-Controlled Routinely-Operated Signal System) has been developed for active monitoring of a dynamic state in the Earth's structure (Kumazawa et al., 2000). Since November 2004, we have conducted an array observation of ACROSS signals in Tokai area, central Japan, to identify any seismic reflection (and hopefully its temporal change) from the lower crust and/or subducting Philippine Sea plate (Kasahara et al., 2004). In this report, we show the recent results and discuss the relevance of several arrivals of wave groups to underground structures using the theoretical travel times and synthetic waveforms. The frequency-modulated ACROSS signals (10-20 Hz) have been continuously transmitted from the sources located in Toki city, central Japan (Kunitomo et al., 2005) and received at 22 temporal seismic stations at the offset distance of 40-75 km from the source. We define the transfer function between a source and a receiver as a nine-element second-order tensor, Hjk, where j and k denote directional components of the observed displacement and the excitation force, and r, t and v represent the radial, transverse and vertical components, respectively. We recognized the significant wave groups within the travel time ranges of 10-18 and of 15-23 seconds at 54-74 km offset distance through stacking the data for about 60 days. Such wave groups also appear on the records of a Hi-net station at 57.4km by stacking for 30 days (Yoshida et al., 2004). A 2-D velocity structure model was made for our observation area using seismic exploration records across the central Japan (Iidaka et al., 2003). We calculated both travel times by ray tracing method (Fujie et al., 2000; Kubota et al., 2005), and synthetic seismograms by FDM simulation (Larsen and Schultz, 1995). Comparing the observed time series of Hrr and Hzr to the theoretical travel times and synthetic seismograms, we noticed that the wave groups observed at 61-73 km are well corresponding to the theoretical

  18. Composition and variation of noise recorded at the Yellowknife Seismic Array, 1991-2007

    USGS Publications Warehouse

    Koper, K.D.; De Foy, B.; Benz, H.

    2009-01-01

    We analyze seismic noise recorded on the 18 short-period, vertical component seismometers of the Yellowknife Seismic Array (YKA). YKA has an aperture of 23 km and is sited on cratonic lithosphere in an area with low cultural noise. These properties make it ideal for studying natural seismic noise at periods of 1-3 s. We calculated frequency-wave number spectra in this band for over 6,000 time windows that were extracted once per day for 17 years (1991-2007). Slowness analysis reveals a rich variety of seismic phases originating from distinct source regions: Rg waves from the Great Slave Lake; Lg waves from the Atlantic, Pacific, and Arctic Oceans; and teleseismic P waves from the north Pacific and equatorial mid-Atlantic regions. The surface wave energy is generated along coastlines, while the body wave energy is generated at least in part in deep-water, pelagic regions. Surface waves tend to dominate at the longer periods and, just as in earthquake seismograms, Lg is the most prominent arrival. Although the periods we study are slightly shorter than the classic double-frequency microseismic band of 4-10 s, the noise at YKA has clear seasonal behavior that is consistent with the ocean wave climate in the Northern Hemisphere. The temporal variation of most of the noise sources can be well fit using just two Fourier components: yearly and biyearly terms that combine to give a fast rise in microseismic power from mid-June through mid-October, followed by a gradual decline. The exception is the Rg energy from the Great Slave Lake, which shows a sharp drop in noise power over a 2-week period in November as the lake freezes. The L g noise from the east has a small but statistically significant positive slope, perhaps implying increased ocean wave activity in the North Atlantic over the last 17 years. Copyright 2009 by the American Geophysical Union.

  19. Basin-scale Green's functions from the ambient seismic field recorded by MeSO-net stations

    NASA Astrophysics Data System (ADS)

    Viens, Loïc.; Koketsu, Kazuki; Miyake, Hiroe; Sakai, Shin'ichi; Nakagawa, Shigeki

    2016-04-01

    Seismic waves propagating through the Earth can be significantly affected by velocity structures such as sedimentary basins. We investigate the propagation characteristics of seismic waves across the Kanto basin, Japan, using Green's functions extracted from the ambient seismic field. We use two stations situated on the eastern and southern edges of the basin as virtual sources, and approximately 420 stations, which are mainly a part of the Metropolitan Seismic Observation network (MeSO-net), as receivers. Using seismometers aligned along two straight lines with the virtual sources, we find that several types of waves can be recovered, each with different sensitivities to the layers that compose the basin. We also show that after amplitude calibration, the extracted Green's functions can accurately simulate the seismic waves of two moderate Mw 4-5 shallow earthquakes that occurred close to the virtual sources. Furthermore, we find that the distribution of the 5% damped pseudovelocity response at a period of 6 s computed from the records of each event and the Green's function waveforms have similar amplification patterns. This study supports the fact that dense networks recording continuously the ambient seismic field in metropolitan areas can be used to accurately assess seismic hazard at high spatial resolution.

  20. Seismic and acoustic recordings of an unusually large rockfall at Mount St. Helens, Washington

    USGS Publications Warehouse

    Moran, S.C.; Matoza, R.S.; Garces, M.A.; Hedlin, M.A.H.; Bowers, D.; Scott, W.E.; Sherrod, D.R.; Vallance, J.W.

    2008-01-01

    On 29 May 2006 a large rockfall off the Mount St. Helens lava dome produced an atmospheric plume that was reported by airplane pilots to have risen to 6,000 m above sea level and interpreted to be a result of an explosive event. However, subsequent field reconnaissance found no evidence of a ballistic field, indicating that there was no explosive component. The rockfall produced complex seismic and infrasonic signals, with the latter recorded at sites 0.6 and 13.4 km from the source. An unusual, very long-period (50 s) infrasonic signal was recorded, a signal we model as the result of air displacement. Two high-frequency infrasonic signals are inferred to result from the initial contact of a rock slab with the ground and from interaction of displaced air with a depression at the base of the active lava dome. Copyright 2008 by the American Geophysical Union.

  1. Measurement of Acoustic-to-Seismic Conversion Using T-wave Signals Recorded at Ascension Island and Diego Garcia

    NASA Astrophysics Data System (ADS)

    Pulli, J. J.; Kofford, A. S.; Newman, K. R.; Krumhansl, P. A.

    2012-12-01

    T-wave signals from sub-sea earthquakes are often recorded on coastal or island seismic stations (Linehan, 1940; Okal, 2008). The physical process of the acoustic-to-seismic conversion is poorly understood but likely depends on factors such as seafloor relief and sediment thickness at the location where the interaction occurs. Quantification of the conversion process is necessary to understand and interpret the seismic recordings, and allow for the calculation of in-water acoustic levels from these recordings where no in-water sensor recordings are available. Applications for this knowledge would include the calculation of in-water explosion yields and seismic airgun source levels. Here we present the measurement of the acoustic-to-seismic transfer functions at Ascension Island and Diego Garcia using hydroacoustic data from the International Monitoring System and broadband seismic data from the Global Seismic Network. For Ascension Island, a volcanic island formed above magmatic plumes, we used T-wave signals from earthquakes on the Central Mid-Atlantic Ridge and associated fracture zones. For Diego Garcia, an atoll of carbonate sequences and no volcanism, we used T-wave signals from earthquakes along the Sumatran Subduction Zone, the Indian Ocean Ridges, and the Chagos Arch. The methodology is based on the smoothed cross-spectra over a frequency band that is common to the acoustic and seismic recordings, typically 2-18 Hz. Preliminary results indicate that at 5 Hz the acoustic-to-seismic conversion is 2-4 times more efficient at Ascension Island than at Diego Garcia (124 nm/s/Pa vs. 51 nm/s/Pa, respectively), but nearly equal at 10 Hz (20 nm/s/Pa). At 15 Hz the conversion is more efficient at Diego Garcia (13 nm/s/Pa vs. 8 nm/s/Pa at Ascension). We also investigate the azimuthal variance of this transfer function, as well as the differences between the three components of seismic motion. As a verification of the methodology, we use the equivalent time domain

  2. A one year long continuous record of seismic activity and surface motion at the tongue of Rhonegletscher (Valais, Switzerland)

    NASA Astrophysics Data System (ADS)

    Dalban Canassy, Pierre; Röösli, Claudia; Walter, Fabian; Gabbi, Jeannette

    2014-05-01

    A critical gap in our current understanding of glaciers is how high sub-glacial water pressure controls the coupling of the glacier to its bed. Processes at the base of a glacier are inherently difficult to investigate due to their remoteness. Investigation of the sub-glacial environment with passive seismic methods is an innovative, rapidly growing interdisciplinary and promising endeavor. In combination with observations of surface motion and basal water pressure, this method is ideally suited to localize and quantify frictional and fracture processes which occur during periods of rapidly changing sub-glacial water pressure with consequent stress redistribution at the contact interface between ice and bed. Here we present the results of the first one-year-long glacier seismic monitoring performed on an Alpine glacier to our knowledge. Together with records of surface motion and hydrological measurements, we examine whether seasonal changes can be captured by seismic recording. Experiments were carried out from June 2012 to July 2013 on Rhonegletscher (Valais, Switzerland), by means of 3 three-components seismometers settled close to the tongue in 2 meters boreholes. An additional array of eleven sensors installed at the ice surface was also maintained during September 2012, in order to achieve more accurate icequakes locations. A high seismic emission is observed on Rhonegletscher, with icequakes located close to the surface or in the vicinity of the bedrock. The temporal distribution of seismic activity is shown to nicely reflect the seasonal evolution of the glacier hydrology, with a dramatic seismic release in early spring. During summer, released seismic activity is generally driven by diurnal ice/snow melting cycle. In winter, snow-cover conditions are associated with a reduced seismic release, with nevertheless some unexpected activity possibly related to snow-pack metamorphism. Based on icequake locations derived from data recorded in September, we discuss

  3. Detection of Temporally and Spatially Limited Periodic Earthquake Recurrence in Synthetic Seismic Records

    NASA Astrophysics Data System (ADS)

    Zielke, O.; Arrowsmith, R. J.

    2005-12-01

    The nonlinear dynamics of fault behavior are dominated by complex interactions among the multiple processes controlling the system. For example, temporal and spatial variations in pore pressure, healing effects, and stress transfer cause significant heterogeneities in fault properties and the stress-field at the sub-fault level. Numerical and laboratory fault models show that the interaction of large systems of fault elements causes the entire system to develop into a state of self-organized criticality. Once in this state, small perturbations of the system may result in chain reactions (i.e., earthquakes) which can affect any number of fault segments. This sensitivity to small perturbations is strong evidence for chaotic fault behavior, which implies that exact event prediction is not possible. However, earthquake prediction with a useful accuracy is nevertheless possible. Studies of other natural chaotic systems have shown that they may enter states of metastability, in which the system's behavior is predictable. Applying this concept to earthquake faults, these windows of metastable behavior should be characterized by periodic earthquake recurrence. The observed periodicity of the Parkfield, CA (M= 6) events may resemble such a window of metastability. I am statistically analyzing numerically generated seismic records to study these phases of periodic behavior. In this preliminary study, seismic records were generated using a model introduced by Nakanishi [Phys. Rev. A, 43, 6613-6621, 1991]. It consists of a one-dimensional chain of blocks (interconnected by springs) with a relaxation function that mimics velocity-weakened frictional behavior. The earthquakes occurring in this model show generally a power-law frequency-size distribution. However, for large events the distribution has a shoulder where the frequency of events is higher than expected from the power law. I have analyzed time-series of single block motions within the system. These time-series include

  4. Estimation of azimuthal anisotropy in the NW Pacific from seismic ambient noise in seafloor records

    NASA Astrophysics Data System (ADS)

    Takeo, Akiko; Forsyth, Donald W.; Weeraratne, Dayanthie S.; Nishida, Kiwamu

    2014-10-01

    We analysed background surface waves in seismic ambient noise by cross-correlating continuous records of eight ocean bottom seismometers and nine differential pressure gauges deployed in the northwestern Pacific Ocean by the PLATE project. After estimating the clock delay and instrumental phase responses of differential pressure gauges by using cross-correlation functions, we measured average phase velocities in the area of the array for the fundamental-, first higher- and second higher-mode Rayleigh waves, and the fundamental-mode Love waves at a period range of 3-40 s by waveform fitting. We then measured phase-velocity anomalies of fundamental-mode and first higher-mode Rayleigh waves for each pair of stations at a period range of 5-25 s, and corrected the effect of variation in water-depths. The seismic anomalies imply the presence of strong azimuthal anisotropy beneath the eastern part of array. The direction of maximum velocity is approximately N35°E in the fossil seafloor spreading direction perpendicular to magnetic lineations from the ancient triple junction at this location. The peak-to-peak intensity of shear-wave velocity anisotropy in the mantle is ˜7 per cent.

  5. Lessons learned from near-fault recordings of the Emilia, 2012 seismic sequence

    NASA Astrophysics Data System (ADS)

    Masi, Angelo; Mucciarelli, Marco; Chiauzzi, Leonardo; Gallipoli, Maria Rosaria; Stabile, Tony; Lizza, Carmine; Vignola, Luigi

    2013-04-01

    Lessons learned from near-fault recordings of the Emilia, 2012 seismic sequence Marco Mucciarelli (CNR-OGS, Trieste, Italy) Leonardo Chiauzzi, Angelo Masi (Basilicata University, Potenza, Italy) Maria Rosaria Gallipoli, Tony Stabile (IMAA-CNR, Tito Scalo, Italy) Carmine Lizza, Luigi Vignola (Mallet s.r.l., Marsicovetere, Italy) The Emilia 2012 seismic sequence provided a wealth of strong motion data, both from permanent and temporary network. The accelerometric station closest to epicentre is managed by the RAN network and it is located in the town of Mirandola (Code MRN), just close to the faults that generated the two main earthquakes of the sequence that are the M=5.9 and M=5.8, occurred on May 20 and 29 respectively. At same site of the MRN-RAN station, after the event occurred on May, 20 2012, a temporary accelerometric station was installed (code CNR) just 5 meters away. While the MRN-RAN station is inside a small building (electric substation) the CNR station was installed in free-field. After the mainshock, the site was also well characterised from the geophysical and geotechnical stand point with surface and down-hole surveys, and laboratory dynamic test on undisturbed samples. The analysis of the recordings, also compared with code provisions, provided several useful insights: 1) while the geological setting is apparently 1-D, there is a strong difference between horizontal components, not only for the mainshock but also for lesser quakes (magnitude down to below 2) thus ruling out a source effect; 2) the mismatch with the spectra provided by the Italian seismic code is due mainly to a poor performance of Vs30-based classification for deep soil site like the ones in the Po Valley rather than to PSHA estimates of hazard on rock conditions; 3) the influence of the housing of the RAN station is clearly visible at high frequency, the only portion of the spectra where the to station show different spectra ordinates; 4) integral parameters like Housner

  6. Method for the interpretation of envelope-related seismic records to yield valuable characteristics, such as gas-bearing potential and lithology of strata

    SciTech Connect

    Herkenhoff, E.F.; Ostrander, O.; Ostrander, W.J.

    1986-02-25

    A method is described for determining hydrocarbon-bearing potential and/or lithology of strata in the earth using high-intensity amplitude events in seismic records generated by conventional common centerpoint seismic collection and processing techniques in which presence of refraction energy within the records has been minimized.

  7. Submarine Paleoearthquake Records and Seismic Risk Assessment in the Sea of Marmara, Turkey

    NASA Astrophysics Data System (ADS)

    Cagatay, M. Namik; Biltekin, Demet; Erel, Levent; Henry, Pierre; Gasperini, Luca; McHugh, Cecilia M.; Grall, Celine; Gungor, L. Nurdan; Gungor, Emin; Polonia, Alina; Zabci, Cengiz; Akkok, Remzi

    2014-05-01

    Long-term paleoearthquake history of faults is important for probabilistic earthquake risk assessment. Such records can be obtained from the study of mass-transport units triggered by seismic activity in marine and lake basins. The Sea of Marmara (SoM), located on the North Anatolian Fault (NAF), is an important laboratory for the study of paleoearthquake records, mainly because it has: a) more than 2000 years of historical earthquake records with which radiometrically dated sedimentary earthquake records can be correlated, b) high sedimentation rates (≤3m/kyrs) so that individual events can be distinguished, and c) cold fluid and hydrocarbon seeps along active faults, leaving sedimentary and geochemical signatures of earthquake activity. After the destructive 1912 Mw 7.4 Mürefte and 1999 Mw 7.4 Izmit and Mw 7.2 Duzce earthquakes, the SoM represent a seismic gap. It is therefore crucial to obtain information on the long-term earthquake history of the NAF in the SoM. We have carried out a systematic study of the 24 cores recovered from the various Marmara basins and highs characterizing the different segments of the NAF, using high resolution digital X-Ray Radiography and µ-XRF Core Scanner, MSCL physical properties and grain-size analyses. The chronology was determined using AMS radiocarbon and radionuclide methods. Turbidite-homogenite deposits (TH) triggered by earthquakes are commonly characterized by multiple sand-silt laminae above a sharp and often erosional base and a homogeneous mud at the top. However, in shallow basins (<110 m) such as Gölcük and Gemlik, the TH units consists of red brown coarse to medium silt units having a sharp basal boundary. The basal TH parts have high gamma density and magnetic susceptibility, and are often enriched in one or more of elements, such as Si, Zr, Ca, Ti, K and Fe, indicative of coarse detrital silicate and carbonate shell input. Radionuclide and radiocarbon dated TH units in different basins of the SoM can be

  8. Writing user selectable data on the extended header of seismic recordings made on the Texas Instruments DFS-V

    USGS Publications Warehouse

    Robinson, W.C.

    1996-01-01

    A circuit has been developed to allow the writing of up to 192 digits of user-selectable data on a portion of tape called extended header, which is always available for use before each DFS-V seismic record is written. Such data could include navigation information, air gun and streamer depth and shot times.

  9. Paleogeodetic records of seismic and aseismic subduction from central Sumatran microatolls, Indonesia

    USGS Publications Warehouse

    Natawidjaja, D.H.; Sieh, K.; Ward, S.N.; Cheng, H.; Edwards, R. Lawrence; Galetzka, J.; Suwargadi, B.W.

    2004-01-01

    We utilize coral microatolls in western Sumatra to document vertical deformation associated with subduction. Microatolls are very sensitive to fluctuations in sea level and thus act as natural tide gauges. They record not only the magnitude of vertical deformation associated with earthquakes (paleoseismic data), but also continuously track the long-term aseismic deformation that occurs during the intervals between earthquakes (paleogeodetic data). This paper focuses on the twentieth century paleogeodetic history of the equatorial region. Our coral paleogeodetic record of the 1935 event reveals a classical example of deformations produced by seismic rupture of a shallow subduction interface. The site closest to the trench rose 90 cm, whereas sites further east sank by as much as 35 cm. Our model reproduces these paleogeodetic data with a 2.3 m slip event on the interface 88 to 125 km from the trench axis. Our coral paleogeodetic data reveal slow submergence during the decades before and after the event in the areas of coseismic emergence. Likewise, interseismic emergence occurred before and after the 1935 event in areas of coseismic submergence. Among the interesting phenomenon we have discovered in the coral record is evidence of a large aseismic slip or "silent even" in 1962, 27 years after the 1935 event. Paleogeodetic deformation rates in the decades before, after, and between the 1935 and 1962 events have varied both temporally and spatially. During the 25 years following the 1935 event, submergence rates were dramatically greater than in prior decades. During the past four decades, however, rates have been lower than in the preceding decades, but are still higher than they were prior to 1935. These paleogeodetic records enable us to model the kinematics of the subduction interface throughout the twentieth century. Copyright 2004 by the American Geophysical Union.

  10. Long-term seismicity of the Reykjanes Ridge (North Atlantic) recorded by a regional hydrophone array

    NASA Astrophysics Data System (ADS)

    Goslin, Jean; Lourenço, Nuno; Dziak, Robert P.; Bohnenstiehl, DelWayne R.; Haxel, Joe; Luis, Joaquim

    2005-08-01

    The seismicity of the northern Mid-Atlantic Ridge was recorded by two hydrophone networks moored in the sound fixing and ranging (SOFAR) channel, on the flanks of the Mid-Atlantic Ridge, north and south of the Azores. During its period of operation (05/2002-09/2003), the northern `SIRENA' network, deployed between latitudes 40° 20'N and 50° 30'N, recorded acoustic signals generated by 809 earthquakes on the hotspot-influenced Reykjanes Ridge. This activity was distributed between five spatio-temporal event clusters, each initiated by a moderate-to-large magnitude (4.0-5.6 M) earthquake. The rate of earthquake occurrence within the initial portion of the largest sequence (which began on 2002 October 6) is described adequately by a modified Omori law aftershock model. Although this is consistent with triggering by tectonic processes, none of the Reykjanes Ridge sequences are dominated by a single large-magnitude earthquake, and they appear to be of relatively short duration (0.35-4.5 d) when compared to previously described mid-ocean ridge aftershock sequences. The occurrence of several near-equal magnitude events distributed throughout each sequence is inconsistent with the simple relaxation of mainshock-induced stresses and may reflect the involvement of magmatic or fluid processes along this deep (>2000 m) section of the Reykjanes Ridge.

  11. 15/16 ips Operation of the Precision Instrument Company Model P15100 tape recorder to record the standard (30 Hz) NCER seismic data multiplex system

    USGS Publications Warehouse

    Eaton, Jerry P.

    1976-01-01

    In recent months the need has arisen to record special seismic networks consisting of a dozen or more standard NCER seismic systems telemetered to a central collection point on a reliable, portable, low-power tape recorder. Because of its simplicity and the ease with which it can be adapted for the purpose, the PI 5100 field recorder should be considered for such use. In the tests described here, a PI 5100 was speeded up to run at 15/16 inches per second (ips) and signals from the standard multiplex system test modulator bank were recorded on one tape track by means of a simple, improvised AM record amplifier. The results of these tests are extremely encouraging: the dynamic range of the system when played back on the Bell and Howell Model 3700 B reproduce machine, with subtractive compensation, is nearly as high as for the system employing the B&H 3700 B for recording. These notes indicate the principle employed to speed up the recorder, outline the circuit required to drive the tape heads in the AM record mode, and describe the tests carried out to evaluate the system's performance.

  12. Analysis of Background Seismic Noise Recorded at the Amundsen-Scott South Pole Station, Antarctica

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.; Aster, R.; Beaudoin, B. C.; Butler, R.

    2006-12-01

    station. Therefore, encroachment of any of these noise sources into the Quiet Sector will adversely affect the signal-to-noise ratio in the frequencies above 1 Hz for seismograms recorded at QSPA. At this point, QSPA is by far the quietest seismic station in the world at these high frequencies. We hope that we can preserve these low background noise levels and keep the QSPA one of the quietest places on Earth.

  13. Seismic slip recorded in tourmaline fault mirrors from Elba Island (Italy)

    NASA Astrophysics Data System (ADS)

    Viti, C.; Brogi, A.; Liotta, D.; Mugnaioli, E.; Spiess, R.; Dini, A.; Zucchi, M.; Vannuccini, G.

    2016-05-01

    This paper reports the first example of fault mirrors developed in an unusual protolith, consisting of tourmaline crystals with interstitial goethite. The deformation mechanisms active in the fault zone have been investigated from the outcrop to the nanoscale, aiming to identify possible traces of frictional heating at seismic slip rate, as observed for other fault mirrors in different protoliths. The investigation revealed the superposition of two main deformational stages. The first was dominated by brittle processes and produced a cataclastic/ultracataclastic principal slip zone, a few mm thick; the second was associated with seismic slip and produced a sharp discontinuity (the principal slip surface) within the cataclastic/ultracataclastic zone. The mirror-like coating, a few microns thick, occurs on the principal slip surface, and is characterized by 1) absence of interstitial goethite; 2) occurrence of truncated tourmaline crystals; 3) highly variable grain size, from 200 μm to 200 nm; 4) tourmaline close packing with interlobate grain boundaries, and 5) tourmaline random crystallographic orientation. Micro and nanostructural investigations indicate the occurrence of thermally-activated processes, involving both interstitial goethite and tourmaline. In particular, close to the principal slip surface, goethite is completely decomposed, and produced an amorphous porous material, with local topotactic recrystallization of hematite. Tourmaline clasts are typically characterized by strongly lobate boundaries, indicative of reaction and partial decomposition at grain boundaries. TEM observations revealed the occurrence of tourmaline nanograins, a few tens of nm in size, characterized by rounded shape and fading amorphous boundaries, that cannot be obtained by brittle processes. Lastly, the peculiar interlobate microstructure of the mirror surface is interpreted as the result of grain boundary recrystallization processes taking place by deformation at high

  14. Recorded earthquake responses from the integrated seismic monitoring network of the Atwood Building, Anchorage, Alaska

    USGS Publications Warehouse

    Celebi, M.

    2006-01-01

    An integrated seismic monitoring system with a total of 53 channels of accelerometers is now operating in and at the nearby free-field site of the 20-story steel-framed Atwood Building in highly seismic Anchorage, Alaska. The building has a single-story basement and a reinforced concrete foundation without piles. The monitoring system comprises a 32-channel structural array and a 21-channel site array. Accelerometers are deployed on 10 levels of the building to assess translational, torsional, and rocking motions, interstory drift (displacement) between selected pairs of adjacent floors, and average drift between floors. The site array, located approximately a city block from the building, comprises seven triaxial accelerometers, one at the surface and six in boreholes ranging in depths from 15 to 200 feet (???5-60 meters). The arrays have already recorded low-amplitude shaking responses of the building and the site caused by numerous earthquakes at distances ranging from tens to a couple of hundred kilometers. Data from an earthquake that occurred 186 km away traces the propagation of waves from the deepest borehole to the roof of the building in approximately 0.5 seconds. Fundamental structural frequencies [0.58 Hz (NS) and 0.47 Hz (EW)], low damping percentages (2-4%), mode coupling, and beating effects are identified. The fundamental site frequency at approximately 1.5 Hz is close to the second modal frequencies (1.83 Hz NS and 1.43 EW) of the building, which may cause resonance of the building. Additional earthquakes prove repeatability of these characteristics; however, stronger shaking may alter these conclusions. ?? 2006, Earthquake Engineering Research Institute.

  15. Seismic slip recorded in tourmaline fault mirrors from Elba Island (Italy)

    NASA Astrophysics Data System (ADS)

    Viti, C.; Brogi, A.; Liotta, D.; Mugnaioli, E.; Spiess, R.; Dini, A.; Zucchi, M.; Vannuccini, G.

    2016-05-01

    This paper reports the first example of fault mirrors developed in an unusual protolith, consisting of tourmaline crystals with interstitial goethite. The deformation mechanisms active in the fault zone have been investigated from the outcrop to the nanoscale, aiming to identify possible traces of frictional heating at seismic slip rate, as observed for other fault mirrors in different protoliths. The investigation revealed the superposition of two main deformational stages. The first was dominated by brittle processes and produced a cataclastic/ultracataclastic principal slip zone, a few mm thick; the second was associated with seismic slip and produced a sharp discontinuity (the principal slip surface) within the cataclastic/ultracataclastic zone. The mirror-like coating, a few microns thick, occurs on the principal slip surface, and is characterized by 1) absence of interstitial goethite; 2) occurrence of truncated tourmaline crystals; 3) highly variable grain size, from 200 μm to 200 nm; 4) tourmaline close packing with interlobate grain boundaries, and 5) tourmaline random crystallographic orientation. Micro and nanostructural investigations indicate the occurrence of thermally-activated processes, involving both interstitial goethite and tourmaline. In particular, close to the principal slip surface, goethite is completely decomposed, and produced an amorphous porous material, with local topotactic recrystallization of hematite. Tourmaline clasts are typically characterized by strongly lobate boundaries, indicative of reaction and partial decomposition at grain boundaries. TEM observations revealed the occurrence of tourmaline nanograins, a few tens of nm in size, characterized by rounded shape and fading amorphous boundaries, that cannot be obtained by brittle processes. Lastly, the peculiar interlobate microstructure of the mirror surface is interpreted as the result of grain boundary recrystallization processes taking place by deformation at high

  16. Seismic Site Effects from the Seafloor Motion Recorded by the Short-period Ocean Bottom Seismometers

    NASA Astrophysics Data System (ADS)

    Lin, J. Y.; Cheng, W. B.; Chin, S. J.; Hsu, S. K.; Dong, J. J.

    2014-12-01

    For decades, it has been mentioned that submarine slope failures are spatially linked to the presence of gas hydrates/gas-charged sediments. When triggered by earthquakes, oversteepen and instable sediments may prompt breakouts of the slopes containing gas hydrates and cause submarine landslides and tsunamis. Widely distributed BSRs have been observed in the area offshore of southwestern Taiwan where the active accretionary complex meets with the passive China continental margin. In the region, large or small scale landslides were also reported based on seismic interpretations. In order to clarify the link between earthquake, landslide and the presence of gas hydrate, we evaluate the response of seafloor sediments in regard to passive dynamic loads. Horizontal-to-vertical (H/V) spectral ratios are used to characterize the local sediment response. Ambient noise as well as distant earthquakes are used as generators of the passive dynamic loads. Based on this study, we aim to characterize the site in terms of its physical properties and the local site effect produced by shallow marine sediments. The results show that the maximum H/V ratios appeared in the range of 5-10 Hz, where the horizontal amplitudes increased by an order of magnitude relative to the vertical amplitude. The stations located in the northwestern part of study area were characterized by another relatively small peak at proximately 2 Hz, which may indicates the presence of a discontinuity of sediments. For most stations, the H/V ratios estimated based on the earthquake (i.e. strong input signal) and noise (background, micro-seismic noise) records were characterized by different pattern. No distinct peak is observed for the H/V pattern calculated during earthquakes. This phenomenon may suggest that no clear sedimentary boundary exist when a stronger motion applies. Estimating H/V spectral ratios of data recorded by the seven short period OBSs (Ocean Bottom Seismometer) deployed in the southwest Taiwan

  17. Surface seismic measurements of near-surface P-and S-wave seismic velocities at earthquake recording stations, Seattle, Washington

    USGS Publications Warehouse

    Williams, R.A.; Stephenson, W.J.; Frankel, A.D.; Odum, J.K.

    1999-01-01

    We measured P-and S-wave seismic velocities to about 40-m depth using seismic-refraction/reflection data on the ground surface at 13 sites in the Seattle, Washington, urban area, where portable digital seismographs recently recorded earthquakes. Sites with the lowest measured Vs correlate with highest ground motion amplification. These sites, such as at Harbor Island and in the Duwamish River industrial area (DRIA) south of the Kingdome, have an average Vs in the upper 30 m (V??s30) of 150 to 170 m/s. These values of V??s30 place these sites in soil profile type E (V??s30 < 180 m/s). A "rock" site, located at Seward Park on Tertiary sedimentary deposits, has a V??S30 of 433 m/s, which is soil type C (V??s30: 360 to 760 m/s). The Seward Park site V??s30 is about equal to, or up to 200 m/s slower than sites that were located on till or glacial outwash. High-amplitude P-and S-wave seismic reflections at several locations appear to correspond to strong resonances observed in earthquake spectra. An S-wave reflector at the Kingdome at about 17 to 22 m depth probably causes strong 2-Hz resonance that is observed in the earthquake data near the Kingdome.

  18. Cataloguing Seismic Waveform Properties Recorded With a 3D Network in a Gold Mine in South Africa

    NASA Astrophysics Data System (ADS)

    Julia, J.; Nyblade, A. A.; Gok, R.; Walter, W. R.; Linzer, L.; Durrheim, R. J.; Dirks, P.

    2007-12-01

    The SAVUKA gold mine is located in the northwestern edge of the Witwatersrand basin, a Late Archean (3.07- 2.71~Ga) intracratonic basin in South Africa that hosts the largest known gold-uranium-pyrite ore deposits in the world. Seismic events related to the mine activity span several orders of magnitude through a variety of sources that include mine blasts, pillar collapses, and faulting events. These events are systematically recorded and catalogued through an in-mine, 3D seismic network consisting of 20, three-component, short-period stations with natural frequencies ranging between 4.5 and 28.0~Hz and deployed as deep as ~3.5 km. After 5 months of seismic monitoring of the mine, we have been able to assemble a database of over 6000 events spanning magnitudes in the -2.5 < ML < 4.4 range. The potential of this unique data set for characterizing the detailed seismic properties of the basin and studying source properties of non-double couple events is explored through simple, first-pass analysis on the recorded waveforms. Moreover, the in-mine network is complemented by a small array of 4 broadband stations interspaced ~10~km apart on the surface of the mine, and by a number of AfricaArray stations in South Africa and neighboring countries located at regional distances (50- 1000~km) from the mine. The largest mine-induced events are clearly recorded at distances as far away from the mine as 450~km and provide a unique opportunity for studying the regional propagation of seismic phases as well as the structure of the cratonic crust underlying the basin.

  19. Low-frequency whale and seismic airgun sounds recorded in the mid-Atlantic Ocean.

    PubMed

    Nieukirk, Sharon L; Stafford, Kathleen M; Mellinger, David K; Dziak, Robert P; Fox, Christopher G

    2004-04-01

    Beginning in February 1999, an array of six autonomous hydrophones was moored near the Mid-Atlantic Ridge (35 degrees N-15 degrees N, 50 degrees W-33 degrees W). Two years of data were reviewed for whale vocalizations by visually examining spectrograms. Four distinct sounds were detected that are believed to be of biological origin: (1) a two-part low-frequency moan at roughly 18 Hz lasting 25 s which has previously been attributed to blue whales (Balaenoptera musculus); (2) series of short pulses approximately 18 s apart centered at 22 Hz, which are likely produced by fin whales (B. physalus); (3) series of short, pulsive sounds at 30 Hz and above and approximately 1 s apart that resemble sounds attributed to minke whales (B. acutorostrata); and (4) downswept, pulsive sounds above 30 Hz that are likely from baleen whales. Vocalizations were detected most often in the winter, and blue- and fin whale sounds were detected most often on the northern hydrophones. Sounds from seismic airguns were recorded frequently, particularly during summer, from locations over 3000 km from this array. Whales were detected by these hydrophones despite its location in a very remote part of the Atlantic Ocean that has traditionally been difficult to survey.

  20. Low-frequency whale and seismic airgun sounds recorded in the mid-Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Nieukirk, Sharon L.; Stafford, Kathleen M.; Mellinger, David K.; Dziak, Robert P.; Fox, Christopher G.

    2004-04-01

    Beginning in February 1999, an array of six autonomous hydrophones was moored near the Mid-Atlantic Ridge (35 °N-15 °N, 50 °W-33 °W). Two years of data were reviewed for whale vocalizations by visually examining spectrograms. Four distinct sounds were detected that are believed to be of biological origin: (1) a two-part low-frequency moan at roughly 18 Hz lasting 25 s which has previously been attributed to blue whales (Balaenoptera musculus); (2) series of short pulses approximately 18 s apart centered at 22 Hz, which are likely produced by fin whales (B. physalus); (3) series of short, pulsive sounds at 30 Hz and above and approximately 1 s apart that resemble sounds attributed to minke whales (B. acutorostrata); and (4) downswept, pulsive sounds above 30 Hz that are likely from baleen whales. Vocalizations were detected most often in the winter, and blue- and fin whale sounds were detected most often on the northern hydrophones. Sounds from seismic airguns were recorded frequently, particularly during summer, from locations over 3000 km from this array. Whales were detected by these hydrophones despite its location in a very remote part of the Atlantic Ocean that has traditionally been difficult to survey.

  1. A brittle failure model for long-period seismic events recorded at Turrialba Volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Eyre, Thomas S.; Bean, Christopher J.; De Barros, Louis; Martini, Francesca; Lokmer, Ivan; Mora, Mauricio M.; Pacheco, Javier F.; Soto, Gerardo J.

    2015-03-01

    A temporary seismic network, consisting of 23 broadband and six short-period stations, was installed in a dense network at Turrialba Volcano, Costa Rica, between 8 March and 4 May 2011. During this time 513 long-period (LP) events were observed. Due to their pulse-like waveforms, the hypothesis that the events are generated by a slow-failure mechanism, based on a recent new model by Bean et al. (2014), is tested. A significant number (107) of the LPs are jointly inverted for their source locations and mechanisms, using full-waveform moment tensor inversion. The locations are mostly shallow, with depths < 800 m below the active Southwest Crater. The results of the decompositions of the obtained moment tensor solutions show complex source mechanisms, composed of high proportions of isotropic and low, but seemingly significant, proportions of compensated linear vector dipole and double-couple components. It is demonstrated that this can be explained as mode I tensile fracturing with a strong shear component. The source mechanism is further investigated by exploring scaling laws within the data. The LPs recorded follow relationships very similar to those of conventional earthquakes, exhibiting frequency-magnitude and corner frequency versus magnitude relationships that can be explained by brittle failure. All of these observations indicate that a slow-failure source model can successfully describe the generation of short-duration LP events at Turrialba Volcano.

  2. Evaluation of the southern California seismic velocity models through simulation of recorded events

    NASA Astrophysics Data System (ADS)

    Taborda, Ricardo; Azizzadeh-Roodpish, Shima; Khoshnevis, Naeem; Cheng, Keli

    2016-06-01

    Significant effort has been devoted over the last two decades to the development of various seismic velocity models for the region of southern California, United States. These models are mostly used in forward wave propagation simulation studies, but also as base models for tomographic and source inversions. Two of these models, the community velocity models CVM-S and CVM-H, are among the most commonly used for this region. This includes two alternative variations to the original models, the recently released CVM-S4.26 which incorporates results from a sequence of tomographic inversions into CVM-S, and the user-controlled option of CVM-H to replace the near-surface profiles with a VS30-based geotechnical model. Although either one of these models is regarded as acceptable by the modeling community, it is known that they have differences in their representation of the crustal structure and sedimentary deposits in the region, and thus can lead to different results in forward and inverse problems. In this paper, we evaluate the accuracy of these models when used to predict the ground motion in the greater Los Angeles region by means of an assessment of a collection of simulations of recent events. In total, we consider 30 moderate-magnitude earthquakes (3.5 < Mw < 5.5) between 1998 and 2014, and compare synthetics with data recorded by seismic networks during these events. The simulations are done using a finite-element parallel code, with numerical models that satisfy a maximum frequency of 1 Hz and a minimum shear wave velocity of 200 m s-1. The comparisons between data and synthetics are ranked quantitatively by means of a goodness-of-fit (GOF) criteria. We analyse the regional distribution of the GOF results for all events and all models, and draw conclusions from the results and how these correlate to the models. We find that, in light of our comparisons, the model CVM-S4.26 consistently yields better results.

  3. Historical Earthquake Records and their Application for Seismic Hazard and Risk Assessment in Tianshui, Gansu Province, Northwestern China

    NASA Astrophysics Data System (ADS)

    Wang, L.; Wang, Z.

    2009-12-01

    Tianshui, located in southeastern Gansu Province of northwestern China, was a center of early Chinese civilization and the birthplace of “Ba Gua” or “eight symbols.” It has a long history of earthquakes and many strong and large earthquakes have occurred there. Earthquakes, ancient or modern ones, have not only been well recorded, but also left marks on many historical landmarks and buildings that can still be seen today. For example, major damage by the 1654 Tianshui earthquake (M8.0) and some minor damage by the 2008 Wenchuan earthquake can be seen in the Maiji Grotto. A new effort to investigate and reexamine the historical macroseismic records is under way, with the aim of better seismic hazard and risk assessment for the Tianshui area. Seismic hazard and risk will be assessed for the Tianshui area using the 2,500 years of intensity observations (records). The results will be used by local governments and communities for developing more effective mitigation policies in the aftermath of the 2008 Wenchuan earthquake. The results will also be compared to hazard and risk assessments derived from other approaches, such as probabilistic and deterministic seismic hazard analyses.

  4. A Precursory Phase to a Sudden Enhanced Activity at Yasur volcano (Vanuatu) : Insights from Simultaneous Infrasonic and Seismic Records

    NASA Astrophysics Data System (ADS)

    Vergniolle, S.; Zielinski, C.; Battaglia, J.; Metaxian, J. P.; Bani, P.; LE Pichon, A.; Lardy, M.; Millier, P.; Frogneux, M.; Gallois, F.; Herry, P.; Todman, S.; Garaebiti, E.

    2015-12-01

    The permanent activity at Yasur (Vanuatu), characterised by a close series of Strombolian explosions, is analysed using simultaneous infrasonic and seismic recordings (6-25 Nov 2008) close to the vents. The RMS amplitudes per hour, the number of explosions and the peak-to-peak amplitudes of each signal show that the initial quiet phase (11 days) is followed by a precursory phase (7 days) prior to an enhanced activity (17 hours). Three periods exist during the strong activity: (1) a rapid increase leading to the paroxysm (3 hours), (2) a first (5 hours) and (3) a second decrease (9 hours), each having an excellent correlation between seismic and infrasonic RMS amplitudes per hour (correlation coefficient > 0.96) when using the band associated to explosions (1-5 Hz and 1.8-4 Hz for seismic and infrsonic recordings, respectively). The ratio between infrasonic and seismic RMS amplitudes, assumed to be a proxy for the magma level, increases strongly during the week before the paroxysm. This is explained by the arrival of an additional gas flux at the top of the reservoir. The foam accumulated there, whose partial coalescence and spreading towards the conduit are responsible for the permanent Strombolian activity, thickens. This enhances both the viscous massive foam coalescence and the foam spreading. This leads to an increase in the gas flux in the conduit, ultimately responsible for the formation of a shallow foam at the surface. This foam acts as a viscous cap overlying the magma column, thereby increasing the radiated infrasonic pressure and the strength of the explosions. The first decrease in the relationship between infrasonic and seismic RMS amplitudes is associated with the stopping of the additionnal gas flux in the magma reservoir and the rapid decrease of the top of the magma column due to the previous intense degassing. The second decrease corresponds to the time neccessary to restore the convective motions in the conduit at their normal velocities.

  5. Establishment of data base of regional seismic recordings from earthquakes, chemical explosions and nuclear explosions in the Former Soviet Union

    SciTech Connect

    Ermolenko, N.A.; Kopnichev, Yu.F.; Kunakov, V.G.; Kunakova, O.K.; Rakhmatullin, M.Kh.; Sokolova, I.N.; Vybornyy, Zh.I.

    1995-06-01

    In this report results of work on establishment of a data base of regional seismic recordings from earthquakes, chemical explosions and nuclear explosions in the former Soviet Union are described. This work was carried out in the Complex Seismological Expedition (CSE) of the Joint Institute of Physics of the Earth of the Russian Academy of Sciences and Lawrence Livermore National Laboratory. The recording system, methods of investigations and primary data processing are described in detail. The largest number of digital records was received by the permanent seismic station Talgar, situated in the northern Tien Shan, 20 km to the east of Almaty city. More than half of the records are seismograms of underground nuclear explosions and chemical explosions. The nuclear explosions were recorded mainly from the Semipalatinsk test site. In addition, records of the explosions from the Chinese test site Lop Nor and industrial nuclear explosions from the West Siberia region were obtained. Four records of strong chemical explosions were picked out (two of them have been produced at the Semipalatinsk test site and two -- in Uzbekistan). We also obtained 16 records of crustal earthquakes, mainly from the Altai region, close to the Semipalatinsk test site, and also from the West China region, close to the Lop Nor test site. In addition, a small number of records of earthquakes and underground nuclear explosions, received by arrays of temporary stations, that have been working in the southern Kazakhstan region are included in this report. Parameters of the digital seismograms and file structure are described. Possible directions of future work on the digitizing of unique data archive are discussed.

  6. An Open Hardware seismic data recorder - a solid basis for citizen science

    NASA Astrophysics Data System (ADS)

    Mertl, Stefan

    2015-04-01

    "Ruwai" is a 24-Bit Open Hardware seismic data recorder. It is built up of four stackable printed circuit boards fitting the Arduino Mega 2560 microcontroller prototyping platform. An interface to the BeagleBone Black single-board computer enables extensive data storage, -processing and networking capabilities. The four printed circuit boards provide a uBlox Lea-6T GPS module and real-time clock (GPS Timing shield), an Texas Instruments ADS1274 24-Bit analog to digital converter (ADC main shield), an analog input section with a Texas Instruments PGA281 programmable gain amplifier and an analog anti-aliasing filter (ADC analog interface pga) and the power conditioning based on 9-36V DC input (power supply shield). The Arduino Mega 2560 is used for controlling the hardware components, timestamping sampled data using the GPS timing information and transmitting the data to the BeagleBone Black single-board computer. The BeagleBone Black provides local data storage, wireless mesh networking using the optimized link state routing daemon and differential GNSS positioning using the RTKLIB software. The complete hardware and software is published under free software - or open hardware licenses and only free software (e.g. KiCad) was used for the development to facilitate the reusability of the design and increases the sustainability of the project. "Ruwai" was developed within the framework of the "Community Environmental Observation Network (CEON)" (http://www.mertl-research.at/ceon/) which was supported by the Internet Foundation Austria (IPA) within the NetIdee 2013 call.

  7. Implosion, earthquake, and explosion recordings from the 2000 Seattle Kingdome Seismic Hazards Investigation of Puget Sound (SHIPS), Washington

    USGS Publications Warehouse

    Brocher, Thomas M.; Pratt, Thomas L.; Weaver, Craig S.; Snelson, Catherine M.; Frankel, Arthur D.

    2002-01-01

    This report describes seismic data obtained in Seattle, Washington, March 24-28, 2000, during a Seismic Hazards Investigation of Puget Sound (SHIPS). The seismic recordings obtained by this SHIPS experiment, nicknamed Kingdome SHIPS, were designed to (1) measure site responses throughout Seattle and to (2) help define the location of the Seattle fault. During Kingdome SHIPS, we recorded the Kingdome implosion, four 150-lb (68-kg) shots, and a Mw = 7.6 teleseism using a dense network of seismographs deployed throughout Seattle. The seismographs were deployed at a nominal spacing of 1 km in a hexagonal grid extending from Green Lake in the north to Boeing Field in the south. The Seattle Kingdome was a domed sports stadium located in downtown Seattle near the Seattle fault. The Seattle Kingdome was imploded (demolished) at 8:32 AM local time (16:32 UTC) on March 26 (JD 086), 2000. The seismic energy produced by implosion of the Kingdome was equivalent to a local earthquake magnitude of 2.3. Strong impacts produced by the implosion of the Kingdome generated seismic arrivals to frequencies as low as 0.1 Hz. Two shots located north of the Seattle fault, where the charges were detonated within the ground water column (Discovery and Magnuson Parks), were much more strongly coupled than were the two shots to the south of the Seattle fault, where the shots were detonated above the water table (Lincoln and Seward Parks). Thirty-eight RefTek stations, scattered throughout Seattle, recorded the Mw = 7.6 Japan Volcano Islands earthquake (22.4°N, 143.6°E, 104 km depth) of 28 March 2000 (JD 088). This teleseism produced useful signals for periods between 4 and 7 seconds. Only a few recordings of small magnitude local earthquakes were made, and these recordings are not presented. In this report, we describe the acquisition of these data, discuss the processing and merging of the data into common shot gathers, and illustrate the acquired data. We also describe the format and

  8. Formation time and mean movement velocities of the 7 August Zhouqu debris flows extracted from broadband seismic records

    NASA Astrophysics Data System (ADS)

    Li, Z.; Huang, X.; Xu, Q.; Fan, J.; Yu, D.; Hao, Z.; Qiao, X.

    2015-01-01

    The catastrophic Zhouqu debris flows, which were induced by heavy rainfall, occurred at approximately midnight of 7 August 2010 (Beijing time, UTC + 8) and claimed 1765 lives. Broadband seismic signals recorded by the Zhouqu seismic station nearby are acquired and analyzed in this paper. The seismic signals are divided into two separate parts for the first time using the crucial time of 23:33:10 (Bejing time, UTC +8), with distinctly different frequency characteristics on time-by-time normalized spectrograms and amplitude increasing patterns on smoothed envelopes. They are considered to be generated by the development stage and the maturity stage of the Sanyanyu debris flow respectively. Seismic signals corresponding to the development stage have a broader main frequency band of approximately 0-15 Hz than that of the maturity stage, which is around 1-10 Hz. The N-S component can detect the development stage of the debris flow about 3 min earlier than other components due to its southward flow direction. Two sub-stages within the maturity stage are recognized from best-fitted amplitude increasing velocities and the satellite image of the Sanyanyu flow path and the mean movement velocities of the Sanyanyu debris flow during these two sub-stages are estimated to be 9.2 and 9.7 m s-1 respectively.

  9. Analysis of recently digitized continuous seismic data recorded during the March-May, 1980, eruption sequence at Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Moran, S. C.; Malone, S. D.

    2013-12-01

    The May 18, 1980, eruption of Mount St. Helens (MSH) was an historic event, both for society and for the field of volcanology. However, our knowledge of the eruption and the precursory period leading up it is limited by the fact that most of the data, particularly seismic recordings, were not kept due to severe limitations in the amount of digital data that could be handled and stored using 1980 computer technology. Because of these limitations, only about 900 digital event files have been available for seismic studies of the March-May seismic sequence out of a total of more than 4,000 events that were counted using paper records. Fortunately, data from a subset of stations were also recorded continuously on a series of 24 analog 14-track IRIG magnetic tapes. We have recently digitized these tapes and time-corrected and cataloged the resultant digital data streams, enabling more in-depth studies of the (almost) complete pre-eruption seismic sequence using modern digital processing techniques. Of the fifteen seismic stations operating near MSH for at least a part of the two months between March 20 and May 18, six stations have relatively complete analog recordings. These recordings have gaps of minutes to days because of radio noise, poor tape quality, or missing tapes. In addition, several other stations have partial records. All stations had short-period vertical-component sensors with very limited dynamic range and unknown response details. Nevertheless, because the stations were at a range of distances and were operated at a range of gains, a variety of earthquake sizes were recorded on scale by at least one station, and therefore a much more complete understanding of the evolution of event types, sizes and character should be achievable. In our preliminary analysis of this dataset we have found over 10,000 individual events as recorded on stations 35-40 km from MSH, spanning a recalculated coda-duration magnitude range of ~1.5 to 4.1, including many M < 3

  10. Infrasound and Seismic Recordings of a US Airstrike on an ISIS Car Bomb Factory on June 3, 2015

    NASA Astrophysics Data System (ADS)

    Aleqabi, G. I.; Ghalib, H. A. A.; Wysession, M. E.

    2015-12-01

    Concurrent infrasound and seismic records of a jet airstrike in Iraq are presented. Media reports stated that US jets carried out a large airstrike on June 3, 2015, just after midnight local time, that targeted and destroyed an ISIS car bomb factory in Hawija, Iraq, just south of the city of Kirkuk, Iraq. The resulting explosion was felt within Kirkuk and at other locations as far as 34 km away from the Hawija factory. Seismic broadband stations located in northern Iraq, at a distance of about 160 km, show clear simultaneous signals of infrasound waves on the seismometers as well as on collocated infrasound equipment. From an analysis of the body waves, the Pg to Lg time difference is nearly ~20 sec, with a back azimuth of 250o to 260o, which is consistent with explosion location. The time difference between the Pg and infrasound signals is just over 7 minutes, consistent with sound speed in the atmosphere. No clear Rg wave was observed. As was demonstrated by Aleqabi, Wysession, and Ghalib [2015, BSSA, in press], broadband seismic recordings are able to identify and distinguish between several different kinds of MOUT (military operations in urban terrain) and even determine the magnitudes of ordinance used in certain blasts. The addition of collocated infrasound equipment provides additional constraints that can be used in the analysis of the size and form of the MOUT.

  11. MASW on the standard seismic prospective scale using full spread recording

    NASA Astrophysics Data System (ADS)

    Białas, Sebastian; Majdański, Mariusz; Trzeciak, Maciej; Gałczyński, Edward; Maksym, Andrzej

    2015-04-01

    The Multichannel Analysis of Surface Waves (MASW) is one of seismic survey methods that use the dispersion curve of surface waves in order to describe the stiffness of the surface. Is is used mainly for geotechnical engineering scale with total length of spread between 5 - 450 m and spread offset between 1 - 100 m, the hummer is the seismic source on this surveys. The standard procedure of MASW survey is: data acquisition, dispersion analysis and inversion of extracting dispersion curve to obtain the closest theoretical curve. The final result includes share-wave velocity (Vs) values at different depth along the surveyed lines. The main goal of this work is to expand this engineering method to the bigger scale with the length of standard prospecting spread of 20 km using 4.5 Hz version of vertical component geophones. The standard vibroseis and explosive method are used as the seismic source. The acquisition were conducted on the full spread all the time during each single shoot. The seismic data acquisition used for this analysis were carried out on the Braniewo 2014 project in north of Poland. The results achieved during standard MASW procedure says that this method can be used on much bigger scale as well. The different methodology of this analysis requires only much stronger seismic source.

  12. Recording and processing procedures for multi-channel seismic-reflection data collected in the western Ross Sea, Antarctica

    USGS Publications Warehouse

    Dadisman, Shawn V.; Ryan, Holly F.; Mann, Dennis M.

    1987-01-01

    During 1984, over 2300 km of multichannel seismic-reflection data were recorded by the U.S. Geological Survey in the western Ross Sea and Iselin Bank regions.  A temporary loss and sinking of the streamer led to increasing the streamer tow depth to 20 m, which resulted in some attenuation of frequencies in the 30-50 Hz range but no significant difference in resolution of the stacked data.  Severe water bottom multiples were encountered and removed by dip-filtering, weighted stacking, and severe post-NMO muting.

  13. The footprints of typhoons on seismic records and their implications on small-scale coupling mechanisms in South China Sea

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Xue, M.; Yang, T.; Liu, C.; Hua, Q.; Xia, S.; Huang, H.; Le, B. M.; Huo, D.; Pan, M.; Li, L.

    2015-12-01

    By investigating the footprints of typhoons on seismic records, we can understand their contributions to seismic noises as well as to small-scale coupling mechanisms of typhoon-land and typhoon-ocean-land. We analyze the signatures of typhoon KAI-TAK and BOPHA using seismic data from the ocean-bottom seismometers (OBSs) deployed in the central basin of South China Sea by Tongji University in 2012 as well as seismic stations (IC.QIZ,HK.HKPS and RM.SZP) on lands.Our preliminary results show that typhoons mainly enhance microseisms at the frequency band of ~0.1-0.5 Hz, including both long period double frequency (LPDF) and short period double frequency (SPDF) microseisms. A positive correlation observed between the amplitude of microseisms and the height of local ocean waves. Because OBSs are deployed at the bottom of ocean, single frequency (SF) microseisms are not prominent on them due to their fast attenuation with depth. During the typhoon KAI-TAK, the increase of LPDF energy is very small in OBSs while that is very high on land stations, indicating that LPDF microseisms are generated at nearby shorelines and can propagate towards the sea through the solid earth. However, the increase of SPDF energy is almost the same level for both OBSs and land stations indicating that the generation of SPDF is probably local.However, we also observe a small amount of energy arrives before the increases of the wave heights at the land station HK.HKPS. We derive that this energy may from a source that is not local: while LPDF can be generated at nearby shorelines and SPDF can be generated everywhere locally, they can both transmit through the solid part of the Earth to a station some distance away, i.e. HK.HKPS. In addition, we find that typhoons enhance not only the microseisms as expected but also the seismic energy from higher frequency bands. The spectrum amplitude during Typhoon periods, normalized by that of no-storm periods, shows that land stations produce stronger higher

  14. Seismic airgun sounds recorded on moored hydrophones near the Mid-Atlantic Ridge and East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Mellinger, D. K.; Nieukirk, S. L.; Dziak, R. P.; Haxel, J. H.; Fox, C. G.

    2003-12-01

    Sounds of seismic airguns were detected in two years of data collected from large, remote areas near the Mid-Atlantic Ridge (MAR) and the East Pacific Rise (EPR). From February 1999-February 2001, six autonomous hydrophones were moored near the MAR between 15-35 N and 33-50 W, and six more were moored in the EPR between 8 N - 8 S and 95-110 W. Continuous acoustic data recovered from both arrays were examined for sounds associated with seismic airgun activity. This was done using an automatic detection algorithm designed to identify repetitive sounds in the 20-60 Hz band. Airgun impulses occurred every 10-20 s and were recorded frequently on all hydrophones. In the Atlantic, airgun activity peaked in the summer months, and airgun impulses were detected in nearly 100% of the hours examined; Pacific seasonal trends were less obvious. Because of the high source level of the airgun signals, it was possible to estimate the locations of ships conducting seismic surveys despite their great distance, often over 3,000 km from our array. In the Atlantic, we located seismic vessels, presumably commercial, working off the coast of Nova Scotia during summer, and off western Africa and northeast Brazil in spring, summer,and fall. During summer 1999, research airguns were recorded on the MAR near 26 N 50 W. In the eastern tropical Pacific, the predominant source of airgun sounds was seismic vessels in the nearshore waters of southern Ecuador and northern Peru. All of the areas in which intense airgun activity was detected include important habitat for marine mammals; one area included habitat of the critically endangered northern right whale. Sounds from airguns appear to be a major contributor to the sound field in the Atlantic and parts of the Pacific Ocean, and may be of concern given the recent interest in ocean noise and its effects on marine mammals. Acoustic pressure levels of earthquakes are also investigated, and received levels in some common marine mammal habitats are

  15. Quantifying properties of seismic spectra: an examination of 100's of spectra from southern California earthquakes recorded by the ANZA seismic network

    NASA Astrophysics Data System (ADS)

    Kilb, D.; Biasi, G.; Brune, J.; Anderson, J.; Vernon, F. L.

    2003-12-01

    Unraveling earthquake source properties from seismic spectra requires an understanding of the inherent uncertainties that can be introduced from site and path effects. Here, we quantify properties of hundreds of earthquake spectra, and the associated uncertainties, from ~0recorded by the ANZA seismic network. From the spectrum that meet our data-quality and data-fit requirements we: (1) Determine the influence of site effects on the spectral decay characteristics; (2) Estimate the distance that site effects can be reliably extrapolated using data from small aperture arrays; and (3) Investigate the hypothesis that earthquakes behave as partial stress drop events. For each seismogram with an analyst-identified S-wave arrival, we test a range of viable corner frequencies and identify the one that minimizes the squared error fit of the data spectrum to the synthetic spectrum, which is computed assuming a Brune (1970) omega-square fall off. From this we can then compute the associated stress drop, seismic moment and AH-kappa, where AH-kappa is the residual slope to an omega-squared spectrum (Anderson & Humphries, 1991). Small values of AH-kappa indicate a greater percentage of high frequency energy. Using our highest quality data, we find that AH-Kappa measurements from sites on hard-rock can, in general, be ~20 ms smaller than those from sites on unconsolidated rock. The uncertainty in AH-Kappa at a single station is ~10 ms; assuming the site effect is constant for common source-receiver paths, we attribute this variability to deviations in the seismic source. Based on the theory of Brune (1970), we then used an iterative method that makes spectral corrections to account for potential partial stress drop events. Because the spectral shape of the partial stress drop model is less than omega-square model we expect the AH-kappa values to increase, and indeed we find this to be true. For an assumed full stress drop of 100 bars, our

  16. Wide-angle seismic recording from the 2002 Georgia Basin Geohazards Initiative, northwestern Washington and British Columbia

    USGS Publications Warehouse

    Brocher, Thomas M.; Pratt, Thomas L.; Spence, George D.; Riedel, Michael; Hyndman, Roy D.

    2003-01-01

    This report describes the acquisition and processing of shallow-crustal wide-angle seismicreflection and refraction data obtained during a collaborative study in the Georgia Strait, western Washington and southwestern British Columbia. The study, the 2002 Georgia Strait Geohazards Initiative, was conducted in May 2002 by the Pacific Geoscience Centre, the U.S. Geological Survey, and the University of Victoria. The wide-angle recordings were designed to image shallow crustal faults and Cenozoic sedimentary basins crossing the International Border in southern Georgia basin and to add to existing wide-angle recordings there made during the 1998 SHIPS experiment. We recorded, at wide-angle, 800 km of shallow penetration multichannel seismic-reflection profiles acquired by the Canadian Coast Guard Ship (CCGS) Tully using an air gun with a volume of 1.967 liters (120 cu. in.). Prior to this reflection survey, we deployed 48 Refteks onshore to record the airgun signals at wide offsets. Three components of an oriented, 4.5 Hz seismometer were digitally recorded at all stations. Nearly 160,300 individual air gun shots were recorded along 180 short seismic reflection lines. In this report, we illustrate the wide-angle profiles acquired using the CCGS Tully, describe the land recording of the air gun signals, and summarize the processing of the land recorder data into common-receiver gathers. We also describe the format and content of the archival tapes containing the SEGY-formated, common-receiver gathers for the Reftek data. Data quality is variable but the experiment provided useful data from 42 of the 48 stations deployed. Three-fourths of all stations yielded useful first-arrivals to source-receiver offsets beyond 10 km: the average maximum source-receiver offset for first arrivals was 17 km. Six stations yielded no useful data and useful firstarrivals were limited to offsets less than 10 km at five stations. We separately archived our recordings of 86 local and regional

  17. Tilt prior to explosions and the effect of topography on ultra-long-period seismic records at Fuego volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Lyons, John J.; Waite, Gregory P.; Ichihara, Mie; Lees, Jonathan M.

