Sample records for ca cr fe

  1. Formation of unusual Cr5+ charge state in CaCr0.5Fe0.5O3 perovskite

    NASA Astrophysics Data System (ADS)

    Dai, Jian-Hong; Zhao, Qing; Sun, Qian; Zhang, Shuo; Wang, Xiao; Shen, Xu-Dong; Liu, Zhe-Hong; Shen, Xi; Yu, Ri-Cheng; Chan, Ting-Shan; Li, Lun-Xiong; Zhou, Guang-Hui; Yang, Yi-feng; Jin, Chang-Qing; Long, You-Wen

    2018-03-01

    A new oxide CaCr0.5Fe0.5O3 was prepared under high pressure and temperature conditions. It crystallizes in a B-site disordered Pbnm perovskite structure. The charge combination is determined to be Cr5+/Fe3+ with the presence of unusual Cr5+ state in octahedral coordination, although Cr4+ and Fe4+ occur in the related perovskites CaCrO3 and CaFeO3. The randomly distributed Cr5+ and Fe3+ spins lead to short-range ferromagnetic coupling, whereas an antiferromagnetic phase transition takes place near 50 K due to the Fe3+–O–Fe3+ interaction. In spite of the B-site Cr5+/Fe3+ disorder, the compound exhibits electrical insulating behavior. First-principles calculations further demonstrate the formation of {CaCr}}0.55+{Fe}}0.53+{{{O}}}3 charge combination, and the electron correlation effect of Fe3+ plays an important role for the insulting ground state. CaCr0.5Fe0.5O3 provides the first Cr5+ perovskite system with octahedral coordination, opening a new avenue to explore novel transition-metal oxides with exotic charge states. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574378, 51772324, and 61404052),the National Basic Research Program of China (Grant No. 2014CB921500), and the Chinese Academy of Sciences (Grant Nos. YZ201555, QYZDB-SSW-SLH013, GJHZ1773, and XDB07030300).

  2. The evaluation of the statistical monomineral thermobarometric methods for the reconstruction of the lithospheric mantle structure

    NASA Astrophysics Data System (ADS)

    Ashchepkov, I.; Vishnyakova, E.

    2009-04-01

    The modified versions of the thermobarometers for the mantle assemblages were revised sing statistical calibrations on the results of Opx thermobarometry. The modifications suggest the calculation of the Fe# of coexisting olivine Fe#Ol according to the statistical approximations by the regressions obtained from the xenoliths from kimberlite data base including >700 associations. They allow reproduces the Opx based TP estimates and to receive the complete set of the TP values for mantle xenoliths and xenocrysts. For GARNET Three variants of barometer give similar results. The first is published (Ashchepkov, 2006). The second is calculating the Al2O3 from Garnet for Orthopyroxene according to procedure: xCrOpx=Cr2O3/CaO)/FeO/MgO/500 xAlOpx=1/(3875*(exp(Cr2O3^0.2/CaO)-0.3)*CaO/989+16)-XcrOpx Al2O3=xAlOp*24.64/Cr2O3^0.2*CaO/2.+FeO*(ToK-501)/1002 And then it suppose using of the Al2O3 in Opx barometer (McGregor, 1974). The third variant is transformation of the G. Grutter (2006) method by introducing of the influence of temperature. P=40+(Cr2O3)-4.5)*10/3-20/7*CaO+(ToC)*0.0000751*MgO)*CaO+2.45*Cr2O3*(7-xv(5,8)) -Fe*0.5 with the correction for P>55: P=55+(P-55)*55/(1+0.9*P) Average from this three methods give appropriate values comparable with determined with (McGregor,1974) barometer. Temperature are estimating according to transformed Krogh thermometer Fe#Ol_Gar=Fe#Gar/2+(T(K)-1420)*0.000112+0.01 For the deep seated associations P>55 kbar T=T-(0.25/(0.4-0.004*(20-P))-0.38/Ca)*275+51*Ca*Cr2-378*CaO-0.51)-Cr/Ca2*5+Mg/(Fe+0.0001)*17.4 ILMENITE P= ((TiO2-23.)*2.15-(T0-973)/20*MgO*Cr2O3 and next P=(60-P)/6.1+P ToK is determined according to (Taylor et al , 1998) Fe#Ol_Chr =(Fe/(Fe+Mg)ilm -0.35)/2.252-0.0000351*(T(K)-973) CHROMITE The equations for PT estimates with chromite compositions P=Cr/(Cr+Al)*T(K)/14.+Ti*0.10 with the next iteration P=-0.0053*P^2+1.1292*P+5.8059 +0.00135*T(K)*Ti*410-8.2 For P> 57 P=P+(P-57)*2.75 Temperature estimates are according to the O'Neill- Wall, 1987 The Fe#Ol values are estimated according to three iterations Fe#Ol_Chr=(Fe/Fe+Mg)/4.5-(P-32)*0.00115-0.03 Fe#Ol_Chr =( Fe#Ol -0.074)*0.45+0.086 Fe#Ol _Chr= Fe#Ol -( Fe#Ol -0.06)*(T(K)-1300)*0.000115+0.01 CLINOPYROXENE (Ash2009)=0.32 (1-0.2*Na/Al+0.012*Fe/Na)*Kd ^(3/4)*ToK/(1+Fe)-35*ln(1273/ToK)*(Al+Ti+2.5Na+1.5Fe3+)+(0.9-CaO)*10+Na20/Al2O3* ToK /200 with the second iteration P=(0.0000002* P4 +0.000002+P^3-0.0027*P^2+1.2241*P) The TP estimates were statistically tested wit the available experimental results in peridotite (315 runs) and eclogite (302 runs) system and show good agreement with the TP conditions of runs. The methods are joined together with the other 40 thermometers and 30 barometers for mantle associations in the FORTRAN program allowing simultaneous calculations of 10 pairs of T and P and write the matrix of calculated TPFO2 values together with the compositions of minerals or their formula coefficients. Grant RBRF 05-05-64718.

  3. Weathering and precipitation after meteorite impact of Ni, Cr, Fe, Ca and Mn in K-T boundary clays from Stevns Klint

    NASA Astrophysics Data System (ADS)

    Miyano, Yumiko; Yoshiasa, Akira; Tobase, Tsubasa; Isobe, Hiroshi; Hongu, Hidetomo; Okube, Maki; Nakatsuka, Akihiko; Sugiyama, Kazumasa

    2016-05-01

    Ni, Cr, Fe, Ca and Mn K-edge XANES and EXAFS spectra were measured on K-T boundary clays from Stevns Klint in Denmark. According to XANES spectra and EXAFS analyses, the local structures of Ni, Cr and Fe in K-T boundary clays is similar to Ni(OH)2, Cr2O3 and FeOOH, respectively. It is assumed that the Ni, Cr and Fe elements in impact related glasses is changing into stable hydrate and oxide by the weathering and diagenesis at the surface of the Earth. Ca in K-T boundary clays maintains the diopside-like structure. Local structure of Ca in K-T clays seems to keep information on the condition at meteorite impact. Mn has a local structure like MnCO3 with divalent state. It is assumed that the origin on low abundant of Mn in the Fe-group element in K-T clays was the consumption by life activity and the diffusion to other parts.

  4. Removal of Cr(VI) from groundwater by Fe(0)

    NASA Astrophysics Data System (ADS)

    Gao, Yanjiao; Liu, Rui

    2017-11-01

    This research was conducted to investigate the treatment of hexavalent chromium (Cr(VI)) by iron powder (Fe(0)) columns of simulated permeable reactive barriers with and without calcium carbonate (CaCO3). Two columns filled with Fe(0) were used as Cr(VI) removal equipment running at a flow velocity of 10 ml/min at room temperature. After 200 days running of the two columns, the results showed that Fe(0) was an effective material for Cr(VI) reduction with an average removal rate of above 84.6%. The performance of Column 2 with CaCO3 was better than Column 1 without CaCO3 in terms of average Cr(VI) removal rate. The presence of CaCO3 buffered the increasing pH caused by Fe(0) corrosion in Column 2 and enhanced the removal rate of Column 2. Scanning Electron Microscopy (SEM) images of Fe(0) in the three stages of running of the two columns illustrated that the coat layer of Column 1 was a little thicker than that of Column 2. Energy-dispersive spectrometry (EDS) results showed that the surface of Fe(0) of Column 2 contained more chromium elements. Raman spectroscopy found that all iron oxide was generated on the Fe(0) surface of Column 1 and Column 2 and chromium class objects were only detected on Fe(0) surface in Column 2.

  5. High-pressure X-ray diffraction and Raman spectroscopy of CaFe2O4-type β-CaCr2O4

    NASA Astrophysics Data System (ADS)

    Zhai, Shuangmeng; Yin, Yuan; Shieh, Sean R.; Shan, Shuangming; Xue, Weihong; Wang, Ching-Pao; Yang, Ke; Higo, Yuji

    2016-04-01

    In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopic studies of orthorhombic CaFe2O4-type β-CaCr2O4 chromite were carried out up to 16.2 and 32.0 GPa at room temperature using multi-anvil apparatus and diamond anvil cell, respectively. No phase transition was observed in this study. Fitting a third-order Birch-Murnaghan equation of state to the P-V data yields a zero-pressure volume of V 0 = 286.8(1) Å3, an isothermal bulk modulus of K 0 = 183(5) GPa and the first pressure derivative of isothermal bulk modulus K 0' = 4.1(8). Analyses of axial compressibilities show anisotropic elasticity for β-CaCr2O4 since the a-axis is more compressible than the b- and c-axis. Based on the obtained and previous results, the compressibility of several CaFe2O4-type phases was compared. The high-pressure Raman spectra of β-CaCr2O4 were analyzed to determine the pressure dependences and mode Grüneisen parameters of Raman-active bands. The thermal Grüneisen parameter of β-CaCr2O4 is determined to be 0.93(2), which is smaller than those of CaFe2O4-type CaAl2O4 and MgAl2O4.

  6. Effects of Oral Administration of CrCl3 on the Contents of Ca, Mg, Mn, Fe, Cu, and Zn in the Liver, Kidney, and Heart of Chicken.

    PubMed

    Liu, Yanhan; Zhao, Xiaona; Zhang, Xiao; Zhao, Xuejun; Liu, Yongxia; Liu, Jianzhu

    2016-06-01

    This study aimed to investigate the effects of oral administration of trivalent chromium on the contents of Ca, Mg, Mn, Fe, Cu, and Zn in the heart, liver, and kidney. Different levels of 1/8, 1/4, and 1/2 LD50 (LD50 = 5000 mg/kg body mass) CrCl3 milligrams per kilogram body mass daily were added into the water to establish the chronic poisoning model. Ca, Mg, Mn, Fe, Cu, and Zn were detected with the flame atomic absorption spectrometry in the organs exposed 14, 28, and 42 days to CrCl3, respectively. Results showed that Cr was accumulated in the heart, liver, and kidney significantly (P < 0.05) with extended time and dose. The contents of Ca and Fe increased, whereas those of Mg, Mn, Cu, and Zn decreased in the heart, liver, and kidney of each treated group, which had a dose- and time-dependent relationship, but the contents of Mg and Zn in the heart took on a fluctuated change. These particular observations were different from those in the control group. In conclusion, the oral administration of CrCl3 could change the contents of Ca, Mg, Mn, Fe, Cu, and Zn in the heart, liver, and kidney, which may cause disorders in the absorption and metabolism of the metal elements of chickens.

  7. Removal of metals from landfill leachate by sorption to activated carbon, bone meal and iron fines.

    PubMed

    Modin, Hanna; Persson, Kenneth M; Andersson, Anna; van Praagh, Martijn

    2011-05-30

    Sorption filters based on granular activated carbon, bone meal and iron fines were tested for their efficiency of removing metals from landfill leachate. Removal of Al, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sr and Zn were studied in a laboratory scale setup. Activated carbon removed more than 90% of Co, Cr, Cu, Fe, Mn and Ni. Ca, Pb, Sr and Zn were removed but less efficiently. Bone meal removed over 80% of Cr, Fe, Hg, Mn and Sr and 20-80% of Al, Ca, Cu, Mo, Ni, Pb and Zn. Iron fines removed most metals (As, Ca, Co, Cr, Cu, Fe, Mg, Mn, Pb, Sr and Zn) to some extent but less efficiently. All materials released unwanted substances (metals, TOC or nutrients), highlighting the need to study the uptake and release of a large number of compounds, not only the target metals. To remove a wide range of metals using these materials two or more filter materials may need to be combined. Sorption mechanisms for all materials include ion exchange, sorption and precipitation. For iron fines oxidation of Fe(0) seems to be important for metal immobilisation. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions.

    PubMed

    Agrafioti, Evita; Kalderis, Dimitrios; Diamadopoulos, Evan

    2014-12-15

    This work investigated the production of Ca and Fe modified biochars in order to use them for the removal of arsenic As(V) and chromium Cr(VI) from aqueous solutions. Rice husk was impregnated with CaO at an impregnation ratio 0.114, while both rice husk and the organic fraction of municipal solid wastes were impregnated with Fe(0) and Fe(3+) at impregnation ratios 0.114 and 0.23. The modified biochars exhibited high As(V) removal capacity (>95%), except for the case of rice husk impregnated with Fe(0), whose removal capacity reached only 58%. All modified biochars exhibited much better As(V) removal capacity compared to the non-impregnated biochars. However, the Cr(VI) removal rates were not as high as the As(V) ones. The maximum Cr(VI) removal was observed in the case of rice husk biochar impregnated with 2.3% w/w Fe(3+), whereas the majority of impregnation agents examined did not manage to enhance the biochars' Cr(VI) removal ability. The equilibrium study showed that the Freundlich model can adequately describe the sorption process for the majority of samples examined. Analysis of the amount of Fe present in the equilibrium solutions suggested that the main mechanisms of As(V) and Cr(VI) removal were possibly metal precipitation and electrostatic interactions between the modified biochars and the adsorbate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Evidence of the impacting body of the Ries crater - the discovery of Fe-Cr-Ni veinlets below the crater bottom

    USGS Publications Warehouse

    El, Goresy A.; Chao, E.C.T.

    1976-01-01

    Fe-Cr-Ni particles and veinlets have been discovered in the top 15 m of the compressed zone with abundant shatter cones below the bottom of the Ries crater. The metallic particles are less than a few microns across. They occur in various minerals along healed intergranular and locally in intragranular microfractures in quartz diorite, amphibolite and chloritized granite of the basement crystalline rocks. The particles consist of major Fe, Cr, and Ni with minor Si and Ca. Origin due to contamination is absolutely ruled out. We believe that these Fe-Cr-Ni particles are probably condensed from the vaporized impacting body which produced the Ries crater. These particles were injected with high velocity into microfractures near the top of the compressed zone, implanted in and across various minerals before these microfractures were resealed. The presence of Si and Ca as well as the fact that the Cr content is nearly twice that of Ni, led us to conclude that the Ries impacting body is very likely not an iron meteorite but a stony meteorite. ?? 1976.

  10. Synthesis, characterization of double perovskite Ca{sub 2}MSbO{sub 6} (M = Dy, Fe, Cr, Al) materials via sol–gel auto-combustion and their catalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feraru, S.; Samoila, P.; Borhan, A.I.

    2013-10-15

    Double perovskite-type oxide Ca{sub 2}MSbO{sub 6} materials, where M = Dy, Fe, Cr, and Al, were prepared by using the sol–gel auto-combustion method. The role of different B-site cations on their synthesis, structures, morphologies and catalytic properties was investigated. The progress of double-perovskite type structure formation and the disappearance of the organic phases were monitored by infrared absorption spectroscopy (FTIR). Double perovskite oxide structures were evaluated using X-ray diffraction (XRD), while the microstructure of obtained compounds was studied using scanning electron microscopy (SEM). Also, BET surface areas were measured at the liquid nitrogen temperature by nitrogen adsorption. Catalytic properties ofmore » the obtained compounds were evaluated by test reaction of hydrogen peroxide decomposition. - Highlights: • Ca{sub 2}MSbO{sub 6} double perovskites were obtained by sol–gel auto-combustion method. • Ca{sub 2}MSbO{sub 6} (M = Dy, Fe, Cr and Al) as catalysts in H{sub 2}O{sub 2} decomposition • Strong relationship between particles' shape, BET area and catalytic performance • Ca{sub 2}FeSbO{sub 6} spherical grains show superior catalytic activity.« less

  11. Cubic structure and canted antiferromagnetism of CaMn7O12 doped with trivalent cations (Fe, Al, Cr)

    NASA Astrophysics Data System (ADS)

    Motin Seikh, Md.; Caignaert, V.; Lebedev, O. I.; Raveau, B.

    2014-02-01

    In this study, we show the dramatic effect of the doping of the octahedral sites with M3+ cations (Fe3+, Al3+ and Cr3+) upon the structure and magnetism of the rhombohedral double perovskite CaMn7O12. In the oxides CaMn7-xMxO12, charge ordering between Mn3+ and Mn4+ octahedral sites is destroyed leading to the cubic structure (Im-3), whereas the initial magnetic properties (TN~90 K) have disappeared leading to canted antiferromagnetism (TN≈50-70 K) for small x values (x ~0.2-1). A spin glass like behaviour is also observed for larger values (x~1) in the case of Fe substitution.

  12. Lunar highland rocks - Element partitioning among minerals. II - Electron microprobe analyses of Al, P, Ca, Ti, Cr, Mn and Fe in olivine

    NASA Technical Reports Server (NTRS)

    Smith, J. V.; Hansen, E. C.; Steele, I. M.

    1980-01-01

    Lunar olivines from anorthosites, granulitic impactites, and rocks in the Mg-rich plutonic trend were subjected to electron probe measurements for Al, P, Ca, Ti, Cr and Mn, which show that the FeO/MnO ratio for lunar olivines lies between 80 and 110 with little difference among the rock types. The low values of Ca in lunar olivines indicate slow cooling to subsolidus temperatures, with blocking temperatures of about 750 C for 67667 and 1000 C for 60255,73-alpha determined by the Finnerty and Boyd (1978) experiments. An important paradox is noted in the low Ti content of Fe-rich olivines from anorthosites, although both Ti and Fe tend to become enriched in liquid during fractional distillation. Except for Ca and Mn, olivine from anorthosites has lower minor element values than other rock types. Formation from a chemically distinct system is therefore implied.

  13. The CR (Renazzo-type) carbonaceous chondrite group and its implications

    NASA Technical Reports Server (NTRS)

    Weisberg, Michael K.; Prinz, Martin; Clayton, Robert N.; Mayeda, Toshiko K.

    1993-01-01

    A petrologic, geochemical, and oxygen isotropic study of the CR chondrites including Renazzo, Al Rais, El Djouf 001 and the paired Acfer meteorites, EET87770 and the paired samples, MAC87320, Y790112, Y793495, and Y791498 is presented. It is concluded that the CR group is characterized by abundant large multilayered, Fe, Ni metal-rich, type I chondrules; abundant matrix and dark inclusions; unique assemblages of serpentine and chlorite-rich phyllosilicates and Ca-carbonates; Ca-carbonate rims on chondrules; abundant Fe, Ni metal with a positive Ni vs. Co trend and a solar Ni:Co ratio; and amoeboid olivine aggregates with Mn-rich and Mn-poor forsterite.

  14. Heterogeneous Distribution of Chromium on Mercury

    NASA Astrophysics Data System (ADS)

    Nittler, L. R.; Boujibar, A.; Crapster-Pregont, E.; Frank, E. A.; McCoy, T. J.; McCubbin, F. M.; Starr, R. D.; Vander Kaaden, K. E.; Vorburger, A.; Weider, S. Z.

    2018-05-01

    Mercury's surface has an average Cr/Si ratio of 0.003 (Cr 800 ppm), with at least a factor of 2 systematic uncertainty. Cr is heterogeneously distributed and correlated with Mg, Ca, S, and Fe and anti-correlated with Al.

  15. Magnetic impurity effect on charge and magnetic order in doped La1.5Ca0.5CoO4

    NASA Astrophysics Data System (ADS)

    Horigane, K.; Hiraka, H.; Tomiyasu, K.; Ohoyama, K.; Louca, D.; Yamada, K.

    2012-02-01

    Neutron scattering experiments were performed on single crystals of magnetic impurity doped cobalt oxides La1.5Ca0.5CoO4 to characterize the charge and spin orders. We newly found contrasting impurity effects. Two types of magnetic peaks are observed at q = (0.5,0,L) with L = half-integer and integer in La1.5Ca0.5CoO4, while magnetic peak at L = half-integer (integer) was only observed in Mn (Fe)-substituted sample. Although Mn and Fe impurities degrade charge and magnetic order, Cr impurity stabilizes the ordering at x = 0.5. Based on the crystal structural analysis of Cr doped sample, we found that the excess oxygen and change of octahedron around Co3+ were realized in Cr doped sample.

  16. Study of optical and luminescence properties of silicon — semiconducting silicide — silicon multilayer nanostructures

    NASA Astrophysics Data System (ADS)

    Galkin, N. G.; Galkin, K. N.; Dotsenko, , S. A.; Goroshko, D. L.; Shevlyagin, A. V.; Chusovitin, E. A.; Chernev, I. M.

    2017-01-01

    By method of in situ differential spectroscopy it was established that at the formation of monolayer Fe, Cr, Ca, Mg silicide and Mg stannide islands on the atomically clean silicon surface an appearance of loss peaks characteristic for these materials in the energy range of 1.1-2.6 eV is observed. An optimization of growth processes permit to grow monolithic double nanoheterostructures (DNHS) with embedded Fe, Cr and Ca nanocrystals, and also polycrystalline DNHS with NC of Mg silicide and Mg stannide and Ca disilicide. By methods of optical spectroscopy and Raman spectroscopy it was shown that embedded NC form intensive peaks in the reflectance spectra at energies up to 2.5 eV and Raman peaks. In DNS with β-FeSi2 NC a photoluminescence and electroluminescence at room temperature were firstly observed.

  17. A Comparative Study on Macro- and Microelement Bioaccumulation Properties of Leaves and Bark of Quercus petraea and Pinus sylvestris.

    PubMed

    Klink, Agnieszka; Polechońska, Ludmiła; Dambiec, Małgorzata; Białas, Kamila

    2018-01-01

    Trees are widely used for biomonitoring and filtering air in industrial, urban, and rural areas. This research was undertaken to examine accumulation capacities of macroelements (Ca, K, Mg, Na) and trace metals (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in needles and bark of Pinus sylvestris and leaves and bark of Quercus petraea growing in the vicinity of the chlor-alkali plant PCC Rokita in Brzeg Dolny (Lower Silesia, SW Poland). Because Scots pine is well studied and considered a useful bioindicator, we have used this species as a base for comparison of the accumulation ability of sessile oak that shows some features of good bioindicator, but whose biogeochemistry was scarcely studied. Results showed that for both species leaves contained more macroelements (Ca, K, Mg), whereas the bark was richer in most trace metals (Cd, Cr, Cu, Fe, and Pb). However, trees studied differed with respect to element content. Oak bark and leaves were more effective in accumulating macro- and trace elements (bark Cd, Co, Cr, Cu, K, Mg, Mn, Na, Ni, Pb and leaves Ca, Cr, Cu, Fe, K, Mg, Na, Ni) than Scots pine tissues. Nevertheless, foliar metal accumulation index of these species was similar, suggesting that their overall ability to accumulate trace metals was similar.

  18. Development and quality assessments of commercial heat production of ATF FeCrAl tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukinori

    2015-09-01

    Development and quality assessment of the 2 nd generation ATF FeCrAl tube production with commercial manufacturers were conducted. The manufacturing partners include Sophisticated Alloys, Inc. (SAI), Butler, PA for FeCrAl alloy casting via vacuum induction melting, Oak Ridge National Laboratory (ORNL) for extrusion process to prepare the master bars/tubes to be tube-drawn, and Rhenium Alloys, Inc. (RAI), North Ridgeville, OH, for tube-drawing process. The masters bars have also been provided to Los Alamos National Laboratory (LANL) who works with Century Tubes, Inc., (CTI), San Diego, CA, as parallel tube production effort under the current program.

  19. Microstructural and optical properties of Ca and Cr doped cobalt ferrite nanoparticles synthesized by auto combustion

    NASA Astrophysics Data System (ADS)

    Agrawal, Shraddha; Parveen, Azra; Azam, Ameer

    2018-05-01

    The Ca and Cr doped cobalt ferrite nanoparticles (Co0.8Ca0.2) (Fe0.8 Cr0.2)2O4 were synthesized by auto combustion method. Microstructural studies were carried out by X-ray diffraction (XRD). The crystalline size of synthesized nanoparticles as determined by the XRD was found to be 17.6 nm. These structural studies suggest that the crystal system remains spinal even with the doping of calcium and chromium. Optical properties of Ca and Cr doped cobalt ferrite were studied by UV-visible technique in the range of 200-800 nm. The energy band gap was calculated with the help of Tauc relationship. Ca and Cr doped cobalt ferrite annealed at 600°C exhibit significant dispersion in complex permeability. The dielectric constant and dielectric loss of cobalt ferrite were studied as a function of frequency and were explained on the basis of Koop's theory based on Maxwell Wagner two layer models and electron hopping.

  20. EVIDENCE FOR GAS FROM A DISINTEGRATING EXTRASOLAR ASTEROID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, S.; Jura, M.; Zuckerman, B.

    We report high-resolution spectroscopic observations of WD 1145+017—a white dwarf that was recently found to be transitted by multiple asteroid-sized objects within its tidal radius. We discovered numerous circumstellar absorption lines with linewidths of ∼300 km s{sup −1} from Mg, Ca, Ti, Cr, Mn, Fe, and Ni, possibly from several gas streams produced by collisions among the actively disintegrating objects. The atmosphere of WD 1145+017 is polluted with 11 heavy elements, including O, Mg, Al, Si, Ca, Ti, V:, Cr, Mn, Fe, and Ni. Evidently, we are witnessing the active disintegration and subsequent accretion of an extrasolar asteroid.

  1. Modern rather than Mesoarchaean oxidative weathering responsible for the heavy stable Cr isotopic signatures of the 2.95 Ga old Ijzermijn iron formation (South Africa)

    NASA Astrophysics Data System (ADS)

    Albut, Gülüm; Babechuk, Michael G.; Kleinhanns, Ilka C.; Benger, Manuela; Beukes, Nicolas J.; Steinhilber, Bernd; Smith, Albertus J. B.; Kruger, Stephanus J.; Schoenberg, Ronny

    2018-05-01

    Previously reported stable Cr isotopic fractionation in Archaean paleosols and iron formations (IFs) have been interpreted as a signature of oxidative weathering of Cr(III) to Cr(VI) in soils, and delivery of isotopically heavy Cr(VI) into the oceans. One of the oldest reported fingerprints of this process is isotopically heavy Cr preserved in the 2.95 Ga old Ijzermijn IF, Sinqeni Formation of the Mozaan Group (Pongola Supergroup), South Africa and could suggest that atmospheric free oxygen was present ca. 600 million years earlier than the Great Oxidation Event (GOE). However, fractionated stable Cr isotopic signatures have only been found to date in surface outcrop samples of the White Mfolozi Inlier exposed along the White Mfolozi River Gorge. In this study, the latter outcrop was resampled along with two drill cores of the Ijzermijn IF and a drill core of the Scotts Hill IF to represent multiple exposures of Mozaan Group IFs with different states of preservation. A detailed geochemical comparison on bulk samples of different units was undertaken using stable Cr isotopes coupled with trace and major elements. Outcrop iron-rich mudstones (Fe - lutites) show very low LOI [wt] %, and very low Fe(II)/Fetot ratios, and lower Ca and Mg relative to equivalent facies in drill cores, indicating the effects that oxidative recent surface weathering had on Fe/Mn-rich carbonate minerals of the IF. Overall rare earth element and yttrium (REE + Y) mixing models agree well with previous studies, confirming that they were minimally disturbed by weathering and are consistent with a high magnitude of continental solutes delivered in a near-shore depositional environment, with a minor contribution of hydrothermally derived fluids that upwelled into shallower depositional setting. Importantly, all drill core samples of this study revealed δ53/52Cr values within the igneous inventory, despite variable amounts of detrital Cr input that includes nearly detritus-free, chert/jasper-rich units. By contrast, a specific group of Fe-lutite samples near the base of White Mfolozi River outcrop bear fractionated Cr isotopic signatures with δ53/52Cr values up to 0.418‰. These outcrop samples also display unusually high U/Th ratios (max. 12.6) as well as enrichments of other elements (W, Tl, As, MREE) that far exceed that observed in correlative drill core units. These observations together with the lack of Cr isotopic fractionation in drill core samples lead us to propose that the heavy δ53/52Cr values of Fe-lutites from outcrop Ijzermijn IF samples reported here and in a previous study are the product of modern oxidative weathering rather than an indicator for Mesoarchaean oxidative weathering at ca. 2.95 Ga.

  2. Half-metallicity and tetragonal distortion in semi-Heusler alloy FeCrSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H. M., E-mail: smilehhm@163.com; Luo, S. J.; Yao, K. L.

    2014-01-28

    Full-potential linearized augmented plane wave methods are carried out to investigate the electronic structures and magnetic properties in semi-Heusler alloy FeCrSe. Results show that FeCrSe is half-metallic ferromagnet with the half-metallic gap 0.31 eV at equilibrium lattice constant. Calculated total magnetic moment of 2.00μ{sub B} per formula unit follows the Slater-Pauling rule quite well. Two kinds of structural changes are used to investigate the sensitivity of half-metallicity. It is found that the half-metallicity can be retained when lattice constant is changed by −4.56% to 3.52%, and the results of tetragonal distortion indicate the half-metallicity can be kept at the range ofmore » c/a ratio from 0.85 to 1.20. The Curie temperature, cohesive energy, and heat of formations of FeCrSe are also discussed.« less

  3. Effects of exposure to dietary chromium on tissue mineral contents in rats fed diets with fiber.

    PubMed

    Prescha, Anna; Krzysik, Monika; Zabłocka-Słowińska, Katarzyna; Grajeta, Halina

    2014-06-01

    This study evaluated the effects of diets with fiber (cellulose and/or pectin) supplemented with chromium(III) on homeostasis of selected minerals in femurs, thigh muscles, livers, and kidneys of rats. For 6 weeks, male rats were fed experimental diets: a fiber-free diet (FF), a diet containing 5% cellulose (CEL), 5% pectin (PEC), or 2.5% cellulose and 2.5% pectin (CEL+PEC). These diets had 2.53 or 0.164 mg Cr/kg diet. The tissue levels of Ca, Mg, Zn, Fe, and Cr were determined by using atomic absorption spectrometry. Supplementing diets with Cr resulted in significantly higher Cr levels in the femurs of rats fed the CEL diet and significantly higher Cr and Fe levels in the rats fed the CEL+PEC diet compared to the rats fed FF diet. Muscle Ca content was significantly lower in the rats fed the CEL+PEC+Cr diet compared to the rats fed FF+Cr diet. The rats consuming the PEC+Cr diet had the highest liver Cr content. The highest kidney Zn content was observed in the rats fed diets containing Cr and one type of fiber. These results indicate that diets containing chromium at elevated dose and fiber have a significant effect on the mineral balance in rat tissues.

  4. Exploration of alloy surface and slurry modification to improve oxidation life of fused silicide coated niobium alloys

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Grisaffe, S. J.

    1972-01-01

    Edge and surface modifications of niobium alloys were investigated prior to coating with Si-20Cr-20Fe and slurry composition modification for performance in a 1370 C ambient pressure slow cycle test. The best coating obtained was Si-20Cr-20Mn with an average life of 63 cycles, compared to 40 for Si-20Cr-20Fe on FS-85 (100 percent improvement in weight parity life). Edge beading extended the lives of Si-20Cr-20Fe-coated Cb-752 and FS-85 to 57 and 41 cycles respectively (50 and 20 percent improvements in weight parity life respectively). W, Al2O3 and ZrO2(CaO) surface modifications altered coating crack frequency and microstructure and increased life somewhat.

  5. A case of Alzheimer's disease in magmatic crystals

    NASA Astrophysics Data System (ADS)

    Costa Rodriguez, F.; Bouvet de Maisonneuve, C.

    2012-12-01

    The reequilibration of chemical zoning in crystals from volcanic rocks is increasingly used to determine the duration of the processes involved in their origin, residence and transport. There now exist a good number of determinations of diffusion coefficients in olivine (Fe-Mg, Mn, Ca, Ni, Cr), plagioclase (CaAl-NaSi, Mg, Sr, Ba, REE), pyroxenes (Fe-Mg, Mn, Ca, REE) and quartz (Ti), but most studies have used a single element or component in a single mineral group. Although this is a good approach, it can only access a limited range of time scales, typically the short-term memory of the crystal. In other words, for process durations that are longer than the combination of the diffusivity and diffusion distance (and for a constant boundary), the long-term memory of the crystal might have been lost. This could explain why most time determinations of magmatic processes from volcanic rocks give times of about < 100 years, and why these are shorter than the thousands of years obtained from U-Th series disequilibrium isotopes. We have done a series of numerical calculations and natural observation to determine the time windows that can be accessed with different elements and minerals, and how they may affect the time scales and interpretations of processes that the crystals might be recording. We have looked at two end-members representative of mafic and silicic magmas by changing the temperature and mineral compositions. 3 dimensional calculations of diffusion reequilibration at the center of a 1 x 0.5 x 0.5 mm crystal and using a constant boundary as first case. We find that for mafic magma and olivine, 90 % of equilibration of Fe-Mg, Mn, and Ni occurs in a few decades, but gradients in Ca and Cr persist for a few thousand years. These results can for example explain the large ranges of Ca and Cr contents at a given Fe/Mg of olivine, and why apparently contradictory times can be obtained from elements with different diffusivities in the same crystal. At the same time these findings also highlight that there is a long-term memory of the crystal that is typically not accessed by current studies. However, unraveling this memory is more complex because it seems unrealistic to assume a constant composition at the boundary for hundreds or thousands of years, and because crystals can be growing and dissolving multiple times. Additional models considering growth and a variable boundary show that a significant part of the memory is lost by multiple changes in concentration being superimposed at the crystal rim. Here we also report a case where accessing the older history of the crystals might be possible by a combination of X-Ray element maps plus multiple element zoning traverses (Fe-Mg, Ca, Mn, Ni, Al, P, Cr) in olivine from Llaima volcano (Chile). Element distributions reveal that the crystals had an early history of fast growth. The delicate structures of P zoning have been used to recognize any crystal dissolution. Cr, Fe-Mg, Ni, Mn are zoned but the times obtained from Cr are 4 x longer than those of the other elements. Our interpretation is that the Cr zoning records the older memory of the crystal since eruption but that of Fe-Mg has lost part of the memory due to multiple changes at the rim or complete homogenization of the crystal. Thus using multiple elements and minerals allow accessing the long and short term memory of the crystals and associated magma.

  6. Structural and metal-insulator transitions in rhenium-based double perovskites via orbital ordering

    NASA Astrophysics Data System (ADS)

    Lee, Alex Taekyung; Marianetti, Chris A.

    2018-01-01

    Re-based double perovskites (DPs) have garnered substantial attention due to their high Curie temperatures (TC) and display of complex interplay of structural and metal-insulator transitions (MIT). Here we systematically study the ground-state electronic and structural properties for a family of Re-based DPs A2B ReO6 (A =Sr, Ca and B =Cr, Fe), which are related by a common low-energy Hamiltonian, using density functional theory +U calculations. We show that the on-site interaction U of Re induces orbital ordering (denoted C-OO), with each Re site having an occupied dx y orbital and a C-type alternation among dx z/dy z , resulting in an insulating state consistent with experimentally determined insulators Sr2CrReO6 , Ca2CrReO6 , and Ca2FeReO6 . The threshold value of UR e for orbital ordering is reduced by inducing Eg octahedral distortions of the same C-type wavelength (denoted C-OD), which serves as a structural signature of the orbital ordering; octahedral tilting also reduces the threshold. The C-OO and the concomitant C-OD are a spontaneously broken symmetry for the Sr-based materials (i.e., a0a0c- tilt pattern), while not for the Ca-based systems (i.e., a-a-b+ tilt pattern). Spin-orbit coupling does not qualitatively change the physics of the C-OO/C-OD, but can induce relevant quantitative changes. We prove that a single set of UC r,UF e,UR e capture the experimentally observed metallic state in Sr2FeReO6 and insulating states in other three systems. We predict that the C-OO is the origin of the insulating state in Sr2CrReO6 , and that the concomitant C-OD may be experimentally observed at sufficiently low temperatures (i.e., space group P 42/m ) in pure samples. Additionally, given our prescribed values of U , we show that the C-OO induced insulating state in Ca2CrReO6 will survive even if the C-OD amplitude is suppressed (e.g., due to thermal fluctuations). The role of the C-OO/C-OD in the discontinuous, temperature driven MIT in Ca2FeReO6 is discussed.

  7. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite.

    PubMed

    Lyu, Honghong; Zhao, Hang; Tang, Jingchun; Gong, Yanyan; Huang, Yao; Wu, Qihang; Gao, Bin

    2018-03-01

    Biochar supported carboxymethyl cellulose (CMC)-stabilized nanoscale iron sulfide (FeS) composite (CMC-FeS@biochar) was prepared and tested for immobilization of hexavalent chromium Cr(VI) in soil. Results of UV-vis and transmission electron microscopy (TEM) showed that the backbone of biochar suppressed the aggregation of FeS, resulting in smaller particle size and more sorption sites than bare FeS. The composite at a dosage of 2.5 mg per gram soil displayed an enhanced Cr(VI) immobilization efficiency (a 94.7% reduction in the toxicity characteristic leaching procedure (TCLP) based leachability and a 95.6% reduction in the CaCl 2 extraction) compared to plain biochar and bare FeS. Sequential extraction procedure (SEP) and X-ray photoelectron spectroscopy (XPS) analysis suggested that CMC-FeS@biochar promoted the conversion of more accessible Cr (exchangeable and carbonate-bound fractions) into the less accessible forms (iron-manganese oxides-bound, organic material-bound, and residual fractions) to reduce the toxicity of Cr(VI) and that surface sorption and reduction were dominant mechanisms for Cr(VI) immobilization. CMC-FeS@biochar greatly reduced the bioavailability of Cr(VI) to wheat and earthworms (Eisenia fetida). Moreover, the application of CMC-FeS@biochar enhanced soil organic matter content and microbial activity. This work highlighted the potential of CMC-FeS@biochar composite as a low-cost, "green", and effective amendment for immobilizing Cr(VI) in contaminated soils and improving soil properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. AFLOWLIB.ORG: a Distributed Materials Properties Repository from High-throughput Ab initio Calculations

    DTIC Science & Technology

    2011-11-15

    uncle) fcc (uncle) hcp (uncle) phase-diagram Ag Al Al Au Au Bi Bi Ca Ca Cd Cd Ce Ce Co Co Cr Cr Cu Cu Fe Fe Ga Ga Gd Gd Ge Ge Hf...Hf Hg Hg In In Ir Ir La La Li Li Mg Mg Mn Mn Mo Mo Na Na Nb Nb Ni Ni Os Os Pb Pb Pd Pd Pt Pt Rb Rb Re Re Rh Rh Ru Ru Sb Sb Sc...2 S. Curtarolo, A. N. Kolmogorov, and F. H. Cocks, High-throughput ab initio analysis of the Bi-In, Bi- Mg , Bi-Sb, In- Mg , In-Sb, and Mg -Sb systems

  9. Structural, electronic, magnetic, half-metallic, mechanical, and thermodynamic properties of the quaternary Heusler compound FeCrRuSi: A first-principles study.

    PubMed

    Wang, Xiaotian; Khachai, Houari; Khenata, Rabah; Yuan, Hongkuan; Wang, Liying; Wang, Wenhong; Bouhemadou, Abdelmadjid; Hao, Liyu; Dai, Xuefang; Guo, Ruikang; Liu, Guodong; Cheng, Zhenxiang

    2017-11-23

    In this paper, we have investigated the structural, electronic, magnetic, half-metallic, mechanical, and thermodynamic properties of the equiatomic quaternary Heusler (EQH) compound FeCrRuSi using the density functional theory (DFT) and the quasi-harmonic Debye model. Our results reveal that FeCrRuSi is a half-metallic material (HMM) with a total magnetic moment of 2.0 μ B in agreement with the well-known Slater-Pauling rule M t  = Z t  - 24. Furthermore, the origin of the half-metallic band gap in FeCrRuSi is well studied through a schematic diagram of the possible d-d hybridization between Fe, Cr and Ru elements. The half-metallic behavior of FeCrRuSi can be maintained in a relatively wide range of variations of the lattice constant (5.5-5.8 Å) under uniform strain and the c/a ratio (0.96-1.05) under tetragonal distortion. The calculated phonon dispersion, cohesive and formation energies, and mechanical properties reveal that FeCrRuSi is stable with an EQH structure. Importantly, the compound of interest has been prepared and is found to exist in an EQH type structure with the presence of some B2 disorder. Moreover, the thermodynamic properties, such as the thermal expansion coefficient α, the heat capacity C V , the Grüneisen constant γ, and the Debye temperature Θ D are calculated.

  10. The flat bottomed lines of Vega

    NASA Astrophysics Data System (ADS)

    Monier, R.; Gebran, M.; Royer, F.; Kılıcoǧlu, T.

    2017-12-01

    Using one high dispersion high quality spectrum of Vega (HR7001, A0V) obtained with the échelle spectrograph SOPHIE at Observatoire de Haute Provence, we have measured the centroids of 149 flat bottomed lines. The model atmosphere and spectrum synthesis modeling of the spectrum of Vega allows us to provide identifications for all these lines. Most of these lines are due to C I, O I, Mg I, Al I, Ca I, Sc II,Ti II, Cr I, Cr II, Mn I, Fe I, Fe II, Sr II, Ba II, the large majority being due to neutral species, in particular Fe I.

  11. Synthetic and natural chromium-bearing spinels: an optical spectroscopy study

    NASA Astrophysics Data System (ADS)

    Taran, M. N.; Parisi, F.; Lenaz, D.; Vishnevskyy, A. A.

    2014-09-01

    Four samples of synthetic chromium-bearing spinels of (Mg, Fe2+)(Cr, Fe3+)2O4 composition and four samples of natural spinels of predominantly (Mg, Fe2+)(Al, Cr)2O4 composition were studied at ambient conditions by means of optical absorption spectroscopy. Synthetic end-member MgCr2O4 spinel was also studied at pressures up to ca. 10 GPa. In both synthetic and natural samples, chromium is present predominantly as octahedral Cr3+ seen in the spectra as two broad intense absorption bands in the visible range caused by the electronic spin-allowed 4 A 2 g → 4 T 2 g and 4 A 2 g → 4 T 1 g transitions (U- and Y-band, respectively). A distinct doublet structure of the Y-band in both synthetic and natural spinels is related to trigonal distortion of the octahedral site in the spinel structure. A small, if any, splitting of the U-band can only be resolved at curve-fitting analysis. In all synthetic high-chromium spinels, a couple of relatively narrow and weak bands of the spin-allowed transitions 4 A 2 g → 2 E g and 4 A 2 g → 2 T 1 g of Cr3+, intensified by exchange-coupled interaction between Cr3+ and Fe3+ at neighboring octahedral sites of the structure, appear at ~14,400 and ~15,100 cm-1. A vague broad band in the range from ca. 15,000 to 12,000 cm-1 in synthetic spinels is tentatively attributed to IVCr2+ + VICr3+ → IVCr3+ + VICr2+ intervalence charge-transfer transition. Iron, mainly as octahedral Fe3+, causes intense high-energy absorption edge in near UV-range (ligand-metal charge-transfer O2- → Fe3+, Fe2+ transitions). As tetrahedral Fe2+, it appears as a strong infrared absorption band at around 4,850 cm-1 caused by electronic spin-allowed 5 E → 5 T 2 transitions of IVFe2+. From the composition shift of the U-band in natural and synthetic MgCr2O4 spinels, the coefficient of local structural relaxation around Cr3+ in spinel MgAl2O4-MgCr2O4 system was evaluated as ~0.56(4), one of the lowest among (Al, Cr)O6 polyhedra known so far. The octahedral modulus of Cr3+ in MgCr2O4, derived from pressure-induced shift of the U-band of Cr3+, is ~313 (50) GPa, which is nearly the same as in natural low-chromium Mg, Al-spinel reported by Langer et al. (1997). Calculated from the results of the curve-fitting analysis, the Racah parameter B of Cr3+ in natural and synthetic MgCr2O4 spinels indicates that Cr-O-bonding in octahedral sites of MgCr2O4 has more covalent character than in the diluted natural samples. Within the uncertainty of determination in synthetic MgAl2O4 spinel, B does not much depend on pressure.

  12. Determining baseline element composition of lichens. I. Parmelia sulcata at Theodore Roosevelt national park, North Dakota

    USGS Publications Warehouse

    Gough, L.P.; Severson, R.C.; Jackson, L.L.

    1988-01-01

    Element-concentration baselines are given for Parmelia sulcata and associated soils. Parmelia chlorochroa was found sporadically and therefore only representative concentration ranges are reported for this species. Element data include (1) for lichens; Al, As, Ba, B, Ca, Cr, Cu, Fe, Hg, Mn, Ni, P, Sr, S, Ti, V, Y, and Zn; and (2) for soils: Al, Ba, Be, Ca, Cs, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Nb, P, Pb, Sr, S, Ti, V, Y, and Zn. Very little (usually 7.2 km); thus, P sulcata is, in general, chemically similar throughout the park. This same uniformity was found for soil geochemistry. Numerous samples collected at close intervals would be required, therefore, to produce detailed element-concentration maps for P. sulcata and soils. No instances of elemental phytotoxic conditions were found; however, P. sulcata apparently possesses large concentrations of Ba, Cu, Fe, Pb, S, V, and possibly Zn.

  13. The excretion of biotrace elements using the multitracer technique in tumour-bearing mice.

    PubMed

    Wang, X; Tian, J; Yin, X M; Zhang, X; Wang, Q Z

    2000-12-01

    A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon 40Ar ions was used for investigation of trace element excretion into the faeces and urine of cancerous mice. The excretion rates of 22 elements (Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Mo, Nb, Tc, Ru, Ag and In) were simultaneously measured under strictly identical experimental conditions, in order to clarify the excretion behavior of these elements in cancerous mice. The faecal and urinary excretion rates of Mg, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Nb, Ru and Mo in cancerous mice, showed the in highest value at 0-8 hours. The accumulative excretion of Ca, Mo, Y and Zr was decreased and Na, Fe, Mn and Co increased in tumour-bearing mice, when compared to normal mice.

  14. Spectrophotometric and electrochemical study for metal ion binding of azocalix[4]arene bearing p-ethylester group

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun

    2017-05-01

    The complexation behavior of diazophenylcalix[4]arene bearing para-ethylester group (p-EAC) for alkali, alkaline earth, various heavy and transition metal ions (Li+, Na+, K+, Rb+, Cs+, Mg2 +, Ca2 +, Sr2 +, Ba2 +, Cr3 +, Fe2 +, Co2 +, Ni2 +, Cu2 +, Zn2 +, Pb2 +) was investigated by spectrophotometric and electrochemical methods in CH3CN. p-EAC exhibits decreased absorbance at 353 nm in the presence of Cr3 +, Fe2 +, Pb2 +, and Cu2 +. The spectra of p-EAC showed bathochromic shift in absorption maximum on the addition of Cr3 +, Fe2 +, or Pb2 + with decreasing order of absorbance (Cr3 + > Fe2 + > Pb2 +), and on the other hand, hypsochromic shift on the addition of Cu2 +. This leads to the selective coloration from light green to orange and colorless for Cr3 + and Cu2 + that can be detected by the naked eye, respectively. In electrochemistry experiments, p-EAC also showed two different types of voltammetric changes toward Cr3 +, Fe2 +, or Pb2 +, and toward Cu2 +, whereas no significant changes occurred in the presence of the other metal ions. Nonlinear fitting curve procedure was used to determine a logarithmic value of 5.20, 4.92, 3.54 and 4.80 for the stability constants of the complex of p-EAC with Cr3 +, Fe2 +, Pb2 +, and Cu2 +, respectively.

  15. Doping effects on structural and magnetic properties of Heusler alloys Fe2Cr1-xCoxSi

    NASA Astrophysics Data System (ADS)

    Liu, Yifan; Ren, Lizhu; Zheng, Yuhong; He, Shikun; Liu, Yang; Yang, Ping; Yang, Hyunsoo; Teo, Kie Leong

    2018-05-01

    In this work, 30nm Fe2Cr1-xCoxSi (FCCS) magnetic films were deposited on Cr buffered MgO (100) substrates by sputtering. Fe2Cr0.5Co0.5Si exhibits the largest magnetization and optimal ordered L21 cubic structure at in-situ annealing temperature (Tia) of 450°C. The Co composition dependence of crystalline structures, surface morphology, defects, lattice distortions and their correlation with the magnetic properties are analyzed in detail. The Co-doped samples show in-plane M-H loops with magnetic squareness ratio of 1 and increasing anisotropy energy density with Co composition. Appropriate Co doping composition promotes L21 phase but higher Co composition converts L21 to B2 phase. Doping effect and lattice mismatch both are proved to increase the defect density. In addition, distortions of the FCCS lattice are found to be approximately linear with Co composition. The largest lattice distortion (c/a) is 0.969 for Fe2Cr0.25Co0.75Si and the smallest is 0.983 for Fe2CrSi. Our analyses suggest that these tetragonal distortions mainly induced by an elastic stress from Cr buffer account for the large in-plane anisotropy energy. This work paves the way for further tailoring the magnetic and structural properties of quaternary Heusler alloys.

  16. Variation in band gap energy and electrical analysis of double doped cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2018-05-01

    The Ca and Cr doped cobalt ferrite nanoparticles (Co0.9Ca0.1) (Fe0.8 Cr0.2)2O4 were synthesized by microwave gel combustion method. Microstructural studies were carried out by XRD and SEM. Structural studies suggest that the crystal system remains spinal even with the doping of calcium and chromium. The SEM image shows the spherical morphology of surface of the sample. Optical properties of Ca and Cr doped cobalt ferrite were studied by UV-visible technique in the range of 400-600 nm. The electrical conductivity of pure and doped cobalt ferrite were studied as a function of frequency and were explained on the basis of electron hopping.

  17. Seasonal differences in trace element concentrations and distribution in Spartina alterniflora root tissue

    DOE PAGES

    Feng, Huan; Qian, Yu; Cochran, J. Kirk; ...

    2018-04-13

    This study uses nanometer-scale synchrotron X-ray nanofluorescence to investigate season differences in concentrations and distributions of major (Ca, K, S and P) and trace elements (As, Cr, Cu, Fe and Zn) in the root system of Spartina alterniflora collected from Jamaica Bay, New York, in April and September 2015. The root samples were cross-sectioned at a thickness of 10 μm. Selected areas in the root epidermis and endodermis were mapped with a sampling resolution of 100 and 200 nm, varying with the mapping areas. The results indicate that trace element concentrations in the epidermis and endodermis vary among the elementsmore » measured, possibly because of their different chemical properties or their ability to act as micronutrients for the plants. Elemental concentrations (As, Ca, Cr, Cu, Fe, K, P, S and Zn) within each individual root sample and between the root samples collected during two different seasons are both significantly different (p < 0.01). Furthermore, this study indicates that the nonessential elements (As and Cr) are significantly correlated (p < 0.01) with Fe, with high concentrations in the root epidermis, while others are not, implying that Fe may be a barrier to nonessential element transport in the root system. Hierarchy cluster analysis shows two distinct groups, one including As, Cr and Fe and the other the rest of the elements measured. Factor analysis also indicates that the processes and mechanisms controlling element transport in the root system can be different between the nutrient and nonessential elements.« less

  18. Seasonal differences in trace element concentrations and distribution in Spartina alterniflora root tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan; Qian, Yu; Cochran, J. Kirk

    This study uses nanometer-scale synchrotron X-ray nanofluorescence to investigate season differences in concentrations and distributions of major (Ca, K, S and P) and trace elements (As, Cr, Cu, Fe and Zn) in the root system of Spartina alterniflora collected from Jamaica Bay, New York, in April and September 2015. The root samples were cross-sectioned at a thickness of 10 μm. Selected areas in the root epidermis and endodermis were mapped with a sampling resolution of 100 and 200 nm, varying with the mapping areas. The results indicate that trace element concentrations in the epidermis and endodermis vary among the elementsmore » measured, possibly because of their different chemical properties or their ability to act as micronutrients for the plants. Elemental concentrations (As, Ca, Cr, Cu, Fe, K, P, S and Zn) within each individual root sample and between the root samples collected during two different seasons are both significantly different (p < 0.01). Furthermore, this study indicates that the nonessential elements (As and Cr) are significantly correlated (p < 0.01) with Fe, with high concentrations in the root epidermis, while others are not, implying that Fe may be a barrier to nonessential element transport in the root system. Hierarchy cluster analysis shows two distinct groups, one including As, Cr and Fe and the other the rest of the elements measured. Factor analysis also indicates that the processes and mechanisms controlling element transport in the root system can be different between the nutrient and nonessential elements.« less

  19. Evaluation of elemental enrichments in surface sediments off southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Tung; Kandasamy, Selvaraj

    2008-05-01

    Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O{3/T} suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C-S-Fe relationship owing to authigenic precipitation of Fe-Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.

  20. A novel method for vanadium slag comprehensive utilization to synthesize Zn-Mn ferrite and Fe-V-Cr alloy.

    PubMed

    Liu, Shi-Yuan; Li, Shu-Jin; Wu, Shun; Wang, Li-Jun; Chou, Kuo-Chih

    2018-07-15

    Vanadium slag is a by-product from steelmaking process of vanadium-titanium magnetite, which mainly contains FeO, MnO, V 2 O 3 , and Cr 2 O 3 , The elements Fe and Mn are major components of Mn-Zn ferrite. The elements V and Cr are major components of V-Cr alloy. In view of the potential application in these study, a Mn 0.8 Zn 0.2 Fe 2 O 4 of high saturation magnetization (Ms = 68.6 emu/g) and low coercivity (Hc = 3.3 Oe) was successfully synthesized from the leaching solutions of vanadium slag by adding appropriate chemical reagents, ZnCl 2 and MnCl 2 ·4H 2 O, via roasting at 1300 °C for 1 h. The minor components (CaO and SiO 2 ) in the leaching solution of vanadium slag segregated to the grain boundaries resulting in increasing the resistivity of ferrite. The value of DC resistivity of Mn 0.8 Zn 0.2 Fe 2 O 4 at 25 °C reached 1230.7Ω m. The residue containing Fe, V and Cr was chlorinated by AlCl 3 and the Fe 3+ , V 3+ , and Cr 3+ ions were released into the NaCl-KCl eutectic. The current-time curve for the electrolysis of molten salt was investigated. Alloy (Fe, V, and Cr) of granular shape was obtained. The residue can be used to produce the mulite. This process provided a new approach to utilize slag from steelmaking. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Enhanced collectivity along the N = Z line: Lifetime measurements in 44Ti, 48Cr, and 52Fe

    NASA Astrophysics Data System (ADS)

    Arnswald, K.; Braunroth, T.; Seidlitz, M.; Coraggio, L.; Reiter, P.; Birkenbach, B.; Blazhev, A.; Dewald, A.; Fransen, C.; Fu, B.; Gargano, A.; Hess, H.; Hirsch, R.; Itaco, N.; Lenzi, S. M.; Lewandowski, L.; Litzinger, J.; Müller-Gatermann, C.; Queiser, M.; Rosiak, D.; Schneiders, D.; Siebeck, B.; Steinbach, T.; Vogt, A.; Wolf, K.; Zell, K. O.

    2017-09-01

    Lifetimes of the 21+ states in 44Ti, 48,50Cr, and 52Fe were determined with high accuracy exploiting the recoil distance Doppler-shift method. The reduced E2 transition strengths of 44Ti and 52Fe differ considerably from previously known values. A systematic increase in collectivity is found for the N = Z nuclei compared to neighboring isotopes. The B (E2) values along the Ti, Cr, and Fe isotopic chains are compared to shell-model calculations employing established interactions for the 0 f 1 p shell, as well as a novel effective shell-model Hamiltonian starting from a realistic nucleon-nucleon potential. The theoretical approaches underestimate the B (E2) values for the lower-mass Ti isotopes. Strong indication is found for particle-hole cross-shell configurations, recently corroborated by similar results for the neighboring isotone 42Ca.

  2. Cathodoluminescence microscopy and spectroscopy of forsterite from Kaba meteorite: An application to the study of hydrothermal alteration of parent body

    NASA Astrophysics Data System (ADS)

    Gucsik, Arnold; Endo, Taro; Nishido, Hirotsugu; Ninagawa, Kiyotaka; Kayama, Masahiro; Bérczi, Szaniszló; Nagy, Szabolcs; Ábrahám, Péter; Kimura, Yuki; Miura, Hitoshi; Gyollai, Ildikó; Simonia, Irakli; Rózsa, Péter; Posta, József; Apai, Dániel; Mihályi, Krisztián; Nagy, Mihály; Ott, Ulrich

    2013-12-01

    Highly forsteritic olivine (Fo: 99.2-99.7) in the Kaba meteorite emits bright cathodoluminescence (CL). CL spectra of red luminescent forsterite grains have two broad emission bands at approximately 630 nm (impurity center of divalent Mn ions) in the red region and above 700 nm (trivalent Cr ions) in the red-IR region. The cores of the grains show CL blue luminescence giving a characteristic broad band emission at 400 nm, also associated with minor red emissions related to Mn and Cr ions. CL color variation of Kaba forsterite is attributed to structural defects. Electron probe microanalyzer (EPMA) analysis shows concentrations of Ca, Al, and Ti in the center of the forsterite grain. The migration of diffusible ions of Mn, Cr, and Fe to the rim of the Kaba meteoritic forsterite was controlled by the hydrothermal alteration at relatively low temperature (estimated at about 250 °C), while Ca and Al ions might still lie in the core. A very unusual phase of FeO (wüstite) was also observed, which may be a terrestrial alteration product of FeNi-metal.

  3. The effect of DEB powder processing on thermal cell performance

    NASA Astrophysics Data System (ADS)

    Szwarc, R.; Walton, R. D.

    During the last twenty years, the system Ca/LiCl-KCl-CaCrO4/Fe has provided the basis for thermal batteries designed for military applications. In connection with greater performance demands, investigations are being conducted concerning the effect of catholyte processing on thermal cell performance. The catholyte layer is composed of three components including the depolarizer (D), CaCrO4, the electrolyte (E), LiCl-KCl eutectic, and the binder (B), finely divided SiO2. The catholyte layer or DEB pellets are produced by blending these components, fusing, pulverizing the cake, and hydrostatically pressing the powder into pellets. A description is given of ten powders which were prepared for the reported study. It was found that the procedure used in powder processing affects the capacity, but not its voltage. Increasing the prebake temperature for CaCrO4 from 400 to 600 C resulted in an increase in capacity.

  4. Thermal batteries: A technology review and future directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guidotti, R.A.

    Thermally activated (``thermal``) batteries have been used for ordnance applications (e.g., proximity fuzes) since World War II and, subsequent to that, in nuclear weapons. This technology was developed by the Germans as a power source for their V2 rockets. It was obtained by the Allies by interrogation of captured German scientists after the war. The technology developed rapidly from the initial primitive systems used by the Germans to one based on Ca/CaCrO{sub 4}. This system was used very successfully into the late 1970s, when it was replaced by the Li-alloy/FeS{sub 2} electrochemical system. This paper describes the predominant electrochemical couplesmore » that have been used in thermal batteries over the years. Major emphasis is placed on the chemistry and electrochemistry of the Ca/CaCrO{sub 4} and Li-alloy/FeS{sub 2} systems. The reason for this is to give the reader a better appreciation for the advances in thermal-battery technology for which these two systems are directly responsible. Improvements to date in the current Li-alloy/FeS{sub 2} and related systems are discussed and areas for possible future research and development involving anodes, cathodes, electrolytes, and insulations are outlined. New areas where thermal-battery technology has potential applications are also examined.« less

  5. Simultaneous preconcentration and removal of iron, chromium, nickel with N,N'-etylenebis-(ethane sulfonamide) ligand on activated carbon in aqueous solution and determination by ICP-OES.

    PubMed

    Karacan, Mehmet Sayim; Aslantaş, Neslihan

    2008-07-15

    In this study, Fe, Cr and Ni have been preconcentrated and removed by using N,N'-ethylenebis (ethane sulfonamide), (ESEN) ligand on activated carbon (AC) in aqueous solution. For this purpose, complexes between these metals and ligands have been investigated and used in preconcentration and removal studies. Factors which have affected adsorption of metals on activated carbon have been optimized. Adsorbed metals have been preconcentrated 10-fold and determined by ICP-OES. Interferences of Ca, Mg and K to this process have been investigated. The proposed method has been applied to the tap water and Ankara Creek water in order to Fe, Cr, and Ni remediation and preconcentration. Determination of metals by ICP-OES has been checked with standard reference material (NIST 1643e). The proposed method provides the recoveries of 87%, 108% and 106% for Fe, Cr and Ni, respectively, in preconcentration. It also provides the removal of Fe, Cr and Ni by 93%, 100% and 100% removal from waters, respectively.

  6. [Determination of 22 inorganic elements in different parts of Lantana camara by ICP-OES].

    PubMed

    Zhou, Wei-ming; Wang, Ru-yi; Chen, Liu-sheng; Huang, Chuan-bin

    2014-10-01

    To determine the contents of 22 inorganic elements in different parts of Lantana camara by inductively coupled plasma optical emission spectroscopy (ICP-OES). HNO3-H2O2 digested system was used to completely decompose the organic compounds effectually by microwave digestion. The 22 inorganic elements such as K, Ca, Mg, Fe, Al, Na, Zn, Mn and Cr were determined by ICP-OES under set up working conditions. The contents of K, Ca and Mg were the most in different parts of Lantana camara; The contents of K, Ca, Mg, Mn, Sr and Cu in the leaf were more those that in the root and branch; The contents of Fe, Na, Cr and Ni in the root were more than those in the leaf and branch; The contents of Mn, Zn, Sr and Cu in the branch were more than those in the root and the leaf; The contents of Pb and Cd were higher than the national standard and Cr had high content in different parts of Lantana camara. The determination method is quick, easy and accurate with high sensitivity, which can determine the contents of 22 inorganic elements accurately in different parts of Lantana camara.

  7. Discovery of composite diopside-magnetite lamellae in discrete olivine crytals from Colorado Plateau diatremes: indication of former hydrous ringwoodite

    NASA Astrophysics Data System (ADS)

    Sakamaki, K.; Sato, Y.; Marshall, E. W., IV; Ogasawara, Y.

    2016-12-01

    We investigate composite diopside (Di) + magnetite (Mt) lamellae in olivine crystals from Oligocene diatremes of serpentinized ultramafic microbreccia located at Buell Park (AZ) and Green Knobs (NM) in the Colorado Plateau, and propose their genesis as breakdown products of precursor hydrous ringwoodite (γ-olivine) lamellae coexisting with α-olivine host. Among a hundred olivines (2-5 mm across, Fo89-93 in mol%) from both localities, the Di + Mt composite lamellae are recognized in only 15 of relatively Fe-rich grains (Fo89-91.5). The olivine host contains minor amounts of Ca (< 0.01 wt% CaO), Mn, Ni, and Co. Lamellar Di (Di95) contains minor amounts of Al, Na, Cr, Mn, and Ni. Lamellar Mt contains Cr (5.0-43.0 wt% Cr2O3) with minor amounts of Si, Ti, Al, Mn, Ni, and Co. The area fractions of olivine host and the lamellae in a typical grain (sample no. BP02-3) were measured at 98.8 % of the host and 1.2 % of the lamellae that are composed of Di:Mt = 85:15 to 53:47, average 66:34. The estimated average CaO content in a lamella reaches 17 wt% and the reintegrated CaO in the host and the lamellae is 0.22 wt%.We propose that Fe3+ in lamellar Mt was produced by dehydration of hydrous precursor phase via the reaction, Fe2+ + OH- = Fe3+ + O2- + 1/2H2. Converting Fe3+ into Fe2+ in the precursor phase based on this reaction, the composition satisfies the stoichiometry of olivine (X2TO4). Thus, the pre-existing phase certainly is of hydrous and contains Ca and other components with olivine stoichiometry. The most likely phase is lamellar hydrous ringwoodite. The precursor phase, hydrous ringwoodite, might have occurred as lamellae with α-olivine host and have probably decomposed by the following reaction, (1+X+Y+Z) hydrous ringwoodite → α-olivine + X Di + Y Mt + Z H2 (where X:Y:Z=2:1:1). The composite Di-Mt lamellae after hydrous ringwoodite lamellae in α-olivine host certainly suggest the materials originated from a deep mantle setting at least 300 km.

  8. Structural classification of RAO3( MO) n compounds ( R =Sc, In, Y, or lanthanides; A =Fe(III), Ga, Cr, or Al; M =divalent cation; n = 1-11)

    NASA Astrophysics Data System (ADS)

    Kimizuka, Noboru; Mohri, Takahiko

    1989-01-01

    A series of new compounds RAO3( MO) n ( n = 1-11) having spinel, YbFe 2O 4, or InFeO 3(ZnO) n types of structures were newly synthesized ( R =Sc, In, Y, Lu, Yb, Tm, or Er; A =Fe(III), Ga, Cr, or Al; M =Mg, Mn, Fe(II), Co, Ni, Zn, or Cd) at elevated temperatures. The conditions of synthesis and the lattice constants for these compounds are reported. The stacking sequences of the InO 1.5, (FeZn)O 2.5, and ZnO layers for InFeO 3(ZnO) 10 and the TmO 1.5, (AlZn)O 2.5, and ZnO layers for TmAlO 3(ZnO) 11 are presented, respectively. The crystal structures of the( RAO3) m( MO) n phases ( R =Sc, In, Y, or lanthanide elements; A =Fe(III), Ga, Cr, or Al; M =divalent cation elements; m and n =integer) are classified into four crystal structure types (K 2NiF 4, CaFe 2O 4, YbFe 2O 4, and spinel), based upon the constituent cations R, A, and M

  9. High strength kiloampere Bi 2Sr 2CaCu 2O x cables for high-field magnet applications

    DOE PAGES

    Shen, Tengming; Li, Pei; Jiang, Jianyi; ...

    2015-04-17

    Multifilamentary Ag-sheathed Bi 2Sr 2CaCu 2O x (Bi-2212) wire can carry sufficient critical current density J c for the development of powerful superconducting magnets. But, the range of its applications is limited by the low mechanical strength of the Ag/Bi-2212 strand. A potential solution is to cable Ag/Bi-2212 wire with high-strength materials that are compatible with the Bi-2212 heat treatment in an oxygen atmosphere. Past attempts have not always been successful, because the high-strength materials reacted with Bi-2212 wires, significantly reducing their J c. We examined the nature of reactions occurring when Ag/Bi-2212 wires are heat-treated in direct contact withmore » several commonly used high-strength alloys and a new Fe-Cr-Al alloy. INCONEL X750 and INCONEL 600 resulted in significant J c loss, whereas Ni80-Cr caused little or no J c loss; however, all of them formed chromium oxide that subsequently reacted with silver, creating cracks in the silver sheath. We found that Fe-Cr-Al did not show significant reactions with Ag/Bi-2212 strands. Scanning electron microscopy (SEM) and energy dispersive x-ray (EDS) examinations revealed that the Fe-Cr-Al alloy benefits from the formation of a uniform, crack-free, continuous alumina layer on its surface that does not react with Ag and that helps minimize the Cu loss found with INCONEL X750 and INCONEL 600. We then fabricated prototype 6-around-1 cables with six Bi-2212 strands twisted and transposed around an Fe-Cr-Al alloy core coated with TiO 2. After standard 1 bar melt processing, the cable retained 100% of the total current-carrying capability of its strands, and, after a 10 bar overpressure processing, the cable reached a total current of 1025 A at 4.2 K and 10 T. Tensile tests showed that Fe-Cr-Al becomes brittle after being cooled to 4.2 K, whereas INCONEL X750 remains ductile and retains a modulus of 183 GPa. Finally. we proposed new cable designs that take advantage of the chemical compatibility of Fe-Cr-Al and high strength of INCONEL X750 for various high-field magnet applications.« less

  10. Multivariate analysis of selected metals in tannery effluents and related soil.

    PubMed

    Tariq, Saadia R; Shah, Munir H; Shaheen, N; Khalique, A; Manzoor, S; Jaffar, M

    2005-06-30

    Effluent and relevant soil samples from 38 tanning units housed in Kasur, Pakistan, were obtained for metal analysis by flame atomic absorption spectrophotometric method. The levels of 12 metals, Na, Ca, K, Mg, Fe, Mn, Cr, Co, Cd, Ni, Pb and Zn were determined in the two media. The data were evaluated towards metal distribution and metal-to-metal correlations. The study evidenced enhanced levels of Cr (391, 16.7 mg/L) and Na (25,519, 9369 mg/L) in tannery effluents and relevant soil samples, respectively. The effluent versus soil trace metal content relationship confirmed that the effluent Cr was strongly correlated with soil Cr. For metal source identification the techniques of principal component analysis, and cluster analysis were applied. The principal component analysis yielded two factors for effluents: factor 1 (49.6% variance) showed significant loading for Ca, Fe, Mn, Cr, Cd, Ni, Pb and Zn, referring to a tanning related source for these metals, and factor 2 (12.6% variance) with higher loadings of Na, K, Mg and Co, was associated with the processes during the skin/hide treatment. Similarly, two factors with a cumulative variance of 34.8% were obtained for soil samples: factor 1 manifested the contribution from Mg, Mn, Co, Cd, Ni and Pb, which though soil-based is basically effluent-derived, while factor 2 was found associated with Na, K, Ca, Cr and Zn which referred to a tannery-based source. The dendograms obtained from cluster analysis, also support the observed results. The study exhibits a gross pollution of soils with Cr at levels far exceeding the stipulated safe limit laid down for tannery effluents.

  11. Micro-spatial variation of elemental distribution in estuarine sediment and their accumulation in mangroves of Indian Sundarban.

    PubMed

    Bakshi, Madhurima; Ram, S S; Ghosh, Somdeep; Chakraborty, Anindita; Sudarshan, M; Chaudhuri, Punarbasu

    2017-05-01

    This work describes the micro-spatial variation of elemental distribution in estuarine sediment and bioaccumulation of those elements in different mangrove species of the Indian Sundarbans. The potential ecological risk due to such elemental load on this mangrove-dominated habitat is also discussed. The concentrations of elements in mangrove leaves and sediments were determined using energy-dispersive X-ray fluorescence spectroscopy. Sediment quality and potential ecological risks were assessed from the calculated indices. Our data reflects higher concentration of elements, e.g., Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb, in the sediment, as compared to that reported by earlier workers. Biological concentration factors for K, Ca, Mn, Fe, Cu, and Zn in different mangroves indicated gradual elemental bioaccumulation in leaf tissues (0.002-1.442). Significant variation was observed for elements, e.g., Ni, Mn, and Ca, in the sediments of all the sites, whereas in the plants, significant variation was found for P, S, Cl, K, Ca, Mn, Fe, Cu, and Zn. This was mostly due to the differences in uptake and accumulation potential of the plants. Various sediment quality indices suggested the surface sediments to be moderately contaminated and suffering from progressive deterioration. Cu, Cr, Zn, Mn, and Ni showed higher enrichment factors (0.658-1.469), contamination factors (1.02-2.7), and geo-accumulation index (0.043-0.846) values. The potential ecological risk index values considering Cu, Cr, Pb, and Zn were found to be within "low ecological risk" category (20.04-24.01). However, Cr and Ni in the Sundarban mangroves exceeded the effect range low and probable effect level limits. Strong correlation of Zn with Fe and K was observed, reflecting their similar transportation and accumulation process in both sediment and plant systems. The plant-sediment elemental correlation was found to be highly non-linear, suggesting role of some physiological and edaphic factors in the accumulation process. Overall, the study of micro-spatial distribution of elements can act as a useful tool for determining health of estuarine ecosystem.

  12. Mineral Composition of Wild and Cultivated Blueberries.

    PubMed

    Dróżdż, Paulina; Šėžienė, Vaida; Pyrzynska, Krystyna

    2018-01-01

    The concentrations of 13 elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn) were determined in several samples of native (wild) naturally growing and cultivated blueberry fruits. The total metal contents after mineralization were analyzed by inductively coupled plasma optical emission spectrometry. Reliability of the procedure was checked by the analysis of the certified reference materials Mixed Polish Herbs (INGT-MPH-2) and Leaves of Poplar (NCS DC 73350). In the fruits collected in the forest (wild blueberries), higher contents of Ca, Na, and Mg as well as Mn and Zn were observed. Similar levels of Cu, Cr, Fe, and Ni were detected in both wild-growing and cultivated plants. The significantly higher content of Fe and Cd in cultivated blueberries was connected with the content of these metals in soil samples collected from the same places. The metal extraction efficiency by hot water varied widely for the different blueberries (wild or cultivated) as well as their form (fresh or dried).

  13. Preserved entropy and fragile magnetism

    DOE PAGES

    Canfield, Paul C.; Bud’ko, Sergey L.

    2016-07-05

    Here, a large swath of quantum critical and strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism, quantum criticality, or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe 2Zn 20, PrAg 2In, BaFe 2As 2, CaFe 2As 2, LaCrSb 3 and LaCrGe 3 as part of our motivation and to provide illustrative examples.

  14. Abundances in metal-rich stars. Detailed abundance analysis of 47 G and K dwarf stars with [Me/H] > 0.10 dex

    NASA Astrophysics Data System (ADS)

    Feltzing, S.; Gustafsson, B.

    1998-04-01

    We have derived elemental abundances of O, Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Co, Ni as well as for a number of s-elements for 47 G and K dwarf, with [Me/H]>0.1 dex. The selection of stars was based on their kinematics as well as on their uvby-beta photometry. One sample of stars on rather eccentric orbits traces the chemical evolution interior to the solar orbit and another, on circular orbits, the evolution around the solar orbit. A few Extreme Population I stars were included in the latter sample. The stars have -0.1 dex < [Fe/H] < 0.42 dex. The spectroscopic [Fe/H] correlate well with the [Me/H] derived from uvby-beta photometry. We find that the elemental abundances of Mg, Al, Si, Ca, Ti, Cr and Ni all follow [Fe/H]. Our data put further constraints on models of galactic chemical evolution, in particular of Cr, Mn and Co which have not previously been studied for dwarf stars with [Me/H] >0.1 dex. The increase in [Na/Fe] and [Al/Fe] as a function of [Fe/H] found previously by \\cite[Edvardsson et al. (1993a)]{Edv93} has been confirmed for [Na/Fe]. This upturning relation, and the scatter around it, are shown not to be due to a mixture of populations with different mean distances to the galactic centre. We do not confirm the same trend for aluminium, which is somewhat surprising since both these elements are thought to be produced in the same environments in the pre-supernova stars. Nor have we been able to trace any tendency for relative abundances of O, Si, and Ti relative to Fe to vary with the stellar velocities, i.e. the stars present mean distance to the galactic centre. These results imply that there is no significant difference in the chemical evolution of the different stellar populations for stars with [Me/H]>0.1 dex. We find that [O/Fe] continue to decline with increasing [Fe/H] and that oxygen and europium correlate well. However [Si/Fe] and [Ca/Fe] seem to stay constant. A real (``cosmic'') scatter in [Ti/Fe] at given [Fe/H] is suggested as well as a decreasing abundance of the s-elements relative to iron for the most metal-rich dwarf stars. We discuss our results in the context of recent models of galactic chemical evolution. In our sample we have included a few very metal rich stars, sometimes called SMR (super metal rich) stars. We find these stars to be among the most iron-rich in our sample but far from as metal-rich as indicated by their photometric metallicities. SMR stars on highly eccentric orbits, alleged to trace the evolution of the chemical evolution in the galactic Bulge, have previously been found overabundant in O, Mg and Si. We have included three such stars from the study by \\cite[Barbuy & Grenon (1990)]{Bar90}. We find them to be less metal rich and the other elemental abundances remain puzzling. Detailed spectroscopic abundance analyses of K dwarf stars are rare. Our study includes 5 K dwarf stars and has revealed what appears to be a striking example of overionization. The overionization is especially prominent for Ca, Cr and Fe. The origin of this apparent overionization is not clear and we discuss different explanations in some detail. Based on observations at the McDonald Observatory.

  15. Universal single grain amphibole thermobarometer for mantle rocks - preliminary calibration.

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor

    2017-04-01

    Calibration of S-Al- K-Na-Ca distribution in the structure of the mantle amphiboles (Cr- hornblende, pargasite, kaersutite) using experimental data (Niida, Green, 1999; Wallace Green, 1991, Conceicao, Green, 2004; Medard et al, 2006; Safonov, Butvina, 2013; 2016; Pirard, Hermann, 2015 etc) allows to obtain an equation for pressure estimates in 0.5 - 4.5 GPa interval. Regression calculated pressures with experimental values (R 0.82) and precision 5 kbar allow to use barometer for a wide range of mantle rocks from peridotite to pyroxenites and megacrystals. For the higher pressures (Cr- pargasite richterite) calibration is carried by the cross- correlations with the estimates calculated for the natural associations obtained using clino- and orthopyroxene. IT was used KD =Si/(8-Al-2.2*Ti)*(Na+K))/Ca for the following equation: P(GPa)=0.0035*(4+K/(Na+K))*2*Mg)/Fe+3.75*(K+Na)/Ca))*KD*ToK**0.75/ (1+3.32*Fe)-ln(1273/ToK*5*(8*Mg-Al*2 +3*Ti+8*Cr+3*K)/10 Th advantage of this barometer comparing with the previous (Ridolfi, Renzulli, 2012) is that is working with all mantle amphibole types. For the calculations of the PT parameters of the natural xenocrysts it was used monomineral version of Gar-Amph termometer (Ravna et al., 2000) in combination with the received barometer. Contents of Ca- Mg and Fe in associated garnets were calculated usinf the regressions obtained from natural and experimental associations. Aplication of the mantle amphibole thermobarometry for the reconstruction of sections of the cratonic mantle lithosphere of Yakutia show that amphibloles are distributed in various parts of mantle sections in deifferent mantle terranes of Yakutia. The most abundant amphoboles from Alakite region are distributed within all mantle section. In the SCLM beneat Yubileyaya pipe thehalf of them belong to the spinel garnet facie refering to the upper pyroxenitic suit and Cr- hornblende - mica viens. The second group reffer to the eclogite pyroxenite layer in the middle part of SCLM and the third group refer to richterites form the depleted manle peridotites. In SCLM beneat the Sytykanskaya they are more frequent and trace through all the mantle layers. In SCLM beneat the Aykhal they mostly are from the lower and in Komsomolskaya from the middle SCLM parts. In Daldyn field rare amdphibles from Dalnaya are Fe- enriched pargasites belonging to the Ilm bearing peridotites in middle SCLM part as well as in SCLM beneath thr Udachnaya. But there are Fe- low amphiboles substitutng the orthopyroxenes. In Zarnitsa the Cr - hornblendes occur in shallow garnet pyroxenites. One deep seated richterite substitute garnet grains. Rare amphiboles were detedted in Mirninsky filed in Internatiolnaya pipe and reffer to the resorbed and deformed granets from the Garnet -Spinel facies and from 4.0 GPa boundary. Amphiboles are frequent in the SCLM from the northern part of Siberian craton. In SCLM beneath the Kharmai the Fe- encriched varietes are from the Moho boundary. Common Cr-pargasite occurs to 3 GPa in Obnazhennay, pipe, Kharamai field In mantle SCLM beneath Obnazhennaya pipe and circum Anabr region friquent Cr- pargasies and horblendes refer to the relatively hot branch of mantle lithosphere and probably corresponds to the Triassic mantle reactivation. Mantle Cr- hornbleneds occurs on most upper part of the mantle column beneath Quaternary mujeritic Bartoy vocanoes in Transbaikal. The pargasites and kaersutites in this locality refer to more heated conditions and could be found to 2.0 GPa. Grant RFBR 16.-05-000860

  16. Enhanced collectivity along the N = Z line: lifetime measurements in 44Ti, 48Cr, and 52Fe

    NASA Astrophysics Data System (ADS)

    Arnswald, K.; Reiter, P.; Coraggio, L.; Birkenbach, B.; Blazhev, A.; Braunroth, T.; Dewald, A.; Fransen, C.; Fu, B.; Gargano, A.; Hess, H.; Hirsch, R.; Itaco, N.; Lenzi, S. M.; Lewandowski, L.; Litzinger, J.; Müller-Gatermann, C.; Queiser, M.; Rosiak, D.; Schneiders, D.; Seidlitz, M.; Siebeck, B.; Steinbach, T.; Vogt, A.; Wolf, K.; Zell, K. O.

    2018-02-01

    Lifetimes of the {2}1+ states in 44Ti, 48,50Cr, and 52Fe were determined with high accuracy exploiting the recoil distance Doppler-shift method. The reduced E2 transition strengths of 44Ti and 52 Fe differ considerably from previously known values. A systematic increase in collectivity is found for the N = Z nuclei compared to neighboring isotopes. The B(E2) values along the Ti, Cr, and Fe isotopic chains are compared to shell-model calculations employing established interactions for the 0f 1p shell, as well as a novel effective shell-model Hamiltonian starting from a realistic nucleon-nucleon potential. The theoretical approaches underestimate the B(E2) values for the lower-mass Ti isotopes. Strong indication is found for particle-hole cross-shell configurations, recently corroborated by similar results for the neighboring isotone 42 Ca. A detailed manuscript has meanwhile been published in Physics Letters B [1].

  17. New calibration of Ji - Di clinopyroxene barometer for Eclogites, pyroxenites and peridotites and eclogite - pyroxenite mantle geotherms.

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor; Vishnyakova, Elena

    2010-05-01

    Checking the universe clinopyroxene JD-Di barometer on the experimental system showed that it better to use the separate schemes for the eclogite and peridotite systems. The clinopyroxene barometer based on the internal exchange of Jd-Di components for the Al. It allow using the temperature calculated with the (Krogh, 1988) method for the The barometer was calibrated on the 200 experimental runs for the eclogitic system (Yaxley,Brey,2004; Spandler ea, 2008; Konzett ea, 2008; Hanrahan ea, 2009 and references there in). It reproduces the pressure range to 120 kbar with the r= 0.91 (S=8) for 180 experimental runs. P(Ash2010 Ecl)=0.32 (1-0.215*Na/Al+0.012*Fe/Na)*Kd^3/4*ToK/(1+Fe)*(1+5*Fe)- 35*ln(1273/ToK)*(Al+Ti+2.5Na+1.5Fe3+)+(0.9-xx(2,8))*10+xx(2,9)/xx(2,3)* ToK /200-1.5 P1=(0.00004*P^3-0.0091*P^2+1.3936*P)*1.05 Where KD = Na*Mg/xAlCr*/Ca; XAlCr= Al+Cr+4*Ti-K-(Fe-0.21)*0.75 The tests on the natural associations form the eclogitic xenoliths with and without the diamonds and omphacite diamond inclusions (Taylor ea, 2006; Shatsky ea, 2008; Jacob ea, 2009) have shown very good agreement with the position of the Graphite -Diamond (Kennedy, Kennedy, 1977) boundary and to the conductive geotherms which are close to 34-36mvm-2 geotherms while for the South Africa they are more close to 40mvm-2 geotherms. For the zonal omphacites it produces the range of the nearly equal pressures or more rarely advective paths. The levels of the maximum enrichments in eclogites which are close to 50-60 kabr beneath 360ma Siberian kimberlites coincides with the levels of heating according to the monomineral and polymineral thermobarometry. South Africa eclogite geotherms often split into 2-3 branches: subductional (35) conductive (40) for Paleozoic-Mesozoic mantle lithosphere and the hottest advective close o 45 mv/m-2. For the pyroxenite compositions the barometer was rearranged to by the adding the temperature influence on Al , Ta, Fe exactly in KD as following: P(Ash2010 Per-Pxt)=0.275*(1-0.17*Na/Al+0.0115*Fe/Na)*Kd^3/4*ToK/(1+Fe)* (1+5*Fe*(ToK-600)/50)-35*ln(1273/ToK)*(Al+Ti+2.5Na+1.5Fe3+)+(0.9-xx(2,8))*10+xx(2,9)/xx(2,3)* ToK /300-4*(Fe*33.2-4) -(Al-5.5)*( ToK -1300)/70-( ToK -1200)*0.015 with the second correction P=P*0.65+10+Mg*Al*( ToK -1400)/500 Where KD = Na*Mg/xAlCr*/Ca; XAlCr= Al*((T0-800)/800)**0.25+Cr-K+(4*Ti-0.0125)/(T0-600)*400+(Fe-0.21)*(T0-600)/14000 This equations reproduces the experimental pressures for 300 experimental runs with the R=0.84 and for the best set of the experimental data (Walter, 1999; Taylor ea 1998; Brey Kohler, 1990; 2009) with the E=0.95 (s=7) within the 100 kbar interval. They allow to work with the wide range of the pyroxenite compositions giving the practically coinciding PT parameters with the pressures determined for ilmenites and chromites as well as the (Brey, Kohler, 1900) pressure estimates. The PT parameters reconstructed for the mantle lithosphere beneath > 120 pipes from Yakutia , Baltica, Africa , North America and other world wide kimberlites have shown very good coincidence with the estimates from the other methods of monomineral (Nimis, Taylor, 2000; McGregor, 1974; Ashchepkov ea. 2009 ) and Gar-Opx barometers (Brey, Kohler, 1900; Nickel, Green, 1975). For the garnet and spinel xenoliths of the alkali basalts representing fertile or regenerated peridotites with high Al content of the clinopyroxenes the modified equation allows to determine the pressures together for megacrysts, pyroxeniets and peridotites using the following equation P=0.035*Kd*ToK)/(1+3.5*Fe)- 50*ln(1273/(ToK-100)*(Al+5*Na-Ti+2*Cr) -(Na-0.050)*(ToK-1200)*(Ca-0.85)/7000+5 Where KD = Na*Mg/xAlCr*/Ca; xAlCr= (Al+Si-2)*((ToK-700)/900)^0.35+Cr+Fe3-K +(4*Ti-0.0125)/(ToK-600)*700 +(Fe-0.21)*(ToK-400)/17000 This equations also very good reproduce the experimental runs in the pressure interval from 10 to 80 kbar but better to 50 kbars (R=0.92) (S=5) for 170 experimental runs (Putirka ea, 1996; Fallon ea, 1999; Taylor ea, 1998; Drapper Green, 1997; Lambart ea 2009) in this pressure range.

  18. Effect of Cr2O3 Pickup on Dissolution of Lime in Converter Slag

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Chen, Weiqing; Zhao, Xiaobo; Yang, Yindong; McLean, Alex

    2017-09-01

    Application of low-nickel laterite ore containing chromium as charging material for ironmaking can reduce raw material costs, but result in an increase of chromium content in the hot metal and hence, Cr2O3 content in the steelmaking slag, which subsequently causes many problems related to lime dissolution for the steelmaking operation. In this work, a rotating cylinder method was employed to study the effect of Cr2O3 on lime dissolution in steelmaking slag. The lime dissolution mechanism, rate control step and affecting factors, including slag basicity, FeOx and B2O3 content, and the formation of phases at reacted layer, were discussed. It was found that mass transfer was the rate control step in slag phase, increase of Cr2O3 and slag basicity delayed lime dissolution due to the formation of high-melting temperature phases of FeO · Cr2O3 spinel and 2CaO · SiO2 at the slag/lime reacted interface. Addition of B2O3 promoted lime dissolution and suppressed formation of FeO · Cr2O3 spinel.

  19. Essential and toxic elements in infant foods from Spain, UK, China and USA.

    PubMed

    Carbonell-Barrachina, Ángel A; Ramírez-Gandolfo, Amanda; Wu, Xiangchun; Norton, Gareth J; Burló, Francisco; Deacon, Claire; Meharg, Andrew A

    2012-09-01

    Spanish gluten-free rice, cereals with gluten, and pureed baby foods were analysed for essential macro-elements (Ca and Na), essential trace elements (Fe, Cu, Zn, Mn, Se, Cr, Co and Ni) and non-essential trace elements (As, Pb, Cd and Hg) using ICP-MS and AAS. Baby cereals were an excellent source of most of the essential elements (Ca, Fe, Cu, Mn and Zn). Sodium content was high in pureed foods to improve their flavour; fish products were also rich in Se. USA pure baby rice samples had the highest contents of all studied essential elements, showing a different nutrient pattern compared to those of other countries. Mineral fortification was not always properly stated in the labelling of infant foods. Complementary infant foods may also contain significant amounts of contaminants. The contents of Hg and Cd were low enough to guarantee the safety of these infant foods. However, it will be necessary to identify the source and reduce the levels of Pb, Cr and As in Spanish foods. Pure baby rice samples contained too much: Pb in Spain; As in UK; As, Cr and Ni in USA; and Cr and Cd in China.

