Sample records for c677t gene mutation

  1. Association of MTHFR gene C677T mutation with diabetic peripheral neuropathy and diabetic retinopathy

    PubMed Central

    Yigit, Serbulent; Inanir, Ahmet

    2013-01-01

    Purpose Diabetic peripheral neuropathy (DPN) is one of the most common diabetic chronic complications. Methylenetetrahydrofolate reductase (MTHFR) gene variants have been associated with vasculopathy that has been linked to diabetic neuropathy. The aim of the present study was to investigate the possible association between MTHFR gene C677T mutation and DPN and evaluate if there is an association with clinical features in a relatively large cohort of Turkish patients. Methods The study included 230 patients affected by DPN and 282 healthy controls. Genomic DNA was isolated and genotyped using the polymerase chain reaction–based restriction fragment length polymorphism assay for the MTHFR gene C677T mutation. Results The genotype and allele frequencies of the C677T mutation showed statistically significant differences between the patients with DPN and the controls (p=0.003 and p=0.002, respectively). After the patients with DPN were stratified according to clinical and demographic characteristics, a significant association was observed between the C677T mutation and history of retinopathy (p=0.039). Conclusions A high association between the MTHFR gene C677T mutation and DPN was observed in the present study. In addition, history of retinopathy was associated with the MTHFR C677T mutation in patients with DPN. PMID:23901246

  2. Methylenetetrahydrofolate reductase C677T mutation and risk of retinal vein thrombosis.

    PubMed

    Soltanpour, Mohammad Soleiman; Soheili, Zahra; Shakerizadeh, Ali; Pourfathollah, Ali Akbar; Samiei, Shahram; Meshkani, Reza; Shahjahani, Mohammad; Karimi, Abbas

    2013-06-01

    Elevated plasma homocysteine (Hcy) level has been established as a significant risk factor for venous thrombosis and cardiovascular disease. Homozygosity for the methylenetetrahydrofolate reductase (MTHFR) C677T mutation has been associated with elevated plasma Hcy concentration and may contribute to retinal vein thrombosis (RVT) development. The aim of the present study was to investigate whether the hyperhomocysteinemia and/or homozygosity for the MTHFR C677T mutation are associated with an increased risk for RVT. Our study population consisted of 73 consecutive patients (50-78 years old) with RVT and 73 control subjects (51-80 years old), matched for age and sex. Genotyping for the MTHFR C677T mutation was performed by polymerase chain reaction-restriction fragment length polymorphism technique and Hcy level was determined by an enzyme immunoassay kit. The prevalence of 677TT genotype was higher in patients than control subjects, but the difference in frequency didn't reach a significant value (P = 0.07). The frequency of the 677T allele was 26% and 21.2% in patients and controls, respectively and did not differ significantly between the two groups (odds ratio = 1.3, 95% confidence interval (0.75-2.24), P = 0.33). Fasting plasma total Hcy level was significantly higher in patients than controls (P = 0.001). Our study demonstrated that hyperhomocysteinemia, but not the MTHFR C677T mutation, is associated with RVT.

  3. Methylenetetrahydrofolate reductase C677T mutation and risk of retinal vein thrombosis

    PubMed Central

    Soltanpour, Mohammad Soleiman; Soheili, Zahra; Shakerizadeh, Ali; Pourfathollah, Ali Akbar; Samiei, Shahram; Meshkani, Reza; Shahjahani, Mohammad; Karimi, Abbas

    2013-01-01

    Background: Elevated plasma homocysteine (Hcy) level has been established as a significant risk factor for venous thrombosis and cardiovascular disease. Homozygosity for the methylenetetrahydrofolate reductase (MTHFR) C677T mutation has been associated with elevated plasma Hcy concentration and may contribute to retinal vein thrombosis (RVT) development. The aim of the present study was to investigate whether the hyperhomocysteinemia and/or homozygosity for the MTHFR C677T mutation are associated with an increased risk for RVT. Materials and Methods: Our study population consisted of 73 consecutive patients (50-78 years old) with RVT and 73 control subjects (51-80 years old), matched for age and sex. Genotyping for the MTHFR C677T mutation was performed by polymerase chain reaction-restriction fragment length polymorphism technique and Hcy level was determined by an enzyme immunoassay kit. Results: The prevalence of 677TT genotype was higher in patients than control subjects, but the difference in frequency didn't reach a significant value (P = 0.07). The frequency of the 677T allele was 26% and 21.2% in patients and controls, respectively and did not differ significantly between the two groups (odds ratio = 1.3, 95% confidence interval (0.75-2.24), P = 0.33). Fasting plasma total Hcy level was significantly higher in patients than controls (P = 0.001). Conclusion: Our study demonstrated that hyperhomocysteinemia, but not the MTHFR C677T mutation, is associated with RVT. PMID:24250697

  4. [677T mutation of the MTHFR gene in adenomas and colorectal cancer in a population sample from the Northeastern Mexico. Preliminary results].

    PubMed

    Delgado-Enciso, I; Martínez-Garza, S G; Rojas-Martínez, A; Ortiz-López, R; Bosques-Padilla, F; Calderón-Garcidueñas, A L; Zárate-Gómez, M; Barrera-Saldaña, H A

    2001-01-01

    Adequate intake of folates has been associated to low prevalence of colon cancer. Methylenetetrahydrofolate reductase enzyme (MTHFR) plays an important role in folate metabolism. The role of the 677 mutation at the MTHFR gene in the risk for colorectal cancer remains controversial. A recent report established that this mutation has a high prevalence in the healthy Mexican population. To analyze the prevalence of 677T MTHFR mutation in patients with colorectal cancer and controls without chronic gastrointestinal disorders. Seventy-four colorectal cancer, 32 adenomas and 110 normal samples were analyzed. Patients and controls were matched for sex and age. For each sample, DNA isolation, PCR, and mutation detection by restriction enzyme digestion were performed to determine the allele at the 677 position in the MTHFR gene. Genotype 677C/677C was found in 18.7, 20.3, and 30.9% in adenomas, cancer lesions and controls, respectively. Frequencies of the 677C/677T genotype were 59.4, 56.7, and 47.3%, in adenomas, cancer lesions, and controls, respectively. Genotype 677T/677T was found in 21.9, 23.0, and 21.8% in adenomas, cancer lesions, and controls, respectively. The odds ratio between genotypes carrying the mutation (T/T and C/T) and normal genotype (CC) was 1.81 (IC 95% 0.97-3.3), chi 2 = 3.5, p = 0.06. Our results showed that persons who carry the 677T mutation at MTHFR locus have a tendency for an increased risk for colorectal cancer. This study supports the basic concept that low levels of folic acid contribute with the colorectal cancer pathogenesis. Our lack of statistic significance may be due to reduced sample size.

  5. Presence of the 5,10-methylenetetrahydrofolate reductase C677T mutation in Puerto Rican patients with neural tube defects.

    PubMed

    García-Fragoso, Lourdes; García-García, Inés; de la Vega, Alberto; Renta, Jessicca; Cadilla, Carmen L

    2002-01-01

    Folic acid supplementation can reduce the incidence of neural tube defects. The first reported genetic risk factor for neural tube defects is a C677T mutation in the 5,10-methylenetetrahydrofolate reductase gene, resulting in decreased activity of the enzyme. We examined the enzyme mutation role of methylenetetrahydrofolate reductase in the etiology of neural tube defects in our population. The study group consisted of 204 Puerto Rican individuals including 37 pregnant females with a prenatal diagnosis of neural tube defects in their fetuses, 31 newborns, 36 fathers, and 100 healthy adults. The prevalence of the C677T mutation was examined. Homozygosity for the alanine to valine substitution (TT) was observed in 9% of the controls and 19% of the mothers with children with neural tube defects. Our results indicate that the presence of the T allele at the methylenetetrahydrofolate reductase 677 position may increase the risk of giving birth to an infant with a neural tube defect.

  6. Methylenetetrahydrofolate Reductase Gene Polymorphism (C677T) as a Risk Factor for Arterial Thrombosis in Georgian Patients.

    PubMed

    Garakanidze, Sopio; Costa, Elísio; Bronze-Rocha, Elsa; Santos-Silva, Alice; Nikolaishvili, Giorgi; Nakashidze, Irina; Kakauridze, Nona; Glonti, Salome; Khukhunaishvili, Rusudan; Koridze, Marina; Ahmad, Sarfraz

    2018-01-01

    Methylenetetrahydrofolate reductase ( MTHFR) gene polymorphism (C677T)] is a well-recognized genetic risk factor for venous thrombosis; however, its association with arterial thrombosis is still under debate. Herein, we evaluated the prevalence of MTHFR C677T polymorphism in Georgian patients in comparison with healthy individuals and its association with arterial thrombosis. We enrolled 214 participants: 101 with arterial thrombosis (71.3% males; mean age: 66.3 ± 12.1 years) and 113 controls (67.3% males; mean age: 56.6 ± 11.3 years). Genomic DNA was extracted from dry blood spot on Whatman filter paper. Polymerase chain reaction was performed to determine MTHFR C677T polymorphism. Frequency of C677T allele polymorphism in controls was 21.2%, which corresponded to heterozygous and homozygous stage frequencies of 35.4% and 3.5%, respectively. In patient group, an allelic frequency of 33.2% was found, which corresponded to the presence of 48.5% of heterozygous and 8.9% of homozygous individuals. Comparing the frequency of mutated alleles between the 2 groups, a significantly high frequency of mutated alleles was found in patient group ( P < .05). In conclusion, high frequency of MTHFR C677T polymorphism found in arterial thrombosis patient group suggests that this polymorphism might increase the risk of arterial thrombosis in Georgian patients.

  7. Methylenetetrahydrofolate reductase gene C677T and A1298C polymorphisms in patients with small cell and non-small cell lung cancer.

    PubMed

    Siemianowicz, Krzysztof; Gminski, Jan; Garczorz, Wojciech; Slabiak, Natalia; Goss, Malgorzata; Machalski, Marek; Magiera-Molendowska, Helena

    2003-01-01

    Two mutations of methylenetetrahydrofolate reductase (MTHFR) gene (C677T and A1298C) may lead to a decreased activity of the enzyme. These mutations may change a risk of some cancers. We evaluated these two polymorphisms of MTHFR in patients with small cell lung cancer (SCLC) and non-small cell lung cancer (NCSCL). All lung cancer patients had statistically significantly higher percentage of MTHFR 677TT genotype in comparison with non-cancer controls. There were no statistically significant differences in the distribution of MTHFR 1298 genotypes. Neither of the polymorphisms presented any statistically significant differences between SCLC and NSCLC.

  8. Evidence of Paternal N5, N10 - Methylenetetrahydrofolate Reductase (MTHFR) C677T Gene Polymorphism in Couples with Recurrent Spontaneous Abortions (RSAs) in Kolar District- A South West of India

    PubMed Central

    Vanilla, Shiny; Kotur, Pushpa F; Kutty, Moideen A; Vegi, Pradeep Kumar

    2015-01-01

    Introduction: Recurrent spontaneous abortion (RSA) is a multifactorial clinical obstetrics complication commonly occurring in pregnancy. Many research studies have noted the mutations such as C677T in N5, N10 - Methylenetetrahydrofolate reductase (MTHFR)gene which is regarded as RSA risk factor. This study was carried out to determine the occurrence of frequency of C677T of the MTHFR gene mutations with RSA. Aim: The purpose of present study is to determine the frequency of MTHFR C677T polymorphisms in couples with recurrent pregnancy loss and the impact of paternal polymorphisms of MTHFR C677T in recurrent pregnancy loss in population of couples living in Kolar district of Karnataka with RSA. Design: A total of 15 couples with a history of two or more unexplained RSA were enrolled as subjects in the study and a total of 15 couples with normal reproductive history, having two or more children and no history of miscarriages were enrolled as controls. Materials and Methods: DNA extraction from samples case and control group couples and its quantification by Agarose gel electrophoresis, assessment of DNA purity, MTHFR C 677T gene mutation detection by PCR-RFLP method. Statistical analysis: Carried out by web based online SPSS tool. Results: The frequency of C677T genotype showed homozygous wild type CC (80%), heterozygous CT type (13.3%) and homozygous mutation TT type (6.67%) observed in males. Similarly from female’s homozygous wild type CC (86.6%), heterozygous type (13.3%), and homozygous type mutations TT (0%) was recorded. In couple control groups, we observed homozygous wild type CC (86.6%), heterozygous CT type (13.3%) and homozygous type mutations TT type (0%). Conclusion: We noticed a high frequency of MTHFR specifically T allele associated with paternal side.Therefore, the present study indicated the impact of paternal gene polymorphism of MTHFR C677T on screening in couples with recurrent pregnancy loss. PMID:25859445

  9. The methylenetetrahydrofolate reductase C677T mutation induces cell-specific changes in genomic DNA methylation and uracil misincorporation: A possible molecular basis for the site-specific cancer risk modification

    PubMed Central

    Sohn, Kyoung-Jin; Jang, Hyeran; Campan, Mihaela; Weisenberger, Daniel J.; Dickhout, Jeffrey; Wang, Yi-Cheng; Cho, Robert C.; Yates, Zoe; Lucock, Mark; Chiang, En-Pei; Austin, Richard C.; Choi, Sang-Woon; Laird, Peter W.; Kim, Young-In

    2009-01-01

    The C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene is associated with a decreased risk of colon cancer while it may increase the risk of breast cancer. This polymorphism is associated with changes in intracellular folate cofactors, which may affect DNA methylation and synthesis via altered one-carbon transfer reactions. We investigated the effect of this mutation on DNA methylation and uracil misincorporation and its interaction with exogenous folate in further modulating these biomarkers of one-carbon transfer reactions in an in vitro model of the MTHFR 677T mutation in HCT116 colon and MDA-MB-435 breast adenocarcinoma cells. In HCT116 cells, the MTHFR 677T mutation was associated with significantly increased genomic DNA methylation when folate supply was adequate or high; however, in the setting of folate insufficiency, this mutation was associated with significantly decreased genomic DNA methylation. In contrast, in MDA-MB-435 cells, the MTHFR 677T mutation was associated with significantly decreased genomic DNA methylation when folate supply was adequate or high and with no effect when folate supply was low. The MTHFR 677T mutation was associated with a nonsignificant trend toward decreased and increased uracil misincorporation in HCT116 and MDA-MB-435 cells, respectively. Our data demonstrate for the first time a functional consequence of changes in intracellular folate cofactors resulting from the MTHFR 677T mutation in cells derived from the target organs of interest, thus providing a plausible cellular mechanism that may partly explain the site-specific modification of colon and breast cancer risks associated with the MTHFR C677T mutation. PMID:19123462

  10. MTHFR (C677T) polymorphism and PR (PROGINS) mutation as genetic factors for preterm delivery, fetal death and low birth weight: A Northeast Indian population based study.

    PubMed

    Tiwari, Diptika; Bose, Purabi Deka; Das, Somdatta; Das, Chandana Ray; Datta, Ratul; Bose, Sujoy

    2015-02-01

    Preterm delivery (PTD) is one of the most significant contributors to neonatal mortality, morbidity, and long-term adverse consequences for health; with highest prevalence reported from India. The incidence of PTD is alarmingly very high in Northeast India. The objective of the present study is to evaluate the associative role of MTHFR gene polymorphism and progesterone receptor (PR) gene mutation (PROGINS) in susceptibility to PTD, negative pregnancy outcome and low birth weights (LBW) in Northeast Indian population. A total of 209 PTD cases {extreme preterm (< 28 weeks of gestation, n = 22), very preterm (28-32 weeks of gestation, n = 43) and moderate preterm (32-37 weeks of gestation, n = 144) and 194 term delivery cases were studied for MTHFR C677T polymorphism and PR (PROGINS) gene mutation. Statistical analysis was performed using SPSS software. Distribution of MTHFR and PR mutation was higher in PTD cases. Presence of MTHFR C677T polymorphism was significantly associated and resulted in the increased risk of PTD (p < 0.001), negative pregnancy outcome (p < 0.001) and LBW (p = 0.001); more significantly in extreme and very preterm cases. Presence of PR mutation (PROGINS) also resulted in increased risk of PTD and negative pregnancy outcome; but importantly was found to increase the risk of LBW significantly in case of very preterm (p < 0.001) and moderately preterm (p < 0.001) delivery cases. Both MTHFR C677T polymorphism and PR (PROGINS) mutation are evident genetic risk factors associated with the susceptibility of PTD, negative pregnancy outcome and LBW. MTHFR C677T may be used as a prognostic marker to stratify subpopulation of pregnancy cases predisposed to PTD; thereby controlling the risks associated with PTD.

  11. Coexistence of the 677C>T and 1298A>C MTHFR polymorphisms and its significance in the population of Polish women.

    PubMed

    Wolski, Hubert; Kocięcka, Maria; Mrozikiewicz, Aleksandra E; Barlik, Magdalena; Kurzawińska, Grażyna

    2015-10-01

    The aim of the study was to evaluate the frequency of the 677C>T and 1298A>C polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene, as well as the coexistence of both these genetic variants in women from the Polish population. A total of 662 women from the Polish population were enrolled in the study group. The frequency of the investigated genotypes of the 677C>T and 1298A>C polymorphisms of the MTHFR gene was analyzed with the use of PCR/RFLP methods. The frequency of the 677CC, 677CT and 677TT genotypes in the studied population of women was 50.60%, 39.88% and 9.52%, respectively As to the 1298AA, 1298AC and 1298CC genotypes, the obtained results were as follows: 42.75%, 47.88% and 9.37%, respectively (Tables II and III). Simultaneous analysis revealed the most frequent coexistence of 677CC/1298AC (28.85%), 677CT/1298AA (20.85%) and 677CT/1298AC (19.03%) genotypes. The coexistence of 677CC/1298AA (12.39%), 677CC/1298CC (9.37%) and 677TT/1298AA (9.51%) genotypes was observed less frequently In the studied population of Polish women, the coexistence of 677CT/1298CC, 677TT/1298AC and 677TT/1298CC genotypes has been not observed. The frequency and coexistence of genotypes of the 677C>T and 1298A>C MTHFR gene polymorphisms in the studied population of Polish women is similar to other North-European populations. Women carriers of the mutated variants of both, 677C>T and 1298A>C polymorphisms of the MTHFR gene should receive special perinatal care in order to prevent fetal defects and thrombosis-related complications during pregnancy It is vital to emphasize the significance of proper education of folate supplementation, especially in pregnant patients and women of reproductive age.

  12. Association of PHB 1630 C>T and MTHFR 677 C>T polymorphisms with breast and ovarian cancer risk in BRCA1/2 mutation carriers: results from a multicenter study

    PubMed Central

    Jakubowska, A; Rozkrut, D; Antoniou, A; Hamann, U; Scott, R J; McGuffog, L; Healy, S; Sinilnikova, O M; Rennert, G; Lejbkowicz, F; Flugelman, A; Andrulis, I L; Glendon, G; Ozcelik, H; Thomassen, M; Paligo, M; Aretini, P; Kantala, J; Aroer, B; von Wachenfeldt, A; Liljegren, A; Loman, N; Herbst, K; Kristoffersson, U; Rosenquist, R; Karlsson, P; Stenmark-Askmalm, M; Melin, B; Nathanson, K L; Domchek, S M; Byrski, T; Huzarski, T; Gronwald, J; Menkiszak, J; Cybulski, C; Serrano, P; Osorio, A; Cajal, T R; Tsitlaidou, M; Benítez, J; Gilbert, M; Rookus, M; Aalfs, C M; Kluijt, I; Boessenkool-Pape, J L; Meijers-Heijboer, H E J; Oosterwijk, J C; van Asperen, C J; Blok, M J; Nelen, M R; van den Ouweland, A M W; Seynaeve, C; van der Luijt, R B; Devilee, P; Easton, D F; Peock, S; Frost, D; Platte, R; Ellis, S D; Fineberg, E; Evans, D G; Lalloo, F; Eeles, R; Jacobs, C; Adlard, J; Davidson, R; Eccles, D; Cole, T; Cook, J; Godwin, A; Bove, B; Stoppa-Lyonnet, D; Caux-Moncoutier, V; Belotti, M; Tirapo, C; Mazoyer, S; Barjhoux, L; Boutry-Kryza, N; Pujol, P; Coupier, I; Peyrat, J-P; Vennin, P; Muller, D; Fricker, J-P; Venat-Bouvet, L; Johannsson, O Th; Isaacs, C; Schmutzler, R; Wappenschmidt, B; Meindl, A; Arnold, N; Varon-Mateeva, R; Niederacher, D; Sutter, C; Deissler, H; Preisler-Adams, S; Simard, J; Soucy, P; Durocher, F; Chenevix-Trench, G; Beesley, J; Chen, X; Rebbeck, T; Couch, F; Wang, X; Lindor, N; Fredericksen, Z; Pankratz, V S; Peterlongo, P; Bonanni, B; Fortuzzi, S; Peissel, B; Szabo, C; Mai, P L; Loud, J T; Lubinski, J

    2012-01-01

    Background: The variable penetrance of breast cancer in BRCA1/2 mutation carriers suggests that other genetic or environmental factors modify breast cancer risk. Two genes of special interest are prohibitin (PHB) and methylene-tetrahydrofolate reductase (MTHFR), both of which are important either directly or indirectly in maintaining genomic integrity. Methods: To evaluate the potential role of genetic variants within PHB and MTHFR in breast and ovarian cancer risk, 4102 BRCA1 and 2093 BRCA2 mutation carriers, and 6211 BRCA1 and 2902 BRCA2 carriers from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA) were genotyped for the PHB 1630 C>T (rs6917) polymorphism and the MTHFR 677 C>T (rs1801133) polymorphism, respectively. Results: There was no evidence of association between the PHB 1630 C>T and MTHFR 677 C>T polymorphisms with either disease for BRCA1 or BRCA2 mutation carriers when breast and ovarian cancer associations were evaluated separately. Analysis that evaluated associations for breast and ovarian cancer simultaneously showed some evidence that BRCA1 mutation carriers who had the rare homozygote genotype (TT) of the PHB 1630 C>T polymorphism were at increased risk of both breast and ovarian cancer (HR 1.50, 95%CI 1.10–2.04 and HR 2.16, 95%CI 1.24–3.76, respectively). However, there was no evidence of association under a multiplicative model for the effect of each minor allele. Conclusion: The PHB 1630TT genotype may modify breast and ovarian cancer risks in BRCA1 mutation carriers. This association need to be evaluated in larger series of BRCA1 mutation carriers. PMID:22669161

  13. The C677T polymorphism of the methylenetetrahydrofolate reductase gene in Mexican mestizo neural-tube defect parents, control mestizo and native populations.

    PubMed

    Dávalos, I P; Olivares, N; Castillo, M T; Cantú, J M; Ibarra, B; Sandoval, L; Morán, M C; Gallegos, M P; Chakraborty, R; Rivas, F

    2000-01-01

    The C677T mutation of the methylenetetrahydrofolate reductase (MTHFR) gene, associated with the thermolabile form of the enzyme, has reportedly been found to be increased in neural-tube defects (NTD), though this association is still unclear. A group of 107 mestizo parents of NTD children and five control populations: 101 mestizo (M), 50 Huichol (H), 38 Tarahumara (T), 21 Purepecha (P) and 20 Caucasian (C) individuals were typed for the MTHFR C677T variant by the PCR/RFLP (HinfI) method. Genotype frequencies were in agreement with the Hardy-Weinberg expectations in all six populations. Allele frequency (%) of the C677T variant was 45 in NTD, 44 in M, 56 in H, 36 in T, 57 in P, 35 in C. Pairwise inter-population comparisons of allele frequency disclosed a very similar distribution between NTD and M groups (exact test, P=0.92). Among controls, differences between M and individual native groups were NS (0.06C (P=0.29). A high frequency of the variant was found in H (56%) and P (57%). A similar allele frequency in groups M and NTD does not support a causal relationship between NTD and parental MTHFR C677T genotypes. Thus, the C677T variant cannot be regarded as a major genetic risk factor for NTD in Mexican mestizo parents. Otherwise, C677T in Mexico is very frequent, especially in Huichol and Purepecha natives, as compared with other groups world wide.

  14. Spectrum of MTHFR gene SNPs C677T and A1298C: a study among 23 population groups of India.

    PubMed

    Saraswathy, Kallur Nava; Asghar, Mohammad; Samtani, Ratika; Murry, Benrithung; Mondal, Prakash Ranjan; Ghosh, Pradeep Kumar; Sachdeva, Mohinder Pal

    2012-04-01

    Elevated homocysteine is a risk factor for many complex disorders. The role of methylenetetrahydrofolate reductase (MTHFR) gene in methylation of homocysteine makes it one of the most important candidate genes for these disorders. Considering the heterogeneity in its distribution in world populations, we screened MTHFR C677T and A1298C single nucleotide polymorphisms in a total of 23 Indian caste, tribal and religious population groups from five geographical regions of India and belonging to four major linguistic groups. The frequencies of MTHFR 677T and 1298C alleles were found to be 10.08 and 20.66%, respectively. MTHFR homozygous genotype 677TT was absent in eight population groups and homozygous 1298CC was absent in two population groups. 677T allele was found to be highest among north Indian populations with Indo-European tongue and 1298C was high among Dravidian-speaking tribes of east India and south India. The less common mutant haplotype 677T-1298C was observed among seven population groups and overall the frequency of this haplotype was 0.008, which is similar to that of African populations. cis configuration of 677T and 1298C was 0.94%. However, we could not find any individual with four mutant alleles which supports the earlier observation that presence of more than two mutant alleles may decrease the viability of foetus and possibly be a selective disadvantage in the population.

  15. Evaluation of Factor V Leiden, Prothrombin G20210A, MTHFR C677T and MTHFR A1298C gene polymorphisms in retinopathy of prematurity in a Turkish cohort.

    PubMed

    Aydin, Hatip; Gunay, Murat; Celik, Gokhan; Gunay, Betul Onal; Aydin, Umeyye Taka; Karaman, Ali

    2016-12-01

    To assess Factor V Leiden (FVL) (rs6025), Prothrombin G20210A (rs1799963), MTHFR C677T (rs1801133), and MTHFR A1298C (rs1801131) gene mutations as risk factors in the development of retinopathy of prematurity (ROP). A total of 105 children were included in this cross-sectional study. Patients were divided into two groups. The study group consisted of 55 infants with a history of ROP and the control group comprised 50 healthy infants with term birth. All subjects were screened for the presence of certain mutations (FVL, Prothrombin G20210A, MTHFR C677T and MTHFR A1298C) by Real-Time PCR at 1 year of age. The mean gestational age (GA) and birth weight (BW) of the study group were, 28.65 ± 2.85 weeks and 1171 ± 385.74 g, respectively. There were no significant differences of genotype and allele frequency of Prothrombin G20210A, MTHFR A1298C and MTHFR C677T between the study and control groups (p > 0.05). Eight children (14.5 %) had heterozygous and one child (1.8%) had homozygous FVL mutation in the study group. One child (2%) in the control group had heterozygous FVL mutation. There was statistically significant differences of FVL allele and genotype frequencies between the groups (p < 0.05). The prevalence of FVL polymorphism (16.3 %) was higher in ROP patients than control subjects in this Turkish cohort. We suggest a possible association of FVL mutation with ROP at the end of the study.

  16. Association study of methylenetetrahydrofolate reductase C677T mutation with cerebral venous thrombosis in an Iranian population.

    PubMed

    Ghaznavi, Habib; Soheili, Zahra; Samiei, Shahram; Soltanpour, Mohammad S

    2015-12-01

    There are limited data on the role of methylenetetrahydrofolate reductase C677T polymorphism and hyperhomocysteinemia as risk factors for cerebral venous thrombosis in Iranian population. We examined a possible association between fasting plasma homocysteine levels, methylenetetrahydrofolate reductase C677T polymorphism, and cerebral venous thrombosis in 50 patients with a diagnosis of cerebral venous thrombosis (20-63 years old) and 75 healthy controls (18-65 years old). Genotyping of the methylenetetrahydrofolate reductase C677T gene polymorphism was performed by PCR-restriction fragment length polymorphism analysis, and homocysteine levels were measured by enzyme immunoassay. Fasting plasma homocysteine levels were significantly higher in cerebral venous thrombosis patients than in controls (P = 0.015). Moreover, plasma homocysteine levels were significantly higher in methylenetetrahydrofolate reductase 677TT genotype compared to 677CT and 677CC genotypes in both cerebral venous thrombosis patients (P = 0.01) and controls (P = 0.03). Neither 677CT heterozygote genotype [odds ratio (OR) 1.35, 95% confidence interval (CI) 0.64-2.84, P = 0.556] nor 677TT homozygote genotype (OR 1.73, 95% CI 0.32-9.21, P = 0.833) was significantly associated with cerebral venous thrombosis. Additionally, no significant differences in the frequency of 677T allele between cerebral venous thrombosis patients and controls were identified (OR 1.31, 95% CI 0.69-2.50, P = 0.512). In conclusion, our study demonstrated that elevated plasma homocysteine levels are significant risk factors for cerebral venous thrombosis. Also, methylenetetrahydrofolate reductase 677TT genotype is not linked with cerebral venous thrombosis, but is a determinant of elevated plasma homocysteine levels.

  17. Association of the 5,10-methylenetetrahydrofolate reductase (MTHFR C677T and A1298C) polymorphisms in Korean patients with adult acute lymphoblastic leukemia.

    PubMed

    Oh, Doyeun; Kim, Nam Keun; Jang, Moon Ju; Kim, Hugh Chul; Lee, Jae Hoon; Lee, Jung Ae; Ahn, Myung Ju; Kim, Chul Soo; Kim, Heung Sik; Park, Seonyang; Chio, Hyun Sook; Min, Yoo Hong

    2007-01-01

    Methylenetetrahydrofolate reductase (MTHFR) plays a central role in converting folate to methyl donor for DNA methylation. Because MTHFR is a key enzyme in folate metabolism, changes in its activity resulting from polymorphisms in the MTHFR gene could modify the susceptibility to cancer. Recently, the C677T and A1298C mutations of MTHFR were discovered to be associated with susceptibility in acute lymphoblastic leukemia (ALL). The association between MTHFR polymorphisms and susceptibility and clinical outcome in ALL was studied in 118 adult ALL patients and matched healthy controls (n =427). DNA samples taken from patients with ALL and controls were analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assays to detect the MTHFR C677T and A1298C mutations. No significant difference was found in the development of adult ALL among those with different MTHFR genotypes of the C677T or A1298C polymorphisms. However, the MTHFR 677CT+TT genotype showed a tendency to be associated with adult ALL [crude odds ratio (OR), 0.67; 95% confidence interval (CI), 0.44-1.02; adjusted OR, 0.74 95% CI, 0.47-1.14]. The MTHFR C677T and A1298C polymorphisms are not significant risk factors in adult acute leukemia in the Korean population.

  18. Association of Methylenetetrahydrofolate Reductase C677T and A1298C Gene Polymorphisms With Recurrent Pregnancy Loss in Syrian Women.

    PubMed

    Al-Achkar, Walid; Wafa, Abdulsamad; Ammar, Samer; Moassass, Faten; Jarjour, Rami A

    2017-09-01

    C677T polymorphism of the methylenetetrahydrofolate reductase ( MTHFR) gene was a risk factor for recurrent pregnancy loss (RPL), but few studies have confirmed a possible role of MTHFR A1298C polymorphism in RPL risk. This study was carried out to determine the influence of the MTHFR gene polymorphisms in RPL Syrian women. A case-control study was performed on 2 groups (106 healthy and 100 RPL women). The frequency of the MTHFR gene polymorphisms was determined by polymerase chain reaction based on restriction fragment length gene polymorphism. In the RPL group, the genotype frequencies of MTHFR C677T were CC (41%), CT (41%), and TT (18%), and in the control group, the frequencies were CC (62.2%), CT (36.7%), and TT (1%). Statistical analysis showed a homozygous TT genotype and T allele were significantly different in the RPL group ( P = .000003 and P = .000019, respectively). The genotype frequencies of MTHFR A1298C were AA (53%), AC (44%), and CC (8%) in the RPL group, whereas in the control group, these were AA (61.3%), AC (37.8%), and CC (1%). A significant difference in the CC genotype and C allelic frequencies in the RPL women was observed ( P = .014 and P = .064, respectively). The patients having compound heterozygous (677 CT/1298AC) were associated with an estimated 4.86-fold increase in risk of pregnancy loss compared to individuals with a wild type ( P = .012). Our findings indicate that RPL women with homozygous genotype for (C677T and A1298C) either alone or compound heterozygous genotypes have a high risk of pregnancy loss in Syrian women.

  19. Elevated total plasma homocysteine and 667C{r_arrow}T mutation of the 5,10-methylenetetrahydrofolate reductase gene in thrombotic vascular disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Franchis, R.; Sebastio, G.; Andria, G.

    1996-07-01

    Moderate elevation of total plasma homocysteine (tHcy) has been reported as an independent risk factor for thrombotic vascular disease, a well-known multifactorial disorder. Possible genetic causes of elevated tHcy include defects of the sulfur-containing amino acids metabolism due to deficiencies of cystathionine {Beta}-synthase, of 5,10-methylenetetrahydrofolate reductase (MTHFR), and of the enzymes of cobalamin metabolism. An impaired activity of MTHFR due to a thermolabile form of the enzyme has been observed in {le}28% of hyperhomocysteinemic patients with premature vascular disease. More recently, the molecular basis of such enzymatic thermolability has been related to a common mutation of the MTHFR gene, causingmore » a C-to-T substitution at nt 677 (677C{r_arrow}T). This mutation was found in 38% of unselected chromosomes from 57 French Canadian individuals. The homozygous state for the mutation was present in 12% of these subjects and correlated with significantly elevated tHcy. Preliminary evidence indicates that the frequency of homozygotes for the 677C{r_arrow}T mutation may vary significantly in populations from different geographic areas. 5 refs., 2 tabs.« less

  20. Clinical impact of factor V Leiden, prothrombin G20210A, and MTHFR C677T mutations among sickle cell disease patients of Central India.

    PubMed

    Nishank, Sudhansu Sekhar; Singh, Mendi Prema Shyam Sunder; Yadav, Rajiv

    2013-11-01

    It is known that patients with sickle cell disease (SCD) present activation of the blood coagulation and fibrinolytic systems, especially during vaso-occlusive crises and also during the steady state of the disease. We determined whether the presence of the factor prothrombin gene G20210A variant, factor V gene G1691A mutation (factor V Leiden), and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphisms may be risk factors for vascular complications in individuals with SCD. The study involved 150 patients with sickle cell anemia and 150 healthy controls of Central India. Genotyping of three thrombophilic mutations was carried out by PCR-RFLP methods using MnlI, Hind III, and Hinf I, respectively, for factor V Leiden, prothrombin, and MTHFR mutations. Patients with SCD had significantly higher prevalence of mutant variants of MTHFR gene (28.0% heterozygotes and 14.6% homozygotes) and FVL gene (14.6% heterozygotes) as compared to normal/control individuals, but complete absence of mutant variants of prothrombin gene. The patients with SCD having mutant variants of MTHFR and FVL genes showed higher incidence of pain in chest, abdomen, and bone joints along with early age of onset of clinical manifestations as well as frequent dependence on blood transfusion than those patients with SCD having wild variants of these thrombotic genes. As compared to control subjects, SCD individuals having mutant variants of FVL and MTHFR genes had significant association with higher levels of prothrombin fragment (F1+2), D-dimer, thrombin-antithrombin (TAT), and lower level of protein C. MTHFR C677T and FVL G1691A polymorphisms may be risk factors for increased vascular complications in patient with SCD. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Methylenetetrahydrofolate reductase C677T polymorphism and Factor V Leiden variant in Mexican women with preeclampsia/eclampsia.

    PubMed

    Dávalos, I P; Moran, M C; Martínez-Abundis, E; González-Ortiz, M; Flores-Martínez, S E; Machorro, V; Sandoval, L; Figuera, L E; Mena, J P; Oliva, J M; Tlacuilo-Parra, J A; Sánchez-Corona, J; Salazar-Páramo, M

    2005-01-01

    The etiology of preeclampsia is still a matter of controversy. An association between hyperhomocysteinemia and preeclamptic patients has been described. A common missense mutation in the methylenetetrahydrofolate reductase (MTHFR) gene is associated with increased plasma homocysteine concentrations. In addition, the polymorphism of gene encoding for Factor V Leiden G1691A is associated with a prothrombotic state in heterozygous subjects. Both mutations in these thrombophilic proteins appear to have different prevalence in the general population and in patients with preeclampsia/eclampsia (PE/E). We studied single nucleotide polymorphisms for MTHFR C677T and coagulation Factor V Leiden in 33 Mexican patients with PE/E as a genetic risk factor for these diseases, comparing with a normotensive pregnant control group. The genotype and allele frequencies of MTHFR C677T and Factor V Leiden mutations between Mexican women with PE/E and healthy controls were not different. We conclude that these polymorphisms do not contribute in the etiology of PE/E as it has been reported in other populations.

  2. Association between maternal, fetal and paternal MTHFR gene C677T and A1298C polymorphisms and risk of recurrent pregnancy loss: a comprehensive evaluation.

    PubMed

    Yang, Yi; Luo, Yunyao; Yuan, Jing; Tang, Yidan; Xiong, Lang; Xu, MangMang; Rao, XuDong; Liu, Hao

    2016-06-01

    Numerous studies have investigated the associations between methylenetetrahydrofolate reductase (MTHFR) gene C677T and A1298C polymorphisms and risk of recurrent pregnancy loss (RPL); however, the results remain controversial. The aim of this study is to drive a more precise estimation of association between MTHFR gene polymorphisms and risk of RPL. We searched PubMed, EMBASE, Cochrane library, Web of Science and China Knowledge Resource Integrated Database for papers on MTHFR gene C677T and A1298C polymorphisms and RPL risk. The pooled odds ratios (ORs) with 95 % confidence intervals (CIs) were used to assess the strength of association in the homozygous model, heterozygous model, dominant model, recessive model and an additive model. The software STATA (Version 13.0) was used for statistical analysis. Overall, 57 articles were included in the final meta-analysis. In maternal group the MTHFR C677T polymorphism showed pooled odds ratios for the homozygous comparison [OR = 2.285, 95 % CI (1.702, 3.067)] and the MTHFR A1298C polymorphism showed pooled odds ratios for recessive model [OR = 1.594, 95 % CI (1.136, 2.238)]. In fetal group the MTHFR C677T polymorphism showed pooled odds ratios for dominant model [OR = 1.037, 95 % CI (0.567, 1.894)] and the MTHFR A1298C polymorphism showed pooled odds ratios for dominant model [OR = 1.495, 95 % CI (1.102, 2.026)]. In summary, the results of our meta-analysis indicate that maternal and paternal MTHFR gene C677T and A1298C polymorphisms are associated with RPL. We also observed a significant association between fetal MTHFR A1298C polymorphism and RPL but not C677T.

  3. Prevalence of factor V leiden, MTHFR C677T and MTHFR A1298C polymorphisms in patients with deep vein thrombosis in Central Iran.

    PubMed

    Ehsani, Majid; Imani, Aida; Moravveji, Alireza

    2018-05-31

    Deep vein thrombosis (DVT) is a common disease, especially among elderly patients, which is associated with high costs of treatment and high rates of recurrence. The risk factors for venous thrombosis are primarily related to hypercoagulability, which can be genetic or acquired, or because of immobilization and venous stasis. Among relevant genetic markers are a number of common polymorphisms and mutations in the genes coding for Factor V leiden and methylenetetrahydrofolate reductase. Differential associations of these polymorphisms have been reported in different populations with DVT due to ethnic variations. However, no study has been reported with respect to these polymorphisms in DVT in Iran. Thus, the aim of the present study is to determine the prevalence of FVL, MTHFR C677T and MTHFR A1298C gene polymorphisms in patients with DVT in central Iran. In the present cross-sectional study, a total of 100 patients with first and recurrent episodes of DVT and age less than 70 years were recruited during 2016-2017. Blood sample was collected from the recruited patients and FVL mutation was screened using ARMS-PCR method, MTHFR C677T and MTHFR A1298C mutations were screened using PCR-RFLP method. The results revealed that MTHFR A1298C gene polymorphism in both homozygote and heterozygote form was found to be most frequent i.e. 77% among cases, followed by MTHFR C677T (67%) and FVL (17%). The study highlights the importance of screening of these genetic markers among patients with DVT in this region.

  4. Association between C677T and A1298C polymorphisms of the MTHFR gene and risk of male infertility: a meta-analysis.

    PubMed

    Yang, Y; Luo, Y Y; Wu, S; Tang, Y D; Rao, X D; Xiong, L; Tan, M; Deng, M Z; Liu, H

    2016-04-26

    Published studies on the association between the C677T and A1298C polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene and male infertility risk are controversial. To obtain a more precise evaluation, we performed a meta-analysis based on published case-control studies. We conducted an electronic search of PubMed, EMBASE, the Cochrane Library, the Web of Science, and the China Knowledge Resource Integrated Database for papers on MTHFR gene C677T and A1298C polymorphisms and male infertility risk. Pooled odds ratios (ORs) with 95% confidence intervals (95%CIs) were used to assess the strength of association in homozygote, heterozygote, dominant, recessive, and additive models. Statistical heterogeneity, test of publication bias, and sensitivity analysis were carried out using the STATA software (Version 13.0). Overall, 21 studies of C677T (4505 cases and 4024 controls) and 13 studies of A1298C (2785 cases and 3094 controls) were included in this meta-analysis. For C677T, the homozygote comparison results were OR = 1.629, 95%CI (1.215- 2.184), and the recessive model results were OR = 1.462 (1.155- 1.850). For A1298C, the homozygote comparison results were OR = 1.289 (1.029-1.616), and the recessive model results were OR = 1.288 (1.034-1.604). In conclusion, the current meta-analysis showed that the MTHFR C677T polymorphism was associated with a significantly increased male infertility risk in the Asian and overall populations, but not in the Caucasian population, and there was a significant association between the A1298C polymorphism and male infertility risk in the Asian, Caucasian, and overall groups.

  5. Methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms and therapy-related toxicity in children treated for acute lymphoblastic leukemia and non-Hodgkin lymphoma.

    PubMed

    Kantar, Mehmet; Kosova, Buket; Cetingul, Nazan; Gumus, Sevinc; Toroslu, Ertug; Zafer, Nur; Topcuoglu, Nejat; Aksoylar, Serap; Cinar, Mehtap; Tetik, Asli; Eroglu, Zuhal

    2009-06-01

    This study aimed to investigate the association of the methylenetetrahydrofolate reductase (MTHFR) gene C677T and A1298C polymorphisms with serum drug levels and toxicities after high-dose methotrexate (MTX) infusion. The study included 37 children with acute lymphoblastic leukemia or non-Hodgkin lymphoma. Serum MTX levels and toxicities of bone marrow, liver and kidney were analysed. Genotype analysis of the C677T and A1298C gene polymorphisms from genomic DNA of the subjects was performed by real-time PCR. Subjects with MTHFR polymorphism for C677T (CT, TT) had significantly higher MTX levels at 24 h (p = 0.009), and these genotypes did not seem to cause toxicity. Subjects with MTHFR polymorphism for A1298C (AC, CC) had significantly higher MTX levels at 48 h (p = 0.02), and had more grade III/IV anemia (p = 0.02), thrombocytopenia (p = 0.0001), elevated AST levels (p = 0.04) and frequent febrile neutropenic episodes (p = 0.004). The present study suggests that A1298C gene, but not C677T polymorphism is associated with MTX-related toxicity.

  6. C677T methylenetetrahydrofolate reductase and plasma homocysteine levels among Thai vegans and omnivores.

    PubMed

    Kajanachumpol, Saowanee; Atamasirikul, Kalayanee; Tantibhedhyangkul, Phieuvit

    2013-01-01

    Hyperhomocysteinemia among vegetarians and vegans is caused mostly by vitamin B12 deficiency. A C-to-T mutation in the methylenetetrahydrofolate reductase (MTHFR) gene results in a thermolabile MTHFR, which may affect homocysteine (Hcy) levels. The importance of this gene mutation among populations depends on the T allele frequency. Blood Hcy, vitamin B12, folate, vitamin B6, and MTHFR C677T mutation status were determined in 109 vegans and 86 omnivores aged 30 - 50 years. The vegans had significantly higher Hcy levels than the omnivores, geometric means (95 % CI) 19.2 (17.0 - 21.7) µmol/L vs. 8.53 (8.12 - 8.95) µmol/L, p < 0.001. A C-to-T mutation in the vegans increased plasma Hcy, albeit insignificantly; geometric means 18.2 µmol/L, 20.4 µmol/L, and 30.0 µmol/L respectively in CC, CT, and TT MTHFR genotypes. There was also a significant decrease in serum folate; geometric means 12.1 ng/mL, 9.33 ng/mL, and 7.20 ng/mL respectively, in the CC, CT, and TT mutants, p = 0.006, and particularly, in the TT mutant compared with the CC wild type, 7.20 ng/mL vs. 12.1 ng/mL, p = 0.023. These findings were not seen in the omnivores. It was concluded that hyperhomocysteinemia is prevalent among Thai vegans due to vitamin B12 deficiency. C-to-T MTHFR mutation contributes only modestly to the hyperhomocysteinemia.

  7. MTHFR C677T mutation increased the risk of Ischemic Stroke, especially in large-artery atherosclerosis in adults: an updated meta-analysis from 38 researches.

    PubMed

    Cui, Tao

    2016-01-01

    To date, many publications have evaluated the correlation between the Ethylenetetrahydrofolate reductase gene (MTHFR) C677T and Ischemic Stroke susceptibility in adults. However, the results remain inconclusive. The meta-analysis was performed to resolve the problem. Based on 38 studies, dichotomous data were presented as the odds ratio (OR) with a 95% confidence interval (CI). This study found, the carriers of the MTHFR 677C→T variation were more likely to increase the risk of Ischemic Stroke susceptibility in all over pooled population, including Asian and European, but not in African population (Europe: TT vs. CC+TC: OR = 1.364 95% CI = 1.010-1.841 p = 0.043; Asia subgroup: T vs. C: OR = 1.245, 95% CI = 1.141-1.358, p < 0.001; Africa: T vs. C: OR = 1.202, 95% CI = 0.990-1.459, p = 0.062). Among etiology stratified analysis, only large-artery atherosclerosis subgroups had a significant different, and the p value was less than 0.01 in all genetic models (T vs. C: OR = 1.29, 95% CI = 1.09-1.52, p = 0.002; TT+TC vs. CC: OR = 1.27, 95% CI = 1.06-1.51, p = 0.009; TT vs. CC+TC: OR = 1.62, 95% CI = 1.19-2.19, p = 0.002). This meta-analysis suggests that MTHFR C677T mutation increased the risk of Ischemic Stroke in adults, especially in large-artery atherosclerosis.

  8. MTHFR GENE C677T POLYMORPHISM AND LEVELS OF DNA METHYLTRASFERASES IN SUBCLINICAL HYPOTHYROIDISM.

    PubMed

    Kvaratskhelia, T; Kvaratskhelia, E; Kankava, K; Abzianidze, E

    2017-04-01

    The aim of our study was to investigate the link between MTHFR gene C677T polymorphism and DNMTs levels in patients with Subclinical Hypothyroidism (SCH). In this study 19 adult patients with subclinical hypothyroidism and 19 healthy controls (mean age 31±5.5 and 33±5.1 years respectively) were recruited. All patients were diagnosed based on serum levels of TSH, FT4, anti-TG and anti-TPO antibodies. Written informed consents were obtained from all study subjects. Genomic DNA was extracted using Quick-DNA Universal Kit (Zymo Research, USA). The MTHFR C677T polymorphism was genotyped by PCR-RFLP method. Levels of DNMT1 and 3a were measured in nuclear extracts of PBMC using DNMTs assay kits (Abcam). Our data indicates that the frequency of genotypes and alleles were different among the patient and the control group. There is a significant increase in CC genotype distribution in the control group when compared to the SCH patient group, while the CT as well as TT genotype distribution were not increased significantly in SCH group versus control group. However the C allele is significantly prevalent in the control group compared to the SCH group, while T allele is prevalent in patients compared to the control group with a statically significant difference. In addition, individuals with TT and CT genotypes and hypothyroidism showed elevated amount of DNMT3a in nuclear extracts of PBMC compared with controls, while no significant difference in DNMT1 levels was observed. This study indicates the MTHFR C677T variant may contribute in alteration of epigenetic regulation such as DNA methylation mediated by DNA methyltransferases in patients with subclinical hypothyroidism and also, carriers of the T allele might have an increasing risk of developing SCH.

  9. Association between Hcy levels and the CBS844ins68 and MTHFR C677T polymorphisms with essential hypertension.

    PubMed

    Cai, Weijuan; Yin, Liang; Yang, Fang; Zhang, Lei; Cheng, Jiang

    2014-11-01

    -D haplotype and EH (OR, 1.376). MTHFR C677T and CBS844ins68 polymorphisms were present in the populations studied and the CBS844ins68 homozygous mutation was not present. Therefore, there is a correlation between the polymorphisms of the MTHFR C677T gene and EH, and allele T may be one of the predisposing factors. MTHFR C677T and CBS844ins68 may exist with a certain linkage and the T-D haplotype may be a risk factor for EH.

  10. Association between Hcy levels and the CBS844ins68 and MTHFR C677T polymorphisms with essential hypertension

    PubMed Central

    CAI, WEIJUAN; YIN, LIANG; YANG, FANG; ZHANG, LEI; CHENG, JIANG

    2014-01-01

    and EH (OR, 1.376). MTHFR C677T and CBS844ins68 polymorphisms were present in the populations studied and the CBS844ins68 homozygous mutation was not present. Therefore, there is a correlation between the polymorphisms of the MTHFR C677T gene and EH, and allele T may be one of the predisposing factors. MTHFR C677T and CBS844ins68 may exist with a certain linkage and the T-D haplotype may be a risk factor for EH. PMID:25279160

  11. C677T (RS1801133 ) MTHFR gene polymorphism frequency in a colombian population.

    PubMed

    Romero-Sánchez, Consuelo; Gómez-Gutierrez, Alberto; Gómez, Piedad Elena; Casas-Gomez, Maria Consuelo; Briceño, Ignacio

    2015-01-01

    Abnormal levels of the enzyme methylenetetrahydrofolate reductase (MTHFR) are associated with an increased risk of both cardiovascular and cerebrovascular disease and higher concentrations of homocysteine. Abnormal levels are also related to birth defects, pregnancy complications, cancer and toxicity to methotrexate (MTX). Polymorphisms of MTHFR affect the activity of the enzyme. Genetic associations have been related to treatment efficacy. To establish the frequency of the C> T polymorphism at nucleotide 677 of the MTHFR gene in a group of Colombian individuals. Data from pharmacogenetic microarrays that include MTX sensibility-associated polymorphisms were retrospectively collected (Pathway Genomics(®)). The frequency of the C> T MTHFR rs1801133 marker polymorphism was analyzed. Microarray data from 68 men and 84 women were analyzed. Comparisons of genotype C/C vs. C/T and T/T were statistically significantly different (p= 0.00, p= 0.026, respectively), as were C/T and T / T (p= 0.0001). Results for the C/C and C/T genotypes in a Colombian population are similar to other previously studied groups of healthy subjects. Subjects from our population might be at risk of developing diseases associated with MTHFR polymorphisms and might present toxicity and adverse effects if treated with MTX, which suggests the need to evaluate therapeutic alternatives based on individual pharmacogenetic studies.

  12. The association between MTHFR gene C677T polymorphism and ALL risk based on a meta-analysis involving 17,469 subjects.

    PubMed

    Zhang, Beibei; Zhang, Weiming; Yan, Liang; Wang, Daogang

    2017-03-01

    The methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism is closely related to the acute lymphoblastic leukaemia (ALL) indicated by many previous epidemiologic studies. However, their conclusions were still conflicting. Our aim is to evaluate their associations using a more comprehensive updated meta-analysis. Electronic searches were conducted to select published studies prior to February, 2016. Totally, 39 case-control studies including 6551 ALL cases and 10,918 controls were selected in current meta-analysis. The association was detected significantly between MTHFR C677T polymorphism and ALL reducing susceptibility. Our results indicate that the MTHFR C677T polymorphism may be a promising ALL biomarker and studies to explore the protein levels of the variants and their functional role are required for the definitive conclusions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Methylenetetrahydrofolate Reductase Gene Polymorphisms (C677T and A1298C) and Hemorrhagic Stroke in Moroccan Patients.

    PubMed

    Abidi, Omar; Haissam, Mohammed; Nahili, Halima; El Azhari, Abdessamad; Hilmani, Said; Barakat, Abdelhamid

    2018-07-01

    The number of deaths from hemorrhagic strokes is about twice as high than the number of deaths from ischemic strokes. Genetic risk assessment could play important roles in preventive and therapeutic strategies. The present study was aimed to evaluate whether the MTHFR gene polymorphisms could increase the risk of cerebral hemorrhage in Moroccan patients. A total of 113 patients with hemorrhagic stroke and 323 healthy controls were included in this case-control study. The C677T (rs1801133) and A1298C (rs1801131) MTHFR gene polymorphisms were genotyped by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) method in all patients and controls. The genotype and allele frequencies were compared between groups using appropriate statistical analyses. Both groups, patients and controls, were in accordance with the Hardy-Weinberg Equilibrium. For the C677T polymorphism, the frequencies of the CC, CT, and TT genotypes were 50.44% versus 46.13%, 39.82% versus 43.03, and 9.73% versus 10.84% in controls versus patients, respectively, whereas for the A1298C polymorphism, the frequencies of the AA, AC, and CC genotypes were 56.64% versus 57.59%, 40.71% versus 37.15, and 2.65% versus 5.26% in controls versus patients, respectively. No statistically significant difference has been proved between patients and controls frequencies (P >.05) for all additive, recessive, and dominant models. Additional analyses including genotypes combination, allelic frequencies, and hemorrhagic stroke patient subtypes did not show any statistically significant difference between controls and patients/subgroup patients. Our findings suggested no association between MTHFR gene polymorphisms and susceptibility to hemorrhagic strokes in Moroccan patients. Further investigations should be conducted to elucidate the roles of other gene variants in the pathogenesis of this condition. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  14. C677T polymorphism in the methylenetetrahydrofolate reductase gene is associated with primary closed angle glaucoma

    PubMed Central

    Michael, Shazia; Qamar, Raheel; Akhtar, Farah; Khan, Wajid Ali

    2008-01-01

    Purpose To determine whether or not there is an association of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism with disease in cohorts of primary open-angle glaucoma (POAG) and primary closed-angle glaucoma (PCAG) from Pakistan. Methods This was a prospective study consisting of 150 patients (90 POAG and 60 PCAG) and 70 control subjects. Genomic DNA was extracted from leukocytes of the peripheral blood. MTHFR C677T polymorphism analysis was performed by the polymerase chain reaction-restriction fragment length polymorphism (RFLP) technique. Results The prevalence of the MTHFR C/T genotype was 22.2% in POAG, 13.3% in PACG, and 18.6% in controls whereas the MTHFR T/T genotype was present solely in the PACG group (6.9%). The difference regarding the T/T genotype between PACG and controls was statistically significant (p<0.01). Conclusions The MTHFR C677T polymorphism was found to be associated with PCAG but not POAG in patients of Pakistani origin. PMID:18385801

  15. C677T (RS1801133 ) MTHFR gene polymorphism frequency in a colombian population

    PubMed Central

    Gómez-Gutierrez, Alberto; Gómez, Piedad Elena; Casas-Gomez, Maria Consuelo; Briceño, Ignacio

    2015-01-01

    Introduction: Abnormal levels of the enzyme methylenetetrahydrofolate reductase (MTHFR) are associated with an increased risk of both cardiovascular and cerebrovascular disease and higher concentrations of homocysteine. Abnormal levels are also related to birth defects, pregnancy complications, cancer and toxicity to methotrexate (MTX). Polymorphisms of MTHFR affect the activity of the enzyme. Genetic associations have been related to treatment efficacy. Objective: To establish the frequency of the C> T polymorphism at nucleotide 677 of the MTHFR gene in a group of Colombian individuals. Methods: Data from pharmacogenetic microarrays that include MTX sensibility-associated polymorphisms were retrospectively collected (Pathway Genomics®). The frequency of the C> T MTHFR rs1801133 marker polymorphism was analyzed. Results: Microarray data from 68 men and 84 women were analyzed. Comparisons of genotype C/C vs. C/T and T/T were statistically significantly different (p= 0.00, p= 0.026, respectively), as were C/T and T / T (p= 0.0001). Conclusions: Results for the C/C and C/T genotypes in a Colombian population are similar to other previously studied groups of healthy subjects. Subjects from our population might be at risk of developing diseases associated with MTHFR polymorphisms and might present toxicity and adverse effects if treated with MTX, which suggests the need to evaluate therapeutic alternatives based on individual pharmacogenetic studies. PMID:26309343

  16. MTHFR A1298C and C677T gene polymorphisms and susceptibility to chronic myeloid leukemia in Egypt.

    PubMed

    Aly, Rabab M; Taalab, Mona M; Ghazy, Hayam F

    2014-01-01

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme regulating the intracellular folate metabolism which plays an important role in carcinogenesis through DNA methylation. We aimed to evaluate the association between MTHFR A1298C and C677T polymorphisms and the risks of chronic myeloid leukemia (CML). Eighty-five patients with CML and a control group containing 100 healthy, age and sex matched individuals were examined for MTHFR C677T and A1298C polymorphisms using polymerase chain reaction-restriction fragment-length (PCR-RFLP) method. The frequency of 677TT genotype in patients with CML was significantly higher compared to controls (OR=2.513, 95% CI: 0.722-4.086, P=0.025). No such association was shown for heterozygous 677CT (OR=1.010, 95% CI: 0.460-2.218, P=0.981). Moreover, for A1298C genotype, a statistically significant higher frequency of 1298CC was also detected in CML patients compared to control group (OR=1.1816, 95% CI: 0.952-3.573, P=0.036), 0.036). No such statistical significance was demonstrable for heterozygote 1298AC (OR=1.046, 95% CI: 0.740-1.759, P=0.092). In addition, patients with joint 677CT/1298AC or 677TT/1298CC genotypes showed an association with increased risk of CML (OR=1.849, 95% CI: 0.935-2.540, P=0.024; OR=1.915, 95% CI: 1.202-3.845, P=0.020 respectively). .A statistically significant increased risk of resistant to therapy was observed with 677CT and 1298AC genotypes (P=0.001, P=0.002 respectively). We conclude that both MTHFR 677TT and 1298CC polymorphisms have been associated with risk of CML and both 677CT and 1298AC genotypes are associated with higher risk of resistant to therapy.

  17. MTHFR A1298C and C677T gene polymorphisms and susceptibility to chronic myeloid leukemia in Egypt

    PubMed Central

    Aly, Rabab M; Taalab, Mona M; Ghazy, Hayam F

    2014-01-01

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme regulating the intracellular folate metabolism which plays an important role in carcinogenesis through DNA methylation. We aimed to evaluate the association between MTHFR A1298C and C677T polymorphisms and the risks of chronic myeloid leukemia (CML). Eighty-five patients with CML and a control group containing 100 healthy, age and sex matched individuals were examined for MTHFR C677T and A1298C polymorphisms using polymerase chain reaction-restriction fragment-length (PCR-RFLP) method. The frequency of 677TT genotype in patients with CML was significantly higher compared to controls (OR = 2.513, 95% CI: 0.722-4.086, P = 0.025). No such association was shown for heterozygous 677CT (OR = 1.010, 95% CI: 0.460-2.218, P = 0.981). Moreover, for A1298C genotype, a statistically significant higher frequency of 1298CC was also detected in CML patients compared to control group (OR = 1.1816, 95% CI: 0.952-3.573, P = 0.036), 0.036). No such statistical significance was demonstrable for heterozygote 1298AC (OR = 1.046, 95% CI: 0.740-1.759, P = 0.092). In addition, patients with joint 677CT/1298AC or 677TT/1298CC genotypes showed an association with increased risk of CML (OR = 1.849, 95% CI: 0.935-2.540, P = 0.024; OR = 1.915, 95% CI: 1.202-3.845, P = 0.020 respectively). .A statistically significant increased risk of resistant to therapy was observed with 677CT and 1298AC genotypes (P = 0.001, P = 0.002 respectively). We conclude that both MTHFR 677TT and 1298CC polymorphisms have been associated with risk of CML and both 677CT and 1298AC genotypes are associated with higher risk of resistant to therapy. PMID:24966971

  18. Interaction between MTHFR 677C>T and periconceptional folic acid supplementation in the risk of Hypospadias.

    PubMed

    Dokter, Elisabeth M J; van Rooij, Iris A L M; Wijers, Charlotte H W; Groothuismink, Johanne M; van der Biezen, Jan Jaap; Feitz, Wout F J; Roeleveld, Nel; van der Zanden, Loes F M

    2016-04-01

    Hypospadias is a congenital malformation with both environmental factors and genetic predisposition involved in the pathogenesis. The role of maternal periconceptional folic acid supplement use in the development of hypospadias is unclear. As folate levels may also be influenced by the C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene, we hypothesize that a gene-environment interaction between this polymorphism and folic acid use is involved in the etiology of hypospadias. We conducted a case-control study among 855 hypospadias cases and 713 population-based controls from the AGORA data- and biobank. Folic acid supplement use was derived from maternal questionnaires and infant and maternal DNA was used to determine the MTHFR C677T polymorphism using Taqman assays. We performed separate analyses for different hypospadias phenotypes (anterior/middle/posterior). Hypospadias was neither associated with folic acid use or the MTHFR C677T polymorphism, nor with their interaction. However, we did find an association with middle hypospadias when no supplements were used (odds ratio = 1.6; 95% confidence interval, 1.1-2.4), especially in infants carrying the CT/TT genotype (odds ratio = 2.5; 95% confidence interval, 1.4-4.7). In addition, more infants with these genotypes seemed to have posterior hypospadias, regardless of folic acid use. Our study does not suggest a major role for folic acid supplements or the MTHFR C677T polymorphism in the etiology of hypospadias in general, but not using folic acid and/or carrying the MTHFR C677T polymorphism may be associated with middle and posterior hypospadias. Therefore, we stress the importance of studying gene-environment interactions preferably in stratified analyses for different hypospadias phenotypes. © 2016 Wiley Periodicals, Inc.

  19. MTHFR polymorphisms C677T and A1298C and associations with IVF outcomes in Brazilian women.

    PubMed

    D'Elia, Priscila Queiroz; dos Santos, Aline Amaro; Bianco, Bianca; Barbosa, Caio Parente; Christofolini, Denise Maria; Aoki, Tsutomu

    2014-06-01

    The aim of this study was to investigate the association between MTHFR gene polymorphisms and IVF outcomes in Brazilian women undergoing assisted reproduction treatment. A prospective study was conducted in the Human Reproduction Department at the ABC University School of Medicine and the Ideia Fertility Institute between December 2010 and April 2012. The patient population was 82 women undergoing assisted reproduction cycles. The MTHFR polymorphisms C677T and A1298C were evaluated and compared with laboratory results and pregnancy rates. The C677T variant was associated with proportions of mature (P=0.006) and immature (P=0.003) oocytes whereas the A1298C variant was associated with number of oocytes retrieved (P=0.044). The polymorphisms, whether alone or in combination, were not associated with normal fertilization, good-quality embryo or clinical pregnancy rates. This study suggests that the number and maturity of oocytes retrieved may be related to the MTHFR polymorphisms C677T and A1298C. It is believed that folate has a crucial function in human reproduction and that folate deficiency can compromise the function of the metabolic pathways it is involved in, leading to an accumulation of homocysteine. The gene MTHFR encodes the 5-MTHFR enzyme, which is involved in folate metabolism, and C677T/A1298C polymorphisms of this gene are related to decreased enzyme activity and consequent changes in homocysteine concentration. Folate deficiency and hyperhomocysteinaemia can also compromise fertility and lead to pregnancy complications by affecting the development of oocytes, preparation of endometrial receptivity, implantation of the embryo and pregnancy. In folliculogenesis, hyperhomocysteinaemia can activate apoptosis, leading to follicular atresia and affecting the maturity of oocytes and the quality of embryos cultured in vitro. This study was performed to investigate the association between MTHFR polymorphisms and IVF outcomes in women undergoing assisted

  20. C677T and A1298C polymorphisms of the methylenetetrahydrofolate reductase gene: effect on methotrexate-related toxicity in adult acute lymphoblastic leukaemia.

    PubMed

    Eissa, Deena Samir; Ahmed, Tamer Mohamed

    2013-03-01

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme involved in folate metabolism. Two polymorphisms, C677T and A1298C, were described leading to reduced enzyme activity. Methotrexate (MTX) is an antifolate agent of consolidation and maintenance therapy of acute lymphoblastic leukaemia (ALL). Despite its clinical success, MTX can be associated with serious toxicities resulting in treatment interruption or discontinuation, impacting disease outcome. There is evidence that MTX toxicity can be affected by polymorphisms in genes encoding for drug-metabolizing enzymes such as MTHFR. Therefore, we aimed to investigate the influence of MTHFR C677T and A1298C polymorphisms on the frequency of MTX-related toxicity, disease outcome and patients' survival. MTHFR polymorphisms were assessed in 50 adult patients with de novo ALL using real-time PCR. Patients were followed-up for the development of haematologic and/or nonhaematologic toxicity and assessment of clinical outcome. Frequency of C677T polymorphisms was 42% for TT, 24% for CT and 34% for CC; A1298C polymorphisms were 28, 6 and 66% for CC, AC and AA, respectively. MTX therapy was significantly associated with neutropaenia, hepatic and gastrointestinal toxicities, unfavourable response at day 14 of induction therapy, increased relapse and mortality rates and shorter survival in patients with 677 TT genotype than in those with CC and CT, whereas 1298 CC genotype patients had lower frequency of neutropaenia, hepatic toxicity and relapse than in those with AA and AC. Our study suggests MTHFR polymorphism as an attractive predictor of MTX-related toxicity in adult ALL, considering it a potential prognostic factor influencing disease outcome.

  1. Association of methylenetetrahydrofolate reductase gene C677T polymorphism with polycystic ovary syndrome risk: a systematic review and meta-analysis update.

    PubMed

    Fu, Li-yuan; Dai, Li-meng; Li, Xiao-gang; Zhang, Kun; Bai, Yun

    2014-01-01

    To re-estimate the association between methylenetetrahydrofolate reductase gene (MTHFR) C677T polymorphism and polycystic ovary syndrome (PCOS) risk by critically reviewing, analyzing and updating the current evidence. MTHFR C677T polymorphism has been studied as a possible risk factor for a variety of common conditions including heart disease, stroke and hypertension. Its association with PCOS was negative in a previous meta-analysis which had possible shortcomings. More studies have now been done but their results remain inconclusive. Available case-control studies containing genotype frequencies of MTHFR C677T were chosen, and odds ratio (OR) with 95% confidence interval (CI) was used to assess the strength of the association. Statistical analyses were performed using software Review Manager (Version 5. 2) and Stata (Version 11.0). Nine case-control studies including 638 PCOS and 759 healthy controls were identified. Meta-analysis showed a significant effect in the dominant model (TT+CT vs. CC: OR=1.65, 95%CI=1.28-2.12, P<0.0001) and heterozygote comparison (CT vs. CC: OR=1.83, 95%CI=1.17-2.87, P=0.008). In subgroup analysis stratified by ethnicity, MTHFR C677T variant was statistically significantly relevant to PCOS risk in European populations (TT+CT vs. CC: OR=2.16, 95%CI=1.50-3.12, P<0.0001; CT vs. CC: OR=2.11, 95%CI=1.15-3.87, P=0.02) but not in Asian populations (TT+CT vs. CC: OR=1.29, 95%CI=0.91-1.82, P=0.15; CT vs. CC: OR=1.31, 95%CI=0.91-1.90, P=0.15). This meta-analysis indicates that the 677T allele increases PCOS susceptibility, and this relevance seems to be more intense in Europeans than in Asians. Copyright © 2013. Published by Elsevier Ireland Ltd.

  2. Association of Methylenetetrahydrofolate Reductase (MTHFR 677C>T and 1298A>C) Polymorphisms and Haplotypes with Silent Brain Infarction and Homocysteine Levels in a Korean Population

    PubMed Central

    Han, In Bo; Kim, Ok Joon; Ahn, Jung Yong; Oh, Doyeun; Hong, Sun Pyo; Huh, Ryoong; Chung, Sang Sup

    2010-01-01

    Purpose Methylenetetrahydrofolate reductase (MTHFR) is the main regulatory enzyme for homocysteine metabolism. In the present study, we evaluated whether the MTHFR 677C>T and 1298A>C gene polymorphisms are associated with SBI and plasma homocysteine concentration in a Korean population. Materials and Methods We enrolled 264 patients with SBI and 234 healthy controls in South Korea. Fasting plasma total homocysteine (tHcy) concentrations were measured, and genotype analysis of the MTHFR gene was carried out. Results The plasma tHcy levels were significantly higher in patients with SBI than in healthy controls. Despite a significant association between the MTHFR 677TT genotype and hyperhomocysteinemia, the MTHFR 677C>T genotypes did not appear to influence susceptibility to SBI. However, odds ratios of the 1298AC and 1298AC + CC genotypes for the 1298AA genotype were significantly different between SBI patients and normal controls. The frequencies of 677C-1298A and 677C-1298C haplotypes were significantly higher in the SBI group than in the control group. Conclusion This study demonstrates that the MTHFR 1298A>C polymorphism is a risk factor for SBI in a Korean population. The genotypes of 677C>T and 1298A>C polymorphisms interact additively, and increase the risk of SBI in Korean subjects. PMID:20191019

  3. Associations of methylenetetrahydrofolate reductase C677T genotype with blood pressure levels in Chinese population with essential hypertension.

    PubMed

    Cheng, Jun; Tao, Fang; Liu, Yanhong; Venners, Scott A; Hsu, Yi-Hsiang; Jiang, Shanqun; Weinstock, Justin; Wang, Binyan; Tang, Genfu; Xu, Xiping

    2018-01-01

    To confirm the association between baseline blood pressure (BP) levels and the methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism in patients with essential hypertension. A total of 347 patients were enrolled from the Dongzhi community in Anhui Province, China. The C677T polymorphism of the MTHFR gene was detected using high-throughput TaqMan allelic discrimination assay. Baseline BP was measured using a standardized mercury-gravity monometer. In the whole sample, the frequency of the MTHFR C677T genotypes CC, CT, and TT were 38.6%, 48.1%, and 13.3%, respectively. In a recessive model (CC+CT versus TT genotypes), baseline diastolic blood pressure (DBP) was significantly higher in patients with the TT genotype compared to those with the CT or CC genotypes (P= 0.013). We also divided all patients into three groups based on the tertiles of the baseline BP distribution. Compared to subjects in the lowest tertile of DBP, the adjusted odds of having the TT genotype among subjects in the highest tertile was 2.6 (95% CI: 1.1 to 6.2). However, no significant associations were observed between baseline systolic blood pressure (SBP) and the MTHFR C677T polymorphism. The MTHFR gene polymorphism could be an important genetic determinant of baseline DBP levels in Chinese essential hypertensive patients.

  4. Individual and Joint Associations of Methylenetetrahydrofolate Reductase C677T Genotype and Plasma Homocysteine With Dyslipidemia in a Chinese Population With Hypertension.

    PubMed

    Liu, Yanhong; Li, Kang; Venners, Scott A; Hsu, Yi-Hsiang; Jiang, Shanqun; Weinstock, Justin; Wang, Binyan; Tang, Genfu; Xu, Xiping

    2017-04-01

    We aimed to examine the cross-sectional associations of plasma total homocysteine (tHcy) concentrations and methylenetetrahydrofolate reductase ( MTHFR) C677T genotype with dyslipidemia. A total of 231 patients with mild-to-moderate essential hypertension were enrolled from the Huoqiu and Yuexi communities in Anhui Province, China. Plasma tHcy levels were measured by high-performance liquid chromatography. Genotyping was performed by TaqMan allelic discrimination technique. Compared with MTHFR 677 CC + CT genotype carriers, TT genotype carriers had higher odds of hypercholesterolemia (adjusted odds ratio [OR] [95% confidence interval (CI)]: 2.7 [1.4-5.2]; P = .004) and higher odds of abnormal low-density lipoprotein cholesterol (adjusted OR [95% CI]: 2.3 [1.1-4.8]; P = .030). The individuals with the TT genotype had higher concentrations of log(tHcy) than those with the 677 CC + CT genotype (adjusted β [standard error]: .2 [0.03]; P < .001). Patients with tHcy ≥ 10 μmol/L had significantly higher odds of hypercholesterolemia (adjusted OR [95% CI]: 2.4 [1.2-4.7]; P = .010). Furthermore, patients with both the TT genotype and the tHcy ≥ 10 μmol/L had the highest odds of hypercholesterolemia (adjusted OR [95% CI]: 4.1 [1.8-9.4]; P = .001) and low-density lipoprotein cholesterol (adjusted OR [95% CI]: 2.4 [1.0-6.0]; P = .064). This study suggests that both tHcy and the MTHFR C677T gene polymorphism may be important determinants of the incidence of dyslipidemia in Chinese patients with essential hypertension. Further studies are needed to confirm the role of tHcy and the MTHFR C677T mutation in the development of dyslipidemia in a larger sample.

  5. Homocysteine and the C677T Gene Polymorphism of Its Key Metabolic Enzyme MTHFR Are Risk Factors of Early Renal Damage in Hypertension in a Chinese Han Population

    PubMed Central

    Yun, Lin; Xu, Rui; Li, Guohua; Yao, Yucai; Li, Jiamin; Cong, Dehong; Xu, Xingshun; Zhang, Lihua

    2015-01-01

    Abstract The combined hyperhomocysteinemia condition is a feature of the Chinese hypertensive population. This study used the case-control method to investigate the association between plasma homocysteine and the C677T gene polymorphism of its key metabolic enzyme, 5, 10-methylenetetrahydrofolate reductase (MTHFR), and early renal damage in a hypertensive Chinese Han population. A total of 379 adult essential hypertensive patients were selected as the study subjects. The personal information, clinical indicators, and the C677T gene polymorphism of MTHFR were texted. This study used the urine microalbumin/urine creatinine ratio (UACR) as a grouping basis: the hypertension without renal damage group (NRD group) and the hypertension combined with early renal damage group (ERD group). Early renal damage in the Chinese hypertensive population was associated with body weight, systolic pressure, diastolic pressure, urea nitrogen, serum creatinine, cystatin C, uric acid, aldosterone, and glomerular filtration rate. The homocysteine level and the UACR in the TT genotype group were higher than those in the CC genotype group. The binary logistic regression analysis results showed that after sex and age were adjusted, the MTHFR C677T gene polymorphism was correlated with early renal damage in hypertension in both the recessive model and in the additive model. Plasma homocysteine and the C677T gene polymorphism of its key metabolic enzyme MTHFR might be independent risk factors of early renal damage in the hypertensive Chinese Han population. PMID:26717388

  6. Homocysteine and the C677T Gene Polymorphism of Its Key Metabolic Enzyme MTHFR Are Risk Factors of Early Renal Damage in Hypertension in a Chinese Han Population.

    PubMed

    Yun, Lin; Xu, Rui; Li, Guohua; Yao, Yucai; Li, Jiamin; Cong, Dehong; Xu, Xingshun; Zhang, Lihua

    2015-12-01

    The combined hyperhomocysteinemia condition is a feature of the Chinese hypertensive population. This study used the case-control method to investigate the association between plasma homocysteine and the C677T gene polymorphism of its key metabolic enzyme, 5, 10-methylenetetrahydrofolate reductase (MTHFR), and early renal damage in a hypertensive Chinese Han population.A total of 379 adult essential hypertensive patients were selected as the study subjects. The personal information, clinical indicators, and the C677T gene polymorphism of MTHFR were texted. This study used the urine microalbumin/urine creatinine ratio (UACR) as a grouping basis: the hypertension without renal damage group (NRD group) and the hypertension combined with early renal damage group (ERD group).Early renal damage in the Chinese hypertensive population was associated with body weight, systolic pressure, diastolic pressure, urea nitrogen, serum creatinine, cystatin C, uric acid, aldosterone, and glomerular filtration rate. The homocysteine level and the UACR in the TT genotype group were higher than those in the CC genotype group. The binary logistic regression analysis results showed that after sex and age were adjusted, the MTHFR C677T gene polymorphism was correlated with early renal damage in hypertension in both the recessive model and in the additive model.Plasma homocysteine and the C677T gene polymorphism of its key metabolic enzyme MTHFR might be independent risk factors of early renal damage in the hypertensive Chinese Han population.

  7. The methylenetetrahydrofolate reductase (MTHFR) 677 C>T polymorphism increases the risk of developing chronic myeloid leukemia-a case-control study.

    PubMed

    Bănescu, Claudia; Iancu, Mihaela; Trifa, Adrian P; Macarie, Ioan; Dima, Delia; Dobreanu, Minodora

    2015-04-01

    The methylenetetrahydrofolate reductase (MTHFR) 677 C>T and 1298 A>C polymorphisms are associated with variations in folate levels, a phenomenon linked to the development of various malignancies. The aim of this study was to investigate the influence of the 677 C>T and 1298 A>C polymorphisms in the MTHFR gene on the risk of developing chronic myeloid leukemia (CML). Our study included 151 patients with CML and 305 controls. The MTHFR 677 C>T and 1298 A>C polymorphisms were investigated by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) and allele-specific PCR techniques. The CT and TT genotypes of the MTHFR 677 C>T polymorphism were associated with an increased risk of developing CML (odds ratio (OR) = 1.556, 95% confidence interval (CI) = 1.017-2.381, p value = 0.041, and OR = 1.897, 95% CI = 1.046-3.44, p value = 0.035, respectively). No association was observed between the prognostic factors (blasts, basophils, additional chromosomal abnormalities, EUTOS score, Sokal and Hasford risk groups) and the MTHFR 677 C>T and 1298 A>C variant genotypes in CML patients. Our study shows that the MTHFR 677 C>T polymorphism is significantly associated with the risk of CML in Romanian patients.

  8. Combined genotype and haplotype distributions of MTHFR C677T and A1298C polymorphisms

    PubMed Central

    Fan, Shujun; Yang, Boyi; Zhi, Xueyuan; Wang, Yanxun; Zheng, Quanmei; Sun, Guifan

    2016-01-01

    Abstract Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms are, independently and/or in combination, associated with many disorders. However, data on the combined genotype and haplotype distributions of the 2 polymorphisms in Chinese population were limited. We recruited 13,473 adult women from 9 Chinese provinces, collected buccal cell samples, and determined genotypes, to estimate the combined genotype and haplotype distributions of the MTHFR C677T and A1298C polymorphisms. In the total sample, the 6 common combined genotypes were CT/AA (29.5%), TT/AA (21.9%), CC/AA (15.4%), CC/AC (14.9%), CT/AC (13.7%), and CC/CC (3.4%); the 3 frequent haplotypes were 677T-1298A (43.6%), 677C-1298A (37.9%), and 677C-1298C (17.6%). Importantly, we observed that there were 51 (0.4%) individuals with the CT/CC genotype, 92 (0.7%) with the TT/AC genotype, 17 (0.1%) with the TT/CC genotype, and that the frequency of the 677T-1298C haplotype was 0.9%. In addition, the prevalence of some combined genotypes and haplotypes varied among populations residing in different areas and even showed apparent geographical gradients. Further linkage disequilibrium analysis showed that the D’ and r2 values were 0.883 and 0.143, respectively. In summary, the findings of our study provide further strong evidence that the MTHFR C677T and A1298C polymorphisms are usually in trans and occasionally in cis configurations. The frequencies of mutant genotype combinations were relatively higher in Chinese population than other populations, and showed geographical variations. These baseline data would be useful for future related studies and for developing health management programs. PMID:27902594

  9. Association between methylenetetrahydrofolate reductase C677T polymorphism and epilepsy susceptibility: a meta-analysis.

    PubMed

    Wu, Yi-Le; Yang, Hui-Yun; Ding, Xiu-Xiu; Zhao, Xue; Chen, Jian; Bi, Peng; Sun, Ye-Huan

    2014-06-01

    Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism has been implicated as a potential risk factor for epilepsy. To date, many case-control studies have investigated the association between MTHFR C677T polymorphism and epilepsy susceptibility. However, those findings were inconsistent. The objective of this study is to evaluate the precise association between MTHFR C677T polymorphism and epilepsy. An electronic search of PubMed, EMBASE for papers on the MTHFR C677T polymorphism and epilepsy susceptibility was performed. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the association. Ten case-control studies containing 1713 cases and 1867 controls regarding MTHFR C677T polymorphism were selected. A significant association between the MTHFR C677T polymorphism and epilepsy susceptibility was revealed in this meta-analysis (for T vs. C: OR=1.19, 95% CI=1.08-1.32; for TT+CT vs. CC: OR=1.20, 95% CI=1.05-1.38; for TT vs. CC: OR=1.48, 95% CI=1.20-1.83; for TT vs. CT+CC: OR=1.35, 95% CI=1.12-1.64). In subgroup analysis by ethnicity, the results also indicated the association between the MTHFR C677T polymorphism and epilepsy susceptibility within the Asian populations (for T vs. C: OR=1.55, 95% CI=1.15-2.07; for TT+CT vs. CC: OR=1.67, 95% CI=1.08-2.59; for TT vs. CC: OR=2.33, 95% CI=1.30-4.20; for TT vs. CT+CC: OR=1.89, 95% CI=1.12-3.18). The results indicated that MTHFR C677T polymorphism was associated with an increased risk of epilepsy. However, further studies in various regions are needed to confirm the findings from this meta-analysis. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  10. The association between MTHFR 677C>T genotype and folate status and genomic and gene-specific DNA methylation in the colon of individuals without colorectal neoplasia.

    PubMed

    Hanks, Joanna; Ayed, Iyeman; Kukreja, Neil; Rogers, Chris; Harris, Jessica; Gheorghiu, Alina; Liu, Chee Ling; Emery, Peter; Pufulete, Maria

    2013-12-01

    Decreased genomic and increased gene-specific DNA methylation predispose to colorectal cancer. Dietary folate intake and the methylenetetrahydrofolate reductase polymorphism (MTHFR 677C>T) may influence risk by modifying DNA methylation. We investigated the associations between MTHFR 677C>T genotype, folate status, and DNA methylation in the colon. We conducted a cross-sectional study of 336 men and women (age 19-92 y) in the United Kingdom without colorectal neoplasia. We obtained blood samples for measurement of serum and red blood cell folate, plasma homocysteine, and MTHFR 677C>T genotype and colonic tissue biopsies for measurement of colonic tissue folate and DNA methylation (genomic- and gene-specific, estrogen receptor 1, ESR1; myoblast determination protein 1, MYOD1; insulin-like growth factor II, IGF2; tumor suppressor candidate 33, N33; adenomatous polyposis coli, APC; mut-L homolog 1, MLH1; and O(6)-methylguanine-DNA methyltransferase, MGMT) by liquid chromatography/electrospray ionization mass spectrometry and pyrosequencing, respectively. Of the 336 subjects recruited, 185 (55%) carried the CC, 119 (35%) the CT, and 32 (10%) the TT alleles. No significant differences in systemic markers of folate status and colonic tissue folate between genotypes were found. The MTHFR TT genotype was not associated with genomic or gene-specific DNA methylation. Biomarkers of folate status were not associated with genomic DNA methylation. Relations between biomarkers of folate status and gene-specific methylation were inconsistent. However, low serum folate was associated with high MGMT methylation (P = 0.001). MTHFR 677C>T genotype and folate status were generally not associated with DNA methylation in the colon of a folate-replete population without neoplasia.

  11. MTHFR C677T gene polymorphism and head and neck cancer risk: a meta-analysis based on 23 publications.

    PubMed

    Niu, Yu-Ming; Deng, Mo-Hong; Chen, Wen; Zeng, Xian-Tao; Luo, Jie

    2015-01-01

    Conflicting results on the association between MTHFR polymorphism and head and neck cancer (HNC) risk were reported. We therefore performed a meta-analysis to derive a more precise relationship between MTHFR C677T polymorphism and HNC risk. Three online databases of PubMed, Embase, and CNKI were researched on the associations between MTHFR C677T polymorphism and HNC risk. Twenty-three published case-control studies involving 4,955 cases and 8,805 controls were collected. Odds ratios (ORs) with 95% confidence interval (CI) were used to evaluate the relationship between MTHFR C677T polymorphism and HNC risk. Sensitivity analysis, cumulative analyses, and publication bias were conducted to validate the strength of the results. Overall, no significant association between MTHFR C677T polymorphism and HNC risk was found in this meta-analysis (T versus C: OR = 1.04, 95% CI = 0.92-1.18; TT versus CC: OR = 1.15, 95% CI = 0.90-1.46; CT versus CC: OR = 1.00, 95% CI = 0.85-1.17; CT + TT versus CC: OR = 1.01, 95% CI = 0.87-1.18; TT versus CC + CT: OR = 1.11, 95% CI = 0.98-1.26). In the subgroup analysis by HWE, ethnicity, study design, cancer location, and negative significant associations were detected in almost all genetic models, except for few significant risks that were found in thyroid cancer. This meta-analysis demonstrates that MTHFR C677T polymorphism may not be a risk factor for the developing of HNC.

  12. The methylenetetrahydrofolate reductase 677T-1298C haplotype is a risk factor for acute lymphoblastic leukemia in children

    PubMed Central

    Kałużna, Ewelina Maria; Strauss, Ewa; Świątek-Kościelna, Bogna; Zając-Spychała, Olga; Gowin, Ewelina; Nowak, Jerzy S.; Rembowska, Jolanta; Januszkiewicz-Lewandowska, Danuta

    2017-01-01

    Abstract The etiology of acute lymphoblastic leukemia (ALL) is complex, linked with both environmental exposures and genetic factors. Functional variants of the methylenetetrahydrofolate reductase (MTHFR) gene result in disturbance in folate metabolism and may affect susceptibility to cancer. The study was performed to evaluate whether MTHFR C677T and A1298C polymorphisms, analyzed separately and together, are associated with the development of ALL in a population under 18 years of age of Caucasian ancestry. The study included 117 pediatric patients (59% males, mean age at diagnosis 7.4 ± 5.2 years) with ALL, confirmed by conventional immunophenotyping surface-marker analysis and 404 healthy control subjects (48.5% men, mean age 37.7 ± 11.3 years). The MTHFR C677T and A1298C genotypes were analyzed using allele discrimination tests with Taq-Man fluorescent probes. The MTHFR 677TT genotype was related to a 2-fold increase in risk of ALL (P = .014). The 677T-1298C haplotype was found in ALL patients but not in controls (frequency 0.598%; P <.0001). The observed frequency of carriers of this rare haplotype was 12%, including 677CT/1298CC (1.7%), 677TT/1298AC (6.0%), and 677CT/1298AC (4.3%) genotypes. The MTHFR 677T allele alone or in combination with the MTHFR 1298C allele significantly increases the risk of development of ALL in Polish population under 18 years of age. Further studies of haplotype composition in subjects with the 677CT/1298AC genotype are necessary to assess the risk of childhood ALL. PMID:29390492

  13. Creatine kinase MM TaqI and methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms influence exercise-induced C-reactive protein levels.

    PubMed

    Miranda-Vilela, Ana Luisa; Akimoto, Arthur K; Lordelo, Graciana S; Pereira, Luiz C S; Grisolia, Cesar K; Klautau-Guimarães, Maria de Nazaré

    2012-01-01

    Physical training induces beneficial adaptations, but exhausting exercise increases reactive oxygen species, which can cause muscular injuries with consequent inflammatory processes, implying jeopardized performance and possibly overtraining. Acute strenuous exercise almost certainly exceeds the benefits of physical activity; it can compromise performance and may contribute to increased future risk of cardiovascular disease (CVD) in athletes. Polymorphisms in the muscle-type creatine kinase (CK-MM) gene may influence performance and adaptation to training, while many potentially significant genetic variants are reported as risk factors for CVD. Therefore, we investigated the influence of polymorphisms in CK-MM TaqI and NcoI, methylenetetrahydrofolate reductase (MTHFR C677T and A1298C) and C-reactive protein (CRP G1059C) genes on exercise-induced damage and inflammation markers. Blood samples were taken immediately after a race (of at least 4 km) that took place outdoors on flat tracks, and were submitted to genotyping and biochemical evaluation of aspartate aminotransferase (AST), CK, CRP and high-sensitivity CRP (hs-CRP). CK-MM TaqI polymorphism significantly influenced results of AST, CK and hs-CRP, and an association between MTHFR C677T and A1298C with CRP level was found, although these levels did not exceed reference values. Results indicate that these polymorphisms can indirectly influence performance, contribute to higher susceptibility to exercise-induced inflammation or protection against it, and perhaps affect future risks of CVD in athletes.

  14. Creatine kinase MM TaqI and methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms influence exercise-induced C-reactive protein levels.

    PubMed

    Miranda-Vilela, Ana Luisa; Akimoto, Arthur K; Lordelo, Graciana S; Pereira, Luiz C S; Grisolia, Cesar K; Klautau-Guimarães, Maria de Nazaré

    2012-03-01

    Physical training induces beneficial adaptations, but exhausting exercise increases reactive oxygen species, which can cause muscular injuries with consequent inflammatory processes, implying jeopardized performance and possibly overtraining. Acute strenuous exercise almost certainly exceeds the benefits of physical activity; it can compromise performance and may contribute to increased future risk of cardiovascular disease (CVD) in athletes. Polymorphisms in the muscle-type creatine kinase (CK-MM) gene may influence performance and adaptation to training, while many potentially significant genetic variants are reported as risk factors for CVD. Therefore, we investigated the influence of polymorphisms in CK-MM TaqI and NcoI, methylenetetrahydrofolate reductase (MTHFR C677T and A1298C) and C-reactive protein (CRP G1059C) genes on exercise-induced damage and inflammation markers. Blood samples were taken immediately after a race (of at least 4 km) that took place outdoors on flat tracks, and were submitted to genotyping and biochemical evaluation of aspartate aminotransferase (AST), CK, CRP and high-sensitivity CRP (hs-CRP). CK-MM TaqI polymorphism significantly influenced results of AST, CK and hs-CRP, and an association between MTHFR C677T and A1298C with CRP level was found, although these levels did not exceed reference values. The results indicate that these polymorphisms can indirectly influence performance, contribute to higher susceptibility to exercise-induced inflammation or protection against it, and perhaps affect future risks of CVD in athletes.

  15. Lack of association between MTHFR C677T and A1298C polymorphisms and risk of childhood acute lymphoblastic leukemia in the Kurdish population from Western Iran.

    PubMed

    Azhar, Mohammad-Reza; Rahimi, Zohreh; Vaisi-Raygani, Asad; Akramipour, Reza; Madani, Hamid; Rahimi, Ziba; Parsian, Abbas

    2012-03-01

    Polymorphism in genes involved in folate metabolism may influence the susceptibility to acute lymphoblastic leukemia (ALL). The aim of the present study was to determine the role of the two most common polymorphisms of the 5, 10-methylenetetrahydrofolate reductase (MTHFR) gene, MTHFR C677T and A1298C, and their interaction on the susceptibility to ALL. Seventy-two children with ALL and 109 age- and sex-matched healthy children from Western Iran were screened for MTHFR C677T and A1298C variants by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The frequencies of MTHFR 677T and 1298C alleles in patients were 29.9% and 43.1%, respectively, that were higher than those in controls (24.8% and 38.1%, respectively). Logistic regression analysis was performed and its result in the odds ratios (ORs) for possession of either MTHFR 677T or 1298C allele was found to be 1.98 [95% confidence interval (CI) 0.72-5.4, p = 0.18] and 1.48 (95% CI 0.59-3.69, p = 0.4), respectively. Also the concomitant presence of both MTHFR 677T and 1298C alleles was not associated with the risk of ALL [OR = 2.12 (95% CI 0.8-5.7, p = 0.13)]. Our results in a homogenous population with Kurdish ethnic background indicated that neither the MTHFR 677T allele nor the MTHFR 1298C allele is associated with increased risk of ALL.

  16. Association between methylenetetrahydrofolate reductase polymorphism C677T and risk of chronic myeloid leukemia in Serbian population.

    PubMed

    Jakovljevic, Ksenija; Malisic, Emina; Cavic, Milena; Radulovic, Sinisa; Jankovic, Radmila

    2012-07-01

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme regulating the intracellular folate metabolism which plays an important role in carcinogenesis through DNA methylation and nucleotide synthesis. The common MTHFR single nucleotide polymorphism C677T has been reported to be associated with reduced enzymatic activity. In order to investigate the influence of this polymorphism on the risk of chronic myeloid leukemia (CML), we performed a case-control study in a Serbian population of 52 patients with CML and 53 healthy control subjects. MTHFR C677T polymorphism genotyping was assessed using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The results demonstrated no statistical difference in MTHFR 677 frequency distribution between patient and control groups. Our findings suggest that MTHFR 677 gene variants have no significant influence on the susceptibility to CML in a Serbian population.

  17. Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms and the risk of primary Hepatocellular Carcinoma (HCC) in a Chinese population

    PubMed Central

    Cao, Wei; Zhang, Zuo-Feng; Cai, Lin; Jiang, Qing-Wu; You, Nai-Chieh; Goldstein, Binh Yang; Wei, Guo-Rong; Chen, Chuan-Wei; Lu, Qing-Yi; Zhou, Xue-Fu; Ding, Bao-Guo; Chang, Jun; Yu, Shun-Zhang

    2014-01-01

    Objectives Methylenetetrahydrofolate reductase (MTHFR), which is expressed in the liver, may be involved in both DNA methylation and DNA synthesis. It is also indicated as a potential risk factor of liver cancer in patients with chronic liver disease. To date, no study has been conducted on MTHFR and hepatocellular carcinoma (HCC) using a population-based design. The objective of this study was to evaluate the effects of polymorphisms of the MTHFR gene on the risk of primary liver cancer and their possible effect modifications on various environmental risk factors. Methods A population-based case–control study was conducted in Taixing, China. MTHFR C677T and A1298C were assayed by PCR-RFLP techniques. Results The frequency of MTHFR 677 C/C wild homo-zygotes genotype was 25.8% in cases, which was lower than that in controls (34.5%). The adjusted odds ratios (ORs) for the MTHFR 677 C/T and T/T genotype were 1.66(95% CI: 1.06–2.61), 1.21(95% CI: 0.65–2.28) respectively when compared with the MTHFR 677 C/C genotype. Subjects carrying any T genotype have the increased risk of 1.55(95% CI: 1.01–2.40) for development of primary hepatocellular carcinoma. A high degree of linkage disequilibrium was observed between the C677T and A1298C polymorphisms, with the D′ of 0.887 and p < 0.01. The MTHFR 677 any T genotype was suggested to have potentially more than multiplicative interactions with raw water drinking with p-value for adjusted interaction of 0.03. Conclusion We observed that the MTHFR 677 C/T genotype was associated with an increased risk of primary liver cancer in a Chinese population. The polymorphism of MTHFR 677 might modify the effects of raw water drinking on the risk of primary hepatocellular carcinoma. PMID:17503006

  18. Association between MTHFR C677T polymorphism and depression: a meta-analysis in the Chinese population.

    PubMed

    Jiang, Wei; Xu, Jun; Lu, Xiao-Jie; Sun, Yang

    2016-09-01

    Depression is a worldwide public health issue, and its prevalence increases each year. Although a number of studies have been conducted on the association between MTHFR C677T polymorphism and depression in China, this association remains elusive and controversial. To clarify the impact of MTHFR C677T polymorphism on the risk of depression, a meta-analysis was performed in the Chinese population. Relevant studies were identified using PubMed, Springer Link, Ovid, Chinese Wanfang Data Knowledge Service Platform, Chinese National Knowledge Infrastructure and Chinese Biology Medicine through May 5, 2015. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the associations. A total of 13 case-control studies including 1895 patients and 1913 controls were involved in this meta-analysis. Overall, T variant of MTHFR C677T gene polymorphism was significantly associated with an increased risk of depression in the Chinese population (T vs. C: OR = 1.52, 95% CI = 1.24-1.85; TT + CT vs. CC: OR = 1.64, 95% CI = 1.16-2.30; TT vs. CC: OR = 2.19, 95% CI = 1.49-3.24; TT vs. CC + CT: OR = 1.80, 95% CI = 1.31-2.46). In subgroup analyses stratified by geographic area and source of controls, the significant results were found in population-based studies, in hospital-based studies, in North and South China. The risk conferred by MTHFR C677T polymorphism is higher in North China than in South China. In conclusion, this meta-analysis suggests that MTHFR C677T polymorphism is associated with depression in the Chinese population, but these associations vary in different geographic locations.

  19. The methylenetetrahydrofolate reductase 677T-1298C haplotype is a risk factor for acute lymphoblastic leukemia in children.

    PubMed

    Kałużna, Ewelina Maria; Strauss, Ewa; Świątek-Kościelna, Bogna; Zając-Spychała, Olga; Gowin, Ewelina; Nowak, Jerzy S; Rembowska, Jolanta; Januszkiewicz-Lewandowska, Danuta

    2017-12-01

    The etiology of acute lymphoblastic leukemia (ALL) is complex, linked with both environmental exposures and genetic factors. Functional variants of the methylenetetrahydrofolate reductase (MTHFR) gene result in disturbance in folate metabolism and may affect susceptibility to cancer. The study was performed to evaluate whether MTHFR C677T and A1298C polymorphisms, analyzed separately and together, are associated with the development of ALL in a population under 18 years of age of Caucasian ancestry.The study included 117 pediatric patients (59% males, mean age at diagnosis 7.4 ± 5.2 years) with ALL, confirmed by conventional immunophenotyping surface-marker analysis and 404 healthy control subjects (48.5% men, mean age 37.7 ± 11.3 years). The MTHFR C677T and A1298C genotypes were analyzed using allele discrimination tests with Taq-Man fluorescent probes.The MTHFR 677TT genotype was related to a 2-fold increase in risk of ALL (P = .014). The 677T-1298C haplotype was found in ALL patients but not in controls (frequency 0.598%; P <.0001). The observed frequency of carriers of this rare haplotype was 12%, including 677CT/1298CC (1.7%), 677TT/1298AC (6.0%), and 677CT/1298AC (4.3%) genotypes.The MTHFR 677T allele alone or in combination with the MTHFR 1298C allele significantly increases the risk of development of ALL in Polish population under 18 years of age. Further studies of haplotype composition in subjects with the 677CT/1298AC genotype are necessary to assess the risk of childhood ALL. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  20. Folate restriction and methylenetetrahydrofolate reductase 677T polymorphism decreases adoMet synthesis via folate-dependent remethylation in human-transformed lymphoblasts.