    2012-04-01

    Ground tilt is measured from broadband seismic records prior to frequent explosions at Fuego volcano, Guatemala. We are able to resolve tilt beginning 20-30 minutes prior to explosions, followed by a rapid reversal in deformation coincident with explosion onsets. The tilt amplitude and polarity recorded on the horizontal channels vary from station to station such that the steep and unusual topography of the upper cone of Fuego appears to affect the ultra-long-period signals. We account for the effect of topography and attempt to constrain the tilt source depth and geometry through finite-difference modeling. The results indicate a shallow spherical pressure source, and that topography must be considered when attempting to model tilt sources at volcanoes with steep topography. The tilt signals are interpreted as pressurization of the shallow conduit beneath a crystallized plug followed by elastic deflation concurrent with explosive pressure release.

  18. Seismic recording in eastern California of the KEARSARGE nuclear test. Environmental research papers, June 1988-September 1989

    SciTech Connect

    Cipar, J.; Taylor, C.; Craig, J.

    1989-11-06

    A temporary ten-station seismic network was operated in eastern California to record the KEARSARGE nuclear test at the Nevada Test Site. Data from 8 three-component, short-period stations and 2 three-component, mid-period stations are presented. Part of the array was arranged as a profile between 150 to 250 km from NTS. At these ranges, the first arrivals are Pn waves refracted along the crust-mantle boundary. The Pn travel times can be modeled by assuming a 32-km thick crust at NTS, which as a 3 deg westward dip beginning approximately 90 km west of the shot point. This model predicts a crustal thickness of 41.8 km at a point 277 km west of the shot point (that is, under the central Sierra Nevada). This model is in good agreement with the models of Eaton and of Pakiser and Brune and contrary to the model of Carder et al and Carder. There still remain significant offsets in the Carder et al NTS travel-time data in the 250 to 270 km and 360 to 390 km distance ranges. Closely-spaced, digitally-recorded observations in those distance ranges are needed to completely resolve the seismic structure of the Sierra Nevada-Basin and Range transition zone.

  19. Seismic stratigraphic record of transpression and uplift on the Romanche transform margin, offshore Ghana

    NASA Astrophysics Data System (ADS)

    Attoh, Kodjopa; Brown, Larry; Guo, Jingru; Heanlein, Joel

    2004-01-01

    Recently, available multi-channel seismic reflection data from offshore Ghana have been reprocessed to probe the eastern Romanche Fracture Zone (RFZ) of the Equatorial Atlantic and the sedimentary basins of the paleotransform margin. The RFZ terminates landward in a submarine canyon, up to 2 km deep and >50 km wide, variably filled with submarine fans and projects landward into a Neoproterozoic dextral shear zone. By contrast, the RFZ to the southwest is represented by an ENE submarine escarpment juxtaposing continental and oceanic crusts. Three major sedimentary sequences representing pre-, syn- and post-rift strata have been identified from the seismic profiles and calibrated with chronostratigraphic data from oil exploration wells. The pre-rift sequence consists largely of Paleozoic strata ranging in age from Devonian to Carboniferous. The overlying syn-rift sequence, which was deposited during the intracontinental shearing stage, consists of Aptian to Albian silicilastic strata with distinct continental facies. The seismic sections provide some of the clearest images yet of: (i) folding associated with transform displacement, and (ii) southwest increasing subaerial erosion and stratal discordance. We attribute lateral variation in erosion to crustal thickening associated with folding and to transient thermal effect of ridge-transform interaction which is predicted to produce westward increasing uplift on this margin.

  20. Data quality of seismic records from the Tohoku, Japan earthquake as recorded across the Albuquerque Seismological Laboratory networks

    USGS Publications Warehouse

    Ringler, A.T.; Gee, L.S.; Marshall, B.; Hutt, C.R.; Storm, T.

    2012-01-01

    Great earthquakes recorded across modern digital seismographic networks, such as the recent Tohoku, Japan, earthquake on 11 March 2011 (Mw = 9.0), provide unique datasets that ultimately lead to a better understanding of the Earth's structure (e.g., Pesicek et al. 2008) and earthquake sources (e.g., Ammon et al. 2011). For network operators, such events provide the opportunity to look at the performance across their entire network using a single event, as the ground motion records from the event will be well above every station's noise floor.

  1. The preglacial sediment record of Lake Ladoga, Russia - first results from a seismic survey and sediment coring in 2013

    NASA Astrophysics Data System (ADS)

    Melles, Martin; Krastel, Sebastian; Fedorov, Grigory; Subetto, Dmitry A.; Savelieva, Larisa A.; Andreev, Andrej; Wagner, Bernd

    2014-05-01

    The new German-Russian project PLOT (Paleolimnological Transect) aims at investigating the Late Quaternary climatic and environmental history along a more than 6000 km long longitudinal transect crossing northern Eurasia. Special emphasis is put on the preglacial history. For this purpose shallow and deep seismic surveys shall be carried out on five lakes, which potentially host preglacial sediment records, followed by sediment coring based on the results of the seismic campaigns. The well-studied Lake El'gygytgyn represents the eastern-most location of the transect and acts as reference site. Within the scope of a pilot phase for the PLOT project, funded by the German Federal Ministry of Education and Research, we were able to investigate Lake Ladoga, which is located close to St. Petersburg at the western end of the transect. Lake Ladoga is the largest lake in Europe, covering an area of almost 18.000 km2. The modern sedimentation as well as the late glacial and Holocene history of the lake were already studied in detail over the past decades. The older, preglacial lake history, however, is only rudimentary known from a core transect drilled in the southern lake in the 1930th. The cores of up to about 60 m length were only briefly described and are not existing any more. The results from these cores, known from unpublished reports only, suggest the existence of marine sediments of presumably Eemian age, representing a time when Lake Lagoga was part of a precursor of the Baltic Sea, which had a connection via Ladoga and Onega Lakes to the White Sea and further to the Arctic Ocean. In late August/early September 2013 we carried out a seismic survey on Lake Ladoga using a Mini-GI-Gun and a 32-channel seismic streamer. In total, 1500 km of seismic profiles were measured, covering most parts of the lake. The seismic lines typically show acoustically well stratified Holocene muds overlaying rather transparent postglacial varves. These sediment successions can reach

  2. Build your own low-cost seismic/bathymetric recorder annotator

    USGS Publications Warehouse

    Robinson, W.

    1994-01-01

    An inexpensive programmable annotator, completely compatible with at least three models of widely used graphic recorders (Raytheon LSR-1811, Raytheon LSR-1807 M, and EDO 550) has been developed to automatically write event marks and print up to sixteen numbers on the paper record. Event mark and character printout intervals, character height and character position are all selectable with front panel switches. Operation is completely compatible with recorders running in either continuous or start-stop mode. ?? 1994.

  3. Past seismic activity in Eastern Anatolia recorded over several glacial/interglacial cycles in the sediments of Lake Van

    NASA Astrophysics Data System (ADS)

    Stockhecke, M.; Anselmetti, F.; Sturm, M.

    2012-12-01

    Lake sediments document besides paleoenvironmental and paleoclimate conditions also paleoseismic activity through various forms of deformation structures. These are especially visible in finely-laminated sediments. Being situated in a tectonically active region, the partly annually-laminated sedimentary sequence of the terminal Lake Van, recovered in 2010 under the context of the ICDP Paleovan project, shows dozens of earthquake-triggered microdeformations that document past seismic events of the last half a million years. Lithological and multiproxy analysis revealed that the Lake Van's depositional conditions varied in correspondence to Milankovitch and sub-Milankovitch cycles. Glacial/stadial and interglacial/interstadial conditions were recorded continuously over the last half a million years excluding two discontinuities, which indicate major hydrological and geomorphological changes in Lake Van's early history. Two sites were drilled 10 km apart: A primary drill site, situated on a ridge, covers the entire lake history since its initial transgression in the middle Pleistocene; A secondary drill site, located in a more shallow northern basin, covers the past 90'000 years. Multiple coring at both drill sites allows to establish two almost complete 220 m and 145 m long composite sections, respectively. Observing deformation structures in multiple parallel cores at each site is used as a criteria to distinguish 'true' paleoseismic deformation structures from potential drilling artifacts. Deformation structures consist of i) silt-filled vertical fractures, ii) microfaults with displacements at cm-scale, iii) microfolds, iv) liquefaction structures (mushroom, pseudonodules), iv) disturbed varve laminations and v) mixed layers. While the ridge site records the paleoseismic events as microdeformations, the northern basinal site rather records seismic events through the deposition of seismo-turbidites. In some cases, individual earthquake events can even be identified

  4. Seismic stratigraphy of the Antarctic Peninsula pacific margin: A record of Pliocene-Pleistocene ice volume and paleoclimate

    SciTech Connect

    Larter, R.D.; Barker, P.F. )

    1989-08-01

    Multichannel seismic profiles across the Pacific margin of the Antarctic Peninsula show a series of oblique progradational sequences. These sequences exhibit a variety of unusual characteristics that suggest they were produced by the action of ice sheets grounded out to the shelf edge at times of glacial maximum. Reflection events from deeper stratigraphic levels, followed down the continental slope and onto the rise, overlie ocean crust of known age, showing that at least eight such glacial sequences have been deposited within the past 6 m.y. Similar groundings have probably occurred on most Antarctic margins, but the depositional record is particularly well preserved at this margin because of Pliocene-Pleistocene thermal subsidence. Neogene global sea-level fluctuations have been attributed to changes in volume of continental ice sheets. The depositional sequences on the Pacific margin of the Antarctic Peninsula are thought to record West Antarctic ice-sheet fluctuations directly. Further investigation of these sequences would assess the relation between fluctuations in ice volume and the low-latitude record of global sea-level change.

  5. Joint interpretation of high-precision tilt data and mining induced seismic events recorded underground in deep level gold mine in South Africa

    NASA Astrophysics Data System (ADS)

    Milev, Alexander; Share, Pieter; Durrheim, Ray; Naoi, Makoto; Nakatani, Masao; Yabe, Yasuo; Ogasawara, Hiroshi

    2013-04-01

    Seismicity associated with deep-level mining has for long been a problem, leading to rockburst and other similar hazards. Several studies have been completed in an attempt to minimize the total amount of seismicity. In this study high resolution measurements of ground tilting in combination with seismic monitoring is used to observe how the rock mass responds to mining. A good correspondence between the coseismic and the aseismic tilt was found. The rate of coseismic and aseismic tilt, as well as seismicity recorded by the mine seismic network, are approximately constant until the daily blasting time, which takes place from about 19:30 until shortly before 21:00. During the blasting time and the subsequent seismic events, the coseismic and aseismic tilt shows a rapid increase. In an attempt to distinguish between the different mechanisms of tilting two types of events were recognized. The "fast" seismic events characterized with sharp increase of the tilt during the seismic rupture and "slow" seismic events characterized by creep type post seismic deformations. Tilt behaviour before and after a seismic event was also analysed. The fact that no recognizable aftertilt was observed for more of the "fast" seismic events means that there is no gradual release of stress and an associated continuous strain rate change afterwards. It can therefore be concluded that a large seismic event causes a rapid change in the state of stress rather than a gradual change in the strain rate. The mechanism of the observed "slow" seismic events is more complicated. Although several explanations have been proposed, a suggestion for further work could be to investigate the presence of "slow" events in or after blasting time more closely. During the monitoring period a seismic event with MW 2.2 occurred in the vicinity of the instrumented site. This event was recorded by both the CSIR integrated monitoring system and JAGUARS acoustic emission network. More than 21,000 AE aftershocks were

  6. Method for interpretation of seismic records to yield indication of gaseous hydrocarbons

    SciTech Connect

    Ostrander, W.J.

    1982-02-16

    The present invention indicates that gas-containing strata of an earth formation have low poisson's ratios and that the acoustic contrast with the overburden rock has a surprising effect as a function of the angle of incidence on a seismic wave associated with an array of sources and detectors: viz., a significant-and progressive-change in p-wave reflection coefficient as a function of the angle of incidence occurs. Thus, differentiating between high-intensity amplitude anomalies of nongas- and gas-containing media is simplified: progressive change in amplitude intensity of resulting traces generated by the field array as a function of offset between each source-detector pair, is associated with the last-mentioned medium only.

  7. Nonlinear seismic response for the 2011 Tohoku earthquake: borehole records versus one-directional three-component propagation models

    NASA Astrophysics Data System (ADS)

    Santisi d'Avila, Maria Paola; Semblat, Jean-François

    2014-04-01

    The seismic response of surficial multilayered soils to strong earthquakes is analysed through a non-linear one-directional three-component (1D-3C) wave propagation model. The three components (3C-polarization) of the incident wave are simultaneously propagated into a horizontal multilayered soil. A 3-D non-linear constitutive relation for dry soils under cyclic loading is implemented in a quadratic line finite element model. The soil rheology is modelled by mean of a multisurface cyclic plasticity model of the Masing-Prandtl-Ishlinskii-Iwan type. Its major advantage is that the rheology is characterized by few non-linear parameters commonly available. Previous studies showed that, when comparing one to 3C unidirectional wave propagation simulations, the soil shear modulus decreases and the dissipation increases, for a given maximum strain amplitude. The 3-D loading path due to the 3C-polarization leads to multiaxial stress interaction that reduces soil strength and increases non-linear effects. Non-linearity and coupling effects between components are more obvious with decreasing seismic velocity ratio in the soil and increasing vertical to horizontal component ratio for the incident wave. This research aims at comparing computed ground motions at the surface of soil profiles in the Tohoku area (Japan) with 3C seismic signals recorded during the 2011 Tohoku earthquake. The 3C recorded downhole motion is imposed as boundary condition at the base of soil layer stack. Notable amplification phenomena are shown, comparing seismograms at the bottom and at the surface. The 1D-3C approach evidences the influence of the 3-D loading path and input wavefield polarization. 3C motion and 3-D stress and strain evolution are evaluated all over the soil profile. The triaxial mechanical coupling is pointed out by observing the variation of the propagating wave polarization all along the duration of seismograms. The variation of the maximum horizontal component of motion with time

  8. Pre-instrumental seismicity in Central Africa using felt seisms recorded mainly at the meteorological stations of DRC, Rwanda and Burundi during the colonial period

    NASA Astrophysics Data System (ADS)

    Mulumba, J.-L.; Delvaux, D.

    2012-04-01

    Seismic hazard assessment and mitigation of catastrophes are primarily based on the identification and characterization of seismically active zones. These tasks still rely heavily on the existing knowledge of the seismic activity over the longest possible time period. The first seismic network in Equatorial Africa (IRSAC network) was operated from the Lwiro scientific base on the western shores of Lake Kivu between 1953 and 1963. Before this installation, the historical record of seismic activity in Central Africa is sparse. Even for the relatively short period concerned, spanning only 50-60 years, the historical record is far from being complete. A first attempt has been made by Herrinckx (1959) who compiled a list 960 felt seisms recorded at the meteorological stations between 1915 and 1954 in Congo, Rwanda and Burundi. They were used to draw a density map of felt seisms per square degree. We completed this data base by exploiting the meteorological archives and any available historical report to enlarge the database which now reaches 1513 entries between 1900 and 1959. These entries have been exanimate in order to identify possible historical seismic events. Those are defined by 3 or more quasi-simultaneous records observed over a relatively short distance (a few degrees of latitude/longitude) within a short time difference (few hours). A preliminary list of 115 possible historical seisms has been obtained, identified by 3 to 15 different stations. The proposed location is taken as the average latitude and longitude of the stations where the felt seisms were recorded. Some of the most important ones are associated to aftershocks that have been felt at some stations after the main shocks. The most recent felt seisms have been also recorded instrumentally, which helps to validate the procedure followed. The main difficulties are the magnitude estimation and the possible spatial incompleteness of the recording of felt seism evidence at the margin of the observation

  9. Ocean-Based Seismic Noise Sources Recorded by a Moderate Aperture Array in Antarctica

    NASA Astrophysics Data System (ADS)

    Pratt, M. J.; Winberry, J. P.; Wiens, D.; Anandakrishnan, S.; Euler, G. G.

    2015-12-01

    The deployment of a temporary, 60 km aperture, broadband seismic array on the Whillans Ice Stream (WIS), West Antarctica provides an opportunity to analyze ocean-derived seismic noise sources. The location of Antarctica, surrounded by the Southern Ocean and the seasonal effect of sea ice on shallow water noise production, allows for an intriguing experiment as to the production of primary and secondary microseisms. The WIS array was deployed for 2 months between December 2010-January 2011 with its primary objective to study WIS stick-slip events and glacial microseismicity. However, daylong stacks of station-to-station correlograms show directionality of the ambient noise field within the frequency bands of the primary and secondary microseisms. Although the WIS array is located close to the grounding line, it lies 700 km from the nearest open water at the end of the austral summer. The array consists of 17 broadband stations arranged in a series of offset concentric circles that minimizes spatial artifacts with regards to the array response. We use beamforming analysis to show that primary microseisms (~15 s) are sourced from three azimuthal directions with some ice-free coastline: Antarctic Peninsula, Victoria Land, and Dronning-Maude Land. Long-period secondary microseisms (~10 s) appear to be sourced in the deep Southern Ocean and track storm systems. Short-period secondary microseisms (~6 s) show much more dependence on the continental shelf and possibly coastal reflections. This is consistent with year-long noise spectra showing diminishment in the 15 s and 6 s bands [Grob et al. 2011]. Modeling of secondary microseism sources [Ardhuin et al. 2011] provides insight on the sources of surface wave noise at higher frequencies. We backproject daily P and PKPbc body wave microseism signals found at lower ray parameters sourced at distances of ~20-90° and ~145-155° respectively. The ocean sources for these arrivals remain fairly consistent, suggesting a

  10. Recorded seismic response of a base-isolated steel bridge carrying a steel water pipe

    USGS Publications Warehouse

    Safak, E.; Brady, A.G.

    1989-01-01

    A set of strong motion records was obtained from the base-isolated Santa Ana River Pipeline Bridge during the magnitude 5.9 Whittier Narrows, California, earthquake of October 1, 1987. The analysis of the records show that the level of excitation was not strong enough to fully activate the base isolators. The dominant modes of the response are the translations of the abutment-bridge-pipe system in the longitudinal and transverse directions, and the bending of the steel truss between supports in the vertical direction.

  11. Real-time seismic monitoring of the integrated cape girardeau bridge array and recorded earthquake response

    USGS Publications Warehouse

    Celebi, M.

    2006-01-01

    This paper introduces the state of the art, real-time and broad-band seismic monitoring network implemented for the 1206 m [3956 ft] long, cable-stayed Bill Emerson Memorial Bridge in Cape Girardeau (MO), a new Mississippi River crossing, approximately 80 km from the epicentral region of the 1811-1812 New Madrid earthquakes. The bridge was designed for a strong earthquake (magnitude 7.5 or greater) during the design life of the bridge. The monitoring network comprises a total of 84 channels of accelerometers deployed on the superstructure, pier foundations and at surface and downhole free-field arrays of the bridge. The paper also presents the high quality response data obtained from the network. Such data is aimed to be used by the owner, researchers and engineers to assess the performance of the bridge, to check design parameters, including the comparison of dynamic characteristics with actual response, and to better design future similar bridges. Preliminary analyses of ambient and low amplitude small earthquake data reveal specific response characteristics of the bridge and the free-field. There is evidence of coherent tower, cable, deck interaction that sometimes results in amplified ambient motions. Motions at the lowest tri-axial downhole accelerometers on both MO and IL sides are practically free from any feedback from the bridge. Motions at the mid-level and surface downhole accelerometers are influenced significantly by feedback due to amplified ambient motions of the bridge. Copyright ASCE 2006.

  12. Impact of wind on ambient noise recorded by the "13 BB star" seismic array in northern Poland

    NASA Astrophysics Data System (ADS)

    Lepore, Simone; Markowicz, Krzysztof; Grad, Marek

    2016-04-01

    Seismic interferometry and beam forming techniques were applied to ambient noise recorded during January 2014 at the "13 BB star" array, composed of thirteen seismic stations located in northern Poland, with the aim of evaluating the azimuth of noise sources and the velocities of surface waves. After normalizing the raw recordings in time and frequency domain, the spectral characteristics of the ambient noise were studied to choose a frequency band suitable for the waves' retrieval. To get the velocity of surface waves by seismic interferometry, the crosscorrelation between all station pairs was analysed for the vertical and horizontal components in the 0.05-0.1 Hz, 0.1-1 Hz and 1 10 Hz frequency bands. For each pair, the crosscorrelation was applied to one hour recordings extracted from the ambient noise. The obtained traces were calculated for a complete day, and then summed together: the daily results were stacked for the whole January 2014. In the lowest frequency range, most of the energy is located around the 3.0 km/s line, meaning that the surface waves coming from the uppermost mantle will be retrieved. The intermediate frequency range shows most of the energy between the 2.0 km/s and 1.5 km/s lines: consequently, surface waves originating from the crust will be retrieved. In the highest frequency range, the surface waves are barely visible on the crosscorrelation traces, implying that the associated energy is strongly attenuated. The azimuth variation associated to the noise field was evaluated by means of the beam forming method, using the data from the whole array for all the three components. To that, the beam power was estimated in a small range of frequencies every day for the whole month. For each day, one hour long results of beam forming applications were stacked together. To avoid aliasing and near field effects, the minimum frequency was set at 0.05 Hz and the maximum to 0.1 Hz. In this frequency band, the amplitude maximum was sought

  13. Seismic source functions from free-field ground motions recorded on SPE: Implications for source models of small, shallow explosions

    NASA Astrophysics Data System (ADS)

    Rougier, Esteban; Patton, Howard J.

    2015-05-01

    Reduced displacement potentials (RDPs) for chemical explosions of the Source Physics Experiments (SPE) in granite at the Nevada Nuclear Security Site are estimated from free-field ground motion recordings. Far-field P wave source functions are proportional to the time derivative of RDPs. Frequency domain comparisons between measured source functions and model predictions show that high-frequency amplitudes roll off as ω- 2, but models fail to predict the observed seismic moment, corner frequency, and spectral overshoot. All three features are fit satisfactorily for the SPE-2 test after cavity radius Rc is reduced by 12%, elastic radius is reduced by 58%, and peak-to-static pressure ratio on the elastic radius is increased by 100%, all with respect to the Mueller-Murphy model modified with the Denny-Johnson Rc scaling law. A large discrepancy is found between the cavity volume inferred from RDPs and the volume estimated from laser scans of the emplacement hole. The measurements imply a scaled Rc of ~5 m/kt1/3, more than a factor of 2 smaller than nuclear explosions. Less than 25% of the seismic moment can be attributed to cavity formation. A breakdown of the incompressibility assumption due to shear dilatancy of the source medium around the cavity is the likely explanation. New formulas are developed for volume changes due to medium bulking (or compaction). A 0.04% decrease of average density inside the elastic radius accounts for the missing volumetric moment. Assuming incompressibility, established Rc scaling laws predicted the moment reasonable well, but it was only fortuitous because dilation of the source medium compensated for the small cavity volume.

  14. Characterization of the 2015 M4.0 Venus, Texas, Earthquake Sequence Using Locally Recorded Seismic Data

    NASA Astrophysics Data System (ADS)

    Scales, M. M.; DeShon, H. R.; Hayward, C.; Magnani, M. B.; Walter, J. I.; Pratt, T. L.

    2015-12-01

    We present high-resolution relative earthquake relocations derived using differential time data from waveform cross-correlation and first motion fault plane solutions to characterize the 2015 M4.0 Venus, TX, earthquake sequence. On 7 May 2015, a M4.0 earthquake occurred in Johnson County, TX, south of the Dallas-Fort Worth metroplex. It is the largest event recorded to date in the Fort Worth (Barnett Shale) Basin, which is an active shale gas production area that has been associated with induced earthquakes. The USGS moment tensor indicated normal faulting along NE-SW trending faults and two additional felt aftershocks were reported in the National Earthquake Information Center catalog. Beginning on 11 May 2015, a temporary seismic network was deployed. Over the first week, SMU deployed 13 vertical-component RT125s and 3 USGS NetQuakes instruments. The RT125s were replaced with 7 short-period 3-component instruments provided by IRIS and 4 broadband stations deployed throughout Johnson County by the University of Texas. To date, we have located over 100 events that define a 5 km long normal fault striking 35°NE and dipping ~70°. Events occur in the Precambrian granitic basement at depths of 4-6km. These locations are near the bottom of the Ellenburger Group (~3.5km in depth), which is an Ordovician carbonate platform overlying the basement and is often used for wastewater disposal. Five large volume injection wells operate within 10km of the earthquake sequence and inject very near, if not through, the Ellenburger-basement contact. These wells were temporarily shut down by the Texas Railroad Commission for testing but were reported at the time to have no causal effect on the earthquake activity. We explore temporal and spatial correlations between seismicity, wastewater injection data and subsurface fault data to better understand the cause of the Venus sequence.

  15. Seismicity of colorado: consistency of recent earthquakes with those of historical record.

    PubMed

    Simon, R B

    1969-08-29

    Earthquakes instrumentally recorded from 1966 to 1968 have occurred in the same regions of western Colorado, the Arkansas and Platte river valleys, as those felt back to 1870 (from newspaper reports), despite the increasing cultural effects of mining, highway construction, reservoir building, and loading. Thus it appears unnecessary to explain the Denver earthquakes in terms of pressure induced by the introduction of waste fluid. However, the assumption of preexistent tectonic strains in the area of the Rocky Mountain Arsenal seems to be confirmed.

  16. The record of iceberg roll generated waves from sediments and seismics

    NASA Astrophysics Data System (ADS)

    Rosser, N. J.; Szczucinski, W.; Strzelecki, M.; Long, A. J.; Norman, E. C.; Dunning, S.; Drewniak, M.

    2013-12-01

    Iceberg-roll tsunamis in coastal settings have been observed to generate significant local waves, that hold potential to be recorded in coastal depositional records. Capturing the past magnitude and frequency of such events remains challenging, hindered by a lack of a good understanding of the nature, recurrence and scale of iceberg rolls, and more specifically those rolls that generate waves. Here we consider the sedimentary evidence for iceberg rolls in West Central Greenland, based upon survey of depositional environments in a range of open and confined coastal environments. We examine both an open 80 km fjord setting, and a series of confined ice-marginal beaches. We combine a detailed interpretation of sediment deposits from shore-normal transects with wider-scale high-resolution terrestrial laser scanning of sediments. Our sites - Vaigat, which separates Disko Island from the Nussuaq Peninsular, and the northern shore of Icefjord - both have a recent history of tsunamis, triggered variously by large rock avalanches, landslides and iceberg rolls. Icebergs in Vaigat and Icefjord are observed to undergo frequent failure and roll, generating - where circumstances permit - nearshore waves of meter-scale. To obtain a more detailed understanding of the likely recurrence of such iceberg roll waves and to consider their influence upon the preserved sedimentary record, we undertook an intensive 2-month monitoring campaign during sea-ice free conditions in summer 2013 to determine the patterns in the location, magnitude, frequency and timing of iceberg roll waves. Innovatively, using microseismic monitoring combined with time-lapse photography and weather monitoring, we derive a first-order model of the occurrence of iceberg roll waves. We then use this to inform our interpretation of deposits in these two environments, and consider the presence and absence of records of iceberg roll deposits in such settings. The study was funded by Polish National Science Centre grant

  17. Applying distance sampling to fin whale calls recorded by single seismic instruments in the northeast Atlantic.

    PubMed

    Harris, Danielle; Matias, Luis; Thomas, Len; Harwood, John; Geissler, Wolfram H

    2013-11-01

    Automated methods were developed to detect fin whale calls recorded by an array of ocean bottom seismometers (OBSs) deployed off the Portuguese coast between 2007 and 2008. Using recordings collected on a single day in January 2008, a standard seismological method for estimating earthquake location from single instruments, the three-component analysis, was used to estimate the relative azimuth, incidence angle, and horizontal range between each OBS and detected calls. A validation study using airgun shots, performed prior to the call analysis, indicated that the accuracy of the three-component analysis was satisfactory for this preliminary study. Point transect sampling using cue counts, a form of distance sampling, was then used to estimate the average probability of detecting a call via the array during the chosen day. This is a key step to estimating density or abundance of animals using passive acoustic data. The average probability of detection was estimated to be 0.313 (standard error: 0.033). However, fin whale density could not be estimated due to a lack of an appropriate estimate of cue (i.e., vocalization) rate. This study demonstrates the potential for using a sparse array of widely spaced, independently operating acoustic sensors, such as OBSs, for estimating cetacean density. PMID:24180763

  18. Investigation of Historic Seismic and Infrasound Records from Events Occurred at the Region of Novaya Zemplya Test Site by the USSR Stations

    NASA Astrophysics Data System (ADS)

    Sokolova, Inna

    2014-05-01

    Located in the north the Novaya Zemlya Test Site was used in Soviet time for conducting unique nuclear weapon tests in different mediums. 130 nuclear explosions with total yield 265 megatons were conducted at the Test Site for the period 1955-1990. During this period the following nuclear explosions were conducted: 1 surface explosion, 85 air explosions, 2 above water explosions, 3 underwater explosions and 39 underground explosions (in boreholes and tunnels). In addition, tectonic earthquakes and induced earthquakes caused by multi-megatons UNE occur near the Test Site. Unfortunately, only few seismic events occurred on the territory of the Test Site were recorded by digital stations. However, the archives of different seismological organizations of the USSR contain huge amount of analogue seismograms recorded by permanent and temporary stations. Historical seismograms of nuclear explosions and earthquakes from Novaya Zemlya Test site territory were digitized by the Complex Seismological Expedition IPE RAS and by the Institute of Geophysical Researches RK; a database of the events from the Test Site containing 470 seismograms at epicentral distance 2100-3800 was created. The database includes seismic records of air, underground nuclear explosions, and records of underwater nuclear explosion conducted within "Korall" exercise. In addition, infrasound records of waves from multi-megatons air nuclear explosions recorded by a microbarograph installed at Talgar seismic station at distance ~3600 km from the Test Site were digitized. Kinematic and dynamic parameters of nuclear explosions records conducted in different mediums (air, under water and underground) were investigated by the digitized records from events at Novaya Zemlya Test Site; specific features of wave pattern for each class of events were found.

  19. Fin whale tracks recorded by a seismic network on the Juan de Fuca Ridge, Northeast Pacific Ocean.

    PubMed

    Soule, Dax C; Wilcock, William S D

    2013-03-01

    Fin whale calls recorded from 2003 to 2004 by a seafloor seismic network on the Endeavour segment of the Juan de Fuca Ridge were analyzed to determine tracks and calling patterns. Over 150 tracks were obtained with a total duration of ~800 h and swimming speeds from 1 to 12 km/h. The dominant inter-pulse interval (IPI) is 24 s and the IPI patterns define 4 categories: a 25 s single IPI and 24/30 s dual IPI produced by single calling whales, a 24/13 s dual IPI interpreted as two calling whales, and an irregular IPI interpreted as groups of calling whales. There are also tracks in which the IPI switches between categories. Call rates vary seasonally with all the tracks between August and April. From August to October tracks are dominated by the irregular IPI and are predominantly headed to the northwest, suggesting that a portion of the fin whale population does not migrate south in the fall. The other IPI categories occur primarily from November to March. These tracks have slower swimming speeds, tend to meander, and are predominantly to the south. The distribution of fin whales around the network is non-random with more calls near the network and to the east and north.

  20. Active seismic experiment

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.; Talwani, P.

    1972-01-01

    The Apollo 16 active seismic experiment (ASE) was designed to generate and monitor seismic waves for the study of the lunar near-surface structure. Several seismic energy sources are used: an astronaut-activated thumper device, a mortar package that contains rocket-launched grenades, and the impulse produced by the lunar module ascent. Analysis of some seismic signals recorded by the ASE has provided data concerning the near-surface structure at the Descartes landing site. Two compressional seismic velocities have so far been recognized in the seismic data. The deployment of the ASE is described, and the significant results obtained are discussed.

  1. Networks of recurrent events, a theory of records, and an application to finding causal signatures in seismicity.

    PubMed

    Davidsen, Jörn; Grassberger, Peter; Paczuski, Maya

    2008-06-01

    We propose a method to search for signs of causal structure in spatiotemporal data making minimal a priori assumptions about the underlying dynamics. To this end, we generalize the elementary concept of recurrence for a point process in time to recurrent events in space and time. An event is defined to be a recurrence of any previous event if it is closer to it in space than all the intervening events. As such, each sequence of recurrences for a given event is a record breaking process. This definition provides a strictly data driven technique to search for structure. Defining events to be nodes, and linking each event to its recurrences, generates a network of recurrent events. Significant deviations in statistical properties of that network compared to networks arising from (acausal) random processes allows one to infer attributes of the causal dynamics that generate observable correlations in the patterns. We derive analytically a number of properties for the network of recurrent events composed by a random process in space and time. We extend the theory of records to treat not only the variable where records happen, but also time as continuous. In this way, we construct a fully symmetric theory of records leading to a number of results. Those analytic results are compared in detail to the properties of a network synthesized from time series of epicenter locations for earthquakes in Southern California. Significant disparities from the ensemble of acausal networks that can be plausibly attributed to the causal structure of seismicity are as follows. (1) Invariance of network statistics with the time span of the events considered. (2) The appearance of a fundamental length scale for recurrences, independent of the time span of the catalog, which is consistent with observations of the "rupture length." (3) Hierarchy in the distances and times of subsequent recurrences. As expected, almost all of the statistical properties of a network constructed from a surrogate

  2. Source process of the 1911 M8.0 Chon-Kemin earthquake: investigation results by analogue seismic records

    NASA Astrophysics Data System (ADS)

    Kulikova, Galina; Krüger, Frank

    2015-06-01

    Several destructive earthquakes have occurred in Tien-Shan region at the beginning of 20th century. However, the detailed seismological characteristics, especially source parameters of those earthquakes are still poorly investigated. The Chon-Kemin earthquake is the strongest instrumentally recorded earthquake in the Tien-Shan region. This earthquake has produced an approximately 200 km long system of surface ruptures along Kemin-Chilik fault zone and killed about ˜400 people. Several studies presented the different information on the earthquake epicentre location and magnitude, and two different focal mechanisms were also published. The reason for the limited knowledge of the source parameters for the Chon-Kemin earthquake is the complexity of old analogue records processing, digitization and analysis. In this study the data from 23 seismic stations worldwide were collected and digitized. The earthquake epicentre was relocated to 42.996N° and 77.367E°, the hypocentre depth is estimated between 10 and 20 km. The magnitude was recalculated to mB 8.05, Ms 7.94 and Mw 8.02. The focal mechanism, determined from amplitude ratios comparison of the observed and synthetic seismograms, was: str = 264°, dip = 52°, rake = 98°. The apparent source time duration was between ˜45 and ˜70 s, the maximum slip occurred 25 s after the beginning of the rupture. Two subevents were clearly detected from the waveforms with the scalar moment ratio between them of about 1/3, the third subevent was also detected with less certainty. Taking into account surface rupture information, the fault geometry model with three patches was proposed. Based on scaling relations we conclude that the total rupture length was between ˜260 and 300 km and a maximum rupture width could reach ˜70 km.

  3. Trajectory of the August 7, 2010 Biwako fireball determined from seismic recordings

    NASA Astrophysics Data System (ADS)

    Yamada, Masumi; Mori, Jim

    2012-01-01

    The Biwako fireball on August 7, 2010, produced a strong sonic boom throughout central Japan around 17:00 JST (UTC+9). There were many visual observations and reports of the sound in the Tokai and Kinki regions at that time. We have estimated the trajectory of this fireball and the location of its termination point by analyzing seismograms recorded on a dense local network. The isochrons of the arrival times are close to concentric circles, which suggest that the fireball disappeared due to fragmentation during entry. The fireball trajectory which explains the arrival times of the signal has a relatively high incident angle (55 degrees relative to the horizon) and the source is thought to disappear at a height of 26-km east of Lake Biwa. The azimuthal angle and velocity of the fireball are difficult to determine uniquely from this dataset. We identified an event thought to be due to fragmentation, with a location 3-km ENE and 9-km higher than the termination point. This location is consistent with the trajectory determined from the signal arrival. Based on this trajectory model, the source of the signal spans a horizontal range of 26 to 70 km, and the altitude of the source producing the sonic boom is about 30 to 50 km.

  4. Seismic source mechanisms of tremor recorded on Arenal volcano, Costa Rica, retrieved by waveform inversion

    NASA Astrophysics Data System (ADS)

    Davi, R.; O'Brien, G. S.; De Barros, L.; Lokmer, I.; Bean, C. J.; Lesage, P.; Mora, M. M.; Soto, G. J.

    2012-02-01

    Moment tensor inversions of volcanic tremor are synthetically tested and subsequently applied to a dataset recorded on Arenal volcano in 2005. We selected 15 harmonic tremor events showing an emergent but very clear onset with a fundamental frequency range of 0.8-1.5 Hz. These events constitute an excellent opportunity to broaden our knowledge of tremor generation models. The inversions were performed for a common source location, the position of which was retrieved through the evaluation of the joint probability density function of the misfit values obtained by the moment tensor inversion of all the events and all predefined source locations (grid search). Events are located beneath the summit crater, in a shallow position. The inversion procedure was tested through the use of synthetic tremor, generated using full wavefield numerical simulations. The maximum amplitude decomposition method is used to analyse the solutions of the synthetic tests. The results highlight the stability of the moment tensor solution when the whole length of the signal is used in the inversion procedure. Hence the whole length of the tremor is utilised to retrieve the source mechanism generating the 15 tremor events. A sliding window is utilised to investigate the time variability of our solution. A crack dipping 20° to the North-Northeast is reconcilable with all 15 tremor events. This mechanism is found to be constant for the entire length of each tremor and for different events.

  5. First seismic survey of Lake Saint-Jean (Québec, Canada): sedimentary record of the last deglaciation

    NASA Astrophysics Data System (ADS)

    Nutz, Alexis; Schuster, Mathieu; Ghienne, Jean-François; Raphaël, Certain; Nicolas, Robin; Claude, Roquin; Frédéric, Bouchette; Cousineau Pierre, A.

    2015-04-01

    The general post-glacial evolution of the Lake Saint-Jean region (Canada/Québec) was, until now, only known from onshore studies (outcrops and geomorphology). Because this lake corresponds to sediment depocentre since the area is ice free (latest Pleistocene and the entire Holocene), a comprehensive sedimentary archive could be expected from this area. As a consequence, the offshore archives of Lake Saint-Jean leave a basic, but crucial, question: can the transition from glacial to post-glacial periods be deciphered? The stratigraphy of the last deglacial sequence is investigated in Lake Saint-Jean (Québec, Canada) from 300 km of echo-sounder 2D seismic profiles. The sedimentary archive of this basin is documented from the Late Pleistocene Laurentidian ice-front recession to the present-day situation. Ten seismic units have been identified that reflect spatio-temporal variations in depositional processes characterizing different periods of the Lake Saint-Jean basin evolution. During the postglacial marine flooding, a high deposition rate of mud settling, from proglacial glacimarine and then prodeltaic plumes in the Laflamme Gulf, produced an extensive, up to 50 m thick mud sheet draping the isostatically depressed marine basin floor. Subsequently, closing of the water body due to glacio-isostatic rebound that occurred at 8.5 cal. ka BP and ice-sheet retreat outside the Saint-Jean catchment at 7.5 cal. ka BP drastically modify the hydrodynamics and sedimentation. Hyperpycnal flows appeared because fresh lake water replaced dense marine water. River sediments were transferred towards the deeper part of the lake into river-related confined lobes. The water body is also marked by the onset of a wind-driven internal circulation associating wave-related hydrodynamics and bottom currents with sedimentary features including shoreface deposits, sediment drifts, a sedimentary shelf and important erosional surfaces. The Lake Saint-Jean reveals important diversity and

  6. Analysis and models of pre-injection surface seismic array noise recorded at the Aquistore carbon storage site

    NASA Astrophysics Data System (ADS)

    Birnie, Claire; Chambers, Kit; Angus, Doug; Stork, Anna L.

    2016-08-01

    Noise is a persistent feature in seismic data and so poses challenges in extracting increased accuracy in seismic images and physical interpretation of the subsurface. In this paper, we analyse passive seismic data from the Aquistore carbon capture and storage pilot project permanent seismic array to characterise, classify and model seismic noise. We perform noise analysis for a three-month subset of passive seismic data from the array and provide conclusive evidence that the noise field is not white, stationary, or Gaussian; characteristics commonly yet erroneously assumed in most conventional noise models. We introduce a novel noise modelling method that provides a significantly more accurate characterisation of real seismic noise compared to conventional methods, which is quantified using the Mann-Whitney-White statistical test. This method is based on a statistical covariance modelling approach created through the modelling of individual noise signals. The identification of individual noise signals, broadly classified as stationary, pseudo-stationary and non-stationary, provides a basis on which to build an appropriate spatial and temporal noise field model. Furthermore, we have developed a workflow to incorporate realistic noise models within synthetic seismic data sets providing an opportunity to test and analyse detection and imaging algorithms under realistic noise conditions.

  7. Persistent pre-seismic signature detected by means of Na-K-Mg geothermometry records in a saline spring of Vrancea area (Romania)

    NASA Astrophysics Data System (ADS)

    Mitrofan, H.; Marin, C.; Zugrǎvescu, D.; Chitea, F.; Anghelache, M.-A.; Beşuå£Iu, L.; Tudorache, A.

    2010-02-01

    A six year-long hydrochemical monitoring operation was conducted in Vrancea seismic zone (Romania), addressing a saline spring that proved to be suitable for Na-K-Mg geothermometry diagnosis. During the considered time-interval (2003-2009), only one important earthquake (mb=5.8) occurred in Vrancea region, this circumstance providing an unambiguous reference-moment between pre-seismic and post-seismic periods. On occurrence of that earthquake, an anomalous fluctuation of the Na-K temperature was detected - a result largely similar to previous ones recorded worldwide (California, southwest Egypt, northeast India). Yet such fluctuations may not necessarily be induced by earthquake-associated processes: they can occur also "routinely", possibly reflecting some environmental, meteorologically-induced "noise". It was therefore important to examine whether the variations observed in the data values could be plausibly related to a seismogenesis process. By additionally investigating (in a "scattterplot" diagram) the correlation between the Na-K temperatures and the values of a so-called "maturity index", a specific pattern emerged, with pre-seismic data-points plotting in a distinct domain of the diagram; moreover, those data-points appeared to describe a "drift away" pathway with respect to the remaining data-points "cluster", recorded during the subsequent 4 years of post-seismic monitoring. The "drift away" pattern persistently evolved for at least 18 months, ending just before the mb=5.8 earthquake and consequently suggesting the existence of some kind of long-term precursory phenomenon.

  8. Late-stage stretching and subsidence rates in the Danakil Depression, evidenced from borehole records and seismic reflection data

    NASA Astrophysics Data System (ADS)

    Booth, Adam; Bastow, Ian; Magee, Craig; Keir, Derek; Corti, Giacomo; Jackson, Chris; Wilkinson, Jason

    2016-04-01

    The Ethiopian and Afar Rift systems provide a globally unique opportunity to study the incipient transition from continental rifting to sea-floor spreading. A consensus has emerged that a considerable proportion of plate extension in Ethiopia is accommodated by dyke intrusion, with smaller contributions from crustal thinning. However, observations of thinned crust and a pulse in Quaternary-Recent basaltic volcanism within Ethiopia's Danakil Depression have been cited (Bastow and Keir, 2011) as evidence that localised plate stretching may mark the final stages of continent-ocean transition. We explore this hypothesis using an archive of five 2-D seismic reflection profiles, each between 7-10 km in length, and ˜120 borehole records distributed over an area of 225 km2. From depth and age relationships of key marker horizons, we also suggest local subsidence and extension rates. The borehole archive reveals extensive evaporite sequences deposited in and around an asymmetric basin, bounded to the west by a network of east-dipping normal faults. West of the basin, the maximum observed thickness of evaporites is 150 m, beneath which are deposits of clastic sediment, but a sequence of evaporites at least 900 m thick is observed at the basin centre. The sedimentary architecture of these sequences suggests deposition in a shallow salt-pan environment, with seasonal - potentially diurnal - freshening of the brine supply (Warren, 2012). Isotopic analysis of reef carbonates in the basin flank dates the last marine incursion into the Danakil Depression at 24-230ka (Lalou et al., 1970; Bonatti et al., 1971; Bannert et al., 1971), therefore the evaporite sequence must be younger than this. A key marker horizon within the evaporites is the potash-bearing Houston Formation, also distinct in borehole records given its high porosity (25-40%) and radioactivity (50-250 API units). The elevation of the Houston Formation is ˜500 m deeper in the centre of the basin than on the flank

  9. Late-stage stretching and subsidence rates in the Danakil Depression, evidenced from borehole records and seismic reflection data

    NASA Astrophysics Data System (ADS)

    Booth, Adam; Bastow, Ian; Magee, Craig; Keir, Derek; Corti, Giacomo; Jackson, Chris; Wilkinson, Jason

    2016-04-01

    The Ethiopian and Afar Rift systems provide a globally unique opportunity to study the incipient transition from continental rifting to sea-floor spreading. A consensus has emerged that a considerable proportion of plate extension in Ethiopia is accommodated by dyke intrusion, with smaller contributions from crustal thinning. However, observations of thinned crust and a pulse in Quaternary-Recent basaltic volcanism within Ethiopia's Danakil Depression have been cited (Bastow and Keir, 2011) as evidence that localised plate stretching may mark the final stages of continent-ocean transition. We explore this hypothesis using an archive of five 2-D seismic reflection profiles, each between 7-10 km in length, and ˜120 borehole records distributed over an area of 225 km2. From depth and age relationships of key marker horizons, we also suggest local subsidence and extension rates. The borehole archive reveals extensive evaporite sequences deposited in and around an asymmetric basin, bounded to the west by a network of east-dipping normal faults. West of the basin, the maximum observed thickness of evaporites is 150 m, beneath which are deposits of clastic sediment, but a sequence of evaporites at least 900 m thick is observed at the basin centre. The sedimentary architecture of these sequences suggests deposition in a shallow salt-pan environment, with seasonal - potentially diurnal - freshening of the brine supply (Warren, 2012). Isotopic analysis of reef carbonates in the basin flank dates the last marine incursion into the Danakil Depression at 24-230ka (Lalou et al., 1970; Bonatti et al., 1971; Bannert et al., 1971), therefore the evaporite sequence must be younger than this. A key marker horizon within the evaporites is the potash-bearing Houston Formation, also distinct in borehole records given its high porosity (25-40%) and radioactivity (50-250 API units). The elevation of the Houston Formation is ˜500 m deeper in the centre of the basin than on the flank

  10. Late 18th to early 19th century sea-level history and inter-seismic behavior along the western Myanmar plate boundary belt recorded by coral microatolls

    NASA Astrophysics Data System (ADS)

    Liu, Sze-Chieh; Shyu, J. Bruce H.

    2016-04-01

    Along the western Myanmar plate boundary belt, the Indian-Australian plate is subducting obliquely beneath the Burma micro-plate at a rate of about 23 mm/yr. Although information about the 1762 Arakan earthquake, the only major historical event occurred along this plate boundary belt, has been delineated recently from uplifted coastal features, constraints on the inter-seismic behavior of this belt is still very limited, due to the lack of high resolution instrumental records in the area. Therefore, we utilized coral microatolls to analyze relative sea level history, in order to obtain potential information of land-level change along the western coast of Myanmar. Our sample was collected from northwestern Ramree Island, approximately 80 km away from the trench. Previous studies suggest that the coral was uplifted and killed during a local earthquake event in 1848, and recorded relative sea level history of ~80 years prior to that event. Since the highest level of survival (HLS) of coral microatolls is constrained within a few centimeters of the lowest tide level of the area, the patterns of annual growth bands of the coral microatoll in x-radiograph provide us yearly record of relative sea level, and we used U-Th dating technique to constrain the age of the coral. Our results show that this coral microatoll may have recorded the inter-seismic subsidence of northwestern Ramree Island, punctuated by several climatic events that produced die-down records of the coral growth bands. We hope the data obtained from this coral microatoll, combined with previously reported information of the area, will enable us to further understand the seismic behavior of this major plate boundary belt.

  11. Velocity and Attenuation Structure of the Tibetan Lithosphere using Seismic Attributes of P-waves from Regional Earthquakes Recorded by the Hi-CLIMB Array

    NASA Astrophysics Data System (ADS)

    Nowack, R. L.; Bakir, A. C.; Griffin, J.; Chen, W.; Tseng, T.

    2010-12-01

    Using data from regional earthquakes recorded by the Hi-CLIMB array in Tibet, we utilize seismic attributes from crustal and Pn arrivals to constrain the velocity and attenuation structure in the crust and the upper mantle in central and western Tibet. The seismic attributes considered include arrival times, Hilbert envelope amplitudes, and instantaneous as well as spectral frequencies. We have constructed more than 30 high-quality regional seismic profiles, and of these, 10 events have been selected with excellent crustal and Pn arrivals for further analysis. Travel-times recorded by the Hi-CLIMB array are used to estimate the large-scale velocity structure in the region, with four near regional events to the array used to constrain the crustal structure. The travel times from the far regional events indicate that the Moho beneath the southern Lhasa terrane is up to 75 km thick, with Pn velocities greater than 8 km/s. In contrast, the data sampling the Qiangtang terrane north of the Bangong-Nujiang (BNS) suture shows thinner crust with Pn velocities less than 8 km/s. Seismic amplitude and frequency attributes have been extracted from the crustal and Pn wave trains, and these data are compared with numerical results for models with upper-mantle velocity gradients and attenuation, which can strongly affect Pn amplitudes and pulse frequencies. The numerical modeling is performed using the complete spectral element method (SEM), where the results from the SEM method are in good agreement with analytical and reflectivity results for different models with upper-mantle velocity gradients. The results for the attenuation modeling in Tibet imply lower upper mantle Q values in the Qiangtang terrane to the north of the BNS compared to the less attenuative upper mantle beneath the Lhasa terrane to the south of the BNS.

  12. Seismic Symphonies

    NASA Astrophysics Data System (ADS)

    Strinna, Elisa; Ferrari, Graziano

    2015-04-01

    The project started in 2008 as a sound installation, a collaboration between an artist, a barrel organ builder and a seismologist. The work differs from other attempts of sound transposition of seismic records. In this case seismic frequencies are not converted automatically into the "sound of the earthquake." However, it has been studied a musical translation system that, based on the organ tonal scale, generates a totally unexpected sequence of sounds which is intended to evoke the emotions aroused by the earthquake. The symphonies proposed in the project have somewhat peculiar origins: they in fact come to life from the translation of graphic tracks into a sound track. The graphic tracks in question are made up by copies of seismograms recorded during some earthquakes that have taken place around the world. Seismograms are translated into music by a sculpture-instrument, half a seismograph and half a barrel organ. The organ plays through holes practiced on paper. Adapting the documents to the instrument score, holes have been drilled on the waves' peaks. The organ covers about three tonal scales, starting from heavy and deep sounds it reaches up to high and jarring notes. The translation of the seismic records is based on a criterion that does match the highest sounds to larger amplitudes with lower ones to minors. Translating the seismogram in the organ score, the larger the amplitude of recorded waves, the more the seismogram covers the full tonal scale played by the barrel organ and the notes arouse an intense emotional response in the listener. Elisa Strinna's Seismic Symphonies installation becomes an unprecedented tool for emotional involvement, through which can be revived the memory of the greatest disasters of over a century of seismic history of the Earth. A bridge between art and science. Seismic Symphonies is also a symbolic inversion: the instrument of the organ is most commonly used in churches, and its sounds are derived from the heavens and

  13. Strong ground motion generated by controlled blasting experiments and mining induced seismic events recorded underground at deep level mines in South Africa

    NASA Astrophysics Data System (ADS)

    Milev, A.; Selllers, E.; Skorpen, L.; Scheepers, L.; Murphy, S.; Spottiswoode, S. M.

    2011-12-01

    A number of simulated rockbursts were conducted underground at deep level gold mines in South Africa in order to estimate the rock mass response when subjected to strong ground motion. The rockbursts were simulated by means of large blasts detonated in solid rock close to the sidewall of a tunnel. The simulated rockbursts involved the design of the seismic source, seismic observations in the near and far field, high-speed video filming, a study of rock mass conditions such as fractures, joints, rock strength etc. Knowledge of the site conditions before and after the simulated rockbursts was also gained. The numerical models used in the design of the simulated rockbursts were calibrated by small blasts taking place at each experimental site. A dense array of shock type accelerometers was installed along the blasting wall to monitor the attenuation of the strong ground motion as a function of the distance from the source. The attenuation of peak particle velocities, was found to be proportional to R^-1.7. Special investigations were carried out to evaluate the mechanism and the magnitude of damage, as well as the support behaviour under excessive dynamic loading. The strong ground motion generated by mining induced seismic events was studied, as part of this work, not only to characterize the rock mass response, but also to estimate the site effect on the surface of the underground excavations. A stand-alone instrument especially designed for recording strong ground motions was used to create a large database of peak particle velocities measured on stope hangingwalls. A total number of 58 sites located in stopes where the Carbon Leader Reef, Ventersdorp Contact Reef, Vaal Reef and Basal Reef are mined, were monitored. The peak particle velocities were measured at the surface of the excavations to identify the effect of the free surface and the fractures surrounding the underground mining. Based on these measurements the generally accepted velocity criterion of 3 m

  14. The April 2009 L'Aquila (Italy) seismic sequence: recordings in the Anfiteatro Flavio (Colosseum)

    NASA Astrophysics Data System (ADS)

    Caserta, A.; Marra, F.; Cara, F.; Valente, G.

    2015-12-01

    We show a preliminary study concerning the interaction of the seismic wave-field coming from aftershocks of the 2009 seismic sequence in Abruzzo and the structure of the Anfiteatro Flavio, usually called Colosseum. By using mainly Arias intensity, we assess how the incoming energy beneath the foundations is convoyed into the monument, through what preferential frequencies such process takes place, how the trapped energy increases amplitude vibration with floors. Moreover, we also investigate the role played by the near-surface geology in generating differential motions below the monument foundations. In addition we also check, in a preliminary way, the foundation dynamical behaviour under the action of the incoming wave-field.

  15. Ground motions recorded in Rome during the April 2009 L’Aquila seismic sequence: site response and comparison with ground‐motion predictions based on a global dataset

    USGS Publications Warehouse

    Caserta, Arrigo; Boore, David; Rovelli, Antonio; Govoni, Aladino; Marra, Fabrizio; Monica, Gieseppe Della; Boschi, Enzo

    2013-01-01

    The mainshock and moderate‐magnitude aftershocks of the 6 April 2009 M 6.3 L’Aquila seismic sequence, about 90 km northeast of Rome, provided the first earthquake ground‐motion recordings in the urban area of Rome. Before those recordings were obtained, the assessments of the seismic hazard in Rome were based on intensity observations and theoretical considerations. The L’Aquila recordings offer an unprecedented opportunity to calibrate the city response to central Apennine earthquakes—earthquakes that have been responsible for the largest damage to Rome in historical times. Using the data recorded in Rome in April 2009, we show that (1) published theoretical predictions of a 1 s resonance in the Tiber valley are confirmed by observations showing a significant amplitude increase in response spectra at that period, (2) the empirical soil‐transfer functions inferred from spectral ratios are satisfactorily fit through 1D models using the available geological, geophysical, and laboratory data, but local variability can be large for individual events, (3) response spectra for the motions recorded in Rome from the L’Aquila earthquakes are significantly amplified in the radial component at periods near 1 s, even at a firm site on volcanic rocks, and (4) short‐period response spectra are smaller than expected when compared to ground‐motion predictions from equations based on a global dataset, whereas the observed response spectra are higher than expected for periods near 1 s.

  16. Source locations of teleseismic P, SV, and SH waves observed in microseisms recorded by a large aperture seismic array in China

    NASA Astrophysics Data System (ADS)

    Liu, Qiaoxia; Koper, Keith D.; Burlacu, Relu; Ni, Sidao; Wang, Fuyun; Zou, Changqiao; Wei, Yunhao; Gal, Martin; Reading, Anya M.

    2016-09-01

    Transversely polarized seismic waves are routinely observed in ambient seismic energy across a wide range of periods, however their origin is poorly understood because the corresponding source regions are either undefined or weakly constrained, and nearly all models of microseism generation incorporate a vertically oriented single force as the excitation mechanism. To better understand the origin of transversely polarized energy in the ambient seismic wavefield we make the first systematic attempt to locate the source regions of teleseismic SH waves observed in microseismic (2.5-20 s) noise. We focus on body waves instead of surface waves because the source regions can be constrained in both azimuth and distance using conventional array techniques. To locate microseismic sources of SH waves (as well as SV and P waves) we continuously backproject the vertical, radial, and transverse components of the ambient seismic wavefield recorded by a large-aperture array deployed in China during 2013-2014. As expected, persistent P wave sources are observed in the North Atlantic, North Pacific, and Indian Oceans, mainly at periods of 2.5-10 s, in regions with the strong ocean wave interactions needed to produce secondary microseisms. SV waves are commonly observed to originate from locations indistinguishable from the P wave sources, but with smaller signal-to-noise ratios. We also observe SH waves with about half or less the signal-to-noise ratio of SV waves. SH source regions are definitively located in deep water portions of the Pacific, away from the sloping continental shelves that are thought to be important for the generation of microseismic Love waves, but nearby regions that routinely generate teleseismic P waves. The excitation mechanism for the observed SH waves may therefore be related to the interaction of P waves with small-wavelength bathymetric features, such as seamounts and basins, through some sort of scattering process.

  17. Borehole seismic unit

    NASA Astrophysics Data System (ADS)

    Seavey, R. W.

    1982-05-01

    Fracture orientation can be measured by using a triaxial geophone package located at the fracture interval within the wellbore. Seismic signals produced by the fracture can be recorded and measured to determine the direction of the fracture. A description of a borehole seismic unit and procedures to accomplish this task are reported.

  18. Method for the interpretation of seismic records to yield valuable characteristics, such as gas-bearing potential and lithology strata

    SciTech Connect

    Kerkenhoff, E. F.; Ostrander, W. J.

    1985-11-19

    In accordance with the present invention, progressive changes in amplitude as a function of offset of common gathers can be more easily identified by emphasizing the degree of amplitude variation between ''near'' and ''far'' amplitude vs. time traces of each gather along a seismic line, and displaying the resulting near and far offset sections side-by-side. A significant-and progressive- change in P-wave reflection coefficient as a function of the angle of incidence (within sections) indicates valuable characteristics, say the fluid hydrocarbon-bearing potential and/or the lithology of the reflecting horizon.

  19. Crustal migration of CO2-rich magmatic fluids recorded by tree-ring radiocarbon and seismicity at Mammoth Mountain, CA, USA

    USGS Publications Warehouse

    Lewicki, Jennifer L.; Hilley, George E.; Shelly, David R.; King, John C.; McGeehin, John P.; Mangan, Margaret T.; Evans, William C.

    2014-01-01

    Unrest at Mammoth Mountain over the past several decades, manifest by seismicity, ground deformation, diffuse CO2 emissions, and elevated 3He/4He ratios in fumarolic gases has been driven by the release of CO2-rich fluids from basaltic intrusions in the middle to lower crust. Recent unrest included the occurrence of three lower-crustal (32–19 km depth) seismic swarms beneath Mammoth Mountain in 2006, 2008 and 2009 that were consistently followed by peaks in the occurrence rate of shallow (≤10 km depth) earthquakes. We measured 14C in the growth rings (1998–2012) of a tree growing in the largest (∼0.3 km2) area of diffuse CO2 emissions on Mammoth Mountain (the Horseshoe Lake tree kill; HLTK) and applied atmospheric CO2 concentration source area modeling to confirm that the tree was a reliable integrator of magmatic CO2 emissions over most of this area. The tree-ring 14C record implied that magmatic CO2 emissions from the HLTK were relatively stable from 1998 to 2009, nearly doubled from 2009 to 2011, and then declined by the 2012 growing season. The initial increase in CO2 emissions was detected during the growing season that immediately followed the largest (February 2010) peak in the occurrence rate of shallow earthquakes. Migration of CO2-rich magmatic fluids may have driven observed patterns of elevated deep, then shallow seismicity, while the relationship between pore fluid pressures within a shallow (upper 3 km of crust) fluid reservoir and permeability structure of the reservoir cap rock may have controlled the temporal pattern of surface CO2 emissions.

