Piacentino, Valentino; Gaughan, John P; Houser, Steven R
2002-03-08
Phosphorylation of Na channels has been suggested to increase their Ca permeability. Termed "slip-mode conductance" (SMC), this hypothesis predicts that Ca influx via protein kinase A (PKA)-modified Na channels can induce sarcoplasmic reticulum (SR) Ca release. We tested this hypothesis by determining if SR Ca release is graded with I(Na) in the presence of activated PKA (with Isoproterenol, ISO). V(m), I(m), and [Ca](i) were measured in feline (n=26) and failing human (n=19) ventricular myocytes. Voltage steps from -70 through -40 mV were used to grade I(Na). Na channel antagonists (tetrodotoxin), L-type Ca channel (I(Ca,L)) antagonists (nifedipine, cadmium, verapamil), and agonists (Bay K 8644, FPL 64176) were used to separate SMC from I(Ca,L). In the absence of ISO, I(Na) was associated with SR Ca release in human but not feline myocytes. After ISO, graded I(Na) was associated with small amounts of SR Ca release in feline myocytes and the magnitude of release increased in human myocytes. I(Na)-related SR Ca release was insensitive to tetrodotoxin (n=10) but was blocked by nifedipine (n=10) and cadmium (n=3). SR Ca release was induced over the same voltage range in the absence of ISO with Bay K 8644 and FPL 64176 (n=9). Positive voltage steps (to 0 mV) to fully activate Na channels (SMC) in the presence of ISO and Verapamil only caused SR Ca release when block of I(Ca,L) was incomplete. We conclude that PKA-mediated increases in I(Ca,L) and SR Ca loading can reproduce many of the experimental features of SMC.
The Calcium-Sensing Receptor Increases Activity of the Renal NCC through the WNK4-SPAK Pathway.
Bazúa-Valenti, Silvana; Rojas-Vega, Lorena; Castañeda-Bueno, María; Barrera-Chimal, Jonatan; Bautista, Rocío; Cervantes-Pérez, Luz G; Vázquez, Norma; Plata, Consuelo; Murillo-de-Ozores, Adrián R; González-Mariscal, Lorenza; Ellison, David H; Riccardi, Daniela; Bobadilla, Norma A; Gamba, Gerardo
2018-05-30
Background Hypercalciuria can result from activation of the basolateral calcium-sensing receptor (CaSR), which in the thick ascending limb of Henle's loop controls Ca 2+ excretion and NaCl reabsorption in response to extracellular Ca 2+ However, the function of CaSR in the regulation of NaCl reabsorption in the distal convoluted tubule (DCT) is unknown. We hypothesized that CaSR in this location is involved in activating the thiazide-sensitive NaCl cotransporter (NCC) to prevent NaCl loss. Methods We used a combination of in vitro and in vivo models to examine the effects of CaSR on NCC activity. Because the KLHL3-WNK4-SPAK pathway is involved in regulating NaCl reabsorption in the DCT, we assessed the involvement of this pathway as well. Results Thiazide-sensitive 22 Na + uptake assays in Xenopus laevis oocytes revealed that NCC activity increased in a WNK4-dependent manner upon activation of CaSR with Gd 3+ In HEK293 cells, treatment with the calcimimetic R-568 stimulated SPAK phosphorylation only in the presence of WNK4. The WNK4 inhibitor WNK463 also prevented this effect. Furthermore, CaSR activation in HEK293 cells led to phosphorylation of KLHL3 and WNK4 and increased WNK4 abundance and activity. Finally, acute oral administration of R-568 in mice led to the phosphorylation of NCC. Conclusions Activation of CaSR can increase NCC activity via the WNK4-SPAK pathway. It is possible that activation of CaSR by Ca 2+ in the apical membrane of the DCT increases NaCl reabsorption by NCC, with the consequent, well known decrease of Ca 2+ reabsorption, further promoting hypercalciuria. Copyright © 2018 by the American Society of Nephrology.
Ricardo, Rafael A; Bassani, Rosana A; Bassani, José W M
2008-01-01
Hypertonic NaCl solutions have been used for small-volume resuscitation from hypovolemic shock. We sought to identify osmolality- and Na(+)-dependent components of the effects of the hyperosmotic NaCl solution (85 mOsm/kg increment) on contraction and cytosolic Ca(2+) concentration ([Ca(2+)](i)) in isolated rat ventricular myocytes. The biphasic change in contraction and Ca(2+) transient amplitude (decrease followed by recovery) was accompanied by qualitatively similar changes in sarcoplasmic reticulum (SR) Ca(2+) content and fractional release and was mimicked by isosmotic, equimolar increase in extracellular [Na(+)] ([Na(+)](o)). Raising osmolality with sucrose, however, augmented systolic [Ca(2+)](i) monotonically without change in SR parameters and markedly decreased contraction amplitude and diastolic cell length. Functional SR inhibition with thapsigargin abolished hyperosmolality effects on [Ca(2+)](i). After 15-min perfusion, both hyperosmotic solutions slowed mechanical relaxation during twitches and [Ca(2+)](i) decline during caffeine-evoked transients, raised diastolic and systolic [Ca(2+)](i), and depressed systolic contractile activity. These effects were greater with sucrose solution, and were not observed after isosmotic [Na(+)](o) increase. We conclude that under the present experimental conditions, transmembrane Na(+) redistribution apparently plays an important role in determining changes in SR Ca(2+) mobilization, which markedly affect contractile response to hyperosmotic NaCl solutions and attenuate the osmotically induced depression of contractile activity.
Structural, optoelectronic, and thermoelectric properties of AZn13 (A=Na, K, Ca, Sr, Ba) compounds
NASA Astrophysics Data System (ADS)
Basit, Abdul; Murtaza, G.; Mahmood, Asif; Yar, Abdullah; Muhammad, S.
2016-08-01
We report the structural, electronic, optical, and thermoelectric properties of the five cubic alkali-earth transition-metals AZn13 (A-Na, K, Ca, Sr, Ba) using density functional theory. Structural properties, electronic structures and optical behaviors are calculated explicitly via highly accurate contemporary full potential-linearized augmented plane wave (FP-LAPW) method. The investigated ground state data of these materials is quite close to the experimental information. The modified Becke-Johnson (mBJ) predicts the intermetallic nature of AZn13 (A-Na, K, Ca, Sr, Ba) materials. The complex dielectric function of these intermetallic compounds has been calculated and the observed noticeable peaks are examined through mBJ. With the help of complex dielectric function, the other important optical parameters like reflectivities, conductivities and refractive indices of AZn13 (A-Na, K, Ca, Sr, Ba) have been calculated as a function of energy. The optical response suggests that AZn13 (A-Na, K, Ca, Sr, Ba) compounds can be used for the optoelectronic devices. Further, the thermoelectric properties have been calculated through BoltzTraP program, the calculated values for different thermoelectric parameters recommend that these AZn13 (A-Na, K, Ca, Sr, Ba) materials are the suitable candidates for thermoelectric applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, E.; Suzuki, S.; Tsuzuki, H.
Mice were subcutaneoulsy injected with Sr/sup 90/ or Sr/sup 85/, and effects of various drugs on their 3-day excretion and retention on the 4th day were investigated. Among chelating agents, NaCa citrate, NaMg citrate, NaSr citrate, Achromycin (or tetracycline), and aspartic MgK (alone or in combination with NH/sub 4/Cl) displayed Sr-eliminating effects. ATP increased only the excretion without diminishing the retention in bone. EDTA, DTPA, BADE, tricarballylate, Na citrate and NaPb citrate were not effective. Among salts, Mg salt, sulfite, and thiosulfate were effective in eliminating Sr. The last exerted a greater effect when given concurrently with Mg, Ca, ormore » Sr salt. Ca and Sr salt exerted no effect, and ammonium chloride promoted only urinary secretion, not extending to local or total excretion. Such salts as induce alkalosis conversely exerted inhibitory effects. Among hormones, glucocorticoids had Sreliminating effects. TSH was effective, and antithyroidal drugs conversely seemed to have excretion-diminishing effects. Among vitamins, cocarboxylase increased Sr excretion, but did not decrease the retention in bone. Also metabolic inhibitors were ineffective, and NaF conversely increased bone deposition of Sr. Among diuretics, SHdrugs, and weak chelating agents, there were no effective drugs. (JAIF)« less
Su, Yue; Liu, Xiuling; Lei, Pengpeng; Xu, Xia; Dong, Lile; Guo, Xianmin; Yan, Xingxu; Wang, Peng; Song, Shuyan; Feng, Jing; Zhang, Hongjie
2016-07-05
Core-shell-shell heterostructures of α-NaLuF4:Yb/Er@NaLuF4:Yb@MF2 (M = Ca, Sr, Ba) have been successfully fabricated via the thermal decomposition method. Upconversion nanoparticles (UCNPs) were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), upconversion luminescence (UCL) spectroscopy, etc. Under 980 nm excitation, the emission intensities of the UCNPs are remarkably enhanced after coating the MF2 (M = Ca, Sr, and Ba) shell. Among these samples, CaF2 coated UCNPs show the strongest overall emission, while BaF2 coated UCNPs exhibit the longest lifetime. These results demonstrate that alkaline earth metal fluorides are ideal materials to improve the UCL properties. Meanwhile, although the lattice mismatch between the ternary NaREF4 core and the binary MF2 (M = Sr and Ba) shell is relatively large, the successfully synthesized NaLuF4:Yb/Er@NaLuF4:Yb@MF2 indicates a new outlook on the fabrication of heterostructural core-shell UCNPs.
Wagner, Stefan; Ruff, Hanna M.; Weber, Sarah L.; Bellmann, Sarah; Sowa, Thomas; Schulte, Timo; Grandi, Eleonora; Bers, Donald M.; Backs, Johannes; Belardinelli, Luiz; Maier, Lars S.
2011-01-01
Rationale In heart failure (HF), CaMKII expression and reactive oxygen species (ROS) are increased. Both ROS and CaMKII can increase late INa leading to intracellular Na accumulation and arrhythmias. It has been shown that ROS can activate CaMKII via oxidation. Objective We tested whether CaMKIIδ is required for ROS-dependent late INa regulation and if ROS-induced Ca released from the sarcoplasmic reticulum (SR) is involved. Methods and Results 40 µmol/L H2O2 significantly increased CaMKII oxidation and autophosphorylation in permeabilized rabbit cardiomyocytes. Without free [Ca]i (5 mmol/L BAPTA/1 mmol/L Br2-BAPTA) or after SR depletion (caffeine 10 mmol/L, thapsigargin 5 µmol/L) the H2O2-dependent CaMKII oxidation and autophosphorylation was abolished. H2O2 significantly increased SR Ca spark frequency (confocal microscopy) but reduced SR Ca load. In wildtype (WT) mouse myocytes, H2O2 increased late INa (whole cell patch-clamp). This increase was abolished in CaMKIIδ−/− myocytes. H2O2-induced [Na]i and [Ca]i accumulation (SBFI and Indo-1 epifluorescence) was significantly slowed in CaMKIIδ−/− myocytes (vs. WT). CaMKIIδ−/− myocytes developed significantly less H2O2-induced arrhythmias, and were more resistant to hypercontracture. Opposite results (increased late INa, [Na]i and [Ca]i accumulation) were obtained by overexpression of CaMKIIδ in rabbit myocytes (adenoviral gene transfer) reversible with CaMKII inhibition (10 µmol/L KN93 or 0.1 µmol/L AIP). Conclusion Free [Ca]i and a functional SR are required for ROS activation of CaMKII. ROS-activated CaMKIIδ enhances late INa, which may lead to cellular Na and Ca overload. This may be of relevance in HF, where enhanced ROS production meets increased CaMKII expression. PMID:21252154
Cardiac microvascular endothelial cells express a functional Ca+ -sensing receptor.
Berra Romani, Roberto; Raqeeb, Abdul; Laforenza, Umberto; Scaffino, Manuela Federica; Moccia, Francesco; Avelino-Cruz, Josè Everardo; Oldani, Amanda; Coltrini, Daniela; Milesi, Veronica; Taglietti, Vanni; Tanzi, Franco
2009-01-01
The mechanism whereby extracellular Ca(2+) exerts the endothelium-dependent control of vascular tone is still unclear. In this study, we assessed whether cardiac microvascular endothelial cells (CMEC) express a functional extracellular Ca(2+)-sensing receptor (CaSR) using a variety of techniques. CaSR mRNA was detected using RT-PCR, and CaSR protein was identified by immunocytochemical analysis. In order to assess the functionality of the receptor, CMEC were loaded with the Ca(2+)-sensitive fluorochrome, Fura-2/AM. A number of CaSR agonists, such as spermine, Gd(3+), La(3+) and neomycin, elicited a heterogeneous intracellular Ca(2+) signal, which was abolished by disruption of inositol 1,4,5-trisphosphate (InsP(3)) signaling and by depletion of intracellular stores with cyclopiazonic acid. The inhibition of the Na(+)/Ca(2+) exchanger upon substitution of extracellular Na(+) unmasked the Ca(2+) signal triggered by an increase in extracellular Ca(2+) levels. Finally, aromatic amino acids, which function as allosteric activators of CaSR, potentiated the Ca(2+) response to the CaSR agonist La(3+). These data provide evidence that CMEC express CaSR, which is able to respond to physiological agonists by mobilizing Ca(2+) from intracellular InsP(3)-sensitive stores. Copyright 2008 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Tae-Ho; Lee, Sung-Gap, E-mail: lsgap@gnu.ac.kr; Yeo, Jin-Ho
2014-10-15
Highlights: • We fabricated lead-free (Na{sub 0.5}K{sub 0.5})NbO{sub 3} ceramics. • We studied the structural and electrical properties of 1 − x(Na{sub 0.5}K{sub 0.5})NbO{sub 3}–x(Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} ceramics. • The structural and electrical properties improved with increasing amount of (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3}. - Abstract: In this study, 1 − x(Na{sub 0.5}K{sub 0.5})NbO{sub 3}–x(Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} ceramics were fabricated using the conventional mixed oxide method. The effects of the addition of (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} on the structural and electrical properties of the specimens were investigated for their application in piezoelectric devices. As the results of X-ray diffractionmore » analysis show, all specimens display the typical polycrystalline perovskite structure without the presence of the second phase. Sintered densities increased with an increase in the amount of (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} added and the specimen with 0.08 mol% of (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} added showed the maximum value of 4.54 g/cm{sup 3}. Both average grain size and densification increased with an increase in the amount of (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3}. The electromechanical coupling factor, dielectric constant ϵ{sub r}, dielectric loss tan δ, d{sub 33} and Curie temperature of the 0.92(Na{sub 0.5}K{sub 0.5})NbO{sub 3}–0.08(Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} specimens doped with 0.08 mol% of (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} were 0.31, 1338, 0.021, 138 and 445 °C, respectively.« less
Watmough, Shaun
2018-06-01
There is increasing concern over the negative ecological impacts caused by falling calcium (Ca) concentrations in lakes, particularly in central Ontario, Canada. Forecasting regional changes in lake Ca concentrations relies on accurate estimates of mineral weathering rates that are not widely available. In this study, bulk atmospheric deposition, surface water and soil chemistry along with 87 Sr/ 86 Sr isotope measurements were used to provide regional insight into weathering controls on Ca concentrations in lakes. Regionally, Ca concentrations in 90% of 129 lakes sampled in central Ontario were <0.1 mmol L -1 and the Ca/Sr ratio in lakes increased and the K/Sr ratio decreased with increasing Sr concentration, which is indicative of greater Ca sources from calcite or apatite in the higher Ca lakes. Significant relationships between 87 Sr/ 86 Sr ratios and Ca/Sr rations in dilute acid (0.1 M HCl) soil extracts are also indicative of the presence of trace amounts of calcite or apatite in surficial soils. Within the low (<0.7 mmol L -1 ) Ca lakes, defined in this study that are considered most at risk from falling Ca concentrations, 87 Sr/ 86 Sr ratios fell within the range observed in weak acid soil extracts and were also significantly related to Ca/Na and K/Sr ratios in surface waters. There were large inconsistencies however, between Ca/Na ratios and Ca/Sr in surface waters and soil acid extracts that suggest differences in 87 Sr/ 86 Sr ratios in surface waters of the low Ca lakes do not simply reflect differences in Ca derived from non-silicate minerals in surficial soils and that that Ca sources from deeper soil or bedrock are also important contributors to surface water Ca in these low Ca lakes. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Du, Song; Jin, Wenbiao; Duan, Feng
2018-06-01
In this paper, the circulating cooling wastewater was treated by chemical coagulation process through adding NaOH/Na2CO3.The effect of NaOH and Na2CO3 dose on removal of scale ions, such as Ca2+, Mg2+, Ba2+, Sr2+, SiO2, was studied and the removal mechanism was discussed. The results showed that the increase of NaOH dose was beneficial to the removal of above-mentioned scale ions. When NaOH was only added, the removal efficiency of Ca2+, Mg2+, Ba2+, Sr2+, SiO2 was 86.3%, 91.6%, 86.5%, 58.1%, 84.2%, respectively. When 680 mg/L of NaOH and 300 mg/L of Na2CO3 were added, and the effluent pH was above 11.2, the removal efficiency of Ca2+, Mg2+ was 95.8% and 89.4%, respectively, and the concentration of Ca2+and Mg2+ was below 20 mg/L, which met the target of wastewater treatment. Finally the possible removal mechanism of Ca2+, Mg2+, Ba2+, Sr2+and SiO2 was discussed.
Nakano, Takanori; Yokoo, Yoriko; Okumura, Masao; Jean, Seo-Ryong; Satake, Kenichi
2012-11-01
To elucidate the influence of airborne materials on the ecosystem of Japan's Yakushima Island, we determined the elemental compositions and Sr and Nd isotope ratios in streamwater, soils, vegetation, and rocks. Streamwater had high Na and Cl contents, low Ca and HCO(3) contents, and Na/Cl and Mg/Cl ratios close to those of seawater, but it had low pH (5.4 to 7.1), a higher Ca/Cl ratio than seawater, and distinct (87)Sr/(86)Sr ratios that depended on the bedrock type. The proportions of rain-derived cations in streamwater, estimated by assuming that Cl was derived from sea salt aerosols, averaged 81 % for Na, 83 % for Mg, 36 % for K, 32 % for Ca, and 33 % for Sr. The Sr value was comparable to the 28 % estimated by comparing Sr isotope ratios between rain and granite bedrock. The soils are depleted in Ca, Na, P, and Sr compared with the parent materials. At Yotsuse in the northwestern side, plants and the soil pool have (87)Sr/(86)Sr ratios similar to that of rainwater with a high sea salt component. In contrast, the Sr and Nd isotope ratios of soil minerals in the A and B horizons approach those of silicate minerals in northern China's loess soils. The soil Ca and P depletion results largely from chemical weathering of plagioclase and of small amounts of apatite and calcite in granitic rocks. This suggests that Yakushima's ecosystem is affected by large amounts of acidic precipitation with a high sea salt component, which leaches Ca and its proxy (Sr) from bedrock into streams, and by Asian dust-derived apatite, which is an important source of P in base cation-depleted soils.
Sarcoplasmic reticulum buffering of myoplasmic calcium in bovine coronary artery smooth muscle.
Sturek, M; Kunda, K; Hu, Q
1992-01-01
1. We tested the hypothesis that the sarcoplasmic reticulum (SR) buffers (attenuates) the increase in averaged myoplasmic free [Ca2+] (Ca(im)) resulting from Ca2+ influx. 2. Fura-2 measurements of Ca(im) were obtained in single smooth muscle cells freshly dispersed from bovine coronary artery. 3. Caffeine (5 x 10(-3) M) elicited a transient increase in Ca(im) and depleted the SR Ca2+ store. In the continued presence of caffeine or 10(-5) M-ryanodine SR buffering of Ca(im) was inhibited. Subsequent exposure to high extracellular [K+] (greater than 30 mM, equimolar Na+ removal) elicited a 2-fold more rapid and 2-fold greater peak increase in Ca(im) than high K+ elicited when SR buffering of Ca(im) was normal. The augmented increase in Ca(im) was inhibited 35% by 10(-5) M-diltiazem, 65% by 2 x 10(-4) M-LaCl3, and 87% in Ca(2+)-free external solution. 4. When Ca(im) buffering capacity was increased by partially depleting the SR with a transient (1 min) exposure to caffeine, subsequent exposure to 80 nM-K+ solution increased Ca(im) almost 2-fold more slowly than 80 mM-K+ before depletion of Ca2+ from the SR. However, the influxing Ca2+ was sequestered by the SR and refilled it, as evident by the subsequent caffeine-induced Ca(im) transient being identical to the first. Increasing extracellular [K+] (thus, increasing depolarization and Na+ removal) caused proportional increases in Ca(im) and the subsequent caffeine-induced Ca(im) transients were proportionally larger, indicating a graded filling of the SR by Ca2+ influx. 5. Diltiazem (10(-5) M) inhibited the refilling of the SR achieved by 80 mM-K+, by 26%. Refilling was inhibited 76% by 80 mM-K+, Ca(2+)-free solution, indicating the fraction of refilling dependent on influx of Ca2+ through voltage-gated Ca2+ channels, leak channels, and other influx pathways. Mild depolarization with 35 mM-K+ (no Na+ removal) often caused no increase in Ca(im), but influx through voltage-gated Ca2+ channels occurred because the SR Ca2+ store was refilled. Also, 10(-5) M-diltiazem or 10(-6) M-TA3090 inhibited the refilling to levels attributable only to leak influx of Ca2+. 6. All data support our hypothesis that the SR significantly attenuates the amount of Ca2+ influx that accumulates to increase Ca(im).(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1403813
Lamontagne, Leo K; Laurita, Geneva; Knight, Michael; Yusuf, Huma; Hu, Jerry; Seshadri, Ram; Page, Katharine
2017-05-01
The cubic semiconducting compounds APd 3 O 4 (A = Ca, Sr) can be hole-doped by Na substitution on the A site and driven toward more conducting states. This process has been followed here by a number of experimental techniques to understand the evolution of electronic properties. While an insulator-to-metal transition is observed in Ca 1-x Na x Pd 3 O 4 for x ≥ 0.15, bulk metallic behavior is not observed for Sr 1-x Na x Pd 3 O 4 up to x = 0.20. Given the very similar crystal and (calculated) electronic structures of the two materials, the distinct behavior is a matter of interest. We present evidence of local disorder in the A = Sr materials through the analysis of the neutron pair distribution function, which is potentially at the heart of the distinct behavior. Solid-state 23 Na nuclear magnetic resonance studies additionally suggest a percolative insulator-to-metal transition mechanism, wherein presumably small regions with a signal resembling metallic NaPd 3 O 4 form almost immediately upon Na substitution, and this signal grows monotonically with substitution. Some signatures of increased local disorder and a propensity for Na clustering are seen in the A = Sr compounds.
Chemical weathering outputs from the flood plain of the Ganga
NASA Astrophysics Data System (ADS)
Bickle, Michael J.; Chapman, Hazel J.; Tipper, Edward; Galy, Albert; De La Rocha, Christina L.; Ahmad, Talat
2018-03-01
Transport of sediment across riverine flood plains contributes a significant but poorly constrained fraction of the total chemical weathering fluxes from rapidly eroding mountain belts which has important implications for chemical fluxes to the oceans and the impact of orogens on long term climate. We report water and bedload chemical analyses from the Ganges flood-plain, a major transit reservoir of sediment from the Himalayan orogen. Our data comprise six major southern tributaries to the Ganga, 31 additional analyses of major rivers from the Himalayan front in Nepal, 79 samples of the Ganga collected close to the mouth below the Farakka barrage every two weeks over three years and 67 water and 8 bedload samples from tributaries confined to the Ganga flood plain. The flood plain tributaries are characterised by a shallow δ18O - δD array, compared to the meteoric water line, with a low δDexcess from evaporative loss from the flood plain which is mirrored in the higher δDexcess of the mountain rivers in Nepal. The stable-isotope data confirms that the waters in the flood plain tributaries are dominantly derived from flood plain rainfall and not by redistribution of waters from the mountains. The flood plain tributaries are chemically distinct from the major Himalayan rivers. They can be divided into two groups. Tributaries from a small area around the Kosi river have 87Sr/86Sr ratios >0.75 and molar Na/Ca ratios as high as 6. Tributaries from the rest of the flood plain have 87Sr/86Sr ratios ≤0.74 and most have Na/Ca ratios <1. One sample of the Gomti river and seven small adjacent tributaries have elevated Na concentrations likely caused by dissolution of Na carbonate salts. The compositions of the carbonate and silicate components of the sediments were determined from sequential leaches of floodplain bedloads and these were used to partition the dissolved cation load between silicate and carbonate sources. The 87Sr/86Sr and Sr/Ca ratios of the carbonate inputs were derived from the acetic-acid leach compositions and silicate Na/Ca and 87Sr/86Sr ratios derived from silicate residues from leaching. Modelling based on the 87Sr/86Sr and Sr/Ca ratios of the carbonate inputs and 87Sr/86Sr ratios of the silicates indicates that the flood plain waters have lost up to 70% of their Ca (average ∼ 50%) to precipitation of secondary calcite which is abundant as a diagenetic cement in the flood plain sediments. 31% of the Sr, 8% of the Ca and 45% of the Mg are calculated to be derived from silicate minerals. Because of significant evaporative loss of water across the flood plain, and in the absence of hydrological data for flood plain tributaries, chemical weathering fluxes from the flood plain are best calculated by mass balance of the Na, K, Ca, Mg, Sr, SO4 and 87Sr/86Sr compositions of the inputs, comprising the flood plain tributaries, Himalayan rivers and southern rivers, with the chemical discharge in the Ganga at Farakka. The calculated fluxes from the flood plain for Na, K, Ca and Mg are within error of those estimated from changes in sediment chemistry across the flood plain (Lupker et al., 2012, Geochemica Cosmochimica Acta). Flood plain weathering supplies between 41 and 63% of the major cation and Sr fluxes and 58% of the alkalinity flux carried by the Ganga at Farakka which compares with 24% supplied by Himalayan rivers and 18% by the southern tributaries.
Strontium, barium, and manganese metabolism in isolated presynaptic nerve terminals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasgado-Flores, H.; Sanchez-Armass, S.; Blaustein, M.P.
1987-06-01
To gain insight into the mechanisms by which the divalent cations Sr, Ba, and Mn affect neurotransmitter release from presynaptic nerve terminals, the authors examined the sequestration of these cations, ion comparison to Ca, by mitochondrial and nonmitochondrial organelles and the extrusion of these cations from isolated nerve terminals. Sequestration was studied in synaptosomes made leaky to small ions by treatment with saponin; efflux was examined in intact synaptosomes that were preloaded with the divalent cations by incubation in depolarizing (K rich) media. The selectivity sequence for ATP-dependent mitochondrial uptake that they observed was Mn>>Ca>Sr>>Ba, whereas that for the SERmore » was Ca greater than or equal to Mn>Sr>>Ba. When synaptosomes that were preloaded with divalent cations were incubated in Na- and Ca-free media, there was little efflux of /sup 45/Ca, /sup 133/Ba, /sup 85/Sr, or /sup 54/Mn. When the incubation was carried out in media containing Na without Ca, there was substantial stimulation of Ca and Sr efflux, but only slight stimulation of Ba or Mn efflux. In Na-free media, the addition of 1 mM Ca promoted the efflux of all four divalent cations, probably via Ca-divalent cation exchange. In summary, the sequestration and extrusion data suggest that, with equal loads, Mn will be buffered to the greatest extent, whereas Ba will be least well buffered. These results may help to explain why Mn has a very long-lasting effect on transmitter release, while the effect of Sr is much briefer.« less
Effects of urbanization on groundwater evolution in an urbanizing watershed
NASA Astrophysics Data System (ADS)
Reyes, D.; Banner, J. L.; Bendik, N.
2011-12-01
The Jollyville Plateau Salamander (Eurycea tonkawae), a candidate species for listing under the Endangered Species Act, is endemic to springs and caves within the Bull Creek Watershed of Austin, Texas. Rapid urbanization endangers known populations of this salamander. Conservation strategies lack information on the extent of groundwater contamination from anthropogenic sources in this karst watershed. Spring water was analyzed for strontium (Sr) isotopes and major ions from sites classified as "urban" or "rural" based on impervious cover estimates. Previous studies have shown that the 87Sr/86Sr value of municipal water is significantly higher than values for natural streamwater, which are similar to those for the Cretaceous limestone bedrock of the region's watersheds. We investigate the application of this relationship to understanding the effects of urbanization on groundwater quality. The use of Sr isotopes as hydrochemical tracers is complemented by major ion concentrations, specifically the dominant ions in natural groundwater (Ca and HCO3) and the ions associated with the addition of wastewater (Na and Cl). To identify high priority salamander-inhabited springs for water quality remediation, we explore the processes controlling the chemical evolution of groundwater such as municipal water inputs, groundwater-soil interactions, and solution/dissolution reactions. 87Sr/86Sr values for water samples from within the watershed range from 0.70760 to 0.70875, the highest values corresponding to sites located in the urbanized areas of the watershed. Analyses of the covariation of Sr isotopes with major ion concentrations help elucidate controls on spring water evolution. Springs located in rural portions of the watershed have low 87Sr/86Sr, high concentrations of Ca and HCO3, and low concentrations of Na and Cl. This is consistent with small inputs of municipal water. Three springs located in urban portions of the watershed have high 87Sr/86Sr, low Ca and HCO3, and high Na and Cl. This is consistent with large inputs of municipal water. The other five springs located in urban portions have low 87Sr/86Sr, low concentrations of Ca and HCO3, and high concentrations of Na and Cl. This is reflects a process other than an input of municipal water. Groundwater interaction with soils generally results in higher Na concentrations relative to Ca. 87Sr/86Sr values in this scenario may increase or decrease, depending on the Sr isotope variability of the local soils. Alternatively, precipitation of calcite from groundwater would decrease the concentration of Ca without necessarily decreasing 87Sr/86Sr values. The results suggest more anthropogenic water in urban springs than rural springs. These data serve to identify sources of spring recharge, including better constraints on the location(s) of urban leakage.
Hakeem, D A; Park, K
2015-07-01
The crystal structure and luminescence properties of Na(Sr0.97-xCax)PO4:0.03Eu2+ (0 < x < 1.0) phosphors were studied, depending on the Ca2+ concentration. All the Na(Sr0.97-xCax)PO4:0.03Eu2+ phosphors had a hexagonal crystal structure. The excitation spectra of the prepared phosphors showed a broad band ranging from 250 to 420 nm, which arises due to the 4f-5d transitions of Eu2+ ions. Upon the excitation of 334 nm wavelength, the emission spectra showed a broad blue band ranging from 400 to 700 nm peaking at 450 nm. Among the prepared phosphors, the Na(Sr0.72Ca0.25)PO4:0.03Eu2+ showed the strongest emission intensity and could be applied as a blue emitting phosphor for UV-based w-LEDs.
Tyler Miller, R
2013-06-01
Through regulation of excretion, the kidney shares responsibility for the metabolic balance of calcium (Ca(2+)) with several other tissues including the GI tract and bone. The balances of Ca(2+) and phosphate (PO4), magnesium (Mg(2+)), sodium (Na(+)), potassium (K(+)), chloride (Cl(-)), and water (H2O) are linked via regulatory systems with overlapping effects and are also controlled by systems specific to each of them. Cloning of the calcium-sensing receptor (CaSR) along with the recognition that mutations in the CaSR gene are responsible for two familial syndromes characterized by abnormalities in the regulation of PTH secretion and Ca(2+) metabolism (Familial Hypocalciuric Hypercalcemia, FHH, and Autosomal Dominant Hypocalcemia, ADH) made it clear that extracellular Ca(2+) (Ca(2+)o) participates in its own regulation via a specific, receptor-mediated mechanism. Demonstration that the CaSR is expressed in the kidney as well as the parathyroid glands combined with more complete characterizations of FHH and ADH established that the effects of elevated Ca(2+) on the kidney (wasting of Na(+), K(+), Cl(-), Ca(2+), Mg(2+) and H2O) are attributable to activation of the CaSR. The advent of positive and negative allosteric modulators of the CaSR along with mouse models with global or tissue-selective deletion of the CaSR in the kidney have allowed a better understanding of the functions of the CaSR in various nephron segments. The biology of the CaSR is more complicated than originally thought and difficult to define precisely owing to the limitations of reagents such as anti-CaSR antibodies and the difficulties inherent in separating direct effects of Ca(2+) on the kidney mediated by the CaSR from associated CaSR-induced changes in PTH. Nevertheless, renal CaSRs have nephron-specific effects that contribute to regulating Ca(2+) in the circulation and urine in a manner that assures a narrow range of Ca(2+)o in the blood and avoids excessively high concentrations of Ca(2+) in the urine. Published by Elsevier Ltd.
Late INa increases diastolic SR-Ca2+-leak in atrial myocardium by activating PKA and CaMKII
Fischer, Thomas H.; Herting, Jonas; Mason, Fleur E.; Hartmann, Nico; Watanabe, Saera; Nikolaev, Viacheslav O.; Sprenger, Julia U.; Fan, Peidong; Yao, Lina; Popov, Aron-Frederik; Danner, Bernhard C.; Schöndube, Friedrich; Belardinelli, Luiz; Hasenfuss, Gerd; Maier, Lars S.; Sossalla, Samuel
2015-01-01
Aims Enhanced cardiac late Na current (late INa) and increased sarcoplasmic reticulum (SR)-Ca2+-leak are both highly arrhythmogenic. This study seeks to identify signalling pathways interconnecting late INa and SR-Ca2+-leak in atrial cardiomyocytes (CMs). Methods and results In murine atrial CMs, SR-Ca2+-leak was increased by the late INa enhancer Anemonia sulcata toxin II (ATX-II). An inhibition of Ca2+/calmodulin-dependent protein kinase II (Autocamide-2-related inhibitory peptide), protein kinase A (H89), or late INa (Ranolazine or Tetrodotoxin) all prevented ATX-II-dependent SR-Ca2+-leak. The SR-Ca2+-leak induction by ATX-II was not detected when either the Na+/Ca2+ exchanger was inhibited (KBR) or in CaMKIIδc-knockout mice. FRET measurements revealed increased cAMP levels upon ATX-II stimulation, which could be prevented by inhibition of adenylyl cyclases (ACs) 5 and 6 (NKY 80) but not by inhibition of phosphodiesterases (IBMX), suggesting PKA activation via an AC-dependent increase of cAMP levels. Western blots showed late INa-dependent hyperphosphorylation of CaMKII as well as PKA target sites at ryanodine receptor type-2 (-S2814 and -S2808) and phospholamban (-Thr17, -S16). Enhancement of late INa did not alter Ca2+-transient amplitude or SR-Ca2+-load. However, upon late INa activation and simultaneous CaMKII inhibition, Ca2+-transient amplitude and SR-Ca2+-load were increased, whereas PKA inhibition reduced Ca2+-transient amplitude and load and additionally slowed Ca2+ elimination. In atrial CMs from patients with atrial fibrillation, inhibition of late INa, CaMKII, or PKA reduced the SR-Ca2+-leak. Conclusion Late INa exerts distinct effects on Ca2+ homeostasis in atrial myocardium through activation of CaMKII and PKA. Inhibition of late INa represents a potential approach to attenuate CaMKII activation and decreases SR-Ca2+-leak in atrial rhythm disorders. The interconnection with the cAMP/PKA system further increases the antiarrhythmic potential of late INa inhibition. PMID:25990311
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi; Suen, Nian-Tzu; College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002
15 new quaternary Zintl phases have been synthesized by solid-state reactions from the respective elements, and their structures have been determined by single-crystal X-ray diffraction. Na{sub 3}E{sub 3}TrPn{sub 4} (E=Ca, Sr, Eu; Tr=Al, Ga, In; Pn=P, As, Sb) crystallize in the hexagonal crystal system with the non-centrosymmetric space group P6{sub 3}mc (No. 186). The structure represents a variant of the K{sub 6}HgS{sub 4} structure type (Pearson index hP22) and features [TrPn{sub 4}]{sup 9–} tetrahedral units, surrounded by Na{sup +} and Ca{sup 2+}, Sr{sup 2+}, Eu{sup 2+} cations. The nominal formula rationalization [Na{sup +}]{sub 3}[E{sup 2+}]{sub 3}[TrPn{sub 4}]{sup 9–} follows themore » octet rule, suggesting closed-shell configurations for all atoms and intrinsic semiconducting behavior. However, structure refinements for several members hint at disorder and mixing of cations that potentially counteract the optimal valence electron count. - Graphical abstract: The hexagonal, non-centrosymmetric structure of Na{sub 3}E{sub 3}TrPn{sub 4} (E=Ca, Sr, Eu; Tr=Al, Ga, In; Pn=P, As, Sb) features [TrPn{sub 4}]{sup 9–} tetrahedral units, surrounded by Na{sup +} and Ca{sup 2+}, Sr{sup 2+}, Eu{sup 2+} cations. - Highlights: • 15 quaternary phosphides, arsenides, and antimonides are synthesized and structurally characterized. • The structure is a variant of the hexagonal K{sub 6}HgS{sub 4}-type, with distinctive pattern for the cations. • Occupational and/or positional disorder of yet unknown origin exists for some members of the series.« less
Saida, K; Twort, C; van Breemen, C
1988-01-01
Exogenous GTP was required for the induction of Ca2+ release from smooth muscle SR by IP3 if endogenous GTP was depleted. NaN3 could function as a partial substitute for GTP as a cofactor for the IP3-induced Ca2+ release from the SR. In contrast to the IP3-induced Ca2+ release, caffeine-induced Ca2+ release from the SR did not require GTP. Pertussis toxin inhibited the IP3-induced Ca2+ release from the SR, whereas it had no effect on caffeine-induced Ca2+ release. These results indicate that in smooth muscle two different Ca2+ release-channels exist in the SR: (a) activated by IP3, and (b) activated by caffeine or Ca2+.
Li, Y; Placek, L M; Coughlan, A; Laffir, F R; Pradhan, D; Mellott, N P; Wren, A W
2015-02-01
This study was conducted to determine the influence that network modifiers, sodium (Na+) and strontium (Sr2+), have on the solubility of a SiO2-TiO2-CaO-Na2O/SrO bioactive glass. Glass characterization determined each composition had a similar structure, i.e. bridging to non-bridging oxygen ratio determined by X-ray photoelectron spectroscopy. Magic angle spinning nuclear magnetic resonance (MAS-NMR) confirmed structural similarities as each glass presented spectral shifts between -84 and -85 ppm. Differential thermal analysis and hardness testing revealed higher glass transition temperatures (Tg 591-760 °C) and hardness values (2.4-6.1 GPa) for the Sr2+ containing glasses. Additionally the Sr2+ (~250 mg/L) containing glasses displayed much lower ion release rates than the Na+ (~1,200 mg/L) containing glass analogues. With the reduction in ion release there was an associated reduction in solution pH. Cytotoxicity and cell adhesion studies were conducted using MC3T3 Osteoblasts. Each glass did not significantly reduce cell numbers and osteoblasts were found to adhere to each glass surface.
Haase, Andreas; Hartung, Klaus
2009-01-01
Kinetic properties of the Na-Ca exchanger (guinea pig NCX1) expressed in Xenopus oocytes were investigated with excised membrane patches in the inside-out configuration and photolytic Ca2+ concentration jumps with either 5 mM extracellular Sr2+ or Ba2+. After a Ca2+ concentration jump on the cytoplasmic side, the exchanger performed Sr-Ca or Ba-Ca exchange. In the Sr-Ca mode, currents are transient and decay in a monoexponential manner similar to that of currents in the Ca-Ca exchange mode described before. Currents recorded in the Ba-Ca mode are also transient, but the decay is biphasic. In the Sr-Ca mode the amount of charge translocated increases at negative potentials in agreement with experiments performed in the Ca-Ca mode. In the Ba-Ca mode the total amount of charge translocated after a Ca2+ concentration jump is ∼4 to 5 times that in Ca-Ca or Sr-Ca mode. In the Ba-Ca mode the voltage dependence of charge translocation depends on the Ca2+ concentration on the cytosolic side before the Ca2+ concentration jump. At low initial Ca2+ levels (∼0.5 μM), charge translocation is voltage independent. At a higher initial concentration (1 μM Ca2+), the amount of charge translocated increases at positive potentials. Biphasic relaxation of the current was also observed in the Ca-Ca mode if the external Ca2+ concentration was reduced to ≤0.5 mM. The results reported here and in previous publications can be described by using a 6-state model with two voltage-dependent conformational transitions. PMID:19486679
Piacentino, V; Dipla, K; Gaughan, J P; Houser, S R
2000-03-15
1. Direct voltage-gated (voltage-dependent Ca2+ release, VDCR) and Ca2+ influx-gated (Ca2+-induced Ca2+ release, CICR) sarcoplasmic reticulum (SR) Ca2+ release were studied in feline ventricular myocytes. The voltage-contraction relationship predicted by the VDCR hypothesis is sigmoidal with large contractions at potentials near the Ca2+ equilibrium potential (ECa). The relationship predicted by the CICR hypothesis is bell-shaped with no contraction at ECa. 2. The voltage dependence of contraction was measured in ventricular myocytes at physiological temperature (37 C), resting membrane potential and physiological [K+]. Experiments were performed with cyclic adenosine 3',5'-monophosphate (cAMP) in the pipette or in the presence of the beta-adrenergic agonist isoproterenol (isoprenaline; ISO). 3. The voltage-contraction relationship was bell-shaped in Na+-free solutions (to eliminate the Na+ current and Na+-Ca2+ exchange, NCX) but the relationship was broader than the L-type Ca2+ current (ICa,L)-voltage relationship. 4. Contractions induced with voltage steps from normal resting potentials to -40 mV are thought to represent VDCR rather than CICR. We found that cAMP and ISO shifted the voltage dependence of ICa,L activation to more negative potentials so that ICa,L was always present with steps to -40 mV. ICa,L at -40 mV inactivated when the holding potential was decreased (VŁ = -57.8 +/- 0.49 mV). 5. ISO increased inward current, SR Ca2+ load and contraction in physiological [Na+] and a broad bell-shaped voltage-contraction relationship was observed. Inhibition of reverse-mode NCX, decreasing ICa,L and decreasing SR Ca2+ loading all decreased contractions at strongly positive potentials near ECa. 6. The voltage-contraction relationship in 200 microM cadmium (Cd2+) was bell-shaped, supporting a role of ICa,L rather than VDCR. 7. All results could be accounted for by the CICR hypothesis, and many results exclude the VDCR hypothesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bijuan; Deng, Zheng; Li, Wenmin
2016-08-28
We report the synthesis and characterization of a new bulk diluted ferromagnetic semiconductor via Na and Mn co-doping in SrCd{sub 2}As{sub 2} with a hexagonal CaAl{sub 2}Si{sub 2}-type structure. Together with carrier doping via (Sr,Na) substitution, spin doping via (Cd,Mn) substitution results in ferromagnetic order with Curie temperature of T{sub C} up to 13 K. Negative magnetoresistance is assigned to weak localization at low temperatures, where the magnetization of samples becomes saturated. The hexagonal structure of (Sr{sub 1−x}Na{sub x})(Cd{sub 1−x}Mn{sub x}){sub 2}As{sub 2} can be acted as a promising candidate for spin manipulations owing to its relatively small coercive field ofmore » less than 24 Oe.« less
Piacentino, Valentino; Dipla, Konstantina; Gaughan, John P; Houser, Steven R
2000-01-01
Direct voltage-gated (voltage-dependent Ca2+ release, VDCR) and Ca2+ influx-gated (Ca2+-induced Ca2+ release, CICR) sarcoplasmic reticulum (SR) Ca2+ release were studied in feline ventricular myocytes. The voltage-contraction relationship predicted by the VDCR hypothesis is sigmoidal with large contractions at potentials near the Ca2+ equilibrium potential (ECa). The relationship predicted by the CICR hypothesis is bell-shaped with no contraction at ECa. The voltage dependence of contraction was measured in ventricular myocytes at physiological temperature (37 °C), resting membrane potential and physiological [K+]. Experiments were performed with cyclic adenosine 3′,5′-monophosphate (cAMP) in the pipette or in the presence of the β-adrenergic agonist isoproterenol (isoprenaline; ISO). The voltage-contraction relationship was bell-shaped in Na+-free solutions (to eliminate the Na+ current and Na+-Ca2+ exchange, NCX) but the relationship was broader than the L-type Ca2+ current (ICa,L)-voltage relationship. Contractions induced with voltage steps from normal resting potentials to -40 mV are thought to represent VDCR rather than CICR. We found that cAMP and ISO shifted the voltage dependence of ICa,L activation to more negative potentials so that ICa,L was always present with steps to -40 mV. ICa,L at -40 mV inactivated when the holding potential was decreased (V½ =−57·8 ± 0·49 mV). ISO increased inward current, SR Ca2+ load and contraction in physiological [Na+] and a broad bell-shaped voltage-contraction relationship was observed. Inhibition of reverse-mode NCX, decreasing ICa,L and decreasing SR Ca2+ loading all decreased contractions at strongly positive potentials near ECa. The voltage-contraction relationship in 200 μM cadmium (Cd2+) was bell-shaped, supporting a role of ICa,L rather than VDCR. All results could be accounted for by the CICR hypothesis, and many results exclude the VDCR hypothesis. PMID:10718736
Luminescent Enhancement of Na+ and Sm3+ Co-doping Reddish Orange SrCa3Si2O8 Phosphors
NASA Astrophysics Data System (ADS)
Chun, Fengjun; Zhang, Binbin; Li, Wen; Liu, Honggang; Deng, Wen; Chu, Xiang; Osman, Hanan; Zhang, Haitao; Yang, Weiqing
2018-04-01
Reddish orange SrCa3Si2O8 phosphors, prepared by the facile solid state reaction method, are a luminescent enhancement of Na+ and Sm3+ co-doping luminescent material. Na+ was designed to compensate the charge imbalance of Sm3+ ion substituting for the Sr2+ ion of orthorhombic SrCa3Si2O8 crystals. The results suggest that Na+ can effectively enhance the luminescent intensity of the reddish orange light peaked at about 562 nm (4 G 5/2 → 6 H 5/2), 600 nm (4 G 5/2 → 6 H 7/2) and 645 nm (4 G 5/2 → 6 H 9/2) excited by the near ultraviolet excited light 404 nm (4 L 13/2 → 6 H 5/2). The energy transfer has been further verified by the florescence lifetime. Additionally, the luminescent lifetime τ of as-grown phosphors was separated into two parts, a rapid lifetime and a slow lifetime. The average lifetime results ranged from 2.098 to 1.329 ms which were influenced by the concentration of Sm3+ doping. The systematic researches of as-grown phosphors have clearly suggested a potential application for white-light-emitting diodes ( w-LEDs).
Long, Chao-liang; Zhang, Yan-fang; Yin, Zhao-yun; Wang, Hai
2005-08-01
To study the effect of acute hypoxia and hypoxic acclimatization on myocardial function of rats. Eighteen male Wistar rats were randomly divided into three groups: normoxic control, acute hypoxia and intermittent hypoxic acclimatization group (n=6). After being exposed to hypoxia (8000 m) for 4 h before and after intermittent hypoxic acclimatization (3000 m and 5000 m, 14 d respectively, 4 h/d), the rats were decapitated and then myocardial sarcoplasmic reticulum (SR) were derived from cardiac muscles. Activities of Na+, K(+)-ATPase, Ca2+, Mg2(+)-ATPase in SR, phosphorylation of phospholamban (PLB) and the ability of 45Ca2+ uptake in SR were observed in all these three groups. 1) Hypoxia had no effects on the activity of Na+, K(+)-ATPase in rats myocardial SR of rats. 2) Compared with normoxic control rats, the activity of Ca2+, Mg2(+)-ATPase in myocardial SR of rats after acute hypoxia was reduced significantly (P<0.01). After intermittent hypoxic acclimatization, its activity increased significantly as compared with that of acute hypoxic rats (P<0.01). 3) The phosphorylation of PLB in acute hypoxic rats was reduced significantly compared with normoxic control rats. After intermittent hypoxic acclimatization, its phosphorylation was increased significantly compared with that of acute hypoxic rats. It suggests that hypoxic acclimatization could alleviate the inhibition of calcium pump. 4) The ability of 45Ca2+ uptake of SR in acute hypoxic rats was decreased significantly. After hypoxic acclimatization, its ability was strengthened significantly. These results suggest that the increased function of myocardial SR calcium pump, the strengthened phosphorylation of PLB to alleviate the inhibition of calcium pump and the increased function of Ca2+ transport in SR are the mechanisms of hypoxic acclimatization protecting cardiac functions from injury induced by severe hypoxia.
Radwański, Przemysław B.; Ho, Hsiang-Ting; Veeraraghavan, Rengasayee; Brunello, Lucia; Liu, Bin; Belevych, Andriy E.; Unudurthi, Sathya D.; Makara, Michael A.; Priori, Silvia G.; Volpe, Pompeo; Armoundas, Antonis A.; Dillmann, Wolfgang H.; Knollmann, Bjorn C.; Mohler, Peter J.; Hund, Thomas J.; Györke, Sándor
2016-01-01
Background Cardiac arrhythmias are a leading cause of death in the US. Vast majority of these arrhythmias including catecholaminergic polymorphic ventricular tachycardia (CPVT) are associated with increased levels of circulating catecholamines and involve abnormal impulse formation secondary to aberrant Ca2+ and Na+ handling. However, the mechanistic link between β-AR stimulation and the subcellular/molecular arrhythmogenic trigger(s) remains elusive. Methods and Results We performed functional and structural studies to assess Ca2+ and Na+ signaling in ventricular myocyte as well as surface electrocardiograms in mouse models of cardiac calsequestrin (CASQ2)-associated CPVT. We demonstrate that a subpopulation of Na+ channels (neuronal Na+ channels; nNav) that colocalize with RyR2 and Na+/Ca2+ exchanger (NCX) are a part of the β-AR-mediated arrhythmogenic process. Specifically, augmented Na+ entry via nNav in the settings of genetic defects within the RyR2 complex and enhanced sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA)-mediated SR Ca2+ refill is both an essential and a necessary factor for the arrhythmogenesis. Furthermore, we show that augmentation of Na+ entry involves β-AR-mediated activation of CAMKII subsequently leading to nNav augmentation. Importantly, selective pharmacological inhibition as well as silencing of Nav1.6 inhibit myocyte arrhythmic potential and prevent arrhythmias in vivo. Conclusion These data suggest that the arrhythmogenic alteration in Na+/Ca2+ handling evidenced ruing β-AR stimulation results, at least in part, from enhanced Na+ influx through nNav. Therefore, selective inhibition of these channels and Nav1.6 in particular can serve as a potential antiarrhythmic therapy. PMID:27747307
Consolini, A E; Ragone, M I; Conforti, P; Volonté, M G
2007-05-01
The role of the mitochondrial Na/Ca-exchanger (mNCX) in hearts exposed to ischemia-reperfusion (I/R) and pretreated with cardioplegia (CPG) was studied from a mechano-calorimetric approach. No-flow ischemia (ISCH) and reperfusion (REP) were developed in isolated rat hearts pretreated with 10 micromol/L clonazepam (CLZP), an inhibitor of the mNCX, and (or) a high K+ - low Ca2+ solution (CPG). Left ventricular end diastolic pressure (LVEDP), pressure development during beats (P), and the steady heat release (Ht) were continuously measured and muscle contents of ATP and PCr were analyzed at the end of REP. During REP, Ht increased more than P, reducing muscle economy (P/Ht) and the ATP content. CPG induced an increase in P recovery during REP (to 90% +/- 10% of preISCH) with respect to nonpretreated hearts (control, C, to 64% +/- 10%, p < 0.05). In contrast, CLZP reduced P recovery of CPG-hearts (50% +/- 6.4%, p < 0.05) and increased LVEDP in C hearts. To evaluate effects on sarcoplasmic reticulum (SR) function, ischemic hearts were reperfused with 10 mmol/L caffeine -36 mmol/L Na (C - caff - low Na). It increased LVEDP, which afterwards slowly relaxed, whereas Ht increased (by about 6.5 mW/g). CLZP sped up the relaxation with higher DeltaHt, C - caff - low Na produced higher contracture and lower Ht in perfused than in ischemic hearts. Values of DeltaHt were compared with reported fluxes of Ca2+-transporters, suggesting that mitochondria may be in part responsible for the DeltaHt during C - caff - low Na REP. Results suggest that ISCH-REP reduced the SR store for the recovery of contractility, but induced Ca2+ movement from the mitochondria to the SR stores. Also, mitochondria and SR are able to remove cytosolic Ca2+ during overloads (as under caffeine), through the mNCX and the uniporter. CPG increases Ca2+ cycling from mitochondria to the SR, which contributes to the higher recovery of P. In contrast, CLZP produces a deleterious effect on ISCH-REP associated with higher heat release and reduced resynthesis of high energy phosphates, which suggests the induction of mitochondrial Ca cycling and uncoupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhijun, E-mail: wangzhijunmail@yahoo.com.cn; Li, Panlai; Li, Ting
2013-06-01
Graphical abstract: Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} phosphor can be effectively excited by an ultraviolet and near-ultraviolet light, and produce a bright blue emission centered at 436 nm. The CIE chromaticity coordinations (x, y) of Na{sub 2}CaSiO{sub 4}:Eu{sup 2+}(NSCE)/Li{sub 2}SrSiO{sub 4}:Eu{sup 2+}(LSSE) vary with the molar ratio of the two constituents. When NSCE/LSSE is 1:3, the CIE chromaticity coordination is (0.332, 0.346), which is close to that of the natural sunlight (0.33, 0.33). The results indicate that Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} may be a promising blue phosphor for UV chip-based multi-phosphor converted white light emitting diodes. Highlights: ► Na{sub 2}CaSiO{sub 4}:Eu{supmore » 2+} shows the blue emission with a peak at 436 nm and broad excitation band in the UV/n-UV range. ► White light with CIE coordinates (0.332, 0.346) is generated by mixing the blue phosphor with the Li{sub 2}SrSiO{sub 4}:Eu{sup 2+} yellow phosphor. ► Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} would be a promising blue phosphor candidate for UV chip-based multi-phosphor converted white LEDs. - Abstract: A novel blue phosphor Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} is synthesized by a high temperature solid-state reaction, and its luminescent properties are systematically studied. Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} can be effectively excited by the 354 nm radiation, and create blue emission (436 nm). The emission intensity of Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} is influenced by the Eu{sup 2+} doping content, and the optimal doping content is 1.5%, and the concentration quenching mechanism of Eu{sup 2+} in Na{sub 2}CaSiO{sub 4} can be attributed to the multipolar interaction. The white light with CIE coordinates (0.332, 0.346) is generated by mixing the blue phosphor Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} with the yellow phosphor Li{sub 2}SrSiO{sub 4}:Eu{sup 2+}. The results indicate that Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} may be a potential blue emitting phosphor for UV chip-based multi-phosphor converted white light emitting diodes.« less
Faber, Gregory M; Rudy, Yoram
2007-07-01
Patients with a missense mutation of the calsequestrin 2 gene (CASQ2) are at risk for catecholaminergic polymorphic ventricular tachycardia. This mutation (CASQ2(D307H)) results in decreased ability of CASQ2 to bind Ca2+ in the sarcoplasmic reticulum (SR). In this theoretical study, we investigate a potential mechanism by which CASQ2(D307H) manifests its pro-arrhythmic consequences in patients. Using simulations in a model of the guinea pig ventricular myocyte, we investigate the mutation's effect on SR Ca2+ storage, the Ca2+ transient (CaT), and its indirect effect on ionic currents and membrane potential. We model the effects of isoproterenol (ISO) on Ca(V)1.2 (the L-type Ca2+ current, I(Ca(L))) and other targets of beta-adrenergic stimulation. ISO increases I(Ca(L)), prolonging action potential (AP) duration (Control: 172 ms, +ISO: 207 ms, at cycle length of 1500 ms) and increasing CaT (Control: 0.79 microM, +ISO: 1.61 microM). ISO increases I(Ca(L)) by reducing the fraction of channels which undergo voltage-dependent inactivation and increasing transitions from a non-conducting to conducting mode of channel gating. CASQ2(D307H) reduces SR storage capacity, thereby reducing the magnitude of CaT (Control: 0.79 microM, CASQ2(D307H): 0.52 microM, at cycle length of 1500 ms). The combined effect of CASQ2(D307H) and ISO elevates SR free Ca2+ at a rapid rate, leading to store-overload-induced Ca2+ release and delayed afterdepolarization (DAD). If resting membrane potential is sufficiently elevated, the Na+-Ca2+ exchange-driven DAD can trigger I(Na) and I(Ca(L)) activation, generating a triggered arrhythmogenic AP. The CASQ2(D307H) mutation manifests its pro-arrhythmic consequences due to store-overload-induced Ca2+ release and DAD formation due to excess free SR Ca2+ following rapid pacing and beta-adrenergic stimulation.