  20. The Universal Cpx Jd-Di barometer for mantle peridotite eclogite and pyroxenites and it using for the mantle petrology

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor

    2015-04-01

    The Jd-Di exchange in clinopyroxenes used for the calibration of pyroxene barometer (Ashchepkov, 2000;2002; Ashchepkov et al 2010;2011;2012) was transformed to make one universal equation for mantle peridotite eclogites and pyroxenites. The original barometer (Ashchepkov, 2002) calibrated on pressures produced by Opx barometry (McGregor , 1974) was transformed (Ashchepkov et al ., 2004; 2010; 2011) to satisfy the increasing data bases for the mantle xenoliths and experimental values 530 in peridotitic and 650 in elcogitic systems . The obtained difference Pd =Pcpx- Pexp were studied for the dependence on each component and their combination . Instead of the common activities we used the temperature-dependent empirical equations. The three separate equations for the common peridotites, pyroxenites and eclogites (Ashchepkov et al., 2010) were checked and complex To and Al-Na-Fe dependent universal coefficients were received. The KD is determined as follows: KD=Na/AlCr*Mg/Ca The logarithmic dependence between P and KD was transformed to a linear one. Final pressure equations are: AlCr=(Al-0.01) *((T-600)/700)**0.75+Cr*(ToK-100)/1000+(4*Ti-0.0125)/ (T0-801)*650 +0.55*((Fe-0.23) *(T0-900)/10000-K) P=0.26*(5+12*(Al+0.30*Na)KD* ToK**0.75 /(1+Fe+ Fe*(ToK-600)/1000)-ln(1273/ ToK))*40*(7*Na-Al-15*Ti+10*Cr+Mg/4)+7.5*Si-20*( Al*Na*Mg/Ca/(Al-2*Ti+Na-2*Fe/(Fe+Mg))+50*(Na+0.1*Al-2*Ti+0.05*Mg-0.22*Ca-0.7*Na)/Ca). Obtained equation in combination with the (Nimis,Taylor, 2000) thermometer allow to reconstruct position of the magma feeder systems of the alkali basaltic magma withing the mantle diapirs in modern platforms like in Vitim plateau (Ashchepkov et al., 2011) and now was applicated to reconstruct the deep seated magma conduits beneath the mountain collision systems, island arcs ocean plateaus etc. This equation allows to receive the positions of the major groups of eclogites mantle sections and to find out the regularities of their behavior. The Fe rich eclogites commonly trace he boundary between the lower upper part of subcontinental lithospheric mantle (SCLM) at 3 -4 GPa marking pyroxenite eclogites layer. Ca- rich eclogites and especially grospydites in SCLM beneath Precambrian kimberlites occurs near pyroxenite layer but in younger mantle sections they became common in the lower parts marking presence of the subducted sediments. The Mg Cr- less group eclogites commonly diamondiferous and referring to the ancient island arc complexes are also common in the middle part of mantle sections and near 5-6 GPa. The group is often dominated in the young kimberlites and sometimes is highly diamondiferous. Commonly P-Fe# for eclogites in the lower SCLM part show rising Fe# with decreasing pressures which very of then reflect the differentiation of the magmatic systems commonly rather significant. Commonly the Fe#-values for the eclogites show that they can't be simple subucted oceanic basalts but material remelted not only during the low angle "hot"subduction but also under the influence of the kimberlite melts including protokimberlite magmas. The Mg - rich and Fe rich pyroxenites also show the extending in pressures trends which suggest the anatexic melting under the influence of volatiles or under the plum magma hybridization. RBRF grants 05-05-64718, 03-05-64146; 11 -05-00060a; 11-05-91060-PICS. Projects 77-2, 65-03, 02-05 IGM SD RAS and ALROSA Stock Company.

  1. Tracing redox processes during paleoclimatic changes in the Neoproterozoic: Stable chromium isotopic results from the Arroyo del Soldado Group (Ediacaran, Uruguay)

    NASA Astrophysics Data System (ADS)

    Frei, R.; Gaucher, C.

    2007-12-01

    Positive δ13C carbonate values, combined with the occurrence of Fe-rich cherts (oxide-facies BIF) and organic-rich black shales within the late Ediacaran (ca. 580-560 Ma) Yerbal Fm. of the Arroyo del Soldato Group (Uruguay) are compatible with paleoclimatic models which postulate that enhanced bioproductivity due to higher availability of nutrient (P, N, Fe) was essential for controlling Neoproterozoic glaciations. Tracing of associated redox processes (f.e. linked to oxygenation of bottom waters in restricted basins) that might have been responsible for the deposition of Fe-rich cherts (BIFs) is therefore an important tool to better understand the seawater changes during cold-warm periods. Besides the traditionally used Fe and Mo isotopic systems, the redox-sensitive element Cr (Cr(III); Cr(IV)) and its stable isotopes offer another complementary system to trace paleo-redox processes. We have applied Cr stable isotope systematics to a sequence of samples from a late Ediacaran sedimentary sequence in Uruguay, using a 52Cr-54Cr double spike (Schoenberg et al., Chem..Geol., subm.). The middle Yerbal Fm. is dominated by organic-rich, black shales and black dolostones (δ53Cr = -0.05‰), followed by organic-rich cherts (δ53Cr = +1.83 - +4.49 ‰) and BIF (δ53Cr = -0.31 +0.90 ‰) gradually changing into Fe-bearing, organic-rich cherts and shales (δ53Cr = -0.28 - -0.01 ‰), and another sequence with BIF and organic-rich cherts topped by carbonates of the lower Polanco Fm. (δ53Cr = -0.17 to -0.27 ‰). The strongly positively fractionated Cr isotopic signatures in organic-rich and Fe-rich cherts in the Yerbal Fm. may point to significant oxidation processes either directly in the seawater column and/or during early diagenetic processes at the sediment-water interface. While these strongly positive δ53Cr values are the first to be reported from Neoproterozoic sedimentary sequence, the exact nature of the chemical process that produced these anomalies is not yet understood. However, the occurrence of these anomalies in organic-rich and Fe-rich chemical sediments that were deposited in a period following a glacial (Gaskiers?) event is compatible with "Snowball Earth" scenarios whereby impulsive oxidation of the upper seawater was in response to ice cover retraction which allowed booming of the biosphere and concomitant oxidation of accumulated Fe2+ and subsequent precipitation of the Fe-oxyhydroxides to form the "BIF" during such epochs. Schoenberg et al. (subm.) The stable Cr isotope inventory of solid earth reservoirs determined by double-spike MC-ICP-MS. Chemical Geology

  2. Geochemistry and mineralogy of fly-ash from the Mae Moh lignite deposit, Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, B.R.; Powell, M.A.; Fyfe, W.S.

    The concentration of 21 elements in fly ash from three boilers (75 MW, 150 MW, and 300 MW) at the EGAT power plant, Mae Moh, Thailand, were determined by INAA. The concentration of 10 major elements was determined by XRF. As, Co, Cr, Ni, Mo, and Sb generally increase in concentration going from bottom ash (BA) through the sequence of electrostatic precipitator ashes (ESPA) and reach maxima of As (352 ppm), Co (45 ppm), Cr (105 ppm), Mo (32 ppm), Ni (106 ppm), and Sb (15 ppm) in the ESPA. Ce, Cs, Fe, Hf, La, Sc, Ta, Tb, and Ybmore » did not exhibit concentration trends or are variable except in the case of one boiler, which showed an increase going from BA to ESPA. Only Br decreased in composition going from BA to ESPA. Rb, Sm, U, and Th showed marked variation in trends. The major elements identified by EDS were Al, Si, S, K, Ca, Fe, and Ba, with minor amounts of Mg, Na, Ti, Mn, and Sr. Al, Si, K, and Ca occur together and are present in most of the fly-ash particles. Ba was found as a major component with Ca, Al, and Si. Fe and Ca are usually associated with sulfur. Some small spheres (< 5 {mu}m) are comprised almost entirely of Fe (probably as oxide). Symplectite textures are noted in high-Fe phases. All elements except Br are significantly enriched in the fly ash relative to the coal, which contains 35% ash. Particle chemistry is consistent with the major mineral phases identified by XRD, which include: quartz, magnetite, mullite, gehlenite, anorthite, hematite, anhydrite, and clinopyroxene.« less

  3. Effects of smelting parameters on the slag/metal separation behaviors of Hongge vanadium-bearing titanomagnetite metallized pellets obtained from the gas-based direct reduction process

    NASA Astrophysics Data System (ADS)

    Feng, Cong; Chu, Man-sheng; Tang, Jue; Liu, Zheng-gen

    2018-06-01

    Smelting separations of Hongge vanadium-bearing titanomagnetite metallized pellets (HVTMP) prepared by gas-based direct reduction were investigated, and the effects of smelting parameters on the slag/metal separation behaviors were analyzed. Relevant mechanisms were elucidated using X-ray diffraction analysis, FACTSAGE 7.0 calculations, and scanning electron microscopy observations. The results show that, when the smelting temperature, time, and C/O ratio are increased, the recoveries of V and Cr of HVTMP in pig iron are improved, the recovery of Fe initially increases and subsequently decreases, and the recovery of TiO2 in slag decreases. When the smelting CaO/SiO2 ratio is increased, the recoveries of Fe, V, and Cr in pig iron increase and the recovery of TiO2 in slag initially increases and subsequently decreases. The appropriate smelting separation parameters for HVTMP are as follows: smelting temperature of 1873 K; smelting time of 30-50 min; C/O ratio of 1.25; and CaO/SiO2 ratio of 0.50. With these optimized parameters (smelting time: 30 min), the recoveries of Fe, V, Cr, and TiO2 are 99.5%, 91.24%, 92.41%, and 94.86%, respectively.

  4. Project VeSElkA: abundance analysis of chemical species in HD 41076 and HD 148330

    NASA Astrophysics Data System (ADS)

    Khalack, V.; Gallant, G.; Thibeault, C.

    2017-10-01

    A new semi-automatic approach is employed to carry out the abundance analysis of high-resolution spectra of HD 41076 and HD 148330 obtained recently with the spectropolarimetre Echelle SpectroPolarimetric Device for Observations of Stars at the Canada-France-Hawaii Telescope. This approach allows to prepare in a semi-automatic mode the input data for the modified zeeman2 code and to analyse several hundreds of line profiles in sequence during a single run. It also provides more information on abundance distribution for each chemical element at the deeper atmospheric layers. Our analysis of the Balmer profiles observed in the spectra of HD 41076 and HD 148330 has resulted in the estimates of their effective temperature, gravity, metallicity and radial velocity. The respective models of stellar atmosphere have been calculated with the code phoenix and used to carry out abundance analysis employing the modified zeeman2 code. The analysis shows a deficit of the C, N, F, Mg, Ca, Ti, V, Cu, Y, Mo, Sm and Gd, and overabundance of Cr, Mn, Fe, Co, Ni, Sr, Zr, Ba, Ce, Nd and Dy in the stellar atmosphere of HD 41076. In the atmosphere of HD 148330, the C, N and Mo appear to be underabundant, while the Ne, Na, Al, Si, P, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Sr, Y, Zr, Ba, Ce, Pr, Nd, Sm, Eu, Gd and Dy are overabundant. We also have found signatures of vertical abundance stratification of Fe, Ti, Cr and Mn in HD 41076, and of Fe, Ti, V, Cr, Mn, Y, Zr, Ce, Nd, Sm and Gd in HD 148330.

  5. Total reflection X-ray fluorescence spectrometric determination of elements in water hyacinth from the Lerma River

    NASA Astrophysics Data System (ADS)

    Tejeda, S.; Zarazúa, G.; Ávila-Pérez, P.; Carapia-Morales, L.; Martínez, T.

    2010-06-01

    The Lerma River is one of the most polluted body water in Mexico. For this reason, only the highly resistant organisms such as water hyacinth are able to reproduce in this river. The aim of this work was to evaluate the concentration of K, S, Fe, Ca, Mn, Ti, Zn, Sr, Rb, Cu, Cr, Ni, Pb and Br in roots of water hyacinth ( Eichhornia crassipes) from the Lerma River. The samples were collected from five sites in the river and analyzed in triplicate using a TXRF Spectrometer 'TX-2000 Ital Structures' with a Si(Li) detector and a resolution of 140 eV (FWHM) at Mn Kα. A Mo tube (40 kV, 30 mA) with 17.4 KeV excitation energy was used for a counting time of 500 s. Results show that the average metal concentration in the water hyacinth roots decrease in the following order: K (9698.2 µg/g) > S (7593.3 µg/g) > Fe (4406.6 µg/g) > Ca (2601.8 µg/g) > Mn (604.2 µg/g) > Ti (230.7 µg/g) > Zn (51.65 µg/g) > Sr (43.55 µg/g) > Rb (18.61 µg/g) > Cu (12.78 µg/g) > Cr (6.45 µg/g) > Ni (4.68 µg/g) > Pb (4.32 µg/g) > Br (4.31 µg/g) and the bioconcentration factors in the water hyacinth decrease in the sequence: Ti > Fe > Mn > Cu > Ni > Zn > S > Pb > Rb > K > Cr > Sr > Br > Ca. The concentrations in roots of water hyacinth reflect the high pollution level of the river.

  6. A novel specimen-preparing method using epoxy resin as binding material for LIBS analysis of powder samples.

    PubMed

    Shi, Linli; Lin, Qingyu; Duan, Yixiang

    2015-11-01

    In view of the inevitable preprocessing of powder samples for LIBS detection, epoxy resin glue was investigated for the first time as a binder of powder samples due to its superior property of improved performance in laser induced breakdown spectroscopy (LIBS) technique as a quantitative analytical tool. For comparative studies of the epoxy resin and traditional polyethylene (PE) pellets in soil, sample detection, the signal intensities of Fe (I) at 404.58 nm, Ca (I) at 443.57 nm, and Cr (I) at 453.52 nm, were studied and subsequently, the calibration curves for these elements were constructed using the standard samples with variable concentrations. The signal intensities of epoxy resin samples were, on average, about 2 times greater than those obtained with the traditional PE pellet samples. Meanwhile, the resin samples showed better R square values of 0.981, 0.985 and 0.979 for curves of Fe (I) 404.58 nm, Ca (I) 443.57 nm, and Cr (I) 453.52 nm, compared to the 0.974, 0.950 and 0.934, of the PE pellet samples. Furthermore, the former represented lower limits of detection (LOD) for Fe, Ca and Cr. These experimental results indicated that this proposed novel method based on epoxy resin can attach samples of properties of high homogeneity, cohesiveness, smoothness and hardness, which are conducive to system stability, testing accuracy and signal enhancement. This method can make LIBS more practical in powder sample analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Sensitive and selective detection of trivalent chromium using Hyper Rayleigh Scattering with 5,5'-dithio-bis-(2-nitrobenzoic acid)-modified gold nanoparticles.

    PubMed

    Hughes, Shantelle I; Dasary, Samuel S R; Singh, Anant K; Glenn, Zachery; Jamison, Hakim; Ray, Paresh C; Yu, Hongtao

    2013-03-01

    Hyper Rayleigh Scattering (HRS) and absorption spectral assays using surface-modified gold nanoparticles (AuNP) have been developed for sensitive and selective detection of trivalent chromium (Cr 3+ ) from other metal ions including hexavalent chromium (as Cr 2 O 7 2- ). Gold nanoparticles of 13 nm, covalently attached with 5,5'-dithio- bis -(2-nitrobenzoic acid) (AuNP-DTNBA), is used as a probe for both the absorption and HRS assays. AuNP-DTNBA is able to detect Cr 3+ at 20 ppb level at pH 6.0 using absorption spectral change of the AuNP-DTNBA. Visible color change can be observed when mixed with 250 ppb of Cr 3+ , while there is no color change when mixed with 2 ppm level of some of the most common metal ions such as Cr 2 O 7 2- , Hg 2+ , Ba 2+ , Fe 3+ , Pb 2+ , Na + , Zn 2+ , Cd 2+ , Co 2+ , Mn 2+ , Ca 2+ , and Ni 2+ . However, a color change is observed when mixed with Ni 2+ , Zn 2+ , and Cd 2+ at a concentration higher than 2 ppm. The detection limit for the HRS assay is on a remarkable 25 ppt level, and there is no detectable HRS signal at 2 ppm level for Cr 2 O 7 2- , Hg 2+ , Ba 2+ , Fe 3+ , Pb 2+ , Na + , Zn 2+ , Cd 2+ , Co 2+ , Mn 2+ , Ca 2+ , and Ni 2+ .

  8. PIXE as a complement to ICP-OES trace metal analysis in Sudanese medicinal plants.

    PubMed

    Mubark Ebrahim, Ammar; Etayeb, M A; Khalid, H; Noun, Manale; Roumie, M; Michalke, B

    2014-08-01

    This paper compares trace element concentrations (Ca, K, Sr, Fe, Mn, Zn, Ni, Cu, Co and Cr) in 27 Sudanese medical plants determined in parallel by PIXE and ICP-OES to get information on which technique is preferable at different matrices and element concentrations. PIXE correlates well to ICP-OES for Sr, Mn, Ca, K, Zn and Fe determinations. ICP-OES seems to be the superior technique over PIXE when measuring low concentrated elements (chromium, cobalt, nickel and copper) in the medicinal plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. [Determination of 22 inorganic elements in different parts of Lantana camara by ICP-OES].

    PubMed

    Zhou, Wei-ming; Wang, Ru-yi; Chen, Liu-sheng; Huang, Chuan-bin

    2014-09-01

    To determine the contents of 22 inorganic elements in different parts of Lantana camara by inductively coupled plasma optical emission spectroscopy (ICP-OES). HNO3-H2 02 digested system was used to completely decomposed the organic compounds effectually by microwave digestion. 22 inorganic elements such as K, Ca, Mg, Fe, Al, Na, Zn, Mn and Cr were determined by ICP-OES under set up working conditions. The contents of K, Ca and Mg were the most in different parts of Lantana camrnara; The contents of K, Ca, Mg, Mn, Sr and Cu in the leaves of Lantana camara were more than that in the root and the branch. The contents of Fe and Na in the root of Lantana camara were more than that in the leaves and the branch. The contents of Pb and Cd were higher than the national standard and Cr had high content in different parts of Lantana camara. The determination method is quick, easy and accurate with high sensitivity,which can determine the contents of 22 inorganic elements accurately in different parts of Lantana camara.

  10. Corrosion of inconel in high-temperature borosilicate glass melts containing simulant nuclear waste

    NASA Astrophysics Data System (ADS)

    Mao, Xianhe; Yuan, Xiaoning; Brigden, Clive T.; Tao, Jun; Hyatt, Neil C.; Miekina, Michal

    2017-10-01

    The corrosion behaviors of Inconel 601 in the borosilicate glass (MW glass) containing 25 wt.% of simulant Magnox waste, and in ZnO, Mn2O3 and Fe2O3 modified Mg/Ca borosilicate glasses (MZMF and CZMF glasses) containing 15 wt.% of simulant POCO waste, were evaluated by dimensional changes, the formation of internal defects and changes in alloy composition near corrosion surfaces. In all three kinds of glass melts, Cr at the inconel surface forms a protective Cr2O3 scale between the metal surface and the glass, and alumina precipitates penetrate from the metal surface or formed in-situ. The corrosion depths of inconel 601 in MW waste glass melt are greater than those in the other two glass melts. In MW glass, the Cr2O3 layer between inconel and glass is fragmented because of the reaction between MgO and Cr2O3, which forms the crystal phase MgCr2O4. In MZMF and CZMF waste glasses the layers are continuous and a thin (Zn, Fe, Ni, B)-containing layer forms on the surface of the chromium oxide layer and prevents Cr2O3 from reacting with MgO or other constituents. MgCr2O4 was observed in the XRD analysis of the bulk MW waste glass after the corrosion test, and ZrSiO4 in the MZMF waste glass, and ZrSiO4 and CaMoO4 in the CZMF waste glass.

  11. Structural classification of RAO/sub 3/(MO)/sub n/ compounds (R = Sc, In, Y, or lanthanides; A = Fe(III), Ga, Cr, or Al; M = divalent cation; n = 1-11)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimizuka, N.; Mohri, T.

    A series of new compounds (RAO/sub 3/MO)/sub n/ (n = 1-11) having spinel, YbFe/sub 2/O/sub 4/, or InFeO/sub 3/(ZnO)/sub n/ types of structures were newly synthesized (R = Sc, In, Y, Lu, Yb, Tm, or Er; A = Fe(III), Ga, Cr, or Al; M = Mg, Mn, Fe(II), Co, Ni, Zn, or Cd) at elevated temperatures. The conditions of synthesis and the lattice constants for these compounds are reported. The stacking sequences of the InO/sub 1.5/, (FeZn)O/sub 2.5/, and ZnO layers for InFeO/sub 3/(ZnO)/sub 10/ and the TmO/sub 1.5/, (AlZn)O/sub 2.5/, and ZnO layers for TmAlO/sub 3/(ZnO)/sub 11/ are presented,more » respectively. The crystal structures of the (RAO/sub 3/)/sub m/(MO)/sub n/ phases R = Sc, In, Y, or lanthanide elements; A = Fe(III), Ga, Cr, or Al; M = divalent cation elements; m and n = integer are classified into four crystal structure types (K/sub 2/NiF/sub 4/, CaFe/sub 2/O/sub 4/, YbFe/sub 2/O/sub 4/, and spinel), based upon the constituent cations R, A, and M.« less

  12. ICP-AES Determination of Mineral Content in Boletus tomentipes Collected from Different Sites of China.

    PubMed

    Wang, Xue-mei; Zhang, Ji; Li, Tao; Li, Jie-qing; Wang, Yuan-zhong; Liu, Hong-gao

    2015-05-01

    P, Na, Ca, Cu, Fe, Mg, Zn, As, Cd, Co, Cr and Ni, contents have been examined in caps and stipes of Boletus tomentipes collected from different sites of Yunnan province, southwest China. The elements were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) with microwave digestion. P, Ca, Mg, Fe, Zn and Cu were the most abundant amongst elements determined in Boletus tomentipes. The caps were richer in P, Mg, Zn and Cd, and the stipes in Ca, Co and Ni. Cluster analysis showed a difference between Puer (BT7 and BT8) and other places. The PCA explained about 77% of the total variance, and the minerals differentiating these places were P (PC1) together with Ca, Cu, Fe, Mg, As and Ni, Na (PC2) together with Cd, and Zn (PC3). The results of this study imply that element concentrations of a mushroom are mutative when collected from the different bedrock soil geochemistry.

  13. Spatial and temporal characterization of trace elements and nutrients in the Rawal Lake Reservoir, Pakistan using multivariate analysis techniques.

    PubMed

    Malik, Riffat Naseem; Nadeem, Muhammad

    2011-12-01

    Rawal Lake Reservoir is renowned for its ecological significance and is the sole source of drinking water of the third largest city of Pakistan. However, fish kill in recent years and anthropogenic impacts from human-related activities in its catchment area have resulted in deterioration of its surface water quality. This study aims to characterize spatial and temporal variations in surface water quality, identify contaminant sources, and compare their levels with quality guidelines. Surface water samples were collected from 10 sites and analyzed for 27 physicochemical parameters for a period of 2 years on a seasonal basis. Concentration of metals in surface water in pre-monsoon were in the order: Fe > Mg > Ca > Mn > Zn > Ni > Cr > Cu > Co > Pb, whereas in post-monsoon, the order of elemental concentrations was: Ca > Mg > Na > Fe > K > Zn > Cr > Li > Pb > Co > Ni > Cu > Mn > Cd. Metals (Ni, Fe, Zn, and Ca), pH, electrical conductivity (EC), dissolved oxygen (DO), chemical oxygen demand (COD), and nutrients (PO (4) (3-) , NO(3)-N, and SO (4) (2-) ) were measured higher in pre-monsoon, whereas concentration of Cu, Mn, Cr, Co, Pb, Cd, K, Na, Mg, Li, Cl(-), and NH(4)-N were recorded higher in post-monsoon. Results highlighted serious metal pollution of surface water. Mean concentration of Zn, Cd, Ni, Cu, Fe, Cr, and Pb in both seasons and Mn in post-monsoon were well above the permissible level of surface water quality criteria. Results stress the dire need to reduce heavy-metal input into the lake basin and suggest that heavy-metal contamination should be considered as an integral part of future planning and management strategies for restoration of water quality of the lake reservoir.

  14. Calcium Treatment for FeSi-killed Fe-13 Pct Cr Stainless Steel with Various Top Slag Compositions

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Wang, Lijun; Zhai, Jun; Li, Jianmin; Chou, Kuochih

    2018-02-01

    Calcium treatment of Fe-13 pct Cr stainless steel, with inclusion modification as its main purpose, was evaluated on a laboratory scale. The stability diagram of Ca-Al was obtained using the FactSage software and could be divided into three parts based on the [Al] content: the ultra-low-Al region, the low-Al region, and the medium-high-Al region. Each of these regions required different amounts of calcium for inclusion modification. The ferrosilicon deoxidation product could be modified into low melting temperature inclusions by a CaO-SiO2 top slag in the ultra-low-Al region ([Al] content less than 40 ppm). Calcium treatment was necessary to modify the ferrosilicon deoxidation product into low melting temperature inclusions in the low-Al region ([Al] content from 40 to 100 ppm) for the CaO-SiO2-Al2O3 top slag. Calcium addition has a "liquid window" where adding calcium can accelerate inclusion modification. Adding calcium for 15 and 30 minutes resulted in complete modification times of 45 and 60 minutes, respectively, which indicates that early calcium treatment can produce plastic inclusions sooner. The relationship between the steel and inclusion content was determined by fitting the experimental data in the low-Al region. An appropriate range of T.Ca/T.O (total calcium content/total oxygen content) for inclusion modification is 0.99 to 1.44.

  15. In vitro osteoblastic differentiation of human bone marrow cells in the presence of metal ions.

    PubMed

    Morais, S; Dias, N; Sousa, J P; Fernandes, M H; Carvalho, G S

    1999-02-01

    For periods up to 21 days human bone marrow was cultured in control conditions that favor the proliferation and differentiation of osteoblastic cells. The effect of AISI 316L corrosion products and the corresponding major separate metal ions (Fe, Cr, and Ni) were studied in three different phases of the culture period in order to investigate the effects of metal ions in cell populations representative of osteoblastic cells in different stages of differentiation. Toxicity consequences of the presence of metal ions in bone marrow cultures were evaluated by biochemical parameters (enzymatic reduction of MTT, alkaline phosphatase activity, and total protein content), histochemical assays (identification of ALP-positive cells and Ca and phosphates deposits), and observation of the cultures by light and scanning electron microscopy. Culture media were analyzed for total and ionized Ca and P and also for metal ions (Fe, Cr, and Ni). The presence of AISI 316L corrosion products and Ni salt in bone marrow cultures during the first and second weeks of culture significantly disturbs the normal behavior of these cultures, interfering in the lag phase and exponential phase of cell growth and ALP expression. However, the presence of these species during the third week of culture, when expression of osteoblastic functions occurs (mineralization process), did not result in any detectable effect. Fe salt also disturbs the behavior of bone marrow cell cultures when present during the lag phase and proliferation phase, and a somewhat compromised response between the normal pattern (control cultures) and intense inhibition (AISI 316L corrosion products and Ni salt-added cultures) was observed. Fe did not affect the progression of the mineralization phase. Osteogenic cultures exposed to Cr salt (Cr3+) presented a pattern similar to the controls, indicating that this element does not interfere, in the concentration studied, in the osteoblastic differentiation of bone marrow cells. Quantification of metal ions in the culture media showed that Cr (originated from AISI 316L corrosion products but from not Cr3+ salt) and Ni (originated from AISI 316L corrosion products and Ni salt) appear to be retained by the bone marrow cultures. Copyright 1999 John Wiley & Sons, Inc.

  16. Short and long term modulation of tissue minerals concentrations following oral administration of black cumin (Nigella sativa L.) seed oil to laboratory rats.

    PubMed

    Basheer, Irum; Qureshi, Irfan Zia

    2018-01-15

    Nigella sativa, or commonly called black cumin is a small herb of family Ranunculaceae is a well-known medicinal plant but its effects on tissue mineral concentrations of animal bodies is unknown. To study the effect of oral administration of fixed oil of black cumin seeds on tissues mineral content using laboratory rats as experimental model. Experimental animals were exposed to two oral doses of seed oil (60 and 120 ml kg -1 body weight). Short- and long term experiments lasted 24 h and 60 days respectively, with three replicates each. Oil extracted from black cumin seeds was subjected to GC-MS to identify chemical components. Following the wet digestion in nitric acid, samples of whole blood and organs of rats were subjected to atomic absorption spectrophotometry for determination of elements concentrations. Data were compared statistically at p < .05. Compared to control, Cr, Mn, Ni, Cu, Zn showed decrease, whereas Co, Na, Mg and K demonstrated increase, but Ca showed both increase and decrease in most of the tissues upon short term exposure to low and high doses of black cumin oil. During long term exposure, Cr, Fe, Mn, Cu exhibited decrease; Co, Na, Mg and Ca concentrations demonstrated an upregulation, whereas Ni and Zn showed increase and decrease in most of the tissues. Comparison of short term with long term experiments at low dose revealed increases in Fe, Zn, Cu, Mg, K and Ca, a decrease in Cr, Mn, Ni and Cu in most tissues, but both increase and decrease in Na. At high dose, an increase occurred in Fe, Ni, Zn, K, Ca, Mg, a decrease in Cr, while both increase and decrease in Cu, Co and Na concentrations. Our study demonstrates that oral administration of black cumin seeds oil to laboratory rats significantly alters tissue trace elements and electrolytes concentrations. The study appears beneficial but indicates modulatory role of black cumin oil as regards mineral metabolism with far reaching implications in health and disease. Copyright © 2017. Published by Elsevier GmbH.

  17. Effects of Coating Materials and Mineral Additives on Nitrate Reduction by Zerovalent Iron

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Jeong, H. Y.; Lee, S.; Kang, N.; Choi, H. J.; Park, M.

    2015-12-01

    In efforts to facilitate nitrate removal, a variety of coating materials and mineral additives were assessed for their effects on the nitrate reduction by zerovalent iron (ZVI). Coated ZVIs were prepared by reacting Fe particles with Cr(III), Co(II), Ni(II), Cu(II), and S(-II) solutions under anoxic conditions, with the resultant materials named Cr/Fe, Co/Fe, Ni/Fe, Cu/Fe, and FeS/Fe, respectively. The mineral additives used, synthesized or purchased, included goethite, magnetite, and hydrous ferric oxide (HFO). Kinetic experiments were performed using air-tight serum vials containing 1.0 g Fe (uncoated or coated forms) in 15 mL of 100 mg NO3×N/L solutions with pH buffered at 7.0. To monitor the reaction progress, the solution phase was analyzed for NO3-, NO2-, and NH4+ on an ion chromatography, while the headspace was analyzed for H2, N2, and O2 on a gas chromatography. By uncoated Fe, ca. 60% of nitrate was reductively transformed for 3.6 h, with NH4+ being the predominant product. Compared with uncoated one, Cr/Fe, Co/Fe, and Cu/Fe showed faster removal rates of nitrate. The observed reactivity enhancement was thought to result from additional reduction of nitrate by H atoms adsorbed on the surface of Cr, Co, or Cu metal. In contrast, both Ni/Fe and FeS/Fe showed slower removal of nitrate than uncoated Fe. In both cases, the coating, which highly disfavors the adsorption of nitrate, would form on the Fe surface. When goethite, HFO, and magnetite were amended, the nitrate reduction by Fe was significantly increased, with the effect being most evident with HFO. Although not capable of reducing nitrate, the mineral additives would serve as crystal nuclei for the corrosion products of Fe, thus making the development of passivation layers on the Fe surface less. In the future, we will perform a kinetic modeling of the experimental data to assess the relative contribution of multiple reaction paths in the nitrate reduction by Fe.

  18. Specific binding of trivalent metal ions to λ-carrageenan.

    PubMed

    Cao, Yiping; Li, Shugang; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O; Lerbret, Adrien; Assifaoui, Ali

    2018-04-01

    Carrageenans are a family of sulphated cell wall polysaccharides extracted from seaweeds and are widely used in different industrial sectors. Relative to κ-carrageenan (κ-car) and ι-carrageenan (ι-car), the ionic binding behavior of λ-carrageenan (λ-car) is far less studied. In this work, the interaction and binding behavior between λ-car and metal ions of different valency (Na + , K + , Mg 2+ , Ca 2+ , Fe 2+ , Fe 3+ , Al 3+ , Cr 3+ ) have been investigated. In contrast to the non-specific interaction of the monovalent and divalent cations, specific binding has been identified between λ-car and Fe 3+ /Al 3+ . The specific binding could lead to either precipitation or gelation of λ-car, depending on the way of introducing Fe 3+ /Al 3+ ions. Fe 3+ and Al 3+ exhibit the same binding stoichiometry of [M 3+ ]/[repeating unit] = 1.0, with the former having a relatively larger binding constant. Cr 3+ , though having very similar physical properties with Fe 3+ /Al 3+ , is incapable of binding specifically to Cr 3+ . The phenomena could not be interpreted in terms of counterion condensation, and are rather attributable to a mechanism in which hexa-coordination of Fe 3+ /Al 3+ and entropy-driven cation dehydration play crucial roles in driving the binding of the trivalent metal ions to λ-car. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Essentials of iron, chromium, and calcium isotope analysis of natural materials by thermal ionization mass spectrometry

    USGS Publications Warehouse

    Fantle, M.S.; Bullen, T.D.

    2009-01-01

    The use of isotopes to understand the behavior of metals in geological, hydrological, and biological systems has rapidly expanded in recent years. One of the mass spectrometric techniques used to analyze metal isotopes is thermal ionization mass spectrometry, or TIMS. While TIMS has been a useful analytical technique for the measurement of isotopic composition for decades and TIMS instruments are widely distributed, there are significant difficulties associated with using TIMS to analyze isotopes of the lighter alkaline earth elements and transition metals. Overcoming these difficulties to produce relatively long-lived and stable ion beams from microgram-sized samples is a non-trivial task. We focus here on TIMS analysis of three geologically and environmentally important elements (Fe, Cr, and Ca) and present an in-depth look at several key aspects that we feel have the greatest potential to trouble new users. Our discussion includes accessible descriptions of different analytical approaches and issues, including filament loading procedures, collector cup configurations, peak shapes and interferences, and the use of isotopic double spikes and related error estimation. Building on previous work, we present quantitative simulations, applied specifically in this study to Fe and Ca, that explore the effects of (1) time-variable evaporation of isotopically homogeneous spots from a filament and (2) interferences on the isotope ratios derived from a double spike subtraction routine. We discuss how and to what extent interferences at spike masses, as well as at other measured masses, affect the double spike-subtracted isotope ratio of interest (44Ca/40Ca in the case presented, though a similar analysis can be used to evaluate 56Fe/54Fe and 53Cr/52Cr). The conclusions of these simulations are neither intuitive nor immediately obvious, making this examination useful for those who are developing new methodologies. While all simulations are carried out in the context of a specific isotope system, it should be noted that the same methods can be used to evaluate any isotope system of interest. ?? 2008 Elsevier B.V.

  20. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.

    PubMed

    Kuo, S; Lai, M S; Lin, C W

    2006-12-01

    Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1+/-0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them extremely insoluble even in 0.2 M HCl solution. The formation of solid solution of Ni with Al oxide was also possible, making it far less extractable than Cd, Zn, Cu, or Pb with the acid concentrations used.

  1. Assessment of spatial variability of heavy metals in Metropolitan Zone of Toluca Valley, Mexico, using the biomonitoring technique in mosses and TXRF analysis.

    PubMed

    Zarazúa-Ortega, Graciela; Poblano-Bata, Josefina; Tejeda-Vega, Samuel; Ávila-Pérez, Pedro; Zepeda-Gómez, Carmen; Ortiz-Oliveros, Huemantzin; Macedo-Miranda, Guadalupe

    2013-01-01

    This study is aimed at assessing atmospheric deposition of heavy metals using the epiphytic moss genera Fabronia ciliaris collected from six urban sites in the Metropolitan Zone of the Toluca Valley in Mexico. The concentrations of K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr, and Pb were determined by total reflection X-ray fluorescence technique. Results show that the average metal concentration decrease in the following order: Fe (8207 mg/Kg) > Ca (7315 mg/Kg) > K (3842 mg/Kg) > Ti (387 mg/Kg) > Mn, Zn (191 mg/Kg) > Sr (71 mg/Kg) > Pb (59 mg/Kg) > Cu, V (32 mg/Kg) > Cr (24 mg/Kg) > Rb (13 mg/Kg) > Ni (10 mg/Kg). Enrichment factors show a high enrichment for Cr, Cu, Zn, and Pb which provides an evidence of anthropogenic impact in the industrial and urban areas, mainly due to the intense vehicular traffic and the fossil fuel combustion. Monitoring techniques in mosses have proved to be a powerful tool for determining the deposition of heavy metals coming from diverse point sources of pollution.

  2. Silver Nanoparticle-Enhanced Resonance Raman Sensor of Chromium(III) in Seawater Samples.

    PubMed

    Ly, Nguyễn Hoàng; Joo, Sang-Woo

    2015-04-29

    Tris(hydroxymethyl)aminomethane ethylenediaminetetraacetic acid (Tris-EDTA), upon binding Cr(III) in aqueous solutions at pH 8.0 on silver nanoparticles (AgNPs), was found to provide a sensitive and selective Raman marker band at ~563 cm-1, which can be ascribed to the metal-N band. UV-Vis absorption spectra also supported the aggregation and structural change of EDTA upon binding Cr(III). Only for Cr(III) concentrations above 500 nM, the band at ~563 cm-1 become strongly intensified in the surface-enhanced Raman scattering spectra. This band, due to the metal-EDTA complex, was not observed in the case of 50 mM of K+, Cd2+, Mg2+, Ca2+, Mn2+, Co2+, Na+, Cu2+, NH4+, Hg2+, Ni2+, Fe3+, Pb2+, Fe2+, and Zn2+ ions. Seawater samples containing K, Mg, Ca, and Na ion concentrations higher than 8 mM also showed the characteristic Raman band at ~563 cm-1 above 500 nM, validating our method. Our approach may be useful in detecting real water samples by means of AgNPs and Raman spectroscopy.

  3. Analysis of Trace Elements in Rat Bronchoalveolar Lavage Fluid by Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Qamar, Wajhul; Al-Ghadeer, Abdul Rahman; Ali, Raisuddin; Abuelizz, Hatem A

    2017-08-01

    The main objective was to determine the elemental profile of the lung lining fluid of rats which are used as model animals in various experiments. Lung lining fluid elemental constitution obtained after bronchoalveolar lavage fluid (BALF) was analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to determine the biological trace elements along with calcium and magnesium. BALF was collected from healthy rats using a tracheal cannula. However, cells in BALF were counted to monitor any underlying inflammatory lung condition. Cell free BALF samples were processed and analyzed for the elements including magnesium (Mg), calcium (Ca), chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), selenium (Se), bromine (Br), and iodine (I). In view of this, calcium concentration was the highest (6318.08 ± 3094.3 μg/L) and copper concentration was the lowest (0.89 ± 0.21 μg/L). The detected elements, from high to low concentration, include Ca > Mg > Fe > Br > I > Cr > Ni > Zn > Mn > Se > Cu. Pearson's correlation analysis revealed no significant correlation between cell count and concentration of any of the element detected in BALF. Correlation analysis also revealed significant positive correlation among Fe, I, Cr, Ni, and Mn. Ca was found to be correlated negatively with Cu and positively with Se. Br and Mg found to be positively correlated with each other. Zn remained the only element that was not found to be correlated with any of the elements in the rat BALF.

  4. Timescales between mantle metasomatism and kimberlite ascent indicated by diffusion profiles in garnet crystals from peridotite xenoliths

    NASA Astrophysics Data System (ADS)

    Jollands, Michael C.; Hanger, Brendan J.; Yaxley, Gregory M.; Hermann, Jörg; Kilburn, Matthew R.

    2018-01-01

    Rare garnet crystals from a peridotite xenolith from the Wesselton kimberlite, South Africa, have distinct zones related to two separate episodes of mantle metasomatism. The garnet cores were firstly depleted through melt extraction, then equilibrated during metasomatism by a potentially diamond-forming carbonate-bearing or proto-kimberlitic fluid at 1100-1300 °C and 4.5-5.5 GPa. The garnet rim chemistry, in contrast, is consistent with later overgrowth in equilibrium with a kimberlite at around 1025 ± 25 °C and 4.2 ± 0.5 GPa. This suggests that the rock was physically moved upwards by up to tens of kilometres between the two metasomatic episodes. Preserved high Ca, Al and Cr contents in orthopyroxenes suggest this uplift was tectonic, rather than magmatic. Diffusion profiles were measured over the transitions between garnet cores and rims using electron microprobe (Mg, Ca, Fe for modelling, plus Cr, Mn, Ti, Na, Al) and nano Secondary Ion Mass Spectrometry (NanoSIMS; 89Y, along with 23Na, Ca, Cr, Fe, Mn and Ti) analyses. The short profile lengths (generally <10 μm) and low Y concentrations (0.2-60 ppm) make the NanoSIMS approach preferable. Diffusion profiles at the interface between the zones yield constraints on the timescale between the second metasomatic event and eruption of the kimberlite magma that brought the xenolith to the surface. The time taken to form the diffusion profiles is on the order of 25 days to 400 yr, primarily based on modelling of Y diffusion along with Ca, Fe and Mg (multicomponent diffusion) profiles. These timescales are too long to be produced by the interaction of the mantle xenolith with the host kimberlite magma during a single-stage ascent to the crust (hours to days). The samples offer a rare opportunity to study metasomatic processes associated with failed eruption attempts in the cratonic lithosphere.

  5. CO-Bridged H-Cluster Intermediates in the Catalytic Mechanism of [FeFe]-Hydrogenase CaI

    DOE PAGES

    Ratzloff, Michael W.; Artz, Jacob H.; Mulder, David W.; ...

    2018-05-23

    The [FeFe]-hydrogenases ([FeFe] H 2ases) catalyze reversible H 2 activation at the H-cluster, which is composed of a [4Fe-4S] H subsite linked by a cysteine thiolate to a bridged, organometallic [2Fe-2S] ([2Fe] H) subsite. Profoundly different geometric models of the H-cluster redox states that orchestrate the electron/proton transfer steps of H 2 bond activation have been proposed. We have examined this question in the [FeFe] H 2ase I from Clostridium acetobutylicum (CaI) by Fourier-transform infrared (FTIR) spectroscopy with temperature annealing and H/D isotope exchange to identify the relevant redox states and define catalytic transitions. One-electron reduction of H ox ledmore » to formation of H redH + ([4Fe-4S] H 2+-Fe I-Fe I) and H red' ([4Fe-4S] H 1+-Fe II-Fe I), with both states characterized by low frequency μ-CO IR modes consistent with a fully bridged [2Fe] H. Similar μ-CO IR modes were also identified for H redH + of the [FeFe] H 2ase from Chlamydomonas reinhardtii (CrHydA1). The CaI proton-transfer variant C298S showed enrichment of an H/D isotope-sensitive μ-CO mode, a component of the hydride bound H-cluster IR signal, H hyd. Equilibrating CaI with increasing amounts of NaDT, and probed at cryogenic temperatures, showed H redH + was converted to H hyd. Over an increasing temperature range from 10 to 260 K catalytic turnover led to loss of Hhyd and appearance of H ox, consistent with enzymatic turnover and H 2 formation. The results show for CaI that the μ-CO of [2Fe] H remains bridging for all of the 'H red' states and that H redH + is on pathway to H hyd and H 2 evolution in the catalytic mechanism. Here, this provides a blueprint for designing small molecule catalytic analogs« less

  6. CO-Bridged H-Cluster Intermediates in the Catalytic Mechanism of [FeFe]-Hydrogenase CaI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratzloff, Michael W.; Artz, Jacob H.; Mulder, David W.

    The [FeFe]-hydrogenases ([FeFe] H 2ases) catalyze reversible H 2 activation at the H-cluster, which is composed of a [4Fe-4S] H subsite linked by a cysteine thiolate to a bridged, organometallic [2Fe-2S] ([2Fe] H) subsite. Profoundly different geometric models of the H-cluster redox states that orchestrate the electron/proton transfer steps of H 2 bond activation have been proposed. We have examined this question in the [FeFe] H 2ase I from Clostridium acetobutylicum (CaI) by Fourier-transform infrared (FTIR) spectroscopy with temperature annealing and H/D isotope exchange to identify the relevant redox states and define catalytic transitions. One-electron reduction of H ox ledmore » to formation of H redH + ([4Fe-4S] H 2+-Fe I-Fe I) and H red' ([4Fe-4S] H 1+-Fe II-Fe I), with both states characterized by low frequency μ-CO IR modes consistent with a fully bridged [2Fe] H. Similar μ-CO IR modes were also identified for H redH + of the [FeFe] H 2ase from Chlamydomonas reinhardtii (CrHydA1). The CaI proton-transfer variant C298S showed enrichment of an H/D isotope-sensitive μ-CO mode, a component of the hydride bound H-cluster IR signal, H hyd. Equilibrating CaI with increasing amounts of NaDT, and probed at cryogenic temperatures, showed H redH + was converted to H hyd. Over an increasing temperature range from 10 to 260 K catalytic turnover led to loss of Hhyd and appearance of H ox, consistent with enzymatic turnover and H 2 formation. The results show for CaI that the μ-CO of [2Fe] H remains bridging for all of the 'H red' states and that H redH + is on pathway to H hyd and H 2 evolution in the catalytic mechanism. Here, this provides a blueprint for designing small molecule catalytic analogs« less

  7. CO-Bridged H-Cluster Intermediates in the Catalytic Mechanism of [FeFe]-Hydrogenase CaI.

    PubMed

    Ratzloff, Michael W; Artz, Jacob H; Mulder, David W; Collins, Reuben T; Furtak, Thomas E; King, Paul W

    2018-06-20

    The [FeFe]-hydrogenases ([FeFe] H 2 ases) catalyze reversible H 2 activation at the H-cluster, which is composed of a [4Fe-4S] H subsite linked by a cysteine thiolate to a bridged, organometallic [2Fe-2S] ([2Fe] H ) subsite. Profoundly different geometric models of the H-cluster redox states that orchestrate the electron/proton transfer steps of H 2 bond activation have been proposed. We have examined this question in the [FeFe] H 2 ase I from Clostridium acetobutylicum (CaI) by Fourier-transform infrared (FTIR) spectroscopy with temperature annealing and H/D isotope exchange to identify the relevant redox states and define catalytic transitions. One-electron reduction of H ox led to formation of H red H + ([4Fe-4S] H 2+ -Fe I -Fe I ) and H red ' ([4Fe-4S] H 1+ -Fe II -Fe I ), with both states characterized by low frequency μ-CO IR modes consistent with a fully bridged [2Fe] H . Similar μ-CO IR modes were also identified for H red H + of the [FeFe] H 2 ase from Chlamydomonas reinhardtii (CrHydA1). The CaI proton-transfer variant C298S showed enrichment of an H/D isotope-sensitive μ-CO mode, a component of the hydride bound H-cluster IR signal, H hyd . Equilibrating CaI with increasing amounts of NaDT, and probed at cryogenic temperatures, showed H red H + was converted to H hyd . Over an increasing temperature range from 10 to 260 K catalytic turnover led to loss of H hyd and appearance of H ox , consistent with enzymatic turnover and H 2 formation. The results show for CaI that the μ-CO of [2Fe] H remains bridging for all of the "H red " states and that H red H + is on pathway to H hyd and H 2 evolution in the catalytic mechanism. These results provide a blueprint for designing small molecule catalytic analogs.

  8. Investigation of the corrosion propagation characteristics of new metallic reinforcing bars.

    DOT National Transportation Integrated Search

    2007-01-01

    The threshold chloride concentrations for solid 316LN stainless steel, 316L stainless steel clad, 2101 LDX duplex stainless steel, MMFX-2 (Fe-9%Cr), and carbon steel (ASTM A615) rebars were investigated through laboratory tests in saturated Ca(OH)2 +...

  9. Reassessment of the volkonskoite-chromian smectite nomenclature problem.

    USGS Publications Warehouse

    Foord, Eugene E.; Starkey, Harry C.; Taggart, Joseph E.; Shawe, Daniel R.

    1987-01-01

    The name volkonskoite was first used in 1830 to describe a bright blue-green, chromium-bearing clay material from the Okhansk region, west of the Ural Mountains, U.S.S.R. Since that time, the name has been applied to numerous members of the smectite group of clay minerals, although the reported chromium content has ranged from 1% to about 30% Cr2O3. The name has also been applied to some chromian chlorites. Because volkonskoite has been used for materials that differ not only in their chromium content but also in their basic structure, the species status of the mineral has been unclear.To resolve this uncertainty, two specimens of volkonskoite from (1) Mount Efimiatsk, the type locality in the Soviet Union (USNM 16308) and (2) the Okhansk region in the Perm Basin, U.S.S.R. (USNM R4820), were examined by several mineralogical techniques. Neotype sample 16308 has the following structural formula:(Ca0.11Mg0.11Fe2+0.03K0.02)(Cr1.18Mg0.78Fe3+0.29Ca0.02)(Si3.50Al0.51)O10(OH)2 ⋅3.64H2O.Sample R4820 has the following structural formula:(Ca0.25Mg0.05Fe2+0.01K0.03Mn0.01)(Cr1.07Mg0.75Fe3+0.35(Si3.59Al0.43)O10(OH)2 ⋅4.22H2O.Mössbauer spectroscopy indicates that 91% and 98% of the iron is present as Fe3+ in samples 16308 and R4820, respectively. X-ray powder diffraction patterns of both samples have broad lines corresponding to minerals of the smectite group.On the basis of these data, volkonskoite appears to be a dioctahedral member of the smectite group that contains chromium as the dominant cation in the octahedral layer. Smectites containing less than this amount of octahedral chromium should not be called volkonskoite, but should be named by chemical element adjectives, e.g., chromian montmorillonite, chromian nontronite.

  10. Chemistry of impact events on Mercury

    NASA Astrophysics Data System (ADS)

    Berezhnoy, Alexey A.

    2018-01-01

    Based on the equilibrium thermochemical approach and quenching theory, formation of molecules and dust grains in impact-produced clouds formed after collisions between meteoroids and Mercury is considered. Based on observations of Al, Fe, and Mn atoms in the exosphere of Mercury and new results of studies of the elemental composition of the surface of Mercury, quenching temperatures and pressures of main chemical reactions and condensation of dust particles were estimated. The behavior of the main Na-, K-, Ca-, Fe-, Al-, Mn-, Mg-, Si-, Ti, Ni-, Cr-, Co, Zn-, O-, H-, S-, C-, Cl-, N-, and P-containing species delivered to the Hermean exosphere during meteoroid impacts was studied. The importance of meteoroid bombardment as a source of Na, K, Ca, Fe, Al, Mn, Mg, and O atoms in the exosphere of Mercury is discussed.

  11. The Rengen Grassland experiment: bryophytes biomass and element concentrations after 65 years of fertilizer application.

    PubMed

    Hejcman, Michal; Száková, Jirina; Schellberg, Jürgen; Srek, Petr; Tlustos, Pavel; Balík, Jirí

    2010-07-01

    The Rengen Grassland Experiment in Germany, established in 1941, consists of the following fertilizer treatments applied under a two cut management: control, Ca, CaN, CaNP, CaNP-KCl, and CaNP-K(2)SO(4). The aim of this study was (1) to identify effects of fertilizer application on biomass and species composition of bryophytes and (2) to investigate the impact of fertilizer application on macro- (N, P, K, Ca, Mg), micro- (Cu, Fe, Mn, Zn), and toxic (As, Cd, Cr, Pb, Ni) element concentrations in bryophyte biomass. In June 2006, Rhytidiadelphus squarrosus was the only bryophyte species recorded in the control. In treatment Ca, R. squarrosus was the dominant bryophyte species whereas Brachythecium rutabulum occurred sporadically only in a single plot of that treatment. The latter was the only bryophyte species collected in CaN, CaNP, CaNP-KCl, and CaNP-K(2)SO(4) treatments. Dry matter accumulation of bryophytes was highest in the control (180 g m(-2)) followed by Ca (46 g m(-2)), CaNP (25 g m(-2)), CaNP-KCl (15 g m(-2)), CaNP-K(2)SO(4) (9 g m(-2)), and CaN (2 g m(-2)) treatments. A negative correlation between biomass production of bryophytes and dry matter production of vascular plants was revealed up to a threshold value of 400 g m(-2). Above this limit, biomass production of bryophytes remained obviously unaffected by further increase in biomass production of vascular plants. A significant effect of treatment on As, Cd, Cr, Fe, Mn, Ni, Pb, P, Ca, Mg, K, and N concentrations was revealed. Concentrations of these elements were a function of amount of elements supplied with fertilizers. Bryophytes seem to be promising bio-indicators not only for airborne deposition of toxic element but also for fertilizer introduced as well.

  12. Exposure of women to trace elements through the skin by direct contact with underwear clothing.

    PubMed

    Nguyen, Thao; Saleh, Mahmoud A

    2017-01-02

    Heavy metals pose a potential danger to human health when present in textile materials. In the present study, inductive coupled plasma mass spectrometry (ICPMS) was used to determine the concentrations and the identity of extractable inorganic elements from different brands of women undergarments. A total of 120 samples consisting of 63 cottons, 44 nylons and 13 polyesters manufactured in 14 different countries having different colors were analyzed for their extractable metals contents. Elements analyzed were Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, Pb, Sb, Se, Sr, Ti, V and Zn. Cotton undergarments were rich in Al, Fe and Zn, nylon undergarments had high levels of Cr, Cu and Al, while polyester fabrics contained higher levels of Ni and Fe compared to cotton or nylon. With respect to manufacturing countries, China, Egypt and India showed the highest concentrations of metals in all fabrics. With respect to the color, black garments were characteristic by high concentration of Fe, blue colors with Cu, brown garments with Fe and Cu, green garments with Cu and Fe, pink garments with Al, purple garments with Al and Cu and red garments with Cr, Zn and Al. The consumer should be made aware of the potential dangers of these metals in their clothing.

  13. A New Modal Analysis Method to put Constraints on the Aqueous Alteration of CR Chondrites and Estimate the Unaltered CR Composition

    NASA Technical Reports Server (NTRS)

    Perronnet, M.; Zolensky, M. E.; Gounelle, M.; Schwandt, C. S.

    2007-01-01

    CR carbonaceous chondrites are of the major interest since they contain one of the most primitive organic matters. However, aqueous alteration has more or less overprinted their original features in a way that needed to be assessed. That was done in the present study by comparing the mineralogy of the most altered CR1 chondrite, GRO 95577, to a less altered CR2, Renazzo. Their modal analyses were achieved thanks to a new method, based on X-ray elemental maps acquired on electron microprobe, and on IDL image treatment. It allowed the collection of new data on the composition of Renazzo and confirmed the classification of GRO 95577 as a CR1. New alteration products for CRs, vermiculite and clinochlore, were observed. The homogeneity of the Fe-poor clays in the CR1 and the distinctive matrix composition in the two chondrites suggest a wide-range of aqueous alteration on CRs. The preservation of the outlines of the chondrules in GRO 95577 and the elemental transfers of Al, Fe and Ca throughout the chondrule and of Fe and S from the matrix to the chondrule favor the idea of an asteroidal location of the aqueous alteration. From their mineralogical descriptions and modal abundances, the element repartitions in Renazzo and GRO 95577 were computed. It indicates a possible relationship between these two chondrites via an isochemical alteration process. Knowing the chemical reactions that occurred during the alteration, it was thus possible to decipher the mineralogical modal abundances in the unaltered CR body.

  14. Stabilization of Fe(0) nanoparticles with silica fume for enhanced transport and remediation of hexavalent chromium in water and soil.

    PubMed

    Li, Yongchao; Li, Tielong; Jini, Zhaohui

    2011-01-01

    Effective in situ remediation of Cr(VI) in groundwater requires the successful delivery of reactive iron particles to the subsurface. Fe(0) nanoparticles (20-110 nm diameter) supported on silica fume were synthesized by borohydride reduction of an aqueous iron salt in the presence of a support material. The experimental result showed that attachment of Fe(0) nanoparticles on the commercial available sub-micrometer silica fume prevented them from aggregation while maintaining the particle reactivity. When the Fe(0) concentration was 0.4 g/L, 88.00% of 40 mg/L Cr(VI) was removed by silica fume-supported Fe(0) nanoparticles (SF-Fe(0) in 120 min, 22.55% higher than unsupported Fe(0). Furthermore, transport experiments confirmed that almost all unsupported Fe(0) was retained, whereas 51.50% and 38.29% of SF-Fe(0) were eluted from the vertical and horizontal sand column, respectively. Additionally, the effect of solution ionic strength on the transport ability of SF-Fe(0) was evaluated. The result showed that increase in the salt concentration led to a decrease in the mobility and also the divalent ion Ca2+ had a greater effect than that of monovalent ion Na+.

  15. The effect of annealing on structure and hardness of (Fe-Cr)-50 at.% Al coatings synthesized by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Ciswandi, Aryanto, Didik; Irmaniar, Tjahjono, Arif; Sudiro, Toto

    2018-05-01

    In this research, the deposition of (Fe-Cr)-50at.% Al coatings on low carbon steel was carried out by a mechanical alloying (MA) technique. The MA was performed in a shaker mill for 4 hours. Two types of Fe-Cr powders as starting material were used, high purity Fe-Cr powders: (Fe-12.5Cr)-50Al and (Fe-25Cr)-50Al, and Fe-Cr lump powder: (50FeCr)-50Al (in at.%). The coated samples were then annealed in a vacuum furnace at 700°C for 1h. The characterizations of coating structure before and after annealing were studied by XRD and SEM-EDX, while the coating hardness was measured by micro-Vickers hardness tester. Before annealing, all of coating composition were composed mainly of (Fe,Cr)Al phase. After annealing, the FeAl and Fe0.99Cr0.02Al0.99 intermetallic phases was formed in the (Fe-12.5Cr)-50Al and (Fe-25Cr)-50Al coatings. In addition, Fe2CrAlwas also found in the (Fe-25Cr)-50Al coating. Whilethe AlCr2 intermetallic phase was detected as the main phase of (50FeCr)-50Al coating. The cross-sectional microstructure showed that the (Fe-12.5Cr)-50Al and (Fe-25Cr)-50Al coatings have a smoother structure compared to (50FeCr)-50Al coating. The annealing led to intermetallic phase formation and an increasing coating hardness.

  16. Dietary marker effects on fecal microbial ecology, fecal VFA, nutrient digestibility coefficients, and growth performance in finishing pigs.

    PubMed

    Kerr, B J; Weber, T E; Ziemer, C J

    2015-05-01

    Use of indigestible markers such as Cr2O3, Fe2O3, and TiO2 are commonly used in animal studies to evaluate digesta rate of passage and nutrient digestibility. Yet, the potential impact of indigestible markers on fecal microbial ecology and subsequent VFA generation is not known. Two experiments utilizing a total of 72 individually fed finishing pigs were conducted to describe the impact of dietary markers on fecal microbial ecology, fecal ammonia and VFA concentrations, nutrient digestibility, and pig performance. All pigs were fed a common diet with no marker or with 0.5% Cr2O3, Fe2O3, or TiO2. In Exp. 1, after 33 d of feeding, fresh fecal samples were collected for evaluation of microbial ecology, fecal ammonia and VFA concentrations, and nutrient digestibility, along with measures of animal performance. No differences were noted in total microbes or bacterial counts in pig feces obtained from pigs fed the different dietary markers while Archaea counts were decreased (P = 0.07) in feces obtained from pigs fed the diet containing Fe2O 3compared to pigs fed the control diet. Feeding Cr2O3, Fe2O3, or TiO2 increased fecal bacterial richness (P = 0.03, 0.01, and 0.10; respectively) when compared to pigs fed diets containing no marker, but no dietary marker effects were noted on fecal microbial evenness or the Shannon-Wiener index. Analysis of denaturing gradient gel electrophoresis gels did not reveal band pattern alterations due to inclusion of dietary markers in pig diets. There was no effect of dietary marker on fecal DM, ammonia, or VFA concentrations. Pigs fed diets containing Cr2O3 had greater Ca, Cu, Fe, and P (P ≤ 0.02), but lower Ti ( P= 0.08) digestibility compared to pigs fed the control diet. Pigs fed diets containing Fe2O3 had greater Ca (P = 0.08) but lower Ti (P = 0.01) digestibility compared to pigs fed the control diet. Pigs fed diets containing TiO2 had greater Fe and Zn (P ≤ 0.09), but lower Ti ( P= 0.01) digestibility compared to pigs fed the control diet. In Exp. 2, no effect of dietary marker on pig performance was noted. Overall, the data indicate that the inclusion of Cr2O3, Fe2O3, or TiO2 as digestibility markers have little to no impact on microbial ecology, fecal ammonia or VFA concentrations, nutrient digestibility, or pig growth performance indicating they are suitable for use in digestion studies.

  17. Distribution and bioavailability of Cr in central Euboea, Greece

    NASA Astrophysics Data System (ADS)

    Megremi, Ifigeneia

    2010-06-01

    Plants and soils from central Euboea, were analyzed for Cr(totai), Cr(VI), Ni, Mn, Fe and Zn. The range of metal concentrations in soils is typical to those developed on Fe-Ni laterites and ultramafic rocks. Their bioavailability was expressed in terms of concentrations extractable with EDTA and 1 M HNO3, with EDTA having a limited effect on metal recovery. Cr(VI) concentrations in soils evaluated by alkaline digestion solution were lower than phytotoxic levels. Chromium and Ni — and occasionally Zn — in the majority of plants were near or above toxicity levels. Cr(VI) concentrations in plants were extremely low compared to total chromium concentrations. Cr(total) in ground waters ranged from <1 μg.L-1 to 130 μg.L-1, with almost all chromium present as Cr(VI). With the exception of Cr(total) and in some cases Zn, all elements were below regulatory limits for drinking water. On the basis of Ca, Mg, Cr(total) and Si ground waters were classified into three groups: Group(I) with Cr concentrations less than 1 μg.L-1 from a karstic aquifer; Group(II) with average concentrations of 24 μg.L-1 of Cr and relatively high Si associated with ophiolites; and Group(III) with Cr concentrations of up to 130 μg.L-1, likely due to anthropogenic activity. Group(III) is comparable to ground waters from Assopos basin, characterized by high Cr(VI) concentrations, probably due to industrial actrivities.

  18. SiO2 and CaF2 Behavior During Shielded Metal Arc Welding and Their Effect on Slag Detachability of the CaO-CaF2-SiO2 Type ENiCrFe-7-Covered Electrode

    NASA Astrophysics Data System (ADS)

    Wang, Huang; Qin, Renyao; He, Guo

    2016-09-01

    The metallurgical behavior during shielded metal arc welding (SMAW) and the slag detachability of the CaO-CaF2-SiO2 type ENiCrFe-7-covered electrodes was investigated. The results indicated that the slag detachability could be improved as the SiO2 in the flux coatings decreased. When the SiO2 in the flux coating was 10.9 pct, about 28.3 pct CaF2 resulted in the best slag detachability. The CaF2 and SiO2 in the flux coating interacted during SMAW to form gaseous SiF4 to be evacuated. In the reactions, one SiO2 consumed two CaF2, leading to the reduction of the ratio of CaF2/SiO2. After comparing the slag compositions, the best slag detachability was obtained at CaO:CaF2:SiO2 = 1.7:1.8:1, but the worst slag detachability appeared at CaO:CaF2:SiO2 = 1.3:0.9:1. The XRD analysis revealed that the oxides and fluorides in the slags preferred to gather together to form cuspidine and other complex phases. If the CaF2 was dominant in the slags, they intended to form homogenous porous microstructures that were relatively strong and would most likely detach from the weld metal in blocks, exhibiting good slag detachability. If the cuspidine phase was dominant, the slags exhibited a `rock strata'-like microstructure in the intergranular area. Such microstructure was very fragile and could be broken into fine powders that were easily embedded in the weld ripples, leading to slag adhesions. This work provides the researcher with a wealth of information and data, which will also be beneficial to the welding material producers and users.

  19. Ehimeite, NaCa2Mg4CrSi6Al2O22(OH)2: The first Cr-dominant amphibole from the Akaishi Mine, Higashi-Akaishi Mountain, Ehime Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Nishio-Hamane, Daisuke; Ohnishi, Masayuki; Minakawa, Tetsuo; Yamaura, Jun-Ichi; Saito, Shohei; Kadota, Ryo

    The first Cr-dominant amphibole, ehimeite, ideally NaCa2Mg4CrSi6Al2O22(OH)2, has been found in a chromitite deposit in the Akaishi Mine, Higashi-Akaishi Mountain, Ehime Prefecture, Japan. Ehimeite occurs as prismatic crystals of up to 1.5 cm in length and 0.5 cm in width and is found in association with chromite, kämmererite (Cr-rich clinochlore), Cr-poor clinochlore, phlogopite, and uvarovite. It is transparent, emerald green to pale green in color with pale green streaks, and has a vitreous luster. Optically, it is biaxial positive with α = 1.644(2), β = 1.647(2), γ = 1.659(2), and 2Vcalc. = 53°. It has a Mohs’ hardness of 6 and densities of 3.08(3) g/cm3 (measured using heavy liquids) and 3.121 g/cm3 (calculated from powder diffraction data and the empirical formula). The empirical formula is (Na0.88K0.07)Σ0.95(Ca1.89Na0.02Mg0.09)Σ2.00(Mg4.03Cr0.62Al0.19Fe3+0.07Fe2+0.07Ti0.03)Σ5.00(Si6.14Al1.86)Σ8.00O22(OH)2 on the basis of O = 22 and OH = 2, and ehimeite mainly forms a solid solution, NaCa2Mg4(Cr, Al)Si6Al2O22(OH)2, with pargasite. It has a monoclinic unit cell with a = 9.9176(14) Å, b = 18.0009(12) Å, c = 5.2850(7) Å, β = 105.400(7)°, V = 909.6 (17) Å3, and Z = 2, and it belongs to the space group C2/m, as refined from powder XRD data. The eight strongest lines in the powder XRD pattern [d (Å), I/I0, hkl] are (3.370, 58, 150), (2.932, 43, 221), (2.697, 81, 151), (2.585, 50, 061), (2.546, 100, 202), (2.346, 42, 351), (2.156, 35, 261), and (1.514, 55, 263). The crystal structure has been refined to R1 = 0.0488 using single-crystal XRD data. It has been concluded that ehimeite in the Akaishi Mine was formed by the reaction of chromitite and the metamorphic fluid in the retrograde stage of serpentinization during the Sanbagawa metamorphism.

  20. Analysis of Mineral Elements, Metabolism, and Inflammation Indexes in the Plasma of Dairy Cows Suffering from Different Degrees of Lameness.

    PubMed

    Sun, Dongbo; Li, Chunqiu; Gu, Cheng; Chen, Jianfei; Qu, Yongli; Wang, Xinyu; Gao, Jing; Wei, Shan; Wang, Jianfa; Wu, Rui; Guo, Donghua

    2015-12-01

    In the plasma of dairy cows with 1-5 points of lameness, the mineral elements [calcium (Ca), iron (Fe), copper (Cu), zinc (Zn), iodine (I), selenium (Se), molybdenum (Mo), and chromium (Cr)], the energy metabolic indicators [triglyceride (TG), glucose (Glu), total cholesterol (CHO), nonesterified fatty acids (NEFA), β-hydroxybutyrate (BHBA), lactate (LA), and blood urea nitrogen (BUN)], and inflammatory indexes [bovine haptoglobin (BoHp), histamine (HIS), and immunoglobulin G (IgG)] were measured, respectively. Furthermore, the correlations of the measured indicators with the degrees of lameness were analyzed. The results showed that in the plasma of dairy cows with 2/3-5 points of lameness, for the mineral elements' levels, Ca, Cu, I, Se, and Fe significantly decreased, Cr significantly increased, and Mo showed a decreasing trend; for levels of the energy metabolism indicators, NEFA and BHBA significantly decreased, BUN and LA significantly increased, and Glu, CHO, and TG showed an increasing trend; for inflammation indexes, the concentrations of HIS, BoHp, and IgG all significantly increased; and further analysis indicated that the Mo, Fe, NEFA, BUN, BHBA, IgG, Ca, and Se had a significant correlation with the degrees of lameness. Resulting data revealed the changes of mineral elements, metabolism, and inflammation indexes in the plasma of dairy cows suffering from different degrees of lameness, which will provided basic knowledge for in-depth understanding of lameness in dairy cows.

  1. Effects of wastewater irrigation on chemical and physical properties of Petroselinum crispum.

    PubMed

    Keser, Gonca; Buyuk, Gokhan

    2012-06-01

    The present study was carried out to assess the impact of wastewater on parsley (Petroselinum crispum). The parameters determined for soil were pH, electrical conductivity (EC), soil organic matter (SOM), nutrient elements (Ca, Mg, Na, K, Mn, Cu, Zn, and Fe), and heavy metals (Cd, Cr, Ni, and Pb), while the parameters determined for the plant included pigment content, dry matter, nutrient element, and heavy metals. SOM, EC, and clay contents were higher, and pH was slightly acidic in soil treated with wastewater compared to control soil. The enrichment factors (EF) of the nutrient elements in contaminated soil are in the sequence of Na (2) > Ca (1.32) > Mn = Mg (1.17) > Cu (1.11) > Zn (1.08) > Fe (1.07) > K (0.93), while EF in parsley are Na (6.63) > Ca (1.60) > Mg (1.34) > Zn (1.15) > Fe (0.95) > Cu = K (0.90) > Mn (0.85). Application of wastewater significantly decreased dry matter, while photosynthetic pigment content increased in parsley. The enrichment of the heavy metals is in the sequence: Cd (1.142) > Pb (1.131) > Ni (1.112) > Cr (1.095). P. crispum shows a high transfer factor (TF > 1) for Cd signifying a high mobility of Cd from soil to plant. Thus, although the wastewater irrigation in parsley production aims to produce socioeconomic benefits, study results indicated that municipal wastewater is not suitable for irrigation of parsley because it has negative effects on plant and causes heavy metal accumulation.

  2. A New Modal Analysis Method to put Constraints on the Aqueous Alteration of CR Chondrites and Estimate the Unaltered CR Composition

    NASA Technical Reports Server (NTRS)

    Perronnet, M.; Zolensky, M. E.; Gounelle, M.; Schwandt, C. S.

    2007-01-01

    carbonaceous chondrites are of the major interest since they contain one of the most primitive organic matters. However, aqueous alteration has more or less overprinted their original features in a way that needed to be assessed. That was done in the present study by comparing the mineralogy of the most altered CR1 chondrite, GRO 95577, to a less altered CR2, Renazzo. Their modal analyses were achieved thanks to a new method, based on X-ray elemental maps acquired on electron microprobe, and on IDL image treatment. It allowed the collection of new data on the composition of Renazzo and confirmed the classification of GRO 95577 as a CR1. New alteration products for CRs, vermiculite and clinochlore, were observed. The homogeneity of the Fe-poor clays in the CR1 and the distinctive matrix composition in the two chondrites suggest a wide-range of aqueous alteration on CRs. The preservation of the outlines of the chondrules in GRO 95577 and the elemental transfers of Al, Fe and Ca throughout the chondrule and of Fe and S from the matrix to the chondrule favor the idea of an asteroidal location of the aqueous alteration. From their mineralogical descriptions and modal abundances, the element repartitions in Renazzo and GRO 95577 were computed. It indicates a possible relationship between these two chondrites via an isochemical alteration process. Knowing the chemical reactions that occurred during the alteration, it was thus possible to decipher the mineralogical modal abundances in the unaltered CR body.

  3. Seasonal growth and translocation of some major and trace elements in two Mediterranean grasses (Stipa tenacissima Loefl. ex L. and Lygeum spartum Loefl. ex L.)

    NASA Astrophysics Data System (ADS)

    Nedjimi, Bouzid

    2018-05-01

    The rangelands of Stipa tenacissima and Lygeum spartum (Poaceae) constitute one of the main typical ecosystems in the Iberian Peninsula and North Africa. This study examines the seasonal changes in aboveground biomass accumulation and translocation of some major (Ca and K) and trace elements (Br, Cr, Cu, Fe, Mn, Sr and Zn) from topsoil to shoots of these perennial grasses. Species, season and their interaction significantly affected the dry biomass (DW) and chemical composition of both species and their surrounding soil. The maximum DW was found in spring due to high physiological activity and was correlated positively with rainfall. A significant relationship between seasons and chemical elements was found. For both species the maximum concentrations of Ca, Cu and Zn were found in spring season. However L. spartum had the highest concentrations of K, Cr, Br, and Sr in autumn season, indicating exceptional ability of these species to accumulate large contents of these elements during the active growth periods. By way of contrast, in the topsoil the highest concentrations of almost all chemical elements were found in summer and autumn. Principal component analyses (PCA) showed that growth of L. spartum was highly associated with K, Ca, Zn, Br and Sr, whereas topsoil was correlated with Cu, Cr, Fe and Mn concentrations. Translocation factor (TFx) of chemical elements was not identical across the two species, demonstrating inter-specific variability to uptake chemical elements. The maximum values of TFx were recorded for K, Ca and Sr especially for L. spartum. To cope with arid conditions, S. tenacissima and L. spartum sprout quickly by increasing their rate of growth and nutrient uptake as soon as soil water is available after the rain.

  4. Nitridation of a Super-Ferritic Stainless Steel for PEMFC Bipolar Plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.; Turner, J. A.; Brady, M. P.

    2007-01-01

    AL29-4C alloy nitrided in pure nitrogen resulted in a nitrogen-modified oxide surface, which is the same as AISI446 nitrided under identical conditions. When the alloy was nitrided 24h at 900 C in N2-4H2, XRD and XPS analysis indicated that the surface layer consisted of a nitride outer layer ({approx}0.20 {micro}m) and an oxide inner layer ({approx} 0.82 {micro}m). According to XPS, the nitride outer layer is composed of CrN and [Cr(N),Fe]2N1-x, with much more Cr2N than Fe2N. Mn is migrated and enriched in the oxide inner layer and combined with chromium oxide.AL29-4C alloy nitrided in N2-4H2 resulted in low ICRmore » and excellent corrosion resistance in simulated PEMFC environments. Current was at ca. -3.0 {micro}A/cm2 in the PEMFC anode environment, and at ca. 0.3 {approx} 0.5 {micro}A/cm2 in the cathode environment. This is considered to be rather stable. After being polarized in a PEMFC environment, the ICR increased slightly compared with the as-nitrided sample, but was still rather low.« less

  5. Toxic and essential mineral elements content of black tea leaves and their tea infusions consumed in Iran.

    PubMed

    Salahinejad, Maryam; Aflaki, Fereydoon

    2010-04-01

    The metal contents of eleven black tea samples, four cultivated in Iran and seven imported, and their tea infusions were determined. Twelve elements consisting toxic metals (Al, As, Pb, Cr, Cd, and Ni) and essential mineral elements (Fe, Zn, Cu, Mn, Ca, and Mg) were analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Al, Ca, Mg, and Mn ranged in black tea leaves at mg g(-1) levels, while Cr, Fe, Ni, Cu, Zn were at microg g(-1) levels. Analysis of variance showed no statistically significant differences among most elements determined in cultivated and imported black teas in Iran except for Ni and Cu. The extraction efficiency of each element into tea infusions was evaluated. The solubility of measured metals in infusion extracts varied widely and ranged from 0 to 59.3%. Among the studied elements, Cr, Pb, and Cd showed the lowest rates of solubility and Ni had the highest rates of solubility. The amount of toxic metals and essential mineral elements that one may take up through consumption of black tea infusion was estimated. The amount of realizing each element into tea infusions and acceptable daily intake, for safety consumption of black tea, was compared.

  6. SRXRF Study of Chemical Elements Content in the Atherosclerotic Plaque of Heart Vessels

    NASA Astrophysics Data System (ADS)

    Zhuravskaya, E. Ya.; Savchenko, T. I.; Chankina, O. V.; Polonskaya, Ya. V.; Chernyavskii, A. M.; Ragino, Yu. I.; Shcherbakova, L. V.

    The SRXRF method has made it possible, for the first time, to determine the multielement composition in the atherosclerotic substrates of heart vessels after surgical interventions. The main advantage of the method is the possibility to analyze small samples without their destruction. As the amount of material to test is insufficient, we have developed a special technique for sample preparation. The concentrations of K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Sr, Zr, and Pb were measured in stable and unstable plaques. In all the samples studied, Ca is dominating, particularly, in the unstable plaque. No reliable difference was established for other elements measured. A high degree of the association of Ca with Fe, Zn and Sr has been revealed in the atherosclerotic plaques. Measurements were performed using SR from the VEPP-3 storage ring.

  7. Neutron irradiation effects in Fe and Fe-Cr at 300 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei-Ying; Miao, Yinbin; Gan, Jian

    2016-06-01

    Fe and Fe-Cr (Cr = 10–16 at.%) specimens were neutron-irradiated at 300 °C to 0.01, 0.1 and 1 dpa. The TEM observations indicated that the Cr significantly reduced the mobility of dislocation loops and suppressed vacancy clustering, leading to distinct damage microstructures between Fe and Fe-Cr. Irradiation-induced dislocation loops in Fe were heterogeneously observed in the vicinity of grown-in dislocations, whereas the loop distribution observed in Fe-Cr is much more uniform. Voids were observed in the irradiated Fe samples, but not in irradiated Fe-Cr samples. Increasing Cr content in Fe-Cr results in a higher density, and a smaller size ofmore » irradiation-induced dislocation loops. Orowan mechanism was used to correlate the observed microstructure and hardening, which showed that the hardening in Fe-Cr can be attributed to the formation of dislocation loops and α' precipitates.« less

  8. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Maninder; Qiang, You, E-mail: youqiang@uidaho.edu; Dai, Qilin

    2013-11-11

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr{sub 2}O{sub 3} and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (∼25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs.

  9. Ionomic profiling of Nicotiana langsdorffii wild-type and mutant genotypes exposed to abiotic stresses.

    PubMed

    Ardini, Francisco; Soggia, Francesco; Abelmoschi, Maria Luisa; Magi, Emanuele; Grotti, Marco

    2013-01-01

    To provide a new insight into the response of plants to abiotic stresses, the ionomic profiles of Nicotiana langsdorffii specimens have been determined before and after exposure to toxic metals (chromium) or drought conditions. The plants were genetically transformed with the rat glucocorticoid receptor (GR) or the gene for Agrobacterium rhizogenes rolC, because these modifications are known to produce an imbalance in phytohormone equilibria and a significant change in the defence response of the plant. Elemental profiles were obtained by developing and applying analytical procedures based on inductively coupled plasma atomic emission and mass spectrometry (ICP-AES/MS). In particular, the removal of isobaric interferences affecting the determination of Cr and V by ICP-MS was accomplished by use of a dynamic reaction cell, after optimization of the relevant conditions. The combined use of ICP atomic emission and mass spectrometry enabled the determination of 29 major and trace elements (Ba, Bi, Ca, Cd, Co, Cr, Cu, Eu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, P, Pb, Pt, Rb, S, Sb, Sn, Sr, Te, V, W, Y, and Zn) in different parts of the plants (roots, stems, and leaves), with high accuracy and precision. Multivariate data processing and study of element distribution patterns provided new information about the ionomic response of the target organism to chemical treatment or water stress. Genetic modification mainly affected the distribution of Bi, Cr, Mo, Na, and S, indicating that these elements were involved in biochemical processes controlled by the GR or rolC genes. Chemical stress strongly affected accumulation of several elements (Ba, Ca, Fe, Ga, K, Li, Mn, Mo, Na, P, Pb, Rb, S, Sn, Te, V, and Zn) in different ways; for Ca, Fe, K, Mn, Na, and P the effect was quite similar to that observed in other studies after treatment with other transition elements, for example Cu and Cd. The effect of water deficit was less evident, mainly consisting in a decrease of Ba, Cr, Na, and Sr in roots.

  10. Correlations between elements in the fur of wild animals.

    PubMed

    Długaszek, Maria; Kopczyński, Krzysztof

    2014-07-01

    There is little data on the elemental composition of wild animals fur. In the paper, an attempt has been made to evaluate the concentration of elements in the fur of roe deer, wild boar and hare. The contents of following elements: calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), cadmium (Cd), aluminium (Al), chromium (Cr), nickel (Ni) were determined by atomic absorption spectrometry method. Their content was in the range 0.01 (Cd) to 1,519 (Ca) μg/g. Correlations between the content of Mn, Al, Ca, Pb, Cr, Ni in the fur of animals, liver and muscle tissues were found. Thus it can be assumed that the fur of wild animals can provide an information on the bioavailability of elements and environmental exposure and can be considered as an useful biomarker in animals and environmental studies, although research on this subject should be continued.

  11. Mn-Cr isotopic systematics of individual Chainpur chondrules. [Abstract only

    NASA Technical Reports Server (NTRS)

    Nyquist, L.; Lindstrom, D.; Wiesmann, H.; Martinez, R.; Bansal, B.; Mittlefehldt, D.; Shih, C.-Y.; Wentworth, S.

    1994-01-01

    Twenty-eight chondrules separated from Chainpur (LL3.4) were surveyed for abundances of Mn, Cr, Na, Fe, Sc, Hf, Ir, and Zn by Instrumental Neutron Activation Analysis (INAA). Six, weighting 0.6-1.5 mg each, were chosen for Scanning Electron Microscopy (SEM)/Energy Dispersive X-ray (EDX) and high-precision Ce-isotopic studies. LL-chondrite-normalized (Mn/Fe)(sub LL) and (Sc/Fe)(sub LL) were found to be useful in categorizing them. Five chondrules (CH-16, -17, -18, -23, and -28) were in the range 0.5 less than (Mn/Fe)(sub LL) less than 1. 4 and 0.5 less than (Sc/Fe)(sub LL) less than 1.4. The sixth (CH-25) had (Mn/Fe)(sub LL) and (Sc/Fe)(sub LL) ratios of 0.40 and 8.1, respectively, and was enriched in the refractory lithophile elements Sc and Hf and the refractory siderophile element Ir by 2.7 and 4.4x LL abundances respectively. SEM/EDX of exterior surfaces of the chondrules showed they consisted of varying proportions of low- and high-Ca pyroxenes, olivine, glass, kamacite/taenite, and Fe-sulfides. Chromium-53/chromium-52 for the six chondrules and bulk Chainpur (WR) are presented. Chromium-54/chromium-52 is close to terrestrial and does not correlate with Mn/Cr. We provisionally ignore the possibility of initial Cr isotopic heterogeneities among the chondrules. Omitting both the CH-25 and WR data, a linear regression gives initial (Mn-53/Mn-55)(sub I) = 8 +/- 4 x 10(exp -6), corresponding to chondrule formation at Delta(t)(sub LEW) = -9 +/- 4 Ma prior to igneous crystallization of the LEW 86010 angrite. If initial (Mn-53/Mn-55)(sub 0) in the solar system were as high as approximately 4.4 x 10(exp -5) when Allende CAI formed, our data suggest Chainpur chondrules formed approximately 9 Ma later, in qualitative agreement with 'late' I-Xe formation ages for most Chainpur chondrules.

  12. Disparities of Selected Metal Levels in the Blood and Scalp Hair of Ischemia Heart Disease Patients and Healthy Subjects.

    PubMed

    Ilyas, Asim; Shah, Munir H

    2017-12-01

    Imbalances in the concentrations of trace metals have become an increasingly recognized source of infirmity worldwide particularly in the development of ischemia heart disease (IHD). Present study is intended to analyze the concentrations of Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Pb, Sr, and Zn in the blood and scalp hair of the patients and counterpart controls by flame atomic absorption spectrometry after wet-acid digestion. On the average, Cd, Co, Cr, Fe, K, Li, Mn, Na, and Pb revealed significantly elevated concentrations in the blood of the patients compared with the controls (p < 0.05), whereas mean levels of Ca, Cd, Fe, K, Li, Pb, and Sr in the scalp hair were significantly higher in the patients than the controls (p < 0.05). Most of the metals exhibited noticeable disparities in their concentrations based on gender, abode, dietary/smoking habits, and occupations of both donor groups. The correlation study and multivariate statistical analyses revealed some significantly divergent associations and apportionment of the metals in both donor groups. Overall, comparative variations of the metal contents in blood/scalp hair of the patients were significantly different than the controls; thus, evaluation of trace metals status may be indicative of pathological disorders, such as IHD.

  13. Magnetism of CrO overlayers on Fe(001)bcc surface: first principles calculations

    NASA Astrophysics Data System (ADS)

    Félix-Medina, Raúl Enrique; Leyva-Lucero, Manuel Andrés; Meza-Aguilar, Salvador; Demangeat, Claude

    2018-04-01

    Riva et al. [Surf. Sci. 621, 55 (2014)] as well as Calloni et al. [J. Phys.: Condens. Matter 26, 445001 (2014)] have studied the oxydation of Cr films deposited on Fe(001)bcc through low-energy electron diffraction, Auger electron spectroscopy and scanning tunneling microscopy. In the present work we perform a density functional approach within Quantum Expresso code in order to study structural and magnetic properties of CrO overlayers on Fe(001)bcc. The calculations are performed using DFT+U. The investigated systems include O/Cr/Fe(001)bcc, Cr/O/Fe(001)bcc, Cr0.25O0.75/Fe(001)bcc, as well as the O coverage Ox/Cr/Fe(001)bcc (x = 0.25; 0.50). We have found that the ordered CrO overlayer presents an antiferromagnetic coupling between Cr and Fe atoms. The O atoms are located closer to the Fe atoms of the surface than the Cr atoms. The ground state of the systems O/Cr/Fe(001)bcc and Cr/O/Fe(001)bcc corresponds to the O/Cr/Fe(001)bcc system with a magnetic coupling c(2 × 2). The effect of the O monolayer on Cr/Fe(001)bcc changes the ground state from p(1 × 1) ↓ to c(2 × 2) and produces an enhancement of the magnetic moments. The Ox overlayer on Cr/Fe(001)bcc produces an enhancement of the Cr magnetic moments.

  14. Laser-Induced Breakdown Spectroscopy of Trace Metals

    NASA Technical Reports Server (NTRS)

    Simons, Stephen (Technical Monitor); VanderWal, Randall L.; Ticich, Thomas M.; West, Joseph R., Jr.

    2004-01-01

    An alternative approach for laser-induced breakdown spectroscopy (LIBS) determination of trace metal determination in liquids is demonstrated. The limits of detection (LOD) for the technique ranged from 10 ppb to 10 ppm for 15 metals metals (Mg, Al, Si, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Hg, Pb) tested.

  15. Sintered silicon carbide molded body and method for its production

    NASA Technical Reports Server (NTRS)

    Omori, M.; Sendai, M.; Ohira, K.

    1984-01-01

    Sintered silicon carbide shapes are described. They are produced by using a composition containing an oxide of at least one element chosen from the group: Li, Be, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, Ba, Tc, Ta, W and Th as a supplement to known sintering aids.

  16. Iron hydrides formation in interstellar clouds

    NASA Astrophysics Data System (ADS)

    Bar-Nun, A.; Pasternak, M.; Barrett, P. H.