    PubMed

    Chiang, E-P; Wang, Y-C; Tang, F-Y

    2007-04-01

    The homozygous mutation (677TT) in the methylenetetrahydrofolate reductase (MTHFR) gene reduces enzyme activity and alters cellular folate composition. Previous epidemiological studies reported a potential protective effect of MTHFR677C --> T against acute lymphocytic leukemia and malignant lymphoma, but the mechanism remains to be determined. We investigated the biochemical impacts of MTHFR677C --> T on cellular S-adenosyl methionine (adoMet) synthesis, global DNA methylation, and de novo purine synthesis, all of which are potential regulatory pathways involved in tumorigenesis. Metabolic fluxes of homocysteine remethylation and de novo purine synthesis were compared between Epstein-Barr virus-transformed lymphoblasts expressing MTHFR 677C and MTHFR 677T using stable isotopic tracers and GCMS. MTHFR TT genotype significantly reduced folate-dependent remethylation under folate restriction, reflecting limited methylated folates under folate restriction. Data also suggested increased formylated folate pool and increased purine synthesis when folate is adequate. The impacts of MTHFR 677T polymorphism appeared closely related to folate status, and such alterations may modulate metabolic pathways involved in cancer onset/progression. The advantage of de novo purine synthesis found in the MTHFR TT genotype may account for the protective effect of MTHFR in hematological malignancies. These transformed cells are potential models for studying the consequences of human genetic variation and cancer pathogenesis.

  1. The association between methylenetetrahydrofolate reductase C677 > T polymorphisms and risk of pediatric acute lymphoblastic leukemia in Asia.

    PubMed

    Lin, Shiguang; Liu, Qin; Zeng, Xiaoming

    2014-11-01

    The association between methylenetetrahydrofolate reductase (MTHFR) C677 > T polymorphisms and pediatric acute lymphoblastic leukemia (ALL) risk in Asia is controversial. The aim of this meta-analysis was to further assess the relationship between MTHFR C677 > T polymorphisms and pediatric ALL for Chinese children. Studies about the MTHFR C677 > T polymorphisms and pediatric ALL risk were searched in the Medline, PubMed, EMBASE, Wanfang and CNIK databases. The genotype of the case and control group were extracted and pooled by meta-analysis. The association between ALL risk and C677 > T polymorphisms was demonstrated by odds ratio (OR) and its 95% confidence interval (CI). Twelve articles were included in this study with 1803 ALL cases and 4146 controls. In recessive genetic model (TT vs. CC + CT), the OR was 0.37 (95%CI: 0.31-0.43); in dominant genetic model (TT + CT vs. CC) the OR was 0.94 (95%CI: 0.82-1.06); and in the homozygous model the OR was 0.84 (95%CI: 0.69-1.03). The results indicated that Asian children with TT genotype of MTHFR gene may have less risk of developing ALL.

  2. Role of Hyperhomocysteinemia and Methylene Tetrahydrofolate Reductase C677T Polymorphism in Idiopathic Portal Vein Thrombosis

    PubMed Central

    Ghaznavi, Habib; Soheili, Zahra; Samiei, Shahram; Soltanpour, Mohammad Soleiman

    2016-01-01

    Purpose: Portal vein thrombosis (PVT) is a rare and life-threatening vascular disorder characterized by obstruction or narrowing of the portal vein. Hyperhomocysteinemia and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism has been studied in PVT patients with conflicting results. In the present study the association of hyperhomocysteinemia and MTHFR C677T polymorphism with PVT risk was investigated in Iranians. Materials and Methods: Our study population consisted of 10 idiopathic PVT patients and 80 healthy control subjects matched for age and sex. MTHFR C677T polymorphism was genotyped by the polymerase chain reaction technique combined with restriction enzyme fragment length polymorphism (PCR-RFLP) technique and plasma total homocysteine (tHcy) levels were determined by enzyme immunoassay method. Results: Mean plasma tHcy levels were significantly higher in PVT patients (20.2±6.8) than control subjects (10.9±4.7) (P=0.001). Moreover, plasma tHcy levels were significantly higher in 677T allele carriers relative to 677C allele carriers in both PVT patients (P=0.01) and control subjects (P=0.03). Neither homozygote nor heterozygote genotypes of MTHFR C677T polymorphism correlated significantly with PVT risk (P>0.05). Moreover, MTHFR C677T polymorphism didn’t increase the risk of PVT under dominant (CT+TT vs. CC) or recessive (TT vs. CC+CT) genetic models analyzed (P>0.05). The difference in frequency of minor 677T allele between PVT patients and control subjects was not statistically significant (P>0.05). Conclusion: Based on the current study, we suggest that hyperhomocysteinemia constitutes a significant and common risk factor for PVT. Also, MTHFR C677T polymorphism is not a risk factor for PVT but is a contributing factor for elevated plasma tHcy levels. PMID:27051654

  3. Role of Hyperhomocysteinemia and Methylene Tetrahydrofolate Reductase C677T Polymorphism in Idiopathic Portal Vein Thrombosis.

    PubMed

    Ghaznavi, Habib; Soheili, Zahra; Samiei, Shahram; Soltanpour, Mohammad Soleiman

    2016-03-01

    Portal vein thrombosis (PVT) is a rare and life-threatening vascular disorder characterized by obstruction or narrowing of the portal vein. Hyperhomocysteinemia and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism has been studied in PVT patients with conflicting results. In the present study the association of hyperhomocysteinemia and MTHFR C677T polymorphism with PVT risk was investigated in Iranians. Our study population consisted of 10 idiopathic PVT patients and 80 healthy control subjects matched for age and sex. MTHFR C677T polymorphism was genotyped by the polymerase chain reaction technique combined with restriction enzyme fragment length polymorphism (PCR-RFLP) technique and plasma total homocysteine (tHcy) levels were determined by enzyme immunoassay method. Mean plasma tHcy levels were significantly higher in PVT patients (20.2±6.8) than control subjects (10.9±4.7) (P=0.001). Moreover, plasma tHcy levels were significantly higher in 677T allele carriers relative to 677C allele carriers in both PVT patients (P=0.01) and control subjects (P=0.03). Neither homozygote nor heterozygote genotypes of MTHFR C677T polymorphism correlated significantly with PVT risk (P>0.05). Moreover, MTHFR C677T polymorphism didn't increase the risk of PVT under dominant (CT+TT vs. CC) or recessive (TT vs. CC+CT) genetic models analyzed (P>0.05). The difference in frequency of minor 677T allele between PVT patients and control subjects was not statistically significant (P>0.05). Based on the current study, we suggest that hyperhomocysteinemia constitutes a significant and common risk factor for PVT. Also, MTHFR C677T polymorphism is not a risk factor for PVT but is a contributing factor for elevated plasma tHcy levels.

  4. Methylenetetrahydrofolate reductase C677T polymorphism in patients with lung cancer in a Korean population

    PubMed Central

    2011-01-01

    Background This study was designed to investigate an association between methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and the risk of lung cancer in a Korean population. Methods We conducted a large-scale, case-control study involving 3938 patients with newly diagnosed lung cancer and 1700 healthy controls. Genotyping was performed with peripheral blood DNA for MTHFR C677T polymorphisms. Statistical significance was estimated by logistic regression analysis. Results The MTHFR C677T frequencies of CC, CT, and TT genotypes were 34.5%, 48.5%, and 17% among lung cancer patients, and 31.8%, 50.7%, and 17.5% in the controls, respectively. The MTHFR 677CT and TT genotype showed a weak protection against lung cancer compared with the homozygous CC genotype, although the results did not reach statistical significance. The age- and gender-adjusted odds ratio (OR) of overall lung cancer was 0.90 (95% confidence interval (CI), 0.77-1.04) for MTHFR 677 CT and 0.88 (95% CI, 0.71-1.07) for MTHFR 677TT. However, after stratification analysis by histological type, the MTHFR 677CT genotype showed a significantly decreased risk for squamous cell carcinoma (age- and gender-adjusted OR, 0.78; 95% CI, 0.64-0.96). The combination of 677 TT homozygous with 677 CT heterozygous also appeared to have a protection effect on the risk of squamous cell carcinoma. We observed no significant interaction between the MTHFR C677T polymorphism and age and gender or smoking habit. Conclusions This is the first reported study focusing on the association between MTHFR C677T polymorphisms and the risk of lung cancer in a Korean population. The T allele was found to provide a weak protective association with lung squamous cell carcinoma. PMID:21342495

  5. Methylenetetrahydrofolate reductase C677T genetic polymorphisms and risk of leukaemia among the North Indian population.

    PubMed

    Hussain, Syed Rizwan; Naqvi, Hena; Raza, Syed Tasleem; Ahmed, Faisal; Babu, Sunil G; Kumar, Ashutosh; Zaidi, Zeashan Haider; Mahdi, Farzana

    2012-08-01

    Leukaemia is a heterogeneous disease in which haematopoietic progenitor cells acquire genetic lesions that lead to a block in differentiation, increased self-renewal, and unregulated proliferation. The enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR), involved in folate metabolism, plays a crucial role in cells because folate availability is important for DNA integrity. The aim of this case-control study was to evaluate the association of the C677T MTHFR gene polymorphism with acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL), chronic myeloid leukaemia (CML) and chronic lymphocytic leukaemia (CLL). A total of 275 leukaemia cases - including AML (n = 112), ALL (n = 81), CML (n = 43), CLL (n = 39) - and 251 age/sex-matched healthy control individuals participated in this study. MTHFR C677T polymorphisms in the cases and controls were evaluated by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). The average MTHFR 677CC, 677CT, 677TT genotype frequencies of total leukaemia cases were 68.73%, 19.64%, and 11.64% in cases, and 71.71%, 24.30%, and 3.98% in healthy controls, respectively. The average frequency of the MTHFR 677T allele was 21.45% among the cases compared to 16.13% among the controls. In the present case-control study we have observed a higher frequency of the MTHFR 677TT genotype in cases of leukaemia (AML, ALL, CML and CLL) as compared with controls; this might be due to ethnic and geographic variation. As per our findings, although the frequency of the MTHFR 677T allele is moderately high in AML, ALL and CLL, no statistically significant association was found; on the other hand statistically significant association was found in the context of CML cases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. [Study on the association between 5,10-methylenetrahydrofolate reductase C677T polymorphism and acute lymphoblastic leukemia risk: a Meta-analysis].

    PubMed

    Li, Xiao-lei; Yu, Feng; Zhang, Yong; Qiu, Jin-chun; Liu, Si-ting; Liao, Qing-chuan

    2011-10-01

    To evaluate the association between polymorphism of 5,10-methylenetrahydrofolate reductase C677T and risk of acute lymphoblastic leukemia (ALL). Electronic search strategy was carried out among the databases from home and abroad to collect qualified research papers, according to the inclusion and exclusion criteria. Data on case-control studies on association between MTHFR C677T polymorphism and susceptibility to ALL were collected and analyzed by models of TT vs. CC + CT or TT vs. CC through Meta-analysis. Stratified analysis was carried out according to different age groups (children or adult). In systematical analysis, the pooled odds ratios of MTHFR C677T genetype TT vs. CC + CT or TT vs. CC were 0.87 (0.69 - 1.09) and 0.82 (0.63 - 1.06) respectively; in children's group, the pooled odds ratios of MTHFR C677T genetype TT vs. CC + CT or TT vs. CC were 0.92 (0.79 - 1.08), 0.88 (0.75 - 1.05) while in adult group, the pooled odds ratios of MTHFR C677T genetype TT vs. CC + CT or TT vs. CC were 0.45 (0.26 - 0.77), and 0.41 (0.22 - 0.72) respectively. The MTHFR gene 677T variant might not be associated with the risk of children's ALL but might be associated with a reduced risk on adult's ALL.

  7. Role of genetic mutations in folate-related enzyme genes on Male Infertility

    PubMed Central

    Liu, Kang; Zhao, Ruizhe; Shen, Min; Ye, Jiaxin; Li, Xiao; Huang, Yuan; Hua, Lixin; Wang, Zengjun; Li, Jie

    2015-01-01

    Several studies showed that the genetic mutations in the folate-related enzyme genes might be associated with male infertility; however, the results were still inconsistent. We performed a meta-analysis with trial sequential analysis to investigate the associations between the MTHFR C677T, MTHFR A1298C, MTR A2756G, MTRR A66G mutations and the MTHFR haplotype with the risk of male infertility. Overall, a total of 37 studies were selected. Our meta-analysis showed that the MTHFR C677T mutation was a risk factor for male infertility in both azoospermia and oligoasthenoteratozoospermia patients, especially in Asian population. Men carrying the MTHFR TC haplotype were most liable to suffer infertility while those with CC haplotype had lowest risk. On the other hand, the MTHFR A1298C mutation was not related to male infertility. MTR A2756G and MTRR A66G were potential candidates in the pathogenesis of male infertility, but more case-control studies were required to avoid false-positive outcomes. All of these results were confirmed by the trial sequential analysis. Finally, our meta-analysis with trial sequential analysis proved that the genetic mutations in the folate-related enzyme genes played a significant role in male infertility. PMID:26549413

  8. Association of Methylenetetrahydrofolate Reductase C677T Polymorphism with Hyperhomocysteinemia and Deep Vein Thrombosis in the Iranian Population.

    PubMed

    Ghaznavi, Habib; Soheili, Zahra; Samiei, Shahram; Soltanpour, Mohammad Soleiman

    2015-12-01

    Deep venous thrombosis (DVT) is a common but elusive condition characterized by a high morbidity and mortality rate. The aim of the present study was to investigate the correlation between methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism with plasma total homocysteine (tHcy) levels and DVT risk in an Iranian population. Our study population consisted of 67 patients with a diagnosis of DVT and 67 healthy subjects as controls. Genotyping of MTHFR C677T polymorphism was performed by the polymerase chain reaction technique combined with restriction enzyme fragment length polymorphism (PCR-RFLP) and measurement of tHcy levels was done by enzyme immunoassay method. Plasma tHcy levels were significantly higher in DVT patients than controls (18.09±7.6 vs. 10.5±4.3, P=0.001). Also, plasma tHcy levels were significantly higher in MTHFR 677TT genotypes compared to 677CC genotypes in both DVT patients (P=0.016) and controls (P=0.03). Neither heterozygote nor homozygote genotypes of MTHFR C677T polymorphism was significantly correlated with DVT (P>0.05). The distribution of MTHFR C677T genotypes was similar between men and women in both DVT patients and controls (P>0.05). Moreover, the frequency of mutant 677T allele did not differ significantly between the two groups (28.3% vs. 21.6%, P=0.15). Based on this study, we propose that hyperhomocysteinemia but not homozygosity for MTHFR C677T polymorphism is a significant risk factor for DVT in the Iranian population. Also, MTHFR 677TT genotype is a determinant of elevated plasma tHcy levels.

  9. Synergistic effect of methyltetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphism as risk modifiers of pediatric acute lymphoblastic leukemia.

    PubMed

    Kamel, Azza M; Moussa, Heba S; Ebid, Gamal T; Bu, Rong R; Bhatia, Kishor G

    2007-06-01

    ALL is the most common pediatric cancer. The causes of the majority of pediatric acute leukemia are unknown and are likely to involve an interaction between genetic and environmental factors. Therefore, unfavourable gene-environmental interactions might be involved in the genesis of ALL. The aim of this work was to evaluate, in a case-control study, whether the common polymorphisms in 5, 10-methylenetetrahydrofolate reductase (MTHFR) namely (C677T and A1298C) and methionine synthase (MS) (A2756G) genes may play a role in altering susceptibility to pediatric ALL as individual genes and in combination. DNA of 88 ALL patients (age < or = 18 years) and 311 healthy control subjects was analyzed for the polymorphisms of MTHFR and MS genes using PCR-RFLP method. The frequencies of the wild types of MTHFR 677CC, MTHFR 1298AA and MS 2756AA, the homozygous genotypes of MTHFR 677TT, MTHFR 1298CC and MS 2756GG and heterozygous genotypes of MTHFR 677CT and MS 2756AG showed no statistically significant differences between patients and controls. The frequency of the MTHFR 1298AC heterozygous genotype was 25% among patients compared to 45.0% among controls; the difference was found to be statistically significant (p value =0.001, O.R=0.382 & 95% C.I=0.222-0.658). The frequency of the MTHFR1298AC heterozygous genotype plus 1298CC homozygous genotype was 34% among patients compared to 54.3% among controls and the difference was statistically significant (p value =0.001). A synergistic effect of 677CT and1298AC (CTAC) was observed, (p value=0.002) with 3.65 fold protection (OR 0.273 & 95% C.I=0.155-0.9) compared to 2.6 folds for MTHFR 1298AC alone. This protective effect of CTAC polymorphism was abolished when combined with MS 2756AA or AG. The present study provided further evidence for the protective role of MTHFR 1298AC mutant alleles in acute lymphoblastic leukemia in children (2.6 fold protection). This suggests that folate and methionine metabolism play an important role in the

  10. Human genetic selection on the MTHFR 677C>T polymorphism

    PubMed Central

    Mayor-Olea, Álvaro; Callejón, Gonzalo; Palomares, Arturo R; Jiménez, Ana J; Gaitán, María Jesús; Rodríguez, Alfonso; Ruiz, Maximiliano; Reyes-Engel, Armando

    2008-01-01

    Background The prevalence of genotypes of the 677C>T polymorphism for the MTHFR gene varies among humans. In previous studies, we found changes in the genotypic frequencies of this polymorphism in populations of different ages, suggesting that this could be caused by an increase in the intake of folate and multivitamins by women during the periconceptional period. The aim was to analyze changes in the allelic frequencies of this polymorphism in a Spanish population, including samples from spontaneous abortions (SA). Methods A total of 1305 subjects born in the 20th century were genotyped for the 677C>T polymorphism using allele specific real-time PCR with Taqman® probes. A section of our population (n = 276) born in 1980–1989 was compared with fetal samples (n = 344) from SA of unknown etiology from the same period. Results An increase in the frequency of the T allele (0.38 vs 0.47; p < 0.001) and of the TT genotype (0.14 vs 0.24; p < 0.001) in subjects born in the last quarter of the century was observed. In the 1980–1989 period, the results show that the frequency of the wild type genotype (CC) is about tenfold lower in the SA samples than in the controls (0.03 vs 0.33; p < 0.001) and that the frequency of the TT genotype increases in the controls (0.19 to 0.27) and in the SA samples (0.20 to 0.33 (p < 0.01)); r = 0.98. Conclusion Selection in favor of the T allele has been detected. This selection could be due to the increased fetal viability in early stages of embryonic development, as is deduced by the increase of mutants in both living and SA populations. PMID:19040733

  11. Methylenetetrahydrofolate reductase C677T and A1298C polymorphism and susceptibility to acute lymphoblastic leukemia in a cohort of Egyptian children.

    PubMed

    Mosaad, Youssef M; Abousamra, Nashwa K; Elashery, Rasha; Fawzy, Iman M; Eldein, Omar A Sharaf; Sherief, Doaa M; El Azab, Hend M M

    2015-01-01

    This case-control study was planned to investigate the possible role of methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms as a risk factor for the development of acute lymphoblastic leukemia (ALL) in a cohort of Egyptian children. Typing of MTHFR C677T and A1298C polymorphisms was done using restriction fragment length polymorphism (RFLP) for 100 children with ALL and 100 age- and sex-matched healthy controls. No significant differences were found between patients with ALL and controls for the frequency of MTHFR C677T and A1298C alleles, genotypes, combined genotypes or haplotypes. The C677T and A1298C genotype frequency was different from that in Korean and Chinese populations (p < 0.5) and was similar to that in British, French-Canadian and German-Caucasian populations (p > 0.5). Our findings suggest that MTHFR C677T and A1298C polymorphisms are unlikely to affect the development of childhood ALL in an Egyptian population from Delta.

  12. Association between the methylenetetrahydrofolate reductase c.677C>T polymorphism and bone mineral density: an updated meta-analysis.

    PubMed

    Li, Hong-Zhuo; Wang, Wei; Liu, Yi-Ling; He, Xiao-Feng

    2016-02-01

    Many studies have reported an association between the methylenetetrahydrofolate reductase (MTHFR) c.677C>T polymorphism and reduced bone mineral density (BMD), but results have been inconsistent. We, therefore, performed a meta-analysis to further explore this association. Twenty-one studies, comprising 33,045 subjects, analyzed the association of MTHFR c.677C>T with femoral neck BMD. Significant association with reduced BMD was observed in Caucasians (recessive model: WMD = -0.004 g/cm(2), 95 % CI -0.008 to -0.006), post-menopausal women (recessive model: WMD = -0.005 g/cm(2), 95 % CI -0.007 to -0.003), men (dominant model: WMD = -0.004 g/cm(2), 95 % CI -0.005 to -0.004; recessive model: WMD = -0.004 g/cm(2), 95 % CI -0.005 to -0.004; TT vs. CC: WMD = -0.006 g/cm(2), 95 % CI -0.006 to -0.006; CT vs. CC: WMD = -0.003 g/cm(2), 95 % CI -0.003 to -0.003), and cohort studies (recessive model: WMD = -0.003 g/cm(2), 95 % CI -0.006 to -0.001). Twenty-two studies, which included 32,271 subjects, analyzed the MTHFR c.677C>T association with lumbar spine BMD. Significant association with reduced BMD was observed in Caucasians, women, post-menopausal women, men, and cohort studies. Seven studies, comprising 6806 subjects, analyzed the MTHFR c.677C>T association with total hip BMD, but no significant association was observed in any population. Nine studies involving 5591 subjects analyzed the association with total body BMD. Significant association with reduced BMD was observed in overall and women subgroup analyses. In summary, this meta-analysis indicates that the MTHFR c.677C>T polymorphism is associated with reduced BMD in lumbar spine and femoral neck in Caucasians, post-menopausal women, and men, and with total body BMD in women. In addition, our results suggest that new studies examining the association between MTHFR c.677C>T polymorphism and BMD of lumbar spine and femoral neck in Asians is warranted, because I (2) > 75.0 % was observed.

  13. MTHFR 677C --> T genotype disrupts prefrontal function in schizophrenia through an interaction with COMT 158Val --> Met.

    PubMed

    Roffman, Joshua L; Gollub, Randy L; Calhoun, Vince D; Wassink, Thomas H; Weiss, Anthony P; Ho, Beng C; White, Tonya; Clark, Vincent P; Fries, Jill; Andreasen, Nancy C; Goff, Donald C; Manoach, Dara S

    2008-11-11

    Understanding how risk genes cumulatively impair brain function in schizophrenia could provide critical insights into its pathophysiology. Working memory impairment in schizophrenia has been associated with abnormal dopamine signaling in the prefrontal cortex, which is likely under complex genetic control. The catechol-O-methyltransferase (COMT) 158Val --> Met polymorphism (rs4680), which affects the availability of prefrontal dopamine signaling, consistently stratifies prefrontal activation during working memory performance. However, the low-dopamine COMT 158Val allele does not confer increased risk for schizophrenia, and its effects on prefrontal function are not specific to the disorder. In the setting of other genetic variants influencing prefrontal dopamine signaling, COMT 158Val --> Met genotype may exert disease-specific effects. A second polymorphism, methylenetetrahydrofolate reductase (MTHFR) 677C --> T (rs1801133), has been associated with overall schizophrenia risk and executive function impairment in patients, and may influence dopamine signaling through mechanisms upstream of COMT effects. We found that the hypofunctional 677T variant was associated with decreased working memory load-dependent activation in the prefrontal and insular cortices in 79 schizophrenia patients, but not in 75 demographically matched healthy controls. Further, significant MTHFR x COMT genotype interactions were observed, which differed by diagnostic group: Reduced prefrontal activation was associated with the 677T and 158Val alleles in patients, but with 677C/C and 158Met/Met genotype in controls. These findings are consistent with epistatic effects of the COMT and MTHFR polymorphisms on prefrontal dopamine signaling, and suggest that in schizophrenia patients, the MTHFR 677T allele exacerbates prefrontal dopamine deficiency. The findings also suggest the importance of weighing COMT effects on prefrontal function within the context of MTHFR genotype.

  14. Association between MTHFR C677T polymorphism and abdominal aortic aneurysm risk

    PubMed Central

    Liu, Jie; Jia, Xin; Li, Haifeng; Jia, Senhao; Zhang, Minhong; Xu, Yongle; Du, Xin; Zhang, Nianrong; Lu, Weihang; Guo, Wei

    2016-01-01

    Abstract Background: Abdominal aortic aneurysm (AAA) is a life-threatening condition. A number of studies reported the association between methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and AAA risk, but substantial controversial findings were observed and the strength of the association remains unclear. Objective: The aim of this study was to investigate the aforementioned association in the overall population and different subgroups. Methods: PUBMED and EMBASE databases were searched until March 2016 to identify eligible studies, restricted to humans and articles published in English. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the susceptibility to AAA. Subgroup meta-analyses were conducted on features of the population, such as ethnicity, sex of the participants, and study design (source of control). Results: Twelve case–control studies on MTHFR C677T polymorphism and AAA risk, including 3555 cases and 6568 case-free controls were identified. The results revealed no significant association between the MTHFR C677T polymorphism and AAA risk in the overall population and within Caucasian or Asian subpopulations in all 5 genetic models. Further subgroup meta-analysis indicated that significantly increased risks were observed among cases with a mean age <70 years (OR = 1.73, 95% CI = 1.10–2.12, P = 0.02), cases with prevalence of smoking <60% (OR = 1.39, 95% CI = 1.02–1.90, P = 0.04), and cases with aneurysm diameter ≥55 mm (OR = 1.55, 95% CI = 1.07–2.24, P = 0.02) in the dominant genetic model. No publication bias was detected in the present study. Conclusion: In conclusion, our comprehensive meta-analysis suggests that the MTHFR C677T polymorphism may play an important role in AAA susceptibility, especially in younger, non-smoking, larger AAA-diameter subgroups of patients PMID:27603386

  15. MTHFR gene C677T and A1298C polymorphisms and homocysteine levels in primary open angle and primary closed angle glaucoma

    PubMed Central

    Micheal, Shazia; Qamar, Raheel; Akhtar, Farah; Khan, Muhammad Imran; Khan, Wajid Ali

    2009-01-01

    Purpose To investigate the methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C genotypes and plasma concentrations of total homocysteine (tHcy) in Pakistani patients with primary open angle glaucoma (POAG) and primary closed angle glaucoma (PCAG). Methods This was a prospective case-control study. A total of 295 patients (173 POAG, 122 PCAG) and 143 age- and sex-matched controls were subdivided into two ethnic groups, Punjabis (Punjab province, central Pakistan) and Pathans (North-West Frontier Province, northern Pakistan). Genotypes of the MTHFR C677T and A1298C polymorphisms were detected by polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP). An enzyme-linked immunosorbent assay was used to determine the total serum homocysteine (tHcy) levels. Associations were determined by logistic regression analysis. Results Frequency distributions of genotypes and combined genotypes as well as homocysteine levels were obtained. The overall distribution of the C677T genotype was found to be significantly associated with PCAG (CC 69%, CT 21%, TT 10%; p=0.001, χ2=12.6), but not with POAG (CC 71%, CT 28%, TT 1%; p=0.98, χ2=0.02) as compared to the controls (CC 71%, CT 29%, TT 1%). The Pathan cohorts revealed no association with the disease; however, the Punjabis demonstrated a significant association with PCAG (CC 75%, CT 11%, TT 13%; p<0.001, χ2=17.2). PCAG in the Punjabi subjects was also significantly associated with the A1298C polymorphism (AA 43%, AC 54%, CC 3%; p<0.001, χ2=33.9) as compared to the controls. Combined genotype data showed no association with POAG; however, a significant association with all combined genotypes was observed in the overall PCAG subjects (p<0.05, χ2=20.1). This difference was particularly apparent in the TTAA and TTAC combinations that were completely absent in the control groups (p<0.05. χ2=49.6). Mean serum tHcy levels were found to be significantly increased in the POAG (15.2±1.28 µmol/l, p<0

  16. Methylenetetrahydrofolate Reductase (MTHFR) C677T Polymorphism and Alzheimer Disease Risk: a Meta-Analysis.

    PubMed

    Rai, Vandana

    2017-03-01

    Methylenetetrahydrofolate reductase (MTHFR) is key enzyme of folate/homocysteine pathway. Case control association studies on MTHFR C677T polymorphism and Alzheimer's disease (AD) have been repeatedly performed over the last two decades, but the results are inconclusive. The aim of the present study was to assess the risk of MTHFR C677T polymorphism for AD. Forty-one studies were identified by a search of PubMed, Google Scholar, Elsevier, and Springer Link databases, up to January 2015. Odds ratios (ORs) with corresponding 95 % confidence interval (CI) were calculated using fixed effect model or random effect model. The subgroup analyses based on ethnicity were performed. MTHFR C677T polymorphism had a significant association with susceptibility to AD in all genetic models (for T vs C OR = 1.29, 95 % CI = 1.07-1.56, p = 0.003; for TT + CT vs CC OR = 1.29, 95 % CI = 1.19-1.40, p = 0.0004; for TT vs CC OR = 1.31, 95 % CI = 1.16-1.48, p = 0.001; for CT vs CC OR = 1.24, 95 % CI = 1.13-1.35, p < 0.004; and for TT vs CT + CC OR = 1.13, 95 % CI = 1.00-1.28, p = 0.02). Results of present meta-analysis supported that the MTHFR C677T polymorphism was associated with an increased risk of AD.

  17. Status of vitamin B-12 and B-6 but not of folate, homocysteine and the methylenetetrahydrofolate reductase C677T polymorphism are associated with impaired cognition and depression in adults

    USDA-ARS?s Scientific Manuscript database

    The C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene differs in frequency in different ethnic groups which have differing prevalence of age-related cognitive impairments. We used a battery of neuropsychological tests to examine association of the MTHFR C677T polymorphism w...

  18. Association of methylenetetrahydrofolate reductase (MTHFR 677C>T) and thymidylate synthase (TSER and TS 1494del6) polymorphisms with premature ovarian failure in Korean women.

    PubMed

    Rah, HyungChul; Jeon, Young Joo; Choi, Youngsok; Shim, Sung Han; Yoon, Tae Ki; Choi, Dong Hee; Cha, Sun Hee; Kim, Nam Keun

    2012-11-01

    The aim of our study was to investigate whether methylenetetrahydrofolate reductase (MTHFR) gene variant (MTHFR 677C>T) and thymidylate synthase (TS) gene variants (TS enhancer region [TSER] and TS 1494del6) confer a risk for premature ovarian failure (POF). We genotyped 136 POF patients and 236 controls among Korean women for the three single nucleotide polymorphism sites using polymerase chain reaction restriction fragment length polymorphism analysis. Differences in the MTHFR 677C>T, TSER, and TS 1494del6 genotype frequencies between POF patients and controls were compared, and odds ratios (ORs) and 95% CIs were determined as a measure of the strength of the association between genotypes and POF. The MTHFR 677CT and CT + TT variant genotypes were more frequent in POF patients than in controls (OR, 2.249; 95% CI, 1.317-3.843; and OR, 2.132; 95% CI, 1.268-3.585, respectively). The combined genotype frequencies of MTHFR 677CT + TT/TSER 3R3R and 677CT + TT/TS 1494del6 del6/del6 were higher in patients than in controls (OR, 2.300; 95% CI, 1.219-4.337; and OR, 3.314; 95% CI, 1.623-6.767, respectively). The T-3R-del6 and T-2R-del6 (MTHFR 677C>T/TSER/TS 1494del6) haplotypes were more frequent in patients (OR, 1.450; 95% CI, 1.050-2.002; and OR, 2.911; 95% CI, 1.191-7.117, respectively), whereas the C-2R-del6 haplotype was less frequent in patients (OR, 0.372; 95% CI, 0.152-0.912). The T-del6 (MTHFR 677/TS 1494del6) haplotype frequency was higher among patients (OR, 1.653; 95% CI, 1.206-2.266), whereas the C-del6 haplotype frequency was lower among patients (OR, 0.700; 95% CI, 0.516-0.950). We did not find an association between TSER or TS 1494del6 polymorphisms and POF. Our data suggest that the MTHFR 677T allele may increase the risk for POF, which could lead to the development of novel genetic markers for predicting the risk of POF in patients.

  19. Molecular genetic analysis in mild hyperhomocysteinemia: A common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kluijtmans, L.A.J.; Heuvel, L.P.W.J. van den; Stevens, E.M.B.

    1996-01-01

    Mild hyperhomocysteinemia is an established risk factor for cardiovascular disease. Genetic aberrations in the cystathionine P-synthase (CBS) and methylenetetrahydrofolate reductase (MTHFR) genes may account for reduced enzyme activities and elevated plasma homocysteine levels. In 15 unrelated Dutch patients with homozygous CBS deficiency, we observed the 833T{yields}C (1278T) mutation in 50% of the alleles. Very recently, we identified a common mutation (677C{yields}T; A{yields}V) in the MTHFR gene, which, in homozygous state, is responsible for the thermolabile phenotype and which is associated with decreased specific MTHFR activity and elevated homocysteine levels. We screened 60 cardiovascular patients and 111 controls for these twomore » mutations, to determine whether these mutations are risk factors for premature cardiovascular disease. Heterozygosity for the 833T{yields}C mutation in the CBS gene was observed in one individual of the control group but was absent in patients with premature cardiovascular disease. Homozygosity for the 677C-{yields}T mutation in the MTHFR gene was found in 9 (15%) of 60 cardiovascular patients and in only 6 ({approximately}5%) of 111 control individuals (odds ratio 3.1 [95% confidence interval 1.0-9.21]). Because of both the high prevalence of the 833T-{yields}C mutation among homozygotes for CBS deficiency and its absence in 60 cardiovascular patients, we may conclude that heterozygosity for CBS deficiency does not appear to be involved in premature cardiovascular disease. However, a frequent homozygous mutation in the MTHFR gene is associated with a threefold increase in risk for premature cardiovascular disease. 35 refs., 3 figs., 1 tab.« less

  20. Methylenetetrahydrofolate reductase C677T polymorphism in patients with gastric and colorectal cancer in a Korean population

    PubMed Central

    2010-01-01

    Background This study was designed to investigate an association between the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and the risk of gastric and colorectal cancer in the Korean population. Methods We conducted a population-based large-scale case-control study involving 2,213 patients with newly diagnosed gastric cancer, 1,829 patients with newly diagnosed colorectal cancer, and 1,700 healthy controls. Genotyping was performed with peripheral blood DNA for MTHFR C677T polymorphisms. The statistical significance was estimated by logistic regression analysis. Results The MTHFR C677T frequencies of CC, CT, and TT genotypes were 35.2%, 47.5%, and 17.3% among stomach cancer, 34%, 50.5%, and 15.5% in colorectal cancer, and 31.8%, 50.7%, and 17.5% in the controls, respectively. The MTHFR 677TT genotype showed a weak opposite association with colorectal cancer compared to the homozygous CC genotype [adjusted age and sex odds ratio (OR) = 0.792, 95% confidence interval (CI) = 0.638-0.984, P = 0.035]. Subjects with the MTHFR 677CT showed a significantly reduced risk of gastric cancer compared whose with the 677CC genotype (age- and sex-adjusted OR = 0.810; 95% CI = 0.696-0.942, P = 0.006). We also observed no significant interactions between the MTHFR C677T polymorphism and smoking or drinking in the risk of gastric and colorectal cancer. Conclusions The T allele was found to provide a weak protective association with gastric cancer and colorectal cancer. PMID:20504332

  1. Genetic polymorphism of MTHFR C677T and premature coronary artery disease susceptibility: A meta-analysis.

    PubMed

    Hou, Xiaowen; Chen, Xin; Shi, Jingpu

    2015-07-01

    The association between 5, 10-methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism and premature coronary artery disease (PCAD) is controversial. To explore a more precise estimation of the association, a meta-analysis was conducted in the present study. The relevant studies were identified by searching PubMed, EMBASE, the Web of Science, Cochrane Collaboration Database, Chinese National Knowledge Infrastructure, Wanfang Database and China Biological Medicine up to November, 2014. The meta-analysis was performed by STATA 11. 21 studies with a total of 6912 subjects, including 2972 PCAD patients and 3940 controls. The pooled analysis showed that MTHFR C677T gene polymorphism was probably associated with PCAD (CT vs. CC: OR=1.13, 95% CI=1.01-1.27; dominant model: OR=1.16, 95% CI=1.04-1.29; recessive model: OR=1.19, 95% CI=1.00-1.40; allele analysis: OR=1.17, 95% CI=1.01-1.34). Subgroup analysis by plasma homocysteine concentration showed a significant association in the homocysteine >15μmol/L subgroup (CT vs. CC: OR=1.44, 95% CI=1.10-1.88; TT vs. CC: OR=2.51, 95% CI=1.12-5.63; dominant model: OR=1.51, 95% CI=1.16-1.96; recessive model: OR=2.33, 95% CI=1.05-5.20; allele analysis: OR=1.48, 95% CI=1.18-1.87). Subgroup analysis by continent displayed a significant association among the Asian population (CT vs. CC: OR=1.51, 95% CI=1.23-1.86; TT vs. CC: OR=2.81, 95% CI=1.87-4.23; dominant model: OR=1.65, 95% CI=1.35-2.01; recessive model: OR=2.22, 95% CI=1.53-3.21; allele analysis: OR=1.61, 95% CI=1.37-1.89). The statistical stability and reliability was demonstrated by sensitivity analysis and publication bias outcomes. In conclusion, the meta-analysis suggests that MTHFR C677T gene polymorphism may be associated with PCAD. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Normal Weight Obese syndrome: role of single nucleotide polymorphism of IL-1 5Ralpha and MTHFR 677C-->T genes in the relationship between body composition and resting metabolic rate.

    PubMed

    Di Renzo, L; Bigioni, M; Bottini, F G; Del Gobbo, V; Premrov, M G; Cianci, R; De Lorenzo, A

    2006-01-01

    We have identified a subset of metabolically obese, but normal weight individuals, with potentially increased risks of developing the metabolic syndrome, despite their normal body mass index. We determined the relationship among body fat distribution, resting metabolic rate (RMR), total body water amount (%TBW), selected gene polymorphism on interleukin-15 receptor-alpha (IL-15Ralpha) and methylenetetrahydrofolate reductase 677C-->T (MTHFR 677C-->T), to distinguish normal weight obese (NWO) from nonobese with a normal metabolic profile and obese individuals. We analysed anthropometric variables, body composition by Dual energy X-ray Absorptiometry (DXA), RMR by indirect calorimetry, %TBW by bioimpedence analysis (BIA), MTHFR 677C-->T and IL-15Ralpha genotypes of 128 clinically healthy Caucasian individuals. We compared a group of female, defined as NWO and characterised by a BMI < or = 25 kg/m(2) and FM > or = 30% with groups of others female, and males, represented by nonobese with a BMI < or = 25 kg/m(2) and FM < or = 30%, and preobese-obese individuals with BMI > or = 25 kg/m(2) and %FM > or = 30%; none of the males was classified as NWO. Significant correlations were found among body fat mass distribution, metabolic variables, percentage of total body water distribution and selected genetic variations. The variables that contributed significantly to the separation of classes were body tissue (Tissue), %TBW, RMR, the volumes of both oxygen (VO2) and carbon dioxide (VCO2). The distribution of MTHFR 677C-->T and IL-15 genotypes was significantly different between classes. Our data highlight that NWO individuals showed a significant relationship between the decrease in the basal metabolism (RMR), body fat mass increasing and total water amount. Possession of wild type homozygotes genotypes regarding IL-15Ralpha cytokine and 677C-->T MTHFR enzyme characterised NWO individuals.

  3. Response of serum and red blood cell folate concentrations to folic acid supplementation depends on methylenetetrahydrofolate reductase C677T genotype: Results from a crossover trial

    PubMed Central

    Anderson, Cheryl A.M.; Beresford, Shirley A. A.; McLerran, Dale; Lampe, Johanna W.; Deeb, Samir; Feng, Ziding; Motulsky, Arno G.

    2013-01-01

    Scope By increasing blood folate concentrations, folic acid supplementation reduces risk for neural tube defect-affected pregnancies, and lowers homocysteine concentrations. We assessed response of red blood cell (RBC) and serum folate to folic acid supplementation, and examined association of response with the genetic polymorphism C677T of the methylenetetrahydrofolate NAD(P)H (MTHFR) gene. Methods and Results Randomized, controlled, crossover trial with two folic acid supplement treatment periods and a 30-week washout period. The primary outcome is blood folate (serum and RBC) concentrations. Volunteers (n=142) aged 18-69 were randomized to two of three doses (0, 200, and 400 μg) of folic acid for twelve weeks. Serum folate response depended on treatment period with significant responses to 200 μg seen only in the second treatment periods (4.4 ng/mL or 3.4 ng/mL). Additionally, serum folate increased as folic acid dose increased to 400 μg (p< 0.01) and response was greater after the washout period (8.7 ng/mL), than after a 6-week run-in (2.3 ng/mL). The differential change attributable to a daily supplement of 400 μg compared to 200 μg was 96.8 ng/mL; while the change attributable to 400 μg compared to 0 μg was 121.4. Increases in RBC folate concentrations with 400 μg occurred within MTHFR gene mutation (C677T); and in the African American group. Conclusions Serum folate concentration is responsive to modest increases in folic acid intake. Red blood cell folate increases only with higher additional doses of folic acid supplementation, and this is true for each MTHFR C677T genotype. PMID:23456769

  4. Methylenetetrahydrofolate reductase polymorphism C677T is a protective factor for pediatric acute lymphoblastic leukemia in the Chinese population: a meta-analysis.

    PubMed

    Wang, Haigang; Meng, Lujing; Zhao, Lixia; Wang, Jiali; Liu, Xinchun; Mi, Wenjie

    2012-12-01

    Two polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene, C677T and A1298C, were hypothesized to decrease the risk of acute lymphoblastic leukemia (ALL). Studies examining the associations between these two polymorphisms and ALL susceptibility drew inconsistent results. To obtain a reliable conclusion in a Chinese population, we carried out a meta-analysis. In total, 11 studies on C677T polymorphism (1597 cases and 2295 controls) and 10 studies on A1298C polymorphism (1553 cases and 2224 controls) were included in the meta-analysis. We found a significant association between the 677T variant and reduced ALL risk in Chinese children (Dominant model: odds ratio [OR(FE)]=0.73, 95% confidence interval [CI]: 0.63-0.86, p<0.01). Heterogeneity between the studies in the children subgroup was weak and vanished after excluding one study deviating from HWE in the control group (p>0.1). In the adult subgroup, there was no significant association between the C677T variant and ALL risk (Dominant model: OR(RE)=0.88, 95% CI: 0.45-1.72, p=0.72). Significant heterogeneity was found in the adult subgroup in all the genetic model tests (p<0.1). The A1298C polymorphism had an effect on ALL risk neither in adults (Dominant model: OR(FE)=0.95, 95% CI: 0.71-1.27, p=0.72) nor in children (Dominant model: OR(FE)=1.02, 95% CI: 0.87-1.21, p=0.77). No significant heterogeneity between studies on A1298C polymorphism was found in the meta-analysis (p>0.1). The results showed that there was a protective effect of the MTHFR C677T variant on ALL risk in Chinese children.

  5. A somatic T15091C mutation in the Cytb gene of mouse mitochondrial DNA dominantly induces respiration defects.

    PubMed

    Hayashi, Chisato; Takibuchi, Gaku; Shimizu, Akinori; Mito, Takayuki; Ishikawa, Kaori; Nakada, Kazuto; Hayashi, Jun-Ichi

    2015-08-07

    Our previous studies provided evidence that mammalian mitochondrial DNA (mtDNA) mutations that cause mitochondrial respiration defects behave in a recessive manner, because the induction of respiration defects could be prevented with the help of a small proportion (10%-20%) of mtDNA without the mutations. However, subsequent studies found the induction of respiration defects by the accelerated accumulation of a small proportion of mtDNA with various somatic mutations, indicating the presence of mtDNA mutations that behave in a dominant manner. Here, to provide the evidence for the presence of dominant mutations in mtDNA, we used mouse lung carcinoma P29 cells and examined whether some mtDNA molecules possess somatic mutations that dominantly induce respiration defects. Cloning and sequence analysis of 40-48 mtDNA molecules from P29 cells was carried out to screen for somatic mutations in protein-coding genes, because mutations in these genes could dominantly regulate respiration defects by formation of abnormal polypeptides. We found 108 missense mutations existing in one or more of 40-48 mtDNA molecules. Of these missense mutations, a T15091C mutation in the Cytb gene was expected to be pathogenic due to the presence of its orthologous mutation in mtDNA from a patient with cardiomyopathy. After isolation of many subclones from parental P29 cells, we obtained subclones with various proportions of T15091C mtDNA, and showed that the respiration defects were induced in a subclone with only 49% T15091C mtDNA. Because the induction of respiration defects could not be prevented with the help of the remaining 51% mtDNA without the T15091C mutation, the results indicate that the T15091C mutation in mtDNA dominantly induced the respiration defects. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Methylenetetrahydrofolate reductase C677T and overall survival in pediatric acute lymphoblastic leukemia: a systematic review.

    PubMed

    Ojha, Rohit P; Gurney, James G

    2014-01-01

    A summary of the evidence pertaining to the association between methylenetetrahydrofolate reductase (MTHFR) C677T and overall survival in pediatric acute lymphoblastic leukemia (ALL) is not currently available. We thus reviewed the literature on the association between MTFHR C677T and overall survival in pediatric ALL. We searched PubMed/MEDLINE, Scopus and ISI Web of Knowledge literature databases without language restrictions to identify observational studies among children diagnosed between ages 0 and 19 years that assessed MTHFR 677 polymorphisms in relation to ALL survival. We identified six studies comprising 909 pediatric patients with ALL. The magnitude of relative risk (RR) for pediatric ALL mortality varied by genotype comparison and study population, ranging from RR = 0.84 (95% confidence limits [CL]: 0.24, 3.0) for a TT vs. CT/CC comparison to RR = 7.0 (95% CL: 0.98, 49) for a TT vs. CC comparison. The current evidence suggests that individuals with MTHFR 677 variants (i.e. at least one T allele) may have a higher relative risk of pediatric ALL mortality, with greater statistical support for MTHFR 677TT. With more detailed supporting evidence, MTHFR 677 genotyping at diagnosis could provide an option for individualizing therapy and further reducing pediatric ALL mortality in certain populations.

  7. The mutY gene: a mutator locus in Escherichia coli that generates G.C----T.A transversions.

    PubMed Central

    Nghiem, Y; Cabrera, M; Cupples, C G; Miller, J H

    1988-01-01

    We have used a strain with an altered lacZ gene, which reverts to wild type via only certain transversions, to detect transversion-specific mutators in Escherichia coli. Detection relied on a papillation technique that uses a combination of beta-galactosides to reveal blue Lac+ papillae. One class of mutators is specific for the G.C----T.A transversion as determined by the reversion pattern of a set of lacZ mutations and by the distribution of forward nonsense mutations in the lacI gene. The locus responsible for the mutator phenotype is designated mutY and maps near 64 min on the genetic map of E. coli. The mutY locus may act in a similar but reciprocal fashion to the previously characterized mutT locus, which results in A.T----C.G transversions. Images PMID:3128795

  8. High prevalence of three prothrombotic polymorphisms among Palestinians: factor V G1691A, factor II G20210A and methylenetetrahydrofolate reductase C677T.

    PubMed

    Hussein, Ayman S

    2012-10-01

    Factor V leiden G1691A/R506Q (FVL), prothrombin G20210A (FII) and methylenetetrahydrofolate reductase (MTHFR) C677T are related genetic risk factors for venous thromboembolism. Analysis for those mutations is increasingly being performed on patients exhibiting hypercoagulability. The objective of this study was to determine the prevalence of FVL, FII-G20210A and MTHFR-C677T polymorphisms and their coexistence among apparently healthy Palestinians. After institutional approval, 303 apparently healthy students from An-Najah University representative to North and South regions of West Bank with no previous history of cardiovascular diseases participated in this study. A uniform questionnaire was used to collect relevant information through personal interview with the subjects. The collected information included gender, age, smoking habits, weight and height, diseases such as diabetes, cardiovascular and family history of CVD. The frequencies of allelic distribution of the three prothrombotic polymorphisms factor V G1691A/R506Q), prothrombin G2010A, and MTHFR-C677T were 0.114, 0.050 and 0.071, respectively. The prevalence of the three thrombotic polymorphisms (FVL, FII G20210A and MTHFR-C677T) were 20.1, 9.1 and 13.8 %, respectively. Statistical analysis for factor V leiden showed no significant association between place of residence (P value = 0.953) and gender (P value >0.082). The data presented in this study showed the highest prevalence of FVL among healthy Palestinians compared to other populations and this important finding should be followed in terms of clinical significance.

  9. Association of methylenetetrahytrofolate reductase (MTHFR) C677T and A1298C polymorphisms with the susceptibility of childhood acute lymphoblastic leukaemia (ALL) in Chinese population

    PubMed Central

    2014-01-01

    Background The aim of this study was to investigate the relationship between the polymorphisms of the methylenetetrahytrofolate reductase (MTHFR) gene and susceptibility to childhood acute lymphoblastic leukemia (ALL). Methods A case–control study was conducted among 98 children with ALL and 93 age- and sex- matched non-ALL controls. Genotyping of MTHFR C677T and A1298C polymorphisms was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The odds ratios (ORs) of MTHFR genotypes were used to assess the associations of these polymorphisms with childhood ALL susceptibility. Results No significant differences were observed for frequencies of the 677CC, 677CT and 677TT genotypes between patients and controls. Frequencies of the 1298AA, 1298 AC and 1298CC genotypes between the two groups were significantly different. The risk of ALL with the 1298C allele carriers (AC + CC) was elevated by 1.1 times compared with the AA genotype [OR = 2.100; 95% CI (1.149; 3.837); P = 0.015]. Conclusions The MTHFR A1298C polymorphism is associated with susceptibility to childhood ALL in the Chinese population. PMID:24476575

  10. Association of methylenetetrahytrofolate reductase (MTHFR) C677T and A1298C polymorphisms with the susceptibility of childhood acute lymphoblastic leukaemia (ALL) in Chinese population.

    PubMed

    Li, Xiaolei; Liao, Qingchuan; Zhang, Shunguo; Chen, Minling

    2014-01-29

    The aim of this study was to investigate the relationship between the polymorphisms of the methylenetetrahytrofolate reductase (MTHFR) gene and susceptibility to childhood acute lymphoblastic leukemia (ALL). A case-control study was conducted among 98 children with ALL and 93 age- and sex- matched non-ALL controls. Genotyping of MTHFR C677T and A1298C polymorphisms was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The odds ratios (ORs) of MTHFR genotypes were used to assess the associations of these polymorphisms with childhood ALL susceptibility. No significant differences were observed for frequencies of the 677CC, 677CT and 677TT genotypes between patients and controls. Frequencies of the 1298AA, 1298 AC and 1298CC genotypes between the two groups were significantly different. The risk of ALL with the 1298C allele carriers (AC + CC) was elevated by 1.1 times compared with the AA genotype [OR = 2.100; 95% CI (1.149; 3.837); P = 0.015]. The MTHFR A1298C polymorphism is associated with susceptibility to childhood ALL in the Chinese population.

  11. Effects of Maternal 5,10-Methylenetetrahydrofolate Reductase C677T and A1298C Polymorphisms and Tobacco Smoking on Infant Birth Weight in a Japanese Population

    PubMed Central

    Yila, Thamar Ayo; Sasaki, Seiko; Miyashita, Chihiro; Braimoh, Titilola Serifat; Kashino, Ikuko; Kobayashi, Sumitaka; Okada, Emiko; Baba, Toshiaki; Yoshioka, Eiji; Minakami, Hisanori; Endo, Toshiaki; Sengoku, Kazuo; Kishi, Reiko

    2012-01-01

    Background Intracellular folate hemostasis depends on the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene. Because 5,10-MTHFR 677TT homozygosity and tobacco smoking are associated with low folate status, we tested the hypothesis that smoking in mothers with 5,10-MTHFR C677T or A1298C polymorphisms would be independently associated with lower birth weight among their offspring. Methods We assessed 1784 native Japanese mother-child pairs drawn from the ongoing birth cohort of The Hokkaido Study on Environment and Children’s Health. Data (demographic information, hospital birth records, and biological specimens) were extracted from recruitments that took place during the period from February 2003 to March 2006. Maternal serum folate were assayed by chemiluminescent immunoassay, and genotyping of 5,10-MTHFR C677T/A1298C polymorphisms was done using a TaqMan allelic discrimination assay. Results The prevalence of folate deficiency (<6.8 nmol/L) was 0.3%. The 5,10-MTHFR 677CT genotype was independently associated with an increase of 36.40 g (95% CI: 2.60 to 70.30, P = 0.035) in mean infant birth weight and an increase of 90.70 g (95% CI: 6.00 to 175.50, P = 0.036) among male infants of nonsmokers. Female infants of 677TT homozygous passive smokers were 99.00 g (95% CI: −190.26 to −7.56, P = 0.034) lighter. The birth weight of the offspring of smokers with 5,10-MTHFR 1298AA homozygosity was lower by 107.00 g (95% CI: −180.00 to −33.90, P = 0.004). Conclusions The results suggest that, in this population, maternal 5,10-MTHFR C677T polymorphism, but not the 5,10-MTHFR A1298C variant, is independently associated with improvement in infant birth weight, especially among nonsmokers. However, 5,10-MTHFR 1298AA might be associated with folate impairment and could interact with tobacco smoke to further decrease birth weight. PMID:22277790

  12. [C677T-SNP of methylenetetrahydrofolate reductase gene and breast cancer in Mexican women].

    PubMed

    Calderón-Garcidueñas, Ana Laura; Cerda-Flores, Ricardo Martín; Castruita-Ávila, Ana Lilia; González-Guerrero, Juan Francisco; Barrera-Saldaña, Hugo Alberto

    2017-01-01

    Low-penetrance susceptibility genes such as 5,10-methylenetetrahydrofolate reductase gene (MTHFR) have been considered in the progression of breast cancer (BC). Cancer is a result of genetic, environmental and epigenetic interactions; therefore, these genes should be studied in environmental context, because the results can vary between populations and even within the same country. The objective was to analyze the allelic and genotypic frequencies of the MTHFR C667T SNP in Mexican Mestizo patients with BC and controls from Northeastern Mexico. 243 patients and 118 healthy women were studied. The analysis of the polymorphism was performed with a DNA microarray. Once the frequency of the polymorphism was obtained, Hardy-Weinberg equilibrium test was carried out for the genotypes. Chi square test was used to compare the distribution of frequencies. The allele frequency in patients was: C = 0.5406; T = 0.4594 and in controls C = 0.5678, T = 0.4322. Genotype in BC patients was: C / C = 29.9%, C / T = 48.3% and T / T = 21.8. The distribution in controls was: C / C = 31.4%, C / T = 50.8%, T / T = 17.8% (chi squared 0.77, p = 0.6801). Northeastern Mexican women in this study showed no association between MTFHR C667T SNP and the risk of BC. It seems that the contribution of this polymorphism to BC in Mexico varies depending on various factors, both genetic and environmental.

  13. The methylenetetrahydrofolate reductase c.c.677 C>T and c.c.1298 A>C polymorphisms in reproductive failures: Experience from an RSA and RIF study on a Polish population.

    PubMed

    Nowak, Izabela; Bylińska, Aleksandra; Wilczyńska, Karolina; Wiśniewski, Andrzej; Malinowski, Andrzej; Wilczyński, Jacek R; Radwan, Paweł; Radwan, Michał; Barcz, Ewa; Płoski, Rafał; Motak-Pochrzęst, Hanna; Banasik, Małgorzata; Sobczyński, Maciej; Kuśnierczyk, Piotr

    2017-01-01

    Almost 1600 individuals from the Polish population were recruited to this study. Among them 319 were fertile couples, 289 were recurrent spontaneous abortion (RSA) couples, and 131 were in the group of recurrent implantation failure (RIF) following in vitro fertilization. The aim of this study was to evaluate the MTHFR c.c.677 C>T and c.c.1298 A>C polymorphisms' association with RSA and RIF. We used PCR-RFLP with HinfI (677 C>T) and MboII (1298 A>C) digestion. We observed a protective effect of the female AC genotype (OR = 0.64, p = 0.01) and the C allele (AC+CC genotypes; OR = 0.65, p = 0.009) against RSA. Moreover, 1298 AA/677 CT women were more frequent in RSA (31.14%) and RIF (25.20%) groups in comparison to fertile women (22.88%), although this difference was significant only in the case of RSA (p = 0.022, OR = 1.52). Male combined genotype analysis revealed no association with reproductive failure of their partners. Nevertheless, the female/male combination AA/AC of the 1298 polymorphism was more frequent in RSA couples (p = 0.049, OR = 1.49). However, the significant results became insignificant after Bonferroni correction. In addition, analysis of haplotypes showed significantly higher frequency of the C/C haplotype (1298 C/677 C) in the female control group than in the female RSA group (p = 0.03, OR = 0.77). Moreover, the association between elevated homocysteine (Hcy) level in plasma of RSA and RIF women and MTHFR polymorphisms was investigated but did not reveal significant differences. In conclusion, for clinical practice, it is better to check the homocysteine level in plasma and, if the Hcy level is increased, to recommend patients to take folic acid supplements rather than undergo screening of MTHFR for 1298 A>C and 677 C>T polymorphisms.

  14. The methylenetetrahydrofolate reductase c.c.677 C>T and c.c.1298 A>C polymorphisms in reproductive failures: Experience from an RSA and RIF study on a Polish population

    PubMed Central

    Bylińska, Aleksandra; Wilczyńska, Karolina; Wiśniewski, Andrzej; Malinowski, Andrzej; Wilczyński, Jacek R.; Radwan, Paweł; Radwan, Michał; Barcz, Ewa; Płoski, Rafał; Motak-Pochrzęst, Hanna; Banasik, Małgorzata; Sobczyński, Maciej; Kuśnierczyk, Piotr

    2017-01-01

    Almost 1600 individuals from the Polish population were recruited to this study. Among them 319 were fertile couples, 289 were recurrent spontaneous abortion (RSA) couples, and 131 were in the group of recurrent implantation failure (RIF) following in vitro fertilization. The aim of this study was to evaluate the MTHFR c.c.677 C>T and c.c.1298 A>C polymorphisms’ association with RSA and RIF. We used PCR-RFLP with HinfI (677 C>T) and MboII (1298 A>C) digestion. We observed a protective effect of the female AC genotype (OR = 0.64, p = 0.01) and the C allele (AC+CC genotypes; OR = 0.65, p = 0.009) against RSA. Moreover, 1298 AA/677 CT women were more frequent in RSA (31.14%) and RIF (25.20%) groups in comparison to fertile women (22.88%), although this difference was significant only in the case of RSA (p = 0.022, OR = 1.52). Male combined genotype analysis revealed no association with reproductive failure of their partners. Nevertheless, the female/male combination AA/AC of the 1298 polymorphism was more frequent in RSA couples (p = 0.049, OR = 1.49). However, the significant results became insignificant after Bonferroni correction. In addition, analysis of haplotypes showed significantly higher frequency of the C/C haplotype (1298 C/677 C) in the female control group than in the female RSA group (p = 0.03, OR = 0.77). Moreover, the association between elevated homocysteine (Hcy) level in plasma of RSA and RIF women and MTHFR polymorphisms was investigated but did not reveal significant differences. In conclusion, for clinical practice, it is better to check the homocysteine level in plasma and, if the Hcy level is increased, to recommend patients to take folic acid supplements rather than undergo screening of MTHFR for 1298 A>C and 677 C>T polymorphisms. PMID:29073227

  15. Complex I deficiency related to T10158C mutation ND3 gene: A further definition of the clinical spectrum.

    PubMed

    Grosso, Salvatore; Carluccio, Maria Alessandra; Cardaioli, Elena; Cerase, Alfonso; Malandrini, Alessandro; Romano, Chiara; Federico, Antonio; Dotti, Maria Teresa

    2017-03-01

    Complex I deficiency is the most common energy generation disorder which may clinically present at any age with a wide spectrum of symptoms and signs. The T10158C mutation ND3 gene is rare and occurs in patients showing an early rapid neurological deterioration invariably leading to death after a few months. We report a 9year-old boy with a mtDNA T10158C mutation showing a mild MELAS-like phenotype and brain MRI features congruent with both MELAS and Leigh syndrome. Epilepsia partialis continua also occurred in the clinical course and related to a mild cortical atrophy of the left perisylvian area. The present case confirms that the clinical spectrum of Complex I deficiency related to T10158C mutation ND3 gene is wider than previously described. Our observation further suggests that testing mutation in the MT-ND3 gene should be included in the diagnostic work-up of patients presenting with epilepsia partialis continua accompanied by suspicion of mitochondrial disorder. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  16. Association of methylenetetrahydrofolate reductase C677T polymorphism and serum lipid levels in the Guangxi Bai Ku Yao and Han populations

    PubMed Central

    2010-01-01

    Background The association of methylenetetrahydrofolate reductase (MTHFR) gene polymorphism and serum lipid profiles is still controversial in diverse ethnics. Bai Ku Yao is an isolated subgroup of the Yao minority in China. The aim of the present study was to eveluate the association of MTHFR C677T polymorphism and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Methods A total of 780 subjects of Bai Ku Yao and 686 participants of Han Chinese were randomly selected from our previous stratified randomized cluster samples. Genotyping of the MTHFR C677T was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. Results The levels of serum total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein (Apo) AI and ApoB were lower in Bai Ku Yao than in Han (P < 0.05-0.001). The frequency of C and T alleles was 77.4% and 22.6% in Bai Ku Yao, and 60.9% and 39.1% in Han (P < 0.001); respectively. The frequency of CC, CT and TT genotypes was 58.7%, 37.3% and 4.0% in Bai Ku Yao, and 32.6%, 56.4% and 11.0% in Han (P < 0.001); respectively. The levels of TC and LDL-C in both ethnic groups were significant differences among the three genotypes (P < 0.05-0.01). The T allele carriers had higher serum TC and LDL-C levels than the T allele noncarriers. The levels of ApoB in Han were significant differences among the three genotypes (P < 0.05). The T allele carriers had higher serum ApoB levels as compared with the T allele noncarriers. The levels of TC, TG and LDL-C in Bai Ku Yao were correlated with genotypes (P < 0.05-0.001), whereas the levels of LDL-C in Han were associated with genotypes (P < 0.001). Serum lipid parameters were also correlated with sex, age, body mass index, alcohol consumption, cigarette smoking, and blood pressure in the both ethnic

  17. MTHFR C677T genotype influences the isotopic enrichment of one-carbon metabolites in folate-compromised men consuming d9-choline.

    PubMed

    Yan, Jian; Wang, Wei; Gregory, Jesse F; Malysheva, Olga; Brenna, J Thomas; Stabler, Sally P; Allen, Robert H; Caudill, Marie A

    2011-02-01

    Homozygosity for the variant 677T allele in the methylenetetrahydrofolate reductase (MTHFR) gene increases the requirement for folate and may alter the metabolic use of choline. The choline adequate intake is 550 mg/d for men, although the metabolic consequences of consuming extra choline are unclear. Deuterium-labeled choline (d9-choline) as tracer was used to determine the differential effects of the MTHFR C677T genotype and the effect of various choline intakes on the isotopic enrichment of choline derivatives in folate-compromised men. Mexican American men with the MTHFR 677CC or 677TT genotype consumed a diet providing 300 mg choline/d plus supplemental choline chloride for total choline intakes of 550 (n = 11; 4 with 677CC and 7 with 677TT) or 1100 (n = 12; 4 with 677CC and 8 with 677TT) mg/d for 12 wk. During the last 3 wk, 15% of the total choline intake was provided as d9-choline. Low but measurable enrichments of the choline metabolites were achieved, including that of d3-phosphatidylcholine (d3-PtdCho)--a metabolite produced in the de novo pathway via choline-derived methyl groups. Men with the MTHFR 677TT genotype had a higher urinary enrichment ratio of betaine to choline (P = 0.041), a higher urinary enrichment of sarcosine (P = 0.041), and a greater plasma enrichment ratio of d9-betaine to d9-PtdCho with the 1100 mg choline/d intake (P = 0.033). These data show for the first time in humans that choline itself is a source of methyl groups for de novo PtdCho biosynthesis and indicate that the MTHFR 677TT genotype favors the use of choline as a methyl donor.

  18. Methotrexate elimination and toxicity: MTHFR 677C>T polymorphism in patients with primary CNS lymphoma treated with high-dose methotrexate.

    PubMed

    Choi, Yun Jung; Park, Hyangmin; Lee, Ji Sung; Lee, Ju-Yeon; Kim, Shin; Kim, Tae Won; Park, Jung Sun; Kim, Jeong Eun; Yoon, Dok Hyun; Suh, Cheolwon

    2017-12-01

    The genetic association of the methylenetetrahydrofolate reductase gene (MTHFR) 677C>T polymorphism with methotrexate (MTX)-associated toxicity has been evaluated and conflicting results have been reported. The substantial heterogeneity of the studied population was suggested to be a possible explanation because ethnicity, MTX dose, coadministered chemotherapeutic agents, and folinate rescue dosage regimen could alter the MTX toxicity profile. The patient population was homogenized by limiting the cancer type to primary central nervous system lymphoma and chemotherapy protocol to a high-dose MTX monotherapy regimen. A total of 111 patients with 402 chemotherapy courses were analyzed. MTHFR 677C>T polymorphism was identified as an independent predictive marker for MTX-associated hematologic toxicity (odds ratio, 2.60; 95% confidence interval, 1.32-5.09; P = .0055). Clinically significant nephrotoxicity occurred in patients without delayed elimination, suggesting roles for factors other than serum MTX levels. MTX-induced hepatotoxicity and oral mucositis occurred independently of plasma MTX levels. Copyright © 2016 John Wiley & Sons, Ltd.

  19. MTHFR c.677C>T is a risk factor for non-syndromic cleft lip with or without cleft palate in Chile.

    PubMed

    Ramírez-Chau, C; Blanco, R; Colombo, A; Pardo, R; Suazo, J

    2016-10-01

    The functional variant within the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene c.677C>T, producing alterations in folate metabolism, has been associated with the risk of non-syndromic cleft lip with or without cleft palate (NSCL/P). We assessed this association in a Chilean population using a combined analysis of case-control and case-parent trio samples. Samples of 165 cases and 291 controls and 121 case-parent trios (sharing the cases) were genotyped. Odds ratio (OR) was estimated for case-control (allele and genotype frequency differences), and this result was confirmed by allele transmission distortion in trios. Due to that these samples are not independent, a combined OR was also computed. Maternal genotype effect was additionally evaluated based on a log-linear method. Borderline but not significant OR (1.28; CI 0.97-1.69) was observed for risk allele (T) in the case-control sample. However, triad sample showed a significant association (OR 1.56: CI 1.09-2.25) which was confirmed by the combined OR (1.37; CI 1.11-1.71). Maternal genotype has been also associated with the phenotype (P = 0.002). In contrast to previous reports considering Chilean subjects, our results demonstrated that the offspring and maternal genotypes for MTHFR c.677C>T variant are strongly associated with NSCL/P in this Chilean population. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. A literature review of MTHFR (C677T and A1298C polymorphisms) and cancer risk.

    PubMed

    Izmirli, Muzeyyen

    2013-01-01

    5,10-Methlenetetrahydrofolate reductase (MTHFR) is one of the most important enzymes for folate metabolism. This enzyme is mapped on chromosome 1, which is located at the end of the short arm (1p36.3). The C677T and A1298C are MTHFR polymorphisms that decrease in vitro MTHFR enzyme activity. Folate metabolism plays a key role in cell metabolism. These reactions are associated with purine-pyrimidine synthesis: DNA, RNA, and protein methylation. Polymorphism is also a factor in biodiversity, and be affected by ethnic heritage and geographic locale. In the case of unknown outcomes, not only should all geographical regions be investigated to ascertain biodiversity, but all populations as well to fully understand the variations in the effect. PUBMED was searched from January 2006 to December 2011 to develop an investigatory pursuit strategy. MTHFR, cancer, C677T, A1298C, and polymorphisms were key words used to focus the search. The literature review included all published relevant cancer types and MTHFR polymorphisms for that 5 years period. All selected polymorphisms data for cancer types was listed in tables for easy access and retrieval.

  1. Correlations of MTHFR 677C>T Polymorphism with Cardiovascular Disease in Patients with End-Stage Renal Disease: A Meta-Analysis

    PubMed Central

    Gao, Xian-Hui; Zhang, Guo-Yi; Wang, Ying; Zhang, Hui-Ying

    2014-01-01

    Objective This meta-analysis was conducted to evaluate the correlations of a common polymorphism (677C>T) in the methylenetetrahydrofolate reductase (MTHFR) gene with risk of cardiovascular disease (CVD) in patients with end-stage renal disease (ESRD). Method The following electronic databases were searched without language restrictions: Web of Science (1945∼2013), the Cochrane Library Database (Issue 12, 2013), MEDLINE (1966∼2013), EMBASE (1980∼2013), CINAHL (1982∼2013) and the Chinese Biomedical Database (CBM) (1982∼2013). Meta-analysis was performed using STATA statistical software. Odds ratios (ORs) with their 95% confidence intervals (95%CIs) were calculated. Results Eight cohort studies met all inclusion criteria and were included in this meta-analysis. A total of 2,292 ESRD patients with CVD were involved in this meta-analysis. Our meta-analysis results revealed that the MTHFR 677C>T polymorphism might increase the risk of CVD in ESRD patients (TT vs. CC: OR = 2.75, 95%CI = 1.35∼5.59, P = 0.005; CT+TT vs. CC: OR = 1.39, 95%CI = 1.09∼1.78, P = 0.008; TT vs. CC+CT: OR = 2.52, 95%CI = 1.25∼5.09, P = 0.010; respectively). Further subgroup analysis by ethnicity suggested that the MTHFR 677C>T polymorphism was associated with an elevated risk for CVD in ESRD patients among Asians (TT vs. CC: OR = 3.38, 95%CI = 1.11∼10.28, P = 0.032; CT+TT vs. CC: OR = 1.44, 95%CI = 1.05∼1.97, P = 0.022; TT vs. CC+CT: OR = 3.15, 95%CI = 1.02∼9.72, P = 0.046; respectively), but not among Africans or Caucasians (all P>0.05). Conclusion Our findings indicate that the MTHFR 677C>T polymorphism may be associated with an elevated risk for CVD in ESRD patients, especially among Asians. PMID:25050994

  2. A meta-analysis of MTHFR C677T and A1298C polymorphisms and risk of acute lymphoblastic leukemia in children.

    PubMed

    Yan, Jingrong; Yin, Ming; Dreyer, ZoAnn E; Scheurer, Michael E; Kamdar, Kala; Wei, Qingyi; Okcu, M Fatih

    2012-04-01

    Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms have been implicated in childhood acute lymphoblastic leukemia (ALL) risk, but previously published studies were inconsistent and recent meta-analyses were not adequate. In a meta-analysis of 21 publications with 4,706 cases and 7,414 controls, we used more stringent inclusion method and summarized data on associations between MTHFR C677T and A1298C polymorphisms and childhood ALL risk. We found an overall association between 677T variant genotypes and reduced childhood ALL risk. Specifically, in the dominant genetic model, an association was found in a fixed-effect (TT + CT vs. CC: OR = 0.92; 95% CI = 0.85-0.99) but not random-effect model, whereas such an association was observed in both homozygote genetic model (TT vs. CC: OR = 0.80; 95% CI = 0.70-0.93 by fixed effects and OR = 0.78; 95% CI = 0.65-0.93 by random effects) and recessive genetic model (TT vs. CC + CT: OR = 0.83; 95% CI = 0.72-0.95 by fixed effects and OR = 0.84; 95% CI = 0.73-0.97 by random effects). These associations were also observed in subgroups by ethnicity: for Asians in all models except for the dominant genetic model by random effect and for Caucasians in all models except for the recessive genetic model. However, the A1298C polymorphism did not appear to have an effect on childhood ALL risk. These results suggest that the MTHFR C677T, but not A1298C, polymorphism is a potential biomarker for childhood ALL risk. Copyright © 2011 Wiley Periodicals, Inc.

  3. Genetic effect of MTHFR C677T polymorphism on the structural covariance network and white-matter integrity in Alzheimer's disease.

    PubMed

    Chang, Yu-Tzu; Hsu, Shih-Wei; Tsai, Shih-Jen; Chang, Ya-Ting; Huang, Chi-Wei; Liu, Mu-En; Chen, Nai-Ching; Chang, Wen-Neng; Hsu, Jung-Lung; Lee, Chen-Chang; Chang, Chiung-Chih

    2017-06-01

    The 677 C to T transition in the MTHFR gene is a genetic determinant for hyperhomocysteinemia. We investigated whether this polymorphism modulates gray matter (GM) structural covariance networks independently of white-matter integrity in patients with Alzheimer's disease (AD). GM structural covariance networks were constructed by 3D T1-magnetic resonance imaging and seed-based analysis. The patients were divided into two genotype groups: C homozygotes (n = 73) and T carriers (n = 62). Using diffusion tensor imaging and white-matter parcellation, 11 fiber bundle integrities were compared between the two genotype groups. Cognitive test scores were the major outcome factors. The T carriers had higher homocysteine levels, lower posterior cingulate cortex GM volume, and more clusters in the dorsal medial lobe subsystem showing stronger covariance strength. Both posterior cingulate cortex seed and interconnected peak cluster volumes predicted cognitive test scores, especially in the T carriers. There were no between-group differences in fiber tract diffusion parameters. The MTHFR 677T polymorphism modulates posterior cingulate cortex-anchored structural covariance strength independently of white matter integrities. Hum Brain Mapp 38:3039-3051, 2017. © 2017 The Authors Human Brain Mapping Published Wiley by Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published Wiley by Periodicals, Inc.

  4. A mitochondrial tRNA(His) gene mutation causing pigmentary retinopathy and neurosensorial deafness.

    PubMed

    Crimi, M; Galbiati, S; Perini, M P; Bordoni, A; Malferrari, G; Sciacco, M; Biunno, I; Strazzer, S; Moggio, M; Bresolin, N; Comi, G P

    2003-04-08

    We have identified a heteroplasmic G to A mutation at position 12,183 of the mitochondrial transfer RNA Histidine (tRNA(His)) gene in three related patients. These phenotypes varied according to mutation heteroplasmy: one had severe pigmentary retinopathy, neurosensorial deafness, testicular dysfunction, muscle hypotrophy, and ataxia; the other two had only retinal and inner ear involvement. The mutation is in a highly conserved region of the T(psi)C stem of the tRNA(His) gene and may alter secondary structure formation. This is the first described pathogenic, maternally inherited mutation of the mitochondrial tRNA(His) gene.

  5. Prevalence of MTHFR C677T and MS A2756G polymorphisms in major depressive disorder, and their impact on response to fluoxetine treatment

    USDA-ARS?s Scientific Manuscript database

    To examine the prevalence of the C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene and the A2756G polymorphism of methionine synthase (MS), and their impact on antidepressant response. We screened 224 subjects (52% female, mean age 39 +/- 11 years) with SCID-diagnosed major...

  6. Prevalence of metilentetrahidrofolate reductase C677T polymorphism, consumption of vitamins B6, B9, B12 and determination of lipidic hydroperoxides in obese and normal weight Mexican population.

    PubMed

    Hernández-Guerrero, César; Romo-Palafox, Inés; Díaz-Gutiérrez, Mary Carmen; Iturbe-García, Mariana; Texcahua-Salazar, Alejandra; Pérez-Lizaur, Ana Bertha

    2013-11-01

    Oxidative stress is a key factor in the development of the principal comorbidities of obesity. Methylenetetrahydrofolate reductase enzyme (MTHFR) participates in the metabolism of folate with the action of vitamins B6 and B12. The gene of MTHFR may present a single nucleotide polymorphism (SNP) at position 677 (C677T), which can promote homocysteinemia associated to the production of free radicals. To determine the frequency of SNP C677T of the MTHFR, evaluate the consumption of vitamins B6, B9, B12 and determine the concentration of plasma lipid hydroperoxides (LOOH) in obese and control groups. 128 Mexican mestizo according to their body mass index were classified as normal weight (Nw; n=75) and obesity (ObeI-III; n=53). Identification of SNP C677T of MTHFR was performed by PCR-RFLP technic. The consumption of vitamins B6, B9 and B12 was assessed by a validate survey. LOOH was determined as an indicator of peripheral oxidative stress. There was no statistical difference in the frequency of the C677T polymorphism between the TT homozygous genotype in Nw (0.19) and ObeI-III (0.25). The frequency of T allele in Nw was 0.45 and 0.51 in ObI-III group. There were no statistical differences in the consumption of vitamins B6, B9 and B12 between Nw and ObI-III groups. The LOOH showed statistical difference (p < 0.05) between Nw and ObI–III group. Oxidative stress is present in all grades of obesity although there were no differences in the vitamin consumption and the SNP C677T between Nw and ObeI–III groups. Copyright AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  7. MTHFR C677T polymorphism, homocysteine and B-vitamins status in a sample of Chinese and Malay subjects in Universiti Putra Malaysia.

    PubMed

    Choo, S C; Loh, S P; Khor, G L; Sabariah, M N; Rozita, R

    2011-08-01

    Methylenetetrahydrofolate reductase (MTHFR) C677T is involved in folate and homocysteine metabolism. Disruption in the activity of this enzyme will alter their levels in the body. This study assessed MTHFR C677T polymorphism and its relationship with serum homocysteine and B-vitamins levels in a sample of Chinese and Malays subjects in UPM, Serdang. One hundred subjects were randomly selected from among the university population. Folate, vitamin B12, B6, and homocysteine levels were determined using MBA, ECLIA, and HPLC, respectively. PCR coupled with HinfI digestion was used for detection of MTHFR C677T polymorphism. The frequency of T allele was higher in the Chinese subjects (0.40) compared to the Malay (0.14). Folate, vitamin B12 and B6 levels were highest in the wild genotype in both ethnic groups. Subjects with heterozygous and homozygous genotype showed the highest homocysteine levels. The serum folate and homocysteine were mainly affected by homozygous genotype. MTHFR C677T polymorphism plays an important role in influencing the folate and homocysteine metabolism.

  8. Identification of XLRS1 gene mutation (608C > T) in a Portuguese family with juvenile retinoschisis.

    PubMed

    Teixeira, C; Rocha-Sousa, A; Trump, D; Brandão, E; Falcão-Reis, F

    2005-01-01

    To characterize electroretinogram (ERG) and molecular genetic findings in a family with XLRS1 mutation. The authors present two cases of a Portuguese family with juvenile retinoschisis with a mutation in exon 6. Two brothers and their parents, grandmother, and uncle underwent a full ophthalmic examination. The two brothers with ophthalmic disease were evaluated with color fundus photography, fluorescein angiography, optical coherence tomography (OCT), molecular genetic study (Group VI of Retinoschisis Consortium), pattern visual evoked potential (PVEP), and full field ERG. Both patients presented funduscopic manifestations of vitre o retinal degeneration. They presented peripheral schisis and retinal detachment. However, foveal schisis had never been observed at funduscopy. A negative ERG was recorded in both. Six months after that, the younger brother showed a typical foveal schisis at fundus examination. A retinoschisis gene (XLRS1) mutation with transition of cytosine by thymine at position 608 (608C > T) had been identified in both. Negative ERG is the most secure clinical marker to establish the diagnosis of juvenile retinoschisis. XLRS1 gene 608C > T mutation was described for the first time in a Portuguese family.

  9. Association between MTHFR C677T polymorphism and risk of acute lymphoblastic leukemia: a meta-analysis based on 51 case-control studies.

    PubMed

    Li, Su-yi; Ye, Jie-yu; Liang, En-yu; Zhou, Li-xia; Yang, Mo

    2015-03-12

    Studies and systematic reviews have reached inconsistent conclusions on the role of 5, 10-methylenetetrahydrofolate reductase (MTHFR) polymorphism C677T in acute lymphoblastic leukemia (ALL) risk. The present meta-analysis comprising of 51 case-control studies, including 7892 cases and 14 280 controls was performed to reevaluate the association between MTHFR C677T polymorphism and ALL risk. Statistical differences were found in the dominant model (TT+CT vs. CC, odd ratio (OR)=0.89, 95% CI, 0.79-1.00, P=0.04) and the CT vs. CC (OR=0.89, 95% CI, 0.80-1.00, P=0.05), but not in the allele contrast model (T vs. C, OR=0.92, 95% CI, 0.84-1.01, P=0.08), additive model (TT vs. CC, OR=0.87, 95% CI, 0.73-1.05, P=0.15), or recessive model (TT vs. CT+CC, OR=0.94, 95% CI, 0.81-1.10, P=0.44) in overall populations. In the subgroup analyses stratified by age (children and adults) and ethnicity (Asian and Caucasian), no significant associations between MTHFR C677T polymorphism and ALL risk were observed. The current study found no sufficient evidence of a protective role of MTHFR C677T polymorphism in ALL susceptibility.

  10. MTHFR 677C>T Polymorphism and the Risk of Breast Cancer: Evidence from an Original Study and Pooled Data for 28031 Cases and 31880 Controls

    PubMed Central

    Sekhar, Deepa; Francis, Amirtharaj; Gupta, Nishi; Konwar, Rituraj; Kumar, Sandeep; Kumar, Surender; Thangaraj, Kumarasamy; Rajender, Singh

    2015-01-01

    Background Methylenetetrahydrofolate reductase (MTHFR) acts at an important metabolic point in the regulation of cellular methylation reaction. It assists in the conversion of 5, 10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. The latter aids in remethylation of homocysteine to de novo methionine that is required for DNA synthesis. The objective of this study was to examine the effect of MTHFR 677 C>T polymorphism on the risk of breast cancer in the Indian sub-continent. Methods and Results We genotyped 677 C>T locus in 1096 individuals that were classified into cases (N=588) and controls (N=508). Genotype data were analyzed using chi-square test. No significant difference was observed in the distribution of genotypes between cases and controls in north Indian (P = 0.932), south Indian (P = 0.865), and pooled data (P = 0.680). To develop a consensus regarding the impact of 677C>T polymorphism on breast cancer risk, we also conducted a meta-analysis on 28031 cases and 31880 controls that were pooled from sixty one studies. The overall summary estimate upon meta-analysis suggested no significant correlation between the 677C>T substitution and breast cancer in the dominant model (Fixed effect model: OR = 0.97, P=0.072, Random effects model: OR = 0.96, P = 0.084) or the recessive model (Fixed effect model: OR = 1.05, P = 0.089; Random effects model: OR= 1.08, P= 0.067). Conclusion 677 C>T substitution does not affect breast cancer risk in the Indo-European and Dravidian populations of India. Analysis on pooled data further ruled out association between the 677 C>T polymorphism and breast cancer. Therefore, 677 C>T substitution does not appear to influence the risk of breast cancer. PMID:25803740

  11. MTHFR C677T Polymorphism is Associated with Tumor Response to Preoperative Chemoradiotherapy: A Result Based on Previous Reports.

    PubMed

    Zhao, Yue; Li, Xingde; Kong, Xiangjun

    2015-10-12

    Preoperative chemoradiotherapy (pRCT) followed by surgery has been widely practiced in locally advanced rectal cancer, esophageal cancer, gastric cancer and other cancers. However, the therapy also exerts some severe adverse effects and some of the patients show poor or no response. It is very important to develop biomarkers (e.g., gene polymorphisms) to identify patients who have a higher likelihood of responding to pRCT. Recently, a series of reports have investigated the association of the genetic polymorphisms in methylenetetrahydrofolate reductase (MTHFR) and epidermal growth factor receptor (EGFR) genes with the tumor response to pRCT; however, the results were inconsistent and inconclusive. A systematic review and meta-analysis was performed by searching relevant studies about the association of MTHFR and EGFR polymorphisms with the tumor regression grade (TRG) in response to pRCT in databases of PubMed, EMBAS, Web of science, Chinese National Knowledge Infrastructure, and Wanfang database up to March 30, 2015. The pooled odds ratios (ORs) with corresponding 95% confidence intervals (95% CIs) were calculated to assess the strength of the association under 5 genetic models. A total of 11 eligible articles were included in the present meta-analysis, of which 8 studies were performed in rectal cancer and 3 studies were performed in esophageal cancer. We finally included 8 included studies containing 839 cases for MTHFR C677T, 5 studies involving 634 cases for MTHFR A1298C, 3 studies containing 340 cases for EGFR G497A, and 4 studies containing 396 cases for EGFR CA repeat. The pooled analysis results indicated that MTHFR C677T might be correlated with the tumor response to pRCT under the recessive model (CC vs. CTTT) in overall analysis (OR=1.426(1.074-1.894), P=0.014), rectal cancer (OR=1.483(1.102-1.996), P=0.009), and TRG 1-2 vs. 3-5 group (OR=1.423(1.046-1.936), P=0.025), while other polymorphism including MTHFR A1298C, EGFR G497A, and EGFR CA repeat

  12. VHL c.505 T>C mutation confers a high age related penetrance but no increased overall mortality

    PubMed Central

    Bender, B.; Eng, C.; Olschewski, M.; Berger, D.; Laubenberger, J.; Altehofer, C.; Kirste, G.; Orszagh, M.; van Velthoven, V.; Miosczka, H.; Schmidt, D.; Neumann, H.

    2001-01-01

    BACKGROUND—Germline mutations of the VHL gene cause von Hippel-Lindau syndrome (VHL). In southern Germany, a specific mutation in this gene, c.505 T>C, is one of the most frequent alterations owing to a founder effect.
METHODS—This study was conducted to evaluate morbidity, specific clinical risk profile, and mortality among a series of VHL c.505 T/C mutation carriers. A total of 125 eligible subjects carrying VHL c.505 T/C underwent ophthalmoscopy and gadolinium enhanced magnetic resonance imaging of the brain, the spinal cord, and the abdomen. Age related penetrance, morbidity, and mortality were assessed.
RESULTS—Frequently observed lesions were phaeochromocytoma (47%), retinal angiomas (36%), haemangioblastoma of the spine (36%), and haemangioblastoma of the brain (16%). Four patients developed renal cell carcinoma. VHL was symptomatic in 47% of subjects; 30% were asymptomatic despite the presence of at least one VHL related tumour and 23% of the carriers had no detectable VHL lesion. Of the 19 patients who had died (15%), 10 died of symptomatic VHL lesions. Overall penetrance by cumulative incidence functions is estimated at 48% by 35 years and 88% by 70 years. In contrast to the only existing published report based on patients with presumably unselected VHL germline mutations, the mortality rate for c.505 T/C mutation carriers is comparable to that of the general population of Germany.
CONCLUSIONS—Our results are an important example that a specific genotype, at least in the case of VHL c.505 T/C, can favourably impact on mortality despite a high age related penetrance. Our study also indirectly provides objective data which might be useful to the life and health insurance industry; it would appear that c.505 T>C mutation positive subjects have similar disease specific mortality to that of the general population owing to a combination of phenotype and timely detection of mutation carrier status followed by aggressive clinical screening and

  13. Methylenetetrahydrofolate reductase C677T polymorphism is associated with increased risk of coronary artery disease in young South African Indians.

    PubMed

    Ramkaran, Prithiksha; Phulukdaree, Alisa; Khan, Sajidah; Moodley, Devapregasan; Chuturgoon, Anil A

    2015-10-15

    Methylenetetrahydrofolate reductase (MTHFR) reduces 5',10'-methylenetetrahydrofolate to 5'-methyltetrahydrofolate, and is involved in remethylation of homocysteine to methionine, two important reactions involved in folate metabolism and methylation pathways. The common MTHFR C677T single nucleotide polymorphism (SNP) (rs1801133) has been associated with raised levels of homocysteine, a well known risk factor for coronary artery disease (CAD). CAD is a major cause of mortality worldwide. The age of onset of this chronic disorder is on the decline, particularly in the Indian population. Indians in South Africa (SA) have a higher prevalence of premature CAD compared to Black South Africans. The MTHFR C677T SNP has not been investigated in the SA Indian population. The present study therefore investigated the MTHFR C677T SNP in young SA Indian males with CAD compared to young Indian and Black male controls. A total of 290 subjects were recruited into this study which included 106 CAD patients (diagnosed on angiography, mean age 37.5, range 24-45 years), 100 Indian male controls (mean age 37.5, range 28-45 years), and 84 Black male controls (mean age 36.4, range 25-45). Polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP) was used to genotype CAD patients and healthy controls. Data for clinical markers were obtained from pathology reports. There was a significant association between the 677 MTHFR variant (T) allele and CAD patients compared to the healthy Indian controls (p=0.0353, OR=2.105 95% CI 1.077-4.114). Indian controls presented with a higher frequency of the variant allele compared to Black controls (7% vs. 2% respectively, p=0.0515 OR=3.086 95% CI 0.9958-9.564). The MTHFR C677T SNP did not influence levels of total cholesterol, LDL, HDL, triglycerides, fasting glucose, fasting insulin, HbA1c or hsCRP. The higher frequency of the MTHFR 677 variant allele in South African Indians may be a contributing factor to the higher

  14. COMT Val158Met and MTHFR C677T moderate risk of schizophrenia in response to childhood adversity.

    PubMed

    Debost, J-C; Debost, M; Grove, J; Mors, O; Hougaard, D M; Børglum, A D; Mortensen, P B; Petersen, L

    2017-07-01

    Mesolimbic dopamine sensitization has been hypothesized to be a mediating factor of childhood adversity (CA) on schizophrenia risk. Activity of catechol-O-methyltransferase (COMT) Val158Met increases mesolimbic dopamine signaling and may be further regulated by methylenetetrahydrofolate reductase (MTHFR) C677T. This study investigates the three-way interaction between CA, COMT, and MTHFR. We conducted a nested case-control study on individuals born after 1981, linking population-based registers to study the three-way interaction. We included 1699 schizophrenia cases and 1681 controls, and used conditional logistic regression to report incidence rate ratios (IRRs). Childhood adversity was robustly associated with schizophrenia. No main genetic effects were observed. MTHFR C677T increased schizophrenia risk in a dose-dependent manner per MTHFR T allele (P = 0.005) consequent upon CA exposure. After inclusion of the significant (P = 0.03) COMT × MTHFR × CA interaction, the risk was further increased per high-activity COMT Val allele. Hence, exposed COMT Val/Val and MTHFR T/T carriers had an IRR of 2.76 (95% CI, 1.66-4.61). Additional adjustments for ancestry and parental history of mental illness attenuated the results with the interaction being only marginally significant. MTHFR C677T and COMT Val158Met interact with CA to increase risk of schizophrenia. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Association between MTHFR C677T Polymorphism and Risk of Acute Lymphoblastic Leukemia: A Meta-Analysis Based on 51 Case-Control Studies

    PubMed Central

    Li, Su-yi; Ye, Jie-yu; Liang, En-yu; Zhou, Li-xia; Yang, Mo

    2015-01-01

    Background Studies and systematic reviews have reached inconsistent conclusions on the role of 5, 10-methylenetetrahydrofolate reductase (MTHFR) polymorphism C677T in acute lymphoblastic leukemia (ALL) risk. Material/Methods The present meta-analysis comprising of 51 case-control studies, including 7892 cases and 14 280 controls was performed to reevaluate the association between MTHFR C677T polymorphism and ALL risk. Results Statistical differences were found in the dominant model (TT+CT vs. CC, odd ratio (OR)=0.89, 95% CI, 0.79–1.00, P=0.04) and the CT vs. CC (OR=0.89, 95% CI, 0.80–1.00, P=0.05), but not in the allele contrast model (T vs. C, OR=0.92, 95% CI, 0.84–1.01, P=0.08), additive model (TT vs. CC, OR=0.87, 95% CI, 0.73–1.05, P=0.15), or recessive model (TT vs. CT+CC, OR=0.94, 95% CI, 0.81–1.10, P=0.44) in overall populations. In the subgroup analyses stratified by age (children and adults) and ethnicity (Asian and Caucasian), no significant associations between MTHFR C677T polymorphism and ALL risk were observed. Conclusions The current study found no sufficient evidence of a protective role of MTHFR C677T polymorphism in ALL susceptibility. PMID:25761797

  16. Association of MTHFR C677T Genotype With Ischemic Stroke Is Confined to Cerebral Small Vessel Disease Subtype

    PubMed Central

    Traylor, Matthew; Adib-Samii, Poneh; Thijs, Vincent; Sudlow, Cathie; Rothwell, Peter M.; Boncoraglio, Giorgio; Dichgans, Martin; Meschia, James; Maguire, Jane; Levi, Christopher; Rost, Natalia S.; Rosand, Jonathan; Hassan, Ahamad; Bevan, Steve; Markus, Hugh S.

    2016-01-01

    Background and Purpose— Elevated plasma homocysteine levels are associated with stroke. However, this might be a reflection of bias or confounding because trials have failed to demonstrate an effect from homocysteine lowering in stroke patients, although a possible benefit has been suggested in lacunar stroke. Genetic studies could potentially overcome these issues because genetic variants are inherited randomly and are fixed at conception. Therefore, we tested the homocysteine levels–associated genetic variant MTHFR C677T for association with magnetic resonance imaging–confirmed lacunar stroke and compared this with associations with large artery and cardioembolic stroke subtypes. Methods— We included 1359 magnetic resonance imaging–confirmed lacunar stroke cases, 1824 large artery stroke cases, 1970 cardioembolic stroke cases, and 14 448 controls, all of European ancestry. Furthermore, we studied 3670 ischemic stroke patients in whom white matter hyperintensities volume was measured. We tested MTHFR C677T for association with stroke subtypes and white matter hyperintensities volume. Because of the established association of homocysteine with hypertension, we additionally stratified for hypertension status. Results— MTHFR C677T was associated with lacunar stroke (P=0.0003) and white matter hyperintensity volume (P=0.04), but not with the other stroke subtypes. Stratifying the lacunar stroke cases for hypertension status confirmed this association in hypertensive individuals (P=0.0002), but not in normotensive individuals (P=0.30). Conclusions— MTHFR C677T was associated with magnetic resonance imaging–confirmed lacunar stroke, but not large artery or cardioembolic stroke. The association may act through increased susceptibility to, or interaction with, high blood pressure. This heterogeneity of association might explain the lack of effect of lowering homocysteine in secondary prevention trials which included all strokes. PMID:26839351

  17. Folate intake and the MTHFR C677T genotype influence choline status in young Mexican American women☆

    PubMed Central

    Abratte, Christian M.; Wang, Wei; Li, Rui; Moriarty, David J.; Caudill, Marie A.

    2009-01-01

    Numerous studies have reported a relationship between folate status, the methylenetetrahydrofolate reductase (MTHFR) 677C→T variant and disease risk. Although folate and choline metabolism are inter-related, only limited data are available on the relationship between choline and folate status in humans. This study sought to examine the influences of folate intake and the MTHFR 677C→T variant on choline status. Mexican-American women (n =43; 14 CC, 12 CT and 17 TT) consumed 135 μg/day as dietary folate equivalents (DFE) for 7 weeks followed by randomization to 400 or 800 μg DFE/day for 7 weeks. Throughout the study, total choline intake remained unchanged at ∼350 mg/day. Plasma concentrations of betaine, choline, glycerophosphocholine, phosphatidylcholine and sphingomyelin were measured via LC-MS/MS for Weeks 0, 7 and 14. Phosphatidylcholine and sphingomyelin declined ( P=.001, P=.009, respectively) in response to folate restriction and increased ( P=.08, P=.029, respectively) in response to folate treatment. The increase in phosphatidylcholine occurred in response to 800 ( P=.03) not 400 ( P=.85) μg DFE/day (week×folate interaction, P=.017). The response of phosphatidylcholine to folate intake appeared to be influenced by MTHFR C677T genotype. The decline in phosphatidylcholine during folate restriction occurred primarily in women with the CC or CT genotype and not in the TT genotype (week×genotype interaction, P=.089). Moreover, when examined independent of folate status, phosphatidylcholine was higher ( P <.05) in the TT genotype relative to the CT genotype. These data suggest that folate intake and the MTHFR C677T genotype influence choline status in humans. PMID:17588738

  18. Leber's hereditary optic neuropathy is associated with mitochondrial ND1 T3394C mutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Min; Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003; Guan, Minqiang

    2009-06-05

    We report here the clinical, genetic and molecular characterization of four Chinese families with Leber's hereditary optic neuropathy (LHON). There were variable severity and age-of-onset in visual impairment among these families. Strikingly, there were extremely low penetrances of visual impairment in these Chinese families. Sequence analysis of complete mitochondrial genomes in these pedigrees showed the homoplasmic T3394C (Y30H) mutation, which localized at a highly conserved tyrosine at position 30 of ND1, and distinct sets of mtDNA polymorphisms belonging to haplogroups D4b and M9a. The occurrence of T3394C mutation in these several genetically unrelated subjects affected by visual impairment strongly indicatesmore » that this mutation is involved in the pathogenesis of visual impairment. However, there was the absence of functionally significant mtDNA mutations in these four Chinese pedigrees carrying the T3394C mutation. Therefore, nuclear modifier gene(s) or environmental factor(s) may play a role in the phenotypic expression of the LHON-associated T3394C mutation.« less

  19. mtDNA mutation C1494T, haplogroup A, and hearing loss in Chinese

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Chengye; Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091; Graduate University of the Chinese Academy of Sciences, Beijing 100039

    2006-09-22

    Mutation C1494T in mitochondrial 12S rRNA gene was recently reported in two large Chinese families with aminoglycoside-induced and nonsyndromic hearing loss (AINHL) and was claimed to be pathogenic. This mutation, however, was first reported in a sample from central China in our previous study that was aimed to reconstruct East Asian mtDNA phylogeny. All these three mtDNAs formed a subclade defined by mutation C1494T in mtDNA haplogroup A. It thus seems that mutation C1494T is a haplogroup A-associated mutation and this matrilineal background may contribute a high risk for the penetrance of mutation C1494T in Chinese with AINHL. To testmore » this hypothesis, we first genotyped mutation C1494T in 553 unrelated individuals from three regional Chinese populations and performed an extensive search for published complete or near-complete mtDNA data sets (>3000 mtDNAs), we then screened the C1494T mutation in 111 mtDNAs with haplogroup A status that were identified from 1823 subjects across China. The search for published mtDNA data sets revealed no other mtDNA besides the above-mentioned three carrying mutation C1494T. None of the 553 randomly selected individuals and the 111 haplogroup A mtDNAs was found to bear this mutation. Therefore, our results suggest that C1494T is a very rare event. The mtDNA haplogroup A background in general is unlikely to play an active role in the penetrance of mutation C1494T in AINHL.« less

  20. Methylenetetrahydrofolate reductase (MTHFR) gene 677C>T and 1298A>C polymorphisms are associated with differential apoptosis of leukemic B cells in vitro and disease progression in chronic lymphocytic leukemia.