Christ, Torsten; Kovács, Peter P; Acsai, Karoly; Knaut, Michael; Eschenhagen, Thomas; Jost, Norbert; Varró, András; Wettwer, Erich; Ravens, Ursula
2016-10-05
The Na(+)/Ca(2+) exchanger (NCX) plays a major role in myocardial Ca(2+) homoeostasis, but is also considered to contribute to the electrical instability and contractile dysfunction in chronic atrial fibrillation (AF). Here we have investigated the effects of the selective NCX blocker SEA0400 in human right atrial cardiomyocytes from patients in sinus rhythm (SR) and AF in order to obtain electrophysiological evidence for putative antiarrhythmic activity of this new class of drugs. Action potentials were measured in right atrial trabeculae using conventional microelectrodes. Human myocytes were enzymatically isolated. Rat atrial and ventricular cardiomyocytes were used for comparison. Using perforated-patch, NCX was measured as Ni(2+)-sensitive current during ramp pulses. In ruptured-patch experiments, NCX current was activated by changing the extracellular Ca(2+) concentration from 0 to 1mM in Na(+)-free bath solution (100mM Na(+) intracellular, "Hilgemann protocol"). Although SEA0400 was effective in rat cardiomyocytes, 10µM did not influence action potentials and contractility, neither in SR nor AF. SEA0400 (10μM) also failed to affect human atrial NCX current measured with perforated patch. With the "Hilgemann protocol" SEA0400 concentration-dependently suppressed human atrial NCX current, and its amplitude was larger in AF than in SR cardiomyocytes. Our results confirm higher NCX activity in AF than SR. SEA0400 fails to block Ni(2+)-sensitive current in human atrial cells unless unphysiological conditions are used. We speculate that block of NCX with SEA0400 depends on intracellular Na(+) concentration. Copyright © 2016 Elsevier B.V. All rights reserved.
Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, Joel D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G.
1997-01-01
This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association, Commission on New Minerals and Mineral Names. In a working definition of a zeolite mineral used for this review, structures containing an interrupted framework of tetrahedra are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is allowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundant in atomic proportions. To name these, the appropriate chemicalsymbol is attached by a hyphen to the series name as a suffix, except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely on the ratio Si:Al except for heulandite (Si:Al < 4.0) and clinoptilolite (Si:Al ??? 4.0). Dehydration, partial hydration, and overhydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term 'ideal formula' should be avoided in referring to a simplified or averaged formula of a zeolite. newly recognized species in compositional series are as follows: brewsterite-Sr, -Ba, chabazite-Ca, -Na, -K, clinoptilolite-K, -Na, -Ca, dachiardite-Ca, -Na, erionite-Na, erionite-Na, -K, -Ca, faujasite-Na, -Ca, -Mg, ferrierite-Mg, -K, -Na, gmelinite-Na, -Ca, -K, heulandite-Ca, -Na, -K, -Sr, levyne-Ca, -Na, paulingite-K, -Ca, phillipsite-Na, -Ca, -K, and stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data, IZA structure-type symbols, space-group symmetry, unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species, and three of doubtful status. Herschelite, leonhardite, dvetlozarite, and wellsite are discredited as mineral species names. Obsolete and discredited names are listed.
Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, Joel D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G.
1998-01-01
This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association Commission on New Minerals and Mineral Names. In a working definition of a zeolite mineral used for this review, structures containing an interrupted containing an interrupted framework of tetrahedra are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is alloowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundant in atomic proportions. To name these, the appropriate chemical symbol is attached by a hyphen to the series name as a suffix, except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely in Si:Al ratio except for heulandite (Si:Al < 4.0) and clinoptilolite (Si:Al ??? 4.0). Dehydration, partial hydration and over-hydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term 'ideal formula' should be avoided in referring to a simplified or averaged formula of zeolite. Newly recognized species in compositional series are as follows: brewsterite-Sr, -Ba; chabazite-Ca, -Na, -K; clinoptilolite-K, -Na, -Ca; dechiardite-Ca, -Na; erionite-Na, -K, -Ca,; faujasite-Na, -Ca, -Mg; ferrierite-Mg, -K, -Na; gmelinite-Na, -Ca, -K; heulandite-Ca, -Na, -K, -Sr; levyne-Ca, -Na; paulingite-K, -Ca; phillipsite-Na, -Ca, -K stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data, IZA structure-type symbols, space-group symmetry, unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species, and three of doubtful status. Herschelite, leonhardite, svetlozarite and wellsite are discredited as mineral species names. Obsolete and discredited names are listed.
Instense red phosphors for UV light emitting diode devices.
Cao, Fa-Bin; Tian, Yan-Wen; Chen, Yong-Jie; Xiao, Lin-Jiu; Liu, Yun-Yi
2010-03-01
Ca(x)Sr1-x-1.5y-0.5zMoO4:yEu3+ zNa+ red phosphors were prepared by solid-state reaction using Na+ as charge supply for LEDs (light emitting diodes). The content of charge compensator, Ca2+ concentration, synthesis temperature, reaction time, and Eu3+ concentration were the keys to improving the properties of luminescence and crystal structure of red phosphors. The photoluminescence spectra shows the red phosphors are effectively excited at 616 nm by 311 nm, 395 nm, and 465 nm light. The wavelengths of 395 and 465 nm nicely match the widely applied emission wavelengths of ultraviolet or blue LED chips. Its chromaticity coordinates (CIE) are calculated to be x = 0.65, y = 0.32. Bright red light can be observed by the naked eye from the LED-based Ca0.60Sr0.25MoO4:0.08Eu3+ 0.06Na+.
Loparite, a rare-earth ore (Ce, Na, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3
Hedrick, James B.; Sinha, Shyama P.; Kosynkin, Valery D.
1997-01-01
The mineral loparite (Ce, NA, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3 is the principal ore of the light-group rare-earth elements (LREE) in Russia. The complex oxide has a perovskite (ABO3) structure with coupled substitutions, polymorphism, defect chemistry and a tendency to become metamict. The A site generally contains weakly bonded, easily exchanged cations of the LREE, Na and Ca. The B site generally contains smaller, highly charged cations of Ti, Nb or Fe+3. Mine production is from Russia's Kola Peninsula. Ore is beneficiated to produce a 95% loparite concentrate containing 30% rare-earth oxides. Loparite concentrate is refined by either a chlorination process or acid decomposition process to recover rare-earths, titanium, niobium and tantalum. Rare-earths are separated by solvent extraction and selective precipitation/dissolution. The concentrate is processed at plants in Russia, Estonia and Kazakstan.
Luminescence characteristics of Dy3+ activated Na 2Sr 2Mg (BO 3)2F 2: Dy 3+ phosphor
NASA Astrophysics Data System (ADS)
Wani, Javaid A.; Dhoble, N. S.; Dhoble, S. J.
2012-11-01
In this paper, we have reported a new Na 2Sr 2Mg (BO 3)2F 2:Dy 3+ thermoluminescence (TL) phosphor prepared via the wet chemical method. Prepared phosphor was characterized by X-ray powder diffraction, photoluminescence (PL), TL and scanning electronmicroscopy techniques. The scanning electronmicroscopic image of Na 2Sr 2Mg (BO 3)2F 2:Dy 3+ phosphor confirms the micron size of particles. Under the PL study, the characteristic emission spectrum of Dy 3+ corresponding to 4F 9/2→6H 15/2 (481 nm) and 4F 9/2→6H 13/2 (576 nm) transitions was observed. The TL property of the as prepared phosphor was also found to be good. TL intensity of Na 2Sr2Mg(BO 3)F 2:Dy 3+ phosphors at 0.99 kGy exposure of γ-irradiations was compared with standard CaSO 4:Dy phosphor. It was seen that TL intensity of Na 2Sr 2Mg (BO 3)2F 2: Dy 3+ phosphors is 1.1 times less compared with the standard CaSO 4:Dy TL dosimeter phosphor. The kinetic parameters are also discussed in detail. The values of activation energy E (eV) and frequency factor S (s -1) were found to be 0.57 eV and 1.25×106 s-1, respectively.
Calcium isotope fractionation in a silicate dominated Cenozoic aquifer system
NASA Astrophysics Data System (ADS)
Li, Junxia; DePaolo, Donald J.; Wang, Yanxin; Xie, Xianjun
2018-04-01
To understand the characteristics of Ca isotope composition and fractionation in silicate-dominated Quaternary aquifer system, hydrochemical and isotope studies (87Sr/86Sr, 13CDIC and 44/40Ca) were conducted on groundwater, sediment and rock samples from the Datong basin, China. Along the groundwater flow path from the basin margin to the center, groundwater hydrochemical type evolves from Ca-HCO3 to Na-HCO3/Na-Cl type, which results from aluminosilicate hydrolysis, vertical mixing, cation exchange between CaX2 and NaX, and calcite/dolomite precipitation. These processes cause the decrease in groundwater Ca concentration and the associated modest fractionation of groundwater Ca isotopes along the flowpath. The groundwater δ44/40Ca value varies from -0.11 to 0.49‰. The elevated δ44/40Ca ratios in shallow groundwater are attributed to vertical mixing involving addition of irrigation water, which had the average δ44/40Ca ratio of 0.595‰. Chemical weathering of silicate minerals and carbonate generates depleted δ44/40Ca signatures in groundwater from Heng Mountain (east area) and Huanghua Uplift (west area), respectively. Along the groundwater flow path from Heng Mountain to central area of east area, cation exchange between CaX2 and NaX on clay mineral results in the enrichment of heavier Ca isotope in groundwater. All groundwater samples are oversaturated with respect to calcite and dolomite. The groundwater environment rich in organic matter promotes the precipitation of carbonate minerals via the biodegradation of organic carbon, thereby further promoting the elevation of groundwater δ44/40Ca ratios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, A.; Horowitz, D.; Waxter, R.M.
1979-02-01
Data obtained as part of the Optical Materials Characterization Program are summarized in this report. Room temperature values of refractive index as a function of wavelength are presented for the following materials: commercially grown KCl, reactive atmosphere processed (RAP) KCl, KCl nominally doped with 1.5% KI, hot forged CaF2, fusion cast CaF2, CaF2 doped with Er (0.001% to 3% Er), SrF2, chemical vapor deposited (CVD) ZnSe (2 specimens), and ZnS (CVD, 2 specimens). Data for the thermo-optic constant (dn/dT) and the linear thermal expansion coefficient are given for the following materials over the temperature range -180 degrees C to 200more » degrees C: Al2O3, BaF2, CaF2, CdF2, KBr, KCl, LiF, MgF2, NaCl, NaF, SrF2, ZnS (CVD), and ZnSe (CVD). The piezo-optic constants of the following materials are presented: As2S3 glass, CaF2, BaF2, Ge, KCl, fused SiO2, SrF2, a chalcogenide glass (Ge 33%, As 12%, Se 55%) and ZnSe (CVD).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izumitani, T.; Tsuru, M.
1980-12-16
A phosphate base laser glass comprising 55-70% P2O5, 1-15% Al2O3, 0-25% Li2O, 0-25% Na2O, 0-8% K2O, the total proportion of Li2O, Na2O, and K2O being 10-25%, 0-15% BaO, 0-15% ZnO, 0-15% CaO , 0-15%, sro, 0-15% MgO, the total proportion of BaO, ZnO, CaO, SrO, and MgO being 5-15%, 0-5% Y2O3, 0-5% La2O3, 0-5% GeO2, 0-5% CeO2, 0-3% Nb2O5, 0-3% MnO2, 0-2% Ta2O5, 0-1% Sb2O3, and 0.01-5% Nd2O3, all % being mole %. The phosphate base laser glass of this invention has a high induced emission cross section, a low non-linear refractive index coefficient, and excellent acid resistance and divitrificationmore » resistance. By replacing partially or wholely one or more of LiO2, Na2O, K2O, BaO, ZnO, CaO, SrO, MgO or Al2O3 by LiF, NaF, KF , BaF2ZnF2, CaF2, SrF2, MgF2 or AlF3, respectively, the above properties of the laser glass are further improved.« less
Mixing of Marine and Terrestrial Sources of Strontium in Coastal Environments
NASA Astrophysics Data System (ADS)
Ryan, Saskia; Crowley, Quentin; Deegan, Eileen; Snoeck, Christophe
2017-04-01
87Sr/86Sr from bulk soils, soil extracts and plant material have been used to investigate and quantify the extent of marine-derived Sr in the terrestrial biosphere. Samples were collected along coastal transects and 87Sr/86Sr biosphere values (plant and soil) converge to marine values with increasing proximity to the coast. R2values indicate highly significant trends in certain regions. The National Soils Database (NSDB), TELLUS and TELLUS Border datasets, all of which are geochemical surveys have been employed to further test the extent of marine elemental contribution. Collectively these data cover all of Ireland and Northern Ireland, with varying degrees of sampling density. A strong spatial correlation exists between the Chemical Index of Alteration (CIA; (Al2O3-(CaO*+Na2O)-K2O)) in topsoil (CIA <60; 27% n = 11651) and areas of blanket peat. The enrichment of Ca and Na in these regions would suggest a significant marine geochemical contribution. Topsoil CIA can therefore be used to identify areas likely to feature significant marine inputs and identify regions where the 87Sr/86Sr budget may deviate from bedrock values.
NASA Astrophysics Data System (ADS)
Gulothungan, G.; Malathi, R.
2018-04-01
Disturbed sodium (Na+) and calcium (Ca2+) handling is known to be a major predisposing factor for life-threatening cardiac arrhythmias. Cardiac contractility in ventricular tissue is prominent by Ca2+ channels like voltage dependent Ca2+ channels, sodium-calcium exchanger (Na+-Ca2+x) and sacroplasmicrecticulum (SR) Ca2+ pump and leakage channels. Experimental and clinical possibilities for studying cardiac arrhythmias in human ventricular myocardium are very limited. Therefore, the use of alternative methods such as computer simulations is of great importance. Our aim of this article is to study the impact on action potential (AP) generation and propagation in single ventricular myocyte and ventricular tissue under different dysfunction Ca2+ channels condition. In enhanced activity of Na+-Ca2+x, single myocyte produces AP duration (APD90) and APD50 is significantly smaller (266 ms and 235 ms). Its Na+-Ca2+x current at depolarization is increases 60% from its normal level and repolarization current goes more negative (nonfailing= -0.28 pA/pF and failing= -0.47 pA/pF). Similarly, same enhanced activity of Na+-Ca2+x in 10 mm region of ventricular sheet, raises the plateau potential abruptly, which ultimately affects the diastolic repolarization. Compare with normal ventricular sheet region of 10 mm, 10% of ventricular sheet resting state is reduces and ventricular sheet at time 250 ms is goes to resting state very early. In hypertrophy condition, single myocyte produces APD90 and APD50 is worthy of attention smaller (232 mS and 198 ms). Its sodium-potassium (Na+-K+) pump current is 75% reduces from its control conditions (0.13 pA/pF). Hypertrophy condition, 50% of ventricular sheet is reduces to minimum plateau potential state, that starts the repolarization process very early and reduces the APD. In a single failing SR Ca2+ channels myocyte, recovery of Ca2+ concentration level in SR reduces upto 15% from its control myocytes. At time 290 ms, 70% of ventricular sheet is in dysfunction resting potential state in the range -83 mV and ventricular sheet at time 295 ms is goes to 65% dysfunction resting state. Therefore we concluded that shorter APD, instability resting potential and affected calcium induced calcium release (CICR) due to dysfunction Ca2+ channels is potentially have a substantial effect on cardiac contractility and relaxation. Computational study on ventricular tissue AP and its underlying ionic channel currents could help to elucidate possible arrhythmogenic mechanism on a cellular level.
White, A.F.; Schulz, M.S.; Stonestrom, David A.; Vivit, D.V.; Fitzpatrick, J.; Bullen, T.D.; Maher, K.; Blum, A.E.
2009-01-01
The spatial and temporal changes in hydrology and pore water elemental and 87Sr/86Sr compositions are used to determine contemporary weathering rates in a 65- to 226-kyr-old soil chronosequence formed from granitic sediments deposited on marine terraces along coastal California. Soil moisture, tension and saturation exhibit large seasonal variations in shallow soils in response to a Mediterranean climate. These climate effects are dampened in underlying argillic horizons that progressively developed in older soils, and reached steady-state conditions in unsaturated horizons extending to depths in excess of 15 m. Hydraulic fluxes (qh), based on Cl mass balances, vary from 0.06 to 0.22 m yr-1, resulting in fluid residence times in the terraces of 10-24 yrs. As expected for a coastal environment, the order of cation abundances in soil pore waters is comparable to sea water, i.e., Na > Mg > Ca > K > Sr, while the anion sequence Cl > NO3 > HCO3 > SO4 reflects modifying effects of nutrient cycling in the grassland vegetation. Net Cl-corrected solute Na, K and Si increase with depth, denoting inputs from feldspar weathering. Solute 87Sr/86Sr ratios exhibit progressive mixing of sea water-dominated precipitation with inputs from less radiogenic plagioclase. While net Sr and Ca concentrations are anomalously high in shallow soils due to biological cycling, they decline with depth to low and/or negative net concentrations. Ca/Mg, Sr/Mg and 87Sr/86Sr solute and exchange ratios are similar in all the terraces, denoting active exchange equilibration with selectivities close to unity for both detrital smectite and secondary kaolinite. Large differences in the magnitudes of the pore waters and exchange reservoirs result in short-term buffering of the solute Ca, Sr, and Mg. Such buffering over geologic time scales can not be sustained due to declining inputs from residual plagioclase and smectite, implying periodic resetting of the exchange reservoir such as by past vegetational changes and/or climate. Pore waters approach thermodynamic saturation with respect to albite at depth in the younger terraces, indicating that weathering rates ultimately become transport-limited and dependent on hydrologic flux. Contemporary rates Rsolute are estimated from linear Na and Si pore weathering gradients bsolute such that Rsolute = frac(qh, bsolute ?? Sv) where Sv is the volumetric surface area and ?? is the stoichiometric coefficient. Plagioclase weathering rates (0.38-2.8 ?? 10-15 mol m-2 s-1) are comparable to those based on 87Sr/86Sr mass balances and solid-state Na and Ca gradients using analogous gradient approximations. In addition, contemporary solute gradients, under transport-limited conditions, approximate long-term solid-state gradients when normalized against the mass of protolith plagioclase and its corresponding aqueous solubility. The multi-faceted weathering analysis presented in this paper is perhaps the most comprehensive yet applied to a single field study. Within uncertainties of the methods used, present day weathering rates, based on solute characterizations, are comparable to average long-term past rates as evidenced by soil profiles.
Neumann, Jake T; Diaz-Sylvester, Paula L; Fleischer, Sidney; Copello, Julio A
2011-01-01
7-Chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one [CGP-37157 (CGP)], a benzothiazepine derivative of clonazepam, is commonly used as a blocker of the mitochondrial Na+/Ca²+ exchanger. However, evidence suggests that CGP could also affect other targets, such as L-type Ca²+ channels and plasmalemma Na+/Ca²+ exchanger. Here, we tested the possibility of a direct modulation of ryanodine receptor channels (RyRs) and/or sarco/endoplasmic reticulum Ca²+-stimulated ATPase (SERCA) by CGP. In the presence of ruthenium red (inhibitor of RyRs), CGP decreased SERCA-mediated Ca²+ uptake of cardiac and skeletal sarcoplasmic reticulum (SR) microsomes (IC₅₀ values of 6.6 and 9.9 μM, respectively). The CGP effects on SERCA activity correlated with a decreased V(max) of ATPase activity of SERCA-enriched skeletal SR fractions. CGP (≥ 5 μM) also increased RyR-mediated Ca²+ leak from skeletal SR microsomes. Planar bilayer studies confirmed that both cardiac and skeletal RyRs are directly activated by CGP (EC(50) values of 9.4 and 12.0 μM, respectively). In summary, we found that CGP inhibits SERCA and activates RyR channels. Hence, the action of CGP on cellular Ca²+ homeostasis reported in the literature of cardiac, skeletal muscle, and other nonmuscle systems requires further analysis to take into account the contribution of all CGP-sensitive Ca²+ transporters.
Neumann, Jake T.; Diaz-Sylvester, Paula L.; Fleischer, Sidney
2011-01-01
7-Chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one [CGP-37157 (CGP)], a benzothiazepine derivative of clonazepam, is commonly used as a blocker of the mitochondrial Na+/Ca2+ exchanger. However, evidence suggests that CGP could also affect other targets, such as L-type Ca2+ channels and plasmalemma Na+/Ca2+ exchanger. Here, we tested the possibility of a direct modulation of ryanodine receptor channels (RyRs) and/or sarco/endoplasmic reticulum Ca2+-stimulated ATPase (SERCA) by CGP. In the presence of ruthenium red (inhibitor of RyRs), CGP decreased SERCA-mediated Ca2+ uptake of cardiac and skeletal sarcoplasmic reticulum (SR) microsomes (IC50 values of 6.6 and 9.9 μM, respectively). The CGP effects on SERCA activity correlated with a decreased Vmax of ATPase activity of SERCA-enriched skeletal SR fractions. CGP (≥5 μM) also increased RyR-mediated Ca2+ leak from skeletal SR microsomes. Planar bilayer studies confirmed that both cardiac and skeletal RyRs are directly activated by CGP (EC50 values of 9.4 and 12.0 μM, respectively). In summary, we found that CGP inhibits SERCA and activates RyR channels. Hence, the action of CGP on cellular Ca2+ homeostasis reported in the literature of cardiac, skeletal muscle, and other nonmuscle systems requires further analysis to take into account the contribution of all CGP-sensitive Ca2+ transporters. PMID:20923851
NASA Astrophysics Data System (ADS)
Geerken, Esmee; de Nooijer, Lennart Jan; van Dijk, Inge; Reichart, Gert-Jan
2018-04-01
Accurate reconstructions of seawater salinity could provide valuable constraints for studying past ocean circulation, the hydrological cycle and sea level change. Controlled growth experiments and field studies have shown the potential of foraminiferal Na / Ca as a direct salinity proxy. Incorporation of minor and trace elements in foraminiferal shell carbonate varies, however, greatly between species and hence extrapolating calibrations to other species needs validation by additional (culturing) studies. Salinity is also known to impact other foraminiferal carbonate-based proxies, such as Mg / Ca for temperature and Sr / Ca for sea water carbonate chemistry. Better constraints on the role of salinity on these proxies will therefore improve their reliability. Using a controlled growth experiment spanning a salinity range of 20 units and analysis of element composition on single chambers using laser ablation-Q-ICP-MS, we show here that Na / Ca correlates positively with salinity in two benthic foraminiferal species (Ammonia tepida and Amphistegina lessonii). The Na / Ca values differ between the two species, with an approximately 2-fold higher Na / Ca in A. lessonii than in A. tepida, coinciding with an offset in their Mg content ( ˜ 35 mmol mol-2 versus ˜ 2.5 mmol mol-1 for A. lessonii and A. tepida, respectively). Despite the offset in average Na / Ca values, the slopes of the Na / Ca-salinity regressions are similar between these two species (0.077 versus 0.064 mmol mol-1 change per salinity unit). In addition, Mg / Ca and Sr / Ca are positively correlated with salinity in cultured A. tepida but show no correlation with salinity for A. lessonii. Electron microprobe mapping of incorporated Na and Mg of the cultured specimens shows that within chamber walls of A. lessonii, Na / Ca and Mg / Ca occur in elevated bands in close proximity to the primary organic lining. Between species, Mg banding is relatively similar, even though Mg content is 10 times lower and that variation within the chamber wall is much less pronounced in A. tepida. In addition, Na banding is much less prominent in this species than it is in A. lessonii. Inter-species differences in element banding reported here are hypothesized to be caused by differences in biomineralization controls responsible for element uptake.
Dielectric and Piezoelectric Properties of Barium-substituted Sr1.9Ca0.1NaNb5O15 Ceramics
NASA Astrophysics Data System (ADS)
Xie, Rong-Jun; Akimune, Yoshio; Wang, Ruiping; Hirosaki, Naoto; Nishimura, Toshiyuki
2003-12-01
Highly dense piezoelectric ceramics of tungsten bronze-type (Sr1.9Ca0.1)1-0.5xBaxNaNb5O15 (where x=0.1--0.8) were prepared by spark plasma sintering. The crystallographic parameters, dielectric behaviors and piezoelectric properties of the sintered ceramics were investigated, and the effects of the Ba substitution on these electrical properties were discussed. The structural analysis and the electrical property measurements indicate a morphotropic phase boundary (MPB)-like phenomenon at x=0.4--0.5. In all compositions, a diffuse phase transition and a relaxor behavior are observed. The electrical properties are found to be crystallographically dependent.
NASA Astrophysics Data System (ADS)
Farkas, J.; Dejeant, A.; Orwig, D.; Jacobsen, S. B.
2009-12-01
Calcium (Ca) is an essential nutrient in higher plants and also a major base-cation predicted to be most affected by environmental perturbations such as acid rain deposition and/or excessive biomass harvesting. Therefore, a better understanding of the Ca cycling in terrestrial environment is of primary interest and critical for the sustainable forest management. The aim of this project was to investigate the use of Ca isotopes as a tracer of the forest Ca cycle and its evolution through time. Here we present stable Ca isotope composition (δ44/40Ca and δ44/42Ca) and elemental concentrations of a 260-year record of tree-rings from Red Oak (Quercus rubra). The core sample was collected at an undisturbed old-growth forest site in southern New England (Wachusett Mountain, MA, USA) developed on granitic bedrock. The associated soils (sandy loams) are thus naturally base-poor and sensitive to the loss of Ca due to increased acid rain deposition and/or excessive biological uptake. The δ44/40Ca (NIST) record of decadal tree-ring increments shows a general declining trend from -0.35 to -0.80 ±0.1 per mil (from year 1750 to 2000). Superimposed on this long-term δ44/40Ca trend is a systematic negative excursion with a minimum of -0.95 ±0.1 per mil dated between 1870 and 1950. Overall, the long-term δ44/40Ca record shows statistically significant correlation with Ca/Sr ratios (R2 = 0.87, p < .01) as well as Na/Ca data (R2 = 0.69, p < .01). The fact that δ44/40Ca correlates also with Na/Ca suggest that the observed Ca isotope variations are likely related to changes in soil-Ca sources rather than being a consequence of biological processes within the tree. This is because the sodium budget of trees and forests is primarily controlled by silicate weathering rates derived from the dissolution of Na-rich minerals such as plagioclase and/or K-feldspar. Nevertheless, the role of biological processes on tree-ring δ44/40Ca record will be tested independently via measurements of radiogenic 87Sr/86Sr, as the latter is not discriminated by vital effects. Assuming that the long-term δ44/40Ca and Ca/Sr trends in tree-rings indeed reflect the evolving composition of soil Ca reservoir, the data could be explained by one of the following mechanisms: (i) via selective weathering of apatite (Ca-phosphate) by roots in association with fungus that could provide the source of isotopically light Ca with low Na/Ca ratios (cf. Blum et al. 2002, Nature, 417, 729-731). Alternatively, (ii) the Ca reserves stored in organic matter in the upper soil horizons, as a fairly insoluble Ca-oxalate, were mobilized during times of enhanced acidification (low soil-pH), thus providing the flux of isotopically light Ca to the lower soil nutrient pool. The plausibility of the above scenarios will be tested against new Ca isotope data measured in igneous apatites as well as biological Ca-oxalates.
Ca2+ cycling between sarcoplasmic reticulum and mitochondria in rabbit cardiac myocytes.
Bassani, J W; Bassani, R A; Bers, D M
1993-01-01
1. Shortening and intracellular Ca2+ (Ca2+i) transients were measured in isolated rabbit ventricular myocytes during paired contractures induced by rapid application of 10 mM caffeine. 2. Caffeine-induced contractures relax despite maintained presence of caffeine. In control solution, a second phasic caffeine contracture failed to appear, unless the sarcoplasmic reticulum (SR) was refilled by a series of electrically stimulated twitches during the interval between caffeine exposures. 3. The relaxation of caffeine-induced contractures in 0 Na(+)-0 Ca2+ solution has previously been shown to rely on mitochondrial Ca2+ uptake and sarcolemmal Ca2(+)-ATPase. Thus, a second caffeine contracture (T2) while still in 0 Na(+)-0 Ca2+ was greatly reduced compared to the first one (T1). However, the amplitude of T2 increased exponentially with the time interval, attaining a maximum of approximately 50% of T1 for an interval of 180-300 s, with a time constant (tau) of 41.2 s. Similar results were found for Ca2+i transients (tau = 45 s). 4. Inhibition of the mitochondrial Ca2+ uptake by the oxidative phosphorylation uncoupler, FCCP during T1 dramatically depressed T2. On the other hand, inhibition of the sarcolemmal Ca2(+)-ATPase (by increasing extracellular Ca2+ concentration, [Ca2+]o) resulted in increase of T2. Spermine inclusion during T1 also increased T2, possibly by an increase of mitochondrial Ca2+ uptake. 5. We conclude that Ca2+ taken up by mitochondria during the decline of T1 moves back to the SR after caffeine is removed, with a tau approximately 40 s. 6. Partial intracellular Na+ depletion by prolonged (3 min) perfusion with 0 Na(+)-0 Ca2+ solution before T1 (a) accelerated relaxation and [Ca2+]i decline during T1, and (b) slowed, but did not abolish, the recovery of T2 as the interval was increased. This effect was particularly pronounced when choline was used instead of Li+ as the Na+ substitute. 7. We further conclude that the mitochondrial Na(+)-Ca2+ antiporter influences the rate of net Ca2+ uptake by mitochondria and is also important in Ca2+ efflux from mitochondria during rest. PMID:8387590
Ca2+ cycling between sarcoplasmic reticulum and mitochondria in rabbit cardiac myocytes.
Bassani, J W; Bassani, R A; Bers, D M
1993-01-01
1. Shortening and intracellular Ca2+ (Ca2+i) transients were measured in isolated rabbit ventricular myocytes during paired contractures induced by rapid application of 10 mM caffeine. 2. Caffeine-induced contractures relax despite maintained presence of caffeine. In control solution, a second phasic caffeine contracture failed to appear, unless the sarcoplasmic reticulum (SR) was refilled by a series of electrically stimulated twitches during the interval between caffeine exposures. 3. The relaxation of caffeine-induced contractures in 0 Na(+)-0 Ca2+ solution has previously been shown to rely on mitochondrial Ca2+ uptake and sarcolemmal Ca2(+)-ATPase. Thus, a second caffeine contracture (T2) while still in 0 Na(+)-0 Ca2+ was greatly reduced compared to the first one (T1). However, the amplitude of T2 increased exponentially with the time interval, attaining a maximum of approximately 50% of T1 for an interval of 180-300 s, with a time constant (tau) of 41.2 s. Similar results were found for Ca2+i transients (tau = 45 s). 4. Inhibition of the mitochondrial Ca2+ uptake by the oxidative phosphorylation uncoupler, FCCP during T1 dramatically depressed T2. On the other hand, inhibition of the sarcolemmal Ca2(+)-ATPase (by increasing extracellular Ca2+ concentration, [Ca2+]o) resulted in increase of T2. Spermine inclusion during T1 also increased T2, possibly by an increase of mitochondrial Ca2+ uptake. 5. We conclude that Ca2+ taken up by mitochondria during the decline of T1 moves back to the SR after caffeine is removed, with a tau approximately 40 s. 6. Partial intracellular Na+ depletion by prolonged (3 min) perfusion with 0 Na(+)-0 Ca2+ solution before T1 (a) accelerated relaxation and [Ca2+]i decline during T1, and (b) slowed, but did not abolish, the recovery of T2 as the interval was increased. This effect was particularly pronounced when choline was used instead of Li+ as the Na+ substitute. 7. We further conclude that the mitochondrial Na(+)-Ca2+ antiporter influences the rate of net Ca2+ uptake by mitochondria and is also important in Ca2+ efflux from mitochondria during rest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatelain, P.; Beaufort, P.; Meysmans, L.
1991-01-01
SR 33557 represents a new class of compounds (indolizine sulfone) that inhibit L-type Ca2+ channels. ({sup 3}H)SR 33557 has been shown to bind with high affinity (Kd congruent to 0.36 nM, calculated from saturation isotherms and association/dissociation kinetics) to a single class of sites in a purified preparation of rat cardiac sarcolemmal membranes. The binding was found to be saturable and reversible. The maximal binding capacity was in approximately 1:1 stoichiometry with that of other Ca2+ channel antagonists. Various divalent cations (Mg2+, Mn2+, Ca2+, Ba2+, and Cd2+) were shown to inhibit specific ({sup 3}H)SR 33557 binding, with Cd2+ being themore » most potent. Among several receptor or channel ligands (including omega-conotoxin and Na+ and K+ channel modulators), only the L-type Ca2+ channel antagonists were found to displace ({sup 3}H)SR 33557. However, dihydropyridines, phenylalkylamines, benzothiazepines, and diphenylbutylpiperidines were found to inhibit ({sup 3}H)SR 33557 in a noncompetitive manner as demonstrated by displacement and saturation experiments in addition to dissociation kinetics. From these results, we suggest that SR 33557 binds with high affinity to a unique site on the L-type Ca2+ channel found in rat cardiac sarcolemmal membranes.« less
NASA Astrophysics Data System (ADS)
Wilson, Dan; Ermentrout, Bard; Němec, Jan; Salama, Guy
2017-09-01
Abnormal Ca2+ handling is well-established as the trigger of cardiac arrhythmia in catecholaminergic polymorphic ventricular tachycardia and digoxin toxicity, but its role remains controversial in Torsade de Pointes (TdP), the arrhythmia associated with the long QT syndrome (LQTS). Recent experimental results show that early afterdepolarizations (EADs) that initiate TdP are caused by spontaneous (non-voltage-triggered) Ca2+ release from Ca2+-overloaded sarcoplasmic reticulum (SR) rather than the activation of the L-type Ca2+-channel window current. In bradycardia and long QT type 2 (LQT2), a second, non-voltage triggered cytosolic Ca2+ elevation increases gradually in amplitude, occurs before overt voltage instability, and then precedes the rise of EADs. Here, we used a modified Shannon-Puglisi-Bers model of rabbit ventricular myocytes to reproduce experimental Ca2+ dynamics in bradycardia and LQT2. Abnormal systolic Ca2+-oscillations and EADs caused by SR Ca2+-release are reproduced in a modified 0-dimensional model, where 3 gates in series control the ryanodine receptor (RyR2) conductance. Two gates control RyR2 activation and inactivation and sense cytosolic Ca2+ while a third gate senses luminal junctional SR Ca2+. The model predicts EADs in bradycardia and low extracellular [K+] and cessation of SR Ca2+-release terminate salvos of EADs. Ca2+-waves, systolic cell-synchronous Ca2+-release, and multifocal diastolic Ca2+ release seen in subcellular Ca2+-mapping experiments are observed in the 2-dimensional version of the model. These results support the role of SR Ca2+-overload, abnormal SR Ca2+-release, and the subsequent activation of the electrogenic Na+/Ca2+-exchanger as the mechanism of TdP. The model offers new insights into the genesis of cardiac arrhythmia and new therapeutic strategies.
In vitro Studies of the Gain and Exchange of Calcium in Frog Skeletal Muscle
Cosmos, Ethel; Harris, Eric J.
1961-01-01
(1) The Ca++, Na+, and K+ contents of frog sartorius muscles were found analytically after exposure to various media including some containing labeled Ca++. (2) During storage in media with 100 to 120 mM Na+ and 1 mM Ca++ both Na+ and Ca++ are gained while K+ is lost; there is a high correlation between Na+ and Ca++ gains. (3) When Ca++ gain occurs from a solution containing labeled Ca++ there is also some exchange of the original Ca++ with the labeled Ca++. The amount exchanged is considerably less (e.g. 50 per cent) than the total amount of labeled Ca++ taken up by the tissue. (4) When the external Na+ concentration is reduced to 30 mM the amount of labeled Ca++ taken up is increased. Part of the increase is attributable to a greater net gain and part to a greater degree of exchange. (5) It is pointed out that muscles which have been loaded in vitro with labeled Ca++ will not provide a valid measure of the exchangeability of the normal Ca++ content present at the time of dissection. (6) Comparison is made between results obtained using Sr89 and Ca45 as labels for the Ca++. Little, if any, difference is perceptible. PMID:13695749
NASA Astrophysics Data System (ADS)
Liu, Bilin; Chen, Xinjun; Fang, Zhou; Hu, Song; Song, Qian
2015-12-01
We applied solution-based ICP-MS method to quantify the trace-elemental signatures in statoliths of jumbo flying squid, Dosidius gigas, which were collected from the waters off northern and central Chile during the scientific surveys carried out by Chinese squid jigging vessels in 2007 and 2008. The age and spawning date of the squid were back-calculated based on daily increments in statoliths. Eight elemental ratios (Sr/Ca, Ba/Ca, Mg/Ca, Mn/Ca, Na/Ca, Fe/Ca, Cu/Ca and Zn/Ca) were analyzed. It was found that Sr is the second most abundant element next to Ca, followed by Na, Fe, Mg, Zn, Cu, Ba and Mn. There was no significant relationship between element/Ca and sea surface temperature (SST) and sea surface salinity (SSS), although weak negative or positive tendency was found. MANOVA analysis showed that multivariate elemental signatures did not differ among the cohorts spawned in spring, autumn and winter, and no significant difference was found between the northern and central sampling locations. Classification results showed that all individuals of each spawned cohorts were correctly classified. This study demonstrates that the elemental signatures in D. gigas statoliths are potentially a useful tool to improve our understanding of its population structure and habitat environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagy, B.; Bercz, J.P.
CentrifiChem System 400 general-purpose spectrophotometric analyzer which can process simultaneously 30 samples and reads the reactions within milliseconds was used for toxicity studies. Organic and inorganic chemicals were screened for inhibitory action of the hydrolytic activity of sarcoplasmic reticulum (SR) Ca,Mg-ATPase and that of the sacrolemmal (SL) Na,K-ATPase, or mitochondrial ATPase (M). SR and SL were prepared from rabbit muscles, Na,K-ATPase from pig kidneys, M from pig hearts. Pseudosubstrates of paranitrophenyl phosphate and 2,4-dinitrophenyl phosphate, both proven high energy phosphate substitutes for ATPase coupled ion transfer were used. The reaction rates were followed spectrophotometrically at 405 nm measuring the accumulationmore » of yellow nitrophenolate ions. The reported calcium transfer coupling ratio to hydrolysis of 2:1 was ascertained with use of /sup 45/Ca in case of SR. Inhibition constants (pI) on SR, SL, and M for the pseudosubstrate hydrolysis will be given for over 20 chemicals tested. The applicability of the system to general toxicity testing and to general cardio-effective drug screening will be presented.« less
The role of Na-Ca exchange current in the cardiac action potential.
Janvier, N C; Boyett, M R
1996-07-01
Since 1981, when Mullins published his provocative book proposing that the Na-Ca exchanger is electrogenic, it has been shown, first by computer simulation by Noble and later by experiment by various investigators, that inward iNaCa triggered by the Ca2+ transient is responsible for the low plateau of the atrial action potential and contributes to the high plateau of the ventricular action potential. Reduction or complete block of inward iNaCa by buffering intracellular Ca2+ with EGTA or BAPTA, by blocking SR Ca2+ release or by substituting extracellular Na+ with Li+ can result in a shortening of the action potential. The effect of block of outward iNaCa or complete block of both inward and outward iNaCa on the action potential has not been investigated experimentally, because of the lack of a suitable blocker, and remains a goal for the future. An increase in the intracellular Na+ concentration (after the application of cardiac glycoside or an increase in heart rate) or an increase in extracellular Ca2+ are believed to lead to an outward shift in iNaCa at plateau potentials and a shortening of the action potential. Changes in the Ca2+ transient are expected to result in changes in inward iNaCa and thus the action potential. This may explain the shortening of the premature action potential as well as the prolongation of the action potential when a muscle is allowed to shorten during the action potential. Inward iNaCa may play an important role in both normal and abnormal pacemaker activity in the heart.
White, A.F.; Schulz, M.S.; Vivit, D.V.; Bullen, T.D.; Fitzpatrick, J.
2012-01-01
Biotic/abiotic interactions between soil mineral nutrients and annual grassland vegetation are characterized for five soils in a marine terrace chronosequence near Santa Cruz, California. A Mediterranean climate, with wet winters and dry summers, controls the annual cycle of plant growth and litter decomposition, resulting in net above-ground productivities of 280-600gm -2yr -1. The biotic/abiotic (A/B) interface separates seasonally reversible nutrient gradients, reflecting biological cycling in the shallower soils, from downward chemical weathering gradients in the deeper soils. The A/B interface is pedologically defined by argillic clay horizons centered at soil depths of about one meter which intensify with soil age. Below these horizons, elevated solute Na/Ca, Mg/Ca and Sr/Ca ratios reflect plagioclase and smectite weathering along pore water flow paths. Above the A/B interface, lower cation ratios denote temporal variability due to seasonal plant nutrient uptake and litter leaching. Potassium and Ca exhibit no seasonal variability beneath the A/B interface, indicating closed nutrient cycling within the root zone, whereas Mg variability below the A/B interface denotes downward leakage resulting from higher inputs of marine aerosols and lower plant nutrient requirements.The fraction of a mineral nutrient annually cycled through the plants, compared to that lost from pore water discharge, is defined their respective fluxes F j,plants=q j,plants/(q j,plants+q j,discharge) with average values for K and Ca (F K,plants=0.99; F Ca,plants=0.93) much higher than for Mg and Na (F Mg,plants 0.64; F Na,plants=0.28). The discrimination against Rb and Sr by plants is described by fractionation factors (K Sr/Ca=0.86; K Rb/K=0.83) which are used in Rayleigh fractionation-mixing calculations to fit seasonal patterns in solute K and Ca cycling. K Rb/K and K24Mg/22Mg values (derived from isotope data in the literature) fall within fractionation envelopes bounded by inputs from rainfall and mineral weathering. K Sr/Ca and K44Ca/40Ca fractionation factors fall outside these envelopes indicating that Ca nutrient cycling is closed to these external inputs. Small net positive K and Ca fluxes (6-14molm -2yr -1), based on annual mass balances, indicate that the soils are accumulating mineral nutrients, probably as a result of long-term environmental disequilibrium. ?? 2011.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, D.M.; Johnson, S.B.; Catalano, J.G.
Calcium oxalate monohydrate (CaC{sub 2}O{sub 4}{center_dot}H{sub 2}O -- abbreviated as CaOx) is produced by two-thirds of all plant families, comprising up to 80 wt.% of the plant tissue and found in many surface environments. It is unclear, however, how CaOx in plants and soils interacts with metal ions and possibly sequesters them. This study examines the speciation of Sr(II){sub aq} following its reaction with CaOx. Batch uptake experiments were conducted over the pH range 4--10, with initial Sr solution concentrations, [Sr]{sub aq}, ranging from 1 x 10{sup -4} to 1 x 10{sup -3} M and ionic strengths ranging of 0.001--0.1more » M, using NaCl as the background electrolyte. Experimental results indicate that Sr uptake is independent of pH and ionic strength over these ranges. After exposure of CaOx to Sr{sub aq} for two days, the solution Ca concentration, [Ca]{sup aq}, increased for all samples relative to the control CaOx suspension (with no Sr added). The amount of Sr{sub aq} removed from solution was nearly equal to the total [Ca]{sup aq} after exposure of CaOx to Sr. These results suggest that nearly 90% of the Sr is removed from solution to a solid phase as Ca is released into solution. We suggest that the other 10% is sequestered through surface adsorption on a solid phase, although we have no direct evidence for this. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the molecular-level speciation of Sr in the reaction products. Deconvolutions of the Sr K-edge EXAFS spectra were performed to identify multi-electron excitation (MEE) features. MEE effects were found to give rise to low-frequency peaks in the Fourier transform before the first shell of oxygen atoms and do not affect EXAFS fitting results. Because of potential problems caused by asymmetric distributions of Sr-O distances when fitting Sr K-edge EXAFS data using the standard harmonic model, we also employed a cumulant expansion model and an asymmetric analytical model to account for anharmonic effects in the EXAFS data. For Sr-bearing phases with low to moderate first-shell (Sr-O pair correlation) anharmonicity, the cumulant expansion model is sufficient for EXAFS fitting; however, for higher degrees of anharmonicity, an analytical model is required. Based on batch uptake results and EXAFS analyses of reaction products, we conclude that Sr is dominantly sequestered by a solid phase at the CaOx surface, likely the result of a dissolution-reprecipitation mechanism, to form SrC{sub 2}O{sub 4} of mixed hydration state (i.e. SrO{sub x}{center_dot}nH{sub 2}O, where n = 0, 1, or 2). Surprisingly, no spectroscopic or XRD evidence was found for a (Sr,Ca)Ox solid solution or for a separate SrCO3 phase. In addition, we found no evidence for Sr(II) inner-sphere sorption complexes on CaOx surfaces based on lack of Sr-Ca second-neighbor pair correlations in the EXAFS spectra, although some type of Sr(II) surface complex (perhaps a type B Sr-oxalate ternary complex or an outer-sphere Sr(II) complex) or some as yet undetected Sr-bearing solid phases are needed to account for approximately 10% of Sr uptake by CaOx. The formation of a hydrated SrOx phase in environments under conditions similar to those of our experiments should retard Sr mobility and could be a significant factor in the biogeochemical cycling of Sr in soils and sediments or in plants and plant litter where CaOx is present.« less
The distribution of Sr and REE between diopside and silicate liquid. [Rare Earth Elements
NASA Technical Reports Server (NTRS)
Grutzeck, M.; Kridelbaugh, S.; Weill, D.
1974-01-01
Experimental determination of the distribution coefficients in diopside-liquid pairs for strontium and nine rare-earth elements in the system CaMgSi2O6-NaAlSi3O8-CaAl2Si2O8. In experiments in air at 1265 C it is found that most of the Sr(2+), Eu(2+), and RE(3+) ions substitute for Ca(2+) and, in addition, a coupled substitution of Al(3+) for Si(4+) occurs. All of the trace ions considered are found to be excluded from the diopside lattice relative to the liquid. In the case of the trivalent ions the exclusion is much more pronounced for La and Ce, which have ionic radii larger than that of Ca(2+) in 8-fold oxygen coordination. Divalent Sr and Eu with even larger radii are also strongly excluded.
μ SR study of NaCaNi2F7 in zero field and applied longitudinal magnetic field
NASA Astrophysics Data System (ADS)
Cai, Yipeng; Wilson, Murray; Hallas, Alannah; Liu, Lian; Frandsen, Benjamin; Dunsiger, Sarah; Krizan, Jason; Cava, Robert; Uemura, Yasutomo; Luke, Graeme
Rich physics of abundant magnetic ground states has been realized in the A2B2X7 geometrically frustrated magnetic pyrochlores. Recently, a new spin-1 Ni2+ pyrochlore, NaCaNi2F7, was synthesized and shown to have spin freezing at 3.6 K with a frustration index of f 36 and antiferromagnetic exchange interactions [1] . This structure has chemical disorder on the A site caused by randomly distributed Ca and Na ions, which causes bond disorder around the magnetic Ni sites. We present Zero Field (ZF) and Longitudinal Field (LF) muon spin rotation (μSR) measurements on this single crystal pyrochlore. Our data shows that the Ni2+ spins start freezing around 4 K giving a static local field of 140 G. The data show no oscillations down to 75 mK which indicates no long range magnetic order. They are well described by the dynamic Gaussian Kubo-Toyabe function with a non-zero hopping rate that is not easily decoupled with an applied longitudinal field, which implies persistent spin dynamics down to 75 mK.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Hanzheng, E-mail: hug17@psu.edu; Randall, Clive A.; Shimizu, Hiroyuki
A new lead-free antiferroelectric solid solution system, (1−x)NaNbO{sub 3}-xSrZrO{sub 3}, was rationalized through noting the crystal chemistry trend, of decreasing the tolerance factor and an increase in the average electronegativity of the system. The SrZrO{sub 3} doping was found to effectively stabilize the antiferroelectric (P) phase in NaNbO{sub 3} without changing its crystal symmetry. Preliminary electron diffraction and polarization measurements were presented which verified the enhanced antiferroelectricity. In view of our recent report of another lead-free antiferroelectric system (1−x)NaNbO{sub 3}-xCaZrO{sub 3} [H. Shimizu et al. “Lead-free antiferroelectric: xCaZrO{sub 3} - (1−x)NaNbO{sub 3} system (0 ≤ x ≤ 0.10),” Dalton Trans.more » (published online)], the present results point to a general strategy of utilizing tolerance factor to develop a broad family of new lead-free antiferroelectrics with double polarization hysteresis loops. We also speculate on a broad family of possible solid solutions that could be identified and tested for this important type of dielectric.« less
Silver, R B
1986-06-01
Monospecific antibodies to the calcium transport enzyme (alpha-Ca pump) inhibit mitosis when microinjected into sand dollar embryos. Immunoglobulins were raised against the calcium transport enzyme (Ca pump) of sarcoplasmic reticulum (SR) from rat skeletal muscle and guinea pig ileum smooth muscle. Specific antibodies were further isolated from IgG fractions by using electrophoretically purified SR Ca-pump protein as the immobilized ligand for immunoaffinity chromatography. ELISA demonstrated that common antigenic determinants are shared by SR, SR Ca pump (of rat skeletal and guinea pig ileum smooth muscle), and isolated membrane containing "native" mitotic apparatus (MA). Preimmune sera gave negative results in identical control assays. Triton X-100 extraction of MA removes the Ca-pump antigen. SR Ca pump and the MA Ca pump have nearly identical molecular masses as determined by NaDodSO4/PAGE. These alpha-SR Ca-pump IgGs inhibit ATP-dependent Ca2+ sequestration by purified SR and MA membranes. Indirect immunofluorescence of isolated native MA demonstrated coincident localization of the MA Ca pump, sequestered calcium, and membrane vesicles. Fluorescent foci were regionally concentrated within the volumes of the asters and spindle. Microinjection of the anti-Ca-pump IgGs into one of two sister blastomeres at second metaphase resulted in mitotic arrest of the injected cell accompanied by a rapid loss of spindle birefringence. Karyomeres formed and fused to form nuclei either at the site of the metaphase plate or at the position the chromosomes occupied during anaphase A. The cleavage furrow did not develop in the injected cell, while the sister and neighbor cells continued normal mitotic cycling. Injection later in mitosis yielded cells with two nuclei whose cleavage furrow relaxed completely. Routine control injections of boiled immune IgG, preimmune IgG, Wesson oil, buffer, or goat anti-rabbit IgG did not affect mitosis, birefringence of the MA, or cleavage furrow activity.
Silver, R B
1986-01-01
Monospecific antibodies to the calcium transport enzyme (alpha-Ca pump) inhibit mitosis when microinjected into sand dollar embryos. Immunoglobulins were raised against the calcium transport enzyme (Ca pump) of sarcoplasmic reticulum (SR) from rat skeletal muscle and guinea pig ileum smooth muscle. Specific antibodies were further isolated from IgG fractions by using electrophoretically purified SR Ca-pump protein as the immobilized ligand for immunoaffinity chromatography. ELISA demonstrated that common antigenic determinants are shared by SR, SR Ca pump (of rat skeletal and guinea pig ileum smooth muscle), and isolated membrane containing "native" mitotic apparatus (MA). Preimmune sera gave negative results in identical control assays. Triton X-100 extraction of MA removes the Ca-pump antigen. SR Ca pump and the MA Ca pump have nearly identical molecular masses as determined by NaDodSO4/PAGE. These alpha-SR Ca-pump IgGs inhibit ATP-dependent Ca2+ sequestration by purified SR and MA membranes. Indirect immunofluorescence of isolated native MA demonstrated coincident localization of the MA Ca pump, sequestered calcium, and membrane vesicles. Fluorescent foci were regionally concentrated within the volumes of the asters and spindle. Microinjection of the anti-Ca-pump IgGs into one of two sister blastomeres at second metaphase resulted in mitotic arrest of the injected cell accompanied by a rapid loss of spindle birefringence. Karyomeres formed and fused to form nuclei either at the site of the metaphase plate or at the position the chromosomes occupied during anaphase A. The cleavage furrow did not develop in the injected cell, while the sister and neighbor cells continued normal mitotic cycling. Injection later in mitosis yielded cells with two nuclei whose cleavage furrow relaxed completely. Routine control injections of boiled immune IgG, preimmune IgG, Wesson oil, buffer, or goat anti-rabbit IgG did not affect mitosis, birefringence of the MA, or cleavage furrow activity. Images PMID:2940599
NASA Astrophysics Data System (ADS)
Ryu, Jungho; Hong, Hye-jin; Ryu, Taegong; Park, In-Su
2017-04-01
Strontium (Sr) which has many industrial applications such as ferrite magnet, ceramic, and fire works exists in seawater with the concentration of approximately 7 mg/L. In previous report estimating economic potential on recovery of various elements from seawater in terms of their commercial values and concentrations in seawater, Sr locates upper than approximate break-even line, which implies Sr recovery from seawater can be potentially profitable. Recently, Sr separation from seawater has received great attention in the environmental aspect after Fukushima Nuclear Power Plant (NPP) accident which released much amount of radioactive Sr and Cs. Accordingly, the efficient separation of radioactive elements released to seawater has become critical as an important technological need as well as their removal from radioactive wastes. So far, it has been introduced to separate Sr from aqueous media by various methods including solvent extraction, adsorption by solid materials, and ion exchange. Among them, the adsorption technique using solid adsorbents is of great interest for selectively separating Sr from seawater with respect to low concentration level of Sr. In this study, we synthesized titanate nanotube (TiNT) by simple hydrothermal reaction, characterized its physicochemical properties, and systematically evaluated Sr sorption behavior under various reaction conditions corresponding to seawater environment. The synthesized TiNT exhibited the fibril-type nanotube structure with high specific surface area of 260 m2/g. The adsorption of Sr on TiNT rapidly occurred following pseudo-second-order kinetic model, and was in good agreement with Langmuir isotherm model, indicating maximum adsorption capacity of 97 mg/g. Based on Sr uptake and Na release with stoichiometric balance, sorption mechanism of Sr on TiNT was found to be ion-exchange between Na in TiNT lattice and Sr in solution phase, which was also confirmed by XRD and Raman analysis. Among competitive ions, Ca significantly hindered Sr sorption on TiNT, whereas Na had little effect on Sr sorption despite the sorption mechanism of Na-exchange. The effect of Ca on Sr sorption was evaluated in detail by introducing distribution coefficient (Kd) that is critical factor to determine the selectivity, revealing slightly higher selectivity for Sr. The adsorption-desoption test of Sr in real seawater medium enabled to determine Kd and concentration factor (CF) for co-existing matrix ions in seawater, and these values were assessed in both aspects of removal and recovery of Sr from seawater. The TiNT could be easily regenerated by acid treatment and reused for repeated cycle, supporting its long term use for the practical application of removing and recovering Sr from seawater.