    1980-07-01

    A recent Moessbauer study with Fe-57 in a solid hydrogen or hydrogen-argon matrix demonstrated the formation of an iron hydride molecule (FeH2) at 2.5-5 K. Following this and other studies, the possible existence of iron hydride molecules in interstellar clouds is proposed. In clouds, the iron hydrides FeH and FeH2 would be formed only on grains, by encounters of H atoms or H2 molecules with Fe atoms which are adsorbed on the grains. The other transition metals, Sc, Ti, V, Cr, Mn, Co, N, Cd and also Cu and Ca form hydrides of the type M-H, which could be responsible, at least in part, for the depletion of these metals in clouds.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan; Zhang, Weiguo; Qian, Yu

    This study investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn inPhragmites australisroot system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils.Phragmites australissamples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in the root epidermis and thatmore » other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  18. Anode materials for lithium ion batteries

    DOEpatents

    Abouimrane, Ali; Amine, Khalil

    2017-04-11

    An electrochemical device includes a composite material of general Formula (1-x)J-(x)Q wherein: J is a metal carbon alloy of formula Sn.sub.zSi.sub.z'Met.sub.wMet'.sub.w'C.sub.t; Q is a metal oxide of formula A.sub..gamma.M.sub..alpha.M'.sub..alpha.'O.sub..beta.; and wherein: A is Li, Na, or K; M and M' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; Met and Met' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; 0

  19. Importance of doping and frustration in itinerant Fe-doped Cr 2Al

    DOE PAGES

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr 2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr 1-xFe x) 2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing T N to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which T N gradually decreases followed by the appearance ofmore » a ferromagnetic state. Theoretical calculations explain that the Cr 2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr 2Al. In pure-phase Cr 2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr 2Al and Fe-doped Cr 2Al.« less

  20. Submicron-scale mineralogy of lithotypes and the implications for trace element associations: Blue Gem coal, Knox County, Kentucky

    DOE PAGES

    Hower, James C.; Berti, Debora; Hochella, Michael F.; ...

    2018-04-16

    Transmission electron microscopy accompanied by energy-dispersive spectroscopy and selected area electron diffraction of density-gradient separates from two lithotypes of the low-ash, low-sulfur Blue Gem coal, eastern Kentucky, revealed an array of previously unrecognized (in this coal, and arguable in most others) sub-micron minerals, some <10 nm in size. The first sample representing the 1.22–1.24 specific gravity fraction of the middle bench contains a mineral identified as a La-, Ce-, Nd-bearing monazite; other minerals with CrFe, CuFeS, FeZn-S, and Pb; and areas, probably comprising agglomerates of several grains, if not several minerals, with concentrations of Mg, Ca, Ti, Fe, Zn, Zr,more » and Mo. The second sample representing the 1.30–1.31 specific gravity fraction of the basal lithotype has aggregates of particles enriched in Mg, Ca, Ti, and Fe. Individual grains not specifically quantified include CrNiMnCuFeS, AgS, and CuS. Detailed investigation of one area (most of the variation within a <4 μm 2 region) demonstrates the presence of greenockite (CdS); minute phases containing NiCoGe and AgCdBi, the latter with a more evident S association than the former; metallic Bi; nisnite (Ni 3Sn); silver cadmium; manganosite (MnO); and siderite. Some minerals, such as the monazite, are most likely of detrital or tuffaceous origin. Many of the other assemblages could be of hydrothermal origin, a hypothesis supported by known regional geochemical and coal rank trends, but not previously demonstrated in mineral assemblages at the 10's of nm scale in this region.« less

  1. Submicron-scale mineralogy of lithotypes and the implications for trace element associations: Blue Gem coal, Knox County, Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hower, James C.; Berti, Debora; Hochella, Michael F.

    Transmission electron microscopy accompanied by energy-dispersive spectroscopy and selected area electron diffraction of density-gradient separates from two lithotypes of the low-ash, low-sulfur Blue Gem coal, eastern Kentucky, revealed an array of previously unrecognized (in this coal, and arguable in most others) sub-micron minerals, some <10 nm in size. The first sample representing the 1.22–1.24 specific gravity fraction of the middle bench contains a mineral identified as a La-, Ce-, Nd-bearing monazite; other minerals with CrFe, CuFeS, FeZn-S, and Pb; and areas, probably comprising agglomerates of several grains, if not several minerals, with concentrations of Mg, Ca, Ti, Fe, Zn, Zr,more » and Mo. The second sample representing the 1.30–1.31 specific gravity fraction of the basal lithotype has aggregates of particles enriched in Mg, Ca, Ti, and Fe. Individual grains not specifically quantified include CrNiMnCuFeS, AgS, and CuS. Detailed investigation of one area (most of the variation within a <4 μm 2 region) demonstrates the presence of greenockite (CdS); minute phases containing NiCoGe and AgCdBi, the latter with a more evident S association than the former; metallic Bi; nisnite (Ni 3Sn); silver cadmium; manganosite (MnO); and siderite. Some minerals, such as the monazite, are most likely of detrital or tuffaceous origin. Many of the other assemblages could be of hydrothermal origin, a hypothesis supported by known regional geochemical and coal rank trends, but not previously demonstrated in mineral assemblages at the 10's of nm scale in this region.« less

  2. Determination of trace elements in dolomite and gypsum by atomic absorption spectrometry: overcoming the matrix interference by flotation separation

    NASA Astrophysics Data System (ADS)

    Stafilov, Trajče; Zendelovska, Dragica; Pavlovska, Gorica; Čundeva, Katarina

    2002-05-01

    The interferences of Ca and Mg as matrix elements in dolomite and gypsum on Ag, Cd, Cr, Mn, Tl and Zn absorbances during their electrothermal atomic absorption spectrometric (ETAAS) determination are investigated. The results reveal that Ca and Mg do not interfere on Zn and Mn, tend to decrease absorbances of Ag, Cd and Cr, while Tl suffers the most significant influence. A flotation separation method is proposed to eliminate matrix interferences. Hydrated iron(III) oxide, Fe 2O 3· xH 2O, and iron(III) hexamethylenedithiocarbamate, Fe(HMDTC) 3, are applied as flotation collectors. The influence of hydrophobic dithiocarbamate anion, HMDTC, on flotation recoveries of each analyte is studied. The most suitable concentrations of dolomite and gypsum solutions for flotation are determined. To avoid flotation suppression due to the reaction of Ca 2+ and Mg 2+ with surfactant ions, a fit foaming agent was selected. The elements present in dolomite and gypsum as traces have been analyzed by ETAAS. Their ETAAS limits of detection following flotation are found to be 0.021 μg·g -1 for Ag, 0.019 μg·g -1 for Cd, 0.014 μg·g -1 for Cr and 0.11 μg·g -1 for Tl. The determination of Mn and Zn can be performed by flame AAS (FAAS). The limit of detection for Mn is 1.5 μg·g -1, while for Zn 0.8 μg·g -1.

  3. Microstructure and properties of FeSiCr/PA6 composites by injection molding using FeSiCr powders by phosphating and coupling treatment

    NASA Astrophysics Data System (ADS)

    Wang, Lulu; Qiao, Liang; Zheng, Jingwu; Cai, Wei; Ying, Yao; Li, Wangchang; Che, Shenglei; Yu, Jing

    2018-04-01

    FeSiCr/PA6 composites were prepared by injection molding using the FeSiCr powders modified by different phosphating agents and KH550 coupling agent. The resistivity, impact strength, magnetic permeability and magnetic loss of the FeSiCr/PA6 composites were measured. The morphologies of different FeSiCr powders and the FeSiCr/PA6 composites were also observed by scanning electron microscope (SEM). The results showed that 1-Hydroxyethylidene-1,1-diphosphonic acid, phytic acid and H3PO4 could improve the electrical resistivity of FeSiCr powders by forming the dense phosphating layer except diphenylphosphinic acid. However, the resistivity of FeSiCr/PA6 composites using the FeSiCr powders treated by all the four phosphating agents had no obvious increase though the phosphating layer on the surface of FeSiCr powder came into being. The nylon insulation layer had much stronger influence than the phosphating layer on electrical resistivity of the composites. After adding appropriate KH550 coupling agent, the impact strengths of FeSiCr/PA6 composites were significantly improved, which may be associated with the tiny gap between FeSiCr powder and PA6 matrix. The effects of the phosphating agents on the magnetic permeability and loss of the FeSiCr/PA6 were small and the mechanism were also discussed.

  4. Comparison of classic and microwave-assisted synthesis of benzo-thio crown ethers, and investigation of their ion pair extractions

    NASA Astrophysics Data System (ADS)

    Calisir, Umit; Çiçek, Baki

    2017-11-01

    Macrocyclic benzo-thio crown ethers and benzo-oxo crown ethers were prepared using an esterification-ring closing method. These compounds were synthesised using 2,2‧-dithiodibenzoyl chloride, and various glycols and dithiols, in the presence of pyridine base under a nitrogen atmosphere in chloroform. All reactions were performed under reflux condition with conventional heating and microwave (MW) irradiation. The synthesised macrocycles were characterised by FT-IR, 1H NMR, 13C NMR, LC-MS, and elemental analysis methods. Extraction studies have been performed on these original macrocycles using liquid-liquid ion-pair extraction with Li+, Na+, K+, Ni2+, Ca2+, Mg2+, Zn2+, Fe2+,Fe3+, Co3+, Pb2+, Cr3+, Ag+, and Cd2+.The KD, ext.%, ΔG and log KExt values were also calculated. While (U1-U7) ligands exhibits selectivity for Zn2+, Ag+, Ca2+, Pb2+, Fe3+, Cr3+, Co2+, Mg2+, Cd2+, and Ni2+ metal salts, they showed no selectivity for Li+, K+ and Na+ metal salts. Furthermore, Fe3+is the most selective cation for all ligands for competitive extraction. We also observed that microwave heating can have certain benefits over conventional ovens: reaction rate acceleration, milder reaction conditions, higher chemical yield, and lower energy usage. These ligands could be used as metal sensors, enzyme inhibitors, antimicrobial/antifungal agents, and in biological applications.

  5. First-principles investigation of Cr-doped Fe2B: Structural, mechanical, electronic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Wei, Xiang; Chen, Zhiguo; Zhong, Jue; Wang, Li; Wang, Yipeng; Shu, Zhongliang

    2018-06-01

    The structural, mechanical, electronic and magnetic properties of Fe8-xCrxB4 (x = 0, 0.25, 0.5, 1, 2, 3, 4, 5, 6, 7 and 8) have been investigated by first-principles calculation. It was found that the calculated structural parameters are well consistent with available experimental data. Moreover, all studied compounds are thermodynamically stable phases. On the whole, the moduli of the compounds firstly increase and then decrease with the increase of Cr concentration, whereas the variation of hardness exhibits more fluctuations. All Cr-doped Fe2B have better ductility than Fe2B except Fe2Cr6B4 and Fe5Cr3B4. Interestingly, Fe4Cr4B4 is of not only the slightly larger hardness, but also much better ductility than Fe2B. As the Cr concentration is lower than 20 wt%, the hardness of Cr-doped Fe2B slightly decreases with increasing Cr, whereas the sharply increased hardness of (Fe, Cr)2B in Fe-B alloys or boriding layer should be attributed to the multiple alloying effects resulting from Cr and the other alloying elements. The electronic structures revealed that the Fe-B and/or Cr-B bonds are mainly responsible for their mechanical properties, and the M-N (M = Fe or Cr, N = Fe or Cr) bonds in 〈2 2 0〉 and 〈1 1 3〉 orientations show covalent character. Additionally, the magnetic moments (Ms) of the compounds do not monotonically decrease with increasing Cr.

  6. Wild Plant Assessment for Heavy Metal Phytoremediation Potential along the Mafic and Ultramafic Terrain in Northern Pakistan

    PubMed Central

    Shah, Mohammad Tahir; Khan, Sardar; Saddique, Umar; Gul, Nida; Khan, Muhammad Usman; Malik, Riffat Naseem; Farooq, Muhammad; Naz, Alia

    2013-01-01

    This study investigates the wild plant species for their phytoremediation potential of macro and trace metals (MTM). For this purpose, soil and wild plant species samples were collected along mafic and ultramafic terrain in the Jijal, Dubair, and Alpuri areas of Kohistan region, northern Pakistan. These samples were analyzed for the concentrations of MTM (Na, K, Ca, Mg, Fe, Mn, Pb, Zn, Cd, Cu, Cr, Ni, and Co) using atomic absorption spectrometer (AAS-PEA-700). Soil showed significant (P < .001) contamination level, while plants had greater variability in metal uptake from the contaminated sites. Plant species such as Selaginella jacquemontii, Rumex hastatus, and Plectranthus rugosus showed multifold enrichment factor (EF) of Fe, Mn, Cr, Ni, and Co as compared to background area. Results revealed that these wild plant species have the ability to uptake and accumulate higher metals concentration. Therefore, these plant species may be used for phytoremediation of metals contaminated soil. However, higher MTM concentrations in the wild plant species could cause environmental hazards in the study area, as selected metals (Fe, Mn, Cr, Ni, Co, and Pb) have toxicological concerns. PMID:24078907

  7. Microstructure and abrasive wear properties of Fe-Cr-C hardfacing alloy cladding manufactured by Gas Tungsten Arc Welding (GTAW)

    NASA Astrophysics Data System (ADS)

    Chen, Jie-Hao; Hsieh, Chih-Chun; Hua, Pei-Shing; Chang, Chia-Ming; Lin, Chi-Ming; Wu, Paxon Ti-Yuan; Wu, Weite

    2013-01-01

    A series of Fe-Cr-C hardfacing alloys is deposited by gas tungsten arc welding and subjected to abrasive wear testing. Pure Fe with various amounts of CrC (Cr:C=4:1) powders are mixed as the fillers and used to deposit hardfacing alloys on low carbon steel. Depending on the various CrC additions to the alloy fillers, the claddings mainly contain hypoeutectic, near eutectic, or hypereutectic microstructures of austenite γ-Fe phase and (Cr,Fe)7C3 carbides on hardfacing alloys, respectively. When 30% CrC is added to the filler, the finest microstructure is achieved, which corresponds to the γ-Fe+(Cr,Fe)7C3 eutectic structure. With the addition of 35% and 40% CrC to the fillers, the results show that the cladding consists of the massive primary (Cr,Fe)7C3 as the reinforcing phase and interdendritic γ-Fe+(Cr,Fe)7C3 eutectics as the matrix. The (Cr,Fe)7C3 carbide-reinforced claddings have high hardness and excellent wear resistance under abrasive wear test conditions. Concerning the abrasive wear feature observable on the worn surface, the formation and fraction of massive primary (Cr,Fe)7C3 carbides predominates the wear resistance of hardfacing alloys. Abrasive particles result in continuous plastic grooves when the cladding has primary γ-Fe phase in a hypoeutectic structure.

  8. Changes in macrominerals, trace elements and pigments content during lettuce (Lactuca sativa L.) growth: influence of soil composition.

    PubMed

    Pinto, Edgar; Almeida, Agostinho A; Aguiar, Ana A R M; Ferreira, Isabel M P L V O

    2014-01-01

    Changes in macrominerals, trace elements and photosynthetic pigments were monitored at 5 stages of lettuce growth. Plants were grown in three experimental agriculture greenhouse fields (A1, A2 and A3). Soil composition was also monitored to understand its influence on lettuce composition. In general, the content of macrominerals, trace elements, chlorophylls and carotenoids decreased during lettuce growth and consequently, high nutritional value was observed at younger stages. A2 lettuces showed an increase of Fe, Al, Cr, V and Pb due to the different soil physicochemical parameters. Multiple linear regression analysis with stepwise variable selection, indicated that soil characteristics, namely, pH(CaCl2) for Fe and Cr, silt and fine-sand for Al and V, OM for Al and Pb, coarse-sand and CEC for Cr, had a key role determining element bioavailability and plant mineral content. Thus, lettuce nutritional value was strongly dependent of growth stage and soil characteristics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Assessment of heavy metal contamination in the sediments of Nansihu Lake Catchment, China.

    PubMed

    Liu, Enfeng; Shen, Ji; Yang, Liyuan; Zhang, Enlou; Meng, Xianghua; Wang, Jianjun

    2010-02-01

    At present, anthropogenic contribution of heavy metals far exceeds natural input in some aquatic sediment, but the proportions are difficult to differentiate due to the changes in sediment characters. In this paper, the metal (Al, Fe, K, Mg, Ca, Cr, Cu, Ni, and Zn) concentrations, grain size, and total organic carbon (TOC) content in the surface and core sediments of Nansihu Lake Catchment (the open lake and six inflow rivers) were determined. The chemical speciations of the metals (Al, Fe, Cr, Cu, Ni, and Zn) in the surface sediments were also analyzed. Approaches of factor analysis, normalized enrichment factor (EF) and the new non-residual fractions enrichment factor (K(NRF)) were used to differentiate the sources of the metals in the sediments, from detrital clastic debris or anthropogenic input, and to quantify the anthropogenic contamination. The results indicate that natural processes were more dominant in concentrating the metals in the surface and core sediments of the open lake. High concentration of Ca and deficiency of other metals in the upper layers of the sediment core were attributed to the input of carbonate minerals in the catchment with increasing human activities since 1980s. High TOC content magnified the deficiency of the metals. Nevertheless, the EF and K(NRF) both reveal moderate to significant anthropogenic contamination of Cr, Cu, Ni, and Zn in the surface sediments of Laoyun River and the estuary and Cr in the surface sediments of Baima River. The proportion of non-residual fractions (acid soluble, reducible, and oxidizable fractions) of Cr, Cu, Ni, and Zn in the contaminated sediments increased to 37-99% from the background levels less than 30%.

  10. Trace element composition and cathodoluminescence of kyanite and its petrogenetic implications

    NASA Astrophysics Data System (ADS)

    Müller, Axel; van den Kerkhof, Alfons M.; Selbekk, Rune S.; Broekmans, Maarten A. T. M.

    2016-09-01

    Kyanite crystals from fourteen localities worldwide were analysed for their abundances of the trace elements Na, Mg, K, Ca, Ti, V, Cr, Mn, and Fe and cathodoluminescence (CL) properties. Based on protolith type, metamorphic setting, and distinctive trace element fingerprints, a genetic classification of kyanite-bearing rocks is suggested: (A) Al-rich metasediments which commonly contain coarse-grained quartz-kyanite segregations; (B) metamorphosed granitic rocks, specifically granulites; (C) metamorphosed argillic alteration zones hosted originally in felsic igneous rocks; (D) metamorphosed argillic alteration zones hosted originally in mafic igneous rocks; and (E) metamorphosed mafic to ultramafic rocks, specifically eclogites. Vanadium and Cr concentrations reflect both protolith and host rock compositions and therefore may provide a geochemical fingerprint for the nature of the protolith. The incorporation of Fe into kyanite is largely controlled by oxygen fugacity during kyanite formation, and therefore, in most cases, its concentration cannot be related to that of the protolith. From our results, Ti concentration appears to be related to metamorphic grade, particularly formation temperature. If proven by further studies, Ti-in-kyanite may provide a useful geothermometer. Correlation of trace element abundances with CL spectra confirms that common red CL, which is composed of the spectral bands centred at 1.69 eV (734 nm), 1.75 eV (708 nm), and 1.80 eV (689 nm), is related to Cr3+ defects. CL spectra of most kyanites show in addition a low-intensity blue emission centred at 2.56 eV (485 nm). Correlation of the intensity of the blue emission with Ti suggests that it is related to or sensitized by Ti4+ or Ti3+ defects. Kyanites with >3200 µgg-1 Fe show generally no detectable CL due to the CL-quenching effect of Fe2+. Our findings provide new criteria in the exploration for and quality assessment of new kyanite deposits. The Ti content, one of the critical contaminants of kyanite products, besides Fe, Ca, and Mg, appears predictable from the observed correlation of Ti with formation temperature. Iron will be hard to predict because its incorporation is mainly controlled by the oxidizing conditions during kyanite formation and the estimation of these conditions requires advanced analytical methods. Magnesium and Ca are consistently low in all investigated samples. From a regional exploration viewpoint, group C and D kyanites have the lowest Ti and relative low Fe and, therefore, will be most refractory. Due to their attractive blue colour, kyanite-bearing rocks of group C have potential as ornamental or dimension stone.

  11. Effects of activating fluxes on the weld penetration and corrosion resistant property of laser welded joint of ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    This study was based on the ferritic stainless steel SUS430. Under the parallel welding conditions, the critical penetration power values (CPPV) of 3mm steel plates with different surface-coating activating fluxes were tested. Results showed that, after coating with activating fluxes, such as ZrO2, CaCO3, CaF2 and CaO, the CPPV could reduce 100~250 W, which indicating the increases of the weld penetrations (WP). Nevertheless, the variation range of WP with or without activating fluxes was less than 16.7%. Compared with single-component ones, a multi-component activating flux composed of 50% ZrO2, 12.09% CaCO3, 10.43% CaO, and 27.49% MgO was testified to be much more efficient, the WP of which was about 2.3-fold of that without any activating fluxes. Furthermore, a FeCl3 spot corrosion experiment was carried out with samples cut from weld zone to test the effects of different activating fluxes on the corrosion resistant (CR) property of the laser welded joints. It was found that all kinds of activating fluxes could improve the CR of the welded joints. And, it was interesting to find that the effect of the mixed activating fluxes was inferior to those single-component ones. Among all the activating fluxes, the single-component of CaCO3 seemed to be the best in resisting corrosion. By means of Energy Dispersive Spectrometer (EDS) testing, it was found that the use of activating fluxes could effectively restrain the loss of Cr element of weld zone in the process of laser welding, thus greatly improving the CR of welded joints.

  12. Secondary metabolites and metal content dynamics in Teucrium montanum L. and Teucrium chamaedrys L. from habitats with serpentine and calcareous substrate.

    PubMed

    Zlatić, Nenad M; Stanković, Milan S; Simić, Zoran S

    2017-03-01

    The purpose of this comparative analysis is the determination of the total quantity of metals (Mg, Ca, K, Ni, Fe, Mn, Zn, Cu, Cr and Pb) in soil samples, above ground plant parts and tea made of plants Teucrium montanum and T. chamaedrys from different serpentine and calcareous habitats as well as of the total quantity of phenolic compounds and antioxidant activity. The obtained results showed that the quantities of certain metals (Mg, Fe, Ni and Mn) in the soil from the serpentine habitats were greater in comparison with other metals (Ca, Zn and Pb) which were more frequently found in the soil from the calcareous habitats. The results demonstrated that the analysed plant samples from the serpentine habitats contained higher quantity of Fe, Ni and Cr as opposed to the plant samples from the calcareous habitats which contained greater quantity of Ca and Zn. Although the studied species accumulate analysed metals in different quantities, depending on the substrate type, they are not hyperaccumulators of these metals. The use of these species from serpentine habitats for tea preparation is safe to a great extent, because in spite of the determined metal absorption by plant organs, the tea does not contain dangerous quantity of heavy metals. The results showed greater total quantity of phenolic compounds and the higher level of antioxidant activity in the plant samples from serpentine habitats in comparison with the samples from calcareous habitats, which is an indicator of one of the mechanisms of adaptation to the serpentine habitat conditions.

  13. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.

    PubMed

    Joe-Wong, Claresta; Brown, Gordon E; Maher, Kate

    2017-09-05

    Hexavalent chromium is a water-soluble pollutant, the mobility of which can be controlled by reduction of Cr(VI) to less soluble, environmentally benign Cr(III). Iron(II/III)-bearing clay minerals are widespread potential reductants of Cr(VI), but the kinetics and pathways of Cr(VI) reduction by such clay minerals are poorly understood. We reacted aqueous Cr(VI) with two abiotically reduced clay minerals: an Fe-poor montmorillonite and an Fe-rich nontronite. The effects of ionic strength, pH, total Fe content, and the fraction of reduced structural Fe(II) [Fe(II)/Fe(total)] were examined. The last variable had the largest effect on Cr(VI) reduction kinetics: for both clay minerals, the rate constant of Cr(VI) reduction varies by more than 3 orders of magnitude with Fe(II)/Fe(total) and is described by a linear free energy relationship. Under all conditions examined, Cr and Fe K-edge X-ray absorption near-edge structure spectra show that the main Cr-bearing product is a Cr(III)-hydroxide and that Fe remains in the clay structure after reacting with Cr(VI). This study helps to quantify our understanding of the kinetics of Cr(VI) reduction by Fe(II/III)-bearing clay minerals and may improve predictions of Cr(VI) behavior in subsurface environments.

  14. Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: Insights into magma degassing and fumarolic processes

    NASA Astrophysics Data System (ADS)

    Symonds, Robert B.; Reed, Mark H.; Rose, William I.

    1992-02-01

    Thermochemical modeling predicts that trace elements in the Augustine gas are transported from near-surface magma as simple chloride (NaCl, KCl, FeCl 2, ZnCl 2, PbCl 2, CuCl, SbCl 3, LiCl, MnCl 2, NiCl 2, BiCl, SrCl 2), oxychloride (MoO 2Cl 2), sulfide (AsS), and elemental (Cd) gas species. However, Si, Ca, Al, Mg, Ti, V, and Cr are actually more concentrated in solids, beta-quartz (SiO 2), wollastonite (CaSiO 3), anorthite (CaAl 2Si 2O 8), diopside (CaMgSi 2O 6), sphene (CaTiSiO 5), V 2O 3(c), and Cr 2O 3(c), respectively, than in their most abundant gaseous species, SiF 4, CaCl 2, AlF 2O, MgCl 2 TiCl 4, VOCl 3, and CrO 2Cl 2. These computed solids are not degassing products, but reflect contaminants in our gas condensates or possible problems with our modeling due to "missing" gas species in the thermochemical data base. Using the calculated distribution of gas species and the COSPEC SO 2 fluxes, we have estimated the emission rates for many species (e.g., COS, NaCl, KCl, HBr, AsS, CuCl). Such forecasts could be useful to evaluate the effects of these trace species on atmospheric chemistry. Because of the high volatility of metal chlorides (e.g., FeCl 2, NaCl, KCl, MnCl 2, CuCl), the extremely HCl-rich Augustine volcanic gases are favorable for transporting metals from magma. Thermochemical modeling shows that equilibrium degassing of magma near 870°C can account for the concentrations of Fe, Na, K, Mn, Cu, Ni and part of the Mg in the gases escaping from the dome fumaroles on the 1986 lava dome. These calculations also explain why gases escaping from the lower temperature but highly oxidized moat vents on the 1976 lava dome should transport less Fe, Na, K, Mn and Ni, but more Cu; oxidation may also account for the larger concentrations of Zn and Mo in the moat gases. Nonvolatile elements (e.g., Al, Ca, Ti, Si) in the gas condensates came from eroded rock particles that dissolved in our samples or, for Si, from contamination from the silica sampling tube. Only a very small amount of rock contamination occurred (water/rock ratios between 10 4 and 10 6). Erosion is more prevalent in the pyroclastic flow fumaroles than in the summit vents, reflecting physical differences in the fumarole walls: ash vs. lava. Trace element contents of volcanic gases show enormous variability because of differences in the intensive parameters of degassing magma and variable amounts of wall rock erosion in volcanic fumaroles.

  15. Atomistic simulations of stainless steels: a many-body potential for the Fe-Cr-C system.

    PubMed

    Henriksson, K O E; Björkas, C; Nordlund, K

    2013-11-06

    Stainless steels found in real-world applications usually have some C content in the base Fe-Cr alloy, resulting in hard and dislocation-pinning carbides-Fe3C (cementite) and Cr23C6-being present in the finished steel product. The higher complexity of the steel microstructure has implications, for example, for the elastic properties and the evolution of defects such as Frenkel pairs and dislocations. This makes it necessary to re-evaluate the effects of basic radiation phenomena and not simply to rely on results obtained from purely metallic Fe-Cr alloys. In this report, an analytical interatomic potential parameterization in the Abell-Brenner-Tersoff form for the entire Fe-Cr-C system is presented to enable such calculations. The potential reproduces, for example, the lattice parameter(s), formation energies and elastic properties of the principal Fe and Cr carbides (Fe3C, Fe5C2, Fe7C3, Cr3C2, Cr7C3, Cr23C6), the Fe-Cr mixing energy curve, formation energies of simple C point defects in Fe and Cr, and the martensite lattice anisotropy, with fair to excellent agreement with empirical results. Tests of the predictive power of the potential show, for example, that Fe-Cr nanowires and bulk samples become elastically stiffer with increasing Cr and C concentrations. High-concentration nanowires also fracture at shorter relative elongations than wires made of pure Fe. Also, tests with Fe3C inclusions show that these act as obstacles for edge dislocations moving through otherwise pure Fe.

  16. Atomistic simulations of stainless steels: a many-body potential for the Fe-Cr-C system

    NASA Astrophysics Data System (ADS)

    Henriksson, K. O. E.; Björkas, C.; Nordlund, K.

    2013-11-01

    Stainless steels found in real-world applications usually have some C content in the base Fe-Cr alloy, resulting in hard and dislocation-pinning carbides—Fe3C (cementite) and Cr23C6—being present in the finished steel product. The higher complexity of the steel microstructure has implications, for example, for the elastic properties and the evolution of defects such as Frenkel pairs and dislocations. This makes it necessary to re-evaluate the effects of basic radiation phenomena and not simply to rely on results obtained from purely metallic Fe-Cr alloys. In this report, an analytical interatomic potential parameterization in the Abell-Brenner-Tersoff form for the entire Fe-Cr-C system is presented to enable such calculations. The potential reproduces, for example, the lattice parameter(s), formation energies and elastic properties of the principal Fe and Cr carbides (Fe3C, Fe5C2, Fe7C3, Cr3C2, Cr7C3, Cr23C6), the Fe-Cr mixing energy curve, formation energies of simple C point defects in Fe and Cr, and the martensite lattice anisotropy, with fair to excellent agreement with empirical results. Tests of the predictive power of the potential show, for example, that Fe-Cr nanowires and bulk samples become elastically stiffer with increasing Cr and C concentrations. High-concentration nanowires also fracture at shorter relative elongations than wires made of pure Fe. Also, tests with Fe3C inclusions show that these act as obstacles for edge dislocations moving through otherwise pure Fe.

  17. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction

    DOE PAGES

    Tong, Yang; Jin, Ke; Bei, Hongbin; ...

    2018-05-26

    Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.

  18. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Yang; Jin, Ke; Bei, Hongbin

    Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.

  19. Single agglutinates: A comparative study of compositions of agglutinitic glass, whole-grain, bulk soil, and FMR

    NASA Technical Reports Server (NTRS)

    Basu, A.; Robinson, R.; Mckay, D. S.; Blanchard, D. P.; Morris, R. V.; Wentworth, Susan J.

    1994-01-01

    Previous workers on single agglutinates have variously interpreted the composition of agglutinitic glass to represent impact melts of (1) bulk soil, (2) mixed components in finer sizes, and (3) microtargets. Separately, Papike has argued in favor of fusion of the finest fraction of bulk soils. Thirty-four single agglutinates were hand-picked from the mature Apollo 16 soil 61181 (I(sub s)/FeO = 82) and the FMR and chemical composition (INAA for Fe, Sc, Sm, Co, Ni, and Cr) of each agglutinate particle were measured. Thirteen of these single agglutinates were selected for electron beam microanalysis and imaging. Less than 1 micron spots were analyzed (for Na, Mg, Al, Si, P, S, K, Ca, Ti, Cr, Mn, Fe, Ni, and Ba) on pure glassy areas (approximately ten in each particle) selected on the basis of optical and BSE images (avoiding all clasts and inclusions) with an electron microprobe to obtain average glass compositions of each single agglutinate.

  20. Magnetism and electronic structure of CoFeCrX (X = Si, Ge) Heusler alloys

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Kharel, P.; Lukashev, P.; Valloppilly, S.; Staten, B.; Herran, J.; Tutic, I.; Mitrakumar, M.; Bhusal, B.; O'Connell, A.; Yang, K.; Huh, Y.; Skomski, R.; Sellmyer, D. J.

    2016-08-01

    The structural, electronic, and magnetic properties of CoFeCrX (X = Si, Ge) Heusler alloys have been investigated. Experimentally, the alloys were synthesized in the cubic L21 structure with small disorder. The cubic phase of CoFeCrSi was found to be highly stable against heat treatment, but CoFeCrGe disintegrated into other new compounds when the temperature reached 402 °C (675 K). Although the first-principle calculation predicted the possibility of tetragonal phase in CoFeCrGe, the tetragonal phase could not be stabilized experimentally. Both CoFeCrSi and CoFeCrGe compounds showed ferrimagnetic spin order at room temperature and have Curie temperatures (TC) significantly above room temperature. The measured TC for CoFeCrSi is 790 K but that of CoFeCrGe could not be measured due to its dissociation into new compounds at 675 K. The saturation magnetizations of CoFeCrSi and CoFeCrGe are 2.82 μB/f.u. and 2.78 μB/f.u., respectively, which are close to the theoretically predicted value of 3 μB/f.u. for their half-metallic phases. The calculated band gaps for CoFeCrSi and CoFeCrGe are, respectively, 1 eV and 0.5 eV. These materials have potential for spintronic device applications, as they exhibit half-metallic electronic structures with large band gaps, and Curie temperatures significantly above room temperature.

  1. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles.

    PubMed

    Li, Yujie; Wang, Wanyu; Zhou, Liqiang; Liu, Yuanyuan; Mirza, Zakaria A; Lin, Xiang

    2017-02-01

    Carboxymethyl cellulose (CMC) stabilized microscale iron sulfide (FeS) particles were synthesized and applied to remediate hexavalent chromium (Cr(VI)) spiked soil. The effects of parameters including dosage of FeS particles, soil moisture, and natural organic matter (NOM) in soil were investigated with comparison to iron sulfate (FeSO 4 ). The results show that the stabilized FeS particles can reduce Cr(VI) and immobilize Cr in soil quickly and efficiently. The soil moisture ranging from 40% to 70% and NOM in soil had no significant effects on Cr(VI) remediation by FeS particles. When molar ratio of FeS to Cr(VI) was 1.5:1, about 98% of Cr(VI) in soil was reduced by FeS particles in 3 d and Cr(VI) concentration decreased from 1407 mg kg -1 to 16 mg kg -1 . The total Cr and Cr(VI) in Toxicity Characteristic Leaching Procedure (TCLP) leachate were reduced by 98.4% and 99.4%, respectively. In FeS particles-treated soil, the exchangeable Cr fraction was mainly converted to Fe-Mn oxides bound fraction because of the precipitation of Cr(III)-Fe(III) hydroxides. The physiologically based extraction test (PBET) bioaccessibility of Cr was decreased from 58.67% to 6.98%. Compared to FeSO 4 , the high Cr(VI) removal and Cr immobilization efficiency makes prepared FeS particles a great potential in field application of Cr(VI) contaminated soil remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Complex, Precision Cast Columbium Alloy Gas Turbine Engine Nozzles Coated to Resist Oxidation.

    DTIC Science & Technology

    1980-04-01

    Microstructures of Sprayed Specimens 64 Table 19 NS-4 Coated C129Y Alloy Specimens Weight Bisque Weight Sintered Weight Silicided Weight Pre-Oxidized...choice of another alloy , while perhaps assisting in the foundry process , would not have yielded a mechanical property data base with advantage over...Mo 250 ppm max; Fe 30 ppm max; Al , Ca, C, Si, Cr, Ni, Cu , Mn, Mg and Sn 10 ppm max each). Molybdenum វim powder (02 2000 ppm max; W 250 ppm max; Fe

  3. Presumed Multiple Metasomatism underneath the Colorado Plateau; Decoding from Chemistry and Inclusion/Lamella Mineralogy of Diverse Garnets from the Garnet Ridge, Northern Arizona

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Ogasawara, Y.

    2015-12-01

    Various garnets containing the information on mantle petrology and related metasomatism occur at the Garnet Ridge, Colorado Plateau. The origins of garnets range from deep mantle to shallow continental crust. These garnets were delivered by kimberlitic diatreme of 30 Ma (Smith et al. 2004). We have classified the garnets into 10 groups (A to J, see figure) by naked eye observation, major chemistry, minor Na-Ti-P, inclusion/lamella mineralogy. Among them, groups A to D are of mantle origin, E to G of subducted oceanic crust origin, and H to J of continental crust origin. We summarized results as in the followings. A: Cr and pyrope-rich garnet has Cr2O3(0.8-6.3 wt.%) and inclusions of Ol, Cpx, Opx, Ti-Chu/Chn and carbonates, indicating carbonated garnet lherzolites as host. Cr contents negatively correlates with Na-Ti-P contents and occurrence of exsolved Rt, Ilm and crichtonite. This indicates Cr-rich end-member is the most "primitive" mantle garnet before metasomatism. B: Pyrope-rich reddish brown garnet of peridotitic origins was subdivided into 4 subgroups (B1 to B4, see figure). Compositional range in Ca-Mg-Fe triangle expands to Fe-rich side from group A. Exsolved Na-bearing amphibole and inclusions of Ap, carbonates and fluid were identified. These indicate metasomatism of group A. C: Garnet megacryst is coarse-grained garnet (2-10 cm across) with crystal faces. This garnet has wide chemical variation plotted in the center area of Ca-Mg-Fe triangle. D: Garnet aggregate has similar chemistry of group C and is composed of several grains. Grain boundaries of garnet were recognized by Rt, Ilm and other minerals and oscillatory zonings of Ca, Mg, Fe and Na-Ti-P. Fluid inclusions of groups C and D suggest these garnets might crystalized from fluid. E: Garnet in eclogite and F: Garnet in metasomatized eclogite are xenolith samples (the Fallaron Plate origin?). Aggregate of Zo+Ab contained in group E indicates decomposed precursor lawsonite inclusion. G: Quartz lamella-bearing garnet (relatively high Na2O: 0.03-0.06 wt.%) contains inclusions of Omp and Zrn and oriented lamellae of Qtz, Rt and Ap. These suggest eclogitic origins deeper than groups E and F. Above features in garnets from the Garnet Ridge constrain their formations by multistage and wide range intensity of metasomatisms underneath the Colorado Plateau.

  4. The Reduction of Cr(VI) to Cr(III) by Natural Fe-Bearing Minerals: A Synchrotron XAS Study

    NASA Astrophysics Data System (ADS)

    Xu, H.; Guo, X.; Ding, M.; Migdissov, A. A.; Boukhalfa, H.; Sun, C.; Roback, R. C.; Reimus, P. W.; Katzman, D.

    2017-12-01

    Cr(VI) in the form of CrO42- is a pollutant species in groundwater and soils that can pose health and environmental problems. Cr(VI) associated with use as a corrosion inhibitor at a power plant from 1956-1972 is present in a deep groundwater aquifer at Los Alamos National Laboratory. A potential remediation strategy for the Cr contamination is reduction of Cr(VI) to Cr(III) via the acceptance of electrons from naturally occurring or induced Fe(II) occurring in Fe-bearing minerals. In this work, using synchrotron-based X-ray techniques, we investigated the Cr reduction behavior by Fe-bearing minerals from outcrop and core samples representative of the contaminated portion of the aquifer. Samples were exposed to solutions with a range of known Cr (VI) concentrations. XANES and EXAFS spectra showed that all the Cr(VI) had been reduced to Cr(III), and micro XRF mapping revealed close correlation of Cr and Fe distribution, implying that Fe(II) in minerals reduced Cr(VI) in the solution. Similar behavior was observed from in-situ XANES measurements on Cr reduction and adsorption by mineral separates from the rock samples in Cr(VI)-bearing solutions. In addition, to obtain reference parameters for interpreting the data of natural samples, we collected Cr and Fe EXAFS spectra of Cr(III)-Fe(III) hydroxide solid solutions, which show progressive changes in the local structure around Cr and Fe over the whole series.

  5. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark

    2013-01-01

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr2O3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (rv25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of r-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs. The giantmore » magnetoresistance (GMR) effect,1,2 where an antiferromagnetic (AFM) exchange coupling exists between two ferromagnetic (FM) layers separated by a certain type of magnetic or non-magnetic spacer,3 has significant potential for application in the magnetic recording industry. Soon after the discovery of the GMR, the magnetic properties of multilayer systems (FeCr) became a subject of intensive study. The application of bulk iron-chromium (Fe-Cr) alloys has been of great interest, as these alloys exhibit favorable prop- erties including corrosion resistance, high strength, hardness, low oxidation rate, and strength retention at elevated temper- ature. However, the structural and magnetic properties of Cr-doped Fe nanoclusters (NCs) have not been investigated in-depth. Of all NCs, Fe-based clusters have unique magnetic properties as well as favorable catalytic characteristics in reactivity, selectivity, and durability.4 The incorporation of dopant of varied type and concentration in Fe can modify its chemical ordering, thereby optimizing its electrical, optical, and magnetic properties and opening up many new applications. The substitution of an Fe atom (1.24 A°) by a Cr atom (1.25 A° ) can easily modify the magnetic properties, since (i) the curie temperature (Tc ) of Fe is 1043 K, while Cr is an itinerant AFM with a bulk Neel temperature TN =311 K, and (ii) Fe and Cr share the same crystal structure (bcc) with only 0.5% difference between their lattice constants.« less

  6. Influence of marine, terrestrial and anthropogenic sources on ionic and metallic composition of rainwater at a suburban site (northwest coast of Spain)

    NASA Astrophysics Data System (ADS)

    Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; Moscoso-Pérez, Carmen; Blanco-Heras, Gustavo; Turnes-Carou, Isabel; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío

    2014-05-01

    In the present research, the rainwater chemistry of soluble (SF) and non-soluble (NSF) fractions is studied over a one a half year period (from March 2011 to August 2012) at a suburban site (Oleiros, A Coruña, Spain). The monthly rainfall in this region during the studied period ranged from 10 to 137 mm, while the NSF ranged from 0.9 to 54 mg L-1. More rainfall occurs within October-January. Eighteen samples, which provide information pertaining to the monthly variation in chemistry, were analyzed. Trace metals (Al, As, Ba, Co, Cu, Cr, Fe, Mn, Ni, Pb, Sr, V, Zn) were enclosed in the study of both fractions of the rainwater. Major inorganic ions (Cl-, NO3-, SO42-, Na+, K+, Ca2+, Mg2+ and NH4+) were also enclosed in the study of the SF of the rainwater. After partition coefficients analysis, univariate and principal components analysis (PCA) and air mass back trajectories analysis, three sources were found for the ionic and metal composition of the SF of rainwater; terrestrial (Ca2+, non sea salt SO42-, Al and Fe), marine (Mg2+, Na+, Cl-) and anthropogenic (K+, NH4+, NO3-, Fe, Mn, Pb, Sr, V and Zn). Results also suggest ubiquitous sources for Ba, Co, Cu, Cr and Ni. One source (terrestrial) was found for NSF of rainwater.

  7. Structural and magnetic transition in stainless steel Fe-21Cr-6Ni-9Mn up to 250 GPa

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Hou, Qi-Yue; Zhang, Yi; Jing, Qiu-Min; Wang, Zhi-Gang; Bi, Yan; Xu, Ji-An; Li, Xiao-Dong; Li, Yan-Chun; Liu, Jing

    2015-06-01

    Stainless steel Fe-21Cr-6Ni-9Mn (SS 21-6-9), with ˜21% Cr, ˜6% Ni, and ˜9% Mn in weight percentage, has wide applications in extensive fields. In the present study, SS 21-6-9 is compressed up to 250 GPa, and its crystal structures and compressive behaviors are investigated simultaneously using the synchrotron angle-dispersive x-ray diffraction technique. The SS 21-6-9 undergoes a structural phase transition from fcc to hcp structure at ˜12.8 GPa with neglectable volume collapse within the determination error under the quasi-hydrostatic environment. The hcp structure remains stable up to the highest pressure of 250 GPa in the present experiments. The antiferromagnetic-to-nonmagnetic state transition of hcp SS 21-6-9 with the changes of inconspicuous density and structure, is discovered at ˜50 GPa, and revealed by the significant change in c/a ratio. The hcp SS-21-6-9 is compressive anisotropic: it is more compressive in the c-axis direction than in the a-axis direction. Both the equations of states (EOSs) of fcc and hcp SS 21-6-9, which are in accordance with those of fcc and hcp pure irons respectively, are also presented. Furthermore, the c/a ratio of hcp SS 21-6-9 at infinite compression, R∞, is consistent with the values of pure iron and Fe-10Ni alloy. Project supported by the National Natural Science Foundation of China (Grant Nos. U1230201, 11274281, and 11304294), the Industrial Technology Development Program, China (Grant No. 9045140509), and the Funds from the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N03 and KJCX2-SW-N20).

  8. Cr(VI) removal by FeS-coated alumina, silica, and natural sand

    NASA Astrophysics Data System (ADS)

    Park, M.; Lee, S.; Jeong, H. Y.

    2014-12-01

    Removal of Cr(VI) was investigated using mackinawite (FeS)-coated mineral sorbents under anoxic conditions. The sorbents included alumina (Al), silica (WS), and natural sand (NS). By analysis of both solution and solid phases, all FeS-coated sorbents were found to reduce Cr(VI) into Cr(III). The sorption extent and mechanism of Cr(VI) strongly depended on the pH conditions. Only at pH 4.5, significant amounts of the dissolved Cr remained in the solution. Titration of dissolved Cr(III) and Fe(III) by NaOH solutions indicated that no bulk-phase precipitation occurred at pH 4.5. Also, the removal of Cr(VI) at pH 4.5 was the greatest by FeS-coated NS. Consistent with these, Cr-K edge EXAFS revealed that Cr was removed by FeS-coated NS via surface precipitation, and that it was immobilized by FeS-coated WS and Al by forming surface clusters. Regardless of FeS-coated sorbents, at pH 7.0 and pH 9.5, the initially added Cr(VI) was quantitatively removed from the solution phase. By EXAFS analysis, the Cr sorption by FeS-coated Al was mainly due to the bulk-phase precipitation of Cr(OH)3(s) or [Cr, Fe](OH)3(s). In case of FeS-coated WS and NS, the short Cr-Cr distance (~2.6 Å) at pH 7.0 and pH 9.5 was not simply accounted for by the bulk precipitation as either hydroxide (rCr-Cr ~ 3.0 Å), and it would rather result from the surface precipitation. Such a difference in the coordination structure among FeS-coated sorbents was likely due to in the lower surface area of the former available for the surface precipitation.

  9. Removal of hexavalent chromium in soil and groundwater by supported nano zero-valent iron on silica fume.

    PubMed

    Li, Yongchao; Jin, Zhaohui; Li, Tielong; Li, Shujing

    2011-01-01

    Silica fume supported-Fe(0) nanoparticles (SF-Fe(0)) were prepared using commercial silica fume as a support. The feasibility of using this SF-Fe(0) for reductive immobilization of Cr(VI) was investigated through batch tests. Compared with unsupported Fe(0), SF-Fe(0) was significantly more active in Cr(VI) removal especially in 84 wt% silica fume loading. Silica fume had also been found to inhibit the formation of Fe(III)/Cr(III) precipitation on Fe nanoparticles' surface, which was increasing the deactivation resistance of iron. Cr(VI) was removed through physical adsorption of Cr(VI) onto the SF-Fe(0) surface and subsequent reduction of Cr(VI) to Cr(III). The rate of reduction of Cr(VI) could be expressed by pseudo first-order reaction kinetics. The rate constant increased with the increase in iron loading but decreased with the increase in initial Cr(VI) concentration. Furthermore, column tests showed that the SF-Fe(0) could be readily transported in model soil.

  10. Microstructural Evolution of Hypoeutectic, Near-Eutectic, and Hypereutectic High-Carbon Cr-Based Hard-Facing Alloys

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Ming; Chang, Chia-Ming; Chen, Jie-Hao; Hsieh, Chih-Chun; Wu, Weite

    2009-05-01

    A series of high-carbon Cr-based hard-facing alloys were successfully fabricated on a substrate of 0.45 pct C carbon steel by gas tungsten arc welding (GTAW) process using various alloy fillers with chromium and chromium carbide, CrC (Cr:C = 4:1) powders. These claddings were designed to observe hypoeutectic, near-eutectic, and hypereutectic structures with various (Cr,Fe)23C6 and (Cr,Fe)7C3 carbides at room temperature. According to X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and optical microscopy (OM), in 3.8 pct C cladding, the microstructure consisted of the primary carbides with outer shells (Cr,Fe)23C6 surrounding (Cr,Fe)7C3 cores and [ α + (Cr,Fe)23C6] eutectic structures. In 5.9 pct C cladding, the composite comprised primary (Cr,Fe)7C3 as the reinforcing phase and [α + (Cr,Fe)7C3] eutectic structures as matrix. Various morphologies of carbides were found in primary and eutectic (Cr,Fe)7C3 carbides, which included bladelike and rodlike (with a hexagonal cross section). The 5.9C cladding with great amounts of primary (Cr,Fe)7C3 carbides had the highest hardness (approximately HRC 63.9) of the all conditions.

  11. Petrology of chromite in ureilites: Deconvolution of primary oxidation states and secondary reduction processes

    NASA Astrophysics Data System (ADS)

    Goodrich, Cyrena Anne; Harlow, George E.; Van Orman, James A.; Sutton, Stephen R.; Jercinovic, Michael J.; Mikouchi, Takashi

    2014-06-01

    Ureilites are ultramafic achondrites thought to be residues of partial melting on a carbon-rich asteroid. They show a trend of FeO-variation (olivine Fo from ∼74 to 95) that suggests variation in oxidation state. Whether this variation was established during high-temperature igneous processing on the ureilite parent body (UPB), or preserved from nebular precursors, is a subject of debate. The behavior of chromium in ureilites offers a way to assess redox conditions during their formation and address this issue, independent of Fo. We conducted a petrographic and mineral compositional study of occurrences of chromite (Cr-rich spinel) in ureilites, aimed at determining the origin of the chromite in each occurrence and using primary occurrences to constrain models of ureilite petrogenesis. Chromite was studied in LEW 88774 (Fo 74.2), NWA 766 (Fo 76.7), NWA 3109 (Fo 76.3), HaH 064 (Fo 77.5), LAP 03587 (Fo 74.9), CMS 04048 (Fo 76.4), LAP 02382 (Fo 78.6) and EET 96328 (Fo 85.2). Chromite occurs in LEW 88774 (∼5 vol.%), NWA 766 (<1 vol.%), NWA 3109 (<1 vol.%) and HaH 064 (<1 vol.%) as subhedral to anhedral grains comparable in size (∼30 μm to 1 mm) and/or textural setting to the major silicates (olivine and pyroxenes[s]) in each rock, indicating that it is a primary phase. The most FeO-rich chromites in these sample (rare grain cores or chadocrysts in silicates) are the most primitive compositions preserved (fe# = 0.55-0.6; Cr# varying from 0.65 to 0.72 among samples). They record olivine-chromite equilibration temperatures of ∼1040-1050 °C, reflecting subsolidus Fe/Mg reequilibration during slow cooling from ∼1200 to 1300 °C. All other chromite in these samples is reduced. Three types of zones are observed. (1) Inclusion-free interior zones showing reduction of FeO (fe# ∼0.4 → 0.28); (2) Outer zones showing further reduction of FeO (fe# ∼0.28 → 0.15) and containing abundant laths of eskolaite-corundum (Cr2O3-Al2O3); (3) Outermost zones showing extreme reduction of both FeO (fe# <0.15) and Cr2O3 (Cr# as low as 0.2). The grains are surrounded by rims of Si-Al-rich glass, graphite, Fe, Cr-carbides ([Fe,Cr]3C and [Fe,Cr]7C3), Cr-rich sulfides (daubréelite and brezinaite) and Cr-rich symplectic bands on adjacent silicates. Chromite is inferred to have been reduced by graphite, forming eskolaite-corundum and carbides as byproducts, during impact excavation. This event involved initial elevation of T (to 1300-1400 °C), followed by rapid decompression and drop in T (to <700 °C) at 1-20 °C/h. The kinetics of reduction of chromite is consistent with this scenario. The reduction was facilitated by silicate melt surrounding the chromites, which was partly generated by shock-melting of pyroxenes. Symplectic bands, consisting of fine-scale intergrowths of Ca-pyroxene, chromite and glass, formed by reaction between the Cr-enriched melt and adjacent silicates. Early chromite also occurs in a melt inclusion in olivine in HaH 064 and in a metallic spherule in olivine in LAP 02382. LAP 03587 and CMS 04048 contain ⩽μm-sized chromite + pyroxene symplectic exsolutions in olivine, indicating high Cr valence in the primary olivine. EET 96328 contains a round grain of chromite that could be a late-crystallizing phase. Tiny chromite grains in melt inclusions in EET 96328 formed in late, closed-system reactions. For 7 of the 8 ureilites we conclude that the relatively oxidizing conditions evidenced by the presence of primary or early chromite pertain to the period of high-T igneous processing. The observation that such conditions are recorded almost exclusively in low-Fo samples supports the interpretation that the ureilite FeO-variation was established during igneous processing on the UPB.

  12. Lattice relations and solidification of the complex regular eutectic (Cr,Fe)-(Cr,Fe)23C6

    NASA Astrophysics Data System (ADS)

    Lai, Hsuan-Han; Hsieh, Chih-Chun; Lin, Chi-Ming; Wu, Weite

    2017-05-01

    The eutectic (Cr,Fe)-(Cr,Fe)23C6 showed a triaxial fishbone structure and could be categorized as a "complex regular structure". In this study, the lattice relations of the fishbone (Cr,Fe)23C6 were examined and the solidification process was observed using a transmission electron microscope and a confocal laser scanning microscope. For one of the three fish bones in a eutectic cell, parallel (Cr,Fe)23C6 lamellas at one side of the spine had the same lattice direction, as did those in the (Cr,Fe) phase. The lattices of neighboring (Cr,Fe)23C6 and (Cr,Fe) phases were not coherent. Lamellar (Cr,Fe)23C6 on opposite sides of a spine had different lattice directions, and their lattice boundary was in the spine. By using the confocal laser scanning microscope, the solidification of lamellar eutectic structure could be observed. At the low cooling rate of 5 o C·min-1, parallel lamellas would grow thick blocks instead of thin plates. To obtain a thin lamellar eutectic structure, the cooling rate should be higher, like the rate in welding.

  13. Measuring the content of 17 elements in the flesh of Prunus cerasifera and its cultivars by ICP-MS.

    PubMed

    Shen, Jing; Xue, Hai-Yan; Li, Gai-Ru; Lu, Yi; Yao, Jun

    2014-09-01

    The present study compared the contents of inorganic elements in the pulp of purple, red, and yellow Prunus cerasifera with its cultivars. A method was established for the analysis of 17 kinds of trace elements (K, Ca, Mg, Na, Fe, Mn, Cu, Zn, Be, Li, Se, Sr, Cr, Pb, Cd, As and Hg) in the flesh of Prunus cerasifera by microwave digestion-ICP-MS. The detection method is simple and quick, yet shoes high precision and high sensitivity. The recovery rate of 17 elements ranged, from 93.5% to 110.4%. The analysis results showed that the contents of 17 elements in the flesh of purple, red, and yellow Prunus cerasifera and its cultivars are similar, containing extremely rich K elements (as high as 1 per thousand) and higher contents of Ca, Mg, Na, Fe and Mn. The contents of Cu, Zn, Li, Se, Sr and Cr are also present. The contents of Pb, Cd, As, Hg and other harmful element are either very low or not detectable. The experimental results for the study of trace elements in pulp of Prunus cerasifera and its cultivars provide empirical data for. future research in this area.

  14. Treatment of Waste Lubricating Oil by Chemical and Adsorption Process Using Butanol and Kaolin

    NASA Astrophysics Data System (ADS)

    Riyanto; Ramadhan, B.; Wiyanti, D.

    2018-04-01

    Treatment of waste lubricating oil by chemical and adsorption process using butanol and kaolin has been done. Quality of lubricating oil after treatment was analysis using Atomic Absorption Spectrophotometer (AAS) and Gas Chromatography-Mass Spectrometry (GC-MS). The effects of the treatment of butanol, KOH, and kaolin to metals contain in waste lubricating oil treatment have been evaluated. Treatment of waste lubricating oil has been done using various kaolin weight, butanol, and KOH solution. The result of this research show metal content of Ca, Mg, Pb, Fe and Cr in waste lubricating oil before treatment are 1020.49, 367.02, 16.40, 36.76 and 1,80 ppm, respectively. The metal content of Ca, Mg, Pb, Fe and Cr in the waste lubricating oil after treatment are 0.17, 9.85, 34.07, 78.22 and 1.20 ppm, respectively. The optimum condition for treatment of waste lubricating oil using butanol, KOH, and kaolin is 30 mL, 3.0 g and 1.5 g, respectively. Chemical and adsorption method using butanol and kaolin can be used for decrease of metals contain in waste lubricating oil.

  15. Trace elemental analysis in cancer-afflicted tissues of penis and testis by PIXE technique

    NASA Astrophysics Data System (ADS)

    Naga Raju, G. J.; John Charles, M.; Bhuloka Reddy, S.; Sarita, P.; Seetharami Reddy, B.; Rama Lakshmi, P. V. B.; Vijayan, V.

    2005-04-01

    PIXE technique was employed to estimate the trace elemental concentrations in the biological samples of cancerous penis and testis. A 3 MeV proton beam was employed to excite the samples. From the present results it can be seen that the concentrations of Cl, Fe and Co are lower in the cancerous tissue of the penis when compared with those in normal tissue while the concentrations of Cu, Zn and As are relatively higher. The concentrations of K, Ca, Ti, Cr, Mn, Br, Sr and Pb are in agreement within standard deviations in both cancerous and normal tissues. In the cancerous tissue of testis, the concentrations of K, Cr and Cu are higher while the concentrations of Fe, Co and Zn are lower when compared to those in normal tissue of testis. The concentrations of Cl, Ca, Ti and Mn are in agreement in both cancerous and normal tissues of testis. The higher levels of Cu lead to the development of tumor. Our results also support the underlying hypothesis of an anticopper, antiangiogenic approach to cancer therapy. The Cu/Zn ratios of both penis and testis were higher in cancer tissues compared to that of normal.

  16. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N.; Hoelzer, David T.; Pint, Bruce A.

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO 2 or ZrO 2. Themore » new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Renu; Department of Physics and Astronomy and NCMN, University of Nebraska, Lincoln, NE 68588; Kharel, Parashu

    Disordered CoFeCrAl and CoFeCrSi{sub 0.5}Al{sub 0.5} alloys have been investigated experimentally and by first-principle calculations. The melt-spun and annealed samples all exhibit Heusler-type superlattice peaks, but the peak intensities indicate a substantial degree of B2-type chemical disorder. Si substitution reduces the degree of this disorder. Our theoretical analysis also considers several types of antisite disorder (Fe-Co, Fe-Cr, Co-Cr) in Y-ordered CoFeCrAl and partial substitution of Si for Al. The substitution transforms the spin-gapless semiconductor CoFeCrAl into a half-metallic ferrimagnet and increases the half-metallic band gap by 0.12 eV. Compared CoFeCrAl, the moment of CoFeCrSi{sub 0.5}Al{sub 0.5} is predicted to increasemore » from 2.01 μ{sub B} to 2.50 μ{sub B} per formula unit, in good agreement with experiment.« less

  18. Sigma phases in an 11%Cr ferritic/martensitic steel with the normalized and tempered condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yinzhong, E-mail: shenyz@sjtu.edu.cn

    At the present time 9–12% Cr ferritic/martensitic (F/M) steels with target operating temperatures up to 650 °C and higher are being developed in order to further increase thermal efficiency so as to reduce coal consumption and air pollution. An 11% Cr F/M steel was prepared by reference to the nominal chemical composition of SAVE12 steel with an expected maximum use temperature of 650 °C. The precipitate phases of the 11% Cr F/M steel normalized at 1050 °C for 0.5 h and tempered at 780 °C for 1.5 h were investigated by transmission electron microscopy. Except for Cr-/Cr-Fe-Co-rich M{sub 23}C{sub 6},more » Nb-/V-/Ta-Nb-/Nd-rich MX, Fe-rich M{sub 5}C{sub 2}, Co-rich M{sub 3}C and Fe-Co-rich M{sub 6}C phases previously identified in the steel, two types of sigma phases consisting of σ-FeCr and σ-FeCrW were found to be also present in the normalized and tempered steel. Identified σ-FeCr and σ-FeCrW phases have a simple tetragonal crystal structure with estimated lattice parameters a/c = 0.8713/0.4986 and 0.9119/0.5053 nm, respectively. The compositions in atomic pct of the observed sigma phases were determined to be approximately 50Fe-50Cr for the σ-FeCr, and 30Fe-55Cr-10W in addition to a small amount of Ta, Co and Mn for the σ-FeCrW. The sigma phases in the steel exhibit various blocky morphologies, and appear to have a smaller amount compared with the dominant phases Cr-rich M{sub 23}C{sub 6} and Nb-/V-/Ta-Nb-rich MX of the steel. The σ-FeCr phase in the steel was found to precipitate at δ-ferrite/martensite boundaries, suggesting that δ-ferrite may rapidly induce the formation of sigma phase at δ-ferrite/martensite boundaries in high Cr F/M steels containing δ-ferrite. The formation mechanism of sigma phases in the steel is also discussed in terms of the presence of δ-ferrite, M{sub 23}C{sub 6} precipitation, precipitation/dissolution of M{sub 2}X, and steel composition. - Highlights: •Precipitate phases in normalized and tempered 11%Cr F/M steel are presented in detail. • σ-FeCr phase, 50Fe50Cr (in at.%), was identified in normalized and tempered 11%Cr F/M steel. • σ-FeCrW phase, 30Fe55Cr10W (in at.%), was identified in normalized and tempered 11%Cr F/M steel. • Sigma phase in the 11%Cr F/M steel was found to precipitate at δ-ferrite/martensite boundaries. • δ-ferrite may rapidly induce the sigma phase formation at δ-ferrite/martensite boundaries.« less

  19. The size distribution and origin of elements bound to ambient particles: a case study of a Polish urban area.

    PubMed

    Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Czechowski, Piotr Oskar

    2015-05-01

    Ambient particulate matter (PM) was sampled in Zabrze (southern Poland) in the heating period of 2009. It was investigated for distribution of its mass and of the masses of its 18 component elements (S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Ge, As, Br, Sr, Cd, Sb, Ba, and Pb) among 13 PM size fractions. In the paper, the distribution modality of and the correlations between the ambient concentrations of these elements are discussed and interpreted in terms of the source apportionment of PM emissions. By weight, S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Ge, As, Br, Sr, Cd, Sb, Ba, and Pb were 10% of coarse and 9% of ultrafine particles. The collective mass of these elements was no more than 3.5 % of the mass of the particles with the aerodynamic diameter D p between 0.4 and 1.0 μm (PM₀.₄₋₁), whose ambient mass concentration was the highest. The PM mass size distribution for the sampling period is bimodal; it has the accumulation and coarse modes. The coarse particles were probably of the mineral/soil origin (characteristic elements: Ca, Fe, Sr, and Ba), being re-suspended polluted soil or road dust (characteristic elements: Ca, Fe, Sr, Ba, S, K, Cr, Cu, Zn, Br, Sb, Pb). The maxima of the density functions (modes) of the concentration distributions with respect to particle size of PM-bound S, Cl, K, Cu, Zn, Ge, Br, Cd, Sb, and Pb within the D p interval from 0.108 to 1.6 μm (accumulation PM particles) indicate the emissions from furnaces and road traffic. The distributions of PM-bound As, Mn, Ba, and Sr concentrations have their modes within D p ≤ 0.108 μm (nucleation PM particles), indicating the emissions from high-temperature processes (industrial sources or car engines). In this work, principal component analysis (PCA) is applied separately to each of the 13 fraction-related sets of the concentrations of the 18 PM-bound elements, and further, the fractions are grouped by their origin using cluster analysis (CA) applied to the 13 fraction-related first principal components (PC1). Four distinct groups of the PM fractions are identified: (PM₁.₆₋₂.₅, PM₂.₅₋₄.₄,), (PM₀.₀₃₋₀.₀₆, PM₀.₁₀₈₋₀.₁₇), (PM₀.₀₆₋₀.₁₀₈, PM₀.₁₇₋₀.₂₆, PM₀.₂₆₋₀.₄, PM₀.₄₋₀.₆₅, PM₀.₆₅₋₁, PM₁₋₁.₆), and (PM₄.₄₋₆.₈, PM₆.₈₋₁₀, PM>₁₀). The PM sources attributed to these groups by using PCA followed by CA are roughly the same as the sources from the apportionment done by analyzing the modality of the mass size distributions.

  20. Observation of magnetization and exchange bias reversals in NdFe0.5Cr0.5O3

    NASA Astrophysics Data System (ADS)

    Sharannia, M. P.; De, Santanu; Singh, Ripandeep; Das, A.; Nirmala, R.; Santhosh, P. N.

    2017-05-01

    Polycrystalline NdFe0.5Cr0.5O3 has orthorhombic structure with Pnma space group and is magnetically ordered at room temperature as confirmed by neutron diffraction. The magnetic structure involves CxGyFz type ordering of Fe3+/Cr3+ ions. NdFe0.5Cr0.5O3 shows magnetization reversal and sign reversal of exchange bias at 16 K. Nd3+ moments that get induced by the internal field of |Fe+Cr| sublattice couple antiferromagnetically with the ferromagnetic component of |Fe+Cr| sublattice. Nd3+ moments overcome the |Fe+Cr| moments at 16 K below which the material shows negative magnetization and positive exchange bias.

  1. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan; Zhang, Weiguo; Qian, Yu

    2016-06-15

    This study investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn inPhragmites australisroot system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils.Phragmites australissamples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in the root epidermis and thatmore » other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  2. Electronic and Optical Properties of a Semiconducting Spinel (Fe 2 CrO 4 )

    DOE PAGES

    Chambers, Scott A.; Droubay, Timothy C.; Kaspar, Tiffany C.; ...

    2017-01-13

    Epitaxial chromium ferrite (Fe 2CrO 4), prepared by state-of-the-art oxygen plasma assisted molecular beam epitaxy, is shown to exhibit unusual electronic transport properties driven by the crystallographic structure and composition of the material. By replacing 1/3 of the Fe cations with Cr converts the host ferrimagnet from a metal into a semiconductor by virtue of its fixed valence (3+); Cr substitutes for Fe at B sites in the spinel lattice. Conversely, replacing 2/3 of the Fe cations with Cr results in an insulator. Three candidate conductive paths, all involving electron hopping between Fe 2+ and Fe 3+, are identified inmore » Fe 2CrO 4. Moreover, Fe 2CrO 4 is shown to be photoconductive across the visible portion of the electromagnetic spectrum. As a result, this material is of potential interest for important photo-electrochemical processes such as water splitting.« less

  3. Anneal-Hardening Behavior of Cr-Fe-C Alloy Deposits Prepared in a Cr3+-Based Bath with Fe2+ Ions

    PubMed Central

    Huang, Ching An; Chen, Jhih You; Wang, Hai

    2017-01-01

    Cr-Fe-C alloy deposits were successfully prepared on high-carbon tool steel in a Cr3+-based electroplating bath containing Fe2+ ions and suitable complex agents. A Cr-based alloy deposit was obtained with an electroplating current density higher than 25 Adm−2, and a Fe-based alloy deposit was obtained using a current density of 20 Adm−2. Following electroplating, these alloy deposited specimens were annealed via rapid thermal annealing (RTA) at 500 °C for different periods up to 30 s. The experimental results show that Cr- and Fe-based alloy deposits could be significantly hardened after RTA at 500 °C for a few seconds. The maximum hardness was that of the Cr-Fe-C alloy deposit annealed at 500 °C for 10 s. The maximum hardness of 1205 Hv was detected from the annealed Cr-based alloy deposit prepared with 30 ASD. The hardening mechanism of annealed Cr- and Fe-based alloy deposits is attributed to the precipitation of C-related membranes. The hardness values of the annealed Cr- and Fe-based alloy deposits increase with the increasing degree of crystallization of the C-related membranes. PMID:29206206

  4. Magnetic and magnetocaloric properties of iron subs tituted holmium chromite and dysprosium chromite

    DOE PAGES

    Yin, Shiqi; Sharma, Vinit; McDannald, Austin; ...

    2016-01-11

    In this work, structural, magnetic, and magnetocaloric properties of HoCrO 3 and Fe substituted HoCrO 3 and DyCrO 3 (i.e. HoCr 0.7Fe 0.3O 3 and DyCr 0.7Fe 0.3O 3) powder samples were synthesized via a solution route. The structural properties of the samples were examined by Raman spectroscopy and x-ray diffraction techniques, which were further confirmed using first-principle calculations. The dc magnetic measurements indicate that the Cr 3+ ordering temperatures for the HoCrO 3, HoCr 0.7Fe 0.3O 3, and DyCr 0.7Fe 0.3O 3 samples are 140 K, 174 K, and 160 K, respectively. The ac magnetic measurements not only confirmedmore » the Cr 3+ ordering transitions in these samples (obtained using dc magnetic measurements), but also clearly showed the Ho 3+ ordering at ~10 K in the present HoCrO 3 and HoCr 0.7Fe 0.3O 3 samples, which to our knowledge, is the first ac magnetic evidence of Ho 3+ ordering in this system. The effective magnetic moments were determined to be 11.67μB, 11.30μB, and 11.27μB for the HoCrO 3, HoCr 0.7Fe 0.3O 3, and DyCr 0.7Fe 0.3O 3 samples, respectively. For the first time, the magnetocaloric properties of HoCrO 3 and HoCr 0.7Fe 0.3O 3 were studied here, showing their potential for applications in magnetic refrigeration. In an applied dc magnetic field of 7 T, the maximum magnetocaloric value were determined to be 7.2 (at 20 K), 6.83 (at 20 K), 13.08 J/kg K (at 5 K) and the relative cooling power were 408, 387, and 500 J/kg for the HoCrO 3, HoCr 0.7Fe 0.3O 3, and DyCr 0.7Fe 0.3O 3 samples, respectively.« less

  5. Magnetic cluster expansion simulation and experimental study of high temperature magnetic properties of Fe-Cr alloys.

    PubMed

    Lavrentiev, M Yu; Mergia, K; Gjoka, M; Nguyen-Manh, D; Apostolopoulos, G; Dudarev, S L

    2012-08-15

    We present a combined experimental and computational study of high temperature magnetic properties of Fe-Cr alloys with chromium content up to about 20 at.%. The magnetic cluster expansion method is applied to model the magnetic properties of random Fe-Cr alloys, and in particular the Curie transition temperature, as a function of alloy composition. We find that at low (3-6 at.%) Cr content the Curie temperature increases with the increase of Cr concentration. It is maximum at approximately 6 at.% Cr and then decreases for higher Cr content. The same feature is found in thermo-magnetic measurements performed on model Fe-Cr alloys, where a 5 at.% Cr alloy has a higher Curie temperature than pure Fe. The Curie temperatures of 10 and 15 at.% Cr alloys are found to be lower than the Curie temperature of pure Fe.

  6. Stardust (Comet) Samples and the Meteorite Record

    NASA Astrophysics Data System (ADS)

    Weisberg, M.; Connolly, H.; Zolensky, M.; Bland, P.; Bradley, J.; Braerley, A.; Bridges, J.; Brownlee, D.; Butterworth, A.; Dai, Z.; Ebel, D.; Genge, M.; Gounelle, M.; Graham, G.; Grossman, J.; Grossman, L.; Harvey, R.; Ishii, H.; Kearsley, A.; Keller, L.; Krot, A.; Langenhorst, F.; Lanzirotti, A.; Leroux, H.; Matrajt, G.; Messenger, K.; Mikouchi, T.; Nakamura, T.; Ohsumi, K.; Okudaira, K.; Perronnet, M.; Simon, S.; Stephan, T.; Stroud, R.; Taheri, M.; Tomeoka, K.; Toppani, A.; Tsou, P.; Tsuchiyama, A.; Velbel, M.; Weber, I.; Westphal, A.; Yano, H.; Zega, T.

    2006-12-01

    Perhaps the most intriguing aspect of the material collected by Stardust from `comet Wild 2 is the preponderance of high temperature and reduced crystalline phases, which are characteristic of chondrites thought to derive from the main Asteroid Belt (2-4 AU) [1]. Here we compare the mineralogy of Stardust samples to that of chondrite groups. Results: Investigation by the Preliminary Examination Team (PET) of particles from Wild 2 shows a mineral assemblage typical of chondrites, with olivine, pyroxene, FeNi-metal and sulfide as common components. Olivine and low-Ca pyroxene have a range of mg# (Fa0.5-41 and Fs0-48, respectively), which indicates that the material is unequilibrated, similar to types 2 and 3 chondrites. Some forsterite with <1 wt% FeO has up to 6.4 wt% MnO and 1.4 wt% Cr2O3. Other silicates observed are Ti-bearing aluminus diopside and rare melilite, typical of some calcium, aluminum-rich inclusions (CAIs) in carbonaceous (C) chondrites. Additionally, FeNi- metal and sulfides including pentlandite [(FeNi)9S8)] and Fe-Ni-Cu and Fe-Zn sulfide, phases observed in C and enstatite (E) chondrites, are present in some particles. V-bearing osbornite (TiN), a phase also observed in some C and E chondrites, occurs associated with unidentified Zr-rich phase(s). Discussion: The observations by the PET are based on work done in a short period of time on a limited number of particles less than several microns in size, and, hence, conclusions based on these data are tentative. Many C chondrite groups have the wide range of ferromagnesian silicate compositions found in the Stardust samples. However, the range of olivine and pyroxene compositions, occurrence of Mn-, Cr-rich olivine, metal and pentlandite are features most consistent with CR and CH chondrites, though a CM-like lithology cannot be ruled out. Mn-, Cr- rich forsterite is found in the matrix and in amoeboid olivine aggregates in CR chondrites [2, 3]; Osbornite-bearing CAIs have been identified in the ALH 85085 CH chondrite [4] and the Isheyevo CH/CB chondrite [5]. Thus, the Stardust samples analyzed thus far have mineral assemblages close to those of CR and CH chondrites, members of the CR chondrite clan. References: [1] Scott and Krot (2005) Chondrules and the Protoplanetary Disk, 15-54. [2] Weisberg et al. (1993) GCA 57, 1567-1586. [3] Weisberg et al. (2004) MAPS 39, 1741-1753. [4] Weisberg et al. (1988) EPSL 91, 19-32. [5] Krot et al. (2006) MAPS #1506.

  7. Redox equilibria of multivalent ions in silicate glasses

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Morris, R. V.

    1977-01-01

    Experimental studies were made on the compositional dependence of the redox equilibrium of Eu in synthetic silicate liquids, together with an empirical model describing the observed compositional dependence. Electron paramagnetic resonance (EPR) was used to measure the concentration ratio of Eu(2+) to Eu(3+) in various glasses formed by rapidly quenching silicate liquids. The compositional field studied comprised mixtures of SiO2, TiO2, Al2O3, CaO, MgO, and Na2O. The proposed model describes the Eu(2+)/Eu(3+) ratio over the entire compositional field in terms of parameters easily related to each glass composition. The general applicability and utility of the model is further demonstrated by its application to the Fe(2+)-Fe(3+), Ce(3+)-Ce(4+), and Cr(3+)-Cr(6+) redox reactions in binary alkali oxide silicate glasses of Li, Na, and K.

  8. Band gap tuning in transition metal oxides by site-specific substitution

    DOEpatents

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  9. Determination of Elemental Composition of Malabar spinach, Lettuce, Spinach, Hyacinth Bean, and Cauliflower Vegetables Using Proton Induced X-Ray Emission Technique at Savar Subdistrict in Bangladesh

    PubMed Central

    Fahad, S. M.; Islam, A. F. M. Mahmudul; Ahmed, Mahiuddin; Alam, Md. Rezaul; Alam, Md. Ferdous; Khalik, Md. Farhan; Hossain, Md. Lokman; Abedin, Md. Joynal

    2015-01-01

    The concentrations of 18 different elements (K, Ca, Fe, Cl, P, Zn, S, Mn, Ti, Cr, Rb, Co, Br, Sr, Ru, Si, Ni, and Cu) were analyzed in five selected vegetables through Proton Induced X-ray Emission (PIXE) technique. The objective of this study was to provide updated information on concentrations of elements in vegetables available in the local markets at Savar subdistrict in Bangladesh. These elements were found in varying concentrations in the studied vegetables. The results also indicated that P, Cl, K, Ca, Mn, Fe, and Zn were found in all vegetables. Overall, K and Ca exhibited the highest concentrations. Cu and Ni exhibited the lowest concentrations in vegetables. The necessity of these elements was also evaluated, based on the established limits of regulatory standards. The findings of this study suggest that the consumption of these vegetables is not completely free of health risks. PMID:26229953

  10. TEM/STEM study of Zircaloy-2 with protective FeAl(Cr) layers under simulated BWR environment and high-temperature steam exposure

    NASA Astrophysics Data System (ADS)

    Park, Donghee; Mouche, Peter A.; Zhong, Weicheng; Mandapaka, Kiran K.; Was, Gary S.; Heuser, Brent J.

    2018-04-01

    FeAl(Cr) thin-film depositions on Zircaloy-2 were studied using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) with respect to oxidation behavior under simulated boiling water reactor (BWR) conditions and high-temperature steam. Columnar grains of FeAl with Cr in solid solution were formed on Zircaloy-2 coupons using magnetron sputtering. NiFe2O4 precipitates on the surface of the FeAl(Cr) coatings were observed after the sample was exposed to the simulated BWR environment. High-temperature steam exposure resulted in grain growth and consumption of the FeAl(Cr) layer, but no delamination at the interface. Outward Al diffusion from the FeAl(Cr) layer occurred during high-temperature steam exposure (700 °C for 3.6 h) to form a 100-nm-thick alumina oxide layer, which was effective in mitigating oxidation of the Zircaloy-2 coupons. Zr intermetallic precipitates formed near the FeAl(Cr) layer due to the inward diffusion of Fe and Al. The counterflow of vacancies in response to the Al and Fe diffusion led to porosity within the FeAl(Cr) layer.

  11. Multivariate optimization of an analytical method for the analysis of dog and cat foods by ICP OES.

    PubMed

    da Costa, Silvânio Silvério Lopes; Pereira, Ana Cristina Lima; Passos, Elisangela Andrade; Alves, José do Patrocínio Hora; Garcia, Carlos Alexandre Borges; Araujo, Rennan Geovanny Oliveira

    2013-04-15

    Experimental design methodology was used to optimize an analytical method for determination of the mineral element composition (Al, Ca, Cd, Cr, Cu, Ba, Fe, K, Mg, Mn, P, S, Sr and Zn) of dog and cat foods. Two-level full factorial design was applied to define the optimal proportions of the reagents used for microwave-assisted sample digestion (2.0 mol L(-1) HNO3 and 6% m/v H2O2). A three-level factorial design for two variables was used to optimize the operational conditions of the inductively coupled plasma optical emission spectrometer, employed for analysis of the extracts. A radiofrequency power of 1.2 kW and a nebulizer argon flow of 1.0 L min(-1) were selected. The limits of quantification (LOQ) were between 0.03 μg g(-1) (Cr, 267.716 nm) and 87 μg g(-1) (Ca, 373.690 nm). The trueness of the optimized method was evaluated by analysis of five certified reference materials (CRMs): wheat flour (NIST 1567a), bovine liver (NIST 1577), peach leaves (NIST 1547), oyster tissue (NIST 1566b), and fish protein (DORM-3). The recovery values obtained for the CRMs were between 80 ± 4% (Cr) and 117 ± 5% (Cd), with relative standard deviations (RSDs) better than 5%, demonstrating that the proposed method offered good trueness and precision. Ten samples of pet food (five each of cat and dog food) were acquired at supermarkets in Aracaju city (Sergipe State, Brazil). Concentrations in the dog food ranged between 7.1 mg kg(-1) (Ba) and 2.7 g kg(-1) (Ca), while for cat food the values were between 3.7 mg kg(-1) (Ba) and 3.0 g kg(-1) (Ca). The concentrations of Ca, K, Mg, P, Cu, Fe, Mn, and Zn in the food were compared with the guidelines of the United States' Association of American Feed Control Officials (AAFCO) and the Brazilian Ministry of Agriculture, Livestock, and Food Supply (Ministério da Agricultura, Pecuária e Abastecimento-MAPA). Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Experimental aqueous alteration of the Allende meteorite under oxidizing conditions: Constraints on asteroidal alteration

    NASA Astrophysics Data System (ADS)

    Jones, Catherine L.; Brearley, Adrian J.

    2006-02-01

    We have performed an experimental study of the aqueous alteration of the Allende CV3 carbonaceous chondrite under highly oxidizing conditions, in order to examine the alteration behavior of Allende's anhydrous mineralogy. The experiments were carried out at temperatures of 100, 150, and 200 °C, for time periods between 7 and 180 days, with water/rock ratios ranging from 1:1 to 9:1. Uncrushed cubes of Allende were used so that the spatial relationships between reactant and product phases could be examined in detail. Scanning electron microscope studies show that in all the experiments, even those of short duration (7 days), soluble salts of Ca and Mg (CaSO 4, CaCO 3, and MgSO 4) precipitated on the sample surface, indicating that these elements are rapidly mobilized during alteration. In addition, iron oxides and hydroxides formed on the sample surfaces. The sulfates, carbonates, and the majority of the iron-bearing secondary minerals are randomly distributed over the surface of samples. In some instances the iron oxides and hydroxides are constrained to the boundaries of altering mineral grains. Transmission electron microscope studies show that the FeO-rich olivine in the interior of the samples has altered to form interlayered serpentine/saponite and Fe-oxyhydroxides. The degree of alteration increases significantly with increasing water/rock ratio, and to a lesser extent with increasing duration of heating. The serpentine/saponite forms both by direct replacement of the olivine in crystallographically oriented intergrowths, and by recrystallization of an amorphous Si-rich phase that precipitates in pore space between the olivine grains. The alteration assemblage bears many similarities to those found in altered carbonaceous chondrites, although in detail there are important differences, which we attribute to (a) the relatively high temperatures of our experiments and (b) comparatively short reaction times compared with the natural examples. In terms of mineral assemblage, our experiments most closely resemble alteration in the CI chondrites, although the degree of alteration of our experiments is much lower. CI chondrites contain serpentine/saponite intergrowths and veins of Ca-sulfate and Ca-carbonate as well as the Fe-oxyhydroxide, ferrihydrite. However, the phyllosilicate phases formed in our experiments are somewhat coarser-grained than the finest phyllosilicate fraction present in CI chondrites, suggesting that alteration of the CI chondrites occurred at lower temperatures. In terms of mineral assemblage, our experiments also appear to come close to matching CR chondrites, although we infer that CR alteration probably occurred at temperatures <100 °C, based on the very fine-grained size of phyllosilicates in CR matrices.

  13. Potentially toxic elements in foodcrops: Triticum aestivum L., Zea mays L.

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Fontana, Silvia; Squizzato, Stefania; Minello, Fabiola; Fornasier, Flavio; Wahsha, Mohammad

    2013-04-01

    Soil is the basis of the ecosystems and of our system of food production. Crops can uptake heavy metals and potentially toxic elements from the soil and store them in the roots or translocate them to the aerial parts. Excessive content of these elements in edible parts can produce toxic effects and, through the food chain and food consumption, result in a potential hazard for human health. In this study soils and plants (spring wheat, Triticum aestivum L. and maize, Zea mays L.) from a tannery district in North-East Italy were analyzed to determine pedological characters, soil microbial indicators and the content of some major and micro-nutrients and potentially toxic elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, P, Pb, S, Zn, V). The soils of the area are moderately polluted; Cr is the most important inorganic contaminant, followed by Ni, Cu and V. Factor analysis evidenced that the contaminants are in part anthropogenic and in part geogenic. Major anthropogenic origin was detected for Cr, Ni (from industrial activities), Zn, Cu, Cd (from agriculture practices). Biological Absorption Coefficient (BAC) from soil to plant roots and Translocation factor (TF) within the plant were calculated; major nutrients (K, P, S) and some micronutrients (Cu, Zn, Mg, Mn) are easily absorbed and translocated, whilst other nutrients (Ca, Fe) and potentially toxic elements or micronutrients (Al, Cd, Cr, Ni, Pb, V) are not accumulated in the seeds of the two considered species. However, the two edible species proved differently able to absorb and translocate elements, and this suggests to consider separately every species as potential PHEs transporter to the food chain and to humans. Cr concentrations in seeds and other aerial parts (stem and leaves) of the examined plants are higher than the values found for the same species and for other cereals grown on unpolluted soils. Comparing the Cr levels in edible parts with recommended dietary intake, besides other possible Cr sources (dust ingestion, water), there seems to be no health risk for animal breeding and population due to the consumption of wheat and maize grown in the area.

  14. Effect of NiFeCr seed and capping layers on exchange bias and planar Hall voltage response of NiFe/Au/IrMn trilayer structures

    NASA Astrophysics Data System (ADS)

    Talantsev, Artem; Elzwawy, Amir; Kim, CheolGi

    2018-05-01

    Thin films and cross junctions, based on NiFe/Au/IrMn structures, were grown on Ta and NiFeCr seed layers by magnetron sputtering. The effects of substitution of Ta with NiFeCr in seed and capping layers on an exchange bias field are studied. A threefold improvement of the exchange bias value in the structures, grown with NiFeCr seed and capping layers, is demonstrated. The reasons for this effect are discussed. Formation of clusters in the NiFeCr capping layer is proved by atomic force microscopy technique. Ta replacement on NiFeCr in the capping layer results in the enhancement of magnetoresistive response and a reduction of noise.

  15. Snoek Relaxation in Fe-Cr Alloys and Interstitial-Substitutional Interaction

    NASA Astrophysics Data System (ADS)

    Golovin, I. S.; Blanter, M. S.; Schaller, R.

    1997-03-01

    The internal friction (IF) spectra of -Fe, Fe-Cr ferritic alloys and Cr have been investigated in a frequency range of 0.01 to 10 Hz. A Snoek-type relaxation was found in all the investigated C doped Fe-Cr alloys, starting from pure Fe and finishing with pure Cr. The temperature location of the Snoek peak (Tmax) in -Fe was found to be 315 K (1 Hz). The activation energy deduced from the T - f shift was 0.81 eV. Tmax in Cr was 433 K with an activation energy of 1.11 eV. The Snoek-type peaks in Fe-Cr alloys are much wider than in pure Fe or pure Cr. The temperature location of the peak versus chromium content curve exhibits a maximum in the vicinity of 35 wt% Cr (Tmax was 573 to 578 K, f 1.2 Hz and the activation energy was about 1.45 eV). It is important that Cr atoms in α-Fe have a more pronounced influence on the temperature location of the peak than Fe atoms have in chromium. A new model based on the atomic interactions is proposed to explain the influence of composition on Snoek peak location. The internal friction has been simulated by a Monte Carlo method, using C-C and C-substitutional atom (s) interaction energies. A model of long-range strain-induced (elastic) interaction supplemented by the chemical interaction in the two nearest coordination shells around an immobile substitutional atom was used for the C-s interaction. The interatomic interaction was supposed to affect IF by changing both the carbon atom arrangement (short-range order) and the energy of C atoms in octahedral interstices, and therefore the activation energy of IF. The peak temperatue calculated coincides well with the experimental ones if the value for the chemical interaction in the first coordination shell (Hchem) for C-Cr in Fe is - 0.15 eV and for C-Fe in Cr +0.15 eV. The difference in the influence of Cr in α-Fe and Fe in Cr is accounted for by a difference in the elastic and chemical interaction both between the carbon atoms and the substitutional atoms. The relaxation process in chromium Fe-based alloys is due to the carbon atom diffusion under stress between octahedral interstices of first and second coordination shells around the Cr atoms, and in Cr-based alloys, between second and third shells around the Fe atoms.

  16. Seebeck Coefficient of Cation-Substituted Disulfides CuCr1-x Fe x S2 and Cu1-x Fe x CrS2

    NASA Astrophysics Data System (ADS)

    Korotaev, Evgeniy V.; Syrokvashin, Mikhail M.; Filatova, Irina Yu.; Pelmenev, Konstantin G.; Zvereva, Valentina V.; Peregudova, Natalya N.

    2018-03-01

    The effect of cation substitution on the Seebeck coefficient of CuCr1-x Fe x S2 (x = 0 to 0.30) and Cu1-x Fe x CrS2 (x = 0 to 0.03) in the temperature range of 100 K to 450 K has been investigated. Increasing iron concentration led to a metal-insulator transition which suppressed the thermoelectric power. However, for low iron concentration (x < 0.03), the Seebeck coefficient of CuCr1-x Fe x S2 and Cu1-x Fe x CrS2 exceeded the values for the undoped copper-chromium disulfide matrix CuCrS2 at temperature below 300 K.