  20. Toward the Autonomous Recording and Transmission of Seismic Data from the Oceans: Testing the Son-O-Mermaid Float in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Simon, J. D.; Simons, F. J.; Vincent, H. T.; Nolet, G.

    2015-12-01

    We report on the deployment of two new Son-O-Mermaid floats into theSargasso Sea during a cruise aboard the R/V Atlantic Explorer, whichdeparted from Bermuda in May of 2015. Son-O-Mermaid is a freelyfloating and autonomous oceangoing system composed of a surface buoyconnected to a length of cable from which a three-hydrophone array issuspended. The main objective of the Son-O-Mermaid project is torecord signals suitable for global tomography in the deep ocean andprovide the seismic community with an abundance of novel raypaths frompreviously unsampled regions of the Earth. The Son-O-Mermaid float,with its ability to continually record, analyze, and transmit seismicdata from the oceans in near-real time has the potential torevolutionize the field of seismology. We analyze new data returnedfrom this deployment, a previous Son-O-Mermaid test, as well as theongoing MERMAID mission in the time, spectral, and wavelet domains. Afull description of the float and deployment report will be presented.A short-term goal of the project is determining realistic magnitude,distance, and pressure relationships for teleseismic earthquakes thatare recorded in the water column. Our analysis of this question isaided by synthetics created using SPECFEM2D and guided by the data,especially noise records recorded by Son-O-Mermaid and MERMAID fromoceans throughout the world. Synthetics provide an idealized waveformuseful for understanding the often very messy and noisy arrivalscommon in midcolumn acoustic recordings. Notably, synthetics allowthe confirmation or rejection of unlikely phases which are matched toearthquake databases after arrivals are detected by automatic pickingalgorithms. Additionally, marine-acoustic processing techniques willbe improved once the underwater acoustic field is better modeled usingrealistic signal-to-noise ratios and noise spectra returned fromSon-O-Mermaid and MERMAID missions. This analysis, particularly whenimplemented in the wavelet domain, is proving

  1. Mapping the North Sea base-Quaternary: using 3D seismic to fill a gap in the geological record

    NASA Astrophysics Data System (ADS)

    Lamb, Rachel; Huuse, Mads; Stewart, Margaret; Brocklehurst, Simon H.

    2014-05-01

    The identification and mapping of the base-Quaternary boundary in the central parts of the North Sea is problematic due to the change from an unconformable transition between Pliocene and Pleistocene deltaic deposits in the southern North Sea to a conformable one further north (Sejrup et al 1991; Gatliff et al 1994). The best estimates of the transition use seismic reflection data to identify a 'crenulated reflector' (Buckley 2012), or rely on correlating sparse biostratigraphy (Cameron et al 1987). Recent integration of biostratigraphy, pollen analysis, paleomagnetism and amino acid analysis in the Dutch and Danish sectors (Rasmussen et al 2005; Kuhlmann et al 2006) allows greater confidence in the correlation to a regional 3D seismic dataset and show that the base-Quaternary can be mapped across the entire basin. The base-Quaternary has been mapped using the PGS MegaSurvey dataset from wells in the Danish Sector along the initially unconformable horizon and down the delta front into the more conformable basin giving a high degree of confidence in the horizon pick. The mapped horizon is presented here alongside the difference between this new interpretation and the previously interpreted base-Quaternary (Buckley 2012). The revised base-Quaternary surface reaches a depth of 1248 ms TWT or approximately 1120 m (assuming average velocity of 1800 m/s) showing an elongate basin shape that follows the underlying structure of the Central Graben. The difference between the revised base-Quaternary and the traditional base-Quaternary reaches a maximum of over 600 ms TWT or approximately 540 m in the south-west with over 300 ms TWT or approximately 270 m at the Josephine well (56° 36.11'N, 2° 27.09'E) in the centre of the basin. Mapping this new base-Quaternary allows for the interpretation of the paleo-envionrment during the earliest Quaternary. Seismic attribute analysis indicates a deep water basin with sediment deposition from multiple deltas and redistribution by deep

  2. Preliminary results of receiver function analysis of seismic data recorded from a broadband deployment across the Gulf Coast Plain

    NASA Astrophysics Data System (ADS)

    Gurrola, H.; Pratt, K. W.; Pulliam, J.; Dunbar, J. A.

    2011-12-01

    In summer of 2010, 21 broadband seismographs were installed at 16-18 km spacing along a transect running from Johnson City, TX, (on the Edwards Plateau), to Matagorda Island to study the current structure of this rifted passive margin. The large magnetic anomaly that parallels the coast throughout the Gulf region moves on-shore beneath our transect such that we will be able to investigate the source of this anomaly. A second important target that will be imaged in this Balcones fault which is associated with the Ouachita front. This project is funded by a grant from the Norman Hackerman Advanced Research Program (NHARP), a biannual competition among Texas Universities to support research, and makes use of Texas Tech, Baylor, and UT Austin equipment. As a result, the deployment includes a less uniform array of seismic equipment, (10 Trillium compact seismometers and 10 Guralps; including 40Ts, 3Ts and 3ESPs), than projects supported by the IRIS PASSCAL center. Our vault construction was similar to Flexible array vaults, but Gulf Coast provides a more challenging environment for deployment than most encountered in the western US. The shallow water table and loose sediment can become almost fluid when storms deluge the area with rain. In dry periods, mud cracks near the vaults cause the vaults to tilt. As a result, even high quality, shallow seismic vaults can "float" or shift sufficiently to cause one or two components of the seismic stations to drift against their stops in days or weeks. As a result, the only data consistently available from all our stations, are vertical components. Horizontal component data from the summer of 2010 can be hit and miss due to the tilting of the vaults. These issues have been reduced in the summer of 2011 due to the drought. To address the data's shortcomings, we will average the vertical components from our stations and nearby EarthScope TA stations, (up 300 km away), to isolate the cleanest representation of the incoming P

  3. Notes on some experiments on the application of subtractive compensation to USGS seismic magnetic tape recording and playback systems

    USGS Publications Warehouse

    Eaton, Jerry P.

    1975-01-01

    The purpose of these experiments is to lay the groundwork for the implementation of subtractive compensation of the USGS seismic network tape playbacks utilizing the Develco model 6203 discriminators at a x1 playback speed. Although the Develco discriminators were designed for this application and a matching Develco compensation discriminator was purchased, effective use of this system for subtractive compensation has been blocked by the inadequate (frequency dependent) matching of the phase of the compensation signal to that of the data signal at the point compensation is carried out in the data discriminators. John Van Schaack has ameliorated the phase mismatch problem by an empirical alteration of the compensation discriminator input bandpass filter. We have selected a set (of eight) Develco discriminators and adjusted their compensation signal input levels to minimize spurious signals (noise) originating from tape speed irregularities. The sensitivity of the data discriminators was adjusted so that deviations of +125 Hz and -125 Hz produced output signals of +2.00 volts and -2.00 volts, respectively. The eight data discriminators are driven by a multiplex signal on a single tape track (subcarriers 680, 1020, 1360, 1700, 2040, 2380, 2720, and 3060 Hz). The Develco-supplied compensation discriminator requires an unmodulated 3125 Hz signal on a separate tape track.

  4. Method for interpretation of seismic records to yield indicating of the lithology of gas-bearing and capping strata

    SciTech Connect

    Ostrander, W. J.

    1985-12-31

    The present invention indicates that gas-containing strata of an earth formation have low Poisson's ratios and that the acoustic contrast (with the overburden rock) has a surprising effect as a function of the angle of incidence on a seismic wave associated with an array of sources and detectors: viz., a significant-and progressive-change in P-wave reflection coefficient as a function of the angle of incidence (within a gather of data) indicates the lithology of the reflecting horizon and the capping strata. Thus, lithologic determination of high-intensity anomalies of gas-containing media is simplified: progressive increases in amplitude intensity of resulting traces generated by the field array as a function of offset between respective source-detector pairs, can be associated with high porosity sandstones; underlying impervious shales; and progressive decreases in amplitudes of likewise commonly gathered traces, is associated with medium-to-low porosity lime-stones underlying a similar type of shale.

  5. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume IV S-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    In this volume (IV), all S-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. S-wave measurements were performed over the depth range of 370 to 1300 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Shear (S) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition, a second average shear wave record was recorded by reversing the polarity of the motion of the T-Rex base plate. In this sense, all the signals recorded in the field were averaged signals. In all cases, the base plate was moving perpendicular to a radial line between the base plate and the borehole which is in and out of the plane of the figure shown in Figure 1.1. The definition of “in-line”, “cross-line”, “forward”, and “reversed” directions in items 2 and 3 of Section 2 was based on the moving direction of the base plate. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas (UT) was embedded near the borehole at about 1.5 ft below the ground surface. The Redpath geophone and the UT geophone were properly aligned so that one of the horizontal components in each geophone was aligned with the direction of horizontal shaking of the T-Rex base plate. This volume is organized into 12 sections as follows. Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vs Profile at Borehole C4993

  6. Comparison of the historical record of earthquake hazard with seismic-hazard models for New Zealand and the continental United States

    USGS Publications Warehouse

    Stirling, M.; Petersen, M.

    2006-01-01

    We compare the historical record of earthquake hazard experienced at 78 towns and cities (sites) distributed across New Zealand and the continental United States with the hazard estimated from the national probabilistic seismic-hazard (PSH) models for the two countries. The two PSH models are constructed with similar methodologies and data. Our comparisons show a tendency for the PSH models to slightly exceed the historical hazard in New Zealand and westernmost continental United States interplate regions, but show lower hazard than that of the historical record in the continental United States intraplate region. Factors such as non-Poissonian behavior, parameterization of active fault data in the PSH calculations, and uncertainties in estimation of ground-motion levels from historical felt intensity data for the interplate regions may have led to the higher-than-historical levels of hazard at the interplate sites. In contrast, the less-than-historical hazard for the remaining continental United States (intraplate) sites may be largely due to site conditions not having been considered at the intraplate sites, and uncertainties in correlating ground-motion levels to historical felt intensities. The study also highlights the importance of evaluating PSH models at more than one region, because the conclusions reached on the basis of a solely interplate or intraplate study would be very different.

  7. Seismic moment tensors of acoustic emissions recorded during laboratory rock deformation experiments: sensitivity to attenuation and anisotropy

    NASA Astrophysics Data System (ADS)

    Stierle, Eva; Vavryčuk, Václav; Kwiatek, Grzegorz; Charalampidou, Elli-Maria; Bohnhoff, Marco

    2016-04-01

    Seismic moment tensors can provide information on the size and orientation of fractures producing acoustic emissions (AEs) and on the stress conditions in the sample. The moment tensor inversion of AEs is, however, a demanding procedure requiring carefully calibrated sensors and accurate knowledge of the velocity model. In field observations, the velocity model is usually isotropic and time independent. In laboratory experiments, the velocity is often anisotropic and time dependent and attenuation might be significant due to opening or closure of microcracks in the sample during loading. In this paper, we study the sensitivity of the moment tensor inversion to anisotropy of P-wave velocities and attenuation. We show that retrieved moment tensors critically depend on anisotropy and attenuation and their neglect can lead to misinterpretations of the source mechanisms. The accuracy of the inversion also depends on the fracturing mode of AEs: tensile events are more sensitive to P-wave anisotropy and attenuation than shear events. We show that geometry of faulting in anisotropic rocks should be studied using the source tensors, since the P- and T-axes of the moment tensors are affected by velocity anisotropy and deviate from the true orientation of faulting. The stronger the anisotropy is, the larger the deviations are. Finally, we prove that the moment tensor inversion applied to a large dataset of AEs can be utilized to provide information on the attenuation parameters of the rock sample. The method is capable of measuring anisotropic attenuation in the sample and allows for detection of dilatant cracking according to the stress regime.

  8. Signatures of the seismic source in EMD-based characterization of the 1994 Northridge, California, earthquake recordings

    USGS Publications Warehouse

    Zhang, R.R.; Ma, S.; Hartzell, S.

    2003-01-01

    In this article we use empirical mode decomposition (EMD) to characterize the 1994 Northridge, California, earthquake records and investigate the signatures carried over from the source rupture process. Comparison of the current study results with existing source inverse solutions that use traditional data processing suggests that the EMD-based characterization contains information that sheds light on aspects of the earthquake rupture process. We first summarize the fundamentals of the EMD and illustrate its features through the analysis of a hypothetical and a real record. Typically, the Northridge strong-motion records are decomposed into eight or nine intrinsic mode functions (IMF's), each of which emphasizes a different oscillation mode with different amplitude and frequency content. The first IMF has the highest-frequency content; frequency content decreases with an increase in IMF component. With the aid of a finite-fault inversion method, we then examine aspects of the source of the 1994 Northridge earthquake that are reflected in the second to fifth IMF components. This study shows that the second IMF is predominantly wave motion generated near the hypocenter, with high-frequency content that might be related to a large stress drop associated with the initiation of the earthquake. As one progresses from the second to the fifth IMF component, there is a general migration of the source region away from the hypocenter with associated longer-period signals as the rupture propagates. This study suggests that the different IMF components carry information on the earthquake rupture process that is expressed in their different frequency bands.

  9. Relative sea level variations recorded by coral microatolls over the last two centuries in Martinique and Guadeloupe: implication for seismic hazard

    NASA Astrophysics Data System (ADS)

    Eric, J.; Jennifer, W.; Feuillet, N.; Deschamps, P.; Guy, C.; Paul, T.; Galetzka, J. E.; Jean-Marie, S.; Bruno, H.

    2012-12-01

    The Lesser Antilles arc is a region of high seismic hazard, which results from the convergence of the American and Caribbean plates at 2cm/yr. Several earthquakes of magnitude ≥ 7 have struck the islands in the past. The largest ones (M 8+) occurred four years apart on January 11 1839 and February 8, 1843, offshore Martinique and Guadeloupe respectively. The 1843 event destroyed the town of Pointe-à-Pitre and killed several thousand people. It was probably a megathrust event. To better constrain the seismic hazard induced by this poorly known subduction interface, we have quantified the surface deformations of Lesser Antilles arc recorded by coral skeletons in Martinique and Guadeloupe. Certain coral species form microatolls, whose upwards growth is limited by the yearly lowest tides (Highest Level of Survival- HLS). They act as tide gauges and provide powerful tools to quantify with a precision of few centimeters the sea-level variations induced by tectonic or climatic processes at annual scale over several centuries. We identified several places where microatolls are growing on Martinique, Guadeloupe, Antigua and Barbuda Islands. Several reefs were first surveyed with low altitude helicopter flights. High-resolution aerial photographs were acquired by a drone in some areas, which allowed identifying sites featuring abundant microatolls. Accurate total station mapping of several sites showed that microatolls within the same area recorded the HLS with a precision of about 4±1cm. Several heads were sampled with a hydraulic chain saw along the eastern coast of Martinique and Guadeloupe. Most are Siderastrea Siderea or Diploria strigosa. Using sclerochronology combined with chemical analysis and U/Th dating, we have determined annual growth rates of 5 mm/yr for the former and of ~10mm/year for the latter. During the last two centuries, all microatolls sampled in Martinique recorded a local relative sea level (RSL) rise of ≈ 2-3 mm/yr, interrupted by sudden

  10. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume I P-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (I), all P-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 370 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4993, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  11. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume II P-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (II), all P-wave measurements are presented that were performed in Borehole C4996 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 360 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1180 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4996, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4996, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  12. Origin and early development of the Gulf of Mexico Basin based on 15-second record seismic in the Louisiana Shelf and Upper Slope

    SciTech Connect

    Hall, D.J.

    1996-09-01

    A 4x4 mile grid of new 15-second record seismic data covering the entire Louisiana shelf and upper slope reveals new insights into the deep structure of the Gulf of Mexico Basin. Noteworthy is the absence of evidence for major horst and graben basement faulting predicted in some models for the early Gulf under the shelf. Instead, the basement appears generally smooth, with a reasonably conformable early section 1 to 1.5 seconds thick immediately overlying it. This suggests either that the basement was formed as lower plate continental crust (in a simple shear detachment fault scenario, below the brittle-ductile crustal transition) or as oceanic crust similar to that observed under autochthonous salt in the Perdido fold belt. If the latter is correct, the edge of oceanic crust needed to reconstruct the sea-floor spreading history may nearly coincide with the current northern limit of the sub-salt hydrocarbon play, possibly because the play location depends on 3-4 km thick salt originally deposited in the area under the southern shelf. The southern limit of thick LouAnn salt is related to depositional factors (evaporation, oceanic circulation, etc.) rather than to underlying crustal type. An unresolved question is the nature of the section overlying the smooth basement event. Both deepwater Lower Cretaceous (chalks, marts ?) and Eagle Mills deepwater equivalents (shales) are plausible interpretations.

  13. Dynamic deformations of shallow sediments in the Valley of Mexico, Part I: Three-dimensional strains and rotations recorded on a seismic array

    USGS Publications Warehouse

    Bodin, P.; Gomberg, J.; Singh, S.K.; Santoyo, M.

    1997-01-01

    We study the spatial variation in earthquake ground motions, or equivalently the dynamic displacement gradient field, using a novel analysis procedure borrowed from geodesy. Seismic data recorded in the Valley of Mexico by a microarray of three three-component surface accelerographs and two three-component accelerographs at depths of 30 m and 102 m constrain our estimates of the dynamic displacement gradient field (from which strains and rotations derive) for four moderate earthquakes at distances of 250 to 300 km. Our study focuses on the effects of low-velocity surface materials on the deformation. At the surface, the gradients corresponding to deformation across vertical planes dominate, and vertical-axis rotations are of similar magnitudes as strains. The greatest peak surface gradient we observed was 206 ??strain for the 14 September 1995 Mw 7.5 earthquake at a distance of ???300 km. However, much larger gradients occur across horizontal planes (???u/???z, where u is a horizontal displacement and z is depth) at some depth between 0 and 30 m. These values are about a factor 10 greater than the corresponding gradient components at the surface, ???u/???z for the 14 September earthquake equaled or exceeded 665 ??strain at depth. The dynamic deformations experienced in Mexico City undoubtedly have occurred before and will occur again in other densely populated areas. However, in many other regions, the sediment response will not remain linear and elastic, resulting instead in liquefaction and ground failure.

  14. Long-Term Seismicity of Northern (15° N-60° N) Mid-Atlantic Ridge (MAR) Recorded by two Regional Hydrophone Arrays: a Widespread Along-Ridge Influence of the Azores and Iceland Hotspots

    NASA Astrophysics Data System (ADS)

    Goslin, J.; Bazin, S.; Dziak, R. P.; Fox, C.; Fowler, M.; Haxel, J.; Lourenco, N.; Luis, J.; Martin, C.; Matsumoto, H.; Perrot, J.; Royer, J.

    2004-12-01

    The seismicity of the North Atlantic was recorded by two networks of hydrophones moored in the SOFAR channel, north and south of the Azores Plateau. The interpretation of the hydro-acoustic signals recorded during the first six-month common period of operation of the two networks (June 2002 to Nov. 2002) provides a unique data set on the spatial and time distributions of the numerous low-magnitude earthquakes which occurred along the Mid-Atlantic Ridge. Close to 2000 events were localized during this six-month period between latitudes 15° N and 63° N, 501 of which are localized within the SIRENA network (40° N-51° N) and 692 within the wider South Azores network (17° N-33° N). Using hydrophones to locate seafloor earthquakes by interpreting T-wave signals lowers the detection threshold of Mid-Atlantic Ridge events to 3.0 mb from the 4.7 mb of global seismic networks. This represents an average thirty-fold increase in the number of events: 62 events were detected by global seismological networks within the same area during the same period. An along-ridge spatial distribution of the seismicity is obtained by computing the cumulated numbers of events in 1° -wide latitudinal bins. When plotted vs. latitude, this first-order distribution shows remarkable long-wavelength patterns: the seismicity rate is low when approaching the Azores and Iceland (reaching values as low as 10 events/d° ), while it peaks to 70 events/d° in the vicinity of the Gibbs FZ. Moreover, the latitudinal distribution of the seismicity hints at an asymmetric influence of the Azores hotpot on the MAR. Finally, the spatial distribution of the seismicity anti-correlates well at long wavelengths with the zero-age depths along the MAR and correlates with the zero-age Mantle Bouguer (MBA) anomaly values and the Vs velocity anomalies at 100 km in the upper mantle. It is thus proposed that the seismicity level would be partly tied to the rheology and thickness of the brittle layer and be thus

  15. Seismicity of the Equatorial Mid-Atlantic Ridge and its Large Offset Transforms recorded during a multi-year hydrophone array deployment

    NASA Astrophysics Data System (ADS)

    Smith, D. K.; Dziak, R. P.; Haxel, J.; Meyer, R. P.

    2015-12-01

    To increase our understanding of the slow-spreading, equatorial Mid-Atlantic Ridge (MAR), we deployed an array of eight autonomous hydrophones centered on the ridge axis between ~20°N and ~10°S. The hydrophones were deployed for 2+ years (500 Hz sample rate) and obtained a continuous record of the regional seismicity. This region is especially interesting for many reasons. A strongly segmented MAR is offset by some of the longest transform faults in the global oceans. In addition, the North America-South America-Africa (NA-SA-AF) triple junction is thought to be between 10°N and 20°N at the MAR, but its exact location is not well-defined. And finally, the NA-SA plate boundary is not clearly delineated by teleseismicity or prominent seafloor structures despite known relative motion between the plates. Seven of the eight hydrophones were recovered in January 2015 and earthquake location analysis is underway. These seismic data will be used to understand the modes of spreading, short-term earthquake predictability, and triple junction dynamics. In particular, we will use patterns in the earthquake data to address the following: 1) Whether long-lived detachment faults play a central role in accretion at the equatorial MAR similar to what is observed to the north (Escartin et al., 2008). 2) Whether foreshock sequences can be used to predict (retrospectively) earthquakes with magnitudes ≥ 5.4 mb on equatorial Atlantic transform faults as they can be on Pacific transforms (McGuire et al., 2005). A total of eighteen teleseismic earthquakes ≥ 5.4 mb occurred in this region during the hydrophone deployment providing a robust data base to test this foreshock precursor hypothesis. 3) Lastly, whether or not the geometry and crustal stress patterns induced by the NA-SA-AF triple junction are apparent in the earthquake data. If so, the earthquake patterns will help improve our understanding of triple junction dynamics and overall lithospheric strength.

  16. Seismic source study of the Racha-Dzhava (Georgia) earthquake from aftershocks and broad-band teleseismic body-wave records: An example of active nappe tectonics

    USGS Publications Warehouse

    Fuenzalida, H.; Rivera, L.; Haessler, H.; Legrand, D.; Philip, H.; Dorbath, L.; McCormack, D.; Arefiev, S.; Langer, C.; Cisternas, A.

    1997-01-01

    The Racha-Dzhava earthquake (Ms = 7.0) that occurred on 1991 April 29 at 09:12:48.1 GMT in the southern border of the Great Caucasus is the biggest event ever recorded in the region, stronger than the Spitak earthquake (Ms = 6.9) of 1988. A field expedition to the epicentral area was organised and a temporary seismic network of 37 stations was deployed to record the aftershock activity. A very precise image of the aftershock distribution is obtained, showing an elongated cloud oriented N105??, with one branch trending N310?? in the western part. The southernmost part extends over 80 km, with the depth ranging from 0 to 15 km, and dips north. The northern branch, which is about 30 km long, shows activity that ranges in depth from 5 to 15 km. The complex thrust dips northwards. A stress-tensor inversion from P-wave first-motion polarities shows a state of triaxial compression, with the major principal axis oriented roughly N-S, the minor principal axis being vertical. Body-waveform inversion of teleseismic seismograms was performed for the main shock, which can be divided into four subevents with a total rupture-time duration of 22 s. The most important part of the seismic moment was released by a gentle northerly dipping thrust. The model is consistent with the compressive tectonics of the region and is in agreement with the aftershock distribution and the stress tensor deduced from the aftershocks. The focal mechanisms of the three largest aftershocks were also inverted from body-wave records. The April 29th (Ms = 6.1) and May 5th (Ms = 5.4) aftershocks have thrust mechanisms on roughly E-W-oriented planes, similar to the main shock. Surprisingly, the June 15th (Ms = 6.2) aftershock shows a thrust fault striking N-S. This mechanism is explained by the structural control of the rupture along the east-dipping geometry of the Dzirula Massif close to the Borzhomi-Kazbeg strike-slip fault. In fact, the orientation and shape of the stress tensor produce a thrust on a N

  17. Volcanic tremor at Volcán de Colima, México recorded during May 2002 and its interactions with the seismic signals produced by low-energy explosive activity and rockfalls

    NASA Astrophysics Data System (ADS)

    Zobin, Vyacheslav M.; Reyes, Gabriel A.; Bretón, Mauricio

    2016-05-01

    The May 2002 eruption episode at Volcán de Colima, México represented the transition period between two stages of effusive activity which were characterized by the formation of lava flows. The short-period seismic signals, recorded during May 2002 at a distance of 1.6 km from the crater, were represented by volcanic tremor and the signals produced by low-energy explosions and rockfalls. Two types of volcanic tremor were recognized: harmonic with two fundamental spectral frequencies of 1.2-1.4 Hz and 1.6-1.7 Hz and non-harmonic. The existence of two fundamental frequencies of volcanic tremor may indicate a two-vent magmatic conduit. No clear relationship between the variations in the spectral content of tremor and occurrence of explosions was observed. The waveforms of the signals, produced by low-energy explosions and rockfalls and recorded on the background of volcanic tremor, were strongly modulated by the low-frequency harmonic tremor signals, forming, in this manner, pseudo-long period events. Fourier analysis of the seismic signals associated with low-energy explosions and rockfalls but recorded on the background of regular seismic noise indicated their high-frequency sources characterized by dominant frequencies within 2-3 Hz and 3-4.5 Hz, respectively.

  18. Geologic Applications of Seismic Scattering

    NASA Astrophysics Data System (ADS)

    Revenaugh, Justin

    Once disregarded as noise, scattered seismic waves are finding increasing application in subsurface imaging. This sea change is driven by the increasing density and quality of seismic recordings and advances in waveform modeling which, together, are allowing seismologists to exploit their unique properties. In addition to extensive application in the energy exploration industry, seismic scattering is now used to characterize heterogeneity in the lower continental crust and subcrustal lithosphere, to examine the relationship between crustal structure and seismogenesis, and to probe the plumbing of active volcanoes. In each application, the study of seismic scattering brings wavelength-scale structure into sharper focus and characterizes the short scale-length fabric of geology.

  19. Comparison of seismic sources for shallow seismic: sledgehammer and pyrotechnics

    NASA Astrophysics Data System (ADS)

    Brom, Aleksander; Stan-Kłeczek, Iwona

    2015-10-01

    The pyrotechnic materials are one of the types of the explosives materials which produce thermal, luminous or sound effects, gas, smoke and their combination as a result of a self-sustaining chemical reaction. Therefore, pyrotechnics can be used as a seismic source that is designed to release accumulated energy in a form of seismic wave recorded by tremor sensors (geophones) after its passage through the rock mass. The aim of this paper was to determine the utility of pyrotechnics for shallow seismic engineering. The work presented comparing the conventional method of seismic wave excitation for seismic refraction method like plate and hammer and activating of firecrackers on the surface. The energy released by various sources and frequency spectra was compared for the two types of sources. The obtained results did not determine which sources gave the better results but showed very interesting aspects of using pyrotechnics in seismic measurements for example the use of pyrotechnic materials in MASW.

  20. Martian seismicity

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.; Grimm, Robert E.

    1991-01-01

    The design and ultimate success of network seismology experiments on Mars depends on the present level of Martian seismicity. Volcanic and tectonic landforms observed from imaging experiments show that Mars must have been a seismically active planet in the past and there is no reason to discount the notion that Mars is seismically active today but at a lower level of activity. Models are explored for present day Mars seismicity. Depending on the sensitivity and geometry of a seismic network and the attenuation and scattering properties of the interior, it appears that a reasonable number of Martian seismic events would be detected over the period of a decade. The thermoelastic cooling mechanism as estimated is surely a lower bound, and a more refined estimate would take into account specifically the regional cooling of Tharsis and lead to a higher frequency of seismic events.

  1. Seismic monitoring of geomorphic processes

    NASA Astrophysics Data System (ADS)

    Burtin, A.; Hovius, N.; Turowski, J. M.

    2014-12-01

    In seismology, the signal is usually analysed for earthquake data, but these represent less than 1% of continuous recording. The remaining data are considered as seismic noise and were for a long time ignored. Over the past decades, the analysis of seismic noise has constantly increased in popularity, and this has led to develop new approaches and applications in geophysics. The study of continuous seismic records is now open to other disciplines, like geomorphology. The motion of mass at the Earth's surface generates seismic waves that are recorded by nearby seismometers and can be used to monitor its transfer through the landscape. Surface processes vary in nature, mechanism, magnitude and space and time, and this variability can be observed in the seismic signals. This contribution aims to give an overview of the development and current opportunities for the seismic monitoring of geomorphic processes. We first describe the common principles of seismic signal monitoring and introduce time-frequency analysis for the purpose of identification and differentiation of surface processes. Second, we present techniques to detect, locate and quantify geomorphic events. Third, we review the diverse layout of seismic arrays and highlight their advantages and limitations for specific processes, like slope or channel activity. Finally, we illustrate all these characteristics with the analysis of seismic data acquired in a small debris-flow catchment where geomorphic events show interactions and feedbacks. Further developments must aim to fully understand the richness of the continuous seismic signals, to better quantify the geomorphic activity and improve the performance of warning systems. Seismic monitoring may ultimately allow the continuous survey of erosion and transfer of sediments in the landscape on the scales of external forcing.

  2. Earthquake-induced soft-sediment deformations and seismically amplified erosion rates recorded in varved sediments of Köyceğiz Lake (SW Turkey)

    NASA Astrophysics Data System (ADS)

    Avşar, Ulaş; Jónsson, Sigurjón; Avşar, Özgür; Schmidt, Sabine

    2016-06-01

    Earthquake-triggered landslides amplify erosion rates in catchments, i.e., catchment response (CR) to seismic shocks. In addition to historical eyewitness accounts of muddy rivers implying CRs after large earthquakes, several studies have quantitatively reported increased sediment concentrations in rivers after earthquakes. However, only a few paleolimnological studies could detect CRs within lacustrine sedimentary sequences as siliciclastic-enriched intercalations within background sedimentation. Since siliciclastic-enriched intercalations can easily be of nonseismic origin, their temporal correlation with nearby earthquakes is crucial to assign a seismic triggering mechanism. In most cases, either uncertainties in dating methods or the lack of recent seismic activity has prevented reliable temporal correlations, making the seismic origin of observed sedimentary events questionable. Here we attempt to remove this question mark by presenting sedimentary traces of CRs in the 370-year-long varved sequence of Köyceğiz Lake (SW Turkey) that we compare with estimated peak ground acceleration (PGA) values of several nearby earthquakes. We find that earthquakes exceeding estimated PGA values of ~20 cm/s2 can induce soft-sediment deformations, while CRs seem only to be triggered by PGA levels higher than 70 cm/s2. In Köyceğiz Lake, CRs produce Cr- and Ni-enriched sedimentation due to the seismically mobilized soils derived from ultramafic rocks in the catchment. Given the varve chronology, the residence time of the seismically mobilized material in the catchment is determined to be 5 to 10 years.

  3. Seismic Catalogue and Seismic Network in Haiti

    NASA Astrophysics Data System (ADS)

    Belizaire, D.; Benito, B.; Carreño, E.; Meneses, C.; Huerfano, V.; Polanco, E.; McCormack, D.

    2013-05-01

    The destructive earthquake occurred on January 10, 2010 in Haiti, highlighted the lack of preparedness of the country to address seismic phenomena. At the moment of the earthquake, there was no seismic network operating in the country, and only a partial control of the past seismicity was possible, due to the absence of a national catalogue. After the 2010 earthquake, some advances began towards the installation of a national network and the elaboration of a seismic catalogue providing the necessary input for seismic Hazard Studies. This paper presents the state of the works carried out covering both aspects. First, a seismic catalogue has been built, compiling data of historical and instrumental events occurred in the Hispaniola Island and surroundings, in the frame of the SISMO-HAITI project, supported by the Technical University of Madrid (UPM) and Developed in cooperation with the Observatoire National de l'Environnement et de la Vulnérabilité of Haiti (ONEV). Data from different agencies all over the world were gathered, being relevant the role of the Dominican Republic and Puerto Rico seismological services which provides local data of their national networks. Almost 30000 events recorded in the area from 1551 till 2011 were compiled in a first catalogue, among them 7700 events with Mw ranges between 4.0 and 8.3. Since different magnitude scale were given by the different agencies (Ms, mb, MD, ML), this first catalogue was affected by important heterogeneity in the size parameter. Then it was homogenized to moment magnitude Mw using the empirical equations developed by Bonzoni et al (2011) for the eastern Caribbean. At present, this is the most exhaustive catalogue of the country, although it is difficult to assess its degree of completeness. Regarding the seismic network, 3 stations were installed just after the 2010 earthquake by the Canadian Government. The data were sent by telemetry thought the Canadian System CARINA. In 2012, the Spanish IGN together

  4. Seismic offset balancing

    SciTech Connect

    Ross, C.P.; Beale, P.L.

    1994-01-01

    The ability to successfully predict lithology and fluid content from reflection seismic records using AVO techniques is contingent upon accurate pre-analysis conditioning of the seismic data. However, all too often, residual amplitude effects remain after the many offset-dependent processing steps are completed. Residual amplitude effects often represent a significant error when compared to the amplitude variation with offset (AVO) response that the authors are attempting to quantify. They propose a model-based, offset-dependent amplitude balancing method that attempts to correct for these residuals and other errors due to sub-optimal processing. Seismic offset balancing attempts to quantify the relationship between the offset response of back-ground seismic reflections and corresponding theoretical predictions for average lithologic interfaces thought to cause these background reflections. It is assumed that any deviation from the theoretical response is a result of residual processing phenomenon and/or suboptimal processing, and a simple offset-dependent scaling function is designed to correct for these differences. This function can then be applied to seismic data over both prospective and nonprospective zones within an area where the theoretical values are appropriate and the seismic characteristics are consistent. A conservative application of the above procedure results in an AVO response over both gas sands and wet sands that is much closer to theoretically expected values. A case history from the Gulf of Mexico Flexure Trend is presented as an example to demonstrate the offset balancing technique.

  5. Seismic Ecology

    NASA Astrophysics Data System (ADS)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The paper is devoted to researches of influence of seismic actions for industrial and civil buildings and people. The seismic actions bring influence directly on the people (vibration actions, force shocks at earthquakes) or indirectly through various build- ings and the constructions and can be strong (be felt by people) and weak (be fixed by sensing devices). The great number of work is devoted to influence of violent seismic actions (first of all of earthquakes) on people and various constructions. This work is devoted to study weak, but long seismic actions on various buildings and people. There is a need to take into account seismic oscillations, acting on the territory, at construction of various buildings on urbanized territories. Essential influence, except for violent earthquakes, man-caused seismic actions: the explosions, seismic noise, emitted by plant facilities and moving transport, radiation from high-rise buildings and constructions under action of a wind, etc. can exert. Materials on increase of man- caused seismicity in a number of regions in Russia, which earlier were not seismic, are presented in the paper. Along with maps of seismic microzoning maps to be built indicating a variation of amplitude spectra of seismic noise within day, months, years. The presence of an information about amplitudes and frequencies of oscillations from possible earthquakes and man-caused oscillations in concrete regions allows carry- ing out soundly designing and construction of industrial and civil housing projects. The construction of buildings even in not seismically dangerous regions, which have one from resonance frequencies coincident on magnitude to frequency of oscillations, emitted in this place by man-caused objects, can end in failure of these buildings and heaviest consequences for the people. The practical examples of detail of engineering- seismological investigation of large industrial and civil housing projects of Siberia territory (hydro power

  6. Landslide seismic magnitude

    NASA Astrophysics Data System (ADS)

    Lin, C. H.; Jan, J. C.; Pu, H. C.; Tu, Y.; Chen, C. C.; Wu, Y. M.

    2015-11-01

    Landslides have become one of the most deadly natural disasters on earth, not only due to a significant increase in extreme climate change caused by global warming, but also rapid economic development in topographic relief areas. How to detect landslides using a real-time system has become an important question for reducing possible landslide impacts on human society. However, traditional detection of landslides, either through direct surveys in the field or remote sensing images obtained via aircraft or satellites, is highly time consuming. Here we analyze very long period seismic signals (20-50 s) generated by large landslides such as Typhoon Morakot, which passed though Taiwan in August 2009. In addition to successfully locating 109 large landslides, we define landslide seismic magnitude based on an empirical formula: Lm = log ⁡ (A) + 0.55 log ⁡ (Δ) + 2.44, where A is the maximum displacement (μm) recorded at one seismic station and Δ is its distance (km) from the landslide. We conclude that both the location and seismic magnitude of large landslides can be rapidly estimated from broadband seismic networks for both academic and applied purposes, similar to earthquake monitoring. We suggest a real-time algorithm be set up for routine monitoring of landslides in places where they pose a frequent threat.

  7. Seismic Data Gathering and Validation

    SciTech Connect

    Coleman, Justin

    2015-02-01

    Three recent earthquakes in the last seven years have exceeded their design basis earthquake values (so it is implied that damage to SSC’s should have occurred). These seismic events were recorded at North Anna (August 2011, detailed information provided in [Virginia Electric and Power Company Memo]), Fukushima Daichii and Daini (March 2011 [TEPCO 1]), and Kaswazaki-Kariwa (2007, [TEPCO 2]). However, seismic walk downs at some of these plants indicate that very little damage occurred to safety class systems and components due to the seismic motion. This report presents seismic data gathered for two of the three events mentioned above and recommends a path for using that data for two purposes. One purpose is to determine what margins exist in current industry standard seismic soil-structure interaction (SSI) tools. The second purpose is the use the data to validated seismic site response tools and SSI tools. The gathered data represents free field soil and in-structure acceleration time histories data. Gathered data also includes elastic and dynamic soil properties and structural drawings. Gathering data and comparing with existing models has potential to identify areas of uncertainty that should be removed from current seismic analysis and SPRA approaches. Removing uncertainty (to the extent possible) from SPRA’s will allow NPP owners to make decisions on where to reduce risk. Once a realistic understanding of seismic response is established for a nuclear power plant (NPP) then decisions on needed protective measures, such as SI, can be made.

  8. Progressive Seismic Failure, Seismic Gap, and Great Seismic Risk across the Densely Populated North China Basin

    NASA Astrophysics Data System (ADS)

    Yin, A.; Yu, X.; Shen, Z.

    2014-12-01

    Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.

  9. Structure of the North Anatolian Fault Zone from the Auto-Correlation of Ambient Seismic Noise Recorded at a Dense Seismometer Array

    NASA Astrophysics Data System (ADS)

    Taylor, D. G.; Rost, S.; Houseman, G.

    2015-12-01

    In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquake or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct reflection images for the entire crust and upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using auto-correlations of vertical and horizontal components of ground motion, both P- and S-wave velocity information can be retrieved from the wavefield to constrain crustal structure further to established methods. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the fault zone in the region. The combined analysis of auto-correlations using vertical and horizontal components will lead to further insight into the fault zone structure throughout the crust and upper mantle.

  10. Seismic seiches

    USGS Publications Warehouse

    McGarr, Arthur; Gupta, Harsh K.

    2011-01-01

    Seismic seiche is a term first used by Kvale (1955) to discuss oscillations of lake levels in Norway and England caused by the Assam earthquake of August 15, 1950. This definition has since been generalized to apply to standing waves set up in closed, or partially closed, bodies of water including rivers, shipping channels, lakes, swimming pools and tanks due to the passage of seismic waves from an earthquake.

  11. Offshore double-planed shallow seismic zone in the NE Japan forearc region revealed by sP depth phases recorded by regional networks

    USGS Publications Warehouse

    Gamage, S.S.N.; Umino, N.; Hasegawa, A.; Kirby, S.H.

    2009-01-01

    We detected the sP depth phase at small epicentral distances of about 150 km or more in the seismograms of shallow earthquakes in the NE Japan forearc region. The focal depths of 1078 M > 3 earthquakes that occurred from 2000 to 2006 were precisely determined using the time delay of the sP phase from the initial P-wave arrival. The distribution of relocated hypocentres clearly shows the configuration of a double-planed shallow seismic zone beneath the Pacific Ocean. The upper plane has a low dip angle near the Japan Trench, increasing gradually to ???30?? at approximately 100 km landward of the Japan Trench. The lower plane is approximately parallel to the upper plane, and appears to be the near-trench counterpart of the lower plane of the double-planed deep seismic zone beneath the land area. The distance between the upper and lower planes is 28-32 km, which is approximately the same as or slightly smaller than that of the double-planed deep seismic zone beneath the land area. Focal mechanism solutions of the relocated earthquakes are determined from P-wave initial motion data. Although P-wave initial motion data for these offshore events are not ideally distributed on the focal sphere, we found that the upper-plane events that occur near the Japan Trench are characterized by normal faulting, whereas lower-plane events are characterized by thrust faulting. This focal mechanism distribution is the opposite to that of the double-planed deep seismic zone beneath the land area. The characteristics of these focal mechanisms for the shallow and deep doubled-planed seismic zones can be explained by a bending-unbending model of the subducting Pacific plate. Some of relocated earthquakes took place in the source area of the 1933 Mw8.4 Sanriku earthquake at depths of 10-23 km. The available focal mechanisms for these events are characterized by normal faulting. Given that the 1933 event was a large normal-fault event that occurred along a fault plane dipping landward, the

  12. Continuous H/V Spectral Ratio Analysis of Ambient Noise Recorded by Stationary Seismic Stations to Improve Microzonation Results Obtained by Mobile Stations

    NASA Astrophysics Data System (ADS)

    Van Noten, K.; Lecocq, T.; Meyer, L.; Molron, J.; Camelbeeck, T.

    2015-12-01

    Estimating the resonance frequency and amplification factor of unconsolidated sediments by H/V spectral ratio (HVSR) analysis of seismic ambient noise has been widely used since Nakamura's proposal in 1989. The fundamental frequency (f0) usually correlates well with the thickness of unconsolidated sediments above the bedrock. To measure f0 properly, Nakamura suggested to perform microzonation surveys at night when the artificial microtremor is small and does not fully disrupt the ambient seismic noise. As nightly fieldwork is not always a reasonable demand, we propose an alternative workflow of Nakamura's technique to improve the quality of HVSR results obtained by ambient noise measurements of mobile stations during the day. This new workflow includes the automated H/V calculation of one year of continuous seismic data of a stationary/permanent station located nearby the sites selected for microzonation. By means of an automated python script, the daily, weekly, monthly and seasonally variations of the fundamental frequency and the H/V amplitude at the site where the stationary station is installed are evaluated. Continuous HVSR analysis of sites with constant bedrock depth shows that the changes in the determined f0 and H/V amplitude are dominantly caused by the human behaviour which is stored in the ambient seismic noise (e.g. later onset of traffic in a weekend, quiet Sundays, differences between daily/nightly activity,…). This continuous analysis allows the characterisation of the deviation of the measured f0 to the true f0 throughout the whole year! Consequently, as mobile stations are affected by the same variation of the ambient noise, a correction factor can be applied on the calculated f0 of individual measurements during the microzonation survey and a proper Vs can be estimated. In this presentation, we apply this workflow to two different case studies; i.e. a rural site with a shallow bedrock depth of 30 m and an urban site (Brussels, capital of

  13. Offshore double-planed shallow seismic zone in the NE Japan forearc region revealed by sP depth phases recorded by regional networks

    NASA Astrophysics Data System (ADS)

    Gamage, Shantha S. N.; Umino, Norihito; Hasegawa, Akira; Kirby, Stephen H.

    2009-07-01

    We detected the sP depth phase at small epicentral distances of about 150 km or more in the seismograms of shallow earthquakes in the NE Japan forearc region. The focal depths of 1078 M > 3 earthquakes that occurred from 2000 to 2006 were precisely determined using the time delay of the sP phase from the initial P-wave arrival. The distribution of relocated hypocentres clearly shows the configuration of a double-planed shallow seismic zone beneath the Pacific Ocean. The upper plane has a low dip angle near the Japan Trench, increasing gradually to ~30° at approximately 100 km landward of the Japan Trench. The lower plane is approximately parallel to the upper plane, and appears to be the near-trench counterpart of the lower plane of the double-planed deep seismic zone beneath the land area. The distance between the upper and lower planes is 28-32 km, which is approximately the same as or slightly smaller than that of the double-planed deep seismic zone beneath the land area. Focal mechanism solutions of the relocated earthquakes are determined from P-wave initial motion data. Although P-wave initial motion data for these offshore events are not ideally distributed on the focal sphere, we found that the upper-plane events that occur near the Japan Trench are characterized by normal faulting, whereas lower-plane events are characterized by thrust faulting. This focal mechanism distribution is the opposite to that of the double-planed deep seismic zone beneath the land area. The characteristics of these focal mechanisms for the shallow and deep doubled-planed seismic zones can be explained by a bending-unbending model of the subducting Pacific plate. Some of relocated earthquakes took place in the source area of the 1933 Mw8.4 Sanriku earthquake at depths of 10-23 km. The available focal mechanisms for these events are characterized by normal faulting. Given that the 1933 event was a large normal-fault event that occurred along a fault plane dipping landward, the

  14. Seismic bearing

    NASA Astrophysics Data System (ADS)

    Power, Dennis

    2009-05-01

    Textron Systems (Textron) has been using geophones for target detection for many years. This sensing capability was utilized for detection and classification purposes only. Recently Textron has been evaluating multiaxis geophones to calculate bearings and track targets more specifically personnel. This capability will not only aid the system in locating personnel in bearing space or cartesian space but also enhance detection and reduce false alarms. Textron has been involved in the testing and evaluation of several sensors at multiple sites. One of the challenges of calculating seismic bearing is an adequate signal to noise ratio. The sensor signal to noise ratio is a function of sensor coupling to the ground, seismic propagation and range to target. The goals of testing at multiple sites are to gain a good understanding of the maximum and minimum ranges for bearing and detection and to exploit that information to tailor sensor system emplacement to achieve desired performance. Test sites include 10A Site Devens, MA, McKenna Airfield Ft. Benning, GA and Yuma Proving Ground Yuma, AZ. Geophone sensors evaluated include a 28 Hz triax spike, a 15 Hz triax spike and a hybrid triax spike consisting of a 10 Hz vertical geophone and two 28 Hz horizontal geophones. The algorithm uses raw seismic data to calculate the bearings. All evaluated sensors have triaxial geophone configuration mounted to a spike housing/fixture. The suite of sensors also compares various types of geophones to evaluate benefits in lower bandwidth. The data products of these tests include raw geophone signals, seismic features, seismic bearings, seismic detection and GPS position truth data. The analyses produce Probability of Detection vs range, bearing accuracy vs range, and seismic feature level vs range. These analysis products are compared across test sites and sensor types.

  15. Induced Seismicity Monitoring System

    NASA Astrophysics Data System (ADS)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  16. Long-term deformation of the Lesser Antilles arc recorded by Late Pleistocene carbonate platforms: questioning our present knowledge of the megathrust seismic behavior.

    NASA Astrophysics Data System (ADS)

    Leclerc, F.; Feuillet, N.; Weil Accardo, J.; Cabioch, G.; Bazin, S.; Beauducel, F.; Boudon, G.; Deplus, C.; Deschamps, P.; De Min, L.; Jacques, E.; Jean-Frederic, L.; Le Friant, A.; Mélézan, D.; Meriaux, A. S. B.; Perret, M.; Perron, J. T.; Philibosian, B.; Saurel, J. M. M.

    2015-12-01

    The Lesser Antilles subduction zone is relatively seismically quiet, hasn't produced M8+ earthquake since the 19th century and recent geodetic studies indicate that it is presently weakly coupled. However, the islands of the forearc are being uplifted since at least 330 ka, at rates of several tenths of m/ka, due to subduction processes. In order to understand the long-term deformation of the Caribbean margin in this subduction context, we aimed at characterizing and quantifying the along-dip and along-strike pattern of the deformation. Through carbonate platform morphology and stratigraphy studies and modeling, offshore the volcanic arc islands of Les Saintes and Martinique, we show that these reef platforms are composed of multi-superimposed sea-level highstand deposits separated by subaerial exposure surfaces formed during sea-level low stands. This stratigraphy is typical of drowning carbonate platforms and we estimated the subsidence rate of these platforms to be of few tenths of m/ka. By summarizing the previous studies, we picture the vertical deformation pattern along and across the Lesser Antilles arc for the MIS5 highstand deposit. We discuss the different potential processes capable of driving this deformation, such as crustal faulting, volcanism and subducting ridges that have only local effects on the deformation pattern. Finally, we examine the implications of our results for the megathrust. Long-term deformations in the Lesser Antilles, but also seismic cycle-induced deformations, challenge our understanding of the megathrust seismic behavior and indicate that the state of coupling of the megathrust is most probably transient over time in order to sustain these deformation.

  17. Newberry Seismic Deployment Fieldwork Report

    SciTech Connect

    Wang, J; Templeton, D C

    2012-03-21

    This report summarizes the seismic deployment of Lawrence Livermore National Laboratory (LLNL) Geotech GS-13 short-period seismometers at the Newberry Enhanced Geothermal System (EGS) Demonstration site located in Central Oregon. This Department of Energy (DOE) demonstration project is managed by AltaRock Energy Inc. AltaRock Energy had previously deployed Geospace GS-11D geophones at the Newberry EGS Demonstration site, however the quality of the seismic data was somewhat low. The purpose of the LLNL deployment was to install more sensitive sensors which would record higher quality seismic data for use in future seismic studies, such as ambient noise correlation, matched field processing earthquake detection studies, and general EGS microearthquake studies. For the LLNL deployment, seven three-component seismic stations were installed around the proposed AltaRock Energy stimulation well. The LLNL seismic sensors were connected to AltaRock Energy Gueralp CMG-DM24 digitizers, which are powered by AltaRock Energy solar panels and batteries. The deployment took four days in two phases. In phase I, the sites were identified, a cavity approximately 3 feet deep was dug and a flat concrete pad oriented to true North was made for each site. In phase II, we installed three single component GS-13 seismometers at each site, quality controlled the data to ensure that each station was recording data properly, and filled in each cavity with native soil.

  18. seismicity and seismotectonics of Libya

    NASA Astrophysics Data System (ADS)

    Ben Suleman, abdunnur

    2015-04-01

    Libya, located at the central Mediterranean margin of the African shield, underwent many episodes of orogenic activity that shaped its geological setting. The present day deformation of Libya is the result of the Eurasia-Africa continental collision. The tectonic evolution of Libya has yielded a complex crustal structure that is composed of a series of basins and uplifts. This study aims to explain in detail the seismicity and seismotectonics of Libya using new data recorded by the recently established Libyan National Seismograph Network (LNSN) incorporating other available geophysical and geological information. Detailed investigations of the Libyan seismicity indicates that Libya has experienced earthquakes of varying magnitudes The seismic activity of Libya shows dominant trends of Seismicity with most of the seismic activity concentrated along the northern coastal areas. Four major clusters of Seismicity were quit noticeable. Fault plane solution was estimated for 20 earthquakes recorded by the Libyan National Seismograph Network in northwestern and northeastern Libya. Results of fault plane solution suggest that normal faulting was dominant in the westernmost part of Libya; strike slip faulting was dominant in northern-central part of Libya. The northern-eastern part of the country suggests that dip-dip faulting were more prevalent.

  19. Seismic Studies

    SciTech Connect

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at

  20. Functional performance requirements for seismic network upgrade

    SciTech Connect

    Lee, R.C.

    1991-08-18

    The SRL seismic network, established in 1976, was developed to monitor site and regional seismic activity that may have any potential to impact the safety or reduce containment capability of existing and planned structures and systems at the SRS, report seismic activity that may be relevant to emergency preparedness, including rapid assessments of earthquake location and magnitude, and estimates of potential on-site and off-site damage to facilities and lifelines for mitigation measures. All of these tasks require SRL seismologists to provide rapid analysis of large amounts of seismic data. The current seismic network upgrade, the subject of this Functional Performance Requirements Document, is necessary to improve system reliability and resolution. The upgrade provides equipment for the analysis of the network seismic data and replacement of old out-dated equipment. The digital network upgrade is configured for field station and laboratory digital processing systems. The upgrade consists of the purchase and installation of seismic sensors,, data telemetry digital upgrades, a dedicated Seismic Data Processing (SDP) system (already in procurement stage), and a Seismic Signal Analysis (SSA) system. The field stations and telephone telemetry upgrades include equipment necessary for three remote station upgrades including seismic amplifiers, voltage controlled oscillators, pulse calibrators, weather protection (including lightning protection) systems, seismometers, seismic amplifiers, and miscellaneous other parts. The central receiving and recording station upgrades will include discriminators, helicopter amplifier, omega timing system, strong motion instruments, wide-band velocity sensors, and other miscellaneous equipment.

  1. Probabilistic Simulation of Territorial Seismic Scenarios

    SciTech Connect

    Baratta, Alessandro; Corbi, Ileana

    2008-07-08

    The paper is focused on a stochastic process for the prevision of seismic scenarios on the territory and developed by means of some basic assumptions in the procedure and by elaborating the fundamental parameters recorded during some ground motions occurred in a seismic area.

  2. Ancient seismic record of the Tarascan (Purhepecha) Empire. Preclasic Period (3000 Yr B.P.). Jaracuaro Island, Patzcuaro Lake. Michoacan, Mexico

    NASA Astrophysics Data System (ADS)

    Rodriguez Pascua, Miguel Angel; Garduño-Monroy, Victor Hugo; Perez-Lopez, Raul; Israde-Alcantara, Isabel

    2010-05-01

    The Pátzcuaro lake is located in the Mexican State of Michoacán in the Transmexican Volcanic Belt. The Jarácuaro island is formed by Holocene lake sediments highly deformed by active faults (Morelia-Acambay Fault System, MAFS, more than 200 km long). MAFS is an E-W strike-slip fault with a transtensive component in the Pázcuaro Lake zone. Several paleoseismic studies were carried out in the island. Four trenches were made in the active faults that cross the island and it is possible observe that there are two andesitic blocks (>4 m3) over two different faults with surface rupture. The archaeological evidences (pottery, idols, etc), founded in the soils affected by the fault, implies that the age of the events concern to the Pre - Classic period (3.000 years B.P.).The Tarascan (or Purhépecha) Empire supported this earthquakes and put the blocks close both faults on the hanging wall block. The andesitic blocks are carved and polished and the quarry where this blocks were extracted is 1.5 km long out the lake. This cultural behaviour was profusely used by the Tarascan related to natural disasters but not documented before related to earthquakes. Maybe this is ones of the oldest human seismic manifestation, and is the first time that is connected a fault with a seismic movement.

  3. Seismicity in South Carolina

    USGS Publications Warehouse

    Shedlock, K.M.

    1988-01-01

    The largest historical earthquake in South Carolina, and in the southeastern US, occurred in the Coastal Plain province, probably northwest of Charleston, in 1886. Locations for aftershocks associated with this earthquake, estimated using intensities based on newspaper accounts, defined a northwest trending zone about 250 km long that was at least 100 km wide in the Coastal Plain but widened to a northeast trending zone in the Piedmont. The subsequent historical and instrumentally recorded seismicity in South Carolina images the 1886 aftershock zone. Instrumentally recorded seismicity in the Coastal Plain province occurs in 3 seismic zones or clusters: Middleton Place-Summervile (MPSSZ), Adams Run (ARC), and Bowman (BSZ). Approximately 68% of the Coastal Plain earthquakes occur in the MPSSZ, a north trending zone about 22 km long and 12 km wide, lying about 20 km northwest of Charleston. The hypocenters of MPSSZ earthquakes range in depth from near the surface to almost 12 km. Thrust, strike-slip, and some normal faulting are indicated by the fault plane solutions for Coastal Plain earthquakes. The maximum horizontal compressive stress, inferred from the P-axes of the fault plane solutions, is oriented NE-SW in the shallow crust (<9 km deep) but appears to be diffusely E-W between 9 to 12 km deep. -from Author

  4. Seismic Tomography.

    ERIC Educational Resources Information Center

    Anderson, Don L.; Dziewonski, Adam M.

    1984-01-01

    Describes how seismic tomography is used to analyze the waves produced by earthquakes. The information obtained from the procedure can then be used to map the earth's mantle in three dimensions. The resulting maps are then studied to determine such information as the convective flow that propels the crustal plates. (JN)

  5. Quarterly seismic monitoring report 96B

    SciTech Connect

    Reidel, S.P.

    1996-06-12

    This report summarizes the location, magnitude, and other pertinent information on earthquakes recorded on and near the Hanford Site by Westinghouse Seismic Monitoring during the period encompassing January 1, 1996 to March 31, 1996.

  6. New seismic study begins in Puerto Rico

    USGS Publications Warehouse

    Tarr, A.C.

    1974-01-01

    A new seismological project is now underway in Puerto Rico to provide information needed for accurate assessment of the island's seismic hazard. The project should also help to increase understanding of the tectonics and geologic evolution of the Caribbean region. The Puerto Rico Seismic Program is being conducted by the Geological Survey with support provided by the Puerto Rico Water Resources Authority, an agency responsible for generation and distribution of electric power throughout the Commonwealth. The Program will include the installation of a network of high quality seismograph stations to monitor seismic activity on and around Puerto Rico. These stations will be distributed across the island to record the seismicity as uniformly as possible. The detection and accurate location of small earthquakes, as well as moderate magnitude shocks, will aid in mapping active seismic zones and in compiling frequency of occurrence statistics which ultimately wil be useful in seismic risk-zoning of hte island. 

  7. Seismic monitoring of torrential and fluvial processes

    NASA Astrophysics Data System (ADS)

    Burtin, Arnaud; Hovius, Niels; Turowski, Jens M.

    2016-04-01

    In seismology, the signal is usually analysed for earthquake data, but earthquakes represent less than 1 % of continuous recording. The remaining data are considered as seismic noise and were for a long time ignored. Over the past decades, the analysis of seismic noise has constantly increased in popularity, and this has led to the development of new approaches and applications in geophysics. The study of continuous seismic records is now open to other disciplines, like geomorphology. The motion of mass at the Earth's surface generates seismic waves that are recorded by nearby seismometers and can be used to monitor mass transfer throughout the landscape. Surface processes vary in nature, mechanism, magnitude, space and time, and this variability can be observed in the seismic signals. This contribution gives an overview of the development and current opportunities for the seismic monitoring of geomorphic processes. We first describe the common principles of seismic signal monitoring and introduce time-frequency analysis for the purpose of identification and differentiation of surface processes. Second, we present techniques to detect, locate and quantify geomorphic events. Third, we review the diverse layout of seismic arrays and highlight their advantages and limitations for specific processes, like slope or channel activity. Finally, we illustrate all these characteristics with the analysis of seismic data acquired in a small debris-flow catchment where geomorphic events show interactions and feedbacks. Further developments must aim to fully understand the richness of the continuous seismic signals, to better quantify the geomorphic activity and to improve the performance of warning systems. Seismic monitoring may ultimately allow the continuous survey of erosion and transfer of sediments in the landscape on the scales of external forcing.

  8. Updated Colombian Seismic Hazard Map

    NASA Astrophysics Data System (ADS)

    Eraso, J.; Arcila, M.; Romero, J.; Dimate, C.; Bermúdez, M. L.; Alvarado, C.

    2013-05-01

    The Colombian seismic hazard map used by the National Building Code (NSR-98) in effect until 2009 was developed in 1996. Since then, the National Seismological Network of Colombia has improved in both coverage and technology providing fifteen years of additional seismic records. These improvements have allowed a better understanding of the regional geology and tectonics which in addition to the seismic activity in Colombia with destructive effects has motivated the interest and the need to develop a new seismic hazard assessment in this country. Taking advantage of new instrumental information sources such as new broad band stations of the National Seismological Network, new historical seismicity data, standardized global databases availability, and in general, of advances in models and techniques, a new Colombian seismic hazard map was developed. A PSHA model was applied. The use of the PSHA model is because it incorporates the effects of all seismic sources that may affect a particular site solving the uncertainties caused by the parameters and assumptions defined in this kind of studies. First, the seismic sources geometry and a complete and homogeneous seismic catalog were defined; the parameters of seismic rate of each one of the seismic sources occurrence were calculated establishing a national seismotectonic model. Several of attenuation-distance relationships were selected depending on the type of seismicity considered. The seismic hazard was estimated using the CRISIS2007 software created by the Engineering Institute of the Universidad Nacional Autónoma de México -UNAM (National Autonomous University of Mexico). A uniformly spaced grid each 0.1° was used to calculate the peak ground acceleration (PGA) and response spectral values at 0.1, 0.2, 0.3, 0.5, 0.75, 1, 1.5, 2, 2.5 and 3.0 seconds with return periods of 75, 225, 475, 975 and 2475 years. For each site, a uniform hazard spectrum and exceedance rate curves were calculated. With the results, it is

  9. Investigating the coastal paleo-seismic and paleo-tsunami records using vermetid benches in the Eastern Mediterranean: case of the Palm Islands reserve -Lebanon.