Falandysz, Jerzy; Frankowska, Aneta; Jarzynska, Grazyna; Dryzałowska, Anna; Kojta, Anna K; Zhang, Dan
2011-01-01
This paper provides data on baseline concentrations, interrelationships and bioconcentration potential of 12 metallic elements by King Bolete collected from 11 spatially distant sites across Poland. There are significant differences in concentrations of metals (Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr, Zn) and their bioconcentration potential in King Bolete Boletus edulis at 11 spatially distant sites surveyed across Poland. These have resulted from significant geographical differences in trace metal concentrations in a layer (0-10 cm) of organic and mineral soil underneath to fruiting bodies and possible local bioavailabilities of macro- (Ca, K, Mg, Na) and trace metals (Al, Ba, Cd, Cu, Fe, Mn, Sr, Zn) to King Bolete. The use of highly appreciated wild-grown edible King Bolete mushroom has established a baseline measure of regional minerals status, heavy metals pollution and assessment of intake rates for wild mushroom dish fanciers against which future changes can be compared. Data on Cd, Cu and Zn from this study and from literature search can be useful to set the maximum limit of these metals in King Bolete collected from uncontaminated (background) areas. In this report also reviewed are data on Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr and Zn accumulation in King Bolete.
NASA Astrophysics Data System (ADS)
Wen, Bing; Zhou, Aiguo; Zhou, Jianwei; Liu, Cunfu; Huang, Yuliu; Li, Ligang
2018-02-01
The Xikuangshan(XKS) mine, the world's largest antimony mine, was chosen for a detailed arsenic hydrogeochemical study because of the elevated arsenic in bedrock aquifers used by local residents. Hydrochemical data, δ34S values of dissolved SO42- and 87Sr/86Sr ratios have been analyzed to identify the predominant geochemical processes that control the arsenic mobilization within the aquifers. Groundwater samples can be divided into three major types: low arsenic groundwater (0-50 μg/L), high arsenic groundwater (50-1000 μg/L) and anomalous high arsenic groundwater (>1000 μg/L). Arsenic occurs under oxidizing conditions at the XKS Sb mine as the HAsO42- anion. The Ca/Na ratio correlates significantly with HCO3-/Na and Sr/Na ratios, indicating that carbonate dissolution and silicate weathering are the dominant processes controlling groundwater hydrochemistry. The δ34S values of the groundwater indicate that dissolved SO42- in groundwater is mainly sourced from the oxidation of sulfide minerals, and elevated As concentrations in groundwater are influenced by the mixing of mine water and surface water. Furthermore, the δ34S values are not correlated with dissolved As concentrations and Fe concentrations, suggesting that the reduction dissolution of Fe(III) hydroxides is not the dominant process controlling As mobilization. The 87Sr/86Sr ratios imply that elevated As concentrations in groundwater are primarily derived from the interaction with the stibnite and silicified limestone. More specifically, the excess-Na ion, the feature of Ca/Na ratio, and the spatial association of elevated As concentrations in groundwater collectively suggest that high and anomalous high arsenic groundwater are associated with smelting slags and, in particular, the arsenic alkali residue. In general, the hydrochemistry analysis, especially the S and Sr isotope evidences elucidate that elevated As concentrations and As mobilization are influenced by several geochemical processes, including: (1) bedrock weathering; (2) oxidation of arsenopyrite and the dominant sulfides in the ores; (3) mixing of mine drainage and surface water; (4) leaching of the arsenic alkali residue; and (5) sorption-desorption from Fe/Mn oxides/hydroxides.
Sadhu, Biswajit; Sundararajan, Mahesh; Bandyopadhyay, Tusar
2017-10-18
The bacterial NaK ion channel is distinctly different from other known ion channels due to its inherent non-selective feature. One of the unexplored and rather interesting features is its ability to permeate divalent metal ions (such as Ca 2+ and Ba 2+ ) and not monovalent alkali metal ions. Several intriguing questions about the energetics and structural aspects still remain unanswered. For instance, what causes Ca 2+ to permeate as well as block the selectivity filter (SF) of the NaK ion channel and act as a "permeating blocker"? How and at what energetic cost does another chemical congener, Sr 2+ , as well as Ba 2+ , a potent blocker of the K + ion channel, permeate through the SF of the NaK ion channel? Finally, how do their translocation energetics differ from those of monovalent ions such as K + ? Here, in an attempt to address these outstanding issues, we elucidate the structure, binding and selectivity of divalent ions (Ca 2+ , Sr 2+ and Ba 2+ ) as they permeate through the SF of the NaK ion channel using all-atom molecular dynamics simulations and density functional theory based calculations. We unveil mechanistic insight into this translocation event using well-tempered metadynamics simulations in a polarizable environment using the mean-field model of water and incorporating electronic continuum corrections for ions via charge rescaling. The results show that, akin to K + coordination, Sr 2+ and Ba 2+ bind at the SF in a very similar fashion and remain octa-coordinated at all sites. Interestingly, differing from its local hydration structure, Ca 2+ interacts with eight carbonyls to remain at the middle of the S3 site. Furthermore, the binding of divalent metals at SF binding sites is more favorable than the binding of K + . However, their permeation through the extracellular entrance faces a considerably higher energetic barrier compared to that for K + , which eventually manifests their inherent blocking feature.
Ca2+ paradox injury mediated through TRPC channels in mouse ventricular myocytes
Kojima, Akiko; Kitagawa, Hirotoshi; Omatsu-Kanbe, Mariko; Matsuura, Hiroshi; Nosaka, Shuichi
2010-01-01
BACKGROUND AND PURPOSE The Ca2+ paradox is an important phenomenon associated with Ca2+ overload-mediated cellular injury in myocardium. The present study was undertaken to elucidate molecular and cellular mechanisms for the development of the Ca2+ paradox. EXPERIMENTAL APPROACH Fluorescence imaging was performed on fluo-3 loaded quiescent mouse ventricular myocytes using confocal laser scanning microscope. KEY RESULTS The Ca2+ paradox was readily evoked by restoration of the extracellular Ca2+ following 10–20 min of nominally Ca2+-free superfusion. The Ca2+ paradox was significantly reduced by blockers of transient receptor potential canonical (TRPC) channels (2-aminoethoxydiphenyl borate, Gd3+, La3+) and anti-TRPC1 antibody. The sarcoplasmic reticulum (SR) Ca2+ content, assessed by caffeine application, gradually declined during Ca2+-free superfusion, which was further accelerated by metabolic inhibition. Block of SR Ca2+ leak by tetracaine prevented Ca2+ paradox. The Na+/Ca2+ exchange (NCX) blocker KB-R7943 significantly inhibited Ca2+ paradox when applied throughout superfusion period, but had little effect when added for a period of 3 min before and during Ca2+ restoration. The SR Ca2+ content was better preserved during Ca2+ depletion by KB-R7943. Immunocytochemistry confirmed the expression of TRPC1, in addition to TRPC3 and TRPC4, in mouse ventricular myocytes. CONCLUSIONS AND IMPLICATIONS These results provide evidence that (i) the Ca2+ paradox is primarily mediated by Ca2+ entry through TRPC (probably TRPC1) channels that are presumably activated by SR Ca2+ depletion; and (ii) reverse mode NCX contributes little to the Ca2+ paradox, whereas inhibition of NCX during Ca2+ depletion improves SR Ca2+ loading, and is associated with reduced incidence of Ca2+ paradox in mouse ventricular myocytes. PMID:20718730
Mechanism of extracellular ion exchange and binding-site occlusion in the sodium-calcium exchanger
Lee, ChangKeun; Huang, Yihe; Faraldo-Gómez, José D.; Jiang, Youxing
2016-01-01
Na+/Ca2+ exchangers utilize the Na+ electrochemical gradient across the plasma membrane to extrude intracellular Ca2+, and play a central role in Ca2+ homeostasis. Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na+, Ca2+ or Sr2+ in various occupancies and in an apo state. This analysis defines the binding mode and relative affinity of these ions, establishes the structural basis for the anticipated 3Na+:1Ca2+ exchange stoichiometry, and reveals the conformational changes at the onset of the alternating-access transport mechanism. An independent analysis of the dynamics and conformational free-energy landscape of NCX_Mj in different ion-occupancy states, based on enhanced-sampling molecular-dynamics simulations, demonstrates that the crystal structures reflect mechanistically relevant, interconverting conformations. These calculations also reveal the mechanism by which the outward-to-inward transition is controlled by the ion-occupancy state, thereby explaining the emergence of strictly-coupled Na+/Ca2+ antiport. PMID:27183196
Mechanism of extracellular ion exchange and binding-site occlusion in a sodium/calcium exchanger
Liao, Jun; Marinelli, Fabrizio; Lee, Changkeun; ...
2016-05-16
Na +/Ca 2+ exchangers utilize the Na + electrochemical gradient across the plasma membrane to extrude intracellular Ca 2+, and play a central role in Ca 2+ homeostasis. Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na +, Ca 2+ or Sr 2+ in various occupancies and in an apo state. This analysis defines the binding mode and relative affinity of these ions, establishes the structural basis for the anticipated 3:1Na +/Ca 2+ exchange stoichiometry, and reveals the conformational changes at the onset ofmore » the alternating-access transport mechanism. An independent analysis of the dynamics and conformational free-energy landscape of NCX_Mj in different ion-occupancy states, based on enhanced-sampling molecular-dynamics simulations, demonstrates that the crystal structures reflect mechanistically relevant, interconverting conformations. Lastly, these calculations also reveal the mechanism by which the outward-to-inward transition is controlled by the ion-occupancy state, thereby explaining the emergence of strictly-coupled Na +/Ca 2+ antiport.« less
NASA Astrophysics Data System (ADS)
Freitas, M. C.; Pacheco, A. M. G.; Dionísio, I.; Sarmento, S.; Baptista, M. S.; Vasconcelos, M. T. S. D.; Cabral, J. P.
2006-08-01
Elemental contents of atmospheric biomonitors—epiphytic lichens and tree bark, exposed in continuous and discontinuous modes—have been assessed through k0-standardised instrumental neutron activation analysis ( k0-INAA) (two different institutions), inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS). Certified reference materials—ISE-921 (river clay), NIST-1547 (peach leaves), ICHTJ-INCT-TL-1 (tea leaves; TL-1 hereinafter) and IAEA-336 (lichen material), and nonparametric statistics—rank-order correlations (Spearman RS) and enhanced-sign tests (Wilcoxon T)—were used for analytical control and data comparison, respectively. In general, quality of procedures was deemed good, except for k0-INAA in determining Br, Cu and Na, all likely affected by high counting statistics, and/or contamination issues (the latter). Results for Cu, Ni, Pb and Sr (by both ICP-MS and AAS) revealed that, despite an outstanding correlation (asymptotic p=0.000), they could be viewed as statistically equal for Cu only: AAS tended to yield higher values for Pb and Ni, and lower ones for Sr. The comparison between ICP-MS and k0-INAA data from TUDelft, for Al, Ca, Cu, Mg, Mn, Na, Ti and V, showed an excellent correlation (as above) and random (relative) magnitude for Cu, Mg, Mn and Ti only: ICP-MS tended to yield higher values for Al, Na and V, and lower ones for Ca, whereas between k0-INAA data from TUDelft and ITN, for Br, Ca and Na, resulted in systematically higher [Br] and [Ca] variates from TUDelft, even if all corresponding data sets were found to correlate at stringent significance levels. In a few cases, though—Ca, Sr in lichens; Pb in bark—matrix effects did appear to interfere in the outcome of matched-pairs, signed-rank tests, since random hierarchy of variates could be asserted just when lichen and bark data sets were processed separately.
de Macêdo, Gustavo R; Tarantino, Taiana B; Barbosa, Isa S; Pires, Thaís T; Rostan, Gonzalo; Goldberg, Daphne W; Pinto, Luis Fernando B; Korn, Maria Graças A; Franke, Carlos Roberto
2015-05-15
Concentrations of elements (As, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sr, V, Zn) were determined in liver, kidneys and bones of Eretmochelys imbricata and Chelonia mydas specimens found stranded along the northern coast of Bahia, Brazil. Results showed that the concentrations of Cd, Cu, Ni and Zn in the liver and kidneys of juvenile C. mydas were the highest found in Brazil. We also observed a significant difference (p<0.05) on the bioaccumulation of trace elements between the two species: Al, Co, Mo, Na and Se in the liver; Al, Cr, Cu, K, Mo, Ni, Pb, Sr and V in the kidneys; and Al, Ba, Ca, Cd, Mn, Ni, Pb, Se, Sr and V in the bones. This study represents the first report on the distribution and concentration of trace elements in E. imbricata in the Brazilian coast. Copyright © 2015 Elsevier Ltd. All rights reserved.
1985-01-01
A microprocessor-controlled system of microinjections and microaspirations has been developed to change, within approximately 1 ms, the [free Ca2+] at the outer surface of the sarcoplasmic reticulum (SR) wrapped around individual myofibrils (0.3-0.4 micron radius) of a skinned canine cardiac Purkinje cell (2.5-4.5 micron overall radius) at different phases of a Ca2+ transient. Simultaneously monitoring tension and aequorin bioluminescence provided two methods for estimating the peak myoplasmic [free Ca2+] reached during the spontaneous cyclic Ca2+ release from the SR obtained in the continuous presence of a bulk solution [free Ca2+] sufficiently high to overload the SR. These methods gave results in excellent agreement for the spontaneous Ca2+ release under a variety of conditions of pH and [free Mg2+], and of enhancement of Ca2+ release by calmodulin. Disagreement was observed, however, when the Ca2+ transient was modified during its ascending phase. The experiments also permitted quantification of the aequorin binding within the myofibrils and determination of its operational apparent affinity constant for Ca2+ at various [free Mg2+] levels. An increase of [free Ca2+] at the outer surface of the SR during the ascending phase of the Ca2+ transient induced further release of Ca2+. In contrast, an increase of [free Ca2+] during the descending phase of the Ca2+ transient did not cause further Ca2+ release. Varying [free H+], [free Mg2+], or the [Na+]/[K+] ratio had no significant effect on the Ca2+ transient during which the modification was applied, but it altered the subsequent Ca2+ transient. Therefore, Ca2+ appears to be the major, if not the only, ion controlling Ca2+ release from the SR rapidly enough to alter a Ca2+ transient during its course. PMID:3981128
NASA Astrophysics Data System (ADS)
Hurt, S. M.; Lange, R. A.; Ai, Y.
2015-12-01
The volumetric properties of multi-component carbonate liquids are required to extend thermodynamic models that describe partial melting of the deep mantle (e.g. pMELTS; Ghiorso et al., 2003) to carbonate-bearing lithologies. Carbonate in the mantle is an important reservoir of carbon, which is released to the atmosphere as CO2 through volcanism, and thus contributes to the carbon cycle. Although MgCO3 is the most important carbonate component in the mantle, it is not possible to directly measure the 1-bar density and compressibility of MgCO3 liquid because, like other alkaline-earth carbonates, it decomposes at a temperature lower than its melting temperature. Despite this challenge, Liu and Lange (2003) and O'Leary et al. (2015) showed that the one bar molar volume, thermal expansion and compressibility of the CaCO3 liquid component could be obtained by measuring the density and sound speeds of stable liquids in the CaCO3-Li2CO3-Na2CO3-K2CO3 quaternary system at one bar. In this study, this same strategy is employed on SrCO3- and BaCO3-bearing alkali carbonate liquids. The density and sound speed of seven liquids in the SrCO3-Li2CO3-Na2CO3-K2CO3 quaternary and three liquids in the BaCO3-Li2CO3-Na2CO3-K2CO3 quaternary were measured from 739-1367K, with SrCO3 and BaCO3 concentrations ranging from 10-50 mol%. The density measurements were made using the double-bob Archimedean method and sound speeds were obtained with a frequency-sweep acoustic interferometer. The molar volume and sound speed measurements were used to calculate the isothermal compressibility of each liquid, and the results show the volumetric properties mix ideally with composition. The partial molar volume and compressibility of the SrCO3 and BaCO3 components are compared to those obtained for the CaCO3 component as a function of cation field strength. The results reveal a systematic trend that allows the partial molar volume and compressibility of the MgCO3 liquid component to be estimated.
The Dissolved Ca Isotope Composition of Himalayan-Tibetan Waters
NASA Astrophysics Data System (ADS)
Tipper, E. T.; Galy, A.; Bickle, M. J.
2004-12-01
Determining the relative proportions of carbonate versus silicate weathering in the Himalaya is important for understanding the long-term atmospheric CO2 budget and the marine Sr isotope record. 87Sr/86Sr is not a straightforward proxy of carbonate to silicate weathering in the Himalaya and up to 50% of the dissolved Ca may be removed by the precipitation of secondary calcite. Ca isotopes have the potential to constrain the relative inputs of carbonates to silicates and incongruent dissolution processes in the weathering environment. Ca is the major cation carried by rivers. Thirty four Himalayan rock and water samples from the Nepal Himalaya and Tibet have been analysed for 44/42Ca and 43/42Ca on a Nu-Instruments Multiple Collector -ICP-MS. Unlike the 44/40Ca ratio the 44/42Ca is not susceptible to excess 40Ca production from the decay of K. All samples lie on a single mass fractionation line. There is a total range of 0.4 \\permil variation in \\delta44Ca with values from 0.63 \\permil - 0.21 \\permil relative to the SRM915a standard. This is comparable to that already reported with \\delta44/40Ca for small catchments and global rivers. Small first order catchments from each of the main lithotectonic units of the Himalaya have been analysed to examine the effect of lithology on dissolved Ca isotopic composition. In agreement with previous studies elsewhere there is little correlation between source rock and dissolved composition for small rivers spanning a range of source rock from limestone to various silicates and covering a vegetation range from temperate semi-desert to jungle. \\delta44Ca is not correlated with 87Sr/86Sr or Na/Ca ratios confirming that source rock composition is not the dominant control on the observed range in \\delta44Ca. A time-series has been examined for the Marsyandi River, central Nepal. In spite of significant systematic variations in major element chemistry including Ca concentration and 87Sr/86Sr the variations in \\delta44Ca are limited to 0.16 \\permil. Either there is only a single isotopic source of Ca or the \\delta44Ca is controlled by incongruent dissolution processes. The most important incongruent process to affect the Ca budget is the precipitation of pedogenic carbonate. Such incongruent processes should be detectable in the Ca-isotope budget.
NASA Astrophysics Data System (ADS)
Gabitov, R. I.; Watson, B. E.
2004-05-01
The surface of a crystal in equilibrium with surrounding fluid can have a composition that differs from the bulk crystal. If growth rate of the crystal exceeds a minimum value at which partitioning-equilibrium can be maintained, then the crystal surface composition may be "captured" by the newly-formed lattice. The degree of this entrapment increases with increasing crystal growth rate. Non-equlibrium partitioning of Sr into calcite probably occurs by this entrapment mechanism. Sr and calcite are geochemically significant in understanding the thermal history of the ocean because the substitution of Sr for Ca in calcite is temperature dependent. To improve our understanding of the partitioning of Sr into calcite, we conducted two different types of experiment: 1) calcite growth from Sr-bearing solution with analysis of the crystal cross-section by electron microprobe (bulk crystal-liquid runs); and 2) treatment of calcite cleavage surfaces with Sr-bearing solutions and examination of the top few nm surface layer by X-ray photoelectron spectroscopy (surface-liquid runs). In the series of bulk-liquid experiments crystals were grown by three different procedures: 1) precipitation on glass slide (pre-coated with calcite), where a steady flow of CaCl2 - SrCl2 and Na2CO3 solutions were mixed just before passage through a tube and allowed to drip onto a slide ("cave"-type experiments, ionic strength I=0.01); 2) growth from a CaCl2 - NH4Cl - SrCl2 solution by diffusion of CO2 from an ammonium carbonate source ("drift" experiments, I=0.52); 3) coarsening of small calcite crystals in the CaCO3-SrCO3-NaCl-H2O system at 800-950° C and 0.5-1 kb in a cold seal apparatus. The growth rate of individual crystals was determined by periodic monitoring of crystal size with time or roughly by comparison of final size with duration of the experiment. Surface-liquid experiments were performed by treatment of cleavage surfaces of natural calcite fragments in a Sr(ClO4)2 solution for 1 minute. After treatment the remaining solution was blown out by a stream of nitrogen to preclude the precipitation of Sr phase. We observed that the precipitated calcite crystals can be very different in size even if the runs have the same input rate of calcite components. The cave-type and cold-seal runs yielded 15-40 μ m calcites, but in the drift experiments crystal size varied between 60 μ m and 1 mm. Electron microprobe analysis across the large crystals show that the concentration of Sr is higher in the center and decreases toward the edge. This is probably due to the cube-root dependence of radial growth on the volume change of the growing crystals. Like previous workers who measured bulk uptake of Sr as a function of precipitation rate, we observed that increased growth rate (V, nm/s) enhances Sr uptake into the crystal, raising Kdbulk/liquid=(Sr/Ca)bulk/(Sr/Ca)liquid. Kdbulk/liquid = 0.03 to 0.06 when log(V)=-1.1 to -0.6 at 25° C in the cave-type runs (I=0.01). At higher ionic strength (I=0.52) and T=55° C, Kdbulk/liquid=0.11 to 0.15 when log(V)=-0.6 to 0.4 in the drift experiments. XPS analysis of surface-liquid experiments yielded higher Kdsurface/liquid=(Sr/Ca)surface/(Sr/Ca)liquid values compared with Kdbulk/liquid. This combined evidence supports the idea that Sr is enriched at the calcite surface relative to the bulk crystal during crystal growth.
Maltsev, Alexander V.; Maltsev, Victor A.; Stern, Michael D.
2017-01-01
Intracellular Local Ca releases (LCRs) from sarcoplasmic reticulum (SR) regulate cardiac pacemaker cell function by activation of electrogenic Na/Ca exchanger (NCX) during diastole. Prior studies demonstrated the existence of powerful compensatory mechanisms of LCR regulation via a complex local cross-talk of Ca pump, release and NCX. One major obstacle to study these mechanisms is that LCR exhibit complex Ca release propagation patterns (including merges and separations) that have not been characterized. Here we developed new terminology, classification, and computer algorithms for automatic detection of numerically simulated LCRs and examined LCR regulation by SR Ca pumping rate (Pup) that provides a major contribution to fight-or-flight response. In our simulations the faster SR Ca pumping accelerates action potential-induced Ca transient decay and quickly clears Ca under the cell membrane in diastole, preventing premature releases. Then the SR generates an earlier, more synchronized, and stronger diastolic LCR signal activating an earlier and larger inward NCX current. LCRs at higher Pup exhibit larger amplitudes and faster propagation with more collisions to each other. The LCRs overlap with Ca transient decay, causing an elevation of the average diastolic [Ca] nadir to ~200 nM (at Pup = 24 mM/s). Background Ca (in locations lacking LCRs) quickly decays to resting Ca levels (<100 nM) at high Pup, but remained elevated during slower decay at low Pup. Release propagation is facilitated at higher Pup by a larger LCR amplitude, whereas at low Pup by higher background Ca. While at low Pup LCRs show smaller amplitudes, their larger durations and sizes combined with longer transient decay stabilize integrals of diastolic Ca and NCX current signals. Thus, the local interplay of SR Ca pump and release channels regulates LCRs and Ca transient decay to insure fail-safe pacemaker cell operation within a wide range of rates. PMID:28792496
NASA Astrophysics Data System (ADS)
Lehn, G. O.; Jacobson, A. D.; Douglas, T. A.; McClelland, J. W.; Khosh, M. S.; Barker, A. J.
2014-12-01
Global climate models predict amplified warming at high latitudes, where permafrost soils have historically acted as a carbon sink. As warming occurs, the seasonally thawed active layer will propagate downward into previously frozen mineral-rich soil, releasing carbon and introducing unique chemical weathering signatures into rivers. We use variations in the 87Sr/86Sr, δ13CDIC, δ44/40Ca, and major ion geochemistry of rivers to track seasonal active layer dynamics. We collected water from six streams on the North Slope of Alaska between May and October, 2009 and 2010. All rivers drain continuous permafrost but three drain tussock tundra-dominated watersheds and three drain steeper bedrock catchments with minor tundra coverage. In tundra streams, elevated 87Sr/86Sr ratios, low δ13CDIC values and major ions ([Na+]+[K+]/ [Ca+2]+[Mg+2]) in spring melt runoff suggest flushing of shallow soils with relatively low carbonate content. By July, 87Sr/86Sr ratios stabilize at relatively low values and δ13CDIC at relatively higher values, indicating the active layer thawed into deeper carbonate-rich soils. In bedrock streams, elevated 87Sr/86Sr ratios correlate with high discharge. By late fall, bedrock stream 87Sr/86Sr ratios decrease steadily, consistent with increased carbonate weathering. Nearly constant δ13CDIC values and high [SO4-2] for most of the melt season imply significant sulfuric acid-carbonate weathering in bedrock streams. δ13CDIC values suggest a shift to carbonic acid-carbonate weathering in late 2010, possibly due to limited oxygen for pyrite oxidation during freezing of the active layer. δ44/40Ca values in both tundra and bedrock streams increase during the seasons, suggesting increased uptake of 40Ca by plants. δ44/40Ca values of rivers are at least 0.1-0.2‰ higher than their watershed soils, rocks and sediments, suggesting significant plant uptake. Our findings show how seasonal changes in mineral weathering have potential for tracking active layer dynamics.
Guttman, Rita
1940-01-01
1. The alkaline earths, Ba, Sr, Ca, and Mg, in isotonic solutions of their chlorides, have, in general, no effect upon the resting potential of non-medullated spider crab nerve. 2. Ba, Sr, and Ca can, however, prevent the depressing action of K upon the resting potential. The order of effectiveness of these ions in this regard is the following: Ba > Sr > Ca. 3. Ba, Sr, Ca, and Mg oppose the depressing action of veratrine sulfate upon the resting potential. The order of effectiveness is Ba > Sr > Ca > Mg. The relation between drop in potential caused by veratrine sulfate and the logarithm of the veratrine sulfate concentration is a linear one. 4. The action of various other organic ions and molecules which depress the resting potential: saponin, amyl urethane, chloral hydrate, and Na salicylate is neutralized by Ba. 5. Hypertonic sea water solutions do not affect the resting potential. Also, preliminary experiments indicate that the nerves do not shrink in hypertonic solutions although they swell in hypotonic sea water. 6. The alkaline earths depress excitability reversibly. The various organic agents which depress the resting potential also depress excitability, in most cases, reversibly, but the concentrations necessary to depress excitability are much smaller than those necessary to depress the resting potential. 7. The relation of these findings to theories put forward as possible explanations of resting potential phenomena is considered. PMID:19873160
Cesium and strontium ion exchange on the framework titanium silicate M2Ti2O3SiO4.nH2O (M = H, Na).
Solbrå, S; Allison, N; Waite, S; Mikhalovsky, S V; Bortun, A I; Bortun, L N; Clearfield, A
2001-02-01
The ion exchange properties of the titanium silicate, M2Ti2O3SiO4.nH2O (M = H, Na), toward stable and radioactive 137Cs+ and 89Sr2+, have been examined. By studying the cesium and strontium uptake in the presence of NaNO3, CaCl2, NaOH, and HNO3 (in the range of 0.01-6 M) the sodium titanium silicate was found to be an efficient Cs+ ion exchanger in acid, neutral, and alkaline media and an efficient Sr2+ ion exchanger in neutral and alkaline media, which makes it promising for treatment of contaminated environmental media and biological systems.
NASA Astrophysics Data System (ADS)
Syverson, D.; Seyfried, W. E.
2010-12-01
Anhydrite (CaSO4) is an important mineral in subseafloor hydrothermal systems. Its solubility likely plays a role in controlling mass transfer reactions in the relatively low temperature and ultramafic-hosted Lost City Hydrothermal Field (LCHF), while also precipitating from seawater during recharge of more widespread high-temperature hydrothermal systems at mid-ocean ridges. Strontium partitions into anhydrite, although the magnitude and mechanism by which this occurs, is still unclear, as is the effect of precipitation rate. In the absence of these data it is not possible to predict accurately the geochemical implications of Sr/Ca ratios of vent fluids. Accordingly, the potential usefulness of these data to constrain temperature, and as a means to understand the flux of seawater derived Sr into deeper portions of subseafloor hydrothermal systems, is limited. Here we report results of experiments designed to assess Ca-Sr exchange during anhydrite-fluid reaction as a function of temperature, fluid chemistry and distance from equilibrium. Anhydrite used for the experiments was synthesized to avoid compositional impurities and annealed to achieve grain sizes (10-100 micron) and uniform crystalline properties. NaCl fluids (0.55 m) with known Sr/Ca ratios were used for the experiments. Experiments were performed at 200° and 250°C, 500 bars, while time series changes in fluid chemistry were monitored by fluid sampling at experimental conditions. Isobaric temperature change as well as chemical perturbation by addition of fluids with anomalous Sr/Ca ratio permitted phase equilibria to be unambiguously assed. Moreover, the chemical perturbation experiments provided information on the effect of rate of reaction on Sr-Ca exchange. Isobaric temperature jumps demonstrate that initially anhydrite precipitation incorporates Sr preferentially. With further reaction progress and approach to equilibrium Sr uptake by anhydrite recrystallization becomes less effective. Long-term equilibration (~3 months) of fluid and anhydrite at 250°C produces aSr/aCa*1000 of 2.8425. Results from the isothermal spike experiments indicate that the rate of exchange (dF/dt) for aSr/aCa is on the order of 0.01/day. Applying the experimentally determined Sr/Ca data to endmember vent fluids from LCHF suggests subseafloor temperatures near 200°C, in good agreement with constraints imposed by observed Ca and sulfate concentrations assuming anhydrite-fluid equilibria. Furthermore, the effect of supersaturated partitioning and experimentally determined rate at which Sr is incorporated into anhydrite suggests that seawater Sr uptake by anhydrite may be very effective, especially if the rate of formation is rapid, as might be expected owing to the sharply increasing geothermal gradient likely for the recharge portions of most of basalt-hosted hydrothermal systems at mid-ocean ridges. This would have important implications for the flux of radiogenic Sr and calculations of fluid/rock ratios at depth in the ocean crust.
NASA Astrophysics Data System (ADS)
Tremaine, Darrel M.; Sinclair, Daniel J.; Stoll, Heather M.; Lagerström, Maria; Carvajal, Carlos P.; Sherrell, Robert M.
2016-07-01
Stalagmite Mg/Ca and Sr/Ca ratios are commonly interpreted as proxies for past hydrologic conditions and are often used to supplement carbon and oxygen stable isotope records. While the processes that control these element ratios, including water-rock interaction, dripwater residence time, and upstream precipitation of calcite, are well understood in continental caves, there have been few investigations of dripwater Element/Ca (X/Ca) evolution in coastal marine caves where seasalt can have a strong influence on the incoming Mg/Ca ratio. We instrumented a marine cave on the remote South Pacific island of Niue to record daily cave microclimate, as well as weekly-integrated drip rates, dripwater oxygen and hydrogen isotopes, and dripwater chemistry over a period of twenty-two months. Using chloride as a conservative tracer for sea-spray, we calculate that seasalt input accounts for a large portion of dripwater Na, SO4, and Mg (89%, 93%, and 85% respectively) and a smaller portion of the Ca and Sr (19% and 17%). During the second year of this study a gradual decrease (by ∼18%) in dripwater chlorinity was observed, suggesting that an epikarst-hosted seasalt aerosol inventory was being diluted over time. Minor element to calcium ratios for B, K, Cl, SO4, Mg, Na, Sr, and Fe all strongly covary over the observation period, suggesting that although sea-spray plays a significant role in modulating incoming drip chemistry, prior calcite precipitation (PCP) dominates chemical evolution within the epikarst. During a prolonged drought episode, evaporative enrichments in dripwater δD and δ18O (+4‰ and 0.5‰, respectively) were observed to coincide with increased cation and anion concentrations, strong Ca removal via PCP, and increases in Sr/Ca and Mg/Ca ratios (28% and 34%, respectively), suggesting that concomitant enrichment in speleothem δ18O and X/Ca ratios may be interpreted as multi-proxy evidence for dry climate conditions. We use modern dripwater chemistry and empirical water-calcite distribution coefficients to predict a range of stalagmite X/Ca ratios. We then forward model a number of scenarios that could modulate stalagmite chemistry, including increased/decreased seasalt input and changing dripwater flow path through calcite, dolomite, and aragonite bedrock. One major implication from this study is that even if PCP and flow path lithology remain constant over time, changing seasalt input can drive stalagmite Mg/Ca and Sr/Ca ratios away from PCP-controlled covariation, and lead to strongly varying Sr/Mg ratios. Thus in order to interpret coastal cave stalagmite X/Ca records accurately, it is necessary to estimate seasalt input and analyze parent drip and bedrock chemistry to quantify the influence of each contributing process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Jack Douglas; Wood, David James; Todd, Terry Allen
1999-02-01
Laboratory experimentation has indicated that the SREX process is effective for partitioning 90 Sr from acidic radioactive waste solutions located at the Idaho Nuclear Technology and Engineering Center. These laboratory results were used to develop a flowsheet for countercurrent testing of the SREX process with dissolved pilot plant calcine. Testing was performed using 24 stages of 2-cm diameter centrifugal contactors which are installed in the Remote Analytical Laboratory hot cell. Dissolved Run #64 pilot plant calcine spiked with 85 Sr was used as feed solution for the testing. The flowsheet tested consisted of an extraction section (0.15 M 4',4'(5')-di-(tert-butylcyclohexo)-18-crown-6 andmore » 1.5 M TBP in Isopar-L.), a 1.0 M NaNO3 scrub section to remove extracted K from the SREX solvent, a 0.01 M HNO3 strip section for the removal of Sr from the SREX solvent, a 0.25 M Na2CO3 wash section to remove degradation products from the solvent, and a 0.1 M HNO3 rinse section. The behavior of 85 Sr, Na, K, Al, B, Ca, Cr, Fe, Ni, and Zr was evaluated. The described flowsheet successfully extracted 85 Sr from the dissolved pilot plant calcine with a removal efficiency of 99.6%. Distribution coefficients for 85 Sr ranged from 3.6 to 4.5 in the extraction section. With these distribution coefficients a removal efficiency of approximately >99.99% was expected. It was determined that the lower than expected removal efficiency can be attributed to a stage efficiency of only 60% in the extraction section. Extracted K was effectively scrubbed from the SREX solvent with the 1.0 M NaNO3 resulting in only 6.4% of the K in the HLW strip product. Sodium was not extracted from the dissolved calcine by the SREX solvent; however, the use of a 1.0 M NaNO3 scrub solution resulted in a Na concentration of 70 mg/L (12.3% of the feed concentration) in the HLW strip product. Al, B, Ca, Cr, Fe, Ni, and Zr were determined to be essentially inextractable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, J.D.; Wood, D.J.; Todd, T.A.
1999-01-01
Laboratory experimentation has indicated that the SREX process is effective for partitioning {sup 90}Sr from acidic radioactive waste solutions located at the Idaho Nuclear Technology and Engineering Center. These laboratory results were used to develop a flowsheet for countercurrent testing of the SREX process with dissolved pilot plant calcine. Testing was performed using 24 stages of 2-cm diameter centrifugal contactors which are installed in the Remote Analytical Laboratory hot cell. Dissolved Run No.64 pilot plant calcine spiked with {sup 85}Sr was used as feed solution for the testing. The flowsheet tested consisted of an extraction section (0.15 M 4{prime},4{prime}(5{prime})-di-(tert-butylcyclohexo)-18-crown-6 andmore » 1.5 M TBP in Isopar-L.), a 1.0 M NaNO{sub 3} scrub section to remove extracted K from the SREX solvent, a 0.01 M HNO{sub 3} strip section for the removal of Sr from the SREX solvent, a 0.25 M Na2CO{sub 3} wash section to remove degradation products from the solvent, and a 0.1 M HNO{sub 3} rinse section. The behavior of {sup 85}Sr, Na, K, Al, B, Ca, Cr, Fe, Ni, and Zr was evaluated. The described flowsheet successfully extracted {sup 85}Sr from the dissolved pilot plant calcine with a removal efficiency of 99.6%. Distribution coefficients for {sup 85}Sr ranged from 3.6 to 4.5 in the extraction section. With these distribution coefficients a removal efficiency of approximately >99.99% was expected. It was determined that the lower than expected removal efficiency can be attributed to a stage efficiency of only 60% in the extraction section. Extracted K was effectively scrubbed from the SREX solvent with the 1.0 M NaNO{sub 3} resulting in only 6.4% of the K in the HLW strip product. Sodium was not extracted from the dissolved calcine by the SREX solvent; however, the use of a 1.0 M NaNO{sub 3} scrub solution resulted in a Na concentration of 70 mg/L (12.3% of the feed concentration) in the HLW strip product. Al, B, Ca, Cr, Fe, Ni, and Zr were determined to be essentially inextractable.« less
If and SR Ca2+ release both contribute to pacemaker activity in canine sinoatrial node cells
Gao, Zhan; Chen, Biyi; Joiner, Mei-ling A.; Wu, Yuejin; Guan, Xiaoqun; Koval, Olha M.; Chaudhary, Ashok K.; Cunha, Shane R.; Mohler, Peter J.; Martins, James B.; Song, Long-Sheng; Anderson, Mark E.
2010-01-01
Increasing evidence suggests that cardiac pacemaking is the result of two sinoatrial node (SAN) cell mechanisms: a ‘voltage clock’ and a Ca2+ dependent process, or ‘Ca2+ clock.’ The voltage clock initiates action potentials (APs) by SAN cell membrane potential depolarization from inward currents, of which the pacemaker current (If) is thought to be particularly important. A Ca2+ dependent process triggers APs when sarcoplasmic reticulum (SR) Ca2+ release activates inward current carried by the forward mode of the electrogenic Na+/Ca2+ exchanger (NCX). However, these mechanisms have mostly been defined in rodents or rabbits, but are unexplored in single SAN cells from larger animals. Here, we used patch-clamp and confocal microscope techniques to explore the roles of the voltage and Ca2+ clock mechanisms in canine SAN pacemaker cells. We found that ZD7288, a selective If antagonist, significantly reduced basal automaticity and induced irregular, arrhythmia-like activity in canine SAN cells. In addition, ZD7288 impaired but did not eliminate the SAN cell rate acceleration by isoproterenol. In contrast, ryanodine significantly reduced the SAN cell acceleration by isoproterenol, while ryanodine reduction of basal automaticity was modest (∼14%) and did not reach statistical significance. Importantly, pretreatment with ryanodine eliminated SR Ca2+ release, but did not affect basal or isoproterenol-enhanced If. Taken together, these results indicate that voltage and Ca2+ dependent automaticity mechanisms coexist in canine SAN cells, and suggest If and SR Ca2+ release cooperate to determine baseline and catecholamine-dependent automaticity in isolated dog SAN cells. PMID:20380837
Ramifications of codoping SrI2:Eu with isovalent and aliovalent impurities
NASA Astrophysics Data System (ADS)
Feng, Qingguo; Biswas, Koushik
2016-12-01
Eu2+ doped SrI2 is an important scintillator having applications in the field of radiation detection. Codoping techniques are often useful to improve the electronic response of such insulators. Using first-principles based approach, we report on the properties of SrI2:Eu and the influence of codoping with aliovalent (Na, Cs) and isovalent (Mg, Ca, Ba, and Sn) impurities. These codopants do not preferably bind with Eu and are expected to remain as isolated impurities in the SrI2 host. As isolated defects they display amphoteric behavior having, in most cases, significant ionization energies of the donor and acceptor levels. Furthermore, the acceptor states of Na, Cs, and Mg can bind with I-vacancy forming charge compensated donor-acceptor pairs. Such pairs may also bind additional holes or electrons similar to the isolated defects. Lack of deep-to-shallow behavior upon codoping and its ramifications will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stueber, A.M.; Walter, L.M.; Huston, T.J.
1993-02-01
We have analyzed a suite of seventy-four formation-water samples from Mississippian and Pennsylvanian carbonate and siliciclastic strata in the Illinois basin for major, minor, and trace element concentrations and for strontium isotopic composition. A subset of these samples was also analyzed for boron isotopic composition. Data are used to interpret origin of salinity and chemical and Sr isotopic evolution of the brines and in comparison with a similar data set from an earlier study of basin formation waters from Silurian-Devonian reservoirs. Systematics of Cl-Br-Na show that present Mississippian-Pennsylvanian brine salinity can be explained by a combination of subaerial seawater evaporationmore » short of halite saturation and subsurface dissolution of halite from an evaporite zone in the middle Mississippian St. Louis Limestone, along with extensive dilution by mixing with meteoric waters. Additional diagenetic modifications in the subsurface interpreted from cation/Br ratios include K depletion through interaction with clay minerals, Ca enrichment, and Mg depletion by dolomitization, and Sr enrichment through CaCO[sub 3] recrystallization and dolomitization. Ste. Genevieve Limestone (middle Mississippian) formation waters show [sup 87]Sr/[sup 86]Sr ratios in the range 0.70782-0.70900, whereas waters from the siliciclastic reservoirs are in the rante 0.70900-0.71052. Inverse correlations between [sup 87]Sr/[sup 86]Sr and B,Li, and Mg concentrations suggest that the brines acquired radiogenic [sup 87]Sr through interaction with siliciclastic minerals. Completely unsystematic relations between [sup 87]Fr/[sup 86]Sr and 1/Sr are observed; Sr concentrations in Ste. Genevieve and Aux Vases (middle Mississippian) waters appear to be buffered by equilibrium with respect to SrSo[sub 4]. These formation waters are distinguished from Silurian-Devonian brines in the basin by elevated Cl/Br and Na/Br ratios and by unsystematic Sr isotope relationships.« less
Control of calcium release and the effect of ryanodine in skinned muscle fibres of the toad.
Lamb, G D; Stephenson, D G
1990-01-01
1. Skinned muscle fibres from the toad were used to investigate the roles of T-system membrane potential and Ca2+ in controlling the calcium release channels of the sarcoplasmic reticulum (SR). 2. Replacement of K+ in the bathing solution with Na+ produced a large contraction which could last for 30 s or more under certain circumstances. This prolonged contraction could be quickly and completely terminated by repolarizing the fibre in the K+ solution and then immediately re-initiated by returning to the Na+ solution. These data indicate that the membrane potential tightly controlled the substantial and prolonged release of calcium. 3. T-system depolarization in the presence of 10 mM-free EGTA (pCa greater than 9) markedly depleted the SR of Ca2+. This implies that depolarization of the T-system can still trigger substantial release of Ca2+ from the SR even when the myoplasmic [Ca2+] is very low and very heavily buffered by EGTA. 4. When the SR was heavily loaded with Ca2+, substitution of a weakly buffered high [Ca2+] solution (pCa 5.4, 50 microM-EGTA) could produce a small to moderate, transient contraction taking between 3 and 12 s to reach a peak and lasting 30 s or more. 5. This contraction may be produced at least partly by 'calcium-induced calcium release' as ruthenium red (2 microM) completely blocked the responses. Moreover, repeated substitutions produced successively smaller responses in parallel with the 'run-down' of the depolarization-induced contractions. 6. Depolarization could always produce an additional large and fast response at any stage during a 'Ca2(+)-induced' response. 7. In the presence of 25 microM-ryanodine, the rapid contraction produced by T-system depolarization was prolonged and could not be stopped by repolarization. During and after this contraction no depolarizing stimulus could induce a further contraction, even though in some fibres addition of 30 mM-caffeine produced a maximum response which indicated that there was still a substantial amount of calcium in the SR. 8. At pCa 6.4, 25 microM-ryanodine could itself induce a substantial slow contracture in a normally polarized fibre within 30-60 s, after which little or no response could be induced by T-system depolarization. At higher concentrations (25 microM) ryanodine produced a near-maximum contraction in only a few seconds.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2167367
The excretion of biotrace elements using the multitracer technique in tumour-bearing mice.
Wang, X; Tian, J; Yin, X M; Zhang, X; Wang, Q Z
2000-12-01
A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon 40Ar ions was used for investigation of trace element excretion into the faeces and urine of cancerous mice. The excretion rates of 22 elements (Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Mo, Nb, Tc, Ru, Ag and In) were simultaneously measured under strictly identical experimental conditions, in order to clarify the excretion behavior of these elements in cancerous mice. The faecal and urinary excretion rates of Mg, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Nb, Ru and Mo in cancerous mice, showed the in highest value at 0-8 hours. The accumulative excretion of Ca, Mo, Y and Zr was decreased and Na, Fe, Mn and Co increased in tumour-bearing mice, when compared to normal mice.
Li, Yiming; Stone, Wendy; Schemitsch, Emil H; Zalzal, Paul; Papini, Marcello; Waldman, Stephen D; Towler, Mark R
2016-11-01
This work considered the effect of both increasing additions of Strontium (Sr 2+ ) and incubation time on solubility and both antibacterial and osteo-stimulatory effects of a series of glasses based on the B 2 O 3 -P 2 O 5 -CaCO 3 -Na 2 CO 3 -TiO 2 -SrCO 3 series. The amorphous nature of all the glasses was confirmed by X-ray diffraction. Discs of each glass were immersed in de-ionized water for 1, 7 and 30 days, and the water extracts were used for ion release profiles, pH measurements and cytotoxicity testing. Atomic absorption spectroscopy was employed to detect the release of Na + , Ca 2+ and Sr 2+ ions from the glasses with respect to maturation, which indicated that the addition of Sr 2+ retarded solubility of the glass series. This effect was also confirmed by weight loss analysis through comparing the initial weight of glass discs before and after periods of incubation. The incorporation of Sr 2+ in the glasses did not influence the pH of the water extracts when the glasses were stored for up to 30 days. Cytotoxicity testing with an osteoblastic cell line (MC3T3-E1) indicated that glasses with the higher (20 mol% and 25 mol%) Sr 2+ incorporation promoted proliferation of osteoblast cells, while the glasses with lower Sr 2+ contents inhibited cell growth. The glass series, except for Ly-B5 (which contained the highest Sr 2+ incorporation; 25 mol%), were bacteriostatic against S. aureus in the short term (1-7 days) as a result of the dissolution products released. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Zitek, Andreas; Irrgeher, Johanna; Sturm, Monika; Brunner, Marion; Dillinger, Benno; Prohaska, Thomas
2010-05-01
The ‘IsoMark' project focuses for the first time on the comprehensive investigation of microchemical information (elemental fingerprint of Ca, Sr, Na, Ba, Mg; isotopic fingerprint of Sr, Ca, and additionally of C and O) in different hard parts of several typical European freshwater fish species like brown trout (Salmo trutta f.f., L.), European grayling (Thymallus thymallus, L.) or nase (Chondrostoma nasus, L.) and the barbel (Barbus barbus, L.). Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is used as major technique for the direct in situ analysis of trace elements and isotopes, whereby the employment of a multiple collector - inductively coupled plasma - mass spectrometer (MC-ICP-MS) enables high precise isotope ratio analysis of such sample matrices due to its simultaneous detection capabilities. Microchemical patterns in hard parts of farmed and wild fish are analysed resulting in natural site specific elemental and isotopic signatures. Within a pilot study the potential to discriminate between wild and hatchery trout by chronological microchemical patterns of different otolith regions in relation to site specific water chemistry was documented. 100% accuracy of classification of fish to life stage specific habitats and therefore to their origin was achieved by the elemental ratios 88Sr/43Ca, 23Na/43Ca and the isotope ratio of 87Sr/86Sr. Clear differences in otolith chemistry were found, when fish experienced different geological units or specific environmental situations (e.g. groundwater) in hatcheries during a certain period of their life. These results proved the concept that natural microchemical patterns in hard parts linked to specific life stages of fish represent a valuable tool for a wide variety of ecological questions, e.g. discriminating wild and hatchery fish without the necessity of inducing any other artificial mark, or studying natural migration phenomena on small spatial scales in freshwater systems within geologically diverse river catchments.
NASA Astrophysics Data System (ADS)
Petelet-Giraud, Emmanuelle; Luck, Jean-Marc; Ben Othman, Dalila; Joseph, Christian; Négrel, Philippe
2016-05-01
This study presents the ability of major/trace elements together with strontium isotopes to trace water origins at small scale at the outlet of a small watershed (Peyne, Hérault, France). Two small sub-basins draining distinct lithologies in their headwater (Plio-Villafranchian conglomerate versus Triassic gypsum-rich marls and dolomites) and the Miocene formations downstream are investigated. The Ca/Na vs. Mg/Na ratios and Ca/Sr vs. 87Sr/86Sr ratios allow the different facies that imprint the water signature to be identified, according to the hydrological conditions (low/high flows). Moreover, Sr isotopes evidence the two distinct Miocene facies, the sandy marls and the marine carbonates. The variation of the signature at the outlet of the basin allows identifying the main contributing compartments according to the hydrological conditions. This approach, based on a limited number of samples, highlights the potential of geochemical and isotopic tracers to define the contributing compartments to the runoff at the outlet of a basin. It thus could be considered as a potential alternative way to classical hydrological monitoring to delineate the main contributing areas during floods, especially in small ungauged river basins, where most of the devastating flash floods are recorded.
NASA Astrophysics Data System (ADS)
Li, Xudong; Cai, Shu; Zhang, Wenjuang; Xu, Guohua; Zhou, Wei
2009-08-01
The bioactive glass-ceramics in the CaO-P 2O 5-Na 2O-SrO-ZnO system were synthesized by the sol-gel technique, and then chemically treated at different pH values to study the solubility and surface modification. Samples sintered at 650 °C for 4 h consisted of the crystalline phase β-Ca 2P 2O 7 and the glass matrix. After soaking in the solution at pH 1.0, the residual glass matrix on the surface appeared entirely dissolved and no new phase could be detected. Whereas at pH 3.0, web-like layer exhibiting peaks corresponding to CaP 2O 6 was formed and covered the entire surface of the sample. When conducted at pH 10.0, only part of the glass matrix was dissolved and a new phase Ca 4P 6O 19 was precipitated, forming the petaline layer. The chemical treatment can easily change the surface morphologies and phase composition of this bioactive glass-ceramics. The higher level of surface roughness resulting from the new-formed layer would improve the interface bonding and benefit for cell adhesion.
NASA Astrophysics Data System (ADS)
Schettler, Georg; Oberhänsli, Hedi; Stulina, Galina; Mavlonov, Aslon A.; Naumann, Rudolf
2013-07-01
The Aral Sea, which has been affected by lake level lowering of approximately 25 m and a salinity increase from 10 to >100 g/l since 1963, represents, along with the Amu Dary Delta a dynamic hydrological system under an arid climate regime. The system receives river water inflow at high seasonal and inter-annual variability from remote alpine source areas. In the Amu Darya Delta, there is a distinct salinity contrast between the low-salinity river water (∼1 g/l) and the salinity of the unconfined GW (GWunconf: 10-95 g/l). The GWunconf levels are predominantly controlled by the seepage of the river water inflow and GW discharge into the shrinking Aral Sea. In June 2009 and August 2009, we sampled water from various sources including surface waters, GWunconf, lake water and soil leachates for chemical analyses. Evaporative enrichment, precipitation/dissolution of gypsum and precipitation of calcite drive the GWunconf to an NaCl(SO4) water type presenting a positive correlation between Na and SO4. We model the hydrochemical evolution of the GWunconf in a box model which considers the capillary rise of near-surface GW, the precipitation of minerals in the unsaturated horizon and the seasonal re-flushing of adhesive residual brines and soluble salts. The model documents a rapid increase in salinity over a few annual cycles. Furthermore, the model simulations demonstrate the importance of the aeolian redistribution of soluble salts on the hydrochemical GW evolution. In a lab experiment, halite, hexahydrite and starkeyite are precipitated during the late stages of evaporative enrichment from a representative local brine. Processes specific to different water compartments plausibly explain the variations of selected element ratios. For example, the precipitation of low-Sr calcite in irrigation canals and natural river branches of the delta lowers Ca/Sr. The dissolution of gypsum in soils (Ca/Sr mole ratio ∼ 150) and the possible precipitation of SrSO4 associated with Sr-depletion in adhesive residual brines increases Ca/Sr in seepage and re-increases Ca/Sr in the unconfined GW. Aral Sea water, which receives high-Ca/Sr surface and groundwater inflow, developed due to continued precipitation of high-Ca/Sr calcite the almost lowest Ca/Sr ratio (∼25) over time. We observed spatial variations in the GWunconf composition: (i) ammonium levels increase strongly due to interaction with lake sediments rich in organic matter and (ii) distinct increases in levels of nitrate, U, Mo and Se locally reflect oxygenation when GW levels decrease. The Amu Darya Delta acts as a sink for boron (uptake via terrestrial vegetation) and a source for bromide (release by degradation of organically-bound Br). Our results concerning the hydrochemical evolution of the GWunconf and additional data from the Aral Sea constrain the parameter ‘GW discharge’ in water budget models of the lake and improve the basis for palaeoclimatic interpretations of sediment records from the Aral Sea.
Na and Ca components of action potentials in amphioxus muscle cells
Hagiwara, S.; Kidokoro, Y.