    PubMed

    Nückel, H; Frey, U H; Dürig, J; Dührsen, U; Siffert, W

    2004-11-01

    Methylenetetrahydrofolate reductase (MTHFR) regulates the metabolism of folate and methionine, essential components of DNA synthesis and methylation. We investigated whether the two genetic MTHFR polymorphisms (677C>T and 1298A>C) are associated with an increased risk for chronic lymphocytic leukemia (CLL) or may predict disease progression. Moreover, we measured potential genotype effects on apoptosis of B-CLL cells.Allele frequencies and genotype distributions for both polymorphisms were not significantly different in 111 patients vs 92 healthy controls. While progression-free survival (PFS) was not significantly different in individuals with CLL including all stages, in patients with Binet stage A PFS was significantly longer in patients displaying the MTHFR 677CC (P=0.043) and the MTHFR 1298A/C or CC genotypes (P=0.019). In a multivariate analysis, MTHFR haplotype (677CC plus 1298CC or A/C) was the best independent prognostic factor for PFS compared with other known prognostic factors. Spontaneous apoptosis of B-CLL cells in vitro was significantly increased in the favorable risk group with MTHFR 677CC and MTHFR 1298AC, which may constitute the cellular basis of the observed associations. While MTHFR polymorphisms do not affect the risk for B-CLL, they may be independent prognostic markers that influence the PFS in patients with early-stage B-CLL.

  1. The MTHFR C677T polymorphism and risk of acute lymphoblastic leukemia: an updated meta-analysis based on 37 case-control studies.

    PubMed

    Jiang, Yuan; Hou, Jing; Zhang, Qiang; Jia, Shu-Ting; Wang, Bo-Yuan; Zhang, Ji-Hong; Tang, Wen-Ru; Luo, Ying

    2013-01-01

    The C677T polymorphism of the methylenetetrahydrofolate reductase (MTHFR) has been associated with acute lymphoblastic leukemia (ALL). However, results were conflicting. The aim of this study was to quantitatively summarize the evidence for the MTHFRC677T polymorphism and ALL risk. Electronic searches of PubMed and the Chinese Biomedicine database were conducted to select case-control studies containing available genotype frequencies of C677T and the odds ratio (OR) with 95% confidence interval (CI) was used to assess the strength of any association. Case-control studies including 6,371 cases and 10,850 controls were identified. The meta-analysis stratified by ethnicity showed that individuals with the homozygous TT genotype had decreased risk of ALL (OR= 0.776, 95% CI: 0.687~0.877, p< 0.001) in Caucasians (OR= 0.715, 95% CI: 0.655~0.781, p= 0.000). However, results among Asians (OR=0.711, 95% CI: 0.591~1.005, p= 0.055) and others (OR=0.913, 95% CI: 0.656~1.271, p= 0. 590) did not suggest an association. A symmetric funnel plot, the Egger's test (P=0.093), and the Begg- test (P=0.072) were all suggestive of the lack of publication bias. This meta-analysis supports the idea that the MTHFR C677T genotype is associated with risk of ALL in Caucasians. To draw comprehensive and true conclusions, further prospective studies with larger numbers of participants worldwide are needed to examine associations between the MTHFRC677T polymorphism and ALL.

  2. Phenotype of Usher syndrome type II assosiated with compound missense mutations of c.721 C>T and c.1969 C>T in MYO7A in a Chinese Usher syndrome family.

    PubMed

    Zhai, Wei; Jin, Xin; Gong, Yan; Qu, Ling-Hui; Zhao, Chen; Li, Zhao-Hui

    2015-01-01

    To identify the pathogenic mutations in a Chinese pedigree affected with Usher syndrome type II (USH2). The ophthalmic examinations and audiometric tests were performed to ascertain the phenotype of the family. To detect the genetic defect, exons of 103 known RDs -associated genes including 12 Usher syndrome (USH) genes of the proband were captured and sequencing analysis was performed to exclude known genetic defects and find potential pathogenic mutations. Subsequently, candidate mutations were validated in his pedigree and 100 normal controls using polymerase chain reaction (PCR) and Sanger sequencing. The patient in the family occurred hearing loss (HL) and retinitis pigmentosa (RP) without vestibular dysfunction, which were consistent with standards of classification for USH2. He carried the compound heterozygous mutations, c.721 C>T and c.1969 C>T, in the MYO7A gene and the unaffected members carried only one of the two mutations. The mutations were not present in the 100 normal controls. We suggested that the compound heterozygous mutations of the MYO7A could lead to USH2, which had revealed distinguished clinical phenotypes associated with MYO7A and expanded the spectrum of clinical phenotypes of the MYO7A mutations.

  3. Mitochondrial tRNALeu(UUR) C3275T, tRNAGln T4363C and tRNALys A8343G mutations may be associated with PCOS and metabolic syndrome.

    PubMed

    Ding, Yu; Xia, Bo-Hou; Zhang, Cai-Juan; Zhuo, Guang-Chao

    2018-02-05

    Polycystic ovary syndrome (PCOS) is a very prevalent endocrine disease affecting reproductive women. Clinically, patients with this disorder are more vulnerable to develop type 2 diabetes mellitus (T2DM), cardiovascular events, as well as metabolic syndrome (MetS). To date, the molecular mechanism underlying PCOS remains largely unknown. Previously, we showed that mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) mutation was an important cause for PCOS. In the current study, we described the clinical and biochemical features of a three-generation pedigree with maternally transmitted MetS, combined with PCOS. A total of three matrilineal relatives exhibited MetS including obesity, high triglyceride (TG) and Hemoglobin A1c (HbA1c) levels, and hypertension. Whereas one patient from the third generation manifestated PCOS. Mutational analysis of the whole mitochondrial genes from the affected individuals identified a set of genetic variations belonging to East Asia haplogroup B4b1c. Among these variants, the homoplasmic C3275T mutation disrupted a highly evolutionary conserved base-pairing (28A-46C) on the variable region of tRNA Leu(UUR) , whereas the T4363C mutation created a new base-pairing (31T-37A) in the anticodon stem of tRNA Gln , furthermore, the A8343G mutation occurred at the very conserved position of tRNA Lys and may result the failure in mitochondrial tRNAs (mt-tRNAs) metabolism. Biochemical analysis revealed the deficiency in mitochondrial functions including lower levels of mitochondrial membrane potential (MMP), ATP production and mtDNA copy number, while a significantly increased reactive oxygen species (ROS) generation was observed in polymononuclear leukocytes (PMNs) from the individuals carrying these mt-tRNA mutations, suggesting that these mutations may cause mitochondrial dysfunction that was responsible for the clinical phenotypes. Taken together, our data indicated that mt-tRNA mutations were associated with MetS and PCOS in this

  4. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status

    PubMed Central

    Friso, Simonetta; Choi, Sang-Woon; Girelli, Domenico; Mason, Joel B.; Dolnikowski, Gregory G.; Bagley, Pamela J.; Olivieri, Oliviero; Jacques, Paul F.; Rosenberg, Irwin H.; Corrocher, Roberto; Selhub, Jacob

    2002-01-01

    DNA methylation, an essential epigenetic feature of DNA that modulates gene expression and genomic integrity, is catalyzed by methyltransferases that use the universal methyl donor S-adenosyl-l-methionine. Methylenetetrahydrofolate reductase (MTHFR) catalyzes the synthesis of 5-methyltetrahydrofolate (5-methylTHF), the methyl donor for synthesis of methionine from homocysteine and precursor of S-adenosyl-l-methionine. In the present study we sought to determine the effect of folate status on genomic DNA methylation with an emphasis on the interaction with the common C677T mutation in the MTHFR gene. A liquid chromatography/MS method for the analysis of nucleotide bases was used to assess genomic DNA methylation in peripheral blood mononuclear cell DNA from 105 subjects homozygous for this mutation (T/T) and 187 homozygous for the wild-type (C/C) MTHFR genotype. The results show that genomic DNA methylation directly correlates with folate status and inversely with plasma homocysteine (tHcy) levels (P < 0.01). T/T genotypes had a diminished level of DNA methylation compared with those with the C/C wild-type (32.23 vs.62.24 ng 5-methylcytosine/μg DNA, P < 0.0001). When analyzed according to folate status, however, only the T/T subjects with low levels of folate accounted for the diminished DNA methylation (P < 0.0001). Moreover, in T/T subjects DNA methylation status correlated with the methylated proportion of red blood cell folate and was inversely related to the formylated proportion of red blood cell folates (P < 0.03) that is known to be solely represented in those individuals. These results indicate that the MTHFR C677T polymorphism influences DNA methylation status through an interaction with folate status. PMID:11929966

  5. Three novel HBB mutations, c.-140C>G (-90 C>G), c.237_256delGGACAACCTCAAGGGCACCT (FS Cd 78/85 -20 bp), and c.315+2T>G (IVS2:2 T>G). Update of the mutational spectrum of β-Thalassemia in Mexican mestizo patients.

    PubMed

    Rizo-de-la-Torre, L C; Ibarra, B; Sánchez-López, J Y; Magaña-Torres, M T; Rentería-López, V M; Perea-Díaz, F J

    2017-10-01

    Beta-thalassemia (β-thal) is frequent in Mexican patients with microcytosis and hypochromia. We report three novel mutations and analyze the actual mutational spectrum in Mexican population. One hundred and forty-nine β-thal Mexican mestizo patients were studied (154 alleles). ARMS-PCR was performed to identify Cd39C>T, IVS1:1G>A, IVS1:110G>A, -28A>C, initiation codonA>G and IVS1:5G>A mutations, and gap-PCR for δβ-thal Spanish type. DNA sequencing of HBB gene was carried out in negative samples for the initial screening. Fifteen different HBB gene mutations were observed in 148 alleles; three of them are novel: -90C>G, 20 bp deletion (at codons 78/85), and IVS2:2T>G; the mutation IVS1:6T>C that was observed for first time in our population; and eleven previously described mutations. Six alleles showed normal HBB sequence. To date, a total of 21 different mutations have been observed in Mexican patients; the four most frequent mutations are of Mediterranean origin: Cd39C>T (37.2%), IVS1:1G>A (17.3%), IVS1:110G>A (13.9%), and δβ-thal Spanish type (9.0%), which represent 77.4% of the total studied alleles. Considering the novel mutations -90C>G, -20 bp Cd78/85, IVS2:2T>G and the first observation of IVS1:6T>C, the molecular spectrum of β-thal in Mexicans comprises 21 different mutations, confirming the high allelic heterogeneity in Mexicans. © 2017 John Wiley & Sons Ltd.

  6. Novel and recurrent mutations in the C1NH gene of Arab patients affected with hereditary angioedema.

    PubMed

    Faiyaz-Ul-Haque, Muhammad; Al-Gazlan, Sulaiman; Abalkhail, Halah A; Al-Abdulatif, Ahmad; Toulimat, Mohamed; Peltekova, Iskra; Khaliq, Agha M R; Al-Dayel, Fouad; Zaidi, Syed H E

    2010-01-01

    Autosomal dominant hereditary angioedema (HAE) results in episodes of subcutaneous edema in any body part and/or submucosal edema of the upper respiratory or gastrointestinal tracts. This disorder is caused by mutations in the C1NH gene, many of which have been described primarily in European patients. However, the genetic cause of HAE in Middle Eastern Arab patients has not yet been determined. Four unrelated Arab families, in which 15 patients were diagnosed with HAE, were studied. DNA from 13 patients was analyzed for mutations in the C1NH gene by DNA sequencing. Three novel and 2 recurrent mutations were identified in the C1NH gene of HAE patients. In family 1, the patient was heterozygous for a novel c.856C>T and a recurrent c.1361T>A missense mutation encoding for p.Arg264Cys and p.Val432Glu, respectively. In patients from family 2, a novel c.509C>T missense mutation encoding for a p.Ser148Phe was identified. In patients from family 3, a novel c.1142delC nonsense mutation encoding for a p.Ala359AlafsX15 was discovered. In family 4, a recurrent c.1397G>A missense mutation encoding for a p.Arg444His was present. This is the first ever report of C1NH gene mutations in Middle Eastern Arab patients. Our study suggests that, despite the numerous existing mutations in the C1NH gene, there are novel and recurrent mutations in HAE patients of non-European origin. We conclude that the spectrum of C1NH gene mutations in HAE patients is wider due to the likely presence of novel and recurrent mutations in patients of other ethnicities. 2009 S. Karger AG, Basel.

  7. MTHFR 677C-->T and 1298A-->C polymorphisms in children with Down syndrome and acute myeloid leukemia in Brazil.

    PubMed

    Amorim, Marcia R; Zanrosso, Crisiane Wais; Magalhães, Isis Q; Pereira, Simone C; Figueiredo, Alexandre; Emerenciano, Mariana; Pinheiro, Vitoria Regia; d'Andréa, Maria Lydia; Orioli, Ieda M; Koifman, Sergio; Pombo-de-Oliveira, Maria S

    2008-12-01

    Down syndrome (DS) is an important risk factor associated with acute leukemia (AL). The presence of polymorphisms that reduce 5,10-methylenetetrahydrofolate reductase (MTHFR) activity has been linked to the multifactorial leukemogenic process. The authors have conducted a study to test whether 677C-->T and/or 1298A-->C polymorphisms of MTHFR would play an additional role in susceptibility of acute myeloid leukemia (AML) in DS children. They also verified whether any polymorphism in the MTHFR gene was associated with the risk of DS. Genetic polymorphisms determination was carried out in 248 samples from healthy individuals as controls and a total of 115 DS children (65 without leukemia and 50 with AML). The present study failed to reveal any association between these polymorphisms and risk of AML in DS children. The data also indicate that MTHFR polymorphisms are not associated with risk of being a DS child.

  8. The association of factor V G1961A (factor V Leiden), prothrombin G20210A, MTHFR C677T and PAI-1 4G/5G polymorphisms with recurrent pregnancy loss in Bosnian women.

    PubMed

    Jusić, Amela; Balić, Devleta; Avdić, Aldijana; Pođanin, Maja; Balić, Adem

    2018-08-01

    Aim To investigate association of factor V Leiden, prothrombin G20210A, MTHFR C677T and PAI-1 4G/5G polymorphisms with recurrent pregnancy loss in Bosnian women. Methods A total of 60 women with two or more consecutive miscarriages before 20 weeks of gestation with the same partners and without history of known causes or recurrent pregnancy loss were included. A control group included 80 healthy women who had one or more successful pregnancies without history of any complication which could be associated with miscarriages. Genotyping of factor V Leiden, prothrombin G20210A, MTHFR C677T and PAI-1 4G/5G polymorphisms were performed by polymerase chain reaction/restriction fragments length polymorphism method (PCR/RFLP). Results Both factor V Leiden and MTHFR C677T polymorphisms were significantly associated with recurrent pregnancy loss (RPL) in Bosnian women while prothrombin G20210A and PAI-1 4G/5G polymorphisms did not show strongly significant association. Conclusion The presence of thrombophilic polymorphisms may predispose women to recurrent pregnancy loss. Future investigation should be addressed in order to find when carriers of those mutations, polymorphisms should be treated with anticoagulant therapy. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  9. Frequent mutations in the p53 tumor suppressor gene in human leukemia T-cell lines.

    PubMed Central

    Cheng, J; Haas, M

    1990-01-01

    Human T-cell leukemia and T-cell acute lymphoblastic leukemia cell lines were studied for alterations in the p53 tumor suppressor gene. Southern blot analysis of 10 leukemic T-cell lines revealed no gross genomic deletions or rearrangements. Reverse transcription-polymerase chain reaction analysis of p53 mRNA indicated that all 10 lines produced p53 mRNA of normal size. By direct sequencing of polymerase chain reaction-amplified cDNA, we detected 11 missense and nonsense point mutations in 5 of the 10 leukemic T-cell lines studied. The mutations are primarily located in the evolutionarily highly conserved regions of the p53 gene. One of the five cell lines in which a mutation was detected possesses a homozygous point mutation in both p53 alleles, while the other four cell lines harbor from two to four different point mutations. An allelic study of two of the lines (CEM, A3/Kawa) shows that the two missense mutations found in each line are located on separate alleles, thus both alleles of the p53 gene may have been functionally inactivated by two different point mutations. Since cultured leukemic T-cell lines represent a late, fully tumorigenic stage of leukemic T cells, mutation of both (or more) alleles of the p53 gene may reflect the selection of cells possessing an increasingly tumorigenic phenotype, whether the selection took place in vivo or in vitro. Previously, we have shown that the HSB-2 T-cell acute lymphoblastic leukemia cell line had lost both alleles of the retinoblastoma tumor suppressor gene. Taken together, our data show that at least 6 of 10 leukemic T-cell lines examined may have lost the normal function of a known tumor suppressor gene, suggesting that this class of genes serves a critical role in the generation of fully tumorigenic leukemic T cells. Images PMID:2144611

  10. CBS mutations and MTFHR SNPs causative of hyperhomocysteinemia in Pakistani children.

    PubMed

    Ibrahim, Shahnaz; Maqbool, Saadia; Azam, Maleeha; Iqbal, Mohammad Perwaiz; Qamar, Raheel

    2018-03-29

    Three index patients with hyperhomocysteinemia and ocular anomalies were screened for cystathionine beta synthase (CBS) and methylenetetrahydrofolate reductase (MTHFR) polymorphisms. Genotyping of hyperhomocysteinemia associated MTHFR polymorphisms C677T (rs1801133) and A1298C (rs1801131) was done by PCR-restriction fragment length polymorphism. Sanger sequencing was performed for CBS exonic sequences along with consensus splice sites. In the case of MTHFR polymorphisms, all the patients were heterozygous CT for the single nucleotide polymorphism (SNP) C677T and were therefore carriers of the risk allele (T), while the patients were homozygous CC for the risk genotype of the SNP A1298C. CBS sequencing resulted in the identification of two novel mutations, a missense change (c.467T>C; p.Leu156Pro) in exon 7 and an in-frame deletion (c.808_810del; p.Glu270del) in exon 10. In addition, a recurrent missense mutation (c.770C>T; p.Thr257Met) in exon 10 of the gene was also identified. The mutations were present homozygously in the patients and were inherited from the carrier parents. This is the first report from Pakistan where novel as well as recurrent CBS mutations causing hyperhomocysteinemia and lens dislocation in three patients from different families are being reported with the predicted effect of the risk allele of the MTHFR SNP in causing hyperhomocysteinemia.

  11. Leber's hereditary optic neuropathy is associated with mitochondrial ND6 T14502C mutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Fuxin; Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003; Guan, Minqiang

    2009-11-20

    We report here the clinical, genetic, and molecular characterization of three Chinese families with Leber's hereditary optic neuropathy (LHON). There were variable severity and age of onset in visual impairment among these families. Strikingly, there were extremely low penetrances of visual impairment in these Chinese families. Sequence analysis of complete mitochondrial genomes in these pedigrees showed the homoplasmic T14502C (I58V) mutation, which localized at a highly conserved isoleucine at position 58 of ND6, and distinct sets of mtDNA polymorphisms belonging to haplogroups M10a, F1a1, and H2. The occurrence of T14502C mutation in these several genetically unrelated subjects affected by visualmore » impairment strongly indicates that this mutation is involved in the pathogenesis of visual impairment. Here, mtDNA variants I187T in the ND1, A122V in CO1, S99A in the A6, and V254I in CO3 exhibited an evolutionary conservation, indicating a potential modifying role in the development of visual impairment associated with T14502C mutation in those families. Furthermore, nuclear modifier gene(s) or environmental factor(s) may play a role in the phenotypic manifestation of the LHON-associated T14502C mutation in these Chinese families.« less

  12. Carnitine-acylcarnitine translocase deficiency with c.199-10 T>G and novel c.1A>G mutation

    PubMed Central

    Yan, Hui-ming; Hu, Hao; Ahmed, Aisha; Feng, Bing-bing; Liu, Jing; Jia, Zheng-jun; Wang, Hua

    2017-01-01

    Abstract Rationale: Carnitine-acylcarnitine translocate deficiency (CACTD) is a rare and life-threatening, autosomal recessive disorder of fatty acid β-oxidation characterized by hypoketotic hypoglycemia, hyperammonemia, cardiomyopathy, liver dysfunction, and muscle weakness; culminating in early death. To date, CACTD cases screened from the Chinese mainland population, especially patient with compound heterozygote with c.199-10T>G and a novel c.1A>G mutation in the SLC25A20 gene has never been described. Patient concerns: Herein, we report 2 neonatal cases of CACTD identified from the mainland China. These 2 patients were presented with severe metabolic crisis and their clinical conditions deteriorate rapidly and both died of cardiorespiratory collapse in the first week of life. We present the clinical and biochemical features of 2 probands and a brief literature review of previously reported CACTD cases with the c.199-10T>G mutation. Diagnoses: The acylcarnitine profiles by tandem-mass-spectrometry and the mutation analysis of SLC25A20 gene confirmed the diagnosis of CACTD in both patients. Mutation analysis demonstrated that patient No. 1 was homozygous for c.199-10T>G mutation, while patient No. 2 was a compound heterozygote for 2 mutations, a maternally-inherited c.199-10T>G and a paternally-inherited, novel c.1A>G mutation. Interventions: Both patients were treated with an aggressive treatment regimen include high glucose and arginine infusion, respiratory, and circulatory support. Outcomes: The first proband died 3 days after delivery due to sudden cardiac arrest. The second patient's clinical condition, at one time, was improved by high glucose infusion, intravenous arginine, and circulatory support. However, the patient failed to wean from mechanical ventilation. Unfortunately, her parents refused further treatment due to fear of financial burdens. The patient died of congestive heart failure in the 6th day of life. Lessons: We report the first 2 cases of

  13. Plasminogen activator inhibitor-1 4G/5G and the MTHFR 677C/T polymorphisms and susceptibility to polycystic ovary syndrome: a meta-analysis.

    PubMed

    Lee, Young Ho; Song, Gwan Gyu

    2014-04-01

    The aim of this study was to explore whether the plasminogen activator inhibitor-1 (PAI-1) 4G/5G and the methylenetetrahydrofolate reductase (MTHFR) 677C/T polymorphisms are associated with susceptibility to polycystic ovary syndrome (PCOS). Meta-analyses were conducted to determine the association between the PAI-1 4G/5G and MTHFR 677C/T polymorphisms and PCOS using: (1) allele contrast (2) homozygote contrast, (3) recessive, and (4) dominant models. For meta-analysis, nine studies of the PAI-1 4G/5G polymorphism with 2384 subjects (PCOS, 1615; controls, 769) and eight studies of the MTHFR 677C/T polymorphism with 1270 study subjects were included. Meta-analysis of all study subjects showed no association between PCOS and the PAI-1 4G allele (OR=0.949, 95% CI=0.671-1.343, p=0.767). Stratification by ethnicity, however, indicated a significant association between the PAI-1 4G allele and PCOS in Turkish and Asian populations (OR=0.776, 95% CI=0.602-0.999, p=0.049; OR=1.749, 95% CI=1.297-2.359, p=2.5×10(-5) respectively). In addition, meta-analysis indicated an association between PCOS and the PAI-1 4G4G+4G5G genotype in Europeans (OR=1.406, 95% CI=1.025-1.928, p=0.035). However, meta-analysis of all study subjects showed no association between PCOS and the MTHFR 677T allele (OR=0.998, 95% CI=0.762-1.307, p=0.989), including Europeans (OR=0.806, 95% CI=0.610-1.063, p=0.126). Meta-analysis showed no association between PCOS and the MTHFR 677C/T polymorphism using homozygote contrast, and recessive and dominant models. In conclusion, meta-analysis suggests the PAI-1 4G/5G polymorphism is associated with susceptibility to PCOS in European, Turkish, and Asian populations, but the MTHFR 677C/T polymorphism is not associated with susceptibility to PCOS in Europeans. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Influence of Combined Methionine Synthase (MTR 2756A > G) and Methylenetetrahydrofolate Reductase (MTHFR 677C > T) Polymorphisms to Plasma Homocysteine Levels in Korean Patients with Ischemic Stroke

    PubMed Central

    Kim, Ok Joon; Hong, Sun Pyo; Ahn, Jung Yong; Hong, Seung Ho; Hwang, Tae Sun; Kim, Soo Ok; Yoo, Wangdon; Oh, Doyeun

    2007-01-01

    Purpose Methionine synthase (MTR) and 5,10-methylenetetrahydrofolate reductase (MTHFR) are the main regulatory enzymes for homocysteine metabolism. The present case-control study was conducted to determine whether there is an association between the MTR 2756A > G or MTHFR 677C > T polymorphism and plasma homocysteine concentration in Korean subjects with ischemic stroke. Materials and Methods DNA samples of 237 patients who had an ischemic stroke and 223 age and sex-matched controls were studied. MTR 2756A > G and MTHFR 677C > T genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results Frequencies of mutant alleles for MTR and MTHFR polymorphisms were not significantly different between the controls and cases. The patient group, however, had significantly higher homocysteine concentrations of the MTR 2756AA and MTHFR 677TT genotypes than the control group (p = 0.04 for MTR, p = 0.01 for MTHFR). The combined MTR 2756AA and MTHFR 677TT genotype (p = 0.04) and the homocysteine concentrations of the patient group were also higher than those of the controls. In addition, the genotype distribution was significant in the MTHFR 677TT genotype (p = 0.008) and combined MTR 2756AA and MTHFR 677TT genotype (p = 0.03), which divided the groups into the top 20% and bottom 20% based on their homocysteine levels. Conclusion The results of the present study demonstrate that the MTR 2756A > G and MTHFR 677C > T polymorphisms interact with elevated total homocysteine (tHcy) levels, leading to an increased risk of ischemic stroke. PMID:17461517

  15. [Gene mutation analysis of X-linked hypophosphatemic rickets].

    PubMed

    Song, Ying; Ma, Hong-Wei; Li, Fang; Hu, Man; Ren, Shuang; Yu, Ya-Fen; Zhao, Gui-Jie

    2013-11-01

    To investigate the frequency and type of PHEX gene mutations in children with X-linked hypophosphatemic rickets (XLH), the possible presence of mutational hot spots, and the relationship between genotype and clinical phenotype. Clinical data of 10 children with XLH was retrospectively reviewed. The relationship between gene mutation type and severity of XLH was evaluated. PHEX gene mutations were detected in all 10 children with XLH, including 6 cases of missense mutation, 2 cases of splice site mutation, 1 case of frameshift mutation, and 1 case of nonsense mutation. Two new mutations, c.2048T>C and IVS14+1delAG, were found. The type of PHEX gene mutation was not associated with the degree of short stature and leg deformity (P=0.571 and 0.467), and the mutation site was also not associated with the degree of short stature and leg deformity (P=0.400 and 1.000). Missense mutation is the most common type of PHEX gene mutation in children with XLH, and c.2048T>C and IVS14+1delAG are two new PHEX gene mutations. The type and site of PHEX gene mutation are not associated with the severity of XLH.

  16. Additive Interaction of MTHFR C677T and MTRR A66G Polymorphisms with Being Overweight/Obesity on the Risk of Type 2 Diabetes.

    PubMed

    Zhi, Xueyuan; Yang, Boyi; Fan, Shujun; Li, Yongfang; He, Miao; Wang, Da; Wang, Yanxun; Wei, Jian; Zheng, Quanmei; Sun, Guifan

    2016-12-15

    Although both methylenetetrahydrofolate reductase ( MTHFR ) C677T and methionine synthase reductase ( MTRR ) A66G polymorphisms have been associated with type 2 diabetes (T2D), their interactions with being overweight/obesity on T2D risk remain unclear. To evaluate the associations of the two polymorphisms with T2D and their interactions with being overweight/obesity on T2D risk, a case-control study of 180 T2D patients and 350 healthy controls was conducted in northern China. Additive interaction was estimated using relative excess risk due to interaction (RERI), attributable proportion due to interaction (AP) and synergy index (S). After adjustments for age and gender, borderline significant associations of the MTHFR C677T and MTRR A66G polymorphisms with T2D were observed under recessive (OR = 1.43, 95% CI: 0.98-2.10) and dominant (OR = 1.43, 95% CI: 1.00-2.06) models, respectively. There was a significant interaction between the MTHFR 677TT genotype and being overweight/obesity on T2D risk (AP = 0.404, 95% CI: 0.047-0.761), in addition to the MTRR 66AG/GG genotypes (RERI = 1.703, 95% CI: 0.401-3.004; AP = 0.528, 95% CI: 0.223-0.834). Our findings suggest that individuals with the MTHFR 677TT or MTRR 66AG/GG genotypes are more susceptible to the detrimental effect of being overweight/obesity on T2D. Further large-scale studies are still needed to confirm our findings.

  17. A Founder Effect of c.257 + 2T > C Mutation in NCF2 Gene Underlies Severe Chronic Granulomatous Disease in Eleven Patients.

    PubMed

    Ben-Farhat, Khaoula; Ben-Mustapha, Imen; Ben-Ali, Meriem; Rouault, Karen; Hamami, Saber; Mekki, Najla; Ben-Chehida, Amel; Larguèche, Beya; Fitouri, Zohra; Abdelmoula, Selim; Khemiri, Monia; Guediche, Mohamed-Neji; Boukthir, Samir; Barsaoui, Sihem; Chemli, Jalel; Barbouche, Mohamed-Ridha

    2016-08-01

    Chronic granulomatous disease (CGD) is the prototypic functional neutrophil disorder caused by genetic defects in one of the five genes encoding the superoxide-generating nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase subunits of phagocytes. Mutations causing the most prevalent form of CGD in western populations are located in the X-linked-CYBB gene. The four remaining autosomal recessive (AR) forms collectively account for one-third of CGD cases. We investigated the clinical and molecular features of eleven patients with CGD from 6 consanguineous families, originating from contiguous regions in the west of Tunisia. The patients' clinical phenotype is characterized by a high incidence of mycobacterial infections. Five out of the eleven patients died despite treatment arguing in favor of a severe clinical form of CGD. These findings correlated with the absence of functional p67phox protein as well as the absence of residual reactive oxygen intermediates (ROI) production. Genetic analysis showed the presence, in all patients, of a unique mutation (c.257 + 2T > C) in NCF2 gene predicted to affect RNA splicing. Segregating analysis using nine polymorphic markers overlapping the NCF2 gene revealed a common haplotype spanning 4.1 Mb. The founder event responsible for this mutation was estimated to have arisen approximately 175 years ago. These findings will facilitate the implementation of preventive approaches through genetic counseling in affected consanguineous families.

  18. Identification of fifteen novel mutations in the SLC12A3 gene encoding the Na-Cl Co-transporter in Italian patients with Gitelman syndrome.

    PubMed

    Syrén, Marie-Louise; Tedeschi, Silvana; Cesareo, Laila; Bellantuono, Rosa; Colussi, Giacomo; Procaccio, Mirella; Alì, Anna; Domenici, Raffaele; Malberti, Fabio; Sprocati, Monica; Sacco, Michele; Miglietti, Nunzia; Edefonti, Alberto; Sereni, Fabio; Casari, Giorgio; Coviello, Domenico A; Bettinelli, Alberto

    2002-07-01

    The SLC12A3 gene encodes the thiazide-sensitive Na-Cl co-transporter (NCCT) expressed in the apical membrane of the distal convoluted tubule of the kidney. Inactivating mutations of this gene are responsible for Gitelman syndrome (GS), a disorder inherited as an autosomal recessive trait. We searched for SLC12A3 gene mutations in 21 Italian patients with the clinical and biochemical features of GS (hypokalemia, hypomagnesemia, metabolic alkalosis, hypocalciuria, and the absence of nephrocalcinosis). All coding regions with their intron-exon boundaries were analyzed using PCR and SSCP techniques followed by sequencing analysis. We identified 21 different mutations evenly distributed throughout the gene without any mutation hot-spot. Fifteen are novel variants, including 12 missense mutations, one deletion, one deletion-insertion and one splice site mutation: R158Q, T163M, W172R, G316V, G374V, G463E, A464T, S615W, V677M, R852S, R958G, C985Y, 2114-2120delACCAAGT, 2144-2158delGCCTTCTACTCGGATinsTG, and 531-2A>G. Copyright 2002 Wiley-Liss, Inc.

  19. DPYD*2A and MTHFR C677T predict toxicity and efficacy, respectively, in patients on chemotherapy with 5-fluorouracil for colorectal cancer.

    PubMed

    Nahid, Noor Ahmed; Apu, Mohd Nazmul Hasan; Islam, Md Reazul; Shabnaz, Samia; Chowdhury, Surid Mohammad; Ahmed, Maizbha Uddin; Nahar, Zabun; Islam, Md Siddiqul; Islam, Mohammad Safiqul; Hasnat, Abul

    2018-01-01

    Significant inter-individual variation in the sensitivity to 5-fluorouracil (5-FU) represents a major therapeutic hindrance either by impairing drug response or inducing adverse drug reactions (ADRs). This study aimed at exploring the cause behind this inter-individual alterations in consequences of 5-fluorouracil-based chemotherapy by investigating the effects of DPYD*2A and MTHFR C677T polymorphisms on toxicity and response of 5-FU in Bangladeshi colorectal cancer patients. Colorectal cancer patients (n = 161) receiving 5-FU-based chemotherapy were prospectively enrolled. DPYD and MTHFR polymorphisms were assessed in peripheral leukocytes. Multivariate analyses were applied to evaluate which variables could predict chemotherapy-induced toxicity and efficacy. Multivariate analyses showed that DPYD*2A polymorphism was a predictive factor (P = 0.023) for grade 3 and grade 4 5-fluorouracil-related toxicities. Although MTHFR C677T polymorphism might act as forecasters for grade 3 or grade 4 neutropenia, diarrhea, and mucositis, this polymorphism was found to increase significantly (P = 0.006) the response of 5-FU. DPYD*2A and MTHFR C677T polymorphisms could explain 5-FU toxicity or clinical outcome in Bangladeshi colorectal patients.

  20. Association between the MTHFR C677T polymorphism and risk of cancer: evidence from 446 case-control studies.

    PubMed

    Xie, Shu-Zhe; Liu, Zhi-Zhong; Yu, Jun-hua; Liu, Li; Wang, Wei; Xie, Dao-Lin; Qin, Jiang-Bo

    2015-11-01

    Many molecular epidemiological studies have been performed to explore the association between MTHFR C677T polymorphism and cancer risk in diverse populations. However, the results were inconsistent. Hence, we performed a meta-analysis to investigate the association between cancer risk and MTHFR C677T (150,086 cases and 200,699 controls from 446 studies) polymorphism. Overall, significantly increased cancer risk was found when all eligible studies were pooled into the meta-analysis. In the further stratified and sensitivity analyses, significantly increased breast cancer risk was found in Asians and Indians, significantly decreased colon cancer risk was found, significantly decreased colorectal cancer risk was found in male population, significantly increased gastric cancer risk was found in Caucasians and Asians, significantly increased hepatocellular cancer risk was found in Asians, significantly decreased adult acute lymphoblastic leukemia (AALL) risk was found in Caucasians, significantly decreased childhood acute lymphoblastic leukemia (CALL) risk was found in Asians, and significantly increased multiple myeloma and NHL risk was found in Caucasians. In summary, this meta-analysis suggests that MTHFR C677T polymorphism is associated with increased breast cancer, gastric cancer, and hepatocellular cancer risk in Asians, is associated with increased gastric cancer, multiple myeloma, and NHL risk in Caucasians, is associated with decreased AALL risk in Caucasians, is associated with decreased CALL risk in Asians, is associated with increased breast cancer risk in Asians, is associated with decreased colon cancer risk, and is associated with decreased colorectal cancer risk in male population. Moreover, this meta-analysis also points out the importance of new studies, such as Asians of HNC, Asians of lung cancer, and Indians of breast cancer, because they had high heterogeneity in this meta-analysis (I(2) > 75%).

  1. The effect of MTHFR(C677T) genotype on plasma homocysteine concentrations in healthy children is influenced by gender.

    PubMed

    Papoutsakis, C; Yiannakouris, N; Manios, Y; Papaconstantinou, E; Magkos, F; Schulpis, K H; Zampelas, A; Matalas, A L

    2006-02-01

    To explore the influence of gender, together with folate status, on the relation between the common methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and plasma total homocysteine (tHcy) concentrations in healthy children. Cross-sectional study by face-to-face interview. A total of 186 sixth-grade students participated from twelve randomly selected primary schools in Volos, Greece. Fasting tHcy, folate, and vitamin B(12) were measured in plasma. The MTHFR genotypes were determined. Anthropometric and dietary intake data by 24-h recall were collected. Geometric means for plasma tHcy, plasma folate and energy-adjusted dietary folate did not differ between females and males. The homozygous mutant TT genotype was associated with higher tHcy only in children with lower plasma folate concentrations (<19.9 nmol/l, P = 0.012). As a significant gender interaction was observed (P = 0.050), we stratified the lower plasma folate group by gender and found that the association between the genotype and tHcy was restricted to males (P = 0.026). Similar results were obtained when folate status was based on estimated dietary folate. Specifically, only TT males that reported lower dietary folate consumption (<37 microg/MJ/day) had tHcy that was significantly higher than tHcy levels of C-allele carriers (P = 0.001). Under conditions of lower folate status (as estimated by either plasma concentration or reported dietary consumption), gender modifies the association of the MTHFR(C677T) polymorphism with tHcy concentrations in healthy children. Kellog Europe.

  2. Influence of Methylenetetrahydrofolate Reductase C677T Polymorphism on the Risk of Lung Cancer and the Clinical Response to Platinum-Based Chemotherapy for Advanced Non-Small Cell Lung Cancer: An Updated Meta-Analysis

    PubMed Central

    Zhu, Ning; Gong, Yi; He, Jian; Xia, Jingwen

    2013-01-01

    Purpose Methylenetetrahydrofolate reductase (MTHFR) has been implicated in lung cancer risk and response to platinum-based chemotherapy in advanced non-small cell lung cancer (NSCLC). However, the results are controversial. We performed meta-analysis to investigate the effect of MTHFR C677T polymorphism on lung cancer risk and response to platinum-based chemotherapy in advanced NSCLC. Materials and Methods The databases of PubMed, Ovid, Wanfang and Chinese Biomedicine were searched for eligible studies. Nineteen studies on MTHFR C677T polymorphism and lung cancer risk and three articles on C677T polymorphism and response to platinum-based chemotherapy in advanced NSCLC, were identified. Results The results indicated that the allelic contrast, homozygous contrast and recessive model of the MTHFR C677T polymorphism were associated significantly with increased lung cancer risk. In the subgroup analysis, the C677T polymorphism was significantly correlated with an increased risk of NSCLC, with the exception of the recessive model. The dominant model and the variant T allele showed a significant association with lung cancer susceptibility of ever smokers. Male TT homozygote carriers had a higher susceptibility, but the allelic contrast and homozygote model had a protective effect in females. No relationship was observed for SCLC in any comparison model. In addition, MTHFR 677TT homozygote carriers had a better response to platinum-based chemotherapy in advanced NSCLC in the recessive model. Conclusion The MTHFR C677T polymorphism might be a genetic marker for lung cancer risk or response to platinum-based chemotherapy in advanced NSCLC. However, our results require further verification. PMID:24142642

  3. Gender-specific interactions of MTHFR C677T and MTRR A66G polymorphisms with overweight/obesity on serum lipid levels in a Chinese Han population.

    PubMed

    Zhi, Xueyuan; Yang, Boyi; Fan, Shujun; Wang, Yanxun; Wei, Jian; Zheng, Quanmei; Sun, Guifan

    2016-10-28

    Little is known regarding the interactions of methylenetetrahydrofolate reductase (MTHFR) C677T and methionine synthase reductase (MTRR) A66G polymorphisms with overweight/obesity on serum lipid profiles. The aim of the current study was to explore interactions between the two polymorphisms and overweight/obesity on four common lipid levels in a Chinese Han population and further to evaluate whether these interactions exhibit gender-specificity. A total of 2239 participants (750 females and 1489 males) were enrolled into this study. The genotypes of the MTHFR C677T and MTRR A66G were determined by a TaqMan assay. Overweight and obesity were defined as a body mass index between 24 and 27.99 and ≥ 28 kg/m 2 , respectively. The interactions were examined by factorial design covariance analysis, and further multiple comparisons were conducted by Bonferroni correction. There was no significant difference in the genotypic and allelic frequencies between females and males (MTHFR 677 T allele: 54.47 % for females and 54.40 % for males; MTRR 66G allele: 24.73 % for females and 24.71 % for males). Interaction between the MTHFR C677T polymorphism and overweight/obesity on serum triglyceride levels, and interaction between the MTRR A66G polymorphism and overweight/obesity on serum high-density lipoprotein cholesterol levels were detected in women (P = 0.015 and P = 0.056, respectively). For female subjects with overweight/obesity, the serum triglyceride levels in MTHFR 677TT genotype [1.09 (0.78-1.50) mmol/L] were significantly higher as compared with MTHFR 677CC genotype [0.90 (0.60-1.15) mmol/L, P = 0.007], and the MTRR 66GG genotype carriers had higher serum high-density lipoprotein cholesterol levels than those with MTRR 66AG genotype (1.46 ± 0.50 vs. 1.19 ± 0.31 mmol/L, P = 0.058). Furthermore, in male subjects with overweight/obesity, the MTHFR 677CT genotype carriers had higher low-density lipoprotein cholesterol levels than those

  4. An Indian child with Kindler syndrome resulting from a new homozygous nonsense mutation (C468X) in the KIND1 gene.

    PubMed

    Sethuraman, G; Fassihi, H; Ashton, G H S; Bansal, A; Kabra, M; Sharma, V K; McGrath, J A

    2005-05-01

    Kindler syndrome is an inherited skin condition that presents with blistering followed by photosensitivity and a progressive poikiloderma. The disorder results from mutations in the KIND1 gene, encoding the protein kindlin-1, a recently characterized 677-amino acid protein involved in anchorage of the actin cytoskeleton to the extracellular matrix. We report the clinical features of an 11-year-old boy with Kindler syndrome from a consanguineous Indian family and the identification of a homozygous nonsense mutation (C468X) in exon 12 of the KIND1 gene in his genomic DNA. This mutation has not been described previously but is similar to the 17 previously published KIND1 mutations that are all predicted to lead to loss of kindlin-1 protein expression and function. The clinical features in this boy highlight the relevance of kindlin-1 in skin biology, specifically to epidermal adhesion and response to acute and chronic sun exposure. Delineation of this new pathogenic mutation in KIND1 is also useful for genetic counselling in this family and in assessing carrier status in unaffected family members.

  5. [Maple syrup urine disease and gene mutations in twin neonates].

    PubMed

    Li, Tao; Wang, Yu; Li, Cui; Xu, Wei-Wei; Niu, Feng-Hai; Zhang, Di

    2016-12-01

    To investigate the clinical features of one pair of twin neonates with maple syrup urine disease (MSUD) in the Chinese Han population and pathogenic mutations in related genes, and to provide guidance for the early diagnosis and treatment of MSUD. The clinical and imaging data of the twin neonates were collected. The peripheral blood samples were collected from the twin neonates and their parents to detect the genes related to MSUD (BCKDHA, BCKDHB, DBT, and DLD). The loci with gene mutations were identified, and a bioinformatic analysis was performed. Two mutations were detected in the BCKDHB gene, missense mutation c.304G>A (p.Gly102Arg) and nonsense mutation c.331C>T (p.Arg111*), and both of them were heterozygotes. The mutation c.304G>A (p.Gly102Arg) had not been reported in the world. Their father carried the missense mutation c.304G>A (p.Gly102Arg), and their mother carried the nonsense mutation c.331C>T (p.Arg111*). The c.331C>T (p.Arg111*) heterozygous mutation in BCKDHB gene is the pathogenic mutation in these twin neonates and provides a genetic and molecular basis for the clinical features of children with MSUD.

  6. MTHFR Gene Polymorphism-Mutations and Air Pollution as Risk Factors for Breast Cancer

    PubMed Central

    Gonzales, Mildred C.; Yu, Pojui; Shiao, S. Pamela K.

    2017-01-01

    Background The methylenetetrahydrofolate reductase gene (MTHFR) is one of the most investigated genes associated with breast cancer for its role in epigenetic pathways. Objectives The objectives of this metaprediction study were to examine the polymorphism-mutation risk subtypes of MTHFR and air pollution as contributing factors for breast cancer. Methods For triangulation purposes in metapredictive analyses, we used a recursive partition tree, nonlinear association curve fit, and heat maps for data visualization, in addition to the conventional comparison procedure and pooled analyses. Results We included 36,683 breast cancer cases and 40,689 controls across 82 studies for MTHFR 677 and 23,252 cases and 27,094 controls across 50 studies for MTHFR 1298. MTHFR 677 TT was a risk genotype for breast cancer (p = .0004) and in the East Asian subgroup (p = .005). On global maps, the most polymorphism-mutations on MTHFR 677 TT were found in the Middle East, Europe, Asia, and the Americas, whereas the most mutations on MTHFR 1298 CC were located in Europe and the Middle East for the control group. The geographic information system maps further revealed that MTHFR 677 TT mutations yielded a higher risk of breast cancer for Australia, East Asia, the Middle East, South Europe, Morocco, and the Americas and that MTHFR 1298 CC mutations yielded a higher risk in Asia, the Middle East, South Europe, and South America. Metapredictive analysis revealed that air pollution level was significantly associated with MTHFR 677 TT polymorphism-mutation genotype. Discussion We present the most comprehensive analyses to date of MTHFR polymorphism-mutations and breast cancer risk. Future nursing studies are needed to investigate the health impact on breast cancer of epigenetics and air pollution across populations. PMID:28114181

  7. Methylenetetrahydrofolate reductase C677T polymorphism: association with risk for childhood acute lymphoblastic leukemia and response during the initial phase of chemotherapy in greek patients.

    PubMed

    Chatzidakis, Konstantinos; Goulas, Antonis; Athanassiadou-Piperopoulou, Fani; Fidani, Liana; Koliouskas, Dimitrios; Mirtsou, Vassiliki

    2006-08-01

    As of late, a number of studies have focused on the association of the gene for methyletetrahydrofolate reductase (MTHFR) with risk for acute lymphoblastic leukemia (ALL) in children and in adults, as well as with response to chemotherapy. The degree of this association may vary according to the ethnic background and geographic localization of the population under study, or the phase of treatment when response to chemotherapy is concerned. We have analyzed the MTHFR C677T polymorphism in 52 patients and 88 control individuals, all ethnic Greek residents of northern Greece, and examined the association of this polymorphism with (a) susceptibility to childhood ALL and (b) the distribution of average plasma alanine aminotransferase (ALT) levels, white blood cell counts (WBC), and hemoglobin levels (Hb) during the induction and consolidation phases of treatment. We were able to detect a statistically significant protective effect, with respect to ALL, associated with carriage of the MTHFR 677T allele [OR = 0.387 (95% CI = 0.193-0.776)]. In addition, we observed a general tendency towards lower values in all three parameters studied, associated with the MTHFR 677CC genotype, which was more evident in the transition from the induction to the consolidation phase, indicating that MTHFR genotyping may be of prognostic value in the early phase of treatment for childhood ALL, in our population.

  8. Effects of folic acid deficiency and MTHFRC677T polymorphisms on cytotoxicity in human peripheral blood lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Xiayu; Liang Ziqing; Zou Tianning

    2009-02-13

    Apoptosis (APO) and necrosis (NEC) are two different types of cell death occurring in response to cellular stress factors. Cells with DNA damage may undergo APO or NEC. Folate is an essential micronutrient associated with DNA synthesis, repair and methylation. Methylenetetrahydrofolate reductase (MTHFR) regulates intracellular folate metabolism. Folate deficiency and MTHFR C677T polymorphisms have been shown to be related to DNA damage. To verify the cytotoxic effects of folate deficiency on cells with different MTHFR C677T genotypes, 15 human peripheral lymphocyte cases with different MTHFR C677T genotypes were cultured in folic acid (FA)-deficient and -sufficient media for 9 days. Cytotoxicitymore » was quantified using the frequencies of APO and NEC as endpoints, the nuclear division index (NDI), and the number of viable cells (NVC). These results showed that FA is an important factor in reducing cytotoxicity and increasing cell proliferation. Lymphocytes with the TT genotype proliferated easily under stress and exhibited different responses to FA deficiency than lymphocytes with the CC and CT genotypes. A TT individual may accumulate more cytotoxicity under cytotoxic stress, suggesting that the effects of FA deficiency on cytotoxicity are greater than the effects in individuals with the other MTHFR C677T variants.« less

  9. Compound Heterozygosity for Hb Alperton (HBB: c.407C>T) and IVS-I-5 (G>C) (HBB: c.92+5G>C) Mutations Presenting as a Moderate Anemia in an Indian Family.

    PubMed

    Godbole, Koumudi G; Ramachandran, Angelina; Karkamkar, Ashwini S; Dalal, Ashwin B

    2018-04-13

    While knowledge of HBB gene mutations is necessary for offering prenatal diagnosis (PND) of β-thalassemia (β-thal), a genotype-phenotype correlation may not always be available for rare variants. We present for the first time, genotype-phenotype correlation for a compound heterozygous status with IVS-I-5 (G>C) (HBB: c.92+5G>C) and HBB: c.407C>T (Hb Alperton) mutations on the HBB gene in an Indian family. Hb Alperton is a very rare hemoglobin (Hb) variant with scant published information about its clinical presentation, especially when accompanied with another HBB gene mutation. Here we provide biochemical as well as clinical details of this variant.

  10. Methylenetetrahydrofolate reductase C677T polymorphism predicts response and time to progression to gemcitabine-based chemotherapy for advanced non-small cell lung cancer in a Chinese Han population*

    PubMed Central

    Hong, Wei; Wang, Kai; Zhang, Yi-ping; Kou, Jun-yan; Hong, Dan; Su, Dan; Mao, Wei-min; Yu, Xin-min; Xie, Fa-jun; Wang, Xiao-jian

    2013-01-01

    Objective: The aim of this study was to evaluate the association between the methylenetetrahydrofolate reductase (MTHFR) C677T excision repair cross-complementation group 1 (ERCC1) genetic polymorphisms and the clinical efficacy of gemcitabine-based chemotherapy in advanced non-small cell lung cancer (NSCLC). Methods: A total of 135 chemonaive patients with unresectable advanced NSCLC were treated with gemcitabine/platinum regimens. The polymorphisms of MTHFR C677T, ERCC1 C8092A, and ERCC1 C118T were genotyped using the TaqMan methods. Results: The overall response rate was 28.9%. Patients with MTHFR CC genotype had a higher rate of objective response than patients with variant genotype (TT or CT) (41.2% versus 19.1%, P=0.01). Median time to progression (TTP) of patients with MTHFR CC genotype was longer than that of patients with variant genotype (7.6 months versus 5.0 months, P=0.003). No significant associations were obtained between ERCC1 C118T and C8092A polymorphisms and both response and survival. Conclusions: Our data suggest the value of MTHFR C677T polymorphism as a possible predictive marker of response and TTP in advanced NSCLC patients treated with gemcitabine/platinum. PMID:23463763

  11. In vivo levels of S-adenosylmethionine modulate C:G to T:A mutations associated with repeat-induced point mutation in Neurospora crassa.

    PubMed

    Rosa, Alberto Luis; Folco, Hernán Diego; Mautino, Mario Ricardo

    2004-04-14

    In Neurospora crassa, the mutagenic process termed repeat-induced point mutation (RIP) inactivates duplicated DNA sequences during the sexual cycle by the introduction of C:G to T:A transition mutations. In this work, we have used a collection of N. crassa strains exhibiting a wide range of cellular levels of S-adenosylmethionine (AdoMet), the universal donor of methyl groups, to explore whether frequencies of RIP are dependent on the cellular levels of this metabolite. Mutant strains met-7 and eth-1 carry mutations in genes of the AdoMet pathway and have low levels of AdoMet. Wild type strains with high levels of AdoMet were constructed by introducing a chimeric transgene of the AdoMet synthetase (AdoMet-S) gene fused to the constitutive promoter trpC from Aspergillus nidulans. Crosses of these strains against tester duplications of the pan-2 and am genes showed that frequencies of RIP, as well as the total number of C:G to T:A transition mutations found in randomly selected am(RIP) alleles, are inversely correlated to the cellular level of AdoMet. These results indicate that AdoMet modulates the biochemical pathway leading to RIP.

  12. MTHFR Functional Polymorphism C677T and Genomic Instability in the Etiology of Idiopathic Autism in Simplex Families

    DTIC Science & Technology

    2014-12-01

    facts that de novo CNVs rates are consistently high in SPX ASD (5.8%-10.2%) versus familial ASD (2-3%), we hypothesize that low-activity MTHFR 677T...allele leads to increase global DNA hypomethylation and consequently results in increased generation of de novo CNVs bringing about a higher risk for...developing sporadic cases of autism. We proposed to test 1) the association of MTHFR 677T allele with rate of ASD related de novo CNVs ; 2) the

  13. ACE I/D sequence variants but not MTHFR C677T, is strongly linked to malignant glioma risk and its variant DD genotype may act as a promising predictive biomarker for overall survival of glioma patients.

    PubMed

    Pandith, Arshad A; Qasim, Iqbal; Zahoor, Wani; Shah, Parveen; Bhat, Abdul R

    2018-01-10

    ACE I/D and MTHFR C677T gene polymorphisms can be seen as candidate genes for glioma on the basis of their biological functions and their involvement in different cancers. The aim of this study was to analyze potential association and overall survival between MTHFR C677T and ACE I/D polymorphism in glioma patients in our population. We tested genotype distribution of 112 glioma patients against 141 cancer-free controls from the same region. Kaplan-Meier survival analysis was performed to evaluate overall survival of patients for both genes. No significant differences were found among MTHFR C677T wild type C and variant genotypes CT/TT with glioma patients. In ACE, the distribution of variant ID and DD was found to be significantly higher in glioma cases as compared to controls (p<0.0001). ACE DD genotypes were highly presented in glioma cases 26.8% versus 10.6% in controls (p<0.0001) and conferred 5-fold risk for predisposition in glioma cases. Per copy D allele frequency was found higher in cases than in controls (0.54 versus 0.25: p<0.0001). Interestingly we found a significant overall survival (with log rank p<0.01) in patients who presented with ACE DD genotypes had the least estimated overall survival of 13.4months in comparison to 21. 7 and 17.6months for ACE II and I/D genotypes respectively. We conclude ACE I/D polymorphism plays a vital role in predisposition of higher risk for glioma. We also suggest that ACE DD genotypes may act as an important predictive biomarker for overall survival of glioma patients. Copyright © 2017. Published by Elsevier B.V.

  14. Haplotype analysis suggest that the MLH1 c.2059C > T mutation is a Swedish founder mutation.

    PubMed

    von Salomé, Jenny; Liu, Tao; Keihäs, Markku; Morak, Moni; Holinski-Feder, Elke; Berry, Ian R; Moilanen, Jukka S; Baert-Desurmont, Stéphanie; Lindblom, Annika; Lagerstedt-Robinson, Kristina

    2017-12-29

    Lynch syndrome (LS) predisposes to a spectrum of cancers and increases the lifetime risk of developing colorectal- or endometrial cancer to over 50%. Lynch syndrome is dominantly inherited and is caused by defects in DNA mismatch-repair genes MLH1, MSH2, MSH6 or PMS2, with the vast majority detected in MLH1 and MSH2. Recurrent LS-associated variants observed in apparently unrelated individuals, have either arisen de novo in different families due to mutation hotspots, or are inherited from a founder (a common ancestor) that lived several generations back. There are variants that recur in some populations while also acting as founders in other ethnic groups. Testing for founder mutations can facilitate molecular diagnosis of Lynch Syndrome more efficiently and more cost effective than screening for all possible mutations. Here we report a study of the missense mutation MLH1 c.2059C > T (p.Arg687Trp), a potential founder mutation identified in eight Swedish families and one Finnish family with Swedish ancestors. Haplotype analysis confirmed that the Finnish and Swedish families shared a haplotype of between 0.9 and 2.8 Mb. While MLH1 c.2059C > T exists worldwide, the Swedish haplotype was not found among mutation carriers from Germany or France, which indicates a common founder in the Swedish population. The geographic distribution of MLH1 c.2059C > T in Sweden suggests a single, ancient mutational event in the northern part of Sweden.

  15. Subacute methotrexate neurotoxicity and cerebral venous sinus thrombosis in a 12-year-old with acute lymphoblastic leukemia and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: homocysteine-mediated methotrexate neurotoxicity via direct endothelial injury.

    PubMed

    Mahadeo, Kris M; Dhall, Girish; Panigrahy, Ashok; Lastra, Carlos; Ettinger, Lawrence J

    2010-02-01

    From as early as the 1970s methotrexate has been associated with disseminated necrotizing leukoencephalopathy and other neurotoxic sequelae. Yet, a clear mechanism for methotrexate-induced neurotoxicity has not been established. The authors describe the case of a 12-year-old male with acute lymphoblastic leukemia and a homozygous methylenetetrahydrofolate reductase C677T mutation, who developed subacute methotrexate-induced toxicity and cerebral venous thrombosis after receiving intrathecal methotrexate. The role of homocysteine as a possible mediator in methotrexate-induced neurotoxicity via direct endothelial injury is discussed.

  16. MERRF/MELAS overlap syndrome due to the m.3291T>C mutation.

    PubMed

    Liu, Kaiming; Zhao, Hui; Ji, Kunqian; Yan, Chuanzhu

    2014-03-01

    We report the case of a 19-year-old Chinese female harboring the m.3291T>C mutation in the MT-TL1 gene encoding the mitochondrial transfer RNA for leucine. She presented with a complex phenotype characterized by progressive cerebellar ataxia, frequent myoclonus seizures, recurrent stroke-like episodes, migraine-like headaches with nausea and vomiting, and elevated resting lactate blood level. It is known that the myoclonus epilepsy with ragged-red fibers (MERRF) is characterized by cerebellar ataxia and myoclonus epilepsy, while that the mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is characterized by recurrent stroke-like episodes, migraine-like headaches, and elevated resting lactate blood level. So the patient's clinical manifestations suggest the presence of a MERRF/MELAS overlap syndrome. Muscle biopsy of the patient showed the presence of numerous scattered ragged-red fibers, some cytochrome c oxidase-deficient fibers, and several strongly succinate dehygrogenase-reactive vessels, suggestive of a mitochondrial disorder. Direct sequencing of the complete mitochondrial genome of the proband revealed no mutations other than the T-to-C transition at nucleotide position 3291. Restriction fragment length polymorphism analysis of the proband and her family revealed maternal inheritance of the mutation in a heteroplasmic manner. The analysis of aerobic respiration and glycolysis demonstrated that the fibroblasts from the patient had mitochondrial dysfunction. Our results suggest that the m.3291T>C is pathogenic. This study is the first to describe the m.3291T>C mutation in association with the MERRF/MELAS overlap syndrome.

  17. Novel mutations in the USH1C gene in Usher syndrome patients.

    PubMed

    Aparisi, María José; García-García, Gema; Jaijo, Teresa; Rodrigo, Regina; Graziano, Claudio; Seri, Marco; Simsek, Tulay; Simsek, Enver; Bernal, Sara; Baiget, Montserrat; Pérez-Garrigues, Herminio; Aller, Elena; Millán, José María

    2010-12-31

    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by severe-profound sensorineural hearing loss, retinitis pigmentosa, and vestibular areflexia. To date, five USH1 genes have been identified. One of these genes is Usher syndrome 1C (USH1C), which encodes a protein, harmonin, containing PDZ domains. The aim of the present work was the mutation screening of the USH1C gene in a cohort of 33 Usher syndrome patients, to identify the genetic cause of the disease and to determine the relative involvement of this gene in USH1 pathogenesis in the Spanish population. Thirty-three patients were screened for mutations in the USH1C gene by direct sequencing. Some had already been screened for mutations in the other known USH1 genes (myosin VIIA [MYO7A], cadherin-related 23 [CDH23], protocadherin-related 15 [PCDH15], and Usher syndrome 1G [USH1G]), but no mutation was found. Two novel mutations were found in the USH1C gene: a non-sense mutation (p.C224X) and a frame-shift mutation (p.D124TfsX7). These mutations were found in a homozygous state in two unrelated USH1 patients. In the present study, we detected two novel pathogenic mutations in the USH1C gene. Our results suggest that mutations in USH1C are responsible for 1.5% of USH1 disease in patients of Spanish origin (considering the total cohort of 65 Spanish USH1 patients since 2005), indicating that USH1C is a rare form of USH in this population.

  18. Novel mutations in the USH1C gene in Usher syndrome patients

    PubMed Central

    Aparisi, María José; García-García, Gema; Jaijo, Teresa; Rodrigo, Regina; Graziano, Claudio; Seri, Marco; Simsek, Tulay; Simsek, Enver; Bernal, Sara; Baiget, Montserrat; Pérez-Garrigues, Herminio; Millán, José María

    2010-01-01

    Purpose Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by severe-profound sensorineural hearing loss, retinitis pigmentosa, and vestibular areflexia. To date, five USH1 genes have been identified. One of these genes is Usher syndrome 1C (USH1C), which encodes a protein, harmonin, containing PDZ domains. The aim of the present work was the mutation screening of the USH1C gene in a cohort of 33 Usher syndrome patients, to identify the genetic cause of the disease and to determine the relative involvement of this gene in USH1 pathogenesis in the Spanish population. Methods Thirty-three patients were screened for mutations in the USH1C gene by direct sequencing. Some had already been screened for mutations in the other known USH1 genes (myosin VIIA [MYO7A], cadherin-related 23 [CDH23], protocadherin-related 15 [PCDH15], and Usher syndrome 1G [USH1G]), but no mutation was found. Results Two novel mutations were found in the USH1C gene: a non-sense mutation (p.C224X) and a frame-shift mutation (p.D124TfsX7). These mutations were found in a homozygous state in two unrelated USH1 patients. Conclusions In the present study, we detected two novel pathogenic mutations in the USH1C gene. Our results suggest that mutations in USH1C are responsible for 1.5% of USH1 disease in patients of Spanish origin (considering the total cohort of 65 Spanish USH1 patients since 2005), indicating that USH1C is a rare form of USH in this population. PMID:21203349

  19. Involvement of MTHFR and TPMT genes in susceptibility to childhood acute lymphoblastic leukemia (ALL) in Mexicans.

    PubMed

    Gutiérrez-Álvarez, Ossyneidee; Lares-Asseff, Ismael; Galaviz-Hernández, Carlos; Reyes-Espinoza, Elio-Aarón; Almanza-Reyes, Horacio; Sosa-Macías, Martha; Chairez Hernández, Isaías; Salas-Pacheco, José-Manuel; Bailón-Soto, Claudia E

    2016-03-01

    Folate metabolism plays an essential role in the processes of DNA synthesis and methylation. Deviations in the folate flux resulting from single-nucleotide polymorphisms in genes encoding folate-dependent enzymes may affect the susceptibility to leukemia. This case-control study aimed to assess associations among MTHFR (C677T, A1298C) and TPMT (*2, *3A) mutations as well as to evaluate the synergistic effects of combined genotypes for both genes. Therefore, these genetic variants may lead to childhood acute lymphoblastic leukemia (ALL) susceptibility, in a Mexican population study. DNA samples obtained from 70 children with ALL and 152 age-matched controls (range, 1-15 years) were analyzed by real-time reverse transcription polymerase chain reaction (RT-qPCR) to detect MTHFR C677T and A1298C and TPMT*2 and TPMT*3A genotypes. The frequency of the MTHFR A1298C CC genotype was statistically significant (odds ratio [OR], 6.48; 95% 95% confidence intervals [CI], 1.26-33.2; p=0.025). In addition, the combined 677CC+1298AC genotype exhibited a statistically significant result (OR, 0.23; 95% CI, 0.06-0.82; p=0.023). No significant results were obtained from the MTHFR (C677T CT, C677T TT) or TPMT (*2, *3A) genotypes. More importantly, no association between the synergistic effects of either gene (MTHFR and/or TPMT) and susceptibility to ALL was found. The MTHFR A1298C CC genotype was associated with an increased risk of developing childhood ALL. However, a decreased risk to ALL with the combination of MTHFR 677CC+1298AC genotypes was found.

  20. Meta-Prediction of MTHFR Gene Polymorphism Mutations and Associated Risk for Colorectal Cancer

    PubMed Central

    Yu, C. H.

    2016-01-01

    The methylenetetrahydrofolate reductase (MTHFR) gene is one of the most investigated of the genes associated with chronic human diseases because of its associations with hyperhomocysteinemia and toxicity. It has been proposed as a prototype gene for the prevention of colorectal cancer (CRC). The major objectives of this meta-analysis were to examine the polymorphism-mutation patterns of MTHFR and their associations with risk for CRC as well as potential contributing factors for mutations and disease risks. This analysis included 33,626 CRC cases and 48,688 controls across 92 studies for MTHFR 677 and 16,367 cases and 24,874 controls across 54 studies for MTHFR 1298, comprising data for various racial and ethnic groups, both genders, and multiple cancer sites. MTHFR 677 homozygous TT genotype was protective (p < .05) for CRC for all included populations; however, with heterogeneity across various racial–ethnic groups and opposing findings, it was a risk genotype for the subgroup of Hispanics (p < .01). Additional countries for which subgroup analyses resulted in 677 TT as a risk genotype included Turkey, Romania, Croatia, Hungary, Portugal, Mexico, Brazil, U.S. Hawai’i, Taiwan, India, and Egypt. Countries with the highest mutation rates and risks for both MTHFR 677 and 1298 genotypes are presented using global maps to visualize the grouping patterns. Meta-predictive analyses revealed that air pollution levels were associated with gene polymorphisms for both genotypes. Future nursing research should be conducted to develop proactive measures to protect populations in cities where air pollution causes more deaths. PMID:26858257

  1. DNA polymerase θ contributes to the generation of C/G mutations during somatic hypermutation of Ig genes

    PubMed Central

    Masuda, Keiji; Ouchida, Rika; Takeuchi, Arata; Saito, Takashi; Koseki, Haruhiko; Kawamura, Kiyoko; Tagawa, Masatoshi; Tokuhisa, Takeshi; Azuma, Takachika; O-Wang, Jiyang

    2005-01-01

    Somatic hypermutation of Ig variable region genes is initiated by activation-induced cytidine deaminase; however, the activity of multiple DNA polymerases is required to ultimately introduce mutations. DNA polymerase η (Polη) has been implicated in mutations at A/T, but polymerases involved in C/G mutations have not been identified. We have generated mutant mice expressing DNA polymerase (Polθ) specifically devoid of polymerase activity. Compared with WT mice, Polq-inactive (Polq, the gene encoding Polθ) mice exhibited a reduced level of serum IgM and IgG1. The mutant mice mounted relatively normal primary and secondary immune responses to a T-dependent antigen, but the production of high-affinity specific antibodies was partially impaired. Analysis of the JH4 intronic sequences revealed a slight reduction in the overall mutation frequency in Polq-inactive mice. Remarkably, although mutations at A/T were unaffected, mutations at C/G were significantly decreased, indicating an important, albeit not exclusive, role for Polθ activity. The reduction of C/G mutations was particularly focused on the intrinsic somatic hypermutation hotspots and both transitions and transversions were similarly reduced. These findings, together with the recent observation that Polθ efficiently catalyzes the bypass of abasic sites, lead us to propose that Polθ introduces mutations at C/G by replicating over abasic sites generated via uracil-DNA glycosylase. PMID:16172387

  2. MTHFR Gene Polymorphism-Mutations and Air Pollution as Risk Factors for Breast Cancer: A Metaprediction Study.

    PubMed

    Gonzales, Mildred C; Yu, Pojui; Shiao, S Pamela K

    The methylenetetrahydrofolate reductase gene (MTHFR) is one of the most investigated genes associated with breast cancer for its role in epigenetic pathways. The objectives of this metaprediction study were to examine the polymorphism-mutation risk subtypes of MTHFR and air pollution as contributing factors for breast cancer. For triangulation purposes in metapredictive analyses, we used a recursive partition tree, nonlinear association curve fit, and heat maps for data visualization, in addition to the conventional comparison procedure and pooled analyses. We included 36,683 breast cancer cases and 40,689 controls across 82 studies for MTHFR 677 and 23,252 cases and 27,094 controls across 50 studies for MTHFR 1298. MTHFR 677 TT was a risk genotype for breast cancer (p = .0004) and in the East Asian subgroup (p = .005). On global maps, the most polymorphism-mutations on MTHFR 677 TT were found in the Middle East, Europe, Asia, and the Americas, whereas the most mutations on MTHFR 1298 CC were located in Europe and the Middle East for the control group. The geographic information system maps further revealed that MTHFR 677 TT mutations yielded a higher risk of breast cancer for Australia, East Asia, the Middle East, South Europe, Morocco, and the Americas and that MTHFR 1298 CC mutations yielded a higher risk in Asia, the Middle East, South Europe, and South America. Metapredictive analysis revealed that air pollution level was significantly associated with MTHFR 677 TT polymorphism-mutation genotype. We present the most comprehensive analyses to date of MTHFR polymorphism-mutations and breast cancer risk. Future nursing studies are needed to investigate the health impact on breast cancer of epigenetics and air pollution across populations.

  3. [Gene mutation analysis and prenatal diagnosis of a family with Bartter syndrome].

    PubMed

    Li, Long; Ma, Na; Li, Xiu-Rong; Gong, Fei; DU, Juan

    2016-08-01

    To investigate the mutation of related genes and prenatal diagnosis of a family with Bartter syndrome (BS). The high-throughput capture sequencing technique and PCR-Sanger sequencing were used to detect pathogenic genes in the proband of this family and analyze the whole family at the genomic level. After the genetic cause was clarified, the amniotic fluid was collected from the proband's mother who was pregnant for 5 months for prenatal diagnosis. The proband carried compound heterozygous mutations of c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene; c.88C>T(p.Arg30*) had been reported as a pathogenic mutation, and c.968+2T>A was a new mutation. Pedigree analysis showed that the two mutations were inherited from the mother and father, respectively. Prenatal diagnosis showed that the fetus did not inherit the mutations from parents and had no mutations at the two loci. The follow-up visit confirmed that the infant was in a healthy state, which proved the accuracy of genetic diagnosis and prenatal diagnosis. The compound heterozygous mutations c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene are the cause of BS in the proband, and prenatal diagnosis can prevent the risk of recurrence of BS in this family.

  4. Effects of Common Polymorphisms in the MTHFR and ACE Genes on Diabetic Peripheral Neuropathy Progression: a Meta-Analysis.

    PubMed

    Wu, Shuai; Han, Yan; Hu, Qiang; Zhang, Xiaojie; Cui, Guangcheng; Li, Zezhi; Guan, Yangtai

    2017-05-01

    Diabetic peripheral neuropathy (DPN) is a microvascular complication of diabetes mellitus. The aim of this meta-analysis was to evaluate the effects of methylenetetrahydrofolate reductase (MTHFR) 677 C>T and ACE I/D polymorphisms in the development of DPN. We systematically reviewed published studies on MTHFR 677 C>T and ACE I/D polymorphisms and DPN found in various types of electronic databases. Strengthening the Reporting of Observational studies in Epidemiology (STROBE) quality score systems were used to determine the quality of the articles selected for inclusion. Odds ratios (ORs) and its corresponding 95 % confidence interval (95 % CI) were calculated. We used STATA statistical software (version 12.0, Stata Corporation, College Station, TX, USA) to deal with statistical data. Our results indicated an association of ACE D>I mutation (OR = 1.43, 95 % CI 1.12-1.83, P = 0.004) and MTHFR 677 C>T mutation (OR = 1.43, 95 % CI 1.08-1.90, P = 0.014) with DPN under the allele model, and similar results were also found under the dominant model (all P < 0.05). Subgroup analysis by country indicated that the MTHFR 677 C>T polymorphism may be the main risk factor for DPN in Turkey under four genetic models. ACE D>I mutation was correlated with DPN in Japanese and Pakistani populations in the majority of groups. The relationships of MTHFR 677 C>T and ACE I/D polymorphisms with DPN patients presented in this meta-analyses support the view that the MTHFR and ACE genes might play an important role in the development of DPN.

  5. The Frequency of c.550delA Mutation of the CANP3 Gene in the Polish LGMD2A Population.

    PubMed

    Dorobek, Małgorzata; Ryniewicz, Barbara; Kabzińska, Dagmara; Fidziańska, Anna; Styczyńska, Maria; Hausmanowa-Petrusewicz, Irena

    2015-11-01

    Limb girdle muscular dystrophy 2A (LGMD2A) is the most frequent LGMD variant in the European population, representing about 40% of LGMD. The c.550delA mutation in the CANP3 (calcium activated neutral protease 3) gene is the most commonly reported mutation in LGMD2A. Prevalence of this mutation in the Polish population has not been previously investigated. The aim of this study was to identify and estimate the frequency of the c.550delA mutation in Polish LGMD2A patients. Polymerase chain reaction-sequencing analysis, restriction fragment length polymorphism polymerase chain reaction method. We analyzed 76 families affected with LGMD and identified 62 probands with mutations in the CANP3 gene. C.550delA was the most common mutation identified, being found in 78% of the LGMD2A families. The remaining mutations observed multiple times were as follows: c.598-612del15ntd; c.2242C>T; c.418dupC; c.1356insT, listed in terms of decreasing frequency. Two novel variants in the CANP3 gene, that is, c.700G>A Gly234Arg and c.661G>A Gly221Ser were also characterized. Overall, mutations in the LGMD2A gene were estimated to be present in 81% of patients with the LGMD phenotype who were without sarcoglycans and dysferlin deficiency on immunocytochemical analysis. The frequency of the heterozygous c.550delA mutation in the healthy Polish population was estimated at 1/124. The c.550delA is the most frequent CANP3 mutation in the Polish population, thus sequencing of exon 4 of this gene could identify the majority of LGMD2A patients in Poland.

  6. The hepcidin gene promoter nc.-1010C > T; -582A > G haplotype modulates serum ferritin in individuals carrying the common H63D mutation in HFE gene.

    PubMed

    Silva, Bruno; Pita, Lina; Gomes, Susana; Gonçalves, João; Faustino, Paula

    2014-12-01

    Hereditary hemochromatosis is an autosomal recessive disorder characterized by severe iron overload. It is usually associated with homozygosity for the HFE gene mutation c.845G > A; p.C282Y. However, in some cases, another HFE mutation (c.187C > G; p.H63D) seems to be associated with the disease. Its penetrance is very low, suggesting the possibility of other iron genetic modulators being involved. In this work, we have screened for HAMP promoter polymorphisms in 409 individuals presenting normal or increased serum ferritin levels together with normal or H63D-mutated HFE genotypes. Our results show that the hepcidin gene promoter TG haplotype, originated by linkage of the nc.-1010C > T and nc.-582A > G polymorphisms, is more frequent in the HFE_H63D individuals presenting serum ferritin levels higher than 300 μg/L than in those presenting the HFE_H63D mutation but with normal serum ferritin levels or in the normal control group.Moreover, it was observed that the TG haplotype was associated to increased serum ferritin levels in the overall pool of HFE_H63D individuals. Thus, our data suggest that screening for these polymorphisms could be of interest in order to explain the phenotype. However, this genetic condition seems to have no clinical significance.

  7. Association of 5, 10- methylenetetrahydrofolate reductase C677T polymorphism in susceptibility to tropical chronic pancreatitis in north Indian population.

    PubMed

    Singh, S; Choudhuri, G; Kumar, R; Agarwal, S

    2012-12-22

    MTHFR is a key enzyme in folate metabolism that catalyzes the conversion of 5, 10—methlenetetrahydrofolate (5, 10— methylene THF) to 5—methyltetrahydrofolate (5—methyl THF), a predominant circulatory form of folate and methyl donor for the remethylation of homocysteine to methionine. Some studies have shown that C667T polymorphism increases the risk of pancreatic cancer. Since MTHFR is involved in methylation, inflammation and protection against oxidative stress, the processes especially important for pancreatic homeostasis. The altered enzyme activity could play a role in pancreatic injury. The role of MTHFR C677T polymorphism in chronic pancreatitis has been explored by conducting a hospital based; case—control study involving 100 patients radiologically confirmed chronic pancreatitis and 329 healthy controls. All samples were analyzed for MTHFR C677T polymorphism using PCR—RFLP method. Restriction enzyme Hinf I was used to digest the 198 bp amplified product. The frequency of the MTHFR was 57.3%, 34.1% and 8.5% among cases compared with 87.2%,11.2% and 1.5% of controls for CC, CT and TT genotypes, respectively. The T Allele frequency was found significantly higher in patients than in controls. A significant association with T allele was observed with p—value (< 0.0001) odds ratio 4.475 and (95% CI=2.961—7.046). It could be predisposing to the traditional risk factors such as diabetes, dietary, alcohal and smoking habit that are known to be associated with chronic pancreatitis. Additionally it was observed that smoking increases the risk of chronic pancreatitis by 4.1 times. The T allele frequency of MTHFR (C667T) was found to be a significant risk factor for chronic pancreatitis playing a crucial role in altered folate metabolsim.

  8. MTHFR Functional Polymorphism C677T and Genomic Instability in the Etiology of Idiopathic Autism in Simplex Families. Revision

    DTIC Science & Technology

    2013-10-01

    that de novo CNVs rates are consistently high in SPX ASD (5.8%-10.2%) versus familial ASD (2-3%), we hypothesize that low-activity MTHFR 677T allele...leads to increase global DNA hypomethylation and consequently results in increased generation of de novo CNVs bringing about a higher risk for...developing sporadic cases of autism. We proposed to test 1) the association of MTHFR 677T allele with rate of ASD related de novo CNVs ; 2) the

  9. The contribution of the SPINK1 c.194+2T>C mutation to the clinical course of idiopathic chronic pancreatitis in Chinese patients.

    PubMed

    Sun, Chang; Liao, Zhuan; Jiang, Lili; Yang, Fu; Xue, Geng; Zhou, Qi; Chen, Ruiwen; Sun, Shuhan; Li, Zhaoshen

    2013-01-01

    Recent data suggest that the serine protease inhibitor Kazal type 1 (SPINK1) gene mutation is associated with idiopathic chronic pancreatitis. However, few studies have focused on the serine protease inhibitor Kazal type 1 c.194+2T>C mutation. Therefore, our goal was to study the prevalence and impact of serine protease inhibitor Kazal type 1 mutations on the clinical profile of idiopathic chronic pancreatitis patients in China. A retrospective-cohort study of 118 Chinese patients with idiopathic chronic pancreatitis was performed, and genetic tests were carried out to detect SPINK1 mutations. Subjects without pancreatitis were used as controls. In total, 118 idiopathic chronic pancreatitis patients and 100 control subjects were evaluated. The serine protease inhibitor Kazal type 1 c.194+2T>C variant was present in 44.9% of patients with idiopathic chronic pancreatitis. The frequency of diabetes in idiopathic chronic pancreatitis patients with the serine protease inhibitor Kazal type 1 c.194+2T>C mutation (39.6%) was higher than that of patients without the mutation (9.2%). The time to occurrence of diabetes mellitus after idiopathic chronic pancreatitis symptom onset is significantly influenced by the c.194+2T>C mutation (p<0.001). In addition, the mean age of diabetes onset in patients with the serine protease inhibitor Kazal type 1 c.194+2T>C mutation (38.33 ± 9.50) was significantly younger than that of patients without this mutation (49.67 ± 6.74). The presence of the serine protease inhibitor Kazal type 1 c.194+2T>C mutation seems to be associated with idiopathic chronic pancreatitis and could predispose individuals to pancreatic diabetes onset at an earlier age. Copyright © 2012 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  10. A Novel c.125 T>G (p.Val42Gly) Mutation in The Human INS Gene Leads to Neonatal Diabetes Mellitus via a Decrease in Insulin Synthesis.

    PubMed

    Sun, Fei; Du, Wenhua; Ma, Junhua; Gu, Mingjun; Wang, Jingnan; Zhu, Hongling; Song, Huaidong; Gao, Guanqi

    2018-06-11

    Neonatal diabetes mellitus is likely caused by monogenic mutations, several of which have been identified. INS mutations have a broad spectrum of clinical presentations, ranging from severe neonatal onset to mild adult onset, which suggests that the products of different mutant INS alleles behave differently and utilize distinct mechanisms to induce diabetes. In this study, a neonatal diabetes mellitus patient's INS gene was sequenced, and functional experiments were conducted. The neonatal diabetes mellitus patient's genomic DNA was extracted, and the patient's KCNJ11, ABCC8, and INS genes were sequenced. A novel mutation was identified in INS, and the open reading frame of this human mutant INS gene was inserted into the pMSCV-PIG plasmid. The constructed pMSCV-PIG plasmid was combined with VSV-g and Gag-pol and transfected into 293T cells to package the lentivirus. To stably overexpress the mutant gene, INS-1 cells were infected with the virus. The levels of insulin in the cell culture medium and cytoplasm were determined by ELISA and immunocytochemistry, respectively. A heterozygous mutation, c.125T>G (p. Val42Gly), was identified in a neonatal diabetes mellitus patient's INS gene. The human mutant INS open reading frame was overexpressed in INS-1 cells, and the mutant insulin was undetectable in the cell culture medium and cytoplasm. The novel heterozygous activating mutation c.125 T>G (p.Val42Gly) impairs the synthesis of insulin by pancreatic beta cells, resulting in diabetes. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Hemolysis and Mediterranean G6PD mutation (c.563 C>T) and c.1311 C>T polymorphism among Palestinians at Gaza Strip.

    PubMed

    Sirdah, Mahmoud; Reading, N Scott; Perkins, Sherrie L; Shubair, Mohammad; Aboud, Lina; Prchal, Josef T

    2012-04-15

    The G6PD c.563 C>T deficient mutation is endemic among Mediterranean populations but its clinical significance is not well delineated. We set up to estimate the proportion of G6PD deficient children presenting with hemolytic anemia at Al Nasser Pediatric Hospital at Gaza Strip, Palestine. We then established the prevalence of c.563T Mediterranean mutation and its linkage to c.1311 C>T polymorphism in this population. G6PD deficiency was identified in children presenting with hemolytic anemia at Al Nasser Pediatric Hospital by spectrophotometric measurement of G6PD activity. G6PD exon 6 and exon 11 were amplified from genomic DNA and evaluated for c.563T mutation by sequencing and the c.1311T polymorphism by restriction fragment analysis. Seventy X-chromosomes (60 males and 5 females) from G6PD deficient patients and 40 X-chromosomes from a control group known to be not G6PD deficient were tested. Over 80% of these children presenting with hemolytic anemia were G6PD deficient and 34% of these had the Mediterranean G6PD deficient variant. The allelic frequencies of Mediterranean c.563T and c.1311T polymorphisms among G6PD deficient patients were 0.33 and 0.38 respectively. The c.1311T polymorphism was linked in 95.2% of patients with the Mediterranean mutation, an allele frequency of 0.87, compared to the control non-G6PD deficient group with an allele frequency of 0.18. We conclude that G6PD deficiency accounts for majority of hemolytic anemia encountered in Gaza children treated at Al Nasser Pediatric Hospital Emergency department. The Mediterranean mutation c.563T, while not accounting for a majority of G6PD deficiency, is common among G6PD deficient Gaza Strip Palestinians and is frequently, but not always, linked to the c.1311T polymorphism. This work provides a foundation for the population screening of Palestinians for G6PD deficiency and for investigations of ancestral origin of the Mediterranean variant in world populations. Copyright © 2012 Elsevier Inc

  12. Supplementation with Watermelon Extract Reduces Total Cholesterol and LDL Cholesterol in Adults with Dyslipidemia under the Influence of the MTHFR C677T Polymorphism.

    PubMed

    Massa, Nayara M L; Silva, Alexandre S; de Oliveira, Caio V C; Costa, Maria J C; Persuhn, Darlene C; Barbosa, Carlos V S; Gonçalves, Maria da C R

    2016-08-01

    Dyslipidemia and genetic polymorphisms are associated with increased risk for developing cardiovascular diseases, and watermelon appears to have the potential to improve hyperlipidemia due to the presence of nutrients such as arginine and citrulline. To test the hypolipidemic effect of watermelon extract (Citrullus lanatus) and the influence of the methylenetetrahydrofolate reductase genotype (MTHFR C677T) on supplementation response. This is an experimental clinical phase II randomized and double-blind study. Forty-three subjects with dyslipidemia were randomly divided into 2 groups: experimental (n = 22) and control (n = 21) groups. The subjects were supplemented daily for 42 days with 6 g of watermelon extract or a mixture of carbohydrates (sucrose/glucose/fructose). The use of watermelon extract reduced plasma total cholesterol (p < 0.05) and low-density lipoprotein (p < 0.01) without modifying triglycerides, high-density lipoprotein, and very low-density lipoprotein values. Only carriers of the T allele (MTHFR C677T) showed decreasing concentrations of low-density lipoprotein (p < 0.01). No changes in anthropometric parameters analyzed were observed. This is the first study to demonstrate the beneficial effect of the consumption of watermelon extract in reducing plasma levels of lipids in humans. The MTHFR C677T polymorphism did not affect the plasma lipid concentration but made individuals more responsive to treatment with watermelon. The consumption of this functional food represents an alternative therapy in the combined treatment of patients with dyslipidemia, promoting health and minimizing the development of risk factors for cardiovascular diseases.

  13. Status of Vitamins B-12 and B-6 but Not of Folate, Homocysteine, and the Methylenetetrahydrofolate Reductase C677T Polymorphism Are Associated with Impaired Cognition and Depression in Adults123

    PubMed Central

    Moorthy, Denish; Peter, Inga; Scott, Tammy M.; Parnell, Laurence D.; Lai, Chao-Qiang; Crott, Jimmy W.; Ordovás, José M.; Selhub, Jacob; Griffith, John; Rosenberg, Irwin H.; Tucker, Katherine L.; Troen, Aron M.

    2012-01-01

    The C677T polymorphism of the methylenetetrahydrofolate reductase (MTHFR) gene differs in frequency in various ethnic groups that have differing prevalence of age-related cognitive impairments. We used a series of neuro-psychological tests to examine the association of the MTHFR C677T polymorphism with cognition and depression and also to assess whether genotype modifies the association of folate and homocysteine with these outcomes. This study analyzed pooled cross-sectional data from 2 ethnically diverse cohorts of community-living adults: the Boston Puerto Rican Health Study (n = 939) and the Nutrition, Aging, and Memory in Elders study (n = 1017). Individuals in both cohorts underwent anthropometric and laboratory measurements and dietary and health assessments using validated questionnaires between the years 2003 and 2007. Cognitive outcomes included measures of global cognition [Mini-Mental Status Exam (MMSE)], depression (Center for Epidemiological Studies Depression Scale), and 3 factor scores for the domains of attention, executive function, and memory that were derived from a detailed set of neuropsychological tests. Low plasma vitamin B-12 concentrations were associated with poorer MMSE scores and higher depression scores, and low vitamin B-6 concentrations were associated with lower MMSE and worse attention and executive function in the multivariate analysis. In contrast, MTHFR genotype, folate, and homocysteine were not associated with cognition or depression in either ethnicity-pooled or stratified analysis. The current study did not find evidence of an association between the MTHFR C677T TT genotype and impaired cognition or depression in a population with adequate folate status and a high prevalence of cognitive impairment and depression. PMID:22739363

  14. Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis.

    PubMed

    Esteller, M; Risques, R A; Toyota, M; Capella, G; Moreno, V; Peinado, M A; Baylin, S B; Herman, J G

    2001-06-15

    Defects in DNA repair may be responsible for the genesis of mutations in key genes in cancer cells. The tumor suppressor gene p53 is commonly mutated in human cancer by missense point mutations, most of them G:C to A:T transitions. A recognized cause for this type of change is spontaneous deamination of the methylcytosine. However, the persistence of a premutagenic O(6)-methylguanine can also be invoked. This last lesion is removed in the normal cell by the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). In many tumor types, epigenetic silencing of MGMT by promoter hypermethylation has been demonstrated and linked to the appearance of G to A mutations in the K-ras oncogene in colorectal tumors. To study the relevance of defective MGMT function by aberrant methylation in relation to the presence of p53 mutations, we studied 314 colorectal tumors for MGMT promoter hypermethylation and p53 mutational spectrum. Inactivation of MGMT by aberrant methylation was associated with the appearance of G:C to A:T transition mutations at p53 (Fischer's exact test, two-tailed; P = 0.01). Overall, MGMT methylated tumors displayed p53 transition mutations in 43 of 126 (34%) cases, whereas MGMT unmethylated tumors only showed G:C to A:T changes in 37 of 188 (19%) tumors. A more striking association was found in G:C to A:T transitions in non-CpG dinucleotides; 71% (12 of 17) of the total non-CpG transition mutations in p53 were observed in MGMT aberrantly methylated tumors (Fischer's exact test, two-tailed; P = 0.008). Our data suggest that epigenetic silencing of MGMT by promoter hypermethylation may lead to G:C to A:T transition mutations in p53.

  15. Prevalence of c.2268dup and detection of two novel alterations, c.670_672del and c.1186C>T, in the TPO gene in a cohort of Malaysian–Chinese with thyroid dyshormonogenesis

    PubMed Central

    Lee, Ching Chin; Harun, Fatimah; Jalaludin, Muhammad Yazid; Heh, Choon Han; Othman, Rozana; Junit, Sarni Mat

    2015-01-01

    Objectives The c.2268dup mutation in the thyroid peroxidase (TPO) gene is the most common TPO alteration reported in Taiwanese patients with thyroid dyshormonogenesis. The ancestors of these patients are believed to originate from the southern province of China. Our previous study showed that this mutation leads to reduced abundance of the TPO protein and loss of TPO enzyme activity in a Malaysian–Chinese family with goitrous hypothyroidism. The aim of our study was to provide further data on the incidence of the c.2268dup mutation in a cohort of Malaysian–Chinese and its possible phenotypic effects. Setting Cohort study. Participants Twelve biologically unrelated Malaysian–Chinese patients with congenital hypothyroidism were recruited in this study. All patients showed high thyrotropin and low free thyroxine levels at the time of diagnosis with proven presence of a thyroid gland. Primary outcome measure Screening of the c.2268dup mutation in the TPO gene in all patients was carried out using a PCR–direct DNA sequencing method. Secondary outcome measure Further screening for mutations in other exonic regions of the TPO gene was carried out if the patient was a carrier of the c.2268dup mutation. Results The c.2268dup mutation was detected in 4 of the 12 patients. Apart from the c.2268dup and a previously documented mutation (c.2647C>T), two novel TPO alterations, c.670_672del and c.1186C>T, were also detected in our patients. In silico analyses predicted that the novel alterations affect the structure/function of the TPO protein. Conclusions The c.2268dup mutation was detected in approximately one-third of the Malaysian–Chinese patients with thyroid dyshormonogenesis. The detection of the novel c.670_672del and c.1186C>T alterations expand the mutation spectrum of TPO associated with thyroid dyshormonogenesis. PMID:25564141

  16. Inherited thrombophilia in pregnant women with intrauterine growth restriction.

    PubMed

    Coriu, Letitia; Copaciu, Elena; Tulbure, Dan; Talmaci, Rodica; Secara, Diana; Coriu, Daniel; Cirstoiu, Monica

    2014-12-01

    Intrauterine growth restriction (IUGR) is a major cause of fetal morbidity and mortality during pregnancy. The role of mutation in the factor V gene, prothrombin gene, MTHFR gene, as risk factors for intrauterine growth restriction during pregnancy, is not very well known so far. This is a retrospective study of 151 pregnant women with a history of complicated pregnancy: intrauterine growth restriction, preeclampsia, recurrent pregnancy loss or maternal venous thromboembolism, who were admitted in Bucharest Emergency University Hospital, during the period January 2010 to July 2014. Genetic testing was performed for all the cases to detect: factor V Leiden mutation, G20210A mutation in the prothrombin gene, C677T mutation and A1298C mutation in methylenetetrahydrofolate reductase (MTHFR) gene. Blood samples were obtained as soon as the diagnosis of intrauterine growth restriction was established with ultrasonography. The following gene mutations were associated with increased risk of IUGR: G20210A prothrombin gene mutation (OR 4.81, 95% CI 1.05 - 2.22, p= 0.043), G1691A factor V gene mutation (factor V Leiden) (OR 1.58, 95% CI 0.61 - 4.080, p= 0.347), C677T MTHFR gene mutation (OR 1.61, 95% CI 0.79 to 3.26, p= 0.186), compound heterozygous MTHFR C677T and A1298C (OR 1.66, 95% CI 0.81- 3.42, p= 0.169). Particularly, for G20210A prothrombin gene mutation we found statistically significant risk (p≤0.05) of IUGR.

  17. Severe epilepsy as the major symptom of new mutations in the mitochondrial tRNA(Phe) gene.

    PubMed

    Zsurka, G; Hampel, K G; Nelson, I; Jardel, C; Mirandola, S R; Sassen, R; Kornblum, C; Marcorelles, P; Lavoué, S; Lombès, A; Kunz, W S

    2010-02-09

    To present 2 families with maternally inherited severe epilepsy as the main symptom of mitochondrial disease due to point mutations at position 616 in the mitochondrial tRNA(Phe) (MT-TF) gene. Histologic stainings were performed on skeletal muscle slices from the 2 index patients. Oxidative phosphorylation activity was measured by oxygraphic and spectrophotometric methods. The patients' complete mitochondrial DNA (mtDNA) and the relevant mtDNA region in maternal relatives were sequenced. Muscle histology showed only decreased overall COX staining, while a combined respiratory chain defect, most severely affecting complex IV, was noted in both patients' skeletal muscle. Sequencing of the mtDNA revealed in both patients a mutation at position 616 in the MT-TF gene (T>C or T>G). These mutations disrupt a base pair in the anticodon stem at a highly conserved position. They were apparently homoplasmic in both patients, and had different heteroplasmy levels in the investigated maternal relatives. Deleterious mutations in the mitochondrial tRNA(Phe) may solely manifest with epilepsy when segregating to homoplasmy. They may be overlooked in the absence of lactate accumulation and typical mosaic mitochondrial defects in muscle.

  18. Effect of the mutation (C3435T) at exon 26 of the MDR1 gene on expression level of MDR1 messenger ribonucleic acid in duodenal enterocytes of healthy Japanese subjects.

    PubMed

    Nakamura, Tsutomu; Sakaeda, Toshiyuki; Horinouchi, Masanori; Tamura, Takao; Aoyama, Nobuo; Shirakawa, Toshiro; Matsuo, Masafumi; Kasuga, Masato; Okumura, Katsuhiko

    2002-04-01

    The effect of the C3435T mutation at exon 26 of the MDR1 gene on the expression levels of MDR1 messenger ribonucleic acid (mRNA) was evaluated by means of real-time polymerase chain reaction in 51 biopsy specimens of duodenum obtained from 13 healthy Japanese subjects. The mRNA levels of MDR1 were 0.38 +/- 0.15, 0.56 +/- 0.14, and 1.13 +/- 0.42 (mean value +/- SE) in the subjects with the homozygote of wild-type allele (C/C), compound heterozygote with mutant T allele (C/T), and the homozygote of the mutant allele (T/T), respectively, reasonably explaining the lower digoxin serum concentration after administration of a single oral dose to subjects harboring a mutant T allele. Good correlation (r =.797; P <.01) was observed between the mRNA concentrations of MDR1 and CYP3A4 in the individual biopsy specimens. This finding suggested a lower plasma concentration of the substrates for CYP3A4 in subjects harboring the C3435T mutation of the MDR1 gene.

  19. Carnitine-acylcarnitine translocase deficiency with c.199-10 T>G and novel c.1A>G mutation: Two case reports and brief literature review.

    PubMed

    Yan, Hui-Ming; Hu, Hao; Ahmed, Aisha; Feng, Bing-Bing; Liu, Jing; Jia, Zheng-Jun; Wang, Hua

    2017-11-01

    Carnitine-acylcarnitine translocate deficiency (CACTD) is a rare and life-threatening, autosomal recessive disorder of fatty acid β-oxidation characterized by hypoketotic hypoglycemia, hyperammonemia, cardiomyopathy, liver dysfunction, and muscle weakness; culminating in early death. To date, CACTD cases screened from the Chinese mainland population, especially patient with compound heterozygote with c.199-10T>G and a novel c.1A>G mutation in the SLC25A20 gene has never been described. Herein, we report 2 neonatal cases of CACTD identified from the mainland China. These 2 patients were presented with severe metabolic crisis and their clinical conditions deteriorate rapidly and both died of cardiorespiratory collapse in the first week of life. We present the clinical and biochemical features of 2 probands and a brief literature review of previously reported CACTD cases with the c.199-10T>G mutation. The acylcarnitine profiles by tandem-mass-spectrometry and the mutation analysis of SLC25A20 gene confirmed the diagnosis of CACTD in both patients. Mutation analysis demonstrated that patient No. 1 was homozygous for c.199-10T>G mutation, while patient No. 2 was a compound heterozygote for 2 mutations, a maternally-inherited c.199-10T>G and a paternally-inherited, novel c.1A>G mutation. Both patients were treated with an aggressive treatment regimen include high glucose and arginine infusion, respiratory, and circulatory support. The first proband died 3 days after delivery due to sudden cardiac arrest. The second patient's clinical condition, at one time, was improved by high glucose infusion, intravenous arginine, and circulatory support. However, the patient failed to wean from mechanical ventilation. Unfortunately, her parents refused further treatment due to fear of financial burdens. The patient died of congestive heart failure in the 6th day of life. We report the first 2 cases of CACTD identified from the mainland China. Apart from a founder mutation c.199-10T

  20. Functional examination of MLH1, MSH2, and MSH6 intronic mutations identified in Danish colorectal cancer patients.

    PubMed

    Petersen, Sanne M; Dandanell, Mette; Rasmussen, Lene J; Gerdes, Anne-Marie; Krogh, Lotte N; Bernstein, Inge; Okkels, Henrik; Wikman, Friedrik; Nielsen, Finn C; Hansen, Thomas V O

    2013-10-03

    Germ-line mutations in the DNA mismatch repair genes MLH1, MSH2, and MSH6 predispose to the development of colorectal cancer (Lynch syndrome or hereditary nonpolyposis colorectal cancer). These mutations include disease-causing frame-shift, nonsense, and splicing mutations as well as large genomic rearrangements. However, a large number of mutations, including missense, silent, and intronic variants, are classified as variants of unknown clinical significance. Intronic MLH1, MSH2, or MSH6 variants were investigated using in silico prediction tools and mini-gene assay to asses the effect on splicing. We describe in silico and in vitro characterization of nine intronic MLH1, MSH2, or MSH6 mutations identified in Danish colorectal cancer patients, of which four mutations are novel. The analysis revealed aberrant splicing of five mutations (MLH1 c.588 + 5G > A, MLH1 c.677 + 3A > T, MLH1 c.1732-2A > T, MSH2 c.1276 + 1G > T, and MSH2 c.1662-2A > C), while four mutations had no effect on splicing compared to wild type (MLH1 c.117-34A > T, MLH1 c.1039-8 T > A, MSH2 c.2459-18delT, and MSH6 c.3439-16C > T). In conclusion, we classify five MLH1/MSH2 mutations as pathogenic, whereas four MLH1/MSH2/MSH6 mutations are classified as neutral. This study supports the notion that in silico prediction tools and mini-gene assays are important for the classification of intronic variants, and thereby crucial for the genetic counseling of patients and their family members.