    NASA Astrophysics Data System (ADS)

    Elias, A.

    2014-12-01

    The vermetid benches or reefs are thick bio-constructions of marine shells of the Vermetidae group that thrive at sea-level and are used as proxy for crustal tectonic deformation, sea-level changes, paleoclimate reconstruction or paleo-Tsunami markers in different regions especially around the Mediterranean Sea. The Palm Islands Reserve located 5km offshore northern Lebanon in the Eastern Mediterranean, on the hanging wall of a submarine, active thrust fault - the Rankine-Abdeh fault - hold abundant vermetid bio-constructions that are still relatively well preserved. It is an exceptional site for testing and investigating hypothesis on the use of the vermetid benches. We surveyed the surface and shorelines of the Palm Island, the largest of the Islands. The fossil vermetid bio-constructions are present as uplifted benches on its northern side. Also, many of the large boulders mostly found on the south-western shore of the islands still hold vermetid bio-constructions originally from the intertidal position before the boulders were uplifted and thrown over the surface of the island away from the shoreline by powerful waves. Two continuous vertical sections of these bio-constructions, 7 and 13cm thick were sampled for radiocarbon dating. Of the 21 large boulders we surveyed 10 had their vermetid crusts sampled for 14C dating. Their measured radiocarbon ages are spread over many centuries and do not cluster around any single date that could correspond with that of a tsunami or storm event responsible for their transport. On another hand the radiocarbon ages from the uplifted benches show that the last co-seismic rupture of the underlying and offshore Rankine-Abdeh thrust took place after the 9th century AD and resulted in the tectonic uplift of the Palm Islands shoreline, by around 80cm. Interpretation of the morphology and ages of the vermetid bio-constructions found on the overthrown boulders suggest that another such co-seismic event happened towards the end of the

  10. Seismic assessment of buried pipelines

    SciTech Connect

    Al-Chaar, G.; Brady, P.; Fernandez, G.

    1995-12-31

    A structure and its lifelines are closely linked because the disruption of lifeline systems will obstruct emergency service functions that are vitally needed after an earthquake. As an example of the criticality of these systems, the Association of Bay Area Government (ABAG) recorded thousands of leaks in pipelines that resulted in more than twenty million gallons of hazardous materials being released in several recorded earthquakes. The cost of cleaning the spills from these materials was very high. This information supports the development of seismic protection of lifeline systems. The US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL) has, among its missions, the responsibility to develop seismic vulnerability assessment procedures for military installations. Within this mission, a preliminary research program to assess the seismic vulnerability of buried pipeline systems on military installations was initiated. Phase 1 of this research project resulted in two major studies. In the first, evaluating current procedures to seismically design or evaluate existing lifeline systems, the authors found several significant aspects that deserve special consideration and need to be addressed in future research. The second was focused on identifying parameters related to buried pipeline system vulnerability and developing a generalized analytical method to relate these parameters to the seismic vulnerability assessment of existing pipeline systems.

  11. Seismic azimuthal anisotropy in the oceanic lithosphere and asthenosphere from broadband surface wave analysis of OBS array records at 60 Ma seafloor

    NASA Astrophysics Data System (ADS)

    Takeo, A.; Kawakatsu, H.; Isse, T.; Nishida, K.; Sugioka, H.; Ito, A.; Shiobara, H.; Suetsugu, D.

    2016-03-01

    We analyzed seismic ambient noise and teleseismic waveforms of nine broadband ocean bottom seismometers deployed at a 60 Ma seafloor in the southeastward of Tahiti island, the South Pacific, by the Tomographic Investigation by seafloor ARray Experiment for the Society hotspot project. We first obtained one-dimensional shear wave velocity model beneath the array from average phase velocities of Rayleigh waves at a broadband period range of 5-200 s. The obtained model shows a large velocity reduction at depths between 40 and 80 km, where the lithosphere-asthenosphere boundary might exist. We then estimated shear wave azimuthal anisotropy at depths of 20-100 km by measuring azimuthal dependence of phase velocities of Rayleigh waves. The obtained model shows peak-to-peak intensity of the azimuthal anisotropy of 2%-4% with the fastest azimuth of NW-SE direction both in the lithosphere and asthenosphere. This result suggests that the ancient flow frozen in the lithosphere is not perpendicular to the strike of the ancient mid-ocean ridge but is roughly parallel to the ancient plate motion at depths of 20-60 km. The fastest azimuths in the current asthenosphere are subparallel to current plate motion at depths of 60-100 km. Additional shear wave splitting analysis revealed possible perturbations of flow in the mantle by the hot spot activities and implied the presence of azimuthal anisotropy in the asthenosphere down to a depth of 190-210 km.

  12. Constraining shallow slip and tsunami excitation in megathrust ruptures using seismic and ocean acoustic waves recorded on ocean-bottom sensor networks

    NASA Astrophysics Data System (ADS)

    Kozdon, Jeremy E.; Dunham, Eric M.

    2014-06-01

    Great earthquakes along subduction-zone plate boundaries, like the 2011 magnitude 9.0 Tohoku-Oki, Japan, event, deform the seafloor to generate massive tsunamis. Tsunami wave heights near shore are greatest when excitation occurs far offshore near the trench, where water depths are greatest and fault slip is shallow. The Tohoku event, featuring over 30 m of slip near the trench, exemplifies this hazard. Unfortunately the rupture process that far offshore is poorly constrained with land-based geodetic and even most seafloor deformation measurements, and seismic inferences of shallow slip are often nonunique. Here we demonstrate, through dynamic rupture simulations of the Tohoku event, that long-period guided waves in the ocean (specifically, leaking oceanic P-wave modes known as PL waves) can resolve the shallow rupture process and tsunami excitation near the trench. With predicted pressure changes of ∼0.1-1 MPa along most of the seafloor landward of the trench, and periods of several seconds, these PL waves should be observable with ocean-bottom pressure sensors and/or seismometers. With cabled sensor networks like those being deployed offshore Japan and in other subduction zones, these waves could be used to rapidly quantify shallow slip and near-trench seafloor uplift and improve local tsunami early warning systems.

  13. Method for interpreting seismic records to yield indications of gas/oil in an earth formation such as a sandstone, limestone, or dolostone

    SciTech Connect

    Brown, R.J.; Runge, R.J.; Thompson, D.D.

    1983-02-22

    The present invention indicates that acoustic characteristics associated with gas/oil-containing strata such as a sandstone, limestone or dolostone, including reflectivity coefficients can be normalized (and favorably compared) with similar characteristics calculated and displayed by means of a machineimplemented data processing method in which well logging and geologic data are fed thereto to calculate such characteristics without the need for shear-wave velocities. In more detail, in accordance with the invention brine-saturated bulk and shear moduli, (i.e., kw* and gw*) of a sandstone, limestone or dolostone can be predicted as a function of, say, brine-saturated p-wave modulus (pw*) alone (Independent of shearwave velocity). In that way, resulting acoustic values including seismic velocities and amplitudes (also, reflectivities) as a function of a saturation operator can ultimately be provided. Such values, when compared to actual field-generated characteristics, are surprisingly accurate predictors of the amount of gas/oil saturation in the zone of interest. The method has particular accuracy in designating gas zones within formations of interest due to use of the complete Benedict-Webb-Rubin non-ideal gas law in pseudo-reduced form, as cited in Journal of Current Petroleum Technology, Vol. 22, pp. 889-895.

  14. Tests of the standard (30 hz) NCER FM multiplex telemetry system, augmented by two timing channels and a compensation reference signal, used to record multiplexed seismic network data on magnetic tape

    USGS Publications Warehouse

    Eaton, Jerry P.

    1976-01-01

    The application of subtractive compensation to USGS seismic magnetic tape recording and playback systems was examined in a recent USGS Open-file report (1). It was found, for the standard (30 Hz) NCER multiplex system, that subtractive compensation utilizing a 4688 Hz reference signal multiplexed onto each data track was more effective than that utilizing a 3125 Hz reference signal recorded separately on a different track. Moreover, it was found that the portion of the spectrum between the uppermost data channel (3060 Hz + or - 125 Hz) and the compensation reference signal (4688 Hz) could be used to record an additional timing signal, with a center frequency of 3700 Hz and a broader playback bandwidth (ca 0 to 100 Hz) than that of the standard data channels. Accordingly, for the tests described in that report, the standard 8-datachannel multiplex system was augmented by one additional timing channel with a center frequency of 3700 Hz. The 3700 Hz discriminator used in those tests was not successfully set up to utilize subtractive compensation; so its output from a tape playback was quite noisy. Subsequently, further tests have been carried out on the application of subtractive compensation to a 4-channel broad-band multiplex system and to the standard multiplex system, both recorded on field tape recorders with relatively poor tape speed control (2), (3). In the course of these experiments, it was discovered that two separate timing channe1s, not just one, can be inserted between the uppermost data channel and the compensation reference signal, Furthermore, it was possible to adjust the discriminators used to playback these timing channels so that they profited significantly from subtractive compensation even though the playback bandwidth was 0 to 100 Hz (for short rise times of square wave timing signals). The advantages of recording two timing signals on each data track include: 1) one standard time signal to be used for critical timing, e.g. IRIG E, can be

  15. Seismic Imager Space Telescope

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; Ampuero, Jean Paul; Leprince, Sebastien; Michel, Remi

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  16. Long-range seismic recording of the MISTY PICTURE high-explosive test, White Sands Missile Range, New Mexico. Environmental research papers, February 1987-February 1988

    SciTech Connect

    Cipar, J.

    1988-02-04

    The Solid Earth Geophysics Branch of the Air Force Geophysics Laboratory recorded the MISTY PICTURE high-explosive test at nine sites in the Tularosa Basin of southern New Mexico. Each site consisted of a three-component seismometer set and a digital-event recorder. The stations were due south of the explosion between 95 and 127 km. Analysis of P-wave travel times indicates that the crust is 30-32 km thick beneath the Tularosa Basin, a side graben of the Rio Grande Rift. S-wave travel times are consistent with earlier surface-wave results. Polarization analysis indicates complex scattered and converted energy between the P- and S-wave groups.

  17. Building a Smartphone Seismic Network

    NASA Astrophysics Data System (ADS)

    Kong, Q.; Allen, R. M.

    2013-12-01

    We are exploring to build a new type of seismic network by using the smartphones. The accelerometers in smartphones can be used to record earthquakes, the GPS unit can give an accurate location, and the built-in communication unit makes the communication easier for this network. In the future, these smartphones may work as a supplement network to the current traditional network for scientific research and real-time applications. In order to build this network, we developed an application for android phones and server to record the acceleration in real time. These records can be sent back to a server in real time, and analyzed at the server. We evaluated the performance of the smartphone as a seismic recording instrument by comparing them with high quality accelerometer while located on controlled shake tables for a variety of tests, and also the noise floor test. Based on the daily human activity data recorded by the volunteers and the shake table tests data, we also developed algorithm for the smartphones to detect earthquakes from daily human activities. These all form the basis of setting up a new prototype smartphone seismic network in the near future.

  18. Seismic instrumentation of buildings

    USGS Publications Warehouse

    Çelebi, Mehmet

    2000-01-01

    The purpose of this report is to provide information on how and why we deploy seismic instruments in and around building structures. The recorded response data from buildings and other instrumented structures can be and are being primarily used to facilitate necessary studies to improve building codes and therefore reduce losses of life and property during damaging earthquakes. Other uses of such data can be in emergency response situations in large urban environments. The report discusses typical instrumentation schemes, existing instrumentation programs, the steps generally followed in instrumenting a structure, selection and type of instruments, installation and maintenance requirements and data retrieval and processing issues. In addition, a summary section on how recorded response data have been utilized is included. The benefits from instrumentation of structural systems are discussed.

  19. The slant-stacklet transform and its application to teleseismic PcP-P data recorded at large aperture seismic array

    NASA Astrophysics Data System (ADS)

    Ventosa, S.; Romanowicz, B. A.

    2015-12-01

    In most high-resolution studies of the Earth's Deep Interior, the limited amount and uneven distribution of high-quality observations of short-period teleseismic body waves are major obstacles. Dense broadband seismic networks help to overcome major challenges of low signal-to-noise ratio (SNR) of the target phases and of signal-to-interference ratio (SIR) of other (often stronger) mantle phases when the slowness difference is large enough. Intuitive delay-and-sum (i.e. slant-stack) approaches are routinely applied to combine data of many spatially close stations to improve data quality. Alternative methods developed in the context of image processing, such as Radon transform-based methods, have proven useful in exploration seismology to facilitate enhancement and separation of signals according to their slowness and time of arrival. In this spirit, we have introduced the slant-stacklet transform to define coherency-guided filters able to exploit signals that would have been otherwise rejected because of low SNR or SIR. As an illustration, this method allows us to dramatically increase the amount of high-quality PcP observations using dense arrays in North America and Japan, sampling Central America, the western Pacific and Alaska/western Canada with unprecedented resolution and accuracy. After mantle corrections, the main signal left in these regions is relatively long wavelength in these regions of fast velocities around the Pacific, except at the western border of the Pacific large-low shear-velocity province (LLSVP) where we observe a rapid reduction of Vp velocity over a distance of about 10˚. This is just one step to further increase lowermost mantle imaging using P waves, much more information from PcP and other complementary signals (e.g. PdP) around the globe are needed to resolve volumetric structure, topography of the core-mantle boundary and D" discontinuity, and the trade-offs between them, in order to improve our understanding of the interaction

  20. Seismicity of the Adriatic microplate

    USGS Publications Warehouse

    Console, R.; Di, Giovambattista R.; Favali, P.; Presgrave, B.W.; Smriglio, G.

    1993-01-01

    The Adriatic microplate was previously considered to be a unique block, tectonically active only along its margins. The seismic sequences that took place in the basin from 1986 to 1990 give new information about the geodynamics of this area. Three subsets of well recorded events were relocated by the joint hypocentre determination technique. On the whole, this seismic activity was concentrated in a belt crossing the southern Adriatic sea around latitude 42??, in connection with regional E-W fault systems. Some features of this seismicity, similar to those observed in other well known active margins of the Adriatic plate, support a model of a southern Adriatic lithospheric block, detached from the Northern one. Other geophysical information provides evidence of a transitional zone at the same latitude. ?? 1993.

  1. Seismicity of Sri Lanka

    NASA Astrophysics Data System (ADS)

    Fernando, M. J.; Kulasinghe, A. N. S.

    1986-10-01

    Sri Lanka has been considered an aseismic region. After 2.5 years of continuous microearthquake recording in the Kotmale area, earthquakes with a magnitude ⩽ 2.25 have been recorded clearly indicating a measurable seismic risk. The data come from an array established in February 1982, surrounding the proposed Kotmale Reservoir in a geologically adverse area, where nine major lineaments have been identified. These major lineaments are either 70-90° dipping normal faults with a fraction of a metre displacement, fracture zones with little or no displacements or master joints with no or unknown displacements. Forty-eight microearthquakes have been recorded from various parts of the country from February 1983 to August 1984 with magnitude varying from 0.2 to 2.25 on the Richter scale. These results are an outcome of the Kotmale Microseismic Network where a 87 m high rock-filled dam has been constructed across the Kotmale Valley. Reservoir gross storage is 174-10 6 m 3 when the water level reaches 84.5 m from the valley bottom. This network is part of the Kotmale Hydro Power Project which comes under the Accelerated Mahaweli Programme. So far no microearthquakes have been recorded from the nine major lineaments at Kotmale and therefore no correlation can be made between said lineaments and seismicity. Microearthquake epicentres appear to be closely associated with major lineaments and escarpments of the central highlands of Sri Lanka. The north-south trending Mahaweli lineament and Haputale escarpment at Haputale are two examples where earthquakes with a magnitude ⩽ 1.7 on the Richter scale have been located. This study supports an idea of the slow movement of the central highlands as suggested by several authors in the past from geomorphological evidence.

  2. Historical seismicity

    USGS Publications Warehouse

    Dengler, L.

    1992-01-01

    The North Coast region of California in the vicinity of Cape Mendocino is one of the state's most seismically active areas, accounting for 25 percent of seismic energy release in California during the last 50 years. the region is located in a geologically dynamic are surrounding the Mendocino triple junction where three of the Earth's tectonic plates join together ( see preceding article by Sam Clarke). In the historic past the North Coast has been affected by earthquakes occurring on the San Andreas fault system to the south, the Mendocino fault to the southwest, and intraplate earthquakes within both the Gorda and North American plates. More than sixty of these earthquakes have caused damage since the mid-1800's. Recent studies indicate that California's North Coast is also at risk with respect to very large earthquakes (magnitude >8) originating along the Cascadia subduction zone. Although the subduction zone has not generated great earthquakes in historic time, paleoseismic evidence suggests that such earthquakes have been generated by the subduction zone in the recent prehistoric past. 

  3. Seismicity of southern Lake Tanganyika

    NASA Astrophysics Data System (ADS)

    Lavayssiere, A.; Gallacher, R. J.; Keir, D.; Ebinger, C. J.; Drooff, C.; Khalfan, M.; Bull, J. M.

    2015-12-01

    Global seismic networks document frequent and unusually deep earthquakes in East African rift sectors lacking central volcanoes. The deep seismicity means that we can use earthquakes to probe the geometry and kinematics of fault systems throughout the crust, and to understand the distribution of strain between large offset border fault systems and intrabasinal faults. The southern Tanganyika rift zone has the highest seismicity rate within East Africa during the period 1973-present, yet earlier temporary seismometer networks have been too sparse in space and time to relocate earthquakes with location and depth errors of < 5-10 km. We address this issue by recording seismicity of southern Lake Tanganyika since June 2014 using a network at 12 broadband seismic stations. The distribution of earthquakes shows that deformation primarily occurs on large offset border faults beneath the lake. Subsidiary earthquake activity occurs along the subparrallel Rukwa graben, and beneath the NE-SW striking Mweru rift. The distribution of earthquakes suggests the southern end of lake Tanganyika is characterized by a network of intersecting NNW and NE striking faults. The depths of earthquakes are distributed throughout the crust, consistent with the relatively strong lithosphere.

  4. Seismic event interpretation using fuzzy logic and neural networks

    SciTech Connect

    Maurer, W.J.; Dowla, F.U.

    1994-01-01

    In the computer interpretation of seismic data, unknown sources of seismic events must be represented and reasoned about using measurements from the recorded signal. In this report, we develop the use of fuzzy logic to improve our ability to interpret weak seismic events. Processing strategies for the use of fuzzy set theory to represent vagueness and uncertainty, a phenomena common in seismic data analysis, are developed. A fuzzy-assumption based truth-maintenance-inferencing engine is also developed. Preliminary results in interpreting seismic events using the fuzzy neural network knowledge-based system are presented.

  5. Seismic excitation by space shuttles

    USGS Publications Warehouse

    Kanamori, H.; Mori, J.; Sturtevant, B.; Anderson, D.L.; Heaton, T.

    1992-01-01

    Shock waves generated by the space shuttles Columbia (August 13, 1989), Atlantis (April 11, 1991) and Discovery (September 18, 1991) on their return to Edwards Air Force Base, California, were recorded by TERRAscope (Caltech's broadband seismic network), the Caltech-U.S.G.S Southern California Seismic Network (SCSN), and the University of Southern California (USC) Los Angeles Basin Seismic Network. The spatial pattern of the arrival times exhibits hyperbolic shock fronts from which the path, velocity and altitude of the space shuttle could be determined. The shock wave was acoustically coupled to the ground, converted to a seismic wave, and recorded clearly at the broadband TERRAscope stations. The acoustic coupling occurred very differently depending on the conditions of the Earth's surface surrounding the station. For a seismic station located on hard bedrock, the shock wave (N wave) was clearly recorded with little distortion. Aside from the N wave, very little acoustic coupling of the shock wave energy to the ground occurred at these sites. The observed N wave record was used to estimate the overpressure of the shock wave accurately; a pressure change of 0.5 to 2.2 mbars was obtained. For a seismic station located close to the ocean or soft sedimentary basins, a significant amount of shock wave energy was transferred to the ground through acoustic coupling of the shock wave and the oceanic Rayleigh wave. A distinct topography such as a mountain range was found effective to couple the shock wave energy to the ground. Shock wave energy was also coupled to the ground very effectively through large man made structures such as high rise buildings and offshore oil drilling platforms. For the space shuttle Columbia, in particular, a distinct pulse having a period of about 2 to 3 seconds was observed, 12.5 s before the shock wave, with a broadband seismograph in Pasadena. This pulse was probably excited by the high rise buildings in downtown Los Angeles which were

  6. Broadband bearing-time records of three-component seismic array data and their application to the study of local earthquake coda

    NASA Astrophysics Data System (ADS)

    Wagner, Gregory S.; Owens, Thomas J.

    1993-09-01

    High-frequency three-component array d, are used to study the P and S coda produced by* cal earthquakes. The data are displayed as broadba bearing-time records which allow us to examine a compl, time history of the propagation directions and arrival tin of direct and scattered phases crossing the array. This ~ sualization technique is used to examine the wavefield ~ two scale lengths using two sub-arrays~of sensors. Resu suggest that P coda is dominated by P energy propag, ing sub-parallel to the direct P arrival. The S coda pro agates in all directions and appears to be composed p~ dominantly of S and/or surface wave energy. Significant more 0e coda appears on the smaller scale length sub-art relative to the larger scale array suggesting that much, the ~, coda remains coherent for only very short distanc

  7. The Southern Kansas Seismic Network

    NASA Astrophysics Data System (ADS)

    Terra, F. M.

    2015-12-01

    Historically aseismic Harper and Sumner counties in Southern Kansas experienced a dramatic increase in seismicity beginning in early 2014, coincident with the development of new oil production in the Mississippi Lime Play. In order to better understand the potential relationships between seismicity and oil development, the USGS installed a real-time telemetered seismic network in cooperation with the Kansas Geological Survey, the Kansas Corporation Commission, the Kansas Department of Health and Environment, Harper County, and the Oklahoma Geological Survey. The network began operation in March 2014 with an initial deployment of 5 NetQuakes accelerometers and by July 2014 had expanded to include 10 broadband sites. The network currently has 14 stations, all with accelerometers and 12 with broadband seismometers. The network has interstation spacing of 15 - 25 km and typical azimuthal gap of 80 for well-located events. Data are continuously streamed to IRIS at 200 samples per second from most sites. Earthquake locations are augmented with additional stations from the USGS National Network, Oklahoma Geological Survey Seismic Network, Kansas Seismic Monitoring Network and the Enid Oklahoma Network. Since the spring of 2014 over 7500 earthquakes have been identified with data from this network, 1400 of which have been manually timed and cataloged. Focal depths for earthquakes typically range between 2 and 7 km. The catalog is available at earthquake.usgs.gov/earthquakes/search/ under network code 'Ismpkansas'. The network recorded the largest known earthquake in Harper County, Mw 4.3, on October 2, 2014 and in Sumner County, Mw 4.9, on November 12, 2014. Recorded ground motions at the epicenter of the October earthquake were 0.70 g (PGA) and 12 cm/s (PGV). These high ground motion values agree with near-source recordings made by other USGS temporary deployments in the U. S. midcontinent, indicating a significant shaking hazard from such shallow, moderate

  8. Quantifying Similarity in Seismic Polarizations

    NASA Astrophysics Data System (ADS)

    Eaton, D. W. S.; Jones, J. P.; Caffagni, E.

    2015-12-01

    Measuring similarity in seismic attributes can help identify tremor, low S/N signals, and converted or reflected phases, in addition to diagnosing site noise and sensor misalignment in arrays. Polarization analysis is a widely accepted method for studying the orientation and directional characteristics of seismic phases via. computed attributes, but similarity is ordinarily discussed using qualitative comparisons with reference values. Here we introduce a technique for quantitative polarization similarity that uses weighted histograms computed in short, overlapping time windows, drawing on methods adapted from the image processing and computer vision literature. Our method accounts for ambiguity in azimuth and incidence angle and variations in signal-to-noise (S/N) ratio. Using records of the Mw=8.3 Sea of Okhotsk earthquake from CNSN broadband sensors in British Columbia and Yukon Territory, Canada, and vertical borehole array data from a monitoring experiment at Hoadley gas field, central Alberta, Canada, we demonstrate that our method is robust to station spacing. Discrete wavelet analysis extends polarization similarity to the time-frequency domain in a straightforward way. Because histogram distance metrics are bounded by [0 1], clustering allows empirical time-frequency separation of seismic phase arrivals on single-station three-component records. Array processing for automatic seismic phase classification may be possible using subspace clustering of polarization similarity, but efficient algorithms are required to reduce the dimensionality.

  9. Seismic sources

    DOEpatents

    Green, M.A.; Cook, N.G.W.; McEvilly, T.V.; Majer, E.L.; Witherspoon, P.A.

    1987-04-20

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Longitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements for more than about one minute. 9 figs.

  10. The Seismic Coupling of Subduction Zones Revisited

    NASA Astrophysics Data System (ADS)

    Scholz, C.; Campos, J.

    2012-04-01

    The nature of seismic coupling for many of the world's subduction zones has been reevaluated. Geodetic estimates of seismic coupling obtained from GPS measurements of upper plate deformation during the interseismic period are summarized. We compared those with new estimates of seismic coupling obtained from seismological data. The results show that with a few notable exceptions the results using the two methods agree to within about 10%. The seismological estimates have been greatly improved over those made 20-30 years ago because of an abundance of paleoseismological data that greatly extend the temporal record of great subduction earthquakes and by the occurrence, in the intervening years, of an unusual number of great and giant earthquakes that have filled in some of the most critical holes in the seismic record. The data also, again with a few notable exceptions, support the frictional instability theory of seismic coupling, and in particular, the test of that theory made by Scholz and Campos [1995]. Overall, the results support their prediction that high coupling occurs for subduction zones subjected to high normal forces with a switch to low coupling occurring fairly abruptly as the normal force decreases below a critical value. There is also considerable variation of coupling within individual subduction zones. Earthquake asperities correlate with areas of high coupling and hence have a semblance of permanence, but the rupture zones and asperity distributions of great earthquakes may differ greatly between seismic cycles because of differences in the phase of seismic flux accumulation.

  11. The seismic coupling of subduction zones revisited

    NASA Astrophysics Data System (ADS)

    Scholz, Christopher H.; Campos, Jaime

    2012-05-01

    The nature of seismic coupling for many of the world's subduction zones has been reevaluated. Geodetic estimates of seismic coupling obtained from GPS measurements of upper plate deformation during the interseismic period are summarized. We compared those with new estimates of seismic coupling obtained from seismological data. The results show that with a few notable exceptions the two methods agree to within about 10%. The seismological estimates have been greatly improved over those made 20-30 years ago because of an abundance of paleoseismological data that greatly extend the temporal record of great subduction earthquakes and by the occurrence, in the intervening years, of an unusual number of great and giant earthquakes that have filled in some of the most critical holes in the seismic record. The data also, again with a few notable exceptions, support the frictional instability theory of seismic coupling, and in particular, the test of that theory made by Scholz and Campos (1995). Overall, the results support their prediction that high coupling occurs for subduction zones subjected to high normal forces with a switch to low coupling occurring fairly abruptly as the normal force decreases below a critical value. There is also considerable variation of coupling within individual subduction zones. Earthquake asperities correlate with areas of high coupling and hence have a semblance of permanence, but the rupture zones and asperity distributions of great earthquakes may differ greatly between seismic cycles because of differences in the phase of seismic flux accumulation.

  12. Seismic augmentation of acoustic monitoring of mortar fire

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas S.

    2007-10-01

    The US Army Corps of Engineers Research and Development Center participated in a joint ARL-NATO TG-53 field experiment and data collect at Yuma Proving Ground, AZ in early November 2005. Seismic and acoustic signatures from both muzzle blasts and impacts of small arms fire and artillery were recorded using 7 seismic arrays and 3 acoustic arrays. Arrays comprised of 12 seismic and 12 acoustic sensors each were located from 700 m to 18 km from gun positions. Preliminary analysis of signatures attributed to 60mm, 81mm, 120 mm mortars recorded at a seismic-acoustic array 1.1 km from gun position are presented. Seismic and acoustic array f-k analysis is performed to detect and characterize the source signature. Horizontal seismic data are analyzed to determine efficacy of a seismic discriminant for mortar and artillery sources. Rotation of North and East seismic components to radial and transverse components relative to the source-receiver path provide maximum surface wave amplitude on the transverse component. Angles of rotation agree well with f-k analysis of both seismic and acoustic signals. The spectral energy of the rotated transverse surface wave is observable on the all caliber of mortars at a distance of 1.1 km and is a reliable source discriminant for mortar sources at this distance. In a step towards automation, travel time stencils using local seismic and acoustic velocities are applied to seismic data for analysis and determination of source characteristics.

  13. Fluid injection and induced seismicity

    NASA Astrophysics Data System (ADS)

    Kendall, Michael; Verdon, James

    2016-04-01

    The link between fluid injection, or extraction, and induced seismicity has been observed in reservoirs for many decades. In fact spatial mapping of low magnitude events is routinely used to estimate a stimulated reservoir volume. However, the link between subsurface fluid injection and larger felt seismicity is less clear and has attracted recent interest with a dramatic increase in earthquakes associated with the disposal of oilfield waste fluids. In a few cases, hydraulic fracturing has also been linked to induced seismicity. Much can be learned from past case-studies of induced seismicity so that we can better understand the risks posed. Here we examine 12 case examples and consider in particular controls on maximum event size, lateral event distributions, and event depths. Our results suggest that injection volume is a better control on maximum magnitude than past, natural seismicity in a region. This might, however, simply reflect the lack of baseline monitoring and/or long-term seismic records in certain regions. To address this in the UK, the British Geological Survey is leading the deployment of monitoring arrays in prospective shale gas areas in Lancashire and Yorkshire. In most cases, seismicity is generally located in close vicinity to the injection site. However, in some cases, the nearest events are up to 5km from the injection point. This gives an indication of the minimum radius of influence of such fluid injection projects. The most distant events are never more than 20km from the injection point, perhaps implying a maximum radius of influence. Some events are located in the target reservoir, but most occur below the injection depth. In fact, most events lie in the crystalline basement underlying the sedimentary rocks. This suggests that induced seismicity may not pose a leakage risk for fluid migration back to the surface, as it does not impact caprock integrity. A useful application for microseismic data is to try and forecast induced seismicity

  14. Seismic spatial wavefield gradient and rotational rate measurements as new observables in land seismic exploration

    NASA Astrophysics Data System (ADS)

    Schmelzbach, Cedric; Sollberger, David; Van Renterghem, Cédéric; Häusler, Mauro; Robertsson, Johan; Greenhalgh, Stewart

    2016-04-01

    Traditionally, land-seismic data acquisition is conducted using vertical-component sensors. A more complete representation of the seismic wavefield can be obtained by employing multicomponent sensors recording the full vector wavefield. If groups of multicomponent sensors are deployed, then spatial seismic wavefield gradients and rotational rates can be estimated by differencing the outputs of closely spaced sensors. Such data capture all six degrees of freedom of a rigid body (three components of translation and three components of rotation), and hence allow an even more complete representation of the seismic wavefield compared to single station triaxial data. Seismic gradient and rotation data open up new possibilities to process land-seismic data. Potential benefits and applications of wavefield gradient data include local slowness estimation, improved arrival identification, wavefield separation and noise suppression. Using synthetic and field data, we explored the reliability and sensitivity of various multicomponent sensor layouts to estimate seismic wavefield gradients and rotational rates. Due to the wavelength and incidence-angle dependence of sensor-group reception patterns as a function of the number of sensors, station spacing and layout, one has to counterbalance the impacts of truncation errors, random noise attenuation, and sensitivity to perturbations such as amplitude variations and positioning errors when searching for optimum receiver configurations. Field experiments with special rotational rate sensors were used to verify array-based rotational-rate estimates. Seismic wavefield gradient estimates and inferred wavefield attributes such as instantaneous slowness enable improved arrival identification, e.g. wave type and path. Under favorable conditions, seismic-wavefield gradient attributes can be extracted from conventional vertical-component data and used to, for example, enhance the identification of shear waves. A further promising

  15. Historical Seismicity of Central Panama

    NASA Astrophysics Data System (ADS)

    Camacho, E.

    2013-05-01

    Central Panama lies in the Panama microplate, neighboring seismically active regions of Costa Rica and Colombia. This region, crossed by the Panama Canal, concentrates most of the population and economic activity of the Republic of Panama. Instrumental observation of earthquakes in Panama began on 1882 by the Compagnie Universelle du Canal Interocéanique de Panama and continued from 1904 to 1977 by the Panama Canal Company. From October 1997 to March 1998 the USGS deployed a temporary digital seismic network. Since 2003 this region is monitored by a digital seismic network operated by the Panama Canal Authority and I complemented by the broad band stations of the University of Panama seismic network. The seismicity in this region is very diffuse and the few events which are recorded have magnitudes less than 3.0. Historical archives and antique newspapers from Spain, Colombia, Panama and the United Sates have been searched looking for historical earthquake information which could provide a better estimate of the seismicity in this region. We find that Panama City has been shaken by two destructive earthquakes in historical times. One by a local fault (i.e. Pedro Miguel fault) on May 2, 1621 (I=Vlll MM), and a subduction event from the North Panama Deformed Belt (NPDB) on September 7, 1882 (I=Vll MM). To test these findings two earthquakes scenarios were generated, using SELENA, for Panama City Old Quarter. Panama City was rebuilt on January 21, 1673, on a rocky point facing the Pacific Ocean after the sack by pirate Morgan on January 28, 1671. The pattern of damage to calicanto (unreinforced colonial masonry) and wood structures for a crustal local event are higher than those for an event from the NPDB and seem to confirm that the city has not been shaken by a major local event since May 2, 1621 and a subduction event since September 7, 1882

  16. Synthesis of artificial spectrum-compatible seismic accelerograms

    NASA Astrophysics Data System (ADS)

    Vrochidou, E.; Alvanitopoulos, P. F.; Andreadis, I.; Elenas, A.; Mallousi, K.

    2014-08-01

    The Hilbert-Huang transform is used to generate artificial seismic signals compatible with the acceleration spectra of natural seismic records. Artificial spectrum-compatible accelerograms are utilized instead of natural earthquake records for the dynamic response analysis of many critical structures such as hospitals, bridges, and power plants. The realistic estimation of the seismic response of structures involves nonlinear dynamic analysis. Moreover, it requires seismic accelerograms representative of the actual ground acceleration time histories expected at the site of interest. Unfortunately, not many actual records of different seismic intensities are available for many regions. In addition, a large number of seismic accelerograms are required to perform a series of nonlinear dynamic analyses for a reliable statistical investigation of the structural behavior under earthquake excitation. These are the main motivations for generating artificial spectrum-compatible seismic accelerograms and could be useful in earthquake engineering for dynamic analysis and design of buildings. According to the proposed method, a single natural earthquake record is deconstructed into amplitude and frequency components using the Hilbert-Huang transform. The proposed method is illustrated by studying 20 natural seismic records with different characteristics such as different frequency content, amplitude, and duration. Experimental results reveal the efficiency of the proposed method in comparison with well-established and industrial methods in the literature.

  17. Seismic sources

    DOEpatents

    Green, Michael A.; Cook, Neville G. W.; McEvilly, Thomas V.; Majer, Ernest L.; Witherspoon, Paul A.

    1992-01-01

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.

  18. Seismic Noise Analysis and Reduction through Utilization of Collocated Seismic and Atmospheric Sensors at the GRO Chile Seismic Network

    NASA Astrophysics Data System (ADS)

    Farrell, M. E.; Russo, R. M.

    2013-12-01

    The installation of Earthscope Transportable Array-style geophysical observatories in Chile expands open data seismic recording capabilities in the southern hemisphere by nearly 30%, and has nearly tripled the number of seismic stations providing freely-available data in southern South America. Through the use of collocated seismic and atmospheric sensors at these stations we are able to analyze how local atmospheric conditions generate seismic noise, which can degrade data in seismic frequency bands at stations in the ';roaring forties' (S latitudes). Seismic vaults that are climate-controlled and insulated from the local environment are now employed throughout the world in an attempt to isolate seismometers from as many noise sources as possible. However, this is an expensive solution that is neither practical nor possible for all seismic deployments; and also, the increasing number and scope of temporary seismic deployments has resulted in the collection and archiving of terabytes of seismic data that is affected to some degree by natural seismic noise sources such as wind and atmospheric pressure changes. Changing air pressure can result in a depression and subsequent rebound of Earth's surface - which generates low frequency noise in seismic frequency bands - and even moderate winds can apply enough force to ground-coupled structures or to the surface above the seismometers themselves, resulting in significant noise. The 10 stations of the permanent Geophysical Reporting Observatories (GRO Chile), jointly installed during 2011-12 by IRIS and the Chilean Servicio Sismológico, include instrumentation in addition to the standard three seismic components. These stations, spaced approximately 300 km apart along the length of the country, continuously record a variety of atmospheric data including infrasound, air pressure, wind speed, and wind direction. The collocated seismic and atmospheric sensors at each station allow us to analyze both datasets together, to

  19. Seismic Data Analysis Center

    NASA Astrophysics Data System (ADS)

    1983-01-01

    The effort required to operate and maintain the Seismic Data Analysis Center during the fiscal year of 1981 is described. Statistics concerning the operational effectiveness and the utilization of the systems at the Center are also given. The major activities associated with maintaining the operating systems, providing data services, and performing maintenance are discussed. The development effort and improvements made to the systems supporting the geophysical research include capabilities added to the Regional Event Location System and the Automatic Association program. Other tasks reported include the result of implementing a front end processor (called an intelligent line interface) to do real time signal detection, the effects of altering the configuration of the detection systems, and the status of software developed to do interactive discrimination. A computer study was performed to determine a preferred system to accomplish the on-line data recording and support the data services activity.

  20. Final Data Report: P- and S-Wave Velocity Logging Borings C4993, C4996, and C4997 Part B: Overall Logs

    SciTech Connect

    Diehl, John; Steller, Robert

    2007-03-20

    Insitu borehole P- and S-wave velocity measurements were collected in three borings located within the Waste Treatment Plant (WTP) boundaries at the Hanford Site, southeastern Washington. Geophysical data acquisition was performed between August and October of 2006 by Rob Steller, Charles Carter, Antony Martin and John Diehl of GEOVision. Data analysis was performed by Rob Steller and John Diehl, and reviewed by Antony Martin of GEOVision, and report preparation was performed by John Diehl and reviewed by Rob Steller. The work was performed under subcontract with Battelle, Pacific Northwest Division with Marty Gardner as Battelle’s Technical Representative and Alan Rohay serving as the Technical Administrator for Pacific Northwest National Laboratory (PNNL). This report describes the field measurements, data analysis, and results of this work.

  1. Final Data Report: P- and S-Wave Velocity Logging Borings C4993, C4996, and C4997 Part A: Interval Logs

    SciTech Connect

    Steller, Robert; Diehl, John

    2007-02-01

    Insitu borehole P- and S-wave velocity measurements were collected in three borings located within the Waste Treatment Plant (WTP) boundaries at the Hanford Site, southeastern Washington. Geophysical data acquisition was performed between August and October of 2006 by Rob Steller, Charles Carter, Antony Martin and John Diehl of GEOVision. Data analysis was performed by Rob Steller and John Diehl, and reviewed by Antony Martin of GEOVision, and report preparation was performed by John Diehl and reviewed by Rob Steller. The work was performed under subcontract with Battelle, Pacific Northwest Division with Marty Gardner as Battelle’s Technical Representative and Alan Rohay serving as the Technical Administrator for Pacific Northwest National Laboratory (PNNL). This report describes the field measurements, data analysis, and results of this work.

  2. Advanced Seismic While Drilling System

    SciTech Connect

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    . An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified

  3. Natural fracture characterization using passive seismic illumination

    SciTech Connect

    Nihei, K.T.

    2003-01-08

    The presence of natural fractures in reservoir rock can significantly enhance gas production, especially in tight gas formations. Any general knowledge of the existence, location, orientation, spatial density, and connectivity of natural fractures, as well as general reservoir structure, that can be obtained prior to active seismic acquisition and drilling can be exploited to identify key areas for subsequent higher resolution active seismic imaging. Current practices for estimating fracture properties before the acquisition of surface seismic data are usually based on the assumed geology and tectonics of the region, and empirical or fracture mechanics-based relationships between stratigraphic curvature and fracturing. The objective of this research is to investigate the potential of multicomponent surface sensor arrays, and passive seismic sources in the form of local earthquakes to identify and characterize potential fractured gas reservoirs located near seismically active regions. To assess the feasibility of passive seismic fracture detection and characterization, we have developed numerical codes for modeling elastic wave propagation in reservoir structures containing multiple, finite-length fractures. This article describes our efforts to determine the conditions for favorable excitation of fracture converted waves, and to develop an imaging method that can be used to locate and characterize fractures using multicomponent, passive seismic data recorded on a surface array.

  4. Seismic intrusion detector system

    DOEpatents

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  5. The lunar seismic tomography and internal heterogeneity

    NASA Astrophysics Data System (ADS)

    Zhao, N.; Zhu, P.; Yuan, Y.; Zhang, J.

    2012-12-01

    A seismic tomography is presented to show the internal lateral heterogeneities of moon. The lunar seismic tomography is made from the moonquake arrival-time data acquired by the Apollo program during 1971 to 1977. The seismic records obtained from the four seismic station of Apollo Lunar Surface Experiments Package on the moon. The research target covers the surround of Apollo-12, 14, 15 and 16 landing sites. A preliminary image of three-dimensional P- and S-wave velocity structures of lunar interior have been calculated using hundreds of arrival-times of moonquake events from surface to deep mantle. These results show that some evidences of lateral heterogeneities in the lunar mantle and crust, which implies the existence of complex structure inside the moon.

  6. Expanding Conventional Seismic Stratigrphy into the Multicomponent Seismic Domain

    SciTech Connect

    Innocent Aluka

    2008-08-31

    Multicomponent seismic data are composed of three independent vector-based seismic wave modes. These wave modes are, compressional mode (P), and shear modes SV and SH. The three modes are generated using three orthogonal source-displacement vectors and then recorded using three orthogonal vector sensors. The components travel through the earth at differing velocities and directions. The velocities of SH and SV as they travel through the subsurface differ by only a few percent, but the velocities of SV and SH (Vs) are appreciably lower than the P-wave velocity (Vp). The velocity ratio Vp/Vs varies by an order of magnitude in the earth from a value of 15 to 1.5 depending on the degree of sedimentary lithification. The data used in this study were acquired by nine-component (9C) vertical seismic profile (VSP), using three orthogonal vector sources. The 9C vertical seismic profile is capable of generating P-wave mode and the fundamental S-wave mode (SH-SH and SV-SV) directly at the source station and permits the basic components of elastic wavefield (P, SH-SH and SV-SV) to be separated from one another for the purposes of imaging. Analysis and interpretations of data from the study area show that incident full-elastic seismic wavefield is capable of reflecting four different wave modes, P, SH , SV and C which can be utilized to fully understand the architecture and heterogeneities of geologic sequences. The conventional seismic stratigraphy utilizes only reflected P-wave modes. The notation SH mode is the same as SH-SH; SV mode means SV-SV and C mode which is a converted shear wave is a special SV mode and is the same as P-SV. These four wave modes image unique geologic stratigraphy and facies and at the same time reflect independent stratal surfaces because of the unique orientation of their particle-displacement vectors. As a result of the distinct orientation of individual mode's particle-displacement vector, one mode may react to a critical subsurface sequence more

  7. The development of the Moldova digital seismic network

    NASA Astrophysics Data System (ADS)

    Ilies, I.; Ionescu, C.; Grigore, A. G.

    2009-04-01

    The Republic of Moldova is located in the seismically active region, about 70% of its area is predisposed to shaking intensity 7 - 8 points MSK. Focal zones of the primary seismic danger to the territory of the Republic of Moldova are: Vrancea zone - for the whole of its territory and Dobrogea zone - for the southern part. Monitoring of seismic instrumentation in the republic is provided by the Center of Experimental Seismology, Institute of Geology and Seismology, Academy of Sciences of Moldova. According to the seismic zoning map of the Republic of Moldova, seismic stations "Cahul, Leova" and "Giurgiulesti" located in 8 - degree zone, the central regional station "Chisinau" - in 7 - degree, a station "Soroca" - in 6 - degree zone MSK scale. The development of seismic network since 2004, going through a transition to a modern digital recording, improving working conditions for staff and the construction of new buildings for seismic stations, equipping the new network equipment and improve the methods of collecting and processing seismic data. The works to modernize the network of seismic stations in Moldova were initiated in 2003 with the acquisition of the first three axial digital accelerometer. The device was installed initially in Chisinau, and from it we received the first digital recordings of earthquakes from September 27 and October 27, 2004. In joint efforts with National Institute of Research and Development for Earth Physics from Bucharest, Romania, four seismic stations from Republic of Moldavia was upgraded by broadband and strong motion sensors connected at Q 330 digital recorders that issue continuous recording and real time data stream. Starting from spring of 2008, real time seismic data exchange between IGG Republic of Moldavia and NIEP Romania is running using internet connection.

  8. Seismic hazard map of the western hemisphere

    USGS Publications Warehouse

    Shedlock, K.M.; Tanner, J.G.

    1999-01-01

    horizontal force a building should be able to withstand during an earthquake. This seismic hazard map of the Americas depicts the likely level of short-period ground motion from earthquakes in a fifty-year window. Short-period ground motions effect short-period structures (e.g., one-to-two story buildings). The largest seismic hazard values in the western hemisphere generally occur in areas that have been, or are likely to be, the sites of the largest plate boundary earthquakes. Although the largest earthquakes ever recorded are the 1960 Chile and 1964 Alaska subduction zone earthquakes, the largest seismic hazard (PGA) value in the Americas is in Southern California (U.S.), along the San Andreas fault.

  9. Probabilistic seismic demand analysis of nonlinear structures

    NASA Astrophysics Data System (ADS)

    Shome, Nilesh

    Recent earthquakes in California have initiated improvement in current design philosophy and at present the civil engineering community is working towards development of performance-based earthquake engineering of structures. The objective of this study is to develop efficient, but accurate procedures for probabilistic analysis of nonlinear seismic behavior of structures. The proposed procedures help the near-term development of seismic-building assessments which require an estimation of seismic demand at a given intensity level. We also develop procedures to estimate the probability of exceedance of any specified nonlinear response level due to future ground motions at a specific site. This is referred as Probabilistic Seismic Demand Analysis (PSDA). The latter procedure prepares the way for the next stage development of seismic assessment that consider the uncertainties in nonlinear response and capacity. The proposed procedures require structure-specific nonlinear analyses for a relatively small set of recorded accelerograms and (site-specific or USGS-map-like) seismic hazard analyses. We have addressed some of the important issues of nonlinear seismic demand analysis, which are selection of records for structural analysis, the number of records to be used, scaling of records, etc. Initially these issues are studied through nonlinear analysis of structures for a number of magnitude-distance bins of records. Subsequently we introduce regression analysis of response results against spectral acceleration, magnitude, duration, etc., which helps to resolve these issues more systematically. We illustrate the demand-hazard calculations through two major example problems: a 5story and a 20-story SMRF building. Several simple, but quite accurate closed-form solutions have also been proposed to expedite the demand-hazard calculations. We find that vector-valued (e.g., 2-D) PSDA estimates demand hazard more accurately. This procedure, however, requires information about 2

  10. Short-Period Seismic Noise in Vorkuta (Russia)

    SciTech Connect

    Kishkina, S B; Spivak, A A; Sweeney, J J

    2008-05-15

    Cultural development of new subpolar areas of Russia is associated with a need for detailed seismic research, including both mapping of regional seismicity and seismic monitoring of specific mining enterprises. Of special interest are the northern territories of European Russia, including shelves of the Kara and Barents Seas, Yamal Peninsula, and the Timan-Pechora region. Continuous seismic studies of these territories are important now because there is insufficient seismological knowledge of the area and an absence of systematic data on the seismicity of the region. Another task of current interest is the necessity to consider the seismic environment in the design, construction, and operation of natural gas extracting enterprises such as the construction of the North European Gas Pipeline. Issues of scientific importance for seismic studies in the region are the complex geodynamical setting, the presence of permafrost, and the complex tectonic structure. In particular, the Uralian Orogene (Fig. 1) strongly affects the propagation of seismic waves. The existing subpolar seismic stations [APA (67,57{sup o}N; 33,40{sup o}E), LVZ (67,90{sup o}N; 34,65{sup o}E), and NRIL (69,50{sup o}N; 88,40{sup o}E)] do not cover the extensive area between the Pechora and Ob Rivers (Fig. 1). Thus seismic observations in the Vorkuta area, which lies within the area of concern, represent a special interest. Continuous recording at a seismic station near the city of Vorkuta (67,50{sup o}N; 64,11{sup o}E) [1] has been conducted since 2005 for the purpose of regional seismic monitoring and, more specifically, detection of seismic signals caused by local mining enterprises. Current surveys of local seismic noise [7,8,9,11], are particularly aimed at a technical survey for the suitability of the site for installation of a small-aperture seismic array, which would include 10-12 recording instruments, with the Vorkuta seismic station as the central element. When constructed, this seismic

  11. An economical educational seismic system

    USGS Publications Warehouse

    Lehman, J. D.

    1980-01-01

    There is a considerable interest in seismology from the nonprofessional or amateur standpoint. The operation of a seismic system can be satisfying and educational, especially when you have built and operated the system yourself. A long-period indoor-type sensor and recording system that works extremely well has been developed in the James Madison University Physics Deparment. The system can be built quite economically, and any educational institution that cannot commit themselves to a professional installation need not be without first-hand seismic information. The system design approach has been selected by college students working a project or senior thesis, several elementary and secondary science teachers, as well as the more ambitious tinkerer or hobbyist at home 

  12. Tube-wave seismic imaging

    DOEpatents

    Korneev, Valeri A [LaFayette, CA

    2009-05-05

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  13. Seismic detection of sonic booms.

    PubMed

    Cates, Joseph E; Sturtevant, Bradford

    2002-01-01

    The pressure signals from a sonic boom will produce a small, but detectable, ground motion. The extensive seismic network in southern California, consisting of over 200 sites covering over 50000 square kilometers, is used to map primary and secondary sonic boom carpets. Data from the network is used to analyze three supersonic overflights in the western United States. The results are compared to ray-tracing computations using a realistic model of the stratified atmospheric at the time of the measurements. The results show sonic boom ground exposure under the real atmosphere is much larger than previously expected or predicted by ray tracing alone. Finally, seismic observations are used to draw some inferences on the origin of a set of "mystery booms" recorded in 1992-1993 in southern California. PMID:11837967

  14. Tube-wave seismic imaging

    DOEpatents

    Korneev, Valeri A.; Bakulin, Andrey

    2009-10-13

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  15. Seismic Imaging from a TBM

    NASA Astrophysics Data System (ADS)

    Swinnen, G.; Thorbecke, J. W.; Drijkoningen, G. G.

    2007-12-01

    Seismic monitoring from the head of a tunnel-boring machine (TBM) enables improved assessment of the risks associated with the tunnel-boring process. The monitoring system provides a live image of ground conditions along the trajectory followed by the TBM and detects local heterogeneities such as boulders, foundations, and other obstacles that commonly pass undetected using local geotechnical techniques. From a seismic perspective, the underground setting of tunnelling projects places limitations on imaging capability. The principal limiting factor is the size of the area upon which transducers can be installed. This limitation requires adjustments to traditional seismic imaging techniques in which a large area is assumed to be available for attaching the transducers. Recently developed short imaging operators take this limitation into account and are used in the examples described herein. The unique conditions of tunnelling yield two advantages over traditional settings in terms of imaging: rotation of the cutter wheel and the lateral progression of the TBM. Rotation of the cutter wheel, upon which the transducers are installed, provides the opportunity to illuminate obstacles from different angles in different recordings. Spatial progression of the TBM enables improvement in the illumination of obstacles and the signal-to-noise ratio by combining recordings from different lateral positions. In this paper, these specific aspects of seismic imaging during tunnelling are discussed via models that represent different cases encountered in actual tunnelling projects. These case studies demonstrate the way in which image quality along the trajectory of the TBM is improved over that in traditional settings. In this way, the risks associated with the tunnelling process can be more accurately assured.

  16. The ISC Seismic Event Bibliography

    NASA Astrophysics Data System (ADS)

    Di Giacomo, Domenico; Storchak, Dmitry

    2015-04-01

    The International Seismological Centre (ISC) is a not-for-profit organization operating in the UK for the last 50 years and producing the ISC Bulletin - the definitive worldwide summary of seismic events, both natural and anthropogenic - starting from the beginning of 20th century. Often researchers need to gather information related to specific seismic events for various reasons. To facilitate such task, in 2012 we set up a new database linking earthquakes and other seismic events in the ISC Bulletin to bibliographic records of scientific articles (mostly peer-reviewed journals) that describe those events. Such association allows users of the ISC Event Bibliography (www.isc.ac.uk/event_bibliography/index.php) to run searches for publications via a map-based web interface and, optionally, selecting scientific publications related to either specific events or events in the area of interest. Some of the greatest earthquakes were described in several hundreds of articles published over a period of few years. The journals included in our database are not limited to seismology but bring together a variety of fields in geosciences (e.g., engineering seismology, geodesy and remote sensing, tectonophysics, monitoring research, tsunami, geology, geochemistry, hydrogeology, atmospheric sciences, etc.) making this service useful in multidisciplinary studies. Usually papers dealing with large data set are not included (e.g., papers describing a seismic catalogue). Currently the ISC Event Bibliography includes over 17,000 individual publications from about 500 titles related to over 14,000 events that occurred in last 100+ years. The bibliographic records in the Event Bibliography start in the 1950s, and it is updated as new publications become available.

  17. Statistical Seismology and Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Tiampo, K. F.; González, P. J.; Kazemian, J.

    2014-12-01

    While seismicity triggered or induced by natural resources production such as mining or water impoundment in large dams has long been recognized, the recent increase in the unconventional production of oil and gas has been linked to rapid rise in seismicity in many places, including central North America (Ellsworth et al., 2012; Ellsworth, 2013). Worldwide, induced events of M~5 have occurred and, although rare, have resulted in both damage and public concern (Horton, 2012; Keranen et al., 2013). In addition, over the past twenty years, the increase in both number and coverage of seismic stations has resulted in an unprecedented ability to precisely record the magnitude and location of large numbers of small magnitude events. The increase in the number and type of seismic sequences available for detailed study has revealed differences in their statistics that previously difficult to quantify. For example, seismic swarms that produce significant numbers of foreshocks as well as aftershocks have been observed in different tectonic settings, including California, Iceland, and the East Pacific Rise (McGuire et al., 2005; Shearer, 2012; Kazemian et al., 2014). Similarly, smaller events have been observed prior to larger induced events in several occurrences from energy production. The field of statistical seismology has long focused on the question of triggering and the mechanisms responsible (Stein et al., 1992; Hill et al., 1993; Steacy et al., 2005; Parsons, 2005; Main et al., 2006). For example, in most cases the associated stress perturbations are much smaller than the earthquake stress drop, suggesting an inherent sensitivity to relatively small stress changes (Nalbant et al., 2005). Induced seismicity provides the opportunity to investigate triggering and, in particular, the differences between long- and short-range triggering. Here we investigate the statistics of induced seismicity sequences from around the world, including central North America and Spain, and

  18. Annual Hanford Seismic Report for Fiscal Year 2007

    SciTech Connect

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2007-12-27

    This annual report documents the locations, magnitudes, and geologic interpretations of earthquakes recorded for the Hanford monitoring region of south-central Washington in fiscal year 2007 (October 2006 through September 2007). The report provides summaries of seismic events recorded during the first three quarters of fiscal year 2007 and contains a more comprehensive discussion of seismic events for the fourth quarter of the fiscal year.

  19. Earthquake Data Recorded by the MEMS Accelerometer

    SciTech Connect

    Holland, Austin Adams

    2003-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) operates 26 seismic stations remotely located in southeastern Idaho and 25 strong-motion accelerographs located at critical facilities at the INEEL Site. The INEEL seismic network has upgraded standard analog instrumentation at all of its seismic station to digital recording systems. Seismic data are transmitted to a central recording laboratory in Idaho Falls, Idaho using 900 MHz wireless modems. The INEEL has also chosen digital recording systems to replace the 25 analog film-recording strong-motion accelerographs. The INEEL chose to field test the Applied MEMS Inc., model SF1500A tri-axial accelerometeri with the digital recording system for suitability in earthquake ground motion recording.

  20. Evidences for higher nocturnal seismic activity at the Mt. Vesuvius

    NASA Astrophysics Data System (ADS)

    Mazzarella, Adriano; Scafetta, Nicola

    2016-07-01

    We analyze hourly seismic data measured at the Osservatorio Vesuviano Ovest (OVO, 1972-2014) and at the Bunker Est (BKE, 1999-2014) stations on the Mt. Vesuvius. The OVO record is complete for seismic events with magnitude M ≥ 1.9. We demonstrate that before 1996 this record presents a daily oscillation that nearly vanishes afterwards. To determine whether a daily oscillation exists in the seismic activity of the Mt. Vesuvius, we use the higher quality BKE record that is complete for seismic events with magnitude M ≥ 0.2. We demonstrate that BKE confirms that the seismic activity at the Mt. Vesuvius is higher during nighttime than during daytime. The amplitude of the daily oscillation is enhanced during summer and damped during winter. We speculate possible links with the cooling/warming diurnal cycle of the volcanic edifice, with external geomagnetic field and with magnetostriction, which stress the rocks. We find that the amplitude of the seismic daily cycle changes in time and has been increasing since 2008. Finally, we propose a seismic activity index to monitor the 24-hour oscillation that could be used to complement other methodologies currently adopted to determine the seismic status of the volcano to prevent the relative hazard.

  1. Seismic structure of the moon - A summary of current status

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Latham, G. V.; Dorman, H. J.; Duennebier, F. K.

    1976-01-01

    A seismic model of the moon, refined from previous models with the aid of new data and analyses for seismic events recorded by four Apollo lunar seismic stations and a gravimeter, is outlined. The current model has five zones. The crust is 55-60 km thick. The surface is covered by regolith of varying thicknesses and low seismic velocity. The seismic Q's are extremely high. The upper mantle, 250 km thick, is characterized by seismic velocities close to those of the earth's upper mantle, and shear wave Q of about 4000. Tidally controlled deep moonquakes are concentrated near the boundary of the middle mantle, 600-700 km thick. A lower mantle extending to an undetermined depth is characterized by high attenuation of shear waves. The existence of a low-velocity core is only tentatively proposed.

  2. Stochastic seismic analysis in the Messina strait area

    SciTech Connect

    Cacciola, P.; Maugeri, N.; Muscolino, G.

    2008-07-08

    After 1908 Messina earthquake significant progresses have been carried out in the field of earthquake engineering. Usually seismic action is represented via the so called elastic response spectrum or alternatively by time histories of ground motion acceleration. Due the random nature of the seismic action, alternative representations assume the seismic action as zero-mean Gaussian process fully defined by the so-called Power Spectral Density function. Aim of this paper is the comparative study of the response of linear behaving structures adopting the above representation of the seismic action using recorded earthquakes in the Messina strait area. In this regard, a handy method for determining the power spectral density function of recorded earthquakes is proposed. Numerical examples conducted on the existing space truss located in Torre Faro (Messina) will show the effectiveness of stochastic approach for coping with the seismic analysis of structures.

  3. 2013 East Bay Seismic Experiment (EBSE): implosion data, Hayward, Calif

    USGS Publications Warehouse

    Catchings, Rufus D.; Strayer, Luther M.; Goldman, Mark R.; Criley, Coyn J.; Garcia, Susan; Sickler, Robert R.; Catchings, Marisol K.; Chan, Joanne; Gordon, Leslie C.; Haefner, Scott; Blair, James Luke; Gandhok, Gini; Johnson, Michaela R.