1971-01-01
1. The ionic mechanism of the action potential produced in lamella-like muscle cells of amphioxus, Branchiostoma californiense, was investigated with intracellular recording and polarization techniques. 2. The resting potential and action potential overshoot in normal saline are -53±5 mV (S.D.) and +29±10 mV (S.D.) respectively. 3. The action potential is eliminated by tetrodotoxin (3 μM) and by replacing NaCl in the saline with Tris-chloride but maintained by replacing Na with Li. 4. After elimination of the normal action potential by tetrodotoxin or replacing Na with Tris, the addition of procaine (7·3 mM) to the external saline makes the membrane capable of producing a regenerative potential change. 5. The peak potential of the regenerative response depends on external Ca concentration in a manner predicted by the Nernst equation with Ca concentrations close to normal. 6. The Ca dependent response is reversibly suppressed by Co or La ions. 7. Similar regenerative responses are obtained when Ca is substituted with Sr or Ba. 8. It is concluded that two independent mechanisms of ionic permeability increase occur in the membrane of amphioxus muscle cell, one to Na and the other to Ca. PMID:5158595
Genesis of post-collisional calc-alkaline and alkaline granitoids in Qiman Tagh, East Kunlun, China
NASA Astrophysics Data System (ADS)
Yu, Miao; Feng, Chengyou; Zhao, Yiming; Li, Daxin
2015-12-01
The post-collisional magmatism of Qiman Tagh is characterized by the intrusion of voluminous intermediate to felsic granitoids, including syenogranite, monzogranite, granodiorite, tonalite and diorite. The granitoids can be divided into two magmatic suites: Calc-alkaline (CA) and alkaline (Alk), which were emplaced from ~ 236 Ma to ~ 204 Ma. The CA suite contains metaluminous granodiorites and monzogranites. Typical Qiman Tagh CA granodiorites show moderately fractionated REE patterns ((La/Yb)N = 4.35-25.11) with significant negative Eu anomalies (Eu/Eu* = 0.54-1.34), and the primitive mantle-normalized spidergrams show strong depletion of Nb and Sr. The Qiman Tagh CA monzogranites show similar fractionated REE patterns ((La/Yb)N = 2.70-13.5) with less prominent negative Eu anomalies, and the chondrite-normalized spidergrams show strongly depleted Ba, Nb and Sr. The Alk suite, including syenogranite, is highly potassic (K2O/Na2O = 1.09-3.56) and peraluminous (A/CNK = 0.91-1.06). Compared to typical Qiman Tagh CA granodiorites, the Qiman Tagh Alk granitoids can be distinguished by their higher Rb, Nb, Ga/Al, FeO*/MgO, Y/Sr and Rb/Sr, as well as their lower Mg#, MgO, CaO, Al2O3, Sr, Co, V, Eu/Eu*, Ba/Nb, La/Nb, Ba/La and Ce/Nb. The Qiman Tagh CA rocks were most likely to be derived from the partial melting of garnet-amphibolite-facies rocks in the lower crust, leaving behind anhydrous granulite-facies rocks with plagioclase and garnet in the residue. The Alk rocks may have formed by the continued partial melting of granulite-facies rocks at elevated temperatures (> 830 °C).
Anode materials for lithium ion batteries
Abouimrane, Ali; Amine, Khalil
2017-04-11
An electrochemical device includes a composite material of general Formula (1-x)J-(x)Q wherein: J is a metal carbon alloy of formula Sn.sub.zSi.sub.z'Met.sub.wMet'.sub.w'C.sub.t; Q is a metal oxide of formula A.sub..gamma.M.sub..alpha.M'.sub..alpha.'O.sub..beta.; and wherein: A is Li, Na, or K; M and M' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; Met and Met' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comar, C.L.; Lengemann, F.W.; Wasserman, R.H. et al
Research activities during the past 6 years are reviewed. Results are reported for recent studies on adaptation to increased dietary Ca by dairy cows as a factor in the reduction of Sr/sup 90/ content of milk; the testing of a theoretical model of alkaline earth absorption in rats by a comparison of biological discrimination among Ca/sup 47/, Sr/sup 85/, and Ba/sup 133/ in the presence of glucose, lactose, and lysine; the effects of lactose on the intestinal absorption of Ca in rats; a comparison of the ileal absorption of Ca/ sup 47/ and Sr/sup 85/ by rats from solutions withmore » high and low concentrations of stable Ca; determinatione of the Ca, Mg, and total alkaline earth content in mucosal tissue and plasma of normally fed rats, fasted rats, and rats fed a lactose solution; an investigation of non-exchangeable Ca compartments in the plasma of sheep; the effect of lactose and vitamin D on calcification in the rachitic chick; the metabolism and milk content of I/sup 131/ of dairy cows after long-term daily administration of I/sup 131/; the absorption of Fe/sup 59/ in sheep; the development of a method for the estimation of parasitic blood loss in sheep by whole-body counting of Fe/sup 59/ retention; the development of a method for the simultaneous measurement of erythrocyte and plasma volume in sheep using Fe/sup 59/ as a tracer; the concentration of Na/sup 22/, Cl/sup 36/, and C/sup 14/ inulin in rat kidney and counter-current mechanisms for the production of concentrated urine in mammals; the effects of diuretics on the distribution of Na/ sup 22/, Fe/sup 59/-labeled erythrocytes, and I/sup 131/labeled albumin in rat kidneys; the effects of thiamine on nervous response to ultraviolet radiation in frogs and lobsters; the effects of gamma radiation on reproductive capabilities of young male rabbits; and an evaluation of the contamination of the food chain by fallout fission products, with emphasis on Sr/sup 90/, Cs/sup 137/, and I/sup 131/ intake from total diet and individual food items. A list is included of publications resulting from research conducted under this contract. (C.H.)« less
Transmittance of optical materials from 0.17 micro to 3.0 micro.
McCarthy, D E
1967-11-01
The transmittance of thirty-one optical materials is given from 0.17, micro to 3.0 micro. Included are NaCl, KBr, CsBr, CsI, CaF(2), BaF(2), NaF, TlBr, TICL, KRS-5, KRS-6, T-12, KC, CuC, T O(2), ADP, KDP, SrTiO(3), GaP, CaCO(3), CdSe, As(2)S(3), ruby, Al(2)O(3), Irtran 1-6, and quartz. All are synthetic with the exception of CaCO(3). In many cases, the short wavelength cutoff of the synthetic materials is less than that which has been reported for naturally occurring materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, A.; Romney, E,M.; Alexander, G.V.
1980-01-01
Two hundred samples of leaves of Lycium andersonii A. Gray, each representing one plant and divided among six different locations, were assayed by emission spectrography. Information for 12 different elements is reported in terms of concentrations, frequency distribution, correlations, and some soil characteristics. The objective was to ascertain the nature of variability for mineral elements within a species. Composition varied significantly for all 12 elements among locations, all within about 20 km. At least part of the variation was due to soil characteristics. Samples from Rock Valley were highest in K, Na, and Li, which effect is associated with volcanicmore » outcrop. Samples from Mercury Valley were highest in P, Mg, Ba, and B. At least Mg is related to the soil composition. Correlation coefficients between element pairs were often very different for all 200 samples versus those obtained for individual locations. Some of the values for all 200 samples together proved to be artifacts. The highest correlation was for Ca x Sr (positive) and next was Ca x Mg (also positive). Most correlations were slightly or strongly positive (24 to 32). Only P x Ca, Ca x Na, Ca x B, and Sr x P seemed to be significantly negative of the 32 correlations examined. Frequency distribution patterns where common populations were grouped were often normally distributed. Li, as previously reported, and Na, Cu, Mn,and B and Ba at some locations were not normally distributed. Wide variations in the concentrations of individual elements in leaves of these species were encountered.« less
Ye, Meng-qi; Yue, Tian-li; Gao, Zhen-peng; Yuan, Ya-hong; Nie, Gang
2015-01-01
The changes in mineral elements during cider fermentation process were determined using ICP-MS. The results showed that the main minerals in the fermentation liquor included K, Na, Ca, Mg, Fe, Mn, Zn, Cu, Sr and B. The content of K was the highest in both the apple juice and the cider, being 1 853. 83 and 1 654. 38 mg . L-1 respectively. The content of minerals was in dynamic changes along with the fermentation process. As a whole, during 72-120 h and 144-216 h, most of the minerals contents underwent great fluctuation. Especially when fermented for 192 h, the content of most of the minerals reached peak value or valley value. The content of Fe and Zn achieved their peak value, while the content of K, Na, Ca, Mg, Mn and B achieved valley value. But during the following 24 h, the content of minerals underwent a sharp reversal. After fermentation, the content of K, Mg, Cu, Zn and B decreased significantly, while the content of Na, Ca, Mn, Fe and Sr did not change significantly. The correlational analysis was conducted to evaluate the correlation between the mineral elements, and the result showed that the correlation between Ca and Mn was the most significant, with the correlation index reaching 0. 924. The information of this study will supply sufficient data for the fermentation process control and quality improvement of cider.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motyka, R.J.; Hawkins, D.B.; Poreda, R.J.
Two compositionally different groups of mud volcanoes exist in the Copper River Basin: the Tolsona group which discharges Na-Ca rich, HCO/sub 3/-SO/sub 4/ poor saline waters accompanied by small amounts of gas, composed predominately of CH/sub 4/ and N/sub 2/; and the Klawasi group which discharges Ca poor, Na-HCO/sub 3/ rich saline waters accompanied by enormous amounts of CO/sub 2/. The Tolsona-type water chemistry and isotopic composition could have been produced through the following processes: dilution of original interstitial seawaters with paleo-meteoric waters, possibly during a period of uplift in the mid-Cretaceous; loss of HCO/sub 3/ and SO/sub 4/ andmore » modification of other constituent concentrations by shale-membrane filtration; further depletion of Mg, K, HCO/sub 3/, and SO/sub 4/, and enrichment in Ca and Sr through dolomitization, hydrolysis, and clay-forming processes; and leaching of B, I, Li, and SiO/sub 2/ from marine sediments. Compared to the Tolsona waters, the Klawasi waters are strongly enriched in Li, Na, K, Mg, HCO/sub 3/, SO/sub 4/, B, SiO/sub 2/ and delta/sup 18/O and strongly depleted in Ca, Sr and D. The Klawasi wates also contain high concentrations of arsenic (10 to 48 ppM). The differences in fluid chemistry between Klawasi and Tolsona can be explained as the result of the interaction of fluids derived from a magmatic intrusion and contact decarbonation of limestone beds underlying the Klawasi area with overlying Tolsona-type formation waters.« less
Lin, Chun Che; Liu, Yun-Ping; Xiao, Zhi Ren; Wang, Yin-Kuo; Cheng, Bing-Ming; Liu, Ru-Shi
2014-06-25
Single-composition white-emitting phosphors with superior intrinsic properties upon excitation by ultraviolet light-emitting diodes are important constituents of next-generation light sources. Borate-based phosphors, such as NaSrBO3:Ce(3+) and NaCaBO3:Ce(3+), have stronger absorptions in the near-ultraviolet region as well as better chemical/physical stability than oxides. Energy transfer effects from sensitizer to activator caused by rare-earth ions are mainly found in the obtained photoluminescence spectra and lifetime. The interactive mechanisms of multiple dopants are ambiguous in most cases. We adjust the doping concentration in NaSrBO3:RE (RE = Ce(3+), Tb(3+), Mn(2+)) to study the energy transfer effects of Ce(3+) to Tb(3+) and Mn(2+) by comparing the experimental data and theoretical calculation. The vacuum-ultraviolet experimental determination of the electronic energy levels for Ce(3+) and Tb(3+) in the borate host regarding the 4f-5d and 4f-4f configurations are described. Evaluation of the Ce(3+)/Mn(2+) intensity ratios as a function of Mn(2+) concentration is based on the analysis of the luminescence dynamical process and fluorescence lifetime measurements. The results closely agree with those directly obtained from the emission spectra. Density functional calculations are performed using the generalized gradient approximation plus an on-site Coulombic interaction correction scheme to investigate the forbidden mechanism of interatomic energy transfer between the NaSrBO3:Ce(3+) and NaSrBO3:Eu(2+) systems. Results indicate that the NaSrBO3:Ce(3+), Tb(3+), and Mn(2+) phosphors can be used as a novel white-emitting component of UV radiation-excited devices.
Pancras, Joseph Patrick; Norris, Gary A; Landis, Matthew S; Kovalcik, Kasey D; McGee, John K; Kamal, Ali S
2015-10-01
Oil and gas extraction and coal-fired electrical power generating stations produce wastewaters that are treated and discharged to rivers in Western Pennsylvania with public drinking water system (PDWS) intakes. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to quantify inorganic species in wastewater and river samples using a method based on EPA Method 200.7 rev4.4. A total of 53 emission lines from 30 elements (Al, As, B, Ba, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, Tl, V, and Zn) were investigated. Samples were prepared by microwave-assisted acid digestion using a mixture of 2% HNO3 and 0.5% HCl. Lower interferences and better detection characteristics resulted in selection of alternative wavelengths for Al, As, Sb, Mg, Mo, and Na. Radial view measurements offered accurate determinations of Al, Ba, K, Li, Na, and Sr in high-brine samples. Spike recovery studies and analyses of reference materials showed 80-105% recoveries for most analytes. This method was used to quantify species in samples with high to low brine concentrations with method detection limits a factor of 2 below the maximum contaminant limit concentrations of national drinking water standards. Elements B, Ca, K, Li, Mg, Na, and Sr were identified as potential tracers for the sources impacting PDWS intakes. Usability of the ICP-OES derived data for factor analytic model applications was also demonstrated. Published by Elsevier B.V.
Evans, H.T.; Konnert, J.A.; Ross, M.
2000-01-01
The structure of tetranatrolite from Mont Saint-Hilaire, Quebec (U.S. National Museum sample R1830) with a = 13.197(7) A, c = 6.630(9) A, and space group I42d, was refined using single-crystal X-ray data. A representative formula of tetranatrolite determined from electron microprobe analysis is Na12.50K0.01Ca2.93Sr0.11Al19.09 Si20.91O79.74??nH2O. The structure has the basic natrolite Si-Al-O framework configuration with Na, Ca, Sr, and K residing within inter-framework cages. Aluminum is disordered over the T1 and T2 tetrahedral sites, with T2 > T1. Water molecules O4 and O5 coordinate the intercage atoms and have high displacement parameters, indicating disorder within the cages. The Mont Saint-Hilaire tetranatrolite structure is compared to four previously determined structures, two tetranatrolite samples from Khibiny and Lovozero, Russia and two "gonnardite" samples from Tvedalen, Norway and Gignat, France. Observations are given to indicate that the Norwegian sample deduced to be tetranatrolite rather than gonnardite. Although the crystal structures of tetranatrolite and gonnardite are very similar, it is shown that the tetranatrolite compositions differ significantly from those of gonnardite. The tetranatrolite composition series varies along the join Na16Al16Si24O80-Na12 Ca4Al20Si20O80, and is represented by the formula Na16-xCaxAl16+xSi24-x O80??nH2O, where x extends from approximately 2.4 to 3.9. In contrast, gonnardites from Arkansas and Austria have compositions that vary along the join Na16Al16Si24O80-Na4 Ca8Al20Si20O80, which are represented by the formula ???xNa16-3xCa2xAl16+x Si24-xO80??nH2O and where ??? indicates vacant intercage cation sites and x varies from approximately 0.3 to 3.2. Tetranatrolite is a dehydration product of paranatrolite and probably does not have a true stability field.
Elemental composition of normal primary tooth enamel analyzed with XRMA and SIMS.
Sabel, Nina; Dietz, Wolfram; Lundgren, Ted; Nietzsche, Sandor; Odelius, Hans; Rythén, Marianne; Rizell, Sara; Robertson, Agneta; Norén, Jörgen G; Klingberg, Gunilla
2009-01-01
There is an interest to analyze the chemical composition of enamel in teeth from patients with different developmental disorders or syndromes and evaluate possible differences compared to normal composition. For this purpose, it is essential to have reference material. The aim of this study was to, by means of X-ray micro analyses (XRMA) and secondary ion mass spectrometry (SIMS), present concentration gradients for C, O, P and Ca and F, Na, Mg, Cl, K and Sr in normal enamel of primary teeth from healthy individuals. 36 exfoliated primary teeth from 36 healthy children were collected, sectioned, and analyzed in the enamel and dentin with X-ray micro analyses for the content of C, O, P and Ca and F, Na MgCl, K and Sr. This study has supplied reference data for C, O, P and Ca in enamel in primary teeth from healthy subjects. No statistically significant differences in the elemental composition were found between incisors and molars.The ratio Ca/P is in concordance with other studies. Some elements have shown statistically significant differences between different levels of measurement. These results may be used as reference values for research on the chemical composition of enamel and dentin in primary teeth from patients with different conditions and/or syndromes.
Nash, J. Thomas; Frishman, David
1983-01-01
Analytical results for 61 elements in 370 samples from the Ranger Mine area are reported. Most of the rocks come from drill core in the Ranger No. 1 and Ranger No. 3 deposits, but 20 samples are from unmineralized drill core more than 1 km from ore. Statistical tests show that the elements Mg, Fe, F, Be, Co, Li, Ni, Pb, Sc, Th, Ti, V, CI, As, Br, Au, Ce, Dy, La Sc, Eu, Tb, Yb, and Tb have positive association with uranium, and Si, Ca, Na, K, Sr, Ba, Ce, and Cs have negative association. For most lithologic subsets Mg, Fe, Li, Cr, Ni, Pb, V, Y, Sm, Sc, Eu, and Yb are significantly enriched in ore-bearing rocks, whereas Ca, Na, K, Sr, Ba, Mn, Ce, and Cs are significantly depleted. These results are consistent with petrographic observations on altered rocks. Lithogeochemistry can aid exploration, but for these rocks requires methods that are expensive and not amenable to routine use.
Sayles, F.L.; Manheim, F.T.
1975-01-01
Through the Deep Sea Drilling Project samples of interstitial solutions of deeply buried marine sediments throughout the World Ocean have been obtained and analyzed. The studies have shown that in all but the most slowly deposited sediments pore fluids exhibit changes in composition upon burial. These changes can be grouped into a few consistent patterns that facilitate identification of the diagenetic reactions occurring in the sediments. Pelagic clays and slowly deposited (<1 cm/103yr) biogenic sediments are the only types that exhibit little evidence of reaction in the pore waters. In most biogenic sediments sea water undergoes considerable alteration. In sediments deposited at rates up to a few cm/103 yr the changes chiefly involve gains of Ca2+ and Sr2+ and losses of Mg2+ which balance the Ca2+ enrichment. The Ca-Mg substitution may often reach 30 mM/kg while Sr2+ may be enriched 15-fold over sea water. These changes reflect recrystallization of biogenic calcite and the substitution of Mg2+ for Ca2+ during this reaction. The Ca-Mg-carbonate formed is most likely a dolomitic phase. A related but more complex pattern is found in carbonate sediments deposited at somewhat greater rates. Ca2+ and Sr2+ enrichment is again characteristic, but Mg2+ losses exceed Ca2+ gains with the excess being balanced by SO4post staggered2- losses. The data indicate that the reactions are similar to those noted above, except that the Ca2+ released is not kept in solution but is precipitated by the HCO3post staggered- produced in SO4post staggered2- reduction. In both these types of pore waters Na+ is usually conservative, but K+ depletions are frequent. In several partly consolidated sediment sections approaching igneous basement contact, very marked interstitial calcium enrichment has been found (to 5.5 g/kg). These phenomena are marked by pronounced depletion in Na+, Si and CO2, and slight enhancement in Cl-. The changes are attributed to exchange of Na+ for Ca2+ in silicate minerals forming from submarine weathering of igneous rocks such as basalts. Water is also consumed in these reactions, accounting for minor increases in total interstitial salinity. Terrigenous, organic-rich sediments deposited rapidly along continental margins also exhibit significant evidences of alteration. Microbial reactions involving organic matter lead to complete removal of SO4post staggered2-, strong HCO3post staggered- enrichment, formation of NH4post staggered+, and methane synthesis from H2 and CO2 once SO4post staggered2- is eliminated. K+ and often Na+ (slightly) are depleted in the interstitial waters. Ca2+ depletion may occur owing to precipitation of CaCO3. In most cases interstitial Cl- remains relatively constant, but increases are noted over evaporitic strata, and decreases in interstitial Cl- are observed in some sediments adjacent to continents. ?? 1975.
Removal of Carbon Dioxide from Gas Mixtures Using Ion-Exchanged Silicoaluminophosphates
NASA Technical Reports Server (NTRS)
Hernandez-Maldonado, Arturo J (Inventor); Rivera-Ramos, Milton E (Inventor); Arevalo-Hidalgo, Ana G (Inventor)
2017-01-01
Na+-SAPO-34 sorbents were ion-exchanged with several individual metal cations for CO2 absorption at different temperatures (273-348 K) and pressures (<1 atm). In general, the overall adsorption performance of the exchanged materials increased as follows: Ce3+
Functional reconstitution of the mitochondrial Ca2+/H+ antiporter Letm1.
Tsai, Ming-Feng; Jiang, Dawei; Zhao, Linlin; Clapham, David; Miller, Christopher
2014-01-01
The leucine zipper, EF hand-containing transmembrane protein 1 (Letm1) gene encodes a mitochondrial inner membrane protein, whose depletion severely perturbs mitochondrial Ca(2+) and K(+) homeostasis. Here we expressed, purified, and reconstituted human Letm1 protein in liposomes. Using Ca(2+) fluorophore and (45)Ca(2+)-based assays, we demonstrate directly that Letm1 is a Ca(2+) transporter, with apparent affinities of cations in the sequence of Ca(2+) ≈ Mn(2+) > Gd(3+) ≈ La(3+) > Sr(2+) > Ba(2+), Mg(2+), K(+), Na(+). Kinetic analysis yields a Letm1 turnover rate of 2 Ca(2+)/s and a Km of ∼25 µM. Further experiments show that Letm1 mediates electroneutral 1 Ca(2+)/2 H(+) antiport. Letm1 is insensitive to ruthenium red, an inhibitor of the mitochondrial calcium uniporter, and CGP-37157, an inhibitor of the mitochondrial Na(+)/Ca(2+) exchanger. Functional properties of Letm1 described here are remarkably similar to those of the H(+)-dependent Ca(2+) transport mechanism identified in intact mitochondria.
[Determination of 22 inorganic elements in different parts of Lantana camara by ICP-OES].
Zhou, Wei-ming; Wang, Ru-yi; Chen, Liu-sheng; Huang, Chuan-bin
2014-10-01
To determine the contents of 22 inorganic elements in different parts of Lantana camara by inductively coupled plasma optical emission spectroscopy (ICP-OES). HNO3-H2O2 digested system was used to completely decompose the organic compounds effectually by microwave digestion. The 22 inorganic elements such as K, Ca, Mg, Fe, Al, Na, Zn, Mn and Cr were determined by ICP-OES under set up working conditions. The contents of K, Ca and Mg were the most in different parts of Lantana camara; The contents of K, Ca, Mg, Mn, Sr and Cu in the leaf were more those that in the root and branch; The contents of Fe, Na, Cr and Ni in the root were more than those in the leaf and branch; The contents of Mn, Zn, Sr and Cu in the branch were more than those in the root and the leaf; The contents of Pb and Cd were higher than the national standard and Cr had high content in different parts of Lantana camara. The determination method is quick, easy and accurate with high sensitivity, which can determine the contents of 22 inorganic elements accurately in different parts of Lantana camara.
Geochemical and Sr isotopic variations in groundwaters of the Edwards aquifer, central Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oetting, G.C.; Banner, J.L.; Sharp, J.M. Jr.
1992-01-01
The regionally-extensive Edwards aquifer of central Texas lies on the northwestern edge of the Gulf of Mexico Basin. The aquifer system is composed primarily of lower Cretaceous marine limestones and dolostones with minor evaporitic and siliciclastic confining units of the Edwards Group and associated formations. The eastern and southern boundaries of the freshwater aquifer are defined by an abrupt change in groundwater salinity that is known as the badwater line. Variation in the isotopic composition and concentration of Sr in the mineral phases and waters in this aquifer system provide means to examine groundwater evolution processes. Models of simultaneous variationsmore » in Sr isotopes and major and trace ions are used to constrain processes of groundwater-rock interaction and groundwater mixing. Geochemical variations were examined in Edwards carbonate host rocks and groundwaters in Williamson and Bell Counties. Groundwaters were sampled along and across the badwater line, and range in salinity from 320--2,630 mg/l total dissolved solids. Major ion distributions in the water samples demonstrate a hydrochemical facies transition from Ca-HCO[sub 3] freshwaters to Na-Cl-SO[sub 4]-HCO[sub 3] badwaters. Both water types show a wide range of [sup 87]Sr/[sup 86]Sr values: Ca-HCO[sub 3] waters range from values of 0.7078--0.7093, and Na-Cl-SO[sub 4]-HCO[sub 3] waters range from values of 0.7087--0.7097. The Sr isotope compositions for both water groups are significantly greater than their host marine carbonates ([approximately]0.7075). The high Sr isotopic compositions indicate an extraformational source of Sr in both hydrochemical facies. Fluid mixing processes involving a freshwater and at least two badwater endmembers are required to account for variations in elemental and isotopic compositions in the groundwaters. Mineral-solution reactions may operate during and/or subsequent to mixing to produce the compositional variability observed in some intermediate waters.« less
Chisholm, Malcolm H; Gallucci, Judith C; Yaman, Gulsah
2009-01-14
Reactions involving MI2 where M=Mg, Ca, Sr, Ba or Zn and M'TpC* where M'=Na or Tl and TpC*=tris[3-methoxy-1,1-dimethyl)pyrazolyl]hydroborate in tetrahydrofuran are described leading to the isolation and characterization of the complexes TpC*MgI, , TpC*CaI, , TpC*SrI, , TpC*SrI(THF), , TpC*BaI, , TpC*BaI(pz*H), , where pz*H=3-(2-methoxyl-1,1-dimethyl)pyrazole, TpC*BaI.1/2toluene, and TpC*ZnI, . The compounds , , , , and have been characterized by single-crystal X-ray crystallography. Compounds and are isostructural and are salt-like containing kappa6-TpM+ cations and I- anions. In all other structures, the iodide is bound to the metal and TpC* is kappa6 bonded to the group 2 M(2+) ions. Reactions involving TpC*CaI, , and sodium or lithium alkoxides or amides failed to yield the amide or alkoxide calcium TpC* derivative, though related reactions involving TpC*ZnI, , and KOSiMe3 proceeded quantitatively to yield kappa3TpC*ZnOSiMe3, , which was also structurally characterized and shown to have the kappa3-TpC* bound ligand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samal, Saroj L.; Gulo, Fakhili; Corbett, John D.
Three new ternary polar intermetallic compounds, cubic Ca6Pt8Cd16, and tetragonal (Sr, Ba)Pt2Cd4 have been discovered during explorations of the Ae–Pt–Cd systems. Cubic Ca6Pt8Cd16 (Fm-3m, Z = 4, a = 13.513(1) Å) contains a 3D array of separate Cd8 tetrahedral stars (TS) that are both face capped along the axes and diagonally bridged by Pt atoms to generate the 3D anionic network Cd8[Pt(1)]6/2[Pt(2)]4/8. The complementary cationic surface of the cell consists of a face-centered cube of Pt(3)@Ca6 octahedra. This structure is an ordered ternary variant of Sc11Ir4 (Sc6Ir8Sc16), a stuffed version of the close relative Na6Au7Cd16, and a network inverse ofmore » the recent Er6Sb8Pd16 (compare Ca6Pt8Cd16). The three groups of elements each occur in only one structural version. The new AePt2Cd4, Ae = Sr, Ba, are tetragonal (P42/mnm,Z = 2, a ≈ 8.30 Å, c ≈ 4.47 Å) and contain chains of edge-sharing Cd4 tetrahedra along c that are bridged by four-bonded Ba/Sr. LMTO-ASA and ICOHP calculation results and comparisons show that the major bonding (Hamilton) populations in Ca6Pt8Cd16 and Er6Sb8Pd16 come from polar Pt–Cd and Pd–Sb interactions, that Pt exhibits larger relativistic contributions than Pd, that characteristic size and orbital differences are most evident for Sb 5s, Pt8, and Pd16, and that some terms remain incomparable, Ca–Cd versus Er–Pd.« less
Characterization of Carbonate Crust from Deep-sea Methane Seeps on the Northern US Atlantic Margin.
NASA Astrophysics Data System (ADS)
Gabitov, R. I.; Borrelli, C.; Buettner, J.; Testa, M.; Garner, B.; Weremeichik, J.; Thomas, J. B.; Wahidi, M.; Thirumalai, R. V. K. G.; Kirkland, B. L.; Skarke, A. D.
2017-12-01
Authigenic carbonate minerals widely occur at the seafloor as carbonate crusts and are often directly linked to microbial activity, about which promotion of carbonate crystal growth and geochemistry are not entirely understood. To evaluate a potential metabolic contribution, studies were conducted on carbonate crust collected from a methane seep and on precipitation experiments which produced inorganic aragonite crystallized at high pressure. Among the samples collected during a NSF sponsored cruise to the North Atlantic Continental Margin of the United States (off of New England) in July-August 2016, we analyzed one carbonate crust sample (AD4835 BB-4522) collected at 39.805860; -69.592593 and at a depth of 1419.6 m. In this crust sample, two textural types of aragonite were identified: 1) groundmass consisting of fine grey crystals (<1 µm in size); 2) veins consisting of white acicular crystals (up to 100 µm in width). In addition, large equant quartz crystals (>100 µm, 24.9 wt%), feldspar (5.6 wt%), and dolomite (3.6 wt%), and trace amount of troilite were identified using XRD, SEM, and optical microscopy. The sample was cut into slabs parallel to crust growth assuming the crust grew in a downward direction. Concentrations of Na, Mg, Al, Si, S, K, Ca, Mn, Fe, Sr, Zr, Ba, and U were measured in the direction parallel to growth of the crust using LA-ICP-MS. Proportions of Si, Al, (Na+K), Mg, S, and Fe in the groundmass suggest the occurrence of sub-micron inclusions of alkali feldspar, and potentially pyroxene, Fe oxide, and Fe sulfide, which were impossible to avoid with the instrument's spatial resolution. The occurrence of micro non-carbonate inclusions causes high elemental concentrations compared to the values expected for aragonite crystallized from seawater. White aragonite acicular crystals were free of silicate and sulfide inclusions, and therefore, yielded lower concentrations of all measured elements except Sr compared to the groundmass. Analyzed Mg and Sr are consistent with published data for deep-sea corals. Also, Sr is similar to experimental data on inorganic aragonite. Mg/Ca, Sr/Ca, Ba/Ca, and U/Ca of the fluid from which acicular aragonite grew were calculated based on partition coefficients from inorganic aragonite precipitated at 100 bars.
Bellucci, Devis; Sola, Antonella; Salvatori, Roberta; Anesi, Alexandre; Chiarini, Luigi; Cannillo, Valeria
2017-03-01
The composition of a CaO-rich silicate bioglass (BG_Ca-Mix, in mol%: 2.3 Na 2 O; 2.3 K 2 O; 45.6 CaO; 2.6 P 2 O 5 ; 47.2 SiO 2 ) was modified by replacing a fixed 10mol% of CaO with MgO or SrO or fifty-fifty MgO-SrO. The thermal behaviour of the modified glasses was accurately evaluated via differential thermal analysis (DTA), heating microscopy and direct sintering tests. The presence of MgO and/or SrO didn't interfere with the thermal stability of the parent glass, since all the new glasses remained completely amorphous after sintering (treatment performed at 753°C for the glass with MgO; at 750°C with SrO; at 759°C with MgO and SrO). The sintered samples achieved good mechanical properties, with a Young's modulus ranging between 57.9±6.7 for the MgO-SrO modified composition and 112.6±8.0GPa for the MgO-modified one. If immersed in a simulated body fluid (SBF), the modified glasses after sintering retained the strong apatite forming ability of the parent glass, in spite of the presence of MgO and/or SrO. Moreover, the sintered glasses, tested with MLO-Y4 osteocytes by means of a multi-parametrical approach, showed a good bioactivity in vitro, since neither the glasses nor their extracts caused any negative effect on cell viability or any inhibition on cell growth. The best results were achieved by the MgO-modified glasses, both BGMIX_Mg and BGMIX_MgSr, which were able to exert a strong stimulating effect on the cell growth, thus confirming the beneficial effect of MgO on the glass bioactivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Maxwell, Joshua T; Blatter, Lothar A
2017-06-15
In atrial myocytes excitation-contraction coupling is strikingly different from ventricle because atrial myocytes lack a transverse tubule membrane system: Ca 2+ release starts in the cell periphery and propagates towards the cell centre by Ca 2+ -induced Ca 2+ release from the sarcoplasmic reticulum (SR) Ca 2+ store. The cytosolic Ca 2+ sensitivity of the ryanodine receptor (RyRs) Ca 2+ release channel is low and it is unclear how Ca 2+ release can be activated in the interior of atrial cells. Simultaneous confocal imaging of cytosolic and intra-SR calcium revealed a transient elevation of store Ca 2+ that we termed 'Ca 2+ sensitization signal'. We propose a novel paradigm of atrial ECC that is based on tandem activation of the RyRs by cytosolic and luminal Ca 2+ through a 'fire-diffuse-uptake-fire' (or FDUF) mechanism: Ca 2+ uptake by SR Ca 2+ pumps at the propagation front elevates Ca 2+ inside the SR locally, leading to luminal RyR sensitization and lowering of the cytosolic Ca 2+ activation threshold. In atrial myocytes Ca 2+ release during excitation-contraction coupling (ECC) is strikingly different from ventricular myocytes. In many species atrial myocytes lack a transverse tubule system, dividing the sarcoplasmic reticulum (SR) Ca 2+ store into the peripheral subsarcolemmnal junctional (j-SR) and the much more abundant central non-junctional (nj-SR) SR. Action potential (AP)-induced Ca 2+ entry activates Ca 2+ -induced Ca 2+ release (CICR) from j-SR ryanodine receptor (RyR) Ca 2+ release channels. Peripheral elevation of [Ca 2+ ] i initiates CICR from nj-SR and sustains propagation of CICR to the cell centre. Simultaneous confocal measurements of cytosolic ([Ca 2+ ] i ; with the fluorescent Ca 2+ indicator rhod-2) and intra-SR ([Ca 2+ ] SR ; fluo-5N) Ca 2+ in rabbit atrial myocytes revealed that Ca 2+ release from j-SR resulted in a cytosolic Ca 2+ transient of higher amplitude compared to release from nj-SR; however, the degree of depletion of j-SR [Ca 2+ ] SR was smaller than nj-SR [Ca 2+ ] SR . Similarly, Ca 2+ signals from individual release sites of the j-SR showed a larger cytosolic amplitude (Ca 2+ sparks) but smaller depletion (Ca 2+ blinks) than release from nj-SR. During AP-induced Ca 2+ release the rise of [Ca 2+ ] i detected at individual release sites of the nj-SR preceded the depletion of [Ca 2+ ] SR , and during this latency period a transient elevation of [Ca 2+ ] SR occurred. We propose that Ca 2+ release from nj-SR is activated by cytosolic and luminal Ca 2+ (tandem RyR activation) via a novel 'fire-diffuse-uptake-fire' (FDUF) mechanism. This novel paradigm of atrial ECC predicts that Ca 2+ uptake by sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA) at the propagation front elevates local [Ca 2+ ] SR , leading to luminal RyR sensitization and lowering of the activation threshold for cytosolic CICR. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taddei, K. M.; Allred, J. M.; Bugaris, D. E.
Since its discovery in 2014, the magnetic tetragonal C 4 phase has been identified in a growing number of hole-doped 122 Fe-based superconducting compounds. Exhibiting a unique double-Q magnetic structure and a strong competition with both superconducting and magnetic order parameters, the C 4 phase and the conditions of its formation are of significant interest to understanding the fundamental mechanisms in these materials. Particularly, separating the importance of direct changes to the relative size of hole and electron pockets at the Fermi surface (achieved via charge doping) from the role of structural changes due to differences of ionic radii ofmore » dopants is useful to determine the underlying parameter which causes the C 4 instability. Here, we report the discovery of the C 4 phase in a fourth member of the hole-doped 122 materials Ca 1-xNa xFe 2As 2(0.20 ≤ x ≤ 0.50) as determined from neutron and x-ray powder diffraction studies. The maximum of the C 4 dome is observed at x = 0.44 with a reentrant temperature T r = 52 K and an extent of Δx ~ 0.07 in composition. It is observed that for a range of compositions within the C 4 dome (0.40 ≤ x ≤ 0.42), there is a second reentrance (Tr 2 < Tr) where the antiferromagnetic C 2 phase is recovered—a feature previously only seen in Ba 1-xK xFe 2As 2. A phase diagram is presented for Ca 1-xNa xFe 2As 2 and compared to the other Na-doped 122's—A 1-xNa xFe 2As 2 with A = Ba, Sr, and Ca. Lastly, the structural parameters for these three systems are compared and the importance of the “chemical pressure” due to changing the A-site ion (A = Ba, Sr, Ca) is discussed.« less
Taddei, K. M.; Allred, J. M.; Bugaris, D. E.; ...
2017-02-15
Since its discovery in 2014, the magnetic tetragonal C 4 phase has been identified in a growing number of hole-doped 122 Fe-based superconducting compounds. Exhibiting a unique double-Q magnetic structure and a strong competition with both superconducting and magnetic order parameters, the C 4 phase and the conditions of its formation are of significant interest to understanding the fundamental mechanisms in these materials. Particularly, separating the importance of direct changes to the relative size of hole and electron pockets at the Fermi surface (achieved via charge doping) from the role of structural changes due to differences of ionic radii ofmore » dopants is useful to determine the underlying parameter which causes the C 4 instability. Here, we report the discovery of the C 4 phase in a fourth member of the hole-doped 122 materials Ca 1-xNa xFe 2As 2(0.20 ≤ x ≤ 0.50) as determined from neutron and x-ray powder diffraction studies. The maximum of the C 4 dome is observed at x = 0.44 with a reentrant temperature T r = 52 K and an extent of Δx ~ 0.07 in composition. It is observed that for a range of compositions within the C 4 dome (0.40 ≤ x ≤ 0.42), there is a second reentrance (Tr 2 < Tr) where the antiferromagnetic C 2 phase is recovered—a feature previously only seen in Ba 1-xK xFe 2As 2. A phase diagram is presented for Ca 1-xNa xFe 2As 2 and compared to the other Na-doped 122's—A 1-xNa xFe 2As 2 with A = Ba, Sr, and Ca. Lastly, the structural parameters for these three systems are compared and the importance of the “chemical pressure” due to changing the A-site ion (A = Ba, Sr, Ca) is discussed.« less
2012-01-01
The calcium-sensing receptor (CaSR) regulates organismal Ca2+ homeostasis. Dysregulation of CaSR expression or mutations in the CASR gene cause disorders of Ca2+ homeostasis and contribute to the progression or severity of cancers and cardiovascular disease. This brief review highlights recent findings that define the CaSR life cycle, which controls the cellular abundance of CaSR and CaSR signaling. A novel mechanism, termed agonist-driven insertional signaling (ADIS), contributes to the unique hallmarks of CaSR signaling, including the high degree of cooperativity and the lack of functional desensitization. Agonist-mediated activation of plasma membrane-localized CaSR increases the rate of insertion of CaSR at the plasma membrane without altering the constitutive endocytosis rate, thereby acutely increasing the maximum signaling response. Prolonged CaSR signaling requires a large intracellular ADIS-mobilizable pool of CaSR, which is maintained by signaling-mediated increases in biosynthesis. This model provides a rational framework for characterizing the defects caused by CaSR mutations and the altered functional expression of wild-type CaSR in disease states. Mechanistic dissection of ADIS of CaSR should lead to optimized pharmacological approaches to normalize CaSR signaling in disorders of Ca2+ homeostasis. PMID:22745192
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira, M.O.M.; de Sousa, P.T.; Salvador, V.L.R.
The Anadenathera macrocarpa, Schinus molle, Hymenaea courbaril, Cariniana legalis, Solidago microglossa and Stryphnodendron barbatiman, were collected ''in natura'' samples (leaves, flowers, barks and seeds) from different commercial suppliers. The pharmaco-active compounds in ethanolic extracts had been made by the Mato Grosso Federal University (UFMT). The energy-dispersive x-ray fluorescence (ED-XRF) spectrometry was used for the elemental analysis in different parts of the plants and respective ethanolic extracts. The Ca, Cl, Cu, Fe, K, Mg, Mn, Na, Ni, P, Rb, S, Sr and Zn concentrations were determined by the fundamental parameters method. Some specimens showed a similar inorganic profile for ''in natura''more » and ethanolic extract samples and some ones showed a distinct inorganic profile. For example, the Anadenathera macrocarpa showed a similar concentration in Mg, P, Cu, Zn and Rb elements in ''in natura'' and ethanolic extract samples; however very different concentration in Na, S, Cl, K , Ca, Mn, Fe and Sr was observed in distinctive samples. The Solidago microglossa showed the K, Ca, Cl, S, Mg, P and Fe elements as major constituents in both samples, suggesting that the extraction process did not affect in a considerable way the ''in natura'' inorganic composition. The elemental composition of the different parts of the plants (leaves, flowers, barks and seeds) has been also determined. For example, the Schinus molle specimen showed P, K, Cl and Ca elements as major constituents in the seeds, Mg, K and Sr in the barks and Mg, S, Cl and Mn in the leaves, demonstrating a differentiated elementary distribution. These inorganic profiles will contribute to evaluate the quality control of the Brazilian herbaceous trade and also will assist to identify which parts of the medicinal plants has greater therapeutic effect.« less
Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Ansarullah; Karn, Sanjay S; Shah, Jigar D; Patel, Dipak K; Salunke, Sunita P; Padate, Geeta S; Devkar, Ranjitsinh V; Ramachandran, A V
2011-05-01
The present study investigates cardioprotective effect of Sida rhomboidea. Roxb (SR) extract on heart weight, plasma lipid profile, plasma marker enzymes, lipid peroxidation, endogenous enzymatic and non-enzymatic antioxidants and membrane bound ATPases against isoproterenol (IP) induced myocardial necrosis (MN) in rats. Rats treated with IP (85 mg/kg, s.c.) recorded significant (p<0.05) increment in heart weight, plasma lipid profile, plasma marker enzymes of cardiac damage, cardiac lipid peroxidation (LPO) and activity levels of Ca(+2) ATPase whereas there was significant (p<0.05) decrease in plasma HDL, cardiac endogenous enzymatic and non-enzymatic antioxidants, Na(+)-K(+) ATPase and Mg(+2) ATPase. Pre-treatment with SR extract (400 mg/kg per day, p.o.) for 30 consecutive days followed by IP injections on days 29th and 30th, showed significant (p<0.05) decrease in heart weight, plasma lipid profile, plasma marker enzymes of cardiac damage, cardiac lipid peroxidation, Ca(+2) ATPase and significant increase in plasma HDL, cardiac endogenous enzymatic and non-enzymatic antioxidants, Na(+)-K(+) ATPase and Mg(+2) ATPase compared to IP treated group. Hence, this study is the first scientific report on cardioprotective effect of SR against IP induced MN in rats. Copyright © 2010 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Xinyu; Yuan, Chao; Zhang, Yunying; Long, Xiaoping; Sun, Min; Wang, Lixing; Soldner, Jeremie; Lin, Zhengfan
2018-03-01
Voluminous Paleozoic intrusions occur in the Beishan Orogenic Collage (BOC) and their genesis and tectonic background are important to reconstruct the accretion-collision processes in the southernmost Altaids. Paleozoic is an important period for arc development in the BOC, where the Gongpoquan and Huaniushan arcs are located. There are two pulses of magmatism in the Huaniushan and Gongpoquan arcs, i.e., the ca. 470-423 Ma I-type and ca. 424-395 Ma S- and A-type granitoids. In this study, we focus on two peraluminous granitic plutons in the Gongpoquan arc, i.e., the Baitoushan muscovite granite and Haergen two-mica granite, aiming at unraveling their petrogenesis and tectonic background. Zircon LA-ICP-MS U-Pb dating yields emplacement ages of ca. 409-395 Ma and ca. 409 Ma for the Baitoushan and Haergen plutons, respectively. Both the granitic plutons are strongly peraluminous with A/CNK ratios of 1.10-1.20, indicative of S-type affinities. The rocks are characterized by high SiO2 and K2O contents with high CaO/Na2O ratios. Moreover, the rocks possess low MgO contents, Rb/Sr and Rb/Ba ratios, together with their relatively high initial 87Sr/86Sr ratios (0.7139-0.7152) and less radiogenic εNd(t) values (-3.15 to -5.17), implying a clay-poor and plagioclase-rich crustal source. Compared with earlier pulse of arc-related magmatism (ca. 470-423 Ma), the latter pulse of magmatism (ca. 424-395 Ma) consists mainly of "normal granite" characterized by higher SiO2 (>66%) and K2O contents, weaker fractionated REE patterns and lower δEu values, and gabbroic to dioritic intrusions are only sporadic. Moreover, the granitoids of the latter pulse show variable but more crust-like Sr-Nd isotopic compositions ((87Sr/86Sr)0 = 0.7038-0.7327; εNd(t) = -6.70 to +0.33) than the earlier ones ((87Sr/86Sr)0 = 0.7024-0.7080; εNd(t) = -2.56 to +8.86), indicating that the Early Devonian (ca. 424-395 Ma) experienced extensive crustal melting with minor involvement of mantle materials. Considering Early Devonian geological evidence, the transition from I- to S- and A-type magmatism probably reflects the Early Devonian amalgamation between the Gongpoquan and Huaniushan arcs, which caused not only regional unconformity and strong deformation-metamorphism, but also extensive melting of the accreted crustal materials in the BOC.
Regulation of axonal and dendritic growth by the extracellular calcium-sensing receptor (CaSR)
Vizard, Thomas N.; O'Keeffe, Gerard W.; Gutierrez, Humberto; Kos, Claudine H.; Riccardi, Daniela; Davies, Alun M.
2009-01-01
The extracellular calcium-sensing receptor (CaSR) monitors the systemic extracellular free ionized calcium level ([Ca2+]o) in organs involved in systemic [Ca2+]o homeostasis. However, the CaSR is also expressed in the nervous system where its role is unknown. Here we find high levels of the CaSR in perinatal mouse sympathetic neurons when their axons are innervating and branching extensively in their targets. Manipulating CaSR function in these neurons by varying [Ca2+]o, using CaSR agonists and antagonists or expressing a dominant-negative CaSR markedly affects neurite growth in vitro Sympathetic neurons lacking the CaSR have smaller neurite arbors in vitro, and sympathetic innervation density is reduced in CaSR-deficient mice in vivo. Hippocampal pyramidal neurons, which also express the CaSR, have smaller dendrites when transfected with dominant-negative CaSR in postnatal organotypic cultures. Our findings reveal a crucial role for the CaSR in regulating the growth of neural processes in the peripheral and central nervous systems. PMID:18223649
A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes.
Pandit, S V; Clark, R B; Giles, W R; Demir, S S
2001-01-01
Mathematical models were developed to reconstruct the action potentials (AP) recorded in epicardial and endocardial myocytes isolated from the adult rat left ventricle. The main goal was to obtain additional insight into the ionic mechanisms responsible for the transmural AP heterogeneity. The simulation results support the hypothesis that the smaller density and the slower reactivation kinetics of the Ca(2+)-independent transient outward K(+) current (I(t)) in the endocardial myocytes can account for the longer action potential duration (APD), and more prominent rate dependence in that cell type. The larger density of the Na(+) current (I(Na)) in the endocardial myocytes results in a faster upstroke (dV/dt(max)). This, in addition to the smaller magnitude of I(t), is responsible for the larger peak overshoot of the simulated endocardial AP. The prolonged APD in the endocardial cell also leads to an enhanced amplitude of the sustained K(+) current (I(ss)), and a larger influx of Ca(2+) ions via the L-type Ca(2+) current (I(CaL)). The latter results in an increased sarcoplasmic reticulum (SR) load, which is mainly responsible for the higher peak systolic value of the Ca(2+) transient [Ca(2+)](i), and the resultant increase in the Na(+)-Ca(2+) exchanger (I(NaCa)) activity, associated with the simulated endocardial AP. In combination, these calculations provide novel, quantitative insights into the repolarization process and its naturally occurring transmural variations in the rat left ventricle. PMID:11720973
Guo, D G; Hao, Y Z; Li, H Y; Fang, C Q; Sun, L J; Zhu, H; Wang, J; Huang, X F; Ni, P F; Xu, K W
2013-10-01
Stoichiometric strontium-incorporated hydroxyapatite (Sr-HA) with different Sr concentrations [Sr/(Sr+Ca)] were synthesized using a wet chemical approach and characterized by X-ray diffraction, Fourier-transformed infrared absorption, X-ray photoelectron spectroscopy, and Rietveld Structure Refinement. The crystal lattice parameter, Sr distribution, chemical state of Sr, and also the relationships between their variations and the Sr concentrations have been intensively studied. The results show that both the crystal lattice parameters and crystal plane space of Sr-HA remarkably increase with the Sr concentration increasing. Whether Sr preferably occupies the Ca(I) site or Ca(II) site after incorporated into apatite lattice depends on the Sr number incorporated into apatite. All the Sr ions completely occupy the Ca(II) sites when the Sr concentration is below 5%. With the exception of partial Sr ions occupying the Ca(II) sites, the other Sr ions start to occupy the Ca(I) sites when the Sr concentration doped in HA is beyond 10%. The ratio of Sr ions occupying the Ca(I) sites increases with the further raising Sr concentration up to 20%. The Sr ions inherit the chemical state and environment of the original Ca(I) or Ca(II) site after incorporated into apatite. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lu, Ziye; Chen, Honghan; Qing, Hairuo; Chi, Guoxiang; Chen, Qianglu; You, Donghua; Yin, Hang; Zhang, Siyang
2017-08-01
The Shunnan (SN) area, located in the center of the Tarim basin, NW China, is a gas field discovered in 2013, where the gas is hosted from deeply buried Ordovician carbonate reservoirs with burial depth > 6000 m and temperature > 190 °C. The most important reservoir rocks in the SN area are silicified limestones, which are characterized by multiple generations/types of authigenic quartz (Qz1-Qz2) and coarse calcite cement (CC1-CC3), in addition to other diagenetic phases. Qz1 is a replacement quartz postdating burial stylolites in both limestone and strongly silicified limestone, and Qz2 are equant and bladed quartz cements developed in fractures or vugs in strongly silicified limestone, also postdating burial stylolite. CC1 is a coarse calcite cement found in the vugs, which postdates medium crystalline dolomite and predates saddle dolomite. CC2 (including CC2a, CC2b and CC2c) is the calcite postdating Qz1 and burial stylolites. CC2a is found in fractures in limestone or slightly silicified limestone. CC2b, CC2c and CC3 are only identified in strongly silicified limestone. CC2b fills intercrystalline pores of Qz1, and CC2c fills fractures, predating Qz2. CC3 is precipitated in remaining space left by Qz2c in fractures or vugs. Sr isotopes were analyzed in CC2a and CC2c. CC2a has 87Sr/86Sr ratios of 0.70890-0.70917. CC2c is characterized with 87Sr/86Sr ratios of 0.70949-0.70972. Fluid inclusions were studied in all the quartz and coarse calcite cements. Fluid inclusions in CC2a are characterized by Th values of 118-131 °C and salinities of 22.9-25.2 wt% NaCl + CaCl2. Fluid inclusions from Qz2a, Qz2b, CC2b and CC2c have Th values of 143-166 °C and salinities of 14.7-23.7 wt% NaCl + CaCl2. Fluid inclusions in Qz2c are characterized by Th values of 125-132 °C and salinities of 24.8-26.8 wt% NaCl + CaCl2, and those in CC3 by Th values of 86-101 °C and salinities of 22.9-25.2 wt% NaCl + CaCl2. The Th drop, from Qz2a, Qz2b and CC2c to Qz2c and CC3, cannot be explained by normal burial diagenesis, suggesting a hydrothermal event associated with the main phase of silicification. The relatively low temperature recorded by CC3 implies that the hydrothermal event possibly took place in the Devonian rather than Permian as previously thought.
Regional and interspecific variation in Sr, Ca, and Sr/Ca ratios in avian eggshells from the USA.
Mora, Miguel A; Brattin, Bryan; Baxter, Catherine; Rivers, James W
2011-08-01
To examine regional variation in strontium (Sr), which at high concentrations may reduce eggshell quality, increase egg breakage and reproductive failure, we analyzed Sr, and calcium (Ca) concentrations and Sr/Ca ratios in eggshells from 20 avian species from California, Texas, Idaho, Kansas, and Michigan. In addition, we included data previously reported from Arizona to expand the regional comparisons and to better establish patterns of Sr, and Sr/Ca ratios in bird species across the United States. We found Sr concentrations varied significantly among regions, among species, and among foraging guilds; this variability is strongly influenced by the Sr/Ca ratios in surface water from locations close to the region where the eggshells were collected. Sr concentrations and Sr/Ca ratios were significantly higher in bird eggshells from the Volta wildlife region in the San Joaquin Valley, California and in various locales from Arizona. Sr concentrations and Sr/Ca ratios in bird eggshells from other locations in the USA were lower than those detected in these two regions. Among foraging guilds, invertivores had the highest Sr concentrations and Sr/Ca ratios and carnivores had the lowest. In general, the Sr/Ca ratio increased strongly with increasing Sr concentrations (R(2) = 0.99, P < 0.0001). There was a significant correlation (R(2) = 0.58, P < 0.0001) between Sr/Ca ratios in water and the average Sr/Ca ratios in eggshells suggesting that these values could be determined from Sr/Ca ratios in water. Eggshell thickness was poorly correlated with Sr (R(2) = 0.03) but had a significant and positive correlation with Ca and was more properly correlated by a quadratic equation (R(2) = 0.50, Thickness = 2.13 - 0.02Ca - 3.07 * 10(-5)Ca(2)). Our study provides further evidence that Sr accumulates significantly in the avian eggshell, in some regions at concentrations which could be of concern for potential negative effects on reproduction. We suggest that when assessing the effects of metals on avian reproduction in regions with high Sr deposits in rock and soil, Sr concentrations in the eggshell also should be measured to evaluate additional effects on thickness and reproduction.
Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, Joel D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G.
1998-01-01
This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association Commission of New Minerals and Mineral Names. In a working definition of a zeolite mineral used for review, interrupted tetrahedral framework structures are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is allowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundance in atomic proportions. To name these, the appropriate chemical symbol is attached by a hyphen to the series name as a suffix except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely on Si:Al ratio except for heulandite (Si:Al < 4.0) and clinoptilolite (Si:Al ??? 4.0). Dehydration, partial hydration, and over-hydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term 'ideal formula' should be avoided in referring to a simplified or averaged formula of a zeolite. Newly recognized species in compositional series are as follows: brewsterite-Sr.-Ba: chabazite-Ca.-Na.-K; clinoptilolite-K, -Na, -Ca: dachiardite-Ca, -Na; erionite-K, -Ca: faujasite-Na, -Ca, -Na: paulingite-K. -Ca; phillipsite-Na, -Ca, -Ka; stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data. IZA structure-type symbols, space-group symmetry; unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species, and three of doubtful status. Herschelite, leonhardite, svetlozarite, and wellsite are discredited as mineral species names. Obsolete and discredited names are listed.
Pathogenesis of hypokalemia in autosomal dominant hypocalcemia type 1.