  1. Analysis of gene mutations among South Indian patients with maple syrup urine disease: identification of four novel mutations.

    PubMed

    Narayanan, M P; Menon, Krishnakumar N; Vasudevan, D M

    2013-10-01

    Maple syrup urine disease (MSUD) is predominantly caused by mutations in the BCKDHA, BCKDHB and DBT genes, which encode for the E1alpha, E1beta and E2 subunits of the branched-chain alpha-keto acid dehydrogenase complex, respectively. Because disease causing mutations play a major role in the development of the disease, prenatal diagnosis at gestational level may have significance in making decisions by parents. Thus, this study was aimed to screen South Indian MSUD patients for mutations and assess the genotype-phenotype correlation. Thirteen patients diagnosed with MSUD by conventional biochemical screening such as urine analysis by DNPH test, thin layer chromatography for amino acids and blood amino acid quantification by HPLC were selected for mutation analysis. The entire coding regions of the BCKDHA, BCKDHB and DBT genes were analyzed for mutations by PCR-based direct DNA sequencing. BCKDHA and BCKDHB mutations were seen in 43% of the total ten patients, while disease-causing DBT gene mutation was observed only in 14%. Three patients displayed no mutations. Novel mutations were c.130C>T in BCKDHA gene, c. 599C>T and c.121_122delAC in BCKDHB gene and c.190G>A in DBT gene. Notably, patients harbouring these mutations were non-responsive to thiamine supplementation and other treatment regimens and might have a worse prognosis as compared to the patients not having such mutations. Thus, identification of these mutations may have a crucial role in the treatment as well as understanding the molecular mechanisms in MSUD.

  2. The novel mitochondrial 16S rRNA 2336T>C mutation is associated with hypertrophic cardiomyopathy

    PubMed Central

    Liu, Zhong; Song, Yanrui; Li, Dan; He, Xiangyu; Li, Shishi; Wu, Bifeng; Wang, Wei; Gu, Shulian; Zhu, Xiaoyu; Wang, Xuexiang; Zhou, Qiyin; Dai, Yu; Yan, Qingfeng

    2014-01-01

    Background Hypertrophic cardiomyopathy (HCM) is a primary disorder characterised by asymmetric thickening of septum and left ventricular wall, with a prevalence of 0.2% in the general population. Objective To describe a novel mitochondrial DNA mutation and its association with the pathogenesis of HCM. Methods and results All maternal members of a Chinese family with maternally transmitted HCM exhibited variable severity and age at onset, and were implanted permanent pacemakers due to complete atrioventricular block (AVB). Nuclear gene screening (MYH7, MYBPC3, TNNT2 and TNNI3) was performed, and no potential pathogenic mutation was identified. Mitochondrial DNA sequencing analysis identified a novel homoplasmic 16S rRNA 2336T>C mutation. This mutation was exclusively present in maternal members and absent in non-maternal members. Conservation index by comparison to 16 other vertebrates was 94.1%. This mutation disturbs the 2336U-A2438 base pair in the stem–loop structure of 16S rRNA domain III, which is involved in the assembly of mitochondrial ribosome. Oxygen consumption rate of the lymphoblastoid cells carrying 2336T>C mutation had decreased by 37% compared with controls. A reduction in mitochondrial ATP synthesis and an increase in reactive oxidative species production were also observed. Electron microscopic analysis indicated elongated mitochondria and abnormal mitochondrial cristae shape in mutant cells. Conclusions It is suggested that the 2336T>C mutation is one of pathogenic mutations of HCM. This is the first report of mitochondrial 16S rRNA 2336T>C mutation and an association with maternally inherited HCM combined with AVB. Our findings provide a new insight into the pathogenesis of HCM. PMID:24367055

  3. Response to immunotherapy in a patient with adult onset Leigh syndrome and T9176C mtDNA mutation.

    PubMed

    Chuquilin, Miguel; Govindarajan, Raghav; Peck, Dawn; Font-Montgomery, Esperanza

    2016-09-01

    Leigh syndrome is a mitochondrial disease caused by mutations in different genes, including ATP6A for which no known therapy is available. We report a case of adult-onset Leigh syndrome with response to immunotherapy. A twenty year-old woman with baseline learning difficulties was admitted with progressive behavioral changes, diplopia, headaches, bladder incontinence, and incoordination. Brain MRI and PET scan showed T2 hyperintensity and increased uptake in bilateral basal ganglia, respectively. Autoimmune encephalitis was suspected and she received plasmapheresis with clinical improvement. She was readmitted 4 weeks later with dysphagia and aspiration pneumonia. Plasmapheresis was repeated with resolution of her symptoms. Given the multisystem involvement and suggestive MRI changes, genetic testing was done, revealing a homoplasmic T9176C ATPase 6 gene mtDNA mutation. Monthly IVIG provided clinical improvement with worsening when infusions were delayed. Leigh syndrome secondary to mtDNA T9176C mutations could have an autoimmune mechanism that responds to immunotherapy.

  4. Role of treatment-modifying MTHFR677C>T and 1298A>C polymorphisms in metformin-treated Puerto Rican patients with type-2 diabetes mellitus and peripheral neuropathy.

    PubMed

    Jiménez-Ramírez, Francisco J; Castro, Liza M; Ortiz, Clarymar; Concepción, Jennifer; Renta, Jessicca Y; Morales-Borges, Raúl H; Miranda-Massari, Jorge R; Duconge, Jorge

    2017-03-01

    The study was conducted to investigate potential association between MTHFR genotypes and diabetic peripheral neuropathy (DPN) in Puerto Ricans with type-2 diabetes mellitus (T2DM) treated with metformin. The prevalence of major MTHFR polymorphisms in this cohort was also ascertained. DNAs from 89 metformin-treated patients with T2DM and DPN were genotyped using the PCR-based RFLP assay for MTHFR677C>T and 1298A>C polymorphisms. Frequency distributions of these variants in the study cohort were compared to those reported for three reference populations (HapMap project) and controls (400 newborn specimens). Chi-square (or Fischer's exact) tests and odds ratios (OR) were used to assess association with DPN susceptibility risk (patients vs. controls) and biochemical markers (wild types vs. carriers). Sixty-seven percent (67%) of participants carry at least one of these MTHFR polymorphisms. No deviations from Hardy-Weinberg equilibrium were detected. The genotype and allele frequencies showed statistically significant differences between participants and controls (p<0.0001 and p=0.03, respectively). Results suggest that 1298A>C but not 677C>T is associated with DPN susceptibility in this cohort (p=0.018). Different patterns of allelic dissimilarities are observed when comparing our cohort vs. the three parental ancestries. After sorting individuals by their carrier status, no significant associations were observed between these genetic variants (independently or combined) and any of the biochemical markers (HbA1c, folate, vitamin B12, homocysteine). Prevalence of major MTHFR variants in Puerto Rican patients with T2DM is first time ever reported. The study provides further evidence on the use of this genetic marker as an independent risk factor for DPN.

  5. The role of the methylenetetrahydrofolate reductase 677 and 1298 polymorphisms in Cretan children with acute lymphoblastic leukemia.

    PubMed

    Karathanasis, Nikolaos V; Stiakaki, Eftichia; Goulielmos, George N; Kalmanti, Maria

    2011-01-01

    Acute lymphoblastic leukemia (ALL) is the most common form of malignancy in children. Recently, many studies have examined factors influencing both the susceptibility to ALL and the metabolism of widely used chemotherapeutic agents. These factors include, among others, single-nucleotide polymorphisms in various genes, such as the gene encoding for methylenetetrahydrofolate reductase (MTHFR), which has been proven polymorphic at the nucleotide positions 677 and 1298. Thirty-five children with ALL and 48 healthy adults of Cretan origin were genotyped for the presence of the MTHFR 677 and 1298 single-nucleotide polymorphisms. The possible correlation of the polymorphisms with the risk for ALL and the presence of methotrexate-induced toxicities were examined. No significant association between the MTHFR genotypes and the susceptibility to ALL was observed. A borderline statistically significant relationship was detected after methotrexate administration, between the C677T genotype (polymorphisms) and leukopenia (p = 0.050) and between the A1298C polymorphism and normal aspartate transaminase and alanine transaminase values (p = 0.065 and p = 0.053, respectively), which was strengthened for aspartate transaminase, after grouping the A1298A and A1298C genotypes together (p = 0.039). In our population the MTHFR C677T and A1298C polymorphisms are related with hematologic toxicity and hepatotoxicity, respectively, and could be suggested as prognostic factors for these adverse events.

  6. Plasma homocysteine and vitamin B12 serum levels, red blood cell folate concentrations, C677T methylenetetrahydrofolate reductase gene mutation and risk of recurrent miscarriage: a case-control study in Spain.

    PubMed

    Creus, Montserrat; Deulofeu, Ramon; Peñarrubia, Joana; Carmona, Francisco; Balasch, Juan

    2013-03-01

    Hyperhomocysteinemia and methylenetetrahydrofolate reductase (MTHFR) gene mutation have been postulated as a possible cause of recurrent miscarriage (RM). There is a wide variation in the prevalence of MTHFR polymorphisms and homocysteine (Hcy) plasma levels among populations around the world. The present study was undertaken to investigate the possible association between hyperhomocysteinemia and its causative genetic or acquired factors and RM in Catalonia, a Mediterranean region in Spain. Sixty consecutive patients with ≥ 3 unexplained RM and 30 healthy control women having at least one child but no previous miscarriage were included. Plasma Hcy levels, MTHFR gene mutation, red blood cell (RBC) folate and vitamin B12 serum levels were measured in all subjects. No significant differences were observed neither in plasma Hcy levels, RBC folate and vitamin B12 serum levels nor in the prevalence of homozygous and heterozygous MTHFR gene mutation between the two groups studied. In the present study RM is not associated with hyperhomocysteinemia, and/or the MTHFR gene mutation.

  7. Juvenile Leigh syndrome, optic atrophy, ataxia, dystonia, and epilepsy due to T14487C mutation in the mtDNA-ND6 gene: a mitochondrial syndrome presenting from birth to adolescence.

    PubMed

    Leshinsky-Silver, Esther; Shuvalov, Ruslan; Inbar, Shani; Cohen, Sarit; Lev, Dorit; Lerman-Sagie, Tally

    2011-04-01

    An increasing number of reports describe mutations in mitochondrial DNA coding regions, especially in mitochondrial DNA- encoded nicotinamide adenine dinucleotide dehydrogenase subunit genes of the respiratory chain complex I, as causing early-onset Leigh syndrome. The authors report the molecular findings in a 24-year-old patient with juvenile-onset Leigh syndrome presenting with optic atrophy, ataxia dystonia, and epilepsy. A brain magnetic resonance imaging revealed bilateral basal ganglia and thalamic hypointensities, and a magnetic resonance spectroscopy revealed an increased lactate peak. The authors identified a T14487C change causing M63V substitution in the mitochondrial ND6 gene. The mutation was heteroplasmic in muscle and blood samples, with different mutation loads, and was absent in the patient's mother's urine and blood samples. They suggest that the T14487C mtDNA mutation should be analyzed in Leigh syndrome, presenting with optic atrophy, ataxia, dystonia, and epilepsy, regardless of age.

  8. Prevalence of C282Y, H63D, and S65C mutations in hereditary HFE-hemochromatosis gene in Lithuanian population.

    PubMed

    Kucinskas, Laimutis; Juzenas, Simonas; Sventoraityte, Jurgita; Cedaviciute, Ruta; Vitkauskiene, Astra; Kalibatas, Vytenis; Kondrackiene, Jurate; Kupcinskas, Limas

    2012-04-01

    HFE-hemochromatosis is a common autosomal recessive disease caused by HFE gene mutations and characterized as iron overload and failure of different organs. The aim of this study was to determine the prevalence of C282Y (c.845 G>A), H63D (c.187 C>G), and S65C (c.193A>T) alleles of HFE gene in the Lithuanian population. One thousand and eleven healthy blood donors of Lithuanian nationality were examined in four different ethnic Lithuanian regions to determine HFE gene alleles and genotype frequencies. The samples of DNA were analyzed for the presence of restriction fragment length polymorphism and validated by DNA sequencing. Among 1,011 blood donors tested, the frequency of C282Y, H63D, and S65C alleles were 2.6%, 15.9%, and 1.9%, respectively. One third of the tested subjects (n = 336) had at least one of the C282Y or H63D HFE gene mutations. The screening of Lithuanian blood donors has detected 13 (1.3%) subjects with a genotype C282Y/C282Y or C282Y/H63D responsible for the development of HFE-hemochromatosis. The prevalence of C282Y mutation was significantly higher among the inhabitants of Zemaitija (Somogitia) at the Baltic Sea area (5.9%) in comparison to the regions of continental part of Lithuania (2.4% in Dzukija, 2.3% in Aukstaitija, and 2% in Suvalkija, p < 0.05). These data support the hypothesis that the p.C282Y mutation originated from Scandinavia and spread with the Vikings along the Baltic Sea coast. The first epidemiological investigation of HFE gene mutations in ethnic Lithuanians showed that the frequencies of H63D, C282Y, and S65C of HFE gene alleles are similar to the other North-Eastern Europeans, especially in the Baltic region (Estonia, Latvia), Poland, and part of Russia (Moscow region).

  9. Prognostic impact of KRAS mutation subtypes in 677 patients with metastatic lung adenocarcinomas

    PubMed Central

    Yu, Helena A.; Sima, Camelia S.; Shen, Ronglai; Kass, Samantha; Gainor, Justin; Shaw, Alice; Hames, Megan; Iams, Wade; Aston, Jonathan; Lovly, Christine M.; Horn, Leora; Lydon, Christine; Oxnard, Geoffrey R.; Kris, Mark G.; Ladanyi, Marc; Riely, Gregory J.

    2015-01-01

    Background We previously demonstrated that patients with metastatic KRAS mutant lung cancers have a shorter survival compared to patients with KRAS wild type cancers. Recent reports have suggested different clinical outcomes and distinct activated signaling pathways depending on KRAS mutation subtype. To better understand the impact of KRAS mutation subtype, we analyzed data from 677 patients with KRAS mutant metastatic lung cancer. Methods We reviewed all patients with metastatic or recurrent lung cancers found to have KRAS mutations over a 6 year time period. We evaluated the associations between KRAS mutation type, clinical factors, and overall survival in univariate and multivariate analyses. Any significant findings were validated in an external multi-institution patient data set. Results Among 677 patients with KRAS mutant lung cancers (53 at codon 13, 624 at codon 12), there was no difference in overall survival for patients when comparing KRAS transition versus transversion mutations (p=0.99), smoking status (p=0.33) or when comparing specific amino acid substitutions (p=0.20). In our data set, patients with KRAS codon 13 mutant tumors (n=53) had shorter overall survival compared to patients with codon 12 mutant tumors (n=624)( 1.1 vs 1.3 years, respectively, p=0.009), and the findings were confirmed in a multivariate Cox model controlling for age, sex and smoking status (HR 1.52 95% CI 1.11-2.08, p=0.008). In an independent validation set of tumors from 682 patients with stage IV KRAS mutant lung cancers, there was no difference in survival between patients with KRAS codon 13 versus codon 12 mutations (1.0 vs 1.1 years respectively, p=0.41). Conclusions Among individuals with KRAS mutant metastatic lung cancers treated with conventional therapy, there are apparent differences in outcome based on KRAS mutation subtype PMID:25415430

  10. High prevalence of factor V Leiden and prothrombin G20101A mutations in Kashmiri patients with venous thromboembolism.

    PubMed

    Shafia, Syed; Zargar, Mahrukh H; Khan, Nabeela; Ahmad, Rehana; Shah, Zafar Amin; Asimi, Ravouf

    2018-05-15

    The genetic variants of the factor V (G1691A), prothrombin (G20210A) and MTHFR (C677T) genes have been widely implicated as inherited risk factors for developing venous thrombosis. This study was undertaken to reveal the frequency of these mutations in Kashmiri patients with venous thromboembolism. A case-control study was designed with 250 VTE patients and 250 healthy controls. The mutations were analysed using ARMS-PCR and PCR-RFLP approach. The factor V Leiden G1691A mutation was found in 17/250 (6.8%) VTE patients and prothrombin G20210A mutation was found in 7/250 (2.8%) VTE patients while no mutation was found in any of the healthy controls. Both the mutations were found to be significantly associated with the increased risk of VTE (p = 0.0001 and 0.0150 respectively) while no association of VTE risk with MTHFR C677T polymorphism was found (p = 0.53). The increased frequency of factor V Leiden G1691A and prothrombin G20210A mutation in VTE patients indicates a significant role of these mutations in the development of VTE in our population. We therefore suggest the routine screening of these two mutations as thrombophilic markers in Kashmiri patients with venous thromboembolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. [Analysis of MAT1A gene mutations in a child affected with simple hypermethioninemia].

    PubMed

    Sun, Yun; Ma, Dingyuan; Wang, Yanyun; Yang, Bin; Jiang, Tao

    2017-02-10

    To detect potential mutations of MAT1A gene in a child suspected with simple hypermethioninemia by MS/MS neonatal screening. Clinical data of the child was collected. Genomic DNA was extracted by a standard method and subjected to targeted sequencing using an Ion Ampliseq TM Inherited Disease Panel. Detected mutations were verified by Sanger sequencing. The child showed no clinical features except evaluated methionine. A novel compound mutation of the MAT1A gene, i.e., c.345delA and c.529C>T, was identified in the child. His father and mother were found to be heterozygous for the c.345delA mutation and c.529C>T mutation, respectively. The compound mutation c.345delA and c.529C>T of the MAT1A gene probably underlie the disease in the child. The semi-conductor sequencing has provided an important means for the diagnosis of hereditary diseases.

  12. Prevalence of c.2268dup and detection of two novel alterations, c.670_672del and c.1186C>T, in the TPO gene in a cohort of Malaysian-Chinese with thyroid dyshormonogenesis.

    PubMed

    Lee, Ching Chin; Harun, Fatimah; Jalaludin, Muhammad Yazid; Heh, Choon Han; Othman, Rozana; Junit, Sarni Mat

    2015-01-05

    The c.2268dup mutation in the thyroid peroxidase (TPO) gene is the most common TPO alteration reported in Taiwanese patients with thyroid dyshormonogenesis. The ancestors of these patients are believed to originate from the southern province of China. Our previous study showed that this mutation leads to reduced abundance of the TPO protein and loss of TPO enzyme activity in a Malaysian-Chinese family with goitrous hypothyroidism. The aim of our study was to provide further data on the incidence of the c.2268dup mutation in a cohort of Malaysian-Chinese and its possible phenotypic effects. Cohort study. Twelve biologically unrelated Malaysian-Chinese patients with congenital hypothyroidism were recruited in this study. All patients showed high thyrotropin and low free thyroxine levels at the time of diagnosis with proven presence of a thyroid gland. Screening of the c.2268dup mutation in the TPO gene in all patients was carried out using a PCR-direct DNA sequencing method. Further screening for mutations in other exonic regions of the TPO gene was carried out if the patient was a carrier of the c.2268dup mutation. The c.2268dup mutation was detected in 4 of the 12 patients. Apart from the c.2268dup and a previously documented mutation (c.2647C>T), two novel TPO alterations, c.670_672del and c.1186C>T, were also detected in our patients. In silico analyses predicted that the novel alterations affect the structure/function of the TPO protein. The c.2268dup mutation was detected in approximately one-third of the Malaysian-Chinese patients with thyroid dyshormonogenesis. The detection of the novel c.670_672del and c.1186C>T alterations expand the mutation spectrum of TPO associated with thyroid dyshormonogenesis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. A new mtDNA mutation in the tRNA[sup Lys] gene associated with myoclonic epilepsy and ragged-red fibers (MERRF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silvestri, G.; Moraes, C.T.; Shanske, S.

    1992-12-01

    Myoclonic epilepsy with ragged-red fibers (MERRF) has been associated with an A[r arrow]G transition at mtDNA nt 8344, within a conserved region of the tRNA[sup Lys] gene. Although the 8344 mutation is highly prevalent in patients with MERRF, it is not observed in 10%-20% of the cases, suggesting genetic heterogeneity. The authors have sequenced the tRNA[sup Lys] gene of five MERRF patients lacking the common 8344 mutation. One of these showed a novel T[r arrow]C transition at nucleotide position 8356, disrupting a highly conserved base pair in the T[Psi]C stem. The mutant mtDNA population was essentially homoplasmic in muscle butmore » was heteroplasmic in blood (47%). Neither 20 patients with other mitochondrial diseases nor 25 controls carried this mutation. These findings suggest that tRNA[sup Lys] alterations may play a specific role in the pathogenesis of MERRF syndrome. 21 refs., 4 figs.« less

  14. Role of treatment-modifying MTHFR677C>T and 1298A > C polymorphisms in metformin-treated Puerto Rican patients with type-2 diabetes mellitus and peripheral neuropathy

    PubMed Central

    Jiménez-Ramírez, Francisco J.; Castro, Liza M.; Ortiz, Clarymar; Concepción, Jennifer; Renta, Jessicca Y.; Morales-Borges, Raúl H.; Miranda-Massari, Jorge R.; Duconge, Jorge

    2017-01-01

    Background The study was conducted to investigate potential association between MTHFR genotypes and diabetic peripheral neuropathy (DPN) in Puerto Ricans with type-2 diabetes mellitus (T2DM) treated with metformin. The prevalence of major MTHFR polymorphisms in this cohort was also ascertained. Methods DNAs from 89 metformin-treated patients with T2DM and DPN were genotyped using the PCR-based RFLP assay for MTHFR677C > T and 1298A > C polymorphisms. Frequency distributions of these variants in the study cohort were compared to those reported for three reference populations (HapMap project) and controls (400 newborn specimens). Chi-square (or Fischer’s exact) tests and odds ratios (OR) were used to assess association with DPN susceptibility risk (patients vs. controls) and biochemical markers (wild types vs. carriers). Results Sixty-seven percent (67%) of participants carry at least one of these MTHFR polymorphisms. No deviations from Hardy-Weinberg equilibrium were detected. The genotype and allele frequencies showed statistically significant differences between participants and controls (p < 0.0001 and p = 0.03, respectively). Results suggest that 1298A > C but not 677C > T is associated with DPN susceptibility in this cohort (p = 0.018). Different patterns of allelic dissimilarities are observed when comparing our cohort vs. the three parental ancestries. After sorting individuals by their carrier status, no significant associations were observed between these genetic variants (independently or combined) and any of the biochemical markers (HbA1c, folate, vitamin B12, homocysteine). Conclusions Prevalence of major MTHFR variants in Puerto Rican patients with T2DM is first time ever reported. The study provides further evidence on the use of this genetic marker as an independent risk factor for DPN. PMID:28231061

  15. Methotrexate-induced mucositis in acute leukemia patients is not associated with the MTHFR 677T allele in Mexico.

    PubMed

    Ruiz-Argüelles, Guillermo J; Coconi-Linares, Lucia Nancy; Garcés-Eisele, Javier; Reyes-Núñez, Virginia

    2007-10-01

    Methylenetetrahydrofolate reductase (MTHFR) has two common variants with reduced activity due to polymorphisms at nucleotides 677 and 1298. Both affect folate metabolism and thus remethylation of homocysteine, but are also thought to affect nucleotide synthesis and DNA methylation. Methotrexate (MTX), which interrupts folate metabolism, is used in the treatment of a variety of diseases including acute lymphoblastic leukemia (ALL), but exerts in some patients toxic effects on fast dividing tissues such as mucosal epithelia. The enhanced toxicity may be due to cooperative effects between MTX and MTHFR variants. Accordingly, it has been reported that carrying the 677T allele of the MTHFR is a risk factor for MTX-associated mucositis. As in the Mexican population, which is characterized by a high prevalence of the 677T MTHFR variant, several of its commonly associated defects have not been observed, we investigated the relationship between MTX toxicity and the 677T allele. Out of 28 patients with ALL (CC: 2, CT: 10, TT: 16), 16 had episodes of MTX-associated mucositis (CC: 0, CT: 6, TT: 10). Neither at the gene level nor at the genotype level was a significant association with mucositis found. It may be postulated that the risk of higher MTX toxicity in patients with decreased MTHFR activity could be neutralized by the normally folate rich diet in Mexico.

  16. NDP gene mutations in 14 French families with Norrie disease.

    PubMed

    Royer, Ghislaine; Hanein, Sylvain; Raclin, Valérie; Gigarel, Nadine; Rozet, Jean-Michel; Munnich, Arnold; Steffann, Julie; Dufier, Jean-Louis; Kaplan, Josseline; Bonnefont, Jean-Paul

    2003-12-01

    Norrie disease is a rare X-inked recessive condition characterized by congenital blindness and occasionally deafness and mental retardation in males. This disease has been ascribed to mutations in the NDP gene on chromosome Xp11.1. Previous investigations of the NDP gene have identified largely sixty disease-causing sequence variants. Here, we report on ten different NDP gene allelic variants in fourteen of a series of 21 families fulfilling inclusion criteria. Two alterations were intragenic deletions and eight were nucleotide substitutions or splicing variants, six of them being hitherto unreported, namely c.112C>T (p.Arg38Cys), c.129C>G (p.His43Gln), c.133G>A (p.Val45Met), c.268C>T (p.Arg90Cys), c.382T>C (p.Cys128Arg), c.23479-1G>C (unknown). No NDP gene sequence variant was found in seven of the 21 families. This observation raises the issue of misdiagnosis, phenocopies, or existence of other X-linked or autosomal genes, the mutations of which would mimic the Norrie disease phenotype. Copyright 2003 Wiley-Liss, Inc.

  17. Association of MTHFR C667T polymorphism with bone mineral density and fracture risk: an updated meta-analysis.

    PubMed

    Wang, H; Liu, C

    2012-11-01

    This meta-analysis investigated the association of C677T polymorphism in MTHFR gene with bone mineral density (BMD) and fracture risk. The results suggested that C677T polymorphism was marginally associated with fracture risk. In addition, this polymorphism was modestly associated with BMD of lumbar spine, femoral neck, total hip, and total body, respectively. The methylenetetrahydrofolate reductase (MTHFR) gene has been implicated in the regulation of BMD and, thus, may serve as a potential risk factor for the development of fracture. However, results have been inconsistent. In this study, a meta-analysis was performed to clarify the association of C677T polymorphism in MTHFR gene with BMD and fracture risk. Published literature from PubMed and EMBASE were searched for eligible publications. Pooled odds ratio (OR) or weighted mean difference (WMD) and 95% confidence interval (CI) were calculated using a fixed- or random-effects model. Twenty studies (3,525 cases and 17,909 controls) were included in this meta-analysis. The TT genotype of C677T polymorphism was marginally associated with an increased risk of fracture under recessive model (TT vs. TC + CC: OR = 1.23, 95% CI 1.04-1.47). Using this model, similar results were found among East Asians (OR = 1.40, 95% CI 1.07-1.83), female subpopulation (1.27, 95% CI 1.04-1.55), cohort studies (OR = 1.24, 95% CI 1.08-1.44), and subjects younger than aged 60 years (OR = 1.51, 95% CI 1.10-2.07). In addition, under homogeneous co-dominant model, there was a modest association of C677T polymorphism with BMD of lumbar spine (WMD = -0.017 g/cm(2); 95%CI, -0.030-(-0.005) g/cm(2)), femoral neck (WMD = -0.010 g/cm(2); 95% CI -0.017-(-0.003) g/cm(2)), total hip (WMD = -0.013 g/cm(2), 95% CI -0.022-(-0.004) g/cm(2)), and total body (WMD = -0.020 g/cm(2); 95% CI -0.027-(-0.013) g/cm(2)), respectively. This meta-analysis suggested that C677T polymorphism was marginally associated with fracture risk. In addition, this polymorphism was

  18. A novel alpha-thalassemia nonsense mutation in HBA2: C.382 A > T globin gene.

    PubMed

    Hamid, Mohammad; Bokharaei Merci, Hanieh; Galehdari, Hamid; Saberi, Ali Hossein; Kaikhaei, Bijan; Mohammadi-Anaei, Marziye; Ahmadzadeh, Ahmad; Shariati, Gholamreza

    2014-07-01

    In this study, a new alpha globin gene mutation on the α2-globin gene is reported. This mutation resulted in a Lys > stop codon substitution at position 127 which was detected in four individuals (three males and one female). DNA sequencing revealed this mutation in unrelated persons in Khuzestan province, Southwestern Iran of Lor ethnicity. This mutation caused no severe hematological abnormalities in the carriers. From the nature of substituted residues in α2-globin, it is widely expected that this mutation leads to unstable and truncated protein and should be detected in couples at risk for α-thalassemia.

  19. Leber's Hereditary Optic Neuropathy Is Associated with the T3866C Mutation in Mitochondrial ND1 Gene in Three Han Chinese Families

    PubMed Central

    Zhou, Xiangtian; Qian, Yaping; Zhang, Juanjuan; Tong, Yi; Jiang, Pingping; Liang, Min; Dai, Xianning; Zhou, Huihui; Zhao, Fuxin; Ji, Yanchun; Mo, Jun Qin; Qu, Jia; Guan, Min-Xin

    2012-01-01

    Purpose. To investigate the pathophysiology of Leber's hereditary optic neuropathy (LHON). Methods. Seventy-one subjects from three Chinese families with LHON underwent clinical, genetic, molecular, and biochemical evaluations. Biochemical characterizations included the measurements of the rates of endogenous, substrate-dependent respirations, the adenosine triphosphate (ATP) production and generation of reactive oxygen species using lymphoblastoid cell lines derived from five affected matrilineal relatives of these families and three control subjects. Results. Ten of 41 matrilineal relatives exhibited variable severity and age at onset of optic neuropathy. The average age at onset of optic neuropathy in matrilineal relatives of the three families was 5, 11, and 24 years, respectively. Molecular analysis identified the ND1 T3866C (I187T) mutation and distinct sets of polymorphisms belonging to the Eastern Asian haplogroups D4a, M10a, and R, respectively. The I187T mutation is localized at the highly conserved isoleucine at a transmembrane domain of the ND1 polypeptide. The marked reductions in the rate of endogenous, malate/glutamate-promoted and succinate/glycerol-3-phosphate-promoted respiration were observed in mutant cell lines carrying the T3866C mutation. The deficient respiration is responsible for the reduced ATP synthesis and increased generation of reactive oxygen species. Conclusions. Our data convincingly show that the ND1 T3866C mutation leads to LHON. This mutation may be insufficient to produce a clinical phenotype. Other modifier factors may contribute to the phenotypic manifestation of the T3866C mutation. The T3866C mutation should be added to the list of inherited factors for molecular diagnosis of LHON. Thus, our findings may provide new insights into the understanding of pathophysiology and valuable information on the management of LHON. PMID:22577081

  20. The tRNA(Gly) T10003C mutation in mitochondrial haplogroup M11b in a Chinese family with diabetes decreases the steady-state level of tRNA(Gly), increases aberrant reactive oxygen species production, and reduces mitochondrial membrane potential.

    PubMed

    Li, Wei; Wen, Chaowei; Li, Weixing; Wang, Hailing; Guan, Xiaomin; Zhang, Wanlin; Ye, Wei; Lu, Jianxin

    2015-10-01

    Mitochondrial diabetes originates mainly from mutations located in maternally transmitted, mitochondrial tRNA-coding genes. In a genetic screening program of type 2 diabetes conducted with a Chinese Han population, we found one family with suggestive maternally transmitted diabetes. The proband's mitochondrial genome was analyzed using DNA sequencing. Total 42 known nucleoside changes and 1 novel variant were identified, and the entire mitochondrial DNA sequence was assigned to haplogroup M11b. Phylogenetic analysis showed that a homoplasmic mutation, 10003T>C transition, occurred at the highly conserved site in the gene encoding tRNA(Gly). Using a transmitochondrial cybrid cell line harboring this mutation, we observed that the steady-state level of tRNA(Gly) significantly affected and the amount of tRNA(Gly) decreased by 97%, production of reactive oxygen species was enhanced, and mitochondrial membrane potential, mtDNA copy number and cellular oxygen consumption rate were remarkably decreased compared with wild-type cybrid cells. The homoplasmic 10003T>C mutation in the mitochondrial tRNA(Gly) gene suggested to be as a pathogenesis-related mutation which might contribute to the maternal inherited diabetes in the Han Chinese family.

  1. Novel mutations of the AGXT gene causing primary hyperoxaluria type 1.

    PubMed

    Yuen, Yuet-Ping; Lai, Chi-Kong; Tong, Gensy Mei-Wah; Wong, Ping-Nam; Wong, Francis Kim-Ming; Mak, Siu-Ka; Lo, Kin-Yee; Wong, Andrew Kui-Man; Tong, Sui-Fan; Chan, Yan-Wo; Lam, Ching-Wan

    2004-01-01

    Primary hyperoxaluria type 1 (PH1), an inherited cause of nephrolithiasis, is due to a functional defect of the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). A definitive PH1 diagnosis can be established by analyzing AGT activity in liver tissue or mutation analysis of the AGXT gene. The molecular basis of PH1 in three Chinese patients, two with adult-onset and one with childhood-onset recurrent nephrolithiasis, was established by analyzing the entire AGXT gene. Three novel mutations (c2T>C, c817insAG and c844C>T) and two previously reported mutations (c33insC and 679-IVS6+2delAAgt) were identified. c2T>C converts the initiation codon from ATG to ACG, which predicts significant reduction, if not complete abolition, of protein translation. c817insAG leads to a frameshift and changes the amino acid sequence after codon 274. c844C>T changes glutamine at codon 282 to a termination codon, resulting in protein truncation. This is the first report describing AGXT gene mutations in Chinese patients with PH1. AGXT genotypes cannot fully explain the clinical heterogeneity of PH1, and other factors involved in disease pathogenesis remain to be identified. Our experience emphasizes the importance of excluding PH1 in patients with recurrent nephrolithiasis to avoid delay or inappropriate management.

  2. Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency in Greek newborns: the Mediterranean C563T mutation screening.

    PubMed

    Molou, Elina; Schulpis, Kleopatra H; Thodi, Georgia; Georgiou, Vassiliki; Dotsikas, Yannis; Papadopoulos, Konstantinos; Biti, Sofia; Loukas, Yannis L

    2014-04-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) gene is located at the X-chromosome at Xq28 and the disease is recessively inherited predominantly in males. More than 400 variants have been proposed based on clinical and enzymatic studies. The aim of the current study was to identify C563T mutation in G6PD-deficient newborns and to correlate the enzyme residual activity with the presence of the mutation. Some 1189 full-term neonates aged 3-5 days old were tested for G6PD activity in dried blood spots from Guthrie cards using a commercial kit. DNA extraction from Guthrie cards and mutation identification among the deficient samples were performed with current techniques. A total of 92 (7.7%) newborns were G6PD-deficient. In 46 (50%), the mutation C563T was identified. The residual activity in C563T hemizygote males (n = 28) was statistically significantly lower (1.23 ± 0.93 U/g Hb) than that in non-C563T G6PD-deficient males (n = 25) (4.01 ± 1.20 U/g Hb, p < 0.0001) and in controls (13.6 ± 2.9 U/g Hb, p < 0.0001). In C563T heterozygote females, the estimated enzyme activity was lower than that determined in non-C563T females. Male C563T hemizygotes suffer from G6PD deficiency and severe neonatal jaundice. G6PD activity showed statistically significant correlation with total bilirubin blood levels.

  3. Mutation Frequency of the Major Frontotemporal Dementia Genes, MAPT, GRN and C9ORF72 in a Turkish Cohort of Dementia Patients.

    PubMed

    Guven, Gamze; Lohmann, Ebba; Bras, Jose; Gibbs, J Raphael; Gurvit, Hakan; Bilgic, Basar; Hanagasi, Hasmet; Rizzu, Patrizia; Heutink, Peter; Emre, Murat; Erginel-Unaltuna, Nihan; Just, Walter; Hardy, John; Singleton, Andrew; Guerreiro, Rita

    2016-01-01

    'Microtubule-associated protein tau' (MAPT), 'granulin' (GRN) and 'chromosome 9 open reading frame72' (C9ORF72) gene mutations are the major known genetic causes of frontotemporal dementia (FTD). Recent studies suggest that mutations in these genes may also be associated with other forms of dementia. Therefore we investigated whether MAPT, GRN and C9ORF72 gene mutations are major contributors to dementia in a random, unselected Turkish cohort of dementia patients. A combination of whole-exome sequencing, Sanger sequencing and fragment analysis/Southern blot was performed in order to identify pathogenic mutations and novel variants in these genes as well as other FTD-related genes such as the 'charged multivesicular body protein 2B' (CHMP2B), the 'FUS RNA binding protein' (FUS), the 'TAR DNA binding protein' (TARDBP), the 'sequestosome1' (SQSTM1), and the 'valosin containing protein' (VCP). We determined one pathogenic MAPT mutation (c.1906C>T, p.P636L) and one novel missense variant (c.38A>G, p.D13G). In GRN we identified a probably pathogenic TGAG deletion in the splice donor site of exon 6. Three patients were found to carry the GGGGCC expansions in the non-coding region of the C9ORF72 gene. In summary, a complete screening for mutations in MAPT, GRN and C9ORF72 genes revealed a frequency of 5.4% of pathogenic mutations in a random cohort of 93 Turkish index patients with dementia.

  4. Complete mtDNA sequencing reveals mutations m.9185T>C and m.13513G>A in three patients with Leigh syndrome.

    PubMed

    Pelnena, Dita; Burnyte, Birute; Jankevics, Eriks; Lace, Baiba; Dagyte, Evelina; Grigalioniene, Kristina; Utkus, Algirdas; Krumina, Zita; Rozentale, Jolanta; Adomaitiene, Irina; Stavusis, Janis; Pliss, Liana; Inashkina, Inna

    2017-12-12

    The most common mitochondrial disorder in children is Leigh syndrome, which is a progressive and genetically heterogeneous neurodegenerative disorder caused by mutations in nuclear genes or mitochondrial DNA (mtDNA). In the present study, a novel and robust method of complete mtDNA sequencing, which allows amplification of the whole mitochondrial genome, was tested. Complete mtDNA sequencing was performed in a cohort of patients with suspected mitochondrial mutations. Patients from Latvia and Lithuania (n = 92 and n = 57, respectively) referred by clinical geneticists were included. The de novo point mutations m.9185T>C and m.13513G>A, respectively, were detected in two patients with lactic acidosis and neurodegenerative lesions. In one patient with neurodegenerative lesions, the mutation m.9185T>C was identified. These mutations are associated with Leigh syndrome. The present data suggest that full-length mtDNA sequencing is recommended as a supplement to nuclear gene testing and enzymatic assays to enhance mitochondrial disease diagnostics.

  5. Histone modifier gene mutations in peripheral T-cell lymphoma not otherwise specified.

    PubMed

    Ji, Meng-Meng; Huang, Yao-Hui; Huang, Jin-Yan; Wang, Zhao-Fu; Fu, Di; Liu, Han; Liu, Feng; Leboeuf, Christophe; Wang, Li; Ye, Jing; Lu, Yi-Ming; Janin, Anne; Cheng, Shu; Zhao, Wei-Li

    2018-04-01

    Due to heterogeneous morphological and immunophenotypic features, approximately 50% of peripheral T-cell lymphomas are unclassifiable and categorized as peripheral T-cell lymphomas, not otherwise specified. These conditions have an aggressive course and poor clinical outcome. Identification of actionable biomarkers is urgently needed to develop better therapeutic strategies. Epigenetic alterations play a crucial role in tumor progression. Histone modifications, particularly methylation and acetylation, are generally involved in chromatin state regulation. Here we screened the core set of genes related to histone methylation ( KMT2D , SETD2 , KMT2A , KDM6A ) and acetylation ( EP300 , CREBBP ) and identified 59 somatic mutations in 45 of 125 (36.0%) patients with peripheral T-cell lymphomas, not otherwise specified. Histone modifier gene mutations were associated with inferior progression-free survival time of the patients, irrespective of chemotherapy regimens, but an increased response to the histone deacetylase inhibitor chidamide. In vitro , chidamide significantly inhibited the growth of EP300-mutated T-lymphoma cells and KMT2D-mutated T-lymphoma cells when combined with the hypomethylating agent decitabine. Mechanistically, decitabine acted synergistically with chidamide to enhance the interaction of KMT2D with transcription factor PU.1, regulated H3K4me-associated signaling pathways, and sensitized T-lymphoma cells to chidamide. In a xenograft KMT2D-mutated T-lymphoma model, dual treatment with chidamide and decitabine significantly retarded tumor growth and induced cell apoptosis through modulation of the KMT2D/H3K4me axis. Our work thus contributes to the understanding of aberrant histone modification in peripheral T-cell lymphomas, not otherwise specified and the stratification of a biological subset that can benefit from epigenetic treatment. Copyright© 2018 Ferrata Storti Foundation.

  6. Methylenetetrahydrofolate reductase gene, homocysteine and coronary artery disease: the A1298C polymorphism does matter. Inferences from a case study (Madeira, Portugal).

    PubMed

    Freitas, Ana I; Mendonça, Isabel; Guerra, Graça; Brión, Maria; Reis, Roberto P; Carracedo, Angel; Brehm, António

    2008-01-01

    Elevated levels of plasma homocysteine, an independent risk factor and a strong predictor of mortality in patients with coronary artery disease (CAD), can result from nutritional deficiencies or genetic errors, including methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms. The contribution of these polymorphisms in the development of CAD remains controversial. We analysed the impact of MTHFR C677T and A1298C on fasting homocysteine and CAD in 298 CAD patients proved by angiography and 510 control subjects from the Island of Madeira (Portugal). After adjustment for other risk factors, plasma homocysteine remained independently correlated with CAD. Serum homocysteine was significantly higher in individuals with 677TT and 1298AA genotypes. There was no difference in the distribution of MTHFR677 genotypes between cases and controls but a significant increase in 1298AA prevalence was found in CAD patients. In spite of the clear effect of C677T mutation on elevated homocysteine levels we only found an association between 1298AA genotype and CAD in this population. The simultaneous presence of 677CT and 1298AA genotypes provides a significant risk of developing the disease, while the 1298AC genotype, combined with 677CC, shows a significant trend towards a decrease in CAD occurrence. The data shows an independent association between elevated levels of homocysteine and CAD. Both MTHFR polymorphisms are associated with increased fasting homocysteine (677TT and 1298AA genotypes), but only the 1298AA variant shows an increased prevalence in CAD group. Odds ratio seem to indicate that individuals with the MTHFR 1298AA genotype and the 677CT/1298AA compound genotype had a 1.6-fold increased risk for developing CAD suggesting a possible association of MTHFR polymorphisms with the risk of CAD in Madeira population.

  7. Detection of epidermal growth factor receptor gene T790M mutation in cytology samples using the cobas® EGFR mutation test.

    PubMed

    Satouchi, Miyako; Tanaka, Hiroshi; Yoshioka, Hiroshige; Shimokawaji, Tadasuke; Mizuno, Keiko; Takeda, Koji; Yoshino, Ichiro; Seto, Takashi; Kurata, Takayasu; Tashiro, Naoki; Hagiwara, Koichi

    2017-09-01

    Detection of epidermal growth factor receptor (EGFR) gene mutations is essential in deciding therapeutic strategy in non-small cell lung cancer (NSCLC) patients at initial diagnosis. Moreover, in EGFR mutation-positive (EGFRm) NSCLC patients, re-biopsy at disease progression to clarify resistance mechanisms is also important. However, collecting histology samples is often difficult because of inaccessibility and invasiveness. In some cases, only cytology samples can be collected, and studies have reported that cytology samples are appropriate for EGFR gene mutation testing. The cobas ® EGFR Mutation Test (Roche Molecular Systems Inc., Branchburg, New Jersey, USA) is approved as a companion diagnostic for osimertinib, a third-generation EGFR-tyrosine kinase inhibitor approved in Japan. However, it is not clear whether the EGFR T790M mutation can be detected in cytology samples using this test. The primary objective of this study was to assess concordance of EGFR T790M gene mutation detection between histology and matched cytology samples using the cobas ® EGFR Mutation Test. We conducted a multicenter, observational study in Japan. Overall, 41 EGFRm NSCLC patients who had both histology and cytology samples collected at the same time at re-biopsy and with the results of EGFR mutation test using histology samples were enrolled. The EGFR mutation status of both sample types was tested using the cobas ® EGFR Mutation Test and the concordance rates were calculated. The EGFR T790M mutation detection rate in histology and cytology samples was 42.5% and 37.5%, respectively. The overall percent agreement between the histology and cytology samples was 91.7%. These data demonstrate that the cobas ® EGFR Mutation Test can detect the EGFR T790M mutation in both cytology and histology samples. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. HAEdb: a novel interactive, locus-specific mutation database for the C1 inhibitor gene.

    PubMed

    Kalmár, Lajos; Hegedüs, Tamás; Farkas, Henriette; Nagy, Melinda; Tordai, Attila

    2005-01-01

    Hereditary angioneurotic edema (HAE) is an autosomal dominant disorder characterized by episodic local subcutaneous and submucosal edema and is caused by the deficiency of the activated C1 esterase inhibitor protein (C1-INH or C1INH; approved gene symbol SERPING1). Published C1-INH mutations are represented in large universal databases (e.g., OMIM, HGMD), but these databases update their data rather infrequently, they are not interactive, and they do not allow searches according to different criteria. The HAEdb, a C1-INH gene mutation database (http://hae.biomembrane.hu) was created to contribute to the following expectations: 1) help the comprehensive collection of information on genetic alterations of the C1-INH gene; 2) create a database in which data can be searched and compared according to several flexible criteria; and 3) provide additional help in new mutation identification. The website uses MySQL, an open-source, multithreaded, relational database management system. The user-friendly graphical interface was written in the PHP web programming language. The website consists of two main parts, the freely browsable search function, and the password-protected data deposition function. Mutations of the C1-INH gene are divided in two parts: gross mutations involving DNA fragments >1 kb, and micro mutations encompassing all non-gross mutations. Several attributes (e.g., affected exon, molecular consequence, family history) are collected for each mutation in a standardized form. This database may facilitate future comprehensive analyses of C1-INH mutations and also provide regular help for molecular diagnostic testing of HAE patients in different centers.

  9. EDAR-induced hypohidrotic ectodermal dysplasia: a clinical study on signs and symptoms in individuals with a heterozygous c.1072C > T mutation

    PubMed Central

    2014-01-01

    Background Mutations in the EDAR-gene cause hypohidrotic ectodermal dysplasia, however, the oral phenotype has been described in a limited number of cases. The aim of the present study was to clinically describe individuals with the c.1072C > T mutation (p. Arg358X) in the EDAR gene with respect to dental signs and saliva secretion, symptoms from other ectodermal structures and to assess orofacial function. Methods Individuals in three families living in Sweden, where some members had a known c.1072C > T mutation in the EDAR gene with an autosomal dominant inheritance (AD), were included in a clinical investigation on oral signs and symptoms and self-reported symptoms from other ectodermal structures (n = 37). Confirmation of the c.1072C > T mutation in the EDAR gene were performed by genomic sequencing. Orofacial function was evaluated with NOT-S. Results The mutation was identified in 17 of 37 family members. The mean number of missing teeth due to agenesis was 10.3 ± 4.1, (range 4–17) in the mutation group and 0.1 ± 0.3, (range 0–1) in the non-mutation group (p < 0.01). All individuals with the mutation were missing the maxillary lateral incisors and one or more of the mandibular incisors; and 81.3% were missing all four. Stimulated saliva secretion was 0.9 ± 0.5 ml/min in the mutation group vs 1.7 ± 0.6 ml/min in the non-mutation group (p < 0.01). Reduced ability to sweat was reported by 82% in the mutation group and by 20% in the non-mutation group (p < 0.01). The mean NOT-S score was 3.0 ± 1.9 (range 0–6) in the mutation group and 1.5 ± 1.1 (range 0–5) in the non-mutation group (p < 0.01). Lisping was present in 56% of individuals in the mutation group. Conclusions Individuals with a c.1072C > T mutation in the EDAR-gene displayed a typical pattern of congenitally missing teeth in the frontal area with functional consequences. They therefore have a need for special attention in dental

  10. [Application of gene capture technology on mutation screening of RB1 gene in retinoblastoma patients].

    PubMed

    Meng, Q Y; Huang, L Z; Wang, B; Li, X X; Liang, J H

    2017-06-11

    Objectives: To analyze RB1 gene mutation in retinoblastoma (RB) patients using gene capture technology. Methods: Experimental research. The clinical data of 17 RB patients were collected at Department of Ophthalmology, Peking University People's Hospital from June 2010 to Jun 2014. Peripheral blood samples of seventeen RB patients and their parents were collected and genomic DNA were extracted. DNA library from RB patients was mixed with designed gene capture probe of RB1 exons and its flanking sequences. The data were analyzed using bioinformatics software. To avoid the false positive, the abnormal sites were verified using the Sanger sequencing method. Results: Totally, there were 17 RB patients, including 12 males and 5 females, from 0.5 to 23 years old, average ages were (3.2±5.2) years old. Both eyes were involved in 6 patients. The other 11 cases were only one eye was attacked. Four RB patients were found to have germline mutations, among whom 2 had bilateral tumors and 2 had unilateral tumors. 2 novel missense mutations were identified, including 15(th) exon c.1408A>T (p. Ile470Phe) and c.1960G>C (p. Val654Leu) at 19(th) exon. No RB1 mutation was identified in any of their parents. We also identified 2 mutations reported previously. One is c.1030C>T termination mutation at 10(th) exon in a bilateral RB patients and his father, who was diagnosed with unilateral RB. The other is c.371-372delTA frame shift mutation at 3(rd) exon. No mutation was found in their parents. Conclusions: Two novel germline RB1 mutations were found using gene capture technology, which enriched RB1 mutations library. (Chin J Ophthalmol, 2017, 53: 455-459) .

  11. Detection of c. -32T>G (IVS1-13T>G) mutation of Pompe disease by real-time PCR in dried blood spot specimen.

    PubMed

    Bobillo Lobato, Joaquin; Sánchez Peral, Blas A; Durán Parejo, Pilar; Jiménez Jiménez, Luis M

    2013-03-15

    Pompe disease, or acid maltase deficiency, is a genetic muscle disorder caused by mutations in the gene encoding the acid alpha-glucosidase (GAA) enzyme, which is essential for the degradation of glycogen to glucose in lysosomes. The wide clinical variability is resulted from genetic heterogeneity, and many different mutations of the GAA gene have been reported. Some of these mutations are associated with specific phenotypes, such as the c. -32T>G (IVS1-13T>G) mutation seen in late-onset Pompe disease. We used a real-time PCR, after genomic DNA extraction isolated from DBS (dried blood spots) and PCR amplification. Our results successfully detected in controls and patients have been 100% concordant with sequencing results. This assay combines simple sample processing and rapid analysis and it allows to detect the patients with a milder form and slower progression of this disease with a high reliability. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs.

    PubMed

    Girelli Zubani, Giulia; Zivojnovic, Marija; De Smet, Annie; Albagli-Curiel, Olivier; Huetz, François; Weill, Jean-Claude; Reynaud, Claude-Agnès; Storck, Sébastien

    2017-04-03

    During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches is translated into the single-strand nick required for error-prone synthesis is an open question. One model proposed that UNG could cooperate with MMR by excising a second uracil in the vicinity of the U:G mismatch, but it failed to explain the low impact of UNG inactivation on A-T mutagenesis. In this study, we show that uracils generated in the G1 phase in B cells can generate equal proportions of A-T and G-C mutations, which suggests that UNG and MMR can operate within the same time frame during SHM. Furthermore, we show that Ung -/- Pms2 -/- mice display a 50% reduction in mutations at A-T base pairs and that most remaining mutations at A-T bases depend on two additional uracil glycosylases, thymine-DNA glycosylase and SMUG1. These results demonstrate that Pms2/Mlh1 and multiple uracil glycosylases act jointly, each one with a distinct strand bias, to enlarge the immunoglobulin gene mutation spectrum from G-C to A-T bases. © 2017 Girelli Zubani et al.

  13. Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs

    PubMed Central

    De Smet, Annie; Albagli-Curiel, Olivier; Huetz, François; Weill, Jean-Claude

    2017-01-01

    During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches is translated into the single-strand nick required for error-prone synthesis is an open question. One model proposed that UNG could cooperate with MMR by excising a second uracil in the vicinity of the U:G mismatch, but it failed to explain the low impact of UNG inactivation on A-T mutagenesis. In this study, we show that uracils generated in the G1 phase in B cells can generate equal proportions of A-T and G-C mutations, which suggests that UNG and MMR can operate within the same time frame during SHM. Furthermore, we show that Ung−/−Pms2−/− mice display a 50% reduction in mutations at A-T base pairs and that most remaining mutations at A-T bases depend on two additional uracil glycosylases, thymine-DNA glycosylase and SMUG1. These results demonstrate that Pms2/Mlh1 and multiple uracil glycosylases act jointly, each one with a distinct strand bias, to enlarge the immunoglobulin gene mutation spectrum from G-C to A-T bases. PMID:28283534

  14. Prenatal diagnosis for a Chinese family with a de novo DMD gene mutation

    PubMed Central

    Li, Tao; Zhang, Zhao-jing; Ma, Xin; Lv, Xue; Xiao, Hai; Guo, Qian-nan; Liu, Hong-yan; Wang, Hong-dan; Wu, Dong; Lou, Gui-yu; Wang, Xin; Zhang, Chao-yang; Liao, Shi-xiu

    2017-01-01

    Abstract Background: Patients with Duchenne muscular dystrophy (DMD) usually have severe and fatal symptoms. At present, there is no effective treatment for DMD, thus it is very important to avoid the birth of children with DMD by effective prenatal diagnosis. We identified a de novo DMD gene mutation in a Chinese family, and make a prenatal diagnosis. Methods: First, multiplex ligation-dependent probe amplification (MLPA) was applied to analyze DMD gene exon deletion/duplication in all family members. The coding sequences of 79 exons in DMD gene were analyzed by Sanger sequencing in the patient; and then according to DMD gene exon mutation in the patient, DMD gene sequencing was performed in the family members. On the basis of results above, the pathogenic mutation in DMD gene was identified. Results: MLPA showed no DMD gene exon deletion/duplication in all family members. Sanger sequencing revealed c.2767_2767delT [p.Ser923LeufsX26] mutation in DMD gene of the patient. Heterozygous deletion mutation (T/-) at this locus was observed in the pregnant woman and her mother and younger sister. The analyses of amniotic fluid samples indicated negative Y chromosome sex-determining gene, no DMD gene exon deletion/duplication, no mutations at c.2767 locus, and the inherited maternal X chromosome different from that of the patient. Conclusion: The pathogenic mutation in DMD gene, c.2767_2767delT [p.Ser923LeufsX26], identified in this family is a de novo mutation. On the basis of specific conditions, it is necessary to select suitable methods to make prenatal diagnosis more effective, accurate, and economic. PMID:29390271

  15. Mutational analysis in patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD): Identification of five mutations in the PKD1 gene.

    PubMed

    Abdelwahed, Mayssa; Hilbert, Pascale; Ahmed, Asma; Mahfoudh, Hichem; Bouomrani, Salem; Dey, Mouna; Hachicha, Jamil; Kamoun, Hassen; Keskes-Ammar, Leila; Belguith, Neïla

    2018-05-31

    Autosomal Dominant Polycystic Kidney Disease (ADPKD), the most frequent genetic disorder of the kidneys, is characterized by a typical presenting symptoms include cysts development in different organs and a non-cysts manifestations. ADPKD is caused by mutations in PKD1 or PKD2 genes. In this study, we aimed to search for molecular causative defects among PKD1 and PKD2 genes. Eighteen patients were diagnosed based on renal ultrasonography and renal/extra-renal manifestations. Then, Sanger sequencing was performed for PKD1 and PKD2 genes. Multiplex Ligation dependent Probe Amplification method (MLPA) methods was performed for both PKD genes. Mutational analysis of the PKD2 gene revealed the absence of variants and no deletions or duplications of both PKD genes were detected. But three novels mutations i.e. p.S463C exon 7; c. c.11156+2T>C IVS38 and c.8161-1G>A IVS22 and two previously reported c.1522T>C exon 7 and c.412C>T exon 4 mutations in the PKD1 gene were detected. Bioinformatics tools predicted that the novel variants have a pathogenic effects on splicing machinery, pre-mRNA secondary structure and stability and protein stability. Our results highlighted molecular features of Tunisian patients with ADPKD and revealed novel variations that can be utilized in clinical diagnosis and in the evaluation of living kidney donor. To the best of our knowledge, this is the first report of Autosomal Polycystic Kidney Disease in Tunisia. Copyright © 2017. Published by Elsevier B.V.

  16. Management of Gene Variants of Unknown Significance: Analysis Method and Risk Assessment of the VHL Mutation p.P81S (c.241C>T).

    PubMed

    Alosi, Daniela; Bisgaard, Marie Luise; Hemmingsen, Sophie Nowak; Krogh, Lotte Nylandsted; Mikkelsen, Hanne Birte; Binderup, Marie Louise Mølgaard

    2017-02-01

    Evaluation of the pathogenicity of a gene variant of unknown significance (VUS) is crucial for molecular diagnosis and genetic counseling, but can be challenging. This is especially so in phenotypically variable diseases, such as von Hippel-Lindau disease (vHL). vHL is caused by germline mutations in the VHL gene, which predispose to the development of multiple tumors such as central nervous system hemangioblastomas and renal cell carcinoma (RCC). We propose a method for the evaluation of VUS pathogenicity through our experience with the VHL missense mutation c.241C>T (p.P81S). 1) Clinical evaluation of known variant carriers: We evaluated a family of five VHL p.P81S carriers, as well as the clinical characteristics of all the p.P81S carriers reported in the literature; 2) Evaluation of tumor tissue via genetic analysis, histology, and immunohistochemistry (IHC); 3) Assessment of the variant's impact on protein structure and function, using multiple databases, in silico algorithms, and reports of functional studies. Only one family member had clinical signs of vHL with early-onset RCC. IHC analysis showed no VHL protein expressed in the tumor, consistent with biallelic VHL inactivation. The majority of in silico algorithms reported p.P81S as possibly pathogenic in relation to vHL or RCC, but there were discrepancies. Functional studies suggest that p.P81S impairs the VHL protein's function. The VHL p.P81S mutation is most likely a low-penetrant pathogenic variant predisposing to RCC development. We suggest the above-mentioned method for VUS evaluation with use of different methods, especially a variety of in silico methods and tumor tissue analysis.

  17. Mutations in the ADAR1 gene in Chinese families with dyschromatosis symmetrica hereditaria.

    PubMed

    Zhang, G L; Shi, H J; Shao, M H; Li, M; Mu, H J; Gu, Y; Du, X F; Xie, P

    2013-01-04

    We investigated 2 Chinese families with dyschromatosis symmetrica hereditaria (DSH) and search for mutations in the adenosine deaminase acting on RNA1 (ADAR1) gene in these 2 pedigrees. We performed a mutation analysis of the ADAR1 gene in 2 Chinese families with DSH and reviewed all articles published regarding ADAR1 mutations reported since 2003 by using PubMed. By direct sequencing, a 2-nucleotide AG deletion, 2099-2100delAG, was found in family 1, and a C→T mutation was identified at nucleotide 1420 that changed codon 474 from arginine to a translational termination codon in family 2. Two different pathogenic mutations were identified, c.2099-2100delAG and c.1420C>T, the former being a novel mutation, and the latter previously reported in 3 other families with DSH. To date, a total of 110 mutations in the ADAR1 gene have been reported, and 10 of them were recurrent; the mutations R474X, R1083C, R1096X, and R1155W might be the DSH-related hotspots.

  18. Novel mutations of endothelin-B receptor gene in Pakistani patients with Waardenburg syndrome.

    PubMed

    Jabeen, Raheela; Babar, Masroor Ellahi; Ahmad, Jamil; Awan, Ali Raza

    2012-01-01

    Mutations in EDNRB gene have been reported to cause Waardenburg-Shah syndrome (WS4) in humans. We investigated 17 patients with WS4 for identification of mutations in EDNRB gene using PCR and direct sequencing technique. Four genomic mutations were detected in four patients; a G to C transversion in codon 335 (S335C) in exon 5 and a transition of T to C in codon (S361L) in exon 5, a transition of A to G in codon 277 (L277L) in exon 4, a non coding transversion of T to A at -30 nucleotide position of exon 5. None of these mutations were found in controls. One of the patients harbored two novel mutations (S335C, S361L) in exon 5 and one in Intronic region (-30exon5 A>G). All of the mutations were homozygous and novel except the mutation observed in exon 4. In this study, we have identified 3 novel mutations in EDNRB gene associated with WS4 in Pakistani patients.

  19. [Analysis of SOX10 gene mutation in a family affected with Waardenburg syndrome type II].

    PubMed

    Zheng, Lei; Yan, Yousheng; Chen, Xue; Zhang, Chuan; Zhang, Qinghua; Feng, Xuan; Hao, Shen

    2018-02-10

    OBJECTIVE To detect potential mutation of SOX10 gene in a pedigree affected with Warrdenburg syndrome type II. METHODS Genomic DNA was extracted from peripheral blood samples of the proband and his family members. Exons and flanking sequences of MITF, PAX3, SOX10, SNAI2, END3 and ENDRB genes were analyzed by chip capturing and high throughput sequencing. Suspected mutations were verified with Sanger sequencing. RESULTS A c.127C>T (p.R43X) mutation of the SOX10 gene was detected in the proband, for which both parents showed a wild-type genotype. CONCLUSION The c.127C>T (p.R43X) mutation of SOX10 gene probably underlies the ocular symptoms and hearing loss of the proband.

  20. [Study of gene mutation and pathogenetic mechanism for a family with Waardenburg syndrome].

    PubMed

    Chen, Hongsheng; Liao, Xinbin; Liu, Yalan; He, Chufeng; Zhang, Hua; Jiang, Lu; Feng, Yong; Mei, Lingyun

    2017-08-10

    To explore the pathogenetic mechanism of a family affected with Waardenburg syndrome. Clinical data of the family was collected. Potential mutation of the MITF, SOX10 and SNAI2 genes were screened. Plasmids for wild type (WT) and mutant MITF proteins were constructed to determine their exogenous expression and subcellular distribution by Western blotting and immunofluorescence assay, respectively. A heterozygous c.763C>T (p.R255X) mutation was detected in exon 8 of the MITF gene in the proband and all other patients from the family. No pathological mutation of the SOX10 and SNAI2 genes was detected. The DNA sequences of plasmids of MITF wild and mutant MITF R255X were confirmed. Both proteins were detected with the expected size. WT MITF protein only localized in the nucleus, whereas R255X protein showed aberrant localization in the nucleus as well as the cytoplasm. The c.763C>T mutation of the MITF gene probably underlies the disease in this family. The mutation can affect the subcellular distribution of MITF proteins in vitro, which may shed light on the molecular mechanism of Waardenburg syndrome caused by mutations of the MITF gene.

  1. Novel compound heterozygous mutations in the GPR98 (USH2C) gene identified by whole exome sequencing in a Moroccan deaf family.

    PubMed

    Bousfiha, Amale; Bakhchane, Amina; Charoute, Hicham; Detsouli, Mustapha; Rouba, Hassan; Charif, Majida; Lenaers, Guy; Barakat, Abdelhamid

    2017-10-01

    In the present work, we identified two novel compound heterozygote mutations in the GPR98 (G protein-coupled receptor 98) gene causing Usher syndrome. Whole-exome sequencing was performed to study the genetic causes of Usher syndrome in a Moroccan family with three affected siblings. We identify two novel compound heterozygote mutations (c.1054C > A, c.16544delT) in the GPR98 gene in the three affected siblings carrying post-linguale bilateral moderate hearing loss with normal vestibular functions and before installing visual disturbances. This is the first time that mutations in the GPR98 gene are described in the Moroccan deaf patients.

  2. [Analysis of H63D mutation in hemochromatosis (HFE) gene in populations of central Eurasia].

    PubMed

    Khusainova, R I; Khusnutdinova, N N; Litvinov, S S; Khusnutdinova, E K

    2013-02-01

    An analysis of the frequency of H63D (c. 187C>G) mutations in the HFEgene in 19 populations from Central Eurasia demonstrated that the distribution of the mutation in the region of interest was not uniform and that there were the areas of H63D accumulation. The investigation of three polymorphic variants, c.340+4T>C (rs2071303, IVS2(+4)T>C), c.893-44T>C (rs1800708, IVS4(-44)T>C), and c.1007-47G>A (rs1572982, IVS5(-47)A>G), in the HFE gene in individuals homozygous for H63D mutations in the HFE gene revealed the linkage of H63D with three haplotypes, *CTA, *TG, and *TTA. These findings indicated the partial spread of the mutation in Central Eurasia from Western Europe, as well as the possible repeated appearance of the mutation on the territory on interest.

  3. Atypical juvenile presentation of GM2 gangliosidosis AB in a patient compound-heterozygote for c.259G > T and c.164C > T mutations in the GM2A gene.

    PubMed

    Martins, Carla; Brunel-Guitton, Catherine; Lortie, Anne; Gauvin, France; Morales, Carlos R; Mitchell, Grant A; Pshezhetsky, Alexey V

    2017-06-01

    G M2 -gangliosidosis, AB variant is an extremely rare autosomal recessive inherited disorder caused by mutations in the GM2A gene that encodes G M2 ganglioside activator protein (GM2AP). GM2AP is necessary for solubilisation of G M2 ganglioside in endolysosomes and its presentation to β-hexosaminidase A. Conversely GM2AP deficiency impairs lysosomal catabolism of G M2 ganglioside, leading to its storage in cells and tissues. We describe a 9-year-old child with an unusual juvenile clinical onset of G M2 -gangliosidosis AB. At the age of 3 years he presented with global developmental delay, progressive epilepsy, intellectual disability, axial hypertonia, spasticity, seizures and ataxia, but without the macular cherry-red spots typical for G M2 gangliosidosis. Brain MRI detected a rapid onset of diffuse atrophy, whereas whole exome sequencing showed that the patient is a compound heterozygote for two mutations in GM2A : a novel nonsense mutation, c.259G > T (p.E87X) and a missense mutation c.164C > T (p.P55L) that was recently identified in homozygosity in patients of a Saudi family with a progressive chorea-dementia syndrome. Western blot analysis showed an absence of GM2AP in cultured fibroblasts from the patient, suggesting that both mutations interfere with the synthesis and/or folding of the protein. Finally, impaired catabolism of G M2 ganglioside in the patient's fibroblasts was demonstrated by metabolic labeling with fluorescently labeled G M1 ganglioside and by immunohistochemistry with anti-G M2 and anti-G M3 antibodies. Our observation expands the molecular and clinical spectrum of molecular defects linked to G M2 -gangliosidosis and suggests novel diagnostic approach by whole exome sequencing and perhaps ganglioside analysis in cultured patient's cells.

  4. Mutations in HAMP and HJV genes and their impact on expression of clinical hemochromatosis in a cohort of 100 Spanish patients homozygous for the C282Y mutation of HFE gene.

    PubMed

    Altès, Albert; Bach, Vanessa; Ruiz, Angels; Esteve, Anna; Felez, Jordi; Remacha, Angel F; Sardà, M Pilar; Baiget, Montserrat

    2009-10-01

    Most hereditary hemochromatosis (HH) patients are homozygous for the C282Y mutation of the HFE gene. Nevertheless, penetrance of the disease is very variable. In some patients, penetrance can be mediated by concomitant mutations in other iron master genes. We evaluated the clinical impact of hepcidin (HAMP) and hemojuvelin mutations in a cohort of 100 Spanish patients homozygous for the C282Y mutation of the HFE gene. HAMP and hemojuvelin mutations were evaluated in all patients by bidirectional direct cycle sequencing. Phenotype-genotype interactions were evaluated. A heterozygous mutation of the HAMP gene (G71D) was found in only one out of 100 cases. Following, we performed a study of several members of that family, and we observed several members had a digenic inheritance of the C282Y mutation of the HFE gene and the G71D mutation of the HAMP gene. This mutation in the HAMP gene did not modify the phenotype of the individuals who were homozygous for the C282Y mutation. One other patient presented a new polymorphism in the hemojuvelin gene, without consequences in iron load or clinical course of the disease. In conclusion, HAMP and hemojuvelin mutations are rare among Spanish HH patients, and their impact in this population is not significant.

  5. Surfactant protein B deficiency and gene mutations for neonatal respiratory distress syndrome in China Han ethnic population

    PubMed Central

    Yin, Xiaojuan; Meng, Fanping; wang, Yan; Xie, Lu; Kong, Xiangyong; Feng, Zhichun

    2013-01-01

    Objective: To determine whether the SP-B deficiency and gene mutations in exon 4 is associated with neonatal RDS in China Han ethnic population. Methods: The study population consisted of 40 neonates with RDS and 40 neonates with other diseases as control in China Han ethnic population. We Compared SP-B expression in lung tissue and bronchoalveolar lavage fluid with immunoblotting, and analyzed mutations in the SP-B gene with polymerase chain reaction (PCR) and gene sequencing. Results: In RDS group, low mature Surfactant protein B was found in both lung tissue and bronchoalveolar lavage fluid in 8 neonates. In control group, only 4 neonates with low mature Surfactant protein B in both lung tissue and bronchoalveolar lavage fluid. In RDS group, 20 neonates were found to have mutations in exon 4, 12 homozygous mutations with C/C genotype and 8 heterozygous mutations with C/T genotype in surfactant protein B gene+1580 polymorphism. There were 8 cases mutations in control group, 1 in C/C and 7 in C/T genotype. The frequency of homozygotes with C/C genotype was 0.3 and frequency of heterozygotes with C/T genotype was 0.02 in RDS group. In control group, frequency of homozygotes with C/C genotype was 0.025 and frequency of heterozygote with C/T genotype was 0.175. Conclusion: Low mature Surfactant protein B is associated with the pathogenesis of neonatal respiratory distress syndrome (RDS) in China Han ethnic population. Mutations in exon 4 of the surfactant protein B gene demonstrate an association between homozygous mutations with C/C genotype in SP-B gene and neonatal RDS. PMID:23330012

  6. FANCA Gene Mutations with 8 Novel Molecular Changes in Indian Fanconi Anemia Patients.

    PubMed

    Solanki, Avani; Mohanty, Purvi; Shukla, Pallavi; Rao, Anita; Ghosh, Kanjaksha; Vundinti, Babu Rao

    2016-01-01

    Fanconi anemia (FA), a rare heterogeneous genetic disorder, is known to be associated with 19 genes and a spectrum of clinical features. We studied FANCA molecular changes in 34 unrelated and 2 siblings of Indian patients with FA and have identified 26 different molecular changes of FANCA gene, of which 8 were novel mutations (a small deletion c.2500delC, 4 non-sense mutations c.2182C>T, c.2630C>G, c.3677C>G, c.3189G>A; and 3 missense mutations; c.1273G>C, c.3679 G>C, and c.3992 T>C). Among these only 16 patients could be assigned FA-A complementation group, because we could not confirm single exon deletions detected by MLPA or cDNA amplification by secondary confirmation method and due to presence of heterozygous non-pathogenic variations or heterozygous pathogenic mutations. An effective molecular screening strategy should be developed for confirmation of these mutations and determining the breakpoints for single exon deletions.

  7. FANCA Gene Mutations with 8 Novel Molecular Changes in Indian Fanconi Anemia Patients

    PubMed Central

    Solanki, Avani; Mohanty, Purvi; Shukla, Pallavi; Rao, Anita; Ghosh, Kanjaksha; Vundinti, Babu Rao

    2016-01-01

    Fanconi anemia (FA), a rare heterogeneous genetic disorder, is known to be associated with 19 genes and a spectrum of clinical features. We studied FANCA molecular changes in 34 unrelated and 2 siblings of Indian patients with FA and have identified 26 different molecular changes of FANCA gene, of which 8 were novel mutations (a small deletion c.2500delC, 4 non-sense mutations c.2182C>T, c.2630C>G, c.3677C>G, c.3189G>A; and 3 missense mutations; c.1273G>C, c.3679 G>C, and c.3992 T>C). Among these only 16 patients could be assigned FA-A complementation group, because we could not confirm single exon deletions detected by MLPA or cDNA amplification by secondary confirmation method and due to presence of heterozygous non-pathogenic variations or heterozygous pathogenic mutations. An effective molecular screening strategy should be developed for confirmation of these mutations and determining the breakpoints for single exon deletions. PMID:26799702

  8. Two new mutations in the MTATP6 gene associated with Leigh syndrome.

    PubMed

    Moslemi, A-R; Darin, N; Tulinius, M; Oldfors, A; Holme, E

    2005-10-01

    In this study we have analyzed the mtDNA encoded ATPase 6 and 8 genes ( MTATP6 and MTATP8) in two children with Leigh syndrome (LS) and reduced Mg (2+) ATPase activity in muscle mitochondria. In patient 1, with a mild and reversible phenotype, mutational analysis revealed a heteroplasmic T --> C mutation at nt position 9185 (T9185C) in the MTATP6. The mutation resulted in substitution of a highly conserved leucine to proline at codon 220. The proportion of the mutation was > 97 % in the patient's blood and muscle and 85 % in blood of his asymptomatic mother. Patient 2, with severe clinical phenotype and death at 2 years of age, exhibited a novel heteroplasmic T9191C missense mutation in the MTATP6, which converted a highly conserved leucine to a proline at position 222 of the polypeptide. The proportion of the mutation was 90 % in fibroblasts and 94 % muscle tissue. This mutation was absent in the patient's parents and sister suggesting that the mutation was de novo. Our findings expand the spectrum of mutations causing LS and emphasize the role of MTATP6 gene mutations in pathogenesis of LS.

  9. A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells

    PubMed Central

    Bagley, Pamela J.; Selhub, Jacob

    1998-01-01

    A common mutation (C677T) in the gene encoding for methylenetetrahydrofolate reductase (MTHFR) (5-methyltetrahydrofolate:(acceptor) oxidoreductase, EC 1.7.99.5), a key regulatory enzyme in one-carbon metabolism, results in a thermolabile variant of the MTHFR enzyme with reduced activity in vitro. In the present study we used a chromatographic method for folate analysis to test the hypothesis that this mutation would be associated with altered distribution of red blood cell (RBC) folates. An alteration was found as manifested by the presence of formylated tetrahydrofolate polyglutamates in addition to methylated derivatives in the RBCs from homozygous mutant individuals. 5-Methyltetrahydrofolate polyglutamates were the only folate form found in RBCs from individuals with the wild-type genotype. Existence of formylated folates in RBCs only from individuals with the thermolabile MTHFR is consistent with the hypothesis that there is in vivo impairment in the activity of the thermolabile variant of MTHFR and that this impairment results in an altered distribution of RBC folates. PMID:9789068

  10. Phenotypic Variation in Patients with Homozygous c.1678G>T Mutation in EVC Gene: Report of Two Mexican Families with Ellis-van Creveld Syndrome

    PubMed Central

    Ibarra-Ramirez, Marisol; Campos-Acevedo, Luis Daniel; Lugo-Trampe, Jose; Martínez-Garza, Laura E.; Martinez-Glez, Víctor; Valencia-Benitez, María; Lapunzina, Pablo; Ruiz-Peréz, Víctor

    2017-01-01

    Case series Patient: — Final Diagnosis: Ellis van Creveld syndrome Symptoms: Conical teeth • polydactyly • short stature Medication: — Clinical Procedure: — Specialty: Pediatrics and Neonatology Objective: Rare disease Background: Ellis-van Creveld syndrome is an autosomal recessive chondro-ectodermal dysplasia characterized by disproportionate short stature, limb shortening, narrow chest, postaxial polydactyly and dysplastic nails and teeth. In addition, 60% of cases present congenital heart defects. Ellis-van Creveld syndrome is predominantly caused by mutations in the EVC or EVC2 (4p16) genes, with only a few cases caused by mutations in WDR35. Case Report: Here, we report on two Mexican families with patients diagnosed with Ellis-van Creveld syndrome. Family 1 includes four patients: three females of 15, 18, and 23 years of age and a 7-year old male. Family 2 has only one affected newborn male. All patients exhibited multiple features including hypodontia, dysplastic teeth, extra frenula, mild short stature, distal limb shortening, postaxial polydactyly of hands and feet, nail dystrophy, and knee joint abnormalities. Only two patients had an atrial septal defect. In all cases, molecular analysis by Sanger sequencing identified the same homozygous mutation in exon 12 of EVC, c.1678G>T, which leads to a premature stop codon. Conclusions: The mutation c.1678G>T has been previously reported in another Mexican patient and it appears to be a recurrent mutation in Mexico which could represent a founder mutation. The large number of patients in this case allows the clinical variability and spectrum of manifestations present in individuals with Ellis-van Creveld syndrome even if they carry the same homozygous mutation in a same family. PMID:29229899

  11. [Analysis on mutation of S gene and P gene of hepatitis B virus in two counties of Sichuan Province].

    PubMed

    Tong, Wen-Bin; He, Ji-Lan; Sun, Li

    2009-02-01

    To analyze HBV S gene/P gene mutation in 2 counties (districts) of Sichuan province. HBV DNA were extracted from sera positive both for HBsAg and HBeAg. After PCR and nucleotide sequencing, nucleotide/amino acid mutation in S and P gene were compared and analyzed. Of 47 serum samples from patients with chronic HBV infection, amino acid mutation in 'a' determinant occurred in 12 samples (25.53%,12/47), correlating with T126A, I126T/S, P127T, T131N, M133L, M133T and T140I; high proportion of mutation clustered in first loop of 'a' determinant (92.86%,13/14), rtV207I mutation in C domain of reverse transcription occured in one sample. Naturally occurring mutation in 'a' determinant clustered predominantly in the first loop and usually associated with altered antigenicity, posing a potential threat to successfully vaccinated individuals; Lamivudine-resistant mutant might occur in patient even without nucleotide analogue treatment.

  12. Frequency of the S65C mutation in the hemochromatosis gene in Brazil.

    PubMed

    Oliveira, V C; Caxito, F A; Gomes, K B; Castro, A M; Pardini, V C; Ferreira, A C S

    2009-07-14

    Development of hereditary hemochromatosis is associated with the C282Y, H63D or S65C mutations in the hemochromatosis gene. Though there is extensive knowledge about the former two, there is little information on the mechanism of action and the allelic frequency of the S65C mutation. We examined the prevalence of the S65C mutation of the hemochromatosis gene in Brazilians with clinical suspicion of hereditary hemochromatosis. Genotyping for this mutation was carried out in 633 individuals with clinical suspicion of hereditary hemochromatosis, using the polymerase chain reaction, followed by enzymatic digestion. The sample comprised 77.1% men and 22.9% women, giving a ratio of approximately 3:1; the mean age was 48.8 +/- 13.8 years. More than half (57.3%) of the individuals in the sample were 41 to 60 years old. The frequency of heterozygotes for this mutation was 0.016; no homozygous mutant patients were found. This is the first analysis of the S65C mutation in individuals suspected of having hereditary hemochromatosis in Brazil.

  13. A variety of gene polymorphisms associated with idiopathic granulomatous mastitis

    PubMed Central

    Destek, Sebahattin; Gul, Vahit Onur; Ahioglu, Serkan

    2016-01-01

    Idiopathic granulomatous mastitis (IGM) is a rare and chronic inflammatory disorder. IGM mimics breast cancer regarding its clinical and radiological features. Etiology of IGM remains unclarified. Our patient was 37-year-old and 14 weeks pregnant. There was pain, redness and swelling in the right breast. The mass suggestive of malignancy was detected in sonography. Serum CA 125 and CA 15-3 levels were high. Genetic analysis was performed for the etiology. methylenetetrahydrofolate reductase (MTHFR) C 677 TT, β-fibrinogen-455 G>A, plasminogen activator inhibitor (PAI)-1 5 G/5 G, angiotensin-converting enzyme (ACE) I/D mutation was found. IGM was diagnosed by cor biopsy. An association was also reported between breast cancer and mutations in MTHFR-C 677 T, PAI-1, ACE genes. Genetic polymorphisms may involve in the development of IGM as it was seen in our case. Further studies should be conducted to better clarify this plausible association. PMID:27619324

  14. Fundamental Role of Methylenetetrahydrofolate Reductase 677 C → T Genotype and Flavin Compounds in Biochemical Phenotypes for Schizophrenia and Schizoaffective Psychosis

    PubMed Central

    Fryar-Williams, Stephanie

    2016-01-01

    The Mental Health Biomarker Project (2010–2016) explored variables for psychosis in schizophrenia and schizoaffective disorder. Blood samples from 67, highly characterized symptomatic cases and 67 gender and age matched control participants were analyzed for methyl tetrahydrofolate reductase (MTHFR) 677C → T gene variants and for vitamin B6, B12 and D, folate, unbound copper, zinc cofactors for enzymes in the methylation cycle, and related catecholamine pathways. Urine samples were analyzed for indole-catecholamines, their metabolites, and oxidative-stress marker, hydroxylpyrolline-2-one (HPL). Rating scales were Brief Psychiatric Rating Scale, Positive and Negative Syndrome Scale, Global Assessment of Function scale, Clinical Global Impression (CGI) score, and Social and Occupational Functioning Assessment Scale (SOFAS). Analysis used Spearman’s correlates, receiver operating characteristics and structural equation modeling (SEM). The correlative pattern of variables in the overall participant sample strongly implicated monoamine oxidase (MAO) enzyme inactivity so the significant role of MAO’s cofactor flavin adenine nucleotide and its precursor flavin adenine mononucleotide (FMN) within the biochemical pathways was investigated and confirmed as 71% on SEM of the total sample. Splitting the data sets for MTHFR 677C → T polymorphism variants coding for the MTHFR enzyme, discovered that biochemistry variables relating to the wild-type enzyme differed markedly in pattern from those coded by the homozygous variant and that the hereozygous-variant pattern resembled the wild-type-coded pattern. The MTHFR 677C → T-wild and -heterozygous gene variants have a pattern of depleted vitamin cofactors characteristic of flavin insufficiency with under-methylation and severe oxidative stress. The second homozygous MTHFR 677TT pattern related to elevated copper:zinc ratio and a vitamin pattern related to flavin sufficiency and risk of over-methylation. The

  15. Fundamental Role of Methylenetetrahydrofolate Reductase 677 C → T Genotype and Flavin Compounds in Biochemical Phenotypes for Schizophrenia and Schizoaffective Psychosis.

    PubMed

    Fryar-Williams, Stephanie

    2016-01-01

    The Mental Health Biomarker Project (2010-2016) explored variables for psychosis in schizophrenia and schizoaffective disorder. Blood samples from 67, highly characterized symptomatic cases and 67 gender and age matched control participants were analyzed for methyl tetrahydrofolate reductase (MTHFR) 677C → T gene variants and for vitamin B6, B12 and D, folate, unbound copper, zinc cofactors for enzymes in the methylation cycle, and related catecholamine pathways. Urine samples were analyzed for indole-catecholamines, their metabolites, and oxidative-stress marker, hydroxylpyrolline-2-one (HPL). Rating scales were Brief Psychiatric Rating Scale, Positive and Negative Syndrome Scale, Global Assessment of Function scale, Clinical Global Impression (CGI) score, and Social and Occupational Functioning Assessment Scale (SOFAS). Analysis used Spearman's correlates, receiver operating characteristics and structural equation modeling (SEM). The correlative pattern of variables in the overall participant sample strongly implicated monoamine oxidase (MAO) enzyme inactivity so the significant role of MAO's cofactor flavin adenine nucleotide and its precursor flavin adenine mononucleotide (FMN) within the biochemical pathways was investigated and confirmed as 71% on SEM of the total sample. Splitting the data sets for MTHFR 677C → T polymorphism variants coding for the MTHFR enzyme, discovered that biochemistry variables relating to the wild-type enzyme differed markedly in pattern from those coded by the homozygous variant and that the hereozygous-variant pattern resembled the wild-type-coded pattern. The MTHFR 677C → T-wild and -heterozygous gene variants have a pattern of depleted vitamin cofactors characteristic of flavin insufficiency with under-methylation and severe oxidative stress. The second homozygous MTHFR 677TT pattern related to elevated copper:zinc ratio and a vitamin pattern related to flavin sufficiency and risk of over-methylation. The two

  16. Chronic Granulomatous Disease Due to Neutrophil Cytosolic Factor (NCF2) Gene Mutations in Three Unrelated Families.

    PubMed

    Vignesh, Pandiarajan; Rawat, Amit; Kumar, Ankur; Suri, Deepti; Gupta, Anju; Lau, Yu L; Chan, Koon W; Singh, Surjit

    2017-02-01

    Chronic granulomatous disease (CGD) is an inheritable and genetically heterogeneous disease resulting from mutations in different subcomponents of the NADPH oxidase system. Mutations in the NCF2 gene account for <5% of all cases of CGD. We analyzed the clinical and laboratory findings of CGD with mutations in the NCF2 gene from amongst our cohort of CGD patients. A homozygous mutation (c.835_836delAC, p.T279fsX294), a deletion in NCF2 gene was found in two cases. In the third case, two heterozygous mutations were detected, IVS13-2A>T on one allele and c.1099C>T (p.) on the other allele. The mother of this child was a carrier for the IVS13-2A>T mutation. All three cases had colitis, and it was the initial symptom in two patients. One of the patients also developed a lung abscess due to Nocardia cyriacigeorgica.

  17. The m.3291T>C mt-tRNALeu(UUR) mutation is definitely pathogenic and causes multisystem mitochondrial disease

    PubMed Central

    Yarham, John W.; Blakely, Emma L.; Alston, Charlotte L.; Roberts, Mark E.; Ealing, John; Pal, Piyali; Turnbull, Douglass M.; McFarland, Robert; Taylor, Robert W.

    2013-01-01

    Mitochondrial tRNA point mutations are important causes of human disease, and have been associated with a diverse range of clinical phenotypes. Definitively proving the pathogenicity of any given mt-tRNA mutation requires combined molecular, genetic and functional studies. Subsequent evaluation of the mutation using a pathogenicity scoring system is often very helpful in concluding whether or not the mutation is causing disease. Despite several independent reports linking the m.3291T>C mutation to disease in humans, albeit in association with several different phenotypes, its pathogenicity remains controversial. A lack of conclusive functional evidence and an over-emphasis on the poor evolutionary conservation of the affected nucleotide have contributed to this controversy. Here we describe an adult patient who presented with deafness and lipomas and evidence of mitochondrial abnormalities in his muscle biopsy, who harbours the m.3291T > C mutation, providing conclusive evidence of pathogenicity through analysis of mutation segregation with cytochrome c oxidase (COX) deficiency in single muscle fibres, underlining the importance of performing functional studies when assessing pathogenicity. PMID:23273904

  18. Passenger mutations and aberrant gene expression in congenic tissue plasminogen activator-deficient mouse strains.

    PubMed

    Szabo, R; Samson, A L; Lawrence, D A; Medcalf, R L; Bugge, T H

    2016-08-01

    Essentials C57BL/6J-tissue plasminogen activator (tPA)-deficient mice are widely used to study tPA function. Congenic C57BL/6J-tPA-deficient mice harbor large 129-derived chromosomal segments. The 129-derived chromosomal segments contain gene mutations that may confound data interpretation. Passenger mutation-free isogenic tPA-deficient mice were generated for study of tPA function. Background The ability to generate defined null mutations in mice revolutionized the analysis of gene function in mammals. However, gene-deficient mice generated by using 129-derived embryonic stem cells may carry large segments of 129 DNA, even when extensively backcrossed to reference strains, such as C57BL/6J, and this may confound interpretation of experiments performed in these mice. Tissue plasminogen activator (tPA), encoded by the PLAT gene, is a fibrinolytic serine protease that is widely expressed in the brain. A number of neurological abnormalities have been reported in tPA-deficient mice. Objectives To study genetic contamination of tPA-deficient mice. Materials and methods Whole genome expression array analysis, RNAseq expression profiling, low- and high-density single nucleotide polymorphism (SNP) analysis, bioinformatics and genome editing were used to analyze gene expression in tPA-deficient mouse brains. Results and conclusions Genes differentially expressed in the brain of Plat(-/-) mice from two independent colonies highly backcrossed onto the C57BL/6J strain clustered near Plat on chromosome 8. SNP analysis attributed this anomaly to about 20 Mbp of DNA flanking Plat being of 129 origin in both strains. Bioinformatic analysis of these 129-derived chromosomal segments identified a significant number of mutations in genes co-segregating with the targeted Plat allele, including several potential null mutations. Using zinc finger nuclease technology, we generated novel 'passenger mutation'-free isogenic C57BL/6J-Plat(-/-) and FVB/NJ-Plat(-/-) mouse strains by introducing

  19. A new nonsense mutation in the NF1 gene with neurofibromatosis-Noonan syndrome phenotype.

    PubMed

    Yimenicioğlu, Sevgi; Yakut, Ayten; Karaer, Kadri; Zenker, Martin; Ekici, Arzu; Carman, Kürşat Bora

    2012-12-01

    Neurofibromatosis-Noonan syndrome is a rare autosomal dominant disorder which combines neurofibromatosis type 1 (NF1) features with Noonan syndrome. NF1 gene mutations are reported in the majority of these patients. Sequence analysis of the established genes for Noonan syndrome revealed no mutation; a heterozygous NF1 point mutation c.7549C>T in exon 51, creating a premature stop codon (p.R2517X), had been demonstrated. Neurofibromatosis-Noonan syndrome recently has been considered a subtype of NF1 and caused by different NF1 mutations. We report the case of a 14-year-old boy with neurofibromatosis type 1 with Noonan-like features, who complained of headache with triventricular hydrocephaly and a heterozygous NF1 point mutation c.7549C>T in exon 51.

  20. Rates of Spontaneous Mutation in Bacteriophage T4 Are Independent of Host Fidelity Determinants

    PubMed Central

    Santos, M. E.; Drake, J. W.

    1994-01-01

    Bacteriophage T4 encodes most of the genes whose products are required for its DNA metabolism, and host (Escherichia coli) genes can only infrequently complement mutationally inactivated T4 genes. We screened the following host mutator mutations for effects on spontaneous mutation rates in T4: mutT (destruction of aberrant dGTPs), polA, polB and polC (DNA polymerases), dnaQ (exonucleolytic proofreading), mutH, mutS, mutL and uvrD (methyl-directed DNA mismatch repair), mutM and mutY (excision repair of oxygen-damaged DNA), mutA (function unknown), and topB and osmZ (affecting DNA topology). None increased T4 spontaneous mutation rates within a resolving power of about twofold (nor did optA, which is not a mutator but overexpresses a host dGTPase). Previous screens in T4 have revealed strong mutator mutations only in the gene encoding the viral DNA polymerase and proofreading 3'-exonuclease, plus weak mutators in several polymerase accessory proteins or determinants of dNTP pool sizes. T4 maintains a spontaneous mutation rate per base pair about 30-fold greater than that of its host. Thus, the joint high fidelity of insertion by T4 DNA polymerase and proofreading by its associated 3'-exonuclease appear to determine the T4 spontaneous mutation rate, whereas the host requires numerous additional systems to achieve high replication fidelity. PMID:7851754

  1. Leber's hereditary optic neuropathy is associated with the mitochondrial ND6 T14484C mutation in three Chinese families

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Yanhong; Wei Qiping; Zhou Xiangtian

    2006-08-18

    We report here the clinical, genetic, and molecular characterization of three Chinese families with maternally transmitted Leber's hereditary optic neuropathy (LHON). Clinical and genetic evaluations revealed the variable severity and age-of-onset in visual impairment in these families. In the affected matrilineal relatives, the loss of central vision is bilateral, the fellow eye becoming affected either simultaneously (45%) or sequentially (55%). The penetrances of vision loss in these pedigrees were 27%, 50%, and 60%, respectively. The age-at-onset of vision loss in these families was 14, 19, and 24 years, respectively. Furthermore, the ratios between affected male and female matrilineal relatives weremore » 1:1, 1:1.2, and 1:2, respectively. Mutational analysis of mitochondrial DNA revealed the presence of homoplasmic ND6 T14484C mutation, which has been associated with LHON. The incomplete penetrance and phenotypic variability implicate the involvement of nuclear modifier gene(s), environmental factor(s) or mitochondrial haplotype(s) in the phenotypic expression of the LHON-associated T14484C mutation in these Chinese pedigrees.« less

  2. Four Novel p.N385K, p.V36A, c.1033–1034insT and c.1417–1418delCT Mutations in the Sphingomyelin Phosphodiesterase 1 (SMPD1) Gene in Patients with Types A and B Niemann-Pick Disease (NPD)

    PubMed Central

    Manshadi, Masoumeh Dehghan; Kamalidehghan, Behnam; Keshavarzi, Fatemeh; Aryani, Omid; Dadgar, Sepideh; Arastehkani, Ahoora; Tondar, Mahdi; Ahmadipour, Fatemeh; Meng, Goh Yong; Houshmand, Massoud

    2015-01-01

    Background: Types A and B Niemann-Pick disease (NPD) are autosomal-recessive lysosomal storage disorders caused by the deficient activity of acid sphingomyelinase due to mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene. Methods: In order to determine the prevalence and distribution of SMPD1 gene mutations, the genomic DNA of 15 unrelated Iranian patients with types A and B NPD was examined using PCR, DNA sequencing and bioinformatics analysis. Results: Of 8 patients with the p.G508R mutation, 5 patients were homozygous, while the other 3 were heterozygous. One patient was heterozygous for both the p.N385K and p.G508R mutations. Another patient was heterozygous for both the p.A487V and p.G508R mutations. Two patients (one homozygous and one heterozygous) showed the p.V36A mutation. One patient was homozygous for the c.1033–1034insT mutation. One patient was homozygous for the c.573delT mutation, and 1 patient was homozygous for the c.1417–1418delCT mutation. Additionally, bioinformatics analysis indicated that two new p.V36A and p.N385K mutations decreased the acid sphingomyelinase (ASM) protein stability, which might be evidence to suggest the pathogenicity of these mutations. Conclusion: with detection of these new mutations, the genotypic spectrum of types A and B NPD is extended, facilitating the definition of disease-related mutations. However, more research is essential to confirm the pathogenic effect of these mutations. PMID:25811928

  3. HFE gene C282Y, H63D and S65C mutations frequency in the Transylvania region, Romania.

    PubMed

    Trifa, Adrian P; Popp, Radu A; Militaru, Mariela S; Farcaş, Marius F; Crişan, Tania O; Gana, Ionuţ; Cucuianu, Andrei; Pop, Ioan V

    2012-06-01

    HFE-associated haemochromatosis is one of the most frequent autosomal recessive disorders in the Caucasian population. Although most of the cases are homozygous individuals for the C282Y mutation, another two mutations, H63D and S65C, have been reported to be associated with milder forms of the disease. This study was a first attempt to evaluate the distribution of these HFE gene mutations in the Transylvania region. Two-hundred and twenty-five healthy, unrelated volunteers originating from the Transylvania region, Romania, were screened for the HFE gene C282Y, H63D and S65C mutations, using molecular genetics assays (Polymerase Chain Reaction-Restriction Fragments Length Polymorphism). For the C282Y mutation, 7 heterozygotes (3.1%) were found, but no homozygous individual. In the case of the H63D mutation, 40 heterozygotes (17.8%) and 4 homozygotes (1.75%) for the mutant allele were evidenced. We found a compound heterozygous genotype (C282Y/H63D) in one individual (0.45%). Thus, the allele frequencies of the C282Y and H63D were 1.75% and 10.9%, respectively. Three individuals (1.3%) were found to harbour the S65C mutation in a heterozygous state, but none in a homozygous state: the allele frequency of the mutant allele was 0.75%. The distribution of the HFE gene C282Y, H63D and S65C mutations found in our group matches the tendencies observed in other European countries: a decreasing gradient from Northern to Southern Europe for the C282Y mutation; high frequency for the H63D mutation, and low frequency for the S65C mutation in most of the countries.

  4. Severe hypertriglyceridemia due to two novel loss-of-function lipoprotein lipase gene mutations (C310R/E396V) in a Chinese family associated with recurrent acute pancreatitis.

    PubMed

    Lun, Yu; Sun, Xiaofang; Wang, Ping; Chi, Jingwei; Hou, Xu; Wang, Yangang

    2017-07-18

    Lipoprotein lipase (LPL) is widely expressed in skeletal muscles, cardiac muscles as well as adipose tissue and involved in the catabolism of triglyceride. Herein we have systematically characterized two novel loss-of-function mutations in LPL from a Chinese family in which afflicted members were manifested by severe hypertriglyceridemia and recurrent pancreatitis. DNA sequencing revealed that the proband was a heterozygote carrying a novel c.T928C (p.C310R) mutation in exon 6 of the LPL gene. Another member of the family was detected to be a compound heterozygote who along with the c.T928C mutation also carried a novel missense mutation c.A1187T (p.E396V) in exon 8 of the LPL gene. Furthermore, COS-1 cells were transfected with lentiviruses containing the mutant LPL genes. While C310R markedly reduced the overall LPL protein level, COS-1 cells carrying E396V or double mutations contained similar overall LPL protein levels to the wild-type. The specific activity of the LPL mutants remained at comparable magnitude to the wild-type. However, few LPL were detected in the culture medium for the mutants, suggesting that both mutations caused aberrant triglyceride catabolism. More specifically, E396V and double mutations dampened the transport of LPL to the cell surface, while for the C310R mutation, reducing LPL protein level might be involved. By characterizing these two novel LPL mutations, this study has expanded our understanding on the pathogenesis of familial hypertriglyceridemia (FHTG).