  17. Effects of spin entropy and lattice strain from mixed-trivalent Fe3+/Cr3+ on the electronic, thermoelectric and optical properties of delafossite CuFe1-x Cr x O2 (x  =  0.25, 0.5, 0.75)

    NASA Astrophysics Data System (ADS)

    Ruttanapun, Chesta; Maensiri, Santi

    2015-12-01

    Mixed-trivalent Fe3+/Cr3+ content CuFe1-x Cr x O2 (x  =  0.25, 0.5, and 0.75) compounds were synthesized to investigate the effects of spin entropy, and lattice strain on their electronic, thermoelectric and optical properties. The XPS results showed the existence of mixed Cu1+/Cu2+, Fe3+/Fe4+ and Cr2+/Cr3+ ion states in the structures. The mixed Fe3+/Cr3+ions caused a strong correlation to occur between the spin and the orbitals of the carriers in the octahedral layer of the sample, affecting the carrier degeneracy Seebeck coefficient behaviour, and the Cu2+ and Fe4+ ions caused an effect of enhancing the electric conductivity. These effects meant that CuFe0.75Cr0.25O2 had the highest electrical conductivity, an enhanced Seebeck coefficient compared to that of CuFeO2-based compounds, and the highest thermopower value. The lowest thermal conductivity was that of CuFe0.5Cr0.5O2, which was a result of the mismatched atomic radii of the mixed trivalent Fe3+(0.645 Å)/Cr3+(0.615 Å), which caused the lattice strain to occur in the structure and thus affected the point defect scattering of the phonon thermal conductivity. The lowest total thermal conductivity was that of CuFe0.5Cr0.5O2, because it had the maximum lattice strain. Overall, the effect of the mixed trivalent elements caused CuFe0.75Cr0.25O2 to have the highest value of the dimensionless figure of merit ZT, with a value that was four times that of CuFeO2-based compounds and six times that of CuCrO2-based compounds. With regard to optical properties, the lattice strain causes the indirect optical gap to increase with increasing x content, but has no effect on the direct optical gap. These results verified that the mixed-trivalent Fe3+/Cr3+ content of CuFe1-x Cr x O2 (x  =  0.25, 0.5, and 0.75) affected the electronic, thermoelectric and optical properties of the structure by causing spin entropy and lattice strain to occur.

  18. Bioaugmentation in growing plants for lunar bases

    NASA Astrophysics Data System (ADS)

    Zaets, I.; Burlak, O.; Rogutskyy, I.; Vasilenko, A.; Mytrokhyn, O.; Lukashov, D.; Foing, B.; Kozyrovska, N.

    2011-03-01

    Microorganisms may be a key element in a precursory scenario of growing pioneer plants for extraterrestrial exploration. They can be used for plant inoculation to leach nutritional elements from regolith, to alleviate lunar stressors, as well as to decompose both lunar rocks and the plant straw in order to form a protosoil. Bioleaching capacities of both French marigold (Tagetes patula L.) and the associated bacteria in contact with a lunar rock simulant (terrestrial anorthosite) were examined using the model plant-bacteria microcosms under controlled conditions. Marigold accumulated K, Na, Fe, Zn, Ni, and Cr at higher concentrations in anorthosite compared to the podzol soil. Plants inoculated with the consortium of well-defined species of bacteria accumulated higher levels of K, Mg, and Mn, but lower levels of Ni, Cr, Zn, Na, Ca, Fe, which exist at higher levels in anorthosite. Bacteria also affected the Са/Mg and Fe/Mn ratios in the biomass of marigold grown on anorthosite. Despite their growth retardation, the inoculated plants had 15% higher weight on anorthosite than noninoculated plants. The data suggest that the bacteria supplied basic macro-and microelements to the model plant.

  19. Studies on redox H 2-CO 2 cycle on CoCr xFe 2- xO 4

    NASA Astrophysics Data System (ADS)

    Ma, Ling Juan; Chen, Lin Shen; Chen, Song Ying

    2009-01-01

    Completely reduced CoCr xFe 2-xO 4 can be used to decompose CO 2. It was found that for pure CoFe 2O 4 there is no FeO formation in the first step while there is formation in the second step. For CoCr 0.08Fe 2-0.08O 4, there is no FeO formed in all the oxidation process, because of effect of Cr 3+. Pure CoFe 2O 4 was destroyed at the first reaction cycle of H 2 reduction and CO 2 oxidation, while doped Cr 3+ spinel CoCr 0.08Fe 1.92O 4 showed good stability. The results from H 2-TG, CO 2-TG and XRD show that the addition of Cr 3+ to CoFe 2O 4 can inhibit the increasing of crystallite size and the sintering of alloy. Most importantly, the CoCr 0.08Fe 1.92O 4 can be used to decompose CO 2 repeatedly, implying that it is a potential catalyst for dealing with the CO 2 as a 'green house effect' gas.

  20. Effect of cloric acid concentration on corrosion behavior of Ni/Cr coated on carbon steel

    NASA Astrophysics Data System (ADS)

    Desiati, Resetiana Dwi; Sugiarti, Eni; Thosin, K. A. Zaini

    2018-05-01

    Corrosion is one of the causes of metal degradation. Carbon steel (Fe) is easy to corrode in the extreme environment. Coating on carbon steel is required to improve corrosion resistance owing to protection or hindrance to extreme environmental conditions. In this present work, carbon steel was coated by electroplating techniques for nickel and pack cementation for chrome. The corrosion rate test was performed by Weight Loss method on FeNiCr, FeNi, FeCr and uncoated Fe as comparator which was dyed in 37% HCl and 25% HCl which had previously been measured dimension and mass. The immersion test result of FeNiCr and FeNi specimen were better than FeCr and uncoated Fe in terms of increasing corrosion resistance. The corrosion rate for 56 hours in 37% HCl for FeNiCr was 1.592 mm/y and FeNi was 3.208 mm/y, FeCr only lasted within 32 hours with corrosion rate was 6.494 mm/y. Surface of the sample after the corrosion test there was pitting, crevice corrosion and alloy cracking caused by chloride. The higher the concentration of HCl the faster the corrosion rate.

  1. Antiferromagnetic structure and electronic properties of BaCr2As2 and BaCrFeAs2

    NASA Astrophysics Data System (ADS)

    Filsinger, Kai A.; Schnelle, Walter; Adler, Peter; Fecher, Gerhard H.; Reehuis, Manfred; Hoser, Andreas; Hoffmann, Jens-Uwe; Werner, Peter; Greenblatt, Martha; Felser, Claudia

    2017-05-01

    Recent theoretical studies suggest that superconductivity may be found in doped chromium pnictides with crystal structures similar to their iron counterparts. Here, we report a comprehensive study on the magnetic arsenides BaCr2As2 and BaCrFeAs2 (space group I 4 /m m m ), which are possible mother compounds with d4 and d5 electron configurations, respectively. DFT-based calculations of the electronic structure evidence metallic antiferromagnetic ground states for both compounds. By powder neutron diffraction, we confirm for BaCr2As2 a robust ordering in the antiferromagnetic G -type structure at TN=580 K with μCr=1.9 μB . Anomalies in the lattice parameters point to magnetostructural coupling effects. In BaCrFeAs2, the Cr and Fe atoms randomly occupy the transition-metal site and G -type order is found below 265 K with μCr /Fe=1.1 μB . 57Fe Mössbauer spectroscopy demonstrates that only a small ordered moment is associated with the Fe atoms, in agreement with electronic structure calculations leading to μFe˜0 . The temperature dependence of the hyperfine field does not follow that of the total moments. Both compounds are metallic but show large enhancements of the linear specific heat. Electrical transport in BaCrFeAs2 is dominated by the atomic disorder and the partial magnetic disorder of Fe. Our results indicate that Néel-type order is unfavorable for Fe moments and thus it is destabilized with increasing Fe content.

  2. PIXE and ICP-MS Analysis of Andrographis Paniculata Medicinal Plant

    NASA Astrophysics Data System (ADS)

    Chandrasekhar Rao, J.; Naidu, B. G.; Sarita, P.; Srikanth, S.; Naga Raju, G. J.

    2017-08-01

    The concentrations of elements Li, Be, Al, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Ag, Cd, Ba, Pb and U in Andrographis Paniculata medicinal plant used in the treatment of Diabetes Mellitus were determined by using Particle Induced X-ray Emission (PIXE) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) techniques. This plant was collected from four different geographical locations in Andhra Pradesh, India in order to assess the regional variation of elemental concentrations. Appreciable levels of K, Ca, Cr, Mn, Cu and Zn determined in this plant can be correlated to the antidiabetic property of Andrographis Paniculata since these elements are known to regulate and potentiate insulin action. Presence of toxic elements As, Cd and Pb necessitates the adoption of precautionary measures while prescribing dosage of the herbal medicine prepared from this plant for the treatment diabetes mellitus.

  3. Major, minor, trace and rare earth elements in sediments of the Bijagós archipelago, Guinea-Bissau.

    PubMed

    Carvalho, Lina; Figueira, Paula; Monteiro, Rui; Reis, Ana Teresa; Almeida, Joana; Catry, Teresa; Lourenço, Pedro Miguel; Catry, Paulo; Barbosa, Castro; Catry, Inês; Pereira, Eduarda; Granadeiro, José Pedro; Vale, Carlos

    2018-04-01

    Sixty sediment samples from four sites in the Bijagós archipelago were characterized for fine fraction, loss on ignition, major, minor and trace elemental composition (Al, Fe, Ca, Mg, Ti, P, Zr, Mn, Cr, Sr, Ba, B, V, Li, Zn, Ni, Pb, As, Co, U, Cu, Cs and Cd), and the elements of the La-Lu series. Element concentrations were largely explained by the Al content and the proportion of fine fraction content, with the exception of Ca and Sr. Sediments showed enhanced Ti, U, Cr, As and Cd concentrations with respect to estimated upper crust values, most likely mirroring a regional signature. Rare earth elements were in deficit relatively to the North American Shale Composite (NASC), mainly in coarser material. No pronounced Ce-anomaly was observed, while Eu-anomalies were positive in most analyzed sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cr, Mn, and Ca distributions for olivine in angritic systems: Constraints on the origins of Cr-rich and Ca-poor core olivine in angrite LEW87051

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Mckay, G.; Le, L.

    1994-01-01

    Angrite meteorites are a type of basaltic achondrites that are noted for their very old cyrstallization ages (4.55 b.y.) and unusual chemical and mineralogical properties. In spite of great interest, only four angrites have been found. LEW87051 is the smallest one which weighs 0.6 g. It is a porphyritic rock with coarse subhedral to euhedral olivines set in a fine-grained groundmass which clearly represents a crystallized melt. The largest uncertainty about the petrogenesis of LEW87051 is the relationship between the large olivine crystals and the groundmass. Prinz et al. suggests that olivines are xenocrysts, while McKay et al. proposed a fractional cyrstallization model based on experimental studies. However, the crystals have Cr-rich and Ca-poor cores which do not match experimental olivines. Although Jurewicz and McKay tried to explaine the zoning of the rim by diffusion, some features are not explained. There also exists a definite composition boundary of Fe(2+) and MnO between the core and the rim. To clarify the origin of these olivines, we have performed experiments using LEW87051 analogs to measure the effects of oxygen fugacity on distribution coefficients of various elements in an angritic system.

  5. Characterization of a heterobimetallic nonheme Fe(III)-O-Cr(III) species formed by O2 activation.

    PubMed

    Zhou, Ang; Kleespies, Scott T; Van Heuvelen, Katherine M; Que, Lawrence

    2015-10-01

    We report the generation and spectroscopic characterization of a heterobimetallic [(TMC)Fe(III)-O-Cr(III)(OTf)4] species (1) by bubbling O2 into a mixture of Fe(TMC)(OTf)2 and Cr(OTf)2 in NCCH3. Complex 1 also formed quantitatively by adding Cr(OTf)2 to [Fe(IV)(O)(TMC)(NCCH3)](2+). The proposed O2 activation mechanism involves the trapping of a Cr-O2 adduct by Fe(TMC)(OTf)2.

  6. Characterization of a Heterobimetallic Nonheme Fe(III)-O-Cr(III) Species Formed by O2 Activation

    PubMed Central

    Zhou, Ang; Kleespies, Scott T.; Van Heuvelen, Katherine M.; Que, Lawrence

    2015-01-01

    We report the generation and spectroscopic characterization of a heterobimetallic [(TMC)FeIII-O-CrIII(OTf)4] species (1) by O2 bubbling into a mixture of Fe(TMC)(OTf)2 and Cr(OTf)2 in NCCH3. Complex 1 also formed quantitatively by adding Cr(OTf)2 to [FeIV(O)(TMC)(NCCH3)]2+. The proposed O2 activation mechanism involves the trapping by a Cr-O2 adduct by Fe(TMC)(OTf)2. PMID:26265081

  7. Dynamics of Chromium(VI) Removal from Drinking Water by Iron Electrocoagulation.

    PubMed

    Pan, Chao; Troyer, Lyndsay D; Catalano, Jeffrey G; Giammar, Daniel E

    2016-12-20

    The potential for new U.S. regulations for Cr(VI) in drinking water have spurred strong interests in improving technologies for Cr(VI) removal. This study examined iron electrocoagulation for Cr(VI) removal at conditions directly relevant to drinking water treatment. Cr(VI) is chemically reduced to less soluble Cr(III) species by the Fe(II) produced from an iron anode, and XANES spectra indicate that the Cr is entirely Cr(III) in solid-phases produced in electrocoagulation. The dynamics of Cr(VI) removal in electrocoagulation at pH 6 and pH 8 at both oxic and anoxic conditions can be described by a new model that incorporates Fe(II) release from the anode and heterogeneous and homogeneous reduction of Cr(VI) by Fe(II). Heterogeneous Cr(VI) reduction by adsorbed Fe(II) was critical to interpreting Cr(VI) removal at pH 6, and the Fe- and Cr-containing EC product was found to catalyze the redox reaction. Dissolved oxygen (DO) did not observably inhibit Cr(VI) removal because Fe(II) reacts with DO more slowly than it does with Cr(VI), and Cr(VI) removal was faster at higher pH. Even in the presence of common groundwater solutes, iron electrocoagulation lowered Cr(VI) concentrations to levels well below California's 10 μg/L.

  8. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone

    DOE PAGES

    Feng, Huan; Zhang, Weiguo; Qian, Yu; ...

    2016-06-15

    This paper investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn in Phragmites australis root system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils. Phragmites australis samples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in themore » root epidermis and that other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  9. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan; Zhang, Weiguo; Qian, Yu

    This paper investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn in Phragmites australis root system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils. Phragmites australis samples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in themore » root epidermis and that other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  10. A IAB-Complex Iron Meteorite Containing Low-Ca Clinopyroxene: Northwest Africa 468 and its Relationship to Iodranites and Formation by Impact Melting

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Kallemeyn, Gregory W.; Wasson, John T.

    2002-01-01

    Northwest Africa 468 (NWA 468) is a new ungrouped, silicate-rich member of the IAB complex of nonmagmatic iron meteorites. The silicates contain relatively coarse (approximately 300 micron-size) grains of low-Ca clinopyroxene with polysynthetic twinning and inclined extinction. Low-Ca clinopyroxene is indicative of quenching from high temperatures (either from protoenstatite in a few seconds or high-temperature clinoenstatite in a few hours). It seems likely that NWA 468 formed by impact melting followed by rapid cooling to less than or equal to 660 C. After the loss of a metal-sulfide melt from the silicates, sulfide was reintroduced, either from impact-mobilized FeS or as an S2 vapor that combined with metallic Fe to produce FeS. The O-isotopic composition (delta O-17 = -1.39 %) indicates that the precursor material of NWA 468 was a metal-rich (e.g., CR) carbonaceous chondrite. Lodranites are similar in bulk chemical and O-isotopic composition to the silicates in NWA 468; the MAC 88177 lodranite (which also contains low-Ca clinopyroxene) is close in bulk chemical composition. Both NWA 468 and MAC 88177 have relatively low abundances of REE (rare earth elements) and plagiophile elements. Siderophiles in the metal-rich areas of NWA 468 are similar to those in the MAC 88177 whole rock; both samples contain low Ir and relatively high Fe, Cu and Se. Most unweathered lodranites contain approximately 20 - 38 wt. % metallic Fe-Ni. These rocks may have formed in an analogous manner to NWA 468 (i.e., by impact melting of metal-rich carbonaceous-chondrite precursors) but with less separation of metal-rich melts from silicates.

  11. Final Scientific/Technical Report--In-Situ Generation of Iron-Chromium Precipitates for Long Term Immobilization of Chromium at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Elizabeth C.; Krumholz, Lee R.; Madden, Andrew S.

    Hexavalent chromium (Cr(VI)) is a toxic ground water contaminant widespread at the Hanford site and many other industrial facilities. A common remediation method for Cr(VI) is in situ reduction/immobilization, in which soluble Cr(VI) is reduced to the less soluble trivalent Cr (Cr(III)). If iron (Fe) minerals are present during the process, Cr(III) precipitates as a mixed Fe(III)-Cr(III) (Fe-Cr) solid. The objective of this exploratory research was to obtain preliminary evidence about the relationships among the method of Cr(VI) reduction (i.e., abiotic or microbial), the properties of the resulting Fe-Cr precipitates, and their tendencies to release soluble Cr(VI) in the presencemore » of the common manganese oxide birnessite. The results of this exploratory research project show that the conditions of Cr(VI) reduction—specifically the ratio of Cr to Fe, and/or whether the Cr(VI) reductant is a mineral or a microorganism—can significantly affect the tendency of the resulting Fe-Cr precipitate to release Cr(VI) to the environment in the presence of birnessite. These results suggest the chosen remediation conditions have the potential to strongly influence not only the initial success of in situ Cr(VI) reduction/immobilization, but also the potential for successful long term sequestration of Cr in the form of stable soil precipitates.« less

  12. Search for New Superconductors for Energy and Power Applications

    DTIC Science & Technology

    2014-10-21

    superconductors, borides , carbides, silicides, and chalcogenides. In addition, a number of thin film systems have been explored: A15s, superlattices, arrays of...YBa2Cu3O7 Bi2Se3 Eu-Si-C ErRh4B4 Bi2Sr2CaCu2O8 (UD, OD) Sb2Se3 V-Si-C (Ga,Mn)As CuO ZrSe2 Sm-Si-C Hf(FeCo)P Y1-xCaxCrO3 Fe-Te-Se BORIDES Hf-Fe-C-P...Physics, Warsaw, Poland Table III New superconductors, discovered by UCSD MURI team. BORIDES Tc (K) Nb0.9Zr0.1B 11.2 ZrNbxB 9.0 ZrVxB 9.0

  13. Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haley, Jack C.; Briggs, Samuel A.; Edmondson, Philip D.

    Model FeCrAl alloys of Fe-10%Cr-5%Al, Fe-12%Cr-4.5%Al, Fe-15%Cr-4%Al, and Fe-18%Cr-3%Al (in wt %) were irradiated with 1 MeV Kr++ ions in-situ with transmission electron microscopy to a dose of 2.5 displacements per atom (dpa) at 320 °C. In all cases, the microstructural damage consisted of dislocation loops with ½< 111 > and <100 > Burgers vectors. The proportion of ½< 111 > dislocation loops varied from ~50% in the Fe-10%Cr-5%Al model alloy and the Fe-18Cr%-3%Al model alloy to a peak of ~80% in the model Fe-15%Cr-4.5%Al alloy. The dislocation loop volume density increased with dose for all alloys and showed signsmore » of approaching an upper limit. The total loop populations at 2.5 dpa had a slight (and possibly insignificant) decline as the chromium content was increased from 10 to 15 wt %, but the Fe-18%Cr-3%Al alloy had a dislocation loop population ~50% smaller than the other model alloys. As a result, the largest dislocation loops in each alloy had image sizes of close to 20 nm in the micrographs, and the median diameters for all alloys ranged from 6 to 8 nm. Nature analysis by the inside-outside method indicated most dislocation loops were interstitial type.« less

  14. Literature review report on atomistic modeling tools for FeCrAl alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongfeng; Schwen, Daniel; Martinez, Enrique

    2015-12-01

    This reports summarizes the literature review results on atomistic tools, particularly interatomic potentials used in molecular dynamics simulations, for FeCrAl ternary alloys. FeCrAl has recently been identified as a possible cladding concept for accident tolerant fuels for its superior corrosion resistance. Along with several other concepts, an initial evaluation and recommendation are desired for FeCrAl before it’s used in realistic fuels. For this purpose, sufficient understanding on the in-reactor behavior of FeCrAl needs to be grained in a relatively short timeframe, and multiscale modeling and simulations have been selected as an efficient measure to supplement experiments and in-reactor testing formore » better understanding on FeCrAl. For the limited knowledge on FeCrAl alloys, the multiscale modeling approach relies on atomistic simulations to obtain the missing material parameters and properties. As a first step, atomistic tools have to be identified and this is the purpose of the present report. It was noticed during the literature survey that no interatomic potentials currently available for FeCrAl. Here, we summarize the interatomic potentials available for FeCr alloys for possible molecular dynamics studies using FeCr as surrogate materials. Other atomistic methods such as lattice kinetic Monte Carlo are also included in this report. A couple of research topics at the atomic scale are suggested based on the literature survey.« less

  15. Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys

    DOE PAGES

    Haley, Jack C.; Briggs, Samuel A.; Edmondson, Philip D.; ...

    2017-07-06

    Model FeCrAl alloys of Fe-10%Cr-5%Al, Fe-12%Cr-4.5%Al, Fe-15%Cr-4%Al, and Fe-18%Cr-3%Al (in wt %) were irradiated with 1 MeV Kr++ ions in-situ with transmission electron microscopy to a dose of 2.5 displacements per atom (dpa) at 320 °C. In all cases, the microstructural damage consisted of dislocation loops with ½< 111 > and <100 > Burgers vectors. The proportion of ½< 111 > dislocation loops varied from ~50% in the Fe-10%Cr-5%Al model alloy and the Fe-18Cr%-3%Al model alloy to a peak of ~80% in the model Fe-15%Cr-4.5%Al alloy. The dislocation loop volume density increased with dose for all alloys and showed signsmore » of approaching an upper limit. The total loop populations at 2.5 dpa had a slight (and possibly insignificant) decline as the chromium content was increased from 10 to 15 wt %, but the Fe-18%Cr-3%Al alloy had a dislocation loop population ~50% smaller than the other model alloys. As a result, the largest dislocation loops in each alloy had image sizes of close to 20 nm in the micrographs, and the median diameters for all alloys ranged from 6 to 8 nm. Nature analysis by the inside-outside method indicated most dislocation loops were interstitial type.« less

  16. Mineralogical, geochemical, and magnetic signatures of surface sediments from the Canadian Beaufort Shelf and Amundsen Gulf (Canadian Arctic)

    NASA Astrophysics Data System (ADS)

    Gamboa, Adriana; Montero-Serrano, Jean-Carlos; St-Onge, Guillaume; Rochon, André; Desiage, Pierre-Arnaud

    2017-02-01

    Mineralogical, geochemical, magnetic, and siliciclastic grain-size signatures of 34 surface sediment samples from the Mackenzie-Beaufort Sea Slope and Amundsen Gulf were studied in order to better constrain the redox status, detrital particle provenance, and sediment dynamics in the western Canadian Arctic. Redox-sensitive elements (Mn, Fe, V, Cr, Zn) indicate that modern sedimentary deposition within the Mackenzie-Beaufort Sea Slope and Amundsen Gulf took place under oxic bottom-water conditions, with more turbulent mixing conditions and thus a well-oxygenated water column prevailing within the Amundsen Gulf. The analytical data obtained, combined with multivariate statistical (notably, principal component and fuzzy c-means clustering analyses) and spatial analyses, allowed the division of the study area into four provinces with distinct sedimentary compositions: (1) the Mackenzie Trough-Canadian Beaufort Shelf with high phyllosilicate-Fe oxide-magnetite and Al-K-Ti-Fe-Cr-V-Zn-P contents; (2) Southwestern Banks Island, characterized by high dolomite-K-feldspar and Ca-Mg-LOI contents; (3) the Central Amundsen Gulf, a transitional zone typified by intermediate phyllosilicate-magnetite-K-feldspar-dolomite and Al-K-Ti-Fe-Mn-V-Zn-Sr-Ca-Mg-LOI contents; and (4) mud volcanoes on the Canadian Beaufort Shelf distinguished by poorly sorted coarse-silt with high quartz-plagioclase-authigenic carbonate and Si-Zr contents, as well as high magnetic susceptibility. Our results also confirm that the present-day sedimentary dynamics on the Canadian Beaufort Shelf is mainly controlled by sediment supply from the Mackenzie River. Overall, these insights provide a basis for future studies using mineralogical, geochemical, and magnetic signatures of Canadian Arctic sediments in order to reconstruct past variations in sediment inputs and transport pathways related to late Quaternary climate and oceanographic changes.

  17. AsMo7O27-bridged dinuclear sandwich-type heteropolymolybdates of Cr(III) and Fe(III): magnetism of [MM'(AsMo7O27)2]12- with MM' = FeFe, CrFe, and CrCr.

    PubMed

    Xu, Haisheng; Li, Lili; Liu, Bin; Xue, Ganglin; Hu, Huaiming; Fu, Feng; Wang, Jiwu

    2009-11-02

    Two new dinuclear sandwich-type heteropolymolybdates based on the mulitidendate inorganic fragment [AsMo(7)O(27)] and Cr(III) and Fe(III) ions, namely, the homometallic sandwich polyoxometalate (POM) (NH(4))(12)[Fe(2)(AsMo(7)O(27))(2)] x 12 H(2)O (1) and the first example of the "symmetrical" heterometallic Cr(III)-Fe(III) sandwich POM, (NH(4))(12)[FeCr(AsMo(7)O(27))(2)] x 13 H(2)O (2), were simultaneously synthesized in high yield. Their magnetic properties are thoroughly investigated together with the homometallic sandwich POM (NH(4))(12)[Cr(2)(AsMo(7)O(27))(2)] x 11 H(2)O (3). The chi(M)T values for compounds 1-3 at 300 K correspond well to the calculated spin-only values for Fe(III) (S = 5/2) and Cr(III) (S = 3/2) with g(Fe) = g(Cr) = 2. Upon cooling, the chi(M)T values decline monotonously and reach 0.14, 1.00, and 0.11 cm(3) K mol(-1) at 2.0 K for 1, 2, and 3, respectively, indicating a significant antiferromagnetic exchange between the magnetic centers with J = -2.09, -4.09, and -6.26 cm(-1), respectively, for 1, 2, and 3. The magnetic results clearly establish that compound 2 is formed by bimetallic Cr(III)-Fe(III) units and not by a mixture of the two antiferromagnetically coupled homometallic species. Their thermal properties are also characterized.

  18. Performance Optimization of Metallic Iron and Iron Oxide Nanomaterials for Treatment of Impaired Water Supplies

    NASA Astrophysics Data System (ADS)

    Xie, Yang

    Iron nanomaterials including nanoscale zero valent iron (NZVI), NZVI-based bimetallic reductants (e.g., Pd/NZVI) and naturally occurring nanoscale iron mineral phases represent promising treatment tools for impaired water supplies. However, questions pertaining to fundamental and practical aspects of their reactivity may limit their performance during applications. For NZVI treatment of pollutant source zones, a major hurdle is its limited reactive lifetime. In Chapter 2, we report the longevity of NZVI towards 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA) and hexavalent chromium [Cr(VI)] in oxygen-free systems with various anionic co-solutes (e.g., Cl-, SO4 2-, ClO4-, HCO3 -, NO3-). Trends in longevity provide evidence that surface-associated Fe(II) species are responsible for Cr(VI) reduction, whereas 1,1,1,2-TeCA reduction depends on the accessibility of Fe(0) at the NZVI particle surface. In Chapter 3, we show that dithionite, previously utilized for in situ redox manipulation, can restore the reducing capacity of passivated NZVI treatment systems. Air oxidation of NZVI at pH ≥ 8 quickly exhausted reactivity despite a significant fraction of Fe(0) persisting in the particle core. Reduction of this passive layer by low dithionite concentrations restored suspension reactivity to levels of unaged NZVI, with multiple dithionite additions further improving pollutant removal. In Chapter 4, measurements of solvent kinetic isotope effects reveals that optimal Pd/NZVI reactivity results from accumulation of atomic hydrogen, which only occurs in NZVI-based systems due to their higher rates of corrosion. However, atomic hydrogen formation only occurs in aged Pd/NZVI suspensions for ˜2 weeks, after which any reactivity enhancement likely results from galvanic corrosion of Fe(0). Finally, the activity of hybrid nanostructures consisting of multi-walled carbon nanotubes decorated with of hematite nanoparticles (alphaFe 2O3/MWCNT) is explored in Chapter 5. Sorption of Cu(II) and Cr(VI) is enhanced in hybrid nanostructure systems beyond what would be expected from simple additive sorption capacities of their building blocks. The enhanced sorption capacity is in part derived from the greater surface area of hematite nanoparticles immobilized on MWCNTs relative to aggregated hematite suspensions. The hybrid alphaFe2O3/MWCNT may also exhibit unique surface chemistry, as supported by the tunable values of zeta potential measured as a function of the mass of alphaFe2O 3 deposited on the MWCNTs.

  19. Parametric and experimentally informed BWR Severe Accident Analysis Utilizing FeCrAl - M3FT-17OR020205041

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, Larry J.; Howell, Michael; Robb, Kevin R.

    Iron-chromium-aluminum (FeCrAl) alloys are being considered as advanced fuel cladding concepts with enhanced accident tolerance. At high temperatures, FeCrAl alloys have slower oxidation kinetics and higher strength compared with zirconium-based alloys. FeCrAl could be used for fuel cladding and spacer or mixing vane grids in light water reactors and/or as channel box material in boiling water reactors (BWRs). There is a need to assess the potential gains afforded by the FeCrAl accident-tolerant-fuel (ATF) concept over the existing zirconium-based materials employed today. To accurately assess the response of FeCrAl alloys under severe accident conditions, a number of FeCrAl properties and characteristicsmore » are required. These include thermophysical properties as well as burst characteristics, oxidation kinetics, possible eutectic interactions, and failure temperatures. These properties can vary among different FeCrAl alloys. Oak Ridge National Laboratory has pursued refined values for the oxidation kinetics of the B136Y FeCrAl alloy (Fe-13Cr-6Al wt %). This investigation included oxidation tests with varying heating rates and end-point temperatures in a steam environment. The rate constant for the low-temperature oxidation kinetics was found to be higher than that for the commercial APMT FeCrAl alloy (Fe-21Cr-5Al-3Mo wt %). Compared with APMT, a 5 times higher rate constant best predicted the entire dataset (root mean square deviation). Based on tests following heating rates comparable with those the cladding would experience during a station blackout, the transition to higher oxidation kinetics occurs at approximately 1,500°C. A parametric study varying the low-temperature FeCrAl oxidation kinetics was conducted for a BWR plant using FeCrAl fuel cladding and channel boxes using the MELCOR code. A range of station blackout severe accident scenarios were simulated for a BWR/4 reactor with Mark I containment. Increasing the FeCrAl low-temperature oxidation rate constant (3 times and 10 times that of the rate constant for APMT) had a negligible impact on the early stages of the accident and minor impacts on the accident progression after the first relocation of the fuel. At temperatures below 1,500°C, increasing the rate constant for APMT by a factor of 10 still resulted in only minor FeCrAl oxidation. In general, the gains afforded by the FeCrAl enhanced ATF concept with respect to accident sequence timing and combustible gas generation are consistent with previous efforts. Compared with the traditional Zircaloy-based cladding and channel box system, the FeCrAl concept could provide a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. For example, a station blackout was simulated in which cooling water injection was lost 36 hours after shutdown. The timing to first fuel relocation was delayed by approximately 5 h for the FeCrAl ATF concept compared with that of the traditional Zircaloy-based cladding and channel box system.« less

  20. Meta-Transcriptomic Analysis of a Chromate-Reducing Aquifer Microbial Community

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Brodie, E. L.; Han, R.; Karaoz, U.

    2010-12-01

    A major challenge for microbial ecology that has become more tractable in the advent of new molecular techniques is characterizing gene expression in complex microbial communities. We are using meta-transcriptomic analysis to characterize functional changes in an aquifer-derived, chromate-reducing microbial community as it transitions through various electron-accepting conditions. We inoculated anaerobic microcosms with groundwater from the Cr-contaminated Hanford 100H site and supplemented them with lactate and electron acceptors present at the site, namely, nitrate, sulfate, and Fe(III). The microcosms progressed successively through various electron-accepting conditions (e.g., denitrifying, sulfate-reducing, and ferric iron-reducing conditions, as well as nitrate-dependent, chemolithotrophic Fe(II)-oxidizing conditions). Cr(VI) was rapidly reduced initially and again upon further Cr(VI) amendments. Extensive geochemical sampling and analysis (e.g., lactate, acetate, chloride, nitrate, nitrite, sulfate, dissolved Cr(VI), total Fe(II)), RNA/DNA harvesting, and PhyloChip analyses were conducted. Methods were developed for removal of rRNA from total RNA in preparation for meta-transcriptome sequencing. To date, samples representing denitrifying and fermentative/sulfate-reducing conditions have been sequenced using 454 Titanium technology. Of the non-rRNA related reads for the denitrifying sample (which was also actively reducing chromate), ca. 8% were associated with denitrification and ca. 0.9% were associated with chromate resistance/transport, in contrast to the fermentative/sulfate-reducing sample (in which chromate had already been reduced), which had zero reads associated with either of these categories but many predicted proteins associated with sulfate-reducing bacteria. We observed sequences for key functional transcripts that were unique at the nucleotide level compared to the GenBank non-redundant database [such as L-lactate dehydrogenase (iron-sulfur-cluster-binding subunit), cytochrome cd1 nitrite reductase (nirS) (from the denitrifying phase), and dissimilatory sulfite reductase (dsrA, dsrB) (from the sulfate-reducing phase)]. One potential advantage of this approach is that such important genes may not have been detected using more traditional techniques, including PCR-based methods and a priori functional microarrays.

  1. Is Eruption Style Linked to Magma Residence Time at Kilauea Volcano? Results from Chemical Zoning in Olivine

    NASA Astrophysics Data System (ADS)

    Lynn, K. J.; Costa Rodriguez, F.; Shea, T.; Garcia, M. O.

    2015-12-01

    Kilauea is generally characterized by its modern effusive activity, but the past 2500 years were dominated by cycles of explosive and effusive eruptions lasting 100's of years (Swanson et al. 2012). These different eruption styles may reflect variable volatile contents in the source that control magma ascent rate and storage durations (e.g., Sides et al. 2014). A detailed petrological study of the dominantly explosive Keanakako'i tephras (1500-1820 CE) was undertaken to better understand the storage and transport conditions preceding high-energy eruptions. Here, we focus on preliminary results for olivine from the 1500 CE Basal Reticulite (>600 m fountain; May et al. 2015). Olivine major (Fe, Mg), minor (Mn, Ca, Ni) and trace (Li, Na, Al, P, Sc, Ti, V, Cr, Co, Zn) element traverses and 2D maps were collected for 10 crystals and reveal two major populations. The dominant population has homogeneous Fo89 and Fo87 cores with thin (3-12 μm) rims of intermediate composition (Fo87.5-88.5). Normal, reverse, and complex trace element zoning (Al, P, Ti, Cr) is prominent in these otherwise homogenous (Fo, Ni, Ca, Mn) crystals. 2D maps reveal early skeletal growth and the progressive decrease of Cr from core to rim suggests olivine and Cr-spinel crystallization, which should produce significant Fo zoning. Absence of Fo zoning could imply significant storage time in a reservoir allowing homogenization. The majority of rim compositions are out of equilibrium with adhering glass, and Fe-Mg modeling indicates that their residence within the carrier melt was of a few days. A second population consists of strongly zoned (normal and reverse) crystals with a wide range of core Fo (78 to 89) and Fo82-84 rims. Timescales from Fe-Mg zoning are up to 1 year, and may record storage histories before interaction with the carrier melt. The diversity in olivine zoning suggests at least two stages of magma mixing, and a more complex evolution for the magmas that fed the reticulite eruptions than a simple closed-system and fast transport of a volatile-rich magma from the source to the surface.

  2. Reduction and Simultaneous Removal of 99 Tc and Cr by Fe(OH) 2 (s) Mineral Transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saslow, Sarah A.; Um, Wooyong; Pearce, Carolyn I.

    Technetium (Tc) remains a priority remediation concern due to persistent challenges, including rapid re-oxidation of immobilized Tc, and competing contaminants, e.g. Cr(VI), that inhibit targeted Tc reduction and incorporation into stable mineral phases. Here Fe(OH) 2(s) is investigated as a comprehensive solution for overcoming these challenges, by serving as both the reductant, (Fe(II)), and immobilization agent to form Tc-incorporated magnetite (Fe 3O 4). Trace metal analysis suggests removal of Tc(VII) and Cr(VI) from solution occurs simultaneously; however, complete removal and reduction of Cr(VI) is achieved earlier than the removal/reduction of co-mingled Tc(VII). Bulk oxidation state analysis of the magnetite solidmore » phase by XANES confirms that the majority of Tc is Tc(IV), which is corroborated by XPS. Furthermore, EXAFS results show successful Tc(IV) incorporation into magnetite octahedral sites without additional substitution of Cr or Tc into neighboring Fe octahedral sites. XPS analysis of Cr confirms reduction to Cr(III) and the formation of a Cr-incorporated spinel, Cr2O 3, and Cr(OH)3 phases. Spinel (modeled as Fe 3O 4), goethite, and feroxyhyte are detected in all reacted solid phase samples analyzed by XRD, where Tc(IV) incorporation has little effect on the spinel lattice structure. In the presence of Cr(III) a spinel phase along the magnetite-chromite (Fe 3O 4-FeCr 2O 4) solid-solution line is formed.« less

  3. Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials.

    PubMed

    Wang, Qiang; Huang, Liping; Pan, Yuzhen; Quan, Xie; Li Puma, Gianluca

    2017-01-05

    The role of Fe(III) was investigated as an electron-shuttle mediator to enhance the reduction rate of the toxic heavy metal hexavalent chromium (Cr(VI)) in wastewaters, using microbial fuel cells (MFCs). The direct reduction of chromate (CrO 4 - ) and dichromate (Cr 2 O 7 2- ) anions in MFCs was hampered by the electrical repulsion between the negatively charged cathode and Cr(VI) functional groups. In contrast, in the presence of Fe(III), the conversion of Cr(VI) and the cathodic coulombic efficiency in the MFCs were 65.6% and 81.7%, respectively, 1.6 times and 1.4 folds as those recorded in the absence of Fe(III). Multiple analytical approaches, including linear sweep voltammetry, Tafel plot, cyclic voltammetry, electrochemical impedance spectroscopy and kinetic calculations demonstrated that the complete reduction of Cr(VI) occurred through an indirect mechanism mediated by Fe(III). The direct reduction of Cr(VI) with cathode electrons in the presence of Fe(III) was insignificant. Fe(III) played a critical role in decreasing both the diffusional resistance of Cr(VI) species and the overpotential for Cr(VI) reduction. This study demonstrated that the reduction of Cr(VI) in MFCs was effective in the presence of Fe(III), providing an alternative and environmentally benign approach for efficient remediation of Cr(VI) contaminated sites with simultaneous production of renewable energy. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Radiation effects on interface reactions of U/Fe, U/(Fe+Cr), and U/(Fe+Cr+Ni)

    DOE PAGES

    Shao, Lin; Chen, Di; Wei, Chaochen; ...

    2014-10-01

    We study the effects of radiation damage on interdiffusion and intermetallic phase formation at the interfaces of U/Fe, U/(Fe + Cr), and U/(Fe + Cr + Ni) diffusion couples. Magnetron sputtering is used to deposit thin films of Fe, Fe + Cr, or Fe + Cr + Ni on U substrates to form the diffusion couples. One set of samples are thermally annealed under high vacuum at 450 C or 550 C for one hour. A second set of samples are annealed identically but with concurrent 3.5 MeV Fe++ ion irradiation. The Fe++ ion penetration depth is sufficient to reachmore » the original interfaces. Rutherford backscattering spectrometry analysis with high fidelity spectral simulations is used to obtain interdiffusion profiles, which are used to examine differences in U diffusion and intermetallic phase formation at the buried interfaces. For all three diffusion systems, Fe++ ion irradiations enhance U diffusion. Furthermore, the irradiations accelerate the formation of intermetallic phases. In U/Fe couples, for example, the unirradiated samples show typical interdiffusion governed by Fick’s laws, while the irradiated ones show step-like profiles influenced by Gibbs phase rules.« less

  5. Crystallographic and magnetic properties of sol-gel synthesized T xCo 1-xFe 2O 4 (T=Mn and Cr) thin films

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Joo; Kyung Kim, Hee; Ran Park, Young; Choi, Seung-li; Eun Kim, Sung; Jung Lee, Hee; Yun Park, Jae; Jin Kim, Sam

    Effects of Mn and Cr substitution for Co on crystallographic and magnetic properties of inverse-spinel CoFe 2O 4 thin films were investigated. The crystal structure of the samples remain cubic for x<1 with the lattice constant ( a0) increasing with x for Mn doping and remaining constant for Cr doping. Tetrahedral Fe 2+ ions were detected in Cr xCo 1-xFe 2O 4 by Mössbauer spectroscopy while no such ions existed in Mn xCo 1-xFe 2O 4. The appearance of the tetrahedral Fe 2+ ions can be explained in terms of the Cr 3+ substitution for the octahedral Co 2+ sites with the resultant charge imbalance being compensated by a reduction of the tetrahedral Fe 3+ into Fe 2+. The observed variation in a0 and magnetic properties can be partly explained in terms of Mn 2+ and Cr 3+ substitution of octahedral sites in Mn xCo 1-xFe 2O 4 and Cr xCo 1-xFe 2O 4, respectively.

  6. Macrominerals and Trace Element Requirements for Beef Cattle.

    PubMed

    Costa e Silva, Luiz Fernando; Valadares Filho, Sebastião de Campos; Engle, Terry Eugene; Rotta, Polyana Pizzi; Marcondes, Marcos Inácio; Silva, Flávia Adriane Sales; Martins, Edilane Costa; Tokunaga, Arnaldo Taishi

    2015-01-01

    Eighty-seven Nellore animals were utilized in this study to estimate net requirements for the maintenance and growth of beef cattle as well as the retention coefficients of 13 minerals: macrominerals (Ca, P, Mg, K, Na, and S) and trace elements (Cu, Fe, Mn, Se, Zn, Co, and Cr). The net requirements for maintenance and the true retention coefficient were estimated by using the regression between apparent retention and intake for each mineral. The net requirement for maintenance (μg/kg BW) and retention coefficients (%) were 163 and 85 for Cu, 2,097 and 53 for Fe, 32.3 and 24 for Mn, 3.72 and 48 for Se, 669 and 0.80 for Zn, 18.4 and 86 for Co, and 22.9 and 78 for Cr. The dietary requirements of macrominerals (g/kg DMI) were 5.12 for Ca, 2.38 for P, 0.96 for Mg, 2.40 for K, 0.79 for Na, and 1.47 for S. This is the first study using Nellore cattle to estimate mineral requirements; considering that Nellore cattle are the most common breed in Brazil and that Brazil is a major beef producer globally, this knowledge can help producers to improve animal performance by supplying the correct amount of minerals.

  7. Macrominerals and Trace Element Requirements for Beef Cattle

    PubMed Central

    Costa e Silva, Luiz Fernando; de Campos Valadares Filho, Sebastião; Engle, Terry Eugene; Rotta, Polyana Pizzi; Marcondes, Marcos Inácio; Silva, Flávia Adriane Sales; Martins, Edilane Costa; Tokunaga, Arnaldo Taishi

    2015-01-01

    Eighty-seven Nellore animals were utilized in this study to estimate net requirements for the maintenance and growth of beef cattle as well as the retention coefficients of 13 minerals: macrominerals (Ca, P, Mg, K, Na, and S) and trace elements (Cu, Fe, Mn, Se, Zn, Co, and Cr). The net requirements for maintenance and the true retention coefficient were estimated by using the regression between apparent retention and intake for each mineral. The net requirement for maintenance (μg/kg BW) and retention coefficients (%) were 163 and 85 for Cu, 2,097 and 53 for Fe, 32.3 and 24 for Mn, 3.72 and 48 for Se, 669 and 0.80 for Zn, 18.4 and 86 for Co, and 22.9 and 78 for Cr. The dietary requirements of macrominerals (g/kg DMI) were 5.12 for Ca, 2.38 for P, 0.96 for Mg, 2.40 for K, 0.79 for Na, and 1.47 for S. This is the first study using Nellore cattle to estimate mineral requirements; considering that Nellore cattle are the most common breed in Brazil and that Brazil is a major beef producer globally, this knowledge can help producers to improve animal performance by supplying the correct amount of minerals. PMID:26657049

  8. Dynamics of multiple elements in fast decomposing vegetable residues.

    PubMed

    Cao, Chun; Liu, Si-Qi; Ma, Zhen-Bang; Lin, Yun; Su, Qiong; Chen, Huan; Wang, Jun-Jian

    2018-03-01

    Litter decomposition regulates the cycling of nutrients and toxicants but is poorly studied in farmlands. To understand the unavoidable in-situ decomposition process, we quantified the dynamics of C, H, N, As, Ca, Cd, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Pb, and Zn during a 180-d decomposition study in leafy lettuce (Lactuca sativa var. longifoliaf) and rape (Brassica chinensis) residues in a wastewater-irrigated farmland in northwestern China. Different from most studied natural ecosystems, the managed vegetable farmland had a much faster litter decomposition rate (half-life of 18-60d), and interestingly, faster decomposition of roots relative to leaves for both the vegetables. Faster root decomposition can be explained by the initial biochemical composition (more O-alkyl C and less alkyl and aromatic C) but not the C/N stoichiometry. Multi-element dynamics varied greatly, with C, H, N, K, and Na being highly released (remaining proportion<20%), Ca, Cd, Cr, Mg, Ni, and Zn released, and As, Cu, Fe, Hg, Mn, and Pb possibly accumulated. Although vegetable residues serve as temporary sinks of some metal(loid)s, their fast decomposition, particularly for the O-alkyl-C-rich leafy-lettuce roots, suggest that toxic metal(loid)s can be released from residues, which therefore become secondary pollution sources. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Large magnetization and high Curie temperature in highly disordered nanoscale Fe2CrAl thin films

    NASA Astrophysics Data System (ADS)

    Dulal, Rajendra P.; Dahal, Bishnu R.; Forbes, Andrew; Pegg, Ian L.; Philip, John

    2017-02-01

    We have successfully grown nanoscale Fe2CrAl thin films on polished Si/SiO2 substrates using an ultra-high vacuum deposition with a base pressure of 9×10-10 Torr. The thickness of thin films ranges from 30 to 100 nm. These films exhibit cubic crystal structure with lattice disorder and display ferromagnetic behavior. The Curie temperature is greater than 400 K, which is much higher than that reported for bulk Fe2CrAl. The magnetic moments of the films varies from 2.5 to 2.8 μB per formula unit, which is larger than the reported bulk values. Thus, the disordered nanoscale Fe2CrAl films exhibit strong Fe-Fe exchange interactions through Fe-Cr-Fe and Fe-Al-Fe layers, resulting in both a large magnetization and a high Curie temperature.

  10. Computational thermodynamics aided design of novel ferritic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Chen, Tianyi; Tan, Lizhen

    With the aid of computational thermodynamics, Ni was identified to suppress the liquidus temperature of Fe 2Zr and four Fe-Cr-Ni-Zr alloys were designed to study the Ni effect on the phase stability of Fe 2Zr laves_phase. These alloys were fabricated through traditional arc-metling, followed by annealing at 1000 C for 336 hours and 700 C for 1275 hours. The microstructure were examined and characterized by SEM BSE image, EDS compositional mapping and point scan, XRD and TEM analysis. The major results were summarized below: 1)For investigated alloys with 12wt% Cr, 3~6wt% Zr and 3~9 wt%Ni, the phases in equilibrium withmore » the BCC phase are C15_Laves phase, Fe 23Zr 6 phase. The volume fraction of intermetallic phases increases with Ni and Zr contents. 2)Instead of (Fe,Cr) 2Zr C14_Laves phase, Ni stabilizes the C15_Laves structure in Fe-Cr-Ni-Zr alloys by substituting Fe and Cr atoms with Ni atoms in the first sublattice. 3)Fe 23Zr 6, that is metastable in the Fe-Cr-Zr ternary, is also stabilized by Ni addition. 4)Ni 7Zr 2 phase was observed in samples with high Ni/Zr ratio. Extensive solubility of Fe was identified in the phase. The microstructural and composition results obtained from this study will be incorportated into the the Fe-Cr-Ni-Zr database. The current samples will be subjected to ion irradiaition to be compared with those results for Fe-Cr-Zr alloys. Additional alloys will be designed to form (Fe,Cr,Ni) 2Zr nanoprecipitates for further studies.« less

  11. Synthesis Oxide Dispersion Strengthening Stainless Steel doped with Nano Zirconia by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Pawawoi; Widiansyah, Irfan; Hadi Prajitno, Djoko

    2017-01-01

    The oxide dispersion strengthening stainless steel of Fe-11.5wt%Cr and Fe-11.5wt%Cr-1%ZrO2 alloy by mechanical alloying method were synthesized by planetary ball milling. The methods employed for study were designing of Fe-11.5wt%Cr and Fe-11.5wt%Cr-1%ZrO2 proportion of composition alloy which is plotted to Schaffler diagram to get ferritic/martensitic stainless steel. After MA the ODS powders were compaction with pressure 80kg/mm2 and followed by sintering at the temperature of 900,1000 and 1100º C under high purity argon atmosphere for 1 hour. Characterization by XRD is used to examination phase present. Optical microscopy and SEM is used to get image microstructures. XRD analysis resulting the ferritic and martensitic is a major and minor phase respectively. There are not significant differences in the microstructure between Fe-11.5wt%Cr and Fe-11.5wt%Cr-1wt%ZrO2. An increase in the sintering temperature shift the microstructure from dendritic to equaxed. EDS examination showed that zirconia exit in the alloy Fe-11.5wt%Cr-1wt%ZrO2.The addition of 1 % nano-zirconia (ZrO2) into Fe-Cr alloy while milling process was resulted a higher Hardness Vickers Values rather than without zirconia addition. Average value of Hardness Vickers values was resulted 135.5 HV for Fe-11.5wt%Cr whereas 138.4 HV for Fe-11.5wt%Cr-1wt%ZrO2.

  12. Development of a Brazing Alloy for the Mechanically Alloyed High Temperature Sheet Material INCOLOY Alloy MA 956.

    DTIC Science & Technology

    1981-09-01

    OF A BRAZING ALLOY FOR THE MECHANICALLY ALLOYED HIGH TEMPERATURE SHEET MATERIAL INCOLOY ALLOY MA 956 W. E. Morgan and Dr. P. J. Bridges N. Wiggin...PERIOD COVERED DEVELOPMENT OF A BRAZING ALLOY FOR THE Final Report MECHANICALLY ALLOYED HIGH TEMPERATURE Dec 1978 - March 1981 SHEET MATERIAL INCOLOY...block nomber) High temperature ODS alloys, Braze development, Braze alloys, INCOLOY MA 956, Ni-Cr-Pd, Fe-Cr-Pd, Ni-Cr-Ge, Fe-Cr-Ge, Fe-Cr-B, Fe-Cr-Si

  13. Implication of the monomineral eclogite thermobarometry for the reconstruction of the PT conditions and origin of mantle eclogites in the structure of Siberian and other cratons.

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor; Logvinova, Alla; Spetsius, Zdislav; Ntaflos, Theodoros; Ravi, Subramanaian; Vladykin, Nikolai; Stegnitsky, Yuri; Babushkina, Svetlana; Ovchinnikov, Yuri

    2016-04-01

    Enhanced monomineral thermobarometry for clinopyroxenes and garnet (Ashchepkov et al., 2015) allow reconstruction of thermal conditions for the mantle eclogitic xenoliths and xenocrysts of omphacites and pyrope almandine garnets of eclogitic and megacrystic types. Three common groups according to Dawson,(1977) A. Mg - eclogites; B. common subduction-related basaltic eclogites and C. Na-Fe- rich eclogites. In addition group D compile Ca-Al rich varieties (Spetsius et al., 2008; Viljoen et al., 2010). We subdivided these groups and their positions in mantle lithosphere sections beneath the most studied pipes in Yakutia and most interesting localities Worldwide. Group A including Al-rich and low groups are restites or cumulates from the ancient komatiitic basalts or boninites. The Fe# for olivine in equilibrium is 0.05 -0.11 using melt -solid partition coefficient ~0.33 for Fe (Albarede, 1992). For the group B Fe# of the omphacites are ~ 0.11- 0.23 and they could be only cumulates from melted subducted MORB basalts or reactional products. The higher values of Fe -Na-Al rich group C (Fe# ~0.25-0.4) could relate to the subducted basalts or Al - rich sediments (Spetsius et al., 2008) or Mg-rich crustal rocks which were subducted without much melting. Group D Ca-rich eclogites are commonly low Fe but subduction related varieties (Dongre et al., 2015) could be higher in Fe and Na. Partition coefficients of the trace elements between Gar and Cpx for most mantle eclogites relate to equilibration with the melts and REE patterns show different inclinations, while crustal eclogites which re-equilibrated in the solid state often show the same inclinations. Groups A1: a Cr-bearing group formed after crystallization of partial melts produced by volatile fluxes generated by ancient subduction (Heaman et al., 2006; Smart et al., 2009); A2 - low - Al cumulates and restites from komatiitic melts (Aulbach et al., 2011); A3 - low-Cr group which could be restites (Wyman and Kerrich, 2009) or deep cumulates from tonalite- trondhjemite or Mg-rich boninitic arc magmas (Horodytskyi et al., 2007; Barth et al., 2002); A4 a group derived by crystallization of differentiated protokimberlite melts (Haggerty et al., 1979; Kamenetsky et al., 2009). The largest group B with Fe# (~ 0.15-0.25, moderate in Al and Na values, commonly reveal Eu anomalies. The GrB1 interpreted as subducted metagrabbro close to MORB (Jagoutz et al., 1974; Beard et al., 1996; Pearson, 1995; Snyder et al., 1997) reacted with oceanic water (Neal et al., 1990). Enriched Group B2 eclogites are thought to be products of fluid melting of ancient oceanic crust and interaction with peridotites during subduction (Aulbach et al., 2007). Group B3 eclogites (>3 GPa) may be basaltic cumulates derived from plume or ancient arc magmas in cratonic margins (Wyman and Kerrich, 2009); those near Moho may be eclogitized lower crustal cumulates (Shu et al., 2014). Group B4 eclogites are results of hybridization of subducted basalts with protokimberlite and other plume melts (Shatsky et al., 2008 -2015). High-Fe -Na Group C1 eclogites (Fe# > 0.27) may be subducted Fe- basalts; Ca-enriched varieties may be meta-tonalites or trondhjemites (Group C2) (Barth et al., 2002) and those which are very rich in Al could be metasediments (Group C3) (Mazzone and Haggerty, 1989). High -Ca- Al GrD1 are rare high-Ca and low-Fe varieties, commonly Al-rich and kyanite-bearing (sometimes with coesite) (grosspydites) which may be originally carbonate metasomatites (Smyth, 1977) or metapelites (Liou et al., 2014); Group GrD3 eclogites are high-Ca and moderate-Fe and may be ancient Mg-granites (Barth et al., 2002; Jacob et al., 2003) . According to the thermobarometry GrA eclogites are distributed mostly in the lower (L) and- middle parts of SCLM and correspond to low - temperature thermal gradients. GrB2 eclogites form trends of increasing Fe# for garnets and omphacites with decreasing pressure. This could be due to the progressive melting of subducted basalts (Rosenthal et al., 2014) or an opposite due to crystallization of evolving partial melts from primary eclogites. In USCLM the GrB3 omphacites show reactional trends with decreasing Fe# upward or an opposite progressive rise due to magmatic differentiation. GrC dominate the middle part of the SCLM (3-4 GPa) and mostly correspond to the layer originated in the Early Archean time at 3.5-4.0 GPa possibly due to subduction of the tonalitic crust and related metasediments. CrD1 -rich grosspyditic varieties from India, Siberia and South Africa are relatively low-Fe and Al-rich and possibly are metasomatites or products of interaction of sediments and peridotites. The other Ca- rich varieties most likely are subducted anorthosites or rare granites. Supported by the RFBR grants: 05-05-64718, 03-05-64146, 11 -05-00060, 11-05-91060-PICS, 16-05-00841, 16-05-00860 and projects 77-2, 65-03, 02-05 UIGGM SB RAS and ALROSA Stock Company

  14. Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys

    DOE PAGES

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; ...

    2017-03-28

    The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloysmore » with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). Finally, the results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.« less

  15. Characteristics of Eutectic α(Cr,Fe)-(Cr,Fe)23C6 in the Eutectic Fe-Cr-C Hardfacing Alloy

    NASA Astrophysics Data System (ADS)

    Lai, Hsuan-Han; Hsieh, Chih-Chun; Lin, Chi-Ming; Wu, Weite

    2017-01-01

    A specific eutectic (Cr,Fe)-(Cr,Fe)23C6 structure had been previously reported in the research studies of Fe-Cr-C hardfacing alloys. In this study, a close observation and discussion of the eutectic (Cr,Fe)-(Cr,Fe)23C6 were conducted. The eutectic solidification occurred when the chromium content of the alloy exceeded 35 wt pct. The eutectic structure showed a triaxial radial fishbone structure which was the so called "complex regular structure." Lamellar costa plates showed local asymmetry at two sides of a spine. Individual costae were able to combine as one, and spines showed extra branches. Costae that were nearly parallel to the heat flow direction were longer than those that were vertical to the heat flow direction. The triaxial spines preferred to intersect at 120 deg, while the costae preferred to intersect the spine at 90 deg and 35.26 deg due to the lattice relationships. The solidified metal near the fusion boundary showed an irregular structure instead of a complex regular structure. The reason for the irregular morphology was the high growth rate near the fusion boundary.

  16. Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; Howard, Richard H.; Yamamoto, Yukinori

    2017-06-01

    The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloys with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). The results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.

  17. Influence of fuel-nitrate ratio on the structural and magnetic properties of Fe and Cr based spinels prepared by solution self combustion method

    NASA Astrophysics Data System (ADS)

    Sijo, A. K.

    2017-11-01

    In this study, we report the synthesis of nano-sized CoCrFeO4 and NiCrFeO4 using the solution self combustion method and the variation in the magnetic and structural properties with different fuel to nitrate ratios-fuel lean, fuel rich and stoichiometric. Citric acid is used as the fuel. XRD analysis of the samples confirms the formation of pure spinel phased nanoparticles in fuel rich and stoichiometric cases. But CoCrFeO4 and NiCrFeO4 samples prepared under the fuel lean condition show the presence of a small amount of impurity phases: α-Ni in fuel lean NiCrFeO4 and α-Co in fuel lean CoCrFeO4. Fuel lean samples possess high magnetic saturation. The stoichiometric ratio results in finest nano-particles and structural and magnetic properties are very critically dependent on fuel to nitrate ratio.

  18. Homogeneous and Heterogeneous (Fex, Cr1-x)(OH)3 Precipitation: Implications for Cr Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Chong; Zuo, Xiaobing; Cao, B

    2016-02-16

    The formation of (Fe, Cr)(OH)3 nanoparticles determines the fate of aqueous Cr in many aquatic environments. Using small angle X-ray scattering, precipitation rates of (Fe, Cr)(OH)3 nanoparticles in solution and on quartz were quantified from 0.1 mM Fe(III) solutions containing 0 – 0.25 mM Cr(III) at pH = 3.7 ± 0.2. Concentration ratio of aqueous Cr(III)/Fe(III) controlled the chemical composition (x) of (Fex, Cr1-x)(OH)3 precipitates, solutions’ supersaturation with respect to precipitates, and the surface charge of quartz. Therefore, aqueous Cr(III)/Fe(III) ratio affected homogeneous (in solution) and heterogeneous (on quartz) precipitation rates of (Fex, Cr1-x)(OH)3 through different mechanisms. The sequestration mechanismsmore » of Cr(III) in precipitates were also investigated. In solutions with high aqueous Cr(III)/Fe(III) ratios, surface enrichment of Cr(III) on the precipitates occurred, resulting in slower particle growth in solution. From solutions with 0 – 0.1 mM Cr(III), the particles on quartz grew from 2 to 4 nm within 1 h. Interestingly, from solution with 0.25 mM Cr(III), particles of two distinct sizes (2 and 6 nm) formed on quartz, and their sizes remained unchanged throughout the reaction. Our study provided new insights on homogeneous and heterogeneous precipitation of (Fex, Cr1-x)(OH)3 nanoparticles, which can help determine the fate of Cr in aquatic environments.« less

  19. An attempt to diagnose cancer by PIXE

    NASA Astrophysics Data System (ADS)

    Uda, M.; Maeda, K.; Sasa, Y.; Kusuyama, H.; Yokode, Y.

    1987-03-01

    PIXE is suitable especially for trace elemental analysis for atoms with high atomic numbers, which are contained in matrices composed mainly of light elements such as biological materials. An attempt has been made to distinguish elemental concentrations of cancer tissues from those of normal ones. Kidney, testis and urinary bladder cancer tissues were examined by PIXE. Key elements to diagnose these cancers were Ca, Ti, Cr, Fe and Zn. Enrichment of Fe and Ti, and deficiency of Zn could be seen in the kidney cancer. An opposite tendency was observed in the testicular cancer. Imbalance of these elemental concentrations in characteristic organs might give us a possibility for cancer diagnosis.

  20. Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Vida, Ádám; Molnár, Dávid; Kádas, Krisztina; Varga, Lajos Károly; Holmström, Erik; Vitos, Levente

    2015-12-01

    We report an alternative FeCrCoNiGe magnetic material based on FeCrCoNi high-entropy alloy with Curie point far below the room temperature. Investigations are done using first-principles calculations and key experimental measurements. Results show that the equimolar FeCrCoNiGe system is decomposed into a mixture of face-centered cubic and body-centered cubic solid solution phases. The increased stability of the ferromagnetic order in the as-cast FeCrCoNiGe composite, with measured Curie temperature of 640 K, is explained using the exchange interactions.

  1. Assessing heavy metal toxicity in sediments of Chennai Coast of Tamil Nadu using Energy Dispersive X-Ray Fluorescence Spectroscopy (EDXRF) with statistical approach.

    PubMed

    Tholkappian, M; Ravisankar, R; Chandrasekaran, A; Jebakumar, J Prince Prakash; Kanagasabapathy, K V; Prasad, M V R; Satapathy, K K

    2018-01-01

    The concentration of some heavy metals: Al, Ca, K, Fe, Ti, Mg, Mn, V, Cr, Zn, Ni and Co in sediments from Pulicat Lake to Vadanemmeli along Chennai Coast, Tamil Nadu has been determined using EDXRF technique. The mean concentrations of Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni, and Zn were found to be 1918, 25436, 9832, 9859, 2109, 8209, 41.58, 34.14, 160.80, 2.85. 18.79 and 29.12 mg kg -1 respectively. These mean concentrations do not exceed the world crustal average. The level of pollution attributed to heavy metals was evaluated using several pollution indicators in order to determine anthropogenically derived contaminations. Enrichment Factor (EF), Geoaccumulation Index (I geo ), Contamination Factor (CF) and Pollution Load Index (PLI) were used in evaluating the contamination status of sediments. Enrichment Factors (EF) reveal the anthropogenic sources of V, Cr, Ni and Zn Geoaccumulation Index (I geo ) results reveal that the study area is not contaminated by the heavy metals. Similar results were also obtained by using pollution load index (PLI). The results of pollution indices indicates that most of the locations were not polluted by heavy metals. Multivariate statistical analysis performed using principal components and clustering techniques were used to identify the source of the heavy metals. The result of statistical procedures indicate that heavy metals in sediments are mainly of natural origin. This study provides a relatively novel technique for identifying and mapping the distribution of metal pollutants and their sources in sediment.

  2. Development of phosphate rock integrated with iron amendment for simultaneous immobilization of Zn and Cr(VI) in an electroplating contaminated soil.

    PubMed

    Zhao, Ling; Ding, Zhenliang; Sima, Jingke; Xu, Xiaoyun; Cao, Xinde

    2017-09-01

    This study aims to develop an amendment for simultaneous immobilization of Zn and Cr(VI) in an abandoned electroplating contaminated soil. Nature phosphate rock was first activated with oxalic acid (O-PR) and then combined with FeSO 4 or zero-valent iron (ZVI) for immobilization of Zn and Cr(VI) from aqueous solutions. Finally, the optimized approach showing the highest immobilization ability in solution was applied in an electroplating contaminated soil. The O-PR combined with FeSO 4 was more effective in simultaneously removing Zn and Cr(VI) than the O-PR integrated with ZVI within the tested solution pH range of 5.5-8.5. Both O-PR with FeSO 4 and with ZVI removed over 95% of Zn from the solution; however, only 42-46% of Cr(VI) was immobilized by O-PR with ZVI, while O-PR with FeSO 4 almost precipitated all Cr(VI). Moreover, there were 75-95% Zn and 95-100% Cr(VI) remaining in the exhausted O-PR with FeSO 4 solid after toxicity characteristic leaching test (TCLP) while the exhausted O-PR with ZVI solid only retained 44-83% Zn and 32-72% Cr(VI). Zinc was immobilized mainly via formation of insoluble Fe-Zn phosphate co-precipitates, while iron-induced reduction of Cr(VI) into stable Cr(OH) 3 or Cr x Fe (1-x) (OH) 3 was responsible for Cr(VI) immobilization. Application of the O-PR integrated with FeSO 4 in the electroplating contaminated soil rapidly reduced the TCLP extractable Zn and Cr(VI) to below the standard limits, with decrease by 50% and 94%, respectively. This study revealed that combination of oxalic acid activated phosphate rock with FeSO 4 could be an effective amendment for remediation of Zn and Cr(VI) contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A combined APT and SANS investigation of α' phase precipitation in neutron-irradiated model FeCrAl alloys

    DOE PAGES

    Briggs, Samuel A.; Edmondson, Philip D.; Littrell, Kenneth C.; ...

    2017-03-01

    Here, FeCrAl alloys are currently under consideration for accident-tolerant fuel cladding applications in light water reactors owing to their superior high-temperature oxidation and corrosion resistance compared to the Zr-based alloys currently employed. However, their performance could be limited by precipitation of a Cr-rich α' phase that tends to embrittle high-Cr ferritic Fe-based alloys. In this study, four FeCrAl model alloys with 10–18 at.% Cr and 5.8–9.3 at.% Al were neutron-irradiated to nominal damage doses up to 7.0 displacements per atom at a target temperature of 320 °C. Small angle neutron scattering techniques were coupled with atom probe tomography to assessmore » the composition and morphology of the resulting α' precipitates. It was demonstrated that Al additions partially destabilize the α' phase, generally resulting in precipitates with lower Cr contents when compared with binary Fe-Cr systems. The precipitate morphology evolution with dose exhibited a transient coarsening regime akin to previously observed behavior in aged Fe-Cr alloys. Similar behavior to predictions of the LSW/UOKV models suggests that α' precipitation in irradiated FeCrAl is a diffusion-limited process with coarsening mechanisms similar to those in thermally aged high-Cr ferritic alloys.« less

  4. Facile preparation of magnetic mesoporous MnFe2O4@SiO2-CTAB composites for Cr(VI) adsorption and reduction.

    PubMed

    Li, Na; Fu, Fenglian; Lu, Jianwei; Ding, Zecong; Tang, Bing; Pang, Jiabin

    2017-01-01

    Chromium-contaminated water is regarded as one of the biggest threats to human health. In this study, a novel magnetic mesoporous MnFe 2 O 4 @SiO 2 -CTAB composite was prepared by a facile one-step modification method and applied to remove Cr(VI). X-ray diffraction, scanning electron microscopy, transmission electron microscopy, specific surface area, and vibrating sample magnetometer were used to characterize MnFe 2 O 4 @SiO 2 -CTAB composites. The morphology analysis showed that the composites displayed a core-shell structure. The outer shell was mesoporous silica with CTAB and the core was MnFe 2 O 4 nanoparticles, which ensured the easy separation by an external magnetic field. The performance of MnFe 2 O 4 @SiO 2 -CTAB composites in Cr(VI) removal was far better than that of bare MnFe 2 O 4 nanoparticles. There were two reasons for the effective removal of Cr(VI) by MnFe 2 O 4 @SiO 2 -CTAB composites: (1) mesoporous silica shell with abundant CTA + significantly enhanced the Cr(VI) adsorption capacity of the composites; (2) a portion of Cr(VI) was reduced to less toxic Cr(III) by MnFe 2 O 4 , followed by Cr(III) immobilized on MnFe 2 O 4 @SiO 2 -CTAB composites, which had been demonstrated by X-ray photoelectron spectroscopy results. The adsorption of Cr(VI) onto MnFe 2 O 4 @SiO 2 -CTAB followed the Freundlich isotherm model and pseudo-second-order model. Tests on the regeneration and reuse of the composites were performed. The removal efficiency of Cr(VI) still retained 92.4% in the sixth cycle. MnFe 2 O 4 @SiO 2 -CTAB composites exhibited a great potential for the removal of Cr(VI) from water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Origin of central abundances in the hot intra-cluster medium. I. Individual and average abundance ratios from XMM-Newton EPIC

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Pinto, C.; Kaastra, J. S.; Kosec, P.; Zhang, Y.-Y.; Mao, J.; Werner, N.

    2016-08-01

    The hot intra-cluster medium (ICM) is rich in metals, which are synthesised by supernovae (SNe) explosions and accumulate over time into the deep gravitational potential well of clusters of galaxies. Since most of the elements visible in X-rays are formed by type Ia (SNIa) and/or core-collapse (SNcc) supernovae, measuring their abundances gives us direct information on the nucleosynthesis products of billions of SNe since the epoch of the star formation peak (z ~ 2-3). In this study, we use the EPIC and RGS instruments on board XMM-Newton to measure the abundances of nine elements (O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni) from a sample of 44 nearby cool-core galaxy clusters, groups, and elliptical galaxies. We find that the Fe abundance shows a large scatter (~20-40%) over the sample, within 0.2r500 and especially 0.05r500. Unlike the absolute Fe abundance, the abundance ratios (X/Fe) are uniform over the considered temperature range (~0.6-8 keV) and with a limited scatter. In addition to an unprecedented treatment of systematic uncertainties, we provide the most accurate abundance ratios measured so far in the ICM, including Cr/Fe and Mn/Fe which we firmly detected (>4σ with MOS and pn independently). We find that Cr/Fe, Mn/Fe, and Ni/Fe differ significantly from the proto-solar values. However, the large uncertainties in the proto-solar abundances prevent us from making a robust comparison between the local and the intra-cluster chemical enrichments. We also note that, interestingly, and despite the large net exposure time (~4.5 Ms) of our dataset, no line emission feature is seen around ~3.5 keV.

  6. Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig

    NASA Astrophysics Data System (ADS)

    Fomba, Khanneh Wadinga; van Pinxteren, Dominik; Müller, Konrad; Spindler, Gerald; Herrmann, Hartmut

    2018-03-01

    Size-resolved trace metal concentrations at four sites in Leipzig (Germany) and its surrounding were assessed between the winter of 2013 and the summer of 2015. The measurements were performed in parallel at; traffic dominated (Leipzig - Mitte, LMI), traffic and residential dominated (Eisenbahnstrasse, EIB), urban background (TROPOS, TRO) and regional background (Melpitz, MEL) sites. In total, 19 trace metals, i.e. K, Ca, Ti, Mn, Fe, Cu, Zn, As, Se, Ba, V, Pb, Ni, Cr, Sr, Sn, Sb, Co and Rb were analysed using total reflection x-ray fluorescence (TXRF). The major metals were Fe, K and Ca with concentrations ranging between; 31-440 ng/m3, 42-153 ng/m3 and 24-322 ng/m3, respectively, while the trace metals with the lowest concentrations were Co, Rb and Se with concentrations of; < 0.3 ng/m3, <0.5 ng/m3 and 0.5-0.7 ng/m3, respectively. PM10 trace metal concentrations during easterly air mass inflow especially at the background sites were in average 70% higher in the winter and 30% higher in the summer in comparison to westerly air mass inflow. Traffic at LMI contributed to about 75% of Cr, Ba, Cu, Sb, Sn, Ca, Co, Mn, Fe and Ti concentrations while regional activities contributed to more than 70% of K, Rb, Pb, Se, As and V concentrations. Traffic dominated trace metals were often observed in the coarse mode while the regional background dominated trace metals were often observed in the fine mode. Trace metal sources were related to crustal matter and road dust re-suspension for metals such as Ca, Fe, Co, Sr, and Ti, brake and tire wear (Cu, Sb, Ba, Fe, Zn, Pb), biomass burning (K, Rb), oil and coal combustion (V, Zn, As, Pb). Crustal matter contributed 5-12% in winter and 8-19% in summer of the PM10 mass. Using Cu and Zn as markers for brake and tire wear, respectively, the estimated brake and tire wear contributions to the PM10 mass were 0.1-0.8% and 1.7-2.9%, respectively. The higher contributions were observed at the traffic sites while the lower contributions were observed at the regional background site. In total, non-exhaust emissions could account for about 10-22% of the PM10 mass in the summer and about 7-15% of the PM10 mass in the winter.

  7. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  8. Oxalato-bridged dinuclear complexes of Cr(III) and Fe(III): synthesis, structure, and magnetism of [(C2H5)4N]4[MM'(ox)(NCS)8] with MM' = CrCr, FeFe, and CrFe.

    PubMed

    Triki, S; Bérézovsky, F; Sala Pala, J; Coronado, E; Gómez-García, C J; Clemente, J M; Riou, A; Molinié, P

    2000-08-21

    A new series of homo- and heterometallic oxalato-bridged dinuclear compounds of formulas [Et4N]4[MM'(ox)(NCS)8] ([Et4N]+ = [(C2H5)4N]+; ox = C2O4(2-)) with MM' = Cr(III)-Cr(III) (1), Fe(III)-Fe(III) (2), and Cr(III)-Fe(III) (3) is reported. They have been structurally characterized by infrared spectra and single-crystal X-ray diffraction. The three compounds are isostructural and crystallize in the orthorhombic space group Cmca with Z = 8, a = 16.561(8) A, b = 13.481(7) A, and c = 28.168(8) A for 1, a = 16.515(2) A, b = 13.531(1) A, and c = 28.289(4) A for 2, a = 16.664(7) A, b = 13.575(6) A, and c = 28.386(8) A for 3. The structure of 3 is made up of a discrete dinuclear anion [CrFe(ox)(NCS)8]4- and four disordered [Et4N]+ cations, each of them located on special positions. The anion, in a crystallographically imposed C2h symmetry, contains metal cations in distorted octahedral sites. The Cr(ox)Fe group, which is planar within 0.02 A, presents an intramolecular metal-metal distance of 5.43 A. Magnetic susceptibility measurements indicate antiferromagnetic pairwise interactions for 1 and 2 with J = -3.23 and -3.84 cm-1, respectively, and ferromagnetic Cr-Fe coupling with J = 1.10 cm-1 for 3 (J being the parameter of the exchange Hamiltonian H = -2JS1S2). The ESR spectra at different temperatures confirm the magnetic susceptibility data.

  9. Electrochemical and surface analysis of the Fe-Cr-Ru system in non-oxidizing acid solutions

    NASA Astrophysics Data System (ADS)

    Tjong, S. C.

    1990-03-01

    The effect of ruthenium addition on the spontaneous passivation behaviour of Fe-40Cr alloy in 0.5M H 2SO 4 and 0.5M HCl acid solutions has been studied. Auger and XPS techniques were also used to investigate the surface chemistries of the spontaneously passivated film. Electrochemical measurements indicate that the Fe-40Cr-0.1Ru and Fe-40Cr-0.2Ru alloys exhibit spontaneous passivation upon exposing them in both hydrochloric and sulphuric acid solutions from 25 to 85 ° C. However, the transition time for spontaneous passivation reduces dramatically with an increase in the ruthenium content and solution temperature. Furthermore, this transition time also decreases for the investigated alloys exposed in a less aggressive sulphuric acid solution. AES results show that ruthenium and chromium are enriched in the spontaneous passive films formed on the Fe-40Cr-0.1Ru alloy in both hydrochloric and sulphuric acid solutions at 25 °C, and also in the spontaneous passive film formed on the Fe-40Cr-0.2Ru alloy in hydrochloric acid solution at 25 ° C. AES does not detect the presence of ruthenium in the spontaneous passive film formed on the Fe-40Cr-0.2Ru alloy in sulphuric acid solution. However, XPS analysis shows that ruthenium and chromium are incorporated into the spontaneous passive films formed on the Fe-40Cr-0.1Ru and Fe-40Cr-0.2Ru alloys in both hydrochloric and sulphuric acid solutions as Ru 4+ and Cr 3+ species.

  10. An exploratory study on low-concentration hexavalent chromium adsorption by Fe(III)-cross-linked chitosan beads

    PubMed Central

    Zhang, Yuanjing; Qian, Jin; Xin, Xu; Hu, Sihai; Zhang, Shuai; Wei, Jianguo

    2017-01-01

    In this study, Fe(III)-cross-linked chitosan beads (Fe(III)-CBs) were synthesized and employed to explore the characteristics and primary mechanism of their hexavalent chromium (Cr(VI)) adsorption under low concentration Cr(VI) (less than 20.0 mg l−1) and a pH range from 2.0 to 8.0. Batch tests were conducted to determine the Cr(VI) adsorption capacity and kinetics, and the effects of pH and temperature on the adsorption under low concentration Cr(VI) and a pH range from 2.0 to 8.0. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy were employed to explore the characteristics of Fe(III)-CBs and their Cr(VI) adsorption mechanisms. The results show that, unlike the adsorption of other absorbents, the Cr(VI) adsorption was efficient in a wide pH range from 2.0 to 6.0, and well described by the pseudo-first-order model and the Langmuir–Freundlich isotherm model. The capacity of Cr(VI) adsorption by Fe(III)-CBs was as high as 166.3 mg g−1 under temperature 25°C and pH 6.0. The desorption test was also carried out by 0.1 mol l−1 NaOH solution for Fe(III)-CBs regeneration. It was found that Fe(III)-CBs could be re-used for five adsorption–desorption cycles without significant decrease in Cr(VI) adsorption capacity. Ion exchange was confirmed between functional groups (i.e. amino group) and Cr(VI) anions (i.e. CrO42−). The amino-like functional groups played a key role in Cr(VI) distribution on the Fe(III)-CBs surface; Cr(VI) adsorbed on Fe(III)-CBs was partially reduced to Cr(III) with alcoholic group served as electron donor, and then formed another rate-limiting factor. So, Fe(III)-CBs has a good prospect in purifying low concentration Cr(VI) water with a pH range from 2.0 to 6.0. PMID:29291084

  11. Preliminary Microstructural and Microscratch Results of Ni-Cr-Fe and Cr3C2-NiCr Coatings on Magnesium Substrate

    NASA Astrophysics Data System (ADS)

    Istrate, B.; Munteanu, C.; Lupescu, S.; Benchea, M.; Vizureanu, P.

    2017-06-01

    Thermal coatings have a large scale application in aerospace and automotive field, as barriers improving wear mechanical characteristics and corrosion resistance. In present research, there have been used two types of coatings, Ni-Cr-Fe, respectively Cr3C2-NiCr which were deposited on magnesium based alloys (pure magnesium and Mg-30Y master alloy). There have been investigated the microstructural aspects through scanning electronic microscopy and XRD analysis and also a series of mechanical characteristics through microscratch and indentation determinations. The results revealed the formation of some adherent layers resistant to the penetration of the metallic indenter, the coatings did not suffer major damages. Microstructural analysis highlighted the formation of Cr3C2, Cr7C3, Cr3Ni2, Cr7Ni3, FeNi3, Cr-Ni phases. Also, the apparent coefficient of friction for Ni-Cr-Fe coatings presents superior values than Cr3C2-NiCr coatings.

  12. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.

    PubMed

    Butler, Elizabeth C; Chen, Lixia; Hansel, Colleen M; Krumholz, Lee R; Elwood Madden, Andrew S; Lan, Ying

    2015-11-01

    Hexavalent chromium (Cr(vi), present predominantly as CrO4(2-) in water at neutral pH) is a common ground water pollutant, and reductive immobilization is a frequent remediation alternative. The Cr(iii) that forms upon microbial or abiotic reduction often co-precipitates with naturally present or added iron (Fe), and the stability of the resulting Fe-Cr precipitate is a function of its mineral properties. In this study, Fe-Cr solids were formed by microbial Cr(vi) reduction using Desulfovibrio vulgaris strain RCH1 in the presence of the Fe-bearing minerals hematite, aluminum substituted goethite (Al-goethite), and nontronite (NAu-2, Clay Minerals Society), or by abiotic Cr(vi) reduction by dithionite reduced NAu-2 or iron sulfide (FeS). The properties of the resulting Fe-Cr solids and their behavior upon exposure to the oxidant manganese (Mn) oxide (birnessite) differed significantly. In microcosms containing strain RCH1 and hematite or Al-goethite, there was significant initial loss of Cr(vi) in a pattern consistent with adsorption, and significant Cr(vi) was found in the resulting solids. The solid formed when Cr(vi) was reduced by FeS contained a high proportion of Cr(iii) and was poorly crystalline. In microcosms with strain RCH1 and hematite, Cr precipitates appeared to be concentrated in organic biofilms. Reaction between birnessite and the abiotically formed Cr(iii) solids led to production of significant dissolved Cr(vi) compared to the no-birnessite controls. This pattern was not observed in the solids generated by microbial Cr(vi) reduction, possibly due to re-reduction of any Cr(vi) generated upon oxidation by birnessite by active bacteria or microbial enzymes. The results of this study suggest that Fe-Cr precipitates formed in groundwater remediation may remain stable only in the presence of active anaerobic microbial reduction. If exposed to environmentally common Mn oxides such as birnessite in the absence of microbial activity, there is the potential for rapid (re)formation of dissolved Cr(vi) above regulatory levels.

  13. Atomistic simulation of the influence of Cr on the mobility of the edge dislocation in Fe(Cr) alloys

    NASA Astrophysics Data System (ADS)

    Hafez Haghighat, S. M.; Terentyev, D.; Schäublin, R.

    2011-10-01

    In this work Fe-Cr compounds, as model alloys for the ferritic base steels that are considered as main candidates for the structural materials of the future fusion reactors, are studied using molecular dynamics simulations. The Cr or so-called α' precipitates, which are obstacles to dislocations, affect mechanical properties, leading to hardening and loss of ductility. The flow stress to move an edge dislocation in a Cr solid solution in pure Fe is studied as a function of Cr content. The strength of a nanometric Cr precipitate as obstacle to an edge dislocation in pure Fe is investigated as a function of its Cr content. Results show that with increasing Cr content the precipitate obstacle strength increases, with a strong sensitivity to the local atomic order. Temperature induces a monotonic decrease of the flow stress of the Cr solid solution and of the Cr precipitate obstacle strength.

  14. Elemental composition and nutritional value of the edible fruits of Harpephyllum caffrum and impact of soil quality on their chemical characteristics.

    PubMed

    Moodley, Roshila; Koorbanally, Neil; Jonnalagadda, Sreekanth B

    2013-01-01

    Harpephyllum caffrum is a medicinal plant and common street tree distributed throughout the eastern part of South Africa. The elemental concentration in the edible fruit of H. caffrum was determined to assess for nutritional value and health impact. Concentrations of metals in the fruit and growth soil were determined from samples acquired from eight different sites in eastern KwaZulu-Natal, South Africa, to evaluate the impact of soil parameters on elemental distribution in the fruit. Typical elemental concentrations (μg g⁻¹, dry mass) in soil (Exchangeable/Total) and fruit samples, at Umhlanga, north of Durban, were Ca (1221/696 and 3333), Co (2.5/2.1 and 0.16), Cr (35/0.8 and 5.8), Cu (14/9 and 21), Fe (9424/394 and 116), Mg (199/139 and 915), Mn (268/187 and 13), Ni (2.8/0.51 and 3.4), Pb (36/32 and 1.2), and Zn (26/21 and 15). The analytical results showed that metal interactions in soil influenced their availability, but uptake was to a greater extent controlled by the plant. The concentrations of elements in the fruits were found to be in the order of Ca > Mg > Fe > Cu > Zn > Mn > Cr > Ni > Pb > Co. The concentrations of toxic metals, arsenic and lead were low. The fruits can contribute to the health and nutritional needs of individuals for most elements. It has potential to improve the Fe status and contribute towards a balanced diet.

  15. Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R

    2015-01-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditionalmore » Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.« less

  16. [CrIII(NCMe)6]3+--a labile CrIII source enabling formation of Cr[M(CN)6] (M=V, Cr, Mn, Fe) Prussian blue-type magnetic materials.

    PubMed

    Nelson, Kendric J; Daniels, Matthew C; Reiff, William M; Troff, Shayla A; Miller, Joel S

    2007-11-26

    The kinetic inertness of the hexaaquachromium(III) (kH2O=2.4x10(-6) s(-1)) has led to challenges with respect to incorporating CrIII ions into Prussian blue-type materials; however, hexakis(acetonitrile)chromium(III) was shown to be substantially more labile (approximately 10(4) times) and enables a new synthetic route for the synthesis of these materials via nonaqueous solvents. The synthesis, spectroscopic, and physical properties of Cr[M(CN)6] (M=V, Cr, Mn, Fe) Prussian blue analogues synthesized from [CrIII(NCMe)6]3+ and the corresponding [MIII(CN)6]3- are described. All these compounds {(NEt4)0.02CrIII[VIII(CN)6]0.98(BF4)(0.08).0.10MeCN (1), CrIII[CrIII(CN)6].0.16MeCN (2), CrIII[MnIII(CN)6].0.10MeCN (3), and (NEt4)0.04CrIII0.64CrIV0.40[FeII(CN)6]0.40[FeIII(CN)6]0.60(BF4)(0.16).1.02MeCN (4)} are ferrimagnets exhibiting cluster-glass behavior. Strong antiferromagnetic coupling was observed for M=V, Cr, and Mn with Weiss constants (theta) ranging from -132 to -524 K; and in 2, where the strongest coupling is observed (theta=-524 K), the highest Tc (110 K) value was observed. Weak antiferromagnetic coupling was observed for M=Fe (theta=-12 K) leading to the lowest Tc (3 K) value in this series. Weak coupling and the low Tc value observed in 4 were additionally contributed by the presence of both [FeII(CN)6]4- and [FeIII(CN)6]3- as confirmed by 57Fe-Mössbauer spectroscopy.

  17. Microstructural control of FeCrAl alloys using Mo and Nb additions

    DOE PAGES

    Sun, Zhiqian; Bei, Hongbin; Yamamoto, Yukinori

    2017-08-14

    The effects of Mo and Nb additions on the microstructure and mechanical properties of two FeCrAl alloys were studied in this paper. Fine and uniform recrystallized grain structures (~ 20–30 μm) were achieved in both alloys through suitable annealing after warm-rolling. The formation of Fe 2Nb-type Laves phase precipitates in the Nb-containing FeCrAl alloy effectively stabilized the deformed and recrystallized microstructures. The Mo-containing FeCrAl alloy exhibited strong γ texture fiber after annealing at 650–900 °C, whereas the annealed Nb-containing FeCrAl alloy had much weaker texture. Finally, both strength and ductility decreased as the grain size increased in both alloys.

  18. Electronic properties of excess Cr at Fe site in FeCr{sub 0.02}Se alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sandeep, E-mail: sandeepk.iitb@gmail.com; Singh, Prabhakar P.

    2015-06-24

    We have studied the effect of substitution of transition-metal chromium (Cr) in excess on Fe sub-lattice in the electronic structure of iron-selenide alloys, FeCr{sub 0.02}Se. In our calculations, we used Korringa-Kohn-Rostoker coherent potential approximation method in the atomic sphere approximation (KKR-ASA-CPA). We obtained different band structure of this alloy with respect to the parent FeSe and this may be reason of changing their superconducting properties. We did unpolarized calculations for FeCr{sub 0.02}Se alloy in terms of density of states (DOS) and Fermi surfaces. The local density approximation (LDA) is used in terms of exchange correlation potential.

  19. Major and trace elements in Boletus aereus and Clitopilus prunulus growing on volcanic and sedimentary soils of Sicily (Italy).