Kamiyoshi, Naohiro; Nozu, Kandai; Urahama, Yoshimichi; Matsunoshita, Natsuki; Yamamura, Tomohiko; Minamikawa, Shogo; Ninchoji, Takeshi; Morisada, Naoya; Nakanishi, Koichi; Kaito, Hiroshi; Iijima, Kazumoto
2016-04-01
Autosomal dominant hypocalcemia type 1 (ADH1) is a relatively rare endocrine disorder characterized by hypocalcemia and inadequate parathyroid hormone secretion. ADH is caused by activating mutations in the calcium-sensing receptor (CaSR) gene, CASR. CaSR plays a crucial role in calcium and magnesium homeostasis in the kidney. ADH may be accompanied by hypokalemia and metabolic alkalosis when it is classified as type V Bartter syndrome. However, the mechanism underlying hypokalemia in this disease is unclear. We investigated a 33-year-old woman with hypocalcemia and hypoparathyroidism since childhood, whose mother also had hypocalcemia and hypoparathyroidism, but with no clinical symptoms. Blood examinations showed hypokalemia and metabolic alkalosis in the patient, but not her mother. We conducted mutation analysis and diuretic tests to clarify the patient's and her mother's diagnosis and to investigate the onset mechanism of hypokalemia in ADH1. We also determined the localization of CaSR in the kidney by immunohistochemistry. We detected a known gain-of-function mutation in CASR in both the patient and her mother. Diuretic tests revealed a response to furosemide and no reaction to thiazide in the patient, although the mother responded well to both diuretics. CaSR co-localized with the Na(+)-Cl(-) cotransporter (NCCT) on distal tubular epithelial cells. These results indicate that the NCCT in the distal convoluted tubule was secondarily affected in this patient. We conclude that the main pathogenesis of secondary hypokalemia in ADH1 in this patient was secondary NCCT dysfunction.
NASA Astrophysics Data System (ADS)
Doshida, Yutaka; Shimizu, Hiroyuki; Mizuno, Youich; Tamura, Hideki
2012-07-01
The properties of miniature cantilever-type ultrasonic motors using lead-free array-type multilayer piezoelectric ceramics of (Sr,Ca)2NaNb5O15 (SCNN) developed using the design rule were investigated under high input power by comparison with the high-power properties of SCNN ceramics. The frequency dependence of the revolution speed reflected the nonlinear behavior of SCNN ceramics with the hard-spring effect and showed a mirror-reversed image relative to that of the motor of Pb(Zr,Ti)O3 (PZT) ceramics. The output power increased linearly with increasing input power up to 110 mW without heat generation, and the driving properties were almost the same as the expectations under low input power. The output power density characteristics of the motors were high in comparison with those of the commercialized motors of PZT ceramics. It appeared that the motors have a high potential as an environmental friendly piezoelectric device with excellent properties, reflecting the high-power properties of SCNN ceramics.
NASA Astrophysics Data System (ADS)
Huang, Chunmei; Zhao, Zhidan; Li, Guangming; Zhu, Di-Cheng; Liu, Dong; Shi, Qingshang
2017-12-01
Petrogenesis of the Himalayan leucogranite is strongly influenced by conditions which are associated with the tectonic evolution of Himalayan orogen. In this article, we present petrological, geochronological and geochemical results of the Lhozag leucogranites that crop out alongside the South Tibetan Detachment System (STDS) in the east of Himalaya. Zircon U-Pb dating revealed three episodes of leucogranitic magmatism in Lhozag at 17.8 ± 0.1 Ma, 15.1 ± 0.1 Ma, and 12.0 ± 0.1 Ma, respectively. The Lhozag leucogranites show relatively low εNd(t), low zircon εHf(t) and high initial 87Sr/86Sr ratios, which are similar to the High Himalayan Crystalline Series (HHCS), indicating that they were derived from the HHCS. The characteristics of relatively high Na2O and Rb contents, high Rb/Sr ratios and low CaO, MgO, TFe2O3, TiO2, and Sr contents indicate that both the ca. 18 Ma Lhozag tourmaline leucogranites and the ca. 15 Ma Lhozag two-mica granites were derived from fluid-absent muscovite-dehydration melting of metasediments. The opposite geochemistry characteristics of the ca. 12 Ma Khula Kangri two-mica granites imply that these granites are derived from fluid-present melting of metasediments. Four Khula Kangri two-mica granite samples with relatively lower TiO2, TFe2O3, MgO, and CaO contents, higher Rb concentrations and Rb/Sr ratios could be evolved from the Khula Kangri two-mica granites with relatively lower Rb/Sr ratios. The melting behaviors of the Lhozag leucogranites varied from fluid-absent melting to fluid-present melting, implying that there were P-T-XH2O variations in the deep crust. The tectonic evolution would give rise to variation of P-T-XH2O variation, and subsequent transformation of melting behavior. Our new results display the transformation of melting behavior of the Lhozag leucogranites, which implies the tectonic evolution from earlier N-S extension to later E-W extension in the eastern Himalaya at ca. 12 Ma.
Singh, Navneet; Chakrabarty, Subhas
2013-11-15
We recently reported on the isolation and characterization of calcium sensing receptor (CaSR) null human colon cancer cells (Singh et al., Int J Cancer 2013; 132: 1996-2005). CaSR null cells possess a myriad of molecular features that are linked to a highly malignant and drug resistant phenotype of colon cancer. The CaSR null phenotype can be maintained in defined human embryonic stem cell culture medium. We now show that the CaSR null cells can be induced to differentiate in conventional culture medium, regained the expression of CaSR with a concurrent reversal of the cellular and molecular features associated with the null phenotype. These features include cellular morphology, expression of colon cancer stem cell markers, expression of survivin and thymidylate synthase and sensitivity to fluorouracil. Other features include the expression of epithelial mesenchymal transition linked molecules and transcription factors, oncogenic miRNAs and tumor suppressive molecule and miRNA. With the exception of cancer stem cell markers, the reversal of molecular features, upon the induction of CaSR expression, is directly linked to the expression and function of CaSR because blocking CaSR induction by shRNA circumvented such reversal. We further report that methylation and demethylation of the CaSR gene promoter underlie CaSR expression. Due to the malignant nature of the CaSR null cells, inclusion of the CaSR null phenotype in disease management may improve on the mortality of this disease. Because CaSR is a robust promoter of differentiation and mediates its action through diverse mechanisms and pathways, inactivation of CaSR may serve as a new paradigm in colon carcinogenesis. Copyright © 2013 UICC.
Domeier, Timothy L; Maxwell, Joshua T; Blatter, Lothar A
2012-01-01
β-Adrenergic signalling induces positive inotropic effects on the heart that associate with pro-arrhythmic spontaneous Ca2+ waves. A threshold level of sarcoplasmic reticulum (SR) Ca2+ ([Ca2+]SR) is necessary to trigger Ca2+ waves, and whether the increased incidence of Ca2+ waves during β-adrenergic stimulation is due to an alteration in this threshold remains controversial. Using the low-affinity Ca2+ indicator fluo-5N entrapped within the SR of rabbit ventricular myocytes, we addressed this controversy by directly monitoring [Ca2+]SR and Ca2+ waves during β-adrenergic stimulation. Electrical pacing in elevated extracellular Ca2+ ([Ca2+]o= 7 mm) was used to increase [Ca2+]SR to the threshold where Ca2+ waves were consistently observed. The β-adrenergic agonist isoproterenol (ISO; 1 μm) increased [Ca2+]SR well above the control threshold and consistently triggered Ca2+ waves. However, when [Ca2+]SR was subsequently lowered in the presence of ISO (by lowering [Ca2+]o to 1 mm and partially inhibiting sarcoplasmic/endoplasmic reticulum calcium ATPase with cyclopiazonic acid or thapsigargin), Ca2+ waves ceased to occur at a [Ca2+]SR that was higher than the control threshold. Furthermore, for a set [Ca2+]SR level the refractoriness of wave occurrence (Ca2+ wave latency) was prolonged during β-adrenergic stimulation, and was highly dependent on the extent that [Ca]SR exceeded the wave threshold. These data show that acute β-adrenergic stimulation increases the [Ca2+]SR threshold for Ca2+ waves, and therefore the primary cause of Ca2+ waves is the robust increase in [Ca2+]SR above this higher threshold level. Elevation of the [Ca2+]SR wave threshold and prolongation of wave latency represent potentially protective mechanisms against pro-arrhythmogenic Ca2+ release during β-adrenergic stimulation. PMID:22988136
NASA Astrophysics Data System (ADS)
MacAvoy, S. E.; Petersen, E.
2015-12-01
Among the challenges facing urban rivers are water stormwater runoff problems and changing water chemistry, not only from air and water pollution sources, but also from altered geology with the development of "urban karst". Seventy five percent of the Anacostia River in Washington, D.C. is urban or impervious. The Anacostia River experiences environmental challenges similar to those of other urban industrial rivers (heavy metal, PCB and PAH contamination). It also has Ca/Sr ratios above 200, and Na concentrations higher than Ca, and elevated ionic strength, all associated with extended chemical interaction with concrete. While these chemical characteristics have been documented in the urban areas within DC, they have not been examined in the largely suburban/mixed development tributaries of the Anacostia. Here we examine the base-flow geochemistry of the Anacostia River and its suburban tributaries (6 locations) over a year (November 2014- August 2015), concentrating on the following water chemistry variables: pH, hardness, SAR, alkalinity, Ca, Mg, Na, K, Fe, Mn, Zn, Al, Ba, Ni, total P, S, Sr, NO3-, NH4+, PO43-. NO3- and NH4+ were generally lowest in at all sites in January, but rose to between 0.5 and 2.4 mg/L in June, with highest NO3- concentrations in suburban areas. Na and Cl concentrations were 5x higher in suburban areas than urban areas during the winter months. Ca/Sr concentration ratios, were between 120 and 200 for suburban sites but increased as the sites became more urban (to a high of 240 for the most urban site). These trends have been observed in other urban streams, and correlate with percent impervious area. The data follow patterns expected for "urban stream syndrome" and dissolution of concrete. Suburban areas, with their relatively small streams, show greater winter salting effects than more urban areas down stream. Suburban areas also show higher NO3- (and occasionally higher NH4+) than urban areas except in winter. The data presented here demonstrates that the geochemistry of highly urbanized systems may be significantly altered and should be better understood in order to assess urban impacts on water quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilyushin, G. D., E-mail: ilyushin@ns.crys.ras.ru
The basic concepts that are used to describe crystallization as a phenomenon of the hierarchical (cluster) self-organization of a chemical system are considered. The templation of theoretically possible nan-ocluster precursors composed of M octahedra and T tetrahedra by atoms of (A) alkaline and (B) alkaline earth metals is considered for the first time. A relationship between the A/B,M,T composition of templated nanocluster precursors with the composition of A/B,M silicates is established. The model that is developed is used to search for nanocluster precursors in framework MT structures of A/B,Zr silicates. Computer methods (TOPOS 4.0 program package) were used to performmore » complete 3D reconstruction of the self-assembly of all (four) structural types of A/B,Zr silicates (A = Na, K; B = Ca, Sr) with frameworks of the MT{sub 2}O{sub 7} type: nan-ocluster precursor S{sub 3}{sup 0}-primary chain S{sub 3}{sup 1}-microlayer S{sub 3}{sup 2}-microframework S{sub 3}{sup 3}. The invariant type of mono-cyclic nanocluster precursor M{sub 2}T{sub 4} (with the point symmetries 1-bar and 2), stabilized by one or two template cations (A and B), is determined. Bifurcations of the paths of evolution at the S{sub 3}{sup 1} level (structural branching point) are established for the self-assembly of the following frameworks: MT-1 in CaZrSi{sub 2}O{sub 7} (gittinsite, C2), MT-2 in SrZrSi{sub 2}O{sub 7} (P2{sub 1}/c); MT-3 in Na{sub 2}ZrSi{sub 2}O{sub 7} (parakeldyshite,), K{sub 2}ZrSi{sub 2}O{sub 7} (khibinskite, P2{sub 1}/b), and K{sub 2}ZrGe{sub 2}O{sub 7} (C2/c); and MT-4 in Na{sub 2}ZrSi{sub 2}O{sub 7} (H{sub 2}O)(C2/c), Na{sub 3}ScSi{sub 2}O{sub 7} (Pbnm), and K{sub 3}ScSi{sub 2}O{sub 7} (P6{sub 3}/mmc).« less
Milenković, Aleksandra S; Smičiklas, Ivana D; Šljivić-Ivanović, Marija Z; Živković, Ljiljana S; Vukelić, Nikola S
2016-07-02
The prospects of rinsed red mud (alumina production residue) utilization for liquid radioactive waste treatment have been investigated, with Co(2+) and Sr(2+) as model cations of radioactive elements. To evaluate the sorption effectiveness and corresponding binding mechanisms, the process was analyzed in batch conditions, by varying experimental conditions (pH, Co(2+) and Sr(2+) concentrations in single solutions and binary mixtures, contact time, and the concentration of competing cations and ligands common in liquid radioactive waste). Comparison of the Co(2+) and Sr(2+) sorption pH edges with the red mud isoelectric point has revealed that Co(2+) removal took place at both positive and negative red mud surface, while Sr(2+) sorption abruptly increased when the surface became negatively charged. The increase of initial cation content and pH resulted in increased equilibrium times and sorption capacity and decreased rate constants. From single metal solutions and various binary mixtures, Co(2+) was sorbed more efficiently and selectively than Sr(2+). While Sr(2+) sorption was reduced by coexisting cations in the order Al(3+) ≥ Ca(2+) >Na(+) ≥Cs(+), removal of Co(2+) was affected by Al(3+) species and complexing agents (EDTA and citrate). Desorption of Co(2+) was negligible in Ca(2+) and Sr(2+) containing media and in solutions with initial pH 4-7. Sr(2+) desorption was generally more pronounced, especially at low pH and in the presence of Co(2+). Collected macroscopic data signify that Co(2+) sorption by red mud minerals occurred via strong chemical bonds, while Sr(2+) was retained mainly by weaker ion-exchange or electrostatic interactions. Results indicate that the rinsed red mud represent an efficient, low-cost sorbent for Co(2+) and Sr(2+) immobilization.
Tularosa Basin Play Fairway Analysis: Water Chemistry
Adam Brandt
2015-12-15
This shapefile contains 409 well data points on Tularosa Basin Water Chemistry, each of which have a location (UTM), temperature, quartz and Potassium/Magnesium geothermometer; as well as concentrations of chemicals like Mn, Fe, Ba, Sr, Cs, Rb, As, NH4, HCO3, SO4, F, Cl, B, SiO2, Mg, Ca, K, Na, and Li.
Frandsen, Benjamin A.; Billinge, Simon J. L.; Ross, Kathryn A.; ...
2017-12-29
Here, we present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo 2F 7 and NaSrCo 2F 7, which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously-proposed model of short-range XY-like correlations with a length scale of 10-15 Å, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. Thismore » model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing a novel opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frandsen, Benjamin A.; Billinge, Simon J. L.; Ross, Kathryn A.
Here, we present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo 2F 7 and NaSrCo 2F 7, which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously-proposed model of short-range XY-like correlations with a length scale of 10-15 Å, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. Thismore » model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing a novel opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.« less
NASA Astrophysics Data System (ADS)
Frandsen, Benjamin A.; Ross, Kate A.; Krizan, Jason W.; Nilsen, Gøran J.; Wildes, Andrew R.; Cava, Robert J.; Birgeneau, Robert J.; Billinge, Simon J. L.
2017-12-01
We present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo2F7 and NaSrCo2F7 , which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously proposed model of short-range XY-like correlations with a length scale of 10-15 Å, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. This model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing an opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.
NASA Astrophysics Data System (ADS)
Anggraeni, Karina; Nasution, Aulia; Suyanto, Hery
2016-11-01
Coffee is one of the world's commodity that is cultivated in more than 50 countries. Production of coffee in Indonesia is positioned of fourth rank in the world, after Brazil, Vietnam, and Colombia. There are two varieties of coffee grown in Indonesia, i.e. the arabica and robusta. The chemical compositions between arabica and robusta are different each other. A trained coffee tester can distinguish these differences from its taste, but it is very subjective. Laser-Induced Breakdown Spectroscopy (LIBS) is a spectroscopic technique based on the analysis of micro-plasma induced on the surface sample after being shot with a laser pulse. In this study, elemental spectra acquired using Laser-Induced Breakdown Spectroscopy (LIBS) technique were analysed to differentate between green coffee beans of arabica and robusta, which are collected from plantations in Malang, Bondowoso, Prigen, and Pasuruan. Results show that optimum conditions for acquiring spectra from green coffee beans using LIBS are at 120 mJ of laser energy and 1,0 μs of delay time. Green coffee beans of arabica and robusta contain some elements such as Ca, W, Sr, Mg, Be, Na, H, N, K, Rb, and O. Discriminant analysis method was then applied to distinguish the green beans of arabica and robusta coffee. Element identifiers of green coffee beans are Ca, W, Mg, Be, Na, and Sr. The abundant element in green coffee beans is Calcium (Ca), and depth-profile testing shows that Ca is homogeneous inside the beans.
NASA Astrophysics Data System (ADS)
Vengosh, Avner; Kloppmann, Wolfram; Marei, Amer; Livshitz, Yakov; Gutierrez, Alexis; Banna, Mazen; Guerrot, Catherine; Pankratov, Irena; Raanan, Hadas
2005-01-01
Salinization in coastal aquifers is a global phenomenon resulting from the overexploitation of scarce water resources. The Gaza Strip is one of the most severe cases of salinization, as accelerated degradation of the water quality endangers the present and future water supply for over 1 million people. We investigate the chemical and isotopic (87Sr/86Sr, δ11B, δ18O, δ2H, and δ34SSO4) compositions of groundwater from the southern Mediterranean coastal aquifer (Israel) and the Gaza Strip in order to elucidate the origin of salinity and boron contamination. The original salinity in the eastern part of the aquifer is derived from discharge of saline groundwater from the adjacent Avedat aquitard (Na/Cl < 1, 87Sr/86Sr ˜ 0.7079, and δ11B ˜ 40‰). As the groundwater flows to the central part of the aquifer, a dramatic change in its composition occurs (Na/Cl > 1, high B/Cl, SO4/Cl, and HCO3, 87Sr/86Sr ˜ 0.7083; δ11B ˜ 48‰), although the δ18O-δ2H slope is identical to that of the Avedat aquitard. The geochemical data suggest that dissolution of pedogenic carbonate and gypsum minerals in the overlying loessial sequence generated the Ca-rich solution that triggered base exchange reactions and produced Na- and B-rich groundwater. The geochemical data show that most of the salinization process in the Gaza Strip is derived from the lateral flow of the Na-rich saline groundwater, superimposed with seawater intrusion and anthropogenic nitrate pollution. The methodology of identification of multiple salinity sources can be used to establish a long-term management plan for the Gaza Strip and can also be implemented to understand complex salinization processes in other similarly stressed coastal aquifers.
NASA Astrophysics Data System (ADS)
Vengosh, Avner; Kloppmann, Wolfram; Marei, Amer; Livshitz, Yakov; Gutierrez, Alexis; Banna, Mazen; Guerrot, Catherine; Pankratov, Irena; Raanan, Hadas
2005-01-01
Salinization in coastal aquifers is a global phenomenon resulting from the overexploitation of scarce water resources. The Gaza Strip is one of the most severe cases of salinization, as accelerated degradation of the water quality endangers the present and future water supply for over 1 million people. We investigate the chemical and isotopic (87Sr/86Sr, δ11B, δ18O, δ2H, and δ34SSO4) compositions of groundwater from the southern Mediterranean coastal aquifer (Israel) and the Gaza Strip in order to elucidate the origin of salinity and boron contamination. The original salinity in the eastern part of the aquifer is derived from discharge of saline groundwater from the adjacent Avedat aquitard (Na/Cl < 1, 87Sr/86Sr ~ 0.7079, and δ11B ~ 40‰). As the groundwater flows to the central part of the aquifer, a dramatic change in its composition occurs (Na/Cl > 1, high B/Cl, SO4/Cl, and HCO3, 87Sr/86Sr ~ 0.7083; δ11B ~ 48‰), although the δ18O-δ2H slope is identical to that of the Avedat aquitard. The geochemical data suggest that dissolution of pedogenic carbonate and gypsum minerals in the overlying loessial sequence generated the Ca-rich solution that triggered base exchange reactions and produced Na- and B-rich groundwater. The geochemical data show that most of the salinization process in the Gaza Strip is derived from the lateral flow of the Na-rich saline groundwater, superimposed with seawater intrusion and anthropogenic nitrate pollution. The methodology of identification of multiple salinity sources can be used to establish a long-term management plan for the Gaza Strip and can also be implemented to understand complex salinization processes in other similarly stressed coastal aquifers.
Fénelon, Karine; Lamboley, Cédric R.H.; Carrier, Nicole
2012-01-01
Experiments were performed to characterize the properties of the intrinsic Ca2+ buffers in the sarcoplasmic reticulum (SR) of cut fibers from frog twitch muscle. The concentrations of total and free calcium ions within the SR ([CaT]SR and [Ca2+]SR) were measured, respectively, with the EGTA/phenol red method and tetramethylmurexide (a low affinity Ca2+ indicator). Results indicate SR Ca2+ buffering was consistent with a single cooperative-binding component or a combination of a cooperative-binding component and a linear binding component accounting for 20% or less of the bound Ca2+. Under the assumption of a single cooperative-binding component, the most likely resting values of [Ca2+]SR and [CaT]SR are 0.67 and 17.1 mM, respectively, and the dissociation constant, Hill coefficient, and concentration of the Ca-binding sites are 0.78 mM, 3.0, and 44 mM, respectively. This information can be used to calculate a variable proportional to the Ca2+ permeability of the SR, namely d[CaT]SR/dt ÷ [Ca2+]SR (denoted release permeability), in experiments in which only [CaT]SR or [Ca2+]SR is measured. In response to a voltage-clamp step to −20 mV at 15°C, the release permeability reaches an early peak followed by a rapid decline to a quasi-steady level that lasts ∼50 ms, followed by a slower decline during which the release permeability decreases by at least threefold. During the quasi-steady level of release, the release amplitude is 3.3-fold greater than expected from voltage activation alone, a result consistent with the recruitment by Ca-induced Ca2+ release of 2.3 SR Ca2+ release channels neighboring each channel activated by its associated voltage sensor. Release permeability at −60 mV increases as [CaT]SR decreases from its resting physiological level to ∼0.1 of this level. This result argues against a release termination mechanism proposed in mammalian muscle fibers in which a luminal sensor of [Ca2+]SR inhibits release when [CaT]SR declines to a low level. PMID:23008434
Fénelon, Karine; Lamboley, Cédric R H; Carrier, Nicole; Pape, Paul C
2012-10-01
Experiments were performed to characterize the properties of the intrinsic Ca(2+) buffers in the sarcoplasmic reticulum (SR) of cut fibers from frog twitch muscle. The concentrations of total and free calcium ions within the SR ([Ca(T)](SR) and [Ca(2+)](SR)) were measured, respectively, with the EGTA/phenol red method and tetramethylmurexide (a low affinity Ca(2+) indicator). Results indicate SR Ca(2+) buffering was consistent with a single cooperative-binding component or a combination of a cooperative-binding component and a linear binding component accounting for 20% or less of the bound Ca(2+). Under the assumption of a single cooperative-binding component, the most likely resting values of [Ca(2+)](SR) and [Ca(T)](SR) are 0.67 and 17.1 mM, respectively, and the dissociation constant, Hill coefficient, and concentration of the Ca-binding sites are 0.78 mM, 3.0, and 44 mM, respectively. This information can be used to calculate a variable proportional to the Ca(2+) permeability of the SR, namely d[Ca(T)](SR)/dt ÷ [Ca(2+)](SR) (denoted release permeability), in experiments in which only [Ca(T)](SR) or [Ca(2+)](SR) is measured. In response to a voltage-clamp step to -20 mV at 15°C, the release permeability reaches an early peak followed by a rapid decline to a quasi-steady level that lasts ~50 ms, followed by a slower decline during which the release permeability decreases by at least threefold. During the quasi-steady level of release, the release amplitude is 3.3-fold greater than expected from voltage activation alone, a result consistent with the recruitment by Ca-induced Ca(2+) release of 2.3 SR Ca(2+) release channels neighboring each channel activated by its associated voltage sensor. Release permeability at -60 mV increases as [Ca(T)](SR) decreases from its resting physiological level to ~0.1 of this level. This result argues against a release termination mechanism proposed in mammalian muscle fibers in which a luminal sensor of [Ca(2+)](SR) inhibits release when [Ca(T)](SR) declines to a low level.
NASA Astrophysics Data System (ADS)
Gottschalk, M.; Najorka, J.; Andrut, M.
Tremolite (CaxSr1-x)2Mg5[Si8O22/(OH)2] and diopside (CaxSr1-x)Mg[Si2O6] solid solutions have been synthesized hydrothermally in equilibrium with a 1 molar (Ca,Sr)Cl2 aqueous solution at 750°C and 200 MPa. The solid run products have been investigated by optical, electron scanning and high resolution transmission electron microscopy, electron microprobe, X-ray-powder diffraction and Fourier-transform infrared spectroscopy. The synthesized (Ca,Sr)-tremolites are up to 2000 µm long and 30 µm wide, the (Ca,Sr)-diopsides are up to 150 µm long and 20 µm wide. In most runs the tremolites and diopsides are well ordered and chain multiplicity faults are rare. Nearly pure Sr-tremolite (tr0.02Sr-tr0.98) and Sr-diopside (di0.01Sr-di0.99) have been synthesized. A continuous solid solution series, i.e. complete substitution of Sr2+ for Ca2+ on M4-sites exists for (Ca,Sr)-tremolite. Total substitution of Sr2+ for Ca2+ on M2-sites can be assumed for (Ca,Sr)-diopsides. For (Ca,Sr)-tremolites the lattice parameters a, b and β are linear functions of composition and increase with Sr-content whereas c is constant. For the diopside series all 4 lattice parameters are a linear function of composition; a, b, c increase and β decreases with rising Sr-content. The unit cell volume for tremolite increases 3.47% from 906.68 Å3 for tremolite to 938.21 Å3 for Sr-tremolite. For diopside the unit cell volume increases 4.87 % from 439.91 Å3 for diopside to 461.30 Å3 for Sr-diopside. The observed splitting of the OH stretching band in tremolite is caused by different configurations of the next nearest neighbors (multi mode behavior). Resolved single bands can be attributed to the following configurations on the M4-sites: SrSr, SrCa, CaCa and CaMg. The peak positions of these 4 absorption bands are a linear function of composition. They are shifted to lower wavenumbers with increasing Sr-content. No absorption band due to the SrMg configuration on the M4-site is observed. This indicates a very low or negligible cummingtonite component in Sr-rich tremolites, which is also supported by electron microprobe analysis.
Sodium-dependent calcium extrusion and sensitivity regulation in retinal cones of the salamander.
Nakatani, K; Yau, K W
1989-01-01
1. Membrane current was recorded from an isolated, dark-adapted salamander cone by sucking its inner segment into a tight-fitting glass pipette containing Ringer solution. The outer segment of the cell was exposed to a bath solution that could be changed rapidly. 2. After removing Na+ from the bath Ringer solution for a short period of time in darkness (the 'loading period'), a transient inward current was observed upon restoring it in bright light. A similar but longer-lasting current was observed when Na+ was restored in the light after a large Ca2+ influx was induced through the light-sensitive conductance in darkness. 3. The above transient current was not observed if Li+ or guanidinium was substituted for Na+ in the light, or if Ba2+ was substituted for Ca2+ during the dark loading period. However, a current was observed if Sr2+ was the substituting ion for Ca2+ during loading. These observations suggested that the current was associated with an electrogenic Na+-dependent Ca2+ efflux at the cone outer segment. 4. The saturated amplitude of the exchange current was 12-25 pA with a mean around 16 pA. This is very comparable to that measured in the outer segment of a salamander rod under similar conditions. 5. By comparing a known Ca2+ load in a cone outer segment to the subsequent charge transfer through the exchange, we estimated that the stoichiometry of the exchange was near 3Na+:1Ca2+. 6. With a small Ca2+ load, or in the presence of Cs+ around the inner segment, the final temporal decline of the Na+-Ca2+ exchange current was roughly exponential, with a mean time constant of about 100 ms. This decline is about four times faster than that measured in rods. We interpret the shorter time constant in cones to reflect a faster rate of decline of intracellular free Ca2+ in their outer segments resulting from the exchange activity. 7. In the absence of external Na+, and hence any Na+-dependent Ca2+ efflux, the absolute sensitivity of a cone to a dim flash was several times higher than in normal Ringer solution. 8. A roughly similar increase in light sensitivity was observed for a rod under the same conditions. 9. We conclude that the Na+-dependent Ca2+ efflux, through lowering intracellular free Ca2+ in the light, has a role in regulating the absolute light sensitivity in cones as it does in rods.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2479741
Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes.
Berlin, J R; Bassani, J W; Bers, D M
1994-01-01
Intracellular passive Ca2+, buffering was measured in voltage-clamped rat ventricular myocytes. Cells were loaded with indo-1 (K+ salt) to an estimated cytosolic concentration of 44 +/- 5 microM (Mean +/- SEM, n = 5), and accessible cell volume was estimated to be 24.5 +/- 3.6 pl. Ca2+ transport by the sarcoplasmic reticulum (SR) Ca-ATPase and sarcolemmal Na-Ca exchange was inhibited by treatment with thapsigargin and Na-free solutions, respectively. Extracellular [Ca2+] was maintained at 10 mM and, in some experiments, the mitochondrial uncoupler "1799" was used to assess the degree of mitochondrial Ca2+ uptake. To perform single cell titrations, intracellular Ca2+ ([Ca2+]i) was increased progressively by a train of depolarizing voltage clamp pulses from -40 to +10 mV. The total Ca2+ gain with each pulse was calculated by integration of the Ca current and then analyzed as a function of the rapid change in [Ca2+]i during the pulse. In the range of [Ca2+]i from 0.1 to 2 microM, overall cell buffering was well described as a single lumped Michaelis-Menten type species with an apparent dissociation constant, KD, of of 0.63 +/- 0.07 microM (n = 5) and a binding capacity, Bmax, of 162 +/- 15 mumol/l cell H2O. Correction for buffering attributable to cytosolic indo-1 gives intrinsic cytosolic Ca2+ buffering parameters of KD = 0.96 +/- 0.18 microM and Bmax = 123 +/- 18 mumol/l cell H2O. The fast Ca2+ buffering measured in this manner agrees reasonably with the characteristics of known rapid Ca buffers (e.g., troponin C, calmodulin, and SR Ca-ATPase), but is only about half of the total Ca2+ buffering measured at equilibrium. Inclusion of slow Ca buffers such as the Ca/Mg sites on troponin C and myosin can account for the differences between fast Ca2+ buffering in phase with the Ca current measured in the present experiments and equilibrium Ca2+ buffering. The present data indicate that a rapid rise of [Ca2+]i from 0.1 to 1 microM during a contraction requires approximately 50 microM Ca2+ to be added to the cytosol. PMID:7819510
NASA Astrophysics Data System (ADS)
Wang, Xunming; Lang, Lili; Hua, Ting; Zhang, Caixia; Li, Hui
2018-03-01
The geochemical characteristics of aeolian and surface materials in potential source areas of dust are frequently employed in environmental reconstructions as proxies of past climate and as source tracers of aeolian sediments deposited in downwind areas. However, variations in the geochemical characteristics of these aeolian deposits that result from near-surface winds are currently poorly understood. In this study, we collected surface samples from the Ala Shan Plateau (a major potential dust source area in Central Asia) to determine the influence of aeolian processes on the geochemical characteristics of aeolian transported materials. Correlation analyses show that compared with surface materials, the elements in transported materials (e.g., Cu, As, Pb, Mn, Zn, Al, Ca, Fe, Ga, K, Mg, P, Rb, Co, Cr, Na, Nb, Si, and Zr) were subjected to significant sorting by aeolian processes, and the sorting also varied among different particle size fractions and elements. Variations in wind velocity were significantly correlated with the contents of Cr, Ga, Sr, Ca, Y, Nd, Zr, Nb, Ba, and Al, and with the Zr/Al, Zr/Rb, K/Ca, Sr/Ca, Rb/Sr, and Ca/Al ratios. Given the great variation in the geochemical characteristics of materials transported under different aeolian processes relative to those of the source materials, these results indicate that considerable uncertainty may be introduced to analyses by using surface materials to trace the potential source areas of aeolian deposits that accumulate in downwind areas.
NASA Technical Reports Server (NTRS)
Deguire, Mark R.; Bansal, Narottam P.; Farrell, David E.; Finan, Valerie; Kim, Cheol J.; Hills, Bethanie J.; Allen, Christopher J.
1989-01-01
Phase relations at 850 and 870 C, melting transitions in air, oxygen, and helium were studied for Bi(2.1)Sr(1.9) CuO6 and for the Bi2Sr2Ca(n-1) Cu(n)O(2n+4) for n = 1, 2, 3, 4, 5, and infinity (CaCuO2). Up to 870 C, the n = 2 composition resides in the compatibility tetrahedron bounded by Bi(2+x)(Sr,Ca)(3-y) Cu2O8, (Sr,Ca)14 Cu24O41, Ca2CuO3, and a Bi-Sr-Ca-O phase. The n is greater than or equal to 3 compositions reside in the compatibility tetrahedron Bi(2+x)(Sr,Ca)(3-y) Cu2O8 - (Sr,Ca)14 Cu24O41 - Ca2CuO3 - CuO up to 850 C. However, Bi(2+x)Sr(4-y) Cu3O10 forms for n is greater than or equal to 3 after extended heating at 870 C. Bi(2+x)Sr(2-y) CuO6 and Bi(2+x)(Sr,Ca)(3-y) Cu2O8 melt in air at 914 C and 895 C respectively. During melting, all of the compositions studied lose 1 to 2 percent by weight of oxygen from the reduction of copper. Bi(2+x)Sr(2-y) CuO6, Bi(2+n)(Sr,Ca)(3-y) Cu2O8, and Bi(2+x)(Sr,Ca)(4-y) Cu3O10 exhibit crystallographic alignment in a magnetic field, with the c-axes orienting parallel to the field.
Effect of Wood Aging on Wine Mineral Composition and 87Sr/86Sr Isotopic Ratio.
Kaya, Ayse D; Bruno de Sousa, Raúl; Curvelo-Garcia, António S; Ricardo-da-Silva, Jorge M; Catarino, Sofia
2017-06-14
The evolution of mineral composition and wine strontium isotopic ratio 87 Sr/ 86 Sr (Sr IR) during wood aging were investigated. A red wine was aged in stainless steel tanks with French oak staves (Quercus sessiliflora Salisb.), with three industrial scale replicates. Sampling was carried out after 30, 60, and 90 days of aging, and the wines were evaluated in terms of general analysis, phenolic composition, total polysaccharides, multielement composition, and Sr IR. Li, Be, Mg, Al, Sc, Ti, V, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Mo, Sb, Cs, Ba, Pr, Nd, Sm, Eu, Dy, Ho, Er, Yb, Lu, Tl, and Pb elements and 87 Sr/ 86 Sr were determined by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) and Na, K, Ca, and Fe by flame atomic absorption spectrometry (FAAS). Two-way ANOVA was applied to assess wood aging and time effect on Sr IR and mineral composition. Wood aging resulted in significantly higher concentrations of Mg, V, Co, Ni, and Sr. At the end of the aging period, wine exhibited statistically identical Sr IR compared to control. Study suggests that wood aging does not affect 87 Sr/ 86 Sr, not precluding the use of this parameter for wine traceability purposes.
Kubalova, Zuzana; Györke, Inna; Terentyeva, Radmila; Viatchenko-Karpinski, Serge; Terentyev, Dmitry; Williams, Simon C; Györke, Sandor
2004-01-01
Waves of Ca2+-induced Ca2+ release occur in various cell types and are involved in the pathology of certain forms of cardiac arrhythmia. These arrhythmias include catecholaminergic polymorphic ventricular tachycardia (CPVT), certain cases of which are associated with mutations in the cardiac calsequestrin gene (CASQ2). To explore the mechanisms of Ca2+ wave generation and unravel the underlying causes of CPVT, we investigated the effects of adenoviral-mediated changes in CASQ2 protein levels on the properties of cytosolic and sarcoplasmic reticulum (SR) Ca2+ waves in permeabilized rat ventricular myocytes. The free [Ca2+] inside the sarcoplasmic reticulum ([Ca2+]SR) was monitored by fluo-5N entrapped into the SR, and cytosolic Ca2+ was imaged using fluo-3. Overexpression of CASQ2 resulted in significant increases in the amplitude of Ca2+ waves and interwave intervals, whereas reduced CASQ2 levels caused drastic reductions in the amplitude and period of Ca2+ waves. CASQ2 abundance had no impact on resting diastolic [Ca2+]SR or on the amplitude of the [Ca2+]SR depletion signal during the Ca2+ wave. However, the recovery dynamics of [Ca2+]SR following Ca2+ release were dramatically altered as the rate of [Ca2+]SR recovery increased ∼3-fold in CASQ2-overexpressing myocytes and decreased to 30% of control in CASQ2-underexpressing myocytes. There was a direct linear relationship between Ca2+ wave period and the half-time of basal [Ca2+]SR recovery following Ca2+ release. Loading the SR with the low affinity exogenous Ca2+ buffer citrate exerted effects quantitatively similar to those observed on overexpressing CASQ2. We conclude that free intra-SR [Ca2+] is a critical determinant of cardiac Ca2+ wave generation. Our data indicate that reduced intra-SR Ca2+ binding activity promotes the generation of Ca2+ waves by accelerating the dynamics of attaining a threshold free [Ca2+]SR required for Ca2+ wave initiation, potentially accounting for arrythmogenesis in CPVT linked to mutations in CASQ2. PMID:15486014
Wu, Ya; Wang, Yanxin
2014-05-01
A hydrogeochemical investigation using integrated methods of stable isotopes ((18)O, (2)H), (87)Sr/(86)Sr ratios, Cl/Br ratios, chloride-mass balance, mass balance and hydrogeochemical modeling was conducted to interpret the geochemical evolution of groundwater salinity in Datong basin, northern China. The δ(2)H, δ(18)O ratios in precipitation exhibited a local meteoric water line of δ(2)H = 6.4 δ(18)O -5 (R(2) = 0.94), while those in groundwater suggested their meteoric origin in a historically colder climatic regime with a speculated recharge rate of less than 20.5 mm overall per year, in addition to recharge from a component of deep residual ancient lake water enriched with Br. According to the Sr isotope binary mixing model, the mixing of recharges from the Shentou karst springs (24%), the western margins (11%) and the eastern margins (65%) accounts for the groundwater from the deep aquifers of the down-gradient parts in the central basin is a possible mixing mechanism. In Datong, hydrolysis of silicate minerals is the most important hydrogeochemical process responsible for groundwater chemistry, in addition to dissolution of carbonate and evaporites. In the recharge areas, silicate chemical weathering is typically at the bisiallitization stage, while that in the central basin is mostly at the monosiallitization stage with limited evidence of being in equilibrium with gibbsite. Na exchange with bound Ca, Mg prevails at basin scale, and intensifies with groundwater salinity, while Ca, Mg exchange with bound Na locally occurs in the east pluvial and alluvial plains. Although groundwater salinity increases with the progress of water-rock/sediment interactions along the flow path, as a result of carbonate solubility control and continuous evapotranspiration, Na-HCO3 and Na-Cl-SO4 types of water are usually characterized respectively in the deep and the shallow aquifers of an inland basin with a silicate terrain in an arid climatic regime.
Zaichick, Sofia; Zaichick, Vladimir
2010-01-01
To understand the role of major, minor, and trace elements in the etiology of bone diseases including osteoporosis, it is necessary to determine the normal levels and age-related changes of bone chemical elements. The effect of age and gender on 38 chemical element contents in intact iliac crest of 84 apparently healthy 15-55 years old women (n=38) and men (n=46) was investigated by neutron activation analysis. Mean values (M+/-SEM) for mass fraction (on dry weight basis) of Ca, Cl, Co, Fe, K, Mg, Mn, Na, P, Rb, Sr, and Zn for both female and male taken together were Ca - 169+/-3g/kg, Cl - 1490+/-43 mg/kg, Co - 0.0073+/-0.0024 mg/kg, Fe - 177+/-24 mg/kg, K - 1820+/-79 mg/kg, Mg - 1840+/-48 mg/kg, Mn - 0.316+/-0.013 mg/kg, Na - 4970+/-87 mg/kg, P - 79.7+/-1.5 g/kg, Rb - 1.89+/-0.22 mg/kg, Sr - 312+/-15 mg/kg, and Zn - 65.9+/-3.4 mg/kg, respectively. The upper limit of mean contents of Cs, Eu, Hg, Sb, Sc, and Se were Cs < or = 0.09 mg/kg, Eu < or = 0.005 mg/kg, Hg < or = 0.005 mg/kg, Sb < or = 0.004 mg/kg, Sc < or = 0.001 mg/kg, and Se < or = 0.1mg/kg, respectively. In all bone samples the contents of Ag, As, Au, Ba, Br, Cd, Ce, Cr, Gd, Hf, La, Lu, Nd, Sm, Ta, Tb, Th, U, Yb, and Zr were under detection limits. The Ca, Mg, and P contents decrease with age, regardless of gender. Higher Ca, Mg, P, and Sr mass fractions as well as lower Fe content are typical of female iliac crest as compared to those in male bone. Copyright 2009 Elsevier GmbH. All rights reserved.
The effect of positioning cations on acidity and stability of the framework structure of Y zeolite
Deng, Changshun; Zhang, Junji; Dong, Lihui; Huang, Meina; Bin Li; Jin, Guangzhou; Gao, Junbin; Zhang, Feiyue; Fan, Minguang; Zhang, Luoming; Gong, Yanjun
2016-01-01
The investigation on the modification of NaY zeolite on LaHY and AEHY (AE refers Ca and Sr and the molar ratio of Ca and Sr is 1:1) zeolites was proformed by XRD, N2-physisorption (BET), XRF, XPS, NH3-TPD, Py-IR, hydrothermal stability, and catalytic cracking test. These results indicate that HY zeolite with ultra low content Na can be obtained from NaY zeolite through four exchange four calcination method. The positioning capability of La3+ in sodalite cage is much better than that of AE2+ and about 12 La3+ can be well coordinated in sodalite cages of one unit cell of Y zeolite. Appropriate acid amount and strength favor the formation of propylene and La3+ is more suitable for the catalytic cracking of cyclohexane than that of AE2+. Our results not only elaborate the variation of the strong and weak acid sites as well as the Brönsted and Lewis acid sites with the change of exchanged ion content but also explore the influence of hydrothermal aging of LaHY and AEHY zeolites and find the optimum ion exchange content for the most reserved acid sites. At last, the coordination state and stabilization of ion exchanged Y zeolites were discussed in detail. PMID:26987306
Influence of several metal ions on the gelation activation energy of silicon tetraethoxide
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1988-01-01
The effects of nine metal cations (Li(+), Na(+), Mg(2+), Ca(2+), Sr(2+), Cu(2+), Al(3+), La(3+), and Y(3+) on silica gel formation has been investigated by studying the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) in the presence of metal nitrates. The influence of water: TEOS mole ratio, metal ion concentration, and the reaction temperature has been investigated. The overall activation energy for gel formation has been determined from the temperature dependence of the time of gelation for each system. The activation energy for -Si-O-Si- network formation is found to be 54.5 kJ/mol. The gel formation time as well as the activation energy sharply increase in the presence of Cu(2+), Al(3+), La(3+) and Y(3+). In contrast, the presence of Li(+), Na(+), Mg(2+), Ca(2+), or, Sr(2+) lowers the gelation time, but has no appreciable effect on the activation energy. This difference may be attributed to the participation or nonparticipation of the metal ions in the formation of the three-dimensional polymeric network during the polycondensation step. The concentration of metal ion (Mg(2+), Ca(2+), Y(3+) or the water: TEOS mole ratio had no appreciable effect on the gelation activation energy. A simple test has been proposed to determine whether a metal ion would act as a network intermediate or modifier in silica and other glassy networks.
van der Poel, C; Stephenson, D G
2007-07-01
Properties of the sarcoplasmic reticulum (SR) with respect to Ca(2+) loading and release were measured in mechanically skinned fiber preparations from isolated extensor digitorum longus (EDL) muscles of the rat that were either kept at room temperature (23 degrees C) or exposed to temperatures in the upper physiological range for mammalian skeletal muscle (30 min at 40 or 43 degrees C). The ability of the SR to accumulate Ca(2+) was significantly reduced by a factor of 1.9-2.1 after the temperature treatments due to a marked increase in SR Ca(2+) leak, which persisted for at least 3 h after treatment. Results with blockers of Ca(2+) release channels (ruthenium red) and SR Ca(2+) pumps [2,5-di(tert-butyl)-1,4-hydroquinone] indicate that the increased Ca(2+) leak was not through the SR Ca(2+) release channel or the SR Ca(2+) pump, although it is possible that the leak pathway was via oligomerized Ca(2+) pump molecules. No significant change in the maximum SR Ca(2+)-ATPase activity was observed after the temperature treatment, although there was a tendency for a decrease in the SR Ca(2+)-ATPase. The observed changes in SR properties were fully prevented by the superoxide (O(2)(*-)) scavenger Tiron (20 mM), indicating that the production of O(2)(*-) at elevated temperatures is responsible for the increase in SR Ca(2+) leak. Results show that physiologically relevant elevated temperatures 1) induce lasting changes in SR properties with respect to Ca(2+) handling that contribute to a marked increase in the SR Ca(2+) leak and, consequently, to the reduction in the average coupling ratio between Ca(2+) transport and SR Ca(2+)-ATPase and muscle performance, and 2) that these changes are mediated by temperature-induced O(2)(*-) production.
Linde, Cristina I.; Karashima, Eiji; Raina, Hema; Zulian, Alessandra; Wier, Withrow G.; Hamlyn, John M.; Ferrari, Patrizia; Blaustein, Mordecai P.
2012-01-01
The Milan hypertensive strain (MHS) rats are a genetic model of hypertension with adducin gene polymorphisms linked to enhanced renal tubular Na+ reabsorption. Recently we demonstrated that Ca2+ signaling is augmented in freshly isolated mesenteric artery myocytes from MHS rats. This is associated with greatly enhanced expression of Na+/Ca2+ exchanger-1 (NCX1), C-type transient receptor potential (TRPC6) protein, and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) compared with arteries from Milan normotensive strain (MNS) rats. Here, we test the hypothesis that the enhanced Ca2+ signaling in MHS arterial smooth muscle is directly reflected in augmented vasoconstriction [myogenic and phenylephrine (PE)-evoked responses] in isolated mesenteric small arteries. Systolic blood pressure was higher in MHS (145 ± 1 mmHg) than in MNS (112 ± 1 mmHg; P < 0.001; n = 16 each) rats. Pressurized mesenteric resistance arteries from MHS rats had significantly augmented myogenic tone and reactivity and enhanced constriction to low-dose (1–100 nM) PE. Isolated MHS arterial myocytes exhibited approximately twofold increased peak Ca2+ signals in response to 5 μM PE or ATP in the absence and presence of extracellular Ca2+. These augmented responses are consistent with increased vasoconstrictor-evoked sarcoplasmic reticulum (SR) Ca2+ release and increased Ca2+ entry, respectively. The increased SR Ca2+ release correlates with a doubling of inositol 1,4,5-trisphosphate receptor type 1 and tripling of SERCA2 expression. Pressurized MHS arteries also exhibited a ∼70% increase in 100 nM ouabain-induced vasoconstriction compared with MNS arteries. These functional alterations reveal that, in a genetic model of hypertension linked to renal dysfunction, multiple mechanisms within the arterial myocytes contribute to enhanced Ca2+ signaling and myogenic and vasoconstrictor-induced arterial constriction. MHS rats have elevated plasma levels of endogenous ouabain, which may initiate the protein upregulation and enhanced Ca2+ signaling. These molecular and functional changes provide a mechanism for the increased peripheral vascular resistance (whole body autoregulation) that underlies the sustained hypertension. PMID:22140038
Measuring the content of 17 elements in the flesh of Prunus cerasifera and its cultivars by ICP-MS.
Shen, Jing; Xue, Hai-Yan; Li, Gai-Ru; Lu, Yi; Yao, Jun
2014-09-01
The present study compared the contents of inorganic elements in the pulp of purple, red, and yellow Prunus cerasifera with its cultivars. A method was established for the analysis of 17 kinds of trace elements (K, Ca, Mg, Na, Fe, Mn, Cu, Zn, Be, Li, Se, Sr, Cr, Pb, Cd, As and Hg) in the flesh of Prunus cerasifera by microwave digestion-ICP-MS. The detection method is simple and quick, yet shoes high precision and high sensitivity. The recovery rate of 17 elements ranged, from 93.5% to 110.4%. The analysis results showed that the contents of 17 elements in the flesh of purple, red, and yellow Prunus cerasifera and its cultivars are similar, containing extremely rich K elements (as high as 1 per thousand) and higher contents of Ca, Mg, Na, Fe and Mn. The contents of Cu, Zn, Li, Se, Sr and Cr are also present. The contents of Pb, Cd, As, Hg and other harmful element are either very low or not detectable. The experimental results for the study of trace elements in pulp of Prunus cerasifera and its cultivars provide empirical data for. future research in this area.
NASA Astrophysics Data System (ADS)
Pototschnig, Johann V.; Meyer, Ralf; Hauser, Andreas W.; Ernst, Wolfgang E.
2017-02-01
Research on ultracold molecules has seen a growing interest recently in the context of high-resolution spectroscopy and quantum computation. After forming weakly bound molecules from atoms in cold collisions, the preparation of molecules in low vibrational levels of the ground state is experimentally challenging, and typically achieved by population transfer using excited electronic states. Accurate potential energy surfaces are needed for a correct description of processes such as the coherent de-excitation from the highest and therefore weakly bound vibrational levels in the electronic ground state via couplings to electronically excited states. This paper is dedicated to the vibrational analysis of potentially relevant electronically excited states in the alkali-metal (Li, Na, K, Rb)- alkaline-earth metal (Ca,Sr) diatomic series. Graphical maps of Frank-Condon overlap integrals are presented for all molecules of the group. By comparison to overlap graphics produced for idealized potential surfaces, we judge the usability of the selected states for future experiments on laser-enhanced molecular formation from mixtures of quantum degenerate gases.
Effect of ADP on slow-twitch muscle fibres of the rat: implications for muscle fatigue.
Macdonald, W A; Stephenson, D G
2006-05-15
Slow-twitch mechanically skinned fibres from rat soleus muscle were bathed in solutions mimicking the myoplasmic environment but containing different [ADP] (0.1 microm to 1.0 mm). The effect of ADP on sarcoplasmic reticulum (SR) Ca2+-content was determined from the magnitude of caffeine-induced force responses, while temporal changes in SR Ca2+-content allowed determination of the effective rates of the SR Ca2+-pump and of the SR Ca2+-leak. The SR Ca2+-pump rate, estimated at pCa (-log10[Ca2+]) 7.8, was reduced by 20% as the [ADP] was increased from 0.1 to 40 microm, with no further alteration when the [ADP] was increased to 1.0 mm. The SR Ca2+-leak rate constant was not altered by increasing [ADP] from 0.1 to 40 microm, but was increased by 26% when the [ADP] was elevated to 1.0 mm. This ADP-induced SR Ca2+-leak was insensitive to ruthenium red but was abolished by 2,5-di(tert-butyl)-1,4-hydroquinone (TBQ), indicating that the leak pathway is via the SR Ca2+-pump and not the SR Ca2+-release channel. The decrease in SR Ca2+-pump rate and SR Ca2+-leak rate when [ADP] was increased led to a 40% decrease in SR Ca2+-loading capacity. Elevation of [ADP] had only minor direct effects on the contractile apparatus of slow-twitch fibres. These results suggest that ADP has only limited depressing effects on the contractility of slow-twitch muscle fibres. This is in contrast to the marked effects of ADP on force responses in fast-twitch muscle fibres and may contribute to the fatigue-resistant nature of slow-twitch muscle fibres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walser, M.; Robinson, B.H.B.
The ratio of excreted (Sr/sub u/) to filtered (Sr/sub o/) radiostrontium (Sr/sup 85/) was compared with the ratio of excreted (Ca/sub u/) to filtered (Ca/ sub o/) calcium in human subjects and dogs undergoing a variety of diuretic procedures. The relation Sr/sub u//Sr/sub o/ = (Ca/sub u/,/Ca/sub o//sup 0.7/ serves to predict Sr/sub u//Sr/sub o/ from Ca/su b u//Ca/sub o/with a standard error of estimate of 15% over a wide range of variation (30- to 200-fold) in the 2 quantities. The equation can be derived from the assumptions that the 2 ions are reabsorbed at rates proportional to the localmore » concentrations in the tubular fluid, and that the rate constant for Sr reabsorption is always 0.7 times that for Ca reabsorption. This relation was not affected by adrenocortical activity (in man), parathyroid activity, hypercalcemia, acid-base balance, Mg clearance, or diuretics (chlorothiazide or hydrochlorothiazide). Sulfate or ferrocyanide infusion was also without effect, presumably because the affinity of each of the 2 anions for Ca is similar to its affinity for Sr. Citrate, which binds Ca more strongly, diminishes renal discrimination between Ca and Sr. Although this relation has high predictive value (r* = 0.98), it does not establish that the reabsorption of Ca and Sr are first-order processes nor that the 2 ions share a common mechanism. (H.H.D.)« less
Natural zeolite permeable treatment wall for removing Sr-90 from groundwater.
Seneca, Shannon M; Rabideau, Alan J
2013-02-05
Experimental and modeling studies were completed to investigate the potential performance of a sorbing permeable treatment wall (PTW) comprised of natural zeolite for removal of strontium-90 (Sr-90) from groundwater at the West Valley Demonstration Project (WVDP) near Buffalo, NY. Multiple column tests were performed at the University at Buffalo (UB) and WVDP for periods ranging from 6 months to 2 years; UB columns were supplied with synthetic groundwater referenced to anticipated field conditions, while radioactive groundwater obtained on site was used for the WVDP columns. The primary focus was on quantifying the competitive cation reactions among five cations (Na(+), K(+), Ca(2+), Mg(2+), Sr(2+)) and Sr-90 with data obtained from the column studies used to estimate Gaines-Thomas (GT) selectivity coefficients. The resulting six-solute transport model provided flexibility to explore the influence of PTW parameters on long-term PTW performance, including variations in Sr-90 concentrations and groundwater geochemistry. The natural zeolite PTW is a viable method for in situ removal of Sr-90 from groundwater and potentially applicable to other sites contaminated by Sr-90.
Radiopaque Strontium Fluoroapatite Glass-Ceramics.
Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian
2015-01-01
The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2-Al2O3-Y2O3-SrO-Na2O-K2O/Rb2O/Cs2O-P2O5-F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F - leucite, KAlSi2O6, (b) Sr5(PO4)3F - leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F - pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F - Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite - pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These glass-ceramics allow optical properties, especially the translucency and color, to be tailored to the needs of biomaterials for dental applications. The authors conclude that it is possible to use twofold crystallization processes to develop glass-ceramic biomaterials featuring different properties, such as specific radiopacity values, CTEs, and optical characteristics.