  5. Hereditary Angioedema Nationwide Study in Slovenia Reveals Four Novel Mutations in SERPING1 Gene

    PubMed Central

    Rijavec, Matija; Korošec, Peter; Šilar, Mira; Zidarn, Mihaela; Miljković, Jovan; Košnik, Mitja

    2013-01-01

    Hereditary angioedema (HAE) is a rare autosomal dominant disease characterized by swelling of the face, lips, tongue, larynx, genitalia, or extremities, with abdominal pain caused by intra-abdominal edema. HAE is caused by mutations affecting the C1 inhibitor gene, SERPING1, resulting in low levels of C1 inhibitor (Type I HAE) or normal levels of ineffective C1 inhibitor (Type II HAE). A nationwide survey identified nine unrelated families with HAE in Slovenia, among whom 17 individuals from eight families were recruited for genetic analyses. A diagnosis of HAE was established in the presence of clinical and laboratory criteria (low C1 inhibitor antigenic levels and/or function), followed up by a positive family history. Genetic studies were carried out using PCR and sequencing to detect SERPING1 mutations in promoter, noncoding exon 1, the 7 coding exons, and exon-intron boundaries. Multiplex ligation-dependent probe amplification was performed in order to search for large deletions/duplications in SERPING1 gene. A mutation responsible for HAE was identified in patients from seven families with the disease. In HAE type I families, one previously reported substitution (Gln67Stop, c.265C>T) and four novel mutations were identified. The new mutations included two missense substitutions, Ser128Phe (c.449C>T), and Glu429Lys (c.1351G>A), together with two frameshift mutations, indel (c.49delGinsTT) and deletion (c.593_594delCT). Both families with HAE type II harbored the two well-known substitutions affecting the arginyl residue at the reactive center in exon 8, Arg444Cys (c.1396C>T) and Arg444His (c.1397G>A), respectively. In one patient only the homozygous variant g.566T>C (c.-21T>C) was identified. Our study identified four novel mutations in the Slovenian HAE population, highlighting the heterogeneity of mutations in the SERPING1 gene causing C1 inhibitor deficiency and HAE. In a single patient with HAE a homozygous variant g.566T>C (c.-21T>C) might be responsible

  6. Hereditary angioedema nationwide study in Slovenia reveals four novel mutations in SERPING1 gene.

    PubMed

    Rijavec, Matija; Korošec, Peter; Šilar, Mira; Zidarn, Mihaela; Miljković, Jovan; Košnik, Mitja

    2013-01-01

    Hereditary angioedema (HAE) is a rare autosomal dominant disease characterized by swelling of the face, lips, tongue, larynx, genitalia, or extremities, with abdominal pain caused by intra-abdominal edema. HAE is caused by mutations affecting the C1 inhibitor gene, SERPING1, resulting in low levels of C1 inhibitor (Type I HAE) or normal levels of ineffective C1 inhibitor (Type II HAE). A nationwide survey identified nine unrelated families with HAE in Slovenia, among whom 17 individuals from eight families were recruited for genetic analyses. A diagnosis of HAE was established in the presence of clinical and laboratory criteria (low C1 inhibitor antigenic levels and/or function), followed up by a positive family history. Genetic studies were carried out using PCR and sequencing to detect SERPING1 mutations in promoter, noncoding exon 1, the 7 coding exons, and exon-intron boundaries. Multiplex ligation-dependent probe amplification was performed in order to search for large deletions/duplications in SERPING1 gene. A mutation responsible for HAE was identified in patients from seven families with the disease. In HAE type I families, one previously reported substitution (Gln67Stop, c.265C>T) and four novel mutations were identified. The new mutations included two missense substitutions, Ser128Phe (c.449C>T), and Glu429Lys (c.1351G>A), together with two frameshift mutations, indel (c.49delGinsTT) and deletion (c.593_594delCT). Both families with HAE type II harbored the two well-known substitutions affecting the arginyl residue at the reactive center in exon 8, Arg444Cys (c.1396C>T) and Arg444His (c.1397G>A), respectively. In one patient only the homozygous variant g.566T>C (c.-21T>C) was identified. Our study identified four novel mutations in the Slovenian HAE population, highlighting the heterogeneity of mutations in the SERPING1 gene causing C1 inhibitor deficiency and HAE. In a single patient with HAE a homozygous variant g.566T>C (c.-21T>C) might be responsible

  7. Mutation analysis of 12 genes in Chinese families with congenital cataracts

    PubMed Central

    Sun, Wenmin; Xiao, Xueshan; Li, Shiqiang; Guo, Xiangming

    2011-01-01

    Purpose To identify mutations in 12 genes in Chinese families with congenital cataracts. Methods Twenty five families with congenital cataracts involved in this study. The coding exons and adjacent intronic regions of 12 genes were analyzed by cycle sequencing, including the alpha A crystallin (CRYAA), alpha B crystallin (CRYAB), beta A1 crystallin (CRYBA1), beta A4 crystallin (CRYBA4), beta B1 crystallin (CRYBB1), beta B2 crystallin (CRYBB2), beta B3 crystallin (CRYBB3), gamma C crystallin (CRYGC), gamma D crystallin (CRYGD), gamma S crystallin (CRYGS), alpha 3 gap junction protein (GJA3), and alpha 8 gap junction protein (GJA8) genes. Novel variants were further evaluated in 96 normal controls. Results Nine mutations were identified in 10 of the 25 families (40%), including 5 novel (c.350_352delGCT in CRYAA, c.205C>T in CRYAB, c.106G>C in CRYGD, c.77A>G in CRYGS, c.1143_1165del23 in GJA3) and 4 known (c.292G>A in CRYAA; c.215+1G>A and c.272_274delGAG in CRYBA1, and c.176C>T in GJA3). All novel mutations were predicted to be pathogenic and were not present in 96 controls. Conclusions Mutations in the 12 genes encoding crystallins and connexins were responsible for 40% Chinese families with congenital cataracts. Our results enriched our knowledge on the molecular basis of congenital cataracts in Chinese population. PMID:21866213

  8. Glucokinase gene mutations (MODY 2) in Asian Indians.

    PubMed

    Kanthimathi, Sekar; Jahnavi, Suresh; Balamurugan, Kandasamy; Ranjani, Harish; Sonya, Jagadesan; Goswami, Soumik; Chowdhury, Subhankar; Mohan, Viswanathan; Radha, Venkatesan

    2014-03-01

    Heterozygous inactivating mutations in the glucokinase (GCK) gene cause a hyperglycemic condition termed maturity-onset diabetes of the young (MODY) 2 or GCK-MODY. This is characterized by mild, stable, usually asymptomatic, fasting hyperglycemia that rarely requires pharmacological intervention. The aim of the present study was to screen for GCK gene mutations in Asian Indian subjects with mild hyperglycemia. Of the 1,517 children and adolescents of the population-based ORANGE study in Chennai, India, 49 were found to have hyperglycemia. These children along with the six patients referred to our center with mild hyperglycemia were screened for MODY 2 mutations. The GCK gene was bidirectionally sequenced using BigDye(®) Terminator v3.1 (Applied Biosystems, Foster City, CA) chemistry. In silico predictions of the pathogenicity were carried out using the online tools SIFT, Polyphen-2, and I-Mutant 2.0 software programs. Direct sequencing of the GCK gene in the patients referred to our Centre revealed one novel mutation, Thr206Ala (c.616A>G), in exon 6 and one previously described mutation, Met251Thr (c.752T>C), in exon 7. In silico analysis predicted the novel mutation to be pathogenic. The highly conserved nature and critical location of the residue Thr206 along with the clinical course suggests that the Thr206Ala is a MODY 2 mutation. However, we did not find any MODY 2 mutations in the 49 children selected from the population-based study. Hence prevalence of GCK mutations in Chennai is <1:1,517. This is the first study of MODY 2 mutations from India and confirms the importance of considering GCK gene mutation screening in patients with mild early-onset hyperglycemia who are negative for β-cell antibodies.

  9. Are the methylenetetrahydrofolate reductase 1298 and 677 gene polymorphisms related to optic glioma and hamartoma risk in neurofibromatosis type 1 patients?

    PubMed

    Tanyıldız, Hikmet Gülşah; Yeşil, Şule; Bozkurt, Ceyhun; Çandır, Mehmet Onur; Akpınar-Tekgündüz, Sibel; Toprak, Şule; Yüksel, Deniz; Şahin, Gürses

    2016-01-01

    The methylenetetrahydrofolate reductase (MTHFR) gene plays a key role in carcinogenesis through its effects on DNA synthesis and methylation and also has a significant role in the etiology of many disorders, such as diabetes, migraine, and cardiovascular disease. Neurofibromatoses (NF) are autosomal dominant inherited diseases that can affect tissues such as bone and skin and predispose individuals to tumor development in various parts of the nervous system or body. Optic nerve glioma and brain tumors are common in children with NF, and leukemia and lymphoma incidence is also higher than normal. We therefore aimed to investigate the possible relationship between the MTHFR gene polymorphism and accompanying tumors such as neurofibroma, hamartoma, and optic glioma in children with NF1 found to have the MTHFR 677 and MTHFR 1298 gene polymorphism in this study. We included 55 pediatric patients diagnosed with NF1 between 2005 and 2014 in the study group. The control group included 44 healthy subjects without acute or chronic disease findings. A significant relationship was found between the MTHFR A1298C polymorphism and the incidence of optic glioma (p=0.014) (AA vs. AC: OR 11, 95% CI 1.27-95.17; AA vs. CC: OR 7.33, 95% CI 0.35-150.70). We also found a significant relationship between the MTHFR C1298C polymorphism and the incidence of hamartoma (p=0.019) (AA vs. AC: OR 2.12, 95% CI 0.662-6.809; p=0.203). Epilepsy incidence was high in subjects with MTHFR C677C. The MTHFR A1298C, C1298C, and C677C gene polymorphisms can be associated with a higher optic glioma, hamartoma, and epilepsy incidence, respectively, in patients diagnosed with neurofibromatosis type 1.

  10. Ocular phenotypes associated with two mutations (R121W, C126X) in the Norrie disease gene.

    PubMed

    Kellner, U; Fuchs, S; Bornfeld, N; Foerster, M H; Gal, A

    1996-06-01

    To describe the ocular phenotypes associated with 2 mutations in the Norrie disease gene including a manifesting carrier. Ophthalmological examinations were performed in 2 affected males and one manifesting carrier. Genomic DNA was analyzed by direct sequencing of the Norrie disease gene. Family I: A 29-year-old male had the right eye enucleated at the age of 3 years. His left eye showed severe temporal dragging of the retina and central scars. Visual acuity was 20/300. DNA analysis revealed a C-to-T transition of the first nucleotide in codon 121 predicting the replacement of arginine-121 by tryptophan (R121W). Both the mother and maternal grandmother carry the same mutation in heterozygous form. Family 2: A 3-month-old boy presented with severe temporal dragging of the retina on both eyes and subsequently developed retinal detachment. Visual acuity was limited to light perception. His mother's left eye was amaurotic and phthitic. Her right eye showed severe retinal dragging, visual acuity was reduced to 20/60. DNA analysis revealed a T-to-A transversion of the third nucleotide in codon 126 creating a stop codon (C126X). The mother and maternal grandmother were carriers. Mutations in the Norrie disease gene can lead to retinal malformations of variable severity both in hemizygous males and manifesting carriers.

  11. Punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori in Colombian populations.

    PubMed

    Matta, Andrés Jenuer; Zambrano, Diana Carolina; Pazos, Alvaro Jairo

    2018-04-14

    To characterize punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori ( H. pylori ) and determine their association with therapeutic failure. PCR products of 23S rRNA gene V domain of 74 H. pylori isolates; 34 resistant to clarithromycin (29 from a low-risk gastric cancer (GC) population: Tumaco-Colombia, and 5 from a high-risk population: Tuquerres-Colombia) and 40 from a susceptible population (28 from Tumaco and 12 from Túquerres) were sequenced using capillary electrophoresis. The concordance between mutations of V domain 23S rRNA gene of H. pylori and therapeutic failure was determined using the Kappa coefficient and McNemar's test was performed to determine the relationship between H. pylori mutations and clarithromycin resistance. 23S rRNA gene from H. pylori was amplified in 56/74 isolates, of which 25 were resistant to clarithromycin (20 from Tumaco and 5 from Túquerres, respectively). In 17 resistant isolates (13 from Tumaco and 4 from Túquerres) the following mutations were found: A1593T1, A1653G2, C1770T, C1954T1, and G1827C in isolates from Tumaco, and A2144G from Túquerres. The mutations T2183C, A2144G and C2196T in H. pylori isolates resistant to clarithromycin from Colombia are reported for the first time. No association between the H. pylori mutations and in vitro clarithromycin resistance was found. However, therapeutic failure of eradication treatment was associated with mutations of 23S rRNA gene in clarithromycin-resistant H. pylori ( κ = 0.71). The therapeutic failure of eradication treatment in the two populations from Colombia was associated with mutations of the 23S rRNA gene in clarithromycin-resistant H. pylori .

  12. Punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori in Colombian populations

    PubMed Central

    Matta, Andrés Jenuer; Zambrano, Diana Carolina; Pazos, Alvaro Jairo

    2018-01-01

    AIM To characterize punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori (H. pylori) and determine their association with therapeutic failure. METHODS PCR products of 23S rRNA gene V domain of 74 H. pylori isolates; 34 resistant to clarithromycin (29 from a low-risk gastric cancer (GC) population: Tumaco-Colombia, and 5 from a high-risk population: Tuquerres-Colombia) and 40 from a susceptible population (28 from Tumaco and 12 from Túquerres) were sequenced using capillary electrophoresis. The concordance between mutations of V domain 23S rRNA gene of H. pylori and therapeutic failure was determined using the Kappa coefficient and McNemar’s test was performed to determine the relationship between H. pylori mutations and clarithromycin resistance. RESULTS 23S rRNA gene from H. pylori was amplified in 56/74 isolates, of which 25 were resistant to clarithromycin (20 from Tumaco and 5 from Túquerres, respectively). In 17 resistant isolates (13 from Tumaco and 4 from Túquerres) the following mutations were found: A1593T1, A1653G2, C1770T, C1954T1, and G1827C in isolates from Tumaco, and A2144G from Túquerres. The mutations T2183C, A2144G and C2196T in H. pylori isolates resistant to clarithromycin from Colombia are reported for the first time. No association between the H. pylori mutations and in vitro clarithromycin resistance was found. However, therapeutic failure of eradication treatment was associated with mutations of 23S rRNA gene in clarithromycin-resistant H. pylori (κ = 0.71). CONCLUSION The therapeutic failure of eradication treatment in the two populations from Colombia was associated with mutations of the 23S rRNA gene in clarithromycin-resistant H. pylori. PMID:29662291

  13. A Novel Dominant Hyperekplexia Mutation Y705C Alters Trafficking and Biochemical Properties of the Presynaptic Glycine Transporter GlyT2*

    PubMed Central

    Giménez, Cecilio; Pérez-Siles, Gonzalo; Martínez-Villarreal, Jaime; Arribas-González, Esther; Jiménez, Esperanza; Núñez, Enrique; de Juan-Sanz, Jaime; Fernández-Sánchez, Enrique; García-Tardón, Noemí; Ibáñez, Ignacio; Romanelli, Valeria; Nevado, Julián; James, Victoria M.; Topf, Maya; Chung, Seo-Kyung; Thomas, Rhys H.; Desviat, Lourdes R.; Aragón, Carmen; Zafra, Francisco; Rees, Mark I.; Lapunzina, Pablo; Harvey, Robert J.; López-Corcuera, Beatriz

    2012-01-01

    Hyperekplexia or startle disease is characterized by an exaggerated startle response, evoked by tactile or auditory stimuli, producing hypertonia and apnea episodes. Although rare, this orphan disorder can have serious consequences, including sudden infant death. Dominant and recessive mutations in the human glycine receptor (GlyR) α1 gene (GLRA1) are the major cause of this disorder. However, recessive mutations in the presynaptic Na+/Cl−-dependent glycine transporter GlyT2 gene (SLC6A5) are rapidly emerging as a second major cause of startle disease. In this study, systematic DNA sequencing of SLC6A5 revealed a new dominant GlyT2 mutation: pY705C (c.2114A→G) in transmembrane domain 11, in eight individuals from Spain and the United Kingdom. Curiously, individuals harboring this mutation show significant variation in clinical presentation. In addition to classical hyperekplexia symptoms, some individuals had abnormal respiration, facial dysmorphism, delayed motor development, or intellectual disability. We functionally characterized this mutation using molecular modeling, electrophysiology, [3H]glycine transport, cell surface expression, and cysteine labeling assays. We found that the introduced cysteine interacts with the cysteine pair Cys-311–Cys-320 in the second external loop of GlyT2. This interaction impairs transporter maturation through the secretory pathway, reduces surface expression, and inhibits transport function. Additionally, Y705C presents altered H+ and Zn2+ dependence of glycine transport that may affect the function of glycinergic neurotransmission in vivo. PMID:22753417

  14. A hybrid stochastic model of folate-mediated one-carbon metabolism: Effect of the common C677T MTHFR variant on de novo thymidylate biosynthesis.

    PubMed

    Misselbeck, Karla; Marchetti, Luca; Field, Martha S; Scotti, Marco; Priami, Corrado; Stover, Patrick J

    2017-04-11

    Folate-mediated one-carbon metabolism (FOCM) is an interconnected network of metabolic pathways, including those required for the de novo synthesis of dTMP and purine nucleotides and for remethylation of homocysteine to methionine. Mouse models of folate-responsive neural tube defects (NTDs) indicate that impaired de novo thymidylate (dTMP) synthesis through changes in SHMT expression is causative in folate-responsive NTDs. We have created a hybrid computational model comprised of ordinary differential equations and stochastic simulation. We investigated whether the de novo dTMP synthesis pathway was sensitive to perturbations in FOCM that are known to be associated with human NTDs. This computational model shows that de novo dTMP synthesis is highly sensitive to the common MTHFR C677T polymorphism and that the effect of the polymorphism on FOCM is greater in folate deficiency. Computational simulations indicate that the MTHFR C677T polymorphism and folate deficiency interact to increase the stochastic behavior of the FOCM network, with the greatest instability observed for reactions catalyzed by serine hydroxymethyltransferase (SHMT). Furthermore, we show that de novo dTMP synthesis does not occur in the cytosol at rates sufficient for DNA replication, supporting empirical data indicating that impaired nuclear de novo dTMP synthesis results in uracil misincorporation into DNA.

  15. Mutations in the human GlyT2 gene define a presynaptic component of human startle disease

    PubMed Central

    Rees, Mark I.; Harvey, Kirsten; Pearce, Brian R.; Chung, Seo-Kyung; Duguid, Ian C.; Thomas, Philip; Beatty, Sarah; Graham, Gail E.; Armstrong, Linlea; Shiang, Rita; Abbott, Kim J.; Zuberi, Sameer M.; Stephenson, John B.P.; Owen, Michael J.; Tijssen, Marina A.J.; van den Maagdenberg, Arn M.J.M.; Smart, Trevor G.; Supplisson, Stéphane; Harvey, Robert J.

    2011-01-01

    Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) α1 subunit (GLRA1)1-3. Genetic heterogeneity has been confirmed in isolated sporadic cases with mutations in other postsynaptic glycinergic proteins including the GlyR β subunit (GLRB)4, gephyrin (GPHN)5 and RhoGEF collybistin (ARHGEF9)6. However, many sporadic patients diagnosed with hyperekplexia do not carry mutations in these genes2-7. Here we reveal that missense, nonsense and frameshift mutations in the presynaptic glycine transporter 2 (GlyT2) gene (SLC6A5)8 also cause hyperekplexia. Patients harbouring mutations in SLC6A5 presented with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnoea episodes. GlyT2 mutations result in defective subcellular localisation and/or decreased glycine uptake, with selected mutations affecting predicted glycine and Na+ binding sites. Our results demonstrate that SLC6A5 is a major gene for hyperekplexia and define the first neurological disorder linked to mutations in a Na+/Cl−-dependent transporter for a classical fast neurotransmitter. By analogy, we suggest that in other human disorders where defects in postsynaptic receptors have been identified, similar symptoms could result from defects in the cognate presynaptic neurotransmitter transporter. PMID:16751771

  16. Novel homozygous mutation, c.400C>T (p.Arg134*), in the PVRL1 gene underlies cleft lip/palate-ectodermal dysplasia syndrome in an Asian patient.

    PubMed

    Yoshida, Kazue; Hayashi, Ryota; Fujita, Hideki; Kubota, Masaya; Kondo, Mai; Shimomura, Yutaka; Niizeki, Hironori

    2015-07-01

    Cleft lip/palate-ectodermal dysplasia syndrome is a rare, autosomal recessive disorder caused by homozygous loss-of-function mutations of the poliovirus receptor-like 1 (PVRL1) gene encoding nectin-1. Nectin-1 is a cell-cell adhesion molecule that is important for the initial step in the formation of adherens junctions and tight junctions; it is expressed in keratinocytes, neurons, and the developing face and palate. Clinical manifestations comprise a unique facial appearance with cleft lip/palate, ectodermal dysplasia, cutaneous syndactyly of the fingers and/or toes, and in some cases, mental retardation. We present the first report, to our knowledge, of an Asian individual with cleft lip/palate-ectodermal dysplasia syndrome with a novel PVRL1 mutation. A 7-year-old Japanese boy, the first child of a consanguineous marriage, showed hypohidrotic ectodermal dysplasia with sparse, brittle, fine, dry hair and hypodontia, the unique facial appearance with cleft lip/palate, cutaneous syndactyly of the fingers and mild mental retardation. Scanning electron microscopic examination of the hair demonstrated pili torti and pili trianguli et canaliculi. Mutation analysis of exon 2 of PVRL1 revealed a novel homozygous nonsense mutation, c.400C>T (p.Arg134*). His parents were heterozygous for the mutant alleles. All four PVRL1 mutations identified in cleft lip/palate-ectodermal dysplasia syndrome to date, including this study, resulted in truncated proteins that lack the transmembrane domain and intracellular domain of nectin-1, which is necessary to initiate the cell-cell adhesion process. © 2015 Japanese Dermatological Association.

  17. A large GLC1C Greek family with a myocilin T377M mutation: inheritance and phenotypic variability.

    PubMed

    Petersen, Michael B; Kitsos, George; Samples, John R; Gaudette, N Donna; Economou-Petersen, Effrosini; Sykes, Renée; Rust, Kristal; Grigoriadou, Maria; Aperis, George; Choi, Dongseok; Psilas, Konstantinos; Craig, Jamie E; Kramer, Patricia L; Mackey, David A; Wirtz, Mary K

    2006-02-01

    POAG is a complex disease; therefore, families in which a glaucoma gene has been mapped may carry additional POAG genes. The goal of this study was to determine whether mutations in the myocilin (MYOC) gene on chromosome 1 are present in two POAG families, which have previously been mapped to the GLC1C locus on chromosome 3. The three exons of MYOC were screened by denaturing (d)HPLC. Samples with heteroduplex peaks were sequenced. Clinical findings were compared with genotype status in all available family members over the age of 20 years. A T377M coding sequence change in MYOC was identified in family members of the Greek GLC1C family but not in the Oregon GLC1C family. Individuals carrying both the MYOC T377M variant and the GLC1C haplotype were more severely affected at an earlier age than individuals with just one of the POAG genes, suggesting that these two genes interact or that both contribute to the POAG phenotype in a cumulative way.

  18. Novel mutations in the homogentisate 1,2 dioxygenase gene identified in Jordanian patients with alkaptonuria.

    PubMed

    Al-sbou, Mohammed

    2012-06-01

    This study was conducted to identify mutations in the homogentisate 1,2 dioxygenase gene (HGD) in alkaptonuria patients among Jordanian population. Blood samples were collected from four alkaptonuria patients, four carriers, and two healthy volunteers. DNA was isolated from peripheral blood. All 14 exons of the HGD gene were amplified using the polymerase chain reaction (PCR) technique. The PCR products were then purified and analyzed by sequencing. Five mutations were identified in our samples. Four of them were novel C1273A, T1046G, 551-552insG, T533G and had not been previously reported, and one mutation T847C has been described before. The types of mutations identified were two missense mutations, one splice site mutation, one frameshift mutation, and one polymorphism. We present the first molecular study of the HGD gene in Jordanian alkaptonuria patients. This study provides valuable information about the molecular basis of alkaptonuria in Jordanian population.

  19. A double mutation in AGXT gene in families with primary hyperoxaluria type 1.

    PubMed

    Kanoun, Houda; Jarraya, Faiçal; Hadj Salem, Ikhlass; Mahfoudh, Hichem; Chaabouni, Yosr; Makni, Fatma; Hachicha, Jamil; Fakhfakh, Faiza

    2013-12-01

    Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inherited disorder of glyoxylate metabolism caused by mutations in the AGXT gene on chromosome 2q37.3 that encodes the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. These mutations are found throughout the entire gene and cause a wide spectrum of clinical severity. Rare in Europe, PH1 is responsible for 13% of the end stage renal failure in the Tunisian child. In the present work, we identified the double mutation c.32C>T (Pro11Leu) and c.731T>C (p.Ile244Thr) in AGXT gene in five unrelated Tunisian families with PH1 disease. Our results provide evidence regarding the potential involvement of c.32C>T, originally described as common polymorphism, on the resulting phenotype. We also reported an extreme intrafamilial heterogeneity in clinical presentation of PH1. Despite the same genetic background, the outcome of the affected members differs widely. The significant phenotypic heterogeneity observed within a same family, with a same genotype, suggests the existence of relevant modifier factors. © 2013.

  20. A case of a Tunisian Rett patient with a novel double-mutation of the MECP2 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fendri-Kriaa, Nourhene, E-mail: nourhene.fendri@gmail.com; Hsairi, Ines; Kifagi, Chamseddine

    2011-06-03

    Highlights: {yields} Sequencing of the MECP2 gene, modeling and comparison of the two variants were performed in a Tunisian classical Rett patient. {yields} A double-mutation: a new and de novo mutation c.535C > T and the common one c.763C > T of the MECP2 gene was identified. {yields} The P179S transition may change local electrostatic properties which may affect the function and stability of the protein MeCP2. -- Abstract: Rett syndrome is an X-linked dominant disorder caused frequently by mutations in the methyl-CpG-binding protein 2 gene (MECP2). Rett patients present an apparently normal psychomotor development during the first 6-18 monthsmore » of life. Thereafter, they show a short period of developmental stagnation followed by a rapid regression in language and motor development. The aim of this study was to perform a mutational analysis of the MECP2 gene in a classical Rett patient by sequencing the corresponding gene and modeling the found variants. The results showed the presence of a double-mutation: a new and de novo mutation c.535C > T (p.P179S) and the common c.763C > T (p.R255X) transition of the MECP2 gene. The p.P179S mutation was located in a conserved amino acid in CRIR domain (corepressor interacting region). Modeling results showed that the P179S transition could change local electrostatic properties by adding a negative charge due to serine hydroxyl group of this region of MeCP2 which may affect the function and stability of the protein. The p.R255X mutation is located in TRD-NLS domain (transcription repression domain-nuclear localization signal) of MeCP2 protein.« less

  1. SAMHD1 Gene Mutations Are Associated with Cerebral Large-Artery Atherosclerosis

    PubMed Central

    Xin, Baozhong; Yan, Junpeng; Wu, Ying; Hu, Bo; Liu, Liping; Wang, Yilong; Ahn, Jinwoo; Skowronski, Jacek; Zhang, Zaiqiang; Wang, Yongjun; Wang, Heng

    2015-01-01

    Background. To investigate whether one or more SAMHD1 gene mutations are associated with cerebrovascular disease in the general population using a Chinese stroke cohort. Methods. Patients with a Chinese Han background (N = 300) diagnosed with either cerebral large-artery atherosclerosis (LAA, n = 100), cerebral small vessel disease (SVD, n = 100), or other stroke-free neurological disorders (control, n = 100) were recruited. Genomic DNA from the whole blood of each patient was isolated, and direct sequencing of the SAMHD1 gene was performed. Both wild type and mutant SAMHD1 proteins identified from the patients were expressed in E. coli and purified; then their dNTPase activities and ability to form stable tetramers were analysed in vitro. Results. Three heterozygous mutations, including two missense mutations c.64C>T (P22S) and c.841G>A (p.E281K) and one splice site mutation c.696+2T>A, were identified in the LAA group with a prevalence of 3%. No mutations were found in the patients with SVD or the controls (p = 0.05). The mutant SAMHD1 proteins were functionally impaired in terms of their catalytic activity as a dNTPase and ability to assemble stable tetramers. Conclusions. Heterozygous SAMHD1 gene mutations might cause genetic predispositions that interact with other risk factors, resulting in increased vulnerability to stroke. PMID:26504826

  2. The clinical spectrum of the m.10191T>C mutation in complex I-deficient Leigh syndrome.

    PubMed

    Nesbitt, Victoria; Morrison, Patrick J; Crushell, Ellen; Donnelly, Deirdre E; Alston, Charlotte L; He, Langping; McFarland, Robert; Taylor, Robert W

    2012-06-01

    Mitochondrial respiratory chain diseases represent one of the most common inherited neurometabolic disorders of childhood, affecting a minimum of 1 in 7500 live births. The marked clinical, biochemical, and genetic heterogeneity means that accurate genetic counselling relies heavily upon the identification of the underlying causative mutation in the individual and determination of carrier status in the parents. Isolated complex I deficiency is the most common respiratory chain defect observed in children, resulting in organ-specific or multisystem disease, but most often presenting as Leigh syndrome, for which mitochondrial DNA mutations are important causes. Several recurrent, pathogenic point mutations in the MTND3 gene - including m.10191T>C (p.Ser45Pro) - have been previously identified. In this short clinical review we evaluate the case reports of the m.10191T>C mutation causing complex I-deficient Leigh syndrome described in the literature, in addition to two new ones diagnosed in our laboratory. Both of these appear to have arisen de novo without transmission of the mutation from mother to offspring, illustrating the importance not only of fully characterizing the mitochondrial genome as part of the investigation of children with complex I-deficient Leigh syndrome but also of assessing maternal samples to provide crucial genetic advice for families. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  3. A homozygous nonsense CEP250 mutation combined with a heterozygous nonsense C2orf71 mutation is associated with atypical Usher syndrome.

    PubMed

    Khateb, Samer; Zelinger, Lina; Mizrahi-Meissonnier, Liliana; Ayuso, Carmen; Koenekoop, Robert K; Laxer, Uri; Gross, Menachem; Banin, Eyal; Sharon, Dror

    2014-07-01

    Usher syndrome (USH) is a heterogeneous group of inherited retinitis pigmentosa (RP) and sensorineural hearing loss (SNHL) caused by mutations in at least 12 genes. Our aim is to identify additional USH-related genes. Clinical examination included visual acuity test, funduscopy and electroretinography. Genetic analysis included homozygosity mapping and whole exome sequencing (WES). A combination of homozygosity mapping and WES in a large consanguineous family of Iranian Jewish origin revealed nonsense mutations in two ciliary genes: c.3289C>T (p.Q1097*) in C2orf71 and c.3463C>T (p.R1155*) in centrosome-associated protein CEP250 (C-Nap1). The latter has not been associated with any inherited disease and the c.3463C>T mutation was absent in control chromosomes. Patients who were double homozygotes had SNHL accompanied by early-onset and severe RP, while patients who were homozygous for the CEP250 mutation and carried a single mutant C2orf71 allele had SNHL with mild retinal degeneration. No ciliary structural abnormalities in the respiratory system were evident by electron microscopy analysis. CEP250 expression analysis of the mutant allele revealed the generation of a truncated protein lacking the NEK2-phosphorylation region. A homozygous nonsense CEP250 mutation, in combination with a heterozygous C2orf71 nonsense mutation, causes an atypical form of USH, characterised by early-onset SNHL and a relatively mild RP. The severe retinal involvement in the double homozygotes indicates an additive effect caused by nonsense mutations in genes encoding ciliary proteins. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. A Lower Degree of PBMC L1 Methylation in Women with Lower Folate Status May Explain the MTHFR C677T Polymorphism Associated Higher Risk of CIN in the US Post Folic Acid Fortification Era

    PubMed Central

    Badiga, Suguna; Johanning, Gary L.; Macaluso, Maurizio; Azuero, Andres; Chambers, Michelle M.; Siddiqui, Nuzhat R.; Piyathilake, Chandrika J.

    2014-01-01

    Background Studies in populations unexposed to folic acid (FA) fortification have demonstrated that MTHFR C677T polymorphism is associated with increased risk of higher grades of cervical intraepithelial neoplasia (CIN 2+). However, it is unknown whether exposure to higher folate as a result of the FA fortification program has altered the association between MTHFR C677T and risk of CIN, or the mechanisms involved with such alterations. The current study investigated the following in a FA fortified population: 1) The association between MTHFR C677T polymorphism and risk of CIN 2+; 2) The modifying effects of plasma folate concentrations on this association; and 3) The modifying effects of plasma folate on the association between the polymorphism and degree of methylation of long interspersed nucleotide elements (L1s), in peripheral blood mononuclear cell (PBMC) DNA, a documented biomarker of CIN risk. Methods The study included 457 US women diagnosed with either CIN 2+ (cases) or ≤ CIN 1 (non-cases). Unconditional logistic regression models were used to test the associations after adjusting for relevant risk factors for CIN. Results The 677CT/TT MTHFR genotypes were not associated with the risk of CIN 2+. Women with CT/TT genotype with lower folate, however, were more likely to be diagnosed with CIN 2+ compared to women with CT/TT genotype with higher folate (OR = 2.41, P = 0.030). Women with CT/TT genotype with lower folate were less likely to have a higher degree of PBMC L1 methylation compared to women with CT/TT genotype with higher folate (OR = 0.28, P = 0.017). Conclusions This study provides the first evidence that the MTHFR 677CT/TT genotype-associated lower degree of PBMC L1 methylation increases the risk of CIN 2+ in women in the US post-FA fortification era. Thus, even in the post-FA fortification era, not all women have adequate folate status to overcome MTHFR 677CT/TT genotype-associated lower degree of L1 methylation. PMID:25302494

  5. Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Qing-lin; Xu, Jia; Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. Black-Right-Pointing-Pointer We identified three novel PHEX gene mutations in four unrelated families with XLH. Black-Right-Pointing-Pointer We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. Black-Right-Pointing-Pointer We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related genemore » with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.« less

  6. A Novel Frameshift Mutation at Codons 138/139 (HBB: c.417_418insT) on the β-Globin Gene Leads to β-Thalassemia.

    PubMed

    Jiang, Fan; Huang, Lv-Yin; Chen, Gui-Lan; Zhou, Jian-Ying; Xie, Xing-Mei; Li, Dong-Zhi

    2017-01-01

    We describe a new β-thalassemic mutation in a Chinese subject. This allele develops by insertion of one nucleotide (+T) between codons 138 and 139 in the third exon of the β-globin gene. The mutation causes a frameshift that leads to a termination codon at codon 139. In the heterozygote, this allele has the phenotype of classical β-thalassemia (β-thal) minor.

  7. Mitochondrial G8292A and C8794T mutations in patients with Niemann-Pick disease type C.

    PubMed

    Masserrat, Abbas; Sharifpanah, Fatemeh; Akbari, Leila; Tonekaboni, Seyed Hasan; Karimzadeh, Parvaneh; Asharafi, Mahmood Reza; Mazouei, Safoura; Sauer, Heinrich; Houshmand, Massoud

    2018-07-01

    Niemann-Pick disease type C (NP-C) is a neurovisceral lipid storage disorder. At the cellular level, the disorder is characterized by accumulation of unesterified cholesterol and glycolipids in the lysosomal/late endosomal system. NP-C is transmitted in an autosomal recessive manner and is caused by mutations in either the NPC1 (95% of families) or NPC2 gene. The estimated disease incidence is 1 in 120,000 live births, but this likely represents an underestimate, as the disease may be under-diagnosed due to its highly heterogeneous presentation. Variants of adenosine triphosphatase (ATPase) subunit 6 and ATPase subunit 8 ( ATPase6/8 ) in mitochondrial DNA (mtDNA) have been reported in different types of genetic diseases including NP-C. In the present study, the blood samples of 22 Iranian patients with NP-C and 150 healthy subjects as a control group were analyzed. The DNA of the blood samples was extracted by the salting out method and analyzed for ATPase6/8 mutations using polymerase chain reaction sequencing. Sequence variations in mitochondrial genome samples were determined via the Mitomap database. Analysis of sequencing data confirmed the existence of 11 different single nucleotide polymorphisms (SNPs) in patients with NP-C1. One of the most prevalent polymorphisms was the A8860G variant, which was observed in both affected and non-affected groups and determined to have no significant association with NP-C incidence. Amongst the 11 polymorphisms, only one was identified in the ATPase8 gene, while 9 including A8860G were observed in the ATPase6 gene. Furthermore, two SNPs, G8292A and C8792A, located in the non-coding region of mtDNA and the ATPase6 gene, respectively, exhibited significantly higher prevalence rates in NP-C1 patients compared with the control group (P<0.01). The present study suggests that there may be an association between mitochondrial ATPase6/8 mutations and the incidence of NP-C disease. In addition, the mitochondrial SNPs identified

  8. Four novel RS1 gene mutations in Polish patients with X-linked juvenile retinoschisis.

    PubMed

    Skorczyk, Anna; Krawczyński, Maciej R

    2012-01-01

    To determine the clinical features and to identify mutations in the retinoschisis gene (RS1) in ten patients with X-linked retinoschisis (XLRS). Ten male patients from nine Polish families were included in this study. Ophthalmologic examinations, including optical coherence tomography (OCT) and full-field electroretinography (ERG), were performed in all affected boys. The entire coding region encompassing six exons of the RS1 gene was amplified with PCR and directly sequenced in all the patients. All affected individuals showed typical retinoschisis signs and symptoms, and all appeared to have a mutation in the RS1 gene. Seven different mutations were identified, including two novel missense substitutions: c.176G>C (p.Cys59Ser), c.451T>A (p.Tyr151Asp); one novel nonsense substitution: c.218C>A (p.Ser73*); and one novel frameshift mutation: c.354_355delCA (p.Asp118Glufs*2). We also found two missense substitutions that had been previously described: c.214G>A (p.Glu72Lys) and c.626G>T (p.Arg209Leu) and one known splice site mutation in intron 5: c.522+1G>T (IVS5+1G>T). This study provides the first molecular genetic characteristics of patients with juvenile retinoschisis from the previously unexplored Polish population. We investigated the molecular background of XLRS in ten boys. The present study reports for the first time four novel mutations, including two missense substitutions, one nonsense substitution, and one frameshift deletion. One of these substitutions and 2-bp deletion created stop codons. Moreover, we described three substitutions that had been previously reported (one is a splicing mutation). Further genetic characterization of Polish patients with XLRS will be helpful in understanding the worldwide spectrum of RS1 mutations. Despite the mutation heterogeneity found in a small group of our patients, they presented a relatively uniform clinical picture. Identifying the causative mutation is helpful in confirming diagnosis and counseling, but cannot

  9. Four novel RS1 gene mutations in Polish patients with X-linked juvenile retinoschisis

    PubMed Central

    Skorczyk, Anna

    2012-01-01

    Purpose To determine the clinical features and to identify mutations in the retinoschisis gene (RS1) in ten patients with X-linked retinoschisis (XLRS). Methods Ten male patients from nine Polish families were included in this study. Ophthalmologic examinations, including optical coherence tomography (OCT) and full-field electroretinography (ERG), were performed in all affected boys. The entire coding region encompassing six exons of the RS1 gene was amplified with PCR and directly sequenced in all the patients. Results All affected individuals showed typical retinoschisis signs and symptoms, and all appeared to have a mutation in the RS1 gene. Seven different mutations were identified, including two novel missense substitutions: c.176G>C (p.Cys59Ser), c.451T>A (p.Tyr151Asp); one novel nonsense substitution: c.218C>A (p.Ser73*); and one novel frameshift mutation: c.354_355delCA (p.Asp118Glufs*2). We also found two missense substitutions that had been previously described: c.214G>A (p.Glu72Lys) and c.626G>T (p.Arg209Leu) and one known splice site mutation in intron 5: c.522+1G>T (IVS5+1G>T). Conclusions This study provides the first molecular genetic characteristics of patients with juvenile retinoschisis from the previously unexplored Polish population. We investigated the molecular background of XLRS in ten boys. The present study reports for the first time four novel mutations, including two missense substitutions, one nonsense substitution, and one frameshift deletion. One of these substitutions and 2-bp deletion created stop codons. Moreover, we described three substitutions that had been previously reported (one is a splicing mutation). Further genetic characterization of Polish patients with XLRS will be helpful in understanding the worldwide spectrum of RS1 mutations. Despite the mutation heterogeneity found in a small group of our patients, they presented a relatively uniform clinical picture. Identifying the causative mutation is helpful in confirming

  10. Mutation analysis of COL4A3 and COL4A4 genes in a Chinese autosomal-dominant Alport syndrome family.

    PubMed

    Guo, Liwei; Li, Duan; Dong, Shuangshuang; Wan, Donghao; Yang, Baosheng; Huang, Yanmei

    2017-06-01

    Autosomal dominant Alport syndrome (ADAS) accounts for 5% of all cases of Alport syndrome (AS), a primary basement membrane disorder arising from mutations in genes encoding the type IV collagen protein family.Mutations in COL4A3 and COL4A4 genes were reported to be associated with ADAS. In this study, clinical data in a large consanguineous family with seven affected members were reviewed, and genomic DNA was extracted. For mutation screening, all exons of COL4A3 and COL4A4 genes were polymerase chain reaction-amplified and direct sequenced from genomic DNA, and the mutations were analyzed by comparing with members in this family, 100 ethnicitymatched controls and the sequence of COL4A3 and COL4A4 genes from GenBank. A novel mutation determining a nucleotide change was found, i.e. c.4195 A>T (p.Met1399Leu) at 44th exon of COL4A4 gene, and this mutation showed heterozygous in all patients of this family. Also a novel intron mutation (c.4127+11 C>T) was observed at COL4A4 gene. Thus the novel missense mutation c.4195 A>T (p.Met1399Leu) and the intron mutation (c.4127+11 C>T) at COL4A4 gene might be responsible for ADAS of this family. Our results broadened the spectrum of mutations in COL4A4 and had important implications in the diagnosis, prognosis, and genetic counselling of ADAS.

  11. Two novel mutations in NOTCH3 gene causes cerebral autosomal dominant arteriopathy with subcritical infarct and leucoencephalopathy in two Chinese families.

    PubMed

    Zhu, Yuyou; Wang, Juan; Wu, Yuanbo; Wang, Guoping; Hu, Bai

    2015-01-01

    To investigate the genetic pathogenic causes of cerebral autosomal dominant arteriopathy with subcritical infarct and leucoencephalopathy (CADASIL) in two Chinese families, to provide the molecular basis for genetic counseling and antenatal diagnosis. The genetic mutation of gene NOTCH3 of propositus and family members was analyzed in these two CADASIL families by polymerase chain reaction and DNA sequencing technology directly. At the same time, the NOTCH3 gene mutation point of 100 healthy collators was detected, to explicit the pathogenic mutation by function prediction with Polyphen-2 and SIFT. Both propositus of the two families and patients with symptom were all accorded with the clinical features of CADASIL. It was shown by DNA sequencing that the 19(th) exon [c. 3043 T > A (p.Cys1015Ser)] in gene NOTCH3 of propositus, 2 patients (II3, III7), and a presymptomatic patient (IV1) in Family I all had heterozygosity missense mutation; and the 3(rd) exon [c.316T > G, p. (Cys106Gly)] in gene NOTCH3 of the propositus, a patient (IV3) and two presymptomatic patients (IV5, 6) in Family II all had heterozygosity missense mutation; and no mutations were detected in the 100 healthy collators. It was indicated by analyzing the function prediction that the mutation of [c. 3043 T > A (p.Cys1015Ser)] and [c.316T > G, p. (Cys106Gly)] may both influence encoding protein in NOTCH3. By analysis of the conservatism of mutation point in each species, these two basic groups were highly conserved. The heterozygosity missense mutation of 19(th) exon [c. 3043 T > A (p.Cys1015Ser)] and the 3(rd) exon [c.316T > G, p. (Cys106Gly)] in NOTCH3 gene are the new pathogenic mutations of CADASIL, and enriches the mutation spectrum of NOTCH3 gene.

  12. A Novel Nonsense Mutation in Exon 5 of KIND1 Gene in an Iranian Family with Kindler Syndrome.

    PubMed

    Heidari, Mohammad Mehdi; Khatami, Mehri; Kargar, Saeed; Azari, Mojdeh; Hoseinzadeh, Hassan; Fallah, Hamedeh

    2016-06-01

    Kindler syndrome (KS) is an autosomal recessive skin disease characterized by actual blistering, photosensitivity and a progressive poikiloderma. The disorder results from rare mutations in the KIND1 gene. This gene contains 15 exons and expresses two kindlin-1 isoforms. The aim of this investigation was to analyze mutations in the exons 1 to 15 of KIND1 gene in an Iranian family clinically affected with Kindler syndrome. The mutations analysis of 15 coding exons of KIND1 gene was performed with PCR-SSCP and direct sequencing in 14 subjects from one Iranian family clinically affected with Kindler syndrome. We identified eight new nucleotide changes in KIND1 in this family. These changes were found in g.3892delA, g.3951T>C, g.3962T>G, g.4190G>T, g.7497G>A, g.11076T>C, g.11102C>T and g.13177C>T positions. Among them, the g.13177C>T mutation resulting in the formation of a premature stop codon (Q226X) was detected only in seven affected family individuals as homozygous but was not present in 100 unrelated healthy controls. This study suggests that nonsense mutation may lead to incomplete and non-functional protein products and is pathogenic and has meaningful implications for the diagnosis of patients with Kindler syndrome.

  13. Investigation of the Mitochondrial ATPase 6/8 and tRNALys Genes Mutations in Autism

    PubMed Central

    Piryaei, Fahimeh; Houshmand, Massoud; Aryani, Omid; Dadgar, Sepideh; Soheili, Zahra-Soheila

    2012-01-01

    Objective: Autism results from developmental factors that affect many or all functional brain systems. Brain is one of tissues which are crucially in need of adenosine triphosphate (ATP). Autism is noticeably affected by mitochondrial dysfunction which impairs energy metabolism. Considering mutations within ATPase 6, ATPase 8 and tRNALys genes, associated with different neural diseases, and the main role of ATPase 6/8 in energy generation, we decided to investigate mutations on these mtDNA-encoded genes to reveal their roles in autism pathogenesis. Materials and Methods: In this experimental study, mutation analysis for the mentioned genes were performed in a cohort of 24 unrelated patients with idiopathic autism by employing amplicon sequencing of mtDNA fragments. Results: In this study, 12 patients (50%) showed point mutations that represent a significant correlation between autism and mtDNA variations. Most of the identified substitutions (55.55%) were observed on MT-ATP6, altering some conserved amino acids to other ones which could potentially affect ATPase 6 function. Mutations causing amino acid replacement denote involvement of mtDNA genes, especially ATPase 6 in autism pathogenesis. Conclusion: MtDNA mutations in relation with autism could be remarkable to realize an understandable mechanism of pathogenesis in order to achieve therapeutic solutions. PMID:23508290

  14. Novel Compound Heterozygous CLCNKB Gene Mutations (c.1755A>G/ c.848_850delTCT) Cause Classic Bartter Syndrome.

    PubMed

    Wang, Chunli; Chen, Ying; Zheng, Bixia; Zhu, Mengshu; Fan, Jia; Wang, Juejin; Jia, Zhanjun; Huang, Songming; Zhang, Aihua

    2018-02-14

    Inactivated variants in CLCNKB gene encoding the basolateral chloride channel ClC-Kb cause classic Bartter syndrome characterized by hypokalemic metabolic alkalosis and hyperreninemic hyperaldosteronism. Here we identified two cBS siblings presenting hypokalemia in a Chinese family due to novel compound heterozygous CLCNKB mutations (c.848_850delTCT/c.1755A>G). Compound heterozygosity was confirmed by amplifying and sequencing the patient's genomic DNA. The synonymous mutation c.1755A>G (Thr585Thr) was located at +2bp from the 5' splice donor site in exon 15, further transcript analysis demonstrated that this single nucleotide mutation causes exclusion of exon 15 in the cDNA from the proband and his mother. Furthermore, we investigated the expression and protein trafficking change of c.848_850delTCT (TCT) and exon 15 deletion(E15)mutation in vitro. The E15 mutation markedly decreased the expression of ClC-Kb and resulted in a low-molecular-weight band (~55kD) trapping in the endoplasmic reticulum, while the TCT mutant only decreased the total and plasma membrane ClC-Kb protein expression but did not affect the subcellular localization. Finally, we studied the physiological functions of mutations by using whole-cell patch clamp and found that E15 or TCT mutation decreased the current of ClC-Kb/barttin channel. These results suggested that the compound defective mutations of CLCNKB gene are the molecular mechanism of the two cBS siblings.

  15. Association between decreased vitamin levels and MTHFR, MTR and MTRR gene polymorphisms as determinants for elevated total homocysteine concentrations in pregnant women.

    PubMed

    Barbosa, P R; Stabler, S P; Machado, A L K; Braga, R C; Hirata, R D C; Hirata, M H; Sampaio-Neto, L F; Allen, R H; Guerra-Shinohara, E M

    2008-08-01

    To examine the association between methylenetetrahydrofolate reductase (MTHFR) (C677T and A1298C), methionine synthase (MTR) A2756G and methionine synthase reductase (MTRR) A66G gene polymorphisms and total homocysteine (tHcy), methylmalonic acid (MMA) and S-adenosylmethionine/S-adenosylhomocysteine (SAM/SAH) levels; and to evaluate the potential interactions with folate or cobalamin (Cbl) status. Two hundred seventy-five healthy women at labor who delivered full-term normal babies. Cbl, folate, tHcy, MMA, SAM and SAH were measured in serum specimens. The genotypes for polymorphisms were determined by PCR-restriction fragment length polymorphism (RFLP). Serum folate, MTHFR 677T allele and MTR 2756AA genotypes were the predictors of tHcy levels in pregnant women. Serum Cbl and creatinine were the predictors of SAM/SAH ratio and MMA levels, respectively. The gene polymorphisms were not determinants for MMA levels and SAM/SAH ratios. Low levels of serum folate were associated with elevated tHcy in pregnant women, independently of the gene polymorphisms. In pregnant women carrying MTHFR 677T allele, or MTHFR 1298AA or MTRR 66AA genotypes, lower Cbl levels were associated with higher levels of tHcy. Lower SAM/SAH ratio was found in MTHFR 677CC or MTRR A2756AA genotypes carriers when Cbl levels were lower than 142 pmol/l. Serum folate and MTHFR C677T and MTR A2576G gene polymorphisms were the determinants for tHcy levels. The interaction between low levels of serum Cbl and MTHFR (C677T or A1298C) or MTRR A66G gene polymorphisms was associated with increased tHcy.

  16. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27)

    PubMed Central

    McCabe, Michael T.; Graves, Alan P.; Ganji, Gopinath; Diaz, Elsie; Halsey, Wendy S.; Jiang, Yong; Smitheman, Kimberly N.; Ott, Heidi M.; Pappalardi, Melissa B.; Allen, Kimberly E.; Chen, Stephanie B.; Della Pietra, Anthony; Dul, Edward; Hughes, Ashley M.; Gilbert, Seth A.; Thrall, Sara H.; Tummino, Peter J.; Kruger, Ryan G.; Brandt, Martin; Schwartz, Benjamin; Creasy, Caretha L.

    2012-01-01

    Trimethylation of histone H3 on lysine 27 (H3K27me3) is a repressive posttranslational modification mediated by the histone methyltransferase EZH2. EZH2 is a component of the polycomb repressive complex 2 and is overexpressed in many cancers. In B-cell lymphomas, its substrate preference is frequently altered through somatic mutation of the EZH2 Y641 residue. Herein, we identify mutation of EZH2 A677 to a glycine (A677G) among lymphoma cell lines and primary tumor specimens. Similar to Y641 mutant cell lines, an A677G mutant cell line revealed aberrantly elevated H3K27me3 and decreased monomethylated H3K27 (H3K27me1) and dimethylated H3K27 (H3K27me2). A677G EZH2 possessed catalytic activity with a substrate specificity that was distinct from those of both WT EZH2 and Y641 mutants. Whereas WT EZH2 displayed a preference for substrates with less methylation [unmethylated H3K27 (H3K27me0):me1:me2 kcat/Km ratio = 9:6:1] and Y641 mutants preferred substrates with greater methylation (H3K27me0:me1:me2 kcat/Km ratio = 1:2:13), the A677G EZH2 demonstrated nearly equal efficiency for all three substrates (H3K27me0:me1:me2 kcat/Km ratio = 1.1:0.6:1). When transiently expressed in cells, A677G EZH2, but not WT EZH2, increased global H3K27me3 and decreased H3K27me2. Structural modeling of WT and mutant EZH2 suggested that the A677G mutation acquires the ability to methylate H3K27me2 through enlargement of the lysine tunnel while preserving activity with H3K27me0/me1 substrates through retention of the Y641 residue that is crucial for orientation of these smaller substrates. This mutation highlights the interplay between Y641 and A677 residues in the substrate specificity of EZH2 and identifies another lymphoma patient population that harbors an activating mutation of EZH2. PMID:22323599

  17. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27).

    PubMed

    McCabe, Michael T; Graves, Alan P; Ganji, Gopinath; Diaz, Elsie; Halsey, Wendy S; Jiang, Yong; Smitheman, Kimberly N; Ott, Heidi M; Pappalardi, Melissa B; Allen, Kimberly E; Chen, Stephanie B; Della Pietra, Anthony; Dul, Edward; Hughes, Ashley M; Gilbert, Seth A; Thrall, Sara H; Tummino, Peter J; Kruger, Ryan G; Brandt, Martin; Schwartz, Benjamin; Creasy, Caretha L

    2012-02-21

    Trimethylation of histone H3 on lysine 27 (H3K27me3) is a repressive posttranslational modification mediated by the histone methyltransferase EZH2. EZH2 is a component of the polycomb repressive complex 2 and is overexpressed in many cancers. In B-cell lymphomas, its substrate preference is frequently altered through somatic mutation of the EZH2 Y641 residue. Herein, we identify mutation of EZH2 A677 to a glycine (A677G) among lymphoma cell lines and primary tumor specimens. Similar to Y641 mutant cell lines, an A677G mutant cell line revealed aberrantly elevated H3K27me3 and decreased monomethylated H3K27 (H3K27me1) and dimethylated H3K27 (H3K27me2). A677G EZH2 possessed catalytic activity with a substrate specificity that was distinct from those of both WT EZH2 and Y641 mutants. Whereas WT EZH2 displayed a preference for substrates with less methylation [unmethylated H3K27 (H3K27me0):me1:me2 k(cat)/K(m) ratio = 9:6:1] and Y641 mutants preferred substrates with greater methylation (H3K27me0:me1:me2 k(cat)/K(m) ratio = 1:2:13), the A677G EZH2 demonstrated nearly equal efficiency for all three substrates (H3K27me0:me1:me2 k(cat)/K(m) ratio = 1.1:0.6:1). When transiently expressed in cells, A677G EZH2, but not WT EZH2, increased global H3K27me3 and decreased H3K27me2. Structural modeling of WT and mutant EZH2 suggested that the A677G mutation acquires the ability to methylate H3K27me2 through enlargement of the lysine tunnel while preserving activity with H3K27me0/me1 substrates through retention of the Y641 residue that is crucial for orientation of these smaller substrates. This mutation highlights the interplay between Y641 and A677 residues in the substrate specificity of EZH2 and identifies another lymphoma patient population that harbors an activating mutation of EZH2.

  18. Molecular analysis of congenital goitres with hypothyroidism caused by defective thyroglobulin synthesis. Identification of a novel c.7006C>T [p.R2317X] mutation and expression of minigenes containing nonsense mutations in exon 7.

    PubMed

    Machiavelli, Gloria A; Caputo, Mariela; Rivolta, Carina M; Olcese, María C; Gruñeiro-Papendieck, Laura; Chiesa, Ana; González-Sarmiento, Rogelio; Targovnik, Héctor M

    2010-01-01

    Thyroglobulin (TG) deficiency is an autosomal-recessive disorder that results in thyroid dyshormonogenesis. A number of distinct mutations have been identified as causing human hypothyroid goitre. The purpose of this study was to identify and characterize new mutations in the TG gene in an attempt to increase the understanding of the genetic mechanism responsible for this disorder. A total of six patients from four nonconsanguineous families with marked impairment of TG synthesis were studied. Single-strand conformation polymorphism (SSCP) analysis, sequencing of DNA, genotyping, expression of chimeric minigenes and bioinformatic analysis were performed. Four different inactivating TG mutations were identified: one novel mutation (c.7006C>T [p.R2317X]) and three previously reported (c.886C>T [p.R277X], c.6701C>A [p.A2215D] and c.6725G>A [p.R2223H]). Consequently, one patient carried a compound heterozygous for p.R2223H/p.R2317X mutations; two brothers showed a homozygous p.A2215D substitution and the remaining three patients, from two families with typical phenotype, had a single p.R277X mutated allele. We also showed functional evidences that premature stop codons inserted at different positions in exon 7, which disrupt exonic splicing enhancer (ESE) sequences, do not interfere with exon definition and processing. In this study, we have identified a novel nonsense mutation p.R2317X in the acetylcholinesterase homology domain of TG. We have also observed that nonsense mutations do not interfere with the pre-mRNA splicing of exon 7. The results are in accordance with previous observations confirming the genetic heterogeneity of TG defects.

  19. Screening for mutations in two exons of FANCG gene in Pakistani population.

    PubMed

    Aymun, Ujala; Iram, Saima; Aftab, Iram; Khaliq, Saba; Nadir, Ali; Nisar, Ahmed; Mohsin, Shahida

    2017-06-01

    Fanconi anemia is a rare autosomal recessive disorder of genetic instability. It is both molecularly and clinically, a heterogeneous disorder. Its incidence is 1 in 129,000 births and relatively high in some ethnic groups. Sixteen genes have been identified among them mutations in FANCG gene are most common after FANCA and FANCC gene mutations. To study mutations in exon 3 and 4 of FANCG gene in Pakistani population. Thirty five patients with positive Diepoxybutane test were included in the study. DNA was extracted and amplified for exons 3 and 4. Thereafter Sequencing was done and analyzed for the presence of mutations. No mutation was detected in exon 3 whereas a carrier of known mutation c.307+1 G>T was found in exon 4 of the FANCG gene. Absence of any mutation in exon 3 and only one heterozygous mutation in exon 4 of FANCG gene points to a different spectrum of FA gene pool in Pakistan that needs extensive research in this area.

  20. Methylene tetrahydrofolate reductase (MTHFR) gene polymorphisms in chronic myeloid leukemia: an Egyptian study.

    PubMed

    Khorshied, Mervat Mamdooh; Shaheen, Iman Abdel Mohsen; Abu Khalil, Reham E; Sheir, Rania Elsayed

    2014-01-01

    Methylenetetrahydrofolate reductase (MTHFR) gene plays a pivotal role in folate metabolism. Several genetic variations in MTHFR gene as MTHFR-C677T and MTHFR-A1298C result in decreased MTHFR activity, which could influence efficient DNA methylation and explain susceptibility to different cancers. The etiology of chronic myeloid leukemia (CML) is obscure and little is known about individual's susceptibility to CML. In order to assess the influence of these genetic polymorphisms on the susceptibility to CML and its effect on the course of the disease among Egyptians, we performed an age-gender-ethnic matched case-control study. The study included 97 CML patients and 130 healthy controls. Genotyping of MTHFR-C677T and -A1298C was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. The results showed no statistical difference in the distribution of MTHFR-C677T and -A1298C polymorphic genotypes between CML patients and controls. The frequency of MTHFR 677-TT homozygous variant was significantly higher in patients with accelerated/blastic transformation phase when compared to those in the chronic phase of the disease. In conclusion, our study revealed that MTHFR-C677T and -A1298C polymorphisms could not be considered as genetic risk factors for CML in Egyptians. However, MTHFR 677-TT homozygous variant might be considered as a molecular predictor for disease progression.

  1. AGXT Gene Mutations and Prevalence of Primary Hyperoxaluria Type 1 in Moroccan Population.

    PubMed

    Boualla, Lamiae; Tajir, Mariam; Oulahiane, Najat; Lyahyai, Jaber; Laarabi, Fatima Zahra; Chafai Elalaoui, Siham; Soulami, Kenza; Ait Ouamar, Hassan; Sefiani, Abdelaziz

    2015-11-01

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder caused by deficiency of alanine glyoxylate aminotransferase, due to a defect in the AGXT gene. Several mutations in this gene have been reported and some of them have been observed in multiple populations. The aim of our study was to analyze the mutations causing PH1 in the Moroccan population and to estimate its prevalence in Morocco. Molecular studies of 29 unrelated Moroccan patients with PH were performed by direct sequencing of all exons of the AGXT gene. In addition, to estimate the prevalence of PH1, we screened for the recurrent p.Ile244Thr mutation in 250 unrelated Moroccan newborns using real-time polymerase chain reaction. Four pathogenic mutations were detected in 25 unrelated patients. The c.731T>C (p.Ile244Thr) was the most frequent mutation with a frequency of 84%. The other three mutations were c.33delC, c.976delG, and c.331C>T. The prevalence of the PH1 mutation among Moroccans was then estimated to range from 1/7267 to 1/6264. PH1 is one of the most prevalent genetic diseases in the Moroccan population and is probably underdiagnosed. Front line genetic testing for PH1 in Morocco should be initiated using an assay for the recurrent p.Ile244Thr mutation. This strategy would provide a useful tool for precocious diagnosis of presymptomatic individuals and to prevent their rapid progression to renal failure.

  2. [Frequency of CHEK2 gene mutations in patients with breast cancer from the Republic of Bashkortostan].

    PubMed

    2014-01-01

    Several studies have shown, that mutation in CHEK2 gene can increase the risk of different cancers, including breast cancer (BC). Clearly, that character of mutations distribution in the defined regions is depended on genetic structure of the population. We conducted the screening of mutations c.1100delC, c.444 + 1G>A, de15395, p.I157T andIp.R145Win CHEK2 gene in patients with breast cancer (n = 977) and in control group (n = 1069) originating from the Republic of Bashkortostan. The mutation de15395 in CHEK2 gene was detected with frequency of 1,23% (12/977)in woman with BC and 0.09% (1/1069) in controls (OR:13.28, CI 95%: 1.72-102.33, p = 0.003). Mutations c.1100delC and c.444 + 1G>A were found in BC patients and controls with frequencies of 0.4%, 0.4% (4/977) and 0.09% (1/1069), 0.2% (2/1069), respectively. The missense mutation p.I157T in CHEK2 was found as the most common variant in two studied cohorts (approximately 5%), but differences did not achieved statistical significance. We found the ethnic specificity in distribution of truncating mutations, which occurs mainly among the women of Slavic origin. All three mutations were identified in women of Russian and Ukrainian ethnic origin. Mutations c.1100delC and c.444 + 1G>A in CHEK2 gene were not detected in Bashkirs and Tatars, but CHEK2 de15395 mutation was observed in Tatars.

  3. An intronic mutation c.6430-3C>G in the F8 gene causes splicing efficiency and premature termination in hemophilia A.

    PubMed

    Xia, Zunjing; Lin, Jie; Lu, Lingping; Kim, Chol; Yu, Ping; Qi, Ming

    2018-06-01

    : Hemophilia A is a bleeding disorder caused by coagulation factor VIII protein deficiency or dysfunction, which is classified into severe, moderate, and mild according to factor clotting activity. An overwhelming majority of missense and nonsense mutations occur in exons of F8 gene, whereas mutations in introns can also be pathogenic. This study aimed to investigate the effect of an intronic mutation, c.6430-3C>G (IVS22-3C>G), on pre-mRNA splicing of the F8 gene. We applied DNA and cDNA sequencing in a Chinese boy with hemophilia A to search if any pathogenic mutation in the F8 gene. Functional analysis was performed to investigate the effect of an intronic mutation at the transcriptional level. Human Splicing Finder and PyMol were also used to predict its effect. We found the mutation c.6430-3C>G (IVS22-3C>G) in the F8 gene in the affected boy, with his mother being a carrier. cDNA from the mother and pSPL3 splicing assay showed that the mutation IVS22-3C>G results in a two-nucleotide AG inclusion at the 3' end of intron 22 and leads to a truncated coagulation factor VIII protein, with partial loss of the C1 domain and complete loss of the C2 domain. The in-silico tool predicted that the mutation induces altered pre-mRNA splicing by using a cryptic acceptor site in intron 22. The IVS22-3C>G mutation was confirmed to affect pre-mRNA splicing and produce a truncated protein, which reduces the stability of binding between the F8 protein and von Willebrand factor carrier protein due to the loss of an interaction domain.

  4. Novel compound heterozygous Thyroglobulin mutations c.745+1G>A/c.7036+2T>A associated with congenital goiter and hypothyroidism in a Vietnamese family. Identification of a new cryptic 5' splice site in the exon 6.

    PubMed

    Citterio, Cintia E; Morales, Cecilia M; Bouhours-Nouet, Natacha; Machiavelli, Gloria A; Bueno, Elena; Gatelais, Frédérique; Coutant, Regis; González-Sarmiento, Rogelio; Rivolta, Carina M; Targovnik, Héctor M

    2015-03-15

    Several patients were identified with dyshormonogenesis caused by mutations in the thyroglobulin (TG) gene. These defects are inherited in an autosomal recessive manner and affected individuals are either homozygous or compound heterozygous for the mutations. The aim of the present study was to identify new TG mutations in a patient of Vietnamese origin affected by congenital hypothyroidism, goiter and low levels of serum TG. DNA sequencing identified the presence of compound heterozygous mutations in the TG gene: the maternal mutation consists of a novel c.745+1G>A (g.IVS6 + 1G>A), whereas the hypothetical paternal mutation consists of a novel c.7036+2T>A (g.IVS40 + 2T>A). The father was not available for segregation analysis. Ex-vivo splicing assays and subsequent RT-PCR analyses were performed on mRNA isolated from the eukaryotic-cells transfected with normal and mutant expression vectors. Minigene analysis of the c.745+1G>A mutant showed that the exon 6 is skipped during pre-mRNA splicing or partially included by use of a cryptic 5' splice site located to 55 nucleotides upstream of the authentic exon 6/intron 6 junction site. The functional analysis of c.7036+2T>A mutation showed a complete skipping of exon 40. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool NNSplice, Fsplice, SPL, SPLM and MaxEntScan programs were investigated and evaluated in relation with the experimental evidence. These analyses predicted that both mutant alleles would result in the abolition of the authentic splice donor sites. The c.745+1G>A mutation originates two putative truncated proteins of 200 and 1142 amino acids, whereas c.7036+2T>A mutation results in a putative truncated protein of 2277 amino acids. In conclusion, we show that the c.745+1G>A mutation promotes the activation of a new cryptic donor splice site in the exon 6 of the TG gene. The functional consequences of these mutations could be structural changes in the protein

  5. CFTR gene mutations in isolated chronic obstructive pulmonary disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pignatti, P.F.; Bombien, C.; Marigo, C.

    1994-09-01

    In order to identify a possible hereditary predisposition to the development of chronic obstructive pulmonary disease (COPD), we have looked for the presence of cystic fibrosis transmembrane regulator (CFTR) gene DNA sequence modifications in 28 unrelated patients with no signs of cystic fibrosis. The known mutations in Italian CF patients, as well as the most frequent worldwide CF mutations, were investigated. In addition, a denaturing gradient gel electrophoresis analysis of about half of the coding sequence of the gene in 56 chromosomes from the patients and in 102 chromosomes from control individuals affected by other pulmonary diseases and from normalmore » controls was performed. Nine different CFTR gene mutations and polymorphisms were found in seven patients, a highly significant increase over controls. Two of the patients were compound heterozygotes. Two frequent CF mutations were detected: deletion F508 and R117H; two rare CF mutations: R1066C and 3667ins4; and five CF sequence variants: R75Q (which was also described as a disease-causing mutation in male sterility cases due to the absence of the vasa deferentia), G576A, 2736 A{r_arrow}G, L997F, and 3271+18C{r_arrow}T. Seven (78%) of the mutations are localized in transmembrane domains. Six (86%) of the patients with defined mutations and polymorphisms had bronchiectasis. These results indicate that CFTR gene mutations and sequence alterations may be involved in the etiopathogenesis of some cases of COPD.« less

  6. Clinical and Molecular Genetic Analysis in Three Children with Wolfram Syndrome: A Novel WFS1 Mutation (c.2534T>A)

    PubMed Central

    Çelmeli, Gamze; Türkkahraman, Doğa; Çürek, Yusuf; Houghton, Jayne; Akçurin, Sema; Bircan, İffet

    2017-01-01

    Wolfram syndrome (WS) is an autosomal recessive disorder caused by mutations in WFS1 gene. The clinical features include diabetes insipidus, diabetes mellitus (DM), optic atrophy, deafness, and other variable clinical manifestations. In this paper, we present the clinical and genetic characteristics of 3 WS patients from 3 unrelated Turkish families. Clinical characteristics of the patients and the age of onset of symptoms were quite different in each pedigree. The first two cases developed all symptoms of the disease in their first decade of life. The heterozygous father of case 2 was symptomatic with bilateral deafness. The first ocular finding of one patient (patient 3) was bilateral cataract which was accompanying DM as a first feature of the syndrome. In this patient’s family, there were two members with features suggestive of WS. Previously known homozygous mutations, c.460+1G>A in intron 4 and c.1885C>T in exon 8, were identified in these cases. A novel homozygous c.2534T>A mutation was also detected in the exon 8 of WFS1 gene. Because of the rarity and heterogeneity of WS, detection of specific and nonspecific clinical signs including ocular findings and family history in non-autoimmune, insulinopenic diabetes cases should lead to a tentative diagnosis of WS. Genetic testing is required to confirm the diagnosis. PMID:27468121

  7. Methylenetetrahydrofolate reductase (MTHFR) C677T and thymidylate synthase promoter (TSER) polymorphisms in Indonesian children with and without leukemia.

    PubMed

    Giovannetti, Elisa; Ugrasena, Dewa G; Supriyadi, Eddy; Vroling, Laura; Azzarello, Antonino; de Lange, Desiree; Peters, Godefridus J; Veerman, Anjo J P; Cloos, Jacqueline

    2008-01-01

    Genetic variations in the polymorphic tandem repeat sequence of the enhancer region of the thymidylate synthase promoter (TSER), as well as in methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism, influence methotrexate sensitivity. We studied these polymorphisms in children with acute lymphoblastic leukaemia (ALL) and in subjects without malignancy in Indonesia and Holland. The frequencies of TT and CT genotypes were two-fold higher in Dutch children. The TSER 3R/3R repeat was three-fold more frequent in the Indonesian children, while the 2R/2R repeat was only 1% compared to 21% in the Dutch children. No differences of these polymorphisms were found between ALL cells and normal blood cells, indicating an ethnic rather than leukemic origin. These results may have implications for treatment of Indonesian children with ALL.

  8. Spectrum of mutations in RARS-T patients includes TET2 and ASXL1 mutations.

    PubMed

    Szpurka, Hadrian; Jankowska, Anna M; Makishima, Hideki; Bodo, Juraj; Bejanyan, Nelli; Hsi, Eric D; Sekeres, Mikkael A; Maciejewski, Jaroslaw P

    2010-08-01

    While a majority of patients with refractory anemia with ring sideroblasts and thrombocytosis harbor JAK2V617F and rarely MPLW515L, JAK2/MPL-negative cases constitute a diagnostic problem. 23 RARS-T cases were investigated applying immunohistochemical phospho-STAT5, sequencing and SNP-A-based karyotyping. Based on the association of TET2/ASXL1 mutations with MDS/MPN we studied molecular pattern of these genes. Two patients harbored ASXL1 and another 2 TET2 mutations. Phospho-STAT5 activation was present in one mutated TET2 and ASXL1 case. JAK2V617F/MPLW515L mutations were absent in TET2/ASXL1 mutants, indicating that similar clinical phenotype can be produced by various MPN-associated mutations and that additional unifying lesions may be present in RARS-T. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Molecular spectrum of c-KIT and PDGFRA gene mutations in gastro intestinal stromal tumor: determination of frequency, distribution pattern and identification of novel mutations in Indian patients.

    PubMed

    Ahmad, Firoz; Lad, Purnima; Bhatia, Simi; Das, Bibhu Ranjan

    2015-01-01

    KIT and PDGFRA gene mutations are the major genetic alterations seen in gastrointestinal stromal tumors (GISTs) and are being used clinically for predicting response to imatinib therapy. In the current study, we set out to explore the frequency and distribution pattern of c-KIT (exons 9, 11 and 13) and PDGFRA (exons 12 and 18) by direct sequencing in a series of 70 Indian GIST cases. Overall, 27 (38.5 %) and 4 (5.7 %) of the cases had c-KIT and PDGFRA mutations, respectively. Majority of KIT mutations involved exon 11 (85.7 %), followed by exon 9 (14.3 %), while none showed exon 13 mutation. Most exon 9 mutations showed Ala503-Tyr504 duplication, while one had novel point mutation at codon 476 (S476G). In contrast to exon 9 mutations, most exon 11 mutations were in-frame deletions (79 %, 19/24), predominantly at codons 550-560, while remaining exon 11 mutant cases were point mutations at codons 559, 560, 568, 573 and 575. Interestingly, P573T, Q556_V560delinsH, Q575H and Q575_P577 were novel variations observed in exon 11. The PDGFRA mutations were seen mostly in exon 18, which showed point mutation at codon 842 (D842V), while exon 12 showed a novel indel variation (V561_H570delinsT). No significant correlation between c-KIT/PDGFRA mutations and clinicopathological data was observed. In conclusion, this study highlights the frequency and distribution pattern of c-KIT/PDGFRA mutation in Indian cohort. The current study identified novel variations that added new insights into the genetic heterogeneity of GIST patients. Furthermore, this is the first study to report the presence of PDGFRA mutation from Indian subcontinent.

  10. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) associated with a novel C82R mutation in the NOTCH3 gene.

    PubMed

    Zea-Sevilla, M Ascensión; Bermejo-Velasco, Pedro; Serrano-Heranz, Regino; Calero, Miguel

    2015-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare inherited cerebrovascular disease associated with mutations in the NOTCH3 gene on chromosome 19, and represents the most common hereditary stroke disorder. We describe a pedigree, which suffered the classical clinical CADASIL pattern of migraine headaches, recurrent subcortical infarcts, and subcortical dementia, associated with a previously undescribed missense mutation (c.[244T>C], p.[C82R]) in NOTCH3. This new mutation extends the list of known pathogenic mutations responsible for CADASIL, which are associated with an odd number of cysteine residues within any of the epidermal growth factor-like repeats of Notch3 receptor protein.

  11. iMARS--mutation analysis reporting software: an analysis of spontaneous cII mutation spectra.

    PubMed

    Morgan, Claire; Lewis, Paul D

    2006-01-31

    The sensitivity of any mutational assay is determined by the level at which spontaneous mutations occur in the corresponding untreated controls. Establishing the type and frequency at which mutations occur naturally within a test system is essential if one is to draw scientifically sound conclusions regarding chemically induced mutations. Currently, mutation-spectra analysis is laborious and time-consuming. Thus, we have developed iMARS, a comprehensive mutation-spectrum analysis package that utilises routinely used methodologies and visualisation tools. To demonstrate the use and capabilities of iMARS, we have analysed the distribution, types and sequence context of spontaneous base substitutions derived from the cII gene mutation assay in transgenic animals. Analysis of spontaneous mutation spectra revealed variation both within and between the transgenic rodent test systems Big Blue Mouse, MutaMouse and Big Blue Rat. The most common spontaneous base substitutions were G:C-->A:T transitions and G:C-->T:A transversions. All Big Blue Mouse spectra were significantly different from each other by distribution and nearly all by mutation type, whereas the converse was true for the other test systems. Twenty-eight mutation hotspots were observed across all spectra generally occurring in CG, GA/TC, GG and GC dinucleotides. A mutation hotspot at nucleotide 212 occurred at a higher frequency in MutaMouse and Big Blue Rat. In addition, CG dinucleotides were the most mutable in all spectra except two Big Blue Mouse spectra. Thus, spontaneous base-substitution spectra showed more variation in distribution, type and sequence context in Big Blue Mouse relative to spectra derived from MutaMouse and Big Blue Rat. The results of our analysis provide a baseline reference for mutation studies utilising the cII gene in transgenic rodent models. The potential differences in spontaneous base-substitution spectra should be considered when making comparisons between these test systems

  12. Severe infantile leigh syndrome associated with a rare mitochondrial ND6 mutation, m.14487T>C.

    PubMed

    Tarnopolsky, Mark; Meaney, Brandon; Robinson, Brian; Sheldon, Katherine; Boles, Richard G

    2013-08-01

    We describe a case of severe infantile-onset complex I deficiency in association with an apparent de novo near-homoplasmic mutation (m.14487T>C) in the mitochondrial ND6 gene, which was previously associated with Leigh syndrome and other neurological disorders. The mutation was near-homoplasmic in muscle by NextGen sequencing (99.4% mutant), homoplasmic in muscle by Sanger sequencing, and it was associated with a severe complex I deficiency in both muscle and fibroblasts. This supports previous data regarding Leigh syndrome being on the severe end of a phenotypic spectrum including progressive myoclonic epilepsy, childhood-onset dystonia, bilateral striatal necrosis, and optic atrophy, depending on the proportion of mutant heteroplasmy. While the mother in all previously reported cases was heteroplasmic, the mother and brother of this case were homoplasmic for the wild-type, m.14487T. Importantly, the current data demonstrate the potential for cases of mutations that were previously reported to be homoplasmic by Sanger sequencing to be less homoplasmic by NextGen sequencing. This case underscores the importance of considering mitochondrial DNA mutations in families with a negative family history, even in offspring of those who have tested negative for a specific mtDNA mutation. Copyright © 2013 Wiley Periodicals, Inc.

  13. Escherichia Coli Mutations That Prevent the Action of the T4 Unf/Alc Protein Map in an RNA Polymerase Gene

    PubMed Central

    Snyder, L.; Jorissen, L.

    1988-01-01

    Bacteriophage T4 has the substituted base hydroxymethylcytosine in its DNA and presumably shuts off host transcription by specifically blocking transcription of cytosine-containing DNA. When T4 incorporates cytosine into its own DNA, the shutoff mechanism is directed back at T4, blocking its late gene expression and phage production. Mutations which permit T4 multiplication with cytosine DNA should be in genes required for host shutoff. The only such mutations characterized thus far have been in the phage unf/alc gene. The product of this gene is also required for the unfolding of the host nucleoid after infection, hence its dual name unf/alc. As part of our investigation of the mechanism of action of unf/alc, we have isolated Escherichia coli mutants which propagate cytosine T4 even if the phage are genotypically alc(+). These same E. coli mutants are delayed in the T4-induced unfolding of their nucleoid, lending strong support to the conclusion that blocking transcription and unfolding the host nucleoid are but different manifestations of the same activity. We have mapped two of the mutations, called paf mutations for prevent alc function. They both map at about 90 min, probably in the rpoB gene encoding a subunit of RNA polymerase. From the behavior of Paf mutants, we hypothesize that the unf/alc gene product of T4 interacts somehow with the host RNA polymerase to block transcription of cytosine DNA and unfold the host nucleoid. PMID:3282983

  14. Mutations in glycyl-tRNA synthetase impair mitochondrial metabolism in neurons.

    PubMed

    Boczonadi, Veronika; Meyer, Kathrin; Gonczarowska-Jorge, Humberto; Griffin, Helen; Roos, Andreas; Bartsakoulia, Marina; Bansagi, Boglarka; Ricci, Giulia; Palinkas, Fanni; Zahedi, René P; Bruni, Francesco; Kaspar, Brian; Lochmüller, Hanns; Boycott, Kym M; Müller, Juliane S; Horvath, Rita

    2018-06-15

    The nuclear-encoded glycyl-tRNA synthetase gene (GARS) is essential for protein translation in both cytoplasm and mitochondria. In contrast, different genes encode the mitochondrial and cytosolic forms of most other tRNA synthetases. Dominant GARS mutations were described in inherited neuropathies, while recessive mutations cause severe childhood-onset disorders affecting skeletal muscle and heart. The downstream events explaining tissue-specific phenotype-genotype relations remained unclear. We investigated the mitochondrial function of GARS in human cell lines and in the GarsC210R mouse model. Human-induced neuronal progenitor cells (iNPCs) carrying dominant and recessive GARS mutations showed alterations of mitochondrial proteins, which were more prominent in iNPCs with dominant, neuropathy-causing mutations. Although comparative proteomic analysis of iNPCs showed significant changes in mitochondrial respiratory chain complex subunits, assembly genes, Krebs cycle enzymes and transport proteins in both recessive and dominant mutations, proteins involved in fatty acid oxidation were only altered by recessive mutations causing mitochondrial cardiomyopathy. In contrast, significant alterations of the vesicle-associated membrane protein-associated protein B (VAPB) and its downstream pathways such as mitochondrial calcium uptake and autophagy were detected in dominant GARS mutations. The role of VAPB has been supported by similar results in the GarsC210R mice. Our data suggest that altered mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) may be important disease mechanisms leading to neuropathy in this condition.

  15. Coinheritance of a novel mutation on the HBA1 gene: c.187delG (p.W62fsX66) [codon 62 (-G) (α1)] with the α212 patchwork allele and Hb S [β6(A3)Glu→Val, GAG>GTG; HBB: c.20A>T].

    PubMed

    Scheps, Karen G; De Paula, Silvia M; Bitsman, Alicia R; Freigeiro, Daniel H; Basack, F Nora; Pennesi, Sandra P; Varela, Viviana

    2013-01-01

    We describe a novel frameshift mutation on the HBA1 gene (c.187delG), causative of α-thalassemia (α-thal) in a Black Cuban family with multiple sequence variants in the HBA genes and the Hb S [β6(A3)Glu→Val, GAG>GTG; HBB: c.20A>T] mutation. The deletion of the first base of codon 62 resulted in a frameshift at amino acid 62 with a putative premature termination codon (PTC) at amino acid 66 on the same exon (p.W62fsX66), which most likely triggers nonsense mediated decay of the resulting mRNA. This study also presents the first report of the α212 patchwork allele in Latin America and the description of two new sequence variants in the HBA2 region (c.-614G>A in the promoter region and c.95+39 C>T on the first intron).

  16. Long-term outcome of Leigh syndrome caused by the NARP-T8993C mtDNA mutation.

    PubMed

    Debray, François-Guillaume; Lambert, Marie; Lortie, Anne; Vanasse, Michel; Mitchell, Grant A

    2007-09-01

    Mutations at mitochondrial DNA (mtDNA) nucleotide 8993 can cause neurogenic weakness, ataxia and retinitis pigmentosa (NARP syndrome), or maternally inherited Leigh syndrome (LS), with a correlation between the amount of mutant mtDNA and the severity of the neurological disease. The T8993C mutation is generally considered to be clinically milder than the T8993G mutation but when the level of heteroplasmy exceeds 90%, progressive neurodegeneration has been found. We report on a long-term follow-up of a patient who presented at 4 years of age with typical LS but showed an unexpected resolution of his symptoms and a favorable outcome. At 18 years of age, his neurological examination was near normal, with neither peripheral neuropathy nor retinopathy. mtDNA analysis identified the presence of T8993C mutation at high level (>95%) in the patient's blood leukocytes. This case report and literature review emphasizes the variability of the phenotypic expression of the T8993C mutation and the need for caution in predictive counseling in such patients. (c) 2007 Wiley-Liss, Inc. Copyright 2007 Wiley-Liss, Inc.

  17. Clinical features of X linked juvenile retinoschisis in Chinese families associated with novel mutations in the RS1 gene.

    PubMed

    Li, Xiaoxin; Ma, Xiang; Tao, Yong

    2007-06-07

    To describe the clinical phenotype of X linked juvenile retinoschisis (XLRS) in 12 Chinese families with 11 different mutations in the XLRS1 (RS1) gene. Complete ophthalmic examinations were carried out in 29 affected males (12 probands), 38 heterozygous females carriers, and 100 controls. The coding regions of the RS1 gene that encodes retinoschisin were amplified by polymerase chain reaction and directly sequenced. Of the 29 male participants, 28 (96.6%) displayed typical foveal schisis. Eleven different RS1 mutations were identified in 12 families; four of these mutations, two frameshift mutations (26 del T of exon 1 and 488 del G of exon 5), and two missense mutations (Asp145His and Arg156Gly) of exon 5, had not been previously described. One non-disease-related polymorphism (NSP): 576C to T (Pro192Pro) change was also newly reported herein. We compared genotypes and observed more severe clinical features in families with the following mutations: frameshift mutation (26 del T) of exon 1, the splice donor site mutation (IVS1+2T to C),or Arg102Gln, Arg209His, and Arg213Gln mutations. Severe XLRS phenotypes are associated with the frameshift mutation 26 del T, splice donor site mutation (IVS1+2T to C), and Arg102Gln, Asp145His, Arg209His, and Arg213Gln mutations. The wide variability in the phenotype in Chinese patients with XLRS and different mutations in the RS1 gene is described. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS.

  18. [Analysis of clinical phenotype and CGH1 gene mutations in a family affected with dopa-responsive dystonia].

    PubMed

    Yan, Yaping; Chen, Xiaohong; Luo, Wei

    2017-04-10

    To explore genetic mutations and clinical features of a pedigree affected with dopa-responsive dystonia. PCR and Sanger sequencing were applied to detect mutations of the GCH1 gene among 7 members from the pedigree. The family was detected to have a known heterozygous mutation of the GCH1 gene (c.550C>T). For the 7 members from the pedigree, the age of onset has ranged from 13 to 60 years. The mother of the proband has carried the same mutation but was still healthy at 80. The symptoms of the other three patients were in slow progression, with diurnal fluctuation which can be improved with sleeping, dystonias of lower limbs, and tremor of both hands. Treatment with small dose of levodopa has resulted in significant improvement of clinical symptoms. By database analysis, the c.550C>T mutation was predicted as probably pathological. The c.550C>T mutation probably underlies the disease in this pedigree. The clinical phenotypes of family members may be variable for their ages of onset. Some may even be symptom free.

  19. Novel de novo nonsense mutation of the PHEX gene (p.Lys50Ter) in a Chinese patient with hypophosphatemic rickets.

    PubMed

    Huang, Yanru; Mei, Libin; Pan, Qian; Tan, Hu; Quan, Yi; Gui, Baoheng; Chang, Jiazhen; Ma, Ruiyu; Peng, Ying; Yang, Pu; Liang, Desheng; Wu, Lingqian

    2015-07-01

    X-linked hypophosphatemic rickets (XLHR), the most common form of inherited rickets, is a dominant disorder characterized by hypophosphatemia, abnormal bone mineralization, and short stature. Mutations in the PHEX gene are major causes of XLHR. Herein, we clinically characterized four unrelated families with hypophosphatemia, bone abnormalities, short stature, and dentin malformation. Mutational analysis of the PHEX gene using Sanger sequencing revealed three recurrent mutations (c.2197T>C, c.1646G>C, and c.2198G>A) and a de novo nonsense mutation (c.148A>T). The novel mutation was not found in any of the unaffected family members or in the 100 healthy controls and was predicted to produce a truncated protein (p.K50X), a truncated form of the PHEX protein caused by nonsense mutations has been frequently detected in XLHR individuals. Thus, our work indicated that the c.148A>T (p.K50X) mutation was the likely pathogenic mutation in individual III-2 in family 2, and that PHEX gene mutations were responsible for XLHR in these Chinese families. These findings expand the mutation spectrum of PHEX and may help us to understand the molecular basis of XLHR in order to facilitate genetic counseling. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Hb Dartmouth (HBA2: c.200T>C): An α2-Globin Gene Associated with Hb H Disease in One Homozygous Patient.

    PubMed

    Farashi, Samaneh; Faramarzi Garous, Negin; Ashki, Mehri; Vakili, Shadi; Zeinali, Fatemah; Imanian, Hashem; Azarkeivan, Azita; Najmabadi, Hossein

    2015-01-01

    Hb H (β4) disease is caused by deletion or inactivation of three out of four α-globin genes. A high incidence of Hb H disease has been reported all over the world. There is a wide spectrum of phenotypic presentations, from clinically asymptomatic to having significant hepatosplenomegaly and requiring occasional or even regular blood transfusions, even more severe anemia, Hb Bart's (γ4) hydrops fetalis syndrome that can cause death in the affected fetuses late in gestation. We here present a case who was diagnosed with Hb H disease that represents a new genotype for this hereditary disorder. Hb Dartmouth is a variant caused by a missense mutation at codon 66 of the α2-globin gene (HBA2: c.200T>C), resulting in the substitution of leucine by proline. We here emphasize the importance of this point mutation involving Hb H disease and also the necessity for prenatal diagnosis (PND) for those who carry this point mutation in the heterozygous state.

  1. Methylenetetrahydrofolate reductase gene polymorphisms and recurrent pregnancy loss in China: a systematic review and meta-analysis.

    PubMed

    Chen, Hui; Yang, Xiaorong; Lu, Ming

    2016-02-01

    Recurrent pregnancy loss (RPL) is defined as two or more consecutive pregnancy losses before the 20th week of gestation with the same partner. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms were reported to have an effect on embryonic development and pregnancy success. To clarify the effects of MTHFR polymorphisms on the risk of RPL in the Chinese population, a meta-analysis was performed. Related studies were identified from Medline, Embase, Web of Science, and Chinese Databases up to March 7th, 2015. We extracted the number of both C677T and A1298C genotypes in the cases and controls. Odds ratios (ORs) and 95 % confidence intervals (95 % CIs) were used to estimate the associations. Data analysis was performed using Stata 13.1. Sixteen articles involving 1420 RPL cases and 1408 controls were included in this meta-analysis. MTHFR C677T polymorphism was significantly associated with RPL risk under dominant (TT + CT vs. CC; OR 2.10, 95 % CI 1.76-2.50), recessive (TT vs. CC + CT; OR 2.36, 95 % CI 1.92-2.90), heterozygote (CT vs. CC; OR 1.77, 95 % CI 1.32-2.37), homozygote (TT vs. CC; OR 3.55, 95 % CI 2.76-4.56), and additive (T vs. C; OR 1.83, 95 % CI 1.64-2.05) model. Sensitivity analyses excluding studies that deviated from HWE did not change the direction of effect. For the A1298C mutation, no significant association was found. The Egger's regression asymmetry test showed no significant publication bias. Identification of MTHFR C677T mutation would have some implication for primary prevention of RPL and screening of high-risk individuals in China. Large well-designed researches are needed to fully describe the associations.

  2. Arg753gln and Arg677 Trp Polymorphisms of Toll-Like Receptor 2 In Acute Apical Abscess.

    PubMed

    Miri-Moghaddam, Ebrahim; Farhad Mollashahi, Narges; Naghibi, Nava; Garme, Yasaman; Bazi, Ali

    2018-06-01

    Genetic polymorphisms can alter immunity response against pathogens, which in turn influence individuals' susceptibility to certain infections. Our aim was to determine the association of Arg753Gln (rs5743708) and Arg677Trp (rs12191786) polymorphisms of toll like receptor-2 gene with the two clinical forms of apical periodontitis: acute apical abscess (AAA) and asymptomatic apical periodontitis (AAP). There were 50 patients with AAA as case group and 50 with AAP as control group. Genotyping was done using Tetra-ARMS (amplification refractory mutation system) PCR. Heterozygous genotype of Arg677Trp polymorphism was associated with risk of AAA (OR=1.9, 95% CI: 0.7-5.5, p = 0.05). Although statistically insignificant, Arg677Trp polymorphism promoted the risk of AAA in dominant model (OR=2.1, 95% CI: 0.7-5.9, p > 0.05). The frequency of mutant allele (T) of Arg677Trp polymorphism was higher in AAA (14%) than AAP (7%) subjects (OR=1.7, 95% CI: 0.6-4.7). For Arg753Gln polymorphism, wild homozygous (GG) represented the dominant genotype in both cases (96%) and controls (100%). Variant allele (A) of Arg753Gln polymorphism was identified in 2% of AAA, while no individual represented with this allele in AAP subjects. Individuals with Arg753Gln; Arg677Trp (GG; TC) combination showed an elevated risk of AAA (OR=1.6, 95% CI: 0.5- 4.2, p > 0.05). Arg677Trp polymorphism of TLR-2 rendered a higher risk for the development of abscesses in apical periodontitis. It is recommended to explore role of this polymorphism in other populations.

  3. Complex phenotype linked to a mutation in exon 11 of the lamin A/C gene: Hypertrophic cardiomyopathy, atrioventricular block, severe dyslipidemia and diabetes.

    PubMed

    Francisco, Ana Rita G; Santos Gonçalves, Inês; Veiga, Fátima; Mendes Pedro, Mónica; Pinto, Fausto J; Brito, Dulce

    2017-09-01

    The lamin A/C (LMNA) gene encodes lamins A and C, which have an important role in nuclear cohesion and chromatin organization. Mutations in this gene usually lead to the so-called laminopathies, the primary cardiac manifestations of which are dilated cardiomyopathy and intracardiac conduction defects. Some mutations, associated with lipodystrophy but not cardiomyopathy, have been linked to metabolic abnormalities such as diabetes and severe dyslipidemia. Herein we describe a new phenotype associated with a mutation in exon 11 of the LMNA gene: hypertrophic cardiomyopathy, atrioventricular block, severe dyslipidemia and diabetes. A 64-year-old woman with hypertrophic cardiomyopathy and a point mutation in exon 11 of the LMNA gene (c.1718C>T, Ser573Leu) presented with severe symptomatic ventricular hypertrophy and left ventricular outflow tract obstruction. She underwent septal alcohol ablation, followed by Morrow myectomy. The patient was also diagnosed with severe dyslipidemia, diabetes and obesity, and fulfilled diagnostic criteria for metabolic syndrome. No other characteristics of LMNA mutation-related phenotypes were identified. The development of type III atrioventricular block with no apparent cause, and mildly depressed systolic function, prompted referral for cardiac resynchronization therapy. In conclusion, the association between LMNA mutations and different phenotypes is complex and not fully understood, and can present with a broad spectrum of severity. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. New splicing-site mutations in the SURF1 gene in Leigh syndrome patients.

    PubMed

    Pequignot, M O; Desguerre, I; Dey, R; Tartari, M; Zeviani, M; Agostino, A; Benelli, C; Fouque, F; Prip-Buus, C; Marchant, D; Abitbol, M; Marsac, C

    2001-05-04

    The gene SURF1 encodes a factor involved in the biogenesis of cytochrome c oxidase, the last complex in the respiratory chain. Mutations of the SURF1 gene result in Leigh syndrome and severe cytochrome c oxidase deficiency. Analysis of seven unrelated patients with cytochrome c oxidase deficiency and typical Leigh syndrome revealed different SURF1 mutations in four of them. Only these four cases had associated demyelinating neuropathy. Three mutations were novel splicing-site mutations that lead to the excision of exon 6. Two different novel heterozygous mutations were found at the same guanine residue at the donor splice site of intron 6; one was a deletion, whereas the other was a transition [588+1G>A]. The third novel splicing-site mutation was a homozygous [516-2_516-1delAG] in intron 5. One patient only had a homozygous polymorphism in the middle of the intron 8 [835+25C>T]. Western blot analysis showed that Surf1 protein was absent in all four patients harboring mutations. Our studies confirm that the SURF1 gene is an important nuclear gene involved in the cytochrome c oxidase deficiency. We also show that Surf1 protein is not implicated in the assembly of other respiratory chain complexes or the pyruvate dehydrogenase complex.

  5. Lynch syndrome: the influence of environmental factors on extracolonic cancer risk in hMLH1 c.C1528T mutation carriers and their mutation-negative sisters.

    PubMed

    Blokhuis, M M; Pietersen, G E; Goldberg, P A; Algar, U; Van der Merwe, L; Mbatani, N; Vorster, A A; Ramesar, R S

    2010-09-01

    Lynch Syndrome (LS) is a cancer susceptibility syndrome caused mostly by mutations in the mismatch repair genes, hMLH1, hMSH2 and hMSH6. Mutation carriers are at risk of colorectal and endometrial cancer and, less frequently, cancer of the ovaries, stomach, small bowel, hepatobiliary tract, ureter, renal pelvis and brain. The influence of environmental factors on extracolonic cancer risk in LS patients has not been investigated thus far. The aim of this study was to investigate some of these factors in South African females carrying the hMLH1 c.C1528T mutation and their mutation-negative relatives. Data were collected from 87 mutation-positive females and 121 mutation-negative female relatives regarding age, cancer history, hormonal contraceptive use, parity, duration of breast feeding, height, weight and age at first birth, last birth, menarche and menopause. Influence of these factors on cancer risk was analysed by mixed-effects generalised linear models. Extracolonic cancer occurred in 14% (12/87) of mutation-positive females versus 7% (8/121) of mutation-negative females, (P = 0.0279, adjusted for age and relatedness between women). Breast cancer was the most common extracolonic cancer. An association was found for oral contraceptive use and extracolonic cancer risk in mutation-negative females only. No association was found for any of the other risk factors investigated, when adjusted for age. This might be due to the scarcity of extracolonic cancers in our data. Future knowledge on the influence of additional environmental factors on cancer risk in LS females can lead to evidence-based lifestyle advice for mutation carriers, thereby complementing the prevention strategies available today. In addition, it can contribute to an integrated model of cancer aetiology. Therefore, this study should be taken as a thrust for further research.

  6. Investigation of the Mitochondrial ATPase 6/8 and tRNA(Lys) Genes Mutations in Autism.

    PubMed

    Piryaei, Fahimeh; Houshmand, Massoud; Aryani, Omid; Dadgar, Sepideh; Soheili, Zahra-Soheila

    2012-01-01

    Autism results from developmental factors that affect many or all functional brain systems. Brain is one of tissues which are crucially in need of adenosine triphosphate (ATP). Autism is noticeably affected by mitochondrial dysfunction which impairs energy metabolism. Considering mutations within ATPase 6, ATPase 8 and tRNA(Lys) genes, associated with different neural diseases, and the main role of ATPase 6/8 in energy generation, we decided to investigate mutations on these mtDNA-encoded genes to reveal their roles in autism pathogenesis. In this experimental study, mutation analysis for the mentioned genes were performed in a cohort of 24 unrelated patients with idiopathic autism by employing amplicon sequencing of mtDNA fragments. In this study, 12 patients (50%) showed point mutations that represent a significant correlation between autism and mtDNA variations. Most of the identified substitutions (55.55%) were observed on MT-ATP6, altering some conserved amino acids to other ones which could potentially affect ATPase 6 function. Mutations causing amino acid replacement denote involvement of mtDNA genes, especially ATPase 6 in autism pathogenesis. MtDNA mutations in relation with autism could be remarkable to realize an understandable mechanism of pathogenesis in order to achieve therapeutic solutions.

  7. Mutation analysis in 129 genes associated with other forms of retinal dystrophy in 157 families with retinitis pigmentosa based on exome sequencing.

    PubMed

    Xu, Yan; Guan, Liping; Xiao, Xueshan; Zhang, Jianguo; Li, Shiqiang; Jiang, Hui; Jia, Xiaoyun; Yang, Jianhua; Guo, Xiangming; Yin, Ye; Wang, Jun; Zhang, Qingjiong

    2015-01-01

    Mutations in 60 known genes were previously identified by exome sequencing in 79 of 157 families with retinitis pigmentosa (RP). This study analyzed variants in 129 genes associated with other forms of hereditary retinal dystrophy in the same cohort. Apart from the 73 genes previously analyzed, a further 129 genes responsible for other forms of hereditary retinal dystrophy were selected based on RetNet. Variants in the 129 genes determined by whole exome sequencing were selected and filtered by bioinformatics analysis. Candidate variants were confirmed by Sanger sequencing and validated by analysis of available family members and controls. A total of 90 candidate variants were present in the 129 genes. Sanger sequencing confirmed 83 of the 90 variants. Analysis of family members and controls excluded 76 of these 83 variants. The remaining seven variants were considered to be potential pathogenic mutations; these were c.899A>G, c.1814C>G, and c.2107C>T in BBS2; c.1073C>T and c.1669C>T in INPP5E; and c.3582C>G and c.5704-5C>G in CACNA1F. Six of these seven mutations were novel. The mutations were detected in five unrelated patients without a family history, including three patients with homozygous or compound heterozygous mutations in BBS2 and INPP5E, and two patients with hemizygous mutations in CACNA1F. None of the patients had mutations in the genes associated with autosome dominant retinal dystrophy. Only a small portion of patients with RP, about 3% (5/157), had causative mutations in the 129 genes associated with other forms of hereditary retinal dystrophy.