    PubMed

    Alaimo, M G; Dongarrà, G; La Rosa, A; Tamburo, E; Vasquez, G; Varrica, D

    2018-08-15

    The aim of this study was to determine and compare the content of 28 elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Rb, Sb, Se, Sr, Tl, U, V and Zn) in fruiting bodies of Boletus aereus Bull. and Clitopilus prunulus P. Kumm collected from eleven unpolluted sites of Sicily (Italy) and, also to relate the abundance of chemical elements in soil with their concentration in mushrooms. Median concentrations of the most abundant elements in Boletus aereus ranged from 31,290 μg/g (K) to 107 μg/g (Zn) in caps and from 24,009 μg/g (K) to 57 μg/g (Zn) in stalks with the following abundance order: K > Na > Ca > Mg > Fe > Al > Rb > Zn. The same elements, in the whole fruiting body of Clitopilus prunulus samples, varied in the range 54,073-92 μg/g following the abundance order: K > Na > Mg > Ca > Fe > Al > Rb > Zn. Metal contents in Boletus aereus and in the whole fruiting body of Clitopilus prunulus, collected from the same sampling sites, showed statistically significant differences for most elements. In particular, Clitopilus prunulus contained around two to four times more Co, Cr, Fe, Mg, Mo, Pb, U and V than caps and stalks of Boletus aereus species which, in turn, was from two to four times more enriched in Cu, Se and Tl. Thus, the elemental content of Boletus aereus and Clitopilus prunulus appeared to be species-dependent. The distribution of chemical elements in Boletus aereus was not uniform throughout the whole fruiting body as most elements were significantly bioconcentrated in caps. Furthermore, the fruit bodies of Boletus aereus from the volcanic soil differed both in major and minor elements concentrations from those collected from sedimentary soils. Cadmium and lead concentrations were below the threshold limits for wild mushrooms proposed by EU Directives (2008 and 2015). The elemental content was not significantly influenced by soil pH. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Viability of thin wall tube forming of ATF FeCrAl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloy, Stuart Andrew; Aydogan, Eda; Anderoglu, Osman

    Fabrication of thin walled tubing of FeCrAl alloys is critical to its success as a candidate enhanced accident-tolerant fuel cladding material. Alloys that are being investigated are Generation I and Generation II FeCrAl alloys produced at ORNL and an ODS FeCrAl alloy, MA-956 produced by Special Metals. Gen I and Gen II FeCrAl alloys were provided by ORNL and MA-956 was provided by LANL (initially produced by Special Metals). Three tube development efforts were undertaken. ORNL led the FeCrAl Gen I and Gen II alloy development and tube processing studies through drawing tubes at Rhenium Corporation. LANL received alloys frommore » ORNL and led tube processing studies through drawing tubes at Century Tubing. PNNL led the development of tube processing studies on MA-956 through pilger processing working with Sandvik Corporation. A summary of the recent progress on tube development is provided in the following report and a separate ORNL report: ORNL/TM-2015/478, “Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes”.« less

  1. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, W., E-mail: witorw@gmail.com

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}, Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy. This work presents, for the first time, a detailed structural characterization of selected alloysmore » in the Al-Co-Fe-Cr system close to the atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}. The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al{sub 5}Co{sub 2} and Al{sub 13}Co{sub 4} and are quasicrystalline approximants. Although the Al{sub 5}Co{sub 2} phase has already been reported in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the presence of the monoclinic Al{sub 13}Co{sub 4} is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al{sub 13}Co{sub 4} phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the compositions Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were chosen to be within the region of formation of the quaternary extension of the Al{sub 13}Co{sub 4} phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system, around the compositions studied, is composed of quaternary extensions of Al-Co intermetallic phases, which present solubility of Fe and Cr at Co atomic sites. - Highlights: •The Al rich region of the AlCoFeCr system is studied concerning phase formation on rapidly solidified alloys. •The alloys were composed mostly by quaternary extensions of Al-Co intermetallic phases. •Al{sub 5}Co{sub 2} and Al{sub 13}Co{sub 4} were the major phases observed in the alloys and are approximants of a quasicrystalline phase. •No quasicrystalline phase was observed in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} composition.« less

  2. Synthesis and study of electronic state of Sr2CrO2Co2As2 with CoAs conduction layers

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Ohta, Hiroto; Aruga Katori, Hiroko

    2017-06-01

    We successfully synthesized a new member of compounds with the CoAs layer, Sr2CrO2Co2As2, and its partially substituted systems Sr2CrO2(Tmx Co1- x )2As2 (Tm = Fe, Ni), and measured magnetization and electric resistivity of these polycrystalline compounds. As a result of magnetic measurement for Sr2CrO2Co2As2, magnetic moments of Co do not construct an itinerant electronic ferromagnetism unlike other compounds with the CoPn (Pn=P and As) layers. Both Sr2CrO2(Tmx Co1- x )2As2 with Tm = Fe and Ni also do not show an itinerant electronic ferromagnetism down to 2 K. For each solid solution of Sr2CrO2(Fe x Co1- x )2As2 with x > 0.0, ρ weakly increases with the decrease of T at low temperature region, indicating that the mixed occupancy of Cr and Fe within the conducting layers occurs in Sr2CrO2(Fe x Co1- x )2As2. We conclude that the absence of ferromagnetism in Sr2CrO2Co2As2 is due to the self-electron-doping from Cr to the conduction bands and the attempt to recover the ferromagnetism by the hole-doping effect is prevented by the mixed occupancy of Cr and Fe in Sr2CrO2 (Fe x Co1- x )2As2 with x > 0.0. The result of our structural analysis supports that the disappearance of itinerant electronic ferromagnetism in Sr2CrO2Co2As2 is due to the self-electron-doping from Cr.

  3. Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.

    2018-05-01

    High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.

  4. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    NASA Astrophysics Data System (ADS)

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-08-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content.

  5. Magnetic effect on oxide-scale growth of Fe-5Cr alloy

    NASA Astrophysics Data System (ADS)

    Zhou, C. H.; Li, X. W.; Wang, S. H.; Ma, H. T.

    2018-01-01

    The oxidation behaviour of Fe-5Cr alloy was investigated at 650°C in the presence of magnetic field. Results indicated that the oxide scales were both consisted of an outer Fe-oxide scale and an inner mixed-oxide scale in the presence or absence of magnetic field. The oxide-scale growth of Fe-5Cr alloy, gained by measuring the oxide-scale thickness, was verified to follow parabolic lawyer. And the oxidation kinetics showed that the applied magnetic field retarded the oxide-scale growth of Fe-5Cr alloy.

  6. Synthesis and characterization of Cr doped CoFe2O4

    NASA Astrophysics Data System (ADS)

    Verma, Kavita; Patel, K. R.; Ram, Sahi; Barbar, S. K.

    2016-05-01

    Polycrystalline samples of pure and Cr-doped cobalt ferrite (CoFe2O4 and CoCrFeO4) were prepared by solid state reaction route method. X-ray diffraction pattern infers that both the samples are in single phase with Fd3m space group. Slight reduction in the lattice parameter of CoCrFeO4 has been observed as compared to CoFe2O4. The dielectric dispersion has been explained on the basis of Fe2+ ↔ Fe3+ hopping mechanism. The polarizations at lower frequencies are mainly attributed to electronic exchange between Fe2+ ↔ Fe3+ ions on the octahedral site in the ferrite lattice. In the present system a part from n-type charge carrier (Fe3+/Fe2+), the presence of (Co3+/Co2+) ions give rise to p-type charge carrier. Therefore in addition to n-type charge carrier, the local displacement of p-type charge carrier in direction of external electric field also contributes to net polarization. However, the dielectric constant and loss tangent of CoCrFeO4 are found to be lower than CoFe2O4 and is attributed to the availability of ferrous ion. CoCrFeO4 have less amount of ferrous ion available for polarization as compared to that of CoFe2O4. The impedance spectra reveal a grain interior contribution to the conduction process.

  7. Electrodepositing behaviors and properties of nano Fe-Ni-Cr/SiC composite coatings from trivalent chromium baths containing compound carboxylate-urea system.

    PubMed

    He, Xinkuai; Hou, Bailong; Cai, Youxing; Li, Chen; Jiang, Yumei; Wu, Luye

    2013-06-01

    The nano Fe-Ni-Cr/SiC composite coatings were prepared using pulse electrodeposition method from trivalent chromium baths containing compound carboxylate-urea system and nano SiC in ultrasonic field. The effects of the carboxylate-urea system on the nano Fe-Ni-Cr/SiC composite coatings have been investigated. These results indicated that the SiC and Cr contents and the thickness of the Fe-Ni-Cr/SiC composite coatings could be obviously improved by the compound carboxylate-urea system. The steady-state polarization curves showed that the hydrogen evolution reaction (HER) could be significantly inhibited by the compound carboxylate-urea system, which was benefit to increase the SiC and Cr contents and the thickness of the composite coatings. The cyclic voltammetry (CV) curves showed that the cathodic polarization of the matrix metal ions could be increased in the bath containing the compound carboxylate-urea system. Thus, a compact Fe-Ni-Cr/SiC composite coating could be obtained using this technique. The surface morphology of the Fe-Ni-Cr/SiC composite coatings checked with the scanning electron micrographs (SEM) showed that the surface smoothness could be also improved and the microcracks and pinholes could be decreased due to the presence of the compound carboxylate-urea system. The phase composition of the as-posited coating was measured by the X-ray diffraction (XRD). XRD data showed that the as-posited coating was Fe-Ni-Cr/SiC composite coating. The chemical composition of the coating was investigated by energy dispersive spectrum (EDS) analysis. The result showed the functional Fe-Ni-Cr/SiC composite coatings with 4.1 wt.% SiC and 25.1 wt.% Cr, and 23.9 microm thickness were obtained in this study, which had best corrosion resistance according to the results of the typical potentiodynamic polarization curves of the Fe-Ni-Cr/SiC composite coatings.

  8. Mass and number size distributions of particulate matter components: comparison of an industrial site and an urban background site.

    PubMed

    Taiwo, Adewale M; Beddows, David C S; Shi, Zongbo; Harrison, Roy M

    2014-03-15

    Size-resolved composition of particulate matter (PM) sampled in the industrial town of Port Talbot (PT), UK was determined in comparison to a typical urban background site in Birmingham (EROS). A Micro-Orifice Uniform Deposit Impactor (MOUDI) sampler was deployed for two separate sampling campaigns with the addition of a Grimm optical spectrometer at the PT site. MOUDI samples were analysed for water-soluble anions (Cl(-), NO₃(-) and SO₄(2-)) and cations (Na(+), NH4(+), K(+), Mg(2+) and Ca(2+)) and trace metals (Al, V, Cr, Mn, Fe, Cu, Zn, Sb, Ba and Pb). The PM mass distribution showed a predominance of fine particle (PM₂.₅) mass at EROS whereas the PT samples were dominated by the coarse fraction (PM₂.₅₋₁₀). SO₄(2-), Cl(-), NH4(+), Na(+), NO₃(-), and Ca(2+) were the predominant ionic species at both sites while Al and Fe were the metals with highest concentrations at both sites. Mean concentrations of Cl(-), Na(+), K(+), Ca(2+), Mg(2+), Cr, Mn, Fe and Zn were higher at PT than EROS due to industrial and marine influences. The contribution of regional pollution by sulphate, ammonium and nitrate was greater at EROS relative to PT. The traffic signatures of Cu, Sb, Ba and Pb were particularly prominent at EROS. Overall, PM at EROS was dominated by secondary aerosol and traffic-related particles while PT was heavily influenced by industrial activities and marine aerosol. Profound influences of wind direction are seen in the 72-hour data, especially in relation to the PT local sources. Measurements of particle number in 14 separate size bins plotted as a function of wind direction and speed are highly indicative of contributing sources, with local traffic dominant below 0.5 μm, steelworks emissions from 0.5 to 15 μm, and marine aerosol above 15 μm. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Samuel A.; Edmondson, Philip D.; Littrell, Kenneth C.

    Here, FeCrAl alloys are currently under consideration for accident-tolerant fuel cladding applications in light water reactors owing to their superior high-temperature oxidation and corrosion resistance compared to the Zr-based alloys currently employed. However, their performance could be limited by precipitation of a Cr-rich α' phase that tends to embrittle high-Cr ferritic Fe-based alloys. In this study, four FeCrAl model alloys with 10–18 at.% Cr and 5.8–9.3 at.% Al were neutron-irradiated to nominal damage doses up to 7.0 displacements per atom at a target temperature of 320 °C. Small angle neutron scattering techniques were coupled with atom probe tomography to assessmore » the composition and morphology of the resulting α' precipitates. It was demonstrated that Al additions partially destabilize the α' phase, generally resulting in precipitates with lower Cr contents when compared with binary Fe-Cr systems. The precipitate morphology evolution with dose exhibited a transient coarsening regime akin to previously observed behavior in aged Fe-Cr alloys. Similar behavior to predictions of the LSW/UOKV models suggests that α' precipitation in irradiated FeCrAl is a diffusion-limited process with coarsening mechanisms similar to those in thermally aged high-Cr ferritic alloys.« less

  10. Reduction of aqueous chromate by Fe(II)/Fe(III) carbonate green rust: kinetic and mechanistic studies.

    PubMed

    Legrand, Ludovic; El Figuigui, Alaaeddine; Mercier, Florence; Chausse, Annie

    2004-09-01

    This work describes the heterogeneous reaction between FeII in carbonate green rust and aqueous chromate, in NaHCO3 solutions at 25 degrees C, and at pH values of 9.3-9.6. Evidence for reduction of CrVI to CrIII and concomitant solid-state oxidation of lattice FeII to FeIII was found from FeII titration and from structural analysis of the solids using FTIR, XRD, SEM, and XPS methods. Results indicate the formation of ferric oxyhydroxycarbonate and the concomitant precipitation of CrIII monolayers at the surface of the iron compound that induce passivation effects and progressive rate limitations. The number of CrIII monolayers formed at the completion of the reaction depends on [FeII]t=0, the molar concentration of FeII(solid) at t=0; on [n(o)]t=0, the molar concentration of reaction sites present at the surface of the solid phase at t=0; and on [CrVI]t=0, the molar concentration of CrVI at t=0. Kinetic data were modeled using a model based on the formation of successive CrIII monolayers, -(d[CrVI]/dt) = sigma(1)j k(i)[S] [CrVI]([n(i - 1)] - [n(i)]) with k(i)[S] (in s(-1) L mol(-1)), the rate coefficient of formation of CrIII monolayer i, and [n(i)] and [n(i - 1)], the molar concentration of CrIII precipitated in monolayer i and monolayer i - 1, respectively. Good matching curves were obtained with kinetic coefficients: k(1)[S] = 5-8 x 10(-4), k(2)[S] = 0.5-3 x 10(-5), and k(3)[S] about 1.7 x 10(-6) s(-1) m(-2) L. The CrVI removal efficiency progressively decreases along with the accumulation of CrIII monolayers at the surface of carbonate green rust particles. In the case of thick green rust particles resulting from the corrosion of iron in permeable reactive barriers, the quantity of FeII readily accessible for efficient CrVI removal should be rather low.

  11. High-Resolution Spectroscopic Study of Extremely Metal-Poor Star Candidates from the SkyMapper Survey

    NASA Astrophysics Data System (ADS)

    Jacobson, Heather R.; Keller, Stefan; Frebel, Anna; Casey, Andrew R.; Asplund, Martin; Bessell, Michael S.; Da Costa, Gary S.; Lind, Karin; Marino, Anna F.; Norris, John E.; Peña, José M.; Schmidt, Brian P.; Tisserand, Patrick; Walsh, Jennifer M.; Yong, David; Yu, Qinsi

    2015-07-01

    The SkyMapper Southern Sky Survey is carrying out a search for the most metal-poor stars in the Galaxy. It identifies candidates by way of its unique filter set which allows for estimation of stellar atmospheric parameters. The set includes a narrow filter centered on the Ca ii K 3933 Å line, enabling a robust estimate of stellar metallicity. Promising candidates are then confirmed with spectroscopy. We present the analysis of Magellan Inamori Kyocera Echelle high-resolution spectroscopy of 122 metal-poor stars found by SkyMapper in the first two years of commissioning observations. Forty-one stars have [{Fe}/{{H}}]≤slant -3.0. Nine have [{Fe}/{{H}}]≤slant -3.5, with three at [{Fe}/{{H}}]∼ -4. A 1D LTE abundance analysis of the elements Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, Ba, and Eu shows these stars have [X/Fe] ratios typical of other halo stars. One star with low [X/Fe] values appears to be “Fe-enhanced,” while another star has an extremely large [Sr/Ba] ratio: \\gt 2. Only one other star is known to have a comparable value. Seven stars are “CEMP-no” stars ([{{C}}/{Fe}]\\gt 0.7, [{Ba}/{Fe}]\\lt 0). 21 stars exhibit mild r-process element enhancements (0.3≤slant [{Eu}/{Fe}]\\lt 1.0), while four stars have [{Eu}/{Fe}]≥slant 1.0. These results demonstrate the ability to identify extremely metal-poor stars from SkyMapper photometry, pointing to increased sample sizes and a better characterization of the metal-poor tail of the halo metallicity distribution function in the future. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  12. Effect of 0.25 and 2.0 MeV He-Ion Irradiation on Short-Range Ordering in Model (EFDA) Fe-Cr Alloys

    NASA Astrophysics Data System (ADS)

    Dubiel, Stanisław M.; Żukrowski, Jan; Serruys, Yves

    2018-05-01

    The effects of He+ irradiation on a distribution of Cr atoms in Fe100-x Cr x (x = 5.8, 10.75, 15.15) alloys were studied by 57Fe Conversion Electron Mössbauer Spectroscopy (CEMS). The alloys were irradiated with doses up to 12 × 1016 ions/cm2 with 0.25 and 2.0 MeV He+ ions. The distribution of Cr atoms within the first two coordination shells around Fe atoms was expressed with short-range order parameters α 1 (first-neighbor shell, 1NN), α 2 (second-neighbor shell, 2NN), and α 12 (1NN + 2NN). In non-irradiated alloys, α 1 >0 and α 2 <0 was revealed for all three samples. The value of α 12 ≈0, i.e., the distribution of Cr atoms averaged over 1NN and 2NN, was random. The effect of the irradiation of the Fe94.2Cr5.8 alloy was similar for the two energies of He+, viz., increase of number of Cr atoms in 1NN and decrease in 2NN. Consequently, the degree of ordering increased. For the other two samples, the effect of the irradiation depends on the composition, and is stronger for the less energetic ions where, for Fe89.25Cr10.75 alloy, the disordering disappeared and some traces of Cr clustering appeared. In Fe84.85Cr15.15 alloy, the clustering was clear. In the samples irradiated with 2. 0 MeV He+ ions, the ordering also survived in the samples with x = 10.75 and 15.15, yet its degree became smaller than in the Fe94.2Cr5.8 alloy.

  13. Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater.

    PubMed

    Sun, Yuqing; Lei, Cheng; Khan, Eakalak; Chen, Season S; Tsang, Daniel C W; Ok, Yong Sik; Lin, Daohui; Feng, Yujie; Li, Xiang-Dong

    2017-06-01

    Nanoscale zero-valent iron (nZVI) was tested for the removal of Cu(II), Zn(II), Cr(VI), and As(V) in model saline wastewaters from hydraulic fracturing. Increasing ionic strength (I) from 0.35 to 4.10 M (Day-1 to Day-90 wastewaters) increased Cu(II) removal (25.4-80.0%), inhibited Zn(II) removal (58.7-42.9%), slightly increased and then reduced Cr(VI) removal (65.7-44.1%), and almost unaffected As(V) removal (66.7-75.1%) by 8-h reaction with nZVI at 1-2 g L -1 . The removal kinetics conformed to pseudo-second-order model, and increasing I decreased the surface area-normalized rate coefficient (k sa ) of Cu(II) and Cr(VI), probably because agglomeration of nZVI in saline wastewaters restricted diffusion of metal(loid)s to active surface sites. Increasing I induced severe Fe dissolution from 0.37 to 0.77% in DIW to 4.87-13.0% in Day-90 wastewater; and Fe dissolution showed a significant positive correlation with Cu(II) removal. With surface stabilization by alginate and polyvinyl alcohol, the performance of entrapped nZVI in Day-90 wastewater was improved for Zn(II) and Cr(VI), and Fe dissolution was restrained (3.20-7.36%). The X-ray spectroscopic analysis and chemical speciation modelling demonstrated that the difference in removal trends from Day-1 to Day-90 wastewaters was attributed to: (i) distinctive removal mechanisms of Cu(II) and Cr(VI) (adsorption, (co-)precipitation, and reduction), compared to Zn(II) (adsorption) and As(V) (bidentate inner-sphere complexation); and (ii) changes in solution speciation (e.g., from Zn 2+ to ZnCl 3 - and ZnCl 4 2- ; from CrO 4 2- to CaCrO 4 complex). Bare nZVI was susceptible to variations in wastewater chemistry while entrapped nZVI was more stable and environmentally benign, which could be used to remove metals/metalloids before subsequent treatment for reuse/disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Diffusion of cations in chromia layers grown on iron-base alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobnig, R.E.; Hennesen, K.; Grabke, H.J.

    Diffusion of the cations Cr, Fe, Mn, and Ni in Cr{sub 2}O{sub 3} has been investigated at 1,173 K. The diffusion measurements were performed on chromia layers grown on the model alloys Fe-20Cr and Fe-20Cr-12Ni in order to consider effects of small amounts of dissolved alien cations in Cr{sub 2}O{sub 3}. The samples were diffusion annealed in H{sub 2}-H{sub 2}O at an oxygen partial pressure close to the Cr{sub 2}O{sub 3}/Cr equilibrium. For all tracers the lattice-diffusion coefficients are 3-5 orders of magnitude smaller than the grain-boundary diffusion coefficients. The lattice diffusivity of Mn is about two orders of magnitudemore » greater than the other lattice-diffusion coefficients, especially in Cr{sub 2}O{sub 3} grown on Fe-20Cr-12Ni. The values of the diffusion coefficients for Cr, Fe, and Ni are in the same range. Diffusion of the tracers in Cr{sub 2}O{sub 3} grown on different alloys did not show significant differences with the exception of Mn.« less

  15. Phase Evolution and Properties of Al2CrFeNiMo x High-Entropy Alloys Coatings by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Jiang, Li; Jiang, Hui; Pan, Xuemin; Cao, Zhiqiang; Deng, Dewei; Wang, Tongmin; Li, Tingju

    2015-10-01

    A series of Al2CrFeNiMo x ( x = 0 to 2.0 at.%) high-entropy alloys coatings was synthesized on stainless steel by laser cladding. The effect of Mo content on the microstructures and mechanical properties of Al2CrFeNiMo x coatings was studied. The results show that the laser clad layer consists of the cladding zone, bonding zone, and heat-affected zone. The Al2CrFeNiMo x coatings are composed of two simple body-center cubic phases and the cladding zone is mainly composed of equiaxed grains. When the content of Mo reaches 2 at.%, a eutectic structure is found in the interdendritic regions. The surface microhardness of the Al2CrFeNiMo2 coating is 678 HV, which is about three times higher than that of the substrate (243 HV). Compared with stainless steel, the wear resistance of the coatings has been improved greatly. The wear mass loss of the Al2CrFeNiMo alloy is 9.8 mg, which is much less than that of the substrate (18.9 mg) and its wear scar width is the lowest among the Al2CrFeNiMo x coatings, indicating that the wear resistance of the Al2CrFeNiMo is the best.

  16. Trace elements distribution in hawksbill turtle (Eretmochelys imbricata) and green turtle (Chelonia mydas) tissues on the northern coast of Bahia, Brazil.

    PubMed

    de Macêdo, Gustavo R; Tarantino, Taiana B; Barbosa, Isa S; Pires, Thaís T; Rostan, Gonzalo; Goldberg, Daphne W; Pinto, Luis Fernando B; Korn, Maria Graças A; Franke, Carlos Roberto

    2015-05-15

    Concentrations of elements (As, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sr, V, Zn) were determined in liver, kidneys and bones of Eretmochelys imbricata and Chelonia mydas specimens found stranded along the northern coast of Bahia, Brazil. Results showed that the concentrations of Cd, Cu, Ni and Zn in the liver and kidneys of juvenile C. mydas were the highest found in Brazil. We also observed a significant difference (p<0.05) on the bioaccumulation of trace elements between the two species: Al, Co, Mo, Na and Se in the liver; Al, Cr, Cu, K, Mo, Ni, Pb, Sr and V in the kidneys; and Al, Ba, Ca, Cd, Mn, Ni, Pb, Se, Sr and V in the bones. This study represents the first report on the distribution and concentration of trace elements in E. imbricata in the Brazilian coast. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Self-propagating high-temperature synthesis of Ce-bearing zirconolite-rich minerals using Ca(NO3)2 as the oxidant

    NASA Astrophysics Data System (ADS)

    Zhang, Kuibao; Wen, Guanjun; Yin, Dan; Zhang, Haibin

    2015-12-01

    Synroc is recognized as the second generation waste form for the immobilization of high-level radioactive waste (HLW). Zirconolite-rich (CaZrTi2O7) Synroc minerals were attempted by self-propagating high-temperature synthesis (SHS) using Fe2O3, CrO3, Ca(NO3)2 as the oxidants and Ti as the reductant. All designed reactions were ignited and sustained using Ca(NO3)2 as the oxidant, and zirconolite-rich ceramic matrices were successfully prepared with pyrochlore (Ca2Ti2O6), perovskite (CaTiO3) and rutile (TiO2) as the minor phases. The sample CN-4, which was designed using Ca(NO3)2 as the oxidant with TiO2/Ti ratio of 7:9, was readily solidified with density of 4.62 g/cm3 and Vickers hardness of 1052 HV. CeO2 was successfully stabilized by the CN-4 sample with resultant phase constituent of 2M-CaZrTi2O7 and CaTiO3.

  18. The application of Westcott Formalism k0 NAA method to estimate short and medium lived elements in some Ghanaian herbal medicines complemented by AAS

    NASA Astrophysics Data System (ADS)

    Ayivor, J. E.; Okine, L. K. N.; Dampare, S. B.; Nyarko, B. J. B.; Debrah, S. K.

    2012-04-01

    The epithermal neutron shape factor, α of the inner and outer irradiation sites of the Ghana Research Reactor-1 (GHARR-1) was determined obtaining results of 0.105 for the inner (Channel 1) Irradiation site and 0.020 for the outer (channel 6) irradiation site. The neutron temperatures for the inner and outer irradiation sites were 27 °C and 20 °C, respectively. The α values used in Westcott Formalism k0 INAA was applied to determine multi elements in 13 Ghanaian herbal medicines used by the Centre for Scientific Research into Plant Medicine (CSRPM) for the management of various diseases complemented by Atomic Absorption Spectrometry. They are namely Mist. Antiaris, Mist. Enterica, Mist. Morazia, Mist. Nibima, Mist. Modium, Mist. Ninger, Mist Sodenia, Mist. Tonica, Chardicca Powder, Fefe Powder, Olax Powder, Sirrapac powder and Lippia Tea. Concentrations of Al, As, Br, K, Cl, Cu, Mg, Mn, Na and V were determined by short and medium irradiations at a thermal neutron flux of 5×1011 ncm-2 s-1. Fe, Cr, Pb, Co, Ni, Sn, Ca, Ba, Li and Sb were determined using Atomic Absorption Spectrometry (AAS). Ba, Cu, Li and V were present at trace levels whereas Al, Cl, Na, Ca were present at major levels. K, Br, Mg, Mn, Co, Ni, Fe and Sb were also present at minor levels. Arsenic was not detected in all samples. Standard Reference material, IAEA-V-10 Hay Powder was simultaneously analysed with samples. The precision and accuracy of the method using real samples and standard reference materials were evaluated and within ±10% of the reported value. Multivariate analytical techniques, such as cluster analysis (Q-mode and R-mode CA) and principal component analysis (PCA)/factor analysis (FA), have been applied to evaluate the chemical variations in the herbal medicine dataset. All the 13 samples may be grouped into 2 statistically significant clusters (liquid based and powdered herbal medicines), reflecting the different chemical compositions. R-mode CA and PCA suggest common sources for Co, Mg, Fe, Ca, Cr, Ni, Sn, Li and Sb and Na, V, Cl, Mn, Al, Br and K. The PCA/FA identified 3 dominant factors as responsible for the data structure, explaining 84.5% of the total variance in the dataset.

  19. Modelling of Microstructure Changes in Hot Deformed Materials Using Cellular Automata

    NASA Astrophysics Data System (ADS)

    Kuc, Dariusz; Gawąd, Jerzy

    2011-01-01

    The paper is focused on application of multi-scale 2D method. Model approach consists of Cellular Automata (CA) model of microstructure development and the finite element code to solve thermo-mechanical problem. Dynamic recrystallization phenomenon is taken into account in 2D CA model which takes advantage of explicit representation of microstructure, including individual grains and grain boundaries. Flow stress is the main material parameter in mechanical part of FE and is calculated on the basis of average dislocation density obtained from CA model. The results attained from the model were validated with the experimental data. In the present study, austenitic steel X3CrNi18-10 was investigated. The examination of microstructure for the initial and final microstructures was carried out, using light microscopy and transmission electron microscopy.

  20. Perovskites Bi0.8La0.2FeO3 and Bi0.8La0.2Fe0.95Cr0.05O3: Crystal structure and magnetic and charge states of iron ions

    NASA Astrophysics Data System (ADS)

    Sigov, A. S.; Pokatilov, V. S.; Makarova, A. O.; Pokatilov, V. V.

    2014-06-01

    Perovskites of the Bi0.8La0.2Fe1 - x Cr x O3 system ( x = 0, 0.05) were investigated by Mössbauer spectroscopy in the temperature range of 298-800 K. The samples were fabricated by solid-state synthesis and had a rhombic structure. Iron ions in Bi0.8La0.2FeO3 and Bi0.8La0.2Fe0.95Cr0.05O3 are situated in trivalent states. The magnetic transition temperatures (the Néel temperatures T N ) T N = 677.5 ± 2.5 K for Bi0.8La0.2FeO3 and T N = 647.6 ± 2.5 K for Bi0.8La0.2Fe0.95Cr0.05O3 are measured. The substitution of trivalent iron ions from trivalent chromium ions in the amount x = 0.05 in Bi0.8La0.2Fe0.95Cr0.05O3 perovskite decreases the hyperfine magnetic field at nuclei 57Fe in Fe+3-O-Cr+3 chains by 30 kOe.

  1. Results of analyses performed on basalt adjacent to penetrators emplaced into volcanic rock at Amboy, California, April 1976

    NASA Technical Reports Server (NTRS)

    Blanchard, M.; Bunch, T.; Davis, A.; Shade, H.; Erlichman, J.; Polkowski, G.

    1977-01-01

    The physical and chemical modifications found in the basalt after impact of four penetrators were studied. Laboratory analyses show that mineralogical and elemental changes are produced in the powdered and crushed basalt immediately surrounding the penetrator. Optical microscopy studies of material next to the skin of the penetrator revealed a layer, 0-2 mm thick, of glass and abraded iron alloy mixed with fractured mineral grains of basalt. Elemental analysis of the 0-2 mm layer revealed increased concentrations of Fe, Cr, Ni, No, and Mn, and reduced concentrations of Mg, Al, Si, and Ca. The Fe, Cr, Ni, and Mo were in fragments abraded from the penetrator. Mineralogical changes occurring in the basalt sediment next to the penetrator include the introduction of micron-size grains of alpha-iron, magnetite, and hematite. The newly formed silicate minerals include metastable phases of silica (tridymite and cristobalite). An increased concentration of Fe, Cr, Ni, and Mo occurred in the 2-mm to 1-cm layer of penetrator no. 1, which impacted at the highest velocity. No elemental concentration increase was noted for penetrators nos. 2 and 3 in the 2-mm to 1-cm layer. Contaminants introduced by the penetrator occur up to 1 cm away from the penetrator's skin. Although volatile elements do migrate and new minerals are formed during the destruction of host minerals in the crushed rock, no changes were observed beyond the 1-cm distance.

  2. Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Song, Liang; Wang, Xianping; Wang, Le; Zhang, Ying; Liu, Wang; Jiang, Weibing; Zhang, Tao; Fang, Qianfeng; Liu, Changsong

    2017-04-01

    He-charged oxide dispersion strengthened (ODS) FeCrNi films were prepared by a radio-frequency (RF) plasma magnetron sputtering method in a He and Ar mixed atmosphere at 150 °C. As a comparison, He-charged FeCrNi films were also fabricated at the same conditions through direct current (DC) plasma magnetron sputtering. The doping of He atoms and Y2O3 in the FeCrNi films was realized by the high backscattered rate of He ions and Y2O3/FeCrNi composite target sputtering method, respectively. Inductive coupled plasma (ICP) and x-ray photoelectron spectroscopy (XPS) analysis confirmed the existence of Y2O3 in FeCrNi films, and Y2O3 content hardly changed with sputtering He/Ar ratio. Cross-sectional scanning electron microscopy (SEM) shows that the FeCrNi films were composed of dense columnar nanocrystallines and the thickness of the films was obviously dependent on He/Ar ratio. Nanoindentation measurements revealed that the FeCrNi films fabricated through DC/RF plasma magnetron sputtering methods exhibited similar hardness values at each He/Ar ratio, while the dispersion of Y2O3 apparently increased the hardness of the films. Elastic recoil detection (ERD) showed that DC/RF magnetron sputtered FeCrNi films contained similar He amounts (˜17 at.%). Compared with the minimal change of He level with depth in DC-sputtered films, the He amount decreases gradually in depth in the RF-sputtered films. The Y2O3-doped FeCrNi films were shown to exhibit much smaller amounts of He owing to the lower backscattering possibility of Y2O3 and the inhibition effect of nano-sized Y2O3 particles on the He element.

  3. Local thermal expansions and lattice strains in Elinvar and stainless steel alloys

    NASA Astrophysics Data System (ADS)

    Yokoyama, Toshihiko; Koide, Akihiro; Uemura, Yohei

    2018-02-01

    Local thermal expansions and lattice strains in the Elinvar alloy Fe49.66Ni42.38Cr5.49Ti2.47 (Ni Span C) and the stainless steel SUS304 Fe71.98Ni9.07Cr18.09Mn0.86 (AISI304) were investigated by the temperature-dependent Cr, Fe, and Ni K -edge extended x-ray absorption fine-structure (EXAFS) measurements, combined with the path-integral effective classical potential Monte Carlo (PIECP MC) theoretical simulations. From the EXAFS analysis of the Elinvar alloy, the local thermal expansion around Fe is found to be considerably smaller than the ones around Ni and Cr. This observation can be understood simply because Fe in the Elinvar alloy exhibit an incomplete Invar-like effect. Moreover, in both the Elinvar and SUS304 alloys, the local thermal expansions and the lattice strains around Cr are found to be larger than those around Fe and Ni. From the PIECP MC simulations of both the alloys, the first-nearest neighbor Cr-Fe pair shows extraordinarily large thermal expansion, while the Cr-Cr pair exhibits quite small or even negative thermal expansion. These findings consequently indicate that the lattice strains in both the Elinvar and SUS304 alloys are concentrated predominantly on the Cr atoms. Although the role of Cr in stainless steel has been known to inhibit corrosion by the formation of surface chromium oxide, the present investigation may interestingly suggest that the Cr atoms in the bulk play a hidden new role of absorbing inevitable lattice strains in the alloys.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar

    The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloysmore » with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). Finally, the results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.« less

  5. Status of FeCrAl ODS Irradiations in the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Howard, Richard H.

    2016-08-19

    FeCrAl oxide-dispersion strengthened (ODS) alloys are an attractive sub-set alloy class of the more global FeCrAl material class for nuclear applications due to their high-temperature steam oxidation resistance and hypothesized enhanced radiation tolerance. A need currently exists to determine the radiation tolerance of these newly developed alloys. To address this need, a preliminary study was conducted using the High Flux Isotope Reactor (HFIR) to irradiate an early generation FeCrAl ODS alloy, 125YF. Preliminary post-irradiation examination (PIE) on these irradiated specimens have shown good radiation tolerance at elevated temperatures (≥330°C) but possible radiation-induced hardening and embrittlement at irradiations of 200°C tomore » a damage level of 1.9 displacement per atom (dpa). Building on this experience, a new series of irradiations are currently being conceptualized. This irradiation series called the FCAD irradiation program will irradiate the latest generation FeCrAl ODS and FeCr ODS alloys to significantly higher doses. These experiments will provide the necessary information to determine the mechanical performance of irradiated FeCrAl ODS alloys at light water reactor and fast reactor conditions.« less

  6. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    NASA Astrophysics Data System (ADS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  7. Influence of Feedstock Materials and Spray Parameters on Thermal Conductivity of Wire-Arc-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-03-01

    To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.

  8. Handbook of the Materials Properties of FeCrAl Alloys For Nuclear Power Production Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukinori; Snead, Mary A.; Field, Kevin G.

    FeCrAl alloys are a class of alloys that have seen increased interest for nuclear power applications including as accident tolerant fuel cladding, structural components for fast fission reactors, and as first wall and blanket structures for fusion reactors. FeCrAl alloys are under consideration for these applications due to their inherent corrosion resistance, stress corrosion cracking resistance, radiation-induced swelling resistance, and high temperature oxidation resistance. A substantial amount of research effort has been completed to design, develop, and begin commercial scaling of FeCrAl alloys for nuclear power applications over the past half a century. These efforts have led to the developmentmore » of an extensive database on material properties and process knowledge for FeCrAl alloys but not within a consolidated format. The following report is the first edition of a materials handbook to consolidate the state-of-the-art on FeCrAl alloys for nuclear power applications. This centralized database focuses solely on wrought FeCrAl alloys, oxide dispersion strengthened alloys, although discussed in brief, are not covered. Where appropriate, recommendations for applications of the data is provided and current knowledge gaps are identified.« less

  9. Metal concentrations of wild edible mushrooms from Turkey.

    PubMed

    Sarikurkcu, Cengiz; Tepe, Bektas; Solak, Mehmet Halil; Cetinkaya, Serap

    2012-01-01

    In the present study, the contents of Zn, Fe, Cu, Mn, Co, Ni, Pb, Cd, Cr, Al, Ca, Mg, and K in Agaricus campestris, Agrocybe cylindracea, Collybia dryophila, Helvella leucopus, Russula delica, Tricholoma auratum, Amanita ovoidea, Melanoleuca excissa, Rhizopogon roseolus, Russula chloroides, Volvoriella gloiocephala, Lyophyllum decastes, Morcella angusticeps, Morchella esculenta and Morcella eximia collected from Isparta, Mugla, and Osmaniye provinces (Turkey) were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave digestion. The intake of heavy metals (Pb, Cd) and other metals (Fe, Cu, Zn) by consumption of 30 g dry weight of mushrooms daily poses no risk at all except in A. cylindracea and H. leucopus (for Cd) for the consumer.

  10. Comparative trace elemental analysis of cancerous and non-cancerous tissues of rectal cancer patients using PIXE

    NASA Astrophysics Data System (ADS)

    Naga Raju, G. J.; Sarita, P.; Murthy, K. S. R.

    2017-08-01

    Particle Induced X-ray Emission (PIXE), an accelerator based analytical technique has been employed in this work for the analysis of trace elements in the cancerous and non-cancerous tissues of rectal cancer patients. A beam of 3 MeV protons generated from 3 MV Pelletron accelerator at the Ion Beam Laboratory of Institute of Physics, Bhubaneswar, India was used as projectile to excite the atoms present in the tissues samples. PIXE technique, with its capability to detect simultaneously several elements present at very low concentrations, offers an excellent tool for trace element analysis. The characteristic X-rays emitted by the samples were recorded by a high resolution Si (Li) detector. On the basis of the PIXE spectrum obtained for each sample, the elements Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Br were identified and their relative concentrations were estimated in the cancerous and non-cancerous tissues of rectum. The levels of Mn, Fe, Co, Cu, Zn, and As were higher (p < 0.005) while the levels of Ca, Cr and Ni were lower (p < 0.005) in the cancer tissues relative to the normal tissues. The alterations in the levels of the trace elements observed in the present work are discussed in this paper with respect to their potential role in the initiation, promotion and inhibition of cancer of the rectum.

  11. Estimation of dietary intake and target hazard quotients for metals by consumption of wines from the Canary Islands.

    PubMed

    Gutiérrez, Angel J; Rubio, Carmen; Moreno, Isabel M; González, A Gustavo; Gonzalez-Weller, Dailos; Bencharki, Naouel; Hardisson, Arturo; Revert, Consuelo

    2017-10-01

    This paper describes the impact of mineral content on wines and assesses the potential health risk from consuming these wines from Canary Islands. The metal content (B, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Zn) of red wines belonging to different regions in the Canary Islands was determined by ICP-OES. The studied wine regions were Valle de la Orotava, Tacoronte-Acentejo, Ycoden-Daute-Isora, Abona and Valle de Güimar in Tenerife Island and only one in La Gomera and La Palma Islands. According to the content found, elements could be classified in two categories: the main group including Ca, K, Mg, Na, and the ''minor'' set consisting of B, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb and Zn. Once calculated the metal intake through red wines consumption, we can conclude that Canarian drinkers are not exposed to unsafe levels of the metals studied, actually, the safety intake limits (daily) ranges between 0.9% in Zn and 2% in Cu, for normal drinkers. And also it has been demonstrated the good quality of Canarian red wines and there is no reason for health concern through the THQ calculation being the highest values determined in La Gomera wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Elemental analysis of size-fractionated particulate matter sampled in Göteborg, Sweden

    NASA Astrophysics Data System (ADS)

    Wagner, Annemarie; Boman, Johan; Gatari, Michael J.

    2008-12-01

    The aim of the study was to investigate the mass distribution of trace elements in aerosol samples collected in the urban area of Göteborg, Sweden, with special focus on the impact of different air masses and anthropogenic activities. Three measurement campaigns were conducted during December 2006 and January 2007. A PIXE cascade impactor was used to collect particulate matter in 9 size fractions ranging from 16 to 0.06 µm aerodynamic diameter. Polished quartz carriers were chosen as collection substrates for the subsequent direct analysis by TXRF. To investigate the sources of the analyzed air masses, backward trajectories were calculated. Our results showed that diurnal sampling was sufficient to investigate the mass distribution for Br, Ca, Cl, Cu, Fe, K, Sr and Zn, whereas a 5-day sampling period resulted in additional information on mass distribution for Cr and S. Unimodal mass distributions were found in the study area for the elements Ca, Cl, Fe and Zn, whereas the distributions for Br, Cu, Cr, K, Ni and S were bimodal, indicating high temperature processes as source of the submicron particle components. The measurement period including the New Year firework activities showed both an extensive increase in concentrations as well as a shift to the submicron range for K and Sr, elements that are typically found in fireworks. Further research is required to validate the quantification of trace elements directly collected on sample carriers.

  13. The reactivity of Fe(II) associated with goethite formed during short redox cycles toward Cr(VI) reduction under oxic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomaszewski, Elizabeth J.; Lee, Seungyeol; Rudolph, Jared

    Chromium (Cr) is a toxic metal that causes a myriad of health problems and enters the environment as a result of anthropogenic activities and/or natural processes. The toxicity and solubility of chromium is linked to its oxidation state; Cr(III) is poorly soluble and relatively nontoxic, while Cr(VI) is soluble and a known carcinogen. Solid Fe(II) in iron-bearing minerals, such as pyrite, magnetite, and green rusts, reduce the oxidation state of chromium, reducing its toxicity and mobility. However, these minerals are not the only potential sources of solid-associated Fe(II) available for Cr(VI) reduction. For example, ferric (Fe(III)) (hydr)oxides, such as goethitemore » or hematite, can have Fe(II) in the solid without phase transformation; however, the reactivity of Fe(II) within Fe(III) (hydr)oxides with contaminants, has not been previously investigated. Here, we cyclically react goethite with dissolved Fe(II) followed by dissolved O2, leading to the formation of reactive Fe(II) associated with goethite. In separate reactors, the reactivity of this Fe(II) is probed under oxic conditions, by exposure to chromate (CrO42 -) after either one, two, three or four redox cycles. Cr is not present during redox cycling; rather, it is introduced to a subset of the solid after each oxidation half-cycle. Analysis of X-ray absorption near edge structure (XANES) spectra reveals that the extent of Cr(VI) reduction to Cr(III) depends not only on solid Fe(II) content but also surface area and mean size of ordered crystalline domains, determined by BET surface area analysis and X-ray diffraction (XRD), respectively. Shell-by-shell fitting of the extended X-ray absorption fine structure (EXAFS) spectra demonstrates chromium forms both single and double corner sharing complexes on the surface of goethite, in addition to sorbed Cr(III) species. Finally, transmission electron microscope (TEM) imaging and X-ray energy-dispersive spectroscopy (EDS) illustrate that Cr preferentially localizes on the (100) face of goethite, independent of the number of redox cycles goethite undergoes. This work demonstrates that under oxic conditions, solid Fe(II) associated with goethite resulting from rapid redox cycling is reactive and available for electron transfer to Cr(VI), suggesting Fe(III) (hydr)oxides may act as reservoirs of reactive electron density, even in oxygen saturated environments.« less

  14. Oxidation of Cr(III)-Fe(III) Mixed-phase Hydroxides by Chlorine: Implications on the Control of Hexavalent Chromium in Drinking Water.

    PubMed

    Chebeir, Michelle; Liu, Haizhou

    2018-05-17

    The occurrence of chromium (Cr) as an inorganic contaminant in drinking water is widely reported. One source of Cr is its accumulation in iron-containing corrosion scales of drinking water distribution systems as Cr(III)-Fe(III) hydroxide, i.e., FexCr(1-x)(OH)3(s), where x represents the Fe(III) molar content and typically varies between 0.25 and 0.75. This study investigated the kinetics of inadvertent hexavalent chromium Cr(VI) formation via the oxidation of FexCr(1-x)(OH)3(s) by chlorine as a residual disinfectant in drinking water, and examined the impacts of Fe(III) content and drinking water chemical parameters including pH, bromide and bicarbonate on the rate of Cr(VI) formation. Data showed that an increase in Fe(III) molar content resulted in a significant decrease in the stoichiometric Cr(VI) yield and the rate of Cr(VI) formation, mainly due to chlorine decay induced by Fe(III) surface sites. An increase in bicarbonate enhanced the rate of Cr(VI) formation, likely due to the formation of Fe(III)-carbonato surface complexes that slowed down the scavenging reaction with chlorine. The presence of bromide significantly accelerated the oxidation of FexCr(1-x)(OH)3(s) by chlorine, resulting from the catalytic effect of bromide acting as an electron shuttle. A higher solution pH between 6 and 8.5 slowed down the oxidation of Cr(III) by chlorine. These findings suggested that the oxidative conversion of chromium-containing iron corrosion products in drinking water distribution systems can lead to the occurrence of Cr(VI) at the tap, and the abundance of iron, and a careful control of pH, bicarbonate and bromide levels can assist the control of Cr(VI) formation.

  15. Negative-Electrode Catalysts for Fe/Cr Redox Cells

    NASA Technical Reports Server (NTRS)

    Gahn, R. F.; Hagedorn, N.

    1987-01-01

    Electrodes perform more consistently and less expensive. Surfaces catalyzed by bismuth and bismuth/lead developed for application on chromium electrode in iron/chromium redox electrochemical energy storage system. NASA Fe/Cr storage system incorporates two soluble electrodes consisting of acidified solutions of iron chloride (FeC13 and FeC12) and chromium chloride (CrC13 and CrC12) oxidized and reduced in power-conversion unit to store and produce electricity. Electrolytes circulated with pumps and stored in external tanks.

  16. Formation and function of chromate conversion coating on aircraft aluminum alloy probed by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Xia, Lin

    2000-10-01

    A Chromate Conversion Coating (CCC) is currently one of the most effective methods for protecting aluminum alloys from corrosion. Its unique "self-healing" property has been proved to be critical in corrosion prevention. During the formation process, CrVI, is "stored" in the CCC films. Under in-field conditions, most of the CrVI can leach out and diffuse to local defects, and stop corrosion. However, the involvement of highly toxic CrVI makes CCC system environmentally hazardous. In order to find less-toxic alternatives, the formation and protection mechanisms of CCC must be understood. Formation and function of CCC film are the focus of this study, and vibrational spectroscopy was chosen due to its superior structural sensitivity. First, the structure of CCC film was characterized. The structural similarity between CCC film and a synthetic Cr-mixed-oxide was found, and certain tests were conducted on the bulk synthetic powder which were not feasible on the thin film. All of the structural studies indicated that CCC film is mainly a CrIII-hydroxide gel layer, which adsorbs CrVI-oxy species through CrIII-O-Cr VI chemical bonds. Further analysis revealed the reversible Cr III-CrVI adsorption-desorption equilibrium, and a mathematical model ("Langmuir" model) was established to explain the Cr VI storage-release mechanism quantitatively. In addition, the function of Fe(CN)63-, an additive in the coating solution, was studied. The results indicate that Fe(CN)63- mediates the slow reaction between Al and CrVI, and the mediation mechanism can be illustrated as below: FeCN 3- 6+Al=FeCN 4-6+Al3+ ↑ FeCN 4- 6+CrVI=FeCN 3-6+CrIII In general, the formation of CCC is mediated by Fe(CN)63-, thus Al reduces CrVI quickly and generates CrIII-hydroxide on the alloy surface. The nascent CrIII-hydroxide is chemically active enough to form chemical bonds with CrVI from the solution, through Cr III-O-CrVI bonding. Such CrIII-O-Cr VI structure can form and break up reversibly according to the Langmuir model, providing mobile CrVI for in-field protection.

  17. Irradiation-enhanced α' precipitation in model FeCrAl alloys

    DOE PAGES

    Edmondson, Philip D.; Briggs, Samuel A.; Yamamoto, Yukinori; ...

    2016-02-17

    We have irradiated the model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) with a neutron at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. Furthermore, this is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning ofmore » the Al from the α' precipitates was also observed.« less

  18. A physics-based crystallographic modeling framework for describing the thermal creep behavior of Fe-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Wei; Capolungo, Laurent; Patra, Anirban

    This Report addresses the Milestone M2MS-16LA0501032 of NEAMS Program (“Develop hardening model for FeCrAl cladding), with a deadline of 09/30/2016. Here we report a constitutive law for thermal creep of FeCrAl. This Report adds to and complements the one for Milestone M3MS-16LA0501034 (“Interface hardening models with MOOSE-BISON”), where we presented a hardening law for irradiated FeCrAl. The last component of our polycrystal-based constitutive behavior, namely, an irradiation creep model for FeCrAl, will be developed as part of the FY17 Milestones, and the three regimes will be coupled and interfaced with MOOSE-BISON.

  19. Cr(VI) Sorption by Nanosized FeS-Coated Sand

    NASA Astrophysics Data System (ADS)

    Park, M.; Jeong, H. Y.; Lee, S.; Kang, N.; Kim, K. H.; Choi, H. J.

    2015-12-01

    Cr(VI) sorption experiments were conducted as a function of pH (4.7, 7.0 and 9.7) using nanosized FeS-coated sand under anoxic environments. Under the experimental conditions, the sand used, with the FeS content of 0.068 mmol per 1 g sand, completely reduced the initially added Cr(VI) to Cr(III) over the pH range examined. The sorption of the once-reduced Cr(III) varied greatly with the solution pH. By the solution-phase analysis, significant amounts of Cr(III) remained as dissolved species at pH 4.7. On the other hands, dissolved Cr was below the detection limit (0.2 μM) at pH 7.0 and 9.7, indicating the greater sorption of Cr(III) at neutral to basic pH than acidic pH. From Cr-K edge X-ray absorption spectroscopy (XAS) analysis of the solid products, the sorbed Cr was shown to be present predominantly as trivalent state in all samples. Regardless of pH, the second coordination shell around Cr (i.e., the Cr-Cr(Fe) shell) was shown to be located at ~2.6 Å, which was far shorter than those in Cr(III)-bearing model compounds such as Cr(OH)3(s) and [Cr, Fe](OH)3(s). Furthermore, the coordination numbers of the second and third shells in the sorption samples (N = 0.7-1.8) were much lower than those in Cr(OH)3(s) and [Cr, Fe](OH)3(s). Taken together, the sorption of the once-reduced Cr(III) was likely to occur via surface-mediated processes (e.g., surface complexation and/or surface precipitation) rather than the bulk-phase precipitation. Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003).

  20. Peridotite-suite dominated mineral inclusions in diamonds from Kelsey Lake Mine, Colorado U.S.A.

    NASA Astrophysics Data System (ADS)

    Schulze, D. J.; Coopersmith, H. G.

    2005-12-01

    Thirty silicate and oxide inclusions large enough for in situ WDS electron microprobe analysis were exposed by grinding/polishing of 16 diamonds from the Kelsey Lake Mine in the Colorado-Wyoming State Line kimberlite district. Three garnets in two stones belong to the eclogite (E) suite, and 18 olivines, three Mg-chromites and six Cr-pyropes in the other 14 stones belong to the peridotite (P) suite. The peridotite-dominated population is in stark contrast to the other suites studied in the State Line district. The reported inclusion population from George Creek is completely eclogitic and that of the Sloan pipe is overwhelmingly eclogitic, with only a minor, relatively Fe-rich peridotite component. Multiple inclusions are common in single stones, with 12 olivines (of uniform composition) exposed in one example. Kelsey Lake olivine inclusions are magnesian (17 of 18 grains in 9 stones are in the range Fo 92.7-93.1), typical of P-suite stones worldwide, but unlike the more Fe-rich Sloan olivine suite (13 of 14 in the range Fo 91.3-92.2). Mg-chromites (wt percent MgO = 12.8-13.8, wt percent Cr2O3 = 61.4-66.6) are in the lower MgO range of diamond inclusion chromites worldwide. Six Cr-pyropes in four stones have moderately low calcium contents (wt percent CaO = 3.5-4.5) but are very Cr-rich (wt percent Cr2O3 = 10.5-16.7). An olivine-garnet pair in one stone yields a Mg-Fe exchange temperature of 895 degrees C, possibly indicating disequilibrium, whereas an olivine-chromite pair yields an Mg-Fe exchange temperature of 1035 degrees C, cool but reasonable for equilibration within the diamond stability field. Comparison with diamond inclusion minerals worldwide reveals that the Kesley Lake suite is most similar to those from the Slave Craton in Canada, especially in terms of Cr-pyrope compositions. Both suites are somewhat less depleted than suites from southern Africa or Siberian kimberlites. By analogy with the Slave P-suite diamonds of Archean age and a Proterozoic eclogitic component in the Slave mantle, the mixed diamond inclusion populations from the State Line district may support models in which blocks of Archean mantle survive buried beneath Proterozoic continental crust, mixed with eclogitic regimes emplaced by Proterozoic subduction.

  1. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy

    DOE PAGES

    Laplanche, Guillaume; Gadaud, P.; Barsch, C.; ...

    2018-02-23

    Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful formore » quantifying fundamental aspects such as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less

  2. Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions

    NASA Astrophysics Data System (ADS)

    Zhong, Weicheng; Mouche, Peter A.; Han, Xiaochun; Heuser, Brent J.; Mandapaka, Kiran K.; Was, Gary S.

    2016-03-01

    Iron-chromium-aluminum (FeCrAl) coatings deposited on Zircaloy 2 (Zy2) and yttria-stabilized zirconia (YSZ) by magnetron sputtering have been tested with respect to oxidation weight gain in high-temperature steam. In addition, autoclave testing of FeCrAl-coated Zy2 coupons under pressure-temperature-dissolved oxygen coolant conditions representative of a boiling water reactor (BWR) environment has been performed. Four different FeCrAl compositions have been tested in 700 °C steam; compositions that promote alumina formation inhibited oxidation of the underlying Zy2. Parabolic growth kinetics of alumina on FeCrAl-coated Zy2 is quantified via elemental depth profiling. Autoclave testing under normal BWR operating conditions (288 °C, 9.5 MPa with normal water chemistry) up to 20 days demonstrates observable weight gain over uncoated Zy2 simultaneously exposed to the same environment. However, no FeCrAl film degradation was observed. The 900 °C eutectic in binary Fe-Zr is addressed with the FeCrAl-YSZ system.

  3. Highly tunable magnetism in silicene doped with Cr and Fe atoms under isotropic and uniaxial tensile strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Rui; Ni, Jun, E-mail: junni@mail.tsinghua.edu.cn; Collaborative Innovative Center of Quantum Matter, Beijing 100084

    2015-12-28

    We have investigated the magnetic properties of silicene doped with Cr and Fe atoms under isotropic and uniaxial tensile strain by the first-principles calculations. We find that Cr and Fe doped silicenes show strain-tunable magnetism. (1) The magnetism of Cr and Fe doped silicenes exhibits sharp transitions from low spin states to high spin states by a small isotropic tensile strain. Specially for Fe doped silicene, a nearly nonmagnetic state changes to a high magnetic state by a small isotropic tensile strain. (2) The magnetic moments of Fe doped silicene also show a sharp jump to ∼2 μ{sub B} at amore » small threshold of the uniaxial strain, and the magnetic moments of Cr doped silicene increase gradually to ∼4 μ{sub B} with the increase of uniaxial strain. (3) The electronic and magnetic properties of Cr and Fe doped silicenes are sensitive to the magnitude and direction of the external strain. The highly tunable magnetism may be applied in the spintronic devices.« less

  4. The laser microprobe mass analyser for determining partitioning of minor and trace elements among intimately associated macerals: an example from the Swallow Wood coal bed, Yorkshire, UK

    USGS Publications Warehouse

    Lyons, P.C.; Morelli, J.J.; Hercules, D.M.; Lineman, D.; Thompson-Rizer, C. L.; Dulong, F.T.

    1990-01-01

    A study of the elemental composition of intimately associated coal macerals in the English Swallow Wood coal bed was conducted using a laser microprobe mass analyser, and indicated a similar trace and minor elemental chemistry in the vitrinite and cutinite and a different elemental signature in the fusinite. Three to six sites were analysed within each maceral during the study by laser micro mass spectrometry (LAMMS). Al, Ba, Ca, Cl, Cr, Dy, F, Fe, Ga, K, Li, Mg, Na, S, Si, Sr, Ti, V, and Y were detected by LAMMS in all three macerals but not necessarily at each site analysed. The signal intensities of major isotopic peaks were normalized to the signal intensity of the m z 85 peak (C7H) to determine the relative minor- and trace-element concentrations among the three dominant macerals. The vitrinite and the cutinite were depleted in Ba, Ca, Dy, Li, Mg, Sr, and Y relative to their concentrations observed in the fusinite. The cutinite was distinguished over vitrinite by less Ti, V, Cr and Ca, and K Ca $ ??1 (relative signal intensities). The fusinite, relative to the cutinite and vitrinite, was relatively depleted in Cr, Sc, Ti, and V. The fusinite, as compared with both the cutinite and vitrinite, was relatively enriched in Ba, Ca, Dy, Li, Mg, Sr, and Y, and also showed the most intense m z 64, 65, 66 signals (possibly S2+, HS2+, H2S2+, respectively). The LAMMS data indicate a common source for most elements and selective loss from the maceral precursors in the peat or entrapment of certain elements as mineral matter, most likely during the peat stage or during early diagenesis. The relatively high amounts of Ba, Ca, Dy, Li, Mg, Sr, and Y in the fusinite are consistent with micron and submicron mineral-matter inclusions such as carbonates and Ca-Al phosphates (probably crandallite group minerals). Mineralogical data on the whole coal, the LAMMS chemistry of the vitrinite and cutinite, and scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDAX) of the elements in the macerals are consistent with the presence of micron and submicron inclusions of clays such as kaolinite, illite, and Ca-rich or Ca-bearing minerals (e.g. calcite, Ca-Al phosphates, and illite) which are different in kind and proportions in the three macerals. The variance as measured by the F-statistic for all three macerals indicates generally a nonuniform distribution of minor and trace elements in all three macerals, thus supporting a mineral-matter (inorganic) origin of the elements analysed. Exceptions are Al, K, Fe, Ga, and Sr in the vitrinite and cutinite, which is consistent with organic complexing or a uniform distribution of micron or submicron mineral matter such as illite and phosphate(s). ?? 1990.

  5. Reduction And Immobilization Of Hexavalent Chromium By Microbially Reduced Fe-bearing Clay Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Michael E.; Glasser, Paul; Dong, Hailiang

    Hexavalent chromium (Cr6+) is a major contaminant in the environment. As a redox-sensitive element, the fate and toxicity of chromium is controlled by reduction-oxidation (redox) reactions. Previous research has shown the ability of structural Fe(II) in naturally present and chemically reduced clay minerals to reduce Cr6+ to Cr(III) as a way of immobilization and detoxification. However, it is still poorly known whether or not structural Fe(II) in biologically reduced clay minerals exhibits a similar reactivity and if so, what the kinetics and mechanisms of Cr6+ reduction are. The objective of this study was to determine the kinetics and possible mechanismsmore » of Cr6+ reduction by structural Fe(II) in microbially reduced clay minerals and the nature of reduced Cr(III). Structural Fe(III) in nontronite (NAu-2), montmorillonite (SWy-2), chlorite (CCa-2), and clay-rich sediments from the Ringold Formation of the Hanford site of Washington State, USA was first bioreduced to Fe(II) by an iron-reducing bacterium Geobacter sulfurreducens with acetate as the sole electron donor and anthraquinone-2,6-disulfate (AQDS) as electron shuttle in synthetic groundwater (pH 7). Biogenic Fe(II) was then used to reduce aqueous Cr6+ at three different temperatures, 10°, 20°, and 30°C, in order to determine the temperature dependence of the redox reaction between Cr6+ and clay-Fe(II). The results showed that nontronite and montmorillonite were most effective in reducing aqueous Cr6+ at all three temperatures. In contrast, most Fe(II) in chlorite was not reactive towards Cr6+ reduction at 10°C, though at 30°C there was some reduction. For all the clay minerals, the ratio of total Fe(II) oxidized to Cr6+ reduced was close to the expected stoichiometric value of 3. Characterization of the Cr-clay reaction product with scanning electron microscopy with focused ion beam and transmission electron microscopy with electron energy loss spectroscopy revealed that reduced chromium was possibly in the form of sub-nanometer Cr2O3 in association with residual clay minerals as micro-aggregates. This textural association was expected to minimize the chance of Cr(III) reoxidation upon exposure to oxidants. These results are important for our understanding of how various clay minerals may be used to reductively immobilize the heavy metal contaminant Cr in the environment.« less

  6. AL(0) in municipal waste incinerator ash

    NASA Astrophysics Data System (ADS)

    Stipp, S. L.; Ronsbo, J. G.; Zunic, T. B.; Christensen, T. H.

    2003-04-01

    Disposal of municipal waste is a challenge to society. Waste volume is substantially decreased by incineration but residual ash usually contains a number of toxic components which must be immobilised to insure environmental protection. One element, chromium, is mobile and toxic in its oxidised state as Cr(VI) but it can be reduced to Cr(III) and immobilised. Reduction can be promoted by ash treatment with Fe(0) or Fe(II), but recent evidence shows that at least some Cr(VI) is reduced spontaneously in the ash. Aspects of ash behaviour suggest metallic aluminium as the reducing agent, but no direct evidence of Al(0) has been found until now. We examined filter ash from an energy-producing, municipal-waste incinerator (Vest-forbrænding) near Copenhagen. X-ray diffraction (XRD) identified expected salts of Na, K and Ca such as halite, sylvite, calcite, anhydrite and gypsum as well as quartz, feldspar and some hematite. Wave-dispersive electron microprobe produced elemen-tal maps of the ash; Al-rich areas were analysed quantitatively by comparison with standards. We identified metallic Al particles, averaging 50 to 100 micrometers in di-ameter, often with a fractured, glassy border of aluminum oxide. The particles were porous, explaining fast Cr(VI) reduction and they contained thin exsolution lamellae of Al-alloys of Pb and Cu or Mn, Fe and Ag, which provide clues of the Al(0) origin in the waste. Sometimes Al(0) occurred inside glassy globes of Al2O3. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) proved that surface Al concentrations on ash particles were below detection, confirming reactivity of the Al(0) bulk. The persistence of reduced Al through the highly oxidising combustion procedure comes as a surprise and is a benefit in the immobilisation of Cr(VI) from municipal-waste incineration residues.

  7. Nano-sized Fe2O3/Fe3O4 facilitate anaerobic transformation of hexavalent chromium in soil-water systems.

    PubMed

    Zhang, Yaxian; Li, Hua; Gong, Libo; Dong, Guowen; Shen, Liang; Wang, Yuanpeng; Li, Qingbiao

    2017-07-01

    The purpose of this study is to investigate the effects of nano-sized or submicro Fe 2 O 3 /Fe 3 O 4 on the bioreduction of hexavalent chromium (Cr(VI)) and to evaluate the effects of nano-sized Fe 2 O 3 /Fe 3 O 4 on the microbial communities from the anaerobic flooding soil. The results indicated that the net decreases upon Cr(VI) concentration from biotic soil samples amended with nano-sized Fe 2 O 3 (317.1±2.1mg/L) and Fe 3 O 4 (324.0±22.2mg/L) within 21days, which were approximately 2-fold of Cr(VI) concentration released from blank control assays (117.1±5.6mg/L). Furthermore, the results of denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing indicated a greater variety of microbes within the microbial community in amendments with nano-sized Fe 2 O 3 /Fe 3 O 4 than the control assays. Especially, Proteobacteria occupied a predominant status on the phylum level within the indigenous microbial communities from chromium-contaminated soils. Besides, some partial decrease of soluble Cr(VI) in abiotic nano-sized Fe 2 O 3 /Fe 3 O 4 amendments was responsible for the adsorption of nano-sized Fe 2 O 3 /Fe 3 O 4 to soluble Cr(VI). Hence, the presence of nano-sized Fe 2 O 3 /Fe 3 O 4 could largely facilitate the mobilization and biotransformation of Cr(VI) from flooding soils by adsorption and bio-mediated processes. Copyright © 2017. Published by Elsevier B.V.

  8. Density Functional Study for Chemical Reaction between Cr and Fe with Sodium Diethyldithiocarbamate (NaDDC)

    NASA Astrophysics Data System (ADS)

    Setiyanto, Henry; Muhida, Rifki; Kishi, Tomoya; Rahman, Md. Mahmudur; Dipojono, Hermawan K.; Diño, Wilson A.; Matsumoto, Shigeno; Kasai, Hideaki

    Analytical chemistry in the perspective of ab initio molecular orbital calculation is introduced by investigating the chemical reaction between transition metals Cr and Fe with sodium diethyldithiocarbamate (NaDDC), a complexing agent to detect and extract Cr in human blood sample. Using density functional theory—based calculations, we determine the stable structure of the Cr-DDC and Fe-DDC complexes and obtain its dissociation energies. We found dissociation energy values of -3.24 and -2.67 eV for Cr and Fe complexes, respectively; and hence the formation of the former complex is more favorable than the formation of the latter.

  9. Precipitation of α' in neutron irradiated commercial FeCrAl alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Littrell, Kenneth C.; Briggs, Samuel A.

    2017-08-17

    In this paper, Alkrothal 720 and Kanthal APMT™, two commercial FeCrAl alloys, were neutron irradiated up to damage doses of 7.0 displacements per atom (dpa) in the temperature range of 320 to 382 °C to characterize the α' precipitation in these alloys using small-angle neutron scattering. Both alloys exhibited α' precipitation. Kanthal APMT™ exhibited higher number densities and volume fraction, a result attributed to its higher Cr content compared with Alkrothal 720. Finally, trends observed as a function of damage dose (dpa) are consistent with literature trends for both FeCr and FeCrAl alloys

  10. Physical conditions in CaFe interstellar clouds

    NASA Astrophysics Data System (ADS)

    Gnaciński, P.; Krogulec, M.

    2008-01-01

    Interstellar clouds that exhibit strong Ca I and Fe I lines are called CaFe clouds. Ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. We find that the chemical composition of CaFe clouds is solar and that there is no depletion into dust grains. CaFe clouds have high electron densities, n_e≈1 cm-3, that lead to high column densities of neutral Ca and Fe.

  11. Eutectic equilibria in the quaternary system Fe-Cr-Mn-C

    NASA Technical Reports Server (NTRS)

    Nowotny, H.; Wayne, S.; Schuster, J. C.

    1982-01-01

    The constitution of the quaternary system, Fe-Cr-Mn-C and to a lesser extent of the quinary system, Fe-Cr-Mn-Al-C were examined for in situ composite alloy candidates. Multivariant eutectic compositions were determined from phase equilibria studies wherein M7C3 carbides (approximately 30% by volume) formed from the melt within gamma iron. An extended field of the hexagonal carbide, (Cr, Fe, Mn)7 C3, was found without undergoing transformation to the orthorhombic structure. Increasing stability for this carbide was found for higher ratios of Cr/Fe(+) Cr + Mn. Aluminum additions promoted a ferritic matrix while manganese favored the desired gamma austenitic matrix. In coexistence with the matrix phase, chromium enters preferentially the carbide phase while manganese distributes equally between the gamma matrix and the M7C3 carbide. The composition and lattice parameters of the carbide and matrix phases were determined to establish their respective stabilities.

  12. Theoretical studies on the synthesis of SHE 290-302Og (Z=118) using 48Ca, 45Sc, 50Ti, 51V, 54Cr, 55Mn, 58Fe, 59Co and 64Ni induced reactions

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Safoora, V.

    2018-05-01

    Using the phenomenological model for production cross section (PMPC), the production cross sections for the synthesis of isotopes of superheavy element Og ( Z = 118) using the fusion reactions 48Ca+249-254Cf → 297-302Og, 45Sc+247,249Bk → 292,294Og, 50Ti + 242-248,250Cm → 292-298,300Og, 51V+241,243Am → 292,294Og, 54Cr + 238-242,244Pu → 292-296,298Og, 55Mn + 235-237Np → 290-292Og, 58Fe + 232-236, 238U → 290-294,296Og, 59Co + 231Pa → 290Og, and 64Ni + 228-230,232Cm → 292-294,296Og in xn (x=3,4,5) evaporation channel have been systematically studied at energies near and above the Coulomb barrier. We have predicted most suitable projectile-target combinations for the synthesis of isotopes 290-302Og among these reactions. Our calculated evaporation residue (ER) cross section values for the reaction 48Ca + 249Cf → 297Og is in excellent agreement with available experimental values. For the synthesis of Og, among all the reactions mentioned above, the 3n channel cross section (2458 fb) is larger for 48Ca + 251Cf → 299Og; 4n channel cross section (212 fb) is larger for 48Ca + 252Cf → 300Og and 5n channel cross section (34 fb) is larger for 48Ca + 253Cf → 301Og. The second largest 3n channel cross section (1143 fb) is obtained for the reaction, 50Ti + 245Cm → 295Og. Our studies will be useful for the future experiments to synthesize the isotopes of element Og which are not synthesized so far. We have also studied the effect of the use of mass values and shell correction of the Warsaw group which leads to a smaller ER cross section compared to the Moller group.

  13. Chemical data and statistical interpretations for rocks and ores from the Ranger uranium mine, Northern Territory, Australia

    USGS Publications Warehouse

    Nash, J. Thomas; Frishman, David

    1983-01-01

    Analytical results for 61 elements in 370 samples from the Ranger Mine area are reported. Most of the rocks come from drill core in the Ranger No. 1 and Ranger No. 3 deposits, but 20 samples are from unmineralized drill core more than 1 km from ore. Statistical tests show that the elements Mg, Fe, F, Be, Co, Li, Ni, Pb, Sc, Th, Ti, V, CI, As, Br, Au, Ce, Dy, La Sc, Eu, Tb, Yb, and Tb have positive association with uranium, and Si, Ca, Na, K, Sr, Ba, Ce, and Cs have negative association. For most lithologic subsets Mg, Fe, Li, Cr, Ni, Pb, V, Y, Sm, Sc, Eu, and Yb are significantly enriched in ore-bearing rocks, whereas Ca, Na, K, Sr, Ba, Mn, Ce, and Cs are significantly depleted. These results are consistent with petrographic observations on altered rocks. Lithogeochemistry can aid exploration, but for these rocks requires methods that are expensive and not amenable to routine use.

  14. Superelasticity and cryogenic linear shape memory effects of CaFe 2As 2

    DOE PAGES

    Sypek, John T.; Yu, Hang; Dusoe, Keith J.; ...

    2017-10-20

    Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. But, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. We report a unique shape memory behavior in CaFe 2As 2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonalmore » phase transformation. These results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr 2Si 2-structured intermetallic compounds.« less

  15. Aqueous Cr(VI) reduction by electrodeposited zero-valent iron at neutral pH: acceleration by organic matters.

    PubMed

    Liu, Junxi; Wang, Chuan; Shi, Jianying; Liu, Hong; Tong, Yexiang

    2009-04-15

    This work investigated the effect of co-existing organic matters on aqueous Cr(VI) reduction by electrodeposited zero-valent iron (ED Fe(0)) at neutral pH. The ED Fe(0) prepared in a solution containing mixture of saccharin, L-ascorbic acid and sodium dodecyl sulfate showed higher activity in reducing the aqueous Cr(VI) at neutral pH than that prepared without any organic presence. XRD and SEM indicated that the structure of ED Fe(0) was significantly improved to nano-scale by the presence of organic mixture in the preparation solution. Further, the ED Fe(0) activity in the Cr(VI) reduction at neutral pH was increased by the co-existence of citric acid or oxalic acid in the chromate solution. Electrochemical impedance spectroscopy (EIS) demonstrated that the corrosive current increased with the concentration of organic matter in the reaction solution. With the co-existing organic matters in the preparation solution, the ED Fe(0) corroded more rapidly due to its nano-size, thus the Cr(VI) reduction by the ferrous iron was accelerated. With the co-existing organic matters in the reaction solution, the Cr(VI) reduction was accelerated by a Fe(II) complex as the main electron donor, and a prevention of the passivation due to the Fe(III) and Cr(III) complexes also accelerated the Cr(VI) reduction.

  16. Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage† †Electronic supplementary information (ESI) available: Experimental and computational details, free energy plots for the NH3 evolution and N2 reduction with Co3N/Co, Fe4N/Fe, Mn5N2/Mn4N, Mo2N/Mo, CrN/Cr2N, TaN/Ta2N, NbN/Nb2N, Li3N/LiH, Ba3N2/BaH2, Sr3N2/SrH2, and Ca3N2/CaH2, surface oxidation energetics, ΔGvac[NH*x, yH*] based on gas phase H2 as hydrogen source, NH3 evolution with Fe-doped Mn4N, NH3 evolution with Mn6N2.58, Ca3N2 and Sr2N after correcting for partial nitride hydrolysis, NH3 yield from Ca3N2vs. time and H2 gas flow rate. See DOI: 10.1039/c5sc00789e

    PubMed Central

    Avram, A. M.; Peterson, B. A.; Pfromm, P. H.; Peterson, A. A.

    2015-01-01

    The activity of many heterogeneous catalysts is limited by strong correlations between activation energies and adsorption energies of reaction intermediates. Although the reaction is thermodynamically favourable at ambient temperature and pressure, the catalytic synthesis of ammonia (NH3), a fertilizer and chemical fuel, from N2 and H2 requires some of the most extreme conditions of the chemical industry. We demonstrate how ammonia can be produced at ambient pressure from air, water, and concentrated sunlight as renewable source of process heat via nitrogen reduction with a looped metal nitride, followed by separate hydrogenation of the lattice nitrogen into ammonia. Separating ammonia synthesis into two reaction steps introduces an additional degree of freedom when designing catalysts with desirable activation and adsorption energies. We discuss the hydrogenation of alkali and alkaline earth metal nitrides and the reduction of transition metal nitrides to outline a promoting role of lattice hydrogen in ammonia evolution. This is rationalized via electronic structure calculations with the activity of nitrogen vacancies controlling the redox-intercalation of hydrogen and the formation and hydrogenation of adsorbed nitrogen species. The predicted trends are confirmed experimentally with evolution of 56.3, 80.7, and 128 μmol NH3 per mol metal per min at 1 bar and above 550 °C via reduction of Mn6N2.58 to Mn4N and hydrogenation of Ca3N2 and Sr2N to Ca2NH and SrH2, respectively. PMID:29218166

  17. Corrosion Behavior and Durability of Low-Alloy Steel Rebars in Marine Environment

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Cheng, Xuequn; Li, Xiaogang; Yue, Pan; Li, Jun

    2016-11-01

    The corrosion resistance of Cr-modified low-alloy steels and HRB400 carbon steel was estimated using the open-circuit potential, potentiodynamic polarization, electrochemical impedance spectroscopic, and weight loss methods in simulated concrete pore solution. Results show that Cr-modified steels exhibit a higher corrosion resistance with a higher critical chloride level (CTL), lower corrosion current density, and higher impedance than carbon steel. The CTL of the steels significantly reduces with increasing temperature. Weight loss measurement shows that the Cr-modified steels exhibit low corrosion rates and small corrosion pitting. The primary constituents of the corrosion scales are Fe2O3, Fe3O4, β-FeOOH, γ-FeOOH, and α-FeOOH. A large amount of α-FeOOH could be detected in the Cr-modified steel corrosion products. Moreover, the Cr-modified steels demonstrate a higher durability than HRB400 carbon steel.

  18. Removal combined with reduction of hexavalent chromium from aqueous solution by Fe-ethylene glycol complex microspheres

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Xing; Jia, Yong

    2016-12-01

    Three-dimensional Fe-ethylene glycol (Fe-EG) complex microspheres were synthesized by a facile hydrothermal method, and were characterized by field emission scanning electron microscopy and transmission electron microscopy. The adsorption as well as reduction properties of the obtained Fe-EG complex microspheres towards Cr(VI) ions were studied. The experiment data of adsorption kinetic and isotherm were fitted by nonlinear regression approach. In neutral condition, the maximum adsorption capacity was 49.78 mg g-1 at room temperature, and was increased with the increasing of temperature. Thermodynamic parameters including the Gibbs free energy, standard enthalpy and standard entropy revealed that adsorption of Cr(VI) was a feasible, spontaneous and endothermic process. Spectroscopic analysis revealed the adsorption of Cr(VI) was a physical adsorption process. The adsorbed CrO42- ions were partly reduced to Cr(OH)3 by Fe(II) ions and the organic groups in the Fe-EG complex.

  19. Systematic study of probable projectile-target combinations for the synthesis of the superheavy nucleus 302120

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Safoora, V.

    2016-08-01

    Probable projectile-target combinations for the synthesis of the superheavy element 302120 have been studied taking the Coulomb and proximity potential as the interaction barrier. The probabilities of the compound nucleus formation PCN for the projectile-target combinations found in the cold reaction valley of 302120 are estimated. At energies near and above the Coulomb barrier, we have calculated the capture, fusion, and evaporation residue cross sections for the reactions of all probable projectile-target combinations so as to predict the most promising projectile-target combinations for the synthesis of the superheavy element 302120 in heavy-ion fusion reactions. The calculated fusion and evaporation cross sections for the more asymmetric ("hotter") projectile-target combination is found to be higher than the less asymmetric ("colder") combination. It can be seen from the nature of the quasifission barrier height, mass asymmetry, the probability of compound nucleus formation, survival probability, and excitation energy, the systems 44Ar+258No , 46Ar+256No , 48Ca+254Fm , 50Ca+252Fm , 54Ti+248Cf , and 58Cr+244Cm in deep region I of the cold reaction valley and the systems 62Fe+240Pu , 64Fe+238Pu , 68Ni+234U , 70Ni+232U , 72Ni+230U , and 74Zn+228Th in the other cold valleys are identified as the better projectile-target combinations for the synthesis of 302120. Our predictions on the synthesis of 302120 superheavy nuclei using the combinations 54Cr+248Cm , 58Fe+244Pu , 64Ni+238U , and 50Ti+249Cf are compared with available experimental data and other theoretical predictions.

  20. Effects of Laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys

    DOE PAGES

    Sun, Zhiqian; Edmondson, Philip D.; Yamamoto, Yukinori

    2017-11-15

    The microstructures and mechanical properties of deformed and annealed Nb-containing FeCrAl alloys were investigated. Fine dispersion of Fe 2Nb-type Laves phase particles was observed in the bcc-Fe matrix after applying a thermomechanical treatment, especially along grain/subgrain boundaries, which effectively stabilized the recovered and recrystallized microstructures compared with the Nb-free FeCrAl alloy. The stability of recovered areas increased with Nb content up to 1 wt%. The recrystallized grain structure in Nb-containing FeCrAl alloys consisted of elongated grains along the rolling direction with a weak texture when annealed below 1100 °C. An abnormal relationship between recrystallized grain size and annealing temperature wasmore » found. Microstructural inhomogeneity in the deformed and annealed states was explained based on the Taylor factor. Annealed Nb-containing FeCrAl alloys showed a good combination of strength and ductility, which is desirable for their application as fuel cladding in light-water reactors.« less

  1. Heavy metals in water of the San Pedro River in Chihuahua, Mexico and its potential health risk.

    PubMed

    Gutiérrez, Roberto L; Rubio-Arias, Hector; Quintana, Ray; Ortega, Juan Angel; Gutierrez, Melida

    2008-06-01

    The objective of this study was to determine the seasonal and downstream water quality variations of the San Pedro River in Chihuahua, Mexico. Water samples were collected monthly from October 2005 to August 2006 in triplicate, totaling 165 water samples. The five sampling locations were: below the Francisco I. Madero dam (LP); between Rosales and Delicias (RD); Meoqui (M); El Torreon (ET), and Julimes (LJ). The levels of As, Be, Ca, Cd, Co, Cu, Cr, Fe, Li, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sr, Ti, Ta, V and Zn were measured using an Inductively Coupled Plasma- Optical Emission Spectrometry (ICP-OES) Perkin Elmer 2100. In addition, temperature, pH, electrical conductivity and total and fecal coliformes were determined. The statistical analysis considered a factorial treatment design; where factor A was the location point and factor B was sampling date. In addition, a multivariate technique looking for principal components was performed. The results indicated that some samples exceeded Mexican standards for As, Be, Ca, Cd, Co, Cr, Fe, Mn, Ni, Pb, Sb, Se, Sr and Zn. The As level must be considered for a red flag to the communities along the Rio San Pedro because both the monthly average level (0.10 mg L-1) and location (0.10 mg L-1) exceeded the Mexican and International norms. The multivariate analysis showed a predominant aggregation at the LP location, meaning that there was a predominance of As, Sr, Fe and Li. At the rest of the locations the elements did not present a tendency for aggregation. Statistics applied to sampling month showed that December, January, March and April were aggregated in a negative quadrant of component 1 indicating a predominance of V, Ni, Be, Fe and As. Overall, the results confirmed that this stretch of the San Pedro River is contaminated with heavy metals and other contaminants that might affect human health as well as the health of the ecosystem.

  2. Heavy metals in water of the San Pedro River in Chihuahua, Mexico and its potential health risk

    PubMed Central

    Gutiérrez, Roberto L.; Rubio-Arias, Hector; Quintana, Ray; Ortega, Juan Angel; Gutierrez, Melida

    2008-01-01

    The objective of this study was to determine the seasonal and downstream water quality variations of the San Pedro River in Chihuahua, Mexico. Water samples were collected monthly from October 2005 to August 2006 in triplicate, totaling 165 water samples. The five sampling locations were: below the Francisco I. Madero dam (LP); between Rosales and Delicias (RD); Meoqui (M); El Torreon (ET), and Julimes (LJ). The levels of As, Be, Ca, Cd, Co, Cu, Cr, Fe, Li, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sr, Ti, Ta, V and Zn were measured using an Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) Perkin Elmer 2100. In addition, temperature, pH, electrical conductivity and total and fecal coliformes were determined. The statistical analysis considered a factorial treatment design; where factor A was the location point and factor B was sampling date. In addition, a multivariate technique looking for principal components was performed. The results indicated that some samples exceeded Mexican standards for As, Be, Ca, Cd, Co, Cr, Fe, Mn, Ni, Pb, Sb, Se, Sr and Zn. The As level must be considered for a red flag to the communities along the Rio San Pedro because both the monthly average level (0.10 mg L−1) and location (0.10 mg L−1) exceeded the Mexican and International norms. The multivariate analysis showed a predominant aggregation at the LP location, meaning that there was a predominance of As, Sr, Fe and Li. At the rest of the locations the elements did not present a tendency for aggregation. Statistics applied to sampling month showed that December, January, March and April were aggregated in a negative quadrant of component 1 indicating a predominance of V, Ni, Be, Fe and As. Overall, the results confirmed that this stretch of the San Pedro River is contaminated with heavy metals and other contaminants that might affect human health as well as the health of the ecosystem. PMID:18678922

  3. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions

    DOE PAGES

    Gamble, Kyle A.; Barani, Tommaso; Pizzocri, David; ...

    2017-04-30

    Iron-chromium-aluminum (FeCrAl) alloys are candidates to be used as nuclear fuel cladding for increased accident tolerance. An analysis of the response of FeCrAl under normal operating and loss of coolant conditions has been performed using fuel performance modeling. In particular, recent information on FeCrAl material properties and phenomena from separate effects tests has been implemented in the BISON fuel performance code and analyses of integral fuel rod behavior with FeCrAl cladding have been performed. BISON simulations included both light water reactor normal operation and loss-of-coolant accidental transients. In order to model fuel rod behavior during accidents, a cladding failure criterionmore » is desirable. For FeCrAl alloys, a failure criterion is developed using recent burst experiments under loss of coolant like conditions. The added material models are utilized to perform comparative studies with Zircaloy-4 under normal operating conditions and oxidizing and non-oxidizing out-of-pile loss of coolant conditions. The results indicate that for all conditions studied, FeCrAl behaves similarly to Zircaloy-4 with the exception of improved oxidation performance. Here, further experiments are required to confirm these observations.« less

  4. Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys

    DOE PAGES

    He, Mo-Rigen; Wang, Shuai; Shi, Shi; ...

    2016-12-31

    Single-phase concentrated solid solution alloys have attracted wide interest due to their superior mechanical properties and enhanced radiation tolerance, which make them promising candidates for the structural applications in next-generation nuclear reactors. However, little has been understood about the intrinsic stability of their as-synthesized, high-entropy configurations against radiation damage. In this paper, we report the element segregation in CrFeCoNi, CrFeCoNiMn, and CrFeCoNiPd equiatomic alloys when subjected to 1250 kV electron irradiations at 400 °C up to a damage level of 1 displacement per atom. Cr/Fe/Mn/Pd can deplete and Co/Ni can accumulate at radiation-induced dislocation loops, while the actively segregating elementsmore » are alloy-specific. Moreover, electron-irradiated matrix of CrFeCoNiMn and CrFeCoNiPd shows L1 0 (NiMn)-type ordering decomposition and <001>-oriented spinodal decomposition between Co/Ni and Pd, respectively. Finally, these findings are rationalized based on the atomic size difference and enthalpy of mixing between the alloying elements, and identify a new important requirement to the design of radiation-tolerant alloys through modification of the composition.« less

  5. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    DOE PAGES

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; ...