Radiopaque Strontium Fluoroapatite Glass-Ceramics
Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian
2015-01-01
The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2–Al2O3–Y2O3–SrO–Na2O–K2O/Rb2O/Cs2O–P2O5–F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F – leucite, KAlSi2O6, (b) Sr5(PO4)3F – leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F – pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These glass-ceramics allow optical properties, especially the translucency and color, to be tailored to the needs of biomaterials for dental applications. The authors conclude that it is possible to use twofold crystallization processes to develop glass-ceramic biomaterials featuring different properties, such as specific radiopacity values, CTEs, and optical characteristics. PMID:26528470
Stepanchick, Ann; Breitwieser, Gerda E.
2010-01-01
The calcium sensing receptor (CaSR) is a Family 3/C G protein-coupled receptor with slow and partial targeting to the plasma membrane in both native and heterologous cells. We identified cargo receptor family member p24A in yeast two-hybrid screens with the CaSR carboxyl terminus. Interactions were confirmed by immunoprecipitation of either p24A or CaSR in transiently transfected HEK293 cells. Only the immaturely glycosylated form of CaSR interacts with p24A. Dissociation likely occurs in the endoplasmic reticulum Golgi intermediate compartment (ERGIC) or cis-Golgi, since only the uncleaved form of a CaSR mutant sensitive to the trans-Golgi enzyme furin was coimmunoprecipitated with p24A. p24A and p24A(ΔGOLD) significantly increased total and plasma membrane CaSR protein but p24A(FF/AA) did not. The CaSR carboxyl terminus distal to T868 is required for differential sensitivity to p24A and its mutants. Interaction with p24A therefore increases CaSR stability in the ER and enhances plasma membrane targeting. Neither wt Sar1p or the T39N mutant increased CaSR maturation or abundance while the H79G mutant increased abundance but prevented maturation of CaSR. These results suggest that p24A is the limiting factor in CaSR trafficking in the early secretory pathway, and that cycling between the ER and ERGIC protects CaSR from degradation. PMID:20361938
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bock, Lindsey R.; Whitledge, Gregory W.; Pracheil, Brenda M.
The objectives of this study were to characterize relationships between water and paddlefish Polyodon spathula dentary Sr:Ca, δ 18O and stable hydrogen isotope ratio (δD) to determine the accuracy with which individual P. spathula could be assigned to their collection locations using dentary-edge Sr:Ca, δD and δ 18O. A laboratory experiment was also conducted to determine whether dentary Sr:Ca in age 0 year P. spathula would reflect shifts in water Sr:Ca to which fish were exposed. Significant linear relationships between water and dentary Sr:Ca, δD and δ 18O were observed, although the relationship between water and dentary δ 18O wasmore » weaker than those for Sr:Ca and δD. Classification success for individual fish to collection locations that differed in water Sr:Ca, δD and δ 18O ranged from 86 to 100% based on dentary-edge Sr:Ca, δD and δ18O. Dentary Sr:Ca increased significantly in laboratory-reared age 0 year P. spathula following 4 weeks of exposure to elevated water Sr:Ca; dentary Sr:Ca of fish held in water with elevated Sr:Ca was also significantly higher than that of control fish reared in ambient laboratory water. Results indicated that P. spathula dentaries reflect water signatures for commonly-applied natural chemical markers and strongly suggest that dentary microchemistry and stable-isotopic compositions will be applicable for reconstructing P. spathula environmental history in locations where sufficient spatial differences in water chemistry occur.« less
Bock, Lindsey R.; Whitledge, Gregory W.; Pracheil, Brenda M.; ...
2016-07-26
The objectives of this study were to characterize relationships between water and paddlefish Polyodon spathula dentary Sr:Ca, δ 18O and stable hydrogen isotope ratio (δD) to determine the accuracy with which individual P. spathula could be assigned to their collection locations using dentary-edge Sr:Ca, δD and δ 18O. A laboratory experiment was also conducted to determine whether dentary Sr:Ca in age 0 year P. spathula would reflect shifts in water Sr:Ca to which fish were exposed. Significant linear relationships between water and dentary Sr:Ca, δD and δ 18O were observed, although the relationship between water and dentary δ 18O wasmore » weaker than those for Sr:Ca and δD. Classification success for individual fish to collection locations that differed in water Sr:Ca, δD and δ 18O ranged from 86 to 100% based on dentary-edge Sr:Ca, δD and δ18O. Dentary Sr:Ca increased significantly in laboratory-reared age 0 year P. spathula following 4 weeks of exposure to elevated water Sr:Ca; dentary Sr:Ca of fish held in water with elevated Sr:Ca was also significantly higher than that of control fish reared in ambient laboratory water. Results indicated that P. spathula dentaries reflect water signatures for commonly-applied natural chemical markers and strongly suggest that dentary microchemistry and stable-isotopic compositions will be applicable for reconstructing P. spathula environmental history in locations where sufficient spatial differences in water chemistry occur.« less
Bacon, C.R.; Weber, P.K.; Larsen, K.A.; Reisenbichler, R.; Fitzpatrick, J.A.; Wooden, J.L.
2004-01-01
Strontium isotope and Sr/Ca ratios measured in situ by ion microprobe along radial transects of otoliths of juvenile chinook salmon (Oncorhynchus tshawytscha) vary between watersheds with contrasting geology. Otoliths from ocean-type chinook from Skagit River estuary, Washington, had prehatch regions with 87Sr/86Sr ratios of ???0.709, suggesting a maternally inherited marine signature, extensive fresh water growth zones with 87Sr/86Sr ratios similar to those of the Skagit River at ???0.705, and marine-like 87Sr/86Sr ratios near their edges. Otoliths from stream-type chinook from central Idaho had prehatch 87Sr/86Sr ratios ???0.711, indicating that a maternal marine Sr isotopic signature is not preserved after the ???1000- to 1400-km migration from the Pacific Ocean. 87Sr/86Sr ratios in the outer portions of otoliths from these Idaho juveniles were similar to those of their respective streams (???0.708-0.722). For Skagit juveniles, fresh water growth was marked by small decreases in otolith Sr/Ca, with increases in Sr/Ca corresponding to increases in 87Sr/86Sr with migration into salt water. Otoliths of Idaho fish had Sr/Ca radial variation patterns that record seasonal fluctuation in ambient water Sr/Ca ratios. The ion microprobe's ability to measure both 87Sr/86Sr and Sr/Ca ratios of otoliths at high spatial resolution in situ provides a new tool for studies of fish rearing and migration. ?? 2004 NRC Canada.
Gibson-Reinemer, D. K.; Johnson, B.M.; Martinez, P.J.; Winkelman, D.L.; Koenig, A.E.; Woodhead, J.D.
2009-01-01
Otolith chemistry in freshwater has considerable potential to reveal patterns of origin and movement, which would benefit traditional fisheries management and provide a valuable tool to curb the spread of invasive and illicitly stocked species. We evaluated the relationship between otolith and water chemistry for five markers (Ba/Ca, Mn/Ca, Sr/ Ca, Zn/Ca, and 87Sr/86Sr) in rainbow trout (Oncorhynchus mykiss) using the existing hatchery system in Colorado and Wyoming, USA, to provide controlled, seminatural conditions. Otolith Ba/Ca, Sr/Ca, and 87Sr/86Sr reflected ambient levels, whereas Mn/Ca and Zn/Ca did not. Using only the markers correlated with water chemistry, we classified fish to their hatchery of origin with up to 96% accuracy when element and isotope data were used together. Large changes in 87Sr/Sr were evident in otolith transects, although subtler changes in Sr/Ca were also detectable. Our results suggest the relatively few otolith markers that reflect ambient chemistry can discriminate among locations and track movements well enough to provide valuable insight in a variety of applied contexts.
Allometric constraints on Sr/Ca and Ba/Ca partitioning in terrestrial mammalian trophic chains.
Balter, Vincent
2004-03-01
In biological systems, strontium (Sr) and barium (Ba) are two non-essential elements, in comparison to calcium (Ca) which is essential. The Sr/Ca and Ba/Ca ratios tend to decrease in biochemical pathways which include Ca as an essential element, and these processes are termed biopurification of Ca. The quantitative pathway of the biopurification of Ca in relation to Sr and Ba between two biological reservoirs ( Rn and R(n -1)) is measured with an observed ratio (OR) expressed by the (Sr/Ca) Rn /(Sr/Ca)( Rn-1) and (Ba/Ca) Rn /(Ba/Ca)( Rn-1) ratios. For a mammalian organism, during the whole biopurification of Ca starting with the diet to the ultimate reservoir of Ca which is the bone, the mean values for ORSr and ORBa are 0.25 and 0.2, respectively. In this study, published Sr/Ca and Ba/Ca ratios are used for three sets of soils, plants, and bones of herbivorous and carnivorous mammals, each comprising a trophic chain, to illustrate the biopurification of Ca at the level of trophic chains. Calculated ORSr and ORBa of herbivore bones in relation to plants and of bones of carnivores in relation to bones of herbivores give ORSr=0.30+/-0.08 and ORBa=0.16+/-0.08, thus suggesting that trophic chains reflect the Sr/Ca and Ba/Ca fluxes that are prevalent at the level of a mammalian organism. The slopes of the three regression equations of log(Sr/Ca) vs. log(Ba/Ca) are similar, indicating that the process of biopurification of Ca with respect to Sr and Ba is due to biological processes and is independent of the geological settings. Modifications of the logarithmic expression of the Sr/Ca and Ba/Ca relationship allow a new formula of the biopurification process to be deduced, leading to the general equation ORBa=ORSr(1.79+/-0.33), where the allometric coefficient is the mean of the slopes of the three regression equations. Some recent examples are used to illustrate this new analysis of predator-prey relations between mammals. This opens up new possibilities for the utilization of Ba/Ca and Sr/Ca in addition to stable isotope ratios (delta13C and delta15N) for the determination of the relative contribution of different food sources to an animal's diet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linley, Timothy J.; Krogstad, Eirik J.; Nims, Megan K.
Rebuilding fish populations that have undergone a major decline is a challenging task that can be made more complicated when estimates of abundance obtained from physical tags are biased or imprecise. Abundance estimates based on natural tags where each fish in the population is marked can help address these problems, but generally requires that the samples be obtained in a nonlethal manner. We evaluated the potential of using geochemical signatures in fin rays as a nonlethal method to determine the natal tributaries of endangered juvenile spring Chinook Salmon in the Wenatchee River, Washington. Archived samples of anal fin clips collectedmore » from yearling smolt in 2009, 2010 and 2011 were analyzed for Ba/Ca, Mn/Ba, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr by inductively coupled plasma mass spectrometry. Water samples collected from these same streams in 2012 were also quantified for geochemical composition. Fin ray and water Ba/Ca, Sr/Ca, and 87Sr/86Sr were highly correlated despite the samples having been collected in different years. Fin ray Ba/Ca, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr ratios differed significantly among the natal streams, but also among years within streams. A linear discriminant model that included Ba/Ca, Mg/Ca, Sr/Ca, and 87Sr/86Sr correctly classified 95% of the salmon to their natal stream. Our results suggest that fin ray geochemistry may provide an effective, nonlethal method to identify mixtures of Wenatchee River spring Chinook Salmon for recovery efforts when these involve the capture of juvenile fish to estimate population abundance.« less
Yun, Young Jun; Kim, Jin Kyu; Ju, Ji Young; Choi, Seul Ki; Park, Woon Ik; Suh, Jae Yong; Jung, Ha-Kyun; Kim, Yongseon; Choi, Sungho
2017-05-10
This paper reports designing a novel single composition blue/red color illuminating phosphor followed by fabricating "smart" agricultural/horticultural LED lighting. Color-tunable Eu 2+ /Mn 2+ co-activated alkaline earth phosphates, Na(Sr,Ba)PO 4 and Ca 3 Mg 3 (PO 4 ) 4 , are considered, and the stable doping sites for the corresponding activators are identified by using first-principle DFT calculations. We can realize the designated color purity with stable thermal quenching preserved luminescence behavior is induced by the Eu 2+ center positioned at different coordination states with intermixed Sr 2+ /Ba 2+ sites in Na(Sr,Ba)PO 4 hosts. Moreover, we demonstrate that the resultant LED lighting adopting the proposed novel phosphor composition stimulates the enhanced photosynthesis reaction for indoor hydroponics plants, such as oats and onions, which is superior to the narrow line emission band induced by the mixture of conventional red/green/blue LEDs. Thus, using the color-tunable single composition luminescent material may produce an innovative energy-efficient artificial lighting for indoor plant growth.
Pressure driven topological semi metallic phase in SrTe
NASA Astrophysics Data System (ADS)
Kunduru, Lavanya; Roshan, S. C. Rakesh; Yedukondalu, N.; Sainath, M.
2018-05-01
We have investigated the structural, electronic properties and Fermi surface topology of SrTe under high pressure up to 50 GPa based on density functional theory calculations. We predict that SrTe undergoes a structural phase transition from NaCl (B1) to CsCl (B2)-type structure at 14.7 GPa which is consistent with the experimental observations as well as with previous theoretical studies. The ambient (B1) and high pressure (B2) phases are found to be indirect band gap semiconductors and upon further compression B2 phase turns into a nontrivial topological semimetal. Interestingly, we have observed that B2 phase of SrTe has band inversion at Γ and M symmetry directions which lead to formation of 3D topological nodal line semimetal at high pressure which is analogous to CaTe and Cu3PdN due to nontrivial band topology.
Jeong, C H
2001-01-01
Adsorption characteristics of the nuclides onto kaolinite were investigated by batch experiment under various pH conditions and concentrations of groundwater cations (Ca2+, Mg2+, K+ and Na+) and anions (HCO3-, CO3(2-) and SO4(2-). Adsorption removal of 137Cs and 90Sr by kaolinite greatly increased as the concentration of groundwater cations increased from 10(-5) to 10(-1) M. In contrast, the pH exerted a small effect on the adsorption of 137Cs and 90Sr onto kaolinite. The zeta potential of kaolinite particles showed a negative increase of amphoteric surface charge with increasing pH. The adsorption behavior of 90Sr was also highly dependent on the concentration of bicarbonate. The thermodynamic saturation index indicated that bicarbonate exerts great effect on strontium adsorption by the precipitation of a strontianite (SrCO3) and a change in pH.
Espinoza-Fonseca, L Michel
2017-03-28
Ca 2+ transport across the sarco/endoplasmic reticulum (SR) plays an essential role in intracellular Ca 2+ homeostasis, signalling, cell differentiation and muscle contractility. During SR Ca 2+ uptake and release, proton fluxes are required to balance the charge deficit generated by the exchange of Ca 2+ and other ions across the SR. During Ca 2+ uptake by the SR Ca 2+ -ATPase (SERCA), two protons are countertransported from the SR lumen to the cytosol, thus partially compensating for the charge moved by Ca 2+ transport. Studies have shown that protons are also transported from the cytosol to the lumen during Ca 2+ release, but a transporter that facilitates proton transport into the SR lumen has not been described. In this article we propose that SERCA forms pores that facilitate bidirectional proton transport across the SR. We describe the location and structure of water-filled pores in SERCA that form cytosolic and luminal pathways for protons to cross the SR membrane. Based on this structural information, we suggest mechanistic models for proton translocation to the cytosol during active Ca 2+ transport, and into the SR lumen during SERCA inhibition by endogenous regulatory proteins. Finally, we discuss the physiological consequences of SERCA-mediated bidirectional proton transport across the SR membrane of muscle and non-muscle cells.
Ariyama, Kaoru; Nishida, Tadashi; Noda, Tomoaki; Kadokura, Masashi; Yasui, Akemi
2006-05-03
Mineral concentrations of onions (Allium cepa L.) grown under various conditions, including factors (fertilization, crop year, variety, and provenance), were investigated to clarify how much each factor contributes to the variation of their concentrations. This was because the mineral concentrations might be affected by various factors. The ultimate goal of this study was to develop a technique to determine the geographic origins of onions by mineral composition. Samples were onions grown under various conditions at 52 fields in 18 farms in Hokkaido, Japan. Twenty-six elements (Li, Na, Mg, Al, P, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Mo, Cd, Cs, Ba, La, Ce, Nd, Gd, W, and Tl) in these samples were determined by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Fertilization conditions and crop years of onions caused variations of P, Ni, Cu, Rb, Sr, Mo, Cs, and Tl concentrations in onions; different onion varieties also showed variations in numerous element concentrations. However, the variations of mineral compositions of onions by these factors were smaller than the differences between production places with a few exceptions. Furthermore, Na, Rb, and Cs in group IA of the periodic table, Ca, Sr, and Ba in group IIA, and Zn and Cd in group IIB showed similar concentration patterns by group; this result demonstrated that elements in the same periodic groups behaved similarly in terms of their absorption in onions.
BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes.
Feldman, Arthur M; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D; Tilley, Douglas G; Gao, Erhe; Hoffman, Nicholas E; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y
2016-03-01
Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na(+)-K(+)-ATPase and L-type Ca(2+) channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca(2+) channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca(2+)]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca(2+) current (ICa) and sarcoplasmic reticulum (SR) Ca(2+) content but not Na(+)/Ca(2+) exchange current (INaCa) or SR Ca(2+) uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyryl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca(2+) entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca(2+) channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. Copyright © 2016 Elsevier Ltd. All rights reserved.
BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes
Feldman, Arthur M.; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D.; Tilley, Douglas G.; Gao, Erhe; Hoffman, Nicholas E.; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J.; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y.
2016-01-01
Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na+-K+-ATPase and L-type Ca2+ channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca2+ channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca2+]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca2+ current (ICa) and sarcoplasmic reticulum (SR) Ca2+ content but not Na+/Ca2+ exchange current (INaCa) or SR Ca2+ uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyrl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca2+ entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca2+ channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. PMID:26796036
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillis, C C; Ostrach, D J; Gras, M
2006-06-14
Otolith Sr/Ca has become a popular tool for hind casting habitat utilization and migration histories of euryhaline fish. It can readily identify habitat shifts of diadromous fish in most systems. Inferring movements of fish within estuarine habitat, however, requires a model of that accounts of the local water chemistry and the response of individual species to that water chemistry, which is poorly understood. Modeling is further complicated by the fact that high marine Sr and Ca concentrations results in a rapid, nonlinear increase in water Sr/Ca and {sup 87}Sr/{sup 86}Sr between fresh and marine waters. Here we demonstrate a novelmore » method for developing a salinity-otolith Sr/Ca model for the purpose of reconstructing striped bass (Morone saxatilis) habitat use in the San Francisco Bay estuary. We used correlated Sr/Ca and {sup 87}Sr/{sup 86}Sr ratios measurements from adult otoliths from striped bass that experienced a range of salinities to infer striped bass otolith Sr/Ca response to changes in salinity and water Sr/Ca ratio. Otolith {sup 87}Sr/{sup 86}Sr can be assumed to accurately record water {sup 87}Sr/{sup 86}Sr because there is no biological fractionation of Sr isotopes. Water {sup 87}Sr/{sup 86}Sr can in turn be used to estimate water salinity based on the mixing of fresh and marine water with known {sup 87}Sr/{sup 86}Sr ratios. The relationship between adjacent analyses on otoliths of Sr/Ca and {sup 87}Sr/{sup 86}Sr by LA-ICP-MS and MC-ICP-MS (r{sup 2} = 0.65, n = 66) is used to predict water salinity from a measured Sr/Ca ratio. The nature of this non-linear model lends itself well to identifying residence in the Delta and to a lesser extent Suisun Bay, but does not do well locating residence within the more saline bays west of Carquinez Strait. An increase in the number of analyses would improve model confidence, but ultimately the precision of the model is limited by the variability in the response of individual fish to water Sr/Ca.« less
Robin, Gaëlle; Berthier, Christine
2012-01-01
Under resting conditions, external Ca2+ is known to enter skeletal muscle cells, whereas Ca2+ stored in the sarcoplasmic reticulum (SR) leaks into the cytosol. The nature of the pathways involved in the sarcolemmal Ca2+ entry and in the SR Ca2+ leak is still a matter of debate, but several lines of evidence suggest that these Ca2+ fluxes are up-regulated in Duchenne muscular dystrophy. We investigated here SR calcium permeation at resting potential and in response to depolarization in voltage-controlled skeletal muscle fibers from control and mdx mice, the mouse model of Duchenne muscular dystrophy. Using the cytosolic Ca2+ dye Fura2, we first demonstrated that the rate of Ca2+ increase in response to cyclopiazonic acid (CPA)–induced inhibition of SR Ca2+-ATPases at resting potential was significantly higher in mdx fibers, which suggests an elevated SR Ca2+ leak. However, removal of external Ca2+ reduced the rate of CPA-induced Ca2+ increase in mdx and increased it in control fibers, which indicates an up-regulation of sarcolemmal Ca2+ influx in mdx fibers. Fibers were then loaded with the low-affinity Ca2+ dye Fluo5N-AM to measure intraluminal SR Ca2+ changes. Trains of action potentials, chloro-m-cresol, and depolarization pulses evoked transient Fluo5N fluorescence decreases, and recovery of voltage-induced Fluo5N fluorescence changes were inhibited by CPA, demonstrating that Fluo5N actually reports intraluminal SR Ca2+ changes. Voltage dependence and magnitude of depolarization-induced SR Ca2+ depletion were found to be unchanged in mdx fibers, but the rate of the recovery phase that followed depletion was found to be faster, indicating a higher SR Ca2+ reuptake activity in mdx fibers. Overall, CPA-induced SR Ca2+ leak at −80 mV was found to be significantly higher in mdx fibers and was potentiated by removal of external Ca2+ in control fibers. The elevated passive SR Ca2+ leak may contribute to alteration of Ca2+ homeostasis in mdx muscle. PMID:22371362
Ca isotopes in the Ebro River Basin: mixing and lithological tracer
NASA Astrophysics Data System (ADS)
Guerrot, C.; Negrel, P. J.; Millot, R.; Petelet-Giraud, E.; Brenot, A.
2012-12-01
A large investigation of the Ebro River catchment was done in the past years regarding hydrogen, oxygen, lithium, boron, sulphur and oxygen from SO4 and strontium isotope measurements together with major and trace elements in the dissolved load of 25 river samples collected within the Ebro River Basin in Spain (Millot et al., Geophysical Research Abstracts, Vol. 14, EGU2012-2062, 2012). The Ebro River (928 km long, 85,530 km2 drainage basin) located in North-Eastern Spain rises near the Atlantic coast in the Cantabrian Mountains and flows into the western Mediterranean Sea through several large cities and agricultural, mining and industrial areas. The river is one of the largest contributors of freshwater in the Mediterranean Sea and ends in the Ebro delta, one of the most important wetlands in Europe. Bedrocks of the Ebro River Basin are mainly dominated by carbonates and evaporites from the Paleozoic and Mesozoic terrains. The Ebro river mainstream was sampled at Amposta one time per month between June 2005 and May 2006 and secondly, the Ebro River along its main course and its main tributaries were sampled during one field campaign in April 2006. The behaviour of Ca and its isotopes during water/rock interactions at the scale of a large river basin having various lithologies will be investigated in addition with Sr, S (SO4) and O (SO4) isotopes. One objective is to characterize the processes controlling the isotope signatures of a large river draining predominantly sedimentary bedrocks. The δ44Ca ratio (δ44/40 normalised to Seawater) ranged between -0.87 and -1.09‰ along the Ebro main stream, increasing towards the delta as the Ca content increase. In Amposta, the δ44Ca ratio ranged between -0.66 and -1.04‰ and tends to decrease with the increasing discharge. These variations are very similar to those given by the 87Sr/86Sr ratios and Sr contents. For the tributaries, the δ44Ca ratio ranged between -0.43 and -1.04‰ whereas the anhydrite-gypsum bedrock display a range from -0.94 to -1.22 and the carbonate bedrock ranged from -1.04 to -1.39‰. Comparing Sr isotope ratios and Ca/Na ratios evidenced the role of anhydrites/halides weathering for some tributaries (Guadalope, Matarrana, Aragon, Ega), the role of carbonates/halides weathering for the others (Gallego, Cinca, Segre); the Ebro being a mix of both. Weathering of rock masks the seasalt signal, if any. As there is no Ca in halides, the comparison of the δ44Ca and 87Sr/86Sr ratios further evidenced the role of anhydrites and carbonates for the Ebro and tributaries, highlight geochemical processes like carbonate oversaturation (Guadalope and Matarrana tributaries) and imprints the seasalt signal.
Meibom, A.; Stage, M.; Wooden, J.; Constantz, B.R.; Dunbar, R.B.; Owen, A.; Grumet, N.; Bacon, C.R.; Chamberlain, C.P.
2003-01-01
In thermodynamic equilibrium with sea water the Sr/Ca ratio of aragonite varies predictably with temperature and the Sr/Ca ratio in coral have thus become a frequently used proxy for past Sea Surface Temperature (SST). However, biological effects can offset the Sr/Ca ratio from its equilibrium value. We report high spatial resolution ion microprobe analyses of well defined skeletal elements in the reef-building coral Porites lutea that reveal distinct monthly oscillations in the Sr/Ca ratio, with an amplitude in excess of ten percent. The extreme Sr/Ca variations, which we propose result from metabolic changes synchronous with the lunar cycle, introduce variability in Sr/Ca measurements based on conventional sampling techniques well beyond the analytical precision. These variations can limit the accuracy of Sr/Ca paleothermometry by conventional sampling techniques to about 2??C. Our results may help explain the notorious difficulties involved in obtaining an accurate and consistent calibration of the Sr/Ca vs. SST relationship.
Medina, Johan; Nakagawa, Yuko; Nagasawa, Masahiro; Fernandez, Anny; Sakaguchi, Kazushige; Kitaguchi, Tetsuya; Kojima, Itaru
2016-01-01
The calcium-sensing receptor (CaSR) is activated by various cations, cationic compounds, and amino acids. In the present study we investigated the effect of glucose on CaSR in HEK293 cells stably expressing human CaSR (HEK-CaSR cells). When glucose concentration in the buffer was raised from 3 to 25 mm, a rapid elevation of cytoplasmic Ca2+ concentration ([Ca2+]c) was observed. This elevation was immediate and transient and was followed by a sustained decrease in [Ca2+]c. The effect of glucose was detected at a concentration of 4 mm and reached its maximum at 5 mm. 3-O-Methylglucose, a non-metabolizable analogue of glucose, reproduced the effect of glucose. Sucrose also induced an elevation of [Ca2+]c in HEK-CaSR cells. Similarly, sucralose was nearly as effective as glucose in inducing elevation of [Ca2+]c. Glucose was not able to increase [Ca2+]c in the absence of extracellular Ca2+. The effect of glucose on [Ca2+]c was inhibited by NPS-2143, an allosteric inhibitor of CaSR. In addition, NPS-2143 also inhibited the [Ca2+]c responses to sucralose and sucrose. Glucose as well as sucralose decreased cytoplasmic cAMP concentration in HEK-CaSR cells. The reduction of cAMP induced by glucose was blocked by pertussis toxin. Likewise, sucralose reduced [cAMP]c. Finally, glucose increased [Ca2+]c in PT-r parathyroid cells and in Madin-Darby canine kidney cells, both of which express endogenous CaSR. These results indicate that glucose acts as a positive allosteric modulator of CaSR. PMID:27613866
Effect of ADP on slow-twitch muscle fibres of the rat: implications for muscle fatigue
Macdonald, W A; Stephenson, D G
2006-01-01
Slow-twitch mechanically skinned fibres from rat soleus muscle were bathed in solutions mimicking the myoplasmic environment but containing different [ADP] (0.1 μm to 1.0 mm). The effect of ADP on sarcoplasmic reticulum (SR) Ca2+-content was determined from the magnitude of caffeine-induced force responses, while temporal changes in SR Ca2+-content allowed determination of the effective rates of the SR Ca2+-pump and of the SR Ca2+-leak. The SR Ca2+-pump rate, estimated at pCa (−log10[Ca2+]) 7.8, was reduced by 20% as the [ADP] was increased from 0.1 to 40 μm, with no further alteration when the [ADP] was increased to 1.0 mm. The SR Ca2+-leak rate constant was not altered by increasing [ADP] from 0.1 to 40 μm, but was increased by 26% when the [ADP] was elevated to 1.0 mm. This ADP-induced SR Ca2+-leak was insensitive to ruthenium red but was abolished by 2,5-di(tert-butyl)-1,4-hydroquinone (TBQ), indicating that the leak pathway is via the SR Ca2+-pump and not the SR Ca2+-release channel. The decrease in SR Ca2+-pump rate and SR Ca2+-leak rate when [ADP] was increased led to a 40% decrease in SR Ca2+-loading capacity. Elevation of [ADP] had only minor direct effects on the contractile apparatus of slow-twitch fibres. These results suggest that ADP has only limited depressing effects on the contractility of slow-twitch muscle fibres. This is in contrast to the marked effects of ADP on force responses in fast-twitch muscle fibres and may contribute to the fatigue-resistant nature of slow-twitch muscle fibres. PMID:16556653
NASA Astrophysics Data System (ADS)
Vara, M. A.; DeLong, K. L.; Herrmann, A. D.; Ouellette, G., Jr.; Richey, J. N.
2017-12-01
Coral Sr/Ca is a robust proxy of sea surface temperature (SST); however, discrepancies in the Sr/Ca-SST relationship among colonies of the same species may reduce confidence in absolute temperature reconstructions. Furthermore, terrestrial carbonate weathering can provide local sources of Sr and/or Ca to coastal waters that may disrupt the temperature-based coral Sr/Ca signal. Thus other trace metal SST proxies have been suggested to circumvent these issues (Li/Ca, Li/Mg, and Sr-U). Coral Ba/Ca has been used as a proxy for runoff and coastal upwelling, and therefore may be used to identify intervals when these processes overprint the Sr/Ca-SST signal. This study tests multiple coral SST proxies using reproducibility assessments to determine the best performing SST proxy. We conduct these assessments with cores recovered in 1991 by the U.S. Geological Survey from five Orbicella faveolata colonies from three reefs offshore of Veracruz, Mexico (19.06°N, 96.93°W) in water depths varying from 3 to 12 m. Previous studies found micromilling the complex skeletal structure of O. faveolata challenging and that monthly resolution may not recover full seasonal cycles. We use a laser ablation inductively coupled plasma mass spectrometer to simultaneously sample this coral's structure at weekly intervals spanning 8 years for Li/Ca, Li/Mg, Sr-U, Sr/Ca, and Ba/Ca. Here we found coral Li/Ca means and seasonal variations are similar among colonies thus this proxy may capture absolute temperature and SST variability. Similar to previous research with Porites corals, Li/Ca in these O. faveolata corals decreases with increases in SST with similar slopes and intercepts. During the last 10 years of these corals' lives, coral Sr/Ca analysis reveals a mean shift among colonies suggesting an external source could have disrupted the Sr/Ca signal, possibly seasonal runoff and/or winter upwelling common to Veracruz waters. Coral Ba/Ca analyses reveals elevated values in winters that coincide with increases in coral Sr/Ca in the deeper colony suggesting upwelling is occurring at that location. However, the coral Ba/Ca does not coincide with increase coral Sr/Ca in the shallower coral indicating no direct influence from runoff. Coral Li/Mg and Sr-U do not show substantial seasonal variations as expected with a coral-SST proxy.
Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; S P Singh
2016-12-01
Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO2 in Na2O-CaO-SrO-P2O5-SiO2 system. This work demonstrates that the substitution of SrO for SiO2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO2. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.
Maxwell, Joshua T; Blatter, Lothar A
2012-12-01
The widely accepted paradigm for cytosolic Ca(2+) wave propagation postulates a 'fire-diffuse-fire' mechanism where local Ca(2+)-induced Ca(2+) release (CICR) from the sarcoplasmic reticulum (SR) via ryanodine receptor (RyR) Ca(2+) release channels diffuses towards and activates neighbouring release sites, resulting in a propagating Ca(2+) wave. A recent challenge to this paradigm proposed the requirement for an intra-SR 'sensitization' Ca(2+) wave that precedes the cytosolic Ca(2+) wave and primes RyRs from the luminal side to CICR. Here, we tested this hypothesis experimentally with direct simultaneous measurements of cytosolic ([Ca(2+)](i); rhod-2) and intra-SR ([Ca(2+)](SR); fluo-5N) calcium signals during wave propagation in rabbit ventricular myocytes, using high resolution fluorescence confocal imaging. The increase in [Ca(2+)](i) at the wave front preceded depletion of the SR at each point along the calcium wave front, while during this latency period a transient increase of [Ca(2+)](SR) was observed. This transient elevation of [Ca(2+)](SR) could be identified at individual release junctions and depended on the activity of the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA). Increased SERCA activity (β-adrenergic stimulation with 1 μM isoproterenol (isoprenaline)) decreased the latency period and increased the amplitude of the transient elevation of [Ca(2+)](SR), whereas inhibition of SERCA (3 μM cyclopiazonic acid) had the opposite effect. In conclusion, the data provide experimental evidence that local Ca(2+) uptake by SERCA into the SR facilitates the propagation of cytosolic Ca(2+) waves via luminal sensitization of the RyR, and supports a novel paradigm of a 'fire-diffuse-uptake-fire' mechanism for Ca(2+) wave propagation in cardiac myocytes.
Maxwell, Joshua T; Blatter, Lothar A
2012-01-01
The widely accepted paradigm for cytosolic Ca2+ wave propagation postulates a ‘fire-diffuse-fire’ mechanism where local Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) via ryanodine receptor (RyR) Ca2+ release channels diffuses towards and activates neighbouring release sites, resulting in a propagating Ca2+ wave. A recent challenge to this paradigm proposed the requirement for an intra-SR ‘sensitization’ Ca2+ wave that precedes the cytosolic Ca2+ wave and primes RyRs from the luminal side to CICR. Here, we tested this hypothesis experimentally with direct simultaneous measurements of cytosolic ([Ca2+]i; rhod-2) and intra-SR ([Ca2+]SR; fluo-5N) calcium signals during wave propagation in rabbit ventricular myocytes, using high resolution fluorescence confocal imaging. The increase in [Ca2+]i at the wave front preceded depletion of the SR at each point along the calcium wave front, while during this latency period a transient increase of [Ca2+]SR was observed. This transient elevation of [Ca2+]SR could be identified at individual release junctions and depended on the activity of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA). Increased SERCA activity (β-adrenergic stimulation with 1 μm isoproterenol (isoprenaline)) decreased the latency period and increased the amplitude of the transient elevation of [Ca2+]SR, whereas inhibition of SERCA (3 μm cyclopiazonic acid) had the opposite effect. In conclusion, the data provide experimental evidence that local Ca2+ uptake by SERCA into the SR facilitates the propagation of cytosolic Ca2+ waves via luminal sensitization of the RyR, and supports a novel paradigm of a ‘fire-diffuse-uptake-fire’ mechanism for Ca2+ wave propagation in cardiac myocytes. PMID:22988145
NASA Astrophysics Data System (ADS)
Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; ElBatal, H. A.; El-Bassyouni, G. T.
2016-01-01
Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680 cm-1 after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.
Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T
2016-01-05
Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Min, E-mail: chenminyx@gmail.com; Yunnan Centers for Diseases Prevention and Control, Kunming 650022; Wang, Yanru
2010-06-11
Energy metabolism and Ca{sup 2+} handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1{alpha}) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1{alpha} in cardiac Ca{sup 2+} signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1{alpha} via adenoviral transduction. Our data shows that overexpressing PGC-1{alpha} improved myocyte contractility without increasing the amplitude of Ca{sup 2+}more » transients, suggesting that myofilament sensitivity to Ca{sup 2+} increased. Interestingly, the decay kinetics of global Ca{sup 2+} transients and Ca{sup 2+} waves accelerated in PGC-1{alpha}-expressing cells, but the decay rate of caffeine-elicited Ca{sup 2+} transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca{sup 2+}-ATPase (SERCA2a), but not Na{sup +}/Ca{sup 2+} exchange (NCX) contribute to PGC-1{alpha}-induced cytosolic Ca{sup 2+} clearance. Furthermore, PGC-1{alpha} induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1{alpha} did not disturb cardiac Ca{sup 2+} homeostasis, because SR Ca{sup 2+} load and the propensity for Ca{sup 2+} waves remained unchanged. These data suggest that PGC-1{alpha} can ameliorate cardiac Ca{sup 2+} cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1{alpha}-calcium handing pathway sheds new light on the role of PGC-1{alpha} in the therapy of cardiac diseases.« less
Grant, Michael P.; Stepanchick, Ann
2012-01-01
Calcium-sensing receptors (CaSRs) regulate systemic Ca2+ homeostasis. Loss-of-function mutations cause familial benign hypocalciuric hypercalcemia (FHH) or neonatal severe hyperparathyroidism (NSHPT). FHH/NSHPT mutations can reduce trafficking of CaSRs to the plasma membrane. CaSR signaling is potentiated by agonist-driven anterograde CaSR trafficking, leading to a new steady state level of plasma membrane CaSR, which is maintained, with minimal functional desensitization, as long as extracellular Ca2+ is elevated. This requirement for CaSR signaling to drive CaSR trafficking to the plasma membrane led us to reconsider the mechanism(s) contributing to dysregulated trafficking of FHH/NSHPT mutants. We simultaneously monitored dynamic changes in plasma membrane levels of CaSR and intracellular Ca2+, using a chimeric CaSR construct, which allowed explicit tracking of plasma membrane levels of mutant or wild-type CaSRs in the presence of nonchimeric partners. Expression of mutants alone revealed severe defects in plasma membrane targeting and Ca2+ signaling, which were substantially rescued by coexpression with wild-type CaSR. Biasing toward heterodimerization of wild-type and FHH/NSHPT mutants revealed that intracellular Ca2+ oscillations were insufficient to rescue plasma membrane targeting. Coexpression of the nonfunctional mutant E297K with the truncation CaSRΔ868 robustly rescued trafficking and Ca2+ signaling, whereas coexpression of distinct FHH/NSHPT mutants rescued neither trafficking nor signaling. Our study suggests that rescue of FHH/NSHPT mutants requires a steady state intracellular Ca2+ response when extracellular Ca2+ is elevated and argues that Ca2+ signaling by wild-type CaSRs rescues FHH mutant trafficking to the plasma membrane. PMID:23077345
Alteration and mineralization of an oceanic forearc and the ophiolite-ocean crust analogy
Alt, J.C.; Teagle, D.A.H.; Brewer, T.; Shanks, Wayne C.; Halliday, A.
1998-01-01
Mineralogical, chemical, and isotopic (O, C, S, and Sr) analyses were performed on minerals and bulk rocks from a forearc basement section to understand alteration processes and compare with mid-ocean ridges (MOR) and ophiolites. Ocean Drilling Program Hole 786B in the Izu-Bonin forearc penetrates 103 m of sediment and 725 m into volcanic flows, breccias, and basal dikes. The rocks comprise boninites and andesites to rhyolites. Most of the section was affected by low-temperature (<100??C) seawater alteration, with temperatures increasing downward. The rocks are partly (5-25%) altered to smectite, Fe-oxyhydroxide, calcite, and phillipsite, and exhibit gains of K, Rb, and P, loss of Ca, variable changes in Si, Na, Mg, Fe, Sr, and Y, and elevated ??18O and 87Sr/86Sr. Higher temperatures (???150??C) in the basal dikes below 750 m led to more intense alteration and formation of chlorite-smectite, corrensite, albite, K-feldspar, and quartz (??chlorite). A 5 m thick hydrothermally altered and pyritized zone at 815 m in the basal dikes reacted with mixtures of seawater and hydrothermal fluids to Mg-chlorite, albite, and pyrite, and gained Mg and S and lost Si and Ca. Focused flow of hydrothermal fluids produced sericitization halos (Na-K sericite, quartz, pyrophyllite, K-feldspar, and pyrite) along quartz veins at temperatures of 200??-250??C. High 87Sr/86Sr ratios of chloritized (???0.7055) and sericitized (???0.7065) rocks indicate involvement of seawater via mixing with hydrothermal fluids. Low ??34S of sulfide (???2 to -5.5???) and sulfate (12.5???) are consistent with input of magmatic SO2 into hydrothermal fluids and disproportionation to sulfide and sulfate. Alteration processes were generally similar to those at MORs, but the arc section is more intensively altered, in part because of the presence of abundant glassy rocks and mafic phases. The increase in alteration grade below 750 m and the mineralization in the basal dikes are analogous to changes that occur near the base of the volcanic section in MOR and the Troodos ophiolite.
Changes in mineral composition of eggshells from black ducks and mallards fed DDE in the diet
Longcore, J.R.; Samson, F.B.; Kreitzer, J.F.; Spann, J.W.
1971-01-01
Diets containing 10 and 30 ppm (dry weight) DDE were fed to black ducks, and diets containing 1, 5, and 10 ppm (dry weight) DDE were fed to mallards. Among the results were the following changes in black duck eggshell composition: (a) significant increase in the percentage of Mg, (b) significant decreases in Ba and Sr, (c) increases (which approached significance) in average percentage of eggshell Na and Cu, (d) a decrease in shell Ca which approached significance, (e) patterns of mineral correlations which in some instances were distinct to dosage groups, and (f) inverse correlations in the control group between eggshell thickness Mg and Na. Changes in mallard eggshells were: (a) significant increase in percentage of magnesium at 5 and 10 ppm DDE, (b) significant decrease in Al at 5 and 10 ppm DDE, (c) a significant decrease in Ca from eggshells from the 10 ppm DDE group, and (d) an increase in average percentage of Na in eggshells from DDE dosed ducks which approached significance.
Solubility of metal oxides in molten equimolar KBr-NaBr mixture at 973 K
NASA Astrophysics Data System (ADS)
Cherginets, V. L.; Rebrova, T. P.; Naumenko, V. A.
2014-09-01
Solubility products (p K s,MO, molality) are measured by potentiometric titration with a Pt(O2)|ZrO2(Y2O3) oxygen electrode in the molten KBr-NaBr equimolar mixture at 973 K for the following oxides: CaO (5.00 ± 0.3), MnO (7.85 ± 0.3), NiO (9.72 ± 0.04), PbO (5.20 ± 0.3), and SrO (3.81 ± 0.3). The correlation between p K s,MeO and the polarization of the corresponding cations by Goldschmidt is obtained.
Bouschet, Tristan; Martin, Stéphane; Kanamarlapudi, Venkateswarlu; Mundell, Stuart; Henley, Jeremy M
2007-08-01
G-protein-coupled receptors (GPCRs) transduce the binding of extracellular stimuli into intracellular signalling cascades that can lead to morphological changes. Here, we demonstrate that stimulation of the calcium-sensing receptor (CaSR), a GPCR that promotes chemotaxis by detecting increases in extracellular calcium, triggers plasma membrane (PM) ruffling via a pathway that involves beta-arrestin 1, Arf nucleotide binding site opener (ARNO), ADP-ribosylating factor 6 (ARF6) and engulfment and cell motility protein (ELMO). Expression of dominant negative beta-arrestin 1 or its knockdown with siRNA impaired the CaSR-induced PM ruffling response. Expression of a catalytically inactive ARNO also reduced CaSR-induced PM ruffling. Furthermore, beta-arrestin 1 co-immunoprecipitated with the CaSR and ARNO under resting conditions. Agonist treatment did not markedly alter beta-arrestin 1 binding to the CaSR or to ARNO but it did elicit the translocation and colocalisation of the CaSR, beta-arrestin 1 and ARNO to membrane protrusions. Furthermore, ARF6 and ELMO, two proteins known to couple ARNO to the cytoskeleton, were required for CaSR-dependent morphological changes and translocated to the PM ruffles. These data suggest that cells ruffle upon CaSR stimulation via a mechanism that involves translocation of beta-arrestin 1 pre-assembled with the CaSR or ARNO, and that ELMO plays an essential role in this CaSR-signalling-induced cytoskeletal reorganisation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chunya; Skelton, Adam A.; Chen, Mingjun
Here the binding of a negatively charged residue, aspartic acid (Asp) in tripeptide arginine-glycine-aspartic acid, onto a negatively charged hydroxylated rutile (110) surface in aqueous solution, containing divalent (Mg 2+, Ca 2+, or Sr 2+) or monovalent (Na +, K +, or Rb +) cations, was studied by molecular dynamics (MD) simulations. The results indicate that ionic radii and charges will significantly affect the hydration, adsorption geometry, and distance of cations from the rutile surface, thereby regulating the Asp/rutile binding mode. The adsorption strength of monovalent cations on the rutile surface in the order Na + > K + >more » Rb + shows a “reverse” lyotropic trend, while the divalent cations on the same surface exhibit a “regular” lyotropic behavior with decreasing crystallographic radii (the adsorption strength of divalent cations: Sr 2+ > Ca 2+ > Mg 2+). The Asp side chain in NaCl, KCl, and RbCl solutions remains stably H-bonded to the surface hydroxyls and the inner-sphere adsorbed compensating monovalent cations act as a bridge between the COO – group and the rutile, helping to “trap” the negatively charged Asp side chain on the negatively charged surface. In contrast, the mediating divalent cations actively participate in linking the COO– group to the rutile surface; thus the Asp side chain can remain stably on the rutile (110) surface, even if it is not involved in any hydrogen bonds with the surface hydroxyls. Inner- and outer-sphere geometries are all possible mediation modes for divalent cations in bridging the peptide to the rutile surface.« less
β-Adrenergic induced SR Ca2+ leak is mediated by an Epac-NOS pathway.
Pereira, Laëtitia; Bare, Dan J; Galice, Samuel; Shannon, Thomas R; Bers, Donald M
2017-07-01
Cardiac β-adrenergic receptors (β-AR) and Ca 2+ -Calmodulin dependent protein kinase (CaMKII) regulate both physiological and pathophysiological Ca 2+ signaling. Elevated diastolic Ca 2+ leak from the sarcoplasmic reticulum (SR) contributes to contractile dysfunction in heart failure and to arrhythmogenesis. β-AR activation is known to increase SR Ca 2+ leak via CaMKII-dependent phosphorylation of the ryanodine receptor. Two independent and reportedly parallel pathways have been implicated in this β-AR-CaMKII cascade, one involving exchange protein directly activated by cAMP (Epac2) and another involving nitric oxide synthase 1 (NOS1). Here we tested whether Epac and NOS function in a single series pathway to increase β-AR induced and CaMKII-dependent SR Ca 2+ leak. Leak was measured as both Ca 2+ spark frequency and tetracaine-induced shifts in SR Ca 2+ , in mouse and rabbit ventricular myocytes. Direct Epac activation by 8-CPT (8-(4-chlorophenylthio)-2'-O-methyl-cAMP) mimicked β-AR-induced SR Ca 2+ leak, and both were blocked by NOS inhibition. The same was true for myocyte CaMKII activation (assessed via a FRET-based reporter) and ryanodine receptor phosphorylation. Inhibitor and phosphorylation studies also implicated phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) downstream of Epac and above NOS activation in this pathway. We conclude that these two independently characterized parallel pathways function mainly via a single series arrangement (β-AR-cAMP-Epac-PI3K-Akt-NOS1-CaMKII) to mediate increased SR Ca 2+ leak. Thus, for β-AR activation the cAMP-PKA branch effects inotropy and lusitropy (by effects on Ca 2+ current and SR Ca 2+ -ATPase), this cAMP-Epac-NOS pathway increases pathological diastolic SR Ca 2+ leak. This pathway distinction may allow novel SR Ca 2+ leak therapeutic targeting in treatment of arrhythmias in heart failure that spare the inotropic and lusitropic effects of the PKA branch. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ardini, Francisco; Soggia, Francesco; Abelmoschi, Maria Luisa; Magi, Emanuele; Grotti, Marco
2013-01-01
To provide a new insight into the response of plants to abiotic stresses, the ionomic profiles of Nicotiana langsdorffii specimens have been determined before and after exposure to toxic metals (chromium) or drought conditions. The plants were genetically transformed with the rat glucocorticoid receptor (GR) or the gene for Agrobacterium rhizogenes rolC, because these modifications are known to produce an imbalance in phytohormone equilibria and a significant change in the defence response of the plant. Elemental profiles were obtained by developing and applying analytical procedures based on inductively coupled plasma atomic emission and mass spectrometry (ICP-AES/MS). In particular, the removal of isobaric interferences affecting the determination of Cr and V by ICP-MS was accomplished by use of a dynamic reaction cell, after optimization of the relevant conditions. The combined use of ICP atomic emission and mass spectrometry enabled the determination of 29 major and trace elements (Ba, Bi, Ca, Cd, Co, Cr, Cu, Eu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, P, Pb, Pt, Rb, S, Sb, Sn, Sr, Te, V, W, Y, and Zn) in different parts of the plants (roots, stems, and leaves), with high accuracy and precision. Multivariate data processing and study of element distribution patterns provided new information about the ionomic response of the target organism to chemical treatment or water stress. Genetic modification mainly affected the distribution of Bi, Cr, Mo, Na, and S, indicating that these elements were involved in biochemical processes controlled by the GR or rolC genes. Chemical stress strongly affected accumulation of several elements (Ba, Ca, Fe, Ga, K, Li, Mn, Mo, Na, P, Pb, Rb, S, Sn, Te, V, and Zn) in different ways; for Ca, Fe, K, Mn, Na, and P the effect was quite similar to that observed in other studies after treatment with other transition elements, for example Cu and Cd. The effect of water deficit was less evident, mainly consisting in a decrease of Ba, Cr, Na, and Sr in roots.
Characterization of elemental release during microbe granite interactions at T = 28 °C
NASA Astrophysics Data System (ADS)
Wu, Lingling; Jacobson, Andrew D.; Hausner, Martina
2008-02-01
This study used batch reactors to characterize the mechanisms and rates of elemental release (Al, Ca, K, Mg, Na, F, Fe, P, Sr, and Si) during interaction of a single bacterial species ( Burkholderia fungorum) with granite at T = 28 °C for 35 days. The objective was to evaluate how actively metabolizing heterotrophic bacteria might influence granite weathering on the continents. We supplied glucose as a C source, either NH 4 or NO 3 as N sources, and either dissolved PO 4 or trace apatite in granite as P sources. Cell growth occurred under all experimental conditions. However, solution pH decreased from ˜7 to 4 in NH 4-bearing reactors, whereas pH remained near-neutral in NO 3-bearing reactors. Measurements of dissolved CO 2 and gluconate together with mass-balances for cell growth suggest that pH lowering in NH 4-bearing reactors resulted from gluconic acid release and H + extrusion during NH 4 uptake. In NO 3-bearing reactors, B. fungormum likely produced gluconic acid and consumed H + simultaneously during NO 3 utilization. Over the entire 35-day period, NH 4-bearing biotic reactors yielded the highest release rates for all elements considered. However, chemical analyses of biomass show that bacteria scavenged Na, P, and Sr during growth. Abiotic control reactors followed different reaction paths and experienced much lower elemental release rates compared to biotic reactors. Because release rates inversely correlate with pH, we conclude that proton-promoted dissolution was the dominant reaction mechanism. Solute speciation modeling indicates that formation of Al-F and Fe-F complexes in biotic reactors may have enhanced mineral solubilities and release rates by lowering Al and Fe activities. Mass-balances further reveal that Ca-bearing trace phases (calcite, fluorite, and fluorapatite) provided most of the dissolved Ca, whereas more abundant phases (plagioclase) contributed negligible amounts. Our findings imply that during the incipient stages of granite weathering, heterotrophic bacteria utilizing glucose and NH 4 only moderately elevate silicate weathering reactions that consume atmospheric CO 2. However, by enhancing the dissolution of non-silicate, Ca-bearing trace minerals, they could contribute to high Ca/Na ratios commonly observed in granitic watersheds.
Hostrup, M; Kalsen, A; Ørtenblad, N; Juel, C; Mørch, K; Rzeppa, S; Karlsson, S; Backer, V; Bangsbo, J
2014-01-01
The aim of the present study was to examine the effect of β2-adrenergic stimulation on skeletal muscle contractile properties, sarcoplasmic reticulum (SR) rates of Ca2+ release and uptake, and Na+–K+-ATPase activity before and after fatiguing exercise in trained men. The study consisted of two experiments (EXP1, n = 10 males, EXP2, n = 20 males), where β2-adrenoceptor agonist (terbutaline) or placebo was randomly administered in double-blinded crossover designs. In EXP1, maximal voluntary isometric contraction (MVC) of m. quadriceps was measured, followed by exercise to fatigue at 120% of maximal oxygen uptake (). A muscle biopsy was taken after MVC (non-fatigue) and at time of fatigue. In EXP2, contractile properties of m. quadriceps were measured with electrical stimulations before (non-fatigue) and after two fatiguing 45 s sprints. Non-fatigued MVCs were 6 ± 3 and 6 ± 2% higher (P < 0.05) with terbutaline than placebo in EXP1 and EXP2, respectively. Furthermore, peak twitch force was 11 ± 7% higher (P < 0.01) with terbutaline than placebo at non-fatigue. After sprints, MVC declined (P < 0.05) to the same levels with terbutaline as placebo, whereas peak twitch force was lower (P < 0.05) and half-relaxation time was prolonged (P < 0.05) with terbutaline. Rates of SR Ca2+ release and uptake at 400 nm [Ca2+] were 15 ± 5 and 14 ± 5% (P < 0.05) higher, respectively, with terbutaline than placebo at non-fatigue, but declined (P < 0.05) to similar levels at time of fatigue. Na+–K+-ATPase activity was unaffected by terbutaline compared with placebo at non-fatigue, but terbutaline counteracted exercise-induced reductions in maximum rate of activity (Vmax) at time of fatigue. In conclusion, increased contractile force induced by β2-adrenergic stimulation is associated with enhanced rate of Ca2+ release in humans. While β2-adrenergic stimulation elicits positive inotropic and lusitropic effects on non-fatigued m. quadriceps, these effects are blunted when muscles fatigue. PMID:25344552
Goueguel, Christian; McIntyre, Dustin L.; Jain, Jinesh; ...