  8. Serine Protease Inhibitor Kazal Type 1 (SPINK1) c.194+2T > C Mutation May Predict Long-term Outcome of Endoscopic Treatments in Idiopathic Chronic Pancreatitis.

    PubMed

    Sun, Chang; Liu, Mu-Yun; Liu, Xiao-Gang; Hu, Liang-Hao; Xia, Tian; Liao, Zhuan; Li, Zhao-Shen

    2015-11-01

    Endoscopic interventional is a commonly used treatment method for idiopathic chronic pancreatitis. Serine protease inhibitor Kazal type 1 (SPINK1) 194+2T>C mutation is most frequently observed in Chinese pancreatitis patients and influences the clinical course of idiopathic chronic pancreatitis patients. We conducted this study to determine the impacts of this mutation on the outcome of endoscopic treatments.In this study, we enrolled 423 patients. Among them, 101 idiopathic chronic pancreatitis patients without other relevant mutations had a successful endoscopic procedure and completed follow-up. Clinical characteristics including Izbicki pain score, exocrine and endocrine function, were evaluated. Genetic sequencing was conducted to detect SPINK1 194+2T>C mutations.The c.194+2T>C mutation was found in 58 (57.43%) patients. Factors relevant to pain relief are c.194+2T>C mutation (P = 0.011), severe pain before treatment (P = 0.005), and necessary subsequent endoscopic treatments (P < 0.001). More patients with the intronic mutation had deteriorated endocrine function (P = 0.001) relative to those patients without the mutation.Patients carrying the c.194+2T>C mutation were less likely to achieve pain relief through endoscopic treatments. They also have a higher risk of endocrine function deterioration. SPINK1 c.194+2T>C mutation may be applied as a pretreatment predictor in idiopathic chronic pancreatitis patients.

  9. Evaluation of Factor V G1691A, prothrombin G20210A, Factor XIII V34L, MTHFR A1298C, MTHFR C677T and PAI-1 4G/5G genotype frequencies of patients subjected to cardiovascular disease (CVD) panel in south-east region of Turkey.

    PubMed

    Oztuzcu, Serdar; Ergun, Sercan; Ulaşlı, Mustafa; Nacarkahya, Gülper; Iğci, Yusuf Ziya; Iğci, Mehri; Bayraktar, Recep; Tamer, Ali; Çakmak, Ecir Ali; Arslan, Ahmet

    2014-06-01

    Cardiovascular disease (CVD) risk factors, such as arterial hypertension, obesity, dyslipidemia or diabetes mellitus, as well as CVDs, including myocardial infarction, coronary artery disease or stroke, are the most prevalent diseases and account for the major causes of death worldwide. In the present study, 4,709 unrelated patients subjected to CVD panel in south-east part of Turkey between the years 2010 and 2013 were enrolled and DNA was isolated from the blood samples of these patients. Mutation analyses were conducted using the real-time polymerase chain reaction method to screen six common mutations (Factor V G1691A, PT G20210A, Factor XIII V34L, MTHFR A1298C and C677T and PAI-1 -675 4G/5G) found in CVD panel. The prevalence of these mutations were 0.57, 0.25, 2.61, 13.78, 9.34 and 24.27 % in homozygous form, respectively. Similarly, the mutation percent of them in heterozygous form were 7.43, 3.44, 24.91, 44.94, 41.09 and 45.66%, respectively. No mutation was detected in 92 (1.95%) patients in total. Because of the fact that this is the first study to screen six common mutations in CVD panel in south-east region of Turkey, it has a considerable value on the diagnosis and treatment of these diseases. Upon the results of the present and previous studied a careful examination for these genetic variants should be carried out in thrombophilia screening programs, particularly in Turkish population.

  10. Two novel mutations in the GAN gene causing giant axonal neuropathy.

    PubMed

    Normendez-Martínez, Monica Irad; Monterde-Cruz, Lucero; Martínez, Roberto; Marquez-Harper, Magdalena; Esquitin-Garduño, Nayelli; Valdes-Flores, Margarita; Casas-Avila, Leonora; de Leon-Suarez, Valeria Ponce; Romero-Díaz, Viktor Javier; Hidalgo-Bravo, Alberto

    2018-06-06

    Giant axonal neuropathy (GAN) is a rare neurodegenerative disease transmitted in an autosomal recessive mode. This disorder presents motor and sensitive symptoms with an onset in early childhood. Progressive neurodegeneration makes the patients wheelchair dependent by the end of the second decade of life. Affected individuals do not survive beyond the third decade of life. Molecular analysis has identified mutations in the gene GAN in patients with this disorder. This gene produces a protein called gigaxonin which is presumably involved in protein degradation via the ubiquitin-proteasome system. However, the underlying molecular mechanism is not clearly understood yet. Here we present the first patient from Mexico with clinical data suggesting GAN. Sequencing of the GAN gene was carried out. Changes in the nucleotide sequence were investigated for their possible impact on protein function and structure using the publicly available prediction tools PolyPhen-2 and PANTHER. The patient is a compound heterozygous carrying two novel mutations in the GAN gene. The sequence analysis revealed two missense mutations in the Kelch repeats domain. In one allele, a C>T transition was found in exon 9 at the nucleotide position 55393 (g.55393C>T). In the other allele, a transversion G>T in exon 11 at the nucleotide position 67471 (g.67471G>T) was observed. Both of the bioinformatic tools predicted that these amino acid substitutions would have a negative impact on gigaxonin's function. This work provides useful information for health professionals and expands the spectrum of disease-causing mutations in the GAN gene and it is the first documented case in Mexican population.

  11. An innovative strategy to clone positive modifier genes of defects caused by mtDNA mutations: MRPS18C as suppressor gene of m.3946G>A mutation in MT-ND1 gene.

    PubMed

    Rodríguez-García, María Elena; Cotrina-Vinagre, Francisco Javier; Carnicero-Rodríguez, Patricia; Martínez-Azorín, Francisco

    2017-07-01

    We have developed a new functional complementation approach to clone modifier genes which overexpression is able to suppress the biochemical defects caused by mtDNA mutations (suppressor genes). This strategy consists in transferring human genes into respiratory chain-deficient fibroblasts, followed by a metabolic selection in a highly selective medium. We used a normalized expression cDNA library in an episomal vector (pREP4) to transfect the fibroblasts, and a medium with glutamine and devoid of any carbohydrate source to select metabolically. Growing the patient's fibroblasts in this selective medium, the deficient cells rapidly disappear unless they are rescued by the cDNA of a suppressor gene. The use of an episomal vector allows us to carry out several rounds of transfection/selection (cyclical phenotypic rescue) to enrich the rescue with true clones of suppressor genes. Using fibroblasts from a patient with epileptic encephalopathy with the m.3946G>A (p.E214K) mutation in the MT-ND1 gene, several candidate genes were identified and one of them was characterized functionally. Thus, overexpression of MRPS18C gene (that encode for bS18m protein) suppressed the molecular defects produced by this mtDNA mutation, recovering the complex I activity and reducing the ROS produced by this complex to normal levels. We suggest that modulation of bS18m expression may be an effective therapeutic strategy for the patients with this mutation.

  12. Characterization of the mutations in the glucose-6-phosphatase gene in Israeli patients with glycogen storage disease type 1a: R83C in six Jews and a novel V166G mutation in a Muslim Arab.

    PubMed

    Parvari, R; Moses, S; Hershkovitz, E; Carmi, R; Bashan, N

    1995-01-01

    Glycogen storage disease type 1a (GSD 1a), an autosomal recessive disease, is caused by the inactivity of glucose-6-phosphatase, the gene of which has been recently cloned. We report on the missense mutation C-->T at nucleotide 326 of the G6Pase gene, causing the change of the Arg codon at position 83 into a Cys codon, as the single mutation detected in six Jewish patients. This finding suggests that this mutation might be prevalent among the Jewish population. A new missense mutation T-->G at nucleotide 576 resulting in V166G was found in an Arab Muslim patient. These families may benefit now from pre- and postnatal diagnosis by analysis of DNA from blood and amniotic fluid or chorionic villus cells rather than liver biopsy. No mutations in the G6Pase gene were detected in two GSD 1b patients.

  13. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene mutations in North Egyptian population: implications for the genetic diagnosis in Egypt.

    PubMed

    El-Seedy, A; Pasquet, M C; Shafiek, H; Morsi, T; Kitzis, A; Ladevèze, V

    2016-11-30

    Cystic fibrosis (CF) occurrence in Arab populations is not common and still remains underidentified. Furthermore, the lack of disease awareness and diagnosis facilities have mislead the identification of cystic fibrosis for decades. The knowledge about cystic fibrosis (CF) in Egypt is very limited, and a few reports have drawn attention to the existence of CF or CFTR-related disorders (CFTR-RDs) in the Egyptian population. Therefore a comprehensive genetic analysis of the CFTR gene was realized in patients of North Egypt. DNA samples of 56 Egyptian patients were screened for the CFTR gene mutations. The 27 exons and their flanking regions of the CFTR gene were amplified by PCR, using the published primer pairs, and were studied by automated direct DNA sequencing to detect disease-causing mutations. Moreover, large duplication/deletion was analysed by MLPA technique. CFTR screening revealed the identification of thirteen mutations including four novel ones: c.92G>A (p.Arg31His), c.2782G>C (p.Ala928Pro), c.3718-24G>A, c.4207A>G (p.Arg1403Gly) and nine previously reported mutations: c.454A>T (p.Met152Leu), c.902A>G (p.Tyr301Cys), c.1418delG, c.2620-15C>G, c.2997_3000delAATT, c.3154T>G (p.Phe1052Val), c.3872A>G (p.Gln1291Arg), c.3877G>A (p.Val1293Ile), c.4242+10T>C. Furthermore, eight polymorphisms were found: c.743+40A>G, c.869+11C>T, c.1408A>G, c.1584G>A, c.2562T>G, c.3870A>G, c.4272C>T, c.4389G>A. These mutations and polymorphisms were not previously described in the Egyptian population except for the c.1408A>G polymorphism. Here we demonstrate the importance of the newly discovered mutations in Egyptian patients and the presence of CF, whereas the p.Phe508del mutation is not detected. The identification of CFTR mutations will become increasingly important in undocumented populations. The current findings will help us expand the mutational spectrum of CF and establish the first panel of the CFTR gene

  14. A novel 'splice site' HCN4 Gene mutation, c.1737+1 G>T, causes familial bradycardia, reduced heart rate response, impaired chronotropic competence and increased short-term heart rate variability.

    PubMed

    Hategan, Lidia; Csányi, Beáta; Ördög, Balázs; Kákonyi, Kornél; Tringer, Annamária; Kiss, Orsolya; Orosz, Andrea; Sághy, László; Nagy, István; Hegedűs, Zoltán; Rudas, László; Széll, Márta; Varró, András; Forster, Tamás; Sepp, Róbert

    2017-08-15

    The most important molecular determinant of heart rate regulation in sino-atrial pacemaker cells includes hyperpolarization-activated, cyclic nucleotide-gated ion channels, the major isoform of which is encoded by the HCN4 gene. Mutations affecting the HCN4 gene are associated primarily with sick sinus syndrome. A novel c.1737+1 G>T 'splice-site' HCN4 mutation was identified in a large family with familial bradycardia which co-segregated with the disease providing a two-point LOD score of 4.87. Twelve out of the 22 investigated family members [4 males, 8 females average age 36 (SD 6) years] were considered as clinically affected (heart rate<60/min on resting ECG). Minimum [36 (SD 7) vs. 47 (SD 5) bpm, p=0.0087) and average heart rates [62 (SD 8) vs. 73 (SD 8) bpm, p=0.0168) were significantly lower in carriers on 24-hour Holter recordings. Under maximum exercise test carriers achieved significantly lower heart rates than non-carrier family members, and percent heart rate reserve and percent corrected heart rate reserve were significantly lower in carriers. Applying rigorous criteria for chronotropic incompetence a higher number of carriers exhibited chronotropic incompetence. Parameters, characterizing short-term variability of heart rate (i.e. rMSSD and pNN50%) were increased in carrier family members, even after normalization for heart rate, in the 24-hour ECG recordings with the same relative increase in 5-minute recordings. The identified novel 'splice site' HCN4 gene mutation, c.1737+1 G>T, causes familial bradycardia and leads to reduced heart rate response, impaired chronotropic competence and increased short-term heart rate variability in the mutation carriers. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Mitochondrial tRNA(Thr) A15951G mutation may not be associated with Leber's Hereditary Optic Neuropathy.

    PubMed

    Zhang, Xi; Yu, Shuaishuai; Tu, Yunhai; Huang, Wenjie

    2016-07-01

    Mutation in mitochondrial DNA (mtDNA) has been found to play an important role in the pathogenesis of Leber's Hereditary Optic Neuropathy (LHON). Three primary mutations, the ND4 G11778A, ND6 T14484C, and ND1 G3460A, have been found to account more than 90% of LHON patients in many families worldwide. In addition to the mutations in genes encoding the respiratory chain complex I, reports concerning the mt-tRNA gene mutations associated with LHON have increased, some pathogenic mutations caused the failure in mt-tRNA metabolism, thereby worsened the mitochondrial dysfunction that is responsible for LHON. Recently, the A15951G mutation in mt-tRNA(Thr) gene has been reported to be a "modified" factor in increasing the penetrance and expressivity of LHON-associated ND4 G11778A mutation in three Chinese families. However, evolutionary conservation analysis of this mutation suggested a poor conservation index and the pathogenicity scoring system showed that this mutation was a neutral polymorphism.

  16. Confirmation of the pathogenicity of a mutation p.G337C in the COL1A2 gene associated with osteogenesis imperfecta

    PubMed Central

    Jia, Mingrui; Shi, Ranran; Zhao, Xuli; Fu, Zhijian; Bai, Zhijing; Sun, Tao; Zhao, Xuejun; Wang, Wenbo; Xu, Chao; Yan, Fang

    2017-01-01

    Abstract Mutation analysis as the gold standard is particularly important in diagnosis of osteogenesis imperfecta (OI) and it may be preventable upon early diagnosis. In this study, we aimed to analyze the clinical and genetic materials of an OI pedigree as well as to confirm the deleterious property of the mutation. A pedigree with OI was identified. All family members received careful clinical examinations and blood was drawn for genetic analyses. Genes implicated in OI were screened for mutation. The function and structure of the mutant protein were predicted using bioinformatics analysis. The proband, a 9-month fetus, showed abnormal sonographic images. Disproportionately short and triangular face with blue sclera was noticed at birth. She can barely walk and suffered multiple fractures till 2-year old. Her mother appeared small stature, frequent fractures, blue sclera, and deformity of extremities. A heterozygous missense mutation c.1009G>T (p.G337C) in the COL1A2 gene was identified in her mother and her. Bioinformatics analysis showed p.G337 was well-conserved among multiple species and the mutation probably changed the structure and damaged the function of collagen. We suggest that the mutation p.G337C in the COL1A2 gene is pathogenic for OI by affecting the protein structure and the function of collagen. PMID:28953610

  17. Novel XLRS1 gene mutations cause X-linked juvenile retinoschisis in Chinese families.

    PubMed

    Ma, Xiang; Li, Xiaoxin; Wang, Lihua

    2008-01-01

    To investigate various XLRS1 (RS1) gene mutations in Chinese families with X-linked juvenile retinoschisis (XLRS or RS). Genomic DNA was isolated from leukocytes of 29 male patients with X-linked juvenile retinoschisis, 38 female carriers, and 100 normal controls. All 6 exons of the RS1 gene were amplified by polymerase chain reaction, and the RS1 gene mutations were determined by direct sequencing. Eleven different RS1 mutations in 12 families were identified in the 29 male patients. The mutations comprised eight missense, two frameshift, and one splice donor site mutation. Four of these mutations, one frameshift mutation (26 del T) in exon 1, one frameshift mutation (488 del G) in exon 5, Asp145His and Arg156Gly in exon 5, have not been previously described. One novel non-disease-related polymorphism, 576C to T (Pro192Pro) in exon 6, was also found. Six recurrent mutations, Ser73Pro and Arg102Gln mutations in exon 4 and Arg200Cys, Arg209His, Arg213Gln, and Cys223Arg mutations in exon 6, were also identified in this study. RS1 gene mutations caused X-linked juvenile retinoschisis in these Chinese families.

  18. Clinical features of X linked juvenile retinoschisis in Chinese families associated with novel mutations in the RS1 gene

    PubMed Central

    Ma, Xiang; Tao, Yong

    2007-01-01

    Purpose To describe the clinical phenotype of X linked juvenile retinoschisis (XLRS) in 12 Chinese families with 11 different mutations in the XLRS1 (RS1) gene. Methods Complete ophthalmic examinations were carried out in 29 affected males (12 probands), 38 heterozygous females carriers, and 100 controls. The coding regions of the RS1 gene that encodes retinoschisin were amplified by polymerase chain reaction and directly sequenced. Results Of the 29 male participants, 28 (96.6%) displayed typical foveal schisis. Eleven different RS1 mutations were identified in 12 families; four of these mutations, two frameshift mutations (26 del T of exon 1 and 488 del G of exon 5), and two missense mutations (Asp145His and Arg156Gly) of exon 5, had not been previously described. One non-disease-related polymorphism (NSP): 576C to T (Pro192Pro) change was also newly reported herein. We compared genotypes and observed more severe clinical features in families with the following mutations: frameshift mutation (26 del T) of exon 1, the splice donor site mutation (IVS1+2T to C),or Arg102Gln, Arg209His, and Arg213Gln mutations. Conclusions Severe XLRS phenotypes are associated with the frameshift mutation 26 del T, splice donor site mutation (IVS1+2T to C), and Arg102Gln, Asp145His, Arg209His, and Arg213Gln mutations. The wide variability in the phenotype in Chinese patients with XLRS and different mutations in the RS1 gene is described. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS. PMID:17615541

  19. The PCBP1 gene encoding poly(rC) binding protein I is recurrently mutated in Burkitt lymphoma.

    PubMed

    Wagener, Rabea; Aukema, Sietse M; Schlesner, Matthias; Haake, Andrea; Burkhardt, Birgit; Claviez, Alexander; Drexler, Hans G; Hummel, Michael; Kreuz, Markus; Loeffler, Markus; Rosolowski, Maciej; López, Cristina; Möller, Peter; Richter, Julia; Rohde, Marius; Betts, Matthew J; Russell, Robert B; Bernhart, Stephan H; Hoffmann, Steve; Rosenstiel, Philip; Schilhabel, Markus; Szczepanowski, Monika; Trümper, Lorenz; Klapper, Wolfram; Siebert, Reiner

    2015-09-01

    The genetic hallmark of Burkitt lymphoma is the translocation t(8;14)(q24;q32), or one of its light chain variants, resulting in IG-MYC juxtaposition. However, these translocations alone are insufficient to drive lymphomagenesis, which requires additional genetic changes for malignant transformation. Recent studies of Burkitt lymphoma using next generation sequencing approaches have identified various recurrently mutated genes including ID3, TCF3, CCND3, and TP53. Here, by using similar approaches, we show that PCBP1 is a recurrently mutated gene in Burkitt lymphoma. By whole-genome sequencing, we identified somatic mutations in PCBP1 in 3/17 (18%) Burkitt lymphomas. We confirmed the recurrence of PCBP1 mutations by Sanger sequencing in an independent validation cohort, finding mutations in 3/28 (11%) Burkitt lymphomas and in 6/16 (38%) Burkitt lymphoma cell lines. PCBP1 is an intron-less gene encoding the 356 amino acid poly(rC) binding protein 1, which contains three K-Homology (KH) domains and two nuclear localization signals. The mutations predominantly (10/12, 83%) affect the KH III domain, either by complete domain loss or amino acid changes. Thus, these changes are predicted to alter the various functions of PCBP1, including nuclear trafficking and pre-mRNA splicing. Remarkably, all six primary Burkitt lymphomas with a PCBP1 mutation expressed MUM1/IRF4, which is otherwise detected in around 20-40% of Burkitt lymphomas. We conclude that PCBP1 mutations are recurrent in Burkitt lymphomas and might contribute, in cooperation with other mutations, to its pathogenesis. © 2015 Wiley Periodicals, Inc.

  20. Autosomal dominant Carvajal plus syndrome due to the novel desmoplakin mutation c.1678A > T (p.Ile560Phe).

    PubMed

    Finsterer, Josef; Stöllberger, Claudia; Wollmann, Eva; Dertinger, Susanne; Laccone, Franco

    2016-09-01

    Carvajal syndrome is an autosomal dominant or autosomal recessive disorder, manifesting with dilated cardiomyopathy, woolly hair, and palmoplantar keratoma. Additional manifestations can be occasionally found. Carvajal syndrome may be due to mutations in the desmocollin-2, desmoplakin, or plakophilin-2 gene. We report a family with Carvajal syndrome which additionally presented with hypoacusis, noncompaction, recurrent pharyngeal infections, oligodontia, and recurrent diarrhoea. Father and brother were also affected and had died suddenly, the father despite implantation of a cardioverter defibrillator (ICD). Genetic studies revealed the novel pathogenic mutation c.1678A > T in the desmoplakin gene resulting in the amino acid change Ile to Phe at position 560 in the index case and her brother. The index case underwent ICD implantation recently. Phenotypic manifestations of Carvajal syndrome are even broader than so far anticipated, the number of mutations in the desmoplakin gene responsible for Carvajal syndrome is still increasing, and these patients require implantation of an ICD as soon as their diagnosis is established.

  1. Mutations in DDR2 gene cause SMED with short limbs and abnormal calcifications.

    PubMed

    Bargal, Ruth; Cormier-Daire, Valerie; Ben-Neriah, Ziva; Le Merrer, Martine; Sosna, Jacob; Melki, Judith; Zangen, David H; Smithson, Sarah F; Borochowitz, Zvi; Belostotsky, Ruth; Raas-Rothschild, Annick

    2009-01-01

    The spondylo-meta-epiphyseal dysplasia [SMED] short limb-hand type [SMED-SL] is a rare autosomal-recessive disease, first reported by Borochowitz et al. in 1993.(1) Since then, 14 affected patients have been reported.(2-5) We diagnosed 6 patients from 5 different consanguineous Arab Muslim families from the Jerusalem area with SMED-SL. Additionally, we studied two patients from Algerian and Pakistani ancestry and the parents of the first Jewish patients reported.(1) Using a homozygosity mapping strategy, we located a candidate region on chromosome 1q23 spanning 2.4 Mb. The position of the Discoidin Domain Receptor 2 (DDR2) gene within the candidate region and the similarity of the ddr2 knockout mouse to the SMED patients' phenotype prompted us to study this gene(6). We identified three missense mutations c.2254 C > T [R752C], c. 2177 T > G [I726R], c.2138C > T [T713I] and one splice site mutation [IVS17+1g > a] in the conserved sequence encoding the tyrosine kinase domain of the DDR2 gene. The results of this study will permit an accurate early prenatal diagnosis and carrier screening for families at risk.

  2. High-dose folic acid supplementation alters the human sperm methylome and is influenced by the MTHFR C677T polymorphism

    PubMed Central

    Aarabi, Mahmoud; San Gabriel, Maria C.; Chan, Donovan; Behan, Nathalie A.; Caron, Maxime; Pastinen, Tomi; Bourque, Guillaume; MacFarlane, Amanda J.; Zini, Armand; Trasler, Jacquetta

    2015-01-01

    Dietary folate is a major source of methyl groups required for DNA methylation, an epigenetic modification that is actively maintained and remodeled during spermatogenesis. While high-dose folic acid supplementation (up to 10 times the daily recommended dose) has been shown to improve sperm parameters in infertile men, the effects of supplementation on the sperm epigenome are unknown. To assess the impact of 6 months of high-dose folic acid supplementation on the sperm epigenome, we studied 30 men with idiopathic infertility. Blood folate concentrations increased significantly after supplementation with no significant improvements in sperm parameters. Methylation levels of the differentially methylated regions of several imprinted loci (H19, DLK1/GTL2, MEST, SNRPN, PLAGL1, KCNQ1OT1) were normal both before and after supplementation. Reduced representation bisulfite sequencing (RRBS) revealed a significant global loss of methylation across different regions of the sperm genome. The most marked loss of DNA methylation was found in sperm from patients homozygous for the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism, a common polymorphism in a key enzyme required for folate metabolism. RRBS analysis also showed that most of the differentially methylated tiles were located in DNA repeats, low CpG-density and intergenic regions. Ingenuity Pathway Analysis revealed that methylation of promoter regions was altered in several genes involved in cancer and neurobehavioral disorders including CBFA2T3, PTPN6, COL18A1, ALDH2, UBE4B, ERBB2, GABRB3, CNTNAP4 and NIPA1. Our data reveal alterations of the human sperm epigenome associated with high-dose folic acid supplementation, effects that were exacerbated by a common polymorphism in MTHFR. PMID:26307085

  3. New insights into thyroglobulin gene: molecular analysis of seven novel mutations associated with goiter and hypothyroidism.

    PubMed

    Citterio, Cintia E; Machiavelli, Gloria A; Miras, Mirta B; Gruñeiro-Papendieck, Laura; Lachlan, Katherine; Sobrero, Gabriela; Chiesa, Ana; Walker, Joanna; Muñoz, Liliana; Testa, Graciela; Belforte, Fiorella S; González-Sarmiento, Rogelio; Rivolta, Carina M; Targovnik, Héctor M

    2013-01-30

    The thyroglobulin (TG) gene is organized in 48 exons, spanning over 270 kb on human chromosome 8q24. Up to now, 62 inactivating mutations in the TG gene have been identified in patients with congenital goiter and endemic or non-endemic simple goiter. The purpose of the present study was to identify and characterize new mutations in the TG gene. We report 13 patients from seven unrelated families with goiter, hypothyroidism and low levels of serum TG. All patients underwent clinical, biochemical and imaging evaluation. Single-strand conformation polymorphism (SSCP) analysis, endonuclease restriction analysis, sequencing of DNA, genotyping, population screening, and bioinformatics studies were performed. Molecular analyses revealed seven novel inactivating TG mutations: c.378C>A [p.Y107X], c.2359C>T [p.R768X], c.2736delG [p.R893fsX946], c.3842G>A [p.C1262Y], c.5466delA [p.K1803fsX1833], c.6000C>G [p.C1981W] and c.6605C>G [p.P2183R] and three previously reported mutations: c.886C>T [p.R277X], c.6701C>A [p.A2215D] and c.7006C>T [p.R2317X]. Six patients from two families were homozygous for p.R277X mutation, four were compound heterozygous mutations (p.Y107X/p.C1262Y, p.R893fsX946/p.A2215D, p.K1803fsX1832/p.R2317X), one carried three identified mutations (p.R277X/p.C1981W-p.P2183R) together with a hypothetical micro deletion and the remaining two siblings from another family with typical phenotype had a single p.R768X mutated allele. In conclusion, our results confirm the genetic heterogeneity of TG defects and the pathophysiological importance of altered TG folding as a consequency of truncated TG proteins and missense mutations located in ACHE-like domain or that replace cysteine. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Functional variants of gene encoding folate metabolizing enzyme and methotrexate-related toxicity in children with acute lymphoblastic leukemia.

    PubMed

    Kałużna, Ewelina; Strauss, Ewa; Zając-Spychała, Olga; Gowin, Ewelina; Świątek-Kościelna, Bogna; Nowak, Jerzy; Fichna, Marta; Mańkowski, Przemysław; Januszkiewicz-Lewandowska, Danuta

    2015-12-15

    Methotrexate (MTX) is commonly used agent in therapy of malignancies, including acute lymphoblastic leukemia (ALL). Based on the literature data it is known that MTX elimination and toxicity can be affected by polymorphisms in genes encoding enzymes involved in MTX metabolism. The aim of our study was to investigate the influence of C677T and A1298C polymorphisms in methylenetetrahydrofolate reductase (MTHFR) gene on MTX-induced toxicity during treatment of children with ALL. We also tried to answer the question whether simultaneous occurrence of these two polymorphisms has a clinical significance. MTHFR polymorphisms were assessed in 47 pediatric ALL patients, treated according to intensive chemotherapy for childhood ALL, ALL IC BFM 2009. Prolonged MTX elimination and higher incidence of toxicity were observed for patients with 677T-1298A haplotype. On the other hand, occurrence of 677C-1298A haplotype had protective effect on MTX clearance and toxicity, that was not observed in carriers of 677C-1298C haplotype. In patients with coexistence of studied variants 677CT/1298AC heterozygotes as well as in 677TT/1298AA homozygotes more frequently toxicity incidents were noted. The obtained results suggest that occurrence of 677T allele and coexistence of 677T and 1298C alleles may be associated with lower MTX clearance and elevated risk of adverse effects during MTX-treatment of pediatric ALL patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Different mutations of the human c-mpl gene indicate distinct haematopoietic diseases.

    PubMed

    He, Xin; Chen, Zhigang; Jiang, Yangyan; Qiu, Xi; Zhao, Xiaoying

    2013-01-25

    The human c-mpl gene (MPL) plays an important role in the development of megakaryocytes and platelets as well as the self-renewal of haematopoietic stem cells. However, numerous MPL mutations have been identified in haematopoietic diseases. These mutations alter the normal regulatory mechanisms and lead to autonomous activation or signalling deficiencies. In this review, we summarise 59 different MPL mutations and classify these mutations into four different groups according to the associated diseases and mutation rates. Using this classification, we clearly distinguish four diverse types of MPL mutations and obtain a deep understand of their clinical significance. This will prove to be useful for both disease diagnosis and the design of individual therapy regimens based on the type of MPL mutations.

  6. Different mutations of the human c-mpl gene indicate distinct haematopoietic diseases

    PubMed Central

    2013-01-01

    The human c-mpl gene (MPL) plays an important role in the development of megakaryocytes and platelets as well as the self-renewal of haematopoietic stem cells. However, numerous MPL mutations have been identified in haematopoietic diseases. These mutations alter the normal regulatory mechanisms and lead to autonomous activation or signalling deficiencies. In this review, we summarise 59 different MPL mutations and classify these mutations into four different groups according to the associated diseases and mutation rates. Using this classification, we clearly distinguish four diverse types of MPL mutations and obtain a deep understand of their clinical significance. This will prove to be useful for both disease diagnosis and the design of individual therapy regimens based on the type of MPL mutations. PMID:23351976

  7. MTRR A66G, RFC1 G80A, and MTHFR C677T and A1298C Polymorphisms and Disease Activity in Mexicans with Rheumatoid Arthritis Treated with Methotrexate.

    PubMed

    González-Mercado, Mirna Gisel; Rivas, Fernando; Gallegos-Arreola, M Patricia; Morán-Moguel, M Cristina; Salazar-Páramo, Mario; González-López, Laura; Gámez-Nava, J Iván; Muñoz-Valle, J Francisco; Medina-Coss Y León, Ricardo; González-Mercado, Anahí; Aceves, Mario A; Dávalos, Nory O; Macías-Chumacera, Agustín; Dávalos, Ingrid P

    2017-11-01

    To investigate the relationships of polymorphisms in genes whose protein products are related in the metabolic pathway of folic acid, particularly MTRR A66G, RFC1 G80A, and MTHFR C677T and A1298C, and disease activity in Mexican patients with rheumatoid arthritis (RA) treated with methotrexate (MTX). Sixty-eight patients with RA were included in the study who were being treated with MTX, either with or without other drugs. In addition to general data, disease activity was measured by the disease activity score 28 (DAS28). Single nucleotide polymorphisms (SNPs) genotyping was performed by allelic discrimination using real-time polymerase chain reaction. Differences in genotype (homozygotic or heterozygotic for each allele), allele distributions, and phenotype were not statistically different between the RA group and control populations. We did not find any association between the studied polymorphisms and disease activity nor with the intragroup variables (e.g., clinical activity, body mass index, and single- or combined-drug treatment) or between genetic markers; we also did not find any association within the RA group or between the RA group and control populations. Additional studies of more polymorphisms related to this or other metabolic pathways are required to determine the influence of genetics on disease activity in RA.

  8. Atypical generalized lipoatrophy and severe insulin resistance due to a heterozygous LMNA p.T10I mutation.

    PubMed

    Mory, Patricia B; Crispim, Felipe; Kasamatsu, Teresa; Gabbay, Monica A L; Dib, Sergio A; Moisés, Regina S

    2008-11-01

    Lipodystrophies are a group of heterogeneous disorders characterized by the loss of adipose tissue and metabolic complications. The main familial forms of lipodystrophy are Congenital Generalized Lipodystrophy and Familial Partial Lipodystrophy (FPLD). FPLD may result from mutations in the LMNA gene. Besides FPLD, mutations in LMNA have been shown to be responsible for other inherited diseases called laminopathies. Here we describe the case of a 15-year-old girl who was referred to our service due to diabetes mellitus and severe hypertriglyceridemia. Physical examination revealed generalized loss of subcutaneous fat, confirmed by DEXA (total body fat 8.6%). As the patient presented with pubertal-onset of generalized lipodystrophy and insulin resistance, molecular analysis of the LMNA gene was performed. We identified a heterozygous substitution in exon 1 (c.29C>T) predicting a p.T10I mutation. In summary, we describe an atypical phenotype of lipodistrophy associated with a de novo appearance of the p.T10I mutation in LMNA gene.

  9. 1236 C/T and 3435 C/T polymorphisms of the ABCB1 gene in Mexican breast cancer patients.

    PubMed

    Gutierrez-Rubio, S A; Quintero-Ramos, A; Durán-Cárdenas, A; Franco-Topete, R A; Castro-Cervantes, J M; Oceguera-Villanueva, A; Jiménez-Pérez, L M; Balderas-Peña, L M A; Morgan-Villela, G; Del-Toro-Arreola, A; Daneri-Navarro, A

    2015-02-13

    MDR1, which is encoded by the ABCB1 gene, is involved in multidrug resistance (hydrophobic), as well as the elimination of xenotoxic agents. The association between ABCB1 gene polymorphisms and breast cancer risk in different populations has been described previously; however, the results have been inconclusive. In this study, we examined the association between polymorphisms 3435 C/T and 1236 C/T in the ABCB1 gene and breast cancer development in Mexican women according to their menopausal status and molecular classification. Molecular subtypes as well as allele and genotype frequencies were analyzed. A total of 248 women with initial breast cancer diagnosis and 180 ethnically matched, healthy, unrelated individuals were enrolled. Polymerase chain reaction-restriction fragment length polymorphism was performed to detect polymorphisms 3435 C/T and 1236 C/T in the ABCB1 gene. Premenopausal T allele carriers of the 3435 C/T polymorphism showed a 2-fold increased risk of breast cancer with respect to the reference and postmenopausal groups, as well as triple-negative expression regarding the luminal A/B molecular subrogated subtypes. In contrast, the CT genotype of the 1236 polymorphism was a protective factor against breast cancer. We conclude that the T allele carrier of the 3435 C/T polymorphism in the ABCB1 gene in combination with an estrogen receptor-negative status may be an important risk factor for breast cancer development in premenopausal women.

  10. [Mutation analysis of seven patients with Waardenburg syndrome].

    PubMed

    Hao, Ziqi; Zhou, Yongan; Li, Pengli; Zhang, Quanbin; Li, Jiao; Wang, Pengfei; Li, Xiangshao; Feng, Yong

    2016-06-01

    To perform genetic analysis for 7 patients with Waardenburg syndrome. Potential mutation of MITF, PAX3, SOX10 and SNAI2 genes was screened by polymerase chain reaction and direct sequencing. Functions of non-synonymous polymorphisms were predicted with PolyPhen2 software. Seven mutations, including c.649-651delAGA (p.R217del), c.72delG (p.G24fs), c.185T>C (p.M62T), c.118C>T (p.Q40X), c.422T>C (p.L141P), c.640C>T (p.R214X) and c.28G>T(p.G43V), were detected in the patients. Among these, four mutations of the PAX3 gene (c.72delG, c.185T>C, c.118C>T and c.128G>T) and one SOX10 gene mutation (c.422T>C) were not reported previously. Three non-synonymous SNPs (c.185T>C, c.128G>T and c.422T>C) were predicted as harmful. Genetic mutations have been detected in all patients with Waardenburg syndrome.

  11. Novel mutations in RAG1/2 and ADA genes in Israeli patients presenting with T-B-SCID or Omenn syndrome.

    PubMed

    Dalal, Ilan; Tasher, Diana; Somech, Raz; Etzioni, Amos; Garti, Ben-Zion; Lev, Dorit; Cohen, Sarit; Somekh, Eli; Leshinsky-Silver, Esther

    2011-09-01

    The relative frequency of the different forms of SCID may vary in different countries. The most frequent form in Israel is the autosomal-recessive T-B- SCID or Omenn syndrome while X-linked SCID is rare. We report our immunological and genetic analyses in multicentre study of patients presenting with either T-B- SCID or Omenn syndrome. Among 16 patients, we identified 7 novel mutations in 6 patients. In the RAG1 gene we detected two novel mutations: L454Q and 469 fs-4bpdel. In the RAG 2 gene: 3 novel mutations: D65Y, G157V, and E480X. One T-B- SCID patient was found to be a compound heterozygote for new mutations in the ADA gene: W264X and R235W. Prenatal diagnosis was performed in 8 families while others refused due to religious reasons. Identification of the new mutations expands our knowledge regarding the unique features of SCID phenotype in Israel and may help the families seeking for genetic counseling. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Clinical phenotype of hereditary spastic paraplegia due to KIF1C gene mutations across life span.

    PubMed

    Yücel-Yılmaz, Didem; Yücesan, Emrah; Yalnızoğlu, Dilek; Oğuz, Kader Karlı; Sağıroğlu, Mahmut Şamil; Özbek, Uğur; Serdaroğlu, Esra; Bilgiç, Başar; Erdem, Sevim; İşeri, Sibel Aylin Uğur; Hanağası, Haşmet; Gürvit, Hakan; Özgül, Rıza Köksal; Dursun, Ali

    2018-06-01

    Hereditary spastic paraplegias (HSPs) are a group of genetic disorders resulting in pyramidal tract impairment, predominantly in lower limbs. KIF1C gene has recently been identified as one of the genetic causes of HSP and associated with pure or complicated HSP. We present three patients with complicated HSP from two unrelated families, who had early onset progressive cerebellar signs and developed pyramidal tract signs during follow-up. Whole exome sequencing in these patients followed by segregation analysis identified novel truncating KIF1C mutations (c.463C> T; p.R155 ∗ and c.2478delA; p.Ala828Argfs ∗ 13). Neuroimaging findings showed cerebral and upper cervical spinal atrophy, bilateral symmetrical pyramidal tract involvement, and focal cerebral white matter lesions. Patients with KIF1C mutations may present with cerebellar signs and pyramidal findings may emerge later, therefore complicated HSP should be considered in the differential diagnosis of unidentified cases with cerebellar dysfunction. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  13. Digenic mutations involving both the BSND and GJB2 genes detected in Bartter syndrome type IV.

    PubMed

    Wang, Hong-Han; Feng, Yong; Li, Hai-Bo; Wu, Hong; Mei, Ling-Yun; Wang, Xing-Wei; Jiang, Lu; He, Chu-Feng

    2017-01-01

    Bartter syndrome type IV, characterized by salt-losing nephropathies and sensorineural deafness, is caused by mutations of BSND or simultaneous mutations of both CLCNKA and CLCNKB. GJB2 is the primary causative gene for non-syndromic sensorineural deafness and associated with several syndromic sensorineural deafness. Owing to the rarity of Bartter syndrome, only a few mutations have been reported in the abovementioned causative genes. To investigate the underlying mutations in a Chinese patient with Bartter syndrome type IV, genetic analysis of BSND, CLCNKA, CLCNKB and GJB2 were performed by polymerase chain reaction and direct sequencing. Finally, double homozygous mutations c.22C > T (p.Arg8Trp) and c.127G > A (Val43Ile) were detected in exon 1 of BSND. Intriguingly, compound heterozygous mutations c.235delC (p.Leu79CysfsX3) and c.109G > A (p.Val37Ile) were also revealed in exon 2 of GJB2 in the same patient. No pathogenic mutations were found in CLCNKA and CLCNKB. Our results indicated that the homozygous mutation c.22C > T was the key genetic reason for the proband, and a digenic effect of BSND and GJB2 might contributed to sensorineural deafness. To our knowledge, it was the first report showing that the GJB2 gene mutations were detected in Bartter syndrome. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Mutation analysis of the MECP2 gene in patients of Slavic origin with Rett syndrome: novel mutations and polymorphisms.

    PubMed

    Zahorakova, Daniela; Rosipal, Robert; Hadac, Jan; Zumrova, Alena; Bzduch, Vladimir; Misovicova, Nadezda; Baxova, Alice; Zeman, Jiri; Martasek, Pavel

    2007-01-01

    Rett syndrome (RTT), an X-linked dominant neurodevelopmental disorder in females, is caused mainly by de novo mutations in the methyl-CpG-binding protein 2 gene (MECP2). Here we report mutation analysis of the MECP2 gene in 87 patients with RTT from the Czech and Slovak Republics, and Ukraine. The patients, all girls, with classical RTT were investigated for mutations using bi-directional DNA sequencing and conformation sensitive gel electrophoresis analysis of the coding sequence and exon/intron boundaries of the MECP2 gene. Restriction fragment length polymorphism analysis was performed to confirm the mutations that cause the creation or abolition of the restriction site. Mutation-negative cases were subsequently examined by multiple ligation-dependent probe amplification (MLPA) to identify large deletions. Mutation screening revealed 31 different mutations in 68 patients and 12 non-pathogenic polymorphisms. Six mutations have not been previously published: two point mutations (323T>A, 904C>T), three deletions (189_190delGA, 816_832del17, 1069delAGC) and one deletion/inversion (1063_1236del174;1189_1231inv43). MLPA analysis revealed large deletions in two patients. The detection rate was 78.16%. Our results confirm the high frequency of MECP2 mutations in females with RTT and provide data concerning the mutation heterogeneity in the Slavic population.

  15. Mutation and polymorphism analysis of the human homogentisate 1, 2-dioxygenase gene in alkaptonuria patients.

    PubMed Central

    Beltrán-Valero de Bernabé, D; Granadino, B; Chiarelli, I; Porfirio, B; Mayatepek, E; Aquaron, R; Moore, M M; Festen, J J; Sanmartí, R; Peñalva, M A; de Córdoba, S R

    1998-01-01

    Alkaptonuria (AKU), a rare hereditary disorder of phenylalanine and tyrosine catabolism, was the first disease to be interpreted as an inborn error of metabolism. AKU patients are deficient for homogentisate 1,2 dioxygenase (HGO); this deficiency causes homogentisic aciduria, ochronosis, and arthritis. We cloned the human HGO gene and characterized two loss-of-function mutations, P230S and V300G, in the HGO gene in AKU patients. Here we report haplotype and mutational analysis of the HGO gene in 29 novel AKU chromosomes. We identified 12 novel mutations: 8 (E42A, W97G, D153G, S189I, I216T, R225H, F227S, and M368V) missense mutations that result in amino acid substitutions at positions conserved in HGO in different species, 1 (F10fs) frameshift mutation, 2 intronic mutations (IVS9-56G-->A, IVS9-17G-->A), and 1 splice-site mutation (IVS5+1G-->T). We also report characterization of five polymorphic sites in HGO and describe the haplotypic associations of alleles at these sites in normal and AKU chromosomes. One of these sites, HGO-3, is a variable dinucleotide repeat; IVS2+35T/A, IVS5+25T/C, and IVS6+46C/A are intronic sites at which single nucleotide substitutions (dimorphisms) have been detected; and c407T/A is a relatively frequent nucleotide substitution in the coding sequence, exon 4, resulting in an amino acid change (H80Q). These data provide insight into the origin and evolution of the various AKU alleles. PMID:9529363

  16. Four novel mutations of the BCKDHA, BCKDHB and DBT genes in Iranian patients with maple syrup urine disease.

    PubMed

    Zeynalzadeh, Monica; Tafazoli, Alireza; Aarabi, Azadeh; Moghaddassian, Morteza; Ashrafzadeh, Farah; Houshmand, Massoud; Taghehchian, Negin; Abbaszadegan, Mohammad Reza

    2018-01-26

    Maple syrup urine disease (MSUD) is a rare metabolic autosomal recessive disorder caused by dysfunction of the branched-chain α-ketoacid dehydrogenase (BCKDH) complex. Mutations in the BCKDHA, BCKDHB and DBT genes are responsible for MSUD. The current study analyzed seven Iranian MSUD patients genetically and explored probable correlations between their genotype and phenotype. The panel of genes, including BCKDHA, BCKDHB and DBT, was evaluated, using routine the polymerase chain reaction (PCR)-sequencing method. In addition, protein modeling (homology and threading modeling) of the deduced novel mutations was performed. The resulting structures were then analyzed, using state-of-the-art bioinformatics tools to better understand the structural and functional effects caused by mutations. Seven mutations were detected in seven patients, including four novel pathogenic mutations in BCKDHA (c.1198delA, c.629C>T), BCKDHB (c.652C>T) and DBT (c.1150A>G) genes. Molecular modeling of the novel mutations revealed clear changes in the molecular energy levels and stereochemical traits of the modeled proteins, which may be indicative of strong correlations with the functional modifications of the genes. Structural deficiencies were compatible with the observed phenotypes. Any type of MSUD can show heterogeneous clinical manifestations in different ethnic groups. Comprehensive molecular investigations would be necessary for differential diagnosis.

  17. Arg753gln and Arg677 Trp Polymorphisms of Toll-Like Receptor 2 In Acute Apical Abscess

    PubMed Central

    Miri-Moghaddam, Ebrahim; Farhad Mollashahi, Narges; Naghibi, Nava; Garme, Yasaman; Bazi, Ali

    2018-01-01

    Statement of the Problem: Genetic polymorphisms can alter immunity response against pathogens, which in turn influence individuals’ susceptibility to certain infections. Purpose: Our aim was to determine the association of Arg753Gln (rs5743708) and Arg677Trp (rs12191786) polymorphisms of toll like receptor-2 gene with the two clinical forms of apical periodontitis: acute apical abscess (AAA) and asymptomatic apical periodontitis (AAP). Materials and Method: There were 50 patients with AAA as case group and 50 with AAP as control group. Genotyping was done using Tetra-ARMS (amplification refractory mutation system) PCR. Results: Heterozygous genotype of Arg677Trp polymorphism was associated with risk of AAA (OR=1.9, 95% CI: 0.7-5.5, p= 0.05). Although statistically insignificant, Arg677Trp polymorphism promoted the risk of AAA in dominant model (OR=2.1, 95% CI: 0.7-5.9, p> 0.05). The frequency of mutant allele (T) of Arg677Trp polymorphism was higher in AAA (14%) than AAP (7%) subjects (OR=1.7, 95% CI: 0.6-4.7). For Arg753Gln polymorphism, wild homozygous (GG) represented the dominant genotype in both cases (96%) and controls (100%). Variant allele (A) of Arg753Gln polymorphism was identified in 2% of AAA, while no individual represented with this allele in AAP subjects. Individuals with Arg753Gln; Arg677Trp (GG; TC) combination showed an elevated risk of AAA (OR=1.6, 95% CI: 0.5- 4.2, p> 0.05). Conclusion: Arg677Trp polymorphism of TLR-2 rendered a higher risk for the development of abscesses in apical periodontitis. It is recommended to explore role of this polymorphism in other populations. PMID:29854884

  18. Clinical and Prognostic Profiles of Cardiomyopathies Caused by Mutations in the Troponin T Gene.

    PubMed

    Ripoll-Vera, Tomás; Gámez, José María; Govea, Nancy; Gómez, Yolanda; Núñez, Juana; Socías, Lorenzo; Escandell, Ángela; Rosell, Jorge

    2016-02-01

    Mutations in the troponin T gene (TTNT2) have been associated in small studies with the development of hypertrophic cardiomyopathy characterized by a high risk of sudden death and mild hypertrophy. We describe the clinical course of patients carrying mutations in this gene. We analyzed the clinical characteristics and prognosis of patients with mutations in the TNNT2 gene who were seen in an inherited cardiac disease unit. Of 180 families with genetically studied cardiomyopathies, 21 families (11.7%) were identified as having mutations in TNNT2: 10 families had Arg92Gln, 5 had Arg286His, 3 had Arg278Cys, 1 had Arg92Trp, 1 had Arg94His, and 1 had Ile221Thr. Thirty-three additional genetic carriers were identified through family assessment. The study included 54 genetic carriers: 56% were male, and the mean average age was 41 ± 17 years. There were 33 cases of hypertrophic cardiomyopathy, 9 of dilated cardiomyopathy, and 1 of noncompaction cardiomyopathy, and maximal myocardial thickness was 18.5 ± 6mm. Ventricular dysfunction was present in 30% of individuals and a history of sudden death in 62%. During follow-up, 4 patients died and 14 (33%) received a defibrillator (8 probands, 6 relatives). Mean survival was 54 years. Carriers of Arg92Gln had early disease development, high penetrance, a high risk of sudden death, a high rate of defibrillator implantation, and a high frequency of mixed phenotype. Mutations in the TNNT2 gene were more common in this series than in previous studies. The clinical and prognostic profiles depended on the mutation present. Carriers of the Arg92Gln mutation developed hypertrophic or dilated cardiomyopathy and had a significantly worse prognosis than those with other mutations in TNNT2 or other sarcomeric genes. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  19. Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL

    PubMed Central

    Tzoneva, Gannie; Garcia, Arianne Perez; Carpenter, Zachary; Khiabanian, Hossein; Tosello, Valeria; Allegretta, Maddalena; Paietta, Elisabeth; Racevskis, Janis; Rowe, Jacob M.; Tallman, Martin S.; Paganin, Maddalena; Basso, Giuseppe; Hof, Jana; Kirschner-Schwabe, Renate; Palomero, Teresa; Rabadan, Raul; Ferrando, Adolfo

    2013-01-01

    Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of pediatric and over 50% of adult ALL patients fail to achieve a complete remission or relapse after intensified chemotherapy, making disease relapse and resistance to therapy the most significant challenge in the treatment of this disease1,2. Using whole exome sequencing, here we identify mutations in the cytosolic 5'-nucleotidase II gene (NT5C2), which encodes a 5'-nucleotidase enzyme responsible for inactivation of nucleoside analog chemotherapy drugs, in 20/103 (19%) relapse T-ALLs and in 1/35 (3%) relapse B-precursor ALLs analyzed. NT5C2 mutant proteins show increased nucleotidase activity in vitro and conferred resistance to chemotherapy with 6-mercaptopurine and 6-thioguanine when expressed in ALL lymphoblasts. These results support a prominent role for activating mutations in NT5C2 and increased nucleoside analog metabolism in disease progression and chemotherapy resistance in ALL. PMID:23377281

  20. Zinc finger point mutations within the WT1 gene in Wilms tumor patients.

    PubMed Central

    Little, M H; Prosser, J; Condie, A; Smith, P J; Van Heyningen, V; Hastie, N D

    1992-01-01

    A proposed Wilms tumor gene, WT1, which encodes a zinc finger protein, has previously been isolated from human chromosome 11p13. Chemical mismatch cleavage analysis was used to identify point mutations in the zinc finger region of this gene in a series of 32 Wilms tumors. Two exonic single base changes were detected. In zinc finger 3 of a bilateral Wilms tumor patient, a constitutional de novo C----T base change was found changing an arginine to a stop codon. One tumor from this patient showed allele loss leading to 11p hemizygosity of the abnormal allele. In zinc finger 2 of a sporadic Wilms tumor patient, a C----T base change resulted in an arginine to cysteine amino acid change. To our knowledge, a WT1 gene missense mutation has not been detected previously in a Wilms tumor. By comparison with a recent NMR and x-ray crystallographic analysis of an analogous zinc finger gene, early growth response gene 1 (EGR1), this amino acid change in WT1 occurs at a residue predicted to be critical for DNA binding capacity and site specificity. The detection of one nonsense point mutation and one missense WT1 gene point mutation adds to the accumulating evidence implicating this gene in a proportion of Wilms tumor patients. Images PMID:1317572

  1. A mutated hygromycin resistance gene is functional in the n-alkane-assimilating yeast Candida tropicalis.

    PubMed

    Hara, A; Ueda, M; Misawa, S; Matsui, T; Furuhashi, K; Tanaka, A

    2000-03-01

    Development of a transformation system in the n-alkane-assimilating diploid yeast Candida tropicalis requires an antibiotic resistance gene in order to establish a selectable marker. The resistance gene for hygromycin B has often been used as a selectable marker in yeast transformation. However, C. tropicalis harboring the hygromycin resistance gene (HYG) was as sensitive to hygromycin B as the wild-type strain. Nine CTG codons were found in the ORF of the HYG gene. This codon has been reported to be translated as serine rather than leucine in Candida species. Analysis of the tRNA gene in C. tropicalis with the anticodon CAG [tRNA(CAG) gene], which is complementary to the codon CTG, showed that the sequence was highly similar to that of the C. maltosa tRNA(CAG) gene. In C. maltosa, the codon CTG is read as serine and not leucine. These results suggested that the HYG gene was not functional due to the nonuniversal usage of the CTG codon. Each of the nine CTG codons in the ORF of the HYG gene was changed to a CTC codon, which is read as leucine, by site-directed mutagenesis. When a plasmid containing the mutated HYG gene (HYG#) was constructed and introduced into C. tropicalis, hygromycin-resistant transformants were successfully obtained. This mutated hygromycin resistance gene may be useful for direct selection of C. tropicalis transformants.

  2. The importance of folate, vitamins B6 and B12 for the lowering of homocysteine concentrations for patients with recurrent pregnancy loss and MTHFR mutations.

    PubMed

    Serapinas, Danielius; Boreikaite, Evelina; Bartkeviciute, Agne; Bandzeviciene, Rita; Silkunas, Mindaugas; Bartkeviciene, Daiva

    2017-09-01

    In patients with MTHFR (methylenetetrahydrofolate reductase) mutations and hyperhomocysteinemia, recurrent pregnancy loss is a frequent feature. The aim of the study was to evaluate the impact of folic acid, vitamins B6 and B12 supplementation for the lowering of total homocysteine concentrations and pregnancy. 16 patients who had had 3 or more miscarriages and MTHFR mutations were used in the study. They received methylfolate (5mg/day), vitamin B6 (50mg/day) and vitamin B12 (1mg/week). Supplementation induced a decrease in homocysteine from 19.4±5.3μmol/L to 6.9±2.2μmol/L after folate supplementation (p<0.05). During one year 7 women became pregnant and delivered. Two women delivered from the homozygous C677T mutations group (7 patients) and combined heterozygous C677T/A1298C mutations group (5 patients), while 3 deliveries were in A1298C homozygous mutations group (4 patients). In conclusion, supraphysiologic methylfolate, vitamins B6 and B12 supplementation in woman with MTHFR mutations has a beneficial effect on pregnancy outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. [Identification of novel compound heterozygous mutations of USH2A gene in a family with Usher syndrome type II].

    PubMed

    Jiang, Haiou; Ge, Chuanqin; Wang, Yiwang; Tang, Genyun; Quan, Qingli

    2015-06-01

    To identify potential mutations in a Chinese family with Usher syndrome type II. Genomic DNA was obtained from two affected and four unaffected members of the family and subjected to amplification of the entire coding sequence and splicing sites of USH2A gene. Mutation detection was conducted by direct sequencing of the PCR products. A total of 100 normal unrelated individuals were used as controls. The patients were identified to be a compound heterozygote for two mutations: c.8272G>T (p.E2758X) in exon 42 from his mother and c.12376-12378ACT>TAA(p.T4126X) in exon 63 of the USH2A gene from his father. Both mutations were not found in either of the two unaffected family members or 100 unrelated controls, and had completely co-segregated with the disease phenotype in the family. Neither mutation has been reported in the HGMD database. The novel compound heterozygous mutations c.8272G>T and c.12376-12378ACT>TAA within the USH2A gene may be responsible for the disease. This result may provide new clues for molecular diagnosis of this disease.

  4. A large kindred with X-linked neutropenia with an I294T mutation of the Wiskott-Aldrich syndrome gene.

    PubMed

    Beel, Karolien; Cotter, Melanie M; Blatny, Jan; Bond, Jonathan; Lucas, Geoff; Green, Frances; Vanduppen, Vik; Leung, Daisy W; Rooney, Sean; Smith, Owen P; Rosen, Michael K; Vandenberghe, Peter

    2009-01-01

    X-linked neutropenia (XLN, OMIM #300299) is a rare form of severe congenital neutropenia. It was originally described in a three-generation family with five affected members that had an L270P mutation in the GTP-ase binding domain (GBD) of the Wiskott-Aldrich syndrome protein (WASP) [Devriendt et al (2001) Nature Genetics, Vol. 27, 313-317]. Here, we report and describe a large three-generation family with XLN, with 10 affected males and eight female carriers. A c.882T>C mutation was identified in the WAS gene, resulting in an I294T mutation. The infectious course is variable and mild in view of the profound neutropenia. In addition to the original description, low-normal IgA levels, low to low-normal platelet counts and reduced natural killer (NK)-cell counts also appear as consistent XLN features. However, inverted CD4/CD8 ratios were not found in this family, nor were cases identified with myelodysplastic syndrome or acute myeloid leukaemia. Female carriers exhibited a variable attenuated phenotype. Like L270P WASP, I294T WASP is constitutively active towards actin polymerization. In conclusion, this largest XLN kindred identified to date provides new independent genetic evidence that mutations disrupting the auto-inhibitory GBD of WASP are the cause of XLN. Reduced NK cells, low to low normal platelet counts and low to low-normal IgA levels are also features of XLN.

  5. [Analysis of gene mutation in a Chinese family with Norrie disease].

    PubMed

    Zhang, Tian-xiao; Zhao, Xiu-li; Hua, Rui; Zhang, Jin-song; Zhang, Xue

    2012-09-01

    To detect the pathogenic mutation in a Chinese family with Norrie disease. Clinical diagnosis was based on familial history, clinical sign and B ultrasonic examination. Peripheral blood samples were obtained from all available members in a Chinese family with Norrie disease. Genomic DNA was extracted from lymphocytes by the standard SDS-proteinase K-phenol/chloroform method. Two coding exons and all intron-exon boundaries of the NDP gene were PCR amplified using three pairs of primers and subjected to automatic DNA sequence. The causative mutation was confirmed by restriction enzyme analysis and genotyping analysis in all members. Sequence analysis of NDP gene revealed a missense mutation c.220C > T (p.Arg74Cys) in the proband and his mother. Further mutation identification by restriction enzyme analysis and genotyping analysis showed that the proband was homozygote of this mutation. His mother and other four unaffected members (III3, IV4, III5 and II2) were carriers of this mutation. The mutant amino acid located in the C-terminal cystine knot-like domain, which was critical motif for the structure and function of NDP. A NDP missense mutation was identified in a Chinese family with Norrie disease.

  6. MELAS syndrome associated with a new mitochondrial tRNA-Val gene mutation (m.1616A>G).

    PubMed

    Toyoshima, Yuka; Tanaka, Yuji; Satomi, Kazuo

    2017-09-11

    We describe the case of a 40-year-old-man with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, with cardiomyopathy and severe heart failure. He had a mitochondrial transfer RNA (tRNA) mutation (m.1616A>G) of the (tRNA-Val) gene, and it was not found in MELAS syndrome ever before. The presence of this newly observed tRNA-Val mutation (m.1616A>G) may induce multiple respiratory chain enzyme deficiencies and contribute to MELAS syndrome symptoms that are associated with mitochondrial DNA (mtDNA) mutations. We report that the pathognomonic symptom in MELAS syndrome caused by this newly observed mtDNA mutation may be rapid progression of cardiomyopathy and severe heart failure. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. ADAMTS13 Gene Mutations in Children with Hemolytic Uremic Syndrome

    PubMed Central

    Choi, Hyoung Soo; Cheong, Hae Il; Kim, Nam Keun

    2011-01-01

    We investigated ADAMTS13 activity as well as the ADAMTS13 gene mutation in children with hemolytic uremic syndrome (HUS). Eighteen patients, including 6 diarrhea-negative (D-HUS) and 12 diarrhea-associated HUS (D+HUS) patients, were evaluated. The extent of von Willebrand factor (VWF) degradation was assayed by multimer analysis, and all exons of the ADAMTS13 gene were PCR-amplified using Taq DNA polymerase. The median and range for plasma activity of ADAMTS13 in 6 D-HUS and 12 D+HUS patients were 71.8% (22.8-94.1%) and 84.9% (37.9-119.9%), respectively, which were not statistically significantly different from the control group (86.4%, 34.2-112.3%) (p>0.05). Five ADAMTS13 gene mutations, including 2 novel mutations [1584+2T>A, 3941C>T (S1314L)] and 3 polymorphisms (Q448E, P475S, S903L), were found in 2 D-HUS and one D+HUS patients, which were not associated with deficiency of ADAMTS13 activity. Whether these mutations without reduced ADAMTS13 activity are innocent bystanders or predisposing factors in HUS remains unanswered. PMID:21488199

  8. Mutations in the von Hippel-Lindau (VHL) tumor suppressor gene and VHL-haplotype analysis in patients with presumable congenital erythrocytosis.

    PubMed

    Cario, Holger; Schwarz, Klaus; Jorch, Norbert; Kyank, Ulrike; Petrides, Petro E; Schneider, Dominik T; Uhle, Renate; Debatin, Klaus-Michael; Kohne, Elisabeth

    2005-01-01

    Congenital erythrocytoses or polycythemias are rare and heterogeneous. A homozygous mutation (C598T->Arg200Trp) in the von Hippel-Lindau (VHL) gene was originally identified as the cause of the endemic Chuvash polycythemia. Subsequently this and other mutations in the VHL gene were also detected in several patients of different ethnic origin. Haplotype analyses of the VHL gene suggested a common origin for the Chuvash-type mutation. Thirty-four patients with presumable congenital erythrocytosis due to an unknown underlying disorder were examined for VHL gene mutations and VHL region haplotypes. Four patients were homozygous and one patient heterozygous for the Chuvash-type mutation. One additional patient presented a previously not described heterozygous mutation G311->T VHL in exon 1. The haplotype analyses were in agreement with recently published data for three of the four patients with homozygous mutations as well as for the patient with a heterozygous Chuvash-type mutation. One patient of Turkish origin with homozygous Chuvash-type mutation had a haplotype not previously found in individuals with Chuvash-type mutation. These results confirm that mutations in the VHL gene are responsible for a substantial proportion of patients with congenital erythrocytoses. Erythrocytoses due to a C598->T mutation of the VHL gene are not geographically restricted. The majority of patients with Chuvash polycythemia share a common VHL gene haplotype. The different haplotype in one of the patients with Chuvash-type mutation indicates that this mutation was not spread only from a single founder but developed independently in other individuals.

  9. Leigh syndrome T8993C mitochondrial DNA mutation: Heteroplasmy and the first clinical presentation in a Vietnamese family.

    PubMed

    Weerasinghe, Chamara Arachchighe Lahiru; Bui, Bich-Hong Thi; Vu, Thu Thi; Nguyen, Hong-Loan Thi; Phung, Bao-Khanh; Nguyen, Van-Minh; Pham, Van-Anh; Cao, Vu-Hung; Phan, Tuan-Nghia

    2018-05-01

    Leigh syndrome is a rare inherited, heterogeneous and progressive neurometabolic disorder that is mainly caused by specific mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). The present study reported a case of childhood Leigh syndrome with a point mutation at bp 8,993 in the mitochondrial ATPase6 gene. A 21‑month‑old male child had developed epilepsy, muscular weakness and vomiting, which was accompanied by high fever. Magnetic resonance imaging indicated typical characteristics of Leigh syndrome, including a symmetric abnormal signal in the dorsal medulla oblongata and Sylvian fissure enlargement in association with an abnormal signal in the periventricular white matter and in the putamina and caudate heads. The diagnosis was further supported with genetic tests including polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), sequencing, and quantitative PCR. The patient was found to carry a mitochondrial T8993C (m.T8993C) mutation in peripheral blood with 94.00±1.34% heteroplasmy. Eight of his relatives were also subjected to quantification of the m.T8993C mutation. The percentages of heteroplasmy in samples taken from the grandmother, mother, aunt, cousin 1, and cousin 2 were 16.33±1.67, 66.81±0.85, 71.66±3.22, 87.00±1.79, and 91.24±2.50%, respectively. The mutation was not found in samples taken from the father, the husband of the aunt, or the grandfather of the patient. The obtained data showed that the mutation was maternally inherited and accumulated through generations. Even though the heteroplasmy levels of his mother, aunt, cousin 1, and cousin 2 were relatively high (66.81‑91.24%), they remained asymptomatic, indicating that the threshold at which this mutation shows effects is high. To the best of our knowledge, this is the first report of a case of Leigh syndrome in a Vietnamese individual harboring a mtDNA mutation at the 8,993 bp site, and showing a correlation between the heteroplasmy and clinical

  10. Novel compound heterozygous mutations in the OTOF Gene identified by whole-exome sequencing in auditory neuropathy spectrum disorder.

    PubMed

    Tang, Fengzhu; Ma, Dengke; Wang, Yulan; Qiu, Yuecai; Liu, Fei; Wang, Qingqing; Lu, Qiutian; Shi, Min; Xu, Liang; Liu, Min; Liang, Jianping

    2017-03-23

    Many hearing-loss diseases are demonstrated to have Mendelian inheritance caused by mutations in single gene. However, many deaf individuals have diseases that remain genetically unexplained. Auditory neuropathy is a sensorineural deafness in which sounds are able to be transferred into the inner ear normally but the transmission of the signals from inner ear to auditory nerve and brain is injured, also known as auditory neuropathy spectrum disorder (ANSD). The pathogenic mutations of the genes responsible for the Chinese ANSD population remain poorly understood. A total of 127 patients with non-syndromic hearing loss (NSHL) were enrolled in Guangxi Zhuang Autonomous Region. A hereditary deafness gene mutation screening was performed to identify the mutation sites in four deafness-related genes (GJB2, GJB3, 12S rRNA, and SLC26A4). In addition, whole-exome sequencing (WES) was applied to explore unappreciated mutation sites in the cases with the singularity of its phenotype. Well-characterized mutations were found in only 8.7% (11/127) of the patients. Interestingly, two mutations in the OTOF gene were identified in two affected siblings with ANSD from a Chinese family, including one nonsense mutation c.1273C > T (p.R425X) and one missense mutation c.4994 T > C (p.L1665P). Furthermore, we employed Sanger sequencing to confirm the mutations in each subject. Two compound heterozygous mutations in the OTOF gene were observed in the two affected siblings, whereas the two parents and unaffected sister were heterozygous carriers of c.1273C > T (father and sister) and c.4994 T > C (mother). The nonsense mutation p.R425X, contributes to a premature stop codon, may result in a truncated polypeptide, which strongly suggests its pathogenicity for ANSD. The missense mutation p.L1665P results in a single amino acid substitution in a highly conserved region. Two mutations in the OTOF gene in the Chinese deaf population were recognized for the first time. These

  11. The T1048I mutation in ATP7A gene causes an unusual Menkes disease presentation

    PubMed Central

    2012-01-01

    Background The ATP7A gene encodes the ATP7A protein, which is a trans-Golgi network copper transporter expressed in the brain and other organs. Mutations in this gene cause disorders of copper metabolism, such as Menkes disease. Here we describe the novel and unusual mutation (p.T1048I) in the ATP7A gene of a child with Menkes disease. The mutation affects a conserved DKTGT1048 phosphorylation motif that is involved in the catalytic activity of ATP7A. We also describe the clinical course and the response to copper treatment in this patient. Case presentation An 11-month-old male Caucasian infant was studied because of hypotonia, ataxia and global developmental delay. The patient presented low levels of serum copper and ceruloplasmin, and was shown to be hemizygous for the p.T1048I mutation in ATP7A. The diagnosis was confirmed when the patient was 18 months old, and treatment with copper-histidinate (Cu-His) was started immediately. The patient showed some neurological improvement and he is currently 8 years old. Because the p.T1048I mutation affects its catalytic site, we expected a complete loss of functional ATP7A and a classical Menkes disease presentation. However, the clinical course of the patient was mild, and he responded to Cu-His treatment, which suggests that this mutation leads to partial conservation of the activity of ATP7A. Conclusion This case emphasizes the important correlation between genotype and phenotype in patients with Menkes disease. The prognosis in Menkes disease is associated with early detection, early initiation of treatment and with the preservation of some ATP7A activity, which is necessary for Cu-His treatment response. The description of this new mutation and the response of the patient to Cu-His treatment will contribute to the growing body of knowledge about treatment response in Menkes disease. PMID:22992316

  12. Mutations in the HFE, TFR2, and SLC40A1 genes in patients with hemochromatosis.

    PubMed

    Del-Castillo-Rueda, Alejandro; Moreno-Carralero, María-Isabel; Cuadrado-Grande, Nuria; Alvarez-Sala-Walther, Luis-Antonio; Enríquez-de-Salamanca, Rafael; Méndez, Manuel; Morán-Jiménez, María-Josefa

    2012-10-15

    Hereditary hemochromatosis causes iron overload and is associated with a variety of genetic and phenotypic conditions. Early diagnosis is important so that effective treatment can be administered and the risk of tissue damage avoided. Most patients are homozygous for the c.845G>A (p.C282Y) mutation in the HFE gene; however, rare forms of genetic iron overload must be diagnosed using a specific genetic analysis. We studied the genotype of 5 patients who had hyperferritinemia and an iron overload phenotype, but not classic mutations in the HFE gene. Two patients were undergoing phlebotomy and had no iron overload, 1 with metabolic syndrome and no phlebotomy had mild iron overload, and 2 patients had severe iron overload despite phlebotomy. The patients' first-degree relatives also underwent the analysis. We found 5 not previously published mutations: c.-408_-406delCAA in HFE, c.1118G>A (p.G373D), c.1473G>A (p.E491E) and c.2085G>C (p.S695S) in TFR2; and c.-428_-427GG>TT in SLC40A1. Moreover, we found 3 previously published mutations: c.221C>T (p.R71X) in HFE; c.1127C>A (p.A376D) in TFR2; and c.539T>C (p.I180T) in SLC40A1. Four patients were double heterozygous or compound heterozygous for the mutations mentioned above, and the patient with metabolic syndrome was heterozygous for a mutation in the TFR2 gene. Our findings show that hereditary hemochromatosis is clinically and genetically heterogeneous and that acquired factors may modify or determine the phenotype. Copyright © 2012. Published by Elsevier B.V.

  13. Hb Midnapore [β53(D4)Ala→Val; HBB: c.161C>T]: A Novel Hemoglobin Variant with a Structural Abnormality Associated with IVS-I-5 (G>C) (HBB: c.92+5G>C) Found in a Bengali Indian Family.

    PubMed

    Panja, Amrita; Chowdhury, Prosanto; Basu, Anupam

    2016-09-01

    We describe a novel C>T substitution at codon 53 of the HBB gene (HBB: c.161C>T). The proband was a transfusion-dependent β-thalassemia major (β-TM) patient. DNA was extracted and subsequently, DNA sequencing was done to detect the mutations on the HBB gene. Capillary zone electrophoresis (CZE) revealed the presence of an unknown peak. She inherited this mutation from her grandmother through her mother. This mutation exists in cis with the common β 0 mutation IVS-I-5 (G>C) (HBB: c.92+5G>C). The proband is homozygous for HBB: c.92+5G>C and needs monthly transfusions. On the other hand, her grandmother, mother and sister all possess this novel mutation cis with the heterozygous HBB: c.92+5G>C. They are carriers not thalassemic. This mutation produces the substitution β53(D4)Ala→Val; HBB: c.161C>T, a new structural hemoglobin (Hb) variant. As this variant was identified in a Bengali family from Paschim Midnapore district of West Bengal, India, it has been designated as Hb Midnapore. This variant has now been reported to the HbVar database.

  14. Mutations in DDR2 Gene Cause SMED with Short Limbs and Abnormal Calcifications

    PubMed Central

    Bargal, Ruth; Cormier-Daire, Valerie; Ben-Neriah, Ziva; Le Merrer, Martine; Sosna, Jacob; Melki, Judith; Zangen, David H.; Smithson, Sarah F.; Borochowitz, Zvi; Belostotsky, Ruth; Raas-Rothschild, Annick

    2009-01-01

    Summary The spondylo-meta-epiphyseal dysplasia [SMED] short limb-hand type [SMED-SL] is a rare autosomal-recessive disease, first reported by Borochowitz et al. in 1993.1 Since then, 14 affected patients have been reported.2–5 We diagnosed 6 patients from 5 different consanguineous Arab Muslim families from the Jerusalem area with SMED-SL. Additionally, we studied two patients from Algerian and Pakistani ancestry and the parents of the first Jewish patients reported.1 Using a homozygosity mapping strategy, we located a candidate region on chromosome 1q23 spanning 2.4 Mb. The position of the Discoidin Domain Receptor 2 (DDR2) gene within the candidate region and the similarity of the ddr2 knockout mouse to the SMED patients' phenotype prompted us to study this gene6. We identified three missense mutations c.2254 C > T [R752C], c. 2177 T > G [I726R], c.2138C > T [T713I] and one splice site mutation [IVS17+1g > a] in the conserved sequence encoding the tyrosine kinase domain of the DDR2 gene. The results of this study will permit an accurate early prenatal diagnosis and carrier screening for families at risk. PMID:19110212

  15. [Gene mutation and clinical phenotype analysis of patients with Noonan syndrome and hypertrophic cardiomyopathy].

    PubMed

    Liu, X H; Ding, W W; Han, L; Liu, X R; Xiao, Y Y; Yang, J; Mo, Y

    2017-10-02

    Objective: To analyze the gene mutations and clinical features of patients with Noonan syndrome and hypertrophic cardiomyopathy. Method: Determined the mutation domain in five cases diagnosed with Noonan syndrome and hypertrophic cardiomyopathy and identified the relationship between the mutant domain and hypertrophic cardiomyopathy by searching relevant articles in pubmed database. Result: Three mutant genes (PTPN11 gene in chromosome 12, RIT1 gene in chromosome 1 and RAF1 gene in chromosome 3) in five cases all had been reported to be related to hypertrophic cardiomyopathy. The reported hypertrophic cardiomyopathy relevant genes MYPN, MYH6 and MYBP3 had also been found in case 1 and 2. Patients with same gene mutation had different clinical manifestations. Both case 4 and 5 had RAF1 mutation (c.770C>T). However, case 4 had special face, low IQ, mild pulmonary artery stenosis, and only mild ventricular hypertrophy. Conclusion: Noonan syndrome is a genetic heterogeneity disease. Our study identified specific gene mutations that could result in Noonan syndrome with hypertrophic cardiomyopathy through molecular biology methods. The results emphasize the importance of gene detection in the management of Noonan syndrome.

  16. An association study between CHEK2 gene mutations and susceptibility to breast cancer.

    PubMed

    Jalilvand, Manizheh; Oloomi, Mana; Najafipour, Reza; Alizadeh, Safar Ali; Saki, Najmaldin; Rad, Fatemeh Samiee; Shekari, Mohammad

    2017-01-01

    CHEK2 gene is known as a tumor suppressor gene in breast cancer (BC), which plays a role in DNA repair. The germ line mutations in CEHK2 have been associated with different types of cancer. The present study was aimed at studying the association between CHEK2 mutations and BC. Peripheral blood was collected from patients into a test tube containing EDTA, and DNA was extracted from blood samples. Then, we analyzed mutations including 1100delc, IVS2+1>A, del5395bp, and I157T within CHEK2 gene in patients with BC and 100 normal healthy controls according to PCR-RFLP, allelic specific PCR, and multiplex-PCR. Although IVS2+1G>A mutation within CHEK2 gene was found in two BC patients, other defined mutants were not detected. For the first time, we identified CHEK2 IVS2+1G>A mutation, one out of four different CHEK2 alterations in two Iranian BC patients (2%). Also, our results showed that CHEK2 1100elC, del5395bp, and I157T mutations are not associated with genetic susceptibility for BC among Iranian population.

  17. Genomic characterization of pediatric T-cell acute lymphoblastic leukemia reveals novel recurrent driver mutations

    PubMed Central

    Spinella, Jean-François; Cassart, Pauline; Richer, Chantal; Saillour, Virginie; Ouimet, Manon; Langlois, Sylvie; St-Onge, Pascal; Sontag, Thomas; Healy, Jasmine; Minden, Mark D.; Sinnett, Daniel

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with variable prognosis. It represents 15% of diagnosed pediatric ALL cases and has a threefold higher incidence among males. Many recurrent alterations have been identified and help define molecular subgroups of T-ALL, however the full range of events involved in driving transformation remain to be defined. Using an integrative approach combining genomic and transcriptomic data, we molecularly characterized 30 pediatric T-ALLs and identified common recurrent T-ALL targets such as FBXW7, JAK1, JAK3, PHF6, KDM6A and NOTCH1 as well as novel candidate T-ALL driver mutations including the p.R35L missense mutation in splicesome factor U2AF1 found in 3 patients and loss of function mutations in the X-linked tumor suppressor genes MED12 (frameshit mutation p.V167fs, splice site mutation g.chrX:70339329T>C, missense mutation p.R1989H) and USP9X (nonsense mutation p.Q117*). In vitro functional studies further supported the putative role of these novel T-ALL genes in driving transformation. U2AF1 p.R35L was shown to induce aberrant splicing of downstream target genes, and shRNA knockdown of MED12 and USP9X was shown to confer resistance to apoptosis following T-ALL relevant chemotherapy drug treatment in Jurkat leukemia cells. Interestingly, nearly 60% of novel candidate driver events were identified among immature T-ALL cases, highlighting the underlying genomic complexity of pediatric T-ALL, and the need for larger integrative studies to decipher the mechanisms that contribute to its various subtypes and provide opportunities to refine patient stratification and treatment. PMID:27602765

  18. Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.

    PubMed

    Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Hernández-Laín, Aurelio; Coca-Robinot, David; Rivera, Henry; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, MiguelÁngel; Martínez-Azorín, Francisco

    2016-02-29

    Whole-exome sequencing (WES) was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase (CK), deficiency of mitochondrial complex III and depletion of mtDNA. With WES data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in Thymidine kinase 2 gene (TK2; NM_004614.4:c.323C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes (MDS). This patient presents an atypical TK2 related-myopathic form of MDS, because despite having a very low content of mtDNA (<20%), she presents a slower and less severe evolution of the disease. In conclusion, our data confirm the role of TK2 gene in MDS and expanded the phenotypic spectrum.

  19. Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.

    PubMed

    Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Rivera, Henry; Hernández-Laín, Aurelio; Coca-Robinot, David; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, Miguel A; Martínez-Azorín, Francisco

    2017-01-01

    Whole-exome sequencing was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase, deficiency of mitochondrial complex III and depletion of mtDNA. With whole-exome sequencing data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in thymidine kinase 2 gene ( TK2; NM_004614.4:c.323 C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes. This patient presents an atypical TK2-related myopathic form of mtDNA depletion syndromes, because despite having a very low content of mtDNA (<20%), she presents a slower and less severe evolution of the disease. In conclusion, our data confirm the role of TK2 gene in mtDNA depletion syndromes and expanded the phenotypic spectrum.

  20. High-dose folic acid supplementation alters the human sperm methylome and is influenced by the MTHFR C677T polymorphism.

    PubMed

    Aarabi, Mahmoud; San Gabriel, Maria C; Chan, Donovan; Behan, Nathalie A; Caron, Maxime; Pastinen, Tomi; Bourque, Guillaume; MacFarlane, Amanda J; Zini, Armand; Trasler, Jacquetta

    2015-11-15

    Dietary folate is a major source of methyl groups required for DNA methylation, an epigenetic modification that is actively maintained and remodeled during spermatogenesis. While high-dose folic acid supplementation (up to 10 times the daily recommended dose) has been shown to improve sperm parameters in infertile men, the effects of supplementation on the sperm epigenome are unknown. To assess the impact of 6 months of high-dose folic acid supplementation on the sperm epigenome, we studied 30 men with idiopathic infertility. Blood folate concentrations increased significantly after supplementation with no significant improvements in sperm parameters. Methylation levels of the differentially methylated regions of several imprinted loci (H19, DLK1/GTL2, MEST, SNRPN, PLAGL1, KCNQ1OT1) were normal both before and after supplementation. Reduced representation bisulfite sequencing (RRBS) revealed a significant global loss of methylation across different regions of the sperm genome. The most marked loss of DNA methylation was found in sperm from patients homozygous for the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism, a common polymorphism in a key enzyme required for folate metabolism. RRBS analysis also showed that most of the differentially methylated tiles were located in DNA repeats, low CpG-density and intergenic regions. Ingenuity Pathway Analysis revealed that methylation of promoter regions was altered in several genes involved in cancer and neurobehavioral disorders including CBFA2T3, PTPN6, COL18A1, ALDH2, UBE4B, ERBB2, GABRB3, CNTNAP4 and NIPA1. Our data reveal alterations of the human sperm epigenome associated with high-dose folic acid supplementation, effects that were exacerbated by a common polymorphism in MTHFR. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. A novel mutation in the TCOF1 gene found in two Chinese cases of Treacher Collins syndrome.

    PubMed

    Zhang, Xu; Fan, Yue; Zhang, Ying; Xue, Huadan; Chen, Xiaowei

    2013-09-01

    To analyze the clinical features, hearing rehabilitation and family related gene mutations in the Chinese cases of Treacher Collins syndrome (TCS). The purpose of this study is to emphasize the genetic research result correlating with the clinical assessment of TCS in Chinese families. Six patients with tentative diagnosis and family members of two patients were analyzed in this study. The analysis included medical histories, clinical analysis, hearing tests and genetic tests. The TCOF1, POLR1C and POLR1D genes were sequenced to identify the pathogenic mutation responsible for the development of TCS. The two TCS cases exhibited high phenotypic variability. One novel heterozygous mutation (c.4420 C>T) in the TCOF1 gene was identified. The mutations were found in the TCS patients but not in any of their unaffected family members or the 200 unrelated control subjects. A novel TCOF1 c.4420 C>T mutation can be a cause of TCS in Chinese. We think that genetic studies to assess patients with mandibulofacial dysostosis may assist in making TCS diagnosis and providing consultant for their families. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. CHEK2 c.1100delC mutation is associated with an increased risk for male breast cancer in Finnish patient population.

    PubMed

    Hallamies, Sanna; Pelttari, Liisa M; Poikonen-Saksela, Paula; Jekunen, Antti; Jukkola-Vuorinen, Arja; Auvinen, Päivi; Blomqvist, Carl; Aittomäki, Kristiina; Mattson, Johanna; Nevanlinna, Heli

    2017-09-05

    Several susceptibility genes have been established for female breast cancer, of which mutations in BRCA1 and especially in BRCA2 are also known risk factors for male breast cancer (MBC). The role of other breast cancer genes in MBC is less well understood. In this study, we have genotyped 68 MBC patients for the known breast or ovarian cancer associated mutations in the Finnish population in CHEK2, PALB2, RAD51C, RAD51D, and FANCM genes. CHEK2 c.1100delC mutation was found in 4 patients (5.9%), which is significantly more frequent than in the control population (OR: 4.47, 95% CI 1.51-13.18, p = 0.019). Four CHEK2 I157T variants were also detected, but the frequency did not significantly differ from population controls (p = 0.781). No RAD51C, RAD51D, PALB2, or FANCM mutations were found. These data suggest that the CHEK2 c.1100delC mutation is associated with an increased risk for MBC in the Finnish population.

  3. Methylenetetrahydrofolate Reductase Gene Polymorphisms in Children with Attention Deficit Hyperactivity Disorder

    PubMed Central

    Gokcen, Cem; Kocak, Nadir; Pekgor, Ahmet

    2011-01-01

    Objective: The purpose of this study was to evaluate the relationship between 5,10- methylenetetrahydrofolate reductase (MTHFR) polymorphisms and Attention Deficit Hyperactivity Disorder (ADHD) in a sample of Turkish children. Study Design: MTHFR gene polymorphisms were assessed in 40 patients with ADHD and 30 healty controls. Two mutations in the MTHFR gene were investigated using polymerase chain reactions and restriction fragment length polymorphisms. Results: Although there were no statistically significant differences in genotype distributions of the C677T alleles between the ADHD and the control groups (p=0,678) but the genotypic pattern of the distributions of the A1298C alleles was different between the ADHD patients and the controls (p=0,033). Conclusions: Preliminary data imply a possible relationship between A1298C MTHFR polymorphisms and the ADHD. PMID:21897766

  4. AB071. Mutations of AR gene in Vietnamese patients: genotype and phenotype

    PubMed Central

    Dung, Vu Chi; Fukami, Maki; Ngoc, Can Thi Bich; Thao, Bui Phuong; Khanh, Nguyen Ngoc; Nga, Pham Thu; Dat, Nguyen Phu; Ogata, Tsutomu

    2015-01-01

    Androgen insensitivity syndrome (AIS) is the most common specific cause of 46,XY disorder in sex development. The androgen signaling pathway is complex but so far, the only gene linked with AIS is the androgen receptor (AR). Mutations in the AR are found in most subjects with complete AIS but in partial AIS, the rate has varied 28-73%, depending on the case selection. More than over 800 entries of mutations causing AIS, representing over 500 different AR mutations from more than 850 patients with AIS have been reported. We aim to describe clinical manifestations and to identify mutation of AR in Vietnamese patients with AIS. This case series study included 12 patients from 9 unrelated families with AIS. The gonadal position and external genitalia were evaluated clinically and using ultrasound. The mutation analysis of AR was performed using PCR and direct sequencing. The age of diagnosis was 1 to 83 years old. 8/12 cases were complete androgen insensitivity syndrome (CAIS) (female external genitalia) and 4 cases were predominantly female partial AIS phenotype. Four cases had two labial testes, six cases had inguinal testes and two cases had abdominal testes. Five different mutations of AR were identified from seven cases of three unrelated families including three novel ones. The novel missense mutation p.L701F (c.2103G > T) was identified in a patient of 83 years of age. The novel missense mutation p.L705F (c.2113C > T) was identified in two sibs. The novel mutation p. W752S (c.2256G > T) was identified in a child with CAIS phenotype and had family history. The reported missense mutation p.V747M was identified in two sibs. The reported mutation p.V867M (c.2599G > A) was identified in a child with female phenotype. Our study identified three novel and two reported mutation in the AR gene that may provide us new insights into the molecular mechanisms of AIS. The expanded database of these mutations should benefit patients in the diagnosis and treatment of this

  5. A novel mutation in the albumin gene (c.1A>C) resulting in analbuminemia.

    PubMed

    Caridi, Gianluca; Dagnino, Monica; Lugani, Francesca; Shalev, Stavit A; Campagnoli, Monica; Galliano, Monica; Spiegel, Ronen; Minchiotti, Lorenzo

    2013-01-01

    Analbuminemia (OMIM # 103600) is a rare autosomal recessive disorder manifested by the absence or severe reduction of circulating serum albumin in homozygous or compound heterozygous subjects. The trait is caused by a variety of mutations within the albumin gene. We report here the clinical and molecular characterisation of two new cases of congenital analbuminemia diagnosed in two members of the Druze population living in a Galilean village (Northern Israel) on the basis of their low level of circulating albumin. The albumin gene was screened by single-strand conformation polymorphism and heteroduplex analysis, and the mutated region was submitted to DNA sequencing. Both the analbuminemic subjects resulted homozygous for a previously unreported c.1 A>C transversion, for which we suggest the name Afula from the hospital where the two cases were investigated. This mutation causes the loss of the primary start codon ATG for Met1, which is replaced by a - then untranslated - triplet CTG for Leu. (p.Met1Leu). The use of an alternative downstream ATG codon would probably give rise to a completely aberrant polypeptide chain, leading to a misrouted intracellular transport and a premature degradation. The discovery of this new ALB mutation, probably inherited from a common ancestor, sheds light on the molecular mechanism underlying the analbuminemic trait and may serve in the development of a rapid genetic test for the identification of a-symptomatic heterozygous carriers in the Druze population in the Galilee. © 2012 The Authors. European Journal of Clinical Investigation © 2012 Stichting European Society for Clinical Investigation Journal Foundation.

  6. Localisation of a gene for prepubertal periodontitis to chromosome 11q14 and identification of a cathepsin C gene mutation

    PubMed Central

    Hart, T; Hart, P; Michalec, M; Zhang, Y; Marazita, M; Cooper, M; Yassin, O; Nusier, M; Walker, S

    2000-01-01

    Prepubertal periodontitis (PPP) is a rare and rapidly progressive disease of young children that results in destruction of the periodontal support of the primary dentition. The condition may occur as part of a recognised syndrome or may occur as an isolated finding. Both autosomal dominant and recessive forms of Mendelian transmission have been reported for PPP. We report a consanguineous Jordanian family with four members affected by PPP in two nuclear sibships. The parents of the affected subjects are first cousins. We have localised a gene of major effect for PPP in this kindred (Zmax=3.55 for D11S901 at θ=0.00) to a 14 cM genetic interval on chromosome 11q14 flanked by D11S916 and D11S1367. This PPP candidate interval overlaps the region of chromosome 11q14 that contains the cathepsin C gene responsible for Papillon-Lefèvre and Haim-Munk syndromes. Sequence analysis of the cathepsin C gene from PPP affected subjects from this Jordanian family indicated that all were homozygous for a missense mutation (1040A→G) that changes a tyrosine to a cysteine. All four parents were heterozygous carriers of this Tyr347Cys cathepsin C mutation. None of the family members who were heterozygous carriers for this mutation showed any clinical findings of PPP. None of the 50 controls tested were found to have this Tyr347Cys mutation. This is the first reported gene mutation for non-syndromic periodontitis and shows that non-syndromic PPP is an allelic variant of the type IV palmoplantar ectodermal dysplasias.


Keywords: prepubertal periodontitis; periodontal disease; cathepsin C; linkage PMID:10662808

  7. A Rare Missense Mutation and a Polymorphism with High Frequency in LDLR Gene among Iranian Patients with Familial Hypercholesterolemia

    PubMed Central

    Tajamolian, Masoud; Kolahdouz, Parisa; Nikpour, Parvaneh; Forouzannia, Seyed Khalil; Sheikhha, Mohammad Hasan; Yazd, Ehsan Farashahi

    2018-01-01

    Background: Familial hypercholesterolemia (FH) is a disorder that is inherited by autosomal dominant pattern. The main cause of FH disease is the occurrence of mutations in low-density lipoprotein receptor (LDLR) gene sequence, as well as apolipoprotein B and proprotein convertase subtilisin/kexin type 9 genes, located in the next ranks, respectively. Materials and Methods: Forty-five unrelated Iranian patients with FH were screened using a high-resolution melting (HRM) method for exon 9 along with intron/exon boundaries of LDLR gene. Samples with shift in resultant HRM curves were compared to normal ones, sequenced, and analyzed. Results: Our findings revealed a missense mutation c. 1246C>T and a known variant IVS9-30C>T (rs1003723) that was recognized in 71% of the patients (22%: homozygous and 49%: heterozygous genotypes). In silico analysis, predicted the pathological effect of the c. 1246C>T mutation in LDLR protein structure, but IVS9-30C>T variant had no predicted effect on splice site and branch point function. Conclusion: FH is a hereditary type of hypercholesterolemia that leads to premature cardiovascular disease and atherosclerosis, and early diagnosis is needed. We detected a rare missense mutation (1246C>T) and a common single nucleotide polymorphism (SNP) in the Iranian population. These reports could help in the genetic diagnosis and counseling of FH patients. PMID:29531935

  8. A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome

    PubMed Central

    Taghdiri, Maryam; Dastsooz, Hassan; Fardaei, Majid; Mohammadi, Sanaz; Farazi Fard, Mohammad Ali; Faghihi, Mohammad Ali

    2017-01-01

    Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene (ERCC6), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family. PMID:28848724

  9. A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome.

    PubMed

    Taghdiri, Maryam; Dastsooz, Hassan; Fardaei, Majid; Mohammadi, Sanaz; Farazi Fard, Mohammad Ali; Faghihi, Mohammad Ali

    2017-01-01

    Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene ( ERCC6 ), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.

  10. CMT2C with vocal cord paresis associated with short stature and mutations in the TRPV4 gene

    PubMed Central

    Chen, D.-H.; Sul, Y.; Weiss, M.; Hillel, A.; Lipe, H.; Wolff, J.; Matsushita, M.; Raskind, W.; Bird, T.

    2010-01-01

    Background: Recently, mutations in the transient receptor potential cation channel, subfamily V, member 4 gene (TRPV4) have been reported in Charcot-Marie-Tooth Type 2C (CMT2C) with vocal cord paresis. Other mutations in this same gene have been described in separate families with various skeletal dysplasias. Further clarification is needed of the different phenotypes associated with this gene. Methods: We performed clinical evaluation, electrophysiology, and genetic analysis of the TRPV4 gene in 2 families with CMT2C. Results: Two multigenerational families had a motor greater than sensory axonal neuropathy associated with variable vocal cord paresis. The vocal cord paresis varied from absent to severe, requiring permanent tracheotomy in 2 subjects. One family with mild neuropathy also manifested pronounced short stature, more than 2 SD below the average height for white Americans. There was one instance of dolichocephaly. A novel S542Y mutation in the TRPV4 gene was identified in this family. The other family had a more severe, progressive, motor neuropathy with sensory loss, but less remarkable short stature and an R315W mutation in TRPV4. Third cranial nerve involvement and sleep apnea occurred in one subject in each family. Conclusion: CMT2C with axonal neuropathy, vocal cord paresis, and short stature is a unique syndrome associated with mutations in the TRPV4 gene. Mutations in TRPV4 can cause abnormalities in bone, peripheral nerve, or both and may result in highly variable orthopedic and neurologic phenotypes. GLOSSARY CMAP = compound muscle action potential; CMT = Charcot-Marie-Tooth; CMT2C = Charcot-Marie-Tooth Type 2C; HMSN = hereditary motor and sensory neuropathy; NCV = nerve conduction velocity; RFLP = restriction fragment length polymorphism; SMA = spinal muscular atrophy; SNAP = sensory nerve action potential; SPSMA = scapuloperoneal spinal muscular atrophy. PMID:21115951

  11. Detection of a large duplication mutation in the myosin-binding protein C3 gene in a case of hypertrophic cardiomyopathy.

    PubMed

    Meyer, Thomas; Pankuweit, Sabine; Richter, Anette; Maisch, Bernhard; Ruppert, Volker

    2013-09-15

    Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease with autosomal dominant inheritance caused by mutations in genes coding for sarcomeric and/or regulatory proteins expressed in cardiomyocytes. In a small cohort of HCM patients (n=8), we searched for mutations in the two most common genes responsible for HCM and found four missense mutations in the MYH7 gene encoding cardiac β-myosin heavy chain (R204H, M493V, R719W, and R870H) and three mutations in the myosin-binding protein C3 gene (MYBPC3) including one missense (A848V) and two frameshift mutations (c.3713delTG and c.702ins26bp). The c.702ins26bp insertion resulted from the duplication of a 26-bp fragment in a 54-year-old female HCM patient presenting with clinical signs of heart failure due to diastolic dysfunction. Although such large duplications (>10 bp) in the MYBPC3 gene are very rare and have been identified only in 4 families reported so far, the identical duplication mutation was found earlier in a Dutch patient, demonstrating that it may constitute a hitherto unknown founder mutation in central European populations. This observation underscores the significance of insertions into the coding sequence of the MYBPC3 gene for the development and pathogenesis of HCM. © 2013 Elsevier B.V. All rights reserved.

  12. [NOTCH3 gene mutations in two Chinese families featuring cerebral autosomal dominant arteriopathy with subcortical infarct and leucoencephalopathy].

    PubMed

    Sun, Qiying; Li, Wenwen; Zhou, Yafang; Yi, Fang; Wang, Jianfeng; Hu, Yacen; Yao, Lingyan; Zhou, Lin; Xu, Hongwei

    2017-12-10

    To analyze potential mutations of the NOTCH3 gene in two Chinese families featuring cerebral autosomal dominant arteriopathy with subcortical infarct and leucoencephalopathy (CADASIL). The two probands and related family members and 100 healthy controls were recruited. Potential mutations of the NOTCH3 gene were screened by PCR and direct sequencing. PolyPhen-2 and SIFT software were used to predict the protein function. The conditions of both probands were adult-onset, with main clinical features including recurrent transient ischemic attacks and/or strokes, cognitive impairment. MRI findings suggested multiple cerebral infarcts and severe leukoencephalopathy. A heterozygous mutation c.328C>T (p.Arg110Cys), which was located in exon 3 of the NOTCH3 gene and known as a causative mutation, was identified in proband 1. A novel heterozygous mutation c.1013 G>C (p.Cys338Ser) located in exon 6 of the NOTCH3 gene was identified in the proband 2, which was not reported previously. The same mutations were not detected among the 100 unrelated healthy controls. Function analysis suggested that heterozygous mutation c.1013G>C can severely affect the functions of NOTCH3 protein. Two heterozygous missense mutations in the NOTCH3 gene have been identified in two families affected with CADASIL. The novel heterozygous Cys338Ser mutation in exon 6 of the NOTCH3 gene probably underlies the CADASIL.

  13. A novel start codon mutation of the MERTK gene in a patient with retinitis pigmentosa

    PubMed Central

    Jinda, Worapoj; Poungvarin, Naravat; Taylor, Todd D.; Suzuki, Yutaka; Thongnoppakhun, Wanna; Limwongse, Chanin; Lertrit, Patcharee; Suriyaphol, Prapat

    2016-01-01

    Purpose Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous group of inherited retinal degenerations characterized by progressive loss of photoreceptor cells and RPE functions. More than 70 causative genes are known to be responsible for RP. This study aimed to identify the causative gene in a patient from a consanguineous family with childhood-onset severe retinal dystrophy. Methods To identify the defective gene, whole exome sequencing was performed. Candidate causative variants were selected and validated using Sanger sequencing. Segregation analysis of the causative gene was performed in additional family members. To verify that the mutation has an effect on protein synthesis, an expression vector containing the first ten amino acids of the mutant protein fused with the DsRed2 fluorescent protein was constructed and transfected into HEK293T cells. Expression of the fusion protein in the transfected cells was measured using fluorescence microscopy. Results By filtering against public variant databases, a novel homozygous missense mutation (c.3G>A) localized in the start codon of the MERTK gene was detected as a potentially pathogenic mutation for autosomal recessive RP. The c.3G>A mutation cosegregated with the disease phenotype in the family. No expression of the first ten amino acids of the MerTK mutant fused with the DsRed2 fluorescent protein was detected in HEK293T cells, indicating that the mutation affects the translation initiation site of the gene that may lead to loss of function of the MerTK signaling pathway. Conclusions We report a novel missense mutation (c.3G>A, p.0?) in the MERTK gene that causes severe vision impairment in a patient. Taken together with previous reports, our results expand the spectrum of MERTK mutations and extend our understanding of the role of the MerTK protein in the pathogenesis of retinitis pigmentosa. PMID:27122965

  14. Characterization of Mycobacterium leprae Genotypes in China--Identification of a New Polymorphism C251T in the 16S rRNA Gene.