    2015-01-01

    In August 2013, the California State University, East Bay (CSUEB) in Hayward, California imploded a 13-story building (Warren Hall) that was deemed unsafe because of its immediate proximity to the active trace of the Hayward Fault. The U.S. Geological Survey (USGS) and the CSUEB collaborated on a program to record the seismic waves generated by the collapse of the building. We refer to this collaboration as the East Bay Seismic Experiment (EBSE). The principal objective of recording the seismic energy was to observe ground shaking as it radiated from the source, but the data also may be useful for other purposes. For example, the seismic data may be useful in evaluating the implosion process as it relates to structural engineering purposes. This report provides the metadata needed to utilize the seismic data.

  4. Modernization of the Slovenian National Seismic Network

    NASA Astrophysics Data System (ADS)

    Vidrih, R.; Godec, M.; Gosar, A.; Sincic, P.; Tasic, I.; Zivcic, M.

    2003-04-01

    The Environmental Agency of the Republic of Slovenia, the Seismology Office is responsible for the fast and reliable information about earthquakes, originating in the area of Slovenia and nearby. In the year 2000 the project Modernization of the Slovenian National Seismic Network started. The purpose of a modernized seismic network is to enable fast and accurate automatic location of earthquakes, to determine earthquake parameters and to collect data of local, regional and global earthquakes. The modernized network will be finished in the year 2004 and will consist of 25 Q730 remote broadband data loggers based seismic station subsystems transmitting in real-time data to the Data Center in Ljubljana, where the Seismology Office is located. The remote broadband station subsystems include 16 surface broadband seismometers CMG-40T, 5 broadband seismometers CMG-40T with strong motion accelerographs EpiSensor, 4 borehole broadband seismometers CMG-40T, all with accurate timing provided by GPS receivers. The seismic network will cover the entire Slovenian territory, involving an area of 20,256 km2. The network is planned in this way; more seismic stations will be around bigger urban centres and in regions with greater vulnerability (NW Slovenia, Krsko Brezice region). By the end of the year 2002, three old seismic stations were modernized and ten new seismic stations were built. All seismic stations transmit data to UNIX-based computers running Antelope system software. The data is transmitted in real time using TCP/IP protocols over the Goverment Wide Area Network . Real-time data is also exchanged with seismic networks in the neighbouring countries, where the data are collected from the seismic stations, close to the Slovenian border. A typical seismic station consists of the seismic shaft with the sensor and the data acquisition system and, the service shaft with communication equipment (modem, router) and power supply with a battery box. which provides energy in case

  5. Seismic slip deficit along Nepal Himalayas: implications for seismic hazard

    NASA Astrophysics Data System (ADS)

    Bollinger, Laurent; Tapponnier, Paul; Nath Sapkota, Soma; Klinger, Yann

    2016-04-01

    In 1255, 1344 and 1408 AD, then again in 1833, 1934 and 2015, large earthquakes, devastated Kathmandu. The 1255 and 1934 surface ruptures have been identified east of the city, along comparable segments of the Main Frontal Thrust (MFT). Whether the other two pairs of events were similar, is unclear. Taking into account charcoal's "Inbuilt-ages", we revisit the timing of terrace offsets at key sites, to compare them with the seismic record since 1200 AD. The location, extent, and seismic moment of the 1833 and 2015 events imply that they released only a small part of the regional slip deficit, on a deep thrust segment that stopped north of the Siwaliks. By contrast, the 1344 or 1408 AD earthquake may have ruptured the MFT up to the surface in central Nepal between Kathmandu and Pokhara, East of the surface trace of the great 1505 AD earthquake which affected Western Nepal. If so, the whole megathrust system in Nepal ruptured during a sequence of earthquakes that lasted less than three centuries and propagated the rupture up to the surface from East to West. Today's situation in the himalayan seismic sequence might be close to that of the 14th century.

  6. Angola Seismicity MAP

    NASA Astrophysics Data System (ADS)

    Neto, F. A. P.; Franca, G.

    2014-12-01

    The purpose of this job was to study and document the Angola natural seismicity, establishment of the first database seismic data to facilitate consultation and search for information on seismic activity in the country. The study was conducted based on query reports produced by National Institute of Meteorology and Geophysics (INAMET) 1968 to 2014 with emphasis to the work presented by Moreira (1968), that defined six seismogenic zones from macro seismic data, with highlighting is Zone of Sá da Bandeira (Lubango)-Chibemba-Oncócua-Iona. This is the most important of Angola seismic zone, covering the epicentral Quihita and Iona regions, geologically characterized by transcontinental structure tectono-magmatic activation of the Mesozoic with the installation of a wide variety of intrusive rocks of ultrabasic-alkaline composition, basic and alkaline, kimberlites and carbonatites, strongly marked by intense tectonism, presenting with several faults and fractures (locally called corredor de Lucapa). The earthquake of May 9, 1948 reached intensity VI on the Mercalli-Sieberg scale (MCS) in the locality of Quihita, and seismic active of Iona January 15, 1964, the main shock hit the grade VI-VII. Although not having significant seismicity rate can not be neglected, the other five zone are: Cassongue-Ganda-Massano de Amorim; Lola-Quilengues-Caluquembe; Gago Coutinho-zone; Cuima-Cachingues-Cambândua; The Upper Zambezi zone. We also analyzed technical reports on the seismicity of the middle Kwanza produced by Hidroproekt (GAMEK) region as well as international seismic bulletins of the International Seismological Centre (ISC), United States Geological Survey (USGS), and these data served for instrumental location of the epicenters. All compiled information made possible the creation of the First datbase of seismic data for Angola, preparing the map of seismicity with the reconfirmation of the main seismic zones defined by Moreira (1968) and the identification of a new seismic

  7. Relocation of Groningen seismicity using refracted waves

    NASA Astrophysics Data System (ADS)

    Ruigrok, E.; Trampert, J.; Paulssen, H.; Dost, B.

    2015-12-01

    The Groningen gas field is a giant natural gas accumulation in the Northeast of the Netherlands. The gas is in a reservoir at a depth of about 3 km. The naturally-fractured gas-filled sandstone extends roughly 45 by 25 km laterally and 140 m vertically. Decades of production have led to significant compaction of the sandstone. The (differential) compaction is thought to have reactivated existing faults and being the main driver of induced seismicity. Precise earthquake location is difficult due to a complicated subsurface, and that is the likely reason, the current hypocentre estimates do not clearly correlate with the well-known fault network. The seismic velocity model down to reservoir depth is quite well known from extensive seismic surveys and borehole data. Most to date earthquake detections, however, were made with a sparse pre-2015 seismic network. For shallow seismicity (<5 km depth) horizontal source-receiver distances tend to be much larger than vertical distances. Consequently, preferred source-receiver travel paths are refractions over high-velocity layers below the reservoir. However, the seismic velocities of layers below the reservoir are poorly known. We estimated an effective velocity model of the main refracting layer below the reservoir and use this for relocating past seismicity. We took advantage of vertical-borehole recordings for estimating precise P-wave (refraction) onset times and used a tomographic approach to find the laterally varying velocity field of the refracting layer. This refracting layer is then added to the known velocity model, and the combined model is used to relocate the past seismicity. From the resulting relocations we assess which of the faults are being reactivated.

  8. Seismicity of Afghanistan and vicinity

    USGS Publications Warehouse

    Dewey, James W.

    2006-01-01

    This publication describes the seismicity of Afghanistan and vicinity and is intended for use in seismic hazard studies of that nation. Included are digital files with information on earthquakes that have been recorded in Afghanistan and vicinity through mid-December 2004. Chapter A provides an overview of the seismicity and tectonics of Afghanistan and defines the earthquake parameters included in the 'Summary Catalog' and the 'Summary of Macroseismic Effects.' Chapter B summarizes compilation of the 'Master Catalog' and 'Sub-Threshold Catalog' and documents their formats. The 'Summary Catalog' itself is presented as a comma-delimited ASCII file, the 'Summary of Macroseismic Effects' is presented as an html file, and the 'Master Catalog' and 'Sub-Threshold Catalog' are presented as flat ASCII files. Finally, this report includes as separate plates a digital image of a map of epicenters of earthquakes occurring since 1964 (Plate 1) and a representation of areas of damage or strong shaking from selected past earthquakes in Afghanistan and vicinity (Plate 2).

  9. Applying the seismic interferometry method to vertical seismic profile data using tunnel excavation noise as source

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Teixido, Teresa; Martin, Elena; Segarra, Miguel; Segura, Carlos

    2013-04-01

    In the frame of the research conducted to develop efficient strategies for investigation of rock properties and fluids ahead of tunnel excavations the seismic interferometry method was applied to analyze the data acquired in boreholes instrumented with geophone strings. The results obtained confirmed that seismic interferometry provided an improved resolution of petrophysical properties to identify heterogeneities and geological structures ahead of the excavation. These features are beyond the resolution of other conventional geophysical methods but can be the cause severe problems in the excavation of tunnels. Geophone strings were used to record different types of seismic noise generated at the tunnel head during excavation with a tunnelling machine and also during the placement of the rings covering the tunnel excavation. In this study we show how tunnel construction activities have been characterized as source of seismic signal and used in our research as the seismic source signal for generating a 3D reflection seismic survey. The data was recorded in vertical water filled borehole with a borehole seismic string at a distance of 60 m from the tunnel trace. A reference pilot signal was obtained from seismograms acquired close the tunnel face excavation in order to obtain best signal-to-noise ratio to be used in the interferometry processing (Poletto et al., 2010). The seismic interferometry method (Claerbout 1968) was successfully applied to image the subsurface geological structure using the seismic wave field generated by tunneling (tunnelling machine and construction activities) recorded with geophone strings. This technique was applied simulating virtual shot records related to the number of receivers in the borehole with the seismic transmitted events, and processing the data as a reflection seismic survey. The pseudo reflective wave field was obtained by cross-correlation of the transmitted wave data. We applied the relationship between the transmission

  10. Seismic system and method

    SciTech Connect

    Rietsch, E.F.

    1988-10-11

    This patent describes aeismic apparatus for providing an enhanced seismic signal comprising: a plurality of seismic detector means for detecting vibrations of the earth surface and providing a corresponding plurality of seismic signals representative of the detected vibrations, multiplexing means for multiplexing the seismic signals from the seismic detector means to provide a multiplexed signal, memory means receiving the multiplexed signals for separating and storing portions of the multiplexed signal according to the detector means of origin so that each stored portion is in effect a sample of a seismic signal from a detector means, means for deriving from the stored samples a statistical reference for the seismic signals from the plurality of detector means, means for discarding outlying samples from the stored samples in accordance with the statistical reference, means for combining the remaining samples in a predetermined manner to provide an enhanced seismic signal, and means connected to the discarding means for determining whether or not a statistical significant deviation exists between the rejection rates of the seismic detector means.

  11. Seismic Imaging and Monitoring

    SciTech Connect

    Huang, Lianjie

    2012-07-09

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  12. Seismic Waveguide of Metamaterials

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Hoon; Das, Mukunda P.

    We developed a new method of an earthquake-resistant design to support conventional aseismic system using acoustic metamaterials. The device is an attenuator of a seismic wave that reduces the amplitude of the wave exponentially. Constructing a cylindrical shell-type waveguide composed of many Helmholtz resonators that creates a stop-band for the seismic frequency range, we convert the seismic wave into an attenuated one without touching the building that we want to protect. It is a mechanical way to convert the seismic energy into sound and heat.

  13. Oklahoma seismic network. Final report

    SciTech Connect

    Luza, K.V.; Lawson, J.E. Jr. |

    1993-07-01

    The US Nuclear Regulatory Commission has established rigorous guidelines that must be adhered to before a permit to construct a nuclear-power plant is granted to an applicant. Local as well as regional seismicity and structural relationships play an integral role in the final design criteria for nuclear power plants. The existing historical record of seismicity is inadequate in a number of areas of the Midcontinent region because of the lack of instrumentation and (or) the sensitivity of the instruments deployed to monitor earthquake events. The Nemaha Uplift/Midcontinent Geophysical Anomaly is one of five principal areas east of the Rocky Mountain front that has a moderately high seismic-risk classification. The Nemaha uplift, which is common to the states of Oklahoma, Kansas, and Nebraska, is approximately 415 miles long and 12-14 miles wide. The Midcontinent Geophysical Anomaly extends southward from Minnesota across Iowa and the southeastern corner of Nebraska and probably terminates in central Kansas. A number of moderate-sized earthquakes--magnitude 5 or greater--have occurred along or west of the Nemaha uplift. The Oklahoma Geological Survey, in cooperation with the geological surveys of Kansas, Nebraska, and Iowa, conducted a 5-year investigation of the seismicity and tectonic relationships of the Nemaha uplift and associated geologic features in the Midcontinent. This investigation was intended to provide data to be used to design nuclear-power plants. However, the information is also being used to design better large-scale structures, such as dams and high-use buildings, and to provide the necessary data to evaluate earthquake-insurance rates in the Midcontinent.

  14. Nonlinear Seismic Response Of Single Piles

    SciTech Connect

    Cairo, R.; Conte, E.; Dente, G.

    2008-07-08

    In this paper, a method is proposed to analyse the seismic response of single piles under nonlinear soil condition. It is based on the Winkler foundation model formulated in the time domain, which makes use of p-y curves described by the Ramberg-Osgood relationship. The analyses are performed referring to a pile embedded in two-layer soil profiles with different sharp stiffness contrast. Italian seismic records are used as input motion. The calculated bending moments in the pile are compared to those obtained using other theoretical solutions.

  15. Studies of digital seismic data obtained in geothermal and volcanic regions. Progress report

    SciTech Connect

    Fehler, M.

    1982-08-10

    Progress is reported in the following research areas: (1) study of tremor waveforms recorded at Mount St. Helens during 1980; (2) study of seismicity recorded during 1981 at Mount St. Helens; and (3) the monitoring of seismicity accompanying hydrofracturing experiments carried out in the Jemez Mountains of New Mexico. (ACR)

  16. First Quarter Hanford Seismic Report for Fiscal Year 2011

    SciTech Connect

    Rohay, Alan C.; Sweeney, Mark D.; Clayton, Ray E.; Devary, Joseph L.

    2011-03-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 16 local earthquakes during the first quarter of FY 2011. Six earthquakes were located at shallow depths (less than 4 km), seven earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, thirteen earthquakes were located in known swarm areas and three earthquakes were classified as random events. The highest magnitude event (1.8 Mc) was recorded on October 19, 2010 at depth 17.5 km with epicenter located near the Yakima River between the Rattlesnake Mountain and Horse Heaven Hills swarm areas.

  17. Time-lapse seismic imaging of the Reykjanes geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Weemstra, Cornelis; Obermann, Anne; Blanck, Hanna; Verdel, Arie; Paap, Bob; Árni Guðnason, Egill; Páll Hersir, Gylfi; Jousset, Philippe; Sigurðsson, Ómar

    2016-04-01

    We report on the results obtained from a dense seismic deployment over a geothermal reservoir. The reservoir has been producing continuously for almost a decade and is located on the tip of the Reykjanes peninsula, SW Iceland. The seismic stations on top of the reservoir have continuously recorded the ambient seismic wavefield between April 2014 and September 2015. The density of the seismic network makes the data well suited for time-lapse seismic imaging of the reservoir. To that end we compute time-lapse responses through the application of seismic interferometry. These interferometric lapse responses are obtained by simple crosscorrelation of the seismic noise recorded by the different seismic stations. We subsequently evaluate the temporal variation of the coda of these crosscorrelations. The term coda refers to the later arriving, multiple scattered waves. The multiple scattering implies that these waves have sampled the subsurface very densely and hence become highly sensitive to tiny mechanical and structural changes in that subsurface. This sensitivity allows one, in principle at least, to monitor the geothermal reservoir. Preliminary results indeed suggest a relation between the temporal variation of the coda waves and the reservoir. Ultimately, this method may lead to a means to monitor a geothermal reservoir in both space and time.

  18. Investigating Stress and Seismicity in the Charlevoix Seismic Zone: Evidence from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Baird, A. F.; Bastow, I. D.

    2013-12-01

    The Charlevoix seismic zone, located in the St. Lawrence Valley of Quebec Canada, is one of the most seismically active intra-plate regions in the World, with five earthquakes larger than magnitude 6 occurring since records began in the 1660s. The region is structurally complex, comprising rift faults formed during the opening of the Iapetus Ocean (the St. Lawrence rift), superimposed by a 350 Ma meteorite impact structure. Seismicity occurs along the rift, both in the region of overlap with the crater and extending outside the crater to the NE. A difficulty in explaining the seismicity is that the rift faults strike NE-SW, subparallel to the regional compressive stress orientation, and thus are poorly oriented for reactivation. However, a recent stress inversion from earthquake focal mechanisms suggest that the stress field within the CSZ may be locally very complex, with some regions deviating from the regional orientation by as much as a 50 degree CW rotation [1]. Here we investigate the strain and stress fields around the CSZ by measuring seismic anisotropy by shear-wave splitting. We analysed both upper mantle anisotropic fabrics using teleseismic SKS arrivals, and shallow crustal anisotropy using local earthquakes. While the SKS results show relatively consistent E-W fast directions across all stations, the local results show strong local perturbations. Events outside the crater to the NE have predominately NE-SW oriented fast directions parallel to both the St. Lawrence and the regional tectonic stress field. Inside the crater most fast directions are roughly E-W, matching the deeper SKS results, and also similar in orientation to the perturbed stress field from the focal mechanism stress inversion [1]. A possible explanation for the lateral crustal variation is that anisotropy outside the crater may be dominated by stress aligned cracks, while inside the crater the heavily fractured crust may be unable to maintain a large horizontal stress difference

  19. First Quarter Hanford Seismic Report for Fiscal Year 2008

    SciTech Connect

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-03-21

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, forty-four local earthquakes were recorded during the first quarter of fiscal year 2008. A total of thirty-one micro earthquakes were recorded within the Rattlesnake Mountain swarm area at depths in the 5-8 km range, most likely within the pre-basalt sediments. The largest event recorded by the network during the first quarter (November 25, 2007 - magnitude 1.5 Mc) was located within this swarm area at a depth of 4.3 km. With regard to the depth distribution, three earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), thirty-six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and five earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, thirty-eight earthquakes occurred in swarm areas and six earth¬quakes were classified as random events.

  20. Background noise model development for seismic stations of KMA

    NASA Astrophysics Data System (ADS)

    Jeon, Youngsoo

    2010-05-01

    The background noise recorded at seismometer is exist at any seismic signal due to the natural phenomena of the medium which the signal passed through. Reducing the seismic noise is very important to improve the data quality in seismic studies. But, the most important aspect of reducing seismic noise is to find the appropriate place before installing the seismometer. For this reason, NIMR(National Institution of Meteorological Researches) starts to develop a model of standard background noise for the broadband seismic stations of the KMA(Korea Meteorological Administration) using a continuous data set obtained from 13 broadband stations during the period of 2007 and 2008. We also developed the model using short period seismic data from 10 stations at the year of 2009. The method of Mcmara and Buland(2004) is applied to analyse background noise of Korean Peninsula. The fact that borehole seismometer records show low noise level at frequency range greater than 1 Hz compared with that of records at the surface indicate that the cultural noise of inland Korean Peninsula should be considered to process the seismic data set. Reducing Double Frequency peak also should be regarded because the Korean Peninsula surrounded by the seas from eastern, western and southern part. The development of KMA background model shows that the Peterson model(1993) is not applicable to fit the background noise signal generated from Korean Peninsula.

  1. Seismic Noise Characterization in the Northern Mississippi Embayment

    NASA Astrophysics Data System (ADS)

    Wiley, S.; Deshon, H. R.; Boyd, O. S.

    2009-12-01

    We present a study of seismic noise sources present within the northern Mississippi embayment near the New Madrid Seismic Zone (NMSZ). The northern embayment contains up to 1 km of unconsolidated coastal plain sediments overlying bedrock, making it an inherently noisy environment for seismic stations. The area is known to display high levels of cultural noise caused by agricultural activity, passing cars, trains, etc. We characterize continuous broadband seismic noise data recorded for the months of March through June 2009 at six stations operated by the Cooperative New Madrid Seismic Network. We looked at a single horizontal component of data during nighttime hours, defined as 6:15PM to 5:45AM Central Standard Time, which we determined to be the lowest amplitude period of noise for the region. Hourly median amplitudes were compared to daily average wind speeds downloaded from the National Oceanic and Atmospheric Administration. We find a correlation between time periods of increased noise and days with high wind speeds, suggesting that wind is likely a prevalent source of seismic noise in the area. The effects of wind on seismic recordings may result from wind induced tree root movement which causes ground motion to be recorded at the vaults located ~3m below ground. Automated studies utilizing the local network or the EarthScope Transportable Array, scheduled to arrive in the area in 2010-11, should expect to encounter wind induced noise fluctuations and must account for this in their analysis.

  2. Seismic measurements of explosions in the Tatum Salt Dome, Mississippi

    USGS Publications Warehouse

    Borcherdt, Roger D.; Healy, J.H.; Jackson, W.H.; Warren, D.R.

    1967-01-01

    Project Sterling provided for the detonation of a nuclear device in the cavity resulting from the Salmon nuclear explosion in the Tatum salt dome in southern Mississippi. It also provided for a high explosive (HE) comparison shot in a nearby drill hole. The purpose of the experiment was to gather information on the seismic decoupling of a nuclear explosion in a cavity by comparing seismic signals from a nuclear shot in the Salmon cavity with seismic signals recorded from Salmon and with seismic signals recorded from a muall (about 2 tons) HE shot in the salt dome. Surface seismic measurements were made by the U.S. Geological Survey, the U.S. Coast and Geodetic Survey, and the Air Force Technical Applications Center with coordination and overall direction by the Lawrence Radiation Laboratory. This report covers only the seismic measurements made by the U. S. Geological Survey. The first objective of this report is to describe the field recording procedures and the data obtained by the U. S. Geological Survey from these events. The second objective is to describe the spectral analyses which have been made on the data and the relative seismic amplitudes which have been determined from these analyses.

  3. Seismic Forecasting of Eruptions at Dormant StratoVolcanoes

    NASA Astrophysics Data System (ADS)

    White, R. A.

    2015-12-01

    Seismic monitoring data provide important constraints on tracking magmatic ascent and eruption. Based on direct experience with over 25 and review of over 10 additional eruption sequences at 24 volcanoes, we have identified 4 phases of precursory seismicity. 1) Deep (>20 km) low frequency (DLF) earthquakes occur near the base of the crust as magma rises toward crustal reservoirs. This seismicity is the most difficult to observe, owing to generally small magnitudes (M<2.5) the significant depth. 2) Distal volcano-tectonic (DVT) earthquakes occur on tectonic faults from a 2 to 30+ km distance laterally from (not beneath) the eventual eruption site as magma intrudes into and rises out of upper crustal reservoirs to depths of 2-3 km. A survey of 111 eruptions of 83 previously dormant volcanoes, (including all eruptions of VEI >4 since 1955) shows they were all preceded by significant DVT seismicity, usually felt. This DVT seismicity is easily observed owing to magnitudes generally reaching M>3.5. The cumulative DVT energy correlates to the intruding magma volume. 3) Low frequency (LF) earthquakes, LF tremor and contained explosions occur as magma interacts with the shallow hydrothermal system (<2 km depth), while the distal seismicity dies off.4) Shortly after this, repetitive self-similar proximal seismicity may occur and may dominate the seismic records as magma rises to the surface. We present some examples of this seismic progression to demonstrate that data from a single short-period vertical station are often sufficient to forecast eruption onsets.

  4. Application of the Neo-Deterministic Seismic Microzonation Procedure in Bulgaria and Validation of the Seismic Input Against Eurocode 8

    SciTech Connect

    Ivanka, Paskaleva; Mihaela, Kouteva; Franco, Vaccari; Panza, Giuliano F.

    2008-07-08

    The earthquake record and the Code for design and construction in seismic regions in Bulgaria have shown that the territory of the Republic of Bulgaria is exposed to a high seismic risk due to local shallow and regional strong intermediate-depth seismic sources. The available strong motion database is quite limited, and therefore not representative at all of the real hazard. The application of the neo-deterministic seismic hazard assessment procedure for two main Bulgarian cities has been capable to supply a significant database of synthetic strong motions for the target sites, applicable for earthquake engineering purposes. The main advantage of the applied deterministic procedure is the possibility to take simultaneously and correctly into consideration the contribution to the earthquake ground motion at the target sites of the seismic source and of the seismic wave propagation in the crossed media. We discuss in this study the result of some recent applications of the neo-deterministic seismic microzonation procedure to the cities of Sofia and Russe. The validation of the theoretically modeled seismic input against Eurocode 8 and the few available records at these sites is discussed.

  5. Scanning Seismic Intrusion Detector

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1982-01-01

    Scanning seismic intrusion detector employs array of automatically or manually scanned sensors to determine approximate location of intruder. Automatic-scanning feature enables one operator to tend system of many sensors. Typical sensors used with new system are moving-coil seismic pickups. Detector finds uses in industrial security systems.

  6. Seismic Computerized Alert Network

    USGS Publications Warehouse

    1986-01-01

    In 1985 the USGS devised a model for a Seismic Computerized Alert Network (SCAN) that would use continuous monitoring of seismic data from existing types of instruments to provide automatic, highly-reliable early warnings of earthquake shaking. In a large earthquake, substantial damaging ground motions may occur at great distances from the earthquake's epicenter.

  7. Recent Impacts on Mars: Cluster Properties and Seismic Signal Predictions

    NASA Astrophysics Data System (ADS)

    Justine Daubar, Ingrid; Schmerr, Nicholas; Banks, Maria; Marusiak, Angela; Golombek, Matthew P.

    2016-10-01

    Impacts are a key source of seismic waves that are a primary constraint on the formation, evolution, and dynamics of planetary objects. Geophysical missions such as InSight (Banerdt et al., 2013) will monitor seismic signals from internal and external sources. New martian craters have been identified in orbital images (Malin et al., 2006; Daubar et al., 2013). Seismically detecting such impacts and subsequently imaging the resulting craters will provide extremely accurate epicenters and source crater sizes, enabling calibration of seismic velocities, the efficiency of impact-seismic coupling, and retrieval of detailed regional and local internal structure.To investigate recent impact-induced seismicity on Mars, we have assessed ~100 new, dated impact sites. In approximately half of new impacts, the bolide partially disintegrates in the atmosphere, forming multiple craters in a cluster. We incorporate the resulting, more complex, seismic effects in our model. To characterize the variation between sites, we focus on clustered impacts. We report statistics of craters within clusters: diameters, morphometry indicating subsurface layering, strewn-field azimuths indicating impact direction, and dispersion within clusters indicating combined effects of bolide strength and elevation of breakup.Measured parameters are converted to seismic predictions for impact sources using a scaling law relating crater diameter to the momentum and source duration, calibrated for impacts recorded by Apollo (Lognonne et al., 2009). We use plausible ranges for target properties, bolide densities, and impact velocities to bound the seismic moment. The expected seismic sources are modeled in the near field using a 3-D wave propagation code (Petersson et al., 2010) and in the far field using a 1-D wave propagation code (Friederich et al., 1995), for a martian seismic model. Thus we calculate the amplitudes of seismic phases at varying distances, which can be used to evaluate the detectability

  8. The seismic noise wavefield is not diffuse.

    PubMed

    Mulargia, Francesco

    2012-04-01

    Passive seismology is burgeoning under the apparent theoretical support of diffuse acoustics. However, basic physical arguments suggest that this theory may not be applicable to seismic noise. A procedure is developed to establish the applicability of the diffuse field paradigm to a wavefield, based on testing the latter for azimuthal isotropy and spatial homogeneity. This procedure is then applied to the seismic noise recorded at 65 sites covering a wide variety of environmental and subsoil conditions. Considering the instantaneous oscillation vector measured at single triaxial stations, the hypothesis of azimuthal isotropy is rejected in all cases with high confidence, which makes the spatial homogeneity test unnecessary and leads directly to conclude that the seismic noise wavefield is not diffuse. However, such a conclusion has no practical effect on passive imaging, which is also possible in non-diffuse wavefields. PMID:22501063

  9. Intraplate seismicity across the Cape Verde swell: A contribution from a temporary seismic network

    NASA Astrophysics Data System (ADS)

    Vales, Dina; Dias, Nuno A.; Rio, Inês; Matias, Luís; Silveira, Graça; Madeira, José; Weber, Michael; Carrilho, Fernando; Haberland, Christian

    2014-12-01

    We present an analysis and characterization of the regional seismicity recorded by a temporary broadband seismic network deployed in the Cape Verde archipelago between November 2007 and September 2008. The detection of earthquakes was based on spectrograms, allowing the discrimination from low-frequency volcanic signals, resulting in 358 events of which 265 were located, the magnitudes usually being smaller than 3. For the location, a new 1-D P-velocity model was derived for the region showing a crust consistent with an oceanic crustal structure. The seismicity is located mostly offshore the westernmost and geologically youngest areas of the archipelago, near the islands of Santo Antão and São Vicente in the NW and Brava and Fogo in the SW. The SW cluster has a lower occurrence rate and corresponds to seismicity concentrated mainly along an alignment between Brava and the Cadamosto seamount presenting normal faulting mechanisms. The existence of the NW cluster, located offshore SW of Santo Antão, was so far unknown and concentrates around a recently recognized submarine cone field; this cluster presents focal depths extending from the crust to the upper mantle and suggests volcanic unrest. No evident temporal behaviour could be perceived, although the events tend to occur in bursts of activity lasting a few days. In this recording period, no significant activity was detected at Fogo volcano, the most active volcanic edifice in Cape Verde. The seismicity characteristics point mainly to a volcanic origin. The correlation of the recorded seismicity with active volcanic structures agrees with the tendency for a westward migration of volcanic activity in the archipelago as indicated by the geologic record.

  10. Seismic Imaging of Open Subsurface Fractures

    NASA Astrophysics Data System (ADS)

    Myers, S. C.; Pitarka, A.; Matzel, E.; Aguiar, A. C.

    2015-12-01

    Injection of high-pressure fluid into the subsurface is proven to stimulate geothermal, oil, and gas production by opening cracks that increase permeability. The effectiveness of increasing permeability by high-pressure injection has been revolutionized by the introduction of "proppants" into the injected fluid to keep cracks open after the pressure of the stimulation activity ends. The network of fractures produced during stimulation is most commonly inferred by the location of micro-earthquakes. However, existing (closed) fractures may open aseismically, so the whole fracture network may not be imaged by micro-seismic locations alone. Further, whether all new fractures remain open and for how long remains unclear. Open cracks, even fluid-filled cracks, scatter seismic waves because traction forces are not transmitted across the gap. Numerical simulation confirms that an open crack with dimensions on the order of 10 meters can scatter enough seismic energy to change the coda of seismic signals. Our simulations show that changes in seismic coda due to newly opened fractures are only a few percent of peak seismogram amplitudes, making signals from open cracks difficult to identify. We are developing advanced signal processing methods to identify candidate signals that originate from open cracks. These methods are based on differencing seismograms that are recorded before and after high-pressure fluid injection events to identify changes in the coda. The origins of candidate signals are located using time-reversal techniques to determine if the signals are indeed associated with a coherent structure. The source of scattered energy is compared to micro-seismic event locations to determine whether cracks opened seismically or aseismically. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675612.

  11. Astor Pass Seismic Surveys Preliminary Report

    SciTech Connect

    Louie, John; Pullammanappallil, Satish; Faulds, James; Eisses, Amy; Kell, Annie; Frary, Roxanna; Kent, Graham

    2011-08-05

    In collaboration with the Pyramid Lake Paiute Tribe (PLPT), the University of Nevada, Reno (UNR) and Optim re-processed, or collected and processed, over 24 miles of 2d seismic-reflection data near the northwest corner of Pyramid Lake, Nevada. The network of 2d land surveys achieved a near-3d density at the Astor Pass geothermal prospect that the PLPT drilled during Nov. 2010 to Feb. 2011. The Bureau of Indian Affairs funded additional seismic work around the Lake, and an extensive, detailed single-channel marine survey producing more than 300 miles of section, imaging more than 120 ft below the Lake bottom. Optim’s land data collection utilized multiple heavy vibrators and recorded over 200 channels live, providing a state-of-the-art reflection-refraction data set. After advanced seismic analysis including first-arrival velocity optimization and prestack depth migration, the 2d sections show clear fault-plane reflections, in some areas as deep as 4000 ft, tying to distinct terminations of the mostly volcanic stratigraphy. Some lines achieved velocity control to 3000 ft depth; all lines show reflections and terminations to 5000 ft depth. Three separate sets of normal faults appear in an initial interpretation of fault reflections and stratigraphic terminations, after loading the data into the OpendTect 3d seismic visualization system. Each preliminary fault set includes a continuous trace more than 3000 ft long, and a swarm of short fault strands. The three preliminary normal-fault sets strike northerly with westward dip, northwesterly with northeast dip, and easterly with north dip. An intersection of all three fault systems documented in the seismic sections at the end of Phase I helped to locate the APS-2 and APS-3 slimholes. The seismic sections do not show the faults connected to the Astor Pass tufa spire, suggesting that we have imaged mostly Tertiary-aged faults. We hypothesize that the Recent, active faults that produced the tufa through hotspring

  12. Separation of site effects and structural focusing in Santa Monica, California: A study of high-frequency weak motions from earthquakes and blasts recorded during the Los Angeles Region Seismic Experiment

    USGS Publications Warehouse

    Baher, S.; Davis, P.M.; Fuis, G.

    2002-01-01

    Near-surface site factors and the effects of deep structural focusing were estimated in the Santa Monica Mountains and Santa Monica, California, from a portable array of 75 seismic stations deployed during the Los Angeles Region Seismic Experiment, Phase II (LARSE II). The objective was to examine further the origin of seismic wave amplification in the region of intense damage south of the Santa Monica Fault from the Northridge earthquake. The analysis used normalized spectral amplitudes in the 4- to 8- and 8- to 12-Hz range in direct and coda waves from local earthquakes in Santa Paula, Northridge, Redlands, and Hector Mine. Coda waves indicated that site factor amplifications are larger south of the Santa Monica fault relative to the north. Spectral ratios of direct S waves, corrected for site effects, show additional amplificaton south of, and adjacent to, the Santa Monica fault, attributable to focusing by a deeper structure. Gao et al. (1996) concluded that localized focusing effects contributed to anomalous P- and S-wave amplification in the Santa Monica damage zone for Northridge aftershocks within a specified range of azimuths. In an attempt to reproduce the hypothesized focusing from the Northridge earthquake, two shots (4000 and 3750 lb.) were detonated, one at Pyramid Lake, a distance of about 69 km to the north-northwest of central Santa Monica, and the other near Fort Tejon, a distance of 91 km. The azimuth of the shots was chosen to be that expected to give anomalous amplification. At these distance steeply incident seismic energy from Pg/PmP waves are expected to pass through the underground focusing structure and be selectively amplified. After the local site factors are removed, the waveforms from the Fort Tejon shot exhibited localized amplification adjacent to and south of the fault, 2-3 times larger than that of the surrounding area. The effect is less for waves from the Pyramid Lake shot, which could be due to their higher angle of incidence

  13. Propagation of seismic waves in tall buildings

    USGS Publications Warehouse

    Safak, E.

    1998-01-01

    A discrete-time wave propagation formulation of the seismic response of tall buildings is introduced. The building is modeled as a layered medium, similar to a layered soil medium, and is subjected to vertically propagating seismic shear waves. Soil layers and the bedrock under the foundation are incorporated in the formulation as additional layers. Seismic response is expressed in terms of the wave travel times between the layers, and the wave reflection and transmission coefficients at the layer interfaces. The equations account for the frequency-dependent filtering effects of the foundation and floor masses. The calculation of seismic response is reduced to a pair of simple finite-difference equations for each layer, which can be solved recursively starting from the bedrock. Compared to the commonly used vibration formulation, the wave propagation formulation provides several advantages, including simplified calculations, better representation of damping, ability to account for the effects of the soil layers under the foundation, and better tools for identification and damage detection from seismic records. Examples presented show the versatility of the method. ?? 1998 John Wiley & Sons, Ltd.

  14. Assessment of seismic design response factors of concrete wall buildings

    NASA Astrophysics Data System (ADS)

    Mwafy, Aman

    2011-03-01

    To verify the seismic design response factors of high-rise buildings, five reference structures, varying in height from 20- to 60-stories, were selected and designed according to modern design codes to represent a wide range of concrete wall structures. Verified fiber-based analytical models for inelastic simulation were developed, considering the geometric nonlinearity and material inelasticity of the structural members. The ground motion uncertainty was accounted for by employing 20 earthquake records representing two seismic scenarios, consistent with the latest understanding of the tectonic setting and seismicity of the selected reference region (UAE). A large number of Inelastic Pushover Analyses (IPAs) and Incremental Dynamic Collapse Analyses (IDCAs) were deployed for the reference structures to estimate the seismic design response factors. It is concluded that the factors adopted by the design code are adequately conservative. The results of this systematic assessment of seismic design response factors apply to a wide variety of contemporary concrete wall buildings with various characteristics.

  15. Seismic activity monitoring in the Izvorul Muntelui dam region

    NASA Astrophysics Data System (ADS)

    Borleanu, Felix; Otilia Placinta, Anca; Popa, Mihaela; Adelin Moldovan, Iren; Popescu, Emilia

    2016-04-01

    Earthquakes occurrences near the artificial water reservoirs are caused by stress variation due to the weight of water, weakness of fractures or faults and increasing of pore pressure in crustal rocks. In the present study we aim to investigate how Izvorul Muntelui dam, located in the Eastern Carpathians influences local seismicity. For this purpose we selected from the seismic bulletins computed within National Data Center of National Institute for Earth Physics, Romania, crustal events occurred between 984 and 2015 in a range of 0.3 deg around the artificial lake. Subsequently to improve the seismic monitoring of the region we applied a cross-correlation detector on the continuous recordings of Bicaz (BIZ) seismic stations. Besides the tectonic events we detected sources within this region that periodically generate artificial evens. We couldn't emphasize the existence of a direct correlation between the water level variations and natural seismicity of the investigated area.

  16. Improved characterization of local seismicity using the Dubai Seismic Network, United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Al Khatibi, Eman; Abou Elenean, K. M.; Megahed, A. S.; El-Hussain, I.

    2014-08-01

    In April 2006, Dubai Municipality established a broadband seismological network in Dubai Emirate, United Arab Emirates (UAE). This network was the first seismic network in UAE and consists of four remote seismic stations to observe local and regional seismic activity that may have an effect on Dubai Emirate and the surrounding areas. The network exchanges real-time data with the National Center of Meteorology and Seismology in Abu Dhabi, the Earthquake Monitoring Center in Oman and imports in real-time data from few Global Seismic Network stations, which increases the aperture of the network. In April 2012, Dubai Municipality installed an additional five free-field strong motion stations inside the urban area to estimate and publish real-time ShakeMaps for public and decision makers. Although the local seismic activity from April 2006 to June 2013 reflects low seismic activity with the Emirate, it indicates active tectonics in the relatively aseismic northern Oman Mountains region. A few inland clusters of micro-to-small earthquakes have been identified with the new network. A clear cluster of small-to-moderate earthquakes took place in the eastern part of UAE to the east of Masafi, while two clusters of micro-to-small earthquakes took place at Wadi Nazwa and northern Huwaylat. Focal mechanisms of few well recorded earthquakes in this region indicate normal faulting, generally trending NE in parallel to the transition shear zone between the collision at Zagros and the subduction at the Makran zone.

  17. Two applications of time reversal mirrors: seismic radio and seismic radar.

    PubMed

    Hanafy, Sherif M; Schuster, Gerard T

    2011-10-01

    Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar to radar surveillance, detecting and tracking a moving object(s) in a remote area, including the determination of the objects speed of movement. Both applications require the prior recording of calibration Green's functions in the area of interest. This reference Green's function will be used as a codebook to decrypt the coded message in the first application and as a moving sensor for the second application. Field tests show that seismic radar can detect the moving coordinates (x(t), y(t), z(t)) of a person running through a calibration site. This information also allows for a calculation of his velocity as a function of location. Results with the seismic radio are successful in seismically detecting and decoding coded pulses produced by a hammer. Both seismic radio and radar are highly robust to signals in high noise environments due to the super-stacking property of TRMs. PMID:21973353

  18. Two applications of time reversal mirrors: seismic radio and seismic radar.

    PubMed

    Hanafy, Sherif M; Schuster, Gerard T

    2011-10-01

    Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar to radar surveillance, detecting and tracking a moving object(s) in a remote area, including the determination of the objects speed of movement. Both applications require the prior recording of calibration Green's functions in the area of interest. This reference Green's function will be used as a codebook to decrypt the coded message in the first application and as a moving sensor for the second application. Field tests show that seismic radar can detect the moving coordinates (x(t), y(t), z(t)) of a person running through a calibration site. This information also allows for a calculation of his velocity as a function of location. Results with the seismic radio are successful in seismically detecting and decoding coded pulses produced by a hammer. Both seismic radio and radar are highly robust to signals in high noise environments due to the super-stacking property of TRMs.

  19. Bighorns Arch Seismic Experiment (BASE): Amplitude Response to Different Seismic Charge Configurations

    SciTech Connect

    Harder, S. H., Killer, K. C., Worthington, L. L., Snelson, C. M.

    2010-09-02

    Contrary to popular belief, charge weight is not the most important engineering parameter determining the seismic amplitudes generated by a shot. The scientific literature has long claimed that the relationship, A ~R2L1/2, where A is the seismic amplitude generated by a shot, R is the radius of the seismic charge and L is the length of that charge, holds. Assuming the coupling to the formation and the pressure generated by the explosive are constants, this relationship implies that the one should be able to increase the charge radius while decreasing the charge length and obtain more seismic amplitude with less charge weight. This has significant implications for the economics of lithospheric seismic shots, because shallower holes and small charge sizes decrease cost. During the Bighorns Array Seismic Experiment (BASE) conducted in the summer of 2010, 24 shots with charge sizes ranging from 110 to 900 kg and drill hole diameters of 300 and 450 mm were detonated and recorded by an array of up to 2000 single-channel Texan seismographs. Maximum source-receiver offset of 300 km. Five of these shots were located within a one-acre square in an effort to eliminate coupling effects due to differing geological formations. We present a quantitative comparison of the data from these five shots to experimentally test the equation above.

  20. Seismically observed seiching in the Panama Canal

    USGS Publications Warehouse

    McNamara, D.E.; Ringler, A.T.; Hutt, C.R.; Gee, L.S.

    2011-01-01

    A large portion of the seismic noise spectrum is dominated by water wave energy coupled into the solid Earth. Distinct mechanisms of water wave induced ground motions are distinguished by their spectral content. For example, cultural noise is generally <1 s period, microseisms dominate the seismic spectrum from periods of 2 to 20 s, and the Earth's "hum" is in the range of 50 to 600 s. We show that in a large lake in the Panama Canal there is an additional source of long-period noise generated by standing water waves, seiches, induced by disturbances such as passing ships and wind pressure. We compare seismic waveforms to water level records and relate these observations to changes in local tilt and gravity due to an oscillating seiche. The methods and observations discussed in this paper provide a first step toward quantifying the impact of water inundation as recorded by seismometers. This type of quantified understanding of water inundation will help in future estimates of similar phenomena such as the seismic observations of tsunami impact. Copyright 2011 by the American Geophysical Union.

  1. Seismically observed seiching in the Panama Canal

    NASA Astrophysics Data System (ADS)

    McNamara, D. E.; Ringler, A. T.; Hutt, C. R.; Gee, L. S.

    2011-04-01

    A large portion of the seismic noise spectrum is dominated by water wave energy coupled into the solid Earth. Distinct mechanisms of water wave induced ground motions are distinguished by their spectral content. For example, cultural noise is generally <1 s period, microseisms dominate the seismic spectrum from periods of 2 to 20 s, and the Earth's "hum" is in the range of 50 to 600 s. We show that in a large lake in the Panama Canal there is an additional source of long-period noise generated by standing water waves, seiches, induced by disturbances such as passing ships and wind pressure. We compare seismic waveforms to water level records and relate these observations to changes in local tilt and gravity due to an oscillating seiche. The methods and observations discussed in this paper provide a first step toward quantifying the impact of water inundation as recorded by seismometers. This type of quantified understanding of water inundation will help in future estimates of similar phenomena such as the seismic observations of tsunami impact.

  2. Seismic damage to pipeline; Case study

    SciTech Connect

    O'Rourke, M.J.; Ayala, G. . Dept. of Civil Engineering)

    1990-03-01

    A case study of damage to a welded steel pipeline in Mexico City, caused by the 1985 Michoacan earthquake, is presented. Seismic damage to pipelines in past earthquakes is briefly reviewed. The damage has typically been due to seismic wave propagation or permanent ground deformations, such as faulting, landslides, or lateral spreads. Physical characteristics of the case study pipeline, pertinent soil conditions, recorded ground motion, and observed seismic damage in Mexico City are then presented. The recorded ground motion in the lake zone of Mexico City suggests a significant contribution from Rayleigh waves. A previously developed analysis procedure is used to estimate stress induced by seismic wave propagation in the case study pipeline. The pipeline stress is a function of the amplitude and wavelength of the ground strain, maximum friction forces at the soil-pipe interface, and the stress-strain characteristics of the pipeline material. It is shown that the estimated stress is only slightly less than the local compressional buckling stress for the case history pipeline.

  3. Third Quarter Hanford Seismic Report for Fiscal Year 2000

    SciTech Connect

    DC Hartshorn; SP Reidel; AC Rohay

    2000-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its con-tractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (E WRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 818 triggers on two parallel detection and recording systems during the third quarter of fiscal year (FY) 2000. Thirteen seismic events were located by the Hanford Seismic Network within the reporting region of 46-47{degree} N latitude and 119-120{degree} W longitude; 7 were earthquakes in the Columbia River Basalt Group, 1 was an earthquake in the pre-basalt sediments, and 5 were earthquakes in the crystalline basement. Three earthquakes occurred in known swarm areas, and 10 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the third quarter of FY 2000.

  4. Second Quarter Hanford Seismic Report for Fiscal Year 2008

    SciTech Connect

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-06-26

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, seven local earthquakes were recorded during the second quarter of fiscal year 2008. The largest event recorded by the network during the second quarter (February 3, 2008 - magnitude 2.3 Mc) was located northeast of Richland in Franklin County at a depth of 22.5 km. With regard to the depth distribution, two earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), three earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and two earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, five earthquakes occurred in swarm areas and two earthquakes were classified as random events.

  5. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    SciTech Connect

    DC Hartshorn; SP Reidel; AC Rohay

    2000-07-17

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree} N latitude and 119--120{degree} W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  6. First quarter Hanford seismic report for fiscal year 2000

    SciTech Connect

    DC Hartshorn; SP Reidel; AC Rohay

    2000-02-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EW uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 311 triggers on two parallel detection and recording systems during the first quarter of fiscal year (FY) 2000. Twelve seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree}N latitude and 119--120{degree}W longitude; 2 were earthquakes in the Columbia River Basalt Group, 3 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 1 was a quarry blast. Two earthquakes appear to be related to a major geologic structure, no earthquakes occurred in known swarm areas, and 9 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers

  7. High Resolution Seismic Imaging of the Brawley Seismic Fault Zone

    NASA Astrophysics Data System (ADS)

    Goldman, M.; Catchings, R. D.; Rymer, M. J.; Lohman, R. B.; McGuire, J. J.; Sickler, R. R.; Criley, C.; Rosa, C.

    2011-12-01

    In March 2010, we acquired a series of high-resolution P-wave seismic reflection and refraction data sets across faults in the Brawley seismic zone (BSZ) within the Salton Sea Geothermal Field (SSGF). Our objectives were to determine the dip, possible structural complexities, and seismic velocities within the BSZ. One dataset was 3.4 km long trending east-west, and consisted of 334 shots recorded by a 2.4 km spread of 40 hz geophones placed every 10 meters. The spread was initially laid out from the first station at the eastern end of the profile to roughly 2/3 into the profile. After about half the shots, the spread was shifted from roughly 1/3 into the profile to the last station at the western end of the profile. P-waves were generated by Betsy-Seisgun 'shots' spaced every 10 meters. Initial analysis of first breaks indicate near-surface velocities of ~500-600 meters/sec, and deeper velocities of around 2000 meters/sec. Preliminary investigation of shot gathers indicate a prominent fault that extends to the ground surface. This fault is on a projection of the Kalin fault from about 40 m to the south, and broke the surface down to the west with an approximately north-south strike during a local swarm of earthquakes in 2005 and also slipped at the surface in association with the 2010 El Mayor-Cucapah earthquake in Baja California. The dataset is part of the combined Obsidian Creep data set, and provides the most detailed, publicly available subsurface images of fault structures in the BSZ and SSGF.

  8. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    SciTech Connect

    Karyono; Mazzini, Adriano; Sugiharto, Anton; Lupi, Matteo; Syafri, Ildrem; Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat

    2015-04-24

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  9. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    NASA Astrophysics Data System (ADS)

    Karyono, Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Masturyono, Rudiyanto, Ariska; Pranata, Bayu; Muzli, Widodo, Handi Sulistyo; Sudrajat, Ajat; Sugiharto, Anton

    2015-04-01

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green's functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  10. Probabilistic Seismic Hazard Analysis

    SciTech Connect

    Not Available

    1988-01-01

    The purpose of Probabilistic Seismic Hazard Analysis (PSHA) is to evaluate the hazard of seismic ground motion at a site by considering all possible earthquakes in the area, estimating the associated shaking at the site, and calculating the probabilities of these occurrences. The Panel on Seismic Hazard Analysis is charged with assessment of the capabilities, limitations, and future trends of PSHA in the context of alternatives. The report identifies and discusses key issues of PSHA and is addressed to decision makers with a modest scientific and technical background and to the scientific and technical community. 37 refs., 19 figs.

  11. The Seismic Wavefield

    NASA Astrophysics Data System (ADS)

    Kennett, B. L. N.

    2002-12-01

    The two volumes of The Seismic Wavefield are a comprehensive guide to the understanding of seismograms in terms of physical propagation processes within the Earth. The focus is on the observation of earthquakes and man-made sources on all scales, for both body waves and surface waves. Volume I provides a general introduction and a development of the theoretical background for seismic waves. Volume II looks at the way in which observed seismograms relate to the propagation processes. Volume II also discusses local and regional seismic events, global wave propagation, and the three-dimensional Earth.

  12. Seismic data from man-made impacts on the moon.

    PubMed

    Latham, G; Ewing, M; Dorman, J; Press, F; Toksoz, N; Sutton, G; Meissner, R; Duennebier, F; Nakamura, Y; Kovach, R; Yates, M

    1970-11-01

    Unusually long reverberations were recorded from two lunar impacts by a seismic station installed on the lunar surface by the Apollo 12 astronauts. Seismic data from these impacts suggest that the lunar mare in the region of the Apollo 12 landing site consists of material with very low seismic velocities near the surface, with velocity increasing with depth to 5 to 6 kilometers per second (for compressional waves) at a depth of 20 kilometers. Absorption of seismic waves in this structure is extremely low relative to typical continental crustal materials on earth. It is unlikely that a major boundary similar to the crustmantle interface on earth exists in the outer 20 kilometers of the moon. A combination of dispersion and scattering of surface waves probably explains the lunar seismic reverberation. Scattering of these waves implies the presence of heterogeneity within the outer zone of the mare on a scale of from several hundred meters (or less) to several kilometers. Seismic signals from 160 events of natural origin have been recorded during the first 7 months of operation of the Apollo 12 seismic station. At least 26 of the natural events are small moonquakes. Many of the natural events are thought to be meteoroid impacts.

  13. Seismic monitoring of Central Asia territory in KNDC.

    NASA Astrophysics Data System (ADS)

    Mukambayev, Aidyn; Mikhailova, Natalia

    2015-04-01

    The Central Asia territory includes the territory of five post-Soviet countries: Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan. Every country has its own independent network of seismic observations and Data Processing Center aimed at every day seismic monitoring of one country territory. However, seismic hazard of Central Asia territory is stipulated by one geodynamic system that generates simultaneous large earthquakes on the territory of different countries. Thus, it is necessary to observe seismic situation for the whole region for emergency situations and for compilation of joint seismic bulletins of Central Asia region. A new contemporary network of seismic observations operated by the Institute of Geophysical Researches has been installed in Kazakhstan during last 15 years. Mainly, these are seismic arrays located throughout the country perimeter. The arrays were constructed under support of the CTBTO, and AFTAC. There are also IRIS and CAREMON stations. All data arrive to KNDC (Kazakhstan National Data Center) in real time mode. In addition, KNDC receives data in real time from stations Zalesovo (Russia), Alibek (Turkmenistan), Ala-Archa and Tokmak (Kyrgyzstan). Arrival times in the form of tables are received with 24-hours delay from almost 20 Kazakhstan stations belonging to SEME MES RK. This observation system allows monitoring the Central Asian seismicity by earthquakes with representative magnitude more than 3.5. In some regions, the events with magnitude 1.5 are recorded. As result, different products with different operativity are created for Central Asia territory: -bulletin of urgent alerts; -automatic seismic bulletin; -interactive seismic bulletin; -joint seismic operative bulletin by data arrived on-line and in table form. After that, in retrospective mode, the events nature is identified to discriminate mining explosions (up to 4000 per year) and natural earthquakes (up to 15000 per year). The results are available at KNDC web

  14. Joint analysis of the seismic data and velocity gravity model

    NASA Astrophysics Data System (ADS)

    Belyakov, A. S.; Lavrov, V. S.; Muchamedov, V. A.; Nikolaev, A. V.

    2016-03-01

    We performed joint analysis of the seismic noises recorded at the Japanese Ogasawara station located on Titijima Island in the Philippine Sea using the STS-2 seismograph at the OSW station in the winter period of January 1-15, 2015, over the background of a velocity gravity model. The graphs prove the existence of a cause-and-effect relation between the seismic noise and gravity and allow us to consider it as a desired signal.

  15. Seismic Techniques for Subsurface Voids Detection

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; Korneev, Valeri; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    orthogonal transmission surveys to detect and locate the object. Furthermore, we showed that ambient noise recordings may generate data with sufficient signal-to-noise ratio to successfully detect and locate subsurface voids. Being able to use ambient noise recordings would eliminate the need to employ active seismic sources that are time consuming and more expensive to operate.

  16. Seismic sequences in the Sombrero Seismic Zone

    NASA Astrophysics Data System (ADS)

    Pulliam, J.; Huerfano, V. A.; ten Brink, U.; von Hillebrandt, C.

    2007-05-01

    The northeastern Caribbean, in the vicinity of Puerto Rico and the Virgin Islands, has a long and well-documented history of devastating earthquakes and tsunamis, including major events in 1670, 1787, 1867, 1916, 1918, and 1943. Recently, seismicity has been concentrated to the north and west of the British Virgin Islands, in the region referred to as the Sombrero Seismic Zone by the Puerto Rico Seismic Network (PRSN). In the combined seismicity catalog maintained by the PRSN, several hundred small to moderate magnitude events can be found in this region prior to 2006. However, beginning in 2006 and continuing to the present, the rate of seismicity in the Sombrero suddenly increased, and a new locus of activity developed to the east of the previous location. Accurate estimates of seismic hazard, and the tsunamigenic potential of seismic events, depend on an accurate and comprehensive understanding of how strain is being accommodated in this corner region. Are faults locked and accumulating strain for release in a major event? Or is strain being released via slip over a diffuse system of faults? A careful analysis of seismicity patterns in the Sombrero region has the potential to both identify faults and modes of failure, provided the aggregation scheme is tuned to properly identify related events. To this end, we experimented with a scheme to identify seismic sequences based on physical and temporal proximity, under the assumptions that (a) events occur on related fault systems as stress is refocused by immediately previous events and (b) such 'stress waves' die out with time, so that two events that occur on the same system within a relatively short time window can be said to have a similar 'trigger' in ways that two nearby events that occurred years apart cannot. Patterns that emerge from the identification, temporal sequence, and refined locations of such sequences of events carry information about stress accommodation that is obscured by large clouds of

  17. Source spectra of seismic hum

    NASA Astrophysics Data System (ADS)

    Nishida, Kiwamu

    2014-10-01

    The observation of seismic hum from 2 to 20 mHz, also known as Earth's background free oscillations, has been established. Recent observations by broad-band seismometers show simultaneous excitation of Love waves (fundamental toroidal modes) and Rayleigh waves (fundamental spheroidal modes). The excitation amplitudes above 10 mHz can be explained by random shear traction sources on Earth's surface. With estimated source distributions, the most likely excitation mechanism is a linear coupling between ocean infragravity waves and seismic surface waves through seafloor topography. Observed Love and Rayleigh wave amplitudes below 5 mHz suggest that surface pressure sources could also contribute to their excitations, although the amplitudes have large uncertainties due to the high noise levels of the horizontal components. To quantify the observation, we develop a new method for estimation of the source spectra of random tractions on Earth's surface by modelling cross-spectra between pairs of stations. The method is to calculate synthetic cross-spectra for spatially isotropic and homogeneous excitations by random shear traction and pressure sources, and invert them with the observed cross-spectra to obtain the source spectra. We applied this method to the IRIS, ORFEUS, and F-net records from 618 stations with three components of broad-band seismometers for 2004-2011. The results show the dominance of shear traction above 5 mHz, which is consistent with past studies. Below 5 mHz, however, the spectral amplitudes of the pressure sources are comparable to those of shear traction. Observed acoustic resonance between the atmosphere and the solid Earth at 3.7 and 4.4 mHz suggests that atmospheric disturbances are responsible for the surface pressure sources, although non-linear ocean wave processes are also candidates for the pressure sources. Excitation mechanisms of seismic hum should be considered as a superposition of the processes of the solid Earth, atmosphere and ocean

  18. Local seismic effects in Swedish underground mines (Zinkgruvan, Garpenberg, Kiruna)

    NASA Astrophysics Data System (ADS)

    Dineva, Savka; Mihaylov, Dimitar; Hansen-Haug, Jouni; Woldemehdin, BIruk; Marklund, Per-Ivar; Mozaffari, Shahram

    2016-04-01

    Three local seismic systems from Institute of Mine Seismology (IMS) were installed by August 2015 in deep underground mines in Sweden - Zinkgruvan Mine (Lundin Mining AB), Garpenberg Mine (Boliden Mines), and Kiirunavaara Mine (LKAB). The areas of installation are chosen within the volumes where large rockbursts are expected. One of the systems is deployed at depth around 700 m and the other two around 1100 m. The horizontal extent of the instrumented volumes is between 65 and 115 m. Each system consists of 16 to 18 sensors. A combination of uni-axial and three-axial 4.5 Hz geophones is installed on the wall and roof surfaces of the drifts, in shallow (~0.5 m) and deeper (6-9 m) boreholes. Extensometers and instrumented bolts are installed in close proximity to the profiles with seismic sensors. Data acquisition systems run mostly in triggered mode, with remote access to the data. Very small to larger seismic events (local magnitudes from ~ -4.5 to 2.0) are recorded during the time of operation. The aim of the seismic systems is to provide data about the seismic waveforms recorded as they approach the underground openings. Data is used to evaluate: 1) the site effect on the amplitudes, frequency content, and duration of the seismic signals, 2) the attenuation/amplification of the seismic waves. The seismic data is correlated with the records from the extensometers and instrumented bolts in case of larger seismic events, rockbursts, and blasting in the surrounding area. The final goal is to obtain new information for improvement of the requirements for the rock support in rockburst prone areas. The results show large variations of the amplitudes and frequencies of the recorded seismic waves within small distances, as well as between the walls and the roof. Data recorded by the local systems in the near-field are used for estimation of the attenuation and for comparison with the far-field attenuation derived from mine-wide data. Results are obtained also on the

  19. Development of Vertical Cable Seismic System

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2011-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. (1) VCS is an efficient high-resolution 3D seismic survey in limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Because of autonomous recording system on sea floor, various types of marine source are applicable with VCS such as sea-surface source (GI gun etc.) , deep-towed or ocean bottom source. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN, in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. Seismic Interferometry technique is also applied. The results give much clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Seismic Interferometry technique is applied to obtain the high resolution image in the very shallow zone. Based on the feasibility study, we have developed the autonomous recording VCS system and carried out the trial experiment in actual ocean at the water depth of about 400m to establish the procedures of deployment/recovery and to examine the VC position or fluctuation at seabottom. The result shows that the VC position is estimated with sufficient accuracy and very little fluctuation is observed. Institute of Industrial Science, the University of Tokyo took the research cruise NT11-02 on JAMSTEC R/V Natsushima in February, 2011. In the cruise NT11-02, JGI carried out the second VCS survey using the autonomous VCS recording system with the deep towed source provided by

  20. Seismicity of the eastern Hellenic Subduction Zone

    NASA Astrophysics Data System (ADS)

    Bruestle, A.; Kueperkoch, L.; Rische, M.; Meier, T.; Friederich, W.; Egelados Working Group

    2012-04-01

    The Hellenic Subduction Zone (HSZ) is the seismically most active region of Europe. The African plate is subducting beneath the Aegean lithosphere with a relative velocity of 4 cm per year. A detailed picture of the microseismicity of the eastern HSZ was obtained by the recordings of the temporary networks CYCNET (September 2002 - September 2005) and EGELADOS (October 2005 - March 2007). In total, nearly 7000 earthquakes were located with a location uncertainty of less than 20 km. The SE Aegean is dominated by (1) shallow intraplate seismicity within the Aegean plate, by (2) interplate seismicity at the plate contact and by (3) intermediate deep seismicity along the subducting African slab. Strong shallow seismicity in the upper plate is observed along the Ptolemy graben south of Crete extending towards the Karpathos Basin, indicating intense recent deformation of the forearc. In contrary, low shallow seismicity around Rhodes indicates only minor seismic crustal deformation of the upper plate. An almost NS-striking zone of microseismicity has been located, running from the Karpathos basin via the Nisyros volcanic complex towards the EW striking Gökova graben. In the SE Aegean the geometry of the Wadati-Benioff-Zone (WBZ) within the subducting African plate is revealed in detail by the observed microseismicity. Between about 50 to 100 km depth a continuous band of intermediate deep seismicity describes the strongly curved geometry of the slab. From the central to the eastern margin of the HSZ, the dip direction of the WBZ changes from N to NW with a strong increase of the dip angle beneath the eastern Cretan Sea. The margin of the dipping African slab is marked by an abrupt end of the observed WBZ beneath SW Anatolia. Below 100 km depth, the WBZ of the eastern HSZ is dominated by an isolated cluster of intense intermediate deep seismicity (at 100-180 km depth) beneath the Nisyros volcanic complex. It has an extension of about 100x80 km and is build up of 3 parallel

  1. Seismic hazard assessment in Grecce: Revisited

    NASA Astrophysics Data System (ADS)

    Makropoulos, Kostas; Chousianitis, Kostas; Kaviris, George; Kassaras, Ioannis

    2013-04-01

    Greece is the most earthquake prone country in the eastern Mediterranean territory and one of the most active areas globally. Seismic Hazard Assessment (SHA) is a useful procedure to estimate the expected earthquake magnitude and strong ground-motion parameters which are necessary for earthquake resistant design. Several studies on the SHA of Greece are available, constituting the basis of the National Seismic Code. However, the recently available more complete, accurate and homogenous seismological data (the new earthquake catalogue of Makropoulos et al., 2012), the revised seismic zones determined within the framework of the SHARE project (2012), new empirical attenuation formulas extracted for several regions in Greece, as well as new algorithms of SHA, are innovations that motivated the present study. Herewith, the expected earthquake magnitude for Greece is evaluated by applying the zone-free, upper bounded Gumbel's third asymptotic distribution of extreme values method. The peak ground acceleration (PGA), velocity (PGV) and displacement (PGD) are calculated at the seismic bedrock using two methods: (a) the Gumbel's first asymptotic distribution of extreme values, since it is valid for initial open-end distributions and (b) the Cornell-McGuire approach, using the CRISIS2007 (Ordaz et. al., 2007) software. The latter takes into account seismic source zones for which seismicity parameters are assigned following a Poisson recurrence model. Thus, each source is characterized by a series of seismic parameters, such as the magnitude recurrence and the recurrence rate for threshold magnitude, while different predictive equations can be assigned to different seismic source zones. Recent available attenuation parameters were considered. Moreover, new attenuation parameters for the very seismically active Corinth Gulf deduced during this study, from recordings of the RASMON accelerometric array, were used. The hazard parameters such as the most probable annual maximum

  2. The seismic design handbook

    SciTech Connect

    Naeim, F. )

    1989-01-01

    This book contains papers on the planning, analysis, and design of earthquake resistant building structures. Theories and concepts of earthquake resistant design and their implementation in seismic design practice are presented.