2015-06-30
A significant portion of the carbon sequestration research being performed in the United States involves the risk assessment of injecting large quantities of carbon dioxide into deep saline aquifers. Leakage of CO 2 has the potential to affect the quality of groundwater supplies in case contaminants migrate through underlying conduits. New remote sensing and near-surface monitoring technologies are needed to ensure that injection, abandoned, and monitoring wells are structurally sound, and that CO 2 remains within the geologic storage reservoir. In this paper, we propose underwater laser-induced breakdown spectroscopy (underwater LIBS) as an analytical method for monitoring naturally occurring elementsmore » that can act as tracers to detect a CO 2 leak from storage sites. Laboratory-scale experiments were conducted to measure Sr 2+, Ca 2+, K +, and Li + in bulk solutions to ascertain the analytical performance of underwater LIBS. We compared the effect of NaCl, Na 2CO 3, and Na 2SO 4 on the analytes calibration curves to determine underwater LIBS’ ability to analyze samples of sodium compounds. In all cases, the calibration curves showed a good linearity within 2 orders of magnitude. The limit of detections (LODs) obtained for K + (30±1 ppb) and Li + (60±2 ppb) were in ppb range, while higher LODs were observed for Ca 2+ (0.94±0.14 ppm) and Sr 2+ (2.89±0.11 ppm). Evaluation of the calibration curves for the analytes in mixed solutions showed dependence of the lines’ intensity with the sodium compounds. The intensities increased respectively in the presence of dissolved NaCl and Na 2SO 4, whereas the intensities slightly decreased in the presence of Na 2CO 3. Lastly, the capabilities of underwater LIBS to detect certain elements in the ppb or in the low ppm range make it particularly appealing for in situ monitoring of a CO 2 leak.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goueguel, Christian; McIntyre, Dustin L.; Jain, Jinesh
A significant portion of the carbon sequestration research being performed in the United States involves the risk assessment of injecting large quantities of carbon dioxide into deep saline aquifers. Leakage of CO 2 has the potential to affect the quality of groundwater supplies in case contaminants migrate through underlying conduits. New remote sensing and near-surface monitoring technologies are needed to ensure that injection, abandoned, and monitoring wells are structurally sound, and that CO 2 remains within the geologic storage reservoir. In this paper, we propose underwater laser-induced breakdown spectroscopy (underwater LIBS) as an analytical method for monitoring naturally occurring elementsmore » that can act as tracers to detect a CO 2 leak from storage sites. Laboratory-scale experiments were conducted to measure Sr 2+, Ca 2+, K +, and Li + in bulk solutions to ascertain the analytical performance of underwater LIBS. We compared the effect of NaCl, Na 2CO 3, and Na 2SO 4 on the analytes calibration curves to determine underwater LIBS’ ability to analyze samples of sodium compounds. In all cases, the calibration curves showed a good linearity within 2 orders of magnitude. The limit of detections (LODs) obtained for K + (30±1 ppb) and Li + (60±2 ppb) were in ppb range, while higher LODs were observed for Ca 2+ (0.94±0.14 ppm) and Sr 2+ (2.89±0.11 ppm). Evaluation of the calibration curves for the analytes in mixed solutions showed dependence of the lines’ intensity with the sodium compounds. The intensities increased respectively in the presence of dissolved NaCl and Na 2SO 4, whereas the intensities slightly decreased in the presence of Na 2CO 3. Lastly, the capabilities of underwater LIBS to detect certain elements in the ppb or in the low ppm range make it particularly appealing for in situ monitoring of a CO 2 leak.« less
Xiong, Yongliang
2006-01-01
In this study, a series of interaction coefficients of the Brønsted-Guggenheim-Scatchard specific interaction theory (SIT) have been estimated up to 200°C and 400 bars. The interaction coefficients involving Cl- estimated include ε(H+, Cl-), ε(Na+, Cl-), ε(Ag+, Cl-), ε(Na+, AgCl2 -), ε(Mg2+, Cl-), ε(Ca2+, Cl-), ε(Sr2+, Cl-), ε(Ba2+, Cl-), ε(Sm3+, Cl-), ε(Eu3+, Cl-), ε(Gd3+, Cl-), and ε(GdAc2+, Cl-). The interaction coefficients involving OH- estimated include ε(Li+, OH-), ε(K+, OH-), ε(Na+, OH-), ε(Cs+, OH-), ε(Sr2+, OH-), and ε(Ba2+, OH-). In addition, the interaction coefficients of ε(Na+, Ac-) and ε(Ca2+, Ac-) have also been estimated. The bulk of interaction coefficients presented in this study has been evaluated from the mean activity coefficients. A few of them have been estimated from the potentiometric and solubility studies. The above interaction coefficients are tested against both experimental mean activity coefficients and equilibrium quotients. Predicted mean activity coefficients are in satisfactory agreement with experimental data. Predicted equilibrium quotients are in very good agreement with experimental values. Based upon its relatively rapid attainment of equilibrium and the ease of determining magnesium concentrations, this study also proposes that the solubility of brucite can be used as a pH (pcH) buffer/sensor for experimental systems in NaCl solutions up to 200°C by employing the predicted solubility quotients of brucite in conjunction with the dissociation quotients of water and the first hydrolysis quotients of Mg2+, all in NaCl solutions. PMID:16759370
NASA Astrophysics Data System (ADS)
Yan, Li; Zhou, Jiaxing; Sun, Zhenzhou; Yang, Meng; Ma, Liqun
2018-04-01
Magnesium alloys are widely studied as biomedical implants owing to their biodegradability. In this work, novel Mg-5Zn-0.5Ca-xSr (x = 0, 0.14, 0.36, 0.50, 0.70 wt%) alloys were prepared as biomedical materials. The influence of strontium (Sr) addition on the microstructure, corrosion properties and corrosion morphology of the as-cast Mg-5Zn-0.5Ca-xSr alloys is investigated by a variety of techniques such as scanning electron microscopy, x-ray diffraction, and electrochemical measurements. The Sr-free alloy is composed of three phases, namely, α-Mg, CaMg2 and Ca2Mg6Zn3, while the alloys with the Sr addition consist of α-Mg, CaMg2 and Ca2Mg6Zn3 and Mg17Sr2. Corrosion experiments in Hank’s solution show that the addition of a small amount of Sr can improve the corrosion resistance of the Mg-5Zn-0.5Ca alloy. The corrosion products include Mg(OH)2, Zn(OH)2, Ca(OH)2, and HA (Ca5(PO4)3(OH)). Mg-5Zn-0.5Ca-0.36Sr alloy has the minimum weight loss rate (0.68 mm/a), minimal hydrogen evolution (0.08 ml/cm2/d) and minimum corrosion current density (7.4 μA/cm2), indicating that this alloy shows the best corrosion resistance.
Pape, Paul C.; Carrier, Nicole
1998-01-01
Cut muscle fibers from Rana temporaria (sarcomere length, 3.5–3.9 μm; 14–16°C) were mounted in a double Vaseline-gap chamber and equilibrated with an external solution that contained tetraethyl ammonium– gluconate and an internal solution that contained Cs as the principal cation, 20 mM EGTA, and 0 Ca. Fibers were stimulated with a voltage-clamp pulse protocol that consisted of pulses to −70, −65, −60, −45, and −20 mV, each separated by 400-ms periods at −90 mV. The change in total Ca that entered into the myoplasm (Δ[CaT]) and the Ca content of the SR ([CaSR]) were estimated with the EGTA/phenol red method (Pape, P.C., D.-S. Jong, and W.K. Chandler. 1995. J. Gen. Physiol. 106:259–336). Fibers were stimulated with the pulse protocol, usually every 5 min, so that the resting value of [CaSR] decreased from its initial value of 1,700–2,300 μM to values near or below 100 μM after 18–30 stimulations. Three main findings for the voltage pulses to −70, −65, and −60 mV are: (a) the depletion-corrected rate of Ca release (release permeability) showed little change when [CaSR] decreased from its highest level (>1,700 μM) to ∼1,000 μM; (b) as [CaSR] decreased below 1,000 μM, the release permeability increased to a maximum level when [CaSR] was near 300 μM that was on average about sevenfold larger than the values observed for [CaSR] > 1,000 μM; and (c) as [CaSR] decreased from ∼300 μM to <100 μM, the release permeability decreased, reaching half its maximum value when [CaSR] was ∼110 μM on average. It was concluded that finding b was likely due to a decrease in Ca inactivation, while finding c was likely due to a decrease in Ca-induced Ca release. PMID:9689025
NASA Astrophysics Data System (ADS)
Aranha, Renita; Edinger, Evan; Layne, Graham; Piercey, Glenn
2014-01-01
Red tree coral, Primnoa pacifica, is one of the more common habitat-forming deep-sea gorgonian corals in the northeast Pacific Ocean, growing in colonies up to 2 m high and living for decades to hundreds of years. Growth characteristics of P. pacifica were studied in Dixon Entrance, northern British Columbia, and the Olympic Coast National Marine Sanctuary, Washington State, USA, based on samples collected in July 2008. To minimize the impact of scientific sampling on coral populations, only dead coral skeletons and dislodged live corals were collected. Ages and growth rates were measured using band counts, and checked against AMS-14C ages of gorgonin rings. Ba/Ca, Mg/Ca, Na/Ca and Sr/Ca ratios in the calcite cortex were measured using radial Secondary Ion Mass Spectrometer (SIMS) transects with a spot size of <20 μm and separation distance of 25 μm. Growth banding was consistent in width between the central mixed zone consisting of calcite and gorgonin and the dominantly calcite cortex. Average annual radial growth rate of the nine corals analysed ranged from 0.23 to 0.58 mm/yr, with an average growth rate of 0.32 mm/yr in Dixon Entrance and 0.36 m/yr in OCNMS. These growth rates are slightly higher than P. pacifica growth rates from the Gulf of Alaska, and more than four times the growth rates of sister species Primnoa resedaeformis in the northwest Atlantic. Primary productivity is likely a more important driver of geographic variation in Primnoa growth rates than temperature or current strength. Both Dixon Entrance and OCNMS are areas with high primary productivity and strong tidal currents. Lack of post-Atomic Bomb radiocarbon in all but one of the gorgonin samples, and long radiocarbon reservoir ages in the Northeast Pacific, made radiocarbon-based verification of coral ages and growth rates difficult due to wide errors in calibrated age estimates. Mg/Ca and Sr/Ca ratios were inversely correlated in two of the three corals analyzed, and showed evidence of interannual variation. Mg/Ca ratios ranged from 70 to 136 mmol mol-1, and Sr/Ca ratios from 2.041 to 3.14 mmol mol-1. Previously published relationships between gorgonian calcite Mg/Ca and seawater temperature yielded average temperatures matching ambient measurements, but the intra- and inter-annual variation in apparent temperature based on the Mg/Ca ratios was more than double the observed variation in modern seawater temperature ranges in the region. Annual variation in Mg/Ca and Sr/Ca could be related to seasonal changes in precipitation efficiency, which is likely a function of short-term fluctuations in coral growth rate, in turn related to variation in primary productivity. Seasonal and interannual variations in food availability, driven by primary productivity, may affect skeletal growth rate, hence Mg/Ca and Sr/Ca ratios. Primnoid coral skeletal microgeochemistry probably records temporal changes in both temperature and primary productivity.
Berrios, A; Brink, D; del Castillo, J; Smith, D S
1985-01-01
Brief (2-5 msec) electrical pulses applied to the primary spines of the sea urchin Diadema antillarum elicit graded action potentials (ap's). These ap's can be attributed to the electrical activity of a set of 14-21 bundles of neurites, each comprising 1000 processes near the spine base and tapering towards the spine tip. The shape of the ap's varies from a simple diphasic deflection to a complex waveform with 6 or more components. Peak-to-peak amplitude is less than 1mV. The ap's are conducted at a uniform speed of ca. 27 cm/sec. The ap's are not affected by tetrodotoxin (1 microgram/ml) and continue to be produced in Na-free artificial sea water (ASW). The amplitude of the ap's is greatly reduced or totally abolished in Ca-free ASW. However, some electrical activity may continue in the absence of external Ca, due to release of Ca2+ ions from the calcium carbonate crystals of the spine shaft. Replacing the Ca content of ASW by barium ions causes an irreversible blockade of the ap's. Spines equilibrated with ASW containing Sr2+ ions instead of Ca2+ produce ap's of increased amplitude (up to X 2). The ap's are blocked by La3+, Co2+, Cd2+ (2-5 mM) and by the organic Ca channel blocker Bepridil (2 mM). We conclude that the spinal ap's are due to the summation of Ca spikes produced by the activation of Ca channels which are blocked by barium and have a high affinity for, or permeability to Sr vs Ca.
Ragone, M I; Torres, N S; Consolini, A E
2013-02-01
To study the role of mitochondria in the recovery of guinea-pig hearts exposed to high-K(+)-cardioplegia (CPG) and ischaemia/reperfusion (I/R) METHODS: We measured contractility and heat release in perfused guinea-pig hearts and cytosolic and mitochondrial Ca(2+) by epifluorescence and confocal microscopy in isolated cardiomyocytes loaded with Fluo-4 or Rhod-2. In hearts, CPG increased the postischaemic contractile recovery, and this was potentiated by the mNCX blocker clonazepam and the mKATP opener diazoxide, which also prevented the fall in muscle economy. Moreover, CPG prevented the stunning induced by ouabain, which was reduced by clonazepam. In cardiomyocytes, CPG increased fluorescent signals of cytosolic and mitochondrial Ca(2+), while the addition of a mNCX blocker (CGP37157) increased cytosolic but reduced mitochondrial [Ca(2+)]. Ouabain in CPG increased cytosolic Ca(2+) and resting heat, but the addition of CGP37157 reduced them, as well as mitochondrial Ca(2+). CPG, diazoxide and clonazepam improve postischaemic recovery, respectively, by increasing the Ca(2+) cycling and by reducing the mitochondrial Ca(2+) uptake either by uniporter or by mNCX. The mitochondria compete with the leaky sarcoplasmic reticulum (SR) as sink of Ca(2+) in guinea-pig hearts, affecting the postischaemic contractility. CPG also prevented the ouabain-induced dysfunction by avoiding the Ca(2+) overload. Ouabain reduced the synergism between CPG and clonazepam suggesting that [Na(+)]i and SR load influence the mNCX role. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.
Calcium-Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization
NASA Astrophysics Data System (ADS)
Fruchter, J. S.; Vermeul, V.; Szecsody, J.; Williams, M. D.; Fritz, B. G.
2010-12-01
Sr-90 present in groundwater and the vadose zone at the Hanford 100N area due to past waste disposal practices has reached the nearby Columbia River, as evidenced by Sr-90 concentrations in near river wells and aquifer tubes and near shore sediments. Sr-90 is currently being remediated by adsorption onto apatite (55 times stronger than Sr-90 adsorption to sediment), followed by incorporation of the Sr-90 into the apatite structure. If the Sr-90 can remain immobilized for 300 years (~ten 29.1-yr half-lives of Sr-90 decay), it will have decayed below regulatory limits to Y-90 and to stable Zr-90. Apatite [Ca10(PO4)6(OH)2] is being precipitated in situ by injection of an aqueous solution of Ca-citrate and Na-phosphate through a series of injection wells spaced 30 ft on center, forming a 300-ft-long permeable reactive barrier. Design criteria for the injection operations were based on 1) amendment volume and mass injected, 2) amendment arrival at adjacent wells, 3) water-level elevation during treatment, and 4) injection rate limitations associated with well plugging. An evaluation of compliance with these injection design criteria was used to assess operational performance and identify candidate wells for supplemental treatment. Injection design criteria were not fully met at 8 of the 16 injection well locations, with the primary deficiency at 4 of 8 locations being the limited vertical extent of Hanford formation treatment due to low-river-stage conditions during the injection. Wells whose extent of treatment did not meet design criteria were recommended for retreatment. Although injection design criteria were not fully met at a significant number of well locations, aqueous performance assessment monitoring data collected to date indicate good barrier performance. Aqueous Sr-90 monitoring in four compliance monitoring wells over a year following the high concentration injections indicates 84% to 95% decrease in Sr-90 concentrations (relative to the low and high end of the baseline range, respectively). In addition, post treatment sediment cores were collected to quantify the amount of apatite that was formed from the barrier-emplacement operations. Results indicate that the processes that account for the observed reduction in aqueous Sr-90 concentrations include: a) incorporation of Sr-90 into apatite (about 39.4% of the total Sr-90 mass in the core), b) ion exchange flushing due to the Ca-citrate-PO4 solution injection (about 47% of the mass), and c) a small increase in Sr-90 adsorbed to sediment and apatite precipitate.
Ilyas, Asim; Shah, Munir H
2017-12-01
Imbalances in the concentrations of trace metals have become an increasingly recognized source of infirmity worldwide particularly in the development of ischemia heart disease (IHD). Present study is intended to analyze the concentrations of Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Pb, Sr, and Zn in the blood and scalp hair of the patients and counterpart controls by flame atomic absorption spectrometry after wet-acid digestion. On the average, Cd, Co, Cr, Fe, K, Li, Mn, Na, and Pb revealed significantly elevated concentrations in the blood of the patients compared with the controls (p < 0.05), whereas mean levels of Ca, Cd, Fe, K, Li, Pb, and Sr in the scalp hair were significantly higher in the patients than the controls (p < 0.05). Most of the metals exhibited noticeable disparities in their concentrations based on gender, abode, dietary/smoking habits, and occupations of both donor groups. The correlation study and multivariate statistical analyses revealed some significantly divergent associations and apportionment of the metals in both donor groups. Overall, comparative variations of the metal contents in blood/scalp hair of the patients were significantly different than the controls; thus, evaluation of trace metals status may be indicative of pathological disorders, such as IHD.
Transcription factor CREB is involved in CaSR-mediated cytoskeleton gene expression.
Huang, Shuaishuai; Ren, Yu; Wang, Ping; Li, Yanyuan; Wang, Xue; Zhuang, Haihui; Fang, Rong; Wang, Yuduo; Liu, Ningsheng; Hehir, Michael; Zhou, Jeff X
2015-03-01
Our previous studies illustrated that a steady increase of intracellular calcium concentration ([Ca2+]i) was important for maintaining microtubules (MTs) rearrangement in apoptotic cells. However, little is known about the effect of calcium sensing receptor (CaSR)-mediated increase in [Ca2+]i on cytoskeleton gene expression. We examined the impact of taxol or CaSR agonist/antagonist on the regulation of [Ca2+]i concentration, cytoskeleton arrangement, phosphorylated CREB and cytoskeleton gene expressions in HeLa cells with dominant negative plasmid of CREB (PM). This study demonstrated that Gdcl3 (a specific CaSR agonist) evoked a rapid increase of [Ca2+]i, formed a rigid bundle of MTs which surrounded the nucleus and decreased the cytoskeleton gene expressions in HeLa cells. These effects were rescued by addition of NPS2390 (a specific CaSR antagonist). Moreover, CaSR activity affected cytoskeleton gene expression through transcription factor CREB. Histoscores of pCREB immunoreactivity in tissues of cervical adenocarcinoma, renal clear cell carcinoma, and diffuse large B-cell lymphoma were markedly increased compared with non malignant tissue. These data demonstrate, for the first time, that CaSR-mediated increase in [Ca2+]i probably modulate cytoskeleton organization and gene expression via transcription factor. © 2014 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Ito, K.; Yan, X.; Tajima, M.; Su, Z.; Barry, W. H.; Lorell, B. H.; Schneider, M. (Principal Investigator)
2000-01-01
Mouse myocyte contractility and the changes induced by pressure overload are not fully understood. We studied contractile reserve in isolated left ventricular myocytes from mice with ascending aortic stenosis (AS) during compensatory hypertrophy (4-week AS) and the later stage of early failure (7-week AS) and from control mice. Myocyte contraction and [Ca(2+)](i) transients with fluo-3 were measured simultaneously. At baseline (0.5 Hz, 1.5 mmol/L [Ca(2+)](o), 25 degrees C), the amplitude of myocyte shortening and peak-systolic [Ca(2+)](i) in 7-week AS were not different from those of controls, whereas contraction, relaxation, and the decline of [Ca(2+)](i) transients were slower. In response to the challenge of high [Ca(2+)](o), fractional cell shortening was severely depressed with reduced peak-systolic [Ca(2+)](i) in 7-week AS compared with controls. In response to rapid pacing stimulation, cell shortening and peak-systolic [Ca(2+)](i) increased in controls, but this response was depressed in 7-week AS. In contrast, the responses to both challenge with high [Ca(2+)](o) and rapid pacing in 4-week AS were similar to those of controls. Although protein levels of Na(+)-Ca(2+) exchanger were increased in both 4-week and 7-week AS, the ratio of SR Ca(2+)-ATPase to phospholamban protein levels was depressed in 7-week AS compared with controls but not in 4-week AS. This was associated with an impaired capacity to increase sarcoplasmic reticulum Ca(2+) load during high work states in 7-week AS myocytes. In hypertrophied failing mouse myocytes, depressed contractile reserve is related to an impaired augmentation of systolic [Ca(2+)](i) and SR Ca(2+) load and simulates findings in human failing myocytes.
NASA Astrophysics Data System (ADS)
Vance, E. R.; Davis, J.; Olufson, K.; Chironi, I.; Karatchevtseva, I.; Farnan, I.
2012-01-01
Sodalite/glass bodies prepared by hot isostatic pressing (HIPing) at ˜850 °C/100 MPa are candidates for immobilising fission product-bearing waste KCl-LiCl pyroprocessing salts. To study the capacity of sodalite to structurally incorporate such pyroprocessing salts, K, Li, Cs, Sr, Ba and La were individually targeted for substitution in a Na site in sodalite (Na vacancies targeted as charge compensators for alkaline and rare earths) and studied by X-ray diffraction and scanning electron microscopy after sintering in the range of 800-1000 °C. K and Li appeared to enter the sodalite, but Cs, Sr and Ba formed aluminosilicate phases and La formed an oxyapatite phase. However these non-sodalite phases have reasonable resistance to water leaching. Pure chlorapatite gives superior leach resistance to sodalite, and alkalis, alkaline and rare earth ions are generally known to enter chlorapatite, but attempts to incorporate simulated waste salt formulations into HIPed chlorapatite-based preparations or to substitute Cs alone into the structure of Ca-based chlorapatite were not successful on the basis of scanning electron microscopy. The materials exhibited severe water leachability, mainly in regard to Cs release. Attempts to substitute Cs into Ba- and Sr-based chlorapatites also did not look encouraging. Consequently the use of apatite alone to retain fission product-bearing waste pyroprocessing salts from electrolytic nuclear fuel reprocessing is problematical, but chlorapatite glass-ceramics may be feasible, albeit with reduced waste loadings. Spodiosite, Ca 2(PO 4)Cl, does not appear to be suitable for incorporation of Cl-bearing waste containing fission products.
NASA Astrophysics Data System (ADS)
Rao, Wenbo; Han, Guilin; Tan, Hongbing; Jin, Ke; Wang, Shuai; Chen, Tangqing
2017-09-01
The major ions and Sr isotopes in rainwater have been studied during 2013-2015 on the Alxa Desert Plateau in order to identify the source of rainwater chemistry and to assess air quality in the desert area of northern China. The pH and EC values of rainwater vary from 6.7 to 8.1 and from 35 to 1237 μS cm- 1, respectively, at the two meteorological stations (AYQ and YBL) in the Alxa Desert Plateau. Ca2 +, SO42 -, Na+ and Cl- are the dominant ions in rainwater, possessing > 85% of total ions. The mean daily wet deposition fluxes of soluble ions are 8709 μeq/m2/d at YBL and 5459 μeq/m2/d at AYQ, approaching the values at Xi'an, Beijing, Guangzhou, and Chengdu. Statistical analysis shows that SO42 - and NO3- in rainwater were mainly from anthropogenic sources while Ca2 + and K+ originated from terrestrial sources. Cl- was mainly from seawater sources, and Na+ was partly from mineral weathering. Major ions are well correlated with each other in rainwater, revealing that substances of various origins were synchronously carried into the atmosphere by wind. By using Sr isotope techniques, three main end-members controlling base cations of rainwater are identified: silicates, carbonates and seawater. Based on the analyses of acid-soluble fractions of desert soils, local soil dust could be the most important source of base cations in rainwater whereas the effect of the anthropogenic sources could be neglected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Villiers, S.; Shen, G.T.; Nelson, B.K.
1994-01-01
This paper provides an evaluation of two of the most likely pitfalls of Sr/Ca thermometry, i.e., the effect of biogenic cycling of Sr vs. Ca in the surface ocean and the effect of variable extension rate on Sr incorporation in coralline aragonite. The authors also report calibration of the Sr/Ca-temperature relationship for three coral species, Porites lobata, Pocillopora eydouxi, and Pavona clavus, collected for the Hawaiian and Galapagos islands. Analyses of seawater samples show significant spatial and depth variability in the Sr:Ca ratio. The uncertainty introduced by this effect is estimated to be <0.2[degrees]C for corals located in tropical oligotrophicmore » waters, and potentially larger for corals located in upwelling areas. Sr/Ca along two different growth axes of a Galapagos Pavona clavus, with annual extension rates of [approximately]6 and 12 mm/y, respectively, indicate an offset of 1-2[degrees]C, with higher Sr/Ca values associated with slower extension rates. The offset observed between the two growth axes may be the result of variations in extension and/or calcification rate. These results are important in determining past sea surface temperatures for reconstruction of paleoclimates.« less
EFFECT OF CHELATING AGENTS ON UPTAKE OF Ca$sup 45$ AND Sr$sup 85$ BY DEFATTED BONE IN VITRO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samachson, J.; Lederer, H.
The presence of chelating agents in buffered solutions affected the relative uptake of Ca/sup 45/ and Sr/sup 85/ by defatted bone powder. Strong chelating agents, like ethylenediaminetetraacetic acid and cyclohexanediaminetetraacetic acid, decreased the ratio of Ca/sup 45//Sr/sup 85/ uptake considerably in presence of Ca, Ca plus Sr, or Sr carrier. Citrate and adenosinetriphosphate had similar but weaker effects. No effect was shown by glucose, lactate, gluconate, bicarbonate, bicarbonate plus phosphate, glutamate, aspartate, borate, glycerophosphate, lysine or glutathione. Those compeunds which showed no effect had stability constants for Ca of less than 3. Strong chelating agents also decreased the relative amountmore » of Sr/sup 85/ removed from defatted bone powder by exchange. Results indicate that natural chelating agents may be partly responsible for the low Ca/sup 45//Sr/sup 85/ uptake ratio by bone from serum compared with uptake from synthetic inorganic solutions and emphasize the difficulty of removing be partly responsible for the low Ca/sup 45//Sr/sup 85/ uptske ratio by bone from serum compared with uptake from synthetic inorganic solutions and emphasize the difficulty of removing Sr/sup 35/ from bone with chelating agents now available. (auth)« less
The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks
White, A.F.; Blum, A.E.; Bullen, T.D.; Vivit, D.V.; Schulz, M.; Fitzpatrick, J.
1999-01-01
The effects of climatic temperature variations (5-35??C) on chemical weathering are investigated both experimentally using flow-through columns containing fresh and weathered granitoid rocks and for natural granitoid weathering in watersheds based on annual solute discharge. Although experimental Na and Si effluent concentrations are significantly higher in the fresh relative to the weathered granitoids, the proportional increases in concentration with increasing temperature are similar. Si and Na exhibit comparable average apparent activation energies (E(a)) of 56 and 61 kJ/mol, respectively, which are similar to those reported for experimental feldspar dissolution measured over larger temperature ranges. A coupled temperature-precipitation model, using an expanded database for solute discharge fluxes from a global distribution of 86 granitoid watersheds, produces an apparent activation energy for Si (51 kJ/mol), which is also comparable to those derived from the experimental study. This correlation reinforces evidence that temperature does significantly impact natural silicate weathering rates. Effluent K concentrations in the column study are elevated with respect to other cations compared to watershed discharge due to the rapid oxidation/dissolution of biotite. K concentrations are less sensitive to temperature, resulting in a lower average E(a) value (27 kJ/mol) indicative of K loss from lower energy interlayer sites in biotite. At lower temperatures, initial cation release from biotite is significantly faster than cation release from plagioclase. This agrees with reported higher K/Na ratios in cold glacial watersheds relative to warmer temperate environments. Increased release of less radiogenic Sr from plagioclase relative to biotite at increasing temperature produces corresponding decreases in 87Sr/86Sr ratios in the column effluents. A simple mixing calculation using effluent K/Na ratios, Sr concentrations and 87Sr/86Sr ratios for biotite and plagioclase approximates stoichiometric cation ratios from biotite/plagioclase dissolution at warmer temperatures (35??C), but progressively overestimates the relative proportion of biotite with decreasing temperature. Ca, Mg, and Sr concentrations closely correlate, exhibit no consistent trends with temperature, and are controlled by trace amounts of calcite or exchange within weathered biotite. The inability of the watershed model to differentiate a climate signal for such species correlates with the lower temperature dependence observed in the experimental studies.
Desai, Aditya J.; Roberts, David J.
2014-01-01
The Calcium Sensing Receptor (CaSR) plays a role in calcium homeostasis by sensing minute changes in serum Ca2+ and modulating secretion of calciotropic hormones. It has been shown in transfected cells that accessory proteins known as Receptor Activity Modifying Proteins (RAMPs), specifically RAMPs 1 and 3, are required for cell-surface trafficking of the CaSR. These effects have only been demonstrated in transfected cells, so their physiological relevance is unclear. Here we explored CaSR/RAMP interactions in detail, and showed that in thyroid human carcinoma cells, RAMP1 is required for trafficking of the CaSR. Furthermore, we show that normal RAMP1 function is required for intracellular responses to ligands. Specifically, to confirm earlier studies with tagged constructs, and to provide the additional benefit of quantitative stoichiometric analysis, we used fluorescence resonance energy transfer to show equal abilities of RAMP1 and 3 to chaperone CaSR to the cell surface, though RAMP3 interacted more efficiently with the receptor. Furthermore, a higher fraction of RAMP3 than RAMP1 was observed in CaSR-complexes on the cell-surface, suggesting different ratios of RAMPs to CaSR. In order to determine relevance of these findings in an endogenous expression system we assessed the effect of RAMP1 siRNA knock-down in medullary thyroid carcinoma TT cells, (which express RAMP1, but not RAMP3 constitutively) and measured a significant 50% attenuation of signalling in response to CaSR ligands Cinacalcet and neomycin. Blockade of RAMP1 using specific antibodies induced a concentration-dependent reduction in CaSR-mediated signalling in response to Cinacalcet in TT cells, suggesting a novel functional role for RAMP1 in regulation of CaSR signalling in addition to its known role in receptor trafficking. These data provide evidence that RAMPs traffic the CaSR as higher-level oligomers and play a role in CaSR signalling even after cell surface localisation has occurred. PMID:24454825
Desai, Aditya J; Roberts, David J; Richards, Gareth O; Skerry, Timothy M
2014-01-01
The Calcium Sensing Receptor (CaSR) plays a role in calcium homeostasis by sensing minute changes in serum Ca(2+) and modulating secretion of calciotropic hormones. It has been shown in transfected cells that accessory proteins known as Receptor Activity Modifying Proteins (RAMPs), specifically RAMPs 1 and 3, are required for cell-surface trafficking of the CaSR. These effects have only been demonstrated in transfected cells, so their physiological relevance is unclear. Here we explored CaSR/RAMP interactions in detail, and showed that in thyroid human carcinoma cells, RAMP1 is required for trafficking of the CaSR. Furthermore, we show that normal RAMP1 function is required for intracellular responses to ligands. Specifically, to confirm earlier studies with tagged constructs, and to provide the additional benefit of quantitative stoichiometric analysis, we used fluorescence resonance energy transfer to show equal abilities of RAMP1 and 3 to chaperone CaSR to the cell surface, though RAMP3 interacted more efficiently with the receptor. Furthermore, a higher fraction of RAMP3 than RAMP1 was observed in CaSR-complexes on the cell-surface, suggesting different ratios of RAMPs to CaSR. In order to determine relevance of these findings in an endogenous expression system we assessed the effect of RAMP1 siRNA knock-down in medullary thyroid carcinoma TT cells, (which express RAMP1, but not RAMP3 constitutively) and measured a significant 50% attenuation of signalling in response to CaSR ligands Cinacalcet and neomycin. Blockade of RAMP1 using specific antibodies induced a concentration-dependent reduction in CaSR-mediated signalling in response to Cinacalcet in TT cells, suggesting a novel functional role for RAMP1 in regulation of CaSR signalling in addition to its known role in receptor trafficking. These data provide evidence that RAMPs traffic the CaSR as higher-level oligomers and play a role in CaSR signalling even after cell surface localisation has occurred.
NASA Astrophysics Data System (ADS)
Wiegand, B. A.; Schwendenmann, L.
2013-04-01
SummaryA comparative study of Sr and Ca isotopes was conducted to assess solute sources and effects of biogeochemical processes on surface water and groundwater in four small tropical catchments located at La Selva Biological Station, Costa Rica. Variable concentrations of dissolved Sr2+ and Ca2+ in the catchments are related to mixing of waters from different origin. Three catchments are influenced by high-solute bedrock groundwater, while another catchment is primarily supplied by local recharge. 87Sr/86Sr ratios were employed to discriminate contributions from mineral weathering and atmospheric sources. Solutes in bedrock groundwater have a predominant geogenic origin, whereas local recharge is characterized by low-solute inputs from rainwater and minor in situ weathering releases from nutrient-depleted soils. Bedrock groundwater contributes more than 60% of dissolved Sr2+ to surface discharge in the Salto, Saltito, and Arboleda catchments, whereas the Taconazo catchment receives more than 95% of dissolved Sr2+ from rainwater. δ44/40Ca values of dissolved Ca2+ vary greatly in the catchments, mainly as a result of heterogeneous Ca isotope compositions of the contributing sources. Based on differences in δ44/40Ca values, two distinct bedrock groundwaters discharging at the Salto and the Arboleda catchments are suggested. Effects of biological processes in the plant-soil system on solute generation in the catchments are indicated by variable Ca/Sr ratios. However, these effects cannot clearly be assessed by Ca isotopes due to the strong heterogeneity of δ44/40Ca values of Ca2+ sources and high Ca2+ concentrations in bedrock groundwater.
Growth of congruently melting Ca0.59Sr0.41F2 crystals and study of their properties
NASA Astrophysics Data System (ADS)
Karimov, D. N.; Komar'kova, O. N.; Sorokin, N. I.; Bezhanov, V. A.; Chernov, S. P.; Popov, P. A.; Sobolev, B. P.
2010-05-01
Homogeneous crystals of Ca0.59Sr0.41F2 alloy (sp. gr., Fm bar 3 m, a = 0.56057 nm), corresponding to the point of minimum in the melting curve in the CaF2-SrF2 phase diagram, have been grown by the vertical Bridgman method. The optical, mechanical, electrical, and thermophysical properties of Ca0.59Sr0.41F2 and MF2 crystals ( M = Ca, Sr) have been studied and comparatively analyzed. Ca0.59Sr0.41F2 crystals are transparent in the range of 0.133-11.5 μm, have refractive index n D = 1.436, microhardness H μ = 2.63 ± 0.10 GPa, ion conductivity σ = 5 × 10-5 S/cm at 825 K, and thermal conductivity k = 4.0 W m-1 K-1 at 300 K. It is shown that the optical properties of Ca0.59Sr0.41F2 crystals are intermediate between those of CaF2 and SrF2, whereas their mechanical and electrical characteristics are better than the latter compounds.
40K-40Ca and 87Rb-86Sr Dating by SIMS: The Double-Plus Advantage
NASA Astrophysics Data System (ADS)
Harrison, T. M.; McKeegan, K. D.; Schmitt, A. K.
2009-12-01
The decay of 40K to 40Ar forms the basis of the potassium-argon dating method, although only one out of every 10 parent atoms decays to daughter 40Ar. The other 90% decay to 40Ca giving, in principle, the 40K-40Ca decay system great potential for dating samples with high K/Ca. This method, however, has not been utilized as an ion-microprobe-based geochronometer, largely because these isotopes require a very high mass resolving power (MRP) of ~25k for full separation. We found that limiting secondary ion transmission in our ims1270 ion microprobe to ~20% permits sufficient separation of 40K from 40Ca (MRP≈ 20k) to permit isotope ratio analysis, albeit with 40Ca+ on the shoulder of the more intense 40K+ peak. A pegmatitic muscovite from Jack Hills (K-Ca age = 2.54 Ga; Fletcher et al., Chem. Geol. 138, 289) yields ~104 cps of both 40K+ and 40Ca+ with a 15 μm primary spot size and O- beam current of 10 nA. The 40Ca+ signal is >90% radiogenic and reflects a “common” Ca content of ≤ 100 ppm. However, application of the relative sensitivity factor (RSF) calculated from the Jack Hills muscovite to unknowns yields relatively high age dispersion, perhaps related to the incompletely separated mass interferences. Theorizing that the noble gas electronic structure of K+ would likely resist further electron loss, we investigated an alternative approach involving analysis of Ca++/K++. The double-plus method provides an important advantage in that K++ species are suppressed by a factor of ~103 relative to K+, thereby effectively removing 40K++ from the spectrum at m/e≈ 20 and leaving 40Ca++ free from any significant interferences at an MRP≈ 4k. Measurement of the much more abundant 39K++ then permits 40Ca++/40K++ to be calculated from the known 39K/40K ratio. We applied this approach to Precambrian muscovite samples obtaining ages similar to, but generally younger than, their associated 40Ar/39Ar ages. This could reflect a minor matrix effect or a lower intrinsic retentivity of 40Ca* relative to 40Ar* in white micas. This approach offers the potential to develop a branched-decay thermochronometer (K-Ca-Ar) permitting simultaneous solution of temperature-time history from μm-scale isotopic variations. A further advantage is that even low resolution SIMS instruments (e.g., ims7f) can utilize the double-plus method. Initial investigations using the same double-plus approach for Rb-Sr dating show promise. While resolving 87Rb+ from 87Sr+ requires an MRP of ~290k, unattainable using any current SIMS instrument, 87Rb++ is so strongly suppressed that determination of 87Sr++ is possible with minor peak stripping. 87Rb/86Sr can be determined either from 85Rb+/88Sr+ at MRP≈ 8k or by the use of energy filtering. In addition to micas, these approaches may be applicable to any mineral systems enriched in alkali metals relative to alkaline earths, such as alkali feldspars, feldspathoids, and alkaline halides.
Incorporation of trace metals into microcodium as novel proxies for paleo-precipitation
NASA Astrophysics Data System (ADS)
Li, Tao; Li, Gaojun
2014-01-01
Trace element compositions of microcodium are applied for the first time as possible paleo-proxies based on a case study on the Chinese Loess Plateau (CLP). The Mg/Ca and Sr/Ca ratios of the microcodium picked from the Holocene paleosol across the CLP show distinct positive correlation over large range of nearly one order of magnitude. Higher Mg/Ca and Sr/Ca ratios of microcodium are recorded in the sites on the northwestern CLP where less monsoonal rainfall is received. Similar large variation of the positively correlated Mg/Ca and Sr/Ca ratios has also been observed for the stream water on the CLP with the same spatial pattern. The Mg/Ca and Sr/Ca ratios of the microcodium seem to be largely controlled by the composition of soil solution as reflected by stream water rather than partition coefficient. Rayleigh distillation, and thus evolving composition of soil solution as a result of progressive precipitation of secondary calcite, is responsible for the large variation and positive correlation of the Mg/Ca and Sr/Ca ratios for both the microcodium and stream water. We propose that the bio-remains in Chinese loess may become inactive when the soil water is extracted to a degree, and then be calcified into microcodium by the infiltration of freshwater that is mixed with the highly evolved soil solutes. Thus, the Mg/Ca and Sr/Ca ratios of microcodium may record the paleo-precipitation amount by reflecting the mixing ratio between the highly evolved soil solutes with higher Mg/Ca and Sr/Ca ratios and the fresh soil water with lower Mg/Ca and Sr/Ca ratios.
Zhang, Na; Zhai, Dong; Chen, Lei; Zou, Zhaoyong; Lin, Kaili; Chang, Jiang
2014-04-01
In the absence of any organic surfactants and solvents, the silicon (Si) and strontium (Sr) co-substituted hydroxyapatite [Ca10(PO4)6(OH)2, Si/Sr-HAp] nanowires were synthesized via hydrothermal treatment of the Sr-containing calcium silicate (Sr-CS) powders as the precursors in trisodium phosphate (Na3PO4) aqueous solution. The morphology, phase, chemical compositions, lattice constants and the degradability of the products were characterized. The Si/Sr-HAp nanowires with diameter of about 60nm and up to 2μm in length were obtained after hydrothermal treatment of the Sr-CS precursors. The Sr and Si substitution amount of the HAp nanowires could be well regulated by facile tailoring the Sr substitution level of the precursors and the reaction ratio of the precursor/solution, respectively. The SiO4 tetrahedra and Sr(2+) ions occupied the crystal sites of the HAp, and the lattice constants increased apparently with the increase of the substitution amount. EDS mapping also suggested the uniform distribution of Si and Sr in the synthetic nanowires. Moreover, the Si/Sr-substitution apparently improved the degradability of the HAp materials. Our study suggested that the precursor transformation method provided a facile approach to synthesize the Si/Sr co-substituted HAp nanowires with controllable substitution amount, and the synthetic Si/Sr-HAp nanowires might be used as bioactive materials for hard tissue regeneration applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Anthropogenic metal enrichment of snow and soil in north-eastern European Russia.
Walker, T R; Young, S D; Crittenden, P D; Zhang, H
2003-01-01
Trace metal composition of winter snowpack, snow-melt filter residues and top-soil samples were determined along three transects through industrial towns in the Usa basin, North-East Russia: Inta, Usinsk and Vorkuta. Snow was analysed for Ag, Al, As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr and Zn using ICP-MS (Ca and K by F-AAS for Vorkuta only), pH and acidity/alkalinity. Filter residues were analysed for: Al, Ba, Ca, Cd, Cu, K, Mg, Mn, Ni, Pb, Sr and Zn using F-AAS and GF-AAS; top-soil samples were analysed for Ba, Cu, Mg, Mn, Na, Ni, Pb, Sr, Zn using F-AAS. Results indicate elevated concentrations of elements associated with alkaline combustion ash around the coal mining towns of Vorkuta and Inta. There is little evidence of deposition around the gas and oil town of Usinsk. Atmospheric deposition in the vicinity of Vorkuta, and to a lesser extent Inta, added significantly to the soil contaminant loading as a result of ash fallout. Acid deposition was associated with pristine areas whereas alkaline combustion ash near to emission sources more than compensated for the acidity caused by SO2.
Launikonis, B S; Stephenson, D G
1997-01-01
1. Mechanically skinned fibres from skeletal muscles of the rat, toad and yabby were used to investigate the effect of saponin treatment on sarcoplasmic reticulum (SR) Ca2+ loading properties. The SR was loaded submaximally under control conditions before and after treatment with saponin and SR Ca2+ was released with caffeine. 2. Treatment with 10 micrograms ml-1 saponin greatly reduced the SR Ca2+ loading ability of skinned fibres from the extensor digitorum longus muscle of the rat with a rate constant of 0.24 min-1. Saponin concentrations up to 150 micrograms ml-1 and increased exposure time up to 30 min did not further reduce the SR Ca2+ loading ability of the SR, which indicates that the inhibitory action of 10-150 micrograms ml-1 saponin is not dose dependent. The effect of saponin was also not dependent on the state of polarization of the transverse-tubular system. 3. Treatment with saponin at concentrations up to 100 micrograms ml-1 for 30 min did not affect the Ca2+ loading ability of SR in skinned skeletal muscle fibres from the twitch portion of the toad iliofibularis muscle but SR Ca2+ loading ability decreased markedly with a time constant of 0.22 min-1 in the presence of 150 micrograms ml-1 saponin. 4. The saponin dependent increase in permeability could be reversed in both rat and toad fibres by short treatment with 6 microM Ruthenium Red, a potent SR Ca2+ channel blocker, suggesting that saponin does affect the SR Ca2+ channel properties in mammalian and anuran skeletal muscle. 5. Treatment of skinned fibres of long sarcomere length (> 6 microns) from the claw muscle of the yabby (a freshwater decapod crustacean) with 10 micrograms ml-1 saponin for 30 min abolished the ability of the SR to load Ca2+, indicating that saponin affects differently the SR from skeletal muscles of mammals, anurans and crustaceans. 6. It is concluded that at relatively low concentrations, saponin causes inhibition of the skeletal SR Ca2+ loading ability in a species dependent manner, probably by increasing the Ca2+ loss through SR Ca2+ release channels. PMID:9365915
Launikonis, B S; Stephenson, D G
1997-10-15
1. Mechanically skinned fibres from skeletal muscles of the rat, toad and yabby were used to investigate the effect of saponin treatment on sarcoplasmic reticulum (SR) Ca2+ loading properties. The SR was loaded submaximally under control conditions before and after treatment with saponin and SR Ca2+ was released with caffeine. 2. Treatment with 10 micrograms ml-1 saponin greatly reduced the SR Ca2+ loading ability of skinned fibres from the extensor digitorum longus muscle of the rat with a rate constant of 0.24 min-1. Saponin concentrations up to 150 micrograms ml-1 and increased exposure time up to 30 min did not further reduce the SR Ca2+ loading ability of the SR, which indicates that the inhibitory action of 10-150 micrograms ml-1 saponin is not dose dependent. The effect of saponin was also not dependent on the state of polarization of the transverse-tubular system. 3. Treatment with saponin at concentrations up to 100 micrograms ml-1 for 30 min did not affect the Ca2+ loading ability of SR in skinned skeletal muscle fibres from the twitch portion of the toad iliofibularis muscle but SR Ca2+ loading ability decreased markedly with a time constant of 0.22 min-1 in the presence of 150 micrograms ml-1 saponin. 4. The saponin dependent increase in permeability could be reversed in both rat and toad fibres by short treatment with 6 microM Ruthenium Red, a potent SR Ca2+ channel blocker, suggesting that saponin does affect the SR Ca2+ channel properties in mammalian and anuran skeletal muscle. 5. Treatment of skinned fibres of long sarcomere length (> 6 microns) from the claw muscle of the yabby (a freshwater decapod crustacean) with 10 micrograms ml-1 saponin for 30 min abolished the ability of the SR to load Ca2+, indicating that saponin affects differently the SR from skeletal muscles of mammals, anurans and crustaceans. 6. It is concluded that at relatively low concentrations, saponin causes inhibition of the skeletal SR Ca2+ loading ability in a species dependent manner, probably by increasing the Ca2+ loss through SR Ca2+ release channels.
Burgess, Kevin M N; Xu, Yang; Leclerc, Matthew C; Bryce, David L
2014-01-06
A series of calcium and strontium complexes featuring aryl carboxylate ligands has been prepared and characterized by alkaline-earth ((43)Ca and (87)Sr) solid-state NMR experiments in a magnetic field of 21.1 T. In the 11 compounds studied as part of this work, a range of coordination motifs are observed including nitrogen atom binding to Ca(2+) and Sr(2+), a binding mode which has not been investigated previously by (43)Ca or (87)Sr solid-state NMR. (43)Ca isotopic enrichment has enabled the full characterization of the (43)Ca electric field gradient (EFG) and chemical shift tensors of the two calcium sites in calcium p-aminosalicylate (Ca(pams)), where both NMR interactions are affected by the presence of a nitrogen atom in the first coordination sphere of one of the metal sites. The (43)Ca isotropic chemical shift is sensitive to the Ca-N distance as exemplified by the NMR parameters of a second form of Ca(pams) and density functional theory (DFT) calculations. Studies of the strontium analogue, Sr(pams), confirm a similar sensitivity of the (87)Sr EFG tensor to the presence or absence of nitrogen in the first coordination sphere. To our knowledge, this is the first systematic (87)Sr NMR study of strontium complexes featuring organic ligands. The |CQ((87)Sr)| values are found to be sensitive to the coordination number about Sr(2+). In general, this work has also established a larger data set of reliable experimental |CQ((43)Ca)| values which correlate well with those obtained using gauge-including projector-augmented-wave (GIPAW) DFT calculations. It is found that the use of a recently recommended quadrupole moment for (43)Ca, -44.4 mbarn, improves the agreement with experimental values. This contribution lays the groundwork for the interpretation of (43)Ca and (87)Sr NMR spectra of more challenging systems, particularly where nitrogen-alkaline earth metal bonding is occurring.
Dotsuta, Yuma; Nakano, Yuriko; Ochiai, Asumi; Utsunomiya, Satoshi; Ohnuki, Toshihiko
2017-01-01
ABSTRACT Radioactive strontium (90Sr) leaked into saline environments, including the ocean, from the Fukushima Daiichi Nuclear Power Plant after a nuclear accident. Since the removal of 90Sr using general adsorbents (e.g., zeolite) is not efficient at high salinity, a suitable alternative immobilization method is necessary. Therefore, we incorporated soluble Sr into biogenic carbonate minerals generated by urease-producing microorganisms from a saline solution. An isolate, Bacillus sp. strain TK2d, from marine sediment removed >99% of Sr after contact for 4 days in a saline solution (1.0 × 10−3 mol liter−1 of Sr, 10% marine broth, and 3% [wt/vol] NaCl). Transmission electron microscopy and energy-dispersive X-ray spectroscopy showed that Sr and Ca accumulated as phosphate minerals inside the cells and adsorbed at the cell surface at 2 days of cultivation, and then carbonate minerals containing Sr and Ca developed outside the cells after 2 days. Energy-dispersive spectroscopy revealed that Sr, but not Mg, was present in the carbonate minerals even after 8 days. X-ray absorption fine-structure analyses showed that a portion of the soluble Sr changed its chemical state to strontianite (SrCO3) in biogenic carbonate minerals. These results indicated that soluble Sr was selectively solidified into biogenic carbonate minerals by the TK2d strain in highly saline environments. IMPORTANCE Radioactive nuclides (134Cs, 137Cs, and 90Sr) leaked into saline environments, including the ocean, from the Fukushima Daiichi Nuclear Power Plant accident. Since the removal of 90Sr using general adsorbents, such as zeolite, is not efficient at high salinity, a suitable alternative immobilization method is necessary. Utilizing the known concept that radioactive 90Sr is incorporated into bones by biomineralization, we got the idea of removing 90Sr via incorporation into biominerals. In this study, we revealed the ability of the isolated ureolytic bacterium to remove Sr under high-salinity conditions and the mechanism of Sr incorporation into biogenic calcium carbonate over a longer duration. These findings indicated the mechanism of the biomineralization by the urease-producing bacterium and the possibility of the biomineralization application for a new purification method for 90Sr in highly saline environments. PMID:28802269
The Calcium-Sensing Receptor in Health and Disease.
Díaz-Soto, G; Rocher, A; García-Rodríguez, C; Núñez, L; Villalobos, C
2016-01-01
The extracellular calcium-sensing receptor (CaSR) is a unique G protein-coupled receptor (GPCR) activated by extracellular Ca 2+ and by other physiological cations including Mg 2+ , amino acids, and polyamines. CaSR is the most important master controller of the extracellular Ca 2+ homeostatic system being expressed at high levels in the parathyroid gland, kidney, gut and bone, where it regulates parathyroid hormone (PTH) secretion, vitamin D synthesis, and Ca 2+ absorption and resorption, respectively. Gain and loss of function mutations in the CaSR are responsible for severe disturbances in extracellular Ca 2+ metabolism. CaSR agonists (calcimimetics) and antagonists (calcilytics) are in use or under intense research for treatment of hyperparathyroidism secondary to kidney failure and hypocalcemia with hypercalciuria, respectively. Expression of the CaSR extends to other tissues and systems beyond the extracellular Ca 2+ homeostatic system including the cardiovascular system, the airways, and the nervous system where it may play physiological functions yet to be fully understood. As a consequence, CaSR has been recently involved in different pathologies including uncontrolled blood pressure, vascular calcification, asthma, and Alzheimer's disease. Finally, the CaSR has been shown to play a critical role in cancer either contributing to bone metastasis and/or acting as a tumor suppressor in some forms of cancer (parathyroid cancer, colon cancer, and neuroblastoma) and as oncogene in others (breast and prostate cancers). Here we review the role of CaSR in health and disease in calciotropic tissues and others beyond the extracellular calcium homeostatic system. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Khare, A.; Kilbourne, K. H.; Schijf, J.
2017-12-01
Standard methods of reconstructing past sea surface temperatures (SSTs) with coral skeletal Sr/Ca ratios assume the seawater Sr/Ca ratio is constant. However, there is little data to support this assumption, in part because analytical techniques capable of determining seawater Sr/Ca with sufficient accuracy and precision are expensive and time consuming. We demonstrate a method to measure seawater Sr/Ca using inductively coupled plasma atomic emission spectrometry where we employ an intensity ratio calibration routine that reduces the self- matrix effects of calcium and cancels out the matrix effects that are common to both calcium and strontium. A seawater standard solution cross-calibrated with multiple instruments is used to correct for long-term instrument drift and any remnant matrix effects. The resulting method produces accurate seawater Sr/Ca determinations rapidly, inexpensively, and with a precision better than 0.2%. This method will make it easier for coral paleoclimatologists to quantify potentially problematic fluctuations in seawater Sr/Ca at their study locations. We apply our method to test for variability in surface seawater Sr/Ca along the Florida Keys Reef Tract. We are collecting winter and summer samples for two years in a grid with eleven nearshore to offshore transects across the reef, as well as continuous samples collected by osmotic pumps at four locations adjacent to our grid. Our initial analysis of the grid samples indicates a trend of decreasing Sr/Ca values offshore potentially due to a decreasing groundwater influence. The values differ by as much as 0.05 mmol/mol which could lead to an error of 1°C in mean SST reconstructions. Future work involves continued sampling in the Florida Keys to test for seasonal and interannual variability in seawater Sr/Ca, as well as collecting data from small reefs in the Virgin Islands to test the stability of seawater Sr/Ca under different geologic, hydrologic and hydrographic environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Kimberly; Bennett, Philip C.; Wolfe, Will
Dissolution of CO2 into deep subsurface brines for carbon sequestration is regarded as one of the few viable means of reducing the amount of CO2 entering the atmosphere. Ions in solution partially control the amount of CO2 that dissolves, but the mechanisms of the ion's influence are not clearly understood and thus CO2 solubility is difficult to predict. In this study, CO2 solubility was experimentally determined in water, NaCl, CaCl2, Na2SO4, and NaHCO3 solutions and a mixed brine similar to the Bravo Dome natural CO2 reservoir; ionic strengths ranged up to 3.4 molal, temperatures to 140 °C, and CO2 pressuresmore » to 35.5 MPa. Increasing ionic strength decreased CO2 solubility for all solutions when the salt type remained unchanged, but ionic strength was a poor predictor of CO2 solubility in solutions with different salts. A new equation was developed to use ion hydration number to calculate the concentration of electrostricted water molecules in solution. Dissolved CO2 was strongly correlated (R2 = 0.96) to electrostricted water concentration. Strong correlations were also identified between CO2 solubility and hydration enthalpy and hydration entropy. These linear correlation equations predicted CO2 solubility within 1% of the Bravo Dome brine and within 10% of two mixed brines from literature (a 10 wt % NaCl + KCl + CaCl2 brine and a natural Na+, Ca2+, Cl- type brine with minor amounts of Mg2+, K+, Sr2+ and Br-).« less
Lippert, Frank
2012-10-01
This study investigated the effects of lesion baseline characteristics and different strontium (Sr) to calcium (Ca) ratios in plaque fluid-like solutions (PF) on lesion de- and remineralization. Caries lesions were formed in enamel using three protocols: methylcellulose acid gel (MeC) and partially saturated lactic acid solutions containing carboxymethylcellulose (CMC) or not (SOLN). Lesions were exposed to PF with four distinct Sr:Ca molar ratios (0:1/3:1:3), but otherwise identical composition and total Sr+Ca molarity, for seven days. Lesions were characterized using transverse microradiography (TMR) at baseline and post-treatment. At baseline, MeC and CMC had similar integrated mineral loss values, whereas SOLN lesions were more demineralized. All lesions showed significant differences in their mineral distributions, with CMC and SOLN having lower R values (integrated mineral loss to lesion depth ratio) than MeC. Post-PF exposure, no interaction was found between lesion type and Sr:Ca ratio. Within lesion type, MeC demineralized, whereas CMC and SOLN exhibited some remineralization, with the differences between MeC and the other lesion types being of statistical significance. Within Sr:Ca ratio, the 1:3 ratio exhibited some remineralization whereas other groups tended to demineralize. Only the difference between groups SrCa1/3 and SrCa0 was of statistical significance. In summary, both lesion baseline characteristics and Sr:Ca ratio were shown to effect lesion de- and remineralization. Under the conditions of the study, high-R lesions are more prone to demineralize under PF-like conditions than low-R lesions. In addition, partial Sr substitution for Ca in PF was shown to enhance lesion remineralization. Copyright © 2012 Elsevier Ltd. All rights reserved.