    PubMed

    Yuan, Youhua; Wen, Yan; You, Yuangang; Xing, Yan; Li, Huanying; Weng, Xiaoman; Wu, Nan; Liu, Shuang; Zhang, Shanshan; Zhang, Wenhong; Zhang, Ying

    2015-01-01

    Leprosy continues to be prevalent in some mountainous regions of China, and genotypes of leprosy strains endemic to the country are not known. Mycobacterium lepromatosis is a new species that was discovered in Mexico in 2008, and it remains unclear whether this species exists in China. Here, we conducted PCR- restriction fragment length polymorphism (RFLP) analysis to classify genotypes of 85 DNA samples collected from patients from 18 different provinces. All 171 DNA samples from skin biopsies of leprosy patients were tested for the presence of Mycobacterium leprae and Mycobacterium lepromatosis by amplifying the 16S rRNA gene using nested PCR, followed by DNA sequencing. The new species M. lepromatosis was not found among the 171 specimens from leprosy patients in 22 provinces in China. However, we found three SNP genotypes among 85 leprosy patients. A mutation at C251T in the 16S rRNA gene was found in 76% of the strains. We also found that the strains that showed the 16S rRNA C251T mutation belonged to SNP type 3, whereas strains without the point mutation belonged to SNP type 1. The SNP type 3 leprosy strains were observed in patients from both the inner and coastal regions of China, but the SNP type 1 strains were focused only in the coastal region. This indicated that the SNP type 3 leprosy strains were more prevalent than the SNP type 1 strains in China. In addition, the 16S rRNA gene sequence mutation at C251T also indicated a difference in the geographical distribution of the strains. To our knowledge, this is the first report of a new polymorphism in 16S rRNA gene in M. leprae in China. Our findings shed light on the prevalent genotypes and provide insight about leprosy transmission that are important for leprosy control in China.

  15. MTRR A66G, RFC1 G80A, and MTHFR C677T and A1298C Polymorphisms and Disease Activity in Mexicans with Rheumatoid Arthritis Treated with Methotrexate

    PubMed Central

    González-Mercado, Mirna Gisel; Rivas, Fernando; Gallegos-Arreola, M. Patricia; Morán-Moguel, M. Cristina; Salazar-Páramo, Mario; González-López, Laura; Gámez-Nava, J. Iván; Muñoz-Valle, J. Francisco; Medina-Coss y León, Ricardo; González-Mercado, Anahí; Aceves, Mario A.; Dávalos, Nory O.; Macías-Chumacera, Agustín

    2017-01-01

    Aim: To investigate the relationships of polymorphisms in genes whose protein products are related in the metabolic pathway of folic acid, particularly MTRR A66G, RFC1 G80A, and MTHFR C677T and A1298C, and disease activity in Mexican patients with rheumatoid arthritis (RA) treated with methotrexate (MTX). Materials and Methods: Sixty-eight patients with RA were included in the study who were being treated with MTX, either with or without other drugs. In addition to general data, disease activity was measured by the disease activity score 28 (DAS28). Single nucleotide polymorphisms (SNPs) genotyping was performed by allelic discrimination using real-time polymerase chain reaction. Results: Differences in genotype (homozygotic or heterozygotic for each allele), allele distributions, and phenotype were not statistically different between the RA group and control populations. We did not find any association between the studied polymorphisms and disease activity nor with the intragroup variables (e.g., clinical activity, body mass index, and single- or combined-drug treatment) or between genetic markers; we also did not find any association within the RA group or between the RA group and control populations. Conclusion: Additional studies of more polymorphisms related to this or other metabolic pathways are required to determine the influence of genetics on disease activity in RA. PMID:28994615

  16. Carcinogen-induced mutations in the mouse c-Ha-ras gene provide evidence of multiple pathways for tumor progression.

    PubMed Central

    Brown, K; Buchmann, A; Balmain, A

    1990-01-01

    A number of mouse skin tumors initiated by the carcinogens N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), methylnitrosourea (MNU), 3-methylcholanthrene (MCA), and 7,12-dimethylbenz[a]anthracene (DMBA) have been shown to contain activated Ha-ras genes. In each case, the point mutations responsible for activation have been characterized. Results presented demonstrate the carcinogen-specific nature of these ras mutations. For each initiating agent, a distinct spectrum of mutations is observed. Most importantly, the distribution of ras gene mutations is found to differ between benign papillomas and carcinomas, suggesting that molecular events occurring at the time of initiation influence the probability with which papillomas progress to malignancy. This study provides molecular evidence in support of the existence of subsets of papillomas with differing progression frequencies. Thus, the alkylating agents MNNG and MNU induced exclusively G ---- A transitions at codon 12, with this mutation being found predominantly in papillomas. MCA initiation produced both codon 13 G ---- T and codon 61 A ---- T transversions in papillomas; only the G ---- T mutation, however, was found in carcinomas. These findings provide strong evidence that the mutational activation of Ha-ras occurs as a result of the initiation process and that the nature of the initiating event can affect the probability of progression to malignancy. Images PMID:2105486

  17. Association of HFE gene mutations with nonalcoholic fatty liver disease in the Iranian population.

    PubMed

    Saremi, L; Lotfipanah, S; Mohammadi, M; Hosseinzadeh, H; Sayad, A; Saltanatpour, Z

    2016-10-31

    To determine whether the HFE gene variants H63D and C282Y are associated with NAFLD in persons with type 2 diabetes, we conducted a case-control study including 145 case of NAFLD patients with a history of type 2 diabetes and 145 matching control. The genomic DNA was extracted from the peripheral venous blood and the genotyping of HFE gene mutations was analyzed using the PCR-RFLP technique. Statistical analysis was performed using SPSS 12.0 software by χ2 test, t test and ANOVA (P<0.05). Data showed no increased frequency of HFE mutations in persons with type 2 diabetes and no association between H63D mutation and NAFLD in the study population. Also, we analyzed index of physiological variables including FBS, lipid profile (TC, TG, LDL-C, and HDL-C), BMI, HbA1c, and micro albuminuria and Cr levels). Data showed there are no relationship between these indexes and HFE gene mutations and either NAFLD as a complication of diabetes. But our results showed a relationship between C282Y mutation and NAFLD in persons with type 2 diabetes. C282Y mutation might be a genetic marker of NAFLD in Iranian population.

  18. Primary hyperoxaluria type 1: a cluster of new mutations in exon 7 of the AGXT gene.

    PubMed

    von Schnakenburg, C; Rumsby, G

    1997-06-01

    Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inborn error of glyoxylate metabolism caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. This enzyme is encoded by the AGXT gene on chromosome 2q37.3. DNA samples from 79 PH1 patients were studied using single strand conformation polymorphism analysis to detect sequence variants, which were then characterised by direct sequencing and confirmed by restriction enzyme digestion. Four novel mutations were identified in exon 7 of AGXT: a point mutation T853C, which leads to a predicted Ile244Thr amino acid substitution, occurred in nine patients. Two other mutations in adjacent nucleotides, C819T and G820A, mutated the same codon at residue 233 from arginine to cysteine and histidine, respectively. The fourth mutation, G860A, introduced a stop codon at amino acid residue 246. Enzyme studies in these patients showed that AGT catalytic activity was either very low or absent and that little or no immunoreactive protein was present. Together with a new polymorphism in exon 11 (C1342A) these findings underline the genetic heterogeneity of the AGXT gene. The novel mutation T853C is the second most common mutation found to date with an allelic frequency of 9% and will therefore be of clinical importance for the diagnosis of PH1.

  19. Primary hyperoxaluria type 1: a cluster of new mutations in exon 7 of the AGXT gene.

    PubMed Central

    von Schnakenburg, C; Rumsby, G

    1997-01-01

    Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inborn error of glyoxylate metabolism caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. This enzyme is encoded by the AGXT gene on chromosome 2q37.3. DNA samples from 79 PH1 patients were studied using single strand conformation polymorphism analysis to detect sequence variants, which were then characterised by direct sequencing and confirmed by restriction enzyme digestion. Four novel mutations were identified in exon 7 of AGXT: a point mutation T853C, which leads to a predicted Ile244Thr amino acid substitution, occurred in nine patients. Two other mutations in adjacent nucleotides, C819T and G820A, mutated the same codon at residue 233 from arginine to cysteine and histidine, respectively. The fourth mutation, G860A, introduced a stop codon at amino acid residue 246. Enzyme studies in these patients showed that AGT catalytic activity was either very low or absent and that little or no immunoreactive protein was present. Together with a new polymorphism in exon 11 (C1342A) these findings underline the genetic heterogeneity of the AGXT gene. The novel mutation T853C is the second most common mutation found to date with an allelic frequency of 9% and will therefore be of clinical importance for the diagnosis of PH1. Images PMID:9192270

  20. Hereditary Angioedema Due to C1 Inhibitor Deficiency in Serbia: Two Novel Mutations and Evidence of Genotype-Phenotype Association

    PubMed Central

    Andrejević, Slađana; Korošec, Peter; Šilar, Mira; Košnik, Mitja; Mijanović, Radovan; Bonači-Nikolić, Branka; Rijavec, Matija

    2015-01-01

    Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare autosomal dominant disease characterized by recurrent life-threatening oedemas and/or abdominal pain and caused by mutations affecting the C1 inhibitor gene, SERPING1. We sought to investigate the spectrum of SERPING1 mutations in Serbia and the possible genotype-phenotype association. C1-INH-HAE was diagnosed on the basis of clinical and laboratory criteria in 40 patients from 27 families; four were asymptomatic. Mutational analysis of the SERPING1 gene was performed by sequencing and multiplex ligation-dependent probe amplification. Disease-causing mutations in SERPING1 were identified in all patients. In C1-INH-HAE type I, we identified 19 different mutations, including 6 missense mutations, 6 nonsense mutations, 2 small deletions, 1 small insertion, 2 splicing defects and 2 large deletions. Two of the mutations (c.300C>T and c.1184_1185insTA) are reported here for the first time. All C1-INH-HAE type II patients from three families harboured the same substitution (c.1396C>T). Based on the type of mutation identified in the SERPING1 gene, patients were divided into two groups: group 1 (nonsense, frameshift, large deletions/insertions, splicing defect, and mutations at Arg444) or group 2 (missense, excluding mutations at Arg444). Significant differences were found in the clinical severity score (P = 0.005), prevalence of laryngeal (P = 0.040) and facial (P = 0.013) oedema, and long-term prophylaxis (P = 0.023) between the groups with different types of mutations. Because our population consisted of related subjects, differences in the severity score between mutation groups were further confirmed using the generalized estimating equation (P = 0.038). Our study identified 20 different disease-causing mutations, including two novel mutations, in all C1-INH-HAE patients, highlighting the heterogeneity of mutations in the SERPING1 gene. Furthermore, it appears that mutations with a clear effect

  1. Hereditary Angioedema Due to C1 Inhibitor Deficiency in Serbia: Two Novel Mutations and Evidence of Genotype-Phenotype Association.

    PubMed

    Andrejević, Slađana; Korošec, Peter; Šilar, Mira; Košnik, Mitja; Mijanović, Radovan; Bonači-Nikolić, Branka; Rijavec, Matija

    2015-01-01

    Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare autosomal dominant disease characterized by recurrent life-threatening oedemas and/or abdominal pain and caused by mutations affecting the C1 inhibitor gene, SERPING1. We sought to investigate the spectrum of SERPING1 mutations in Serbia and the possible genotype-phenotype association. C1-INH-HAE was diagnosed on the basis of clinical and laboratory criteria in 40 patients from 27 families; four were asymptomatic. Mutational analysis of the SERPING1 gene was performed by sequencing and multiplex ligation-dependent probe amplification. Disease-causing mutations in SERPING1 were identified in all patients. In C1-INH-HAE type I, we identified 19 different mutations, including 6 missense mutations, 6 nonsense mutations, 2 small deletions, 1 small insertion, 2 splicing defects and 2 large deletions. Two of the mutations (c.300C>T and c.1184_1185insTA) are reported here for the first time. All C1-INH-HAE type II patients from three families harboured the same substitution (c.1396C>T). Based on the type of mutation identified in the SERPING1 gene, patients were divided into two groups: group 1 (nonsense, frameshift, large deletions/insertions, splicing defect, and mutations at Arg444) or group 2 (missense, excluding mutations at Arg444). Significant differences were found in the clinical severity score (P = 0.005), prevalence of laryngeal (P = 0.040) and facial (P = 0.013) oedema, and long-term prophylaxis (P = 0.023) between the groups with different types of mutations. Because our population consisted of related subjects, differences in the severity score between mutation groups were further confirmed using the generalized estimating equation (P = 0.038). Our study identified 20 different disease-causing mutations, including two novel mutations, in all C1-INH-HAE patients, highlighting the heterogeneity of mutations in the SERPING1 gene. Furthermore, it appears that mutations with a clear effect

  2. [Leigh syndrome resulting from a de novo mitochondrial DNA mutation (T8993G)].

    PubMed

    Playán, A; Solano-Palacios, A; González de la Rosa, J B; Merino-Arribas, J M; Andreu, A L; López-Pérez, M; Montoya, J

    Several degenerative neurological diseases are caused by mutations in the mitochondrial gene coding for subunit 6 of the ATPase. Thus, NARP (neurogenic weakness, ataxia, and retinitis pigmentosa) and Leigh syndromes are associated to a T8993G mutation when the percentage of mutant mitochondrial DNA is low (60 90%) or high (>90%), respectively. Leigh syndrome is also caused by a second mutation in the same position T8993C. The patient, a boy that died at 6 months, had generalized hypotonia, psychomotor delay, hepatomegaly, choreic movements and hyporreflexia. MRI showed hypodensities in the basal ganglia and brain stem as well as hyperlactacidemia. Molecular genetic analysis of the mitochondrial DNA showed that the patient had the T8993G mutation in a percentage higher than 95%. No mutated DNA was detected in blood of the proband s mother, maternal aunt and grandmother. The point mutation T8993G may occur de novo, at high levels, causing neurodegenerative diseases.

  3. Relative high frequency of the c.255delA parkin gene mutation in Spanish patients with autosomal recessive parkinsonism

    PubMed Central

    Munoz, E; Tolosa, E; Pastor, P; Marti, M; Valldeoriola, F; Campdelacreu, J; Oliva, R

    2002-01-01

    Objectives: To search for the presence of parkin gene mutations in Spanish patients with Parkinson's disease (PD) and characterise the phenotype associated with these mutations. Methods: Thirty seven PD patients with either early onset or autosomal recessive pattern of inheritance were selected for genetic study. Results: Mutations were identified in seven index patients (19%). Homozygous mutations were detected in six patients and a heterozygous mutation in one. The age at onset was lower in patients with mutations than in patients without mutations. Dystonia at onset was present in two patients with parkin gene mutations. The disease began in two patients with postural tremor in the upper limbs mimicking essential tremor. Four patients exhibited a long term response to dopamine agonists. The c.255delA mutation was identified in four unrelated families. This is a frameshift mutation leading to protein truncation. Conclusions: Parkin gene mutations are present in Spanish patients with early onset and/or an autosomal recessive parkinsonism. The c.255delA is the most frequent mutation found, suggesting a relative high prevalence in the Spanish population. PMID:12397156

  4. New mutation of the MPZ gene in a family with the Dejerine-Sottas disease phenotype.

    PubMed

    Floroskufi, Paraskewi; Panas, Marios; Karadima, Georgia; Vassilopoulos, Demetris

    2007-05-01

    Charcot-Marie-Tooth disease type 1B is associated with mutations in the myelin protein zero gene. In the present study a new myelin protein zero gene mutation (c.89T>C,Ile30Thr) was detected in a family with the Dejerine-Sottas disease phenotype. The results support the hypothesis that severe, early-onset neuropathy may be related to either an alteration of a conserved amino acid or a disruption of the tertiary structure of myelin protein zero.

  5. [Mutations of gyrA gene and parC gene in fluoroquinolone-resistant Escherichia coli isolates from sporadic diarrheal cases].

    PubMed

    Ishiguro, Fubito; Toho, Miho; Yamazaki, Mitsugu; Matsuyuki, Seiko; Moriya, Kazuo; Tanaka, Daisuke; Isobe, Junko; Kyota, Yoshito; Muraoka, Michio

    2006-09-01

    We studied 107 isolates of Escherichia coli O153 from sporadic diarrhea cases in Fukui, Toyama, Aichi, and Saga prefectures from 1991 to 2005 for antimicrobial susceptibility and mechanisms of fluoroquinolone resistance, based on standard disk diffusion. Of 12 drugs tested, ampicillin displayed resistance to 72.9% of isolates, streptomycin to 48.6%, tetracycline to 46.7%, sulfisoxazole to 46.7%, trimethoprim/sulfamethoxazole to 29.9%, nalidixic acid (NA) to 29.9%, and ciprofloxacin (CPFX) to 24.3%. Ten of 32 isolates resistant to 3-6 drugs and 16 of 18 isolates resistant to 7-10 drugs were resistant both to NA and CPFX. Mutations of amino acid in quinolone resistance-determining regions of gyrA and parC genes were detected in 24 isolates resistant both to NA and CPFX, and in 1 isolate resistant to NA. The former possessed a combination of double substitution (S83L and D87L) in GyrA and a single substitution (S80I) in ParC. Some 12 of 24 isolates possessed another single substitution (E84V or E84G or A108T) in ParC. The 25 isolates were classified into 4 types as follows. 1 isolate as type 1: GyrA (S83L) and ParC (S80I); 12 isolates as type 2: GyrA (S83L and D87N) and ParC (S80I); 8 isolates as type 3: GyrA (S83L and D87N) and ParC (S80I and E84G/S80R and E84V); and 4 isolate as type 4: GyrA (S83L and D87N) and ParC (S80I and A108T). In the relationship between amino acid mutations and minimal inhibitory concentrations (MIC) of fluoroquinolone, MICs of CPFX, ofloxacin, and norfloxacin showed 1microg/mL, 2microg/mL and 8microg/mL in type 1; 8 approximately 32microg/mL, 8 approximately 32microg/mL and 16 approximately 256microg/mL in type 2; and 32 approximately 256microg/mL' 32 approximately 128microg/mL and 128-->512microg/ mL in types 3 and 4. These results suggest that most of multiple-antimicrobial-resitant E. coli O153 isolates from sporadic diarrhea cases were resistant to fluoroquinolones and possessed mutations at gyrA and parC genes associated with

  6. Five novel ALMS1 gene mutations in six patients with Alström syndrome.

    PubMed

    Kılınç, Suna; Yücel-Yılmaz, Didem; Ardagil, Aylin; Apaydın, Süheyla; Valverde, Diana; Özgül, Rıza Köksal; Güven, Ayla

    2018-05-01

    Alström syndrome is a rare autosomal recessive inherited disorder caused by mutations in the ALMS1 gene. We describe the clinical and five novel mutational screening findings in six patients with Alström syndrome from five families in a single center with distinct clinical presentations of this condition. Five novel mutations in ALMS1 in exon 8 and intron 17 were identified, one of them was a compound heterozygous: c.2259_2260insT, p.Glu754*; c.2035C>T p.Arg679*; c.2259_2260insT, p.Glu754*; c.5969C>G, p.Ser1990*; c.6541C>T, p. Gln2181*/c.11666-2A>G, splicing. One patient had gallstones, this association, to our knowledge, has not been reported in Alström syndrome previously. Early diagnosis of Alström syndrome is often difficult in children and adolescents, because many of the clinical features develop over time. Early diagnosis can initiate an effective managemen of this condition, and it will help to reduce future damage.

  7. Neuroimaging findings in Joubert syndrome with C5orf42 gene mutations: A milder form of molar tooth sign and vermian hypoplasia.

    PubMed

    Enokizono, Mikako; Aida, Noriko; Niwa, Tetsu; Osaka, Hitoshi; Naruto, Takuya; Kurosawa, Kenji; Ohba, Chihiro; Suzuki, Toshifumi; Saitsu, Hirotomo; Goto, Tomohide; Matsumoto, Naomichi

    2017-05-15

    Little is known regarding neuroimaging-genotype correlations in Joubert syndrome (JBTS). To elucidate one of these correlations, we investigated the neuroimaging findings of JBTS patients with C5orf42 mutations. Neuroimaging findings in five JBTS patients with C5orf42 mutations were retrospectively assessed with regard to the infratentorial and supratentorial structures on T1-magnetization prepared rapid gradient echo (MPRAGE), T2-weighted images, and color-coded fractional anisotropy (FA) maps; the findings were compared to those in four JBTS patients with mutations in other genes (including three with AHI1 and one with TMEM67 mutations). In C5orf42-mutant patients, the infratentorial magnetic resonance (MR) images showed normal or minimally thickened and minimally elongated superior cerebellar peduncles (SCP), normal or minimally deepened interpeduncular fossa (IF), and mild vermian hypoplasia (VH). However, in other patients, all had severe abnormalities in the SCP and IF, and moderate to marked VH. Supratentorial abnormalities were found in one individual in other JBTS. In JBTS with all mutations, color-coded FA maps showed the absence of decussation of the SCP (DSCP). The morphological neuroimaging findings in C5orf42-mutant JBTS were distinctly mild and made diagnosis difficult. However, the absence of DSCP on color-coded FA maps may facilitate the diagnosis of JBTS. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mutation screening of melatonin-related genes in patients with autism spectrum disorders

    PubMed Central

    2010-01-01

    Background One consistent finding in autism spectrum disorders (ASD) is a decreased level of the pineal gland hormone melatonin and it has recently been demonstrated that this decrease to a large extent is due to low activity of the acetylserotonin O-methyltransferase (ASMT), the last enzyme in the melatonin synthesis pathway. Moreover, mutations in the ASMT gene have been identified, including a splice site mutation, that were associated with low ASMT activity and melatonin secretion, suggesting that the low ASMT activity observed in autism is, at least partly, due to variation within the ASMT gene. Methods In the present study, we have investigated all the genes involved in the melatonin pathway by mutation screening of AA-NAT (arylalkylamine N-acetyltransferase), ASMT, MTNR1A, MTNR1B (melatonin receptor 1A and 1B) and GPR50 (G protein-coupled receptor 50), encoding both synthesis enzymes and the three main receptors of melatonin, in 109 patients with autism spectrum disorders (ASD). A cohort of 188 subjects from the general population was used as a comparison group and was genotyped for the variants identified in the patient sample. Results Several rare variants were identified in patients with ASD, including the previously reported splice site mutation in ASMT (IVS5+2T>C). Of the variants affecting protein sequence, only the V124I in the MTNR1B gene was absent in our comparison group. However, mutations were found in upstream regulatory regions in three of the genes investigated, ASMT, MTNR1A, and MTNR1B. Conclusions Our report of another ASD patient carrying the splice site mutation IVS5+2T>C, in ASMT further supports an involvement of this gene in autism. Moreover, our results also suggest that other melatonin related genes might be interesting candidates for further investigation in the search for genes involved in autism spectrum disorders and related neurobehavioral phenotypes. However, further studies of the novel variants identified in this study are

  9. Mutation screening of melatonin-related genes in patients with autism spectrum disorders.

    PubMed

    Jonsson, Lina; Ljunggren, Elin; Bremer, Anna; Pedersen, Christin; Landén, Mikael; Thuresson, Kent; Giacobini, Maibritt; Melke, Jonas

    2010-04-08

    One consistent finding in autism spectrum disorders (ASD) is a decreased level of the pineal gland hormone melatonin and it has recently been demonstrated that this decrease to a large extent is due to low activity of the acetylserotonin O-methyltransferase (ASMT), the last enzyme in the melatonin synthesis pathway. Moreover, mutations in the ASMT gene have been identified, including a splice site mutation, that were associated with low ASMT activity and melatonin secretion, suggesting that the low ASMT activity observed in autism is, at least partly, due to variation within the ASMT gene. In the present study, we have investigated all the genes involved in the melatonin pathway by mutation screening of AA-NAT (arylalkylamine N-acetyltransferase), ASMT, MTNR1A, MTNR1B (melatonin receptor 1A and 1B) and GPR50 (G protein-coupled receptor 50), encoding both synthesis enzymes and the three main receptors of melatonin, in 109 patients with autism spectrum disorders (ASD). A cohort of 188 subjects from the general population was used as a comparison group and was genotyped for the variants identified in the patient sample. Several rare variants were identified in patients with ASD, including the previously reported splice site mutation in ASMT (IVS5+2T>C). Of the variants affecting protein sequence, only the V124I in the MTNR1B gene was absent in our comparison group. However, mutations were found in upstream regulatory regions in three of the genes investigated, ASMT, MTNR1A, and MTNR1B. Our report of another ASD patient carrying the splice site mutation IVS5+2T>C, in ASMT further supports an involvement of this gene in autism. Moreover, our results also suggest that other melatonin related genes might be interesting candidates for further investigation in the search for genes involved in autism spectrum disorders and related neurobehavioral phenotypes. However, further studies of the novel variants identified in this study are warranted to shed light on their potential

  10. [Detection of gene mutation in glucose-6-phosphate dehydrogenase deficiency by RT-PCR sequencing].

    PubMed

    Lyu, Rong-Yu; Chen, Xiao-Wen; Zhang, Min; Chen, Yun-Sheng; Yu, Jie; Wen, Fei-Qiu

    2016-07-01

    Since glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common hereditary hemolytic erythrocyte enzyme deficiency, most cases have single nucleotide mutations in the coding region, and current test methods for gene mutation have some missed detections, this study aimed to investigate the feasibility of RT-PCR sequencing in the detection of gene mutation in G6PD deficiency. According to the G6PD/6GPD ratio, 195 children with anemia of unknown cause or who underwent physical examination between August 2013 and July 2014 were classified into G6PD-deficiency group with 130 children (G6PD/6GPD ratio <1.00) and control group with 65 children (G6PD/6GPD ratio≥1.00). The primer design and PCR amplification conditions were optimized, and RT-PCR sequencing was used to analyze the complete coding sequence and verify the genomic DNA sequence in the two groups. In the G6PD-deficiency group, the detection rate of gene mutation was 100% and 13 missense mutations were detected, including one new mutation. In the control group, no missense mutation was detected in 28 boys; 13 heterozygous missense mutations, 1 homozygous same-sense mutation (C1191T) which had not been reported in China and abroad, and 14 single nucleotide polymorphisms of C1311T were detected in 37 girls. The control group showed a high rate of missed detection of G6PD deficiency (carriers) in the specimens from girls (35%, 13/37). RT-PCR sequencing has a high detection rate of G6PD gene mutation and a certain value in clinical diagnosis of G6PD deficiency.

  11. The rs4846049 polymorphism in the 3'UTR region of the MTHFR gene increases the migraine susceptibility in an Iranian population.

    PubMed

    Salehi, Mohaddeseh; Amin-Beidokhti, Mona; Safarpour Lima, Behnam; Gholami, Milad; Javadi, Gholam-Reza; Mirfakhraie, Reza

    2018-01-01

    Migraine is a painful complex neurovascular disease characterized by recurrent moderate-to-severe headaches. Increased level of homocysteine is related to dilation of cerebral vessels and endothelial injury that could trigger migraine attacks. Functional polymorphisms in the MTHFR gene affect homocysteine metabolism and, therefore, play an important role in the etiology of the disease. We aimed to investigate the possible association between MTHFR gene rs4846049, C677T, and A1298C polymorphisms and the risk of migraine in Iranian population. In this genetic association study, 498 individuals were enrolled, including 223 migraine patients and 275 healthy controls. Genotyping was performed using tetra-primer ARMS-PCR for rs4846049 and PCR-restriction fragment length polymorphism for C677T and A1298C polymorphisms. The association between rs4846049 and C677T polymorphisms and migraine was observed. For the rs4846049 polymorphism, the association was detected under a dominant model ( P =0.007; odds ratio [OR] =0.60; 95% confidence interval [CI], 0.41-0.87), and for the C677T polymorphism, the TT genotype frequency was significantly different in the studied groups ( P =0.009; OR =2.48; 95% CI, 1.25-4.92). No significant differences in the genotype or allele frequencies were found for the A1298C polymorphism between the migraineurs and controls. Present data provide evidence for the association of rs4846049 and C677T polymorphisms in the MTHFR gene and migraine. Further studies are required to validate the significance of the studied genetic variations in diverse ethnic populations.

  12. Clinical characteristics and STK11 gene mutations in Chinese children with Peutz-Jeghers syndrome.

    PubMed

    Huang, Zhiheng; Miao, Shijian; Wang, Lin; Zhang, Ping; Wu, Bingbing; Wu, Jie; Huang, Ying

    2015-11-25

    Peutz-Jeghers syndrome (PJS) is a rare autosomal dominant inherited disease characterized by gastrointestinal hamartomatous polyps and mucocutaneous melanin spots. Germline mutation of the serine/threonine kinase 11 (STK11) gene are responsible for PJS. In this study, we investigated the clinical characteristics and molecular basis of the disease in Chinese children with PJS. Thirteen children diagnosed with PJS in our hospital were enrolled in this study from 2011 to 2015, and their clinical data on polyp characteristics, intussusceptions events, family histories, etc. were described. Genomic DNA was extracted from whole-blood samples from each subject, and the entire coding sequence of the STK11 gene was amplified by polymerase chain reaction and analyzed by direct sequencing. The median age at the onset of symptoms was 2 years and 4 months. To date, these children have undergone 40 endoscopy screenings, 17 laparotomies and 9 intussusceptions. Polyps were found in the stomach, duodenum, small bowel, colon and rectum, with large polyps found in 7 children. Mutations were found in eleven children, including seven novel mutations (c.481het_dupA, c.943_944het_delCCinsG, c.397het_delG, c.862 + 1G > G/A, c.348_349het_delGT, and c.803_804het_delGGinsC and c.121_139de l19insTT) and four previously reported mutations (c.658C > C/T, c.890G > G/A, c.1062 C > C/G, and c.290 + 1G > G/A). One PJS patient did not have any STK11 mutations. The polyps caused significant clinical consequences in children with PJS, and mutations of the STK11 gene are generally the cause of PJS in Chinese children. This study expands the spectrum of known STK11 gene mutations.

  13. The lipodystrophic hotspot lamin A p.R482W mutation deregulates the mesodermal inducer T/Brachyury and early vascular differentiation gene networks.

    PubMed

    Briand, Nolwenn; Guénantin, Anne-Claire; Jeziorowska, Dorota; Shah, Akshay; Mantecon, Matthieu; Capel, Emilie; Garcia, Marie; Oldenburg, Anja; Paulsen, Jonas; Hulot, Jean-Sebastien; Vigouroux, Corinne; Collas, Philippe

    2018-04-15

    The p.R482W hotspot mutation in A-type nuclear lamins causes familial partial lipodystrophy of Dunnigan-type (FPLD2), a lipodystrophic syndrome complicated by early onset atherosclerosis. Molecular mechanisms underlying endothelial cell dysfunction conferred by the lamin A mutation remain elusive. However, lamin A regulates epigenetic developmental pathways and mutations could perturb these functions. Here, we demonstrate that lamin A R482W elicits endothelial differentiation defects in a developmental model of FPLD2. Genome modeling in fibroblasts from patients with FPLD2 caused by the lamin A R482W mutation reveals repositioning of the mesodermal regulator T/Brachyury locus towards the nuclear center relative to normal fibroblasts, suggesting enhanced activation propensity of the locus in a developmental model of FPLD2. Addressing this issue, we report phenotypic and transcriptional alterations in mesodermal and endothelial differentiation of induced pluripotent stem cells we generated from a patient with R482W-associated FPLD2. Correction of the LMNA mutation ameliorates R482W-associated phenotypes and gene expression. Transcriptomics links endothelial differentiation defects to decreased Polycomb-mediated repression of the T/Brachyury locus and over-activation of T target genes. Binding of the Polycomb repressor complex 2 to T/Brachyury is impaired by the mutated lamin A network, which is unable to properly associate with the locus. This leads to a deregulation of vascular gene expression over time. By connecting a lipodystrophic hotspot lamin A mutation to a disruption of early mesodermal gene expression and defective endothelial differentiation, we propose that the mutation rewires the fate of several lineages, resulting in multi-tissue pathogenic phenotypes.

  14. Validation of dye-binding/high-resolution thermal denaturation for the identification of mutations in the SLC22A5 gene.

    PubMed

    Dobrowolski, Steven F; McKinney, Jason T; Amat di San Filippo, Cristina; Giak Sim, Keow; Wilcken, Bridget; Longo, Nicola

    2005-03-01

    Primary carnitine deficiency is an autosomal recessive disorder of fatty acid oxidation resulting from defective carnitine transport. This disease is caused by mutations in the OCTN2 carnitine transporter encoded by the SLC22A5 gene. Here we validate dye-binding/high-resolution thermal denaturation as a screening procedure to identify novel mutations in this gene. This procedure is based on the amplification of DNA by PCR in capillaries with the dsDNA binding dye LCGreen I. The PCR reaction is then analyzed in the same capillary by high-resolution thermal denaturation. Samples with abnormal melting profiles are sequenced. This technique correctly identified all known patients who were compound heterozygotes for different mutations in the carnitine transporter gene and about 30% of homozygous patients. The remaining 70% of homozygous patients were identified by a second amplification, in which the patient's DNA was mixed with the DNA of a normal control. This screening system correctly identified eight novel mutations and both abnormal alleles in six new families with primary carnitine deficiency. The causative role of the missense mutations identified (c.3G>T/p.M1I, c.695C>T/p.T232M, and c.1403 C>G/p.T468R) was confirmed by expression in Chinese hamster ovary (CHO) cells. These results expand the mutational spectrum in primary carnitine deficiency and indicate dye-binding/high-resolution thermal denaturation as an ideal system to screen for mutations in diseases with no prevalent molecular alteration. (c) 2005 Wiley-Liss, Inc.

  15. Methylenetetrahydrofolate reductase gene polymorphisms: association with risk for pediatric acute lymphoblastic leukemia in north Indians.

    PubMed

    Sood, Swati; Das, Reena; Trehan, Amita; Ahluwalia, Jasmina; Sachdeva, Man Updesh; Varma, Neelam; Bansal, Deepak; Marwaha, Ram Kumar

    2010-05-01

    Genetic polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene have been associated with the development of acute leukemias and various malignancies. We conducted a case-control study in 95 north Indian children with acute lymphoblastic leukemia (ALL) and 255 controls, to investigate the role of MTHFR C677T and A1298C polymorphisms as risk factors in the development of ALL. PCR-RFLP on genomic DNA was carried out to determine C677T and A1298C genotypes. The frequency of MTHFR C677T for the T allele was found to be 23.2% among patients and 18.2% among controls. The frequency of the C allele in MTHFR A1298C was 44.2% among cases and 48.2% in controls. Patients showed a higher frequency of heterozygosity for the MTHFR C677T polymorphism as compared to controls (40% vs 27.8%; OR = 1.73, 95% CI 1.02-2.91, p = 0.02), and the A1298C polymorphism did not show any difference in genotype frequency between cases and controls. MTHFR 677CC/1298AC genotype frequencies showed a statistically significant difference between cases and controls (OR = 0.58, 95% CI 0.34-1.01, p = 0.04). In conclusion, our study in north Indian controls and patients with pediatric ALL showed increased frequency for MTHFR C677T in the heterozygous state and no significant difference in the frequency of A1298C genotype between the two groups.

  16. A Library of Infectious Hepatitis C Viruses with Engineered Mutations in the E2 Gene Reveals Growth-Adaptive Mutations That Modulate Interactions with Scavenger Receptor Class B Type I.

    PubMed

    Zuiani, Adam; Chen, Kevin; Schwarz, Megan C; White, James P; Luca, Vincent C; Fremont, Daved H; Wang, David; Evans, Matthew J; Diamond, Michael S

    2016-12-01

    While natural hepatitis C virus (HCV) infection results in highly diverse quasispecies of related viruses over time, mutations accumulate more slowly in tissue culture, in part because of the inefficiency of replication in cells. To create a highly diverse population of HCV particles in cell culture and identify novel growth-enhancing mutations, we engineered a library of infectious HCV with all codons represented at most positions in the ectodomain of the E2 gene. We identified many putative growth-adaptive mutations and selected nine highly represented E2 mutants for further study: Q412R, T416R, S449P, T563V, A579R, L619T, V626S, K632T, and L644I. We evaluated these mutants for changes in particle-to-infectious-unit ratio, sensitivity to neutralizing antibody or CD81 large extracellular loop (CD81-LEL) inhibition, entry factor usage, and buoyant density profiles. Q412R, T416R, S449P, T563V, and L619T were neutralized more efficiently by anti-E2 antibodies and T416R, T563V, and L619T by CD81-LEL. Remarkably, all nine variants showed reduced dependence on scavenger receptor class B type I (SR-BI) for infection. This shift from SR-BI usage did not correlate with a change in the buoyant density profiles of the variants, suggesting an altered E2-SR-BI interaction rather than changes in the virus-associated lipoprotein-E2 interaction. Our results demonstrate that residues influencing SR-BI usage are distributed across E2 and support the development of large-scale mutagenesis studies to identify viral variants with unique functional properties. Characterizing variant viruses can reveal new information about the life cycle of HCV and the roles played by different viral genes. However, it is difficult to recapitulate high levels of diversity in the laboratory because of limitations in the HCV culture system. To overcome this limitation, we engineered a library of mutations into the E2 gene in the context of an infectious clone of the virus. We used this library of viruses

  17. Heterozygote FANCD2 mutations associated with childhood T Cell ALL and testicular seminoma.

    PubMed

    Smetsers, Stephanie; Muter, Joanne; Bristow, Claire; Patel, Leena; Chandler, Kate; Bonney, Denise; Wynn, Robert F; Whetton, Anthony D; Will, Andrew M; Rockx, Davy; Joenje, Hans; Strathdee, Gordon; Shanks, Jonathan; Klopocki, Eva; Gille, Johan J P; Dorsman, Josephine; Meyer, Stefan

    2012-12-01

    Fanconi anaemia (FA) is an inherited disease with congenital and developmental abnormalities characterised by cellular cross linker hypersensitivity. FA is caused by mutations in any of so far 15 identified FANC genes, which encode proteins that interact in a common DNA damage response (DDR) pathway. Individuals with FA have a high risk of developing acute myeloid leukaemia (AML) and squamous cell carcinoma. An increased cancer risk has been firmly established for carriers of mutations in FANCD1/BRCA2, FANCJ/BRIP1, FANCN/PALB2, RAD51C/FANCO and link the FA pathway to inherited breast and ovarian cancer. We describe a pedigree with FANCD2 mutations c.458T > C (p.Leu153Ser) and c.2715 + 1G > A (p.Glu906LeufsX4) with mild phenotype FA in the index case, T cell ALL in the Leu153Ser heterozygous brother and testicular seminoma in the p.Glu906LeufsX4 heterozygous father. Both FANCD2 alleles were present in the T Cell ALL and the seminoma. This links specific FANCD2 mutations to T cell ALL and seminoma without evidence of allelic loss in the tumour tissue.

  18. The Mammalian Cervical Vertebrae Blueprint Depends on the T (brachyury) Gene

    PubMed Central

    Kromik, Andreas; Ulrich, Reiner; Kusenda, Marian; Tipold, Andrea; Stein, Veronika M.; Hellige, Maren; Dziallas, Peter; Hadlich, Frieder; Widmann, Philipp; Goldammer, Tom; Baumgärtner, Wolfgang; Rehage, Jürgen; Segelke, Dierck; Weikard, Rosemarie; Kühn, Christa

    2015-01-01

    A key common feature of all but three known mammalian genera is the strict seven cervical vertebrae blueprint, suggesting the involvement of strong conserving selection forces during mammalian radiation. This is further supported by reports indicating that children with cervical ribs die before they reach reproductive age. Hypotheses were put up, associating cervical ribs (homeotic transformations) to embryonal cancer (e.g., neuroblastoma) or ascribing the constraint in cervical vertebral count to the development of the mammalian diaphragm. Here, we describe a spontaneous mutation c.196A > G in the Bos taurus T gene (also known as brachyury) associated with a cervical vertebral homeotic transformation that violates the fundamental mammalian cervical blueprint, but does not preclude reproduction of the affected individual. Genome-wide mapping, haplotype tracking within a large pedigree, resequencing of target genome regions, and bioinformatic analyses unambiguously confirmed the mutant c.196G allele as causal for this previously unknown defect termed vertebral and spinal dysplasia (VSD) by providing evidence for the mutation event. The nonsynonymous VSD mutation is located within the highly conserved T box of the T gene, which plays a fundamental role in eumetazoan body organization and vertebral development. To our knowledge, VSD is the first unequivocally approved spontaneous mutation decreasing cervical vertebrae number in a large mammal. The spontaneous VSD mutation in the bovine T gene is the first in vivo evidence for the hypothesis that the T protein is directly involved in the maintenance of the mammalian seven-cervical vertebra blueprint. It therefore furthers our knowledge of the T-protein function and early mammalian notochord development. PMID:25614605

  19. The alpaca melanocortin 1 receptor: gene mutations, transcripts, and relative levels of expression in ventral skin biopsies.

    PubMed

    Chandramohan, Bathrachalam; Renieri, Carlo; La Manna, Vincenzo; La Terza, Antonietta

    2015-01-01

    The objectives of the present study were to characterize the MC1R gene, its transcripts and the single nucleotide polymorphisms (SNPs) associated with coat color in alpaca. Full length cDNA amplification revealed the presence of two transcripts, named as F1 and F2, differing only in the length of their 5'-terminal untranslated region (UTR) sequences and presenting a color specific expression. Whereas the F1 transcript was common to white and colored (black and brown) alpaca phenotypes, the shorter F2 transcript was specific to white alpaca. Further sequencing of the MC1R gene in white and colored alpaca identified a total of twelve SNPs; among those nine (four silent mutations (c.126C>A, c.354T>C, c.618G>A, and c.933G>A); five missense mutations (c.82A>G, c.92C>T, c.259A>G, c.376A>G, and c.901C>T)) were observed in coding region and three in the 3'UTR. A 4 bp deletion (c.224 227del) was also identified in the coding region. Molecular segregation analysis uncovered that the combinatory mutations in the MC1R locus could cause eumelanin and pheomelanin synthesis in alpaca. Overall, our data refine what is known about the MC1R gene and provides additional information on its role in alpaca pigmentation.

  20. Mutation of the human mitochondrial phenylalanine-tRNA synthetase causes infantile-onset epilepsy and cytochrome c oxidase deficiency.

    PubMed

    Almalki, Abdulraheem; Alston, Charlotte L; Parker, Alasdair; Simonic, Ingrid; Mehta, Sarju G; He, Langping; Reza, Mojgan; Oliveira, Jorge M A; Lightowlers, Robert N; McFarland, Robert; Taylor, Robert W; Chrzanowska-Lightowlers, Zofia M A

    2014-01-01

    Mitochondrial aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in protein synthesis since they charge tRNAs with their cognate amino acids. Mutations in the genes encoding mitochondrial aaRSs have been associated with a wide spectrum of human mitochondrial diseases. Here we report the identification of pathogenic mutations (a partial genomic deletion and a highly conserved p. Asp325Tyr missense variant) in FARS2, the gene encoding mitochondrial phenylalanyl-tRNA synthetase, in a patient with early-onset epilepsy and isolated complex IV deficiency in muscle. The biochemical defect was expressed in myoblasts but not in fibroblasts and associated with decreased steady state levels of COXI and COXII protein and reduced steady state levels of the mt-tRNA(Phe) transcript. Functional analysis of the recombinant mutant p. Asp325Tyr FARS2 protein showed an inability to bind ATP and consequently undetectable aminoacylation activity using either bacterial tRNA or human mt-tRNA(Phe) as substrates. Lentiviral transduction of cells with wildtype FARS2 restored complex IV protein levels, confirming that the p.Asp325Tyr mutation is pathogenic, causing respiratory chain deficiency and neurological deficits on account of defective aminoacylation of mt-tRNA(Phe). © 2013. Published by Elsevier B.V. All rights reserved.

  1. Digital PCR (dPCR) analysis reveals that the homozygous c.315-48T>C variant in the FECH gene might cause erythropoietic protoporphyria (EPP).

    PubMed

    Brancaleoni, Valentina; Granata, Francesca; Missineo, Pasquale; Fustinoni, Silvia; Graziadei, Giovanna; Di Pierro, Elena

    2018-06-13

    Alterations in the ferrochelatase gene (FECH) are the basis of the phenotypic expressions in erythropoietic protoporphyria. The phenotype is due to the presence of a mutation in the FECH gene associated in trans to the c.315-48 T > C variant in the intron 3. The latter is able to increase the physiological quota of alternative splicing events in the intron 3. Other two variants in the FECH gene (c.1-252A > G and c.68-23C > T) have been found to be associated to the intron 3 variant in some populations and together, they constitute a haplotype (ACT/GTC), but eventually, their role in the alternative splicing event has never been elucidated. The absolute number of the aberrantly spliced FECH mRNA molecules and the absolute expression of the FECH gene were evaluated by digital PCR technique in a comprehensive cohort. The number of splicing events that rose in the presence of the c.315-48 T > C variant, both in the heterozygous and homozygous condition was reported for the first time. Also, the percentage of the inserted FECH mRNA increased, even doubled in the T/C cases, compared to T/T cases. The constant presence of variants in the promoter and intron 2 did not influence or modulate the aberrant splicing. The results of FECH gene expression suggested that the homozygosity for the c.315-48 T > C variant could be considered pathological. Thus, this study identified the homozygotes for the c.315-48 T > C variant as pathological. By extension, when the samples were categorised according to the haplotypes, the GTC haplotype in homozygosis was pathological. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. The heterozygous A53T mutation in the alpha-synuclein gene in a Chinese Han patient with Parkinson disease: case report and literature review.

    PubMed

    Xiong, Wei-Xi; Sun, Yi-Min; Guan, Rong-Yuan; Luo, Su-Shan; Chen, Chen; An, Yu; Wang, Jian; Wu, Jian-Jun

    2016-10-01

    The missense mutation A53T of alpha-synuclein gene (SNCA) was reported to be a rare but definite cause of sporadic and familial Parkinson disease (PD). It seemed to be restricted geographically in Greece and Italy. We aimed to identify the SNCA mutations in a Chinese PD cohort. Ninety-one early onset PD patients or familial PD probands were collected consecutively for the screening of PD-related genes. The genetic analysis was carried out by target sequencing of the exons and the corresponding flanking regions of the PD-related genes using Illumina HiSeq 2000 sequencer and further confirmed by Sanger sequencing or restriction fragment length polymorphism. Dosage mutations of exons in these genes were carried out by multiple ligation-dependent probe amplification. Among the 91 patients, we found only one heterozygous mutation of SNCA A53T, in a 23-year-old male patient with negative family history. The [(11)C]-2β-carbomethoxy-3β-(4-fluorophenyl) tropan (CFT) PET and PD-related spatial covariance pattern (PDRP) via [(18)F]-fluorodeoxyglucos (FDG) PET confirmed a typical pattern of PD. After examining his parents, we found his mother was an asymptomatic carrier, with declined hand dexterity detected by quantitative motor tests. Reduced dopamine transporter uptake of his mother was identified by CFT PET, and abnormal PDRP pattern was found by FDG PET. Our investigation expanded the clinical and genetic spectrum of Chinese PD patients, and we suggested SNCA mutations to be screened in familial and early onset Chinese PD patients.

  3. Mutations of the aminoacyl-tRNA-synthetases SARS and WARS2 are implicated in the etiology of autosomal recessive intellectual disability.

    PubMed

    Musante, Luciana; Püttmann, Lucia; Kahrizi, Kimia; Garshasbi, Masoud; Hu, Hao; Stehr, Henning; Lipkowitz, Bettina; Otto, Sabine; Jensen, Lars R; Tzschach, Andreas; Jamali, Payman; Wienker, Thomas; Najmabadi, Hossein; Ropers, Hans Hilger; Kuss, Andreas W

    2017-06-01

    Intellectual disability (ID) is the hallmark of an extremely heterogeneous group of disorders that comprises a wide variety of syndromic and non-syndromic phenotypes. Here, we report on mutations in two aminoacyl-tRNA synthetases that are associated with ID in two unrelated Iranian families. In the first family, we identified a homozygous missense mutation (c.514G>A, p.Asp172Asn) in the cytoplasmic seryl-tRNA synthetase (SARS) gene. The mutation affects the enzymatic core domain of the protein and impairs its enzymatic activity, probably leading to reduced cytoplasmic tRNA Ser concentrations. The mutant protein was predicted to be unstable, which could be substantiated by investigating ectopic mutant SARS in transfected HEK293T cells. In the second family, we found a compound heterozygous genotype of the mitochondrial tryptophanyl-tRNA synthetase (WARS2) gene, comprising a nonsense mutation (c.325delA, p.Ser109Alafs*15), which very likely entails nonsense-mediated mRNA decay and a missense mutation (c.37T>G, p.Trp13Gly). The latter affects the mitochondrial localization signal of WARS2, causing protein mislocalization. Including AIMP1, which we have recently implicated in the etiology of ID, three genes with a role in tRNA-aminoacylation are now associated with this condition. We therefore suggest that the functional integrity of tRNAs in general is an important factor in the development and maintenance of human cognitive functions. © 2017 Wiley Periodicals, Inc.

  4. Two new mutations in the MT-TW gene leading to the disruption of the secondary structure of the tRNA(Trp) in patients with Leigh syndrome.

    PubMed

    Mkaouar-Rebai, Emna; Chamkha, Imen; Kammoun, Fatma; Kammoun, Thouraya; Aloulou, Hajer; Hachicha, Mongia; Triki, Chahnez; Fakhfakh, Faiza

    2009-07-01

    Leigh syndrome is a progressive neurodegenerative disorder occurring in infancy and childhood characterized in most cases by a psychomotor retardation, optic atrophy, ataxia, dystonia, failure to thrive, seizures and respiratory failure. In this study, we performed a systematic sequence analysis of mitochondrial genes associated with LS in Tunisian patients. We sequenced the encoded complex I units: ND2, ND3, ND4, ND5 and ND6 genes and the mitochondrial ATPase 6, tRNA(Val), tRNA(Leu(UUR)), tRNA(Trp) and tRNA(Lys) genes in 10 unrelated patients with Leigh syndrome. We revealed the presence of 34 reported polymorphisms, nine novel nucleotide variants and two new mutations (T5523G and A5559G) in the tested patients. These two mutations were localized in two conserved regions of the tRNA(Trp) and affect, respectively, the D-stem and the T-stem of the mitochondrial tRNA leading to a disruption of the secondary structure of this tRNA. SSP-PCR analysis showed that the T5523G and A5559G mutations were present with respective heteroplasmic rates of 66% and 43 %. We report here the first mutational screening of mitochondrial mutations in Tunisian patients with Leigh syndrome which described two novel mutations associated with this disorder.

  5. Four novel germline mutations in the MLH1 and PMS2 mismatch repair genes in patients with hereditary nonpolyposis colorectal cancer.

    PubMed

    Montazer Haghighi, Mahdi; Radpour, Ramin; Aghajani, Katayoun; Zali, Narges; Molaei, Mahsa; Zali, Mohammad Reza

    2009-08-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is the most common cause of early onset hereditary colorectal cancer. In the majority of HNPCC families, microsatellite instability (MSI) and germline mutation in one of the DNA mismatch repair (MMR) genes are found. The entire coding sequence of MMR genes (MLH1, MLH2, MLH6, and PMS2) was analyzed using direct sequencing. Also, tumor tests were done as MSI and immunohistochemistry testing. We were able to find three novel MLH1 and one novel PMS2 germline mutations in three Iranian HNPCC patients. The first was a transversion mutation c.346A>C (T116P) and happened in the highly conserved HATPase-c region of MLH1 protein. The second was a transversion mutation c.736A>T (I246L), which caused an amino acid change of isoleucine to leucine. The third mutation (c.2145,6 delTG) was frameshift and resulted in an immature stop codon in five codons downstream. All of these three mutations were detected in the MLH1 gene. The other mutation was a transition mutation, c.676G>A (G207E), which has been found in exon six of the PMS2 gene and caused an amino acid change of glycine to glutamic acid. MSI assay revealed high instability in microsatellite for two patients and microsatellite stable for one patient. In all patients, an abnormal expression of the MMR proteins in HNPCC was related to the above novel mutations.

  6. Low frequency of c-MPL gene mutations in Iranian patients with Philadelphia-negative myeloproliferative disorders.

    PubMed

    Ghotaslou, A; Nadali, F; Chahardouli, B; Alizad Ghandforosh, N; Rostami, S H; Alimoghaddam, K; Ghavamzadeh, A

    2015-01-01

    Myeloproliferative disorders are a group of diseases characterized by increased proliferation of myeloid lineage. In addition to JAK2V617F mutation, several mutations in the c-MPL gene have been reported in patients with philadelphia-negative chronic myeloproliferative disorders that could be important in the pathogenesis of diseases. The aim of the present study was to investigate the frequency of c-MPL and JAK2V617F mutations in Iranian patients with Philadelphia-negativemyeloproliferative disorders. Peripheral blood samples were collected from 60 patients with Philadelphia-negative MPD) Subgroups ET and PMF) and 25 healthy subjects as control group. The mutation status of c-MPL and Jak2V617F were investigated by using Amplification-refractory mutation system (ARMS) and Allele-Specific PCR (AS-PCR), respectively. The results were confirmed by sequencing. Among 60 patients, 34 (56.6%) and 1(1.7%) had Jak2V617F and c-MPL mutation, respectively. Patients with Jak2V617F mutation had higher WBC counts and hemoglobin concentration than those without the mutation (p= 0.005, p=0.003). In addition, for all healthy subjects in control group, mutations were negative. The present study revealed that the c-MPL mutations unlike the Jak2V617F mutations are rare in Iranian patients with Ph-negative MPNs and the low mutation rate should be considered in the design of screening strategies of MPD patients.

  7. Low frequency of c-MPL gene mutations in Iranian patients with Philadelphia-negative myeloproliferative disorders

    PubMed Central

    Ghotaslou, A; Nadali, F; Chahardouli, B; Alizad Ghandforosh, N; Rostami, SH; Alimoghaddam, K; Ghavamzadeh, A

    2015-01-01

    Background Myeloproliferative disorders are a group of diseases characterized by increased proliferation of myeloid lineage. In addition to JAK2V617F mutation, several mutations in the c-MPL gene have been reported in patients with philadelphia-negative chronic myeloproliferative disorders that could be important in the pathogenesis of diseases. The aim of the present study was to investigate the frequency of c-MPL and JAK2V617F mutations in Iranian patients with Philadelphia-negativemyeloproliferative disorders. Material and Methods Peripheral blood samples were collected from 60 patients with Philadelphia-negative MPD) Subgroups ET and PMF) and 25 healthy subjects as control group. The mutation status of c-MPL and Jak2V617F were investigated by using Amplification-refractory mutation system (ARMS) and Allele-Specific PCR (AS-PCR), respectively. The results were confirmed by sequencing. Results Among 60 patients, 34 (56.6%) and 1(1.7%) had Jak2V617F and c-MPL mutation, respectively. Patients with Jak2V617F mutation had higher WBC counts and hemoglobin concentration than those without the mutation (p= 0.005, p=0.003). In addition, for all healthy subjects in control group, mutations were negative. Conclusions The present study revealed that the c-MPL mutations unlike the Jak2V617F mutations are rare in Iranian patients with Ph-negative MPNs and the low mutation rate should be considered in the design of screening strategies of MPD patients. PMID:25914801

  8. The coexistence of mitochondrial ND6 T14484C and 12S rRNA A1555G mutations in a Chinese family with Leber's hereditary optic neuropathy and hearing loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Qiping; Zhou Xiangtian; Yang Li

    2007-06-15

    We report here the clinical, genetic and molecular characterization of one three-generation Han Chinese family with Leber's hereditary optic neuropathy (LHON) and hearing loss. Four of 14 matrilineal relatives exhibited the moderate central vision loss at the average age of 12.5 years. Of these, one subject exhibited both LHON and mild hearing impairment. Sequence analysis of the complete mitochondrial genomes in the pedigree showed the presence of homoplasmic LHON-associated ND6 T14484C mutation, deafness-associated 12S rRNA A1555 mutation and 47 other variants belonging to Eastern Asian haplogroup H2. None of other mitochondrial variants was evolutionarily conserved and functional significance. Therefore, themore » coexistence of the A1555G mutation and T14484C mutations in this Chinese family indicate that the A1555G mutation may play a synergistic role in the phenotypic manifestation of LHON associated ND6 T14484C mutation. However, the incomplete penetrance of vision and hearing loss suggests the involvement of nuclear modifier genes and environmental factors in the phenotypic expression of these mtDNA mutations.« less

  9. Ferrochelatase gene mutation in Singapore and a novel frame-shift mutation in an Asian boy with erythropoietic protoporphyria.

    PubMed

    Alagappan, Uma; Pramono, Zacharias A D; Chong, Wei-Sheng

    2017-03-01

    Erythropoietic protoporphyria (EPP) is a rare inherited disorder of heme biosynthesis caused by decreased activity of the enzyme ferrochelatase (FECH ). The frequency of the hypomorphic c.333-48C allele in a population directly contributes to the prevalence of EPP in the same population. This study sought to identify the molecular basis of EPP in a Chinese patient from Singapore and the c.333-48C allele frequency among the Chinese population in Singapore. FECH gene was screened for mutation in the patient's DNA sample by polymerase chain reaction amplification and DNA sequencing. To validate the identified mutation, the FECH region harboring the mutation was screened in DNA samples from all healthy controls. One patient and 46 ethnically matched healthy controls were included in the study. A novel c.474dupC which leads to a frameshift and premature stop codon was identified in one allele, while the other allele showed to carry c.333-48C and c.337C>T variants in the patient's FECH. The frequency of the c.333-48C hypomorphic allele is 27% among Chinese population in Singapore. c.474dupC in one allele trans to hypomorphic c.333-48C and c.337C>T allele in FECH gene may be the underlying cause of the clinical EPP of the studied patient. The FECH hypomorphic c.333-48C allele frequency in Singapore is lower than the Han Chinese (41.3%) and Japanese (43%) populations but nearly the same as the Southeast Asian (31%) population and higher than the European (2.7-11%) population. © 2016 The International Society of Dermatology.

  10. Severe Clinical Course in a Patient with Congenital Amegakaryocytic Thrombocytopenia Due to a Missense Mutation of the c-MPL Gene.

    PubMed

    Ok Bozkaya, İkbal; Yaralı, Neşe; Işık, Pamir; Ünsal Saç, Rukiye; Tavil, Betül; Tunç, Bahattin

    2015-06-01

    Congenital amegakaryocytic thrombocytopenia (CAMT) generally begins at birth with severe thrombocytopenia and progresses to pancytopenia. It is caused by mutations in the thrombopoietin receptor gene, the myeloproliferative leukemia virus oncogene (c-MPL). The association between CAMT and c-MPL mutation type has been reported in the literature. Patients with CAMT have been categorized according to their clinical symptoms caused by different mutations. Missense mutations of c-MPL have been classified as type II and these patients have delayed onset of bone marrow failure compared to type I patients. Here we present a girl with severe clinical course of CAMT II having a missense mutation in exon 4 of the c-MPL gene who was admitted to our hospital with intracranial hemorrhage during the newborn period.

  11. 5,10 Methylenetetrahydrofolate reductase genetic polymorphism as a risk factor for neural tube defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, C.Y.; Brown, V.K.; Khoury, M.J.

    1996-06-28

    Persons with a thermolabile form of the enzyme 5,10 methylenetetrahydrofolate reductase (MTHFR) have reduced enzyme activity and increased plasma homocysteine which can be lowered by supplemental folic acid. Thermolability of the enzyme has recently been shown to be caused by a common mutation (677C{sup {r_arrow}}T) in the MTHFR gene. We studied 41 fibroblast cultures from NTD-affected fetuses and compared their genotypes with those of 109 blood specimens from individuals in the general population. 677C{sup {r_arrow}}T homozygosity was associated with a 7.2 fold increased risk for NTDs (95% confidence interval: 1.8-30.3; p value: 0.001). These preliminary data suggest that the 677C{supmore » {r_arrow}}T polymorphism of the MTHFR gene is a risk factor for spina bifida and anencephaly that may provide a partial biologic explanation for why folic acid prevents these types of NTD. 13 refs., 1 fig., 1 tab.« less

  12. Mutational Analysis of the Rhodopsin Gene in Sector Retinitis Pigmentosa.

    PubMed

    Napier, Maria L; Durga, Dash; Wolsley, Clive J; Chamney, Sarah; Alexander, Sharon; Brennan, Rosie; Simpson, David A; Silvestri, Giuliana; Willoughby, Colin E

    2015-01-01

    To determine the role of rhodopsin (RHO) gene mutations in patients with sector retinitis pigmentosa (RP) from Northern Ireland. A case series of sector RP in a tertiary ocular genetics clinic. Four patients with sector RP were recruited from the Royal Victoria Hospital (Belfast, Northern Ireland) and Altnagelvin Hospital (Londonderry, Northern Ireland) following informed consent. The diagnosis of sector RP was based on clinical examination, International Society for Clinical Electrophysiology of Vision (ISCEV) standard electrophysiology, and visual field analysis. DNA was extracted from peripheral blood leucocytes and the coding regions and adjacent flanking intronic sequences of the RHO gene were polymerase chain reaction (PCR) amplified and cycle sequenced. Rhodopsin mutational status. A heterozygous missense mutation in RHO (c.173C > T) resulting in a non-conservative substitution of threonine to methionine (p. Thr58Met) was identified in one patient and was absent from 360 control individuals. This non-conservative substitution (p.Thr58Met) replaces a highly evolutionary conserved polar hydrophilic threonine residue with a non-polar hydrophobic methionine residue at position 58 near the cytoplasmic border of helix A of RHO. The study identified a RHO gene mutation (p.Thr58Met) not previously reported in RP in a patient with sector RP. These findings outline the phenotypic variability associated with RHO mutations. It has been proposed that the regional effects of RHO mutations are likely to result from interplay between mutant alleles and other genetic, epigenetic and environmental factors.

  13. World distribution of the T833C/844INS68 CBS in cis double mutation: a reliable anthropological marker.

    PubMed

    Pepe, G; Vanegas, O C; Rickards, O; Giusti, B; Comeglio, P; Brunelli, T; Marcucci, R; Prisco, D; Gensini, G F; Abbate, R

    1999-02-01

    Mild hyperhomocysteinemia is associated to mutations either in cystathionine beta-synthase (CBS) or in 5,10-methylenetetrahydrofolate reductase (MTHFR) genes. In 1995, Sebastio et al. characterized a 68 bp insertion in cis with the most common CBS mutation (T833C) detected in homocystinuric patients. Recently, this double mutation has been detected in Italian and North-American controls. Compared to a group of patients affected by coronary artery disease, North-American controls showed not statistically significant difference. Moreover, Italian controls displayed a microheterogeneity in the mutant allele frequency distribution depending on their geographical origin (North or South of Italy). Aim of our study was to evaluate the prevalence of the double in cis mutation in different populations. We studied 377 healthy subjects belonging to various human groups. Genomic DNA, extracted from peripheral blood samples, was amplified using specific primers; PCR fragments were digested with Bsr I restriction enzyme to detect the double mutation. Our data show a significant heterogeneity among the populations studied, therefore this mutation turned out to be a reliable anthropogenetic marker. The distribution of the double mutation will contribute, with other DNA polymorphisms, to evaluate the genetic admixture of mixed populations such as Afro-Americans.

  14. p.R182C mutation in Korean twin with congenital lipoid adrenal hyperplasia

    PubMed Central

    Park, Hye Won; Kwak, Byung Ok; Kim, Gu-Hwan; Yoo, Han-Wook

    2013-01-01

    Congenital lipoid adrenal hyperplasia (CLAH) is the most severe form of congenital adrenal hyperplasia which is caused by mutations in the steroidogenic acute regulatory protein (StAR). The mutations in StAR gene resulted in failure of the transport cholesterol into mitochondria for steroidogenesis in the adrenal gland. Twin sisters (A, B) with normal 46, XX were born at 36+2 gestational week, premature to nonrelated parents. They had symptoms as hyperpigmentation, slightly elevated potassium level and low level of sodium. Laboratory finding revealed normal 17-hydroxyprogesterone level, elevated adrenocorticotropin hormone (A, 4,379.2 pg/mL; B, 11,616.1 pg/mL), and high plasma renin activity (A, 49.02 ng/mL/hr; B, 52.7 ng mL/hr). However, the level of plasma cortisol before treatment was low (1.5 µg/dL) in patient B but normal (8.71 µg/dL) in patient A. Among them, only patient A was presented with adrenal insufficiency symptoms which was suggestive of CLAH and prompted us to order a gene analysis in both twin. The results of gene analysis of StAR in twin revealed same heterozygous conditions for c.544C>T (Arg182Cys) in exon 5 and c.722C>T (Gln258*) in exon 7. We report the first case on the mutation of p.R182C in exon 5 of the StAR gene in Korea. PMID:24904850

  15. The cyc1-11 mutation in yeast reverts by recombination with a nonallelic gene: composite genes determining the iso-cytochromes c.

    PubMed Central

    Ernst, J F; Stewart, J W; Sherman, F

    1981-01-01

    DNA sequence analysis of a cloned fragment directly established that the cyc1-11 mutation of iso-1-cytochrome c in the yeast Saccharomyces cerevisiae is a two-base-pair substitution that changes the CCA proline codon at amino acid position 76 to a UAA nonsense codon. Analysis of 11 revertant proteins and one cloned revertant gene showed that reversion of the cyc1-11 mutation can occur in three ways: a single base-pair substitution, which produces a serine replacement at position 76; recombination with the nonallelic CYC7 gene of iso-2-cytochrome c, which causes replacement of a segment in the cyc1-11 gene by the corresponding segment of the CYC7 gene; and either a two-base-pair substitution or recombination with the CYC7 gene, which causes the formation of the normal iso-1-cytochrome c sequence. These results demonstrate the occurrence of low frequencies of recombination between nonallelic genes having extensive but not complete homology. The formation of composite genes that share sequences from nonallelic genes may be an evolutionary mechanism for producing protein diversities and for maintaining identical sequences at different loci. Images PMID:6273865

  16. [Fluoroquinolone resistance mutations in topoisomerase genes of Salmonella typhimurium isolates].

    PubMed

    Guo, Yunchang; Pei, Xiaoyan; Liu, Xiumei

    2004-09-01

    Mutations in topoisomerase genes were main cause of the resistence of Salmonella typhimurium to fluoroquinolone. The MICs of three Salmonella typhimurium isolates X2, X7, X11 to ciprofloxacin were above 32 microg/ml, 0.38 microg/ml and 0.023 microg/ml, respectively. The genetic alterations in four topoisomerase genes, gyrA, gyrB, parC, and parE were detected by multiplex PCR amplimer conformation analysis in these three strains. X2 isolate showed both gyrA mutations (Ser83-->Phe, Asp87-->Asn) and parC mutation (Ser80-->Arg). X7 isolate showed a single gyrA mutation (Ser83-->Phe) and X11 isolate had no changes in all of the four quinolone resistance genes, gyrA, gyrB, parC, and parE. X7 isolate with a single gyrA mutation was less resistant to ciprofloxacin than X2 with double gyrA mutations and an additional parC mutation. GyrA and parC genes play important role of the resistance of Salmonella typhimurium to ciprofloxacin.

  17. Methylenetetrahydrofolate reductase gene polymorphisms and risk of acute lymphoblastic leukemia in children.

    PubMed

    Sadananda Adiga, M N; Chandy, S; Ramachandra, N; Appaji, L; Aruna Kumari, B S; Ramaswamy, G; Savithri, H S; Krishnamoorthy, L

    2010-01-01

    Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in folate metabolism and is involved in DNA synthesis, DNA repair and DNA methylation. Genetic polymorphisms of this enzyme have been shown to impact several diseases, including cancer. Leukemias are malignancies arising from rapidly proliferating hematopoietic cells having great requirement of DNA synthesis. This case-control study was undertaken to analyze the association of the MTHFR gene polymorphisms 677 C"T and 1298 A"C and the risk of acute lymphoblastic leukemia in children. Eighty-six patients aged below 15 years with a confirmed diagnosis of acute lymphoblastic leukemia (ALL) and 99 matched controls were taken for this study. Analysis of the polymorphisms was done using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Frequency of MTHFR 677 CC and CT were 85.9% and 14.1% in the controls, and 84.9% and 15.1% in the cases. The 'T' allele frequency was 7% and 7.5% in cases and controls respectively. The frequency of MTHFR 1298 AA, AC, and CC were 28.3%, 55.6% and 16.1% for controls and 23.3%, 59.3% and 17.4% for cases respectively. The 'C' allele frequency for 1298 A-->C was 43.9% and 47% respectively for controls and cases. The odds ratio (OR) for C677T was 1.08 (95% CI 0.48-2.45, p = 0.851) and OR for A1298C was 1.29 (95% CI 0.65-2.29, p = 0.46) and OR for 1298 CC was 1.31 (95% CI 0.53-3.26, p = 0.56). The OR for the combined heterozygous status (677 CT and 1298 AC) was 1.94 (95% CI 0.58-6.52, p = 0.286). The prevalence of 'T' allele for 677 MTHFR polymorphism was low in the population studied. There was no association between MTHFR 677 C-->T and 1298 A-->C gene polymorphisms and risk of ALL, which may be due to the small sample size.

  18. Three Mutations in the Bilateral Frontoparietal Polymicrogyria Gene GPR56 in Pakistani Intellectual Disability Families.

    PubMed

    Sawal, Humaira Aziz; Harripaul, Ricardo; Mikhailov, Anna; Vleuten, Kayla; Naeem, Farooq; Nasr, Tanveer; Hassan, Muhammad Jawad; Vincent, John B; Ayub, Muhammad; Rafiq, Muhammad Arshad

    2018-06-01

    Bilateral frontoparietal polymicrogyria (BFPP, MIM 606854) is a heterogeneous autosomal recessive disorder of abnormal cortical lamination, leading to moderate-to-severe intellectual disability (ID), seizure disorder, and motor difficulties, and caused by mutations in the G protein-coupled receptor 56 ( GPR56 ) gene. Twenty-eight mutations in 40 different families have been reported in the literature. The clinical and neuroimaging phenotype is consistent in these cases. The BFPP cortex consists of numerous small gyral cells, with scalloping of the cortical-white matter junction. There are also associated white matter, brain stem, and cerebellar changes. GPR56 is a member of an adhesion G protein-coupled receptor family with a very long N-terminal stalk and seven transmembrane domains. In this study, we identified three families from Pakistan, ascertained primarily for ID, with overlapping approximately 1 Mb region (chr16:56,973,335-57,942,866) of homozygosity by descent, including 24 RefSeq genes. We found three GPR56 homozygous mutations, using next-generation sequencing. These mutations include a substitutional variant, c.1460T > C; p.L487P, (chr16:57693480 T > C), a 13-bp insertion causing the frameshift and truncating mutation, p.Leu269Hisfs*21 (NM_005682.6:c.803_804insCCATGGAGGTGCT; Chr16: 57689345_57689346insCCATGGAGGTGCT), and a truncating mutation c.1426C > T; p.Arg476* (Chr16:57693446C > T). These mutations fully segregated with ID in these families and were absent in the Exome Aggregation Consortium database that has approximately 8,000 control samples of South Asian origin. Two of these mutations have been reported in ClinVar database, and the third one has not been reported before. Three families from Pakistan with GPR56 mutations have been reported before. With the addition of our findings, the total number of mutations reported in Pakistani patients now is six. These results increase our knowledge regarding the mutational spectrum of

  19. Novel mutations in cyclin-dependent kinase-like 5 (CDKL5) gene in Indian cases of Rett syndrome.

    PubMed

    Das, Dhanjit Kumar; Mehta, Bhakti; Menon, Shyla R; Raha, Sarbani; Udani, Vrajesh

    2013-03-01

    Rett syndrome is a severe neurodevelopmental disorder, almost exclusively affecting females and characterized by a wide spectrum of clinical manifestations. Both the classic and atypical forms of Rett syndrome are primarily due to mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in patients with atypical Rett syndrome, X-linked infantile spasms sharing common features of generally early-onset seizures and mental retardation. CDKL5 is known as serine/threonine protein kinase 9 (STK9) and is mapped to the Xp22 region. It has a conserved serine/threonine kinase domain within its amino terminus and a large C-terminal region. Disease-causing mutations are distributed in both the amino terminal domain and in the large C-terminal domain. We have screened the CDKL5 gene in 44 patients with atypical Rett syndrome who had tested negative for MECP2 gene mutations and have identified 6 sequence variants, out of which three were novel and three known mutations. Two of these novel mutations p.V966I and p.A1011V were missense and p.H589H a silent mutation. Other known mutations identified were p.V999M, p.Q791P and p.T734A. Sequence homology for all the mutations revealed that the two mutations (p.Q791P and p.T734A) were conserved across species. This indicated the importance of these residues in structure and function of the protein. The damaging effects of these mutations were analysed in silico using PolyPhen-2 online software. The PolyPhen-2 scores of p.Q791P and p.T734A were 0.998 and 0.48, revealing that these mutations could be deleterious and might have potential functional effect. All other mutations had a low score suggesting that they might not alter the activity of CDKL5. We have also analysed the position of the mutations in the CDKL5 protein and found that all the mutations were present in the C-terminal domain of the protein. The C-terminal domain is required for

  20. [Maple syrup urine disease caused by two novel BCKDHB gene mutations in a Chinese neonate].

    PubMed

    Shen, Yunlin; Gong, Xiaohui; Yan, Jingbin; Qin, Li; Qiu, Gang

    2015-01-01

    Maple syrup urine disease (MSUD) is an autosomal recessive metabolic disorder that is caused by mutations in the subunits of the branched chain α-ketoacid dehydrogenase (BCKD) complex. This report presents a Han ethnic Chinese newborn infant with the severe classic form of MSUD caused by two novel missense mutations in the BCKDHB gene. The clinical and biochemical data of a Chinese neonate with classic form of MSUD were analyzed, and the DNA sequences of BCKDHA, BCKDHB, DBT and DLD genes were investigated for mutations. Then the DNA samples of the proband and the patient's parents were tested with Sanger sequencing. The manifestations of this patient were poor feeding, low reaction, and compensatory metabolic acidosis. Tandem mass spectrometry (MS/MS) showed that leucine and valine were significantly higher than normal. Urine gas chromatography-mass spectrometry (GC/MS) showed significant abnormality. Brain CT scan showed white matter changes. We identified two previously unreported mutations in the BCKDHB gene, p.Leu194Phe (c.580 C>T) and p.Ser199Arg (c.597 T>G) in exon 5. Segregation analysis showed that the novel mutation p.Ser199Arg was maternally inherited and the novel mutation p.Leu194Phe was paternally inherited. Neither mutation was found in the 186 alleles of 93 normal Han ethnic Chinese individuals. In human BCKDHB protein crystal structure, the 194th and 199th amino acids changes are likely to affect the spatial structure of the protein. The 194th and 199th amino acid of human BCKDHB protein was conserved among species. PolyPhen protein function prediction indicated that the 194th and 199th amino acid changes were likely to affect protein function. Two novel missense mutations were identified in the BCKDHB gene in the Chinese patient with MSUD.

  1. Frameshift mutational target gene analysis identifies similarities and differences in constitutional mismatch repair-deficiency and Lynch syndrome.

    PubMed

    Maletzki, Claudia; Huehns, Maja; Bauer, Ingrid; Ripperger, Tim; Mork, Maureen M; Vilar, Eduardo; Klöcking, Sabine; Zettl, Heike; Prall, Friedrich; Linnebacher, Michael

    2017-07-01

    Mismatch-repair deficient (MMR-D) malignancies include Lynch Syndrome (LS), which is secondary to germline mutations in one of the MMR genes, and the rare childhood-form of constitutional mismatch repair-deficiency (CMMR-D); caused by bi-allelic MMR gene mutations. A hallmark of LS-associated cancers is microsatellite instability (MSI), characterized by coding frameshift mutations (cFSM) in target genes. By contrast, tumors arising in CMMR-D patients are thought to display a somatic mutation pattern differing from LS. This study has the main goal to identify cFSM in MSI target genes relevant in CMMR-D and to compare the spectrum of common somatic mutations, including alterations in DNA polymerases POLE and D1 between LS and CMMR-D. CMMR-D-associated tumors harbored more somatic mutations compared to LS cases, especially in the TP53 gene and in POLE and POLD1, where novel mutations were additionally identified. Strikingly, MSI in classical mononucleotide markers BAT40 and CAT25 was frequent in CMMR-D cases. MSI-target gene analysis revealed mutations in CMMR-D-associated tumors, some of them known to be frequently hit in LS, such as RNaseT2, HT001, and TGFβR2. Our results imply a general role for these cFSM as potential new drivers of MMR-D tumorigenesis. © 2017 Wiley Periodicals, Inc.

  2. Analysis of Hungarian patients with Rett syndrome phenotype for MECP2, CDKL5 and FOXG1 gene mutations.

    PubMed

    Hadzsiev, Kinga; Polgar, Noemi; Bene, Judit; Komlosi, Katalin; Karteszi, Judit; Hollody, Katalin; Kosztolanyi, Gyorgy; Renieri, Alessandra; Melegh, Bela

    2011-03-01

    Rett syndrome (RTT) is characterized by a relatively specific clinical phenotype. We screened 152 individuals with RTT phenotype. A total of 22 different known MECP2 mutations were identified in 42 subjects (27.6%). Of the 22 mutations, we identified 7 (31.8%) frameshift-causing deletions, 4 (18.2%) nonsense, 10 (45.5%) missense mutations and one insertion (4.5%). The most frequent pathologic changes were: p.Thr158Met (14.2%) and p.Arg133Cys (11.9%) missense, and p.Arg255Stop (9.5%) and p.Arg294Stop (9.5%) nonsense mutations. We also detected the c.925C >T (p.Arg309Trp) mutation in an affected patient, whose role in RTT pathogenesis is still unknown. Patients without detectable MECP2 defects were screened for mutations of cyclin-dependent kinase-like 5 (CDKL5) gene, responsible for the early-onset variant of RTT. We discovered two novel mutations: c.607G >T resulting in a termination codon at aa203, disrupting the catalytic domain, and c.1708G >T leading to a stop at aa570 of the C terminus. Both patients with CDKL5 mutation presented therapy-resistant epilepsy and a phenotype fitting with the diagnosis of early-onset variant of RTT. No FOXG1 mutation was detected in any of the remaining patients. A total of 110 (72.5%) patients remained without molecular genetic diagnosis that necessitates further search for novel gene mutations in this phenotype. Our results also suggest the need of screening for CDKL5 mutations in patients with Rett phenotype tested negative for MECP2 mutations.

  3. [Mutation analysis of FGFR3 gene in a family featuring hereditary dwarfism].

    PubMed

    Zhang, Qiong; Jiang, Hai-ou; Quan, Qing-li; Li, Jun; He, Ting; Huang, Xue-shuang

    2011-12-01

    To investigate the clinical symptoms and potential mutation in FGFR3 gene for a family featuring hereditary dwarfism in order to attain diagnosis and provide prenatal diagnosis. Five patients and two unaffected relatives from the family, in addition with 100 healthy controls, were recruited. Genome DNA was extracted. Exons 10 and 13 of the FGFR3 gene were amplified using polymerase chain reaction (PCR). PCR products were sequenced in both directions. All patients had similar features including short stature, short limbs, lumbar hyperlordosis but normal craniofacial features. A heterozygous mutation G1620T (N540K) was identified in the cDNA from all patients but not in the unaffected relatives and 100 control subjects. A heterozygous G380R mutation was excluded. The hereditary dwarfism featured by this family has been caused by hypochondroplasia (HCH) due to a N540K mutation in the FGFR3 gene.

  4. Three cases with L1 syndrome and two novel mutations in the L1CAM gene.

    PubMed

    Marín, Rosario; Ley-Martos, Miriam; Gutiérrez, Gema; Rodríguez-Sánchez, Felicidad; Arroyo, Diego; Mora-López, Francisco

    2015-11-01

    Mutations in the L1CAM gene have been identified in the following various X-linked neurological disorders: congenital hydrocephalus; mental retardation, aphasia, shuffling gait, and adducted thumbs (MASA) syndrome; spastic paraplegia; and agenesis of the corpus callosum. These conditions are currently considered different phenotypes of a single entity known as L1 syndrome. We present three families with L1 syndrome. Sequencing of the L1CAM gene allowed the identification of the following mutations involved: a known splicing mutation (c.3531-12G>A) and two novel ones: a missense mutation (c.1754A>C; p.Asp585Ala) and a nonsense mutation (c.3478C>T; p.Gln1160Stop). The number of affected males and carrier females identified in a relatively small population suggests that L1 syndrome may be under-diagnosed. L1 syndrome should be considered in the differential diagnosis of intellectual disability or mental retardation in children, especially when other signs such as hydrocephalus or adducted thumbs are present.

  5. Mutations in the novel gene FOPV are associated with familial autosomal dominant and non-familial obliterative portal venopathy.

    PubMed

    Besmond, Claude; Valla, Dominique; Hubert, Laurence; Poirier, Karine; Grosse, Brigitte; Guettier, Catherine; Bernard, Olivier; Gonzales, Emmanuel; Jacquemin, Emmanuel

    2018-02-01

    Obliterative portal venopathy (OPV) is characterized by lesions of portal vein intrahepatic branches and is thought to be responsible for many cases of portal hypertension in the absence of cirrhosis or obstruction of large portal or hepatic veins. In most cases the cause of OPV remains unknown. The aim was to identify a candidate gene of OPV. Whole exome sequencing was performed in two families, including 6 patients with OPV. Identified mutations were confirmed by Sanger sequencing and expression of candidate gene transcript was studied by real time qPCR in human tissues. In both families, no mutations were identified in genes previously reported to be associated with OPV. In each family, we identified a heterozygous mutation (c.1783G>A, p.Gly595Arg and c.4895C>T, p.Thr1632Ile) in a novel gene located on chromosome 4, that we called FOPV (Familial Obliterative Portal Venopathy), and having a cDNA coding for 1793 amino acids. The FOPV mutations segregated with the disease in families and the pattern of inheritance was suggestive of autosomal dominant inherited OPV, with incomplete penetrance and variable expressivity. In silico analysis predicted a deleterious effect of each mutant and mutations concerned highly conserved amino acids in mammals. A deleterious heterozygous FOPV missense mutation (c.4244T>C, p.Phe1415Ser) was also identified in a patient with non-familial OPV. Expression study in liver veins showed that FOPV transcript was mainly expressed in intrahepatic portal vein. This report suggests that FOPV mutations may have a pathogenic role in some cases of familial and non-familial OPV. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Consequences of the pathogenic T9176C mutation of human mitochondrial DNA on yeast mitochondrial ATP synthase

    PubMed Central

    Kucharczyk, Roza; Ezkurdia, Nahia; Couplan, Elodie; Procaccio, Vincent; Ackerman, Sharon H.; Blondel, Marc; di Rago, Jean-Paul

    2010-01-01

    Summary Several human neurological disorders have been associated with various mutations affecting mitochondrial enzymes involved in cellular ATP production. One of these mutations, T9176C in the mitochondrial DNA (mtDNA), changes a highly conserved leucine residue into proline at position 217 of the mitochondrially encoded Atp6p (or a) subunit of the F1FO-ATP synthase. The consequences of this mutation on the mitochondrial ATP synthase are still poorly defined. To gain insight into the primary pathogenic mechanisms induced by T9176C, we have investigated the consequences of this mutation on the ATP synthase of yeast where Atp6p is also encoded by the mtDNA. In vitro, yeast atp6-T9176C mitochondria showed a 30% decrease in the rate of ATP synthesis. When forcing the F1FO complex to work in the reverse mode, i.e. F1-catalyzed hydrolysis of ATP coupled to proton transport out of the mitochondrial matrix, the mutant showed a normal proton-pumping activity and this activity was fully sensitive to oligomycin, an inhibitor of the ATP synthase proton channel. However, under conditions of maximal ATP hydrolytic activity, using non-osmotically protected mitochondria, the mutant ATPase activity was less efficiently inhibited by oligomycin (60% inhibition versus 85% for the wild type control). BN-PAGE analyses revealed that atp6-T9176C yeast accumulated rather good levels of fully assembled ATP synthase complexes. However, a number of subcomplexes (F1, Atp9p-ring, unassembled α-F1 subunits) could be detected as well, presumably because of a decreased stability of Atp6p within the ATP synthase. Although the oxidative phosphorylation capacity was reduced in atp6-T9176C yeast, the number of ATP molecules synthesized per electron transferred to oxygen was similar compared with wild type yeast. It can therefore be inferred that the coupling efficiency within the ATP synthase was mostly unaffected and that the T9176C mutation did not increase the proton permeability of the

  7. NHS Gene Mutations in Ashkenazi Jewish Families with Nance-Horan Syndrome.

    PubMed

    Shoshany, Nadav; Avni, Isaac; Morad, Yair; Weiner, Chen; Einan-Lifshitz, Adi; Pras, Eran

    2017-09-01

    To describe ocular and extraocular abnormalities in two Ashkenazi Jewish families with infantile cataract and X-linked inheritance, and to identify their underlying mutations. Seven affected members were recruited. Medical history, clinical findings, and biometric measurements were recorded. Mutation analysis of the Nance-Horan syndrome (NHS) gene was performed by direct sequencing of polymerase chain reaction-amplified exons. An unusual anterior Y-sutural cataract was documented in the affected male proband. Other clinical features among examined patients included microcorneas, long and narrow faces, and current or previous dental anomalies. A nonsense mutation was identified in each family, including a previously described 742 C>T, p.(Arg248*) mutation in Family A, and a novel mutation 2915 C>A, p.(Ser972*) in Family B. Our study expands the repertoire of NHS mutations and the related phenotype, including newly described anterior Y-sutural cataract and dental findings.

  8. The Alpaca Melanocortin 1 Receptor: Gene Mutations, Transcripts, and Relative Levels of Expression in Ventral Skin Biopsies

    PubMed Central

    Renieri, Carlo; La Terza, Antonietta

    2015-01-01

    The objectives of the present study were to characterize the MC1R gene, its transcripts and the single nucleotide polymorphisms (SNPs) associated with coat color in alpaca. Full length cDNA amplification revealed the presence of two transcripts, named as F1 and F2, differing only in the length of their 5′-terminal untranslated region (UTR) sequences and presenting a color specific expression. Whereas the F1 transcript was common to white and colored (black and brown) alpaca phenotypes, the shorter F2 transcript was specific to white alpaca. Further sequencing of the MC1R gene in white and colored alpaca identified a total of twelve SNPs; among those nine (four silent mutations (c.126C>A, c.354T>C, c.618G>A, and c.933G>A); five missense mutations (c.82A>G, c.92C>T, c.259A>G, c.376A>G, and c.901C>T)) were observed in coding region and three in the 3′UTR. A 4 bp deletion (c.224 227del) was also identified in the coding region. Molecular segregation analysis uncovered that the combinatory mutations in the MC1R locus could cause eumelanin and pheomelanin synthesis in alpaca. Overall, our data refine what is known about the MC1R gene and provides additional information on its role in alpaca pigmentation. PMID:25685836

  9. Identifcation of a Novel Mutation p.I240T in the FRMD7 gene in a Family with Congenital Nystagmus

    NASA Astrophysics Data System (ADS)

    Zhu, Yihua; Zhuang, Jianfu; Ge, Xianglian; Zhang, Xiao; Wang, Zheng; Sun, Ji; Yang, Juhua; Gu, Feng

    2013-10-01

    Congenital Nystagmus (CN) is a genetically heterogeneous ocular disease, which causes a significant proportion of childhood visual impairment. To identify the underlying genetic defect of a CN family, twenty-two members were recruited. Genotype analysis showed that affected individuals shared a common haplotype with markers flanking FRMD7 locus. Sequencing FRMD7 revealed a T > C transition in exon 8, causing a conservative substitution of Isoleucine to Tyrosine at codon 240. By protein structural modeling, we found the mutation may disrupt the hydrophobic core and destabilize the protein structure. We reviewed the literature and found that exons 2, 8, and 9 (11.4% of the sequence of FRMD7 mRNA) represent the majority (55.3%) of the reported FRMD7 mutations. In summary, we identified a novel mutation in FRMD7, showed its molecular consequence, and revealed the mutation-rich exons of the FRMD7 gene. Collectively, this provides molecular insights for future CN clinical genetic diagnosis and treatment.

  10. Identifcation of a novel mutation p.I240T in the FRMD7 gene in a family with congenital nystagmus.

    PubMed

    Zhu, Yihua; Zhuang, Jianfu; Ge, Xianglian; Zhang, Xiao; Wang, Zheng; Sun, Ji; Yang, Juhua; Gu, Feng

    2013-10-30

    Congenital Nystagmus (CN) is a genetically heterogeneous ocular disease, which causes a significant proportion of childhood visual impairment. To identify the underlying genetic defect of a CN family, twenty-two members were recruited. Genotype analysis showed that affected individuals shared a common haplotype with markers flanking FRMD7 locus. Sequencing FRMD7 revealed a T > C transition in exon 8, causing a conservative substitution of Isoleucine to Tyrosine at codon 240. By protein structural modeling, we found the mutation may disrupt the hydrophobic core and destabilize the protein structure. We reviewed the literature and found that exons 2, 8, and 9 (11.4% of the sequence of FRMD7 mRNA) represent the majority (55.3%) of the reported FRMD7 mutations. In summary, we identified a novel mutation in FRMD7, showed its molecular consequence, and revealed the mutation-rich exons of the FRMD7 gene. Collectively, this provides molecular insights for future CN clinical genetic diagnosis and treatment.

  11. Identifcation of a Novel Mutation p.I240T in the FRMD7 gene in a Family with Congenital Nystagmus

    PubMed Central

    Zhu, Yihua; Zhuang, Jianfu; Ge, Xianglian; Zhang, Xiao; Wang, Zheng; Sun, Ji; Yang, Juhua; Gu, Feng

    2013-01-01

    Congenital Nystagmus (CN) is a genetically heterogeneous ocular disease, which causes a significant proportion of childhood visual impairment. To identify the underlying genetic defect of a CN family, twenty-two members were recruited. Genotype analysis showed that affected individuals shared a common haplotype with markers flanking FRMD7 locus. Sequencing FRMD7 revealed a T > C transition in exon 8, causing a conservative substitution of Isoleucine to Tyrosine at codon 240. By protein structural modeling, we found the mutation may disrupt the hydrophobic core and destabilize the protein structure. We reviewed the literature and found that exons 2, 8, and 9 (11.4% of the sequence of FRMD7 mRNA) represent the majority (55.3%) of the reported FRMD7 mutations. In summary, we identified a novel mutation in FRMD7, showed its molecular consequence, and revealed the mutation-rich exons of the FRMD7 gene. Collectively, this provides molecular insights for future CN clinical genetic diagnosis and treatment. PMID:24169426

  12. Occult HBV among Anti-HBc Alone: Mutation Analysis of an HBV Surface Gene and Pre-S Gene.

    PubMed

    Kim, Myeong Hee; Kang, So Young; Lee, Woo In

    2017-05-01

    The aim of this study is to investigate the molecular characteristics of occult hepatitis B virus (HBV) infection in 'anti-HBc alone' subjects. Twenty-four patients with 'anti-HBc alone' and 20 control patients diagnosed with HBV were analyzed regarding S and pre-S gene mutations. All specimens were analyzed for HBs Ag, anti-HBc, and anti-HBs. For specimens with an anti-HBc alone, quantitative analysis of HBV DNA, as well as sequencing and mutation analysis of S and pre-S genes, were performed. A total 24 were analyzed for the S gene, and 14 were analyzed for the pre-S gene through sequencing. A total of 20 control patients were analyzed for S and pre-S gene simultaneously. Nineteen point mutations of the major hydrophilic region were found in six of 24 patients. Among them, three mutations, S114T, P127S/T, M133T, were detected in common. Only one mutation was found in five subjects of the control group; this mutation was not found in the occult HBV infection group, however. Pre-S mutations were detected in 10 patients, and mutations of site aa58-aa100 were detected in 9 patients. A mutation on D114E was simultaneously detected. Although five mutations from the control group were found at the same location (aa58-aa100), no mutations of occult HBV infection were detected. The prevalence of occult HBV infection is not low among 'anti-HBc alone' subjects. Variable mutations in the S gene and pre-S gene were associated with the occurrence of occult HBV infection. Further larger scale studies are required to determine the significance of newly detected mutations. © Copyright: Yonsei University College of Medicine 2017

  13. Identification of novel mutations in the XLRS1 gene in Chinese patients with X-linked juvenile retinoschisis.

    PubMed

    Zeng, Meizhen; Yi, Changxian; Guo, Xiangming; Jia, Xiaoyun; Deng, Yan; Wang, Juan; Shen, Huangxuan

    2007-01-01

    X-linked juvenile retinoschisis (XLRS) is a major cause of macular degeneration in young men. In this study we analyzed all six exons of the XLRS1 gene in four sporadic XLRS patients and in an affected family in China who were recently diagnosed. We found there are five different mutations with four containing missense point mutations and one having a frame-shift deletion. Among these mutations both c.644A>T and c.520delC are novel and have not been previously reported. Moreover all the second-generation offsprings and most of the third-generation ones in the affected family were found to carry the mutations bearing X chromosome. The discovery of novel mutations in the XLRS1 gene would increase the available information about the spectrum of genetic abnormalities causing XLRS. Although the limited data failed to reveal a correlation between mutations and disease phenotypes our identification of novel mutations in the XLRS1 gene will facilitate early and correct diagnosis and genetic counseling regarding the prognosis of XLRS disease.

  14. Silent polymorphisms in the RYR1 gene do not modify the phenotype of the p.4898 I>T pathogenic mutation in central core disease: a case report

    PubMed Central

    2014-01-01

    Background Central core disease is a congenital myopathy, characterized by presence of central core-like areas in muscle fibers. Patients have mild or moderate weakness, hypotonia and motor developmental delay. The disease is caused by mutations in the human ryanodine receptor gene (RYR1), which encodes a calcium-release channel. Since the RYR1 gene is huge, containing 106 exons, mutation screening has been limited to three ‘hot spots’, with particular attention to the C-terminal region. Recent next- generation sequencing methods are now identifying multiple numbers of variants in patients, in which interpretation and phenotype prevision is difficult. Case presentation In a Brazilian Caucasian family, clinical, histopathological and molecular analysis identified a new case of central core disease in a 48-year female. Sanger sequencing of the C-terminal region of the RYR1 gene identified two different missense mutations: c.14256 A > C polymorphism in exon 98 and c.14693 T > C in exon 102, which have already been described as pathogenic. Trans-position of the 2 mutations was confirmed because patient’s daughter, mother and sister carried only the exon 98’s mutation, a synonymous variant that was subsequently found in the frequency of 013–0,05 of alleles. Further next generation sequencing study of the whole RYR1 gene in the patient revealed the presence of additional 5 common silent polymorphisms in homozygosis and 8 polymorphisms in heterozygosis. Conclusions Considering that patient’s relatives showed no pathologic phenotype, and the phenotype presented by the patient is within the range observed in other central core disease patients with the same mutation, it was concluded that the c.14256 A > C polymorphism alone is not responsible for disease, and the associated additional silent polymorphisms are not acting as modifiers of the primary pathogenic mutation in the affected patient. The case described above illustrates the present reality where

  15. Spectrum of MECP2 gene mutations in a cohort of Indian patients with Rett syndrome: report of two novel mutations.

    PubMed

    Das, Dhanjit Kumar; Raha, Sarbani; Sanghavi, Daksha; Maitra, Anurupa; Udani, Vrajesh

    2013-02-15

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, primarily affecting females and characterized by developmental regression, epilepsy, stereotypical hand movements, and motor abnormalities. Its prevalence is about 1 in 10,000 female births. Rett syndrome is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. Over 270 individual nucleotide changes which cause pathogenic mutations have been reported. However, eight most commonly occurring missense and nonsense mutations account for almost 70% of all patients. We screened 90 individuals with Rett syndrome phenotype. A total of 19 different MECP2 mutations and polymorphisms were identified in 27 patients. Of the 19 mutations, we identified 7 (37%) frameshift, 6 (31%) nonsense, 14 (74%) missense mutations and one duplication (5%). The most frequent pathogenic changes were: missense p.T158M (11%), p.R133C (7.4%), and p.R306C (7.4%) and nonsense p.R168X (11%), p.R255X (7.4%) mutations. We have identified two novel mutations namely p.385-388delPLPP present in atypical patients and p.Glu290AlafsX38 present in a classical patient of Rett syndrome. Sequence homology for p.385-388delPLPP mutation revealed that these 4 amino acids were conserved across mammalian species. This indicated the importance of these 4 amino acids in structure and function of the protein. A novel variant p.T479T has also been identified in a patient with atypical Rett syndrome. A total of 62 (69%) patients remained without molecular genetics diagnosis that necessitates further search for mutations in other genes like CDKL5 and FOXG1 that are known to cause Rett phenotype. The majority of mutations are detected in exon 4 and only one mutation was present in exon 3. Therefore, our study suggests the need for screening exon 4 of MECP2 as first line of diagnosis in these patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Hereditary fructose intolerance: frequency and spectrum mutations of the aldolase B gene in a large patients cohort from France--identification of eight new mutations.

    PubMed

    Davit-Spraul, Anne; Costa, Catherine; Zater, Mokhtar; Habes, Dalila; Berthelot, Jacques; Broué, Pierre; Feillet, François; Bernard, Olivier; Labrune, Philippe; Baussan, Christiane

    2008-08-01

    We investigated the molecular basis of hereditary fructose intolerance (HFI) in 160 patients from 92 families by means of a PCR-based mutation screening strategy, consisting of restriction enzyme digestion and direct sequencing. Sixteen different mutations of the aldolase B (ALDOB) gene were identified in HFI patients. As in previous studies, p.A150P (64%), p.A175D (16%) and p.N335K (5%) were the most common mutated alleles, followed by p.R60X, p.A338V, c.360_363delCAAA (p.N120KfsX30), c.324G>A (p.K108K) and c.625-1G>A. Eight novel mutations were also identified in 10 families with HFI: a one-base deletion (c.146delT (p.V49GfsX27)), a small deletion (c.953del42bp), a small insertion (c.689ins TGCTAA (p.K230MfsX136)), one splice site mutation (c.112+1G>A), one nonsense mutation (c.444G>A (p.W148X)), and three missense mutations (c.170G>C (p.R57P), c.839C>A (p.A280P) and c.932T>C (p.L311P)). Our strategy allows to diagnose 75% of HFI patients using restriction enzymatic analysis and to enlarge the diagnosis to 97% of HFI patients when associated with direct sequencing.