  3. BUILDING 341 Seismic Evaluation

    SciTech Connect

    Halle, J.

    2015-06-15

    The Seismic Evaluation of Building 341 located at Lawrence Livermore National Laboratory in Livermore, California has been completed. The subject building consists of a main building, Increment 1, and two smaller additions; Increments 2 and 3.

  4. Phase statistics of seismic coda waves.

    PubMed

    Anache-Ménier, D; van Tiggelen, B A; Margerin, L

    2009-06-19

    We report the analysis of the statistics of the phase fluctuations in the coda of earthquakes recorded during a temporary experiment deployed at Pinyon Flats Observatory, California. The observed distributions of the spatial derivatives of the phase in the seismic coda exhibit universal power-law decays whose exponents agree accurately with circular Gaussian statistics. The correlation function of the phase derivative is measured and used to estimate the mean free path of Rayleigh waves.

  5. Seismic Consequence Abstraction

    SciTech Connect

    M. Gross

    2004-10-25

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]).

  6. Seismic excitation by the space shuttle Columbia

    USGS Publications Warehouse

    Kanamori, H.; Mori, J.; Anderson, D.L.; Heaton, T.H.

    1991-01-01

    SEISMIC stations in southern California recorded the atmospheric shock waves generated by the space shuttle Columbia on its return to the Edwards Air Force base on 13 August 1989 (Fig. 1). In addition to the shock wave, the broad-band IRIS-TERRAscope station at Pasadena recorded a distinct pulse with a period of ???2-3 seconds, which arrived 12.5 seconds before the shock wave (Fig. 2). This pulse was also recorded at the University of Southern California, near downtown Los Angeles, where it arrived 3 seconds after the shock wave. The origin of this pulse could not be readily identified. We show here that it was a seismic P wave excited by the motion of high-rise buildings in downtown Los Angeles, which were hit by the shock wave. The proximity of the natural period of the high-rise buildings to that of the Los Angeles basin enabled efficient energy transfer from shock wave to seismic wave.

  7. The Plate Boundary Observatory Borehole Seismic Network

    NASA Astrophysics Data System (ADS)

    Hasting, M.; Eakins, J.; Anderson, G.; Hodgkinson, K.; Johnson, W.; Mencin, D.; Smith, S.; Jackson, M.; Prescott, W.

    2006-12-01

    As part of the NSF-funded EarthScope Plate Boundary Observatory, UNAVCO will install and operate 103 borehole seismic stations throughout the western United States. These stations continuously record three- component seismic data at 100 samples per second, using Geo-Space HS-1-LT 2-HZ geophones in a sonde developed by SONDI and Consultants (Duke University). Each seismic package is connected to an uphole Quanterra Q330 data logger and Marmot external buffer, from which UNAVCO retrieves data in real time. UNAVCO uses the Antelope software suite from Boulder Real-Time Technologies (BRTT) for all data collection and transfer, metadata generation and distribution, and monitoring of the network. The first stations were installed in summer 2005, with 19 stations installed by September 2006, and a total of 28 stations expected by December 2006. In a prime example of cooperation between the PBO and USArray components of EarthScope, the USArray Array Network Facility (ANF), operated by UC San Diego, handled data flow and network monitoring for the PBO seismic stations in the initial stages of network operations. We thank the ANF staff for their gracious assistance over the last several months. Data flow in real time from the remote stations to the UNAVCO Boulder Network Operations Center, from which UNAVCO provides station command and control; verification and distribution of metadata; and basic quality control for all data. From Boulder, data flow in real time to the IRIS DMC for final quality checks, archiving, and distribution. Historic data are available from June 2005 to the present, and are updated in real time with typical latencies of less than ten seconds. As of 1 September 2006, the PBO seismic network had returned 60 GB of raw data. Please visit http://pboweb.unavco.org for additional information on the PBO seismic network.

  8. Tsunami Records on Seismometers

    NASA Astrophysics Data System (ADS)

    Allgeyer, S.; Cummins, P. R.

    2015-12-01

    Since the 2004 Sumatra event, observations of tsunamis have been recorded on a variety of geophysical sensors like tide gages, tilt meters and seismometers. Recent advances in tsunami simulations, that include mainly elastic loading, have quantified the interaction between the ocean and the surrounding seafloor, resulting in a better agreement between tsunami observations and simulation. This improvement in the modelling allows us to use tilt observations in the study of tsunami events. In this study, we will use seismic tilt derived observations for well-recorded events in order to provide a new approach to the study of past events.

  9. Tracking glaciers with the Alaska seismic network

    NASA Astrophysics Data System (ADS)

    West, M. E.

    2015-12-01

    More than 40 years ago it was known that calving glaciers in Alaska created unmistakable seismic signals that could be recorded tens and hundreds of kilometers away. Their long monochromatic signals invited studies that foreshadowed the more recent surge in glacier seismology. Beyond a handful of targeted studies, these signals have remained a seismic novelty. No systematic attempt has been made to catalog and track glacier seismicity across the years. Recent advances in understanding glacier sources, combined with the climate significance of tidewater glaciers, have renewed calls for comprehensive tracking of glacier seismicity in coastal Alaska. The Alaska Earthquake Center has included glacier events in its production earthquake catalog for decades. Until recently, these were best thought of as bycatch—accidental finds in the process of tracking earthquakes. Processing improvements a decade ago, combined with network improvements in the past five years, have turned this into a rich data stream capturing hundreds of events per year across 600 km of the coastal mountain range. Though the source of these signals is generally found to be iceberg calving, there are vast differences in behavior between different glacier termini. Some glaciers have strong peaks in activity during the spring, while others peak in the late summer or fall. These patterns are consistent over years pointing to fundamental differences in calving behavior. In several cases, changes in seismic activity correspond to specific process changes observed through other means at particular glacier. These observations demonstrate that the current network is providing a faithful record of the dynamic behavior of several glaciers in coastal Alaska. With this as a starting point, we examine what is possible (and not possible) going forward with dedicated detection schemes.

  10. Seismicity in Northern Germany

    NASA Astrophysics Data System (ADS)

    Bischoff, Monika; Gestermann, Nicolai; Plenefisch, Thomas; Bönnemann, Christian

    2013-04-01

    Northern Germany is a region of low tectonic activity, where only few and low-magnitude earthquakes occur. The driving tectonic processes are not well-understood up to now. In addition, seismic events during the last decade concentrated at the borders of the natural gas fields. The source depths of these events are shallow and in the depth range of the gas reservoirs. Based on these observations a causal relationship between seismicity near gas fields and the gas production is likely. The strongest of these earthquake had a magnitude of 4.5 and occurred near Rotenburg in 2004. Also smaller seismic events were considerably felt by the public and stimulated the discussion on the underlying processes. The latest seismic event occurred near Langwedel on 22nd November 2012 and had a magnitude of 2.8. Understanding the causes of the seismicity in Northern Germany is crucial for a thorough evaluation. Therefore the Seismological Service of Lower Saxony (NED) was established at the State Office for Mining, Energy and Geology (LBEG) of Lower Saxony in January 2013. Its main task is the monitoring and evaluation of the seismicity in Lower Saxony and adjacent areas. Scientific and technical questions are addressed in close cooperation with the Seismological Central Observatory (SZO) at the Federal Institute for Geosciences and Natural Resources (BGR). The seismological situation of Northern Germany will be presented. Possible causes of seismicity are introduced. Rare seismic events at greater depths are distributed over the whole region and probably are purely tectonic whereas events in the vicinity of natural gas fields are probably related to gas production. Improving the detection threshold of seismic events in Northern Germany is necessary for providing a better statistical basis for further analyses answering these questions. As a first step the existing seismic network will be densified over the next few years. The first borehole station was installed near Rethem by BGR

  11. Third Quarter Hanford Seismic Report for Fiscal Year 2008

    SciTech Connect

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-09-01

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, fourteen local earthquakes were recorded during the third quarter of fiscal year 2008. The largest event recorded by the network during the third quarter (May 18, 2008 - magnitude 3.7 Mc) was located approximately 17 km east of Prosser at a depth of 20.5 km. With regard to the depth distribution, five earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and three earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, eight earthquakes occurred in swarm areas and six earthquakes were classified as random events. The largest event recorded by the network during the third quarter occurred on May 18 (magnitude 3.7 Mc) and was located approximately 17 km east of Prosser at a depth of 20.5 km. This earthquake was the highest magnitude event recorded in the 46-47 N. latitude / 119-120 W. longitude sector since 1975

  12. Seismic Safety Study

    SciTech Connect

    Tokarz, F J; Coats, D W

    2006-05-16

    During the past three decades, the Laboratory has been proactive in providing a seismically safe working environment for its employees and the general public. Completed seismic upgrades during this period have exceeded $30M with over 24 buildings structurally upgraded. Nevertheless, seismic questions still frequently arise regarding the safety of existing buildings. To address these issues, a comprehensive study was undertaken to develop an improved understanding of the seismic integrity of the Laboratory's entire building inventory at the Livermore Main Site and Site 300. The completed study of February 2005 extended the results from the 1998 seismic safety study per Presidential Executive Order 12941, which required each federal agency to develop an inventory of its buildings and to estimate the cost of mitigating unacceptable seismic risks. Degenkolb Engineers, who performed the first study, was recontracted to perform structural evaluations, rank order the buildings based on their level of seismic deficiencies, and to develop conceptual rehabilitation schemes for the most seriously deficient buildings. Their evaluation is based on screening procedures and guidelines as established by the Interagency Committee on Seismic Safety in Construction (ICSSC). Currently, there is an inventory of 635 buildings in the Laboratory's Facility Information Management System's (FIMS's) database, out of which 58 buildings were identified by Degenkolb Engineers that require seismic rehabilitation. The remaining 577 buildings were judged to be adequate from a seismic safety viewpoint. The basis for these evaluations followed the seismic safety performance objectives of DOE standard (DOE STD 1020) Performance Category 1 (PC1). The 58 buildings were ranked according to three risk-based priority classifications (A, B, and C) as shown in Figure 1-1 (all 58 buildings have structural deficiencies). Table 1-1 provides a brief description of their expected performance and damage state

  13. MyShake: Building a smartphone seismic network

    NASA Astrophysics Data System (ADS)

    Kong, Q.; Allen, R. M.; Schreier, L.

    2014-12-01

    We are in the process of building up a smartphone seismic network. In order to build this network, we did shake table tests to evaluate the performance of the smartphones as seismic recording instruments. We also conducted noise floor test to find the minimum earthquake signal we can record using smartphones. We added phone noises to the strong motion data from past earthquakes, and used these as an analogy dataset to test algorithms and to understand the difference of using the smartphone network and the traditional seismic network. We also built a prototype system to trigger the smartphones from our server to record signals which can be sent back to the server in near real time. The phones can also be triggered by our developed algorithm running locally on the phone, if there's an earthquake occur to trigger the phones, the signal recorded by the phones will be sent back to the server. We expect to turn the prototype system into a real smartphone seismic network to work as a supplementary network to the existing traditional seismic network.

  14. Pulling the rug out from under California: seismic images of the Mendocino Triple Junction region

    USGS Publications Warehouse

    Trehu, Anne M.

    1995-01-01

    In 1993 and 1994 a network of large-aperture seismic profiles was collected to image the crustal and upper-mantle structure beneath northern California and the adjacent continental margin. The data include approximately 650 km of onshore seismic refraction/reflection data, 2000 km of off-shore multichannel seismic (MCS) reflection data, and simultaneous onshore and offshore recording of the MCS airgun source to yield large-aperture data. Scientists from more than 12 institutions were involved in data acquisition.

  15. Updating Hawaii Seismicity Catalogs with Systematic Relocations and Subspace Detectors

    NASA Astrophysics Data System (ADS)

    Okubo, P.; Benz, H.; Matoza, R. S.; Thelen, W. A.

    2015-12-01

    We continue the systematic relocation of seismicity recorded in Hawai`i by the United States Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO), with interests in adding to the products derived from the relocated seismicity catalogs published by Matoza et al., (2013, 2014). Another goal of this effort is updating the systematically relocated HVO catalog since 2009, when earthquake cataloging at HVO was migrated to the USGS Advanced National Seismic System Quake Management Software (AQMS) systems. To complement the relocation analyses of the catalogs generated from traditional STA/LTA event-triggered and analyst-reviewed approaches, we are also experimenting with subspace detection of events at Kilauea as a means to augment AQMS procedures for cataloging seismicity to lower magnitudes and during episodes of elevated volcanic activity. Our earlier catalog relocations have demonstrated the ability to define correlated or repeating families of earthquakes and provide more detailed definition of seismogenic structures, as well as the capability for improved automatic identification of diverse volcanic seismic sources. Subspace detectors have been successfully applied to cataloging seismicity in situations of low seismic signal-to-noise and have significantly increased catalog sensitivity to lower magnitude thresholds. We anticipate similar improvements using event subspace detections and cataloging of volcanic seismicity that include improved discrimination among not only evolving earthquake sequences but also diverse volcanic seismic source processes. Matoza et al., 2013, Systematic relocation of seismicity on Hawai`i Island from 1992 to 2009 using waveform cross correlation and cluster analysis, J. Geophys. Res., 118, 2275-2288, doi:10.1002/jgrb.580189 Matoza et al., 2014, High-precision relocation of long-period events beneath the summit region of Kīlauea Volcano, Hawai`i, from 1986 to 2009, Geophys. Res. Lett., 41, 3413-3421, doi:10.1002/2014GL059819

  16. Seismic Swarms at Paricutin Volcano Area. Magmatic Intrusion or Tectonic Seismicity?

    NASA Astrophysics Data System (ADS)

    Pinzon, J. I.; Nunez-Cornu, F. J.; Escudero, C. R.; Rowe, C. A.

    2014-12-01

    We relocate a seismic swarm with more than 700 earthquakes that took place between May and June 2006 in the Paricutin volcano area, Mexico inside of the Michoacan monogenetic volcanic field. This seismic swarm was recorded by the project "Mapping the Riviera Subduction Zone" (MARS), a temporary seismic network that was installed in the states of Jalisco, Colima and Michoacán between January 2006 and June 2007. Previously seismic swarms in the area were reported in the years of 1997, 1999 and 2000. For one that took place in the year of 1997 the Servicio Sismologico Nacional deployed a local network in the area, they conclude that the source of the seismicity was tectonic with depths between 18 and 12 km. The episodes of 1999 and 2000 were reported as similar to the 1997 swarm. A previous analysis of the 2006 swarm concludes that the depth of seismicity migrates from 9 to 5 km and was originated by a magmatic intrusion. We did a relocation of this swarm reading all the events and using Hypo71 and the P-wave velocity model used by the Jalisco Seismic and Acelerometric Network; a waveform analysis using cross-correlation method was also carried out. We obtained 15 earthquakes families with a correlation factor equal or greater than 0.79 and composed focal mechanism for each family. These families present a migration in depth beginning at 16 km and ended at 9 km. Our results agrees with a magmatic intrusion, but not so shallow as the previous study of the 2006 swarm.

  17. Stress-Release Seismic Source for Seismic Velocity Measurement in Mines

    NASA Astrophysics Data System (ADS)

    Swanson, P. L.; Clark, C.; Richardson, J.; Martin, L.; Zahl, E.; Etter, A.

    2014-12-01

    Accurate seismic event locations are needed to delineate roles of mine geometry, stress and geologic structures in developing rockburst conditions. Accurate absolute locations are challenging in mine environments with rapid changes in seismic velocity due to sharp contrasts between individual layers and large time-dependent velocity gradients attending excavations. Periodic use of controlled seismic sources can help constrain the velocity in this continually evolving propagation medium comprising the miners' workplace. With a view to constructing realistic velocity models in environments in which use of explosives is problematic, a seismic source was developed subject to the following design constraints: (i) suitable for use in highly disturbed zones surrounding mine openings, (ii) able to produce usable signals over km-scale distances in the frequency range of typical coal mine seismic events (~10-100 Hz), (iii) repeatable, (iv) portable, (v) non-disruptive to mining operations, and (vi) safe for use in potentially explosive gaseous environments. Designs of the compressed load column seismic source (CLCSS), which generates a stress, or load, drop normal to the surface of mine openings, and the fiber-optic based source-initiation timer are presented. Tests were conducted in a coal mine at a depth of 500 m (1700 ft) and signals were recorded on the surface with a 72-ch (14 Hz) exploration seismograph for load drops of 150-470 kN (16-48 tons). Signal-to-noise ratios of unfiltered signals ranged from ~200 immediately above the source (500 m (1700 ft)) to ~8 at the farthest extent of the array (slant distance of ~800 m (2600 ft)), suggesting the potential for use over longer range. Results are compared with signals produced by weight drop and sledge hammer sources, indicating the superior waveform quality for first-arrival measurements with the CLCSS seismic source.

  18. Swept Impact Seismic Technique (SIST)

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Steeples, D.W.; Black, R.A.

    1996-01-01

    A coded seismic technique is developed that can result in a higher signal-to-noise ratio than a conventional single-pulse method does. The technique is cost-effective and time-efficient and therefore well suited for shallow-reflection surveys where high resolution and cost-effectiveness are critical. A low-power impact source transmits a few to several hundred high-frequency broad-band seismic pulses during several seconds of recording time according to a deterministic coding scheme. The coding scheme consists of a time-encoded impact sequence in which the rate of impact (cycles/s) changes linearly with time providing a broad range of impact rates. Impact times used during the decoding process are recorded on one channel of the seismograph. The coding concept combines the vibroseis swept-frequency and the Mini-Sosie random impact concepts. The swept-frequency concept greatly improves the suppression of correlation noise with much fewer impacts than normally used in the Mini-Sosie technique. The impact concept makes the technique simple and efficient in generating high-resolution seismic data especially in the presence of noise. The transfer function of the impact sequence simulates a low-cut filter with the cutoff frequency the same as the lowest impact rate. This property can be used to attenuate low-frequency ground-roll noise without using an analog low-cut filter or a spatial source (or receiver) array as is necessary with a conventional single-pulse method. Because of the discontinuous coding scheme, the decoding process is accomplished by a "shift-and-stacking" method that is much simpler and quicker than cross-correlation. The simplicity of the coding allows the mechanical design of the source to remain simple. Several different types of mechanical systems could be adapted to generate a linear impact sweep. In addition, the simplicity of the coding also allows the technique to be used with conventional acquisition systems, with only minor modifications.

  19. Nevada Test Site seismic: telemetry measurements

    SciTech Connect

    Albright, J N; Parker, L E; Horton, E H

    1983-08-01

    The feasibility and limitations of surface-to-tunnel seismic telemetry at the Nevada Test Site were explored through field measurements using current technology. Range functions for signaling were determined through analysis of monofrequency seismic signals injected into the earth at various sites as far as 70 km (43 mi) from installations of seismometers in the G-Tunnel complex of Rainier Mesa. Transmitted signal power at 16, 24, and 32 Hz was measured at two locations in G-Tunnel separated by 670 m (2200 ft). Transmissions from 58 surface sites distributed primarily along three azimuths from G-Tunnel were studied. The G-Tunnel noise environment was monitored over the 20-day duration of the field tests. Noise-power probability functions were calculated for 20-s and 280-s seismic-record populations. Signaling rates were calculated for signals transmitted from superior transmitter sites to G-Tunnel. A detection threshold of 13 dB re 1 nm/sup 2/ displacement power at 95% reliability was demanded. Consideration of field results suggests that even for the frequency range used in this study, substantially higher signaling rates are likely to be obtained in future work in view of the present lack of information relevant to hardware-siting criteria and the seismic propagation paths at the Nevada Test Site. 12 references.

  20. Mammoth Mountain, California broadband seismic experiment

    NASA Astrophysics Data System (ADS)

    Dawson, P. B.; Pitt, A. M.; Wilkinson, S. K.; Chouet, B. A.; Hill, D. P.; Mangan, M.; Prejean, S. G.; Read, C.; Shelly, D. R.

    2013-12-01

    Mammoth Mountain is a young cumulo-volcano located on the southwest rim of Long Valley caldera, California. Current volcanic processes beneath Mammoth Mountain are manifested in a wide range of seismic signals, including swarms of shallow volcano-tectonic earthquakes, upper and mid-crustal long-period earthquakes, swarms of brittle-failure earthquakes in the lower crust, and shallow (3-km depth) very-long-period earthquakes. Diffuse emissions of C02 began after a magmatic dike injection beneath the volcano in 1989, and continue to present time. These indications of volcanic unrest drive an extensive monitoring effort of the volcano by the USGS Volcano Hazards Program. As part of this effort, eleven broadband seismometers were deployed on Mammoth Mountain in November 2011. This temporary deployment is expected to run through the fall of 2013. These stations supplement the local short-period and broadband seismic stations of the Northern California Seismic Network (NCSN) and provide a combined network of eighteen broadband stations operating within 4 km of the summit of Mammoth Mountain. Data from the temporary stations are not available in real-time, requiring the merging of the data from the temporary and permanent networks, timing of phases, and relocation of seismic events to be accomplished outside of the standard NCSN processing scheme. The timing of phases is accomplished through an interactive Java-based phase-picking routine, and the relocation of seismicity is achieved using the probabilistic non-linear software package NonLinLoc, distributed under the GNU General Public License by Alomax Scientific. Several swarms of shallow volcano-tectonic earthquakes, spasmodic bursts of high-frequency earthquakes, a few long-period events located within or below the edifice of Mammoth Mountain and numerous mid-crustal long-period events have been recorded by the network. To date, about 900 of the ~2400 events occurring beneath Mammoth Mountain since November 2011 have

  1. Seismic monitoring of the Olkaria Geothermal area, Kenya Rift valley

    NASA Astrophysics Data System (ADS)

    Simiyu, Silas M.; Keller, G. Randy

    2000-01-01

    Seismic monitoring of the Olkaria Geothermal area in the southern Rift Valley region of Kenya has been carried out since 1985. The initial purpose of this effort was to determine the background level of seismicity before full exploitation of the geothermal resource was started. This monitoring began with one seismic station. However, since May 1996, a seismic network comprising six stations was operated and focused mainly on the East Production Field. During the 5 months of network recording up to mid-September 1996, more than 460 local events originating within the Olkaria Geothermal area ( Ts- Tp<5 s) were recorded, out of which 123 were well-located. Also, 62 events were recorded at regional distances (5 s< Ts- Tp<40 s), and 44 events at teleseismic distance ( Ts- Tp>40 s). During this period, the local microseismicity was found to be continuous with swarms occurring every 4-5 days. Duration magnitudes based on the coda length did not exceed 3.0. Preliminary spectral analysis shows three kinds of seismic signals, with only the first type displaying well-defined P- and S-phases. The seismicity is mainly concentrated in the central area of the recording network, and the linear alignments in the epicenters are striking. A prominent alignment occurs along the Ololbutot fault zone extending from the northern end of the greater Olkaria volcanic complex to the south near the southern terminus of Hell's gorge. Two other prominent alignments occur along NW-SE trends that coincide with fault zones which have been detected by geological and gravity studies. Consequently, they are interpreted to be associated with fluid movement in the geothermal field. These preliminary results suggest that seismic monitoring will be useful to both monitor the field during production and to help site additional wells.

  2. Community Seismic Network (CSN)

    NASA Astrophysics Data System (ADS)

    Clayton, R. W.; Heaton, T. H.; Kohler, M. D.; Cheng, M.; Guy, R.; Chandy, M.; Krause, A.; Bunn, J.; Olson, M.; Faulkner, M.; Liu, A.; Strand, L.

    2012-12-01

    We report on developments in sensor connectivity, architecture, and data fusion algorithms executed in Cloud computing systems in the Community Seismic Network (CSN), a network of low-cost sensors housed in homes and offices by volunteers in the Pasadena, CA area. The network has over 200 sensors continuously reporting anomalies in local acceleration through the Internet to a Cloud computing service (the Google App Engine) that continually fuses sensor data to rapidly detect shaking from earthquakes. The Cloud computing system consists of data centers geographically distributed across the continent and is likely to be resilient even during earthquakes and other local disasters. The region of Southern California is partitioned in a multi-grid style into sets of telescoping cells called geocells. Data streams from sensors within a geocell are fused to detect anomalous shaking across the geocell. Temporal spatial patterns across geocells are used to detect anomalies across regions. The challenge is to detect earthquakes rapidly with an extremely low false positive rate. We report on two data fusion algorithms, one that tessellates the surface so as to fuse data from a large region around Pasadena and the other, which uses a standard tessellation of equal-sized cells. Since September 2011, the network has successfully detected earthquakes of magnitude 2.5 or higher within 40 Km of Pasadena. In addition to the standard USB device, which connects to the host's computer, we have developed a stand-alone sensor that directly connects to the internet via Ethernet or wifi. This bypasses security concerns that some companies have with the USB-connected devices, and allows for 24/7 monitoring at sites that would otherwise shut down their computers after working hours. In buildings we use the sensors to model the behavior of the structures during weak events in order to understand how they will perform during strong events. Visualization models of instrumented buildings ranging

  3. Cruise report for a seismic investigation of gas hydrates in the Mississippi Canyon region, northern Gulf of Mexico; cruise M1-98-GM

    USGS Publications Warehouse

    Cooper, Alan K.; Hart, Patrick E.; Pecher, Ingo

    1998-01-01

    During the cruise about 850 km of multichannel and single-channel seismic data were recorded. Seismic measurements at nine ocean-bottom seismometer (OBS) stations were recorded for several of the multichannel tracklines (see Fig. 3 in report). The following report describes the field operations and equipment systems employed, gives two examples of ship-board seismic records, and outlines a few preliminary results.

  4. Bandung seismic experiment: Towards tomographic imaging by using ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Pranata, Bayu; Yudistira, Tedy; Saygin, Erdinc; Cummins, Phil R.; Widiyantoro, Sri; Zulfakriza, Nugraha, Andri D.

    2016-05-01

    Bandung is one of the most densely populated cities in Indonesia with vital infrastructures. On the other hand, this area is surrounded by potential sources of earthquakes that make Bandung vulnerable to earthquakes. Structure of seismic velocity and sediment thickness are crucially needed in the earthquake hazard reduction program for Bandung. Based on this consideration, we deployed 64 seismic stations over the Bandung basin to record seismic ambient noise. In this study, we employed a cross-correlation method to the simultaneously recorded data to retrieve interstation Green's functions. We measured group velocity of the retrieved Green's functions by using frequency-time analysis technique. By the end of this project, the set of interstation group velocity will be inverted to image the shallow seismic velocity structure of the Bandung basin and its surrounding areas including Mt. Tangkuban Parahu and Lembang fault. As the first stage of this work, currently we focus on Green ' s function calculation as well as the interstation group velocity measurements. The general characteristics of group velocity can be evaluated from the plot of cross-correlation function as a function of its interstation distance.

  5. Magnitude correlations in global seismicity

    SciTech Connect

    Sarlis, N. V.

    2011-08-15

    By employing natural time analysis, we analyze the worldwide seismicity and study the existence of correlations between earthquake magnitudes. We find that global seismicity exhibits nontrivial magnitude correlations for earthquake magnitudes greater than M{sub w}6.5.

  6. Induced seismicity. Final report

    SciTech Connect

    Segall, P.

    1997-09-18

    The objective of this project has been to develop a fundamental understanding of seismicity associated with energy production. Earthquakes are known to be associated with oil, gas, and geothermal energy production. The intent is to develop physical models that predict when seismicity is likely to occur, and to determine to what extent these earthquakes can be used to infer conditions within energy reservoirs. Early work focused on earthquakes induced by oil and gas extraction. Just completed research has addressed earthquakes within geothermal fields, such as The Geysers in northern California, as well as the interactions of dilatancy, friction, and shear heating, on the generation of earthquakes. The former has involved modeling thermo- and poro-elastic effects of geothermal production and water injection. Global Positioning System (GPS) receivers are used to measure deformation associated with geothermal activity, and these measurements along with seismic data are used to test and constrain thermo-mechanical models.

  7. Controllable seismic source

    SciTech Connect

    Gomez, Antonio; DeRego, Paul Jeffrey; Ferrell, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian

    2015-09-29

    An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.

  8. Controllable seismic source

    SciTech Connect

    Gomez, Antonio; DeRego, Paul Jeffrey; Ferrel, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian

    2014-08-19

    An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.

  9. Seismic ruggedness of relays

    SciTech Connect

    Merz, K.L. )

    1991-08-01

    This report complements EPRI report NP-5223 Revision 1, February 1991, and presents additional information and analyses concerning generic seismic ruggedness of power plant relays. Existing and new test data have been used to construct Generic Equipment Ruggedness Spectra (GERS) which can be used in identifying rugged relays during seismic re-evaluation of nuclear power plants. This document is an EPRI tier 1 report. The results of relay fragility tests for both old and new relays are included in an EPRI tier 2 report with the same title. In addition to the presentation of relay GERS, the tier 2 report addresses the applicability of GERS to relays of older vintage, discusses the important identifying nomenclature for each relay type, and examines relay adjustment effects on seismic ruggedness. 9 refs., 3 figs, 1 tab.

  10. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  11. Adjustment of minimum seismic shear coefficient considering site effects for long-period structures

    NASA Astrophysics Data System (ADS)

    Guan, Minsheng; Du, Hongbiao; Cui, Jie; Zeng, Qingli; Jiang, Haibo

    2016-06-01

    Minimum seismic base shear is a key factor employed in the seismic design of long-period structures, which is specified in some of the major national seismic building codes viz. ASCE7-10, NZS1170.5 and GB50011-2010. In current Chinese seismic design code GB50011-2010, however, effects of soil types on the minimum seismic shear coefficient are not considered, which causes problems for long-period structures sited in hard or rock soil to meet the minimum base shear requirement. This paper aims to modify the current minimum seismic shear coefficient by taking into account site effects. For this purpose, effective peak acceleration (EPA) is used as a representation for the ordinate value of the design response spectrum at the plateau. A large amount of earthquake records, for which EPAs are calculated, are examined through the statistical analysis by considering soil conditions as well as the seismic fortification intensities. The study indicates that soil types have a significant effect on the spectral ordinates at the plateau as well as the minimum seismic shear coefficient. Modified factors related to the current minimum seismic shear coefficient are preliminarily suggested for each site class. It is shown that the modified seismic shear coefficients are more effective to the determination of minimum seismic base shear of long-period structures.

  12. An analysis of a seismic reflection from the base of a gas hydrate zone, offshore Peru

    USGS Publications Warehouse

    Miller, J.J.; Lee, M.W.; Von Huene, R.

    1991-01-01

    Seismic reflection data recorded near ODP Site 688, offshore Peru, exhibit a persistent bottom-simulating reflector (BSR) from a depth corresponding to the theoretical base of the gas hdyrate stability field. To carry out a quantitative analysis of the BSR, the seismic data were reprocessed using signature deconvolution and true amplitude recovery techniques. Results indicate the BSR is discontinuous laterally. -from Authors

  13. Advanced Seismic Probabilistic Risk Assessment Demonstration Project Plan

    SciTech Connect

    Justin Coleman

    2014-09-01

    Idaho National Laboratories (INL) has an ongoing research and development (R&D) project to remove excess conservatism from seismic probabilistic risk assessments (SPRA) calculations. These risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. This report presents a plan for improving our current traditional SPRA process using a seismic event recorded at a nuclear power plant site, with known outcomes, to improve the decision making process. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

  14. SEISMIC DATA FOR NUCLEAR EXPLOSION MONITORING IN THE ARABIAN PENINSULA

    SciTech Connect

    Rodgers, A; Al-Amri, A

    2004-07-08

    We report results from the third and final year of our project (ROA0101-35) to collect seismic event and waveform data recorded in and around the Arabian Peninsula. This effort involves several elements. We are working with King Abdulaziz City for Science and Technology to collect data from the Saudi National Seismic Network, that consists of 38 digital three-component stations (27 broadband and 11 short-period). We have an ongoing collaboration with the Kuwait Institute for Scientific Research, which runs the eight station Kuwait National Seismic Network. We installed two temporary broadband stations in the United Arab Emirates (funded by NNSA NA-24 Office of Non-Proliferation & International Security). In this paper we present a summary of data collected under these efforts including integration of the raw data into LLNL's Seismic Research Database and preliminary analysis of souce parameters and earth structure.

  15. Seismic activity offshore Martinique and Dominica islands (Central Lesser Antilles subduction zone) from temporary onshore and offshore seismic networks

    NASA Astrophysics Data System (ADS)

    Ruiz, M.; Galve, A.; Monfret, T.; Sapin, M.; Charvis, P.; Laigle, M.; Evain, M.; Hirn, A.; Flueh, E.; Gallart, J.; Diaz, J.; Lebrun, J. F.

    2013-09-01

    This work focuses on the analysis of a unique set of seismological data recorded by two temporary networks of seismometers deployed onshore and offshore in the Central Lesser Antilles Island Arc from Martinique to Guadeloupe islands. During the whole recording period, extending from January to the end of August 2007, more than 1300 local seismic events were detected in this area. A subset of 769 earthquakes was located precisely by using HypoEllipse. We also computed focal mechanisms using P-wave polarities of the best azimuthally constrained earthquakes. We detected earthquakes beneath the Caribbean forearc and in the Atlantic oceanic plate as well. At depth seismicity delineates the Wadati-Benioff Zone down to 170 km depth. The main seismic activity is concentrated in the lower crust and in the mantle wedge, close to the island arc beneath an inner forearc domain in comparison to an outer forearc domain where little seismicity is observed. We propose that the difference of the seismicity beneath the inner and the outer forearc is related to a difference of crustal structure between the inner forearc interpreted as a dense, thick and rigid crustal block and the lighter and more flexible outer forearc. Seismicity is enhanced beneath the inner forearc because it likely increases the vertical stress applied to the subducting plate.

  16. Ionospheric Response Due to Seismic Activity

    NASA Astrophysics Data System (ADS)

    Sharma, Dinesh Kumar

    2016-07-01

    Signatures of the seismic activity in the ionospheric F2 region have been studied by analyzing the measurement of electron and ion temperatures during the occurrence of earthquake. The ionospheric electron and ion temperatures data recorded by the RPA payload aboard the Indian SROSS-C2 satellite during the period from January 1995 to December 2000 were used for the altitude range 430-630 km over Indian region. The normal day's electron and ion temperatures have been compared to the temperatures recorded during the seismic activity. The details of seismic events were obtained from USGS earthquake data information website. It has been found that the average electron temperature is enhanced during the occurrence of earthquakes by 1.2 to 1.5 times and this enhancement was for ion temperature ranging from 1.1to 1.3 times over the normal day's average temperatures. The above careful quantitative analysis of ionospheric electron and ion temperatures data shows the consistent enhancement in the ionospheric electron and ion temperatures. It is expected that the seismogenic vertical electrical field propagates up to the ionospheric heights and induces Joule heating that may cause the enhancement in ionospheric temperatures.

  17. Specification goals for a Mars seismic network

    NASA Technical Reports Server (NTRS)

    Davis, Paul M.

    1990-01-01

    A seismic network on Mars should have enough stations (e.g., 24) to characterize the seismicity of the planet for comparison with a diversity of structural features; be comprised of low noise stations, preferably underground, 3 to 4 orders of magnitude more sensitive than those used on Viking; record over a sufficient band-width (DC-30 Hz) to detect micro-earthquakes to normal modes; and record for a sufficient duration (10 years) and data rate (10(exp 8) Mb/day/station) to obtain a data set comparable to that from the Apollo mission to the Moon so that locations of major internal boundaries can be inferred, such as those in the Earth, i.e., crust - lithosphere - asthenosphere - upper - lower phase transitions - outer - inner core. The proposed Mars Global Network Mission provides an opportunity to sense the dynamics and probe the interior of the planet. The seismic objectives, the availability of the instrumentation and trade-offs to meet them are discussed.

  18. Results from the apollo-12 passive seismic experiment

    USGS Publications Warehouse

    Latham, G.

    1971-01-01

    The objective of the passive seismic experiment is to measure vibrations of the lunar surface produced by all natural and artificial sources of seismic energy and to use these data to deduce the internal structure and composition of the moon, the nature of forces which may cause deformation of the moon and moonquakes, and the numbers and masses of meteoroids striking the lunar surface. The ALSEP* seismometers can magnify lunar surface vibrations 10 million times. No instrument can operate on earth with this sensitivity, because weather and man produce too much seismic noise. To obtain answers to the above questions, seismic data must be combined with data from laboratory measurements of the physical and chemical properties of surface rocks, and many other geophyiscal and geochemical measurements. Thus far, we have had the opportunity to record data from two lunar seismic stations which were installed by the astronauts during Apollo misions  and 12. The combined recording time from the stations is presently over 12 months, but there was no overlap to permit recording of the same event at two stations. 

  19. Investigations of acoustic-seismic effects at long range - Early-arriving seismic waves from Apollo 16

    NASA Technical Reports Server (NTRS)

    Dalins, I.; Mccarty, V. M.; Kaschak, G.; Donn, W. L.

    1974-01-01

    A reasonably comprehensive technical effort is described dealing with the investigations of acoustically generated seismic waves of Apollo 16 and Apollo 17 origin along the eastern seabord of the United States. This expanded effort is a continuation of earlier, rather successful detections of rocket-generated seismic disturbances on Skidaway Island, Georgia. The more recent effort has yielded few positive results other than a recording of an early-arriving seismic wave from Apollo 16 that was detected in Jacksonville. Evaluation of the negative results obtained in the Fort Monmouth area, with earlier studies of infrasound, local weather conditions, and geology, could be advantageous in the process of trying to gain a better insight into the acoustic-seismic resonance mechanism requiring phase-velocity matching at the atmosphere-ground interface.

  20. The seismic analyzer: interpreting and illustrating 2D seismic data.

    PubMed

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, M Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seismic data, such as deformed texturing and line and texture transfer functions. The illustrative rendering results in multi-attribute and scale invariant visualizations where features are represented clearly in both highly zoomed in and zoomed out views. Thumbnail views in combination with interactive appearance control allows for a quick overview of the data before detailed interpretation takes place. These techniques help reduce the work of seismic illustrators and interpreters.

  1. Broadband Seismic Study of the Dominican Republic

    NASA Astrophysics Data System (ADS)

    Pulliam, J.; Polanco Rivera, E.; Pujols Guridy, R.; Huerfano Moreno, V. A.; Lopez, A. M.

    2014-12-01

    The Northeast Caribbean Plate Boundary Zone (NCPBZ) is characterized by oblique subduction of oceanic crust belonging to the North American Plate, a broad zone of deformation to accommodate strain, and the development of transform and normal faults on and around the island of Hispaniola. Other features may include the formation of a new microplates, rearrangement and aggregation of crustal fragments into new islands, and rotations of the microplates. Numerous issues regarding the nature and timing of formation of the features described above, their roles in regional tectonics and even whether they exist at all, remain unresolved. Our short-term goal is to better constraint lithospheric structure and identify active earthquake faults with a temporary broadband seismic network in the Dominican Republic. The oblique-subduction-to-strike-slip transition found in the NCPBZ is representative of numerous locales around the world, so lessons learned here may inform our understanding of plate tectonics broadly. In 2013-2014 we installed sixteen broadband seismic stations in the Dominican Republic. The temporary network will remain in place for two years. Data acquired by the temporary network will be integrated with data recorded by existing seismic facilities in the region and the combined dataset will be used for a series of analyses that will, collectively, allow us to image lithospheric structure and aid seismic hazard assessment for the island of Hispaniola. Preliminary results will be presented from the deployment, including regional earthquake locations and improved 1D Earth structure as well as plans for collaborations between regional seismic networks and local capacity-building.

  2. Detecting seismic events using Benford's Law

    NASA Astrophysics Data System (ADS)

    Diaz, Jordi; Gallart, Josep; Ruiz, Mario

    2015-04-01

    The Benford's Law (BL) states that the distribution of first significant digits is not uniform but follows a logarithmic frequency distribution. Even if a remarkable wide range of natural and socioeconomical data sets, from stock market values to quantum phase transitions, fit this peculiar law, the conformity to it has deserved few scientific applications, being used mainly as a test to pinpoint anomalous or fraudulent data. We developed a procedure to detect the arrival of seismic waves based on the degree of conformity of the amplitude values in the raw seismic trace to the BL. The signal is divided in time windows of appropriate length and the fitting of the first digits distribution to BL is checked in each time window using a conformity estimator. We document that both teleseismic and local earthquakes can be clearly identified in this procedure and we compare its performance with respect to the classical STA/LTA approach. Moreover, we show that the conformity of the seismic record to the BL does not depend on the amplitude of the incoming series, as the occurrence of events with very different amplitudes result in quite similar degree of BL fitting. On the other hand, we show that natural or man-made quasi-monochromatic seismic signals, surface wave trains or engine-generated vibrations can be identified through their very low BL estimator values, when appropriate interval lengths are used. Therefore, we conclude that the degree of conformity of a seismic signal with the BL is primarily dependent on the frequency content of that signal.

  3. The reliability of radon as seismic precursor

    NASA Astrophysics Data System (ADS)

    Emilian Toader, Victorin; Moldovan, Iren Adelina; Ionescu, Constantin; Marmureanu, Alexandru

    2016-04-01

    Our multidisciplinary network (AeroSolSys) located in Vrancea (Curvature Carpathian Mountains) includes radon concentration monitoring in five stations. We focus on lithosphere and near surface low atmosphere phenomena using real-time information about seismicity, + / - ions, clouds, solar radiation, temperature (air, ground), humidity, atmospheric pressure, wind speed and direction, telluric currents, variations of the local magnetic field, infrasound, variations of the atmospheric electrostatic field, variations in the earth crust with inclinometers, electromagnetic activity, CO2 concentration, ULF radio wave propagation, seismo-acoustic emission, animal behavior. The main purpose is to inform the authorities about risk situation and update hazard scenarios. The radon concentration monitoring is continuously with 1 hour or 3 hours sample rate in locations near to faults in an active seismic zone characterized by intermediate depth earthquakes. Trigger algorithms include standard deviation, mean and derivative methods. We correlate radon concentration measurements with humidity, temperature and atmospheric pressure from the same equipment. In few stations we have meteorological information, too. Sometime the radon concentration has very high variations (maxim 4535 Bq/m3 from 106 Bq/m3) in short time (1 - 2 days) without being accompanied by an important earthquake. Generally the cause is the high humidity that could be generated by tectonic stress. Correlation with seismicity needs information from minimum 6 month in our case. For 10605 hours, 618 earthquakes with maxim magnitude 4.9 R, we have got radon average 38 Bq/m3 and exposure 408111 Bqh/m3 in one station. In two cases we have correlation between seismicity and radon concentration. In other one we recorded high variation because the location was in an area with multiple faults and a river. Radon can be a seismic precursor but only in a multidisciplinary network. The anomalies for short or long period of

  4. Monitoring hydraulic fracturing with seismic emission volume

    NASA Astrophysics Data System (ADS)

    Niu, F.; Tang, Y.; Chen, H.; TAO, K.; Levander, A.

    2014-12-01

    Recent developments in horizontal drilling and hydraulic fracturing have made it possible to access the reservoirs that are not available for massive production in the past. Hydraulic fracturing is designed to enhance rock permeability and reservoir drainage through the creation of fracture networks. Microseismic monitoring has been proven to be an effective and valuable technology to image hydraulic fracture geometry. Based on data acquisition, seismic monitoring techniques have been divided into two categories: downhole and surface monitoring. Surface monitoring is challenging because of the extremely low signal-to-noise ratio of the raw data. We applied the techniques used in earthquake seismology and developed an integrated monitoring system for mapping hydraulic fractures. The system consists of 20 to 30 state-of-the-art broadband seismographs, which are generally about hundreds times more sensible than regular geophones. We have conducted two experiments in two basins with very different geology and formation mechanism in China. In each case, we observed clear microseismic events, which may correspond to the induced seismicity directly associated with fracturing and the triggered ones at pre-existing faults. However, the magnitude of these events is generally larger than magnitude -1, approximately one to two magnitudes larger than those detected by downhole instruments. Spectrum-frequency analysis of the continuous surface recordings indicated high seismic energy associated with injection stages. The seismic energy can be back-projected to a volume that surrounds each injection stage. Imaging seismic emission volume (SEV) appears to be an effective way to map the stimulated reservior volume, as well as natural fractures.

  5. Seismic monitoring of an Alpine mountain river

    NASA Astrophysics Data System (ADS)

    Díaz, J.; Ruíz, M.; Crescentini, L.; Amoruso, A.; Gallart, J.

    2014-04-01

    The Canfranc underground laboratory (LSC), excavated under the Central Pyrenees, is mainly devoted to the study of phenomena which needs "cosmic silence." It also hosts a geodynamical facility, named Geodyn, which holds an accelerometer, a broadband seismometer, and two high-resolution laser strainmeters. During the routine processing of the seismic data, we detected an unusual spectral signature in the 2-10 Hz frequency band, which does not correspond to the typical sources of seismic noise and which can also be recognized in the strain records. After checking against meteorological and hydrological data, we can relate those signals to variations in the discharge by the Aragon River, an Alpine-style river in the southern Pyrenees, located about 400 m from the LSC Geodyn facility. Four main episodes have been identified since early 2011, each lasting 1-2 to 6-8 days. Additionally, a limited number of shorter episodes have also been detected. Three types of river-generated seismic events have been identified, related respectively to moderate rainfall, snowmelt, and flooding events associated to severe storms. Each of those types has distinctive characteristics which allow monitoring the hydrological events from the analysis of seismic and deformation data. A few previous studies have already described the seismic noise close to rivers with larger discharge or in small-scale experimental settings, and we are showing here that the so-called "fluvial seismology" can be useful to study the hydrological evolution of Alpine style streams and may have a potential interest for the civil authorities in charge of the management of hydrological basins.

  6. Gran Canaria temporary broadband seismic network: an study of the seismicity and Earth structure

    NASA Astrophysics Data System (ADS)

    Almendros, Javier; de Lis Mancilla, Flor; Martinez-Arevalo, Carmen; Carmona, Enrique; Sanchez, Nieves; Heit, Benjamin; Garcia, Alicia; Martin-Leon, Rosa; Buontempo, Luisa; Yuan, Xiahoui

    2010-05-01

    The present project is a joint effort between different institutions to deploy a dense seismic network at Gran Canaria island (Canary Islands, Spain). The interstation distance is around 20 km. The broadband seismic network is composed of one permanent (Guralp CMG-3T 120 s) and five temporary stations (Guralp CMG-3ESP 60 s). The permanent station is a 120 s Guralp CMG-3T and belongs to the Canary Island Seismic Network, run by the Instituto Geográfico Nacional (IGN) of Spain. The temporary stations are 60 s Guralp CMG-3ESP, provided by the GFZ seismic pool. The deployment was carried out in December 2009. The stations will be recording during two years. The improvement of the seismic network allow us to tackle the following issues: the detection and analysis of any local seismicity of tectonic and/or volcanic origin at Gran Canaria island; to contribute to the understanding of the regional seismicity with special interest in the oceanic channel between Tenerife and Gran Canaria Island in collaboration with a project running a dense temporary seismic network in Tenerife; to study the crustal and upper mantle structure, under Gran Canaria to constrain the crustal structure, the source of the volcanism, and better sample the mantle discontinuities and anisotropy. To study the Earth structure, we use receiver function analysis, ambient seismic noise and SKS anisotropy techniques, This project is part of a long-term research of the crustal and the mantle structure of the Canary Islands, which has started with Gran Canaria and Tenerife Islands and will eventually continue with the rest of the archipelago. The origin of the Canary Islands is generally attributed to a broad mantle upwelling under a slow moving plate, resulting in spatially and temporally distributed volcanic activity and a large number of seamounts and islands. A controversial discussion has been going on about the factors that control the evolution of the volcanic edifices, the type of the melting

  7. Seismic switch for strong motion measurement

    DOEpatents

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  8. Seismic switch for strong motion measurement

    DOEpatents

    Harben, Philip E.; Rodgers, Peter W.; Ewert, Daniel W.

    1995-01-01

    A seismic switching device that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period.

  9. Seismic hazard assessment - a holistic microzonation approach

    NASA Astrophysics Data System (ADS)

    Nath, S. K.; Thingbaijam, K. K. S.

    2009-08-01

    The probable mitigation and management issues of seismic hazard necessitate seismic microzonation for hazard and risk assessment at the local level. Such studies are preceded with those at a regional level. A comprehensive framework, therefore, encompasses several phases from information compilations and data recording to analyses and interpretations. The state-of-the-art methodologies involve multi-disciplinary approaches namely geological, seismological, and geotechnical methods delivering multiple perspectives on the prevailing hazard in terms of geology and geomorphology, strong ground motion, site amplification, site classifications, soil liquefaction potential, landslide susceptibility, and predominant frequency. The composite hazard is assessed accounting for all the potential hazard attributing features with relative rankings in a logic tree, fuzzy set or hierarchical concept.

  10. Small Arrays for Seismic Intruder Detections: A Simulation Based Experiment

    NASA Astrophysics Data System (ADS)

    Pitarka, A.

    2014-12-01

    Seismic sensors such as geophones and fiber optic have been increasingly recognized as promising technologies for intelligence surveillance, including intruder detection and perimeter defense systems. Geophone arrays have the capability to provide cost effective intruder detection in protecting assets with large perimeters. A seismic intruder detection system uses one or multiple arrays of geophones design to record seismic signals from footsteps and ground vehicles. Using a series of real-time signal processing algorithms the system detects, classify and monitors the intruder's movement. We have carried out numerical experiments to demonstrate the capability of a seismic array to detect moving targets that generate seismic signals. The seismic source is modeled as a vertical force acting on the ground that generates continuous impulsive seismic signals with different predominant frequencies. Frequency-wave number analysis of the synthetic array data was used to demonstrate the array's capability at accurately determining intruder's movement direction. The performance of the array was also analyzed in detecting two or more objects moving at the same time. One of the drawbacks of using a single array system is its inefficiency at detecting seismic signals deflected by large underground objects. We will show simulation results of the effect of an underground concrete block at shielding the seismic signal coming from an intruder. Based on simulations we found that multiple small arrays can greatly improve the system's detection capability in the presence of underground structures. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

  11. Seismically Articulating Kilauea Volcano's Active Conduits, Rift Zones, and Faults through HVO's Second Fifty Years

    NASA Astrophysics Data System (ADS)

    Okubo, P.; Nakata, J.; Klein, F.; Koyanagi, R.; Thelen, W.

    2011-12-01

    While seismic monitoring of active Hawaiian volcanoes began 100 years ago, the build-up of the U. S. Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO) seismographic network to its current configuration began in 1955, when Jerry Eaton established remote stations that telemetered data via landline to recorders at HVO. With network expansion through the 1960's, earthquake location and cataloging capabilities have evolved to afford a computer processed seismic catalog now spanning fifty years. Location accuracy and catalog completeness to smaller magnitudes have increased. Research and insights developed using HVO's seismic record have exploited the ability to seismically monitor volcanic activity at depth, to identify active regions within the volcanoes on the basis of computed hypocentral locations, to infer regions of magma storage by recognizing different families of volcanic earthquakes, and to forecast volcanic activity in both short and longer term from seismicity patterns. HVO's seismicity catalog was central to calculations of probabilistic seismic hazards. The ability to develop and implement additional analytical and interpretive capabilities has kept pace with improvements in both field and laboratory hardware and software. While the basic capabilities continue as part of HVO's core monitoring, additional interpretive capabilities now include adding details of volcanic and earthquake source regions, and viewing seismic data in juxtaposition with other observatory data streams. As HVO looks to its next century of volcano studies, research and development continue to shape the future. Broadband seismic recording at HVO has enabled extensive study by Chouet, Dawson, and co-workers of the relationship of very-long-period seismic sources beneath Kilauea's summit caldera to magma supply and transport. Recent upgrades have improved the ability to use these data in seismic cataloging and research. Data processing upgrades have bolstered the ability to

  12. Seismic Inversion Methods

    NASA Astrophysics Data System (ADS)

    Jackiewicz, Jason

    2009-09-01

    With the rapid advances in sophisticated solar modeling and the abundance of high-quality solar pulsation data, efficient and robust inversion techniques are crucial for seismic studies. We present some aspects of an efficient Fourier Optimally Localized Averaging (OLA) inversion method with an example applied to time-distance helioseismology.

  13. Seismic Inversion Methods

    SciTech Connect

    Jackiewicz, Jason

    2009-09-16

    With the rapid advances in sophisticated solar modeling and the abundance of high-quality solar pulsation data, efficient and robust inversion techniques are crucial for seismic studies. We present some aspects of an efficient Fourier Optimally Localized Averaging (OLA) inversion method with an example applied to time-distance helioseismology.

  14. Mobile seismic exploration

    NASA Astrophysics Data System (ADS)

    Dräbenstedt, A.; Cao, X.; Polom, U.; Pätzold, F.; Zeller, T.; Hecker, P.; Seyfried, V.; Rembe, C.

    2016-06-01

    Laser-Doppler-Vibrometry (LDV) is an established technique to measure vibrations in technical systems with picometer vibration-amplitude resolution. Especially good sensitivity and resolution can be achieved at an infrared wavelength of 1550 nm. High-resolution vibration measurements are possible over more than 100 m distance. This advancement of the LDV technique enables new applications. The detection of seismic waves is an application which has not been investigated so far because seismic waves outside laboratory scales are usually analyzed at low frequencies between approximately 1 Hz and 250 Hz and require velocity resolutions in the range below 1 nm/s/√Hz. Thermal displacements and air turbulence have critical influences to LDV measurements at this low-frequency range leading to noise levels of several 100 nm/√Hz. Commonly seismic waves are measured with highly sensitive inertial sensors (geophones or Micro Electro-Mechanical Sensors (MEMS)). Approaching a laser geophone based on LDV technique is the topic of this paper. We have assembled an actively vibration-isolated optical table in a minivan which provides a hole in its underbody. The laser-beam of an infrared LDV assembled on the optical table impinges the ground below the car through the hole. A reference geophone has detected remaining vibrations on the table. We present the results from the first successful experimental demonstration of contactless detection of seismic waves from a movable vehicle with a LDV as laser geophone.

  15. The viking seismic experiment.

    PubMed

    Anderson, D L; Duennebier, F K; Latham, G V; Toksöz, M F; Kovach, R L; Knight, T C; Lazarewicz, A R; Miller, W F; Nakamura, Y; Sutton, G

    1976-12-11

    A three-axis short-period seismometer is now operating on Mars in the Utopia Planitia region. The noise background correlates well with wind gusts. Although no quakes have been detected in the first 60 days of observation, it is premature to draw any conclusions about the seismicity of Mars. The instrument is expected to return data for at least 2 years.

  16. Hanford Seismic Network

    SciTech Connect

    Reidel, S.P.; Hartshorn, D.C.

    1997-05-01

    This report describes the Hanford Seismic Network. The network consists of two instrument arrays: seismometers and strong motion accelerometers. The seismometers determine the location and magnitude of earthquakes, and the strong motion accelerometers determine ground motion. Together these instruments arrays comply with the intent of DOE Order 5480.20, Natural Phenomena Hazards Mitigation.