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory insidemore » the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.« less

  6. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, Kyle A.; Barani, Tommaso; Pizzocri, David

    Iron-chromium-aluminum (FeCrAl) alloys are candidates to be used as nuclear fuel cladding for increased accident tolerance. An analysis of the response of FeCrAl under normal operating and loss of coolant conditions has been performed using fuel performance modeling. In particular, recent information on FeCrAl material properties and phenomena from separate effects tests has been implemented in the BISON fuel performance code and analyses of integral fuel rod behavior with FeCrAl cladding have been performed. BISON simulations included both light water reactor normal operation and loss-of-coolant accidental transients. In order to model fuel rod behavior during accidents, a cladding failure criterionmore » is desirable. For FeCrAl alloys, a failure criterion is developed using recent burst experiments under loss of coolant like conditions. The added material models are utilized to perform comparative studies with Zircaloy-4 under normal operating conditions and oxidizing and non-oxidizing out-of-pile loss of coolant conditions. The results indicate that for all conditions studied, FeCrAl behaves similarly to Zircaloy-4 with the exception of improved oxidation performance. Here, further experiments are required to confirm these observations.« less

  7. Experimental and Computational Investigation of High Entropy Alloys for Elevated-Temperature Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaw, Peter; Zhang, Fan; Zhang, Chuan

    2016-07-30

    To create and design novel structural materials with enhanced creep-resistance, fundamental studies have been conducted on high-entropy alloys (HEAs), using (1) thermodynamic calculations, (2) mechanical tests, (3) neutron diffraction, (4) characterization techniques, and (5) crystal-plasticity finite-element modeling (CPFEM), to explore future candidates for next-generation power plants. All the constituent binary and ternary systems of the Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems were thermodynamically modeled within the whole composition range. Comparisons between the calculated phase diagrams and literature data are in good agreement. Seven types of HEAs were fabricated from Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems. The Al xCrCuFeMnNi HEAs have disordered [face-centered cubic (FCC)more » + body-centered cubic (BCC)] crystal structures, not FCC or BCC single structure. Excessive alloying of the Al element results in the change of both microstructural and mechanical properties in Al xCoCrFeNi HEAs. There are mainly three structural features in Al xCoCrFeNi: (1) the morphology, (2) the volume fractions of the constitute phases, and (3) existing temperatures of all six phases. After homogenization, the Al 0.3CoCrFeNi material is a pure FCC solid solution. After aging at 700 °C for 500 hours, the optimal microstructure combinations, the FCC matrix, needle-like B2 phase within grains, and granular σ phase along grain boundary, is achieved for Al 0.3CoCrFeNi. The cold-rolling process is utilized to reduce the grain size of Al 0.1CoCrFeNi and Al 0.3CoCrFeNi. The chemical elemental partitioning of FCC, BCC, B2, and σphases at different temperatures, before and after mechanical tests, in Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems are quantitatively characterized by both synchrotron X-ray diffraction, neutron diffraction with levitation, scanning electron microscopy (SEM), advanced atom probe tomography (APT), and transmission electron microscopy (TEM). In-situ neutron diffraction experiments were conducted to study the strengthening effect of B2 phase on tensile properties of Al 0.3CoCrFeNi HEAs directly. The results shows the creep behavior of Al 0.3CoCrFeNi is superior to conventional alloys, and the heat treatment introduces secondary B2 phase into the FCC matrix, which increase the yielding strength, decrease the ductility, diminish the serrated flow during compression tests at high temperatures. In summary, the outcomes of the development of the HEAs with creep resistance include: (1) Suitable candidates, for the application to boilers and steam and gas turbines at temperatures above 760 °C and a stress of 35 MPa. (2) Fundamental understanding on the precipitate stability and deformation mechanisms of both single-phase and precipitate-strengthened alloys at room and elevated temperatures, and (3) The demonstration of an integrated approach, coupling modeling [thermodynamic calculations and crystal-plasticity finite-element modeling (CPFEM)] and focused experiments, to identify HEAs that outperform conventional alloys for high-temperature applications, which will be applicable for the discovery and development of other high-temperature materials in the power-generating industry.« less

  8. Constraining cosmic scatter in the Galactic halo through a differential analysis of metal-poor stars

    NASA Astrophysics Data System (ADS)

    Reggiani, Henrique; Meléndez, Jorge; Kobayashi, Chiaki; Karakas, Amanda; Placco, Vinicius

    2017-12-01

    Context. The chemical abundances of metal-poor halo stars are important to understanding key aspects of Galactic formation and evolution. Aims: We aim to constrain Galactic chemical evolution with precise chemical abundances of metal-poor stars (-2.8 ≤ [Fe/H] ≤ -1.5). Methods: Using high resolution and high S/N UVES spectra of 23 stars and employing the differential analysis technique we estimated stellar parameters and obtained precise LTE chemical abundances. Results: We present the abundances of Li, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Zn, Sr, Y, Zr, and Ba. The differential technique allowed us to obtain an unprecedented low level of scatter in our analysis, with standard deviations as low as 0.05 dex, and mean errors as low as 0.05 dex for [X/Fe]. Conclusions: By expanding our metallicity range with precise abundances from other works, we were able to precisely constrain Galactic chemical evolution models in a wide metallicity range (-3.6 ≤ [Fe/H] ≤ -0.4). The agreements and discrepancies found are key for further improvement of both models and observations. We also show that the LTE analysis of Cr II is a much more reliable source of abundance for chromium, as Cr I has important NLTE effects. These effects can be clearly seen when we compare the observed abundances of Cr I and Cr II with GCE models. While Cr I has a clear disagreement between model and observations, Cr II is very well modeled. We confirm tight increasing trends of Co and Zn toward lower metallicities, and a tight flat evolution of Ni relative to Fe. Our results strongly suggest inhomogeneous enrichment from hypernovae. Our precise stellar parameters results in a low star-to-star scatter (0.04 dex) in the Li abundances of our sample, with a mean value about 0.4 dex lower than the prediction from standard Big Bang nucleosynthesis; we also study the relation between lithium depletion and stellar mass, but it is difficult to assess a correlation due to the limited mass range. We find two blue straggler stars, based on their very depleted Li abundances. One of them shows intriguing abundance anomalies, including a possible zinc enhancement, suggesting that zinc may have been also produced by a former AGB companion. Tables A.1-A.6 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A46

  9. Study on the activated laser welding of ferritic stainless steel with rare earth elements yttrium

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    The ferritic stainless steel SUS430 was used in this work. Based on a multi-component activating flux, composed of 50% ZrO2, 12.09 % CaCO3, 10.43 % CaO, and 27.49 % MgO, a series of modified activating fluxes with 0.5%, 1%, 2%, 5%, 10%, 15%, and 20% of rare earth (RE) element yttrium (Y) respectively were produced, and their effects on the weld penetration (WP) and corrosion resistant (CR) property were studied. Results showed that RE element Y hardly had any effects on increasing the WP. In the FeCl3 spot corrosion experiment, the corrosion rates of almost all the samples cut from welded joints turned out to be greater than the parent metal (23.51 g/m2 h). However, there was an exception that the corrosion rate of the sample with 5% Y was only 21.96 g/m2 h, which was even better than parent metal. The further Energy Dispersive Spectrometer (EDS) test showed the existence of elements Zr, Ca, O, and Y in the molten slag near the weld seam while none of them were found in the weld metal, indicating the direct transition of element from activating fluxes to the welding seam did not exist. It was known that certain composition of activating fluxes effectively restrain the loss of Cr element in the process of laser welding, and as a result, the CR of welded joints was improved.

  10. Magnetic interactions in La0.7Sr0.3Mn1-xMexO3 (Me=Ga, Fe, Cr) manganites

    NASA Astrophysics Data System (ADS)

    Troyanchuk, I. O.; Bushinsky, M. V.; Karpinsky, D. V.; Tereshko, N. V.; Dobryansky, V. M.; Többens, D. M.; Sikolenko, V.; Efimov, V.

    2015-11-01

    Magnetic properties and crystal structure of La0.7Sr0.3Mn1-xMexO3 (Me=Ga, Fe, Cr; x≤0.3) have been studied by neutron powder diffraction and magnetization measurements. It is shown that substitution of manganese ions by chromium or gallium ions (x=0.3) leads to phase separation into antiferromagnetic and ferromagnetic phases whereas replacement by Fe ions stabilizes spin glass state (x=0.3). Ferromagnetic interactions in Cr-substituted compounds are much more pronounced than in Fe- and Ga-doped ones. Magnetic properties are discussed in the model assuming a dominance of superexchange interactions. It is considered that ferromagnetism in the Cr-substituted compositions is associated with nearly equal contributions from positive and negative components of the superexchange interaction between Mn3+ and Cr3+ ions as well as to mixed valence of chromium ions. The spin glass state observed for the Fe-doped sample (x=0.3) is associated with strong antiferromagnetic superexchange between Fe3+-O-Fe3+ and Fe3+-O-(Mn3+, Mn4+).

  11. Microstructural evolution with various Ti contents in Fe-based hardfacing alloys using a GTAW technique

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Chun; Liu, Yi-Chia; Wang, Jia-Siang; Wu, Weite

    2014-07-01

    The aim of this study is to discuss the effect of microstructural development with different Ti contents in Fe-based hardfacing alloys. A series of Fe-Cr-C-Si-Mn-xTi alloy fillers was deposited on SS400 low carbon steel substrate using oscillating gas tungsten arc welding. The microstructure in the Fe-based hardfacing alloy without Ti content addition included: the primary γ, eutectic γ+(Fe,Cr)3C, eutectic γ+(Fe,Cr)2C and martensite. With increasing Ti contents, the microstructures showed the primary TiC carbide, γ phase and eutectic γ+(Fe,Cr,Ti)3C. The amount and size of TiC carbide in the hardfacing layers increased as the Ti content increased. However, the eutectic γ+(Fe,Cr,Ti)3C content decreased as the Ti content increased. According to the results of the hardness test, the lowest hardness value (HRC 54.93) was found with 0% wt% Ti and the highest hardness (HRC 60.29) was observed with 4.87 wt% Ti.

  12. Microstructure and High Temperature Oxidation Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Powder Injection Molding Process

    NASA Astrophysics Data System (ADS)

    Joo, Yeun-Ah; Kim, Young-Kyun; Yoon, Tae-Sik; Lee, Kee-Ahn

    2018-03-01

    This study investigated the microstructure and high temperature oxidation property of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding process. Observations of initial microstructure showed a unique structure where α-Fe and (Cr, Fe)2B form a continuous three-dimensional network. High temperature oxidation tests were performed at 900, 1000 and 1100 °C, for 24 h, and the oxidation weight gain according to each temperature condition was 0.13, 0.84 and 6.4 mg/cm2, respectively. The oxidation results according to time at 900 and 1000 °C conditions represented parabolic curves, and at 1100 °C condition formed a rectilinear curve. Observation and phase analysis results of the oxides identified Cr2O3 and SiO2 at 900 and 1000 °C. In addition to Cr2O3 and SiO2, CrBO3 and FeCr2O4 formed due to phase decomposition of boride were identified at 1100 °C. Based on the findings above, this study suggested the high temperature oxidation mechanism of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding, and the possibility of its application as a high temperature component material was also discussed.

  13. Cool DZ white dwarfs II: compositions and evolution of old remnant planetary systems

    NASA Astrophysics Data System (ADS)

    Hollands, M. A.; Gänsicke, B. T.; Koester, D.

    2018-06-01

    In a previous study, we analysed the spectra of 230 cool (Teff < 9000 K) white dwarfs exhibiting strong metal contamination, measuring abundances for Ca, Mg, Fe and in some cases Na, Cr, Ti, or Ni. Here, we interpret these abundances in terms of the accretion of debris from extrasolar planetesimals, and infer parent body compositions ranging from crust-like (rich in Ca and Ti) to core-like (rich in Fe and Ni). In particular, two white dwarfs, SDSS J0823+0546 and SDSS J0741+3146, which show log [Fe/Ca] > 1.9 dex, and Fe to Ni ratios similar to the bulk Earth, have accreted by far the most core-like exoplanetesimals discovered to date. With cooling ages in the range 1-8 Gyr, these white dwarfs are among the oldest stellar remnants in the Milky Way, making it possible to probe the long-term evolution of their ancient planetary systems. From the decrease in maximum abundances as a function of cooling age, we find evidence that the arrival rate of material on to the white dwarfs decreases by three orders of magnitude over a ≃ 6.5 Gyr span in white dwarf cooling ages, indicating that the mass-reservoirs of post-main sequence planetary systems are depleted on a ≃ 1 Gyr e-folding time-scale. Finally, we find that two white dwarfs in our sample are members of wide binaries, and both exhibit atypically high abundances, thus providing strong evidence that distant binary companions can dynamically perturb white dwarf planetary systems.

  14. RETRACTED ARTICLE: Precipitation behavior of B2-ordered aluminide

    NASA Astrophysics Data System (ADS)

    Han, Chang-Suk

    2006-12-01

    Fine dispersion of disordered phases is obtained in Ni-Al-Cr and Fe-Al-Co temary systems. A transmission electron microscope investigation has been performed on the precipitation of α-Cr in B2-ordered β-NiAl with different stoichiometry and α-Fe in B2-FeAl(Co) compound. Precipitation behavior and hardening were investigated by measuring the hardness variation. The hardness of NiAl and FeAl increases appreciably with the fine precipitation of α-Cr and α-Fe, and over-age softening occurs after prolonged aging. In the case of B2-NiAl(Cr), perfect lattice coherency is maintained at the interfaces between the α-Cr particles and the matrix during the initial stage of aging. After prolonged aging, a loss of coherency occurs by the attraction of matrix dislocations to the particle/matrix interface, followed by climbing around the particles. On the other hand, in the case of B2-FeAl(Co), the disordered α-Fe phase is present as a precipitate in the B2-FeAl(Co) matrix and has a cubic-cubic orientation with the matrix. At the early aging periods, prismatic dislocation loops formed in the B2-FeAl(Co) matrix. B2-FeAl(Co) matrix is typically hardened by the precipitation of α-Fe.

  15. Decisive role of magnetism in the interaction of chromium and nickel solute atoms with 1/2$$\\langle$$111$$\\rangle$$-screw dislocation core in body-centered cubic iron

    DOE PAGES

    Odbadrakh, Kh.; Samolyuk, G.; Nicholson, D.; ...

    2016-09-13

    Resistance to swelling under irradiation and a low rate of corrosion in high temperature environments make Fe-Cr and Fe-Cr-Ni alloys promising structural materials for energy technologies. In this paper we report the results obtained using a combination of density functional theory (DFT) techniques: plane wave basis set solutions for pseudo-potentials and multiple scattering solutions for all electron potentials. We have found a very strong role of magnetism in the stability of screw dislocation cores in pure Fe and their interaction with Cr and Ni magnetic impurities. In particular, the screw dislocation quadrupole in Fe is stabilized only in the presencemore » of ferromagnetism. In addition, Ni atoms, who's magnetic moment is oriented along the magnetization direction of the Fe matrix, prefer to occupy in core positions whereas Cr atoms, which couple anti-ferromagnetically with the Fe matrix, prefer out of the dislocation core positions. In effect, Ni impurities are attracted to, while Cr impurities are repelled by the dislocation core. Moreover, we demonstrate that this contrasting behavior can be explained only by the nature of magnetic coupling of the impurities to the Fe matrix. In addition, Cr interaction with the dislocation core mirrors that of Ni if the Cr magnetic moment is constrained to be along the direction of Fe matrix magnetization. In addition, we have shown that the magnetic contribution can affect the impurity-impurity interaction at distances up to a few Burgers vectors. In particular, the distance between Cr atoms in Fe matrix should be at least 3–4 lattice parameters in order to eliminate finite size effects.« less

  16. Chemical and physical properties of dry flue gas desulfurization products.

    PubMed

    Kost, David A; Bigham, Jerry M; Stehouwer, Richard C; Beeghly, Joel H; Fowler, Randy; Traina, Samuel J; Wolfe, William E; Dick, Warren A

    2005-01-01

    Beneficial and environmentally safe recycling of flue gas desulfurization (FGD) products requires detailed knowledge of their chemical and physical properties. We analyzed 59 dry FGD samples collected from 13 locations representing four major FGD scrubbing technologies. The chemistry of all samples was dominated by Ca, S, Al, Fe, and Si and strong preferential partitioning into the acid insoluble residue (i.e., coal ash residue) was observed for Al, Ba, Be, Cr, Fe, Li, K, Pb, Si, and V. Sulfur, Ca, and Mg occurred primarily in water- or acid-soluble forms associated with the sorbents or scrubber reaction products. Deionized water leachates (American Society for Testing and Materials [ASTM] method) and dilute acetic acid leachates (toxicity characteristic leaching procedure [TCLP] method) had mean pH values of >11.2 and high mean concentrations of S primarily as SO(2-)4 and Ca. Concentrations of Ag, As, Ba, Cd, Cr, Hg, Pb, and Se (except for ASTM Se in two samples) were below drinking water standards in both ASTM and TCLP leachates. Total toxicity equivalents (TEQ) of dioxins, for two FGD products used for mine reclamation, were 0.48 and 0.53 ng kg(-1). This was similar to the background level of the mine spoil (0.57 ng kg(-1)). The FGD materials were mostly uniform in particle size. Specific surface area (m2 g(-1)) was related to particle size and varied from 1.3 for bed ash to 9.5 for spray dryer material. Many of the chemical and physical properties of these FGD samples were associated with the quality of the coal rather than the combustion and SO2 scrubbing processes used.

  17. Multi-elements determination in medical and edible Alpinia oxyphylla and Morinda officinalis and their decoctions by ICP-MS.

    PubMed

    Zhao, Xiangsheng; Wei, Jianhe; Shu, Xiaoyan; Kong, Weijun; Yang, Meihua

    2016-12-01

    Contents of twenty elements (Mg, K, Ca, Na, Fe, Al, Zn, Ba, Mn, Cu, Mo, Cr, Ni, As, Se, Cd, Hg, Tl, Pb and V) in two medical and edible plant species, Alpinia oxyphylla and Morinda officinalis were simultaneously determined by inductively coupled plasma-mass spectrometry (ICP-MS) method after microwave digestion with HNO 3 -H 2 O 2 (6:1, v/v) as the digestion solvent. Certified standard reference material Poplar leaf was used to assess the accuracy of the method. The greatest contents of Mg, K, Ca, Al, Fe and Na were found in dried Alpinia oxyphylla and Morinda officinalis samples. The contents of five heavy metals including Pb, Cd, As, Hg and Cu in Alpinia oxyphylla did not exceed the limits. The contents of Pb in 76.67% samples and Cd in two batches of Morinda officinalis samples exceeded the limits set by Chinese Pharmacopeia. The contents of the selected elements in different parts (leaves, stems, roots and fruits) of Alpinia oxyphylla varied considerably. The highest concentrations of Mg, Ca, Mn and Se were found in the leaves of Alpinia oxyphylla, at the same time, while, the contents of 9 elements including Cd, Cr, Cu, As, Pb in the roots were the highest. The transfer ratios of selected elements from both species of herbs into their decoctions were reduced. Especially for the heavy metals, the transfer ratios were below 30% except As (79.73%) in Morinda officinalis. The results showed that decoction of the samples may reduce the intake of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Flow of essential elements in subcellular fractions during oxidative stress.

    PubMed

    Lago, Larissa; Nunes, Emilene A; Vigato, Aryane A; Souza, Vanessa C O; Barbosa, Fernando; Sato, João R; Batista, Bruno L; Cerchiaro, Giselle

    2017-02-01

    Essential trace elements are commonly found in altered concentrations in the brains of patients with neurodegenerative diseases. Many studies in trace metal determination and quantification are conducted in tissue, cell culture or whole brain. In the present investigation, we determined by ICP-MS Fe, Cu, Zn, Ca, Se, Co, Cr, Mg, and Mn in organelles (mitochondria, nuclei) and whole motor neuron cell cultured in vitro. We performed experiments using two ways to access oxidative stress: cell treatments with H 2 O 2 or Aβ-42 peptide in its oligomeric form. Both treatments caused accumulation of markers of oxidative stress, such as oxidized proteins and lipids, and alteration in DNA. Regarding trace elements, cells treated with H 2 O 2 showed higher levels of Zn and lower levels of Ca in nuclei when compared to control cells with no oxidative treatments. On the other hand, cells treated with Aβ-42 peptide in its oligomeric form showed higher levels of Mg, Ca, Fe and Zn in nuclei when compared to control cells. These differences showed that metal flux in cell organelles during an intrinsic external oxidative condition (H 2 O 2 treatment) are different from an intrinsic external neurodegenerative treatment.

  19. Concentration and emission sources of airborne metals in particulate matter in the industrial district of Médio Paraíba, state of Rio de Janeiro, Brazil.

    PubMed

    Loyola, Josiane; de Almeida, Pierre Batista; Quiterio, Simone Lorena; Sousa, Célia Regina; Arbilla, Graciela; Escaleira, Viviane; de Carvalho, Maria Isabel; dos Santos Amaral Gomes da Silva, Alzira

    2006-11-01

    Total suspended particles and 12 airborne metals were determined in 4 sampling sites in the industrial region of Médio Paraíba, Brazil. The geometrical means for the four sampling locals were (in units of microg/m3): 65.9 in Barra Mansa, 57.3 in Jardim Paraíba (Volta Redonda), 41.7 in Resende, and 48.9 in Volta Grande (Volta Redonda). These values are lower than levels previously determined in urban and industrial locals of the Metropolitan Area of Rio de Janeiro. For metals, the higher concentrations were obtained for Ca, Zn, Al, Fe, and Mg. Ca, Zn, and Al levels are higher than those determined in other industrial areas. These three metals are used in steel manufacturing, the main economical activity of the region. Enrichment factors for Zn, Cu, Cd, and Pb are higher than 10, suggesting an industrial input. Statistical analysis show a high correlation among Ca, Mg, Zn, Cr, Al, Mn, and Fe, all of them used as raw materials in steel manufacturing and/or accumulated as industrial blast furnace slag and steelworks slag.

  20. Structural and Mössbauer characterization of the ball milled Fe x(Cr 2O 3) 1- x system

    NASA Astrophysics Data System (ADS)

    Biondo, Valdecir; de Medeiros, Suzana Nóbrega; Paesano, Andrea, Jr.; Ghivelder, Luis; Hallouche, Bachir; da Cunha, João Batista Marimon

    2009-08-01

    The Fe x(Cr 2O 3) 1- x system, with 0.10 ≤ X ≤ 0.80, was mechanically processed for 24 h in a high-energy ball-mill. In order to examine the possible formation of iron-chromium oxides and alloys, the milled samples were, later, thermally annealed in inert (argon) and reducing (hydrogen) atmospheres. The as-milled and annealed products were characterized by X-ray diffraction, Mössbauer spectroscopy, transmission electron microscopy and magnetization. The as-milled samples showed the formation of an Fe 1+ YCr 2- YO 4- δ nanostructured and disordered spinel phase, the α 1-Fe(Cr) and α 2-Cr(Fe) solid solutions and the presence of non-exhausted precursors. For the samples annealed in inert atmosphere, the chromite (FeCr 2O 4) formation and the recrystallization of the precursors were verified. The hydrogen treated samples revealed the reduction of the spinel phase, with the phase separation of the chromia phase and retention of the Fe-Cr solid solutions. All the samples, either as-milled or annealed, presented the magnetization versus applied field curves typical for superparamagnetic systems.

  1. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laplanche, Guillaume; Gadaud, P.; Barsch, C.

    Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful for quantifying fundamental aspects suchmore » as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less

  2. Periodic table of 3d-metal dimers and their ions.

    PubMed

    Gutsev, G L; Mochena, M D; Jena, P; Bauschlicher, C W; Partridge, H

    2004-10-08

    The ground states of the mixed 3d-metal dimers TiV, TiCr, TiMn, TiFe, TiCo, TiNi, TiCu, TiZn, VCr, VMn, VFe, VCo, VNi, VCu, VZn, CrMn, CrFe, CrCo, CrNi, CrCu, CrZn, MnFe, MnCo, MnNi, MnCu, MnZn, FeCo, FeNi, FeCu, FeZn, CoNi, CoCu, CoZn, NiCu, NiZn, and CuZn along with their singly negatively and positively charged ions are assigned based on the results of computations using density functional theory with generalized gradient approximation for the exchange-correlation functional. Except for TiCo and CrMn, our assignment agrees with experiment. Computed spectroscopic constants (r(e),omega(e),D(o)) are in fair agreement with experiment. The ground-state spin multiplicities of all the ions are found to differ from the spin multiplicities of the corresponding neutral parents by +/-1. Except for TiV, MnFe, and MnCu, the number of unpaired electrons, N, in a neutral ground-state dimer is either N(1)+N(2) or mid R:N(1)-N(2)mid R:, where N(1) and N(2) are the numbers of unpaired 3d electrons in the 3d(n)4s(1) occupation of the constituent atoms. Combining the present and previous results obtained at the same level of theory for homonuclear 3d-metal and ScX (X=Ti-Zn) dimers allows one to construct "periodic" tables of all 3d-metal dimers along with their singly charged ions.

  3. Long-term stability of FeSO4 and H2SO4 treated chromite ore processing residue (COPR): Importance of H+ and SO42.

    PubMed

    Wang, Xin; Zhang, Jingdong; Wang, Linling; Chen, Jing; Hou, Huijie; Yang, Jiakuan; Lu, Xiaohua

    2017-01-05

    In this study, the long-term stability of Cr(VI) in the FeSO 4 and H 2 SO 4 (FeSO 4 -H 2 SO 4 ) treated chromite ore processing residue (COPR) after 400 curing days and the stabilization mechanisms were investigated. FeSO 4 -H 2 SO 4 treatment significantly reduced toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) Cr(VI) concentrations to lower than the regulatory limit of 1.5mgL -1 (HJ/T 301-2007, China EPA) even for the samples curing 400days, achieving an outstanding long-term stability. Our independent leaching tests revealed that H + and SO 4 2- have synergistic effect on promoting the release of Cr(VI), which would make Cr(VI) easier accessed by Fe(II) during stabilization. The contributions of H + and SO 4 2- to Cr(VI) release ratio were 25%-44% and 19%-38%, respectively, as 5mol H 2 SO 4 per kg COPR was used. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and alkaline digestion analyses were also employed to interpret the possible stabilization mechanism. Cr(VI) released from COPR solid was reduced to Cr(III) by Fe(II), and then formed stable Fe x Cr (1-x) (OH) 3 precipitate. This study provides a facile and reliable scheme for COPR stabilization, and verifies the excellent long-term stability of the FeSO 4 -H 2 SO 4 treated COPR. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A Comparative Study of the Microstructure, Mechanical Properties and Corrosion Resistance of Ni- or Fe- Based Composite Coatings by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Wan, M. Q.; Shi, J.; Lei, L.; Cui, Z. Y.; Wang, H. L.; Wang, X.

    2018-04-01

    Ni- and Fe-based composite coatings were laser cladded on 40Cr steel to improve the surface mechanical property and corrosion resistance, respectively. The microstructure and phase composition were analyzed by x-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) equipped with an energy-dispersive spectrometer (EDS). The micro-hardness, tribological properties and electrochemical corrosion behavior of the coatings were evaluated. The results show that the thickness of both the coatings is around 0.7 mm, the Ni-based coating is mainly composed of γ-(Ni, Fe), FeNi3, Ni31Si12, Ni3B, CrB and Cr7C3, and the Fe-based coating is mainly composed of austenite and (Fe, Cr)7C3. Micro-hardness of the Ni-based composite coating is about 960 HV0.3, much higher than that of Fe-based coating (357.4 HV0.3) and the 40Cr substrate (251 HV0.3). Meanwhile, the Ni-based composite coating possesses better wear resistance than the Fe-based coating validated by the worn appearance and the wear loss. Electrochemical results suggested that Ni-based coating exhibited better corrosion resistance than the Fe-based coating. The 40Cr substrate could be well protected by the Ni-based coating.

  5. Surface coating with Ca(OH)2 for improvement of the transport of nanoscale zero-valent iron (nZVI) in porous media.

    PubMed

    Wei, Cai-jie; Li, Xiao-yan

    2013-01-01

    A novel thermal deposition method was developed to coat Ca(OH)2 on the surface of nanoscale zero-valent iron (nZVI). The nZVI particles with the Ca(OH)2 coating layer, nZVI/Ca(OH)2, had a clear core-shell structure based on the transmission electron microscopy observations, and the Ca(OH)2 shell was identified as an amorphous phase. The Ca(OH)2 coating shell would not only function as an effective protection layer for nZVI but also improve the mobility of nZVI in porous media for its use in environmental decontamination. A 10% Ca/Fe mass ratio was found to result in a proper thickness of the Ca(OH)2 shell on the nZVI surface. Based on the filtration tests in sand columns, the Ca(OH)2-based surface coating could greatly improve the mobility and transport of nZVI particles in porous media. In addition, batch experiments were conducted to evaluate the reactivity of Ca(OH)2-coated nZVI particles for the reduction of Cr(VI) and its removal from water.

  6. Effect of rolling on phase composition and microhardness of austenitic steels with different stacking-fault energies

    NASA Astrophysics Data System (ADS)

    Melnikov, Eugene; Astafurova, Elena; Maier, Galina; Moskvina, Valentina

    2017-12-01

    The influence of multi-pass cold rolling on the phase composition and microhardness of austenitic Fe-18Cr-9Ni-0.21C, Fe-18Cr-9Ni-0.5Ti-0.08C, Fe-17Cr-13Ni-3Mo-0.01C (in wt %) steels with different stacking fault energies was studied. The metastable Fe-18Cr-9Ni-0.5Ti-0.08C steel undergoes γ → α' phase transformations during rolling, the volume fraction of strain-induced α'-martensite in steel structure is increased with increasing strain. Metastable austenite Fe-18Cr-9Ni-0.21C steel does not undergo the formation of an appreciable amount of strain-induced α'-martensite under rolling, but the magnetophase analysis reveals a small amount of ferrite phase in the structure of steel after rolling. The structure of stable Fe-17Cr-13Ni-3Mo-0.01C steel remains austenitic independently under strain. Investigations of microhardness of the steels show that their values are increased with strain and are dependent on propensity of steels to strain-induced martensitic transformation.

  7. Processability evaluation of a Mo-containing FeCrAl alloy for seamless thin-wall tube fabrication

    DOE PAGES

    Sun, Zhiqian; Yamamoto, Yukinori

    2017-06-10

    The processability of a Mo-containing FeCrAl alloy (Fe-13Cr-5.2Al-2Mo base, in wt%), developed for accident-tolerant nuclear fuel claddings, was evaluated through a stepwise rolling process at 400 °C under two different inter-pass annealing conditions (i.e., 650 °C for 1 h and at 870 °C for 30 min). The inter-pass annealing at 870 °C easily softened the FeCrAl alloy; however, it led to the formation of coarse grains of ~200 µm. On the other hand, the FeCrAl alloy maintained elongated, deformed grains with the inter-pass annealing at 650 °C, but the annealed samples showed relatively high deformation resistance and strong texture. Importantmore » aspects concerning the processability and microstructural control of FeCrAl alloys, such as deformation inhomogeneity, texture development, and grain coarsening, were discussed. Optimized processing conditions were recommended, based on the results, to achieve desirable microstructures with balanced processability and mechanical properties.« less

  8. Diffusion in Stellar Envelopes

    NASA Astrophysics Data System (ADS)

    Seaton, M. J.

    Abundances in stellar atmospheres can depend on diffusive movements in much deeper layers of stellar envelopes. Diffusion in envelopes is also of interest in that it can lead to changes in opacities and hence to the structures of stars. For envelopes the radiative accelerations grad can be expressed in terms of quantities which depend only on temperatures, densities and chemical compositions. Computations have been made for the elements C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Cr, Mn, Fe and Ni and tables are being made generally available through CDS (Strasbourg). Some results from those computations will be presented. The computed values of grad are used to study diffusion of iron-group elements in envelopes of HgMn stars. It is shown that one can define a value tau_0 of the Rosseland-mean optical depth tau such that diffusive movements for tau >= tau_0 do not depend on those for tau <= tau_0. For Cr and Mn we obtain solutions with tau_0 = 1 and are able to make some meaningful comparisons of abundances, as computed and as observed in atmospheres. For Fe we find that diffusive movements are slowed down in regions of T ~= 10^5 K where the dominant ionisation stages are near argon-like. Diffusion of Fe-group elements can produce substantial changes in opacities.

  9. Hexavalent chromium damages chamomile plants by alteration of antioxidants and its uptake is prevented by calcium.

    PubMed

    Kováčik, Jozef; Babula, Petr; Hedbavny, Josef; Klejdus, Bořivoj

    2014-05-30

    Toxicity of low (3μM) and high (60 and 120μM) concentrations of hexavalent chromium/Cr(VI) in chamomile plants was studied. Fluorescence staining confirmed reduction of Cr(VI) to Cr(III). Cr was mainly accumulated in the roots with translocation factor <0.007. Notwithstanding this, both shoots and roots revealed increase in oxidative stress and depletion of glutathione, total thiols, ascorbic acid and activities of glutathione reductase and partially ascorbate peroxidase mainly at 120μM Cr. Though some protective mechanisms were detected (elevation of nitric oxide, enhancement of GPX activity and increase in phenols and lignin), this was not sufficient to counteract the oxidative damage. Consequently, soluble proteins, tissue water content and biomass production were considerably depleted. Surprising increase in some mineral nutrients in roots (Ca, Fe, Zn and Cu) was also detected. Subsequent experiment confirmed that exogenous calcium suppressed oxidative symptoms and Cr uptake but growth of chamomile seedlings was not improved. Alteration of naturally present reductants could be a reason for Cr(III) signal detected using specific fluorescence reagent: in vitro assay confirmed disappearance of ascorbic acid in equimolar mixture with dichromate (>96% at pH 4 and 7) while such response of glutathione was substantially less visible. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Selective Internal Oxidation as a Mechanism for Intergranular Stress Corrosion Cracking of Ni-Cr-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Capell, Brent M.; Was, Gary S.

    2007-06-01

    The mechanism of selective internal oxidation (SIO) for intergranular stress corrosion cracking (IGSCC) of nickel-base alloys has been investigated through a series of experiments using high-purity alloys and a steam environment to control the formation of NiO on the surface. Five alloys (Ni-9Fe, Ni-5Cr, Ni-5Cr-9Fe, Ni-16Cr-9Fe, and Ni-30Cr-9Fe) were used to investigate oxidation and intergranular cracking behavior for hydrogen-to-water vapor partial pressure ratios (PPRs) between 0.001 and 0.9. The Ni-9Fe, Ni-5Cr, and Ni-5Cr-9Fe alloys formed a uniform Ni(OH)2 film at PPRs less than 0.09, and the higher chromium alloys formed chromium-rich oxide films over the entire PPR range studied. Corrosion coupon results show that grain boundary oxides extended for significant depths (>150 nm) below the sample surface for all but the highest Cr containing alloy. Constant extension rate tensile (CERT) test results showed that intergranular cracking varied with PPR and cracking was more pronounced at a PPR value where nonprotective Ni(OH)2 was able to form and a link between the nonprotective Ni(OH)2 film and the formation of grain boundary oxides is suggested. The observation of grain boundary oxides in stressed and unstressed samples as well as the influence of alloy content on IG cracking and oxidation support SIO as a mechanism for IGSCC.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark E.

    Chromium (Cr) forms a solid solution with iron (Fe) lattice when doped in core-shell iron -iron oxide nanocluster (NC) and shows a mixed phase of sigma (σ) FeCr and bcc Fe. The Cr dopant affects heavily the magnetization and magnetic reversal process, and causes the hysteresis loop to shrink near the zero field axis. Dramatic transformation happens from dipolar interaction (0 at. % Cr) to strong exchange interaction (8 at. % of Cr) is confirmed from the Henkel plot and delta M plot, and is explained by a water-melon model of core-shell NC system.

  12. Synthesis of AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maulik, Ornov; Kumar, Vinod, E-mail: vkt.meta@mnit.ac.in; Adjunct Faculty, Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017

    2015-12-15

    Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7 mol) high-entropy alloys (HEAs) were synthesized by mechanical alloying. The effect of Mg content on the phase evolution of HEAs was investigated using X-Ray diffractometry (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) pattern analysis. The particle morphology and composition of HEAs were investigated by scanning electron microscopy (SEM). Thermodynamic parameters were calculated and analyzed to explain the formation of a solid solution. XRD analysis revealed BCC as major phase and FCC as a minor phase in as-milled AlFeCuCr and AlFeCuCrMg{sub 0.5} HEAs. Also, XRD analysis of as-milledmore » AlFeCuCrMg, AlFeCuCrMg{sub 1.7} confirmed the formation of two BCC phases (BCC 1 and BCC 2). TEM–SAED analysis of AlFeCuCrMg{sub x} HEAs concurred with XRD results. Microstructural features and mechanism for solid solution formation have been conferred in detail. Phase formation of the present HEAs has been correlated with calculated thermodynamic parameters. Differential thermal analysis (TGA-DTA) of these alloys confirmed that there is no substantial phase change up to 500 °C. - Highlights: • Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) HEAs were prepared by mechanical alloying. • Phase evolution and lattice parameter were studied by X-Ray Diffraction. • Crystallite size and lattice microstrain calculated failed to obey the Williamson–Hall method. • Criterions for formation of simple solid solution were compared to the thermodynamic parameters of the present HEAs. • Increase in the Mg concentration in AlMg{sub x}FeCuCr (x = 0, 0.5, 1, 1.7) HEAs supports the formation of BCC phase.« less

  13. Interplay of electronic, structural and magnetic properties as the driving feature of high-entropy CoCrFeNiPd alloys

    NASA Astrophysics Data System (ADS)

    Calvo-Dahlborg, M.; Cornide, J.; Tobola, J.; Nguyen-Manh, D.; Wróbel, J. S.; Juraszek, J.; Jouen, S.; Dahlborg, U.

    2017-05-01

    The structural and magnetic properties of CoCrFe y Ni and CoCrFeNi-Pd x alloys earlier investigated experimentally by x-ray and neutron diffraction techniques and magnetometry have been theoretically reproduced using two complementary approaches for electronic structure calculations, i.e. the Korringa-Kohn-Rostoker method with the coherent potential approximation (KKR-CPA) and implemented in the ab initio framework of density functional theory and the Vienna ab initio simulation package (VASP) for supercell models of high-entropy alloy (HEA) structures. The comparison between experimental results and calculations of the lattice constants by both calculation methods indicate that the structure of CoCrFe y Ni is well described by ordered fcc configurations. The values of local magnetic moments on Fe, Co, Cr, and Ni atoms depend not only on the Pd concentration but on chemical disordering. In the case of the CoCrFeNi-Pd x alloys, the KKR-CPA and the VASP calculations of disordered configurations reproduce the experimental values at 5 K up to equimolar composition and at 300 K above. The experimental values above the equimolar composition at 5 K are not satisfactorily reproduced by any of the calculations. The divergence between the experimental and calculated values is related to the variation of the ferromagnetic to paramagnetic transition temperature as a function of palladium content and to the existence of several phases, FeCoCr-rich above room temperature and FeCrPd-rich below, observed by diffraction and detected by microscopy and atom probe investigations. VASP calculations of a FeCrPd-rich phase effectively reproduced both the lattice constant and magnetization of the alloy above equimolar composition. An important conclusion of this work is that the combined analysis of the electronic, structural, and magnetic properties plays an important role in understanding the complexity of magnetic HEAs.

  14. The CrIIL reduction of [2Fe-2S] ferredoxins and site of attachment of CrIII using 1H NMR and site-directed mutagenesis.

    PubMed

    Im, S C; Worrall, J A; Liu, G; Aliverti, A; Zanetti, G; Luchinat, C; Bertini, I; Sykes, A G

    2000-04-17

    The recently reported NMR solution structure of FeIIIFeIII parsley FdI has made possible 2D NOESY NMR studies to determine the point of attachment of CrIIIL in FeIIIFeIII...CrIIIL. The latter Cr-modified product was obtained by reduction of FeIIIFeIII parsley and spinach FdI forms with [Cr(15-aneN4) (H2O)2]2+ (15-aneN4 = 1,4,8,12-tetraazacyclopentadecane), referred to here as CrIIL, followed by air oxidation and chromatographic purification. From a comparison of NMR cross-peak intensities of native and Cr-modified proteins, two surface sites designated A and B, giving large paramagnetic CrIIIL broadening of a number of amino acid peaks, have been identified. The effects at site A (residues 19-22, 27, and 30) are greater than those at site B (residues 92-94 and 96), which is on the opposite side of the protein. From metal (ICP-AES) and electrospray ionization mass spectrometry (EIMS) analyses on the Cr-modified protein, attachment of a single CrIIIL only is confirmed for both parsley and spinach FdI and FdII proteins. Electrostatic interaction of the 3+ CrIIIL center covalently attached to one protein molecule (charge approximately -18) with a second (like) molecule provides an explanation for the involvement of two regions. Thus for 3-4 mM FeIIIFeIII...CrIIIL solutions used in NMR studies (CrIIIL attached at A), broadening effects due to electrostatic interactions at B on a second molecule are observed. Experiments with the Cys18Ala spinach FdI variant have confirmed that the previously suggested Cys-18 at site A is not the site of CrIIIL attachment. Line broadening at Val-22 of A gives the largest effect, and CrIIIL attachment at one or more adjacent (conserved) acidic residues in this region is indicated. The ability of CrIIL to bind in some (parsley and spinach) but not all cases (Anabaena variabilis) suggests that intramolecular H-bonding of acidic residues at A is relevant. The parsley and spinach FeIIFeIII...CrIIIL products undergo a second stage of reduction with the formation of FeIIFeII...CrIIIL. However, the spinach Glu92Ala (site B) variant undergoes only the first stage of reduction, and it appears that Glu-92 is required for the second stage of reduction to occur. A sample of CrIIIL-modified parsley FeIIIFeIII Fd is fully active as an electron carrier in the NADPH-cytochrome c reductase reaction catalyzed by ferredoxin-NADP+ reductase.

  15. Starting points for the study of non-Fermi liquid-like properties of FeCrAs

    NASA Astrophysics Data System (ADS)

    O'Brien, Patrick James

    FeCrAs exhibits non-Fermi liquid-like behavior because of its odd combination of thermodynamic, transport, and magnetic properties. In particular, the resistivity of FeCrAs is not characteristic of a metal or an insulator and so remains a mystery. In this thesis, we seek a model to describe its properties. In FeCrAs, local moments reside on the Cr sites, and there is some conduction. We study the simplest possible model on the kagome lattice that features local moments and itinerant electrons, the kagome Kondo Lattice Model. We present the phase diagram of this model, which features a host of complex spin orders, one of which is the √3 x √3, the experimentally observed magnetic ground state in FeCrAs. The kagome Kondo Lattice Model, having one itinerant d-orbital band on the kagome lattice, does not fully capture the microscopic physics of FeCrAs. The kagome Kondo Lattice Model also will not de- scribe the mutilation of the Fermi surface. To investigate the microscopic properties, we calculated LDA and LDA+U results. These results and GGA results from another group all exhibit high d-orbital density of states at the Fermi energy as well as low p-orbital density of states at the Fermi energy. The DFT results motivated us to construct a model based on the chemistry and full geometry of the FeCrAs crystal. The model we construct is an effective hopping model consisting of only d-orbital operators that we call the Optimal Overlap Hopping Model (OOHM). We calculate the band structure that results from the OOHM, and this band structure can be compared to ARPES measurements. As an example of how one can use the OOHM, we calculate a dynamic spin structure factor from within the OOHM, and we compare it to neutron scattering data. We consider both the OOHM and the Kondo Lattice Model on the kagome lattice as starting points from which we can launch studies of FeCrAs, and we present the existing theories for FeCrAs on a metallicity spectrum to illustrate the various perspectives from which FeCrAs is studied.

  16. Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Schrader, Devin L.; Nagashima, Kazuhide; Krot, Alexander N.; Ogliore, Ryan C.; Yin, Qing-Zhu; Amelin, Yuri; Stirling, Claudine H.; Kaltenbach, Angela

    2017-03-01

    We report on the mineralogy, petrography, and in situ measured oxygen- and magnesium-isotope compositions of eight porphyritic chondrules (seven FeO-poor and one FeO-rich) from the Renazzo-like carbonaceous (CR) chondrites Graves Nunataks 95229, Grosvenor Mountains 03116, Pecora Escarpment 91082, and Queen Alexandra Range 99177, which experienced minor aqueous alteration and very mild thermal metamorphism. We find no evidence that these processes modified the oxygen- or Al-Mg isotope systematics of chondrules in these meteorites. Olivine, low-Ca pyroxene, and plagioclase within an individual chondrule have similar O-isotope compositions, suggesting crystallization from isotopically uniform melts. The only exceptions are relict grains in two of the chondrules; these grains are 16O-enriched relative to phenocrysts of the host chondrules. Only the FeO-rich chondrule shows a resolvable excesses of 26Mg, corresponding to an inferred initial 26Al/27Al ratio [(26Al/27Al)0] of (2.5 ± 1.6) × 10-6 (±2SE). Combining these results with the previously reported Al-Mg isotope systematics of CR chondrules (Nagashima et al., 2014, Geochem. J. 48, 561), 7 of 22 chondrules (32%) measured show resolvable excesses of 26Mg; the presence of excess 26Mg does not correlate with the FeO content of chondrule silicates. In contrast, virtually all chondrules in weakly metamorphosed (petrologic type 3.0-3.1) unequilibrated ordinary chondrites (UOCs), Ornans-like carbonaceous (CO) chondrites, and the ungrouped carbonaceous chondrite Acfer 094 show resolvable excesses of 26Mg. The inferred (26Al/27Al)0 in CR chondrules with resolvable excesses of 26Mg range from (1.0 ± 0.4) × 10-6 to (6.3 ± 0.9) × 10-6, which is typically lower than (26Al/27Al)0 in the majority of chondrules from UOCs, COs, and Acfer 094. Based on the inferred (26Al/27Al)0, three populations of CR chondrules are recognized; the population characterized by low (26Al/27Al)0 (<3 × 10-6) is dominant. There are no noticeable trends with major and minor element or O-isotope compositions between these populations. The weighted mean (26Al/27Al)0 of 22 CR chondrules measured is (1.8 ± 0.3) × 10-6. An apparent agreement between the 26Al-26Mg ages (using weighted mean value) and the revised (using 238U/235U ratio for bulk CR chondrites of 137.7789 ± 0.0085) 207Pb-206Pb age of a set of chondrules from CR chondrites (Amelin et al., 2002, Science297, 1678) is consistent with the initial 26Al/27Al ratio in the CR chondrite chondrule-forming region at the canonical level (∼5.2 × 10-5), allowing the use of 26Al-26Mg systematics as a chronometer for CR chondrules. To prove chronological significance of 26Al for CR chondrules, measurements of Al-Mg and U-Pb isotope systematics on individual chondrules are required. The presence of several generations among CR chondrules indicates some chondrules that accreted into the CR chondrite parent asteroid avoided melting by later chondrule-forming events, suggesting chondrule-forming processes may have occurred on relatively limited spatial scales. Accretion of the CR chondrite parent body occurred at >4.0-0.3+0.5 Ma after the formation of CAIs with the canonical 26Al/27Al ratio, although rapid accretion after formation of the major population of CR chondrules is not required by our data.

  17. The effects of sorting by aeolian processes on the geochemical characteristics of surface materials: a wind tunnel experiment

    NASA Astrophysics Data System (ADS)

    Wang, Xunming; Lang, Lili; Hua, Ting; Zhang, Caixia; Li, Hui

    2018-03-01

    The geochemical characteristics of aeolian and surface materials in potential source areas of dust are frequently employed in environmental reconstructions as proxies of past climate and as source tracers of aeolian sediments deposited in downwind areas. However, variations in the geochemical characteristics of these aeolian deposits that result from near-surface winds are currently poorly understood. In this study, we collected surface samples from the Ala Shan Plateau (a major potential dust source area in Central Asia) to determine the influence of aeolian processes on the geochemical characteristics of aeolian transported materials. Correlation analyses show that compared with surface materials, the elements in transported materials (e.g., Cu, As, Pb, Mn, Zn, Al, Ca, Fe, Ga, K, Mg, P, Rb, Co, Cr, Na, Nb, Si, and Zr) were subjected to significant sorting by aeolian processes, and the sorting also varied among different particle size fractions and elements. Variations in wind velocity were significantly correlated with the contents of Cr, Ga, Sr, Ca, Y, Nd, Zr, Nb, Ba, and Al, and with the Zr/Al, Zr/Rb, K/Ca, Sr/Ca, Rb/Sr, and Ca/Al ratios. Given the great variation in the geochemical characteristics of materials transported under different aeolian processes relative to those of the source materials, these results indicate that considerable uncertainty may be introduced to analyses by using surface materials to trace the potential source areas of aeolian deposits that accumulate in downwind areas.

  18. Development and Validation of Accident Models for FeCrAl Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, Kyle Allan Lawrence; Hales, Jason Dean

    2016-08-01

    The purpose of this milestone report is to present the work completed in regards to material model development for FeCrAl cladding and highlight the results of applying these models to Loss of Coolant Accidents (LOCA) and Station Blackouts (SBO). With the limited experimental data available (essentially only the data used to create the models) true validation is not possible. In the absence of another alternative, qualitative comparisons during postulated accident scenarios between FeCrAl and Zircaloy-4 cladded rods have been completed demonstrating the superior performance of FeCrAl.

  19. Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1993-01-01

    Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.

  20. New series of triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) with framework structures and mobile silver ion sublattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotova, Irina Yu.; Buryat State University, Smolin St. 24a, Ulan-Ude 670000, Buryat Republic; Solodovnikov, Sergey F.

    Triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg{sub 3}In(MoO{sub 4}){sub 5} type were synthesized and single crystals of AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) were grown. In their structures, the MoO{sub 4} tetrahedra, pairs and trimers of edge-shared (Mg, R)O{sub 6} octahedra are connected by common vertices to form a 3D framework. Large framework cavities involve Ag{sup +} cations disordered on three nearby positions with CN=3+1 or 4+1. Alternating (Mg, R)O{sub 6} octahedra and MoO{sub 4} tetrahedra in the framework form quadrangular windows penetrable for Ag{sup +} at elevated temperatures.more » Above 653–673 K, the newly obtained molybdates demonstrate abrupt reduction of the activation energy to 0.4–0.6 eV. At 773 K, AgMg{sub 3}Al(MoO{sub 4}){sub 5} shows electric conductivity 2.5·10{sup −2} S/cm and E{sub a}=0.39 eV compatible with characteristics of the best ionic conductors of the NASICON type. - Graphical abstract: Triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg{sub 3}In(MoO{sub 4}){sub 5} type were synthesized, AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) were structurally characterized, ion-conductive properties of AgMg{sub 3}Al(MoO{sub 4}){sub 5} were measured. Display Omitted - Highlights: • Triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg{sub 3}In(MoO{sub 4}){sub 5} type were synthesized. • Single crystals of AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) were grown and their crystal structures were determined. • Disordering Ag{sup +} ions and penetrable framework structures of AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) suggest 2D-character of silver-ion mobility. • Measured ion-conductive properties of AgMg{sub 3}Al(MoO{sub 4}){sub 5} are compatible with characteristics of the best ionic conductors of the NASICON type.« less

  1. The effect of materials selection on metals reduction in propylene glycol methyl ether acetate, PGMEA

    NASA Astrophysics Data System (ADS)

    Entezarian, Majid; Geiger, Bob

    2016-03-01

    The trend in microelectronics fabrication is to produce nano-features measuring down to 10 nm and finer. The PPT levels of organic and inorganic contaminants in the photoresist, solvent and cleaning solutions are becoming a major processing variable affecting the process capability and defectivity. The photoresist usually contains gels, metals, and particulates that could interfere with the lithography process and cause microbridging defects. Nano filters of 5 nm polypropylene, 5 nm polyethylene, and 10 nm natural nylon were used to filter propylene glycol methyl ether acetate PGMEA containing 50 ppb of Na, Mg, Al, Ca, Cr, Mn, Fe, Cu, Zn, and Pb. All filters were effective in removing trivalent Al, Cr, and Fe metals indicating the mechanism for their removal as mechanical sieving. However, the nylon was also very effective in removing the divalent metals showing adsorptive properties. Furthermore, the metal removal of the nylon membrane was studied as a function of surface chemistry. Natural and charged 40 nm nylon membranes were tested and found that charged nylon is more effective for metal removal.

  2. Computer predictions on Rh-based double perovskites with unusual electronic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Halder, Anita; Nafday, Dhani; Sanyal, Prabuddha; Saha-Dasgupta, Tanusri

    2018-03-01

    In search for new magnetic materials, we make computer prediction of structural, electronic and magnetic properties of yet-to-be synthesized Rh-based double perovskite compounds, Sr(Ca)2BRhO6 (B=Cr, Mn, Fe). We use combination of evolutionary algorithm, density functional theory, and statistical-mechanical tool for this purpose. We find that the unusual valence of Rh5+ may be stabilized in these compounds through formation of oxygen ligand hole. Interestingly, while the Cr-Rh and Mn-Rh compounds are predicted to be ferromagnetic half-metals, the Fe-Rh compounds are found to be rare examples of antiferromagnetic and metallic transition-metal oxide with three-dimensional electronic structure. The computed magnetic transition temperatures of the predicted compounds, obtained from finite temperature Monte Carlo study of the first principles-derived model Hamiltonian, are found to be reasonably high. The prediction of favorable growth condition of the compounds, reported in our study, obtained through extensive thermodynamic analysis should be useful for future synthesize of this interesting class of materials with intriguing properties.

  3. Magnetic and Transport Properties of Heterostructured Films of Prussian Blue Analogues and Manganites

    NASA Astrophysics Data System (ADS)

    Quintero, P. A.; Jeen, H.; Knowles, E. S.; Biswas, A.; Meisel, M. W.; Andrus, M. J.; Talham, D. R.

    2011-03-01

    The magnetic and transport properties of heterostructured films consisting of Prussian blue analogues, Aj M' k [M(CN)6 ]l . n H2 O (M' M-PBA), where A is an alkali ion and M' ,M are transition metals, and manganites have been studied. Specifically, NiCr-PBA and CoFe-PBA films of ~ 100 ~nm thickness have been deposited on perovskite (La 1-y Pr y)0.67 Ca 0.33 Mn O3 (LPCMO) manganese films of ~ 30 ~nm thickness. The effect of the ferromagnetic NiCr-PBA, Tc ~ 70 ~K, and the photo-controllable ferrimagnetic CoFe-PBA, Tc ~ 20 ~K, on the I-V properties of the LPCMO will be reported, where special attention will be given to the changes of the transition temperatures of the ferromagnetic metallic (FMM) and the charge-ordered insulating (COI) phases in the LPCMO substrate. ** Supported by NSF DMR-0701400 (MWM), DMR-0804452 (AB), DMR-1005581 (DRT), DMR-0654118 (NHMFL), and by scholarship from the Organization of American States (PAQ). D.M.~Pajerowski et al., J.~Am.~Chem. Soc. 132 (2010) 4058.

  4. Optimized Gen-II FeCrAl cladding production in large quantity for campaign testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukinori; Sun, Zhiqian; Pint, Bruce A.

    2016-06-03

    There are two major objectives in this report; (1) to optimize microstructure control of ATF FeCrAl alloys during tube drawing processes, and (2) to provide an update on the progress of ATF FeCrAl tube production via commercial manufacturers. Experimental efforts have been made to optimize the process parameters balancing the tube fabricability, especially for tube drawing processes, and microstructure control of the final tube products. Lab-scale sheet materials of Gen II FeCrAl alloys (Mo-containing and Nb-containing FeCrAl alloys) were used in the study, combined with a stepwise warm-rolling process and intermediate annealing, aiming to simulate the tube drawing process inmore » a commercial tube manufacturer. The intermediate annealing at 650ºC for 1h was suggested for the tube-drawing process of Mo-containing FeCrAl alloys because it successfully softened the material by recovering the work hardening introduced through the rolling step, without inducing grain coarsening due to recrystallization. The final tube product is expected to have stabilized deformed microstructure providing the improved tensile properties with sufficient ductility. Optimization efforts on Nb-containing FeCrAl alloys focused on the effect of alloying additions and annealing conditions on the stability of deformed microstructure. Relationships between the second-phase precipitates (Fe 2Nb-Laves phase) and microstructure stability are discussed. FeCrAl tube production through commercial tube manufacturers is currently in progress. Three different manufacturers, Century Tubes, Inc. (CTI), Rhenium Alloys, Inc. (RAI), and Superior Tube Company, Inc. (STC), are providing capabilities for cold-drawing, warm-drawing, and HPTR cold-pilgering, respectively. The first two companies are currently working on large quantity tube production (expected 250 ft length) of Gen I model FeCrAl alloy (B136Y3, at CTI) and Gen II (C35M4, at RAI), with the process parameters obtained from the experimental efforts. The expected delivery dates are at the end of July, 2016, and the middle of June, 2016, respectively. Tube production at STC would be the first attempt to apply cold-pilgering to the FeCrAl alloys. Communication has been initiated, and the materials have been machined for the cold-pilgering process.« less

  5. Chemical characterization of seven Large Area Collector particles by SXRF. [cosmic dust composition

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1991-01-01

    Optical microscopy and synchrotron X-ray fluorescence (SXRF) are used to analyze the chemical composition of seven dark-appearing cosmic-dust particles obtained in the stratosphere during NASA Johnson Large Area Collector flights. The experimental setup and procedures are outlined, and the results are presented in extensive tables. Three of the particles had abundances similar to those of chondrites (except for low Ca values in one particle); two had a metallic appearance and spectra dominated by Fe and Zn; one contained Cu and Cr plus small amounts of Fe and Zn; and one had igneous-type abundances of minor and trace elements while containing all of the elements seen in chondritic particles, suggesting it may be of extraterrestrial origin.

  6. Effects of compost fertilization in organic farming on micronutrients and heavy metals in soil and crops

    NASA Astrophysics Data System (ADS)

    Erhart, Eva; Sager, Manfred; Bonell, Marion; Fuchs, Katrin; Haas, Dieter; Ableidinger, Christoph; Hartl, Wilfried

    2015-04-01

    For organic stockless and vegetable farms using biowaste compost is a way to sustain soil humus content. At the same time compost use in agriculture closes local nutrient cycles. Besides organic matter and main nutrients, biowaste compost also imports micronutrients and heavy metals in amounts determined by the compost input material. The aim of this work was to assess total and plant-available contents of micronutrients B, Ca, Cu, Fe, Mn, Mo, Ni, Zn, beneficial elements Co and Se and heavy metals Cd, Cr and Pb in the soil and in crops after 20 years of fertilization with compost produced from source-separated organic waste. Topsoil and wheat grain samples were collected from the long-term field experiment 'STIKO' situated near Vienna on a Molli-gleyic Fluvisol. Between 1992 and 2012 the organic treatments C1, C2 and C3 had received 5, 10 and 14 t ha-1 yr-1 (wet wt.) biowaste compost on average. They were compared with the unfertilized organic control treatment and with three mineral fertilization treatments, which had received 20, 32 and 44 kg N ha-1 yr 1, respectively, plus 40 kg P and 68 kg K ha-1 yr-1 on average. Total soil element contents of B, Cd, Cr, Co, Cu, Fe, Mn, Mo, Ni, Pb, Se and Zn were measured in aqua regia digestion. Immediately water-soluble elements were analysed in soil saturation extract, elements in exchangeable form in LiCl extract following Husz (2001), and long-term available elements in 0.5 N HCl extract. Wheat grains were dehulled, milled and subjected to microwave digestion with HNO3 and H2O2. Wheat was analyzed for Cd and Pb with ICP-MS. All other elements in wheat and all soil extracts were analyzed using ICP-AES. Total soil concentrations of micronutrients, heavy metals and beneficial elements were in the range of usual soil contents and lower than the Austrian background values for arable land with comparable pH and carbonate concentration (Schwarz and Freudenschuss, 2004) in all treatments (all mg kg-1: B 14-19, Fe 16000-18000, Mn 397-445, Mo 0.7-1.0, Cu 15-17, Ni 21-22, Zn 45-52, Cr 26-28, Pb 13-17, Co 7.5-8.4). Total soil concentrations of Cd (0.37-0.46 mg kg-1) were the same as the background values. No significant differences were found between the treatments and the unfertilized control. Similarly, the plant available LiCl-fraction and the long-term available HCl-fraction did not show significant differences between the treatments. In the soil saturation extracts, Cu content was 18-22 µg kg-1, B 172-187 µg kg-1, Fe 62-113 µg kg-1 and Ca 62-71 mg kg-1, all in the usual range of soil saturation extracts of agricultural fields without significant differences between treatments. The other elements were below the limit of determination. In the wheat, contents of micronutrients, heavy metals and beneficial elements were in the same range as in other Austrian wheat samples (Spiegel and Sager, 2008) with the exception of Ca. Element contents were (all in mg kg-1): B 0.5-0.6, Ca 387-464, Cd 0.023-0.028, Co 0.006, Cr 0.10-0.17, Cu 4.7-5.3, Fe 36-50, Mn 30-33, Mo 0.31-0.35, Ni 0.11-0.15, Se 0.15-0.27 and Zn 28-31. Pb was below the limit of determination in the wheat grains. No significant differences were detected between the treatments. After 20 years of compost fertilization with high quality biowaste compost at the above rates no increase in micronutrients and heavy metals was detected in total soil contents and in plant-available fractions nor in wheat grains.

  7. Electrically induced fluorescence Fe3+ sensing behavior of nanostructured Tiron doped polypyrrole.

    PubMed

    Tavoli, Farnaz; Alizadeh, Naader

    2016-11-23

    Nanostructured polypyrrole (PPy) film doped with Tiron was electrodeposited from aqueous solution on the surface of transparent electrode and used for sensitive, selective and rapid electrically controlled fluorescence detection of Fe 3+ in aqueous media. The fluorescence intensity of PPy-Tiron film decreases linearly in the presence of Fe 3+ by applying negative potential over a concentration range from 5.0 × 10 -8 to 1.0 × 10 -6  mol L -1 , with a relatively fast response time of less than 30 s at pH 7.4. The detection is not affected by the coexistence of other competitive metal ions such as Al 3+ , Ce 3+ , Tl 3+ , La 3+ , Bi 3+ , Cr 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , Cd 2+ , Hg 2+ , Pb 2+ , Na + , K + , Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ . The proposed electro-fluorescence sensor has a potential application to the determination of Fe 3+ in environmental and biological systems. The fluorescent thin film sensor was also used as a novel probe for Fe 3+ /Fe 2+ speciation in aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Response surface methodology investigation into optimization of the removal condition and mechanism of Cr(Ⅵ) by Na2SO3/CaO.

    PubMed

    Zhao, Shengxin; Chen, Zhonglin; Shen, Jimin; Kang, Jing; Qu, Yanfeng; Wang, Binyuan; Wang, Xin; Yuan, Lie

    2017-11-01

    The removal of Cr(Ⅵ) by chemical reduction-precipitation is widely applied in wastewater treatment plants. Nevertheless, the formation of Cr(OH) 3 with gel properties has weak settlement performance, making it necessary to add a coagulant aid to reduce the settling time and improve the settling effect. In this investigation, a high concentration of Cr(Ⅵ) was removed using Na 2 SO 3 as a reducing agent and CaO as a coagulant. An improved reduction and precipitation experiment was modeled by applying a three-factor central composite experimental design (CCD). To reveal as many mechanisms as possible for Cr T removal, other verification experiments were performed. The Cr T removal efficiency decreased, which can be explained by the following three reasons: dissolution of Cr(Ⅲ), competition for adsorption between Ca 2+ and Cr(Ⅲ) at different coagulation times, and formation of a solubility complex with Cr(Ⅲ) due to the surplus SO 3 2- in solution. The increasing Cr T removal efficiency can be explained by the following two reasons: dissolved Ca 2+ from CaO can neutralize CrO 2 - that is produced by the dissolution of Cr(OH) 3 in alkaline solution and can broaden the optimal final pH range of coagulation. Ca 2+ could also strengthen the Cr T removal through adsorption bridging and co-precipitation with CaO as the core of flocs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ca ISOTOPE EFFECTS IN ORGUEIL LEACHATES AND THE IMPLICATIONS FOR THE CARRIER PHASES OF {sup 54}Cr ANOMALIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moynier, Frederic; Podosek, Frank A.; Brannon, Joyce

    Primitive meteorites contain small {sup 40}Ca excesses, in addition to rare anomalies in {sup 48}Ca. Refractory inclusions from Vigarano and Allende have larger {sup 40}Ca and resolvable {sup 48}Ca anomalies. These results imply that Ca isotopic heterogeneities were still present in the early solar system at both the mineral and whole-rock scale. The absence of correlated Ca isotope anomalies in leachates from the CI1 chondrite Orgueil containing large {sup 54}Cr anomalies has implications on the origin of the Cr anomalies. {sup 54}Cr has to be produced either in massive stars during s-process nucleosynthesis without accompanying {sup 48}Ca or in particularmore » zones in the rare Type Ia supernovae. In the latter case, {sup 54}Cr has been produced in a zone predominantly enriched in Cr and {sup 54}Cr and not mixed with other zones, or {sup 54}Cr has been produced together with other neutron-rich nuclides and there has been subsequent decoupling of this material in the star, in the solar system, or in the laboratory.« less

  10. Phase Transformation and Aging Behavior of Al0.5CoCrFeNiSi0.2 High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Wu, G. F.; Dai, P. Q.

    2015-05-01

    An Al0.5CoCrFeNiSi0.2 high-entropy alloy was prepared by vacuum arc melting. The alloy was aged from 700 to 1100 °C. The effects of aging on the phase transformation and mechanical performances were explored. The as-cast alloy showed a dendritic (DR) microstructure. The DR region was an Fe,Cr-rich FCC phase, while the interdendritic (ID) region was a spinodal structure composed of Fe,Cr-rich BCC (A2) and Ni,Al-rich BCC (B2) phases. At aging temperatures between 700 and 900 °C, the Fe,Cr-rich BCC (A2) phase in the ID region transformed into σ and Fe,Cr-rich FCC phases. Meanwhile, some Ni,Al-rich FCC phase particles precipitated from the DR region. During aging at 1100 °C, the DR microstructure disappeared, and a microstructure composed of Fe,Cr-rich FCC and Ni,Al-rich BCC (B2) phases both possessing a lamellar shape was developed. The alloy exhibited evident hardening and lower tensile strain when the aging temperature was lower than 1000 °C, which was mainly attributed to the generation of the σ phase in the ID region. However, a contrasting behavior was observed when the aging temperature was higher than 1000 °C, which was attributed to the redissolution of the σ phase and the microstructure coarsening.

  11. Major and trace elements in igneous rocks from Apollo 15.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Blanchard, D. P.; Haskin, L. A.; Telander, K.; Weiss, C.; Jacobs, J. W.

    1973-01-01

    The concentrations of major and trace elements have been determined in igneous rocks from Apollo 15. All materials analyzed have typical depletions of Eu except for minerals separated from sample 15085. Four samples have concentrations of trace elements that are similar to those of KREEP. The samples of mare basalt from Apollo 15 have higher concentrations of FeO, MgO, Mn, and Cr and lower concentrations of CaO, Na2O, K2O, and rare-earth elements (REE) as compared to the samples of mare basalt from Apollos 11, 12, and 14. The samples can be divided into two groups on the basis of their normative compositions. One group is quartz normative and has low concentrations of FeO while the other is olivine normative and has high concentrations of FeO. The trace element data indicate that the samples of olivine normative basalt could be from different portions of a single lava flow.

  12. Effects of citrate on hexavalent chromium reduction by structural Fe(II) in nontronite

    DOE PAGES

    Liu, Xiaolei; Dong, Hailiang; Yang, Xuewei; ...

    2017-09-23

    Previous studies have shown that organic ligands could influence Cr(VI) reduction by aqueous Fe 2+ and pyrite. In this study, the effects of citrate on Cr(VI) reduction by structural Fe(II) in nontronite (NAu-2) were investigated at pH 6. Our results showed that the presence of citrate decreased the rate but increased the amount of Cr(VI) reduction. The decreased rate was likely due to competitive sorption of citrate and anionic dichromate (Cr 2O 7–) to NAu-2 surface sites, because sorption of dichromate appeared to be the first step for subsequent Cr(VI) reduction. The increased amount of Cr(VI) reduction was likely becausemore » citrate served as an additional electron donor to reduce Cr(VI) through ligand-metal electron transfer in the presence of soluble Fe 3+, which was possibly derived from dissolution of reduced NAu-2. Soluble Cr(III)-citrate complex was a possible form of reduced Cr(VI) when citrate was present. Without citrate, nanometer-sized Cr 2O 3 particles were the product of Cr(VI) reduction. In conclusion, our study highlights the importance of citrate on Cr(VI) reduction and immobilization when iron-rich smectite is applied to treat Cr(VI) contaminant in organic carbon rich environments.« less

  13. The reduction of chromium (VI) by iron (II) in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pettine, Maurizio; D'Ottone, Luca; Campanella, Luigi; Millero, Frank J.; Passino, Roberto

    1998-05-01

    The rates of the reduction of Cr(VI) with Fe(II) were measured in NaCl, NaClO 4, and natural seawater as a function of pH (1.5-8.7), temperature (5-40°C) and ionic strength (I = 0.01-2 M). The pseudo first-order rate constant (log k 1) showed a parabolic dependence on pH decreasing from 1.5 to 4.5 and increasing from 5.5 to 8.7. The kinetics of the reaction in these two regions of pH also showed different influences of temperature, ionic strength, and reductant concentration. The rate of Cr(VI) reduction is described by the general expression -d[Cr(VI)]/dt = k [Cr(VI)] [Fe(II)] where k (M -1 min -1) can be determined from the log k=6.74-1.01 pH-188.5/T for the pH range 1.5-4.5 (σ = 0.2) and log k=11.93+0.95 pH-4260.1/T-1.06 I 0.5 for the pH range 5-8.7 (σ = 0.2) from 5 to 40°C and 0.01 to 2 M ionic strength. The effect of pH, temperature, and ionic strength on the reaction indicates that the reactions at low pH are due to H2CrO4+ Fe2+limit→k H2 A-Feproducts While the reactions at high pH are due to HCrO4-+ FeOH+limit→k HA-FeOHproductsHCrO4-+ Fe(OH)2limit→k HA-Fe(OH)2 products The overall rate expression over the entire pH range can be determined from (H 2A = H 2CrO 4) k=k H2 A-Feα( H2A)α( Fe2+)+k HA-FeOHα( HA-)α( FeOH+)+k HA-Fe(OH)2 α( HA-)α( Fe(OH)2) where k H2A-Fe = 5 x 10 6, k HA-FeOH = 1 x 10 6, k HA-Fe (OH)2= 5 x 10 11. In oxic aqueous systems Cr(VI) competes with O 2 in the oxidation of Fe(II) and an extension of the rate law for Cr(VI) reduction with Fe(II) in oxygenated solutions is proposed. The application of this extended rate law to environmental conditions suggests that this reaction influences the distribution of oxidized and reduced species of chromium in oxic and anoxic waters.

  14. Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site.

    PubMed

    Ding, Weixuan; Stewart, Douglas I; Humphreys, Paul N; Rout, Simon P; Burke, Ian T

    2016-01-15

    Cr(VI) is an important contaminant found at sites where chromium ore processing residue (COPR) is deposited. No low cost treatment exists for Cr(VI) leaching from such sites. This study investigated the mechanism of interaction of alkaline Cr(VI)-containing leachate with an Fe(II)-containing organic matter rich soil beneath the waste. The soil currently contains 0.8% Cr, shown to be present as Cr(III)(OH)3 in EXAFS analysis. Lab tests confirmed that the reaction of Cr(VI) in site leachate with Fe(II) present in the soil was stoichiometrically correct for a reductive mechanism of Cr accumulation. However, the amount of Fe(II) present in the soil was insufficient to maintain long term Cr(VI) reduction at historic infiltration rates. The soil contains a population of bacteria dominated by a Mangroviflexus-like species, that is closely related to known fermentative bacteria, and a community capable of sustaining Fe(III) reduction in alkaline culture. It is therefore likely that in situ fermentative metabolism supported by organic matter in the soil produces more labile organic substrates (lactate was detected) that support microbial Fe(III) reduction. It is therefore suggested that addition of solid phase organic matter to soils adjacent to COPR may reduce the long term spread of Cr(VI) in the environment. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Investigation of the weldability of iron-aluminum-chromium overlay coatings for corrosion protection in oxidizing/sulfidizing environments

    NASA Astrophysics Data System (ADS)

    Regina, Jonathan R.

    The current study investigated the effect of chromium additions on the hydrogen cracking susceptibility of Fe-Al weld overlay claddings containing chromium additions. It was found that the weldability of FeAlCr claddings was a function of both the aluminum and chromium concentrations of the weld coatings. Weld overlay compositions that were not susceptible to hydrogen cracking were identified and the underlying mechanism behind the hydrogen cracking phenomenon was investigated further. It was concluded that the cracking behavior of the FeAlCr welds depended strongly on the microstructure of the weld fusion zone. Although it was found that the cracking susceptibility was influenced by the presence of Fe-Al intermetallic phases (namely Fe3 Al and FeAl), the cracking behavior of FeAlCr weld overlay claddings also depended on the size and distribution of carbide and oxide particles present within the weld structure. These particles acted as hydrogen trapping sites, which are areas where free hydrogen segregates and can no longer contribute to the hydrogen embrittlement of the metal. It was determined that in practical applications of these FeAlCr weld overlay coatings, carbon should be present within these welds to reduce the amount of hydrogen available for hydrogen cracking. Based on the weldability results of the FeAlCr weld claddings, coating compositions that were able to be deposited crack-free were used for long-term corrosion testing in a simulated low NOx environment. These alloys were compared to a Ni-based superalloy (622), which is commonly utilized as boiler tube coatings in power plant furnaces for corrosion protection. It was found that the FeAlCr alloys demonstrated superior corrosion resistance when compared to the Ni-based superalloy. Due to the excellent long-term corrosion behavior of FeAlCr weld overlays that were immune to hydrogen cracking, it was concluded that select FeAlCr weld overlay compositions would make excellent corrosion resistant coatings for boiler tubes located in low NOx burning environments.

  16. Chemical abundances in the globular clusters NGC6229 and NGC6779

    NASA Astrophysics Data System (ADS)

    Khamidullina, D. A.; Sharina, M. E.; Shimansky, V. V.; Davoust, E.

    2014-10-01

    Long-slit medium-resolution spectra of the Galactic globular clusters (GCs) NGC6229 and NGC6779, obtained with the CARELEC spectrograph at the 1.93-m telescope of the Haute-Provence observatory, have been used to determine the age, helium abundance (Y), and metallicity [Fe/H] as well as the first estimate of the abundances of C, N, O, Mg, Ca, Ti, and Cr for these objects. We solved this task by comparing the observed spectra and the integrated synthetic spectra, calculated with the use of the stellar atmosphere models with the parameters preset for the stars from these clusters. The model mass estimates, T eff, and log g were derived by comparing the observed "color-magnitude" diagrams and the theoretical isochrones. The summing-up of the synthetic blanketed stellar spectra was conducted according to the Chabrier mass function. To test the accuracy of the results, we estimated the chemical abundances, [Fe/H], log t, and Y for the NGC5904 and NGC6254 clusters, which, according to the literature, are considered to be the closest analogues of the two GCs of our study. Using the medium-resolution spectra from the library of Schiavon et al., we obtained for these two clusters a satisfactory agreement with the reported estimates for all the parameters within the errors. We derived the following cluster parameters. NGC6229: [Fe/H] = -1.65 dex, t = 12.6 Gyr, Y = 0.26, [ α/Fe] = 0.28 dex; NGC6779: [Fe/H] = -1.9 dex, t = 12.6 Gyr, Y = 0.23, [ α/Fe] = 0.08 dex; NGC5904: [Fe/H] = -1.6 dex, t = 12.6 Gyr, Y = 0.30, [ α/Fe] = 0.35 dex; NGC6254: [Fe/H] = -1.52 dex, t = 11.2 Gyr, Y = 0.30, [ α/Fe] = 0.025 dex. The value [ α/Fe] denotes the average of the Ca and Mg abundances.

  17. The Dart estuary, Devon, UK: a case study of chemical dynamics and pollutant mobility

    NASA Astrophysics Data System (ADS)

    Schuwerack, P.-M. M.; Neal, M.; Neal, C.

    2007-01-01

    Water, sediments and gill and digestive gland tissues of adult common shore crab (Carcinus maenas), collected at Noss Marina, Sandquay (Britannia Royal Naval College), the Dartmouth Pier, Warfleet Cove and Sugary Cove in the Dart estuary, Devon, UK, were analysed for major, minor and trace elements in spring 2004. Total acid-available measurements analysed included the truly dissolved component and acid-available sediments. Trace metal concentrations are associated largely with particulate and micro-particulate/colloidal phases, the latter being able to pass through standard filter papers. Wide ranges of chemical concentrations were found in the water, sediments and tissues at all the locations. In the water column, 48% of the variance is linked to the sea-salt component (Cl, Na, K, Ca, Mg, B, Li and Sr) and the sediment-associated acid-available fractions are linked to Fe-rich lithogenous materials (Ba, Co, Cu, Fe, Mn, V and Zn). In the sediments, trace elements of Cd, Co, Cr, Fe, Pb, Mn, Ni and V are correlated with the sea salts and associated with the fraction of fine sediments within the total sediment. In the gills and the digestive gland tissues of crabs, high concentrations of Al, Cu and Fe are found and there are correlations between acid-available trace metals of Cu, Cr, Fe, Mn, Ni, Sr and Zn. The relationships between trace metal contaminants, their site-specific concentrations, their temporal and spatial variability and the effects of human activities, such as moorland/agriculture with historic mining and recreational activities in the lower Dart estuary, are discussed.

  18. Ethylenediamine grafted to graphene oxide@Fe3O4 for chromium(VI) decontamination: Performance, modelling, and fractional factorial design

    PubMed Central

    Xu, Jiawen; Wu, Cuiyu; Deng, Jianbin; Liao, Wenwei; Ling, Yuxiang; Yang, Yuanxiu; Zhao, Yina; Zhao, Yunlin; Hu, Xi; Wang, Hui; Liu, Yunguo

    2017-01-01

    A method for grafting ethylenediamine to a magnetic graphene oxide composite (EDA-GO@Fe3O4) was developed for Cr(VI) decontamination. The physicochemical properties of EDA-GO@Fe3O4 were characterized using HRTEM, EDS, FT-IR, TG-DSC, and XPS. The effects of pH, sorbent dose, foreign anions, time, Cr(VI) concentration, and temperature on decontamination process were studied. The solution pH can largely affect the decontamination process. The pseudo-second-order model is suitable for being applied to fit the adsorption processes of Cr(VI) with GO@Fe3O4 and EDA-GO@Fe3O4. The intra-particle diffusion is not the rate-controlling step. Isotherm experimental data can be described using the Freundlich model. The effects of multiple factors on the Cr(VI) decontamination was investigated by a 25−1 fractional factorial design (FFD). The adsorption process can significantly be affected by the main effects of A (pH), B (Cr(VI) concentration), and E (Adsorbent dose). The combined factors of AB (pH × Cr(VI) concentration), AE (pH × Adsorbent dose), and BC (Cr(VI) concentration × Temperature) had larger effects than other factors on Cr(VI) removal. These results indicated that EDA-GO@Fe3O4 is a potential and suitable candidate for treatment of heavy metal wastewater. PMID:29084287

  19. Synthesis of the new compound CaFe(CO 3) 2 and experimental constraints on the (Ca,Fe)CO 3 join

    NASA Astrophysics Data System (ADS)

    Davidson, Paula M.; Symmes, Gregory H.; Cohen, Barbara A.; Reeder, Richard J.; Lindsley, Donald H.

    1993-12-01

    Synthesis of the new (disordered) compound CaFe(CO 3) 2 has been achieved with the use of Fe-substituted CaCO 3(Cc ss) + Ca-substituted FeCO 3(Sid ss) as starting materials, and high CO 2 pressures. High pressure (20-30 kbar) is needed to stabilize FeCO 3 to sufficiently high temperatures for disordered CaFe(CO 3) 2 to form. Experiments provide reversed compositions of coexisting disordered phases in the CaFe join and locate the solvus temperature for CaFe(C) 3) 2 between 815 and 845°C at 30 kbars. Calculated phase relations predict that the stability of ordered CaFe(CO 3) 2 is limited to T < ˜450°C by the breakdown to Cc ss + Sid ss. A comparison of the unit-cell volume measured for disordered CaFe(CO 3) 2 vs. that estimated for ordered CaFe(CO 3) 2 suggests that increasing pressure stabilizes the disordered phase.

  20. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lihua; He, Xiaoman; Qu, Jun

    Al(OH){sub 3} and Ca(OH){sub 2} powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kineticsmore » with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. - Graphical abstract: Activated Ca-Al hydroxides (C{sub 3}A) transformed into Ca-Al-OH compound when agitated in water. Ca-Al precursor (C{sub 3}A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO{sub 4} LDH product. Ca-Al-CrO{sub 4} LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. - Highlights: • Activated Ca-Al hydroxides transformed into LDH when agitated in water with some inorganic substances. • Hexavalent Cr was incorporated in the LDH structure at high adsorption capacity. • Ca-Al-Cr LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases with coexistence. • The prepared Ca-Al hydroxides had high performance as adsorbent even with high salinity of the solution.« less

  1. Effects of citrate on hexavalent chromium reduction by structural Fe(II) in nontronite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaolei; Dong, Hailiang; Yang, Xuewei

    Iron-bearing clay minerals and organic matter are two important components in natural environments that influence hexavalent chromium (Cr(VI)) reduction. Previous studies have shown that organic ligands could influence Cr(VI) reduction by aqueous Fe2+ and pyrite. However, the effects of organic ligands on Cr(VI) reduction by structural Fe(II) in clays are not well understood. In this study, the effects of citrate on Cr(VI) reduction by nontronite (NAu-2) were investigated under near neutral pH condition (pH=6). Our results showed that the presence of citrate decreased the rate but increased the amount of Cr(VI) reduction by structural Fe(II) in NAu-2. The decreased reactionmore » rate was likely due to competitive sorption of citrate and polyanionic dichromate (Cr2O7- ), because sorption of dichromate appeared to be the first step for subsequent Cr(VI) reduction. The increased amount of Cr(VI) reduction in the presence of citrate was likely because citrate provided additional reducing power through ligand-metal electron transfer in the presence of soluble Fe 3+ derived from dissolution of reduced NAu-2. Soluble Cr(III)-citrate complex was the possible form of reduced chromium when citrate was present. In contrast, nanometer-sized Cr2O3 particles were the product of Cr(VI) reduction by reduced NAu-2 without citrate. Our study highlights the importance of organic ligands on Cr(VI) reduction and immobilization when iron-bearing clay minerals are applied to treat Cr(VI) contaminant in organic matter rich environments.« less

  2. Epitaxial Fe16N2 thin film on nonmagnetic seed layer

    NASA Astrophysics Data System (ADS)

    Hang, Xudong; Zhang, Xiaowei; Ma, Bin; Lauter, Valeria; Wang, Jian-Ping

    2018-05-01

    Metastable α″ -Fe16N2 has attracted much interest as a candidate for rare-earth-free hard magnetic materials. We demonstrate that Fe16N2 thin films were grown epitaxially on Cr seed layers with MgO (001) substrates by facing-target sputtering. Good crystallinity with the epitaxial relation MgO (001 )[110 ] ∥ Cr (001 )[100 ] ∥ Fe16N2 (001 )[100 ] was obtained. The chemical order parameter, which quantifies the degree of N ordering in the Fe16N2 (the N-disordered phase is α' -Fe8N martensite), reaches 0.75 for Cr-seeded samples. Cr has a perfect lattice constant match with Fe16N2, and no noticeable strain can be assigned to Fe16N2. The intrinsic saturation magnetization of this non-strained Fe16N2 thin film at room temperature is determined to be 2.31 T by polarized neutron reflectometry and confirmed with vibrating sample magnetometry. Our work provides a platform to directly study the magnetic properties of high purity Fe16N2 films with a high order parameter.

  3. Electronic, thermoelectric, and magneto-dielectric properties of Ca1-xNaxCr2O4

    NASA Astrophysics Data System (ADS)

    Kolodiazhnyi, Taras; Sakurai, Hiroya

    2013-06-01

    We report on electronic, thermoelectric, and magneto-dielectric properties of Ca1-xNaxCr2O4 series with a calcium ferrite-type structure prepared by high-pressure-high-temperature synthesis. Dielectric spectroscopy down to 2 K confirms that both CaCr2O4 and NaCr2O4 end members have an insulating ground state notwithstanding the fact that the latter compound has a mixed valence Cr3+/Cr4+ structure. A crossover from positive to negative charge carriers occurs in NaCr2O4 at T≈230 K. Partial substitution of Ca for Na brings about a change from n to p type carriers at ca. x =0.75. A strong suppression of thermal conductivity below TN=21 K was found in CaCr2O4 indicating a scattering of acoustic phonons from a long wave-length cycloidal magnetic excitations. A pronounced dielectric anomaly at Néel temperature adds CaCr2O4 to the multiferroic family of compounds. Lattice contribution to dielectric properties of NaCr2O4 at TN=125 K is screened by high electric conductivity. An onset of the magnetocapacitance above 3 T correlates with the spin-flop transition in NaCr2O4 at a critical field of 3.5 T. A strong non-saturated magnetocapacitance in this compound cannot be entirely attributed to the colossal magnetoresistance.

  4. Improvement of Corrosion Resistance of Binary Mg-Ca Alloys Using Duplex Aluminum-Chromium Coatings

    NASA Astrophysics Data System (ADS)

    Daroonparvar, Mohammadreza; Yajid, Muhamad Azizi Mat; Yusof, Noordin Mohd; Bakhsheshi-Rad, Hamid Reza; Adabi, Mohsen; Hamzah, Esah; Kamali, Hussein Ali

    2015-07-01

    Al-AlCr was coated on Mg-Ca and Mg-Zn-Ce-La alloys using physical vapor deposition method. The surface morphology of the specimens was characterized by x-ray diffraction, scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy, and atomic force microscopy (AFM). The AFM results indicated that the average surface roughness of Al-AlCr coating on the Mg-Ca alloy is much lower than that of Al-AlCr coating on the Mg-Zn-Ce-La alloy. However, Al-AlCr coating on the Mg-Ca alloy presented a more compact structure with fewer pores, pinholes, and cracks than Al-AlCr coating on the Mg-Zn-Ce-La alloy. Electrochemical studies revealed that the novel coating (Al-AlCr) can remarkably reduce the corrosion rate of the Mg-Ca alloy in 3.5 wt.% NaCl solution. It was seen that the anodic current density of the Al-AlCr-coated Mg-Ca alloy was very small when compared to the Al-AlCr-coated Mg-Zn-Ce-La and uncoated alloys. Impedance modulus ( Z) of the Al-AlCr-coated samples was higher than that of the bare Mg alloys. Z of Al-AlCr-coated Mg-Ca alloy was higher than that of the Al-AlCr-coated Mg-Zn-Ce-La alloy at low frequency.

  5. Magnetocaloric effect in cubic spinel Co(Cr0.95Fe0.05)2O4

    NASA Astrophysics Data System (ADS)

    Kumar, Ram; Rayaprol, S.; Xiao, Y.; Ji, W.; Siruguri, V.; Pal, D.

    2018-04-01

    The crystal structure, magnetic properties and magnetocaloric effect (MCE) of Co(Cr0.95Fe0.05)2O4 have been studied. Co(Cr0.95Fe0.05)2O4 synthesized by solid-state reaction method, crystallizes in normal cubic spinel structure with Fd-3m space group. Neutron powder diffraction (NPD) and magnetic measurements when compared to the undoped CoCr2O4, show that the compound is ferrimagnetic (FIM) and transition temperature (TC) is enhanced due to Fe substitution. Analysis of structural and magnetic properties shows the existence of two different sites of magnetic clusters due to Fe/Cr cation disorder. The competition between the moments of the two different sub-lattices gives rise to the temperature induced magnetization reversal at compensation tempearature (Tcomp) = 44 K. The magnetocaloric effect (simply the change in magnetic entropy i.e, -ΔSM) has been observed in Co(Cr0.95Fe0.05)2O4 with different applied magnetic fields (max. H = 90 kOe). We found maximum change of magnetic entropy ˜1.2 J/kg K, for a field change of 90 kOe at FIM transition temperature (TC˜110 K) with relative cooling power (RCP) of ˜13 J/kg. Moreover, the sign change of -ΔSM across the compensation temperature (Tcomp˜ 44 K) shows another phase transition across Tcomp in Co(Cr0.95Fe0.05)2O4. The values of MCE and RCP are also appreciable so as to consider Co(Cr0.95Fe0.05)2O4 as a magnetic refrigerant above liquid nitrogen temperature.

  6. Effect of Chromium on Corrosion Behavior of P110 Steels in CO2-H2S Environment with High Pressure and High Temperature

    PubMed Central

    Sun, Jianbo; Sun, Chong; Lin, Xueqiang; Cheng, Xiangkun; Liu, Huifeng

    2016-01-01

    The novel Cr-containing low alloy steels have exhibited good corrosion resistance in CO2 environment, mainly owing to the formation of Cr-enriched corrosion film. In order to evaluate whether it is applicable to the CO2 and H2S coexistence conditions, the corrosion behavior of low-chromium steels in CO2-H2S environment with high pressure and high temperature was investigated using weight loss measurement and surface characterization. The results showed that P110 steel suffered localized corrosion and both 3Cr-P110 and 5Cr-P110 steels exhibited general corrosion. However, the corrosion rate of 5Cr-P110 was the highest among them. The corrosion process of the steels was simultaneously governed by CO2 and H2S. The outer scales on the three steels mainly consisted of FeS1−x crystals, whereas the inner scales on Cr-containing steels comprised of amorphous FeS1−x, Cr(OH)3 and FeCO3, in contrast with the amorphous FeS1−x and FeCO3 mixture film of P110 steel. The more chromium the steel contains, the more chromium compounds the corrosion products contain. The addition of chromium in steels increases the uniformity of the Cr-enriched corrosion scales, eliminates the localized corrosion, but cannot decrease the general corrosion rates. The formation of FeS1−x may interfere with Cr-enriched corrosion scales and lowering the corrosion performance of 3Cr-P110 and 5Cr-P110 steels. PMID:28773328

  7. Recent Compositional Trends within the Murray Formation, Gale Crater, Mars, as seen by APXS: Implications for Sedimentary, Diagenetic and Alteration History.

    NASA Astrophysics Data System (ADS)

    Thompson, L. M.; Yen, A.; Spray, J. G.; Johnson, J. R.; Fraeman, A. A.; Berger, J. A.; Gellert, R.; Boyd, N.; Desouza, E.; O'Connell-Cooper, C.; VanBommel, S.