  17. Mutational analysis of GALT gene in Greek patients with galactosaemia: identification of two novel mutations and clinical evaluation.

    PubMed

    Schulpis, Kleopatra H; Thodi, Georgia; Iakovou, Konstantinos; Chatzidaki, Maria; Dotsikas, Yannis; Molou, Elina; Triantafylli, Olga; Loukas, Yannis L

    2017-10-01

    Classical galactosaemia is an inborn error of metabolism due to the deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT). The aim of the study was to identify the underlying mutations in Greek patients with GALT deficiency and evaluate their psychomotor and speech development. Patients with GALT deficiency (n = 17) were picked up through neonatal screening. Mutational analysis was conducted via Sanger sequencing, while in silico analysis was used in the cases of novel missense mutations. Psychomotor speech development tests were utilized for the clinical evaluation of the patients. Eleven different mutations in the GALT gene were detected in the patient cohort, including two novel ones. The most frequent mutation was p.Q188R (c.563 A > G). As for the novel mutations, p.M298I (c.894 G > A) was identified in four out of 32 independent alleles, while p.P115S (c.343 C > T) was identified once. Psychomotor evaluation revealed that most of the patients were found in the borderline area (Peabody test), while only two had speech delay problems. The WISK test revealed three patients at borderline limits and two were at lower than normal limits. The mutational spectrum of the GALT gene in Greek patients is presented for the first time. The mutation p.Q188R is the most frequent among Greek patients. Two novel mutations were identified and their potential pathogenicity was estimated. Regarding the phenotypic characteristics, psychomotor disturbances and speech delay were mainly observed among GALT-deficient patients.

  18. Identification of Bangladeshi domestic cats with GM1 gangliosidosis caused by the c.1448G>C mutation of the feline GLB1 gene: case study.

    PubMed

    Uddin, Mohammad Mejbah; Hossain, Mohammad Alamgir; Rahman, Mohammad Mahbubur; Chowdhury, Morshedul Alam; Tanimoto, Takeshi; Yabuki, Akira; Mizukami, Keijiro; Chang, Hye-Sook; Yamato, Osamu

    2013-01-01

    GM1 gangliosidosis is a fatal, progressive neurodegenerative lysosomal storage disease caused by mutations in the β-galactosidase (GLB1) gene. In feline GM1 gangliosidosis, a pathogenic mutation (c.1448G>C) in the feline GLB1 gene was identified in Siamese cats in the United States and Japan and in Korat cats in Western countries. The present study found the homozygous c.1448G>C mutation in 2 apparent littermate native kittens in Bangladesh that were exhibiting neurological signs. This is the first identification of GM1 gangliosidosis in native domestic cats in Southeast Asia. This pathogenic mutation seems to have been present in the domestic cat population in the Siamese region and may have been transferred to pure breeds such as Siamese and Korat cats originating in this region.

  19. MTHFR 677CC/1298CC genotypes are highly associated with chronic myelogenous leukemia: a case-control study in Korea.

    PubMed

    Moon, Hee Won; Kim, Tae Young; Oh, Bo Ra; Min, Hyun Chung; Cho, Han Ik; Bang, Soo Mee; Lee, Jae Hoon; Yoon, Sung Soo; Lee, Dong Soon

    2007-09-01

    Methylenetetrahydrofolate reductase (MTHFR) is an enzyme involved in folate metabolism and DNA methylation. Studies on MTHFR polymorphism in leukemia have largely focused on the protective role of MTHFR polymorphism in acute lymphoblastic leukemia (ALL). We evaluated the C677T and A1298C polymorphisms using the TaqMan allelic discrimination assay in various malignancies. The study population included 115 subjects with chronic myelogenous leukemia (CML), 200 with acute myelogenous leukemia (AML), 196 with multiple myeloma (MM) and 434 healthy control subjects. The frequency of 1298CC was statistically significantly higher in subjects with CML than that of the controls (OR=5.12, 95% CI: 1.75-14.9, P-value=.003). Of note, the frequencies of 677CC/1298CC genotype were statistically significantly higher in subjects with CML, AML and MM than that of the controls (OR=8.8, 3.5, 3.83, P-value=.002, 0.036, 0.023, respectively). Our results demonstrate that the MTHFR 1298CC homozygote variant is strongly associated with an increased risk of CML, while MTHFR C677T does not significantly affect the risk of CML. Moreover, we demonstrated that MTHFR 677CC and 1298CC genotype might have combined effect on risk of CML, AML and MM and it is inferred that the A1298C may play a different role in carcinogenesis, depending on the types of organs involved, the types of disease entities and the genotype of C677T.

  20. Long survival in patients with leigh syndrome and the m.10191T>C mutation in MT-ND3 : a case report and review of the literature.

    PubMed

    Levy, Rebecca J; Ríos, Purificación Gutierrez; Akman, Hasan O; Sciacco, Monica; Vivo, Darryl C De; DiMauro, Salvatore

    2014-10-01

    We report an unusual case of Leigh syndrome due to the m.10191T>C mutation in the complex I gene MT-ND3. This mutation has been associated with a spectrum of clinical phenotypes ranging from infant lethality to adult onset. Despite infantile onset and severe symptoms, our patient has survived to early adulthood because of a strict dietary regimen and parental care. This patient is an extreme example of the frequently prolonged course of Leigh syndrome due to this particular mutation. © The Author(s) 2013.

  1. Congenital hypopituitarism due to POU1F1 gene mutation.

    PubMed

    Lee, Ni-Chung; Tsai, Wen-Yu; Peng, Shinn-Forng; Tung, Yi-Ching; Chien, Yin-Hsiu; Hwu, Wuh-Liang

    2011-01-01

    POU1F1 (Pit-1; Gene ID 5449) is an anterior pituitary transcriptional factor, and POU1F1 mutation is known to cause anterior pituitary hypoplasia, growth hormone and prolactin deficiency and various degree of hypothyroidism. We report here a patient who presented with growth failure and central hypothyroidism since early infancy. However, treatment with thyroxine gave no effect and he subsequently developed calf muscle pseudohypertrophy (Kocher-Debre-Semelaigne syndrome), elevation of creatinine kinase, dilated cardiomyopathy and pericardial effusion. Final diagnosis was made by combined pituitary function test and sequencing analysis that revealed POU1F1 gene C.698T > C (p.F233S) mutation. The rarity of the disease can result in delayed diagnosis and treatment. Copyright © 2011 Formosan Medical Association & Elsevier. Published by Elsevier B.V. All rights reserved.

  2. Mutational analysis of AGXT gene in Libyan children with primary hyperoxaluria type 1 at Tripoli Children Hospital.

    PubMed

    Rhuma, Naziha R; Fituri, Omar A; Sabei, Laila T

    2018-01-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of glyoxylate metabolism. It results from genetic mutation of the AGXT gene. The study objective was to verify the clinical and epidemiological patterns of PH1 in Libyan children at Tripoli Children Hospital confirmed by AGXT gene mutation. A descriptive case series study of 53 children with PH1 diagnosed between 1994 and 2015 was carried out in the Nephrology Unit at Tripoli Children Hospital. Diagnosis of PH1 was based on the clinical presentation (renal stones or nephrocalcinosis), positive family history of PH1, and high 24 h urinary oxalate. Sampling for AGXT gene mutation was collected from April 2012 to December. 2015. Among the 53 children included, males composed of 62.3% of patients. Their age at presentation ranged between two months and 20 years with a mean age of 55.4 ± 48 months. The parents of 81.1% of these patients had positive consanguinity. Forty (75.5%) patients were from South West (mountain area), and 16 (40%) of them were from Yefrin. The most common mutation found in this study was c.731T>C (p.lle244thr) seen in 32 (71%) of children, and interestingly, among these patients, 87.1% were homozygous in gene typing, 86.2% had positive history of consanguinity, 71.4% were from South West (mountain area), 96.6% had family history of PH1, and 20% presented with impaired renal function. The patients with this mutation were younger at presentation than that with other genes, and it was more prevalent among boys (61.3%). Thus, the most common gene mutation found in Libyan children with PH1 was c.731T>C (p.lle244thr) and this is more likely due to the strong genetic pooling caused by the high consanguinity rate which requires an extensive genetic counseling.

  3. PMS2 gene mutational analysis: direct cDNA sequencing to circumvent pseudogene interference.

    PubMed

    Wimmer, Katharina; Wernstedt, Annekatrin

    2014-01-01

    The presence of highly homologous pseudocopies can compromise the mutation analysis of a gene of interest. In particular, when using PCR-based strategies, pseudogene co-amplification has to be effectively prevented. This is often achieved by using primers designed to be parental gene specific according to the reference sequence and by applying stringent PCR conditions. However, there are cases in which this approach is of limited utility. For example, it has been shown that the PMS2 gene exchanges sequences with one of its pseudogenes, named PMS2CL. This results in functional PMS2 alleles containing pseudogene-derived sequences at their 3'-end and in nonfunctional PMS2CL pseudogene alleles that contain gene-derived sequences. Hence, the paralogues cannot be distinguished according to the reference sequence. This shortcoming can be effectively circumvented by using direct cDNA sequencing. This approach is based on the selective amplification of PMS2 transcripts in two overlapping 1.6-kb RT-PCR products. In addition to avoiding pseudogene co-amplification and allele dropout, this method has also the advantage that it allows to effectively identify deletions, splice mutations, and de novo retrotransposon insertions that escape the detection of most DNA-based mutation analysis protocols.

  4. Mutations That Affect the Efficiency of Translation of mRNA for the cII Gene of Coliphage Lambda

    PubMed Central

    Dul, Ed; Mahoney, Michael E.; Wulff, Daniel L.

    1987-01-01

    Starting with the λ pRE- strain λctr1 cy3008, which forms clear plaques, we have isolated two mutant strains, λdya2 ctr1 cy3008 and λ dya3 ctr1 cy3008, that form plaques with very slightly turbid centers. The dya2 and dya3 mutations lie in the region of overlap between the PRE promoter and the ribosome recognition region of the cII gene, and have nucleotide alterations at positions -1 and +5 of pRE, and alterations of cII mRNA at -16 and -21 nucleotides before the initial AUG codon of the gene. Both mutations destabilize a stem structure that may be formed by cII mRNA, and dya2 also changes the sequence on cII mRNA that is complementary to the 3'-end of 16 S rRNA from 5'-UAAGGA-3' to 5'-UGAGGA-3'.—The dya2 and dya3 mutations, along with the ctr1 mutation, which destabilizes either of two alternate stem structures which may be formed by cII mRNA (these being more stable stem structures than the one affected by dya2 and dya3), were tested for their ability to reverse two cII- mutations that are characterized by inefficient translation of cII mRNA. These are cII3088, an A → G mutation four bases before the initial AUG codon, and cII3059 , a GUU → GAU (Val2 → Asp) second codon mutation. It was found that ctr1 completely reverses the translation defects of these two mutations, while dya2 partially reverses these translation defects. The dya3 mutation has no effect on translation efficiency under any condition tested. However neither the ctr1 mutation nor the dya2 mutation has much effect on translation efficiency in an otherwise cII+ background, indicating that other factors must limit the rate of translation of cII mRNA under these conditions. PMID:2953647

  5. Identification of a novel homozygous TRAPPC9 gene mutation causing non-syndromic intellectual disability, speech disorder, and secondary microcephaly.

    PubMed

    Abbasi, Ansar A; Blaesius, Kathrin; Hu, Hao; Latif, Zahid; Picker-Minh, Sylvie; Khan, Muhammad N; Farooq, Sundas; Khan, Muzammil A; Kaindl, Angela M

    2017-12-01

    TRAPPC9 gene mutations have been linked recently to autosomal recessive mental retardation 13 (MRT13; MIM#613192) with only eight families reported world-wide. We assessed patients from two consanguineous pedigrees of Pakistani descent with non-syndromic intellectual disability and postnatal microcephaly through whole exome sequencing (WES) and cosegregation analysis. Here we report six further patients from two pedigrees with homozygous TRAPPC9 gene mutations, the novel nonsense mutation c.2065G>T (p.E689*) and the previously identified nonsense mutation c.1423C>T (p.R475*). We provide an overview of previously reported clinical features and highlight common symptoms and variability of MRT13. Common findings are intellectual disability and absent speech, and frequently microcephaly, motor delay and pathological findings on MRI including diminished cerebral white matter volume are present. Mutations in TRAPPC9 should be considered in non-syndromic autosomal recessive intellectual disability with severe speech disorder. © 2017 Wiley Periodicals, Inc.

  6. Clinical features and gene mutational spectrum of CDKL5-related diseases in a cohort of Chinese patients

    PubMed Central

    2014-01-01

    Background Mutations in the cyclin-dependent kinase-like 5 (CDKL5) (NM_003159.2) gene have been associated with early-onset epileptic encephalopathies or Hanefeld variants of RTT(Rett syndrome). In order to clarify the CDKL5 genotype-phenotype correlations in Chinese patients, CDKL5 mutational screening in cases with early-onset epileptic encephalopathies and RTT without MECP2 mutation were performed. Methods The detailed clinical information including clinical manifestation, electroencephalogram (EEG), magnetic resonance imaging (MRI), blood, urine amino acid and organic acid screening of 102 Chinese patients with early-onset epileptic encephalopathies and RTT were collected. CDKL5 gene mutations were analyzed by PCR, direct sequencing and multiplex ligation-dependent probe amplification (MLPA). The patterns of X-chromosome inactivation (XCI) were studied in the female patients with CDKL5 gene mutation. Results De novo CDKL5 gene mutations were found in ten patients including one missense mutation (c.533G > A, p.R178Q) which had been reported, two splicing mutations (ISV6 + 1A > G, ISV13 + 1A > G), three micro-deletions (c.1111delC, c.2360delA, c.234delA), two insertions (c.1791 ins G, c.891_892 ins TT in a pair of twins) and one nonsense mutation (c.1375C > T, p.Q459X). Out of ten patients, 7 of 9 females with Hanefeld variants of RTT and the remaining 2 females with early onset epileptic encephalopathy, were detected while only one male with infantile spasms was detected. The common features of all female patients with CDKL5 gene mutations included refractory seizures starting before 4 months of age, severe psychomotor retardation, Rett-like features such as hand stereotypies, deceleration of head growth after birth and poor prognosis. In contrast, the only one male patient with CDKL5 mutation showed no obvious Rett-like features as females in our cohort. The X-chromosome inactivation patterns of all the female patients were random. Conclusions Mutations in CDKL

  7. Clinical features and gene mutational spectrum of CDKL5-related diseases in a cohort of Chinese patients.

    PubMed

    Zhao, Ying; Zhang, Xiaoying; Bao, Xinhua; Zhang, Qingping; Zhang, Jingjing; Cao, Guangna; Zhang, Jie; Li, Jiarui; Wei, Liping; Pan, Hong; Wu, Xiru

    2014-02-25

    Mutations in the cyclin-dependent kinase-like 5 (CDKL5) (NM_003159.2) gene have been associated with early-onset epileptic encephalopathies or Hanefeld variants of RTT(Rett syndrome). In order to clarify the CDKL5 genotype-phenotype correlations in Chinese patients, CDKL5 mutational screening in cases with early-onset epileptic encephalopathies and RTT without MECP2 mutation were performed. The detailed clinical information including clinical manifestation, electroencephalogram (EEG), magnetic resonance imaging (MRI), blood, urine amino acid and organic acid screening of 102 Chinese patients with early-onset epileptic encephalopathies and RTT were collected. CDKL5 gene mutations were analyzed by PCR, direct sequencing and multiplex ligation-dependent probe amplification (MLPA). The patterns of X-chromosome inactivation (XCI) were studied in the female patients with CDKL5 gene mutation. De novo CDKL5 gene mutations were found in ten patients including one missense mutation (c.533G > A, p.R178Q) which had been reported, two splicing mutations (ISV6 + 1A > G, ISV13 + 1A > G), three micro-deletions (c.1111delC, c.2360delA, c.234delA), two insertions (c.1791 ins G, c.891_892 ins TT in a pair of twins) and one nonsense mutation (c.1375C > T, p.Q459X). Out of ten patients, 7 of 9 females with Hanefeld variants of RTT and the remaining 2 females with early onset epileptic encephalopathy, were detected while only one male with infantile spasms was detected. The common features of all female patients with CDKL5 gene mutations included refractory seizures starting before 4 months of age, severe psychomotor retardation, Rett-like features such as hand stereotypies, deceleration of head growth after birth and poor prognosis. In contrast, the only one male patient with CDKL5 mutation showed no obvious Rett-like features as females in our cohort. The X-chromosome inactivation patterns of all the female patients were random. Mutations in CDKL5 gene are responsible for 7 with

  8. Diagnosis of Xeroderma Pigmentosum Groups A and C by Detection of Two Prevalent Mutations in West Algerian Population: A Rapid Genotyping Tool for the Frequent XPC Mutation c.1643_1644delTG.

    PubMed

    Bensenouci, Salima; Louhibi, Lotfi; De Verneuil, Hubert; Mahmoudi, Khadidja; Saidi-Mehtar, Nadhira

    2016-01-01

    Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder. Considering that XP patients have a defect of the nucleotide excision repair (NER) pathway which enables them to repair DNA damage caused by UV light, they have an increased risk of developing skin and eyes cancers. In the present study, we investigated the involvement of the prevalent XPA and XPC genes mutations-nonsense mutation (c.682C>T, p.Arg228X) and a two-base-pair (2 bp) deletion (c.1643_1644delTG or p.Val548Ala fsX25), respectively-in 19 index cases from 19 unrelated families in the West of Algeria. For the genetic diagnosis of XPA gene, we proceeded to PCR-RFLP. For the XPC gene, we validated a routine analysis which includes a specific amplification of a short region surrounding the 2 bp deletion using a fluorescent primer and fragment sizing (GeneScan size) on a sequencing gel. Among the 19 index cases, there were 17 homozygous patients for the 2 bp deletion in the XPC gene and 2 homozygous patients carrying the nonsense XPA mutation. Finally, XPC appears to be the major disease-causing gene concerning xeroderma pigmentosum in North Africa. The use of fragment sizing is the simplest method to analyze this 2 bp deletion for the DNA samples coming from countries where the mutation c.1643_1644delTG of XPC gene is prevalent.

  9. Primary hyperoxaluria type 1: diagnostic relevance of mutations and polymorphisms in the alanine:glyoxylate aminotransferase gene (AGXT).

    PubMed

    Tarn, A C; von Schnakenburg, C; Rumsby, G

    1997-09-01

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder of glyoxylate metabolism caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). The disease shows considerable phenotypic, enzymatic and genetic heterogeneity. To date, 7 polymorphisms and 11 point mutations have been described in the gene encoding AGT. We report on the prevalence of these polymorphisms and mutations in 79 patients with PH1 with the aim of assessing their diagnostic relevance. A strong association of the C154T, intron 1 insertion and C386T polymorphisms is confirmed and this linkage extends to include the type 1 variant of a polymorphic tandem repeat in intron 4. Only 64 of 158 (40%) PH1 alleles have one of the defined mutations, with the G630A mutation accounting for 39 of these and T853C for 14. Overall only 20 (25%) of the patients studied had the genetic basis of their disease fully explained: 7 were homozygous for the G630A mutation, 5 were homozygous for the T853C mutation, 1 was homozygous for the C819T mutation, and 7 had two different mutations identified and were presumed to be compound heterozygotes. Only the two more frequent G630A and T853C mutations are of general diagnostic relevance for mutation screening. It seems likely that there are a significant number of other mutations, perhaps family-specific, still to be described. There was no apparent difference in the types of mutations in patients presenting in the first year of life (36%), suggesting that other factors, such as periods of dehydration or urinary tract infections, might contribute more to the clinical manifestation than genotype.

  10. Mutational screening in patients with profound sensorineural hearing loss and neurodevelopmental delay: Description of a novel m.3861A > C mitochondrial mutation in the MT-ND1 gene.

    PubMed

    Ammar, Marwa; Tabebi, Mouna; Sfaihi, Lamia; Alila-Fersi, Olfa; Maalej, Marwa; Felhi, Rahma; Chabchoub, Imen; Keskes, Leila; Hachicha, Mongia; Fakhfakh, Faiza; Mkaouar-Rebai, Emna

    2016-06-10

    Mitochondrial diseases caused by mitochondrial dysfunction are a clinically and genetically, heterogeneous group of disorders involving multiple organs, particularly tissues with high-energy demand. Hearing loss is a recognized symptom of a number of mitochondrial diseases and can result from neuronal or cochlear dysfunction. The tissue affected in this pathology is most probably the cochlear hair cells, which are essential for hearing function since they are responsible for maintaining the ionic gradients necessary for sound signal transduction. Several mitochondrial DNA mutations have been associated with hearing loss and since mitochondria are crucial for the cellular energy supply in many tissues, most of these mtDNA mutations affect several tissues and will cause syndromic hearing loss. In the present study, we described 2 patients with sensorineural hearing loss and neurodevelopmental delay in whom we tested mitochondrial genes described to be associated with syndromic hearing loss. One of these patients showed a novel heteroplasmic mitochondrial mutation m.3861A > C (W185C) which lead to a loss of stability of the ND1 protein since it created a new hydrogen bund between the unique created cystein C185 and the A182 residue. In the second patient, we detected two novel heteroplasmic variations m.12350C > A (T5N) and m.14351T > C (E108G) respectively in the MT-ND5 and the MT-ND6 genes. The TopPred II prediction for the E108G variation revealed a decrease of the hydrophobicity in the mutated MT-ND6. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A reversion of an IL2RG mutation in combined immunodeficiency providing competitive advantage to the majority of CD8+ T cells.

    PubMed

    Kuijpers, Taco W; van Leeuwen, Ester M M; Barendregt, Barbara H; Klarenbeek, Paul; aan de Kerk, Daan J; Baars, Paul A; Jansen, Machiel H; de Vries, Niek; van Lier, René A W; van der Burg, Mirjam

    2013-07-01

    Mutations in the common gamma chain (γc, CD132, encoded by the IL2RG gene) can lead to B(+)T(-)NK(-) X-linked severe combined immunodeficiency, as a consequence of unresponsiveness to γc-cytokines such as interleukins-2, -7 and -15. Hypomorphic mutations in CD132 may cause combined immunodeficiencies with a variety of clinical presentations. We analyzed peripheral blood mononuclear cells of a 6-year-old boy with normal lymphocyte counts, who suffered from recurrent pneumonia and disseminated mollusca contagiosa. Since proliferative responses of T cells and NK cells to γc -cytokines were severely impaired, we performed IL2RG gene analysis, showing a heterozygous mutation in the presence of a single X-chromosome. Interestingly, an IL2RG reversion to normal predominated in both naïve and antigen-primed CD8(+) T cells and increased over time. Only the revertant CD8(+) T cells showed normal expression of CD132 and the various CD8(+) T cell populations had a different T-cell receptor repertoire. Finally, a fraction of γδ(+) T cells and differentiated CD4(+)CD27(-) effector-memory T cells carried the reversion, whereas NK or B cells were repeatedly negative. In conclusion, in a patient with a novel IL2RG mutation, gene-reverted CD8(+) T cells accumulated over time. Our data indicate that selective outgrowth of particular T-cell subsets may occur following reversion at the level of committed T progenitor cells.

  12. Targeted next generation sequencing identifies novel NOTCH3 gene mutations in CADASIL diagnostics patients.

    PubMed

    Maksemous, Neven; Smith, Robert A; Haupt, Larisa M; Griffiths, Lyn R

    2016-11-24

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a monogenic, hereditary, small vessel disease of the brain causing stroke and vascular dementia in adults. CADASIL has previously been shown to be caused by varying mutations in the NOTCH3 gene. The disorder is often misdiagnosed due to its significant clinical heterogeneic manifestation with familial hemiplegic migraine and several ataxia disorders as well as the location of the currently identified causative mutations. The aim of this study was to develop a new, comprehensive and efficient single assay strategy for complete molecular diagnosis of NOTCH3 mutations through the use of a custom next-generation sequencing (NGS) panel for improved routine clinical molecular diagnostic testing. Our custom NGS panel identified nine genetic variants in NOTCH3 (p.D139V, p.C183R, p.R332C, p.Y465C, p.C597W, p.R607H, p.E813E, p.C977G and p.Y1106C). Six mutations were stereotypical CADASIL mutations leading to an odd number of cysteine residues in one of the 34 NOTCH3 gene epidermal growth factor (EGF)-like repeats, including three new typical cysteine mutations identified in exon 11 (p.C597W; c.1791C>G); exon 18 (p.C977G; c.2929T>G) and exon 20 (p.Y1106C; c.3317A>G). Interestingly, a novel missense mutation in the CACNA1A gene was also identified in one CADASIL patient. All variants identified (novel and known) were further investigated using in silico bioinformatic analyses and confirmed through Sanger sequencing. NGS provides an improved and effective methodology for the diagnosis of CADASIL. The NGS approach reduced time and cost for comprehensive genetic diagnosis, placing genetic diagnostic testing within reach of more patients.

  13. Methylenetetrahydrofolate reductase gene polymorphisms contribute to acute myeloid leukemia and chronic myeloid leukemia susceptibilities: evidence from meta-analyses.

    PubMed

    He, Hairong; He, Gonghao; Wang, Taotao; Cai, Jiangxia; Wang, Yan; Zheng, Xiaowei; Dong, Yalin; Lu, Jun

    2014-10-01

    The expression of methylenetetrahydrofolate reductase (MTHFR) is associated with acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). Most studies have linked the common functional C677T and A1298C polymorphisms of the MTHFR gene and susceptibility to AML and CML, but the results were not consistent. The aim of the present study was to derive a more precise estimation of the relationship. Meta-analyses assessing the association of MTHFR C677T and A1298C variations with AML and CML were conducted. Eligible articles were identified from the PubMed and EMBASE databases. All statistical analyses were conducted using Review Manager Software. 10 and 10 studies were included in the meta-analysis about the role of C677T polymorphism on the AML and CML risks, respectively; 6 and 4 studies were included about the role of A1298C polymorphism on the AML and CML risks, respectively. Overall, both the C677T and A1298C polymorphisms were significantly associated with CML risk under the recessive model (P=0.04, OR=1.35, 95% CI=1.02-1.79 for C677T and P=0.003, OR=2.17, 95% CI=1.29-3.63 for A1298C). In addition, the risk of CML was higher in 1298CC genotype carriers than in 1298AA genotype carriers (P=0.004, OR=2.17, 95%=1.28-3.69). Conversely, the overall data failed to indicate a significant association of C677T or A1298C polymorphisms with AML risk under any model. The findings provide evidence that C677T and A1298C polymorphisms are risk factors for CML risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Concomitance of oncogenic HPV types, CHEK2 gene mutations, and CYP1B1 gene polymorphism as an increased risk factor for malignancy.

    PubMed

    Banaszkiewicz, Monika; Constantinou, Maria; Pietrusiński, Michał; Kępczyński, Lukasz; Jędrzejczyk, Adam; Rożniecki, Marek; Marks, Piotr; Kałużewski, Bogdan

    2013-01-01

    Urinary bladder carcinoma ranks the fourth position in malignancy incidence rates in men (6.1%) and the 17th position in women (1.6%). In general, neoplastic diseases should be approached from two perspectives: prevention with implementation of prophylactic measures and early diagnostics. Prophylactics is possible in the preclinical phase of neoplasm, being both justified and plausible in patients from high-risk groups. Thus, it is particularly important to select such groups, not only by referring to environmental carcinogenic factors (occupational and extra-occupational) but also from genetic predisposition, which may be conductive for neoplasm formation. The mutations / polymorphisms of CHEK2 and CYP1B1 genes predispose to neoplasm via multiorgan mechanisms, while the human papilloma virus (HPV) may participate in the neoplastic transformation as an environmental factor. 131 patients with diagnosed urinary bladder cancer were qualified to the study. Mutations/polymorphisms of CHEK2 (IVS2 + 1G > A gene, 1100delC, del5395, I157T) and CYP1B1- 355T/T were identified by the PCR in DNA isolated directly from the tumor and from peripheral blood. The ELISA test was used for the studies of 37 HPV genotypes in DNA, isolated tumour tissue. 11 mutations of CHEK2 gene were found, 355T/T polymorphism if CYP1B1 gene occurred in 18 patients (12.9%). Oncogenic HPV was found in 36 (29.3%), out of 123 examined patients. The concomitance of CHEK2 gene mutations or 355T/T polymorphism of CYP1B1 gene and the presence of oncogenic HPV types statistically significantly correlates with histological malignancy grades of urinary bladder carcinoma.

  15. [Cytochrome c oxydase-deficient Leigh syndrome with homozygous mutation in SURF1 gene].

    PubMed

    Monnot, S; Chabrol, B; Cano, A; Pellissier, J F; Collignon, P; Montfort, M F; Paquis-Flucklinger, V

    2005-05-01

    Leigh syndrome is a heterogeneous disorder, usually due to a defect in oxidative metabolism. Mutations in SURF1 gene have been identified in patients with cytochrome c oxidase deficiency. We report a homozygous splice site deletion [516-2_516-1delAG] in a young girl presenting with cytochrome c oxidase-deficient Leigh syndrome. Identification of molecular defect is indispensable for genetic counselling and prenatal diagnosis.

  16. Optic atrophy and a Leigh-like syndrome due to mutations in the c12orf65 gene: report of a novel mutation and review of the literature.

    PubMed

    Heidary, Gena; Calderwood, Laurel; Cox, Gerald F; Robson, Caroline D; Teot, Lisa A; Mullon, Jennifer; Anselm, Irina

    2014-03-01

    Combined oxidative phosphorylation deficiency type 7 (COXPD7) is a rare disorder of mitochondrial metabolism that results in optic atrophy and Leigh syndrome-like disease. We describe 2 siblings with compound heterozygous mutations in the recently identified C12orf65 gene who presented with optic atrophy and mild developmental delays and subsequently developed bilateral, symmetric lesions in the brainstem reminiscent of Leigh syndrome. Repeat neuroimaging demonstrated reversibility of the findings in 1 sibling and persistent metabolic stroke in the other. This article highlights the phenotypic manifestations from a novel mutation in the C12orf65 gene and reviews the clinical presentation of the 5 other individuals reported to date who carry mutations in this gene.

  17. Evaluation of the need for routine clinical testing of PALB2 c.1592delT mutation in BRCA negative Northern Finnish breast cancer families.

    PubMed

    Haanpää, Maria; Pylkäs, Katri; Moilanen, Jukka S; Winqvist, Robert

    2013-08-13

    Testing for mutations in the BRCA1 and BRCA2 genes among high-risk breast cancer patients has become a routine practice among clinical geneticists. Unfortunately, however, the genetic background of a majority of the cases coming to the clinics remains currently unexplained, making genetic counseling rather challenging. In recent years it has become evident world-wide that also women carrying a heterozygous germline mutation in PALB2 are at significantly increased risk of getting breast cancer. We have previously studied the clinical as well as biological impact of the PALB2 c.1592delT founder mutation occurring in about 1% of Finnish breast cancer patients unselected for their family history of disease, and our results demonstrated a 40% increased breast cancer risk by age 70 for female mutation carriers. Thus, this relatively common mutation in PALB2 is associated with a high risk of developing breast cancer. The aim of the current study was to analyze whether female index individuals of breast cancer families who had tested negative for germline mutations in BRCA1/BRCA2 as part of genetic counseling services should be offered mutation testing for PALB2 c.1592delT. The study cohort consisted of altogether 223 individuals who had contacted the Department of Clinical Genetics at the Oulu University Hospital in Finland between the years 1997 and 2011 for counseling on hereditary breast and/or ovarian cancer risk. 101 of them met our inclusion criteria. Of these, 10 persons were now deceased, but 6 of them had participated in one of our previous studies on PALB2. Seventy (77%) of the remaining 91 persons responded positively to our study invitation. Chart review of updated pedigree data led to the exclusion of 14 further individuals not meeting the selection criteria. Of the 56 alive affected female individuals screened for PALB2 c.1592delT, altogether two (3.6%) tested positive for this mutation. In addition, of the previously tested but now deceased 6 persons

  18. Prevalence and Spectrum of Germline Cancer Susceptibility Gene Mutations Among Patients With Early-Onset Colorectal Cancer

    PubMed Central

    Pearlman, Rachel; Frankel, Wendy L.; Swanson, Benjamin; Zhao, Weiqiang; Yilmaz, Ahmet; Miller, Kristin; Bacher, Jason; Bigley, Christopher; Nelsen, Lori; Goodfellow, Paul J.; Goldberg, Richard M.; Paskett, Electra; Shields, Peter G.; Freudenheim, Jo L.; Stanich, Peter P; Lattimer, Ilene; Arnold, Mark; Liyanarachchi, Sandya; Kalady, Matthew; Heald, Brandie; Greenwood, Carla; Paquette, Ian; Prues, Marla; Draper, David J.; Lindeman, Carolyn; Kuebler, J. Philip; Reynolds, Kelly; Brell, Joanna M.; Shaper, Amy A.; Mahesh, Sameer; Buie, Nicole; Weeman, Kisa; Shine, Kristin; Haut, Mitchell; Edwards, Joan; Bastola, Shyamal; Wickham, Karen; Khanduja, Karamjit S.; Zacks, Rosemary; Pritchard, Colin C.; Shirts, Brian H.; Jacobson, Angela; Allen, Brian; de la Chapelle, Albert; Hampel, Heather

    2017-01-01

    IMPORTANCE Hereditary cancer syndromes infer high cancer risks and require intensive cancer surveillance, yet the prevalence and spectrum of these conditions among unselected patients with early-onset colorectal cancer (CRC) is largely undetermined. OBJECTIVE To determine the frequency and spectrum of cancer susceptibility gene mutations among patients with early-onset CRC. DESIGN, SETTING, AND PARTICIPANTS Overall, 450 patients diagnosed with colorectal cancer younger than 50 years were prospectively accrued from 51 hospitals into the Ohio Colorectal Cancer Prevention Initiative from January 1, 2013, to June 20, 2016. Mismatch repair (MMR) deficiency was determined by microsatellite instability and/or immunohistochemistry. Germline DNA was tested for mutations in 25 cancer susceptibility genes using next-generation sequencing. MAIN OUTCOMES AND MEASURES Mutation prevalence and spectrum in patients with early-onset CRC was determined. Clinical characteristics were assessed by mutation status. RESULTS In total 450 patients younger than 50 years were included in the study, and 75 gene mutations were found in 72 patients (16%). Forty-eight patients (10.7%) had MMR-deficient tumors, and 40 patients (83.3%) had at least 1 gene mutation: 37 had Lynch syndrome (13, MLH1 [including one with constitutional MLH1 methylation]; 16, MSH2; 1, MSH2/monoallelic MUTYH; 2, MSH6; 5, PMS2); 1 patient had the APC c.3920T>A, p.I1307K mutation and a PMS2 variant; 9 patients (18.8%) had double somatic MMR mutations (including 2 with germline biallelic MUTYH mutations); and 1 patient had somatic MLH1 methylation. Four hundred two patients (89.3%) had MMR-proficient tumors, and 32 patients (8%) had at least 1 gene mutation: 9 had mutations in high-penetrance CRC genes (5, APC; 1, APC/PMS2; 2, biallelic MUTYH; 1, SMAD4); 13 patients had mutations in high- or moderate-penetrance genes not traditionally associated with CRC (3, ATM; 1, ATM/CHEK2; 2, BRCA1; 4, BRCA2; 1, CDKN2A; 2, PALB2); 10

  19. Novel mutations in CRB1 and ABCA4 genes cause Leber congenital amaurosis and Stargardt disease in a Swedish family

    PubMed Central

    Jonsson, Frida; Burstedt, Marie S; Sandgren, Ola; Norberg, Anna; Golovleva, Irina

    2013-01-01

    This study aimed to identify genetic mechanisms underlying severe retinal degeneration in one large family from northern Sweden, members of which presented with early-onset autosomal recessive retinitis pigmentosa and juvenile macular dystrophy. The clinical records of affected family members were analysed retrospectively and ophthalmological and electrophysiological examinations were performed in selected cases. Mutation screening was initially performed with microarrays, interrogating known mutations in the genes associated with recessive retinitis pigmentosa, Leber congenital amaurosis and Stargardt disease. Searching for homozygous regions with putative causative disease genes was done by high-density SNP-array genotyping, followed by segregation analysis of the family members. Two distinct phenotypes of retinal dystrophy, Leber congenital amaurosis and Stargardt disease were present in the family. In the family, four patients with Leber congenital amaurosis were homozygous for a novel c.2557C>T (p.Q853X) mutation in the CRB1 gene, while of two cases with Stargardt disease, one was homozygous for c.5461-10T>C in the ABCA4 gene and another was carrier of the same mutation and a novel ABCA4 mutation c.4773+3A>G. Sequence analysis of the entire ABCA4 gene in patients with Stargardt disease revealed complex alleles with additional sequence variants, which were evaluated by bioinformatics tools. In conclusion, presence of different genetic mechanisms resulting in variable phenotype within the family is not rare and can challenge molecular geneticists, ophthalmologists and genetic counsellors. PMID:23443024

  20. A novel missense mutation in the CLCN7 gene linked to benign autosomal dominant osteopetrosis: a case series.

    PubMed

    Rashid, Ban Mousa; Rashid, Nawshirwan Gafoor; Schulz, Ansgar; Lahr, Georgia; Nore, Beston Faiek

    2013-01-09

    Osteopetrosis is a rare inherited genetic disease characterized by sclerosis of the skeleton. The absence or malfunction of osteoclasts is found to be strongly associated with the disease evolution. Currently, four clinically distinct forms of the disease have been recognized: the infantile autosomal recessive osteopetrosis, the malignant and the intermediate forms, and autosomal dominant osteopetrosis, type I and type II forms. The autosomal recessive types are the most severe forms with symptoms in very early childhood, whereas the autosomal dominant classes exhibit a heterogeneous trait with milder symptoms, often at later childhood or adulthood. Case 1 is the 12-year-old daughter (index patient) of an Iraqi-Kurdish family who, at the age of eight years, was diagnosed clinically to have mild autosomal dominant osteopetrosis. Presently, at 12-years old, she has severe complications due to the disease progression. In addition, the same family previously experienced the death of a female child in her late childhood. The deceased child had been misdiagnosed, at that time, with thalassemia major. In this report, we extended our investigation to identify the type of the inheritance patterns of osteopetrosis using molecular techniques, because consanguineous marriages exist within the family history. We have detected one heterozygous mutation in exon 15 of the Chloride Channel 7 gene in the index patient (Case 1), whereas other mutations were not detected in the associated genes TCIRG1, OSTM1, RANK, and RANKL. The missense mutation (CGG>TGG) located in exon 15 (c.1225C>T) of the Chloride Channel 7 gene changed the amino acid position 409 from arginine to tryptophan (p.R409W, c.1225C>T).Case 2 is the 16-year-old son (brother of the index patient) of the same family who was diagnosed clinically with mild autosomal dominant osteopetrosis. We have identified the same heterozygous mutation in exon 15 of the Chloride channel 7 gene in this patient (Case 2). The missense

  1. Novel Nonsense Variants c.58C>T (p.Q20X) and c.256G>T (p.E85X) in the CHEK2 Gene Identified dentified in Breast Cancer Patients from Balochistan.

    PubMed

    Baloch, Abdul Hameed; Khosa, Ahmad Nawaz; Bangulzai, Nasrullah; Shuja, Jamila; Naseeb, Hafiz Khush; Jan, Mohammad; Marghazani, Illahi Bakhsh; Kakar, Masood-Ul-Haq; Baloch, Dost Mohammad; Cheema, Abdul Majeed; Ahmad, Jamil

    2016-01-01

    Breast cancer is the most commonly occurring and leading cause of cancer deaths among women globally. Hereditary cases account 5-10% of all the cases and CHEK2 is considered as a moderate penetrance breast cancer risk gene. CHEK2 plays a crucial role in response to DNA damage to promote cell cycle arrest and repair DNA damage or induce apoptosis. Our objective in the current study was to analyze mutations in the CHEK2 gene related to breast cancer in Balochistan. A total of 271 individuals including breast cancer patients and normal subjects were enrolled. All 14 exons of CHEK2 were amplified and sequenced. The majority of the patients (>95%) had invasive ductal carcinomas (IDCs), 52.1% were diagnosed with tumor grade III and 56.1% and 27.5% were diagnosed with advance stages III and IV. Two novel nonsense variants i.e. c.58C>T (P.Q20X) and c.256G>T (p.E85X) at exon 1 and 2 in two breast cancer patients were identified in the current study. Both the variants identified were novel and have not been reported elsewhere.

  2. Identification of eight mutations and three sequence variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghanem, N.; Costes, B.; Girodon, E.

    1994-05-15

    To determine cystic fibrosis (CF) defects in a sample of 224 non-[Delta]F508 CF chromosomes, the authors used denaturing gradient gel multiplex analysis of CF transmembrane conductance regulator gene segments, a strategy based on blind exhaustive analysis rather than a search for known mutations. This process allowed detection of 11 novel variations comprising two nonsense mutations (Q890X and W1204X), a splice defect (405 + 4 A [yields] G), a frameshift (3293delA), four presumed missense mutations (S912L, H949Y, L1065P, Q1071P), and three sequence polymorphisms (R31C or 223 C/T, 3471 T/C, and T1220I or 3791 C/T). The authors describe these variations, together withmore » the associated phenotype when defects on both CF chromosomes were identified. 8 refs., 1 fig., 1 tab.« less

  3. The association of RANK gene C421T and C575T polymorphisms with bone mineral density in postmenopausal Turkish women.

    PubMed

    Işleten, Banu; Durmaz, Burak; Durmaz, Berrin; Onay, Hüseyin; Ozkınay, Ferda; Durmaz, Asude; Turan, Volkan; Oztekin, Kemal

    2013-10-01

    To investigate the association between C421T polymorphism within exon 4, C575T polymorphism within exon 6 of the RANK gene and bone mineral density (BMD) variations in postmenopausal Turkish women. One hundred seventy-eight postmenopausal women (patients = 100 and controls = 78) who applied to Ege University Faculty of Medicine, Department of Physical Medicine and Rehabilitation, for osteoporosis examination were analyzed. BMDs of the lumbar spine and femoral sites were measured. Patient and control groups were established based on their T-score values being above and/or below -1. After venous blood sampling, C421T and C575T polymorphisms of the RANK gene were assessed through PCR process following DNA extraction. Genotype frequencies for the C421T and C575T polymorphisms were compared between the control group and the patient group. No significant difference was detected between the two groups for both polymorphisms. There was also no significant difference between the control and patient groups in terms of the combined genotype (p = 0.752) and the combined haplotype analysis of the C421T and C575T polymorphisms (p = 0.723). In the control and patient groups separately, no significant differences in BMD values either at the femoral sites or at the lumbar spine were detected between the combined genotypes of the two polymorphisms. The genotypes, combined genotypes and allele frequencies of C421T and C575T polymorphisms of the RANK gene have not been found to be associated with BMD in Turkish women. Further studies including both sexes and more cases are required.

  4. Ancestral association between HLA and HFE H63D and C282Y gene mutations from northwest Colombia

    PubMed Central

    Rodriguez, Libia M; Giraldo, Mabel C; Velasquez, Laura I; Alvarez, Cristiam M; Garcia, Luis F; Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2015-01-01

    A significant association between HFE gene mutations and the HLA-A*03-B*07 and HLA-A*29-B*44 haplotypes has been reported in the Spanish population. It has been proposed that these mutations are probably connected with Celtic and North African ancestry, respectively. We aimed to find the possible ancestral association between HLA alleles and haplotypes associated with the HFE gene (C282Y and H63D) mutations in 214 subjects from Antioquia, Colombia. These were 18 individuals with presumed hereditary hemochromatosis (“HH”) and 196 controls. The HLA-B*07 allele was in linkage disequilibrium (LD) with C282Y, while HLA-A*23, A*29, HLA-B*44, and B*49 were in LD with H63D. Altogether, our results show that, although the H63D mutation is more common in the Antioquia population, it is not associated with any particular HLA haplotype, whereas the C282Y mutation is associated with HLA-A*03-B*07, this supporting a northern Spaniard ancestry. PMID:25983618

  5. Ancestral association between HLA and HFE H63D and C282Y gene mutations from northwest Colombia.

    PubMed

    Rodriguez, Libia M; Giraldo, Mabel C; Velasquez, Laura I; Alvarez, Cristiam M; Garcia, Luis F; Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2015-03-01

    A significant association between HFE gene mutations and the HLA-A*03-B*07 and HLA-A*29-B*44 haplotypes has been reported in the Spanish population. It has been proposed that these mutations are probably connected with Celtic and North African ancestry, respectively. We aimed to find the possible ancestral association between HLA alleles and haplotypes associated with the HFE gene (C282Y and H63D) mutations in 214 subjects from Antioquia, Colombia. These were 18 individuals with presumed hereditary hemochromatosis ("HH") and 196 controls. The HLA-B*07 allele was in linkage disequilibrium (LD) with C282Y, while HLA-A*23, A*29, HLA-B*44, and B*49 were in LD with H63D. Altogether, our results show that, although the H63D mutation is more common in the Antioquia population, it is not associated with any particular HLA haplotype, whereas the C282Y mutation is associated with HLA-A*03-B*07, this supporting a northern Spaniard ancestry.

  6. Novel DNA variants and mutation frequencies of hMLH1 and hMSH2 genes in colorectal cancer in the Northeast China population.

    PubMed

    Hu, Fulan; Li, Dandan; Wang, Yibaina; Yao, Xiaoping; Zhang, Wencui; Liang, Jing; Lin, Chunqing; Ren, Jiaojiao; Zhu, Lin; Wu, Zhiwei; Li, Shuying; Li, Ye; Zhao, Xiaojuan; Cui, Binbin; Dong, Xinshu; Tian, Suli; Zhao, Yashuang

    2013-01-01

    Research on hMLH1 and hMSH2 mutations tend to focus on Lynch syndrome (LS) and LS-like colorectal cancer (CRC). No studies to date have assessed the role of hMLH1 and hMSH2 genes in mass sporadic CRC (without preselection by MSI or early age of onset). We aimed to identify novel hMLH1 and hMSH2 DNA variants, to determine the mutation frequencies and sites in both sporadic and LS CRC and their relationships with clinicopathological characteristics of CRC in Northeast of China. 452 sporadic and 21 LS CRC patients were screened for germline and somatic mutations in hMLH1 and hMSH2 genes with PCR-SSCP sequencing. We identified 11 hMLH1 and seven hMSH2 DNA variants in our study cohort. Six of them were novel: four in hMLH1 gene (IVS8-16 A>T, c.644 GAT>GTT, c.1529 CAG>CGG and c.1831 ATT>TTT) and two in hMSH2 gene (-39 C>T, insertion AACAACA at c.1127 and deletion AAG at c.1129). In sporadic CRC, germline and somatic mutation frequencies of hMLH1/hMSH2 gene were 15.59% and 17.54%, respectively (p = 0.52). Germline mutations present in hMLH1 and hMSH2 genes were 5.28% and 10.78%, respectively (p<0.01). Somatic mutations in hMLH1 and hMSH2 genes were 6.73% and 11.70%, respectively (p = 0.02). In LS CRC, both germline and somatic mutation frequencies of hMLH1/hMSH2 gene were 28.57%. The most prevalent germline mutation site in hMSH2 gene was c.1168 CTT>TTT (3.90%), a polymorphism. Somatic mutation frequency of hMLH1/hMSH2 gene was significantly different in proximal, distal colon and rectal cancer (p = 0.03). Our findings elucidate the mutation spectrum and frequency of hMLH1 and hMSH2 genes in sporadic and LS CRC, and their relationships with clinicopathological characteristics of CRC.

  7. Mechanistic study on the nuclear modifier gene MSS1 mutation suppressing neomycin sensitivity of the mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    PubMed

    Zhou, Qiyin; Wang, Wei; He, Xiangyu; Zhu, Xiaoyu; Shen, Yaoyao; Yu, Zhe; Wang, Xuexiang; Qi, Xuchen; Zhang, Xuan; Fan, Mingjie; Dai, Yu; Yang, Shuxu; Yan, Qingfeng

    2014-01-01

    The phenotypic manifestation of mitochondrial DNA (mtDNA) mutations can be modulated by nuclear genes and environmental factors. However, neither the interaction among these factors nor their underlying mechanisms are well understood. The yeast Saccharomyces cerevisiae mtDNA 15S rRNA C1477G mutation (PR) corresponds to the human 12S rRNA A1555G mutation. Here we report that a nuclear modifier gene mss1 mutation suppresses the neomycin-sensitivity phenotype of a yeast C1477G mutant in fermentable YPD medium. Functional assays show that the mitochondrial function of the yeast C1477G mutant was impaired severely in YPD medium with neomycin. Moreover, the mss1 mutation led to a significant increase in the steady-state level of HAP5 (heme activated protein), which greatly up-regulated the expression of glycolytic transcription factors RAP1, GCR1, and GCR2 and thus stimulated glycolysis. Furthermore, the high expression of the key glycolytic enzyme genes HXK2, PFK1 and PYK1 indicated that enhanced glycolysis not only compensated for the ATP reduction from oxidative phosphorylation (OXPHOS) in mitochondria, but also ensured the growth of the mss1(PR) mutant in YPD medium with neomycin. This study advances our understanding of the phenotypic manifestation of mtDNA mutations.

  8. Erythrocyte volume, folate levels, and the presence of methylenetetrahydrofolate reductase polymorphism.

    PubMed

    García-García, Inés; García-Fragoso, Lourdes; Renta, Jessicca; Arce, Sylvia; Cadilla, Carmen L

    2002-03-01

    Homozygosity for a common polymorphism in the 5,10 methylenetetrahydrofolate reductase (MTHFR) gene (C677T) has been associated to an increased risk of neural tube defects as well as derangements in folate, homocysteine, and hematological parameters. This study analyzed the relationship between folate levels, the erythrocyte volume, and the presence of homozygosity for the C677T polymorphism in a group of 126 Puerto Rican healthy women of childbearing age. Blood samples were analyzed for erythrocyte mean corpuscular volume (MCV), mean erythrocyte hemoglobin content (MCH), folate, and RBC folate. Homozygosity for the C677T mutation was determined by PCR. Thirty-two percent (32%) of women used a folic acid supplement during the three months prior to sampling. Mean folate and RBC folate levels were within the normal range. Individuals homozygous for the MTHFR C677T polymorphism had no elevation of MCV (p = 0.70) or MCH (p = 0.68). Women in the lower quartile of folate levels did not show differences in their MCV or MCH. In this sample of Puerto Rican women, homozygosity for the C677T MTHFR polymorphism was not associated to elevations of MCV or MCH even in the presence of lower folate levels.

  9. Novel mutations in the SOX10 gene in the first two Chinese cases of type IV Waardenburg syndrome.

    PubMed

    Jiang, Lu; Chen, Hongsheng; Jiang, Wen; Hu, Zhengmao; Mei, Lingyun; Xue, Jingjie; He, Chufeng; Liu, Yalan; Xia, Kun; Feng, Yong

    2011-05-20

    We analyzed the clinical features and family-related gene mutations for the first two Chinese cases of type IV Waardenburg syndrome (WS4). Two families were analyzed in this study. The analysis included a medical history, clinical analysis, a hearing test and a physical examination. In addition, the EDNRB, EDN3 and SOX10 genes were sequenced in order to identify the pathogenic mutation responsible for the WS4 observed in these patients. The two WS4 cases presented with high phenotypic variability. Two novel heterozygous mutations (c.254G>A and c.698-2A>T) in the SOX10 gene were detected. The mutations identified in the patients were not found in unaffected family members or in 200 unrelated control subjects. This is the first report of WS4 in Chinese patients. In addition, two novel mutations in SOX10 gene have been identified. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  10. Novel mutations in the TSPAN12 gene in Chinese patients with familial exudative vitreoretinopathy

    PubMed Central

    Xu, Yu; Huang, Lulin; Li, Jing; Zhang, Qi; Fei, Ping; Zhu, Xiong; Tai, Zhengfu; Ma, Shi; Gong, Bo; Li, Yun; Zang, Weizhou; Zhu, Xianjun; Zhao, Peiquan

    2014-01-01

    Purpose Familial exudative vitreoretinopathy (FEVR) is a group of inherited blinding eye diseases characterized by defects in the development of the retinal vessels. Recent studies have identified genetic variants in tetraspanin 12 (TSPAN12) as a cause of FEVR. The purpose of this study was to identify novel TSPAN12 mutations in Chinese patients with FEVR and to describe the associated phenotypes. Methods Mutation screening was performed by directly sequencing PCR products of genomic DNA with primers designed to amplify the seven coding exons and adjacent intronic regions of the FEVR-causing gene TSPAN12. Clinical phenotypes of the patients with TSPAN12 mutations were documented. Wild-type and mutant TSPAN12 proteins were assayed for the Norrin-β-catenin signaling pathway with luciferase reporter assays. Results Three novel heterozygous mutations in TSPAN12 were identified: c.566G>A (p.C189Y), c.177delC (p.Y59fsX67), and c.C254T (p.T85M). All three mutations involved highly conserved residues and were not present in 200 normal individuals. Ocular phenotypes included increased ramification of the peripheral retinal vessels, a peripheral avascular zone, inferotemporal dragging of the optic disc and macula, and retinal folds. The probands showed relatively severe retinopathy, whereas the other family members were often asymptomatic. In SuperTopFlash (STF) cell line transfection studies, C189Y, Y59fsX67, and T85M mutants failed to induce luciferase reporter activity in response to Norrin. Conclusions We found three novel TSPAN12 mutations in Chinese patients with autosomal dominant FEVR, and suggest that TSPAN12 mutations cause FEVR. The phenotypes associated with the TSPAN12 mutations showed extensive variation in disease severity among members of the same family, which implied the complexity of FEVR mutations and phenotypes. PMID:25352738

  11. The 3849 + 10 kB C-->T mutation in a 21-year-old patient with cystic fibrosis.

    PubMed

    Kaplan, D M; Niv, A; Aviram, M; Parvari, R; Leiberman, A; Fliss, D M

    1996-12-01

    Cystic fibrosis (CF) is the most common lethal inherited disease in the white population. It is characterized by exocrine gland epithelia dysfunction, which leads to pulmonary and pancreatic insufficiency. Since the cloning of the CF gene in 1989 and the identification of the most common CF mutation (delta F508), more than 400 different mutations have been described. These mutations appear to contribute to the heterogeneity of the CF phenotype and several reports have speculated on the relationship between the most common CF mutations and the patient's clinical status. We report the case of a 21-year-old woman with longstanding chronic pansinusitis, nasal polyposis, chronic cough and severe nasal crusting. During a period of five years she had been followed by her otolaryngologist and pediatric pulmonologist. Sweat tests performed at the age of 17 and 18 were within normal limits and she underwent repeated conventional sinonasal procedures, with no improvement in her clinical status. On her present admission, sweat tests showed a 70 meq/l chloride concentration. The diagnosis of CF was then confirmed by DNA analysis and the patient was found to carry the 3849 + 10 kB C-->T mutation. The early detection of this newly recognized form of CF in adults as well as in children presenting with sinonasal symptoms is critical for life expectancy and quality.

  12. Mutation and new polymorphisms insight in introns 11 to 14a of CFTR gene of northern Iranian cystic fibrosis patients.

    PubMed

    Esmaeili Dooki, Mohammad Reza; Tabaripour, Reza; Rahimi, Razieh; Akhavan-Niaki, Haleh

    2015-06-15

    Cystic fibrosis (CF) is the most common autosomal recessive disease in Caucasians, caused by mutation in cystic fibrosis transmembrane conductance regulator (CFTR). The type and distribution of mutations vary widely between different countries and ethnic groups. We therefore aimed to perform a comprehensive analysis of the CFTR gene in northern Iranian CF patients. Forty northern Iranian CF patients were analyzed for mutations in introns 11 to 14a of their CFTR genes, using sequencing and reverse dot blot methods. Five normal subjects were also analyzed as normal control. One mutation and seven polymorphisms were identified. Of the eighty alleles studied, c.2043delG in exon 13 represented 12.5% of mutant alleles and was associated with two distinct haplotypes. rs1042077T>G, rs4148712delAT, rs4148711T>A and rs3808183 T>C with frequencies varying between 29.2% and 6.9% for the least common allele, as well as three new polymorphisms c.1680-224C>A (11.1%), c.2491-275T>G (14.1%) and c.2491-274C>G (35.9%) were detected. These findings suggest a founder effect for c.2043delG in the Middle East and will assist in genetic counseling, prenatal diagnosis and future screening of CF in Iran. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. [Association of single nucleotide polymorphism of methylenetetrahydrofolate reductase gene with susceptibility to acute leukemia].

    PubMed

    Zheng, Miao-miao; Yue, Li-jie; Zhang, Hong-hong; Yang, Chun-lan; Xie, Cai

    2013-08-01

    To assess whether polymorphisms of methylenetetrahydrofolate reductase (MTHFR) gene is associated with susceptibility to acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML) in Chinese Han children. The study has included 87 patients with ALL, 22 patients with AML and 120 healthy controls. All subjects were analyzed with reverse transcriptase-polymerase chain reaction-denaturing gradient gel electrophoresis and sequencing. A 677CT genotype of the MTHFR gene was associated with decreased risk of ALL (OR=0.23, 95%CI: 0.07-0.79). However, MTHFR A1298C genotypes were not associated with the risk of either disease. 677TT/1298AA and 677CC/1298AC genotypes were associated with increased risk of ALL(OR=3.78, 95% CI: 1.38-10.40; OR=3.17, 95% CI: 1.18-8.53, respectively), whereas the genotype 677CT/1298AA was associated with susceptibility to AML (OR=0.23, 95% CI: 0.06-0.97). Our data suggested that C677T polymorphism of MTHFR gene may increase the risk of childhood AML.

  14. Clinical and molecular genetic characterization of two patients with mutations in the phosphoglucomutase 1 (PGM1) gene.

    PubMed

    Ding, Yu; Li, Niu; Chang, Gouying; Li, Juan; Yao, Ruen; Shen, Yiping; Wang, Jian; Huang, Xiaodong; Wang, Xiumin

    2018-06-02

    The phosphoglucomutase 1 (PGM1) enzyme plays a central role in glucose homeostasis by catalyzing the inter-conversion of glucose 1-phosphate and glucose 6-phosphate. Recently, PGM1 deficiency has been recognized as a cause of the congenital disorders of glycosylation (CDGs). Two Chinese Han pediatric patients with recurrent hypoglycemia, hepatopathy and growth retardation are described in this study. Targeted gene sequencing (TGS) was performed to screen for causal genetic variants in the genome of the patients and their parents to determine the genetic basis of the phenotype. DNA sequencing identified three variations of the PGM1 gene (NM_002633.2). Patient 1 had a novel homozygous mutation (c.119delT, p.Ile40Thrfs*28). In patient 2, we found a compound heterozygous mutation of c.1172G>T(p.Gly391Val) (novel) and c.1507C>T(p.Arg503*) (known pathogenic). This report deepens our understanding of the clinical features of PGM1 mutation. The early molecular genetic analysis and multisystem assessment were here found to be essential to the diagnosis of PGM1-CDG and the provision of timely and proper treatment.

  15. Seventeen Novel Mutations in PCCA and PCCB Genes in Indian Propionic Acidemia Patients, and Their Outcomes.

    PubMed

    Gupta, Deepti; Bijarnia-Mahay, Sunita; Kohli, Sudha; Saxena, Renu; Puri, Ratna Dua; Shigematsu, Yosuke; Yamaguchi, Seiji; Sakamoto, Osamu; Gupta, Neerja; Kabra, Madhulika; Thakur, Seema; Deb, Roumi; Verma, Ishwar Chander

    2016-07-01

    The goal of this study was to identify mutations in the propionyl-CoA carboxylase alpha subunit (PCCA) and propionyl-CoA carboxylase beta subunit (PCCB) genes, and to assess their effects on propionic academia (PA) patients. Twenty-five Indian children with PA were enrolled in this study. Bidirectional Sanger sequencing was performed on both the coding and flanking regions of the PCCA and PCCB genes and the chromatograms were analyzed. Bioinformatic tools were used to classify novel variations into pathogenic or benign. The majority of the cases (19/25, 76%) were of the early-onset (<90 days of age) type and 5 were of the late-onset type. The majority of patients had mutations in the PCCA gene (18/25). A total of 26 mutations were noted: 20 in the PCCA gene and 6 in PCCB gene. Seventeen mutations were novel (14 in PCCA and 3 in PCCB). The SNP c.937C>T (p.Arg313Ter), was noted in 9/36 (25%) alleles in the PCCA gene. All of the children were symptomatic and only three survived who are doing well with no major disabilities. The spectrum of mutations in the PCCA and PCCB genes among Indians is distinct from other populations. The absence of a common mutation signifies the heterogeneity and admixture of various subpopulations. These findings also suggest that individuals of Indian origin may not benefit from the mutation-based "carrier screening panels" offered by many genetic laboratories.

  16. Relationship of MTHFR gene polymorphisms with renal and cardiac disease

    PubMed Central

    Trovato, Francesca M; Catalano, Daniela; Ragusa, Angela; Martines, G Fabio; Pirri, Clara; Buccheri, Maria Antonietta; Di Nora, Concetta; Trovato, Guglielmo M

    2015-01-01

    AIM: To investigate the effects of different methylenetetrahydrofolate reductase (MTHFR) 677C>T gene polymorphism and hyperhomocysteinemia for the development of renal failure and cardiovascular events, which are controversial. METHODS: We challenged the relationship, if any, of MTHFR 677C>T and MTHFR 1298A>C polymorphisms with renal and heart function. The present article is a reappraisal of these concepts, investigating within a larger population, and including a subgroup of dialysis patients, if the two most common MTHFR polymorphisms, C677T and A1298C, as homozygous, heterozygous or with a compound heterozygous state, show different association with chronic renal failure requiring hemodialysis. MTHFR polymorphism could be a favorable evolutionary factor, i.e., a protective factor for many ominous conditions, like cancer and renal failure. A similar finding was reported in fatty liver disease in which it is suggested that MTHFR polymorphisms could have maintained and maintain their persistence by an heterozygosis advantage mechanism. We studied a total of 630 Italian Caucasian subject aged 54.60 ± 16.35 years, addressing to the increased hazard of hemodialysis, if any, according to the studied MTHFR genetic polymorphisms. RESULTS: A favorable association with normal renal function of MTHFR polymorphisms, and notably of MTHFR C677T is present independently of the negative effects of left ventricular hypertrophy, increased Intra-Renal arterial Resistance and hyperparathyroidism. CONCLUSION: MTHFR gene polymorphisms could have a protective role on renal function as suggested by their lower frequency among our dialysis patients in end-stage renal failure; differently, the association with left ventricular hypertrophy and reduced left ventricular relaxation suggest some type of indirect, or concurrent mechanism. PMID:25664255

  17. A novel mitochondrial DNA 8597T>C mutation of Leigh syndrome: report of one case.

    PubMed

    Tsai, Jeng-Dau; Liu, Chin-San; Tsao, Teng-Fu; Sheu, Ji-Nan

    2012-02-01

    Leigh syndrome is an early-onset progressive neurodegenerative disorder with a characteristic neuropathology consisting of focal, bilateral lesions in one or more areas of the central nervous system. The brain images of Leigh syndrome are characterized by markedly symmetrical involvement, most frequently of the putamen. We report a 2-year-old girl with Leigh syndrome manifested as acute onset of altered level of consciousness. Brain magnetic resonance images showed abnormal signal intensity over the bilateral basal ganglia and cerebellar dentate nuclei. Despite normal biochemical studies, in particular serum lactate levels, magnetic resonance spectroscopy demonstrated a downward doublet lactate peak. The diagnosis of Leigh syndrome was subsequently confirmed by genetic study which showed a novel mutation at 8597T>C of the mitochondrial ATPase6 gene. Copyright © 2012. Published by Elsevier B.V.

  18. The p16INK4alpha/p19ARF gene mutations are infrequent and are mutually exclusive to p53 mutations in Indian oral squamous cell carcinomas.

    PubMed

    Kannan, K; Munirajan, A K; Krishnamurthy, J; Bhuvarahamurthy, V; Mohanprasad, B K; Panishankar, K H; Tsuchida, N; Shanmugam, G

    2000-03-01

    Eighty-seven untreated primary oral squamous cell carcinomas (SCCs) associated with betel quid and tobacco chewing from Indian patients were analysed for the presence of mutations in the commonly shared exon 2 of p16INK4alpha/p19ARF genes. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and sequencing analysis were used to detect mutations. SSCP analysis indicated that only 9% (8/87) of the tumours had mutation in p16INK4alpha/p19ARF genes. Seventy-two tumours studied here were previously analysed for p53 mutations and 21% (15/72) of them were found to have mutations in p53 gene. Only one tumour was found to have mutation at both p53 and p16INK4alpha/p19ARF genes. Thus, the mutation rates observed were 21% for p53, 9% for p16INK4alpha/p19ARF, and 1% for both. Sequencing analysis revealed two types of mutations; i) G to C (GCAG to CCAG) transversion type mutation at intron 1-exon 2 splice junction and ii) another C to T transition type mutation resulting in CGA to TGA changing arginine to a termination codon at p16INK4alpha gene codon 80 and the same mutation will alter codon 94 of p19ARF gene from CCG to CTG (proline to leucine). These results suggest that p16INK4alpha/p19ARF mutations are less frequent than p53 mutations in Indian oral SCCs. The p53 and p16INK4alpha/p19ARF mutational events are independent and are mutually exclusive suggesting that mutational inactivation of either p53 or p16INK4alpha/p19ARF may alleviate the need for the inactivation of the other gene.

  19. A reversion of an IL2RG mutation in combined immunodeficiency providing competitive advantage to the majority of CD8+ T cells

    PubMed Central

    Kuijpers, Taco W.; van Leeuwen, Ester M.M.; Barendregt, Barbara H.; Klarenbeek, Paul; aan de Kerk, Daan J.; Baars, Paul A.; Jansen, Machiel H.; de Vries, Niek; van Lier, René A.W.; van der Burg, Mirjam

    2013-01-01

    Mutations in the common gamma chain (γc, CD132, encoded by the IL2RG gene) can lead to B+T−NK− X-linked severe combined immunodeficiency, as a consequence of unresponsiveness to γc-cytokines such as interleukins-2, -7 and -15. Hypomorphic mutations in CD132 may cause combined immunodeficiencies with a variety of clinical presentations. We analyzed peripheral blood mononuclear cells of a 6-year-old boy with normal lymphocyte counts, who suffered from recurrent pneumonia and disseminated mollusca contagiosa. Since proliferative responses of T cells and NK cells to γc -cytokines were severely impaired, we performed IL2RG gene analysis, showing a heterozygous mutation in the presence of a single X-chromosome. Interestingly, an IL2RG reversion to normal predominated in both naïve and antigen-primed CD8+ T cells and increased over time. Only the revertant CD8+ T cells showed normal expression of CD132 and the various CD8+ T cell populations had a different T-cell receptor repertoire. Finally, a fraction of γδ+ T cells and differentiated CD4+CD27− effector-memory T cells carried the reversion, whereas NK or B cells were repeatedly negative. In conclusion, in a patient with a novel IL2RG mutation, gene-reverted CD8+ T cells accumulated over time. Our data indicate that selective outgrowth of particular T-cell subsets may occur following reversion at the level of committed T progenitor cells. PMID:23403317

  20. Analysis of patients with atypical hemolytic uremic syndrome treated at the Mie University Hospital: concentration of C3 p.I1157T mutation.

    PubMed

    Matsumoto, Takeshi; Fan, Xinping; Ishikawa, Eiji; Ito, Masaaki; Amano, Keishirou; Toyoda, Hidemi; Komada, Yoshihiro; Ohishi, Kohshi; Katayama, Naoyuki; Yoshida, Yoko; Matsumoto, Masanori; Fujimura, Yoshihiro; Ikejiri, Makoto; Wada, Hideo; Miyata, Toshiyuki

    2014-11-01

    Atypical hemolytic uremic syndrome (aHUS) is caused by abnormalities of the complement system and has a significantly poor prognosis. The clinical phenotypes of 12 patients in nine families with aHUS with familial or recurrent onset and ADAMTS13 activity of ≥20 % treated at the Mie University Hospital were examined. In seven of the patients, the first episode of aHUS occurred during childhood and ten patients experienced a relapse. All patients had renal dysfunction and three had been treated with hemodialysis. Seven patients experienced probable triggering events including common cold, influenza, bacterial infection and/or vaccination for influenza. All patients had entered remission, and renal function was improved in 11 patients. DNA sequencing of six candidate genes, identified a C3 p.I1157T missense mutation in all eight patients in six families examined and this mutation was causative for aHUS. A causative mutation THBD p.D486Y was also identified in an aHUS patient. Four missense mutations, CFH p.V837I, p.Y1058H, p.V1060L and THBD p.R403K may predispose to aHUS manifestation; the remaining seven missense mutations were likely neutral. In conclusion, the clinical phenotypes of aHUS are various, and there are often trigger factors. The C3 p.I1157T mutation was identified as the causative mutation for aHUS in all patients examined, and may be geographically concentrated in or around the Mie prefecture in central Japan.

  1. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma

    PubMed Central

    Odejide, Oreofe; Weigert, Oliver; Lane, Andrew A.; Toscano, Dan; Lunning, Matthew A.; Kopp, Nadja; Kim, Sunhee; van Bodegom, Diederik; Bolla, Sudha; Schatz, Jonathan H.; Teruya-Feldstein, Julie; Hochberg, Ephraim; Louissaint, Abner; Dorfman, David; Stevenson, Kristen; Rodig, Scott J.; Piccaluga, Pier Paolo; Jacobsen, Eric; Pileri, Stefano A.; Harris, Nancy L.; Ferrero, Simone; Inghirami, Giorgio; Horwitz, Steven M.

    2014-01-01

    The genetics of angioimmunoblastic T-cell lymphoma (AITL) are very poorly understood. We defined the mutational landscape of AITL across 219 genes in 85 cases from the United States and Europe. We identified ≥2 mutations in 34 genes, nearly all of which were not previously implicated in AITL. These included loss-of-function mutations in TP53 (n = 4), ETV6 (n = 3), CCND3 (n = 2), and EP300 (n = 5), as well as gain-of-function mutations in JAK2 (n = 2) and STAT3 (n = 4). TET2 was mutated in 65 (76%) AITLs, including 43 that harbored 2 or 3 TET2 mutations. DNMT3A mutations occurred in 28 (33%) AITLs; 100% of these also harbored TET2 mutations (P < .0001). Seventeen AITLs harbored IDH2 R172 substitutions, including 15 with TET2 mutations. In summary, AITL is characterized by high frequencies of overlapping mutations in epigenetic modifiers and targetable mutations in a subset of cases. PMID:24345752

  2. Osteogenesis imperfecta Type IV: a newly identified variant at position c.560 (G > T; p.Gly187Val) in the COL1A2 gene.

    PubMed

    Usta, Akin; Karademir, Dilay; Sen, Eylem; Yazici, Selcuk; Adali, Ertan; Erdem, Erkan; Karacan, Meric

    2017-01-01

    Osteogenesis imperfecta is a clinically heterogenous disease caused by defective collagen syntesis associated with a mutation in the COL1A1 or COL1A2 genes. In this report, we present a case of osteogenesis imperfecta (OI) type IV, seen in a female fetus with incurved femurs at 18 weeks of gestation. Molecular analysis of the newborn revealed a novel mutation at position c.560 (c.560 G > T) of the exon 12 in the COL1A2 gene; which lead to the glycine modification with valine (p.Gly187Val) at codon 187. The pregnancy follow-up was uneventful. After delivery, the newborn underwent biphosponat therapy and no fracture was detected until 1 year old.

  3. [Evaluation of Consistency in detection of epidermal growth factor receptor gene T790M mutation in plasma and tumor specimens of patients with lung adenocarcinoma].

    PubMed

    Du, J; Wang, Z; Yang, L; Di, J; Zhang, J G; Wang, T Y; Liu, D G

    2018-01-23

    Objective: To evaluate the consistency in detection of T790M mutation of epidermal growth factor receptor gene (EGFR) in plasma and tumor samples of patients with lung adenocarcinoma. Methods: The tumor tissues or cytological specimens of 12 patients with operable lung adenocarcinoma(stage Ⅰ-ⅢA) and 100 patients with advanced stage ⅢB-Ⅳ lung adenocarcinoma were collected, among which 11 patients showed acquired resistance for gefitinib (11/100). In the same period, peripheral blood samples were collected from all patients and 50 healthy volunteers. Amplification refractory mutation system (ARMS) was used to detect EGFR mutations in tumor specimens. Next Generation Sequencing(NGS) based circulating single-molecule amplification and resequencing technology (cSMART)was performed to quantitatively detect the EGFR mutations in circulating tumor DNA (ctDNA) from plasma specimens. Results: The sensitivity, specificity and concordance rate of EGFR T790M mutation between plasma and tissue specimens from 100 advanced stage patients were 50.0%, 72.9% and 72.0%, respectively. For L858R mutation and exon 19 deletion mutations, the above mentioned sensitivity, specificity and concordance rate were 91.7%, 100.0%, and 98.0%, as well as 79.2%, 100.0% and 95.0%, respectively. The L858R mutation and exon 19 deletion mutations were not detected in plasma of 50 healthy volunteers, whereasT790M mutation(1.0±0.0 copies) was found in 7 individuals(7/50, 14.0%). Similarly, in 12 resectable patients, 4 (4/12, 33.3%) T790M mutations were found in plasma (1.2±0.2 copies), but no L858R mutation and 19 exon deletion mutations. In comparison, 28.0% of patients with advanced lung adenocarcinoma (28/100)had detectable T790M mutation in plasma with copy numbers (34.0±22.7 copies). Furthermore, the copy numbers of T790M were 268.2±119.9 in plasma of 5 cases with acquired gefitinib-resistance. Conclusions: In patients with advanced stages of lung adenocarcinoma, the detection of T790M

  4. The first missense mutation of NHS gene in a Tunisian family with clinical features of NHS syndrome including cardiac anomaly

    PubMed Central

    Chograni, Manèl; Rejeb, Imen; Jemaa, Lamia Ben; Châabouni, Myriam; Bouhamed, Habiba Chaabouni

    2011-01-01

    Nance-Horan Syndrome (NHS) or X-linked cataract-dental syndrome is a disease of unknown gene action mechanism, characterized by congenital cataract, dental anomalies, dysmorphic features and, in some cases, mental retardation. We performed linkage analysis in a Tunisian family with NHS in which affected males and obligate carrier female share a common haplotype in the Xp22.32-p11.21 region that contains the NHS gene. Direct sequencing of NHS coding exons and flanking intronic sequences allowed us to identify the first missense mutation (P551S) and a reported SNP-polymorphism (L1319F) in exon 6, a reported UTR–SNP (c.7422 C>T) and a novel one (c.8239 T>A) in exon 8. Both variations P551S and c.8239 T>A segregate with NHS phenotype in this family. Although truncations, frame-shift and copy number variants have been reported in this gene, no missense mutations have been found to segregate previously. This is the first report of a missense NHS mutation causing NHS phenotype (including cardiac defects). We hypothesize also that the non-reported UTR–SNP of the exon 8 (3′-UTR) is specific to the Tunisian population. PMID:21559051

  5. The first missense mutation of NHS gene in a Tunisian family with clinical features of NHS syndrome including cardiac anomaly.

    PubMed

    Chograni, Manèl; Rejeb, Imen; Jemaa, Lamia Ben; Châabouni, Myriam; Bouhamed, Habiba Chaabouni

    2011-08-01

    Nance-Horan Syndrome (NHS) or X-linked cataract-dental syndrome is a disease of unknown gene action mechanism, characterized by congenital cataract, dental anomalies, dysmorphic features and, in some cases, mental retardation. We performed linkage analysis in a Tunisian family with NHS in which affected males and obligate carrier female share a common haplotype in the Xp22.32-p11.21 region that contains the NHS gene. Direct sequencing of NHS coding exons and flanking intronic sequences allowed us to identify the first missense mutation (P551S) and a reported SNP-polymorphism (L1319F) in exon 6, a reported UTR-SNP (c.7422 C>T) and a novel one (c.8239 T>A) in exon 8. Both variations P551S and c.8239 T>A segregate with NHS phenotype in this family. Although truncations, frame-shift and copy number variants have been reported in this gene, no missense mutations have been found to segregate previously. This is the first report of a missense NHS mutation causing NHS phenotype (including cardiac defects). We hypothesize also that the non-reported UTR-SNP of the exon 8 (3'-UTR) is specific to the Tunisian population.

  6. Targeted next-generation sequencing reveals that a compound heterozygous mutation in phosphodiesterase 6a gene leads to retinitis pigmentosa in a Chinese family.

    PubMed

    Zhang, Shanshan; Li, Jie; Li, Shujin; Yang, Yeming; Yang, Mu; Yang, Zhenglin; Zhu, Xianjun; Zhang, Lin

    2018-04-25

    Retinitis pigmentosa (RP) is a genetically heterogeneous disease with over 70 causative genes identified to date. However, approximately 40% of RP cases remain genetically unsolved, suggesting that many novel disease-causing mutations are yet to be identified. The purpose of this study is to identify the causative mutations of a Chinese RP family. Targeted next-generation sequencing (NGS) for a total of 163 genes which involved in inherited retinal disorders were used to screen the possible causative mutations. Sanger sequencing was used to verify the mutations. As results, we identified two heterozygous mutations: a splicing site mutation c.1407 + 1G>C and a nonsense mutation c. 1957C>T (p.R653X) in phosphodiesterase 6A (PDE6A) gene in the RP patient. These two mutations are inherited from his father and mother, respectively. Furthermore, these mutations are unique in our in-house database and are rare in human genome databases, implicating that these two mutations are pathological. By using targeted NGS method, we identified a compound heterozygous mutation in PDE6A gene that is associated with RP in a Chinese family.

  7. Choline Intake, Plasma Riboflavin, and the Phosphatidylethanolamine N-Methyltransferase G5465A Genotype Predict Plasma Homocysteine in Folate-Deplete Mexican-American Men with the Methylenetetrahydrofolate Reductase 677TT Genotype12

    PubMed Central

    Caudill, Marie A.; Dellschaft, Neele; Solis, Claudia; Hinkis, Sabrina; Ivanov, Alexandre A.; Nash-Barboza, Susan; Randall, Katharine E.; Jackson, Brandi; Solomita, Gina N.; Vermeylen, Francoise

    2009-01-01

    We previously showed that provision of the folate recommended dietary allowance and either 300, 550, 1100, or 2200 mg/d choline for 12 wk resulted in diminished folate status and a tripling of plasma total homocysteine (tHcy) in men with the methylenetetrahydrofolate reductase (MTHFR) 677TT genotype. However, the substantial variation in tHcy within the 677TT genotype at wk 12 implied that several factors were interacting with this genotype to affect homocysteine. As an extension of this work, the present study sought to identify the main predictors of wk-12 plasma tHcy, alone and together with the MTHFR C677T genotype (29 TT, 31 CC), using linear regression analysis. A basic model explaining 82.5% of the variation (i.e. adjusted R2 = 0.825) was constructed. However, the effects of the variables within this model were dependent upon the MTHFR C677T genotype (P for interaction ≤ 0.021). Within the 677TT genotype, serum folate (P = 0.005) and plasma riboflavin (P = 0.002) were strong negative predictors (inversely related) explaining 12 and 15%, respectively, of the variation in tHcy, whereas choline intake (P = 0.003) and serum creatinine (P < 0.001) were strong positive predictors, explaining 19 and 25% of the variation. None of these variables, except creatinine (P = 0.021), correlated with tHcy within the 677CC genotype. Of the 8 additional polymorphisms tested, none appeared to influence tHcy. However, when creatinine was not in the model, the phosphatidylethanolamine N-methyltransferase 5465G→A variant predicted lower tHcy (P < 0.001); an effect confined to the MTHFR 677TT genotype. Thus, in folate-deplete men, several factors with roles in 1-carbon metabolism interact with the MTHFR C677T genotype to affect plasma tHcy. PMID:19211833

  8. Whole exome sequencing identifies mutations in Usher syndrome genes in profoundly deaf Tunisian patients.

    PubMed

    Riahi, Zied; Bonnet, Crystel; Zainine, Rim; Lahbib, Saida; Bouyacoub, Yosra; Bechraoui, Rym; Marrakchi, Jihène; Hardelin, Jean-Pierre; Louha, Malek; Largueche, Leila; Ben Yahia, Salim; Kheirallah, Moncef; Elmatri, Leila; Besbes, Ghazi; Abdelhak, Sonia; Petit, Christine

    2015-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3) are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys), in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24), and a nonsense mutation, c.52A>T (p.Lys18*). Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss.

  9. XPC gene mutations in families with xeroderma pigmentosum from Pakistan; prevalent founder effect.

    PubMed

    Ijaz, Ambreen; Basit, Sulman; Gul, Ajab; Batool, Lilas; Hussain, Abrar; Afzal, Sibtain; Ramzan, Khushnooda; Ahmad, Jamil; Wali, Abdul

    2018-03-23

    Xeroderma pigmentosum (XP) is a rare autosomal recessive skin disorder characterized by hyperpigmentation, premature skin aging, ocular and cutaneous photosensitivity, and increased risk of skin carcinoma. We investigated seven consanguineous XP families with nine patients from Pakistan. All the Patients exhibited typical clinical symptoms of XP since first year of life. Whole genome SNP genotyping identified a 14 Mb autozygous region segregating with the disease phenotype on chromosome 3p25.1. DNA sequencing of XPC gene revealed a founder homozygous splice site mutation (c.2251-1G>C) in patients from six families (A-F) and a homozygous nonsense mutation (c.1399C>T; p.Gln467*) in patients of family G. This is the first report of XPC mutations, underlying XP phenotype, in Pakistani population. © 2018 Japanese Teratology Society.

  10. [A study of PDE6B gene mutation and phenotype in Chinese cases with retinitis pigmentosa].

    PubMed

    Cui, Yun; Zhao, Kan-xing; Wang, Li; Wang, Qing; Zhang, Wei; Chen, Wei-ying; Wang, Li-ming

    2003-01-01

    To identify the mutation spectrum of phosphodiesterase beta subunit (PDE6B) gene, the incidence in Chinese patients with retinitis pigmentosa (RP) and their clinical phenotypic characteristics. Screening of mutations within PDE6B gene was performed using polymerase chain reaction-heteroduplex-single strand conformation polymorphism (PCR-SSCP) and DNA sequence in 35 autosomal recessive (AR) RP and 55 sporadic RP cases. The phenotypes of the patients with the gene mutation were examined and analyzed. Novel complex heterozygous variants of PDE6B gene in a sporadic case, a T to C transversion in codon 323 resulting in the substitution of Gly by Ser and 2 base pairs (bp: G and T) insert between the 27th-28th bp upstream of the 5'-end of exon 10 were both present in a same isolate RP. But they are not found in 100 unrelated healthy individuals. Ocular findings showed diffuse pigmentary retinal degeneration in the midperipheral and peripheral fundi, optic atrophy and vessel attenuation. Multi-focal ERG indicated that the rod function was more severely deteriorated. A mutation was found in a case with RP in a ARRP family, a G to A transversion at 19th base upstream 5'-end of exon 11 (within intron 10) of PDE6B gene. A sporadic RP carried a sequence variant of PDE6B gene, a G to C transition, at the 15th base adjacent to the 3'-end of exon l8. In another isolate case with RP was found 2 bp (GT) insert between 31st and 32nd base upstream 5'-end of exon 4 (in intron 3) of PDE6B gene. There are novel complex heterozygous mutations of PDE6B gene responsible for a sporadic RP patient in China. This gene mutation associated with rod deterioration and RP. Several DNA variants were found in introns of PDE6B gene in national population.

  11. ATP-binding cassette subfamily A, member 4 intronic variants c.4773+3A>G and c.5461-10T>C cause Stargardt disease due to defective splicing.

    PubMed

    Jonsson, Frida; Westin, Ida Maria; Österman, Lennart; Sandgren, Ola; Burstedt, Marie; Holmberg, Monica; Golovleva, Irina

    2018-02-20

    Inherited retinal dystrophies (IRDs) represent a group of progressive conditions affecting the retina. There is a great genetic heterogeneity causing IRDs, and to date, more than 260 genes are associated with IRDs. Stargardt disease, type 1 (STGD1) or macular degeneration with flecks, STGD1 represents a disease with early onset, central visual impairment, frequent appearance of yellowish flecks and mutations in the ATP-binding cassette subfamily A, member 4 (ABCA4) gene. A large number of intronic sequence variants in ABCA4 have been considered pathogenic although their functional effect was seldom demonstrated. In this study, we aimed to reveal how intronic variants present in patients with Stargardt from the same Swedish family affect splicing. The splicing of the ABCA4 gene was studied in human embryonic kidney cells, HEK293T, and in human retinal pigment epithelium cells, ARPE-19, using a minigene system containing variants c.4773+3A>G and c.5461-10T>C. We showed that both ABCA4 variants, c.4773+3A>G and c.5461-10T>C, cause aberrant splicing of the ABCA4 minigene resulting in exon skipping. We also demonstrated that splicing of ABCA4 has different outcomes depending on transfected cell type. Two intronic variants c.4773+3A>G and c.5461-10T>C, both predicted to affect splicing, are indeed disease-causing mutations due to skipping of exons 33, 34, 39 and 40 of ABCA4 gene. The experimental proof that ABCA4 mutations in STGD patients affect protein function is crucial for their inclusion to future clinical trials; therefore, functional testing of all ABCA4 intronic variants associated with Stargardt disease by minigene technology is desirable. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  12. The high frequency of GJB2 gene mutation c.313_326del14 suggests its possible origin in ancestors of Lithuanian population.

    PubMed

    Mikstiene, Violeta; Jakaitiene, Audrone; Byckova, Jekaterina; Gradauskiene, Egle; Preiksaitiene, Egle; Burnyte, Birute; Tumiene, Birute; Matuleviciene, Ausra; Ambrozaityte, Laima; Uktveryte, Ingrida; Domarkiene, Ingrida; Rancelis, Tautvydas; Cimbalistiene, Loreta; Lesinskas, Eugenijus; Kucinskas, Vaidutis; Utkus, Algirdas

    2016-02-19

    Congenital hearing loss (CHL) is diagnosed in 1 - 2 newborns in 1000, genetic factors contribute to two thirds of CHL cases in industrialised countries. Mutations of the GJB2 gene located in the DFNB1 locus (13q11-12) are a major cause of CHL worldwide. The aim of this cross-sectional study was to assess the contribution of the DFNB1 locus containing the GJB2 and GJB6 genes in the development of early onset hearing loss in the affected group of participants, to determine the population-specific mutational profile and DFNB1-related HL burden in Lithuanian population. Clinical data were obtained from a collection of 158 affected participants (146 unrelated probands) with early onset non-syndromic HL. GJB2 and GJB6 gene sequencing and GJB6 gene deletion testing were performed. The data of GJB2 and GJB6 gene sequencing in 98 participants in group of self-reported healthy Lithuanian inhabitants were analysed. Statistic summary, homogeneity tests, and logistic regression analysis were used for the assessment of genotype-phenotype correlation. Our findings show 57.5% of affected participants with two pathogenic GJB2 gene mutations identified. The most prevalent GJB2 mutations were c.35delG, p. (Gly12Valfs*2) (rs80338939) and c.313_326del14, p. (Lys105Glyfs*5) (rs111033253) with allele frequencies 64.7% and 28.3% respectively. GJB6 gene mutations were not identified in the affected group of participants. The statistical analysis revealed significant differences between GJB2(-) and GJB2(+) groups in disease severity (p = 0.001), and family history (p = 0.01). The probability of identification of GJB2 mutations in patients with various HL characteristics was estimated. The carrier rate of GJB2 gene mutations - 7.1% (~1 in 14) was identified in the group of healthy participants and a high frequency of GJB2-related hearing loss was estimated in our population. The results show a very high proportion of GJB2-positive individuals in the research group affected with sensorineural

  13. Molecular analysis of beta-globin gene mutations among Thai beta-thalassemia children: results from a single center study

    PubMed Central

    Boonyawat, Boonchai; Monsereenusorn, Chalinee; Traivaree, Chanchai

    2014-01-01

    Background Beta-thalassemia is one of the most common genetic disorders in Thailand. Clinical phenotype ranges from silent carrier to clinically manifested conditions including severe beta-thalassemia major and mild beta-thalassemia intermedia. Objective This study aimed to characterize the spectrum of beta-globin gene mutations in pediatric patients who were followed-up in Phramongkutklao Hospital. Patients and methods Eighty unrelated beta-thalassemia patients were enrolled in this study including 57 with beta-thalassemia/hemoglobin E, eight with homozygous beta-thalassemia, and 15 with heterozygous beta-thalassemia. Mutation analysis was performed by multiplex amplification refractory mutation system (M-ARMS), direct DNA sequencing of beta-globin gene, and gap polymerase chain reaction for 3.4 kb deletion detection, respectively. Results A total of 13 different beta-thalassemia mutations were identified among 88 alleles. The most common mutation was codon 41/42 (-TCTT) (37.5%), followed by codon 17 (A>T) (26.1%), IVS-I-5 (G>C) (8%), IVS-II-654 (C>T) (6.8%), IVS-I-1 (G>T) (4.5%), and codon 71/72 (+A) (2.3%), and all these six common mutations (85.2%) were detected by M-ARMS. Six uncommon mutations (10.2%) were identified by DNA sequencing including 4.5% for codon 35 (C>A) and 1.1% initiation codon mutation (ATG>AGG), codon 15 (G>A), codon 19 (A>G), codon 27/28 (+C), and codon 123/124/125 (-ACCCCACC), respectively. The 3.4 kb deletion was detected at 4.5%. The most common genotype of beta-thalassemia major patients was codon 41/42 (-TCTT)/codon 26 (G>A) or betaE accounting for 40%. Conclusion All of the beta-thalassemia alleles have been characterized by a combination of techniques including M-ARMS, DNA sequencing, and gap polymerase chain reaction for 3.4 kb deletion detection. Thirteen mutations account for 100% of the beta-thalassemia genes among the pediatric patients in our study. PMID:25525381

  14. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression

    PubMed Central

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya

    2017-01-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C. PMID:28170390

  15. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression.

    PubMed

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya; Knijnenburg, Theo A; Bernard, Brady

    2017-02-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C.

  16. Establishment and rapid detection of a heterozygous missense mutation in the CACNA1F gene by ARMS technique with double-base mismatched primers.

    PubMed

    Yang, W C; Zhu, L; Zhou, B X; Tania, S; Zhou, Q; Khan, M A; Fu, X L; Cheng, J L; Lv, H B; Fu, J J

    2015-09-25

    Retinitis pigmentosa (RP) is a retinal degenerative disorder that often causes complete blindness. Mutations of more than 50 genes have been identified as associated with RP, including the CACNA1F gene. In a recent study, by employing next-generation sequencing, we identified a novel mutation in the CACNA1F gene. In this study, we used the amplification refractory mutation system (ARMS) and identified a single nucleotide change c.1555C>T in exon 13 of the CACNA1F gene, leading to the substitution of arginine by tryptophan (p.R519W) in a Chinese individual affected by RP. This study actually confirms this novel mutation, and establishes the ARMS technique for the detection of mutations in RP.

  17. Vitamin B6 and homocysteine levels in carbamazepine treated epilepsy of Khyber Pakhtunkhwa.

    PubMed

    Shakir, Shakirullah; Ali, Niaz; Udin, Zia; Nazish, Haleema; Nabi, Muhammad

    2017-06-01

    The study focused on the plasma levels of vitamin B 6 and homocysteine in different genotypes of MTHFR (C677T, A1298C) and GABRG2 (C588T, C315T) genes in carbamazepine resistant epilepsy in the population of Khyber Pakhtunkhwa. Patients who were possible candidates for carbamazepine therapy were followed for six months for their seizure control. Plasma levels of vitamin B 6 and homocysteine were determined using immunoassay based techniques at baseline and after six months. MTHFR (C677T, A1298C) and GABRG2 (C588T, C315T) genes were genotyped using restriction fragment length polymorphisms. Seizure control during therapy was recorded on a standardized proforma. Low vitamin B 6 levels and hyperhomocysteinemia were found in 61.7% of resistant patients (n=34). Resistant patients had the following frequencies of variant genotypes (677CT=38.1% and 677TT=24.4%; 1298AC=42.2% and 1298CC=26.1%; 588CT= 47.6% and 315TT= 33.3%) of MTHFR (C677T and A1298C) and GABRG2 (C588T and C315T) genes. A significant decline in vitamin B 6 (P<0.0001) and hyperhomocysteinemia were found in variant genotypes of MTHFR (C677T, A1298C) and GABRG2 (C588T, C315T) genes. Following six months of carbamazepine of therapy in heterozygous variant genotypes of MTHFR (677CT and 1298AC) and GABRG2 (588CT and 315CT) genes, we observed a significant fall in vitamin B 6 levels and hyperhomocysteinemia.

  18. Functional characterization of the novel intronic nucleotide change c.288+9C>T within the BCKDHA gene: understanding a variant presentation of maple syrup urine disease.

    PubMed

    Fernández-Guerra, Paula; Navarrete, Rosa; Weisiger, Kara; Desviat, Lourdes R; Packman, Seymour; Ugarte, Magdalena; Rodríguez-Pombo, Pilar

    2010-12-01

    Mutations in any of the three different genes--BCKDHA, BCKDHB, and DBT--encoding for the E1α, E1β, and E2 catalytic components of the branched-chain α-ketoacid dehydrogenase complex can cause maple syrup urine disease (MSUD). Disease severity ranges from the classic to the mildest variant types and precise genotypes, mostly based on missense mutations, have been associated to the less severe presentations of the disease. Herein, we examine the consequences at the messenger RNA (mRNA) level of the novel intronic alteration c.288+9C>T found in heterozygous fashion in a BCKDHA variant MSUD patient who also carries the nucleotide change c.745G>A (p.Gly249Ser), previously described as a severe change. Direct analysis of the processed transcripts from the patient showed--in addition to a low but measurable level of normal mRNA product--an aberrantly spliced mRNA containing a 7-bp fragment of intron 2, which could be rescued when the patient's cells were treated with emetine. This aberrant transcript with a premature stop codon would be unstable, supporting the possible activation of nonsense-mediated mRNA decay pathway. Consistent with this finding, minigene splicing assays demonstrated that the point mutation c.288+9C>T is sufficient to create a cryptic splice site and cause the observed 7-bp insertion. Furthermore, our results strongly suggest that the c.288+9C>T allele in the patient generates both normal and aberrant transcripts that could sustain the variant presentation of the disease, highlighting the importance of correct genotyping to establish genotype-phenotype correlations and as basis for the development of therapeutic interventions.

  19. Mutations in UBQLN2 and SIGMAR1 genes are rare in Korean patients with amyotrophic lateral sclerosis.

    PubMed

    Kim, Hee-Jung; Kwon, Min-Jung; Choi, Won-Jun; Oh, Ki-Wook; Oh, Seong-Il; Ki, Chang-Seok; Kim, Seung Hyun

    2014-08-01

    Mutations in the UBQLN2 and SIGMAR1 genes were recently identified in X-linked dominant amyotrophic lateral sclerosis and/or frontotemporal dementia (ALS and/or FTD) and FTD and/or motor neuron disease, respectively. Subsequent studies, however, found that UBQLN2 mutations were rare, and the pathogenicity of SIGMAR1 mutation in FTD and/or motor neuron disease was controversial. In the present study, we analyzed mutations in the UBQLN2 and SIGMAR1 genes in a Korean cohort of 258 patients with familial ALS (n = 9) or sporadic (sALS; n = 258) ALS. One novel UBQLN2 variant (p.D314E) was observed in 2 patients with sALS and 5 of 727 controls indicating that this variant might be a rare polymorphism rather than a disease-causing mutation. A novel SIGMAR1 gene variant in the 3'-untranslated region (c.*58T>C) was found in 1 sALS and was absent in 727 control samples. Taken together, our data suggest that causative mutations in the UBQLN2 and SIGMAR1 genes are rare in Korean patients with either familial or sporadic ALS. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. ACE I/D and MTHFR C677T polymorphisms are significantly associated with type 2 diabetes in Arab ethnicity: a meta-analysis.

    PubMed

    Al-Rubeaan, Khalid; Siddiqui, Khalid; Saeb, Amr T M; Nazir, Nyla; Al-Naqeb, Dhekra; Al-Qasim, Sara

    2013-05-15

    In this meta-analysis study, SNPs were investigated for their association with type 2 diabetes (T2D) in both Arab and Caucasian ethnicities. A total of 55 SNPs were analyzed, of which 11 fulfilled the selection criteria, and were used for analysis. It was found that TCF7L2 rs7903146 was significantly associated with a pooled OR of 1.155 (95%C.I.=1.059-1.259), p<0.0001 and I(2)=78.30% among the Arab population, whereas among Caucasians, the pooled OR was 1.45 (95%C.I.=1.386-1.516), p<0.0001 and I(2)=77.20%. KCNJ11 rs5219 was significantly associated in both the populations with a pooled OR of 1.176(1.092-1.268), p<0.0001 and I(2)=32.40% in Caucasians and a pooled OR of 1.28(1.111-1.475), p=0.001 among Arabs. The ACE I/D polymorphism was found to be significantly associated with a pooled OR of 1.992 (95%C.I.=1.774-2.236), p<0.0001 and I(2)=83.20% among the Arab population, whereas among Caucasians, the pooled OR was 1.078 (95%C.I.=0.993-1.17), p=0.073 and I(2)=0%. Similarly, MTHFR C677T polymorphism was also found to be significantly associated among Arabs with a pooled OR of 1.924 (95%C.I.=1.606-2.304), p<0.0001 and I(2)=27.20%, whereas among Caucasians, the pooled OR was 0.986 (95%C.I.=0.868-1.122), p=0.835 and I(2)=0%. Meanwhile PPARG-2 Pro12Ala, CDKN2A/2B rs10811661, IGF2BP2 rs4402960, HHEX rs7923837, CDKAL1 rs7754840, EXT2 rs1113132 and SLC30A8 rs13266634 were found to have no significant association with T2D among Arabs. In conclusion, it seems from this study that both Arabs and Caucasians have different SNPs associated with T2D. Moreover, this study sheds light on the profound necessity for further investigations addressing the question of the genetic components of T2D in Arabs. Copyright © 2013 Elsevier B.V. All rights reserved.