  17. Aspects of earthquake triggering and seismicity clustering

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowei

    Earthquakes strongly cluster in space and time, driven both by earthquake-to-earthquake triggering and underlying physical processes, such as tectonic stress loading, increased pore pressure, etc. I explore both global and regional datasets to understand characteristics of these processes in different tectonic environments. I study global seismicity using intermediate-period (35--70 s) Rayleigh waves recorded by the global seismic network. Applying a surface wave detect method identifies about 1000 previously un-cataloged earthquakes from 1997 to 2009, most of which are located in the southern ocean. I further analyze a small number of these events that are located in Antarctica to understand glacial-related triggering processes. Absolute and differential travel-times measured from waveform cross-correlation are used to obtain refined locations. A single-force model is applied to the observed amplitudes at 50~Hz to obtain best-fitting force directions. Additionally, possible glacial calving events are identified from MODIS images. The combined results suggest that events on Vanderford and Ninnis glaciers are a result of calving processes. To understand the general characteristics of earthquake clustering from a large dataset of earthquakes, I analyze seismicity in southern California. I use a high-resolution earthquake catalog based on waveform cross-correlation to study the spatial-temporal distribution of earthquakes. Parameters based on event location, magnitude and occurrence time are computed for isolated seismicity clusters. Spatial migration behavior is modeled using a weighted-least-squares method. Aftershock-like event clusters do not exhibit significant spatial migration compared with earthquake swarms. Two triggering processes are considered for swarms: slow slip and fluid diffusion, which are distinguished based on a statistical analysis of event migration. The results suggest fluid-induced seismicity is found across southern California, particularly

  18. Crustal seismicity of the Black Sea areal

    NASA Astrophysics Data System (ADS)

    Diaconescu, Mihail; Moldovan, Iren-Adelina; Petruta Constantin, Angela

    2014-05-01

    The main target of the study is to decipher the seismicity of the Black Sea areal from the tsunami-genetic potential. From the seismotectonical point of view the earthquakes which are responsible for tsunami are those associated with thrust faults (subduction zones), normal and inverse faults and less strike slip faults (only if the oblique-slip and deep slip components are predominant), with magnitude higher than 6.5 (even the USGS cited tsunami at 5.1 magnitude) and depth, a shallow one, less than 20 km depth. In order to delimit the seismic sources from Black Sea and to discrimate among them the tsunamigenic ones, the following elements have been taken into account: - depth of the earthquakes foci, that allow separation of two major categories: deeper than 40 km depth and crustal, normal, (less than 40 km deep); - development of the earthquakes epicenters in the orogen zone or in zones with active tectonics (fault systems); - establishment of the areas of active faults along which the earthquakes epicenters are aligned; - the absence of a recent or actual tectonic activity; the epicenters recorded in these tectonically stable zones are considered as the result of a diffuse, accidental seismicity. The studies on active tectonics have clearly shown the position of the seismic sources (connected to well define active fault) which do not interfere and do not result in alternatives of other seismotectonic model constructions. According to the distribution map of earthquakes and as well as to the map of the areas with active tectonics, ten seismic sources were established: Central Dobrogea(S1), Shabla(S2), Istanbul(S3), North Anatolian Fault(S4), Georgia(S5), Novorossjsk(S6), Crimea(S7), West Black Sea Fault(S8) and Mid Black Sea Ridge(S9). The maximum possible magnitude of each seismic source was obtained through three aproaches: (i) using seismotectonics and geological database (the length of the faults, possible apparition on surface, geomorphology, etc

  19. Seismic unrest at Katla Volcano- southern Iceland

    NASA Astrophysics Data System (ADS)

    jeddi, zeinab; Tryggvason, Ari; Gudmundsson, Olafur; Bödvarsson, Reynir; SIL Seismology Group

    2014-05-01

    Katla volcano is located on the propagating Eastern Volcanic Zone (EVZ) in South Iceland. It is located beneath Mýrdalsjökull ice-cap which covers an area of almost 600 km2, comprising the summit caldera and the eruption vents. 20 eruptions between 930 and 1918 with intervals of 13-95 years are documented at Katla which is one of the most active subglacial volcanoes in Iceland. Eruptions at Katla are mainly explosive due to the subglacial mode of extrusion and produce high eruption columns and catastrophic melt water floods (jökulhlaups). The present long Volcanic repose (almost 96 years) at Katla, the general unrest since 1955, and the 2010 eruption of the neighbouring Eyjafjallajökull volcano has prompted concerns among geoscientists about an imminent eruption. Thus, the volcano has been densely monitored by seismologists and volcanologists. The seismology group of Uppsala University as a partner in the Volcano Anatomy (VA) project in collaboration with the University of Iceland and the Icelandic Meteorological Office (IMO) installed 9 temporary seismic stations on and around the Mýrdalsjökull glacier in 2011. Another 10 permanent seismic stations are operated by IMO around Katla. The project's data collection is now finished and temporary stations were pulled down in August 2013. According to seismicity maps of the whole recording period, thousands of microearthquakes have occurred within the caldera region. At least three different source areas are active in Katla: the caldera region, the western Godaland region and a small cluster at the southern rim of Mýrdalsjökull near the glacial stream of Hafursarjökull. Seismicity in the southern flank has basically started after June 2011. The caldera events are mainly volcano-tectonic, while western and southern events are mostly long period (lp) and can be related to glacial or magmatic movement. One motivation of the VA Katla project is to better understand the physical mechanism of these lp events. Changes

  20. High Voltage Seismic Generator

    NASA Astrophysics Data System (ADS)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  1. Short-term seismic quiescence immediately preceding explosions during the 2011 eruption of Telica Volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Rodgers, M.; Roman, D. C.; Geirsson, H.; La Femina, P. C.; Muñoz, A.; Tenorio, V.

    2013-12-01

    Telica Volcano, Nicaragua, experienced a VEI 2 eruptive episode from March-June 2011. The eruption consisted of numerous small to moderate ash explosions, many of which were observed visually and recorded by a local broadband seismic network (the TESAND network). Seismicity at Telica during both background and eruptive periods is characterized by generally high and variable rates of low-magnitude volcano-seismic events. Explosions at Telica are also detected seismically and distinguished from volcanic earthquakes by the length of the seismic signal, their emergent nature and 'cigar-shaped' envelope, and broadband spectral content. During the month of May 2011, we identified 16 explosion events on a seismometer located 0.5 km from the crater vent, some of which correlate with visually observed explosions. From May 1-12, ten explosions are apparent in continuous seismic data. During this period, the rate of volcano-seismic events is relatively low (0-20 events/hour with an average of 4 events per hour). Prior to eight of the 10 explosions, there were no detected seismic events within one hour of the explosion. From May 13-31, seven explosions were identified in the continuous seismic data. During this period, the rate of volcano-seismic events is relatively high (0-48 events per hour, with an average of 18 events per hour). In the hour preceding all seven explosions, there were no detected volcano-seismic events. Visual inspection of the continuous seismic data confirms that a strong decrease in the number of volcano-seismic events immediately preceded most of the 2011 explosions at Telica Volcano. We suggest that the apparent short-term decrease in seismicity before explosions at Telica is related to a cycle of pressure buildup and release in the shallow magmatic-hydrothermal system, with an increase in pressure prior to the explosions both resulting from and reflecting constriction of gas pathways.

  2. High-Resolution Analysis of Seismic Air Gun Impulses and Their Reverberant Field as Contributors to an Acoustic Environment.

    PubMed

    Guerra, Melania; Dugan, Peter J; Ponirakis, Dimitri W; Popescu, Marian; Shiu, Yu; Rice, Aaron N; Clark, Christopher W

    2016-01-01

    In September and October 2011, a seismic survey took place in Baffin Bay, Western Greenland, in close proximity to a marine protected area (MPA). As part of the mitigation effort, five bottom-mounted marine acoustic recording units (MARUs) collected data that were used for the purpose of measuring temporal and spectral features from each impulsive event, providing a high-resolution record of seismic reverberation persistent after the direct impulse. Results were compared with ambient-noise levels as computed after the seismic survey to evidence that as a consequence of a series of repeating seismic impulses, sustained elevated levels create the potential for masking.

  3. Back to the Future: Long-Term Seismic Archives Revisited

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.

    2007-12-01

    Archives of digital seismic data recorded by seismometer networks around the world have grown tremendously over the last several decades helped by the deployment of seismic stations and their continued operation within the framework of monitoring seismic activity. These archives typically consist of waveforms of seismic events and associated parametric data such as phase arrival time picks and the location of hypocenters. Catalogs of earthquake locations are fundamental data in seismology, and even in the Earth sciences in general. Yet, these locations have notoriously low spatial resolution because of errors in both the picks and the models commonly used to locate events one at a time. This limits their potential to address fundamental questions concerning the physics of earthquakes, the structure and composition of the Earth's interior, and the seismic hazards associated with active faults. We report on the comprehensive use of modern waveform cross-correlation based methodologies for high- resolution earthquake location - as applied to regional and global long-term seismic databases. By simultaneous re-analysis of two decades of the digital seismic archive of Northern California, reducing pick errors via cross-correlation and model errors via double-differencing, we achieve up to three orders of magnitude resolution improvement over existing hypocenter locations. The relocated events image networks of discrete faults at seismogenic depths across various tectonic settings that until now have been hidden in location uncertainties. Similar location improvements are obtained for earthquakes recorded at global networks by re- processing 40 years of parametric data from the ISC and corresponding waveforms archived at IRIS. Since our methods are scaleable and run on inexpensive Beowulf clusters, periodic re-analysis of entire archives may thus become a routine procedure to continuously improve resolution in existing catalogs. We demonstrate the role of seismic archives

  4. Annual Hanford Seismic Report for Fiscal Year 2008

    SciTech Connect

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-12-29

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During fiscal year 2008, the Hanford Seismic Network recorded 1431 triggers on the seismometer system, which included 112 seismic events in the southeast Washington area and an additional 422 regional and teleseismic events. There were 74 events determined to be local earthquakes relevant to the Hanford Site. The highest-magnitude event (3.7 Mc) occurred on May 18, 2008, and was located approximately 17 km east of Prosser at a depth of 20.5 km. With regard to the depth distribution, 13 earthquakes were located at shallow depths (less than 4 km, most likely in the Columbia River basalts), 45 earthquakes were located at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and 16 earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, 54 earthquakes were located in swarm areas and 20 earthquakes were classified as random events. The May 18 earthquake was the highest magnitude event recorded since 1975 in the vicinity of the Hanford Site (between 46 degrees and 47 degrees north latitude and

  5. Crustal Seismicity and Recent Faults in Southern Peru

    NASA Astrophysics Data System (ADS)

    David, C.; Comte, D.; Tavera, H.; Audin, L.; Herail, G.

    2004-12-01

    Most seismological studies in southern Peru have been focused on the downgoing slab seismicity in order to constrain the Wadati-Benioff zone. This study deals with the intra-continental seismicity of the southern Peru forearc (17,3° S - 18,5° S) in a post-seismic context (Arequipa thrust earthquake, Mw=8.4, 23 June, 2001). It is difficult to identify historical crustal earthquake from available catalogues, however some crustal events teleseismically recorded can be found since 1976; they exhibit normal focal mechanism solutions in the southern Peru volcanic arc and inverse focal mechanism solutions in the Central Depression. Following a notable increase of shallow crustal seismicity located close to the Western Cordillera after the 23 June 2001, a temporary seismic network was deployed between January and March 2003 in order to study the Wadati-Benioff zone and monitoring the crustal seismicity in southern Peru. From the about 1700 events locally recorded by the local network, 300 crustal earthquakes were identified in the Peruvian forearc between Tacna and Moquegua. This crustal seismicity is distributed along a lineament located at depths between 0 and 60 km, dipping at about 45° from the Western Cordillera towards the coast, almost perpendicular to the subducting slab; this behaviour was previously observed in northern Chile and in southern Peru, north of the study zone (16° S). In the Central Depression, seismic activity is not superficial occurring between 25-60 km depth and it is mostly characterized by inverse focal mechanism solutions. Superficial faults situated in the Central Depression and in the Coastal Cordillera can not be associated with the seismic activity observed in this area. However, in the Pre-Cordillera, crustal seismicity occurs at depths between 0-15 km and can be correlated with shallow fault systems recognized by satellite images and on the field. For examples, the Incapuquio fault system which was a transpressive system in Cretaceous

  6. Seismic monitoring at Cascade Volcanic Centers, 2004?status and recommendations

    USGS Publications Warehouse

    Moran, Seth C.

    2004-01-01

    The purpose of this report is to assess the current (May, 2004) status of seismic monitoring networks at the 13 major Cascade volcanic centers. Included in this assessment are descriptions of each network, analyses of the ability of each network to detect and to locate seismic activity, identification of specific weaknesses in each network, and a prioritized list of those networks that are most in need of additional seismic stations. At the outset it should be recognized that no Cascade volcanic center currently has an adequate seismic network relative to modern-day networks at Usu Volcano (Japan) or Etna and Stromboli volcanoes (Italy). For a system the size of Three Sisters, for example, a modern-day, cutting-edge seismic network would ideally consist of a minimum of 10 to 12 short-period three-component seismometers (for determining particle motions, reliable S-wave picks, moment tensor inversions, fault-plane solutions, and other important seismic parameters) and 7 to 10 broadband sensors (which, amongst other considerations, enable detection and location of very long period (VLP) and other low-frequency events, moment tensor inversions, and, because of their wide dynamic range, on-scale recording of large-amplitude events). Such a dense, multi component seismic network would give the ability to, for example, detect in near-real-time earthquake migrations over a distance of ~0.5km or less, locate tremor sources, determine the nature of a seismic source (that is, pure shear, implosive, explosive), provide on-scale recordings of very small and very large-amplitude seismic signals, and detect localized changes in seismic stress tensor orientations caused by movement of magma bodies. However, given that programmatic resources are currently limited, installation of such networks at this time is unrealistic. Instead, this report focuses on identifying what additional stations are needed to guarantee that anomalous seismicity associated with volcanic unrest will be

  7. Third Quater Seismic Report for Fiscal Year 2007

    SciTech Connect

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2007-09-19

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, 16 local earthquakes were recorded during the third quarter of fiscal year 2007. The largest event (magnitude 2.0) occurred on April 16, 2007 and was located 4 km southwest of the 400 Area in the Columbia River basalts at a depth of approximately 3 km. Stratigraphically, 7 earthquakes occurred in the Columbia River basalts (approximately 0-5 km depth), 1 earthquake in the pre-basalt sediments (approximately 5-10 km depth), and 8 earthquakes in the crystalline basement (approximately 10-25 km depth). Geographically, 8 earthquakes occurred in swarm areas, and 8 earthquakes were classified as random events. The Hanford SMA network was triggered on the 300 Area and the 400 Area SMA by the 2.0 Mc seismic event that occurred on April 16, 2007. The maximum vertical acceleration was 0.07 % g and the maximum horizontal acceleration was 0.05% g at the 300 Area SMA, 13.5 km from the event. At the 400 Area SMA, only 5.2 km from the event, the maximum vertical acceleration was 0.25 % g and the maximum horizontal

  8. Seismic Observations in Shallow Water (Invited)

    NASA Astrophysics Data System (ADS)

    Webb, S. C.; Barclay, A. H.; Gassier, D.; Koczynski, T.

    2013-12-01

    The establishment of fleets of large numbers of ocean bottom seismometers (OBS) capable of recording for more than a year has made it possible to study Earth structure beneath the oceans using seismic observations in much greater resolution than previously possible. However, shallow water poses strong challenges for OBS deployments, with much higher noise levels from waves and currents. The on-going Cascadia Initiative, a major OBS community project directed at studying the Cascadia subduction zone with its megathrust earthquake potential and broad continental shelf, includes OBS deployments at depths as shallow as 50 m. Before the Cascadia deployment, there was a valid fear that the data from the shallowest sites would be useless for seismic observations. The shallow Cascadia OBS deployments feature shielding to protect the sensors from the flow of ocean floor currents (and trawling), The first year data show that the shielding can reduce horizontal component noise levels (due to currents) by more than 20dB permitting good SNR for horizontal phases even at shelf depths. Noise from deformation under ocean wave loading has been found to be very large at the shallowest sites. High amplitude ocean waves cause the differential pressure gauges (DPG) and unshielded seismic sensors at a few sites to sometimes clip, but shielded seismic sensors and pressure measurements from absolute pressure gauges (APGs) remain unclipped even at the shallowest sites. The study demonstrates pressure gauge records can be used to predict and remove the noise from the deformation under ocean wave loading in the spectral domain, potentially improving signal to noise for long period seismic phases by up to 40dB. A FIR digital filter can be created from the pressure to acceleration transfer function that when convolved with the pressure record accurately predicts the wave loading signal allowing removal of about 30dB of this noise. These results show that with proper shielding, good quality

  9. Rivera Ocean Seismic Experiment (ROSE) overview

    NASA Astrophysics Data System (ADS)

    Ewing, J. I.; Meyer, Robert P.

    1982-10-01

    The Rivera Ocean Seismic Experiment (ROSE) was designed as a combined sea and land seismic program to utilize both explosive sources and earthquakes to study a number of features of the structure and evolution of a mid-ocean ridge, a major oceanic fracture zone, and the transition region between ocean and continent. The primary region selected for the experiment included the Rivera Fracture Zone, the crest and eastern flank of the East Pacific Rise north of the Rivera, and adjacent areas of Baja California and mainland Mexico. These areas were to be instrumented with land and ocean bottom seismographs in order to determine good source parameter and location data for natural events and to record these events along a large number of paths crossing various parts of the region. Explosive charges were to be detonated at sea to supplement the natural events. However, the necessary permission to conduct the experiment was not received from Mexican authorities; therefore an alternate plan was implemented whereby the marine program had to be moved southward outside of territorial waters. This had the effect of transforming this experiment into three, almost independent components: (1) an experiment to study the East Pacific Rise south of the Orozco Fracture Zone primarily using ocean bottom recording and explosive sources, (2) a seismicity program at the Orozco, and (3) a land-based program of recording natural events along the coastal region of Mexico. A considerable amount of useful data was obtained in each of the three subprograms. In the marine parts of the experiment we were able to address a variety of problems including structure and evolution of young oceanic crust and mantle, structure and dynamics of the East Pacific Rise, seismicity of the Orozco Fracture Zone, and partitioning of energy transmission between the ocean volume and the crust/lithosphere. On land, the fortuitous occurrence of the Petatlan M7.6 earthquake of March 14, 1979, permitted the acquisition

  10. Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Molino, Erik; Lopez, Carmen

    2013-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.

  11. Earthquake dynamics. Mapping pressurized volcanic fluids from induced crustal seismic velocity drops.

    PubMed

    Brenguier, F; Campillo, M; Takeda, T; Aoki, Y; Shapiro, N M; Briand, X; Emoto, K; Miyake, H

    2014-07-01

    Volcanic eruptions are caused by the release of pressure that has accumulated due to hot volcanic fluids at depth. Here, we show that the extent of the regions affected by pressurized fluids can be imaged through the measurement of their response to transient stress perturbations. We used records of seismic noise from the Japanese Hi-net seismic network to measure the crustal seismic velocity changes below volcanic regions caused by the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki earthquake. We interpret coseismic crustal seismic velocity reductions as related to the mechanical weakening of the pressurized crust by the dynamic stress associated with the seismic waves. We suggest, therefore, that mapping seismic velocity susceptibility to dynamic stress perturbations can be used for the imaging and characterization of volcanic systems. PMID:24994652

  12. Earthquake dynamics. Mapping pressurized volcanic fluids from induced crustal seismic velocity drops.

    PubMed

    Brenguier, F; Campillo, M; Takeda, T; Aoki, Y; Shapiro, N M; Briand, X; Emoto, K; Miyake, H

    2014-07-01

    Volcanic eruptions are caused by the release of pressure that has accumulated due to hot volcanic fluids at depth. Here, we show that the extent of the regions affected by pressurized fluids can be imaged through the measurement of their response to transient stress perturbations. We used records of seismic noise from the Japanese Hi-net seismic network to measure the crustal seismic velocity changes below volcanic regions caused by the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki earthquake. We interpret coseismic crustal seismic velocity reductions as related to the mechanical weakening of the pressurized crust by the dynamic stress associated with the seismic waves. We suggest, therefore, that mapping seismic velocity susceptibility to dynamic stress perturbations can be used for the imaging and characterization of volcanic systems.

  13. Air-coupled seismic waves at long range from Apollo launchings.

    NASA Technical Reports Server (NTRS)

    Donn, W. L.; Dalins, I.; Mccarty, V.; Ewing, M.; Kaschak , G.

    1971-01-01

    Microphones and seismographs were co-located in arrays on Skidaway Island, Georgia, for the launchings of Apollo 13 and 14, 374 km to the south. Simultaneous acoustic and seismic waves were recorded for both events at times appropriate to the arrival of the acoustic waves from the source. The acoustic signal is relatively broadband compared to the nearly monochromatic seismic signal; the seismic signal is much more continuous than the more pulse-like acoustic signal; ground loading from the pressure variations of the acoustic waves is shown to be too small to account for the seismic waves; and the measured phase velocities of both acoustic and seismic waves across the local instrument arrays differ by less than 6 per cent and possibly 3 per cent if experimental error is included. It is concluded that the seismic waves are generated by resonant coupling to the acoustic waves along some 10 km of path on Skidaway Island.

  14. The shallow elastic structure of the lunar crust: New insights from seismic wavefield gradient analysis

    NASA Astrophysics Data System (ADS)

    Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir

    2016-10-01

    Enigmatic lunar seismograms recorded during the Apollo 17 mission in 1972 have so far precluded the identification of shear-wave arrivals and hence the construction of a comprehensive elastic model of the shallow lunar subsurface. Here, for the first time, we extract shear-wave information from the Apollo active seismic data using a novel waveform analysis technique based on spatial seismic wavefield gradients. The star-like recording geometry of the active seismic experiment lends itself surprisingly well to compute spatial wavefield gradients and rotational ground motion as a function of time. These observables, which are new to seismic exploration in general, allowed us to identify shear waves in the complex lunar seismograms, and to derive a new model of seismic compressional and shear-wave velocities in the shallow lunar crust, critical to understand its lithology and constitution, and its impact on other geophysical investigations of the Moon's deep interior.

  15. Teaching Reflection Seismic Processing

    NASA Astrophysics Data System (ADS)

    Forel, D.; Benz, T.; Pennington, W. D.

    2004-12-01

    Without pictures, it is difficult to give students a feeling for wave propagation, transmission, and reflection. Even with pictures, wave propagation is still static to many. However, when students use and modify scripts that generate wavefronts and rays through a geologic model that they have modified themselves, we find that students gain a real feeling for wave propagation. To facilitate teaching 2-D seismic reflection data processing (from acquisition through migration) to our undergraduate and graduate Reflection Seismology students, we use Seismic Un*x (SU) software. SU is maintained and distributed by Colorado School of Mines, and it is freely available (at www.cwp.mines.edu/cwpcodes). Our approach includes use of synthetic and real seismic data, processing scripts, and detailed explanation of the scripts. Our real data were provided by Gregory F. Moore of the University of Hawaii. This approach can be used by any school at virtually no expense for either software or data, and can provide students with a sound introduction to techniques used in processing of reflection seismic data. The same software can be used for other purposes, such as research, with no additional expense. Students who have completed a course using SU are well equipped to begin using it for research, as well. Scripts for each processing step are supplied and explained to the students. Our detailed description of the scripts means students do not have to know anything about SU to start. Experience with the Unix operating system is preferable but not necessary -- our notes include Computer Hints to help the beginner work with the Unix operating system. We include several examples of synthetic model building, acquiring shot gathers through synthetic models, sorting shot gathers to CMP gathers, gain, 1-D frequency filtering, f-k filtering, deconvolution, semblance displays and velocity analysis, flattening data (NMO), stacking the CMPs, and migration. We use two real (marine) data sets. One

  16. Calibration of Seismic Attributes for Reservoir Characterization

    SciTech Connect

    Wayne D. Pennington

    2002-09-29

    The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation or printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a

  17. CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Wayne D. Pennington; Horacio Acevedo; Aaron Green; Joshua Haataja; Shawn Len; Anastasia Minaeva; Deyi Xie

    2002-10-01

    The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation or printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a

  18. Lunar seismic profiling experiment. [Apollo 17 flight measurements of lunar surface vibrations to determine subsurface characteristics

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.; Talwani, P.

    1973-01-01

    The Apollo 17 lunar seismic profiling experiment was conducted to record the vibrations of the lunar surface as induced by explosive charges, the thrust of the lunar module ascent engine, and the crash of the lunar module ascent stage. Analysis of the data obtained made it possible to determine the internal characteristics of the lunar crust to a depth of several kilometers. The test equipment used in the experiment is described. Maps showing the location of the geophones and the deployed explosive packages are provided. Samples of the seismic signals recorded by the lunar seismic profiling experiment geophones are included.

  19. New seismic events identified in the Apollo lunar data by application of a Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Knapmeyer-Endrun, B.; Hammer, C.

    2015-10-01

    The Apollo astronauts installed seismic stations on the Moon during Apollo missions 11, 12, 14, 15 and 16. The stations consisted of a three-component long- period seismometer (eigenperiod 15 s) and a vertical short-period sensor (eigenperiod 1 s). Until today, the Apollo seismic network provides the only confirmed recordings of seismic events from any extrater-restrial. The recorded event waveforms differ significantly from what had been expected based on Earth data, mainly by their long duration body wave codas caused by strong near-surface scattering and weak attenuation due to lack of fluids. The main lunar event types are deep moonquakes, impacts, and the rare shallow moonquakes.

  20. Seismic local site effects characterization in the Andarax River Valley (SE Spain) from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Carmona, Enrique; García-Jerez, Antonio; Luzón, Francisco; Sánchez-Martos, Francisco; Sánchez-Sesma, Francisco J.; Piña, José

    2014-05-01

    This work is focused on the characterization of seismic local effects in the Low Andarax River Valley (SE Spain). The Low Andarax River valley is located in an active seismic region, with the higher seismic hazard values in Spain. The landform is composed mainly by sedimentary materials which increase its seismic hazard due to the amplification of the seismic inputs and spectral resonances. We study seismic local effects in the Low Andarax River by analyzing the Horizontal-to-Vertical Spectral Ratio (HVSR) of ambient noise records. The noise data were recorded during two field campaigns in 2012 and 2013. There have been a total of 374 noise measurements with 15 and 30 minutes duration. The acquisition was performed with a Digital Broadband Seismometer Guralp CMG-6TD. The distance between measurements was about 200 meters, covering an area around 40 km2. There have been 6 significant peak frequencies between 0.3 Hz and 5 Hz. It was possible to find interesting areas with similar spectral peaks that coincide with zones with similar microgravimetric anomalies at the alluvial valley. It is also observed a decrease in the frequency peaks from West to East suggesting increased sediment layer. We also compute the soil models at those sites where geotechnical information is available, assuming that the seismic noise is diffuse. We invert the HVSR for these places using horizontally layered models and in the imaginary part the Green functions at the source. It is observed that the S wave velocity inverted models are consistent with the known geotechnical information obtained from drilled boreholes. We identify the elastodynamic properties of the limestone-dolomite materials with a formation of phyllites and quartzite that form the basement of the depression, and those properties of the Miocene and Pliocene detrital deposits (marls, sandy silts, sands and conglomerates) that fill the valley. These results together with the observed resonant frequencies along the Andarax

  1. Continuous, Large-Scale Processing of Seismic Archives for High-Resolution Monitoring of Seismic Activity and Seismogenic Properties

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.

    2012-12-01

    Archives of digital seismic data recorded by seismometer networks around the world have grown tremendously over the last several decades helped by the deployment of seismic stations and their continued operation within the framework of monitoring earthquake activity and verification of the Nuclear Test-Ban Treaty. We show results from our continuing effort in developing efficient waveform cross-correlation and double-difference analysis methods for the large-scale processing of regional and global seismic archives to improve existing earthquake parameter estimates, detect seismic events with magnitudes below current detection thresholds, and improve real-time monitoring procedures. We demonstrate the performance of these algorithms as applied to the 28-year long seismic archive of the Northern California Seismic Network. The tools enable the computation of periodic updates of a high-resolution earthquake catalog of currently over 500,000 earthquakes using simultaneous double-difference inversions, achieving up to three orders of magnitude resolution improvement over existing hypocenter locations. This catalog, together with associated metadata, form the underlying relational database for a real-time double-difference scheme, DDRT, which rapidly computes high-precision correlation times and hypocenter locations of new events with respect to the background archive (http://ddrt.ldeo.columbia.edu). The DDRT system facilitates near-real-time seismicity analysis, including the ability to search at an unprecedented resolution for spatio-temporal changes in seismogenic properties. In areas with continuously recording stations, we show that a detector built around a scaled cross-correlation function can lower the detection threshold by one magnitude unit compared to the STA/LTA based detector employed at the network. This leads to increased event density, which in turn pushes the resolution capability of our location algorithms. On a global scale, we are currently building

  2. Observations and Modeling of Seismic Background Noise

    USGS Publications Warehouse

    Peterson, Jon R.

    1993-01-01

    INTRODUCTION The preparation of this report had two purposes. One was to present a catalog of seismic background noise spectra obtained from a worldwide network of seismograph stations. The other purpose was to refine and document models of seismic background noise that have been in use for several years. The second objective was, in fact, the principal reason that this study was initiated and influenced the procedures used in collecting and processing the data. With a single exception, all of the data used in this study were extracted from the digital data archive at the U.S. Geological Survey's Albuquerque Seismological Laboratory (ASL). This archive dates from 1972 when ASL first began deploying digital seismograph systems and collecting and distributing digital data under the sponsorship of the Defense Advanced Research Projects Agency (DARPA). There have been many changes and additions to the global seismograph networks during the past twenty years, but perhaps none as significant as the current deployment of very broadband seismographs by the U.S. Geological Survey (USGS) and the University of California San Diego (UCSD) under the scientific direction of the IRIS consortium. The new data acquisition systems have extended the bandwidth and resolution of seismic recording, and they utilize high-density recording media that permit the continuous recording of broadband data. The data improvements and continuous recording greatly benefit and simplify surveys of seismic background noise. Although there are many other sources of digital data, the ASL archive data were used almost exclusively because of accessibility and because the data systems and their calibration are well documented for the most part. Fortunately, the ASL archive contains high-quality data from other stations in addition to those deployed by the USGS. Included are data from UCSD IRIS/IDA stations, the Regional Seismic Test Network (RSTN) deployed by Sandia National Laboratories (SNL), and the

  3. Analysis of infrasonic and seismic events related to the 1998 Vulcanian eruption at Sakurajima

    NASA Astrophysics Data System (ADS)

    Morrissey, M.; Garces, M.; Ishihara, K.; Iguchi, M.

    2008-08-01

    We present results from a detailed analysis of seismic and infrasonic data recorded over a four day period prior to the Vulcanian eruptive event at Sakurajima volcano on May 19, 1998. Nearly one hundred seismic and infrasonic events were recorded on at least one of the nine seismic-infrasonic stations located within 3 km of the crater. Four unique seismic event types are recognized based on the spectral features of seismograms, including weak seismic tremor characterized by a 5-6 Hz peak mode that later shifted to 4-5 Hz. Long-period events are characterized by a short-duration, wide spectral band signal with an emergent, high-frequency onset followed by a wave coda lasting 15-20 s and a fundamental mode of 4.2-4.4 Hz. Values of Q for long-period events range between 10 and 22 suggesting that a gas-rich fluid was involved. Explosive events are the third seismic type, characterized by a narrow spectral band signal with an impulsive high-frequency onset followed by a 20-30 second wave coda and a peak mode of 4.0-4.4 Hz. Volcano-tectonic earthquakes are the fourth seismic type. Prior to May 19, 1998, only the tremor and explosion seismic events are found to have an infrasonic component. Like seismic tremor, infrasonic tremor is typically observed as a weak background signal. Explosive infrasonic events were recorded 10-15 s after the explosive seismic events and with audible explosions prior to May 19. On May 19, high-frequency impulsive infrasonic events occurred sporadically and as swarms within hours of the eruption. These infrasonic events are observed to be coincident with swarms of long-period seismic events. Video coverage during the seismic-infrasonic experiment recorded intermittent releases of gases and ash during times when seismic and acoustic events were recorded. The sequence of seismic and infrasonic events is interpreted as representing a gas-rich fluid moving through a series of cracks and conduits beneath the active summit crater.

  4. Third Quarter Hanford Seismic Report for Fiscal Year 2010

    SciTech Connect

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2010-09-29

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 23 local earthquakes during the third quarter of FY 2010. Sixteen earthquakes were located at shallow depths (less than 4 km), five earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and two earthquakes were located at depths greater than 9 km, within the basement. Geographically, twelve earthquakes were located in known swarm areas, 3 earthquakes occurred near a geologic structure (Saddle Mountain anticline), and eight earthquakes were classified as random events. The highest magnitude event (3.0 Mc) was recorded on May 8, 2010 at depth 3.0 km with epicenter located near the Saddle Mountain anticline. Later in the quarter (May 24 and June 28) two additional earthquakes were also recorded nearly at the same location. These events are not considered unusual in that earthquakes have been previously recorded at this location, for example, in October 2006 (Rohay et al; 2007). Six earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just

  5. Towards Quantification of Glacier Dynamic Ice Loss through Passive Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Köhler, A.; Nuth, C.; Weidle, C.; Schweitzer, J.; Kohler, J.; Buscaino, G.

    2015-12-01

    Global glaciers and ice caps loose mass through calving, while existing models are currently not equipped to realistically predict dynamic ice loss. This is mainly because long-term continuous calving records, that would help to better understand fine scale processes and key climatic-dynamic feedbacks between calving, climate, terminus evolution and marine conditions, do not exist. Combined passive seismic/acoustic strategies are the only technique able to capture rapid calving events continuously, independent of daylight or meteorological conditions. We have produced such a continuous calving record for Kronebreen, a tidewater glacier in Svalbard, using data from permanent seismic stations between 2001 and 2014. However, currently no method has been established in cryo-seismology to quantify the calving ice loss directly from seismic data. Independent calibration data is required to derive 1) a realistic estimation of the dynamic ice loss unobserved due to seismic noise and 2) a robust scaling of seismic calving signals to ice volumes. Here, we analyze the seismic calving record at Kronebreen and independent calving data in a first attempt to quantify ice loss directly from seismic records. We make use of a) calving flux data with weekly to monthly resolution obtained from satellite remote sensing and GPS data between 2007 and 2013, and b) direct, visual calving observations in two weeks in 2009 and 2010. Furthermore, the magnitude-scaling property of seismic calving events is analyzed. We derive and discuss an empirical relation between seismic calving events and calving flux which for the first time allows to estimate a time series of calving volumes more than one decade back in time. Improving our model requires to incorporate more precise, high-resolution calibration data. A new field campaign will combine innovative, multi-disciplinary monitoring techniques to measure calving ice volumes and dynamic ice-ocean interactions simultaneously with terrestrial laser

  6. Seismic reflection processing for characterization of a hazardous waste site

    SciTech Connect

    Liu, Z.-M.; Doll, W.E.

    1997-03-01

    Seismic reflection data have been acquired by the Kansas Geological Survey near the Oak Ridge K-25 Plant on the Oak Ridge Reservation, Tennessee, to assist in the selection of ground water monitoring well locations. The data were recorded in uncorrelated format to allow flexibility in enhancement of stacked images. During the summer of 1996, five of the thirteen seismic reflection lines acquired were processed. An unconventional correlation procedure, ``Vibroseis Whitening`` (VSW) (Coruh and Costain, 1983) has been applied to produce improved seismic sections. Refraction statics corrections, which remove the detrimental effect of an irregular weathered layer, have also been utilized to improve the seismic sections. The seismic data were stacked using the velocities obtained from a standard semblance velocity analysis tool. Locations and orientations of faults or fault zones can be interpreted from these stacked sections, and they are in agreement with the interpretations of the surface mapping in the area. This paper concludes that VSW and refraction statics can be important to near-surface swept source seismic data processing.

  7. Hawaiian Volcano Observatory Seismic Data, January to December 2007

    USGS Publications Warehouse

    Nakata, Jennifer S.; Okubo, Paul G.

    2008-01-01

    The U.S. Geological Survey (USGS), Hawaiian Volcano Observatory (HVO) summary presents seismic data gathered during the year. The seismic summary is offered without interpretation as a source of preliminary data and is complete in that most data for events of M=1.5 are included. All latitude and longitude references in this report are stated in Old Hawaiian Datum. The HVO summaries have been published in various forms since 1956. Summaries prior to 1974 were issued quarterly, but cost, convenience of preparation and distribution, and the large quantities of data necessitated an annual publication, beginning with Summary 74 for the year 1974. Beginning in 2004, summaries are simply identified by the year, rather than by summary number. Summaries originally issued as administrative reports were republished in 2007 as Open-File Reports. All the summaries since 1956 are listed at http://geopubs.wr.usgs.gov/ (last accessed September 30, 2008). In January 1986, HVO adopted CUSP (California Institute of Technology USGS Seismic Processing). Summary 86 includes a description of the seismic instrumentation, calibration, and processing used in recent years. The present summary includes background information about the seismic network to provide the end user an understanding of the processing parameters and how the data were gathered. A report by Klein and Koyanagi (1980) tabulates instrumentation, calibration, and recording history of each seismic station in the network. It is designed as a reference for users of seismograms and phase data and includes and augments the information in the station table in this summary.

  8. Dynamic Bayesian filtering for real-time seismic analyses

    SciTech Connect

    Blough, D.K.; Rohay, A.C.; Anderson, K.K.; Nicholson, W.L.

    1994-04-01

    State space modeling, which includes techniques such as the Kalman filter, has been used to analyze many non-stationary time series. The ability of these dynamic models to adapt and track changes in the underlying process makes them attractive for application to the real-time analysis of three-component seismic waveforms. The authors are investigating the application of state space models formulated as Bayesian time series models to phase detection, polarization, and spectrogram estimation of seismograms. This approach removes the need to specify data windows in the time series for time averaging estimation (e.g., spectrum estimation). They are using this model to isolate particular seismic phases based on polarization parameters that are determined at a spectrum of frequencies. They plan to use polarization parameters, frequency spectra, and magnitudes to discriminate between different types of seismic sources. They present the application of this technique to artificial time series and to several real seismic events including the Non-Proliferation Experiment (NPE) two nuclear tests and three earthquakes from the Nevada Test site, as recorded on several regional broadband seismic stations. A preliminary result of this analysis indicates that earthquakes and explosions can potentially be discriminated on the bass of the polarization characteristics of scattered seismic phases. However, the chemical (NPE) and nuclear explosions appear to have very similar polarization characteristics.

  9. Seismic Hazard Implication of the Seismotectonics of southern Africa

    NASA Astrophysics Data System (ADS)

    Midzi, Vunganai; Mulabisana, Thifelimbilu; Manzunzu, Brassnavy

    2014-05-01

    The work presented in this report / presentation was prepared as part of the requirements for the SIDA/IGCP Project 601 titled "Seismotectonics and Seismic Hazards in Africa" as well as part of the seismic source characterisation of the GEM-Africa Seismic hazard study. An effort was made to compile information necessary to prepare a seismotectonic map of Africa which can then be used in carrying out a seismic hazard assessment of the continent or locations within the continent. Information on major faults, fault plane solutions, geophysical data as well as stress data has so far been collected and included in a database for the southern Africa region. Reports published by several experts contributed much to the collected information. The seismicity data used are part of the earthquake catalogue being prepared for the GEM-Africa project, which includes historical and instrumental records as collected from various sources. An effort has been made to characterise the identified major faults and through further analysis investigate their possible impact on the seismic hazard of southern Africa.

  10. CD Recorders.

    ERIC Educational Resources Information Center

    Falk, Howard

    1998-01-01

    Discussion of CD (compact disc) recorders describes recording applications, including storing large graphic files, creating audio CDs, and storing material downloaded from the Internet; backing up files; lifespan; CD recording formats; continuous recording; recording software; recorder media; vulnerability of CDs; basic computer requirements; and…

  11. Seismic reflection images of shallow faulting, northernmost Mississippi embayment, north of the New Madrid seismic zone

    USGS Publications Warehouse

    McBride, J.H.; Nelson, W.J.

    2001-01-01

    High-resolution seismic reflection surveys document tectonic faults that displace Pleistocene and older strata just beyond the northeast termination of the New Madrid seismic zone, at the northernmost extent of the Mississippi embayment. These faults, which are part of the Fluorspar Area fault complex in southeastern Illinois, are directly in line with the northeast-trending seismic zone. The reflection data were acquired using an elastic weight-drop source recorded to 500 msec by a 48-geophone array (24-fold) with a 10-ft (??3.0m) station interval. Recognizable reflections were recorded to about 200 msec (100-150 m). The effects of multiple reflections, numerous diffractions, low apparent velocity (i.e., steeply dipping) noise, and the relatively low-frequency content of the recorded signal provided challenges for data processing and interpreting subtle fault offsets. Data processing steps that were critical to the detection of faults included residual statics, post-stack migration, deconvolution, and noise-reduction filtering. Seismic migration was crucial for detecting and mitigating complex fault-related diffraction patterns, which produced an apparent 'folding' of reflectors on unmigrated sections. Detected individual offsets of shallow reflectors range from 5 to 10 m for the top of Paleozoic bedrock and younger strata. The migrated sections generally indicate vertical to steeply dipping normal and reverse faults, which in places outline small horsts and/or grabens. Tilting or folding of stratal reflectors associated with faulting is also locally observed. At one site, the observed faulting is superimposed over a prominent antiformal structure, which may itself be a product of the Quaternary deformation that produced the steep normal and reverse faults. Our results suggest that faulting of the Paleozoic bedrock and younger sediments of the northern Mississippi embayment is more pervasive and less localized than previously thought.

  12. The Salton Seismic Imaging Project (SSIP): Active Rift Processes in the Brawley Seismic Zone

    NASA Astrophysics Data System (ADS)

    Han, L.; Hole, J. A.; Stock, J. M.; Fuis, G. S.; Rymer, M. J.; Driscoll, N. W.; Kent, G.; Harding, A. J.; Gonzalez-Fernandez, A.; Lazaro-Mancilla, O.

    2011-12-01

    The Salton Seismic Imaging Project (SSIP), funded by NSF and USGS, acquired seismic data in and across the Salton Trough in southern California and northern Mexico in March 2011. The project addresses both rifting processes at the northern end of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. Seven lines of onshore refraction and low-fold reflection data were acquired in the Coachella, Imperial, and Mexicali Valleys, two lines and a grid of airgun and OBS data were acquired in the Salton Sea, and onshore-offshore data were recorded. Almost 2800 land seismometers and 50 OBS's were used in almost 5000 deployments at almost 4300 sites, in spacing as dense as 100 m. These instruments received seismic signals from 126 explosive shots up to 1400 kg and over 2300 airgun shots. In the central Salton Trough, North American lithosphere appears to have been rifted completely apart. Based primarily on a 1979 seismic refraction project, the 20-22 km thick crust is apparently composed entirely of new crust added by magmatism from below and sedimentation from above. Active rifting of this new crust is manifested by shallow (<10km depth) seismicity in the oblique Brawley Seismic Zone (BSZ), small Salton Buttes volcanoes aligned perpendicular to the transform faults, very high heat flow (~140 mW/m2), and geothermal energy production. This presentation is focused on an onshore-offshore line of densely sampled refraction and low-fold reflection data that crosses the Brawley Seismic Zone and Salton Buttes in the direction of plate motion. At the time of abstract submission, data analysis was very preliminary, consisting of first-arrival tomography of the onshore half of the line for upper crustal seismic velocity. Crystalline basement (>5 km/s), comprised of late-Pliocene to Quaternary sediment metamorphosed by the high heat flow, occurs at ~2 km depth beneath the Salton Buttes and geothermal field and ~4 km

  13. Using micro-seismicity and seismic velocities to map subsurface geologic and hydrologic structure within the Coso geothermal field, California

    USGS Publications Warehouse

    Kaven, Joern Ole; Hickman, Stephen H.; Davatzes, Nicholas C.

    2012-01-01

    Geothermal reservoirs derive their capacity for fluid and heat transport in large part from faults and fractures. Micro-seismicity generated on such faults and fractures can be used to map larger fault structures as well as secondary fractures that add access to hot rock, fluid storage and recharge capacity necessary to have a sustainable geothermal resource. Additionally, inversion of seismic velocities from micro-seismicity permits imaging of regions subject to the combined effects of fracture density, fluid pressure and steam content, among other factors. We relocate 14 years of seismicity (1996-2009) in the Coso geothermal field using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We utilize over 60,000 micro-seismic events using waveform cross-correlation to augment to expansive catalog of P- and S-wave differential travel times recorded at Coso. We further carry out rigorous uncertainty estimation and find that our results are precise to within 10s of meters of relative location error. We find that relocated micro-seismicity outlines prominent, through-going faults in the reservoir in some cases. We also find that a significant portion of seismicity remains diffuse and does not cluster into more sharply defined major structures. The seismic velocity structure reveals heterogeneous distributions of compressional (Vp) and shear (Vs) wave speed, with Vp generally lower in the main field when compared to the east flank and Vs varying more significantly in the shallow portions of the reservoir. The Vp/Vs ratio appears to outline the two main compartments of the reservoir at depths of -0.5 to 1.5 km (relative to sea-level), with a ridge of relatively high Vp/Vs separating the main field from the east flank. In the deeper portion of the reservoir this ridge is less prominent. Our results indicate that high-precision relocations of micro-seismicity can provide

  14. Calculating California Seismicity Rates

    USGS Publications Warehouse

    Felzer, Karen R.

    2008-01-01

    Empirically the rate of earthquakes = magnitude M is well fit by the Gutenberg-Richter relationship, logN=a-bM (1) where N is the number of earthquakes = M over a given time period, a is the number of M = 0 earthquakes over the same period, and b is a parameter that determines the ratio of larger to smaller earthquakes (Ishimoto and Iida 1939; Gutenberg and Richter 1944). Thus to characterize the seismicity rate, N, and risk in a given region we need to solve for the values of a and b. Here we are concerned with solving for the long term average values of these parameters for the state of California. My primary data source is a catalog of 1850-2006 M = 4.0 seismicity compiled with Tianqing Cao (Appendix H). Because earthquakes outside of the state can influence California I consider both earthquakes within the state and within 100 km of the state border (Figure 1).

  15. Seismic detection of tornadoes

    USGS Publications Warehouse

    Tatom, F. B.

    1993-01-01

    Tornadoes represent the most violent of all forms of atmospheric storms, each year resulting in hundreds of millions of dollars in property damage and approximately one hundred fatalities. In recent years, considerable success has been achieved in detecting tornadic storms by means of Doppler radar. However, radar systems cannot determine when a tornado is actually in contact with the ground, expect possibly at extremely close range. At the present time, human observation is the only truly reliable way of knowing that a tornado is actually on the ground. However, considerable evidence exists indicating that a tornado in contact with the ground produces a significant seismic signal. If such signals are generated, the seismic detection and warning of an imminent tornado can become a distinct possibility. 

  16. SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.

    2013-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.

  17. Albuquerque Basin seismic network

    USGS Publications Warehouse

    Jaksha, Lawrence H.; Locke, Jerry; Thompson, J.B.; Garcia, Alvin

    1977-01-01

    The U.S. Geological Survey has recently completed the installation of a seismic network around the Albuquerque Basin in New Mexico. The network consists of two seismometer arrays, a thirteen-station array monitoring an area of approximately 28,000 km 2 and an eight-element array monitoring the area immediately adjacent to the Albuquerque Seismological Laboratory. This report describes the instrumentation deployed in the network.

  18. Back-Projecting Volcano and Geyser Seismic Signals to Sources

    NASA Astrophysics Data System (ADS)

    Kelly, C. L.; Lawrence, J. F.; Ebinger, C. J.

    2015-12-01

    Volcanic and hydrothermal systems are generally characterized by persistent, low-amplitude seismic "noise" with no clear onset or end. Outside of active eruptions and earthquakes, which tend to occur only a small fraction of the time, seismic records and spectrograms from these systems are dominated by long-duration "noise" (typically around 1-5Hz) generated by ongoing processes in the systems' subsurface. Although it has been shown that these low-amplitude signals can represent a series of overlapping low-magnitude displacements related to fluid and volatile movement at depth, because of their "noisy" properties compared to typical active or earthquake sources they are difficult to image using traditional seismic techniques (i.e. phase-picking). In this study we present results from applying a new ambient noise back-projection technique to improve seismic source imaging of diffuse signals found in volcanic and hydrothermal systems. Using this new method we show how the distribution of all seismic sources - particularly sources associated with volcanic tremor - evolves during a proposed intrusion in early June 2010 at Sierra Negra Volcano on the Galápagos Archipelago off the coast of Ecuador. We use a known velocity model for the region (Tepp et al., 2014) to correlate and back-project seismic signals from all available receiver-pairs to potential subsurface source locations assuming bending raypaths and accounting for topography. We generate 4D time-lapsed images of the source field around Sierra Negra before, during and after the proposed intrusion and compare the consistency of our observations with previously identified seismic event locations and tomography results from the same time period. Preliminary results from applying the technique to a dense grid of geophones surrounding a periodically erupting geyser at El Tatio Geyser Field in northern Chile (>2000 eruptions recorded) will also be presented.

  19. Noise analysis of the seismic system employed in the northern and southern California seismic nets

    USGS Publications Warehouse

    Eaton, J.P.

    1984-01-01

    The seismic networks have been designed and operated to support recording on Develocorders (less than 40db dynamic range) and analog magnetic tape (about 50 db dynamic range). The principal analysis of the records has been based on Develocorder films; and background earth noise levels have been adjusted to be about 1 to 2 mm p-p on the film readers. Since the traces are separated by only 10 to 12 mm on the reader screen, they become hopelessly tangled when signal amplitudes on several adjacent traces exceed 10 to 20 mm p-p. Thus, the background noise level is hardly more than 20 db below the level of largest readable signals. The situation is somewhat better on tape playbacks, but the high level of background noise set to accomodate processing from film records effectively limits the range of maximum-signal to background-earth-noise on high gain channels to a little more than 30 db. Introduction of the PDP 11/44 seismic data acquisition system has increased the potential dynamic range of recorded network signals to more than 60 db. To make use of this increased dynamic range we must evaluate the characteristics and performance of the seismic system. In particular, we must determine whether the electronic noise in the system is or can be made sufficiently low so that background earth noise levels can be lowered significantly to take advantage of the increased dynamic range of the digital recording system. To come to grips with the complex problem of system noise, we have carried out a number of measurements and experiments to evaluate critical components of the system as well as to determine the noise characteristics of the system as a whole.

  20. Evidence of post-seismic creep type deformations derived by tilt and acoustic emission monitoring of mining induced seismic events

    NASA Astrophysics Data System (ADS)

    Milev, Alexander; Share, Pieter-Ewald; Naoi, Makoto; Durrheim, Raymond; Yabe, Yasuo; Ogasawara, Hiroshi; Nakatani, Masao

    2015-04-01

    In this study we try to understand pre- and post-failure rock behavior associated with mining induced seismic events. This involves underground installation of various high precision instruments, including geophones, acoustic emission sensors, tilt- and strain-meters at a number of sites in deep level South African gold mines. The rate of tilt, strain and the seismic ground motion were analysed in order to understand the coseismic and aseismic deformation of the rocks. A good correspondence between the coseismic and the aseismic deformations was found. The rate of coseismic and aseismic tilt, as well as seismicity recorded by the mine seismic network, are approximately constant until the daily blasting time, which takes place from about 19:30 until shortly before 21:00. During the blasting time and the subsequent seismic events, the coseismic tilt and strain shows a rapid increase. Much of the aseismic deformation, however, occurs independently of the seismic events and blasting. In an attempt to distinguish between the different mechanisms of tilting two types of events were recognized. The "fast" seismic events characterized with sharp increase of the tilt during the seismic rupture and "slow" seismic events characterized by creep type post seismic deformations. Tilt behaviour before and after a seismic event was also analysed. The fact that no recognizable aftertilt was observed for more of the "fast" seismic events means that there is no gradual release of stress and an associated continuous strain rate change afterwards. It can therefore be concluded that a large seismic event causes a rapid change in the state of stress rather than a gradual change in the strain rate During the monitoring period a seismic event with MW 2.2 occurred in the vicinity of the instrumented site. This event was recorded by both the CSIR integrated monitoring system and JAGUARS acoustic emission network. More than 21,000 AE aftershocks were located in the first 150 hours after the

  1. Establishing seismic design criteria to achieve an acceptable seismic margin

    SciTech Connect

    Kennedy, R.P.

    1997-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2). What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the Safe Shutdown Earthquake ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented.

  2. Seismic basement in Poland

    NASA Astrophysics Data System (ADS)

    Grad, Marek; Polkowski, Marcin

    2016-06-01

    The area of contact between Precambrian and Phanerozoic Europe in Poland has complicated structure of sedimentary cover and basement. The thinnest sedimentary cover in the Mazury-Belarus anteclize is only 0.3-1 km thick, increases to 7-8 km along the East European Craton margin, and 9-12 km in the Trans-European Suture Zone (TESZ). The Variscan domain is characterized by a 1- to 2-km-thick sedimentary cover, while the Carpathians are characterized by very thick sediments, up to c. 20 km. The map of the basement depth is created by combining data from geological boreholes with a set of regional seismic refraction profiles. These maps do not provide data about the basement depth in the central part of the TESZ and in the Carpathians. Therefore, the data set is supplemented by 32 models from deep seismic sounding profiles and a map of a high-resistivity (low-conductivity) layer from magnetotelluric soundings, identified as a basement. All of these data provide knowledge about the basement depth and of P-wave seismic velocities of the crystalline and consolidated type of basement for the whole area of Poland. Finally, the differentiation of the basement depth and velocity is discussed with respect to geophysical fields and the tectonic division of the area.

  3. First Quarter Hanford Seismic Report for Fiscal Year 2009

    SciTech Connect

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-03-15

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. This includes three recently acquired Transportable Array stations located at Cold Creek, Didier Farms, and Phinney Hill. For the Hanford Seismic Network, ten local earthquakes were recorded during the first quarter of fiscal year 2009. All earthquakes were considered as “minor” with magnitudes (Mc) less than 1.0. Two earthquakes were located at shallow depths (less than 4 km), most likely in the Columbia River basalts; five earthquakes at intermediate depths (between 4 and 9 km), most likely in the sub-basalt sediments); and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, four earthquakes occurred in known swarm areas and six earthquakes were classified as random events.

  4. First Quarter Hanford Seismic Report for Fiscal Year 2001

    SciTech Connect

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.; Valenta, Michelle M.

    2001-02-27

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the HSN, there were 477 triggers during the first quarter of fiscal year (FY) 2001 on the data acquisition system. Of these triggers, 176 were earthquakes. Forty-five earthquakes were located in the HSN area; 1 earthquake occurred in the Columbia River Basalt Group, 43 were earthquakes in the pre-basalt sediments, and 1 was earthquakes in the crystalline basement. Geographically, 44 earthquakes occurred in swarm areas, 1 earthquake was on a major structure, and no earthquakes were classified as random occurrences. The Horse Heaven Hills earthquake swarm area recorded all but one event during the first quarter of FY 2001. The peak of the activity occurred over December 12th, 13th, and 14th when 35 events occurred. No earthquakes triggered the Hanford Strong Motion Accelerometers during the first quarter of FY 2001.

  5. Puerto Rico Strong Motion Seismic Network

    NASA Astrophysics Data System (ADS)

    Huerta-Lopez, C. I.; Martínez-Cruzado, J. A.; Martínez-Pagan, J.; Santana-Torres, E. X.; Torres-O, D. M.

    2014-12-01

    The Puerto Rico Strong Motion Seismic Network is currently in charge of the operation of: (i) free-field (ff) strong motion stations, (ii) instrumented structures (STR) (Dams, Bridges, Buildings), and (iii) the data acquisition/monitoring and analysis of earthquakes considered strong from the point of view of their intensity and magnitude. All these instruments are deployed in the Puerto Rico Island (PRI), US-, and British-Virgin Islands (BVI), and Dominican Republic (DR). The Puerto Rico Island and the Caribbean region have high potential to be affected by earthquakes that could be catastrophic for the area. The Puerto Rico Strong Motion Seismic Network (actually Puerto Rico Strong Motion Program, PRSMP) has grown since 1970's from 7 ff strong motion stations and one instrumented building with analog accelerographs to 111 ff strong motion stations and 16 instrumented buildings with digital accelerographs: PRI: 88 ff, 16 STR., DR: 13 ff, BVI: 5 ff, 2 STR collecting data via IP (internet), DU (telephone), and stand alone stations The current stage of the PRSMP seismic network, the analysis of moderate earthquakes that were recorded and/or occurred on the island, results of the intensity distribution of selected earthquakes, as well as results of dynamic parameter identification of some of the instrumented structures are here presented.

  6. Seismic noise on Rarotonga: Surface versus downhole

    NASA Astrophysics Data System (ADS)

    Butler, Rhett; Hutt, C. R.

    Seismic noise data are presented from the new Global Seismographic Network station, RAR, on the Island of Rarotonga in the South Pacific. Data from the first new borehole site in the GSN are compared with a surface vault installation. Initial indications from the data show that borehole siting on a small island significantly reduces long-period (>20 s) horizontal seismic noise levels during the daytime, but little or no improvement is evident at periods shorter than 20 s or on the vertical component.The goal of the Incorporated Research Institutions for Seismology (IRIS) GSN program is broad, uniform coverage of the Earth with a 128-station network. To achieve this goal and provide coverage in oceanic areas, many stations will be sited on islands. A major siting consideration for these new stations is whether to build a surface vault or drill a borehole. Neither option is inexpensive. The costs for drilling a cased hole and a borehole sensor are large, but the benefit of a borehole site is that seismic noise is reduced during certain periods when a surface installation may be subject to wind, weather, and thermal effects. This benefit translates into recording greater numbers of smaller earthquakes and higher signal-to-noise ratio.

  7. Seismicity of microearthquakes around Gyeongju, Korea

    NASA Astrophysics Data System (ADS)

    Hahm, I.

    2015-12-01

    The Korean Peninsula which is located in an intraplate area is known as seismically inactive region. However there were unusual several offshore earthquakes occurred around the southwestern Korean Peninsula in 2013. In addition, a small earthquake (Ml 3.5) occurred on 23 September 2014 around Gyeongju close to a nuclear power plant and many people felt a shock of the earthquake. Concerns over the safety of nuclear power plants were rising and therefore seismicity in this region was investigated. There were 61 earthquakes with local magnitude (Ml) greater than 1.7 occurred around Gyeongju since 1994 by KIGAM (Korea Institute of Geoscience and Mineral Resources) catalog. These events were relocated and calculated focal mechanisms. Also, I analyzed using continuous waveform data within 7 days before and after the mainshock recorded at HDB station with the epicentral distance of about 9 km, to find smaller events of the 2014 Gyeongju earthquake. 84 foreshocks and 108 aftershocks were identified and I located events with a minimum of 5 phases (4 P and 1 S). According to the relocated results, I may classify seismicity roughly into two groups. One group is aligned along right-hand side of the Ulsan Fault and the other is located near by the Bomunho. 13 quakes occurred from 1999 to 2003 close by artificial lake called Bomunho created in the late 1970s may be triggered microearthquakes by artificial water reservoirs but further research is needed to find causes of the events.

  8. Seismic upgrades of healthcare facilities.

    PubMed

    Yusuf, A

    1997-06-01

    Before 1989 seismic upgrading of hospital structures was not a primary consideration among hospital owners. However, after extensive earthquake damage to hospital buildings at Loma Prieta in Northern California in 1989 and then at Northridge in Southern California in 1994, hospital owners, legislators, and design teams become concerned about the need for seismic upgrading of existing facilities. Because the damage hospital structures sustained in the earthquakes was so severe and far-reaching, California has enacted laws that mandate seismic upgrading for existing facilities. Now hospital owners will have to upgrade buildings that do not conform to statewide seismic adequacy laws. By 2030, California expects all of its hospital structures to be sufficiently seismic-resistant. Slowly, regions in the Midwest and on the East Coast are following their example. This article outlines reasons and ways for seismic upgrading of existing facilities.

  9. The Berkeley Digital Seismic Network

    NASA Astrophysics Data System (ADS)

    Romanowicz, B.; Dreger, D.; Neuhauser, D.; Karavas, W.; Hellweg, M.; Uhrhammer, R.; Lombard, P.; Friday, J.; Lellinger, R.; Gardner, J.; McKenzie, M. R.; Bresloff, C.

    2007-05-01

    Since it began monitoring earthquakes in northern California 120 years ago, the Berkeley Seismological Laboratory (BSL) has been striving to produce the highest quality and most complete seismic data possible in the most modern way. This goal has influenced choices in instrumentation, installation and telemetry, as well as the investment in expertise and manpower. Since the transition to broadband (BB) instrumentation in the mid- 1980s and to a fully digitally telemetered network in the early 1990s, we have continued these efforts. Each of our 25 BB installations includes three component BB seismometers (STS-1s or STS-2) and digital accelerometers to capture the full range of ground motion from distant teleseisms to large, nearby earthquakes (almost 250 dB). The ground motion is recorded on-site by 24 bit dataloggers. Additional environmental parameters, such as temperature and pressure, are also monitored continuously. Many stations record also C-GPS data that is transmitted continuously to the BSL via shared real-time telemetry. The BDSN's first stations were installed in abandoned mines. In the last 15 years, we developed installations using buried shipping containers to reduce environmental noise and provide security and easy access to the equipment. Data are transmitted in real-time at several sampling rates to one or more processing centers, using frame relay, radio, microwave, and/or satellite. Each site has 7-30 days of onsite data storage to guard against data loss during telemetry outages. Each station is supplied with backup batteries to provide power for 3 days. The BDSN real-time data acquisition, earthquake analysis and archiving computers are housed in a building built to "emergency grade" seismic standards, with air conditioning and power backed up by a UPS and a large generator. Data latency and power are monitored by automated processes that alert staff via pager and email. Data completeness and timing quality are automatically assessed on a daily

  10. Ambient Seismic Noise Tomography of Southern Norway

    NASA Astrophysics Data System (ADS)

    Köhler, Andreas; Weidle, Christian; Maupin, Valerie

    2010-05-01

    The noise cross-correlation technique is especially useful in regions like southern Norway since local seismicity is rare and teleseismic records are not able to resolve the upper crust. Within the TopoScandiaDeep project, which aims to investigate the relation between surface topography and lithosphere-asthenosphere structure, we process seismic broadband data from the temporary MAGNUS network in Southern Norway. The receivers were recording 20 months of continuous data between September 2006 and June 2008. Additionally, permanent stations of the National Norwegian Seismic Network, NORSAR and GSN stations in the region are used. After usual preprocessing steps (filtering, prewhitening, temporal normalization), we compute 820 cross-correlation functions from 41 receivers for three month time windows. Evaluation of the azimuthal and temporal variation of signal to noise ratios and f-k analysis of NORSAR array data shows that the dominant propagation direction of seismic noise is south-west to north, corresponding well to the Norwegian coast line. During summer months, the signal to noise ratios decrease and the azimuthal distribution becomes smoother. Time-frequency analysis is applied to measure Rayleigh and Love wave group velocity dispersion curves between each station pair for each three-month correlation stack. The mean and variance of all dispersion curves is computed for each path. After rejection of low-quality data using a signal to noise ratio, minimum wavelength and velocity variance criterion, we obtain a large number of reliable velocity estimates (about 600) for periods between 2 and 15 seconds, which we invert for group velocity maps at respective periods. At all inverted periods, we find positive and negative velocity anomalies for Rayleigh and Love waves that correlate very well with local surface geology. While higher velocities (+5%) can be associated with the Caledonian nappes in the central part of southern Norway, the Oslo Graben is reflected

  11. Structural Seismic Risk at David City, Panama

    NASA Astrophysics Data System (ADS)

    Camacho, E.; Battlo, J.; Novelo-Casanova, D. A.; Tapia, A.; Lindhom, C.