    2017-12-01

    The >230 m thick Murray Formation is the lower-most unit of the Mount Sharp Group, and interpreted as primarily lacustrine. Representative mudstone, siltstone and fine sandstone targets, encountered above -4330 m elevation, trend to lower Si, Al, Ti, Cr and Ca, and higher Fe, Mn, Zn, P and Mg than the Murray below. Less common, distinctive, coarser grained sandstone lenses tend to exhibit slightly different compositions to the more typical Murray but, overall, show similar elemental trends with elevation, albeit exaggerated. This suggests that the variations observed with elevation in Al, Ti, Cr, K, Fe, Mn, Zn and P within both the coarser sandstones and finer grained Murray are the result of diagenetic and/or alteration processes rather than provenance or physical sedimentary processes such as sorting. This is supported by the chemistry of obvious diagenetic, dark grey nodules, and other potential diagenetic/alteration features within this section, which show variations in the same element concentrations (i.e., P, Mn, Fe, Zn, Mg, Ca and S), distinct from diagenetic features lower down in the stratigraphy, indicating mobility of these elements within this section and changing fluid chemistry. Trends in FeO/MnO generally mimic the presence of ferric absorption features observed in visible/near infrared passive spectra from the ChemCam instrument and from CRISM orbital data, which may be consistent with changes in redox conditions as we climb up section towards Vera Rubin Ridge (Hematite Ridge). Layer-parallel CaSO4 is also common, and not observed below -4330 m. This may represent syndepositional evaporite layers, or late bedding/laminae parallel veins emplaced after lithification, in conjunction with cross-cutting veins. The overall differences in composition between the sandstone targets and finer grained Murray are attributed to distinct provenances and/or sorting during transport. We will discuss the implications of the trends and composition of the Murray above -4330 m elevation and how this pertains to the history and evolution of the Murray Formation as a whole, climatic conditions during the formation of the Murray and the nature of Gale crater lake. Also, what do the trends imply about how circulating fluids have evolved within the Murray sediments and pH, redox, salinity conditions of these fluids?

  8. A new strategy to design eutectic high-entropy alloys using simple mixture method

    DOE PAGES

    Jiang, Hui; Han, Kaiming; Gao, Xiaoxia; ...

    2018-01-13

    Eutectic high entropy alloys (EHEAs) hold promising industrial application potential, but how to design EHEA compositions remains challenging. In the present work, a simple and effective strategy by combining mixing enthalpy and constituent binary eutectic compositions was proposed to design EHEA compositions. This strategy was then applied to a series of (CoCrFeNi)M x (M = Nb, Ta, Zr, Hf) HEAs, leading to the discovery of new EHEAs, namely, CoCrFeNiNb 0.45, CoCrFeNiTa 0.4, CoCrFeNiZr 0.55 and CoCrFeNiHf 0.4. The microstructure of these new EHEAs comprised of FCC and Laves phases in the as-cast state. In conclusion, the experimental result shows thatmore » this new alloy design strategy can be used to locate new EHEAs effectively.« less

  9. Heavy metals in water, sediments, plants and fish of Kali Nadi U. P. (India)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajmal, M.; Uddin, R.; Khan, A.U.

    1988-01-01

    The distribution of heavy metals viz., Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the water, sediments, plants and fish samples collected from the Kali Nadi (India) have been determined. The studies have shown that there was considerable variation in the concentration of heavy metals from one sampling station to the other which may be due to the variation in the quality of industrial and sewage wastes being added to the river at different places. The orders of the concentration of heavy metals in water, sediments, plants (Eicchornia crassipes) and fish (Heteropnuestes fossilis) were Fe > Znmore » > Cu > Mn > Cr > Ni > Pb > Co > Cd; Fe > Zn > Mn > Ni > Cr > Co > Cu > Pb > Cd; Fe > Mn > Zn > Cu > Ni > Co > Pb > Cr > Cd and Fe > Zn > Mn > Ni > Pb >Co > Cr > Cu > Cd, respectively.« less

  10. Phase relations in the Fe-Ni-Cr-S system and the sulfidation of an austenitic stainless steel

    NASA Technical Reports Server (NTRS)

    Jacob, K. T.; Rao, D. B.; Nelson, H. G.

    1977-01-01

    The stability fields of various sulfide phases that form on Fe-Cr, Fe-Ni, Ni-Cr and Fe-Cr-Ni alloys were developed as a function of temperature and the partial pressure of sulfur. The calculated stability fields in the ternary system were displayed on plots of log P sub S sub 2 versus the conjugate extensive variable which provides a better framework for following the sulfidation of Fe-Cr-Ni alloys at high temperatures. Experimental and estimated thermodynamic data were used in developing the sulfur potential diagrams. Current models and correlations were employed to estimate the unknown thermodynamic behavior of solid solutions of sulfides and to supplement the incomplete phase diagram data of geophysical literature. These constructed stability field diagrams were in excellent agreement with the sulfide phases and compositions determined during a sulfidation experiment.

  11. A new strategy to design eutectic high-entropy alloys using simple mixture method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hui; Han, Kaiming; Gao, Xiaoxia

    Eutectic high entropy alloys (EHEAs) hold promising industrial application potential, but how to design EHEA compositions remains challenging. In the present work, a simple and effective strategy by combining mixing enthalpy and constituent binary eutectic compositions was proposed to design EHEA compositions. This strategy was then applied to a series of (CoCrFeNi)M x (M = Nb, Ta, Zr, Hf) HEAs, leading to the discovery of new EHEAs, namely, CoCrFeNiNb 0.45, CoCrFeNiTa 0.4, CoCrFeNiZr 0.55 and CoCrFeNiHf 0.4. The microstructure of these new EHEAs comprised of FCC and Laves phases in the as-cast state. In conclusion, the experimental result shows thatmore » this new alloy design strategy can be used to locate new EHEAs effectively.« less

  12. Chemical Compositions of Kinematically Selected Outer Halo Stars

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Ishigaki, Miho; Aoki, Wako; Zhao, Gang; Chiba, Masashi

    2009-12-01

    Chemical abundances of 26 metal-poor dwarfs and giants are determined from high-resolution and high signal-to-noise ratio spectra obtained with the Subaru/High Dispersion Spectrograph. The sample is selected so that most of the objects have outer-halo kinematics. Self-consistent atmospheric parameters were determined by an iterative procedure based on spectroscopic analysis. Abundances of 13 elements, including α-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc), iron-peak elements (Cr, Mn, Fe, Ni, Zn), and neutron-capture elements (Y, Ba), are determined by two independent data reduction and local thermodynamic equillibrium analysis procedures, confirming the consistency of the stellar parameters and abundances results. We find a decreasing trend of [α/Fe] with increasing [Fe/H] for the range of -3.5< [Fe/H] <-1, as found by Stephens & Boesgaard. [Zn/Fe] values of most objects in our sample are slightly lower than the bulk of halo stars previously studied. These results are discussed as possible chemical properties of the outer halo in the Galaxy. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  13. Morphology and composition of spinel in Pu'u 'O'o lava (1996-1998), Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Roeder, P.L.; Thornber, C.; Poustovetov, Alexei; Grant, A.

    2003-01-01

    The morphology and composition of spinel in rapidly quenched Pu'u 'O'o vent and lava tube samples are described. These samples contain glass, olivine phenocrysts (3-5 vol.%) and microphenocrysts of spinel (~0.05 vol.%). The spinel surrounded by glass occurs as idiomorphic octahedra 5-50 μm in diameter and as chains of octahedra that are oriented with respect to each other. Spinel enclosed by olivine phenocrysts is sometimes rounded and does not generally form chains. The temperature before quenching was calculated from the MgO content of the glass and ranges from 1150oC to 1180oC. The oxygen fugacity before quenching was calculated by two independent methods and the log f O2 ranged from -9.2 to -9.9 (delta QFM=-1). The spinel in the Pu'u'O'o samples has a narrow range in composition with Cr/(Cr+Al)=0.61 to 0.73 and Fe2+/(Fe2++Mg) =0.46 to 0.56. The lower the calculated temperature for the samples, the higher the average Fe2+/(Fe2++Mg), Fe3+ and Ti in the spinel. Most zoned spinel crystals decrease in Cr/(Cr+Al) from core to rim and, in the chains, the Cr/(Cr+Al) is greater in the core of larger crystals than in the core of smaller crystals. The occurrence of chains and hopper crystals and the presence of Cr/(Cr+Al) zoning from core to rim of the spinel suggest diffusion-controlled growth of the crystals. Some of the spinel crystals may have grown rapidly under the turbulent conditions of the summit reservoir and in the flowing lava, and the crystals may have remained in suspension for a considerable period. The rapid growth may have caused very local (μm) gradients of Cr in the melt ahead of the spinel crystal faces. The crystals seem to have retained the Cr/(Cr+Al) ratio that developed during the original growth of the crystal, but the Fe2+/(Fe2++Mg) ratio may have equilibrated fairly rapidly with the changing melt composition due to olivine crystallization. Six of the samples were collected on the same day at various locations along a 10-km lava tube and the calculated pre-collection temperatures of the samples show a 5oC drop with distance from the vent. The average Fe2+/(Fe2++Mg) of the spinel in these samples shows a weak positive correlation with decreasing MgO in the glass of these samples. The range in Cr2O3 (0.041-0.045 wt.%) of the glass for these six samples is too small to distinguish a consistent change along the lava tube. The spinel in the Pu'u 'O'o samples shows a zoning trend in a Cr-Al-Fe3+ diagram almost directly away from the Cr apex. This compares with a zoning trend in rapidly quenched MORB samples away from Cr coupled with decreasing Fe3+. The trend away from Cr displayed by spinel in rapidly quenched samples is in marked contrast to the trend of increasing Fe3+ shown by spinel in slowly cooled lava. 

  14. Interdiffusion behavior of U3Si2 with FeCrAl via diffusion couple studies

    NASA Astrophysics Data System (ADS)

    Hoggan, Rita E.; He, Lingfeng; Harp, Jason M.

    2018-04-01

    Uranium silicide (U3Si2) is a candidate to replace uranium oxide (UO2) as light water reactor (LWR) fuel because of its higher thermal conductivity and higher fissile density relative to the current standard, UO2. A class of Fe, Cr, Al alloys collectively known as FeCrAl alloys that have superior mechanical and oxidation resistance are being considered as an alternative to the standard Zirconium based LWR cladding. The interdiffusion behavior between FeCrAl and U3Si2 is investigated in this study. Commercially available FeCrAl, along with U3Si2 pellets were placed in diffusion couples. Individual tests were ran at temperatures ranging from 500 °C to 1000 °C for 30 h and 100 h. The interdiffusion was analyzed with an optical microscope, scanning electron microscope, and transmission electron microscope. Uniform and planar interdiffusion layers along the material interface were illustrated with backscatter electron micrographs and energy-dispersive X-ray spectroscopy. Electron diffraction was used to validate phases present in the system, including distinct U2Fe3Si/UFe2 and UFeSi layers at the material interface. U and Fe diffused far into the FeCrAl and U3Si2 matrix, respectively, in the higher temperature tests. No interaction was observed at 500 °C for 30 h.

  15. From solid solution to cluster formation of Fe and Cr in α-Zr

    NASA Astrophysics Data System (ADS)

    Burr, P. A.; Wenman, M. R.; Gault, B.; Moody, M. P.; Ivermark, M.; Rushton, M. J. D.; Preuss, M.; Edwards, L.; Grimes, R. W.

    2015-12-01

    To understand the mechanisms by which the re-solution of Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, the solubility and clustering of Fe and Cr in model binary Zr alloys was investigated using a combination of experimental and modelling techniques - atom probe tomography (APT), x-ray diffraction (XRD), thermoelectric power (TEP) and density functional theory (DFT). Cr occupies both interstitial and substitutional sites in the α-Zr lattice; Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of Fe and Cr content in the α-Zr matrix deviates from Vegard's law and is strongly anisotropic for Fe additions, expanding the c-axis while contracting the a-axis. Matrix content of solutes cannot be reliably estimated from lattice parameter measurements, instead a combination of TEP and APT was employed. Defect clusters form at higher solution concentrations, which induce a smaller lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased apparent solubility of defect clusters; the implications for irradiation induced microstructure changes in Zr alloys are discussed.

  16. Analysis of heavy metals from water, sediment, and tissues of Labeo angra (Hamilton, 1822), from an Ox-box lake- an wetland site from Assam, India.

    PubMed

    Das, Suchismita; Choudhury, Shamim Sultana

    2016-01-01

    The aim of this study was to assess the regional impacts of heavy metals (Mn, Fe, Mg, Ca, Cu, Zn, Cd, Cr, Pb and Ni) on water, sediment and a native, teleost fish species, Labeo angra, inhabiting a flood plain wetland of Barak River in Assam, India. Heavy metal concentrations in the water, sediments and fish were measured; bioaccumulation factor, metal pollution index as well as condition indices were calculated, to assess the pollution load and health status of the fish. Multivariate statistical analysis was used on wetland water and sediment heavy metals to ascertain the possible sources and seasonal variations of the pollutants. Results showed that most heavy metals in the wetland water and sediments exceeded the water (drinking and irrigation) and sediment quality guidelines, respectively. Seasonal variations were observed for geogenic heavy metals, Mn, Fe, Mg and Ca while no seasonal variations were observed for anthropogenic heavy metals, Cu, Cd, Cr, Pb and Ni. Multivariate statistical analysis showed that there was strong correlation between geogenic and anthropogenic heavy metals in water and sediment, both originating from the common anthropogenic sources. Accumulation of most of the metals in all the tissues was above the safe limits as recommended by the Food and Agriculture Organization. High bioaccumulation factors and metal pollution index for these metals in the different tissues revealed that metals were extensively bio-accumulated and bioconcentrated. Condition indices in fish from the wetland suggested metabolic abnormalities.

  17. Extraction of heavy metals characteristics of the 2011 Tohoku tsunami deposits using multiple classification analysis.

    PubMed

    Nakamura, Kengo; Kuwatani, Tatsu; Kawabe, Yoshishige; Komai, Takeshi

    2016-02-01

    Tsunami deposits accumulated on the Tohoku coastal area in Japan due to the impact of the Tohoku-oki earthquake. In the study reported in this paper, we applied principal component analysis (PCA) and cluster analysis (CA) to determine the concentrations of heavy metals in tsunami deposits that had been diluted with water or digested using 1 M HCl. The results suggest that the environmental risk is relatively low, evidenced by the following geometric mean concentrations: Pb, 16 mg kg(-1) and 0.003 ml L(-1); As, 1.8 mg kg(-1) and 0.004 ml L(-1); and Cd, 0.17 mg kg(-1) and 0.0001 ml L(-1). CA was performed after outliers were excluded using PCA. The analysis grouped the concentrations of heavy metals for leaching in water and acid. For the acid case, the first cluster contained Ni, Fe, Cd, Cu, Al, Cr, Zn, and Mn; while the second contained Pb, Sb, As, and Mo. For water, the first cluster contained Ni, Fe, Al, and Cr; and the second cluster contained Mo, Sb, As, Cu, Zn, Pb, and Mn. Statistical analysis revealed that the typical toxic elements, As, Pb, and Cd have steady correlations for acid leaching but are relatively sparse for water leaching. Pb and As from the tsunami deposits seemed to reveal a kind of redox elution mechanism using 1 M HCl. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Distribution and Phase Association of Some Major and Trace Elements in the Arabian Gulf Sediments

    NASA Astrophysics Data System (ADS)

    Basaham, A. S.; El-Sayed, M. A.

    1998-02-01

    Twenty-four sediment samples were collected from the Arabian Gulf (ROPME Sea) and analysed for their grain size distribution and carbonate contents as well as the major elements Ca, Mg, Fe and Al and macro and trace elements Mn, Sr, Ba, Zn, Cu, Cr, V, Ni and Hg. Concentration of trace elements are found comparable to previous data published for samples taken before and after the Gulf War, and reflect the natural background level. Grain size analyses, aluminium and carbonate measurements support the presence of two major sediment types: (1) a terrigenous, fine-grained and Al rich type predominating along the Iranian side; and (2) a coarse-grained and carbonate rich type predominating along the Arabian side of the Gulf. Investigation of the correlation of the elements analysed with the sediment type indicates that they could be grouped under two distinct associations: (1) carbonate association including Ca and Sr; and (2) terrigenous association comprising Al, Fe, Mg, Ba, Mn, Zn, Cu, Cr, V, Ni and Hg. Element/Al ratios calculated for the mud non-carbonate fraction indicate that the Euphrates and Tigris rivers have minor importance as sediment sources to the Gulf. Most of the elements have exceptionally high aluminium ratios in sediments containing more than 85-90% carbonate. These sediments are restricted to the southern and south-eastern part of the area where depth is shallow and temperature and salinity are high. Both biological accumulation and chemical and biochemical coprecipitation could be responsible for this anomaly.

  19. Determination of Heavy Metals in Almonds and Mistletoe as a Parasite Growing on the Almond Tree Using ICP-OES or ICP-MS.

    PubMed

    Kamar, Veysi; Dağalp, Rukiye; Taştekin, Mustafa

    2017-12-28

    In this study, the elements of Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Ni, Sr, Pb, Ti, and Zn were determined in the leaves, fruits, and branches of mistletoe, (Viscum albüm L.), used as a medicinal plant, and in the leaves, branches and barks of almond tree which mistletoe grows on. The aim of the study is to investigate whether the mistletoe are more absorbent than the almond tree in terms of the heavy metal contents and the determination of the amount of the elements penetrated into the mistletoe from the almond tree. ICP-MS (inductively coupled plasma-mass spectrometry) was used for the analysis of As, Cd, Mo, and Pb, whereas ICP-OES (inductively coupled plasma optical emission spectrometry) was used for the other elements. The results obtained were statistically evaluated at 95% confidence level. Within the results obtained in this study, it was determined whether there is a significant difference between metal elements in almond tree and mistletoe, or not. As a result, it was observed that there were higher contents of B, Ba, K, Mg, and Zn in the mistletoe than in the almond tree. K was found much higher than other elements in the mistletoe. On the other hand, Al, As, Ca, Cd, Cr, Cu, Fe, Mo, Ni, Sr, Pb, and Ti contents were determined to be more in almond tree than mistletoe.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baljinnyam, N.; Frontasyeva, M. V.; Ostrovnaya, T. M.

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowersmore » and leaves)(0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the ''Reference plant? data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.« less

  1. Retention Mechanisms of Citric Acid in Ternary Kaolinite-Fe(III)-Citrate Acid Systems Using Fe K-edge EXAFS and L3,2-edge XANES Spectroscopy

    PubMed Central

    Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald

    2016-01-01

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. These findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils. PMID:27212680

  2. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L 3,2-edge XANES spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jianjun; Wang, Jian; Pan, Weinan

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less

  3. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L 3,2-edge XANES spectroscopy

    DOE PAGES

    Yang, Jianjun; Wang, Jian; Pan, Weinan; ...

    2016-05-23

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less

  4. Mn-Cr dating of Fe- and Ca-rich olivine from 'quenched' and 'plutonic' angrite meteorites using Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McKibbin, Seann J.; Ireland, Trevor R.; Amelin, Yuri; Holden, Peter

    2015-05-01

    Angrite meteorites are suitable for Mn-Cr relative dating (53Mn decays to 53Cr with a half life of 3.7 Myr) using Secondary Ion Mass Spectrometry (SIMS) because they contain olivine and kirschsteinite with very high 55Mn/52Cr ratios arising from very low Cr concentrations. Discrepant Mn-Cr and U-Pb time intervals between the extrusive or 'quenched' angrite D'Orbigny and some slowly cooled or 'plutonic' angrites suggests that some have been affected by secondary disturbances, but this seems to have occurred in quenched rather than in slow-cooled plutonic angrites, where such disturbance or delay of isotopic closure might be expected. Using SIMS, we investigate the Mn-Cr systematics of quenched angrites to higher precision than previously achieved by this method and extend our investigation to non-quenched (plutonic or sub-volcanic) angrites. High values of 3.54 (±0.18) × 10-6 and 3.40 (±0.19) × 10-6 (2-sigma) are found for the initial 53Mn/55Mn of the quenched angrites D'Orbigny and Sahara 99555, which are preserved by Cr-poor olivine and kirschsteinite. The previously reported initial 53Mn/55Mn value of D'Orbigny obtained from bulk-rock and mineral separates is slightly lower and was probably controlled by Cr-rich olivine. Results can be interpreted in terms of the diffusivity of Cr in this mineral. Very low Cr concentrations in Ca-rich olivine and kirschsteinite are probably charge balanced by Al; this substitutes for Si and likely diffuses at a very slow rate because Si is the slowest-diffusing cation in olivine. Diffusion in Cr-rich Mg-Fe olivine is probably controlled by cation vacancies because of deficiency in charge-balancing Al and is therefore more prone to disturbance. The higher initial 53Mn/55Mn found by SIMS for extrusive angrites is more likely to reflect closure of Cr in kirschsteinite at the time of crystallisation, simultaneous with closure of U-Pb and Hf-W isotope systematics for these meteorites obtained from pyroxenes. For the younger angrites Northwest Africa (NWA) 4590 and 4801 we have found initial 53Mn/55Mn values which are consistent with more precise work, at 0.90 (±0.4) × 10-6 and 0.13 (±1.1) × 10-6 respectively. Our work shows that SIMS can usefully constrain and distinguish the ages of angrites of different petrologic groups. In reviewing the petrology of angrites, we suggest that NWA 2999, 4590, and 4801 underwent a secondary partial melting and Cr (+/-Pb) disturbance event that the sub-volcanic Lewis Cliff 86010, and perhaps the plutonic Angra dos Reis, did not. With our higher initial 53Mn/55Mn for D'Orbigny and Sahara 99555 as well as previous data, a combined quenched angrite initial 53Mn/55Mn of 3.47 (±0.12) × 10-6 (2-sigma, MSWD 1.00) yields consistent Mn-Cr and U-Pb intervals between these angrites and Lewis Cliff 86010. Discrepant Mn-Cr timescales for other plutonic and sub-volcanic angrites represents resetting during the secondary partial melting event at ∼4557.2 Ma and indicates a relative order of disturbance of isotope systems: Mn-Cr in olivine before U-Pb in pyroxene, with Hf-W in pyroxene being the most resistant.

  5. Adsorptive removal of Cr3+ from aqueous solutions using chitosan microfibers immobilized with plant polyphenols as biosorbents with high capacity and selectivity

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Wang, Yujia; Kuang, Yiwen; Yang, Ruilin; Ma, Jun; Zhao, Shilin; Liao, Yang; Mao, Hui

    2017-05-01

    A novel biosorbent was facilely prepared by immobilizing bayberry tannin (BT, a typical natural polyphenols) onto chitosan microfiber (CM). The as-prepared CM-BT adsorbent featured to a well-defined microfibrous morphology and highly distributed adsorption sites, which was highly efficient and selective for the adsorptive removal of Cr3+ from aqueous solutions. Based on batch experiments, the adsorption of Cr3+ on CM-BT was pH-dependent, and the optimized adsorption pH was determined to be 5.5. The adsorption capacity of CM-BT to Cr3+ was high up to 20.90 mg/g. The co-existing cations, such as Mg2+, Ca2+, Fe3+ and Cu2+, exhibited no significant influences on the adsorption of Cr3+ on CM-BT. The adsorption kinetics were well fitted by the pseudo-second-order rate model (R2 > 0.99) while the adsorption isotherms were well described by the Langmuir model (R2 > 0.98). Importantly, CM-BT was effective for the continues treatment of low concentration Cr3+ (2.0 mg/L) contaminated wastewater. Before reached the breakthrough point (5% of the initial Cr3+ concentration, 0.1 mg/L), the treated volume was as high as 894 bed volume, manifesting the great potential of CM-BT in practical treatment of Cr3+ contaminated wastewater.

  6. Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Wu, C. L.; Zhang, C. H.; Guan, M.; Tan, J. Z.

    2016-10-01

    FeCoCrAlNi high-entropy alloy coating was synthesized with premixed high-purity Co, Cr, Al and Ni powders on 304 stainless steel by laser surface alloying, aiming at improving corrosion and cavitation erosion resistance. Phase constituents, microstructure and microhardness were investigated using XRD, SEM, and microhardness tester, respectively. The cavitation erosion and electrochemical corrosion behavior of FeCoCrAlNi coating in 3.5% NaCl solution were also evaluated using an ultrasonic vibrator and potentiodynamic polarization measurement. Experimental results showed that with appropriate laser processing parameters, FeCoCrAlNi coating with good metallurgical bonding to the substrate could be achieved. FeCoCrAlNi coating was composed of a single BCC solid solution. The formation of simple solid solutions in HEAs was the combined effect of mixing entropy (ΔSmix), mixing enthalpy (ΔHmix), atom-size difference (δ) and valence electron concentration (VEC), and the effect of ΔSmix was much larger than that of the other factors. The microhardness of the FeCoCrAlNi coating was ~3 times that of the 304 stainless steel. Both the corrosion and cavitation erosion resistance of the coating were improved. The cavitation erosion resistance for FeCoCrAlNi HEA coating was ~7.6 times that of 304 stainless steel. The corrosion resistance was also improved as reflected by a reduction in the current density of one order of magnitude as compared with 304 stainless steel.

  7. Mn-Cr isotopic systematics of Chainpur chondrules and bulk ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Nyquist, L.; Lindstrom, D.; Wiesmann, H.; Bansal, B.; Shih, C.-Y.; Mittlefehldt, D.; Martinez, R.; Wentworth, S.

    1994-01-01

    We report on ongoing study of the Mn-Cr systematics of individual Chainpur (LL3.4) chondrules and compare the results to those for bulk ordinary chondrites. Twenty-eight chondrules were surveyed for abundances of Mn, Cr, Na, Fe, Sc, Hf, Ir, and Zn by INAA. Twelve were chosen for SEM/EDX and high-precision Cr-isotopic studies on the basis of LL-chondrite-normalized Mn(LL), Sc(LL), (Mn/Fe)(LL), and (Sc/Fe)(LL) as well as their Mn/Cr ratios. Classification into textural types follows from SEM/EDX examination of interior surfaces.

  8. Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing

    NASA Astrophysics Data System (ADS)

    Tan, Jihua; Duan, Jingchun; Zhen, Naijia; He, Kebin; Hao, Jiming

    2016-01-01

    The abundance, behavior, and source of chemical species in size-fractionated atmospheric particle were studied with a 13-stage low pressure impactor (ELPI) during high polluted winter episode in Beijing. Thirty three elements (Al, Ca, Fe, K, Mg, Na, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, and Pb) and eight water soluble ions (Cl-, NO3-, SO42 -, NH4+, Na+, K+, Ca2 +, and Mg2 +) were determined by ICP/MS and IC, respectively. The size distribution of TC (OC + EC) was reconstructed. Averagely, 51.5 ± 5.3% and 74.1 ± 3.7% of the total aerosol mass was distributed in the sub-micron (PM1) and fine particle (PM2.5), respectively. A significant shift to larger fractions during heavy pollution episode was observed for aerosol mass, NH4+, SO42 -, NO3-, K, Fe, Cu, Zn, Cd, and Pb. The mass size distributions of NH4+, SO42 -, NO3-, and K were dominated by accumulation mode. Size distributions of elements were classified into four main types: (I) elements were enriched within the accumulation mode (< 1 μm, Ge, Se, Ag, Sn, Sb, Cs, Hg, Ti, and Pb); (II) those mass (K, Cr, Mn, Cu, Zn, As, Mo, and Cd) was resided mainly within the accumulation mode, ranged from 1 to 2 μm; (III) Na, V, Co, Ni, and Ga were distributed among fine, intermediate, and coarse modes; and (IV) those which were mainly found within particles larger than 2.7 μm (Al, Mg, Si, Ca, Sc, Tl, Fe, Sr, Zr, and Ba). [H+]cor showed an accumulation mode at 600-700 nm and the role of Ca2 + should be fully considered in the estimation of acidity. The acidity in accumulation mode particles suggested that generally gaseous NH3 was not enough to neutralize sulfate completely. PMF method was applied for source apportionment of elements combined with water soluble ions. Dust, vehicle, aged coal combustion, and sea salt were identified, and the size resolved source apportionments were discussed. Aged coal combustion was the important source of fine particles and dust contributed most to coarse particle.

  9. Earthworm Activity and the Potential for Enhanced Leaching of Inorganic Elements in Soils

    NASA Astrophysics Data System (ADS)

    Gruau, G.; Ablain, F.; Cluzeau, D.

    2002-12-01

    The potential influence of earthworms on the mobility of soil inorganic constituents was experimentally investigated. Six 20 cm long and 15 cm i.d. columns were packed with soil (loamy material, Paris basin, France). Three earthworm specimens - Lombricus terrestris - were introduced into 3 of the 6 columns (earthworm treatment or ET), the remaing 3 being used to study changes in water composition and solute fluxes without earthworms (control treatment or CT). The 6 columns were operated for 8 weeks and were subjected to 100 ml addition of distilled water at 1, 8, 15, 22, 29, 36, 43 and 50 days. Effluents were collected weekly, filtered and analysed for their Dissolved Organic Carbon (DOC) as well as Si, Na, K, Mg, Ca, Fe, Mn, Al, Sr, Ba, Cu, Zn, Cr, Cd, REE and U concentrations. Replicates yielded extremely consistent results, with standard deviations generally lower than 10%. Effluent volumes were greatest during ET simulations (28% difference on a cumulative basis), which can be attributed to the construction by Lombricus terrestris of permanent vertical burrows into the soil columns. Different temporal chemical trends were observed depending on whether earthworms were present or not. During ET simulations, a washout phenomenon occurred for DOC, Ca, Mg, Fe, Ba, Sr, Cu and U during the startup outflow period (week 2). This washout was followed by a period of apparent equilibrium with concentrations in ET effluents remaining roughly constant for all solutes except REE, Zn and to a lesser extent Mn. No such washout nor equilibrium period was observed during CT simulations. Instead, concentrations in Ca, Mg, Fe, Ba, Sr, Cr and Cu decreased from week 2 to week 8, while those in other solutes increased from week 2 to week 5, then declining untill week 8. For many elements (not all), final (equilibrium?) concentrations (8 weeks simulation) were highest in ET effluents (e.g. 17% higher for Ca and Na; 30% higher for Zn), despite the enhanced infiltration rate (and thus the likely shorter soil-water interaction time). Although preliminary, these results suggest that earthworm activities can potentialy increase the leaching of a wide variety of inorganic elements in soils. This increase could occur through the ability of earthworms to change the biogeochemical conditions in the soil along their burrows (so-called drilosphere).

  10. Electronic, Magnetic, and Redox Properties of [MFe(3)S(4)] Clusters (M = Cd, Cu, Cr) in Pyrococcus furiosus Ferredoxin.

    PubMed

    Staples, Christopher R.; Dhawan, Ish K.; Finnegan, Michael G.; Dwinell, Derek A.; Zhou, Zhi Hao; Huang, Heshu; Verhagen, Marc F. J. M.; Adams, Michael W. W.; Johnson, Michael K.

    1997-12-03

    The ground- and excited-state properties of heterometallic [CuFe(3)S(4)](2+,+), [CdFe(3)S(4)](2+,+), and [CrFe(3)S(4)](2+,+) cubane clusters assembled in Pyrococcus furiosus ferredoxin have been investigated by the combination of EPR and variable-temperature/variable-field magnetic circular dichroism (MCD) studies. The results indicate Cd(2+) incorporation into [Fe(3)S(4)](0,-) cluster fragments to yield S = 2 [CdFe(3)S(4)](2+) and S = (5)/(2) [CdFe(3)S(4)](+) clusters and Cu(+) incorporation into [Fe(3)S(4)](+,0) cluster fragments to yield S = (1)/(2) [CuFe(3)S(4)](2+) and S = 2 [CuFe(3)S(4)](+) clusters. This is the first report of the preparation of cubane type [CrFe(3)S(4)](2+,+) clusters, and the combination of EPR and MCD results indicates S = 0 and S = (3)/(2) ground states for the oxidized and reduced forms, respectively. Midpoint potentials for the [CdFe(3)S(4)](2+,+), [CrFe(3)S(4)](2+,+), and [CuFe(3)S(4)](2+,+) couples, E(m) = -470 +/- 15, -440 +/- 10, and +190 +/- 10 mV (vs NHE), respectively, were determined by EPR-monitored redox titrations or direct electrochemistry at a glassy carbon electrode. The trends in redox potential, ground-state spin, and electron delocalization of [MFe(3)S(4)](2+,+) clusters in P. furiosus ferredoxin are discussed as a function of heterometal (M = Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Tl).

  11. Trace Element Studies on Tinospora cordifolia (Menispermaceae), Ocimum sanctum (Lamiaceae), Moringa oleifera (Moringaceae), and Phyllanthus niruri (Euphorbiaceae) Using PIXE.

    PubMed

    Gowrishankar, Ramadurai; Kumar, Manish; Menon, Vinay; Divi, Sai Mangala; Saravanan, M; Magudapathy, P; Panigrahi, B K; Nair, K G M; Venkataramaniah, K

    2010-03-01

    Traditionally, Tinospora cordifolia (Willd.) Hook. F. & Thomson (Menispermaceae), Ocimum sanctum L. (Lamiaceae), Moringa oleifera Lam. (Moringaceae), and Phyllanthus niruri L. (Euphorbiaceae) are some of the commonly used medicinal plants in India for curing ailments ranging from common cold, skin diseases, and dental infections to major disorders like diabetes, hypertension, jaundice, rheumatism, etc. To understand and correlate their medicinal use, trace element studies on the aqueous extract of these medicinal plants have been carried out using particle-induced X-ray emission technique. A 2-MeV proton beam was used to identify and characterize major and minor elements namely Cl, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, and Sr in them. Results have revealed that these elements are present in varying concentrations in the selected plants. Notable results include very high concentrations of Cl, K, and Ca in all the leaf samples, appreciable levels of Mn in all plants, high Zn content in T. cordifolia, and the aqueous extract of Moringa leaves compared to others and relative higher concentrations of Cr in all the plants.

  12. Dissolved Concentrations, Sources, and Risk Evaluation of Selected Metals in Surface Water from Mangla Lake, Pakistan

    PubMed Central

    Saleem, Muhammad; Iqbal, Javed; Shah, Munir H.

    2014-01-01

    The present study is carried out for the assessment of water quality parameters and selected metals levels in surface water from Mangla Lake, Pakistan. The metal levels (Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, and Zn) were determined by flame atomic absorption spectrophotometry. Average levels of Cd, Co, Cr, Ni, and Pb were higher than the allowable concentrations set by national and international agencies. Principal component analysis indicated significant anthropogenic contributions of Cd, Co, Cr, Ni, and Pb in the water reservoir. Noncarcinogenic risk assessment was then evaluated using Hazard Quotient (HQing/derm) and Hazard Index (HIing/derm) following USEPA methodology. For adults and children, Cd, Co, Cr, and Pb (HQing > 1) emerged as the most important pollutants leading to noncarcinogenic concerns via ingestion route, whereas there was no risk via dermal contact of surface water. This study helps in establishing pollutant loading reduction goal and the total maximum daily loads, and consequently contributes to preserve public health and develop water conservation strategy. PMID:24744690

  13. Marine and freshwater concentration ratios (CR(wo-water)): review of Japanese data.

    PubMed

    Tagami, K; Uchida, S

    2013-12-01

    The water-to-organism (whole body) concentration ratio (CR(wo-water)), which is defined as the ratio of the concentration of a radionuclide in the biota (Bq kg(-1) fresh weight) to that in water (Bq L(-1)), has been used in mathematical models for environmental radiation protection. In the present paper, published global fallout (90)Sr, (137)Cs, (106)Ru, (144)Ce and (239+240)Pu activity concentration data and stable element concentration data for Na, K, Ca, Mg, Fe, Cu and Mn for organisms living in freshwater or seawater areas in Japan were collated. The data suitable for obtaining CR(wo-water) values were identified. CR(wo-water) values of (137)Cs were similar for pelagic fish, benthic fish and whitebait (immature, small fish) with respective geometric means of 30 (range: 4.4-69), 32 (range: 15-54) and 33 (range: 13-84). The calculated CR(wo-water) values of the other radionuclides and stable elements were generally similar to other previously reported values; with the exception that those for Ce were lower for marine biota and those of Cu were higher for freshwater fish. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Preliminary Results on FeCrAl Alloys in the As-received and Welded State Designed to Have Enhanced Weldability and Radiation Tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Gussev, Maxim N.; Hu, Xunxiang

    2015-09-30

    The present report summarizes and discusses the recent results on developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability. The alloys used for these investigations are modern FeCrAl alloys based on a Fe-13Cr-5Al-2Mo-0.2Si-0.05Y alloy (in wt.%, designated C35M). Development efforts have focused on assessing the influence of chemistry and microstructure on the fabricability and performance of these newly developed alloys. Specific focus was made to assess the weldability, thermal stability, and radiation tolerance.

  15. Deep Drawing Behavior of CoCrFeMnNi High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Bae, Jae Wung; Moon, Jongun; Jang, Min Ji; Ahn, Dong-Hyun; Joo, Soo-Hyun; Jung, Jaimyun; Yim, Dami; Kim, Hyoung Seop

    2017-09-01

    Herein, the deep drawability and deep drawing behavior of an equiatomic CoCrFeMnNi HEA and its microstructure and texture evolution are first studied for future applications. The CoCrFeMnNi HEA is successfully drawn to a limit drawing ratio (LDR) of 2.14, while the planar anisotropy of the drawn cup specimen is negligible. The moderate combination of strain hardening exponent and strain rate sensitivity and the formation of deformation twins in the edge region play important roles in successful deep drawing. In the meanwhile, the texture evolution of CoCrFeMnNi HEA has similarities with conventional fcc metals.

  16. Production of FR Tubing from Advanced ODS Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloy, Stuart Andrew; Lavender, Curt; Omberg, Ron

    2016-10-25

    Significant research is underway to develop LWR nuclear fuels with improved accident tolerance. One of the leading candidate materials for cladding are the FeCrAl alloys. New alloys produced at ORNL called Gen I and Gen II FeCrAl alloys possess excellent oxidation resistance in steam up to 1400°C and in parallel methods are being developed to produce tubing from these alloys. Century tubing continues to produce excellent tubing from FeCrAl alloys. This memo reports receipt of ~21 feet of Gen I FeCrAl alloy tubing. This tubing will be used for future tests including burst testing, mechanical testing and irradiation testing.

  17. Effect of High Pressure and Temperature on Structural, Thermodynamic and Thermoelectric Properties of Quaternary CoFeCrAl Alloy

    NASA Astrophysics Data System (ADS)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2018-03-01

    Employing first-principles based on density functional theory we have investigated the structural, magneto-electronic, thermoelectric and thermodynamic properties of quaternary Heusler alloy CoFeCrAl. Electronic band structure displays that CoFeCrAl is an indirect band gap semiconductor in spin-down state with the band gap value of 0.65 eV. Elastic constants reveal CoFeCrAl is a mechanically stable structure having a Debye temperature of 648 K along with a high melting temperature (2130 K). The thermoelectric properties in the temperature range 50-800 K have been calculated. CoFeCrAl possesses a high Seebeck coefficient of - 46 μV/K at room temperature along with the huge power factor of ˜ 4.8 (1012 μW cm-1 K-2 s-1) which maximizes the figure-of-merit up to ˜ 0.75 at 800 K temperature and suggesting CoFeCrAl as potential thermoelectric material. The effect of high pressure and high temperature on the thermal expansion, Grüneisen parameter and heat capacity were also studied by using the quasi-harmonic Debye model.

  18. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, S.; Shimakura, H.; Tahara, S.

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquidmore » Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.« less

  19. NEAMS-ATF M3 Milestone Report: Literature Review of Modeling of Radiation-Induced Swelling in Fe-Cr-Al Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xianming; Biner, Suleyman Bulent; Jiang, Chao

    2015-12-01

    Fe-Cr-Al steels are proposed as accident-tolerant-fuel (ATF) cladding materials in light water reactors due to their excellent oxidation resistance at high temperatures. Currently, the understanding of their performance in reactor environment is still limited. In this review, firstly we reviewed the experimental studies of Fe-Cr-Al based alloys with particular focus on the radiation effects in these alloys. Although limited data are available in literature, several previous and recent experimental studies have shown that Fe-Cr-Al based alloys have very good void swelling resistance at low and moderate irradiation doses but the growth of dislocation loops is very active. Overall, the behaviormore » of radiation damage evolution is similar to that in Fe-Cr ferritic/martensitic alloys. Secondly, we reviewed the rate theory-based modeling methods for modeling the coevolution of voids and dislocation loops in materials under irradiation such as Frenkel pair three-dimensional diffusion model (FP3DM) and cluster dynamics. Finally, we summarized and discussed our review and proposed our future plans for modeling radiation damage in Fe-Cr-Al based alloys.« less

  20. Sandwich-like nano-system for simultaneous removal of Cr(VI) and Cd(II) from water and soil.

    PubMed

    Wang, Dongfang; Zhang, Guilong; Dai, Zhangyu; Zhou, Linglin; Bian, Po; Zheng, Kang; Wu, Zhengyan; Cai, Dongqing

    2018-05-07

    In this work, a novel nano-system with sandwich-like structure was synthesized via face-to-face combination of two pieces of waste cotton fabrics (CFs) carrying ferrous sulfide (FeS) and carboxyl-functionalized ferroferric oxide (CFFM) respectively, and the obtained nano system was named as FeS/CFFM/CF. Therein, FeS has high reduction and adsorption capabilities for hexavalent chromium (Cr(VI)), CFFM possesses a high adsorption ability on cadmium ion (Cd(II)) through electrostatics attraction and chelation, and CF displays high immobilization ability for FeS and CFFM and adsorption performance on Cd(II). FeS/CFFM/CF could simultaneously remove Cr(VI) and Cd(II) from water, inhibit the uptake of Cr and Cd by fish and water spinach, ensuring the food safety. Besides, this technology could efficiently control migration of Cr(VI) and Cd(II) in sand-soil mixture, which was favorable to prevent their wide diffusion. Importantly, FeS/CFFM/CF possessed a high flexibility and could be conveniently produced with needed scale and shape, and easily separated from water and soil, displaying a promising approach to remediate Cr(VI)/Cd(II)-contaminated water and soil and a huge application potential.

  1. Peridotite carbonation at the leading edge of the mantle wedge: OmDP Site BT1

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Godard, M.; Johnson, K. T. M.; Okazaki, K.; Manning, C. E.; Urai, J. L.; Michibayashi, K.; Harris, M.; Coggon, J. A.; Teagle, D. A. H.; Phase I Science Party, T. O. D. P.

    2017-12-01

    Hole BT1B sampled 3 layers of carbonated peridotite (listvenite, 0-80, 100-180, 185-197 m) separated by 2 layers of carbonate-bearing serpentinite (80-100, 180-185 m), underlain by 100 m metasediment and metabasalt. Listvenites (magnesite and/or dolomite + quartz + Fe-oxyhydroxides + chromian spinel ± fuchsite rocks) replacing mantle peridotite at and near the base of the Samail ophiolite (Stanger 85, Wilde ea 02, Nasir ea 07, Falk & Kelemen 15: FK15) reveal processes of carbon transfer into the mantle wedge (Kelemen & Manning 15) and suggest methods for CO2 capture and storage (Kelemen ea 11). Near BT1, 10 to 200 m thick tabular listvenites interlayered with partly serpentinized harzburgite have contacts parallel to the basal thrust. Imprecise Rb/Sr and 40Ar/39Ar ages indicate listvenite formed during obduction (FK15). Listvenite-peridotite contacts are gradational over 1-2 m. The listvenite matrix is microcrystalline quartz + magnesite. Quartz recrystallized from opal as in listvenites worldwide (Akbulut ea 06, Boschi ea 09, Jurkovic ea 12, Aftabi & Zarrinkoub 13, Posukhova ea 13, Ulrich ea 14) consistent with 80-120°C from clumped isotopes and phase equilibria (FK15). Thus listvenite formed - and deformed ductilely - at low T. Ubiquitous carbonate-rich veins locally comprise >10% of core sections; many have antitaxial textures consistent with expansion due to crystallization pressure. Carbonate-rich veins cut serpentinite and listvenite; veins formed a mesh, followed by replacement of mesh cores. Despite variability in and around veins, average Mg/Si, Fe/Si, Al/Si, Fe/Mg, and Cr/Al in listvenite (75 whole rocks, 7712 XRF scanner points) are indistinguishable from average Samail peridotite. CaO (average 5 wt%, range 0-40) and strongly correlated Sr were added to peridotite, most likely from subducting sediment. Rare core with >10 vol% dolomite has higher Fe/Mg than peridotite, but the same Mg/Si. Thus Mg, Si, Al and Cr, plus Fe in most rocks, were largely immobile on a 1-10 m scale during introduction of C, O, lesser Ca, minor Fe, and fluid mobile trace elements (Godard ea AGU 17) during transformation of Mg-silicates to carbonate + quartz. With prior and coeval serpentinization, this implies 80% solid volume expansion compared to unaltered peridotite, in a zone >200 m thick at the leading edge of the mantle wedge.

  2. Purification of legumin-like proteins from Coffea arabica and Coffea racemosa seeds and their insecticidal properties toward cowpea weevil ( Callosobruchus maculatus ) (Coleoptera: Bruchidae).

    PubMed

    Coelho, Mirela Batista; Macedo, Maria Lígia Rodrigues; Marangoni, Sérgio; Silva, Desiree Soares da; Cesarino, Igor; Mazzafera, Paulo

    2010-03-10

    Legumin-like proteins from seeds of Coffea arabica (CaL-1 and CaL-2) and Coffea racemosa (CrL-1 and CrL-2) were characterized and isolated by gel filtration and reverse-phase chromatography. The insecticidal properties of the purified proteins were tested against Callosobruchus maculatus using artificial diets. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses indicated that CaL-1 is composed of two subunits of 33 and 24 kDa, while CaL-2, CrL-1, and CrL-2 were monomeric with a single band of 14 kDa. The LD(50) values were 0.5% (w/w) for CaL-1 and 0.3% (w/w) for CaL-2, CrL-1, and CrL-2. ED(50) at 0.3% was assessed for all protein concentrations. The legumin-like proteins were not digested by midgut homogenates of C. maculatus until 8 h of incubation. CaL-1 and CaL-2 ( C. arabica ) and CrL-1 and CrL-2 ( C. racemosa ) are chitin-binding proteins, and their insecticidal properties toward C. maculatus larvae might be related to their capacity to bind chitin present in the larval gut and their associated low digestibility.

  3. Fabrication of core-shell Fe{sub 3}O{sub 4}@MIL-100(Fe) magnetic microspheres for the removal of Cr(VI) in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qingxiang, E-mail: qxyangzz@163.com; Zhao, Qianqian; Ren, ShuangShuang

    Facile regeneration of an adsorbent is very important for commercial feasibility. One typical highly porous metal-organic framework (MOF) materials based on MIL-100(Fe) and magnetic iron oxide particles (denoted as MMCs) with diameter about of 350 nm were successfully synthesized. The growth of MIL-100(Fe) shell on the surface of Fe{sub 3}O{sub 4} was utilized precursor as crystal seed via in-situ step hydrothermal reaction. It is a simple way to obtain well organized core-shell MOF composites, compared to the step-by-step method. MMCs were firstly used to uptake of Cr(VI) anions in aqueous solution. Adsorption experiments were carried out in batch sorption mode investigatingmore » with the factors of contact time (0–1000 min), pH (from 2 to 12), dose of adsorbent (4–25 mg), and initial Cr(VI) concentration (range from 10 to 100 ppm). - Graphical abstract: One typical highly porous metal-organic framework (MOF) materials based on MIL-100(Fe) and magnetic iron oxide particles (denoted as MMCs) were successfully synthesized. Utilizing Fe{sub 3}O{sub 4} precursor as crystal seed to grow MIL-100(Fe) shell by in-situ step hydrothermal reaction. It is a simple way to obtain core-shell MOF composites. MMCs could effectively uptake of Cr(VI) anions in aqueous solution. - Highlights: • Fe{sub 3}O{sub 4}@MIL-100(Fe) composites with core-shell structure were successfully prepared through a simple method. • The influence factors on Cr(VI) adsorption by Fe{sub 3}O{sub 4}@MIL-100(Fe) were investigated. • Cr(VI) can efficiently adsorbed by Fe{sub 3}O{sub 4}@MIL-100(Fe) composites from aqueous solution.« less

  4. Characterization of High Damping Fe-Cr-Mo and Fe-Cr-Al Alloys for Naval Ships Application.

    DTIC Science & Technology

    1988-03-01

    austenitic , and martensitic. The high damping Fe-Cr-based alloys are closely related to ferritic stainless steels . Ferritic stainless steel consists of an Fe...cm reveme it Prectiaq #no ’uenf r oy o.o(a tflrowf U S9GO..P Damping; Ship Silencing; Ferritic Stainless Steels ; Ti-Ni 7 LhV I,. Cintunue on roere .r...decreased. E. METALLURGY OF THE IRON-CHROMIUM ALLOY SYSTEM 1. Physical Properties Stainless steels are divided into three main classes: ferritic

  5. Machine Casting of Ferrous Alloys

    DTIC Science & Technology

    1975-10-01

    casting from entrapped air. This fact, together with the lower amount of solidification shrinkage of semi-solid alloys , results in the now firmly...compositions and solidification ranges. Figures 5 and 6 illustrate -24- typical quenched microstructures obtained for several of the alloys investi...COBALT SUPERALLOY Cu - 10%Sn - 2%Zn Fe - 2.6%C - 3.2% Si Fe - 17%Cr - l% Si l%Mn - 1.1%C Fe - 17%Cr - USi l%Mn - 0.6%C Fe - 18.5%Cr - 9.5% Ni 0.08

  6. Distribution and chemistry of suspended particles from an active hydrothermal vent site on the Mid-Atlantic Ridge at 26°N

    NASA Astrophysics Data System (ADS)

    Trocine, Robert P.; Trefry, John H.

    1988-04-01

    Suspended particles were collected from an area of active hydrothermal venting at the Trans-Atlantic Geotraverse (TAG) Hydrothermal Field on the Mid-Atlantic Ridge and analyzed for Fe, Mn, Cd, Zn, Cu, V, Ni, Cr, Pb, Mg, Ca, Al and Si. Rapid advection of vent-derived precipitates produced a lens with total suspended matter (TSM) loadings of 14-60 μg/l at 200-700 m above the seafloor; TSM concentrations > 60 μg/l were observed only at near-vent sites. The distribution of suspended particles correlated well with increased dissolved Mn concentrations and particulate Fe values near the vent source. Particulate Fe values decreased linearly relative to TSM concentrations as hydrothermal precipitates mixed with background suspended matter. Near-vent precipitates were characterized by up to 35% Fe, 2% Zn, 0.6% Cu and > 100 μg/g Cd. In comparison to Fe, particulate Cd, Zn and Cu values decreased dramatically away from the vent source. This trend supports differential settling and/or dissolution of Cd-, Zn- and Cu-bearing phases. Particulate Mn and Fe values were inversely related with only 50 μg Mn/g in the near-vent particles. At near-vent sites, > 99% of the total Mn was in solution; this fraction decreased to 75-80% at background TSM values. In contrast to Cd, Zn and Cu, particulate V levels show a continuous, linear decrease with particulate Fe values. This trend is explained by adsorption of V on Fe-oxides in the vent plume. Scavenging of Cr, Pb and Mg by hydrothermal precipitates is also suggested by the data. Nickel and Al values were low in near-vent particles at < 100 and < 3 μg/g, respectively. The complementary behavior of dissolved Mn and particulate trace metals provides a useful framework for studying broad aspects of hydrothermal plume processes.

  7. Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding

    NASA Astrophysics Data System (ADS)

    Dryepondt, Sebastien; Unocic, Kinga A.; Hoelzer, David T.; Massey, Caleb P.; Pint, Bruce A.

    2018-04-01

    Low-Cr oxide dispersion strengthened (ODS) FeCrAl alloys were developed as accident tolerant fuel cladding because of their excellent oxidation resistance at very high temperature, high strength and improved radiation tolerance. Fe-12Cr-5Al wt.% gas atomized powder was ball milled with Y2O3+FeO, Y2O3+ZrO2 or Y2O3+TiO2, and the resulting powders were extruded at 950 °C. The resulting fine grain structure, particularly for the Ti and Zr containing alloys, led to very high strength but limited ductility. Comparison with variants of commercial PM2000 (Fe-20Cr-5Al) highlighted the significant impact of the powder consolidation step on the alloy grain size and, therefore, on the alloy mechanical properties at T < 500 °C. These low-Cr compositions exhibited good oxidation resistance at 1400 °C in air and steam for 4 h but could not form a protective alumina scale at 1450 °C, similar to observations for fine grained PM2000 alloys. The effect of alloy grain size, Zr and Ti additions, and impurities on the alloy mechanical and oxidation behaviors are discussed.

  8. Magnetic cluster expansion model for random and ordered magnetic face-centered cubic Fe-Ni-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrentiev, M. Yu., E-mail: Mikhail.Lavrentiev@ukaea.uk; Nguyen-Manh, D.; Dudarev, S. L.

    A Magnetic Cluster Expansion model for ternary face-centered cubic Fe-Ni-Cr alloys has been developed, using DFT data spanning binary and ternary alloy configurations. Using this Magnetic Cluster Expansion model Hamiltonian, we perform Monte Carlo simulations and explore magnetic structures of alloys over the entire range of compositions, considering both random and ordered alloy structures. In random alloys, the removal of magnetic collinearity constraint reduces the total magnetic moment but does not affect the predicted range of compositions where the alloys adopt low-temperature ferromagnetic configurations. During alloying of ordered fcc Fe-Ni compounds with Cr, chromium atoms tend to replace nickel rathermore » than iron atoms. Replacement of Ni by Cr in ordered alloys with high iron content increases the Curie temperature of the alloys. This can be explained by strong antiferromagnetic Fe-Cr coupling, similar to that found in bcc Fe-Cr solutions, where the Curie temperature increase, predicted by simulations as a function of Cr concentration, is confirmed by experimental observations. In random alloys, both magnetization and the Curie temperature decrease abruptly with increasing chromium content, in agreement with experiment.« less

  9. Zoned chondrules in Semarkona: Evidence for high-and low-temperature processing

    USGS Publications Warehouse

    Grossman, J.N.; Alexander, C.M. O'D.; Wang, Jingyuan; Brearley, A.J.

    2002-01-01

    At least 15% of the low-FeO chondrules in Semarkona (LL3.0) have mesostases that are concentrically zoned in Na, with enrichments near the outer margins. We have studied zoned chondrules using electron microprobe methods (x-ray mapping plus quantitative analysis), ion micropobe analysis for trace elements and hydrogen isotopes, cathodoluminescence imaging, and transmission electron microscopy in order to determine what these objects can tell us about the environment in which chondrules formed and evolved. Mesostases in these chondrules are strongly zoned in all moderately volatile elements and H (interpreted as water). Calcium is depleted in areas of volatile enrichment. Titanium and Cr generally decrease toward the chondrule surfaces, whereas Al and Si may either increase or decrease, generally in opposite directions to one another; Mn follows Na in some chondrules but not in others; Fe and Mg are unzoned. D/H ratios increase in the water-rich areas of zoned chondrules. Mesostasis shows cathodoluminescence zoning in most zoned chondrules, with the brightest yellow color near the outside. Mesostasis in zoned chondrules appears to be glassy, with no evidence for devitrification. Systematic variations in zoning patterns among pyroxene- and olivine-rich chondrules may indicate that fractionation of low- and high-Ca pyroxene played some role in Ti, Cr, Mn, Si, Al, and some Ca zoning. But direct condensation of elements into hot chondrules, secondary melting of late condensates into the outer portions of chondrules, and subsolidus diffusion of elements into warm chondrules cannot account for the sub-parallel zoning profiles of many elements, the presence of H2O, or elemental abundance patterns. Zoning of moderately volatile elements and Ca may have been produced by hydration of chondrule glass without devitrification during aqueous alteration on the parent asteroid. This could have induced structural changes in the glass allowing rapid diffusion and exchange of elements between altered glass and surrounding matrix and rim material. Calcium was mainly lost during this process, and other nonvolatile elements may have been mobile as well. Some unzoned, low-FeO chondrules appear to have fully altered mesostasis.

  10. Magnetic properties and element concentrations in lichens exposed to airborne pollutants released during cement production.

    PubMed

    Paoli, Luca; Winkler, Aldo; Guttová, Anna; Sagnotti, Leonardo; Grassi, Alice; Lackovičová, Anna; Senko, Dušan; Loppi, Stefano

    2017-05-01

    The content of selected elements (Al, As, Ca, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, S, Ti, V and Zn) was measured in samples of the lichen Evernia prunastri exposed for 30, 90 and 180 days around a cement mill, limestone and basalt quarries and urban and agricultural areas in SW Slovakia. Lichens transplanted around the investigated quarries and the cement mill rapidly (30 days) reflected the deposition of dust-associated elements, namely Ca (at the cement mill and the limestone quarry) and Fe, Ti and V (around the cement mill and the basalt quarry), and their content remained significantly higher throughout the whole period (30-180 days) with respect to the surrounding environment. Airborne pollutants (such as S) progressively increased in the study area from 30 to 180 days. The magnetic properties of lichen transplants exposed for 180 days have been characterized and compared with those of native lichens (Xanthoria parietina) and neighbouring bark, soil and rock samples, in order to test the suitability of native and transplanted samples as air pollution magnetic biomonitors. The magnetic mineralogy was homogeneous in all samples, with the exception of the samples from the basalt quarry. The transplants showed excellent correlations between the saturation remanent magnetization (Mrs) and the content of Fe. Native samples had a similar magnetic signature, but the values of the concentration-dependent magnetic parameters were up to two orders of magnitude higher, reflecting higher concentrations of magnetic particles. The concentrations of As, Ca and Cr in lichens correlated with Mrs values after neglecting the samples from the basalt quarry, which showed distinct magnetic properties, suggesting the cement mill as a likely source. Conversely, Ti and Mn were mostly (but not exclusively) associated with dust from the basalt quarry. It is suggested that the natural geological characteristics of the substrate may strongly affect the magnetic properties of lichen thalli. Taking this into account, the results of this study point out the suitability of lichens as air pollution magnetic biomonitors.

  11. Polyethylenimine functionalized Fe3O4/steam-exploded rice straw composite as an efficient adsorbent for Cr(VI) removal

    NASA Astrophysics Data System (ADS)

    Zhang, Shengli; Wang, Zhikai; Chen, Haoyu; Kai, Chengcheng; Jiang, Man; Wang, Qun; Zhou, Zuowan

    2018-05-01

    Polyethyleneimine functionalized Fe3O4/steam-exploded rice straw composite (Fe3O4-PEI-SERS), which combines magnetic separation with adsorption of PEI functionalized biosorbent, was successfully prepared via a simple glutaraldehyde crosslinking method. Its adsorption potential for the removal of Cr(VI) was systematically studied in batch mode. Results showed that Cr(VI) adsorption on Fe3O4-PEI-SESERS was highly pH-dependent, and the optimum pH was 2.0. The time to reach equilibrium was related to initial Cr(VI) concentration and was 1 and 6 h for 200 and 300 mg/L of Cr(VI), respectively. The adsorption system followed pseudo-second-order kinetic model and Langmuir isotherm. Its maximum adsorption capacity was 280.11, 317.46 and 338.98 mg/g at 25, 35 and 45 °C, respectively. The competitive uptake from coexisting ions (K+, Na+, Cu2+, Cl- and NO3-) was insignificant except SO42-. After six adsorption/desorption cycles, the adsorbent retained good adsorption capacity. The Cr(VI) removal involved its partial reduction into Cr(III). Due to the properties of high adsorption capacity, strong magnetic responsiveness, good reusability and Cr(VI) detoxification, the Fe3O4-PEI-SESERS has a potential application in Cr(VI) removal from wastewater.

  12. NiFeCo/Cu superlattices with high magnetoresistive sensitivity and weak hysteresis

    NASA Astrophysics Data System (ADS)

    Bannikova, N. S.; Milyaev, M. A.; Naumova, L. I.; Krinitsina, T. P.; Patrakov, E. I.; Proglyado, V. V.; Chernyshova, T. A.; Ustinov, V. V.

    2016-10-01

    The microstructure and the magetoresistive characteristics of [NiFeCo/Cu]8 superlattices prepared by magnetron sputtering with various thickness of the buffer NiFeCr layer and exhibiting a giant magnetoresistive effect have been studied. It has been found that these nanostructures are formed with a strong or weak hysteresis depending on the structure (bcc or fcc) formed in the NiFeCr buffer layer. The method of the substantial decrease in the hysteresis loop width of the magnetoresistance by using the composite Ta/NiFeCr buffer layer has been suggested.

  13. Tough cryogenic alloys from the Fe-Mn and Fe-Mn-Cr systems

    NASA Technical Reports Server (NTRS)

    Schanfein, M. J.; Zackay, V. F.; Morris, J. W., Jr.

    1974-01-01

    By adjusting composition, metastable gamma (austenite) and epsilon (hexagonal) martensite may be retained in Fe-Mn and Fe-Mn-Cr alloys and used to impact toughness through the TRIP mechanism. The resulting alloys have excellent toughness at cryogenic temperatures. The best alloys obtained to date are: Fe-20Mn, with sigma (sub y) = 79ksi and K sub IC = 275ksi square root of (in) at 77 K, and Fc-16Mn-8Cr, with sigma sub y = 85ksi and K sub IC = 72ksi square root of (in) at 77 K.

  14. Neutron Scattering Studies on Correlated Transition-Metal Oxides

    NASA Astrophysics Data System (ADS)

    Zhu, Mengze

    We have explored the collective phenomena of correlated electrons in two different transition-metal oxides, Ruddlesden-Popper type ruthenates (Sr,Ca) n+1RunO3n+1 and inverse-trirutile chromates Cr2MO6 (M = Te, Mo and W), using neutron scattering in combination with various material characterization methods. (Sr,Ca)n+1RunO 3n+1 are 4d transition-metal oxides exhibiting competing magnetic and electronic tendencies. The delicate balance among the competing states can be readily tuned by perturbations, such as chemical doping and magnetic field, which gives rise to emergent phenomena. We have investigated the effects of 3d transition-metal doping on the magnetic and electronic properties of layered ruthenates. For instance, the single-layer (n = 1) Sr2RuO4 is an unconventional superconductor possessing an incommensurate spin density wave instability with a wave vector qic= (0.3 0.3 L) driven by Fermi surface nesting. Upon Fe substitution, we have unveiled an unexpected commensurate spin density wave order with a propagation vector qc= (0.25 0.25 0) in Sr2Ru1-xFexO 4 (x = 0.03 and 0.05), despite the magnetic fluctuations persisting at qic. The latter feature is corroborated by the first principles calculations, which show that Fe doping barely changes the nesting vector of the Fermi surface. These results suggest that in addition to the known incommensurate magnetic instability, Sr2RuO4 is also in proximity to a commensurate magnetic tendency that can be stabilized via Fe doping. We have also studied the effects of a magnetic field. For example, the bilayer (n = 2) Ca3(Ru1-xTi x)2O7 (x = 0.03) is a G-type antiferromagnetic Mott insulator. We have revealed that a modest magnetic field can lead to colossal magnetoresistance arising from an anomalous collapse of the Mott insulating state. Such an insulator-to-metal transition is accompanied by magnetic and structural transitions. These findings call for deeper theoretical studies to reexamine the magnetic field tuning of Mott systems with magnetic and electronic instabilities, as a magnetic field usually stabilizes the insulating ground state in Mott-Hubbard systems. Cr2MO6 (M = Te, W and Mo) are spin dimer systems with the magnetic ions Cr3+ structurally dimerized favoring a singlet ground state. However, all three compounds investigated exhibit long-range antiferromagnetic orders at low temperature owing to the inter-dimer interactions. We have shown that the inter-dimer exchange coupling can be tuned from antiferromagnetic in Cr2TeO6 to ferromagnetic in Cr2WO6 and Cr2MoO6, by altering the degree of d-p orbital hybridization between W(Mo) and O atoms. The tunability of the inter-dimer interactions without introducing additional complexities such as structural distortions and carrier doping offers a rare opportunity to drive the system toward the quantum critical point (QCP) separating the dimer-based quantum disordered state and the classical long-range antiferromagnetic order. Moreover, we have unraveled Higgs amplitude modes in the magnetic excitation spectra of Cr2TeO6 and Cr2WO6, which are generally believed to survive only in systems close to the QCP where the ordered moment is suppressed significantly from its fully saturated value by quantum fluctuations. However, these two compounds are away from the QCP with the ordered moment reduced only by 24%. This study suggests that Higgs amplitude modes are not the privilege of ordered systems in the vicinity of the QCP, but may be common excitation modes in ordered spin dimer systems.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Preez, S. P.; Beukes, J. P.; Van Dalen, W. P. J.

    The production of ferrochrome (FeCr) is a reducing process. However, it is impossible to completely exclude oxygen from all of the high-temperature production process steps, which may lead to unintentional formation of small amounts of Cr(VI). The majority of Cr(VI) is associated with particles found in the off-gas of the high-temperature processes, which are cleaned by means of venturi scrubbers or bag filter dust (BFD) systems. BFD contains the highest concentration of Cr(VI) of all FeCr wastes. In this study, the solubility of Cr(VI) present in BFD was determined by evaluating four different BFD samples. The results indicate that themore » currently applied Cr(VI) treatment strategies of the FeCr producer (with process water pH ≤ 9) only effectively extract and treat the water-soluble Cr(VI) compounds, which merely represented approximately 31% of the total Cr(VI) present in the BFD samples evaluated. Extended extraction time, within the afore-mentioned pH range, proved futile in extracting sparingly-soluble and water-insoluble Cr(VI) species, which represented approximately 34% and 35% of the total Cr(VI), respectively. Due to the deficiencies of the current treatment strategies, it is highly likely that sparingly water-soluble Cr(VI) compounds will leach from waste storage facilities (e.g. slimes dams) over time. Therefore, it is critical that improved Cr(VI) treatment strategies be formulated, which should be an important future perspective for FeCr producers and researchers alike.« less

  16. 2nd Gen FeCrAl ODS Alloy Development For Accident-Tolerant Fuel Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N.; Massey, Caleb P.; Edmondson, Philip D.

    Extensive research at ORNL aims at developing advanced low-Cr high strength FeCrAl alloys for accident tolerant fuel cladding. One task focuses on the fabrication of new low Cr oxide dispersion strengthened (ODS) FeCrAl alloys. The first Fe-12Cr-5Al+Y 2O 3 (+ ZrO 2 or TiO 2) ODS alloys exhibited excellent tensile strength up to 800 C and good oxidation resistance in steam up to 1400 C, but very limited plastic deformation at temperature ranging from room to 800 C. To improve alloy ductility, several fabrication parameters were considered. New Fe-10-12Cr-6Al gas-atomized powders containing 0.15 to 0.5wt% Zr were procured and ballmore » milled for 10h, 20h or 40h with Y2O3. The resulting powder was then extruded at temperature ranging from 900 to 1050 C. Decreasing the ball milling time or increasing the extrusion temperature changed the alloy grain size leading to lower strength but enhanced ductility. Small variations of the Cr, Zr, O and N content did not seem to significantly impact the alloy tensile properties, and, overall, the 2nd gen ODS FeCrAl alloys showed significantly better ductility than the 1st gen alloys. Tube fabrication needed for fuel cladding will require cold or warm working associated with softening heat treatments, work was therefore initiated to assess the effect of these fabrications steps on the alloy microstructure and properties. This report has been submitted as fulfillment of milestone M3FT 16OR020202091 titled, Report on 2nd Gen FeCrAl ODS Alloy Development for the Department of Energy Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program.« less

  17. Chromian spinels in highly altered ultramafic rocks from the Sartohay ophiolitic mélange, Xinjiang, NW China

    NASA Astrophysics Data System (ADS)

    Qiu, Tian; Zhu, Yongfeng

    2018-06-01

    The Sartohay ophiolitic mélange is located in western Junggar (Xinjiang province, NW China), which is a major component of the core part of the Central Asian Orogenic Belt (CAOB). Chromian spinels in serpentinite, talc schist, carbonate-talc schist and listwaenite in Sartohay ophiolitic mélange retain primary compositions with Cr# of 0.39-0.65, Mg# = 0.48-0.67, and Fe3+# < 0.08. Chromian spinels in deformed listwaenite were initially transformed into Fe2+-rich chromite during shearing deformation followed by Fe3+-rich chromite at shallow levels. The Cr# and Fe3+# of Fe2+-rich chromite (Cr# = 0.59-0.86, Fe3+# = 0.01-0.12, Mg# = 0.35-0.61) and Fe3+-rich chromite (Cr# = 0.85-1.00, Fe3+# = 0.17-0.38, Mg# < 0.29) increase with decrease of Mg#. We propose a model to illustrate the evolution of chromian spinels in highly altered ultramafic rocks from the Sartohay ophiolitic mélange. Chromian spinels in serpentinite and talc schist were rimmed by Cr-magnetite, which was dissolved completely during transformation from serpentinite/talc schist to listwaenite. Chromian spinels were then transformed into Fe2+-rich chromite in shear zones, which characterized by high fluid/rock ratios. This Fe2+-rich chromite and/or chromian spinels could then be transformed into Fe3+-rich chromite in oxidizing conditions at shallow levels.

  18. Shape coexistence in neutron-rich nuclei near N=40

    NASA Astrophysics Data System (ADS)

    Carpenter, M. P.; Janssens, R. V. F.; Zhu, S.

    2013-04-01

    Recent data show that both the 2+ and 4+ levels in the even neutron-rich Cr and Fe isotopes decrease in excitation energy toward N=40. This observation, along with Coulomb excitation and lifetime data, strongly indicates an increase in collectivity near N=40 in contradiction with expectations based on first principles. A straightforward two-band mixing model is used to investigate the structure of these neutron-rich Cr and Fe nuclei. The approach takes advantage of the extensive data available for 60Fe to provide the parameter values with which to reproduce the experimental observations in the 58-64Cr and 60-68Fe isotopic chains. Comparisons between the model and the data suggest marked structural differences for the ground-state configurations of N=40 Cr and Fe.

  19. Optimizing Heat Treatment Process of Fe-13Cr-3Mo-3Ni Martensitic Stainless of Steel

    NASA Astrophysics Data System (ADS)

    Anwar, M. S.; Prifiharni, S.; Mabruri, E.

    2017-05-01

    The Fe-13Cr-3Mo-3Ni stainless steels are modified into martensitic stainless steels for steam turbine blades application. The working temperature of steam turbine was around 600 - 700 °C. The improvement properties of turbine blade material is necessary to maintain steam turbine work. The previous research revealed that it has corrosion resistance of Fe-13Cr-3Mo-3Ni which is better than 13Cr stainless steels in the chloride environment. In this work, the effect of heat treatment on microstructure and hardness of Fe-13Cr-3Mo-3Ni stainless steels has been studied. The steel was prepared by induction melting followed by hot forging. The steels were austenitized at 1000, 1050, and 1100 °C for 1 hour and were tempered at 600, 650, and 700 °C for 1 hour. The steels were then subjected to metallographic observation and hardness test of Rockwell C. The optimal heat treatment of Fe-13Cr-3Mo-3Ni was carried out austenitized in 1050 °C and tempered in 600 - 700 °C.

  20. Wear and corrosion resistance of laser-cladded Fe-based composite coatings on AISI 4130 steel

    NASA Astrophysics Data System (ADS)

    Fan, Li; Chen, Hai-yan; Dong, Yao-hua; Dong, Li-hua; Yin, Yan-sheng

    2018-06-01

    The wear and corrosion resistance of Fe72.2Cr16.8Ni7.3Mo1.6Mn0.7C0.2Si1.2 and Fe77.3Cr15.8Ni3.9Mo1.1Mn0.5C0.2Si1.2 coatings laser-cladded on AISI 4130 steel were studied. The coatings possess excellent wear and corrosion resistance despite the absence of expensive yttrium, tungsten, and cobalt and very little molybdenum. The microstructure mainly consists of dendrites and eutectic phases, such as duplex (γ+α)-Fe and the Fe-Cr (Ni) solid solution, confirmed via energy dispersive spectrometry and X-ray diffraction. The cladded Fe-based coatings have lower coefficients of friction, and narrower and shallower wear tracks than the substrate without the cladding, and the main wear mechanism is mild abrasive wear. Electrochemical test results suggest that the soft Fe72.2Cr16.8Ni7.3Mo1.6Mn0.7C0.2Si1.2 coating with high Cr and Ni concentrations has high passivation resistance, low corrosion current, and positive corrosion potential, providing a better protective barrier layer to the AISI 4130 steel against corrosion.

  1. MBE growth and FMR, BLS and MOKE studies of exchange coupling in Fe whisker/Cr/Fe(001) and in Fe/Cu/Fe(001) 'loose spin' structures

    NASA Astrophysics Data System (ADS)

    Heinrich, B.; From, M.; Cochran, J. F.; Kowalewski, M.; Atlan, D.; Celinski, Z.; Myrtle, K.

    1995-02-01

    The exchange coupling has been studied in structures which consist of two ferromagnetic layers separated by non-ferromagnetic spacers (trilayers). The exchange coupling was measured using FMR and BLS techniques in the temperature range 77-400 K. Two systems were investigated: (a) Fe whisker/Cr/Fe(001) and (b) Fe/Cr/Fe(001). The oscillatory thickness dependence of the exchange coupling through a spin-density wave Cr spacer will be discussed and compared with recent data obtained by other groups. Cu interlayers were deposited either in a pure form, or a single monolayer of {Cu}/{Fe} alloy ('loose spins') was inserted between two pure bcc Cu(001) layers. Several such 'loose spin' structures were engineered to test the behavior of 'loose spin' structures. It was found that the presence of Fe impurity atoms has a strong tendency to decrease the direct bilinear exchange coupling. The contribution of 'loose spins' to the exchange coupling can be made significant, and even dominant, by a suitable choice of the RKKY coupling energy between the 'loose spins' and the surrounding ferromagnetic layers.

  2. Irradiation of Wrought FeCrAl Tubes in the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linton, Kory D.; Field, Kevin G.; Petrie, Christian M.

    The Advanced Fuels Campaign within the Nuclear Technology Research and Development program of the Department of Energy Office of Nuclear Energy is seeking to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are one of the leading candidate materials for fuel cladding to replace traditional zirconium alloys because of the superior oxidation resistance of FeCrAl. However, there are still some unresolved questions regarding irradiation effects on the microstructure and mechanical properties of FeCrAl at end-of-life dose levels. In particular, there are concerns related to irradiation-induced embrittlement of FeCrAl alloys due to secondary phase formation. Tomore » address this issue, Oak Ridge National Laboratory has developed a new experimental design to irradiate shortened cladding tube specimens with representative 17×17 array pressurized water reactor diameter and thickness in the High Flux Isotope Reactor (HFIR) under relevant temperatures (300–350°C). Post-irradiation examination will include studies of dimensional change, microstructural changes, and mechanical performance. This report briefly summarizes the capsule design concept and the irradiation test matrix for six rabbit capsules. Each rabbit contains two FeCrAl alloy tube specimens. The specimens include Generation I and Generation II FeCrAl alloys with varying processing conditions, Cr concentrations, and minor alloying elements. The rabbits were successfully assembled, welded, evaluated, and delivered to the HFIR along with a complete quality assurance fabrication package. Pictures of the rabbit assembly process and detailed dimensional inspection of select specimens are included in this report. The rabbits were inserted into HFIR starting in cycle 472 (May 2017).« less

  3. Electrical transport properties in Fe-Cr nanocluster-assembled granular films

    NASA Astrophysics Data System (ADS)

    Wang, Xiong-Zhi; Wang, Lai-Sen; Zhang, Qin-Fu; Liu, Xiang; Xie, Jia; Su, A.-Mei; Zheng, Hong-Fei; Peng, Dong-Liang

    2017-09-01

    The Fe100-xCrx nanocluster-assembled granular films with Cr atomic fraction (x) ranging from 0 to 100 were fabricated by using a plasma-gas-condensation cluster deposition system. The TEM characterization revealed that the uniform Fe clusters were coated with a Cr layer to form a Fe-Cr core-shell structure. Then, the as-prepared Fe100-xCrx nanoclusters were randomly assembled into a granular film in vacuum environments with increasing the deposition time. Because of the competition between interfacial resistance and shunting effect of Cr layer, the room temperature resistivity of the Fe100-xCrx nanocluster-assembled granular films first increased and then decreased with increasing the Cr atomic fraction (x), and revealed a maximum of 2 × 104 μΩ cm at x = 26 at.%. The temperature-dependent longitudinal resistivity (ρxx), magnetoresistance (MR) effect and anomalous Hall effect (AHE) of these Fe100-xCrx nanocluster-assembled granular films were also studied systematically. As the x increased from 0 to 100, the ρxx of all samples firstly decreased and then increased with increasing the measuring temperature. The dependence of ρxx on temperature could be well addressed by a mechanism incorporated for the fluctuation-induced-tunneling (FIT) conduction process and temperature-dependent scattering effect. It was found that the anomalous Hall effect (AHE) had no legible scaling relation in Fe100-xCrx nanocluster-assembled granular films. However, after deducting the contribution of tunneling effect, the scaling relation was unambiguous. Additionally, the Fe100-xCrx nanocluster-assembled granular films revealed a small negative magnetoresistance (MR), which decreased with the increase of x. The detailed physical mechanism of the electrical transport properties in these Fe100-xCrx nanocluster-assembled granular films was also studied.

  4. Understanding the solidification and microstructure evolution during CSC-MIG welding of Fe–Cr–B-based alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorour, A.A., E-mail: ahmad.sorour@mail.mcgill.ca; Chromik, R.R., E-mail: richard.chromik@mcgill.ca; Gauvin, R., E-mail: raynald.gauvin@mcgill.ca

    2013-12-15

    The present is a study of the solidification and microstructure of Fe–28.2%Cr–3.8%B–1.5%Si–1.5%Mn (wt.%) alloy deposited onto a 1020 plain carbon steel substrate using the controlled short-circuit metal inert gas welding process. The as-solidified alloy was a metal matrix composite with a hypereutectic microstructure. Thermodynamic calculation based on the Scheil–Gulliver model showed that a primary (Cr,Fe){sub 2}B phase formed first during solidification, followed by an eutectic formation of the (Cr,Fe){sub 2}B phase and a body-centered cubic Fe-based solid solution matrix, which contained Cr, Mn and Si. Microstructure analysis confirmed the formation of these phases and showed that the shape of themore » (Cr,Fe){sub 2}B phase was irregular plate. As the welding heat input increased, the weld dilution increased and thus the volume fraction of the (Cr,Fe){sub 2}B plates decreased while other microstructural characteristics were similar. - Highlights: • We deposit Fe–Cr–B-based alloy onto plain carbon steel using the CSC-MIG process. • We model the solidification behavior using thermodynamic calculation. • As deposited alloy consists of (Cr,Fe){sub 2}B plates embedded in Fe-based matrix. • We study the effect of the welding heat input on the microstructure.« less

  5. Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTi x High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Guo, Jun; Huang, Xuefei; Huang, Weigang

    2017-07-01

    FeCrMoVTi x ( x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.

  6. Structural and magnetic diversity in cyano-bridged bi- and trimetallic complexes assembled from cyanometalates and [M(rac-CTH)]n+ building blocks (CTH = d,l-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane).

    PubMed

    Rodríguez-Diéguez, Antonio; Kivekäs, Raikko; Sillanpää, Reijo; Cano, Joan; Lloret, Francesc; McKee, Vickie; Stoeckli-Evans, Helen; Colacio, Enrique

    2006-12-25

    Seven new cyano-bridged heterometallic systems have been prepared by assembling [M'(rac-CTH)]n+ complexes (M' = CrIII, NiII, CuII), which have two cis available coordination positions, and [M(CN)6]3- (M = FeIII, CrIII) and [Fe(CN)2(bpy)2]+ cyanometalate building blocks. The assembled systems, which have been characterized by X-ray crystallography and magnetic investigations, are the molecular squares (meso-CTH-H2)[{Ni(rac-CTH)}2{Fe(CN)6)}2].5H2O (2) and [{Ni(rac-CTH)}2{Fe(CN)2(bpy)2}2](ClO4)4.H2O (5), the bimetallic chain [{Ni(rac-CTH)}2{Cr(CN)6)}2Ni(meso-CTH)].4H2O (3), the trimetallic chain [{Ni(rac-CTH)}2{Fe(CN)6)}2Cu(cyclam)]6H2O (4), the pentanuclear complexes [{Cu(rac-CTH}3{Fe(CN)6}2].2H2O (6) and [{Cu(rac-CTH)}3{Cr(CN)6)}2].2H2O (7), and the dinuclear complex [Cr(rac-CTH)(H2O)Fe(CN)6].2H2O (8). With the exception of 5, all compounds exhibit ferromagnetic interaction between the metal ions (JFeNi = 12.8(2) cm-1 for 2; J1FeCu= 13.8(2) cm-1 and J2FeCu= 3.9(4) cm-1 for 6; J1CrCu= 6.95(3) cm-1 and J2CrCu= 1.9(2)cm-1 for 7; JCrFe = 28.87(3) cm-1 for 8). Compound 5 exhibits the end of a transition from the high-spin to the low-spin state of the octahedral FeII ions. The bimetallic chain 3 behaves as a metamagnet with a critical field Hc = 300 G, which is associated with the occurrence of week antiferromagnetic interactions between the chains. Although the trimetallic chain 4 shows some degree of spin correlation along the chain, magnetic ordering does not occur. The sign and magnitude of the magnetic exchange interaction between CrIII and FeIII in compound 8 have been justified by DFT type calculations.

  7. Surfaces and Interfaces of Magnetoelectric Oxide Systems

    NASA Astrophysics Data System (ADS)

    Cao, Shi

    Magnetoelectric materials Cr2O3, hexagonal LuFeO 3 and YbFeO3 are studied in this thesis. The surface of chromia (Cr2O3) has a surface electronic structure distinct from the bulk. Our work shows that placing a Cr2O3 single crystal into a single domain state will result in net Cr2O 3 spin polarization at the boundary, even in the presence of a gold overlayer. From the Cr 2p3/2 X-ray magnetic circular dichroism signal, there is clear evidence of interface polarization with overlayers of both Pd and Pt on chromia. Cobalt thin films on Cr2O3(0001) show larger magnetic contrast in magnetic force microscopy indicating enhancement of perpendicular anisotropy induced by Cr2O3. The interfacial charge transfer between mechanically exfoliated few-layer graphene and Cr2O3(0001) surfaces has been investigated showing hole doping of few-layer graphene. Density functional theory calculations furthermore confirm the p-type nature of the graphene on top of chromia, and suggest that the chromia is able to induce a significant carrier spin polarization in the graphene layer. The surface termination and the nominal valence states for hexagonal LuFeO3 thin films were characterized. The stable surface terminates in a Fe-O layer. This is consistent wit the results of density functional calculations. The structural transition at about 1000 °C, from the hexagonal to the orthorhombic phase of LuFeO3, has been investigated in thin films of LuFeO3. The electronic structure for the conduction bands of both hexagonal and orthorhombic LuFeO3 thin films have been measured. Dramatic differences in both the spectral features and the linear dichroism are observed. We have also studied the ferrimagnetism in h-YbFeO3 by measuring the magnetization of Fe and Yb separately. The results directly show antialignment of magnetization of Yb and Fe ions in h-YbFeO3 at low temperature, with an exchange field on Yb of about 17 kOe. All ferrimagnets, by default, are magnetoelectrics. These findings directly demonstrate that ferrimagnetic order exists in h-YbFeO3.

  8. Fe(0)-Fe3O4 nanocomposites embedded polyvinyl alcohol/sodium alginate beads for chromium (VI) removal.

    PubMed

    Lv, Xiaoshu; Jiang, Guangming; Xue, Xiaoqin; Wu, Donglei; Sheng, Tiantian; Sun, Chen; Xu, Xinhua

    2013-11-15

    In this study, Fe(0)-Fe3O4 nanocomposites embedded polyvinyl alcohol (PVA)/sodium alginate (SA) beads were synthesized, which exhibited an excellent physical properties and catalytic reactivity, and a robust performance of post-separation (complete separation using a simple grille) and reusability (efficiency of 69.8% after four runs) in Cr(VI) removal. 5.0 wt% PVA with 1.5 wt% SA was the optimal proportion for beads molding, and the followed acidification and reduction treatments were critical to ensure high mechanical strength and high Cr(VI) removal ability of beads. Effects of Fe(0) and Fe3O4 mass fraction, initial pH and Cr(VI) concentration on final removal efficiency were also evaluated. Merely 0.075 wt% Fe(0) together with 0.30 wt% Fe3O4 was sufficient to deal with 20 mg L(-1) Cr(VI) solution. The efficiency decreased from 100 to 79.5% as initial Cr(VI) increased from 5 to 40 mg L(-1), while from 99.3 to 76.3% with increasing pH from 3.0 to 11.0. This work provides a practical and high-efficient method for heavy metal removal from water body, and simultaneously solves the problems in stabilization, separation and regeneration of Fe(0) nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Naturally occurring levels of elements in fishes as determined by PIXE and XRF methods

    NASA Astrophysics Data System (ADS)

    Tallandini, L.; Giacobini, F.; Turchetto, M.; Galassini, S.; Liu, Q. X.; Shao, H. R.; Moschini, G.; Moro, R.; Gialanella, G.; Ghermandi, G.; Cecchi, R.; Injuk, J.; Valković, V.

    1989-04-01

    Naturally occurring levels of S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Sb, Sr and Pb were measured in the gills, liver and muscles of fishes ( Zosterisessor ophiocephalus Pall) in the northwestern region of the Adriatic Sea. The overall performance of PIXE and XRF methods was tested by the analysis of standard reference materials. The mean concentration values for elements were calculated from the distribution of experimentally determined concentration values. The obtained data are discussed in the framework of metal metabolism and toxicology.

  10. Spectroscopic studies of different brands of cigarettes using laser-induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayyad, M. H.; Saleem, M.; Shah, M.

    In this work the technique of laser-induced breakdown spectroscopy (LIBS) has been used for the elemental analysis of cigarettes. For this purpose emission spectra have been measured of eleven different kinds of cigarette brands sold and/or produced in Pakistan. Analysis of the spectral peaks observed shows that Na, Mg, Al, K, Ca, Cr, Fe, Sr and Ba are contained in all brands. Exhibiting the LIBS results, the powerful potential of this method for the identification of the elemental content of cigarettes is demonstrated.

  11. Spectroscopic studies of different brands of cigarettes using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sayyad, M. H.; Saleem, M.; Shah, M.; Shaikh, N. M.; Baig, M. A.

    2008-05-01

    In this work the technique of laser-induced breakdown spectroscopy (LIBS) has been used for the elemental analysis of cigarettes. For this purpose emission spectra have been measured of eleven different kinds of cigarette brands sold and/or produced in Pakistan. Analysis of the spectral peaks observed shows that Na, Mg, Al, K, Ca, Cr, Fe, Sr and Ba are contained in all brands. Exhibiting the LIBS results, the powerful potential of this method for the identification of the elemental content of cigarettes is demonstrated.

  12. Determination of palladium and platinum by atomic absorption

    USGS Publications Warehouse

    Schnepfe, M.M.; Grimaldi, F.S.

    1969-01-01

    Palladium and platinum are determined by atomic absorption after fire-assay concentration into a gold bead. The limit of determination is ~0??06 ppm in a 20-g sample. Serious depressive interelement interferences are removed by buffering the solutions with a mixture of cadmium and copper sulphates with cadmium and copper concentrations each at 0??5%. Substantial amounts of Ag, Al, Au, Bi, Ca, Co, Cr, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn, and the platinum metals do not interfere in the atomic-absorption determination. ?? 1969.

  13. Uncertainty estimation in the determination of metals in superficial water by ICP-OES

    NASA Astrophysics Data System (ADS)

    Faustino, Mainara G.; Marques, Joyce R.; Monteiro, Lucilena R.; Stellato, Thamiris B.; Soares, Sabrina M. V.; Silva, Tatiane B. S. C.; da Silva, Douglas B.; Pires, Maria Aparecida F.; Cotrim, Marycel E. B.