    2007-12-01

    At the southwest margin of the Isthmus of Panama, the Cocos, Nazca and Panama Microplate join in a triple junction. In this tectonic setting, the Panama Fracture Zone (PFZ) which bounds the Nazca and Cocos plate, subducts in an oblique and shallow manner. This zone is one of the most active seismic areas of Central America. On July 18, 1934, the largest earthquake in Panama in historical times (Ms= 7.7) occurred in its northern region. This event caused extensive damage to towns located in the border of Panama and Costa Rica and during the two subsequent days, six aftershocks with magnitude greater than 6.0 were recorded. David City, with 130,000 inhabitants is the most important urban center in southwestern Panama and lies at the northern end of the PFZ. This city was impacted by the strong destructive earthquakes (Ms>7.0) that took place in 1879 and 1934, both with epicenters located on the northern terminus of the PFZ. In this work, we collected and digitized historical seismograms to measure the centroid moment tensor (CMT) from the main 1934 earthquake. Additionally, we gathered new macroseismic information to create improved and more complete isoseismals maps of the 1879 and 1934 events. We determined the probabilistic seismic hazard for David City using records of historical and recent seismicity and the characteristics of local faults. The hazard computation results are presented as peak iso-acceleration curves for rock/hard soil for a recurrence time of 500 years. An elastic response spectrum was obtained with a uniform exceedance probability of 10% in 50 years with one degree of freedom and 5% of damping. Our results indicate maximum peak ground acceleration (PGA) in downtown David of 3.8 and 4.5 m/s2 with a probability annual exceedance of 0.002 and 0.001, respectively. Structural vulnerability was determined analyzing the quality and construction design of housing, buildings, and critical facilities as well as the type of soil where these structures

  12. Seismic-monitoring changes and the remote deployment of seismic stations (seismic spider) at Mount St. Helens, 2004-2005: Chapter 7 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    McChesney, Patrick J.; Couchman, Marvin R.; Moran, Seth C.; Lockhart, Andrew B.; Swinford, Kelly J.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The instruments in place at the start of volcanic unrest at Mount St. Helens in 2004 were inadequate to record the large earthquakes and monitor the explosions that occurred as the eruption developed. To remedy this, new instruments were deployed and the short-period seismic network was modified. A new method of establishing near-field seismic monitoring was developed, using remote deployment by helicopter. The remotely deployed seismic sensor was a piezoelectric accelerometer mounted on a surface-coupled platform. Remote deployment enabled placement of stations within 250 m of the active vent.

  13. Inverse seismic interferometry: can we observe seismic data at greater depth?

    NASA Astrophysics Data System (ADS)

    Koelemeijer, Paula; Fichtner, Andreas; Kimman, Wouter

    2015-04-01

    By the very nature of our planet, seismological recordings are limited to the Earth's surface with some deployments in boreholes and more recently the placement of seismometers on the sea floor. Therefore, only travelling and standing waves that are excited and oscillate at shallow depths can be observed. Seismic waves oscillating at great depth with zero amplitude near the surface, e.g. higher frequency core-mantle boundary Stoneley modes, remain practically invisible to us. Seismic interferometry based on background noise has become a standard method for obtaining information regarding shallow and more recently also deeper Earth structure. Noise cross-correlations between a set of stations located on the surface of the Earth provide in theory information on the inter-station Green's functions, in case of an equipartitioned wave field or an isotropic source distribution. Using reciprocity, similar techniques can be employed to obtain the Green's function between two events for a distribution of receivers. In this contribution, we propose to use the concept of inverse interferometry for observing seismic data with only deep non-zero amplitude. As an initial step, cross-correlation measurements between two deep events, recorded at stations over the globe, will be analysed. Numerical wave field simulations will enable us to investigate the sensitivity of these measurements to Earth structure. Important contributing factors are possibly the source mechanisms of the events, inter-source distance and the distribution of receivers over the surface of the Earth.

  14. Seasonal variations of seismic velocities in the San Jacinto fault area observed with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Ben-Zion, Y.; Campillo, M.; Zigone, D.

    2015-08-01

    We observe seasonal seismic wave speed changes (dv/v) in the San Jacinto fault area and investigate several likely source mechanisms. Velocity variations are obtained from analysis of 6 yr data of vertical component seismic noise recorded by 10 surface and six borehole stations. We study the interrelation between dv/v records, frequency-dependent seismic noise properties, and nearby environmental data of wind speed, rain, ground water level, barometric pressure and atmospheric temperature. The results indicate peak-to-peak seasonal velocity variations of ˜0.2 per cent in the 0.5-2 Hz frequency range, likely associated with genuine changes of rock properties rather than changes in the noise field. Phase measurements between dv/v and the various environmental data imply that the dominant source mechanism in the arid study area is thermoelastic strain induced by atmospheric temperature variations. The other considered environmental effects produce secondary variations that are superimposed on the thermal-based changes. More detailed work with longer data on the response of rocks to various known external loadings can help tracking the evolving stress and effective rheology at depth.

  15. Seismic hazard and risk assessment in the intraplate environment: The New Madrid seismic zone of the central United States

    USGS Publications Warehouse

    Wang, Z.

    2007-01-01

    Although the causes of large intraplate earthquakes are still not fully understood, they pose certain hazard and risk to societies. Estimating hazard and risk in these regions is difficult because of lack of earthquake records. The New Madrid seismic zone is one such region where large and rare intraplate earthquakes (M = 7.0 or greater) pose significant hazard and risk. Many different definitions of hazard and risk have been used, and the resulting estimates differ dramatically. In this paper, seismic hazard is defined as the natural phenomenon generated by earthquakes, such as ground motion, and is quantified by two parameters: a level of hazard and its occurrence frequency or mean recurrence interval; seismic risk is defined as the probability of occurrence of a specific level of seismic hazard over a certain time and is quantified by three parameters: probability, a level of hazard, and exposure time. Probabilistic seismic hazard analysis (PSHA), a commonly used method for estimating seismic hazard and risk, derives a relationship between a ground motion parameter and its return period (hazard curve). The return period is not an independent temporal parameter but a mathematical extrapolation of the recurrence interval of earthquakes and the uncertainty of ground motion. Therefore, it is difficult to understand and use PSHA. A new method is proposed and applied here for estimating seismic hazard in the New Madrid seismic zone. This method provides hazard estimates that are consistent with the state of our knowledge and can be easily applied to other intraplate regions. ?? 2007 The Geological Society of America.

  16. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-04-01

    In this report we will show results of seismic and well log derived attenuation attributes from a deep water Gulf of Mexico data set. This data was contributed by Burlington Resources and Seitel Inc. The data consists of ten square kilometers of 3D seismic data and three well penetrations. We have computed anomalous seismic absorption attributes on the seismic data and have computed Q from the well log curves. The results show a good correlation between the anomalous absorption (attenuation) attributes and the presence of gas as indicated by well logs.

  17. A future for drifting seismic networks

    NASA Astrophysics Data System (ADS)

    Simons, F. J.; Nolet, G.; Babcock, J.

    2007-12-01

    One-dimensional, radial Earth models are sufficiently well constrained to accurately locate earthquakes and calculate the paths followed by seismic rays. The differences between observations and theoretical predictions of seismograms in such Earth models can be used to reconstruct the three-dimensional wave speed distribution in the regions sampled by the seismic waves, by the technique of seismic tomography. Caused by thermal, compositional, and textural variations, wave speed anomalies remain the premier data source to fully understand the structure and evolution of our planet, from the scale of mantle convection and the mechanisms of heat transfer from core to surface to the international between the deep Earth and surface processes such as plate motion and crustal deformation. Unequal geographical data coverage continues to fundamentally limit the quality of tomographic reconstructions of seismic wave speeds in the interior of the Earth. Only at great cost can geophysicists overcome the difficulties of placing seismographs on the two thirds of the Earth's surface that is covered by oceans. The lack of spatial data coverage strongly hampers the determination of the structure of the Earth in the uncovered regions: all 3-D Earth models are marked by blank spots in areas, distributed throughout the Earth, where little or no information can be obtained. As a possible solution to gaining equal geographic data coverage, we have developed MERMAID, a prototype mobile receiver that could provide an easy, cost-effective way to collect seismic data in the ocean. It is a modification of the robotic floating instruments designed and used by oceanographers. Like them, MERMAID spends its life at depth but is capable of surfacing using a pump and bladder. We have equipped it with a hydrophone to record water pressure variations induced by compressional (P) waves. Untethered and passively drifting, such a floating seismometer will surface upon detection of a "useful" seismic

  18. Quantifying the similarity of seismic polarizations

    NASA Astrophysics Data System (ADS)

    Jones, Joshua P.; Eaton, David W.; Caffagni, Enrico

    2016-02-01

    Assessing the similarities of seismic attributes can help identify tremor, low signal-to-noise (S/N) signals and converted or reflected phases, in addition to diagnosing site noise and sensor misalignment in arrays. Polarization analysis is a widely accepted method for studying the orientation and directional characteristics of seismic phases via computed attributes, but similarity is ordinarily discussed using qualitative comparisons with reference values or known seismic sources. Here we introduce a technique for quantitative polarization similarity that uses weighted histograms computed in short, overlapping time windows, drawing on methods adapted from the image processing and computer vision literature. Our method accounts for ambiguity in azimuth and incidence angle and variations in S/N ratio. Measuring polarization similarity allows easy identification of site noise and sensor misalignment and can help identify coherent noise and emergent or low S/N phase arrivals. Dissimilar azimuths during phase arrivals indicate misaligned horizontal components, dissimilar incidence angles during phase arrivals indicate misaligned vertical components and dissimilar linear polarization may indicate a secondary noise source. Using records of the Mw = 8.3 Sea of Okhotsk earthquake, from Canadian National Seismic Network broad-band sensors in British Columbia and Yukon Territory, Canada, and a vertical borehole array at Hoadley gas field, central Alberta, Canada, we demonstrate that our method is robust to station spacing. Discrete wavelet analysis extends polarization similarity to the time-frequency domain in a straightforward way. Time-frequency polarization similarities of borehole data suggest that a coherent noise source may have persisted above 8 Hz several months after peak resource extraction from a `flowback' type hydraulic fracture.

  19. Seismicity map of the state of Georgia

    USGS Publications Warehouse

    Reagor, B. Glen; Stover, C.W.; Algermissen, S.T.; Long, L.T.

    1991-01-01

    This map is one of a series of seismicity maps produced by the U.S. Geological Survey that show earthquake data of individual states or groups of states at the scale of 1:1,000,000. This maps shows only those earthquakes with epicenters located within the boundaries of Georgia, even though earthquakes in nearby states or countries may have been felt or may have cause damage in Georgia. The data in table 1 were used to compile the seismicity map; these data are a corrected, expanded, and updated (through 1987) version of the data used by Algermissen (1969) for a study of seismic risk in the United States. The locations and intensities of some earthquakes were revised and intensities were assigned where none had been before. Many earthquakes were added to the original list from new data sources as well as from some old data sources that has not been previously used. The data in table 1 represent best estimates of the location of the epicenter, magnitude, and intensity of each earthquake on the basis of historical and current information. Some of the aftershocks from large earthquakes are listed, but not all, especially for earthquakes that occurred before seismic instruments were universally used. The latitude and longitude coordinates of each epicenter were rounded to the nearest tenth of a degree and sorted so that all identical locations were grouped and counted. These locations are represented on the map by a triangle. The number of earthquakes at each location is shown on the map by the Arabic number to the right of the triangle. A Roman numeral to the left of a triangle is the maximum Modified Mercoili intensity (Wood and Neumann, 1931) of all earthquakes at that geographic location, The absence of an intensity value indicates that no intensities have been assigned to earthquakes at that location. The year shown below each triangle is the latest year for which the maximum intensity was recorded.

  20. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P Paulsson

    2002-05-01

    Borehole seismology is the highest resolution geophysical imaging technique available to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This proposal takes direct aim at this shortcoming. P/GSI is developing a 400 level 3C clamped downhole seismic receiver array for borehole seismic 3D imaging. This array will remove the acquisition barrier to record the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. By using 3C surface seismic or borehole seismic sources the 400 level receiver array will furthermore facilitate 9C reservoir imaging. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

  1. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2002-09-01

    Borehole seismology is the highest resolution geophysical imaging technique available to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This proposal takes direct aim at this shortcoming. P/GSI is developing a 400 level 3C clamped downhole seismic receiver array for borehole seismic 3D imaging. This array will remove the acquisition barrier to record the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore facilitate 9C reservoir imaging. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

  2. Seismic monitoring at Deception Island volcano (Antarctica): Recent advances

    NASA Astrophysics Data System (ADS)

    Carmona, E.; Almendros, J.; Martín, R.; Cortés, G.; Alguacil, G.; Moreno, J.; Martín, B.; Martos, A.; Serrano, I.; Stich, D.; Ibáñez, J. M.

    2012-04-01

    Deception Island (South Shetland Island, Antarctica) is an active volcano with recent eruptions (e.g. 1967, 1969 and 1970). It is also among the Antarctic sites most visited by tourists. Besides, there are currently two scientific bases operating during the austral summers, usually from late November to early March. For these reasons it is necessary to deploy a volcano monitoring system as complete as possible, designed specifically to endure the extreme conditions of the volcanic environment and the Antarctic climate. The Instituto Andaluz de Geofísica of University of Granada, Spain (IAG-UGR) performs seismic monitoring on Deception Island since 1994 during austral summer surveys. The seismicity basically includes volcano-tectonic earthquakes, long-period events and volcanic tremor, among other signals. The level of seismicity is moderate, except for a seismo-volcanic crisis in 1999. The seismic monitoring system has evolved during these years, following the trends of the technological developments and software improvements. Recent advances have been mainly focused on: (1) the improvement of the seismic network introducing broadband stations and 24-bit data acquisition systems; (2) the development of a short-period seismic array, with a 12-channel, 24-bit data acquisition system; (3) the implementation of wireless data transmission from the network stations and also from the seismic array to a recording center, allowing for real-time monitoring; (4) the efficiency of the power supply systems and the monitoring of the battery levels and power consumption; (5) the optimization of data analysis procedures, including database management, automated event recognition tools for the identification and classification of seismo-volcanic signals, and apparent slowness vector estimates using seismic array data; (6) the deployment of permanent seismic stations and the transmission of data during the winter using a satellite connection. A single permanent station is operating

  3. The Crustal Structure and Seismicity of Eastern Venezuela

    NASA Astrophysics Data System (ADS)

    Schmitz, M.; Martins, A.; Sobiesiak, M.; Alvarado, L.; Vasquez, R.

    2001-12-01

    Eastern Venezuela is characterized by a moderate to high seismicity, evidenced recently by the 1997 Cariaco earthquake located on the El Pilar Fault, a right lateral strike slip fault which marks the plate boundary between the Caribbean and South-American plates in this region. Recently, the seismic activity seems to migrate towards the zone of subduction of the Lesser Antilles in the northeast, where a mb 6.0 earthquake occurred in October 2000 at 120 km of depth. Periodical changes in the seismic activity are related to the interaction of the stress fields of the strike-slip and the subduction regimes. The seismic activity decreases rapidly towards to the south with some disperse events on the northern edge of the Guayana Shield, related to the Guri fault system. The crustal models used in the region are derived from the information generated by the national seismological network since 1982 and by microseismicity studies in northeastern Venezuela, coinciding in a crustal thickness of about 35 km in depth. Results of seismic refraction measurements for the region were obtained during field campains in 1998 (ECOGUAY) for the Guayana Shield and the Cariaco sedimentary basin and in 2001 (ECCO) for the Oriental Basin. The total crustal thickness decreases from about 45 km on the northern edge of the Guayana Shield to some 36 km close to El Tigre in the center of the Oriental Basin. The average crustal velocity decreases in the same sense from 6.5 to 5.8 km/s. In the Cariaco sedimentary basin a young sedimentary cover of 1 km thickness with a seismic velocity of 2 km/s was derived. Towards the northern limit of the South-American plate, no deep seismic refraction data are available up to now. The improvement of the crustal models used in that region would constitute a step forward in the analysis of the seismic hazard. Seismic refraction studies funded by CONICIT S1-97002996 and S1-2000000685 projects and PDVSA (additional drilling and blasting), recording equipment

  4. Northridge earthquake damage caused by geologic focusing of seismic waves

    PubMed

    Davis; Rubinstein; Liu; Gao; Knopoff

    2000-09-01

    Despite being located 21 kilometers from the epicenter of the 1994 Northridge earthquake (magnitude 6.7), the city of Santa Monica experienced anomalously concentrated damage with Mercalli intensity IX, an intensity as large as that experienced in the vicinity of the epicenter. Seismic records from aftershocks suggest that the damage resulted from the focusing of seismic waves by several underground acoustic lenses at depths of about 3 kilometers, formed by the faults that bound the northwestern edge of the Los Angeles basin. The amplification was greatest for high-frequency waves and was less powerful at lower frequencies, which is consistent with focusing theory and finite-difference simulations.

  5. Research on quick seismic damage investigation using smartphone

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Han, Ruicong; Yu, Yan; Li, Mingchu

    2016-04-01

    Quick seismic damage investigation in earthquake zone is significant to provide guidance for emergency response and rescue after disaster. In this paper, the damage investigation software is developed, which integrates the functions of questionnaire and picture collection for phenomenon register and image acquisition. The software has been updated to online version, all the information collected can be uploaded to the website with their GPS information, and demonstrated on a map. The expert can evaluate the seismic damage by analyzing the photos and recordings collected, which reduce the waste of human and time.

  6. Sideband analysis and seismic detection in a large ring laser

    NASA Astrophysics Data System (ADS)

    Stedman, G. E.; Li, Z.; Bilger, H. R.

    1995-08-01

    A ring laser unlocked by the Earth's Sagnac effect has attained a frequency resolution of 1 part in 3 \\times 1021 and a rotational resolution of 300 prad. We discuss both theoretically and experimentally the sideband structure of the Earth rotation-induced spectral line induced in the microhertz-hertz region by frequency modulation associated with extra mechanical motion, such as seismic events. The relative sideband height is an absolute measure of the rotational amplitude of that Fourier component. An initial analysis is given of the ring laser record from the Arthur's Pass-Coleridge seismic event of 18 June 1994.

  7. The seismicity of western Scandinavia

    SciTech Connect

    Abrraseys, N.N.

    1985-05-01

    The purpose of this paper is to present the results of an evaluation of the seismicity of western Scandinavia. Intensities, with reference to the MSK scale, have been assessed for the larger earthquakes, in most cases from primary sources, and isoseismal maps have been constructed for the most important events, while for smaller shocks one or more isoseismal radii were estimated. In all, over 3,200 earthquakes have been retrieved for Northwest Europe, including about 300 artificial events such as chemical explosions, rock-bursts and mine explosions. Of these, 500 events occurred in western Scandinavia. Surface-wave magnitudes were reassessed for 205 events, using surface-wave amplitude-period data, and all earthquakes recorded by more than 6 stations were relocated for the period prior to 1955. A calibration formula, obtained from the combination of macroseismic and instrumental data of the 20th century, has been used to assign magnitudes to all events for which there is macroseismic information available, thus deriving a homogeneous body of data covering a period of 180 years. It is shown that the largest earthquake in the region since 1800 occurred on land and that it had magnitude in excess of 6.0. This is contrary to the current belief, based on short-term data, that the larger events in western Fennoscandia occur offshore in the continental shelf areas.

  8. Seismic signals from Lascar Volcano

    NASA Astrophysics Data System (ADS)

    Hellweg, M.

    1999-03-01

    Lascar, the most active volcano in northern Chile, lies near the center of the region studied during the Proyecto de Investigación Sismológica de la Cordillera Occidental 94 (PISCO '94). Its largest historical eruption occurred on 19 April 1993. By the time of the PISCO '94 deployment, its activity consisted mainly of a plume of water vapor and SO 2. In April and May 1994, three short-period, three-component seismometers were placed on the flanks of the volcano, augmenting the broadband seismometer located on the NW flank of the volcano during the entire deployment. In addition to the usual seismic signals recorded at volcanoes, Lascar produced two unique tremor types: Rapid-fire tremor and harmonic tremor. Rapid-fire tremor appears to be a sequence of very similar, but independent, "impulsive" events with a large range of amplitudes. Harmonic tremor, on the other hand, is a continuous, cyclic signal lasting several hours. It is characterized by a spectrum with peaks at a fundamental frequency and its integer multiples. Both types of tremor seem to be generated by movement of fluids in the volcano, most probably water, steam or gas.

  9. Decoupling of deformation in the Upper Rhine Graben sediments. Seismic reflection and diffraction on 3-component Vertical Seismic Profiling (Soultz-sous-Forêts area)

    NASA Astrophysics Data System (ADS)

    Place, Joachim; Diraison, Marc; Naville, Charles; Géraud, Yves; Schaming, Marc; Dezayes, Chrystel

    2010-07-01

    A contribution to the definition of the structural pattern of the Soultz-sous-Forêts EGS (Enhanced Geothermal System) is presented here. After reprocessing, the PHN84J seismic reflection profile highlights the tilted blocks of the Merkwiller-Péchelbronn oilfield. In the Soultz-sous-Forêts horst, complex fault patterns are observed: the Hermerswiller normal fault flattens at depth and is rooted in decollements occurring in Triassic salt or clay series, while other steep normal faults affect underlying sedimentary formations and basement. Some methods for the exploitation of a seismic diffraction recorded by multi-component Vertical Seismic Profiling (VSP) are also illustrated to locate the diffractor without specific data processing. Polarisation and travel time analysis of a diffraction event recorded in the GPK1 borehole are analysed, and its exploitation combined with seismic reflection helps defining a tilted block geometry.

  10. Probabilistic seismic demand analysis using advanced ground motion intensity measures

    USGS Publications Warehouse

    Tothong, P.; Luco, N.

    2007-01-01

    One of the objectives in performance-based earthquake engineering is to quantify the seismic reliability of a structure at a site. For that purpose, probabilistic seismic demand analysis (PSDA) is used as a tool to estimate the mean annual frequency of exceeding a specified value of a structural demand parameter (e.g. interstorey drift). This paper compares and contrasts the use, in PSDA, of certain advanced scalar versus vector and conventional scalar ground motion intensity measures (IMs). One of the benefits of using a well-chosen IM is that more accurate evaluations of seismic performance are achieved without the need to perform detailed ground motion record selection for the nonlinear dynamic structural analyses involved in PSDA (e.g. record selection with respect to seismic parameters such as earthquake magnitude, source-to-site distance, and ground motion epsilon). For structural demands that are dominated by a first mode of vibration, using inelastic spectral displacement (Sdi) can be advantageous relative to the conventionally used elastic spectral acceleration (Sa) and the vector IM consisting of Sa and epsilon (??). This paper demonstrates that this is true for ordinary and for near-source pulse-like earthquake records. The latter ground motions cannot be adequately characterized by either Sa alone or the vector of Sa and ??. For structural demands with significant higher-mode contributions (under either of the two types of ground motions), even Sdi (alone) is not sufficient, so an advanced scalar IM that additionally incorporates higher modes is used.

  11. Deformation and seismicity of Taiwan.

    PubMed

    Vita-Finzi, C

    2000-10-10

    14C-dated Holocene coastal uplift, conventional and satellite geodetic measurements, and coseismic and aseismic fault slip reveal the pattern of distributed deformation at Taiwan resulting from convergence between the Philippine Sea plate and Eurasia; as in other subduction orogenic settings, the locus of strain release and accumulation is strongly influenced by changes in fault geometry across strike. Uplift evidence from the islands of Lutao and Lanhsu is consistent with progressive oblique collision between the Luzon arc and the Chinese continental margin. In the Coastal Range, geodetic and seismic records show that shortening is taken up serially by discontinuous slip on imbricate faults. The geodetic data point to net extension across the Central Range, but deformed Holocene shorelines in the Hengchun Peninsula at its southern extremity suggest that the extension is a superficial effect partly caused by blind reverse faulting. The fastest shortening rates indicated by geodesy are recorded on the Longitudinal Valley fault and across the Chukou fault within the fold-and-thrust belt. In the former, the strain is dissipated mainly as aseismic reverse and strike-slip displacement. In contrast, the fold-and-thrust belt has witnessed five earthquakes with magnitudes of 6.5 or above in the 20th century, including the 1999.9.21 Chi-Chi earthquake (magnitude approximately 7.6) on a branch of the Chukou fault. The neotectonic and geodetic data for Taiwan as a whole suggest that the fold-and-thrust belt will continue to host the majority of great earthquakes on the island.

  12. Overview of seismic potential in the central and eastern United States

    SciTech Connect

    Schweig, E.S.

    1995-12-31

    The seismic potential of any region can be framed in terms the locations of source zones, the frequency of earthquake occurrence for each source, and the maximum size earthquake that can be expect from each source. As delineated by modern and historical seismicity, the most important seismic source zones affecting the eastern United States include the New Madrid and Wabash Valley seismic zones of the central U.S., the southern Appalachians and Charleston, South Carolina, areas in the southeast, and the northern Appalachians and Adirondacks in the northeast. The most prominant of these in terms of current seismicity and historical seismic moment release in the New Madrid seismic zone, which produced three earthquakes of moment magnitude {ge} 8 in 1811 and 1812. The frequency of earthquake recurrence can be examined using the instrumental record, the historical record, and the geological record. Each record covers a unique time period and has a different scale of temporal resolution and completeness of the data set. The Wabash Valley is an example where the long-term geological record indicates a greater potential than the instrumental and historical records. This points to the need to examine all of the evidence in any region in order to obtain a credible estimates of earthquake hazards. Although earthquake hazards may be dominated by mid-magnitude 6 earthquakes within the mapped seismic source zones, the 1994 Northridge, California, earthquake is just the most recent example of the danger of assuming future events will occur on faults known to have had past events and how destructive such an earthquake can be.

  13. Validating induced seismicity forecast models—Induced Seismicity Test Bench

    NASA Astrophysics Data System (ADS)

    Király-Proag, Eszter; Zechar, J. Douglas; Gischig, Valentin; Wiemer, Stefan; Karvounis, Dimitrios; Doetsch, Joseph

    2016-08-01

    Induced earthquakes often accompany fluid injection, and the seismic hazard they pose threatens various underground engineering projects. Models to monitor and control induced seismic hazard with traffic light systems should be probabilistic, forward-looking, and updated as new data arrive. In this study, we propose an Induced Seismicity Test Bench to test and rank such models; this test bench can be used for model development, model selection, and ensemble model building. We apply the test bench to data from the Basel 2006 and Soultz-sous-Forêts 2004 geothermal stimulation projects, and we assess forecasts from two models: Shapiro and Smoothed Seismicity (SaSS) and Hydraulics and Seismics (HySei). These models incorporate a different mix of physics-based elements and stochastic representation of the induced sequences. Our results show that neither model is fully superior to the other. Generally, HySei forecasts the seismicity rate better after shut-in but is only mediocre at forecasting the spatial distribution. On the other hand, SaSS forecasts the spatial distribution better and gives better seismicity rate estimates before shut-in. The shut-in phase is a difficult moment for both models in both reservoirs: the models tend to underpredict the seismicity rate around, and shortly after, shut-in.

  14. The Great Maule earthquake: seismicity prior to and after the main shock from amphibious seismic networks

    NASA Astrophysics Data System (ADS)

    Lieser, K.; Arroyo, I. G.; Grevemeyer, I.; Flueh, E. R.; Lange, D.; Tilmann, F. J.

    2013-12-01

    The Chilean subduction zone is among the seismically most active plate boundaries in the world and its coastal ranges suffer from a magnitude 8 or larger megathrust earthquake every 10-20 years. The Constitución-Concepción or Maule segment in central Chile between ~35.5°S and 37°S was considered to be a mature seismic gap, rupturing last in 1835 and being seismically quiet without any magnitude 4.5 or larger earthquakes reported in global catalogues. It is located to the north of the nucleation area of the 1960 magnitude 9.5 Valdivia earthquake and to the south of the 1928 magnitude 8 Talca earthquake. On 27 February 2010 this segment ruptured in a Mw=8.8 earthquake, nucleating near 36°S and affecting a 500-600 km long segment of the margin between 34°S and 38.5°S. Aftershocks occurred along a roughly 600 km long portion of the central Chilean margin, most of them offshore. Therefore, a network of 30 ocean-bottom-seismometers was deployed in the northern portion of the rupture area for a three month period, recording local offshore aftershocks between 20 September 2010 and 25 December 2010. In addition, data of a network consisting of 33 landstations of the GeoForschungsZentrum Potsdam were included into the network, providing an ideal coverage of both the rupture plane and areas affected by post-seismic slip as deduced from geodetic data. Aftershock locations are based on automatically detected P wave onsets and a 2.5D velocity model of the combined on- and offshore network. Aftershock seismicity analysis in the northern part of the survey area reveals a well resolved seismically active splay fault in the accretionary prism of the Chilean forearc. Our findings imply that in the northernmost part of the rupture zone, co-seismic slip most likely propagated along the splay fault and not the subduction thrust fault. In addition, the updip limit of aftershocks along the plate interface can be verified to about 40 km landwards from the deformation front. Prior to

  15. Slow deformation and lower seismic hazard at the new madrid seismic zone

    PubMed

    Newman; Stein; Weber; Engeln; Mao; Dixon

    1999-04-23

    Global Positioning System (GPS) measurements across the New Madrid seismic zone (NMSZ) in the central United States show little, if any, motion. These data are consistent with platewide continuous GPS data away from the NMSZ, which show no motion within uncertainties. Both these data and the frequency-magnitude relation for seismicity imply that had the largest shocks in the series of earthquakes that occurred in 1811 and 1812 been magnitude 8, their recurrence interval should well exceed 2500 years, longer than has been assumed. Alternatively, the largest 1811 and 1812 earthquakes and those in the paleoseismic record may have been much smaller than typically assumed. Hence, the hazard posed by great earthquakes in the NMSZ appears to be overestimated. PMID:10213680

  16. Regional seismic lines reprocessed using post-stack processing techniques; National Petroleum Reserve, Alaska

    USGS Publications Warehouse

    Miller, John J.; Agena, W.F.; Lee, M.W.; Zihlman, F.N.; Grow, J.A.; Taylor, D.J.; Killgore, Michele; Oliver, H.L.

    2000-01-01

    This CD-ROM contains stacked, migrated, 2-Dimensional seismic reflection data and associated support information for 22 regional seismic lines (3,470 line-miles) recorded in the National Petroleum Reserve ? Alaska (NPRA) from 1974 through 1981. Together, these lines constitute about one-quarter of the seismic data collected as part of the Federal Government?s program to evaluate the petroleum potential of the Reserve. The regional lines, which form a grid covering the entire NPRA, were created by combining various individual lines recorded in different years using different recording parameters. These data were reprocessed by the USGS using modern, post-stack processing techniques, to create a data set suitable for interpretation on interactive seismic interpretation computer workstations. Reprocessing was done in support of ongoing petroleum resource studies by the USGS Energy Program. The CD-ROM contains the following files: 1) 22 files containing the digital seismic data in standard, SEG-Y format; 2) 1 file containing navigation data for the 22 lines in standard SEG-P1 format; 3) 22 small scale graphic images of each seismic line in Adobe Acrobat? PDF format; 4) a graphic image of the location map, generated from the navigation file, with hyperlinks to the graphic images of the seismic lines; 5) an ASCII text file with cross-reference information for relating the sequential trace numbers on each regional line to the line number and shotpoint number of the original component lines; and 6) an explanation of the processing used to create the final seismic sections (this document). The SEG-Y format seismic files and SEG-P1 format navigation file contain all the information necessary for loading the data onto a seismic interpretation workstation.

  17. Automating Shallow Seismic Imaging

    SciTech Connect

    Steeples, Don W.

    2004-12-09

    This seven-year, shallow-seismic reflection research project had the aim of improving geophysical imaging of possible contaminant flow paths. Thousands of chemically contaminated sites exist in the United States, including at least 3,700 at Department of Energy (DOE) facilities. Imaging technologies such as shallow seismic reflection (SSR) and ground-penetrating radar (GPR) sometimes are capable of identifying geologic conditions that might indicate preferential contaminant-flow paths. Historically, SSR has been used very little at depths shallower than 30 m, and even more rarely at depths of 10 m or less. Conversely, GPR is rarely useful at depths greater than 10 m, especially in areas where clay or other electrically conductive materials are present near the surface. Efforts to image the cone of depression around a pumping well using seismic methods were only partially successful (for complete references of all research results, see the full Final Technical Report, DOE/ER/14826-F), but peripheral results included development of SSR methods for depths shallower than one meter, a depth range that had not been achieved before. Imaging at such shallow depths, however, requires geophone intervals of the order of 10 cm or less, which makes such surveys very expensive in terms of human time and effort. We also showed that SSR and GPR could be used in a complementary fashion to image the same volume of earth at very shallow depths. The primary research focus of the second three-year period of funding was to develop and demonstrate an automated method of conducting two-dimensional (2D) shallow-seismic surveys with the goal of saving time, effort, and money. Tests involving the second generation of the hydraulic geophone-planting device dubbed the ''Autojuggie'' showed that large numbers of geophones can be placed quickly and automatically and can acquire high-quality data, although not under rough topographic conditions. In some easy-access environments, this device could

  18. Source Characterization of the August 6, 2007 Crandall Canyon Mine Seismic Event in Central Utah

    SciTech Connect

    Ford, S R; Dreger, D S; Walter, W R

    2008-07-01

    On August 6, 2007 a local magnitude 3.9 seismic event occurred at 08:48:40 UTC in central Utah. The epicenter is within the boundaries of the Crandall Canyon coal mine (c.f. Pechmann et al., this volume). We performed a moment tensor analysis with complete, three-component seismic recordings from stations operated by the USGS, the University of Utah, and EarthScope. The analysis method inverts the seismic records to retrieve the full seismic moment tensor, which allows for interpretation of both shearing (e.g., earthquakes) and volume-changing (e.g., explosions and collapses) seismic events. The results show that most of the recorded seismic wave energy is consistent with an underground collapse in the mine. We contrast the waveforms and moment tensor results of the Crandall Canyon Mine seismic event to a similar sized tectonic earthquake about 200 km away near Tremonton, Utah, that occurred on September 1, 2007. Our study does not address the actual cause of the mine collapse.

  19. Elastic structure and seismicity of Donegal (Ireland): insights from passive seismic analysis

    NASA Astrophysics Data System (ADS)

    Piana Agostinetti, Nicola

    2016-04-01

    Ireland's crust is the result of a complex geological history, which began in the Palaeozoic with the oblique closure of the Iapetus Ocean and, probably, it is still on-going. In the northwestern portion of the island, the geology of Donegal has been the subject of detailed geological investigation by many workers in the last century. The most widely represented rock types in Donegal are metasediments of Dalradian and Moinian age, invaded by several granites of Caledonian age (so called Donegal granite). Smaller and separate intrusions are present (e.g. Fanad Head). On the contrary, it is widely accepted that the the deep crustal structure of the northern portion of Ireland has been re-worked in more recent time. The several phases of lithospheric stretching associated to the opening of the Atlantic ocean interested such portion of Ireland, with the extrusion of flood basalts. Moreover, the presence of a hot, low-density asthenospheric plume spreading from Iceland has been suggested, with the formation of a thick high-velocity layer of magmatic underplated material at the base of the crust. Oddly, at present, Donegal is the only seismically active area in Ireland, with an average rate of one Mw=2-3 event every 3-4 years. In the last three years, passive seismic data have been recorded at 12 seismic stations deployed across the most seismically active area in Co. Donegal, with the aim of reconstructing the seismic structure down to the upper-mantle depth and of locating the microseismic activity within investigating volume. Both local and teleseismic events were recorded giving the opportunity of integrating results form different techniques for seismic data analysis, and jointly interpret them together with surface geology and mapped fault traces. Local events have been used to define constrain faulting volumes, focal mechanisms and to reconstruct a low-resolution 3D Vp and VpVs velocity models. Teleseismic events have been used to compute receiver function data

  20. Seismicity and Seismic Hazards in Eastern Canada: Needs from Crustal Deformation Studies

    NASA Astrophysics Data System (ADS)

    Adams, J.

    2004-05-01

    The historical earthquake catalog is the basis for many hazard assessments that explicitly use the pattern of past earthquakes to assess hazard - the current USGS maps for the eastern U.S. rely heavily on smoothed seismicity rates and even classical seismic source zones give a similar smoothing, albeit with non-objective human insight. However, past southeastern Canadian activity has been a poor indicator of future large earthquakes. Though Charlevoix represents the site of repeated M>6 earthquakes, other M circa 6+ earthquakes in eastern Canada (Grand Banks, Timiskaming, Cornwall, Saguenay) appear to be one-off events (albeit with long aftershock sequences). Saguenay, the last large earthquake south of 60N, occurred in an essentially aseismic region (no M>3 event for over 40 years). To address the problem, Canada's 4th generation seismic hazard model, intended for the 2005 National Building Code, uses two models for Canadian earthquakes "H" and "R". "H" describes the earthquakes in their historical clusters while "R" associates seismicity clusters with continent-scale seismotectonic features like the passive Atlantic margin and the ancient margin of Iapetus. It expresses the alternative hypothesis that future large earthquakes (comparable to those named above) could occur anywhere along these features. The modeling of postglacial rebound data (to understand the relative roles of rebound and plate tectonic stresses) together with paleoseismological studies to establish the locations and rates of pre-historic earthquakes could help decide between the models. Direct horizontal strain measurements in eastern Canada will also help, but come from an extremely short period and need to be reconciled with the circa 350 year historical earthquake record. That record is, however, both (i) too short relative to likely earthquake occurrence rates and (ii) flawed by inaccurate and incomplete information especially regarding the magnitudes for the oldest, largest events. Those

  1. Seismic anisotropy in the lower crust: The link between rock composition, microstructure, texture and seismic properties.

    NASA Astrophysics Data System (ADS)

    Czaplinska, Daria; Piazolo, Sandra; Almqvist, Bjarne

    2015-04-01

    Seismic anisotropy observed in Earth's interior is caused by the presence of aligned anisotropic minerals (crystallographic and shape preferred orientation; CPO and SPO respectively), and fluid and/or melt inclusions related to deformation. Therefore, the variations in seismic anisotropy carry valuable information about the structure of the mantle and crust. For example, anisotropy observed in the upper mantle is mainly attributed to the CPO of olivine, and provides strong evidence for the flow within the upper mantle. Seismic anisotropy in the crust is still poorly constrained, mostly due to the much larger heterogeneity of the crustal rocks in comparison with the more homogenous mantle. Anisotropy in the crust will be affected by the variations in rock composition, microstructure, texture (presence or lack of CPO), brittle structures (e.g. fracture systems) and chemical composition of the minerals. However, once the relationships between those variables and seismic properties of the crustal rocks are established, seismic anisotropy can be used to derive characteristics of rocks otherwise out of reach. Our study focuses on two sets of samples of middle to lower crustal rocks collected in Fiordland (New Zealand) and in Sweden. Samples from Fiordland represent a root of a thick (ca. 80 km) magmatic arc and comprise igneous rocks, which crystallized at high P and T conditions and were subsequently metamorphosed and deformed. Samples from Sweden are derived from a metasedimentary nappe in the Caledonian orogenic belt, which is mostly composed of gneisses, amphibolites and calc-silicates that have experienced different amounts of strain. We use large area EBSD mapping to measure the CPO of the constituent phases and record the geometric relationships of the rock microstructure. Data is then used to calculate the elastic properties of the rock from single-crystal stiffnesses. Here, we utilize the EBSD GUI software (Cook et al., 2013), which offers varied homogenization

  2. Seismic Characterization of Coal-Mining Seismicity in Utah for CTBT Monitoring

    SciTech Connect

    Arabasz, W J; Pechmann, J C

    2001-03-01

    Underground coal mining (down to {approx}0.75 km depth) in the contiguous Wasatch Plateau (WP) and Book Cliffs (BC) mining districts of east-central Utah induces abundant seismicity that is monitored by the University of Utah regional seismic network. This report presents the results of a systematic characterization of mining seismicity (magnitude {le} 4.2) in the WP-BC region from January 1978 to June 2000-together with an evaluation of three seismic events (magnitude {le} 4.3) associated with underground trona mining in southwestern Wyoming during January-August 2000. (Unless specified otherwise, magnitude implies Richter local magnitude, M{sub L}.) The University of Utah Seismograph Stations (UUSS) undertook this cooperative project to assist the University of California Lawrence Livermore National Laboratory (LLNL) in research and development relating to monitoring the Comprehensive Test Ban Treaty (CTBT). The project, which formally began February 28, 1998, and ended September 1, 2000, had three basic objectives: (1) Strategically install a three-component broadband digital seismic station in the WP-BC region to ensure the continuous recording of high-quality waveform data to meet the long-term needs of LLNL, UUSS, and other interested parties, including the international CTBT community. (2) Determine source mechanisms--to the extent that available source data and resources allowed--for comparative seismic characterization of stress release in mines versus earthquakes in the WP-BC study region. (3) Gather and report to LLNL local information on mine operations and associated seismicity, including ''ground truth'' for significant events. Following guidance from LLNL's Technical Representative, the focus of Objective 2 was changed slightly to place emphasis on three mining-related events that occurred in and near the study area after the original work plan had been made, thus posing new targets of opportunity. These included: a magnitude 3.8 shock that occurred

  3. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    SciTech Connect

    MACKEY TC; RINKER MW; CARPENTER BG; HENDRIX C; ABATT FG

    2009-01-15

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses. The original scope of the project was to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Although Milestone M-48-14 has been met, Revision I is being issued to address external review comments with emphasis on changes in the modeling of anchor bolts connecting the concrete dome and the steel primary tank. The work statement provided to M&D (PNNL 2003) required that a nonlinear soil structure interaction (SSI) analysis be performed on the DSTs. The analysis is required to include the effects of sliding interfaces and fluid sloshing (fluid-structure interaction). SSI analysis has traditionally been treated by frequency domain computer codes such as SHAKE (Schnabel, et al. 1972) and SASSI (Lysmer et al. 1999a). Such frequency domain programs are limited to the analysis of linear systems. Because of the contact surfaces, the response of the DSTs to a seismic event is inherently nonlinear and consequently outside the range of applicability of the linear frequency domain programs. That is, the nonlinear response of the DSTs to seismic excitation requires the use of a time domain code. The capabilities and limitations of the commercial time domain codes ANSYS{reg_sign} and MSC Dytran{reg_sign} for performing seismic SSI analysis of the DSTs and the methodology required to perform the detailed seismic analysis of the DSTs has been addressed in Rinker et al (2006a). On the basis of the results reported in Rinker et al

  4. Seismic Noise Observations from Multiple Arrays in the Southern Hemisphere: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Reading, A. M.; Gal, M.; Hemer, M. A.; Koper, K. D.; Tkalcic, H.

    2014-12-01

    Seismic noise holds a two-fold interest for global geophysics. It is a source of energy that may be used to form 3D tomographic images of the Earth. It is also an observable that provides a continuous, and in some cases, multi-decadal record of ocean storm activity. Potential insights include the understanding of global changes in patterns of storm location and severity, and inputs to models of carbon dioxide entrainment into the oceans. While any continuous seismic record has the potential to contribute knowledge on ambient seismic noise (microseisms), seismic arrays provide information that includes inference of the seismic slowness and backazimuth of incoming signals. Given that noise observations have no onset time, array techniques are very important in contributing signal properties that allow backprojection and hence location determination for storm sources. Seismic arrays located in Australia and southeast Asia enable deep ocean noise sources from much of the Southern Ocean and western Pacific to be investigated. We analyze seismic records including those from the Warramunga (WRA), Alice Springs (ASAR) and Pilbara (PSAR) arrays together with WAVEWATCH III oceanographic reanalysis models. We use the IAS Capon technique to identify incoming signals with the aim of detecting multiple noise sources impinging on the array at any one time. The combination of multi-decadal records from WRA, and multi-array perspectives for recent years provides an opportunity to observe seismic noise across a range of frequencies and across many years of seasonal variation. We find some noise sources are consistent between different arrays, but others seem to be much better observed by a particular single array. We summarize these insights with a view to optimizing decadal plans for future installations of multiple arrays. Further, we address the challenge of using new arrays together with existing arrays with contrasting station configurations. Multiple array methods afford the

  5. Microseismic Monitoring Using Surface and Borehole Seismic Stations in an Oil Field, North Oman

    NASA Astrophysics Data System (ADS)

    El-Hussain, I.; Al-Hashmi, S.; Al-Shijbi, Y.; Al-Saifi, M.; Al-Toubi, K.; Al-Lazki, A.; Al-Kindy, F.

    2009-05-01

    Five shallow borehole seismic stations were installed to monitor microearthquake activities in a carbonate oil field in northern Oman since 1999. This shallow network of seismic station operated continuously until 2002 after which intermittent seismic recording took place due to lack of maintenance and failure of some stations. The objectives of the study are to determine the microseismic parameters in the oil field and to determine the spatial and temporal distribution of these events to evaluate possible triggering mechanism. Well over 400 microearthquakes per year were recorded in the first three years of operation and after that the level of seismic recording fell to less than 200 microearthquakes per year due to failure of some stations. In March 2008, temporary seismic experiment consisting of five near surface seismic stations were installed in the oil field to augment the shallow network station and to evaluate surface installment of seismic instrument to monitor microseismic activities. It has been recognized that microearthquakes data such as size, spatial, and temporal distribution provide information on the pressure waves initiated by either production of or injection of fluids into reservoirs. A total of 44 local microearthquake events were analyzed and located during the temporary seismic stations deployment using a non-linear location software that allows the use of variable accurate velocity model of the subsurface. The events location is confined to oil field reservoir boundary during the recording period and more events occurring at shallow depth. The correlation coefficient between gas production and number of events is the higher compared with the oil production or water injection. The focal plane solution for the largest event in the sequence indicates normal faulting with extensional stress consistent with the existing mapped normal faults in the oil field. Microseismic signal clearly detected by the collocated sensors of the near surface

  6. Elastic-Wavefield Seismic Stratigraphy: A New Seismic Imaging Technology

    SciTech Connect

    Bob A. Hardage; Milo M. Backus; Michael V. DeAngelo; Sergey Fomel; Khaled Fouad; Robert J. Graebner; Paul E. Murray; Randy Remington; Diana Sava

    2006-07-31

    The purpose of our research has been to develop and demonstrate a seismic technology that will provide the oil and gas industry a better methodology for understanding reservoir and seal architectures and for improving interpretations of hydrocarbon systems. Our research goal was to expand the valuable science of seismic stratigraphy beyond the constraints of compressional (P-P) seismic data by using all modes (P-P, P-SV, SH-SH, SV-SV, SV-P) of a seismic elastic wavefield to define depositional sequences and facies. Our objective was to demonstrate that one or more modes of an elastic wavefield may image stratal surfaces across some stratigraphic intervals that are not seen by companion wave modes and thus provide different, but equally valid, information regarding depositional sequences and sedimentary facies within that interval. We use the term elastic wavefield stratigraphy to describe the methodology we use to integrate seismic sequences and seismic facies from all modes of an elastic wavefield into a seismic interpretation. We interpreted both onshore and marine multicomponent seismic surveys to select the data examples that we use to document the principles of elastic wavefield stratigraphy. We have also used examples from published papers that illustrate some concepts better than did the multicomponent seismic data that were available for our analysis. In each interpretation study, we used rock physics modeling to explain how and why certain geological conditions caused differences in P and S reflectivities that resulted in P-wave seismic sequences and facies being different from depth-equivalent S-wave sequences and facies across the targets we studied.

  7. Seismic risk perception test

    NASA Astrophysics Data System (ADS)

    Crescimbene, Massimo; La Longa, Federica; Camassi, Romano; Pino, Nicola Alessandro

    2013-04-01

    The perception of risks involves the process of collecting, selecting and interpreting signals about uncertain impacts of events, activities or technologies. In the natural sciences the term risk seems to be clearly defined, it means the probability distribution of adverse effects, but the everyday use of risk has different connotations (Renn, 2008). The two terms, hazards and risks, are often used interchangeably by the public. Knowledge, experience, values, attitudes and feelings all influence the thinking and judgement of people about the seriousness and acceptability of risks. Within the social sciences however the terminology of 'risk perception' has become the conventional standard (Slovic, 1987). The mental models and other psychological mechanisms which people use to judge risks (such as cognitive heuristics and risk images) are internalized through social and cultural learning and constantly moderated (reinforced, modified, amplified or attenuated) by media reports, peer influences and other communication processes (Morgan et al., 2001). Yet, a theory of risk perception that offers an integrative, as well as empirically valid, approach to understanding and explaining risk perception is still missing". To understand the perception of risk is necessary to consider several areas: social, psychological, cultural, and their interactions. Among the various research in an international context on the perception of natural hazards, it seemed promising the approach with the method of semantic differential (Osgood, C.E., Suci, G., & Tannenbaum, P. 1957, The measurement of meaning. Urbana, IL: University of Illinois Press). The test on seismic risk perception has been constructed by the method of the semantic differential. To compare opposite adjectives or terms has been used a Likert's scale to seven point. The test consists of an informative part and six sections respectively dedicated to: hazard; vulnerability (home and workplace); exposed value (with reference to

  8. Virtual Seismometers for Induced Seismicity Monitoring

    NASA Astrophysics Data System (ADS)

    Morency, C.; Matzel, E.

    2015-12-01

    Induced seismicity is associated with subsurface fluid injection, and puts at risk efforts to develop geologic carbon sequestration and enhanced geothermal systems. We are developing methods to monitor the microseismically active zone so that we can identify faults at risk of slipping. We are using the Virtual Seismometer Method (VSM), which is an interferometric technique that is very sensitive to the source parameters (location, mechanism and magnitude) and to the earth structure in the source region. Given an ideal geometry, that is, when two quakes are roughly in line with a recording station, the correlation of their waveforms provide a precise estimate of the Green's function between them, modified by their source mechanisms. When measuring microseismicity, this geometry is rarely ideal and we need to account for variations in the geometry as well. VSM enables us to virtually place seismometers inside a micro events cloud, where we can focus on properties directly between induced micro events, and doing so, monitor the evolution of the seismicity and precisely image potential fault zones. Here, we show that the cross-correlated signals recorded at the surface are a combination of the strain field between two sources times a moment tensor. Based on this relationship, we demonstrate how we can use this measured cross-correlated signal to invert for focal mechanism. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Scaling of seismic memory with earthquake size

    NASA Astrophysics Data System (ADS)

    Zheng, Zeyu; Yamasaki, Kazuko; Tenenbaum, Joel; Podobnik, Boris; Tamura, Yoshiyasu; Stanley, H. Eugene

    2012-07-01

    It has been observed that discrete earthquake events possess memory, i.e., that events occurring in a particular location are dependent on the history of that location. We conduct an analysis to see whether continuous real-time data also display a similar memory and, if so, whether such autocorrelations depend on the size of earthquakes within close spatiotemporal proximity. We analyze the seismic wave form database recorded by 64 stations in Japan, including the 2011 “Great East Japan Earthquake,” one of the five most powerful earthquakes ever recorded, which resulted in a tsunami and devastating nuclear accidents. We explore the question of seismic memory through use of mean conditional intervals and detrended fluctuation analysis (DFA). We find that the wave form sign series show power-law anticorrelations while the interval series show power-law correlations. We find size dependence in earthquake autocorrelations: as the earthquake size increases, both of these correlation behaviors strengthen. We also find that the DFA scaling exponent α has no dependence on the earthquake hypocenter depth or epicentral distance.

  10. Procedures for computing site seismicity

    NASA Astrophysics Data System (ADS)

    Ferritto, John

    1994-02-01

    This report was prepared as part of the Navy's Seismic Hazard Mitigation Program. The Navy has numerous bases located in seismically active regions throughout the world. Safe effective design of waterfront structures requires determining expected earthquake ground motion. The Navy's problem is further complicated by the presence of soft saturated marginal soils that can significantly amplify the levels of seismic shaking as evidenced in the 1989 Loma Prieta earthquake. The Naval Facilities Engineering Command's seismic design manual, NAVFAC P355.l, requires a probabilistic assessment of ground motion for design of essential structures. This report presents the basis for the Navy's Seismic Hazard Analysis procedure that was developed and is intended to be used with the Seismic Hazard Analysis computer program and user's manual. This report also presents data on geology and seismology to establish the background for the seismic hazard model developed. The procedure uses the historical epicenter data base and available geologic data, together with source models, recurrence models, and attenuation relationships to compute the probability distribution of site acceleration and an appropriate spectra. This report discusses the developed stochastic model for seismic hazard evaluation and the associated research.

  11. Weak localization of seismic waves.

    PubMed

    Larose, E; Margerin, L; Van Tiggelen, B A; Campillo, M

    2004-07-23

    We report the observation of weak localization of seismic waves in a natural environment. It emerges as a doubling of the seismic energy around the source within a spot of the width of a wavelength, which is several tens of meters in our case. The characteristic time for its onset is the scattering mean-free time that quantifies the internal heterogeneity.

  12. The propagation and seismicity of dyke injection, new experimental evidence

    NASA Astrophysics Data System (ADS)

    Bakker, Richard R.; Fazio, Marco; Benson, Philip M.; Hess, Kai-Uwe; Dingwell, Donald B.

    2016-03-01

    To reach the surface, dykes must overcome the inherent tensile strength of the country rock. As they do, they generate swarms of seismic signals, frequently used for forecasting. In this study we pressurize and inject molten acrylic into an encapsulating host rocks of (1) Etna basalt and (2) Comiso limestone, at 30 MPa of confining pressure. Fracture was achieved at 12 MPa for Etna basalt and 7.2 MPa for Comiso limestone. The generation of radial fractures was accompanied by acoustic emissions (AE) at a dominant frequency of 600 kHz. During "magma" movement in the dykes, AE events of approximately 150 kHz dominant frequency were recorded. We interpret our data using AE location and dominant frequency analysis, concluding that the seismicity associated with magma transport in dykes peaks during initial dyke creation but remains significant as long as magma movement continues. These results have important implications for seismic monitoring of active volcanoes.

  13. Development of the Multi-Level Seismic Receiver (MLSR)

    SciTech Connect

    Sleefe, G.E.; Engler, B.P.; Drozda, P.M.; Franco, R.J.; Morgan, J.

    1995-02-01

    The Advanced Geophysical Technology Department (6114) and the Telemetry Technology Development Department (2664) have, in conjunction with the Oil Recovery Technology Partnership, developed a Multi-Level Seismic Receiver (MLSR) for use in crosswell seismic surveys. The MLSR was designed and evaluated with the significant support of many industry partners in the oil exploration industry. The unit was designed to record and process superior quality seismic data operating in severe borehole environments, including high temperature (up to 200{degrees}C) and static pressure (10,000 psi). This development has utilized state-of-the-art technology in transducers, data acquisition, and real-time data communication and data processing. The mechanical design of the receiver has been carefully modeled and evaluated to insure excellent signal coupling into the receiver.

  14. Wave-propagation formulation of seismic response of multistory buildings

    USGS Publications Warehouse

    Safak, E.

    1999-01-01

    This paper presents a discrete-time wave-propagation method to calculate the seismic response of multistory buildings, founded on layered soil media and subjected to vertically propagating shear waves. Buildings are modeled as an extension of the layered soil media by considering each story as another layer in the wave-propagation path. The seismic response is expressed in terms of wave travel times between the layers and wave reflection and transmission coefficients at layer interfaces. The method accounts for the filtering effects of the concentrated foundation and floor masses. Compared with commonly used vibration formulation, the wave-propagation formulation provides several advantages, including simplicity, improved accuracy, better representation of damping, the ability to incorporate the soil layers under the foundation, and providing better tools for identification and damage detection from seismic records. Examples are presented to show the versatility and the superiority of the method.

  15. Seismicity of the Quebrada, Discovery, and Gofar Transform Faults

    NASA Astrophysics Data System (ADS)

    McGuire, J. J.; Collins, J. A.; Roland, E. C.; Behn, M. D.

    2009-12-01

    The Quebrada, Discovery, and Gofar transform faults exhibit many of the primary features of oceanic transform seismicity including abundant earthquake swarms and a significant contrast in seismic coupling between Gofar and Discovery (90% seismic) and Quebrada (>90% aseismic). Additionally, the Gofar and Discovery faults have a relatively regular seismic cycle with their largest earthquakes repeating roughly every five years. Using a network of 38 ocean bottom seismometers, we monitored the seismicity on these three faults for calendar year 2008. We detected over 100,000 earthquakes between the three faults ranging from magnitude 0.5 to 6.0. The earthquakes were located using P and S-wave arrival time picks and a 1-d velocity model appropriate for oceanic crust. Our array covered the 90 km long, westernmost segment of the Gofar fault. The large earthquakes corresponding to the end of this faults' most recent seismic cycle propagated from east to west along strike and our dataset captured the final ruptures in this cycle including a Mw 6.0 event on September 18, 2008 that was recorded on scale by strong-motion accelerometers. The western Gofar segment is a highly localized plate boundary with perhaps only a single active fault, but it is divided along-strike into 4 distinct seismicity zones. The easternmost region last ruptured in August 2007 and we found it to have a relatively low level of microseismicity in 2008. To the west of this area is a ~10km long region that has likely been a barrier to rupture propagation in the last 4 seismic cycles. This barrier region had by far the highest rates of microseismicity during the first nine months of 2008 and had a large swarm in early September. The seismicity-rate in the barrier region was greatly reduced immediately after the September 18th Mw 6.0 event. The ~20 km long segment west of the barrier ruptured in the September 18th 2008 earthquake and shows a clear Omori-like aftershock sequence. The westernmost ~20 km of

  16. The MARINER Integrated Seismic and Geophysical Mapping Experiment (Invited)

    NASA Astrophysics Data System (ADS)

    Dunn, R. A.; Canales, J.; Sohn, R. A.; Paulatto, M.; Arai, R.; Szitkar, F.

    2013-12-01

    The MARINER (Mid-Atlantic Ridge INtegrated Experiments at Rainbow) seismic and geophysical mapping experiment was designed to examine the relationship between tectonic rifting, heat/melt supply, and oceanic core complex formation at a non-transform offset (NTO) of the Mid-Atlantic Ridge, 36°N, the site of the ultramafic-hosted Rainbow hydrothermal system. We present an overview of the components of the experiment and the various projects stemming from it. The 5-week experiment was carried out aboard the R/V M. G. Langseth in April-May 2013, and consisted of a 3D active-source seismic tomography experiment, 2D multi-channel seismic profiles, an on-going nine month passive micro-seismicity study, dense acoustic mapping of the seafloor (including depth and amplitude information), gravity field mapping, and magnetic field mapping. During the tomography experiment, we deployed 46 ocean bottom seismometers (OBS) over a 35 x 80 sq. km area centered on Rainbow. Twenty-six wide-angle seismic lines were carried out using the Langseth's 36-element source, generating ~175,000 seismic records. The MCS experiment, which was also recorded on 20 OBS, consisted of twenty-one densely spaced seismic lines using an 8-km-long hydrophone streamer. Bathymetry, gravity, and magnetic surveys were carried out over a broader, 80x105 sq. km, area centered on Rainbow. Overall, the experiment extends across two segments of the Mid-Atlantic Ridge separated by the Rainbow NTO massif. MARINER multi-beam bathymetry and acoustic imagery provide a broad v