    2016-07-01

    From validation studies, it was possible to estimate a measurement uncertainty of several elements such as Al, Ba, Ca, Cu, Cr, Cd, Fe, Mg, Mn, Ni and K in water samples from Guarapiranga Dam. These elements were analyzed by optical emission spectrometry with inductively coupled plasma (ICP-OES). The value of relative estimated uncertainties were between 3% and 15%. The greatest uncertainty contributions were analytical curve, and the recovery method, which were related with elements concentrations and the equipment response. Water samples analyzed were compared with CONAMA Resolution #357/2005.

  14. Guidance Document: Surface Soils Sampling for Munitions Residues in Military Live Fire Training Ranges: Canadian Protocol

    DTIC Science & Technology

    2012-12-01

    NA Boron B 0.5 NA Cadmium Cd 0.3 22 Calcium Ca 4.0 NA Chromium Cr 0.5 87 Cobalt Co 0.5 300 Copper Cu 0.4 91 Iron Fe 0.6 NA Lead Pb 2.5 600...on their susceptibility to initiation. Primary explosives, which include lead azide, lead styphnate, and mercury fulminate, are highly susceptible...ballistic properties. The degradation of NC leads to substances which speed up the degradation process, or else an autocatalytic reaction. To counteract

  15. Assessment of heavy metals in agricultural soils and their source apportionment: a Turkish district survey.

    PubMed

    Dartan, Güler; Taşpınar, Fatih; Toröz, İsmail

    2015-03-01

    This study aimed at investigating the impact of industrialization on the quality of agricultural soils in the district of Bandırma, Turkey, in terms of soil heavy metal contamination. Many soil and phosphogypsum samples were analyzed, and enrichment factors (EFs) were calculated. The average concentration gradient of metals in the soil (mg/kg) was As < Se < Sb < Pb < Co < Cd < V < Cu < Ni < Zn < Cr < P < Mn < Na < K < Mg < Fe < Ca < Al. According to the Pearson cross-correlation results for the element pairs of Fe-Mg (0.635), Fe-Cu (0.863), Fe-Cd (0.545), Cu-Cd (0.630), Mn-Cr (0.698), Mn-Al (0.523), Cr-Mg (0.543), Al-P (0.508), Na-K (0.616), and C-Zn (0.703), the metal enrichments in the soil were found to be moderately high and significant. In the majority of soil samples, Ni, Cu, Co, Zn, Se, Pb, and Cr were moderately enriched whereas Sb and Cd were extremely highly enriched. A factor analysis (FA) was applied to the cross-correlations of the elements to identify their sources. Six significant factors were extracted with the help of FA, explaining 77.22 % of the total variance, and the elements loaded on these factors were interpreted. The evaluations of the factors showed that the study area has been exposed to heavy metal pollution from anthropogenic sources considering the high levels of Cr, Cd, Cu, P, V, Zn, Ni, Sb, and Pb in the soil and the higher EFs falling in the range of 2.54-372.87. Moreover, the soil concentrations of Mn, Mg, Co, Al, K, and Ca were also high, but they were of lithogenic in origin according to the FA.

  16. Crystal structure and electrical conductivity of lanthanum-calcium chromites-titanates La 1-xCa xCr 1-yTi yO 3-δ ( x=0-1, y=0-1)

    NASA Astrophysics Data System (ADS)

    Vashook, V.; Vasylechko, L.; Zosel, J.; Gruner, W.; Ullmann, H.; Guth, U.

    2004-10-01

    Five series of perovskite-type compounds in the system La1-xCaxCr1-yTiyO3 with the nominal compositions y = 0 , x = 0 - 0.5 ; y = 0.2 , x = 0.2 - 0.8 ; y = 0.5 , x = 0.5 - 1.0 ; y = 0.8 , x = 0.6 - 1.0 and y = 1 , x = 0.8 - 1 were synthesized by a ceramic technique in air (final heating 1350 °C). On the basis of the X-ray analysis of the samples with (Ca/Ti)⩾1, the phase diagram of the CaTiO3-LaCrIIIO3-CaCrIVO3 quasi-ternary system was constructed. Extended solid solution with a wide homogeneity range is formed in the quasi-ternary system CaCrIVO3-CaTiO3-LaCrIIIO3. The solid solution La(1-x‧-y)Ca(x‧+y)CrIVx‧CrIII(1-x‧-y)TiyO3 exists by up to 0.6-0.7 mol fractions of CaCrIVO3 (x‧ < 0.6 - 0.7) at the experimental conditions. The crystal structure of the compounds is orthorhombic in the space group Pbnm at room temperature. The lattice parameters and the average interatomic distances of the samples within the solid solution ranges decrease uniformly with increasing Ca content. Outside the quasi-ternary system, the nominal compositions La0.1Ca0.9TiO3, La0.2Ca0.8TiO3, La0.4Ca0.6Cr0.2Ti0.8O3 and La0.3Ca0.7Cr0.2Ti0.8O3 in the system La1-xCaxCr1-yTiyO3 were found as single phases with an orthorhombic structure. In the temperature range between 850 and 1000 °C, the synthesized single-phase compositions are stable at pO2=6×10-16-0.21×105 Pa. Oxygen stoichiometry and electrical conductivity of the separate compounds were investigated as functions of temperature and oxygen partial pressure. The chemical stability of these oxides with respect to oxygen release during thermal dissociation decreases with increasing Ca-content. At 900 °C and oxygen partial pressure 1×10-15-0.21×105 Pa, the compounds with x > y (acceptor doped) are p-type semiconductors and those with x < y (donor doped) and x = y are n-type semiconductors. The type and level of electrical conductivity are functions of the concentration ratios of cations occupying the B-sites of the perovskite structures: [Cr3+]/[Cr4+] and [Ti4+]/[Ti3+]. The maximum electrical conductivity at 900 °C and pO2=10-15 Pa was found for the composition La0.1Ca0.9TiO3 (near 50 S/cm) and in air at 900 °C for La0.5Ca0.5CrO3 (close to 100 S/cm).

  17. Structural, thermal and photomagnetic properties of spin crossover [Fe(bpp)2]2+ salts bearing [Cr(L)(ox)2]- anions.

    PubMed

    Clemente-León, Miguel; Coronado, Eugenio; Giménez-López, M Carmen; Romero, Francisco M; Asthana, Saket; Desplanches, Cédric; Létard, Jean-François

    2009-10-14

    This paper is divided into two parts: in the first part, the influence of solvate molecules on the magnetic properties of spin crossover salts of [Fe(bpp)(2)][Cr(L)(ox)(2)]ClO(4) x nS (bpp = 2,6-bis(pyrazol-3yl)pyridine; L = 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen); ox = oxalate dianion; S = solvent) is analyzed. The second part is devoted to the photomagnetic properties of the previously reported [Fe(bpp)(2)][Cr(L)(ox)(2)](2) family of compounds. The study describes the crystal structure, differential scanning calorimetry (DSC) and magnetic properties of [Fe(bpp)(2)][Cr(bpy)(ox)(2)]ClO(4) x EtOH x 4 H(2)O (1) and [Fe(bpp)(2)][Cr(phen)(ox)(2)]ClO(4) x 1.5 EtOH x 4 H(2)O (2). Both salts are high-spin (HS) compounds. Desolvation of 1 yields a material exhibiting a gradual spin crossover that involves 50% of the Fe(2+) cations. Rehydration of this desolvated salt induces a significant increase in the low-spin (LS) population. Desolvation of 2 affords a material showing a more abrupt spin crossover with thermal hysteresis (T(1/2)(increasing) = 286 K and T(1/2)(decreasing) = 273 K). This material is not very sensitive to rehydration. The anhydrous compounds [Fe(bpp)(2)][Cr(bpy)(ox)(2)](2) (3) and [Fe(bpp)(2)][Cr(phen)(ox)(2)](2) (4) display some quantitative photomagnetic conversion with T(LIESST) values of 41 and 51 K, respectively. Kinetic parameters governing the photo-induced HS-LS relaxation process have been determined and used to reproduce the T(LIESST) curves.

  18. Aqueous solubility of Cr(VI) compounds in ferrochrome bag filter dust and the implications thereof

    DOE PAGES

    Du Preez, S. P.; Beukes, J. P.; Van Dalen, W. P. J.; ...

    2017-04-21

    The production of ferrochrome (FeCr) is a reducing process. However, it is impossible to completely exclude oxygen from all of the high-temperature production process steps, which may lead to unintentional formation of small amounts of Cr(VI). The majority of Cr(VI) is associated with particles found in the off-gas of the high-temperature processes, which are cleaned by means of venturi scrubbers or bag filter dust (BFD) systems. BFD contains the highest concentration of Cr(VI) of all FeCr wastes. In this study, the solubility of Cr(VI) present in BFD was determined by evaluating four different BFD samples. The results indicate that themore » currently applied Cr(VI) treatment strategies of the FeCr producer (with process water pH ≤ 9) only effectively extract and treat the water-soluble Cr(VI) compounds, which merely represented approximately 31% of the total Cr(VI) present in the BFD samples evaluated. Extended extraction time, within the afore-mentioned pH range, proved futile in extracting sparingly-soluble and water-insoluble Cr(VI) species, which represented approximately 34% and 35% of the total Cr(VI), respectively. Due to the deficiencies of the current treatment strategies, it is highly likely that sparingly water-soluble Cr(VI) compounds will leach from waste storage facilities (e.g. slimes dams) over time. Therefore, it is critical that improved Cr(VI) treatment strategies be formulated, which should be an important future perspective for FeCr producers and researchers alike.« less

  19. Dissolved organic matter degradation by sunlight coagulates organo-mineral colloids and produces low-molecular weight fraction of metals in boreal humic waters

    NASA Astrophysics Data System (ADS)

    Oleinikova, Olga V.; Drozdova, Olga Yu.; Lapitskiy, Sergey A.; Demin, Vladimir V.; Bychkov, Andrey Yu.; Pokrovsky, Oleg S.

    2017-08-01

    Photochemical degradation of dissolved organic matter (DOM) is recognized as the major driver of CO2 emission to the atmosphere from the inland waters of high latitudes. In contrast to numerous studies of photo-induced DOM transformation, the behavior of trace element (TE) during photodegradation of boreal DOM remains virtually unknown. Towards a better understanding of concentration, size fractionation and speciation change of DOM and TE in boreal waters subjected to solar radiation, we conducted on-site photo-degradation experiments in stream and bog water collected from a pristine zone of the Northern Karelia (Russian subarctic). The removal of Fe and Al occurred only in the bog water (90% and 50% respectively, over 5 days of reaction), whereas no detectable decrease of dissolved (<0.22 μm) Al and Fe concentration was observed in the boreal stream. A number of low-soluble TE linked to Fe-rich organo-mineral colloids followed the behavior of Fe during bog water exposure to sunlight: Al, P, Ti, V, Cr, As, Y, Zr, REEs, Hf, Th, Pb and U. The second group of elements (Li, B, Mg, Ca, Sr, Ba, Na, K, Rb, Si, Mn, Ni, Cu, Co, Cd, Sb) was indifferent to photodegradation of DOM and exhibited a non-systematic variation (±10-15% from the control) of <0.22 μm fraction in the course of sunlight exposure. The bog water insolation yielded a factor of 3 ± 1 increase of low molecular weight (LMW < 1 kDa) fraction of organic carbon, Al, Fe, U, Mg, Ca, Mn, Co, Ni, Sr, Cd and Ba after 200 h of sunlight exposure compared to the dark control. The LMW< 1 kDa fraction was preferentially enriched in Fe, Al, Ca, Mg and other divalent metals relative to Corg. The climate warming leading to water temperature rise in the boreal zone will intensify the Fe and Al hydroxide coagulation while increasing the production of LMW organic ligands and free metals and metal - organic complexes.

  20. Manganese containing layer for magnetic recording media

    DOEpatents

    Lambeth, David N.; Lee, Li-Lien; Laughlin, David E.

    1999-01-01

    The present invention provides for a magnetic recording media incorporating Mn-containing layers between a substrate and a magnetic layer to provide media having increased coercivity and lower noise. The Mn-containing layer can be incorporated in a rotating, translating or stationary recording media to operate in conjunction with magnetic transducing heads for recording and reading of magnetic data, as well as other applications. The magnetic recording medium of the invention preferably includes a Co or Co alloy film magnetic layer, and Mn-containing layer, preferably comprised of VMn, TiMn, MnZn, CrMnMo, CrMnW, CrMnV, and CrMnTi, and most preferably a CrMn alloy, disposed between the substrate and the magnetic layer to promote an epitaxial crystalline structure in the magnetic layer. The medium can further include seed layers, preferably polycrystalline MgO for longitudinal media, underlayers, and intermediate layers. Underlayers and intermediate layers are comprised of materials having either an A2 structure or a B2-ordered crystalline structure disposed between the seed layer and the magnetic layer. Materials having an A2 structure are preferably Cr or Cr alloys, such as CrV, CrMo, CrW and CrTi. Materials having a B2-ordered structure having a lattice constant that is substantially comparable to that of Cr, such as those preferably selected from the group consisting of NiAl, AILCo, FeAl, FeTi, CoFe, CoTi, CoHf, CoZr, NiTi, CuBe, CuZn, A-LMn, AlRe, AgMg, and Al.sub.2 FeMn.sub.2, and is most preferably FeAl or NiAl.

  1. Platelet aggregation caused by a partially purified jellyfish toxin from Carybdea rastonii.

    PubMed

    Azuma, H; Sekizaki, S; Satoh, A; Nakajima, T; Ishikawa, M

    1986-01-01

    A partially purified toxin (pCrTX) was obtained from the tentacles of the jellyfish, Carybdea rastonii. When pCrTX (3 X 10(-8) - 3 X 10(-7) g/ml) was added to citrated platelet-rich plasma, aggregation was produced in a concentration-dependent manner. Scanning electron microscopic examination revealed that both pCrTX and collagen produced aggregates of platelets possessing many pseudopods. The concentration which produced 50% aggregation for pCrTX was 1.8 X 10(-7) g/ml, as compared to 2.3 X 10(-6) g/ml for collagen. The pCrTX-induced aggregation was only slightly inhibited by indomethacin and quinacrine in concentrations sufficient to inhibit arachidonic acid- and collagen-induced aggregation. pCrTX was less active in washed platelets suspended in Ca2+ free medium, whereas the pCrTX-induced aggregation was significantly augmented in the presence of Ca2+. The augmentation of aggregation by Ca2+ was only slightly attenuated by pretreatment with 100 microM verapamil. pCrTX significantly increased the concentration of cytoplasmic free Ca2+ ([Ca2+]i) and depolarized the platelet membrane in concentrations that produced aggregation. The increase in [Ca2+]i caused by pCrTX was little affected by verapamil. The depolarization by pCrTX was unchanged in the presence or absence of Ca2+, or by sodium or potassium transport inhibitors. The movement of 22Na+ into platelets was significantly increased by pCrTX. This increase in the movement of 22N+ into platelets was unaffected by tetrodotoxin. On the other hand, pCrTX-induced aggregation, depolarization and the increase in [Ca2+]i were all significantly attenuated in low Na+ medium. These results suggest that pCrTX causes a massive depolarization by increasing cation permeability indiscriminately and this generalized depolarization permits an inward movement of calcium down an electrochemical gradient which, in turn triggers platelet aggregation.

  2. Effect of Humic Acid on the Removal of Chromium(VI) and the Production of Solids in Iron Electrocoagulation.

    PubMed

    Pan, Chao; Troyer, Lyndsay D; Liao, Peng; Catalano, Jeffrey G; Li, Wenlu; Giammar, Daniel E

    2017-06-06

    Iron-based electrocoagulation can be highly effective for Cr(VI) removal from water supplies. However, the presence of humic acid (HA) inhibited the rate of Cr(VI) removal in electrocoagulation, with the greatest decreases in Cr(VI) removal rate at higher pH. This inhibition was probably due to the formation of Fe(II) complexes with HA that are more rapidly oxidized than uncomplexed Fe(II) by dissolved oxygen, making less Fe(II) available for reduction of Cr(VI). Close association of Fe(III), Cr(III), and HA in the solid products formed during electrocoagulation influenced the fate of both Cr(III) and HA. At pH 8, the solid products were colloids (1-200 nm) with Cr(III) and HA concentrations in the filtered fraction being quite high, while at pH 6 these concentrations were low due to aggregation of small particles. X-ray diffraction and X-ray absorption fine structure spectroscopy indicated that the iron oxides produced were a mixture of lepidocrocite and ferrihydrite, with the proportion of ferrihydrite increasing in the presence of HA. Cr(VI) was completely reduced to Cr(III) in electrocoagulation, and the coordination environment of the Cr(III) in the solids was similar regardless of the humic acid loading, pH, and dissolved oxygen level.

  3. Preparation and electrical properties of Cr 2O 3 gate insulator embedded with Fe dot

    NASA Astrophysics Data System (ADS)

    Yokota, Takeshi; Kuribayashi, Takaaki; Murata, Shotaro; Gomi, Manabu

    2008-09-01

    We investigated the electrical properties of a metal (Au)/insulator (magneto-electric materials: Cr 2O 3)/magnetic materials (Fe)/tunnel layer (Cr 2O 3)/semiconductor (Si) capacitor. This capacitor shows the typical capacitance-voltage ( C- V) properties of an Si-MIS capacitor with hysteresis depending on the Fe dispersibility which is determined by the deposition condition. The C- V curve of the only sample having a 0.5 nm Fe layer was seen to have a hysteresis window with a clockwise trace, indicating that electrons have been injected into the ultra-thin Fe layer. The samples having Fe layers of other thicknesses show a counterclockwise trace, which indicates that the film has mobile ionic charges due to the dispersed Fe. These results indicated that the charge-injection site, which works as a memory, in the Cr 2O 3 can be prepared by Fe insertion, which is deposited using well-controlled conditions. The results also revealed the possibility of an MIS capacitor containing both ferromagnetic materials and an ME insulating layer in a single system.

  4. High Curie temperature and coercivity performance of Fe3-xCrxSe4 nanostructures.

    PubMed

    Li, Shao-jie; Li, Da; Liu, Wei; Zhang, Zhidong

    2015-03-12

    Monoclinic Fe3-xCrxSe4 nanostructures (0≤x≤2.5) were synthesized using a high-temperature solution chemical method. With increasing the Cr doping, the peak positions in the X-ray diffraction (XRD) patterns of Fe3-xCrxSe4 nanostructures slightly shifted to lower 2θ values due to the changes in lattice parameters. Expansions in the unit cell volumes of Fe3-xCrxSe4 nanostructures (x>0.3) may have been responsible for enhancing the ferromagnetic (FM) interaction between magnetic ions, which resulted in a significant increase in the Curie temperature (TC) from 331 K for Fe3Se4 to 429 K for FeCr2Se4, distinctly differing from the magnetic properties of the corresponding bulk materials. A room-temperature coercivity (HC) analysis showed an obvious increase from 3.2 kOe for Fe3Se4 to 12 kOe for Fe2.3Cr0.7Se4 nanostructure, but gradually decreased upon further increasing the Cr content.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Zhiqian; Yamamoto, Yukinori

    The processability of a Mo-containing FeCrAl alloy (Fe-13Cr-5.2Al-2Mo base, in wt%), developed for accident-tolerant nuclear fuel claddings, was evaluated through a stepwise rolling process at 400 °C under two different inter-pass annealing conditions (i.e., 650 °C for 1 h and at 870 °C for 30 min). The inter-pass annealing at 870 °C easily softened the FeCrAl alloy; however, it led to the formation of coarse grains of ~200 µm. On the other hand, the FeCrAl alloy maintained elongated, deformed grains with the inter-pass annealing at 650 °C, but the annealed samples showed relatively high deformation resistance and strong texture. Importantmore » aspects concerning the processability and microstructural control of FeCrAl alloys, such as deformation inhomogeneity, texture development, and grain coarsening, were discussed. Optimized processing conditions were recommended, based on the results, to achieve desirable microstructures with balanced processability and mechanical properties.« less

  6. Electronic structure of Cr doped Fe3O4 thin films by X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Chi-Liang; Dong, Chung-Li; Asokan, Kandasami; Chern, G.; Chang, C. L.

    2018-04-01

    Present study reports the electronic structures of Cr doped Fe3O4 (Fe3-xCrxO4 (0 ≤ x ≤ 3) grown on MgO (100) substrates in the form of thin films fabricated by a plasma-oxygen assisted Molecular Beam Epitaxy (MBE). X-ray absorption near-edge structure (XANES) spectra at Cr & Fe L-, and O K-edges were used to understand the electronic structure: changes in the bonding nature, valence states, and site occupancies. Cr doping in Fe3O4 results in the change of charge transfer, crystal structure, and selective occupation of ions in octahedral and tetrahedral sites. Such change modifies the electrical and magnetic properties due to the covalency of Cr ions. The physical and chemical properties of ferrites are strongly dependent on the lattice site, ion size of dopant, and magnetic nature present at different structural symmetry of the spinel structure.

  7. Database on Performance of Neutron Irradiated FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Briggs, Samuel A.; Littrell, Ken

    The present report summarizes and discusses the database on radiation tolerance for Generation I, Generation II, and commercial FeCrAl alloys. This database has been built upon mechanical testing and microstructural characterization on selected alloys irradiated within the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to doses of 13.8 dpa at temperatures ranging from 200°C to 550°C. The structure and performance of these irradiated alloys were characterized using advanced microstructural characterization techniques and mechanical testing. The primary objective of developing this database is to enhance the rapid development of a mechanistic understanding on the radiation tolerancemore » of FeCrAl alloys, thereby enabling informed decisions on the optimization of composition and microstructure of FeCrAl alloys for application as an accident tolerant fuel (ATF) cladding. This report is structured to provide a brief summary of critical results related to the database on radiation tolerance of FeCrAl alloys.« less

  8. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    DOE PAGES

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan; ...

    2016-07-19

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less

  9. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less

  10. Dislocation loop formation in model FeCrAl alloys after neutron irradiation below 1 dpa

    DOE PAGES

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; ...

    2017-08-01

    FeCrAl alloys with varying compositions and microstructures are under consideration for accident-tolerant fuel cladding, but limited details exist on dislocation loop formation and growth for this class of alloys under neutron irradiation. Four model FeCrAl alloys with chromium contents ranging from 10.01 to 17.51 wt % and alunimum contents of 4.78 to 2.93 wt % were neutron irradiated to doses of 0.3–0.8 displacements per atom (dpa) at temperatures of 335–355°C. On-zone STEM imaging revealed a mixed population of black dots and larger dislocation loops with either a/2< 111 > or a< 100 > Burgers vectors. Weak composition dependencies were observedmore » and varied depending on whether the defect size, number density, or ratio of defect types was of interest. Here, the results were found to mirror those of previous studies on FeCrAl and FeCr alloys irradiated under similar conditions, although distinct differences exist.« less

  11. Dislocation loop formation in model FeCrAl alloys after neutron irradiation below 1 dpa

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; Yamamoto, Yukinori; Howard, Richard H.

    2017-11-01

    FeCrAl alloys with varying compositions and microstructures are under consideration for accident-tolerant fuel cladding, but limited details exist on dislocation loop formation and growth for this class of alloys under neutron irradiation. Four model FeCrAl alloys with chromium contents ranging from 10.01 to 17.51 wt % and aluminum contents of 4.78 to 2.93 wt % were neutron irradiated to doses of 0.3-0.8 displacements per atom (dpa) at temperatures of 335-355 °C. On-zone STEM imaging revealed a mixed population of black dots and larger dislocation loops with either a / 2 〈 111 〉 or a 〈 100 〉 Burgers vectors. Weak composition dependencies were observed and varied depending on whether the defect size, number density, or ratio of defect types was of interest. Results were found to mirror those of previous studies on FeCrAl and FeCr alloys irradiated under similar conditions, although distinct differences exist.

  12. Effect of H2O on metal-silicate partitioning of Ni, Co, V, Cr, Mn and Fe: Implications for the oxidation state of the Earth and Mars

    NASA Astrophysics Data System (ADS)

    Clesi, V.; Bouhifd, M. A.; Bolfan-Casanova, N.; Manthilake, G.; Fabbrizio, A.; Andrault, D.

    2016-11-01

    This study investigates the metal-silicate partitioning of Ni, Co, V, Cr, Mn and Fe during core mantle differentiation of terrestrial planets under hydrous conditions. For this, we equilibrated a molten hydrous CI chondrite model composition with various Fe-rich alloys in the system Fe-C-Ni-Co-Si-S in a multi-anvil over a range of P, T, fO2 and water content (5-20 GPa, 2073-2500 K, from 1 to 5 log units below the iron-wüstite (IW) buffer and for XH2O varying from 500 ppm to 1.5 wt%). By comparing the present experiments with the available data sets on dry systems, we observes that the effect of water on the partition coefficients of moderately siderophile elements is only moderate. For example, for iron we observed a decrease in the partition coefficient of Fe (Dmet/silFe) from 9.5 to 4.3, with increasing water content of the silicate melt, from 0 to 1.44 wt%, respectively. The evolution of metal-silicate partition coefficients of Ni, Co, V, Cr, Mn and Fe are modelled based on sets of empirical parameters. These empirical models are then used to refine the process of core segregation during accretion of Mars and the Earth. It appears that the likely presence of 3.5 wt% water on Mars during the core-mantle segregation could account for ∼74% of the FeO content of the Martian mantle. In contrast, water does not play such an important role for the Earth; only 4-6% of the FeO content of its mantle could be due to the water-induced Fe-oxidation, for a likely initial water concentration of 1.8 wt%. Thus, in order to reproduce the present-day FeO content of 8 wt% in the mantle, the Earth could initially have been accreted from a large fraction (between 85% and 90%) of reducing bodies (similar to EH chondrites), with 10-15% of the Earth's mass likely made of more oxidized components that introduced the major part of water and FeO to the Earth. This high proportion of enstatite chondrites in the original constitution of the Earth is consistent with the 17O,48Ca,50Ti,62Ni and 90Mo isotopic study by Dauphas et al. (2014). If we assume that the CI-chondrite was oxidized during accretion, its intrinsically high water content suggests a maximum initial water concentration in the range of 1.2-1.8 wt% for the Earth, and 2.5-3.5 wt% for Mars.

  13. Hexavalent chromium removal by chitosan modified-bioreduced nontronite

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Dong, Hailiang; Zeng, Qiang; Zhang, Li; Rengasamy, Karthikeyan

    2017-08-01

    Recent efforts have focused on structural Fe(II) in chemically or biologically reduced clay minerals to immobilize Cr(VI) from aqueous solution, but the coulombic repulsion between the negatively charged clay surface and the polyanionic form of Cr(VI), e.g., dichromate, can hinder the effectiveness of this process. The purpose of this study was to investigate the efficiency and mechanism of Cr(VI) removal by a charge-reversed nontronite (NAu-2), an Fe-rich smectite. Chitosan, a linear polysaccharide derived from chitin found in soil and groundwater, was used to reverse the charge of NAu-2. Intercalation of chitosan into NAu-2 interlayer increased the basal d-spacing of NAu-2 from 1.23 nm to 1.83 nm and zeta potential from -27.17 to +34.13 mV, with the amount of increase depending on chitosan/NAu-2 ratio. Structural Fe(III) in chitosan-exchanged NAu-2 was then biologically reduced by an iron-reducing bacterium Shewanella putrefaciens CN32 in bicarbonate buffer with lactate as the sole electron donor, with and without electron shuttle, AQDS. Without AQDS, the extent of Fe(III) reduction increased from the lowest (∼9%) for the chitosan-free NAu-2 to the highest (∼12%) for the highest chitosan loaded NAu-2 (3:1 ratio). This enhancement of Fe(III) reduction was likely due to the attachment of negatively charged bacterial cells to charge-reversed (e.g., positively charged) NAu-2 surfaces, facilitating the electron transfer between cells and structural Fe(III). With AQDS, Fe(III) reduction extent doubled relative to those without AQDS, but the enhancement effect was similar across all chitosan loadings, suggesting that AQDS was more important than chitosan in enhancing Fe(III) bioreduction. Chitosan-exchanged, biologically reduced NAu-2 was then utilized for removing Cr(VI) in batch experiments with three consecutive spikes of 50 μM Cr. With the first Cr spike, the rate of Cr(VI) removal by charged-reversed NAu-2 that was bioreduced without and with AQDS was ∼1.5 and ∼6 μmol g-1 h-1, respectively. However, the capacity of these clays to remove Cr(VI) was progressively exhausted upon addition of subsequent Cr spikes. X-ray photoelectron spectroscopy (XPS) revealed that the reduction product of Cr(VI) by chitosan-exchanged-bioreduced NAu-2 was Cr(III), possibly in the form of Cr(OH)3. In summary, our results demonstrated that the combined effects of sorption and redox reactions by charge-reversed bioreduced nontronite may offer a feasible in-situ approach for remediating Cr(VI) polluted soil and groundwater.

  14. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 under Sodium Chloride Aqueous Conditions

    DOE PAGES

    Rodriguez, Alvaro A.; Tylczak, Joseph H.; Gao, Michael C.; ...

    2018-01-01

    The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pittingmore » corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi 2 Mo 0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi 2 and stainless steel 316L.« less

  15. Synthesis and spectral characterizations of trivalent ions (Cr3+, Fe3+) doped CdO nanopowders

    NASA Astrophysics Data System (ADS)

    Aswani, T.; Babu, B.; Pushpa Manjari, V.; Joyce Stella, R.; Thirumala Rao, G.; Rama Krishna, Ch.; Ravikumar, R. V. S. S. N.

    2014-03-01

    Trivalent transition metal ions (Cr3+, Fe3+) doped CdO nanopowders via sonication in the presence of Sodium lauryl sulfate as stabilizing agent were synthesized and characterized. Powder XRD studies indicate that the obtained CdO has a cubic phase and concluded that the trivalent ions doping induced the lattice constants to change some extent. Optical absorption spectra exhibited the characteristic bands of Cr3+ and Fe3+ ions in octahedral site symmetry. Crystal field (Dq) and inter-electronic repulsion (B and C) parameters are evaluated for Cr3+ doped CdO nanopowders as Dq = 1540, B = 619 and C = 3327 cm-1 and for Fe3+ doped CdO nanopowders Dq = 920, B = 690, C = 2750 cm-1. EPR spectra of the Cr3+ and Fe3+ doped CdO nanopowders exhibited resonances at g = 1.973 and g = 2 respectively which indicate distorted octahedral site for both ions with the host. Photoluminescence spectra shows the emission bands in violet and bluish green regions for Cr3+ doped CdO, ultraviolet and blue emissions for Fe3+ doped CdO nanopowders. The CIE chromaticity coordinates were also evaluated from the emission spectrum. FT-IR spectra indicate the presence of various functional groups of host lattice.

  16. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 under Sodium Chloride Aqueous Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Alvaro A.; Tylczak, Joseph H.; Gao, Michael C.

    The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pittingmore » corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi 2 Mo 0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi 2 and stainless steel 316L.« less

  17. Chromium Grain-boundary Segregation and Effect of Ion Beam Cleaning on Fe-Ni-Cr Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saraf, Laxmikant V.

    2011-04-01

    The grain boundaries play important role to control the mechanical strength of ternary alloys. From spacecrafts to naval vessels to nuclear reactors, stress corrosion cracking, brittleness, oxidation mostly originates at the grain boundaries and cause long term structural stability problems in most of the metallic structures [1]. Fe-Ni-Cr based ternary metal alloys have been widely studied for more than fifty years [2, 3]. Despite of vast amount of research, chromium diffusion in stainless steel or other Ni-Fe-Cr based ternary alloys is still an open scientific problem with challenges in structural stability and corrosion resistance [4]. Particularly, austenite Fe-Ni-Cr is lookedmore » upon favorably in space and jet engine industry for their improved resistance to stress corrosion cracking [5]. In solid oxide fuel cells (SOFC), Ni-alloys are frequently used as interconnects and seals [6]. In this communication, simultaneous energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) mapping is utilized to study chemical and structural aspects of chromium segregation in Fe-Ni-Cr alloy. A focused Ga-ion beam is also utilized to study the effect of ion beam cleaning on EBSD image quality (IQ) and inverse pole figure (IPF) maps of Fe-Ni-Cr alloy.« less

  18. The Cross-Sectional Investigation of Oxide Scale FeCr Alloys and Commercial Ferritic Steel Implanted with Lanthanum and Titanium Dopants after Oxidation Test at 900°C

    NASA Astrophysics Data System (ADS)

    Saryanto, Hendi; Sebayang, Darwin; Untoro, Pudji; Sujitno, Tjipto

    2018-03-01

    The cross-sectional examinations of oxide scales formed by oxidation on the surface of FeCr alloys and Ferritic Steel that implanted with lanthanum and titanium dopants were observed and investigated. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) has been used to study the cross-sectional oxides produced by specimens after oxidation process. X-ray diffraction (XRD) analysis was used to strengthen the analysis of the oxide scale morphology, oxide phases and oxidation products. Cross-sectional observations show the effectiveness of La implantation for improving thinner and stronger scale/substrate interface during oxidation process. The result shows that the thickness of oxide scales formed on the surface of La implanted FeCr alloy and ferritic steel was found less than 3 μm and 300 μm, respectively. The oxide scale formed on the surface of La implanted specimens consisted roughly of Cr2O3 with a small amount of FeO mixture, which indicates that lanthanum implantation can improve the adherence, reduce the growth of the oxide scale as well as reduce the Cr evaporation. On the other side, the oxide scale formed on the surface of FeCr alloys and ferritic steel that implanted with titanium dopant was thicker, indicating that significant increase in oxidation mass gain. It can be noticed that titanium implantation ineffectively promotes Cr rich oxide. At the same time, the amount of Fe increased and diffused outwards, which caused the formation and rapid growth of FeO.

  19. Mössbauer study of oxide films of Fe-, Sn-, Cr- doped zirconium alloys during corrosion in autoclave

    NASA Astrophysics Data System (ADS)

    Filippov, V. P.; Bateev, A. B.; Lauer, Yu. A.

    2016-12-01

    Mössbauer investigations were used to compare iron atom states in oxide films of binary Zr-Fe, ternary Zr-Fe-Cu and quaternary Zr-Fe-Cr-Sn alloys. Oxide films are received in an autoclave at a temperature of 350-360 °C and at pressure of 16.8 MPa. The corrosion process decomposes the intermetallic precipitates in alloys and forms metallic iron with inclusions of chromium atoms α-Fe(Cr), α-Fe(Cu), α-Fe 2O3 and Fe 3O4 compounds. Some iron ions are formed in divalent and in trivalent paramagnetic states. The additional doping influences on corrosion kinetics and concentration of iron compounds and phases formed in oxide films. It was shown the correlation between concentration of iron in different chemical states and corrosion resistance of alloys.

  20. Effect of one-step recrystallization on the grain boundary evolution of CoCrFeMnNi high entropy alloy and its subsystems.

    PubMed

    Chen, Bo-Ru; Yeh, An-Chou; Yeh, Jien-Wei

    2016-02-29

    In this study, the grain boundary evolution of equiatomic CoCrFeMnNi, CoCrFeNi, and FeCoNi alloys after one-step recrystallization were investigated. The special boundary fraction and twin density of these alloys were evaluated by electron backscatter diffraction analysis. Among the three alloys tested, FeCoNi exhibited the highest special boundary fraction and twin density after one-step recrystallization. The special boundary increment after one-step recrystallization was mainly affected by grain boundary velocity, while twin density was mainly affected by average grain boundary energy and twin boundary energy.

  1. Vacancy-induced spin-glass behavior of Prussian blue analogue Fe II1.1Cr IIx[Cr III (CN) 6] 0.6- x· nH 2O nanowires

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Yao, Jinli; Xue, Desheng

    2010-09-01

    Prussian blue analogue Fe II1.1Cr IIx[Cr III(CN) 6] 0.6- x· nH 2O nanowires were synthesized by electrodeposition. The magnetic properties investigation indicates that the nanowires exhibit cluster spin-glass behavior, which undergoes a magnetic transition to a frozen state below about 62 K. Spin disorder arising from reduced coordination and broken exchange bonds between spin centers due to the structural defects may be the reason that causes the spin-glass freezing behavior. The negative magnetization observed at temperature lower than the compensation temperature ( Tcomp˜43 K) at a field of 10 Oe may be due to the different temperature dependences of the ferromagnetic site Fe-Cr and antiferromagnetic site Cr-Cr.

  2. Spin-orbit torque in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO epitaxial magnetic heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Zhenchao; Kim, Junyeon; Sukegawa, Hiroaki

    2016-05-15

    We study the spin-orbit torque (SOT) effective fields in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO magnetic heterostructures using the adiabatic harmonic Hall measurement. High-quality perpendicular-magnetic-anisotropy CoFeAl layers were grown on Cr and Ru layers. The magnitudes of the SOT effective fields were found to significantly depend on the underlayer material (Cr or Ru) as well as their thicknesses. The damping-like longitudinal effective field (ΔH{sub L}) increases with increasing underlayer thickness for all heterostructures. In contrast, the field-like transverse effective field (ΔH{sub T}) increases with increasing Ru thickness while it is almost constant or slightly decreases with increasing Cr thickness. The sign of ΔH{submore » L} observed in the Cr-underlayer devices is opposite from that in the Ru-underlayer devices while ΔH{sub T} shows the same sign with a small magnitude. The opposite directions of ΔH{sub L} indicate that the signs of spin Hall angle in Cr and Ru are opposite, which are in good agreement with theoretical predictions. These results show sizable contribution from SOT even for elements with small spin orbit coupling such as 3d Cr and 4d Ru.« less

  3. Sliding friction and wear behavior of high entropy alloys at room and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Kadhim, Dheyaa

    Structure-tribological property relations have been studied for five high entropy alloys (HEAs). Microhardness, room and elevated (100°C and 300°C) temperature sliding friction coefficients and wear rates were determined for five HEAs: Co0.5 Cr Cu0.5 Fe Ni1.5 Al Ti0.4; Co Cr Fe Ni Al0.25 Ti0.75; Ti V Nb Cr Al; Al0.3CoCrFeNi; and Al0.3CuCrFeNi2. Wear surfaces were characterized with scanning electron microscopy and micro-Raman spectroscopy to determine the wear mechanisms and tribochemical phases, respectively. It was determined that the two HEAs Co0.5 Cr Cu0.5 Fe Ni1.5 Al Ti0.4 and Ti V Nb Cr Al exhibit an excellent balance of high hardness, low friction coefficients and wear rates compared to 440C stainless steel, a currently used bearing steel. This was attributed to their more ductile body centered cubic (BCC) solid solution phase along with the formation of tribochemical Cr oxide and Nb oxide phases, respectively, in the wear surfaces. This study provides guidelines for fabricating novel, low-friction, and wear-resistant HEAs for potential use at room and elevated temperatures, which will help reduce energy and material losses in friction and wear applications.

  4. Fine structure of Fe-Co-Ga and Fe-Cr-Ga alloys with low Ga content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinerman, Nadezhda M., E-mail: kleinerman@imp.uran.ru; Serikov, Vadim V., E-mail: kleinerman@imp.uran.ru; Vershinin, Aleksandr V., E-mail: kleinerman@imp.uran.ru

    2014-10-27

    Investigation of Ga influence on the structure of Fe-Cr and Fe-Co alloys was performed with the use of {sup 57}Fe Mössbauer spectroscopy and X-ray diffraction methods. In the alloys of the Fe-Cr system, doping with Ga handicaps the decomposition of solid solutions, observed in the binary alloys, and increases its stability. In the alloys with Co, Ga also favors the uniformity of solid solutions. The analysis of Mössbauer experiments gives some grounds to conclude that if, owing to liquation, clusterization, or initial stages of phase separation, there exist regions enriched in iron, some amount of Ga atoms prefer to entermore » the nearest surroundings of iron atoms, thus forming binary Fe-Ga regions (or phases)« less

  5. Structure of the mantle lithosphere beneath the Siberian kimberlite pipes reconstructed by monomineral thermobarometry

    NASA Astrophysics Data System (ADS)

    Ashchepkov, I. V.

    2009-04-01

    The original methods of the monomineral thermobarometry for clinopyroxene, garnet, ilmenite, chromite (Ashchepkov,2008) and orthopyroxene (Brey, Kohler, 1990- McGregor, 1974) thermobarometer allow to reconstruct the mantle columns. TP diagram for Udachnaya pipe suggests creation at least in tree stages of the melt percolation through the mantle column differing in Fe# and other parameters. The most high temperature (HT) (45 mvm-2) and Fe# rich refer to the last HT reactions with the protokimberlite melts formed the megacrystalline associations. Relict low temperature (LT) geotherm (35 45 mvm-2 and lower) is close to the conductive geotherm (Boyd et al., 1997). Most of ТР parameters for the minerals refer to the middle part of the geotherm (40- 45 mvm-2). Monomineral thermobarometry reconstructing the PTX values (Fe#; CrCpx, Cr-Ilm CaGar, TiChr) showing the high overlapping formed by the the melt percolation. The clinopyroxene growth in the mantle lithosphere in Daldyn, Akakite, Nakyn and Upper Muna are produced by the refertilization events under the influence of the protokimberlite melts. Their spreading in the lower part of mantle section of Garnet trend to subcalsic and pyroxenitic types is likely the result of submelting and heating of the mantle peridotites. Similar process for eclogites is responsible for the appearance of LT eclogites tracing subduction gradients and HT branches with the Ti- bearing associations corresponding to advective gradients. . For the larger pipes the scale of the perturbation is much higher then for smaller. The levels of the melt intrusions are reconstructed by the clotting of TP values inflections of TP paths and TiChr, CrIlm and Fe#. Ilmenite trends reveal the polybaric character of the fractionation and high degree interaction with the wall rock peridotites visible by CrIlm increase. The metasomatic associations differ in PTX diagrams by higher Cr and LT conditions the HT megacrystalls. The evident layered nature of the mantle columns (10-13) is reconstructed by the stepped TPX trends formed at first by the combinations of subduction and superplume events coinciding with the Re/Os ages (Spetsius, 2007), overprinted by the reactions with the plume and other percolating melts The Fe# increase near the 60 kbar refer to the last superplume events the previous leave similar rhythmic Fe- dunite horizons at 11-12 levels. The comparison of the compositions of minerals and reconstruction of mantle roots for several phases for Yubileinay, Udachnaya and Nyurbinskaya pipes allow to reveal the evolution of the magmatic sources and their interaction with the mantle lithosphere. Reconstruction of the mantle columns beneath 60 pipes allow to make the transsects of the kimberlite fields and the 3D model of the mantle beneath the dense kimberlite clusters with many close located diatrems Mesozoic mantle columns beneath the Anabar, Olenek, Aldan show the HT -Fe# alteration in 60-40 kbar due to interaction with the PT superplume, but relic and LT and low Fe# associations occurs to 60 kbar also. RBRF 05-05-74718, 06-05-65021, 06-05-64416.

  6. Growth, Structural, Electronic, and Magnetic Characterization of GaN, CrN, Fe Islands on CrN, and Fe/CrN Bilayer Thin Films

    NASA Astrophysics Data System (ADS)

    Alam, Khan

    As a part of my Ph.D research, initially I was involved in construction and calibration of an ultra-high vacuum thin film facility, and later on I studied structural, electronic, and magnetic properties of GaN, CrN, Fe/CrN bilayers, and Fe islands on CrN thin films. All of these films were grown by molecular beam epitaxy and characterized with a variety of state-of-the-art techniques including variable temperature reflection high energy electron diffraction, low temperature scanning tunneling microscopy and spectroscopy, variable temperature vibrating sample magnetometry, variable temperature neutron diffraction and reflectometry, variable temperature x-ray diffraction, x-ray reflectometry, Rutherford backscattering, Auger electron spectroscopy, and cross-sectional tunneling electron microscopy. The experimental results are furthermore understood by comparing with numerical calculations using generalized gradient approximation, local density approximation with Hubbard correction, Refl1D, and data analysis and visual environment program. In my first research project, I studied Ga gas adatoms on GaN surfaces. We discovered frozen-out gallium gas adatoms on atomically smooth c(6x12) GaN(0001¯) surface using low temperature scanning tunneling microscopy. We identified adsorption sites of the Ga adatoms on c(6x12) reconstructed surface. Their bonding is determined by measuring low unoccupied molecular orbital level. Absorption sites of the Ga gas adatoms on centered 6x12 are identified, and their asymmetric absorption on the chiral domains is investigated. In second project, I investigated magneto-structural phase transition in chromium nitride (CrN) thin films. The CrN thin films are grown by molecular beam epitaxy. Structural and magnetic transition are studied using variable temperature reflection high energy electron diffraction and variable temperature neutron diffraction. We observed a structural phase transition at the surface at 277+/-2 K, and a sharp, first-order magnetic phase transition from paramagnetic (room temperature) to antiferromagnetic (low temperature) at 280+/-3 K. Our experiments suggest that the structural transition in CrN thin films occur in out-of-plane direction, and epitaxial constraints suppress the in-plane transition; therefore, the low temperature crystal structure of CrN is tetragonal. This new model explains our structural and magnetic data at low temperatures, but it is different than the previously published orthorhombic model. In third project, I studied exchange bias and exchange spring effect in MBE grown Fe/CrN bilayer thin films. We grew Fe/CrN bilayer thin films on MgO(001) substrate by molecular beam epitaxy, and studied them using variable temperature vibrating sample magnetometry, polarized neutron reflectometry, x-ray reflectivity, and cross-sectional transmission electron microscopy. We observed exchange bias and exchange spring effect in all bilayer thin films. We studied the relationship of exchange bias, blocking temperature, and coercivity with Fe and CrN layers thicknesses. We used polarized neutron beam reflectometry to see if spins at Fe/CrN interface are pinned. We found a thin ferromagnetically ordered CrN layer at the interface. In my final project, I studied growth of submonolayer Fe islands on CrN thin films. These films are prepared in two stages: first, a CrN layer is grown by MBE and then a submonolayer Fe is deposited at room temperature from a carefully degassed e-beam evaporator. The films are studied at liquid helium temperature using low temperature scanning tunneling microscopy and spectroscopy. Islands are seen in STM images, after the Fe deposition, at the edges as well as at the center of atomically flat CrN terraces. However, numerical calculations performed by our collaborator Ponce-P'erez from Benem'erita Universidad Aut'onoma de Puebla show that the Fe islands are energetically unstable on the surface. The Fe atoms substitute Cr atoms in the surface layer and the Cr atoms comes out and form islands. In order to find out elemental composition of the islands, we attempted to map local density of state by measuring differential conductance spectra as a function of bias voltage using LT-STS. We observed three characteristically different spectra; one in the CrN substrate and two in the islands. The CrN substrate curve has a "U" shape near Fermi level and a peak at ≈ 105 mV. The islands spectra show Kondo-like resonances at Fermi level; some islands produce a peak whereas others produce a dip the dI/dV curves near Fermi level. Further investigations are needed to determine the origin of the peak and dip in the island curves, as well as to find the composition of the islands.

  7. Tetravalent chromium doped laser materials and NIR tunable lasers

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Petricevic, Vladimir (Inventor); Bykov, Alexey (Inventor)

    2008-01-01

    A method is described to improve and produce purer Cr.sup.4+-doped laser materials and lasers with reduced co-incorporation of chromium in any other valence states, such as Cr.sup.3+, Cr.sup.2+, Cr.sup.5+, and Cr.sup.6+. The method includes: 1) certain crystals of olivine structure with large cation (Ca) in octahedral sites such as Cr.sup.4+:Ca.sub.2GeO.sub.4, Cr.sup.4+:Ca.sub.2SiO.sub.4, Cr.sup.4+:Ca.sub.2Ge.sub.xSi.sub.1-xO.sub.4 (where 0

  8. Bioremediation of industrially contaminated soil using compost and plant technology.

    PubMed

    Taiwo, A M; Gbadebo, A M; Oyedepo, J A; Ojekunle, Z O; Alo, O M; Oyeniran, A A; Onalaja, O J; Ogunjimi, D; Taiwo, O T

    2016-03-05

    Compost technology can be utilized for bioremediation of contaminated soil using the active microorganisms present in the matrix of contaminants. This study examined bioremediation of industrially polluted soil using the compost and plant technology. Soil samples were collected at the vicinity of three industrial locations in Ogun State and a goldmine site in Iperindo, Osun State in March, 2014. The compost used was made from cow dung, water hyacinth and sawdust for a period of twelve weeks. The matured compost was mixed with contaminated soil samples in a five-ratio pot experimental design. The compost and contaminated soil samples were analyzed using the standard procedures for pH, electrical conductivity (EC), organic carbon (OC), total nitrogen (TN), phosphorus, exchangeable cations (Na, K, Ca and Mg) and heavy metals (Fe, Mn, Cu, Zn and Cr). Kenaf (Hibiscus cannabinus) seeds were also planted for co-remediation of metals. The growth parameters of Kenaf plants were observed weekly for a period of one month. Results showed that during the one-month remediation experiment, treatments with 'compost-only' removed 49 ± 8% Mn, 32 ± 7% Fe, 29 ± 11% Zn, 27 ± 6% Cu and 11 ± 5% Cr from the contaminated soil. On the other hand, treatments with 'compost+plant' remediated 71 ± 8% Mn, 63 ± 3% Fe, 59 ± 11% Zn, 40 ± 6% Cu and 5 ± 4% Cr. Enrichment factor (EF) of metals in the compost was low while that of Cu (EF=7.3) and Zn (EF=8.6) were high in the contaminated soils. Bioaccumulation factor (BF) revealed low metal uptake by Kenaf plant. The growth parameters of Kenaf plant showed steady increments from week 1 to week 4 of planting. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Petrogenesis of Alta'ameem meteorite (Iraq) inferred from major, trace, REE and PGE+Au content

    NASA Astrophysics Data System (ADS)

    Kettanah, Yawooz A.; Ismail, Sabah A.

    2018-03-01

    Alta'ameem Meteorite (AM) is an unaltered ordinary LL chondrite that hit an area near Kirkuk City in northern Iraq on 1977. It has an ash-gray colour with a thin black fusion crust, and consists of spheroidal chondrules and variously shaped clasts aggregated together by a fine grained matrix. The chondrules of Alta'ameem Meteorite include all known types in similar meteorites elsewhere. Mineralogically, the AM consists of silicates (olivine - Fa27.7; pyroxene - Fs23.2 (Opx) and 20.5 (Cpx); plagioclase - Ab73.5An22.1Or4.7), alloys and metals (taenite, tetrataenite, kamacite, and native copper), oxides (ilmenite and chromite), sulfides (troilite), and phosphates (apatite) as well as few unidentified minerals including a Fe-Ti-Cr oxide and Fe-Ni sulfide. The chemistry of AM is dominated by SiO2, MgO, and FeOt accounting for >91 wt% of the bulk composition with minor amounts of Al2O3, CaO, Na2O, S, Ni and Cr. It contains 3675 ppb REE which is within the range of most chondrites, with a negative (-0.8) Sm- and positive (+1.2) Tb-anomalies and a near flat normalized trend (LaN/YbN = 1.16). The concentration of PGEs and Au, Ni, Co, and Cr is low in comparison to most chondrites. The K/La, Ru/Rh vs. Pt/Pd, and Pd/Ir ratio (1.85), and low PGE indicates that the AM is somewhat distinct from other meteorites. The AM has W0 weathering grade and very weak (S2) shock metamorphism. Although the AM has some petrographical and geochemical differences with other chondrites, it still can be considered as LL5 chondrite.

  10. Evaluated the Twenty-Six Elements in the Pectoral Muscle of As-Treated Chicken by Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Sun, Bonan; Xing, Mingwei

    2016-02-01

    This study assessed the impacts of dietary arsenic trioxide on the contents of 26 elements in the pectoral muscle of chicken. A total of 100 Hy-line laying cocks were randomly divided into two groups (n = 50), including an As-treated group (basic diet supplemented with arsenic trioxide at 30 mg/kg) and a control group (basal diet). The feeding experiment lasted for 90 days and the experimental animals were given free access to feed and drinking water. The elements lithium (Li), boron (B), natrum (Na), magnesium (Mg), aluminium (AI), silicium (Si), kalium (K), calcium (Ca), vanadium (V), chromium (Cr), manganese (Mn), ferrum (Fe), cobalt (Co.), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), molybdenum (Mo), cadmium (Cd), stannum (Sn), stibium (Sb), barium (Ba), hydrargyrum (Hg), thallium (Tl) and plumbum (Pb) in the pectoral muscles were determined using inductively coupled plasma mass spectrometry (ICP-MS). The resulted data indicated that Li, Na, AI, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Ba, Tl and Pb were significantly increased (P < 0.05) in chicken exposed to As2O3 compared to control chicken, while Mg, Si, K, As and Cd decreased significantly (P < 0.05). These results suggest that ICP-MS determination of elements in chicken tissues enables a rapid analysis with good precision and accuracy. Supplementation of high levels of As affected levels of 20 elements (Li, Na, AI, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Ba, Tl, Pb, Mg, Si, K, As and Cd) in the pectoral muscles of chicken. Thus, it is needful to monitor the concentration of toxic metal (As) in chicken for human health.

  11. Experimental evidence for the magnetic moment directions of Cr2+ and Cr3+ cations in the spinel ferrites Cux1Crx2Fe3-x1-x2O4

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Xu, J.; Li, Z. Z.; Qi, W. H.; Tang, G. D.; Shang, Z. F.; Ji, D. H.; Lang, L. L.

    2014-08-01

    (A)[B]2O4 spinel ferrite samples with the composition Cux1Crx2Fe3-x1-x2O4 (0.0≤x1≤0.284 and 1.04≥x2≥0.656) were prepared by a chemical co-precipitation method. X-ray diffraction patterns indicated that the samples had a single-phase cubic spinel structure. It is interesting that the saturation magnetization of the samples increased when Cu2+ or Cu3+ (with 1 or 2μB of magnetic moment) substituted for Cr2+ or Cr3+ (with 4 or 3μB), which cannot be obviously explained if the magnetic moments of Cr2+ and Cr3+ cations are assumed to be parallel to those of the Fe and Cu cations. However, with the assumption that the magnetic moments of Cr2+ and Cr3+ cations are antiparallel to the Fe and Cu cation moments in spinel ferrites, the dependence on the Cu doping level of the sample magnetic moments at 10 K was fitted successfully, using the quantum-mechanical potential barrier model earlier proposed by our group. Using the cation distributions obtained in the fitting process, the experimental observation that the magnetic moment of the samples increased with increasing Cu doping level was explained. This work therefore provides experimental evidence that the magnetic moments of the Cr2+ and Cr3+ cations are antiparallel to those of the Fe and Cu cations in spinel ferrites.

  12. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions

    NASA Astrophysics Data System (ADS)

    Park, Dong Jun; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2016-12-01

    This study investigates protective coatings for improving the high temperature oxidation resistance of Zr fuel claddings for light water nuclear reactors. FeCrAl alloy and Cr layers were deposited onto Zr plates and tubes using cold spraying. For the FeCrAl/Zr system, a Mo layer was introduced between the FeCrAl coating and the Zr matrix to prevent inter-diffusion at high temperatures. Both the FeCrAl and Cr coatings improved the oxidation resistance compared to that of the uncoated Zr alloy when exposed to a steam environment at 1200 °C. The ballooning behavior and mechanical properties of the coated cladding samples were studied under simulated loss-of-coolant accident conditions. The coated samples showed higher burst temperatures, lower circumferential strain, and smaller rupture openings compared to the uncoated Zr. Although 4-point bend tests of the coated samples showed a small increase in the maximum load, ring compression tests of a sectioned sample showed increased ductility.

  13. One Dimensional Coordination Polymer of Zn(II) for Developing Multifunctional Nanoparticles.

    PubMed

    Agarwal, Rashmi A

    2017-10-16

    A variety of nanoparticles (NPs) including Ag, Au, Pd, Cr and mixed Cu/Fe have been synthesized in a non-activated (without solvent removal) one dimensional coordination polymer (CP) of Zn(II) via two different mechanisms, acid formation and redox activity of the framework. Main driving force to grow these NPs within the cavities of CP is the presence of free oxygens of one of the monodentate carboxylate groups of BDC ligand. These free oxygens act as anchoring sites for the metal ions of the metal precursors. Chemical and physical characteristics of the NPs within the framework have been evaluated by the high resolution transmission electron microscopic (HRTEM) images. Excluding Ag(0) and Pd(0) other NPs are present as combinations of their elemental as well as oxide forms (Au/Au 2 O 3 , Cr/Cr 2 O 3 /CrO 2 and Cu/Cu 2 O, Fe/FeO). Synthesized Ag NPs within the framework show remarkable antibacterial efficacy at extremely low concentrations. Ag, Au and Cu/Fe NPs show ferromagnetic properties within the framework at room temperature. This polymer has potential to sequester highly toxic Cr(VI) to non toxic Cr(0), Cr(III) and Cr(IV) species.

  14. Analyses of Mineral Content and Heavy Metal of Honey Samples from South and East Region of Turkey by Using ICP-MS.

    PubMed

    Kılıç Altun, Serap; Dinç, Hikmet; Paksoy, Nilgün; Temamoğulları, Füsun Karaçal; Savrunlu, Mehmet

    2017-01-01

    The substantial of mineral ingredients in honey may symbolize the existence of elements in the plants and soil of the vicinity wherein the honey was taken. The aim of this study was to detect the levels of 13 elements (Potassium (K), Sodium (Na), Calcium (Ca), Iron (Fe), Zinc (Zn), Cadmium (Cd), Copper (Cu), Manganese (Mn), Lead (Pb), Nickel (Ni), Chromium (Cr), Aluminum (Al), and Selenium (Se)) in unifloral and multifloral honey samples from south and east regions of Turkey. Survey of 71 honey samples from seven different herbal origins, picked up from the south and east region of Turkey, was carried out to determine their mineral contents during 2015-2016. The mineral contents were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The most abundant minerals were K, Na, and Ca ranging within 1.18-268 ppm, 0.57-13.1 ppm, and 0.77-4.5 ppm, respectively. Zn and Cu were the most abundant trace element while Pb, Cd, Ni, and Cr were the lowest heavy metals in the honey samples surveyed, with regard to the concentrations of heavy metals such as Zn, Cu, Pb, Cd, Ni, and Cr suggested and influence of the botanical origin of element composition. Geochemical and geographical differences are probably related to the variations of the chemical components of honey samples.

  15. Strengthening due to Cr-rich precipitates in Fe-Cr alloys: Effect of temperature and precipitate composition

    NASA Astrophysics Data System (ADS)

    Terentyev, D.; Hafez Haghighat, S. M.; Schäublin, R.

    2010-03-01

    Molecular dynamics (MD) simulations were carried out to study the interaction between nanometric Cr precipitates and a 1/2 ⟨111⟩{110} edge dislocation (ED) in pure Fe and Fe-9 at. % Cr (Fe-9Cr) random alloy. The aim of this work is to estimate the variation in the pinning strength of the Cr precipitate as a function of temperature, its chemical composition and the matrix composition in which the precipitate is embedded. The dislocation was observed to shear Cr precipitates rather than by-pass via the formation of the Orowan loop, even though a pronounced screw dipole was emerged in the reactions with the precipitates of size larger than 4.5 nm. The screw arms of the formed dipole were not observed to climb thus no point defects were left inside the sheared precipitates, irrespective of simulation temperature. Both Cr solution and Cr precipitates, embedded in the Fe-9Cr matrix, were seen to contribute to the flow stress. The decrease in the flow stress with temperature in the alloy containing Cr precipitates is, therefore, related to the simultaneous change in the matrix friction stress, precipitate resistance, and dislocation flexibility. Critical stress estimated from MD simulations was seen to have a strong dependence on the precipitate composition. If the latter decreases from 95% down to 80%, the corresponding critical stress decreases almost as twice. The results presented here suggest a significant contribution to the flow stress due to the α -α' separation, at least for EDs. The obtained data can be used to validate and to parameterize dislocation dynamics models, where the temperature dependence of the obstacle strength is an essential input data.

  16. Sonocatalytic rapid degradation of Congo red dye from aqueous solution using magnetic Fe0/polyaniline nanofibers.

    PubMed

    Das, Raghunath; Bhaumik, Madhumita; Giri, Somnath; Maity, Arjun

    2017-07-01

    Nano-sized magnetic Fe 0 /polyaniline (Fe 0 /PANI) nanofibers were used as an effective material for sonocatalytic degradation of organic anionic Congo red (CR) dye. Fe 0 /PANI , was synthesized via reductive deposition of nano-Fe 0 onto the PANI nanofibers at room temperature. Prepared catalyst was characterized using HR-TEM, FE-SEM, XRD, FTIR instruments. The efficacy of catalyst in removing CR was assessed colorimetrically using UV-visible spectroscopy under different experimental conditions such as % of Fe 0 loading into the composite material, solution pH, initial concentration of dye, catalyst dosage, temperature and ultrasonic power. The optimum conditions for sonocatalytic degradation of CR were obtained at catalyst concentrations=500mg.L -1 , concentration of CR=200ppm, solution pH=neutral (7.0), temperature=30°C, % of Fe 0 loading=30% and 500W ultrasonic power. The experimental results showed that ultrasonic process could remove 98% of Congo red within 30min with higher Q max value (Q max =446.4 at 25°C). The rate of degradation of CR dye was much faster in this ultrasonic technique rather than conventional adsorption process. The degradation efficiency declined with the addition of common inorganic salts (NaCl, Na 2 CO 3 , Na 2 SO 4 and Na 3 PO 4 ). The rate of degradation suppressed more with increasing salt concentration. Kinetic and isotherm studies indicated that the degradation of CR provides pseudo-second order rate kinetic and Langmuir isotherm model compared to all other models tested. The excellent high degradation capacity of Fe 0 /PANI under ultrasonic irradiation can be explained on the basis of the formation of active hydroxyl radicals (OH) and subsequently a series of free radical reactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Surface modification to improve fireside corrosion resistance of Fe-Cr ferritic steels

    DOEpatents

    Park, Jong-Hee; Natesan, Krishnamurti; Rink, David L.

    2010-03-16

    An article of manufacture and a method for providing an Fe--Cr ferritic steel article of manufacture having a surface layer modification for corrosion resistance. Fe--Cr ferritic steels can be modified to enhance their corrosion resistance to liquid coal ash and other chemical environments, which have chlorides or sulfates containing active species. The steel is modified to form an aluminide/silicide passivating layer to reduce such corrosion.

  18. High-temperature oxidation of advanced FeCrNi alloy in steam environments

    NASA Astrophysics Data System (ADS)

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Rumaiz, Abdul K.; Bai, Jianming; Ghose, Sanjit; Rebak, Raul B.; Ecker, Lynne E.

    2017-12-01

    Alloys of iron-chromium-nickel are being explored as alternative cladding materials to improve safety margins under severe accident conditions. Our research focuses on non-destructively investigating the oxidation behavior of the FeCrNi alloy "Alloy 33" using synchrotron-based methods. The evolution and structure of oxide layer formed in steam environments were characterized using X-ray diffraction, hard X-ray photoelectron spectroscopy, X-ray fluorescence methods and scanning electron microscopy. Our results demonstrate that a compact and continuous oxide scale was formed consisting of two layers, chromium oxide and spinel phase (FeCr2O4) oxides, wherein the concentration of the FeCr2O4 phase decreased from the surface to the bulk-oxide interface.

  19. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  20. Investigation of the mechanical properties of FeNiCrMnSi high entropy alloy wear resistant

    NASA Astrophysics Data System (ADS)

    Buluc, G.; Florea, I.; Chelariu, R.; Popescu, G.; Carcea, I.

    2016-06-01

    In this paper we investigated microstructure, hardness and wear resistance for FeNiCrMnAl, high entropy alloy. The FeNiCrMnSi, high entropy alloy was elaborated in a medium induction furnace, by choosing the silicon, as an alliance element within the equi- atomic high entropy alloy, we managed to obtain a dendritic structure, the formation of intermetallic compounds or separated silicon. The medium hardness value of the investigated alloy was 948.33 HV and the medium value of the friction coefficient was 0.6655 in the first 20 seconds and 0.5425 for 1667 seconds. The volume loss of the high entropy alloy FeNiCrMnSi was 0.0557 mm3.

  1. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors

    DOE PAGES

    Yamamoto, Yukinori; Pint, Bruce A.; Terrani, Kurt A.; ...

    2015-10-19

    Development of nuclear grade, iron-based wrought FeCrAl alloys has been initiated for light water reactor (LWR) fuel cladding to serve as a substitute for zirconium-based alloys with enhanced accident tolerance. Ferritic alloys with sufficient chromium and aluminum additions can exhibit significantly improved oxidation kinetics in high-temperature steam environments when compared to zirconium-based alloys. In the first phase, a set of model FeCrAl alloys containing 10–20Cr, 3–5Al, and 0–0.12Y in weight percent, were prepared by conventional arc-melting and hot-working processes to explore the effect of composition on the properties of FeCrAlY alloys. It was found that the tensile properties were insensitivemore » to the alloy compositions studied; however, the steam oxidation resistance strongly depended on both the chromium and the aluminum contents. The second phase development focused on strengthening Fe-13Cr-5Al with minor alloying additions of molybdenum, niobium, and silicon. Combined with an optimized thermo-mechanical treatment, a thermally stable microstructure was produced with improved tensile properties at temperatures up to 741°C.« less

  2. Accurate classical short-range forces for the study of collision cascades in Fe–Ni–Cr

    DOE PAGES

    Béland, Laurent Karim; Tamm, Artur; Mu, Sai; ...

    2017-05-10

    The predictive power of a classical molecular dynamics simulation is largely determined by the physical validity of its underlying empirical potential. In the case of high-energy collision cascades, it was recently shown that correctly modeling interactions at short distances is necessary to accurately predict primary damage production. An ab initio based framework is introduced for modifying an existing embedded-atom method FeNiCr potential to handle these short-range interactions. Density functional theory is used to calculate the energetics of two atoms approaching each other, embedded in the alloy, and to calculate the equation of state of the alloy as it is compressed.more » The pairwise terms and the embedding terms of the potential are modi ed in accordance with the ab initio results. Using this reparametrized potential, collision cascades are performed in Ni 50Fe 50, Ni 80Cr 20 and Ni 33Fe 33Cr 33. The simulations reveal that alloying Ni and NiCr to Fe reduces primary damage production, in agreement with some previous calculations. Alloying Ni and NiFe to Cr does not reduce primary damage production, in contradiction with previous calculations.« less

  3. Developing precipitation hardenable high entropy alloys

    NASA Astrophysics Data System (ADS)

    Gwalani, Bharat

    High entropy alloys (HEAs) is a concept wherein alloys are constructed with five or more elements mixed in equal proportions; these are also known as multi-principle elements (MPEs) or complex concentrated alloys (CCAs). This PhD thesis dissertation presents research conducted to develop precipitation-hardenable high entropy alloys using a much-studied fcc-based equi-atomic quaternary alloy (CoCrFeNi). Minor additions of aluminium make the alloy amenable for precipitating ordered intermetallic phases in an fcc matrix. Aluminum also affects grain growth kinetics and Hall-Petch hardenability. The use of a combinatorial approach for assessing composition-microstructure-property relationships in high entropy alloys, or more broadly in complex concentrated alloys; using laser deposited compositionally graded AlxCrCuFeNi 2 (0 < x < 1.5) complex concentrated alloys as a candidate system. The composition gradient has been achieved from CrCuFeNi2 to Al 1.5CrCuFeNi2 over a length of ˜25 mm, deposited using the laser engineered net shaping process from a blend of elemental powders. With increasing Al content, there was a gradual change from an fcc-based microstructure (including the ordered L12 phase) to a bcc-based microstructure (including the ordered B2 phase), accompanied with a progressive increase in microhardness. Based on this combinatorial assessment, two promising fcc-based precipitation strengthened systems have been identified; Al0.3CuCrFeNi2 and Al0.3CoCrFeNi, and both compositions were subsequently thermo-mechanically processed via conventional techniques. The phase stability and mechanical properties of these alloys have been investigated and will be presented. Additionally, the activation energy for grain growth as a function of Al content in these complex alloys has also been investigated. Change in fcc grain growth kinetic was studied as a function of aluminum; the apparent activation energy for grain growth increases by about three times going from Al0.1CoCrFeNi (3% Al (at%)) to Al0.3CoCrFeNi. (7% Al (at%)). Furthermore, Al addition leads to the precipitation of highly refined ordered L12 (gamma') and B2 precipitates in Al0.3CoCrFeNi. A detailed investigation of precipitation of the ordered phases in Al0.3CoCrFeNi and their thermal stability is done using atom probe tomography (APT), transmission electron microscopy (TEM) and Synchrotron X-ray in situ and ex situ analyses. The alloy strengthened via grain boundary strengthening following the Hall-Petch relationship offers a large increment of strength with small variation in grain size. Tensile strength of the Al0.3CoFeNi is increased by 50% on precipitation fine-scale gamma' precipitates. Furthermore, precipitation of bcc based ordered phase B2 in Al0.3CoCrFeNi can further strengthen the alloy. Fine-tuning the microstructure by thermo-mechanical treatments achieved a wide range of mechanical properties in the same alloy. The Al0.3CoCrFeNi HEA exhibited ultimate tensile strength (UTS) of ˜250 MPa and ductility of ˜65%; a UTS of ˜1100 MPa and ductility of ˜30%; and a UTS of 1850 MPa and a ductility of 5% after various thermo-mechanical treatments. Grain sizes, precipitates type and size scales manipulated in the alloy result in different strength ductility combinations. Henceforth, the alloy presents a fertile ground for development by grain boundary strengthening and precipitation strengthening, and offers very high activation energy of grain growth aptly suitable for high-temperature applications.

  4. Cr incorporated phase transformation in Y 2O 3 under ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Yadav, Satyesh Kumar; Xu, Yun

    Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y 2O 3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1 st layer)/100 nm Y 2O 3 (2 nd layer)/135 nm Fe - 20 at.% Cr (3 rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y 2O 3 interface. Further, correlated withmore » Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y 2O 3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y 2O 3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Lastly, our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys.« less

  5. Cr incorporated phase transformation in Y2O3 under ion irradiation

    PubMed Central

    Li, N.; Yadav, S. K.; Xu, Y.; Aguiar, J. A.; Baldwin, J. K.; Wang, Y. Q.; Luo, H. M.; Misra, A.; Uberuaga, B. P.

    2017-01-01

    Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y2O3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1st layer)/100 nm Y2O3 (2nd layer)/135 nm Fe - 20 at.% Cr (3rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y2O3 interface. Further, correlated with Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y2O3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y2O3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys. PMID:28091522

  6. Cr incorporated phase transformation in Y 2O 3 under ion irradiation

    DOE PAGES

    Li, Nan; Yadav, Satyesh Kumar; Xu, Yun; ...

    2017-01-16

    Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y 2O 3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1 st layer)/100 nm Y 2O 3 (2 nd layer)/135 nm Fe - 20 at.% Cr (3 rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y 2O 3 interface. Further, correlated withmore » Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y 2O 3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y 2O 3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Lastly, our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys.« less

  7. Physicochemical characterization of cactus pads from Opuntia dillenii and Opuntia ficus indica.

    PubMed

    Méndez, Lorena Pérez; Flores, Fidel Tejera; Martín, Jacinto Darias; Rodríguez Rodríguez, Elena M; Díaz Romero, Carlos

    2015-12-01

    Physicochemical characteristics (weight, length, width, thickness, moisture, Brix degree, total fiber, protein, ash, pH, acidity, ascorbic acid, total phenolic compounds, P, Na, K, Ca, Mg, Fe, Cu, Zn, Mn and Cr) were determined in cactus pads from Opuntia dillenii and Opuntia ficus indica. The physicochemical characteristics of both species were clearly different. There were important differences between the orange and green fruit pulp of O. ficus indica; the cactus pads of O. dillenii could be differentiated according to the region (North and South). Consumption of cactus pads contributes to the intake of dietary fiber, total phenolic compounds, K, Mg, Mn and Cr. Applying factor and/or discriminant analysis, the cactus pad samples were clearly differentiated according to the species, the fruit pulp color and production region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Oxidative dissolution of pyrite surfaces by hexavalent chromium: Surface site saturation and surface renewal

    NASA Astrophysics Data System (ADS)

    Graham, Andrew M.; Bouwer, Edward J.

    2012-04-01

    In-situ reduction of toxic Cr(VI) to nontoxic Cr(III) represents an important natural attenuation process for Cr(VI)-impacted environments. This study investigates the stoichiometry and kinetics of Cr(VI) reduction by pyrite, a reduced iron-sulfur mineral ubiquitous in recent estuarine and marine sediments. Pyrite suspensions at surface loadings of 0.28-2.10 m2/L (typical of estuarine or marine sediments) were capable of completely reducing 7-120 μM Cr(VI) on the timescale of minutes to days, with the time to reaction completion decreasing with increasing pyrite loading, decreasing initial Cr(VI) concentration, and decreasing suspension pH. Analysis of metal species (Cr and Fe) and sulfur species in solution and at the mineral surface indicated that Cr(VI) oxidatively dissolved the pyrite surface, releasing ferrous iron and sulfate into solution as the reaction progressed. Surface disulfide groups were postulated as the Cr(VI)-reactive surface entity. Net production or consumption of aqueous Fe(II) was shown to depend upon the relative rates of proton-promoted Fe(II) release, Fe(II) release due to oxidative dissolution of pyrite in the presence of Cr(VI), and Fe(II) consumption due to homogeneous reaction with Cr(VI). Kinetics of Cr(VI) reduction by pyrite displayed a biphasic pattern, and the time to reaction completion increased dramatically with increasing initial Cr(VI) concentration. Rapid Cr(VI) removal occurred early in the reaction progress, attributable to Cr(VI) loss under an adsorption-limited regime. Slow, approximately zero-order, Cr(VI) removal occurred over the bulk of the time courses, and corresponded to Cr(VI) removal under surface site saturation conditions. Stoichiometric Cr(VI) reduction was able to proceed under surface site limited conditions owing to regeneration of reactive surface sites following desorption/dissolution of oxidized surface products, as demonstrated in repeat Cr(VI)-spiking experiments. The role of surface passivation was evaluated by comparing rates of Cr(VI) reduction in the presence and absence of the Cr(III)-complexing agent citrate. While citrate addition significantly enhanced Cr(III) solubility, rates of Cr(VI) reduction were only marginally accelerated, suggesting that Cr(OH)3(s) coatings did not completely block access of Cr(VI) to reactive surface sites on pyrite. Given the rapid rates of Cr(VI) reduction with pyrite under pH and surface coverage conditions typical of natural environments, we propose that Cr(VI) reduction by pyrite be considered in fate and transport models for Cr in contaminated sediments.

  9. Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application

    DOEpatents

    Muralidharan, Govindarajan

    2017-09-05

    An Fe--Ni--Cr alloy is composed essentially of, in terms of wt. %: 2.4 to 3.7 Al, up to 1.05 Co, 14.8 to 15.9 Cr, 25 to 36 Fe, up to 1.2 Hf, up to 4 Mn, up to 0.6 Mo, up to 2.2 Nb, up to 1.05 Ta, 1.9 to 3.6 Ti, up to 0.08 W, up to 0.03 Zr, 0.18 to 0.27 C, up to 0.0015 N, balance Ni, wherein, in terms of atomic percent: 8.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.11.5, 0.53.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.65, and 0.16.ltoreq.Cr/(Fe+Ni+Cr+Mn).ltoreq.0.21, the alloy being essentially free of Cu, Si, and V.

  10. Evolution of the N = 40 neutron subshell in 20 ≤ Z ≤ 30 nuclei within the dispersive optical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bespalova, O. V., E-mail: besp@sinp.msu.ru; Ermakova, T. A.; Klimochkina, A. A.

    2016-07-15

    The evolution of single-particle neutron spectra in the N = 40 isotones {sup 60}Ca, {sup 62}Ti, {sup 64}Cr, {sup 66}Fe, {sup 68}Ni, and {sup 70}Zn is calculated on the basis of the mean-field model featuring a dispersive optical potential. The results of these calculations agree with the idea that the degree of collectivity becomes higher in the {sup 64}Сr nucleus and that the coupling of single-particle motion to this collectivity becomes stronger, as well as with available experimental data, which are indicative of the closure of the N = 40 subshell in {sup 68}Ni and of the trend toward thismore » closure in {sup 60}Ca.« less

  11. Evaluation of heavy metals content in dietary supplements in Lebanon.

    PubMed

    Korfali, Samira Ibrahim; Hawi, Tamer; Mroueh, Mohamad

    2013-01-18

    The consumption of dietary supplements is widely spread and on the rise. These dietary supplements are generally used without prescriptions, proper counseling or any awareness of their health risk. The current study aimed at analyzing the metals in 33 samples of imported dietary supplements highly consumed by the Lebanese population, using 3 different techniques, to ensure the safety and increase the awareness of the citizen to benefit from these dietary supplements. Some samples had levels of metals above their maximum allowable levels (Fe: 24%, Zn: 33%, Mn: 27%, Se: 15%, Mo: 12% of samples), but did not pose any health risk because they were below permitted daily exposure limit and recommended daily allowance except for Fe in 6% of the samples. On the other hand, 34% of the samples had Cu levels above allowable limit where 18% of them were above their permitted daily exposure and recommended daily allowance. In contrast, all samples had concentration of Cr, Hg, and Pb below allowable limits and daily exposure. Whereas, 30% of analyzed samples had levels of Cd above allowable levels, and were statistically correlated with Ca, and Zn essential minerals. Similarly 62% of the samples had levels of As above allowable limits and As levels were associated with Fe and Mn essential minerals. Dietary supplements consumed as essential nutrients for their Ca, Zn, Fe and Mn content should be monitored for toxic metal levels due to their natural geochemical association with these essential metals to provide citizens the safe allowable amounts.

  12. Effect of surface state on the oxidation behavior of welded 308L in simulated nominal primary water of PWR

    NASA Astrophysics Data System (ADS)

    Ming, Hongliang; Zhang, Zhiming; Wang, Jiazhen; Zhu, Ruolin; Ding, Jie; Wang, Jianqiu; Han, En-Hou; Ke, Wei

    2015-05-01

    The oxidation behavior of 308L weld metal (WM) with different surface state in the simulated nominal primary water of pressurized water reactor (PWR) was studied by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analyzer and X-ray photoelectron spectroscopy (XPS). After 480 h immersion, a duplex oxide film composed of a Fe-rich outer layer (Fe3O4, Fe2O3 and a small amount of NiFe2O4, Ni(OH)2, Cr(OH)3 and (Ni, Fe)Cr2O4) and a Cr-rich inner layer (FeCr2O4 and NiCr2O4) can be formed on the 308L WM samples with different surface state. The surface state has no influence on the phase composition of the oxide films but obviously affects the thickness of the oxide films and the morphology of the oxides (number & size). With increasing the density of dislocations and subgrain boundaries in the cold-worked superficial layer, the thickness of the oxide film, the number and size of the oxides decrease.

  13. Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4/halloysite nanohybrid.

    PubMed

    Tian, Xike; Wang, Weiwei; Tian, Na; Zhou, Chaoxin; Yang, Chao; Komarneni, Sridhar

    2016-05-15

    In this work, a novel "Dumbbell-like" magnetic Fe3O4/Halloysite nanohybrid (Fe3O4/HNTs@C) with oxygen-containing organic group grafting on the surface of natural halloysite nanotubes (HNTs) and homogeneous Fe3O4 nanospheres selectively aggregating at the tips of modified halloysite nanotubes was successfully synthesized. XRD, TEM, IR spectroscopy, XPS and VSM were used to characterize this newly halloysite nanohybrid and its formation mechanism was discussed. Cr(VI) ions adsorption experiments showed that the Fe3O4/halloysite nanohybrid exhibited higher adsorption ability with a maximum adsorption capacity of 132 mg/L at 303K, which is about 100 times higher than that of unmodified halloysite nanotubes. More importantly, with the reduction of Fe3O4 and electron-donor effect of oxygen-containing organic groups, Cr(VI) ions were easily reduced into low toxicity Cr(III) and then adsorbed onto the surface of halloysite nanohybrid. In addition, appreciable magnetization was observed due to the aggregation of magnetite nanoparticles, which make adsorbent facility separated from aqueous solutions after Cr pollution adsorption. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Exposure to PM2.5 in modern office buildings through elemental characterization and oxidative potential

    NASA Astrophysics Data System (ADS)

    Szigeti, Tamás; Kertész, Zsófia; Dunster, Christina; Kelly, Frank J.; Záray, Gyula; Mihucz, Victor G.

    2014-09-01

    Fifty samples of indoor and outdoor PM2.5 were collected onto quartz fiber and Teflon membrane filters in five office buildings equipped with heating, ventilation and air-conditioning system for 8 h daily in order to coincide with the work shift of employees. Samples were analyzed for i) mass concentration; ii) elemental concentration; and iii) oxidative potential (OP) through antioxidant depletion. The PM2.5 mass concentration exceeded the annual mean guideline of 10 μg m-3 WHO in 50% of the samples. Indoor and outdoor PM2.5 mass concentrations correlated almost linearly. Proton-induced X-ray emission (PIXE) spectrometry was used for the monitoring of 21 elements. Quantitative determination was achieved in the case of Teflon filters only for Al, Si, S, Cl, K, Ca, Ti, Cr, Mn, Fe and Zn at ng m-3 concentration level. Quartz fiber filters were less adequate for the PIXE measurements due to their greater thickness and filamentary structure. Ca, Cr, Zn and Ti had generally higher concentration (mg g-1) indoors. Indoor/outdoor (I/O) OP values were higher than one in 14% and 57% of the samples in the case of ascorbate and reduced glutathione (GSH), respectively. Spatial and temporal variations of OP were observed across the office buildings. The I/O ratios for OP, Cr and Zn concentrations in the case of GSH were higher for three buildings. Significant relationship was observed between GSH oxidation and Cr and Zn concentrations. Thus, employees were exposed to a higher extent to reactive oxygen species in three buildings.

  15. Formation of Fe nanoparticles on water-washed coal fly ash for enhanced reduction of p-nitrophenol.

    PubMed

    Park, Jaehyeong; Bae, Sungjun

    2018-07-01

    The catalytic reduction of p-nitrophenol (p-NP) by coal fly ash (FA) washed with water was investigated in this study. A significant increase in pH (from 7.0 to 10.1) was observed in the suspension of raw fly ash (RFA), while water-washed fly ash (WFA) showed a relatively lower increase in pH (7.2), which was caused by the dissolution of Ca species during the water-washing process. Almost 33.4% of p-NP reduction was observed in the RFA suspension with NaBH 4 in 1 h, while the enhanced reduction of p-NP (87.2%) was observed in the WFA suspension. The catalytic reduction of p-NP was inhibited by addition of CaO and Ca(OH) 2 , indicating that higher amount of CaO dissolved from RFA resulted in the inhibition effect. Similar experiments using different oxides (i.e., Al 2 O 3 , SiO 2 , CaO and MgO) revealed no significant reduction of p-NP, which was comparable with Fe 2 O 3 (75.8%). Results from various surface analyses revealed that iron oxides on the surface of WFA can be reduced to elemental Fe nanoparticles, which can effectively reduce p-NP with NaBH 4 . No significant leaching of heavy metals such as Cr, Pb, and As was observed during the catalytic reduction of p-NP and in the suspension of WFA after reaction at pH 3, 5, 7, and 9 for 24 h, which can solve the toxic effect when the FA is used for environmental applications. We also observed a good reusability of WFA during the recycling test, indicating the potential use of WFA for the treatment of wastewater containing reductively degradable pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Abundances and energy spectra of high energy heavy cosmic-ray nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barthelmy, S.D.

    1985-01-01

    We have measured the relative abundances of the cosmic rays in the iron group region at energies from a few GeV/amu to approximately 70 GeV/amu. This is done using a balloon-borne instrument consisting of gas ionization chambers, a plastic scintillator, a plastic Cherenkov counter, and a CO/sub 2/ gas Cherenkov counter. The instrument was flown from Palestine, Texas in the fall of 1982 for a total exposure of 62 m/sup 2/-ster-hr at an average atmospheric depth of 4 g/cm/sup 2/. The elemental charge was determined for a combination of the scintillator and plastic Cherenkov detector. Results are reported on themore » /sub 22/Ti//sub 26/Fe, /sub 24/Cr//sub 26/Fe, /sub 20/Ca//sub 26/Fe, and /sub 28/Ni//sub 28/Fe abundance ratios from 2 to 70 GeV/amu. Within this work results on the previously unused method of relativistic rise in gas ionization chambers is detailed as well as results on the return to nonsaturation of plastic scintillators.« less

  17. Characterizing suspended sediments from the Piracicaba River Basin by means of k0-INAA

    NASA Astrophysics Data System (ADS)

    França, E. J.; Fernandes, E. A. N.; Cavalca, I. P. O.; Fonseca, F. Y.; Camilli, L.; Rodrigues, V. S.; Bardini Junior, C.; Ferreira, J. R.; Bacchi, M. A.

    2010-10-01

    The inorganic chemical characterization of suspended sediments is of utmost relevance for the knowledge of the dynamics and movement of chemical elements in the aquatic and wet ecosystems. Despite the complexity of the effective design for studying this ecological compartment, this work has tested a procedure for analyzing suspended sediments by instrumental neutron activation analysis, k0 method ( k0-INAA). The chemical elements As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Hg, K, La, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Yb and Zn were quantified in the suspended sediment compartment by means of k0-INAA. When compared with World Average for rivers, high mass fractions of Fe (222,900 mg/kg), Ba (4990 mg/kg), Zn (1350 mg/kg), Cr (646 mg/kg), Co (74.5 mg/kg), Br (113 mg/kg) and Mo (31.9 mg/kg) were quantified in suspended sediments from the Piracicaba River, the Piracicamirim Stream and the Marins Stream. Results of the principal component analysis for standardized chemical element mass fractions indicated an intricate correlation among chemical elements evaluated, as a response of the contribution of natural and anthropogenic sources of chemical elements for ecosystems.

  18. Ambient temperature NO oxidation over Cr-based amorphous mixed oxide catalysts: effects from the second oxide components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Aiyong; Lin, Bo; Zhang, Hanlei

    2017-01-01

    Three series of Cr-based mixed oxides (Cr-Co, Cr-Fe, and Cr-Ni oxides) with high specific surface areas and amorphous textures were synthesized using a novel sol-gel method. These mixed oxides, in comparison to their pure metal oxide (CrOx, Co3O4, FeOx and NiO) counterparts, display enhanced performance for catalytic oxidation of low-concentration NO at room temperature. The best performing catalysts achieve 100% NO conversion for ~30 h of operation at a high space velocity of 45,000 ml g-1 h-1. The amorphous structure was found to be critical for these catalysts to maintain high activity and durability. Control of Cr/M (M=Co, Fe andmore » Ni) molar ratio, nitrate precursor decomposition temperature and catalyst calcination temperature was key to the synthesis of these highly active catalysts.« less

  19. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    NASA Astrophysics Data System (ADS)

    Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-01-01

    Al(OH)3 and Ca(OH)2 powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. Ca-Al precursor (C3A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO4 LDH product. Ca-Al-CrO4 LDH phase occurred preferentially to Ca-Al-MCl2 LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist.

  20. Bioaccumulation of elements in three selected mushroom species from southwest Poland.

    PubMed

    Mleczek, Mirosław; Siwulski, Marek; Mikołajczak, Patrycja; Goliński, Piotr; Gąsecka, Monika; Sobieralski, Krzysztof; Dawidowicz, Luiza; Szymańczyk, Mateusz

    2015-01-01

    The contents of 16 minerals and trace elements (Ag, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Pt, Ti and Zn) were analyzed in edible mushrooms (Leccinum scabrum, Boletus edulis and Boletus badius) collected in southwest Poland. Content of Co, Ni and Pb was similar in all tested mushroom species, while content of Ag, Ca, Cd, Hg and Ti was significantly higher in B. edulis than in L. scabrum and B. badius. The largest differences between these species were observed for Fe and Zn accumulation. The highest contents of these elements were noted in B. badius bodies (202 ± 88 and 137 ± 24 mg kg(-1) dry matter, respectively), lower in B. edulis (131 ± 99 and 89 ± 26 mg kg(-1) dry matter, respectively) and lowest in L. scabrum. Differences in As, Cu and Cr content between tested species were observed mainly between L. scabrum and B. badius fruiting bodies. Content of Pt was below 0.01 mg kg(-1) dry matter). In the case of Mg and Mn accumulation, differences between B. edulis and B. badius were not observed (478 and 440 mg kg(-1) dry matter for Mg and 23 and 19 mg kg(-1) dry matter for Mn), and the results showed significantly higher content of these elements than in L. scabrum bodies (312 and 10 mg kg(-1) dry matter, respectively). It is worth underlining that clear accumulation shown by the bioconcentration factor (BCF>1) observed for all three mushroom species was noted in the case of elements Ag, Cd, Co, Cu, Hg, Ni and Zn only.

Top