Flannery, Jennifer A.; Poore, Richard Z.
2013-01-01
Sr/Ca ratios from skeletal samples from two Montastraea faveolata corals (one modern, one Holocene, ~6 Ka) from the Dry Tortugas National Park were measured as a proxy for sea-surface temperature (SST). We sampled coral specimens with a computer-driven triaxial micromilling machine, which yielded an average of 15 homogenous samples per annual growth increment. We regressed Sr/Ca values from resulting powdered samples against a local SST record to obtain a calibration equation of Sr/Ca = -0.0392 SST + 10.205, R = -0.97. The resulting calibration was used to generate a 47-year modern (1961-2008) and a 7-year Holocene (~6 Ka) Sr/Ca subannually resolved proxy record of SST. The modern M. faveolata yields well-defined annual Sr/Ca cycles ranging in amplitude from ~0.3 and 0.5 mmol/mol. The amplitude of ~0.3 to 0.5 mmol/mol equates to a 10-15°C seasonal SST amplitude, which is consistent with available local instrumental records. Summer maxima proxy SSTs calculated from the modern coral Sr/ Ca tend to be fairly stable: most SST maxima from 1961–2008 are 29°C ± 1°C. In contrast, winter minimum SST calculated in the 47-year modern time-series are highly variable, with a cool interval in the early to mid-1970s. The Holocene (~6 Ka) Montastraea faveolata coral also yields distinct annual Sr/Ca cycles with amplitudes ranging from ~0.3 to 0.6 mmol/mol. Absolute Sr/Ca values and thus resulting SST estimates over the ~7-year long record are similar to those from the modern coral. We conclude that Sr/Ca from Montastraea faveolata has high potential for developing subannually resolved Holocene SST records.
Late Quaternary Productivity Records from Coccolith Sr/Ca
NASA Astrophysics Data System (ADS)
Stoll, H. M.; Burke, A.; Mejia Ramirez, L. M.; Shimizu, N.; Ziveri, P. P. I.
2014-12-01
The Sr/Ca of coccoliths has been proposed as an indicator of productivity on the basis of correlation with export production in sediment traps and across upwelling productivity gradients, although the mechanism responsable for this relationship is not clear. For diverse oceanographic settings in the Late Quaternary, we compare coccolith Sr/Ca productivity records with those of other productivity indicators and proxies for mechanisms of productivity forcing. For the Somalia Basin in the Arabian Sea, coccolith Sr/Ca shows a large variation coherent with precessional forcing of wind strength as a mechanism for productivity regulation. During the glacial, the Sr/Ca peak is decoupled from productivity indicators based on organic C accumulation rate. For the Northern Bay of Bengal, coccolith Sr/Ca, Ba/Ti, and relative abundance of G. bulloides, all suggest greater productivity during the interglacial periods, consisted with Nd isotopic evidence for greater riverine nutrient inputs. In the Andaman Sea, coccolith Sr/Ca is highest during precessional maxima in the summer monsoon, consistent with proxies for chemical weathering in the Irawaddy rivershed. In the Eastern Mediterranean, coccolith Sr/Ca is on average low, and peaks during the E. Holocene interval characterized by deposition of sapropel S1. The peak in Sr/Ca however is comparable to the level maintained throughout the Holocene in the Western Mediterranean, where no sapropel occurs, implicating deepwater oxygen levels as a significant contributor to sapropel formation. Finally, on the Agulhas Bank, minima in coccolith Sr/Ca occur during obliquity minima which are periods of anomalous equatorward deposition of IRD in the Southern Ocean. Northward explansion of the westerly wind field during these cold intervals, block upwelling on the Agulhas Bank and result in low productivity.
Federico, Marilen; Portiansky, Enrique L; Sommese, Leandro; Alvarado, Francisco J; Blanco, Paula G; Zanuzzi, Carolina N; Dedman, John; Kaetzel, Marcia; Wehrens, Xander H T; Mattiazzi, Alicia; Palomeque, Julieta
2017-06-15
Spontaneous sarcoplasmic reticulum (SR) Ca 2+ release events increased in fructose-rich diet mouse (FRD) myocytes vs. control diet (CD) mice, in the absence of significant changes in SR Ca 2+ load. In HEK293 cells, hyperglycaemia significantly enhanced [ 3 H]ryanodine binding and Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) phosphorylation of RyR2-S2814 residue vs. normoglycaemia. These increases were prevented by CaMKII inhibition. FRD significantly augmented cardiac apoptosis in WT vs. CD-WT mice, which was prevented by co-treatment with the reactive oxygen species scavenger Tempol. Oxidative stress was also increased in FRD-SR-autocamide inhibitory peptide (AIP) mice, expressing the SR-targeted CaMKII inhibitor AIP, without any significant enhancement of apoptosis vs. CD-SR-AIP mice. FRD produced mitochondrial swelling and membrane depolarization in FRD-WT mice but not in FRD-S2814A mice, in which the CaMKII site on ryanodine receptor 2 was ablated. FRD decreased mitochondrial area, mean Feret diameter and the mean distance between SR and the outer mitochondrial membrane vs. CD hearts. This remodelling was prevented in AC3I mice, with cardiac-targeted CaMKII inhibition. The impact of cardiac apoptosis in pre-diabetic stages of diabetic cardiomyopathy is unknown. We show that myocytes from fructose-rich diet (FRD) animals exhibit arrhythmias produced by exacerbated Ca 2+ /calmodulin-protein kinase (CaMKII) activity, ryanodine receptor 2 (RyR2) phosphorylation and sarcoplasmic reticulum (SR) Ca 2+ leak. We tested the hypothesis that this mechanism also underlies cardiac apoptosis in pre-diabetes. We generated a pre-diabetic model in FRD mice. FRD mice showed an increase in oxidative stress, hypertrophy and systolic dysfunction. FRD myocytes exhibited enhanced SR Ca 2+ spontaneous events in the absence of SR Ca 2+ load alterations vs. control-diet (CD) myocytes. In HEK293 cells, hyperglycaemia significantly enhanced [ 3 H]ryanodine binding and CaMKII phosphorylation of RyR2-S2814 residue vs. normoglycaemia. CaMKII inhibition prevented hyperglycaemia-induced alterations. FRD also evoked cardiac apoptosis in WT mice vs. CD-WT mice. Co-treatment with the reactive oxygen species scavenger Tempol prevented FRD-induced apoptosis in WT mice. In contrast, FRD enhanced oxidative stress but not apoptosis in FRD-SR-AIP mice, in which a CaMKII inhibitor is targeted to the SR. FRD produced mitochondrial membrane depolarization in WT mice but not in S2814A mice, in which the CaMKII phosphorylation site on RyR2 was ablated. Furthermore, FRD decreased mitochondrial area, mean Feret diameter and mean SR-mitochondrial distance vs. CD-WT hearts. This remodelling was prevented in AC3I mice, with cardiac-targeted CaMKII inhibition. CaMKII phosphorylation of RyR2, SR Ca 2+ leak and mitochondrial membrane depolarization are critically involved in the apoptotic pathway of the pre-diabetic heart. The FRD-induced decrease in SR-mitochondrial distance is likely to additionally favour Ca 2+ transit between the two organelles. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Bovo, Elisa; Huke, Sabine; Blatter, Lothar A; Zima, Aleksey V
2017-03-01
Functional impact of cardiac ryanodine receptor (type 2 RyR or RyR2) phosphorylation by protein kinase A (PKA) remains highly controversial. In this study, we characterized a functional link between PKA-mediated RyR2 phosphorylation level and sarcoplasmic reticulum (SR) Ca 2+ release and leak in permeabilized rabbit ventricular myocytes. Changes in cytosolic [Ca 2+ ] and intra-SR [Ca 2+ ] SR were measured with Fluo-4 and Fluo-5N, respectively. Changes in RyR2 phosphorylation at two PKA sites, serine-2031 and -2809, were measured with phospho-specific antibodies. cAMP (10μM) increased Ca 2+ spark frequency approximately two-fold. This effect was associated with an increase in SR Ca 2+ load from 0.84 to 1.24mM. PKA inhibitory peptide (PKI; 10μM) abolished the cAMP-dependent increase of SR Ca 2+ load and spark frequency. When SERCA was completely blocked by thapsigargin, cAMP did not affect RyR2-mediated Ca 2+ leak. The lack of a cAMP effect on RyR2 function can be explained by almost maximal phosphorylation of RyR2 at serine-2809 after sarcolemma permeabilization. This high RyR2 phosphorylation level is likely the consequence of a balance shift between protein kinase and phosphatase activity after permeabilization. When RyR2 phosphorylation at serine-2809 was reduced to its "basal" level (i.e. RyR2 phosphorylation level in intact myocytes) using kinase inhibitor staurosporine, SR Ca 2+ leak was significantly reduced. Surprisingly, further dephosphorylation of RyR2 with protein phosphatase 1 (PP1) markedly increased SR Ca 2+ leak. At the same time, phosphorylation of RyR2 at serine 2031 did not significantly change under identical experimental conditions. These results suggest that RyR2 phosphorylation by PKA has a complex effect on SR Ca 2+ leak in ventricular myocytes. At an intermediate level of RyR2 phosphorylation SR Ca 2+ leak is minimal. However, complete dephosphorylation and maximal phosphorylation of RyR2 increases SR Ca 2+ leak. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
López de Luchi, Mónica G.; Siegesmund, Siegfried; Wemmer, Klaus; Nolte, Nicole
2017-09-01
Middle Devonian granitoids intruded the Eastern Sierras Pampeanas basement ca. 600 km east of the inferred proto-Pacific margin of Gondwana along which a ca. 390 Ma collisional event developed. In the Sierra de San Luis, voluminous Middle Devonian (393-382 Ma) batholiths are composed of I- to A-type hybrid Monzonite and Granite suites. Shoshonite and subordinated high-K series, stocks, synplutonic dikes and enclaves make up the Monzonite Suite; rocks are metaluminous alkali-calcic magnesian porphyritic or equigranular monzonite, quartz monzonite, monzodiorite and scarce monzogabbro. High-K and subordinated shoshonite series metaluminous to mildly peraluminous magnesian alkali-calcic to calc-alkalic porphyritic or equigranular quartz monzonite, granodiorite, monzogranite and equigranular leucomonzogranites make up the Granite Suite plutons and batholiths. Only a small group of highly evolved granites are ferroan. SiO2 (46-62%), Cr, Ni, V, Sc, LILE, LREE, Th, Zr and variable, Sr/Y, (La/Yb)N and (Tb/Yb)N, smooth Eu/Eu*, moderate Na2O (ca 3.5), and troughs at Nb and Ta for Monzonite Suite rocks suggest an subduction-related enriched lithospheric mantle source. Sm-Nd data (TDM 0.98-1.08 Ga, εNd(380 Ma) 0.66-1.47) and 87Sr/86Sri (0.703520-0.704203) are compatible with an enriched mantle source. The metaluminous porphyritic quartz monzonite-monzogranite and the mildly peraluminous equigranular biotite monzogranites of the Granite Suite are characterized by relatively moderate Al2O3, CaO, and 87Sr/86Sri, high LILE, Cr, variable Sr/Y, (La/Yb)N and Eu/Eu* and low Rb/Sr (< 1.2) suggest a mafic source. The porphyritic monzogranite (TDM 1.20-1.28 Ga, εNd(380Ma) - 3.02 to - 3.3, 87Sr/86Sri 0.706578-0.707027) and the biotite monzogranites (TDM 1.31 Ga, εNd(380Ma) - 3.3, 87Sr/86Sri 0.707782) would share a common source. The equigranular alkali-calcic leucomonzogranites are characterized by Rb/Sr > 1.5, ASI 1.05-1.18, and Ga/Al 2.6-3.9, εNd(380 Ma) - 3.74 to - 3.95 and (87Sr/86Sr)i 0.710743-0.712955 which would point to metasedimentary or felsic igneous crustal sources. Nevertheless their TDM 1.36-1.38 Ga is considerably younger than the mean 1.8-1.6 Ga Eastern Sierras Pampeanas crustal residence age and less radiogenic. Middle Devonian magmatism would record an episode of crustal growth by enriched mantle derived magma input and variable degrees of partial melting of a lower crustal source at the waning stages of the Achalian orogeny.
Ca cycling and isotopic fluxes in forested ecosystems in Hawaii
Wiegand, B.A.; Chadwick, O.A.; Vitousek, P.M.; Wooden, J.L.
2005-01-01
Biogeochemical processes fractionate Ca isotopes in plants and soils along a 4 million year developmental sequence in the Hawaiian Islands. We observed that plants preferentially take up 40Ca relative to 44Ca, and that biological fractionation and changes in the relative contributions from volcanic and marine sources produce a significant increase in 44Ca in soil exchangeable pools. Our results imply moderate fluxes enriched in 44Ca from strongly nutrient-depleted old soils, in contrast with high 40Ca fluxes in young and little weathered environments. In addition, biological fractionation controls divergent geochemical pathways of Ca and Sr in the plant-soil system. While Ca depletes progressively with increasing soil age, Sr/Ca ratios increase systematically. Sr isotope ratios provide a valuable tracer for provenance studies of alkaline earth elements in forested ecosystems, but its usefulness is limited when deciphering biogeochemical processes involved in the terrestrial Ca cycle. Ca isotopes in combination with Sr/ Ca ratios reveal more complex processes involved in the biogeochemistry of Ca and Sr. Copyright 2005 by the American Geophysical Union.
Flannery, Jennifer A.; Richey, Julie N.; Thirumalai, Kaustubh; Poore, Richard Z.; DeLong, Kristine L.
2017-01-01
We present new, monthly-resolved Sr/Ca-based sea-surface temperature (SST) records from two species of massive coral, Orbicella faveolata and Siderastrea siderea, from the Dry Tortugas National Park, FL, USA (DTNP). We combine these new records with published data from three additional S. siderea coral colonies to generate a 278-year long multi-species stacked Sr/Ca-SST record from DTNP. The composite record of mean annual Sr/Ca-SST at DTNP shows pronounced decadal-scale variability with a range of 1 to 2°C. Notable cool intervals in the Sr/Ca-derived SST lasting about a decade centered at ~1845, ~1935, and ~1965 are associated with reduced summer Sr/Ca-SST (monthly maxima < 29°C), and imply a reduction in the spatial extent of the Atlantic Warm Pool (AWP). There is significant coherence between the composite DTNP Sr/Ca-SST record and the Atlantic Multidecadal Oscillation (AMO) index, with the AMO lagging Sr/Ca-SST at DTNP by 9 years. Low frequency variability in the Gulf Stream surface transport, which originates near DTNP, may provide a link for the lagged relationship between multidecadal variability at DTNP and the AMO.
Cenozoic seawater Sr/Ca evolution
NASA Astrophysics Data System (ADS)
Sosdian, Sindia M.; Lear, Caroline H.; Tao, Kai; Grossman, Ethan L.; O'Dea, Aaron; Rosenthal, Yair
2012-10-01
Records of seawater chemistry help constrain temporal variations in geochemical processes that impact the global carbon cycle and climate through Earth's history. Here we reconstruct Cenozoic seawater Sr/Ca (Sr/Casw) using fossil Conus and turritellid gastropod Sr/Ca. Combined with an oxygen isotope paleotemperature record from the same samples, the gastropod record suggests that Sr/Caswwas slightly higher in the Eocene (˜11.4 ± 3 mmol/mol) than today (˜8.54 mmol/mol) and remained relatively stable from the mid- to late Cenozoic. We compare our gastropod Cenozoic Sr/Casw record with a published turritellid gastropod Sr/Casw record and other published biogenic (benthic foraminifera, fossil fish teeth) and inorganic precipitate (calcite veins) Sr/Caswrecords. Once the uncertainties with our gastropod-derived Sr/Casw are taken into account the Sr/Casw record agrees reasonably well with biogenic Sr/Caswrecords. Assuming a seawater [Ca] history derived from marine evaporite inclusions, all biogenic-based Sr/Casw reconstructions imply decreasing seawater [Sr] through the Cenozoic, whereas the calcite vein Sr/Casw reconstruction implies increasing [Sr] through the Cenozoic. We apply a simple geochemical model to examine the implications of divergence among these seawater [Sr] reconstructions and suggest that the interpretation and uncertainties associated with the gastropod and calcite vein proxies need to be revisited. Used in conjunction with records of carbonate depositional fluxes, our favored seawater Sr/Ca scenarios point to a significant increase in the proportion of aragonite versus calcite deposition in shelf sediments from the Middle Miocene, coincident with the proliferation of coral reefs. We propose that this occurred at least 10 million years after the seawater Mg/Ca threshold was passed, and was instead aided by declining levels of atmospheric carbon dioxide.
NASA Astrophysics Data System (ADS)
Giri, Sharmila J.; Swart, Peter K.; Devlin, Quinn B.
2018-02-01
The skeletal composition of calcifying organisms, in particular Mg/Ca and Sr/Ca ratios, have been widely used to understand fluctuations in seawater chemistry throughout the Phanerozoic. While the success of applying these data to the geologic record depends on a knowledge of the distribution coefficients for these elements (DMg and DSr), there are scarcely any studies which have described how these values vary as a result of changing seawater Mg/Ca ratios. To address this, we have cultured the scleractinian coral, Pocillopora damicornis, in seawater with ranges of Mg and Ca concentrations. Here, we demonstrate that Mg/Ca and Sr/Ca ratios of coral skeletons correlate with total seawater Mg/Ca and Sr/Ca molar ratios, but that apparent DMg and DSr values do not remain constant across the range of experimental seawater treatments, with DMg values significantly increasing with seawater Mg/Ca ratios and DSr values significantly increasing with seawater Ca concentrations. These trends are not rate dependent and may be best explained by a Rayleigh distillation model, in which the calcifying space is semi-isolated from seawater during skeletogenesis (i.e. leaky). As there is a slight increase in DMg and decrease in DSr values between our "Jurassic" and "Modern" seawater treatments, the application of a constant distribution coefficient to estimate changes in ancient seawater chemistry may underestimate seawater Mg/Ca ratios and overestimate Sr/Ca throughout the Mesozoic and Cenozoic. We suggest that interpretations of seawater chemistry from fossil corals may be improved by using the relationships derived for skeletal and seawater Mg/Ca and Sr/Ca ratios established by our experiments, as they incorporate the effect of seawater Mg/Ca ratios on skeletal Mg/Ca and Sr/Ca ratios.
Liou, Alice P.; Sei, Yoshitatsu; Zhao, Xilin; Feng, Jianying; Lu, Xinping; Thomas, Craig; Pechhold, Susanne; Raybould, Helen E.
2011-01-01
The extracellular calcium-sensing receptor (CaSR) has recently been recognized as an l-amino acid sensor and has been implicated in mediating cholecystokinin (CCK) secretion in response to aromatic amino acids. We investigated whether direct detection of l-phenylalanine (l-Phe) by CaSR results in CCK secretion in the native I cell. Fluorescence-activated cell sorting of duodenal I cells from CCK-enhanced green fluorescent protein (eGFP) transgenic mice demonstrated CaSR gene expression. Immunostaining of fixed and fresh duodenal tissue sections confirmed CaSR protein expression. Intracellular calcium fluxes were CaSR dependent, stereoselective for l-Phe over d-Phe, and responsive to type II calcimimetic cinacalcet in CCK-eGFP cells. Additionally, CCK secretion by an isolated I cell population was increased by 30 and 62% in response to l-Phe in the presence of physiological (1.26 mM) and superphysiological (2.5 mM) extracellular calcium concentrations, respectively. While the deletion of CaSR from CCK-eGFP cells did not affect basal CCK secretion, the effect of l-Phe or cinacalcet on intracellular calcium flux was lost. In fact, both secretagogues, as well as superphysiological Ca2+, evoked an unexpected 20–30% decrease in CCK secretion compared with basal secretion in CaSR−/− CCK-eGFP cells. CCK secretion in response to KCl or tryptone was unaffected by the absence of CaSR. The present data suggest that CaSR is required for hormone secretion in the specific response to l-Phe by the native I cell, and that a receptor-mediated mechanism may inhibit hormone secretion in the absence of a fully functional CaSR. PMID:21252045
Young, Iain S; Harwood, Claire L; Rome, Lawrence C
2003-10-01
Because the major processes involved in muscle contraction require rapid utilization of ATP, measurement of ATP utilization can provide important insights into the mechanisms of contraction. It is necessary, however, to differentiate between the contribution made by cross-bridges and that of the sarcoplasmic reticulum (SR) Ca2+ pumps. Specific and potent SR Ca2+ pump blockers have been used in skinned fibers to permit direct measurement of cross-bridge ATP utilization. Up to now, there was no analogous cross-bridge blocker. Recently, N-benzyl-p-toluene sulfonamide (BTS) was found to suppress force generation at micromolar concentrations. We tested whether BTS could be used to block cross-bridge ATP utilization, thereby permitting direct measurement of SR Ca2+ pump ATP utilization in saponin-skinned fibers. At 25 microM, BTS virtually eliminates force and cross-bridge ATP utilization (both <4% of control value). By taking advantage of the toadfish swimbladder muscle's unique right shift in its force-Ca2+ concentration ([Ca2+]) relationship, we measured SR Ca2+ pump ATP utilization in the presence and absence of BTS. At 25 microM, BTS had no effect on SR pump ATP utilization. Hence, we used BTS to make some of the first direct measurements of ATP utilization of intact SR over a physiological range of [Ca2+]at 15 degrees C. Curve fits to SR Ca2+ pump ATP utilization vs. pCa indicate that they have much lower Hill coefficients (1.49) than that describing cross-bridge force generation vs. pCa (approximately 5). Furthermore, we found that BTS also effectively eliminates force generation in bundles of intact swimbladder muscle, suggesting that it will be an important tool for studying integrated SR function during normal motor behavior.
NASA Astrophysics Data System (ADS)
Wirani, Ayu Puspa; Nasution, Aulia; Suyanto, Hery
2016-11-01
Coffee (Coffea spp.) is one of the most widely consumed beverages in the world. World coffee consumption is around 70% comes from Arabica, 26% from Robusta , and the rest 4% from other varieties. Coffee beverages characteristics are related to chemical compositions of its roasted beans. Usually testing of coffee quality is subjectively tasted by an experienced coffee tester. An objective quantitative technique to analyze the chemical contents of coffee beans using LIBS will be reported in this paper. Optimum experimental conditions was using of 120 mJ of laser energy and delay time 1 μs. Elements contained in coffee beans are Ca, W, Sr, Mg, Na, H, K, O, Rb, and Be. The Calcium (Ca) is the main element in the coffee beans. Roasting process will cause the emission intensity of Ca decreased by 42.45%. In addition, discriminant analysis was used to distinguish the arabica and robusta variants, either in its green and roasted coffee beans. Observed identifier elements are Ca, W, Sr, and Mg. Overall chemical composition of roasted coffee beans are affected by many factors, such as the composition of the soil, the location, the weather in the neighborhood of its plantation, and the post-harvesting process of the green coffee beans (drying, storage, fermentation, and roasting methods used).
Sr isotopic composition as a tracer of Ca sources in two forest ecosystems in Belgium.
NASA Astrophysics Data System (ADS)
Drouet, T.; Herbauts, J.; Demaiffe, D.
2003-04-01
The two main sources of Ca in forest ecosystem are the mineral weathering release and atmospheric inputs. We use the 87Sr/86Sr isotopic ratio (Sr is a proxy for Ca) to determine the Ca contribution from rain input in two forest ecosystems (beech stands) growing on soils formed from parent materials with distinct total Ca contents and contrasted isotopic ratios: Pleistocene loess in Central Belgium (leached brown soil) with present-day 87Sr/86Sr =0.72788 and Lower Devonian shales and sandstones in Ardennes (ochreous brown earth) with 87Sr/86Sr = 0.76913. The 87Sr/86Sr ratios and the Ca and Sr contents were measured in rainwater, vegetation (beech wood growth rings and leaves) and main soil horizons (total, labile and HCl 0.1 M soluble forms). The relative contributions of atmospheric input and soil mineral weathering to vegetation were calculated using mixing equations. Calculations based on the Sr isotope ratios of rainwater (endmember 1; 87Sr/86Sr close to seawater: 0.7090), labile soil fraction (endmember 2; 87Sr/86Sr: 0.71332 to 0.71785) and beech wood (mixing compartment) indicate that about 50 % (Central Belgium) to 35 % (Ardennes) of Ca uptake originate from atmospheric inputs. The choice of the appropriate 87Sr/86Sr ratio for the weathering endmember is however critical. The isotopic composition of the mineral source is theoretically determined by the mineralogical composition of the soil and the relative weatherability of the Sr-bearing minerals. Due to soil processes (weathering and clay illuviation), the distribution of minerals in both soil profiles is not homogeneous and varies from horizon to horizon. Which horizons are relevant and which kind of soil extract (labile soil fraction, acid soluble fraction, total soil,...) should be selected for isotopic measurement of weathering endmember, is therefore questionable. The different ways of estimation are discussed. Quantitative mineralogical reconstitutions of soil horizons and isotopic data indicate preferential weathering of plagioclase (high Sr content with low 87Sr/86Sr) rather than mica or K-feldspar (high 87Sr/86Sr). Our results emphasize the importance of the Ca atmospheric contribution to the tree mineral nutrition in these forest ecosystems. It is plausible that acid depositions associated with decreasing input of atmospheric cations (“acid rains”) could increase the depletion of soil available cation pool at a short-time scale.
SALT EFFECTS ON EGGS AND NAUPLII OF ARTEMIA SALINA L
Boone, Eleanor; Baas-Becking, L. G. M.
1931-01-01
Eggs of Artemia salina L., the brine shrimp, are easily obtainable in large quantities. Ecdysis takes place in two stages: (a) extrusion of the inner membrane, and (b) ecdysis of the nauplius from that membrane. The conditions which allow for the former are much more varied than those for the latter. Nauplii form in only solutions of a few sodium salts; and, in Mg, Ca, and Sr salts, potassium is very toxic. The possible environment for the nauplii (1 M total molarity) has been ascertained for chlorides of Na, K, Mg, and Ca. The facts observed account for the peculiar distribution of the organism. PMID:19872620
NASA Astrophysics Data System (ADS)
Kaneko, Tomoaki; Saito, Riichiro
2017-11-01
Energetics and electronic structures of alkali metal (Li, Na, K, Rb, and Cs) and alkaline earth metal (Be, Mg, Ca, Sr, and Ba) atoms intercalated bilayer graphene are systematically investigated using first-principles calculations based on density functional theory. Formation of alkali and alkaline earth metal atoms intercalated bilayer graphene is exothermic except for Be and Mg. The interlayer state between two graphene layers is occupied for K, Rb, Cs, Ca, Sr, and Ba. We find that the energetic position of the interlayer states between bilayer graphene monotonically shifts downward with increasing of interlayer distance. The interlayer distances of more than 4.5 Å and 4.0 Å, respectively, are necessary for the occupation of the interlayer state in bilayer graphene for alkali and alkaline earth metal atoms, which is almost independent of the intercalant metal species. We discuss the relevance to occurrence of superconductivity for the metal intercalated bilayer graphene in terms of the occupation of the interlayer state and the phonon frequency of metal ions.
NASA Astrophysics Data System (ADS)
Bullen, T. D.; Bailey, S. W.; McGuire, K. J.; Zimmer, M. A.; Ross, D. S.
2011-12-01
Determining solute sources and water flowpaths in catchments is of critical importance to development of models that effectively describe catchment function. For solutes in soil water and stream water, simple mass balance models that compare precipitation input to catchment outlet compositions can predict average mineral weathering contributions for the catchment as a whole, but fail to provide information about either variability of contributions from different portions of the catchment and different soil depths or processes such as ion exchange and biological cycling. In order to better understand how forested headwater catchments function, we are interpreting concentration and isotope ratios of the alkaline earth elements Ca, Sr and Ba in streamwater, groundwater, the soil ion exchange pool and plants in a hydropedologic context at the 41 hectare hydrologic reference catchment (Watershed 3) at the Hubbard Brook Experimental Forest, New Hampshire, USA. This forested headwater catchment consists of a beech-birch-maple-spruce forest growing on vertically- and laterally-developed Spodosols and Inceptisols formed on granitoid glacial till that mantles Paleozoic metamorphic bedrock. Across the watershed in terms of the soil ion exchange pool, the forest floor has high Sr/Ba and Ca/Sr ratios, mineral soils have intermediate Sr/Ba and low Ca/Sr, and relatively unweathered till in the C horizon has low Sr/Ba and high Ca/Sr. Waters moving through these various compartments will obtain Sr/Ba and Ca/Sr ratios reflecting these characteristics, and thus variations of Sr/Ba and Ca/Sr of streamwater provide evidence of the depth of water flowpaths feeding the streams. 87Sr/86Sr of exchangeable Sr spans a broad range from 0.715 to 0.725, with highest values along the mid-to upper flanks of the catchment and lowest values in a broad zone along the central axis of the catchment associated with numerous groundwater seeps. Thus, variations of 87Sr/86Sr in streamwater provide evidence of the spatial distribution of water flowpaths feeding the streams. In addition, we are exploring the use of Sr and Ba stable isotope ratios (88Sr/86Sr, 138Ba/134Ba) as novel tracers of Sr and Ba sources in catchments. Initial results indicate that both Sr and Ba stable isotopes are fractionated by plants similarly to patterns observed globally for Ca stable isotopes. We hypothesize that while biologically-cycled Ca is efficiently retained in the organic soil-plant system, biologically-cycled Sr and especially Ba will be more easily leached by soil waters and delivered to the streams and thus their stable isotope ratios may provide an additional means to distinguish between shallow and deep water flowpaths in forested catchments.
[The functions of calcium-sensing receptor in regulating mineral metabolism.
Kinoshita, Yuka
Calcium-sensing receptor(CaSR)which belongs to a G protein-coupled receptor family is one of the key elements in regulating calcium homeostasis. CaSR has been identified as a receptor to control parathyroid hormone(PTH)secretion in parathyroid glands according to serum calcium ion(Ca2+)levels. It has also been shown that CaSR controls reabsorption of water and several cations including Ca2+and magnesium ion(Mg2+)in renal tubular cells. This review summarizes the functions and roles of CaSR in mineral metabolism that are exerted in parathyroid glands, kidney, and intestine.
Constraints on Ca/Sr as a Proxy for Calcium in Forest Ecosystems
NASA Astrophysics Data System (ADS)
Hoff, C. J.; Hobbie, E. A.; Hallett, R.; Colpaert, J.; Bryce, J. G.
2004-05-01
Calcium is a key plant nutrient and important base cation in ecosystems. Our current efforts to quantify Ca cycling in ecosystems rely on indirect proxies, e.g., Ca/Sr or Sr isotopic systems (1). An important assumption in these applications is that the elemental ratio of calcium to strontium faithfully represents calcium cycling and that little fractionation occurs through biogeochemical and physiological processes. However, several researchers have reported variations in Ca/Sr, e.g. among different tree tissues (2) and during weathering processes (3), raising doubts about the suitability of the proxy. To address the question of reliability, we measured Ca/Sr values in a culture study in which Scots pines were grown at low or high nutrient supply rates (3% per day or 5% per day). Because mycorrhizal fungi are intimately involved in plant nutrient supply, plants were also grown either uncolonized or colonized with one of two different species of mycorrhizal fungi (Suillus luteus and Thelephora terrestris). Our preliminary results indicate that Ca/Sr values differ between high and low nutrient treatments, root and foliage, and mycorrhizal treatments. In individual seedlings, roots have lower Ca/Sr than foliage by absolute factors of 2-5. The magnitude of the effect is apparently determined by a combination of environmental factors including both the nutrient and mycorrhizal treatments. These results indicate that Ca and Sr are partitioned differently between nutrient and mycorrhizal treatments and between plant fractions despite the common nutrient broth and substrate. Thus, Ca/Sr values alone are not reliable tracers of Ca within an ecosystem because of partitioning of Ca and Sr during nutrient transport within the plant-mycorrhizal system. We are presently refining analytical techniques and conducting leachate experiments to improve the quantification of this Ca/Sr fractionation. We are also exploring the use of isotopic tracers to study calcium biogeochemical cycling in forest ecosystems. (1) Blum, J.D., et al. 2002. Nature 417: 729-731. (2) Bailey, S.W., et al. 1996. Water Resources Research 32: 707-719. (3) Vitousek, P.M., et al. 1999. Oecologia 121: 255- 259.
NASA Astrophysics Data System (ADS)
Etame, J.; Gerard, M.; Bilong, P.; Suh, C. E.
2009-05-01
The progressive weathering of 0.65 Ma nephelinites from Mount Etinde (South Western Cameroon) in a humid tropical setting has resulted in the formation of a 150 cm thick weathering crust. The soil profiles consist of three horizons: Ah/Bw/C. A major differentiation of the chemical and mineralogical parameters is related to the complexity of the saprolites, some of which were hydrothermally altered. Bulk geochemical and microgeochemical analyses were performed on selected minerals from the different horizons of two reference profiles, of which one (E 4) was developed from unaltered nephelinite (nephelinite U) while the other (BO 1) formed from hydrothermally altered nephelinite (nephelinite H). The results show that the primary minerals (clinopyroxene, nepheline, leucite, haüyne, titanomagnetite, perovskite, apatite and sphene) experienced differential weathering rates with primary minerals rich in rare earth elements (titanomagnetite, perovskite, apatite and sphene) surviving in the saprolite and the Bw horizons. The weathering of the primary minerals is reflected in the leaching of alkaline and alkaline-earth elements, except for Ba and Rb in the hydrothermalised nephelinite soil. The order of mobility is influenced by hydrothermal processes: Na > K > Rb > Ca > Cs > Sr in nephelinite U soil , Na > K > Sr > Ca > Mg in nephelinite H soil; Rb/Sr and Sr/Mg can be used as indicators of the kinetic of the weathering on nephelinite U and on nephelinite H. Barium enrichment is related to variable concentrations in the nephelinites, to the formation of crandallites and the leaching of surface horizons. The content of metallic elements is higher in nephelinite H soil than in the nephelinite U soil. Results show that hydrothermal alteration leads to an enrichment of light (La, Ce, Nd) and intermediate (Sm, Eu, Dy) rare earth elements. The enrichment in Cr and Pb in the surface horizons is discussed in relation to organic matter activity, the dissolution of magnetites, and the impact of hydrothermal processes as well as atmospheric pollution in the case of lead.
Solute profiles in soils, weathering gradients and exchange equilibrium/disequilibrium
White, A.F.; Schulz, M.S.; Stonestrom, David A.; Vivit, D.V.; Fitzpatrick, J.; Bullen, T.
2008-01-01
The spatial and temporal changes in hydrology and pore water elemental and 87/86Sr compositions were used to determine contemporary weathering rates in a 65 to 226 ky old soil chronosequence formed from granitic sediments deposited on marine terraces along coastal California. Cl-corrected Na, K and Si increased with depth denoting inputs from the weathering of plagioclase and K-feldspar. Solute 87/86Sr exhibited progressive mixing of sea water-dominated precipitation with inputs from less radiogenic plagioclase. Linear approximations to these weathering gradients were used to determine plagioclase weathering rates of between 0.38 and 8.9×10−15 moles m−2 s−1. The lack of corresponding weathering gradients for Ca and Sr indicated short-term equilibrium with the clay ion exchange pool which requires periodic resetting by natural perturbations to maintain continuity, in spite of soil composition changes reflecting the effects of long-term weathering.
Barthmes, Maria; Liao, Jun; Jiang, Youxing; Brüggemann, Andrea
2016-01-01
Sodium–calcium exchangers (NCXs) are membrane transporters that play an important role in Ca2+ homeostasis and Ca2+ signaling. The recent crystal structure of NCX_Mj, a member of the NCX family from the archaebacterium Methanococcus jannaschii, provided insight into the atomistic details of sodium–calcium exchange. Here, we extend these findings by providing detailed functional data on purified NCX_Mj using solid supported membrane (SSM)–based electrophysiology, a powerful but unexploited tool for functional studies of electrogenic transporter proteins. We show that NCX_Mj is highly selective for Na+, whereas Ca2+ can be replaced by Mg2+ and Sr2+ and that NCX_Mj can be inhibited by divalent ions, particularly Cd2+. By directly comparing the apparent affinities of Na+ and Ca2+ for NCX_Mj with those for human NCX1, we show excellent agreement, indicating a strong functional similarity between NCX_Mj and its eukaryotic isoforms. We also provide detailed instructions to facilitate the adaption of this method to other electrogenic transporter proteins. Our findings demonstrate that NCX_Mj can serve as a model for the NCX family and highlight several possible applications for SSM-based electrophysiology. PMID:27241699
Morrow, Ryan; Yan, Jiaqiang; McGuire, Michael A.; ...
2015-09-21
The magnetic ground state in the double perovskite system Sr 2-xCa xCoOsO 6 changes from an antiferromagnet (x=0), to a spin glass (x=1), to a ferrimagnet (x=2) as the Ca content increases. Moreover, this crossover is driven by chemical pressure effects that control the relative strength of magnetic exchange interactions. The synthesis, crystal structure, and magnetism of SrCaCoOsO 6 and Ca 2CoOsO 6 are investigated and compared with Sr 2CoOsO 6. Both compounds adopt a monoclinic crystal structure with rock-salt ordering of Co 2+ and Os 6+ and a -a -b + octahedral tilting, but the average Co–O–Os bond anglemore » evolves from 158.0(3) in SrCaCoOsO 6 to 150.54(9)° in Ca 2CoOsO 6 as the smaller Ca 2+ ion replaces Sr 2+. And while this change may seem minor, it has a profound effect on the magnetism, changing the magnetic ground state from antiferromagnetic in Sr 2CoOsO 6 (TN1=108K, T N2=70K), to a spin glass in SrCaCoOsO 6 (T f1=32K, T f2=13K), to ferrimagnetic in Ca 2CoOsO 6 (T C=145K). Finally, in the first two compounds the observation of two transitions is consistent with weak coupling between the Co and Os sublattices.« less
Behind the curtain: cellular mechanisms for allosteric modulation of calcium-sensing receptors
Cavanaugh, Alice; Huang, Ying; Breitwieser, Gerda E
2012-01-01
Calcium-sensing receptors (CaSR) are integral to regulation of systemic Ca2+ homeostasis. Altered expression levels or mutations in CaSR cause Ca2+ handling diseases. CaSR is regulated by both endogenous allosteric modulators and allosteric drugs, including the first Food and Drug Administration-approved allosteric agonist, Cinacalcet HCl (Sensipar®). Recent studies suggest that allosteric modulators not only alter function of plasma membrane-localized CaSR, but regulate CaSR stability at the endoplasmic reticulum. This brief review summarizes our current understanding of the role of membrane-permeant allosteric agonists in cotranslational stabilization of CaSR, and highlights additional, indirect, signalling-dependent role(s) for membrane-impermeant allosteric drugs. Overall, these studies suggest that allosteric drugs act at multiple cellular organelles to control receptor abundance and hence function, and that drug hydrophobicity can bias the relative contributions of plasma membrane and intracellular organelles to CaSR abundance and signalling. LINKED ARTICLES This article is part of a themed section on the Molecular Pharmacology of G Protein-Coupled Receptors (GPCRs). To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-6. To view the 2010 themed section on the same topic visit http://onlinelibrary.wiley.com/doi/10.1111/bph.2010.159.issue-5/issuetoc PMID:21470201
Pizarro, Gonzalo; Ríos, Eduardo
2004-01-01
In skeletal muscle, the waveform of Ca2+ release under clamp depolarization exhibits an early peak. Its decay reflects an inactivation, which locally corresponds to the termination of Ca2+ sparks, and is crucial for rapid control. In cardiac muscle, both the frequency of spontaneous sparks (i.e., their activation) and their termination appear to be strongly dependent on the Ca2+ content in the sarcoplasmic reticulum (SR). In skeletal muscle, no such role is established. Seeking a robust measurement of Ca2+ release and a way to reliably modify the SR content, we combined in the same cells the “EGTA/phenol red” method (Pape et al., 1995) to evaluate Ca2+ release, with the “removal” method (Melzer et al., 1987) to evaluate release flux. The cytosol of voltage-clamped frog fibers was equilibrated with EGTA (36 mM), antipyrylazo III, and phenol red, and absorbance changes were monitored simultaneously at three wavelengths, affording largely independent evaluations of Δ[H+] and Δ[Ca2+] from which the amount of released Ca2+ and the release flux were independently derived. Both methods yielded mutually consistent evaluations of flux. While the removal method gave a better kinetic picture of the release waveform, EGTA/phenol red provided continuous reproducible measures of calcium in the SR (CaSR). Steady release permeability (P), reached at the end of a 120-ms pulse, increased as CaSR was progressively reduced by a prior conditioning pulse, reaching 2.34-fold at 25% of resting CaSR (four cells). Peak P, reached early during a pulse, increased proportionally much less with SR depletion, decreasing at very low CaSR. The increase in steady P upon depletion was associated with a slowing of the rate of decay of P after the peak (i.e., a slower inactivation of Ca2+ release). These results are consistent with a major inhibitory effect of cytosolic (rather than intra-SR) Ca2+ on the activity of Ca2+ release channels. PMID:15337820
Mamillapalli, Ramanaiah; VanHouten, Joshua; Dann, Pamela; Bikle, Daniel; Chang, Wenhan; Brown, Edward
2013-01-01
To meet the demands for milk calcium, the lactating mother adjusts systemic calcium and bone metabolism by increasing dietary calcium intake, increasing bone resorption, and reducing renal calcium excretion. As part of this adaptation, the lactating mammary gland secretes PTHrP into the maternal circulation to increase bone turnover and mobilize skeletal calcium stores. Previous data have suggested that, during lactation, the breast relies on the calcium-sensing receptor (CaSR) to coordinate PTHrP secretion and milk calcium transport with calcium availability. To test this idea genetically, we bred BLG-Cre mice with CaSR-floxed mice to ablate the CaSR specifically from mammary epithelial cells only at the onset of lactation (CaSR-cKO mice). Loss of the CaSR in the lactating mammary gland did not disrupt alveolar differentiation or milk production. However, it did increase the secretion of PTHrP into milk and decreased the transport of calcium from the circulation into milk. CaSR-cKO mice did not show accelerated bone resorption, but they did have a decrease in bone formation. Loss of the mammary gland CaSR resulted in hypercalcemia, decreased PTH secretion, and increased renal calcium excretion in lactating mothers. Finally, loss of the mammary gland CaSR resulted in decreased calcium accrual by suckling neonates, likely due to the combination of increased milk PTHrP and decreased milk calcium. These results demonstrate that the mammary gland CaSR coordinates maternal bone and calcium metabolism, calcium transport into milk, and neonatal calcium accrual during lactation. PMID:23782944
NASA Astrophysics Data System (ADS)
Nomura, Kiyoshi; Suzuki, Shigeyo; Mizunuma, Tomoya; Koike, Yuya; Okazawa, Atsushi
2017-11-01
Magnetic properties of perovskite oxides, SrSn1- x Fe x O3- δ ( x ≤ 0.15), substituted with nonmagnetic Ca and Ti ions were studied. XRD patterns showed the orthorhombic structure (close to tetragonal) of (Sr1- y Ca y )(Sn1- x Fe x )O3- δ and Sr(Sn1- x- y Fe x Ti y )O3- δ . The cell volumes decreased with the increase of Ca and Ti doping rates. Although Ti-substituted Sr(Sn, Fe)O3- δ showed small saturation magnetizations as compared with non-Ti substituted one, the magnetization increased a little with Ti doping rates up to 15%. On the other hand, all Ca-substituted Sr(Sn, Fe)O3- δ showed larger saturation magnetization than non-Ca substituted one. Two doublets of Fe3+ and a doublet of Fe4+ were observed in Mössbauer spectra of Ca-substituted Sr(Sn, Fe)O3- δ with weak ferromagnetism, and two sextets of high spin Fe3+ were additionally observed in Mössbauer spectra of Ca-doped Sr(Sn, Fe)O3- δ with relatively strong ferromagnetism. When Sr(Sn, Fe)O3- δ were further codoped with Ca and Ti ions, they showed the stable and enhanced ferromagnetic properties. It is considered that magnetic polarons among high spin Fe3+ species are overlapped by shrinking or deforming the crystal structure of perovskite oxides. That is the magnetism induced by a chemical pressure of perovskite oxides.
Effects of Combining Na and Sr additions on Eutectic Modification in Al-Si alloy
NASA Astrophysics Data System (ADS)
Zhu, G. L.; Gu, N. J.; Zhou, B. J.
2017-09-01
Experiments were designed to investigate the effects of strontium and sodium modified on the eutectic silicon for Al-Si alloy. It was found that combining addition of Na and Sr did not appear to cause deleterious interactions of modification, at at the same time, Sr-Na was fairly constant with holding time and without obvious modification fading. Addition of Na-Sr modifier could take effect quickly and decrease incubation period.
NASA Astrophysics Data System (ADS)
María Mejía, Luz; Paytan, Adina; Eisenhauer, Anton; Kolevica, Ana; Bolton, Clara; Méndez-Vicente, Ana; Abrevaya, Lorena; Isensee, Kirsten; Stoll, Heather
2017-04-01
Coccoliths comprise a major fraction of the calcium carbonate (CaCO3) production, with contributions varying from 95% of the global carbonate sink during the Cenozoic, to 50% in the modern ocean. Therefore, significant changes in coccolith Ca isotopic fractionation could have affected past seawater Ca isotopic composition (δ44/40Ca), with potential important implications for the interpretation of the global Ca cycle and related changes in seawater chemistry. Here we evaluate the mechanisms driving coccolith Ca isotopic fractionation in a quantitative framework, by deriving a steady-state mass balance geochemical model (CaSri-Co), which assumes that fractionation is solely associated with desolvation (i.e. dehydration) of Ca during cellular transport through membranes. The application of the CaSri-Co model to previously published and to our new δ44/40Ca and Sr/Ca results from cultured coccolithophores (Emiliania huxleyi, Gephyrocapsa oceanica and Calcidiscus leptoporus) allowed us to identify calcification rates, Ca retention efficiency and water structure strength as main regulators of the Ca isotopic fractionation and Sr/Ca ratios of cultured coccolith calcite. Higher calcification rates, higher Ca retention efficiencies and higher water structure strength (slower Ca solvation-desolvation reactions) increase both coccolith Sr/Ca and Ca isotopic fractionation. The CaSri-Co model shows that coccolith Ca isotopic fractionation is especially sensitive to changes in water structure strength. On the other hand, Ca retention efficiency appears to be the main driver of the observed Sr/Ca trends, which results from the incomplete usage of the Sr transported to the calcification vesicle and subsequent Sr enrichment of the cytosol, while Ca inside the calcification vesicle is assumed to be completely utilized in the model. In this study we also measured δ44/40Ca and Sr/Ca in two coccolith size fraction from site 925 in the Western Equatorial Atlantic representing the last 11 Ma. We observe an increase of Sr/Ca ratios in both size fractions which may indicate an enhanced Ca retention efficiency during a period of increasing carbon limitation. The rather large changes in Ca isotopic fractionation measured in both cultures (up to 5 ‰ ) and the sedimentary record (up to 0.32 ‰ ), could be in part explained by changes in sea surface temperature (SST) and/or changes in the amount/type of cellular exudates, both of which modify the water structure strength around the cell. Since changes in Ca isotopic fractionation of the magnitude of those observed in this study and in others could potentially affect seawater δ44/40Ca, we would recommend future modeling studies to include coccolith-based studies for a better interpretation of the Ca cycle.
NASA Astrophysics Data System (ADS)
Qu, Shen; Wang, Guangcai; Shi, Zheming; Xu, Qingyu; Guo, Yuying; Ma, Luan; Sheng, Yizhi
2018-05-01
With depleted coal resources or deteriorating mining geological conditions, some coal mines have been abandoned in the Fengfeng mining district, China. Water that accumulates in an abandoned underground mine (goaf water) may be a hazard to neighboring mines and impact the groundwater environment. Groundwater samples at three abandoned mines (Yi, Er and Quantou mines) in the Fengfeng mining district and the underlying Ordovician limestone aquifer were collected to characterize their chemical and isotopic compositions and identify the sources of the mine water. The water was HCO3·SO4-Ca·Mg type in Er mine and the auxiliary shaft of Yi mine, and HCO3·SO4-Na type in the main shaft of Quantou mine. The isotopic compositions (δD and δ18O) of water in the three abandoned mines were close to that of Ordovician limestone groundwater. Faults in the abandoned mines were developmental, possibly facilitating inflows of groundwater from the underlying Ordovician limestone aquifers into the coal mines. Although the Sr2+ concentrations differed considerably, the ratios of Sr2+/Ca2+ and 87Sr/86Sr and the 34S content of SO4 2- were similar for all three mine waters and Ordovician limestone groundwater, indicating that a close hydraulic connection may exist. Geochemical and isotopic indicators suggest that (1) the mine waters may originate mainly from the Ordovician limestone groundwater inflows, and (2) the upward hydraulic gradient in the limestone aquifer may prevent its contamination by the overlying abandoned mine water. The results of this study could be useful for water resources management in this area and other similar mining areas.
NASA Astrophysics Data System (ADS)
Ermolaeva, V. N.; Chukanov, N. V.; Pekov, I. V.; Kogarko, L. N.
2009-12-01
Solid bituminous substances (SBS) are common components of the late hydrothermal mineral assemblages of peralkaline pegmatites. SBS are formed in a reductive setting as a result of progressive sorption of minor carbon-bearing molecules (CO, CO2, CH4, C2H6, C2H4, etc.), their polymerization, transformation into aromatic compounds (reformation), and selective oxidation on microporous zeolite-like Ti-, Nb-, and Zrsilicates serving as sorbents and catalysts. The oxygen-bearing aromatic compounds with hydrophile functional groups (-OH, -C=O, -COOH, -COO) act as complexing agents with respect to Th, REE, U, Zr, Ti, Nb, Ba, Sr, Ca, resulting in transfer of these bitumenophile elements under low-temperature hydrothermal conditions in the form of water-soluble macroassociates of the micelle type. Th, REE, and to a lesser extent, U, Zr, Ti, and Nb concentrate at the late stage of the hydrothermal process as microphases impregnating SBS or macroscopic segregations of Th and REE minerals. At the final stage, homogeneous SBS break down into organic (partly together with Ca, Sr, Ba, and Pb) and mineral (with Th, Ln, Y, Ti, Nb, Ca, Na, K, Si) microphases.
NASA Astrophysics Data System (ADS)
Radermacher, Pascal; Schöne, Bernd R.; Nunn, Elizabeth V.; Zengjie, Zhang
2010-05-01
Quantifiable paleotemperature data can help to verify predictions made by numerical climate models. Traditionally, paleotemperature estimates are based on δ18O values of biogenic hard parts. However, oxygen isotope values not only reflect changes in ambient temperature, but also changes in δ18Owater, i.e. driven by freshwater influx, evaporation etc. Information regarding the δ18Owater value of past environments is limited for the geological past. The validity of published δ18O paleotemperature data can be tested using element-to-calcium ratios of bivalve shells such as the long-lived ocean quahog, Arctica islandica. Preliminary investigations suggest that Sr/Ca ratios of this species may provide more reliable paleotemperature data. However, contemporaneously deposited shell portions within the outer shell layer demonstrate at least a 30% variability in the Sr/Ca value. This study presents Sr/Ca ratios measured by ICP-OES wet-chemical analyses. Significantly different distributions of Sr/Ca ratios were recorded from the shell surface (over 1330 ppm), through the interior (850 ppm) and to the inner shell surface (1860 ppm). Furthermore, this study showed that different shell crystal fabrics incorporate different amounts of Sr into the CaCO3 lattice of the A. islandica shell. Disparate Sr distribution could potentially be explained either by postdepositional diagenetic processes or syndepositional processes during biomineralization (i.e. different amounts of Sr incorporated into the shell). Understanding the mechanism of the observed Sr heterogeneity is essential if Sr/Ca ratios are to be used confidently in paleotemperature reconstructions.
[Determination of 22 inorganic elements in different parts of Lantana camara by ICP-OES].
Zhou, Wei-ming; Wang, Ru-yi; Chen, Liu-sheng; Huang, Chuan-bin
2014-09-01
To determine the contents of 22 inorganic elements in different parts of Lantana camara by inductively coupled plasma optical emission spectroscopy (ICP-OES). HNO3-H2 02 digested system was used to completely decomposed the organic compounds effectually by microwave digestion. 22 inorganic elements such as K, Ca, Mg, Fe, Al, Na, Zn, Mn and Cr were determined by ICP-OES under set up working conditions. The contents of K, Ca and Mg were the most in different parts of Lantana camrnara; The contents of K, Ca, Mg, Mn, Sr and Cu in the leaves of Lantana camara were more than that in the root and the branch. The contents of Fe and Na in the root of Lantana camara were more than that in the leaves and the branch. The contents of Pb and Cd were higher than the national standard and Cr had high content in different parts of Lantana camara. The determination method is quick, easy and accurate with high sensitivity,which can determine the contents of 22 inorganic elements accurately in different parts of Lantana camara.
NASA Astrophysics Data System (ADS)
Gussone, Nikolaus; Filipsson, Helena L.; Kuhnert, Henning
2016-01-01
We analysed Mg/Ca, Sr/Ca and Ca isotope ratios of benthonic foraminifers from sediment core tops retrieved during several research cruises in the Atlantic Ocean, in order to improve the understanding of isotope fractionation and element partitioning resulting from biomineralisation processes and changes in ambient conditions. Species include foraminifers secreting tests composed of hyaline low magnesium calcite, porcelaneous high magnesium calcite as well as aragonite. Our results demonstrate systematic isotope fractionation and element partitioning patterns specific for these foraminiferal groups. Calcium isotope fractionation is similar in porcelaneous and hyaline calcite tests and both groups demonstrate the previously described anomaly with enrichment of heavy isotopes around 3-4 °C (Gussone and Filipsson, 2010). Calcium isotope ratios of the aragonitic species Hoeglundina elegans, on the other hand, are about 0.4‰ lighter compared to the calcitic species, which is in general agreement with stronger fractionation in inorganic aragonite compared to calcite. However, the low and strongly variable Sr content suggests additional processes during test formation, and we propose that transmembrane ion transport or a precursor phase to aragonite may be involved. Porcelaneous tests, composed of high Mg calcite, incorporate higher amounts of Sr compared to hyaline low Mg calcite, in agreement with inorganic calcite systematics, but also porcelaneous tests with reduced Mg/Ca show high Sr/Ca. While calcium isotopes, Sr/Ca and Mg/Ca in benthonic foraminifers primarily appear to fractionate and partition with a dominant inorganic control, δ44/40Ca temperature and growth rate dependencies of benthonic foraminifer tests favour a dominant contribution of light Ca by transmembrane transport relative to unfractionated seawater Ca to the calcifying fluid, thus controlling the formation of foraminiferal δ44/40Ca and Sr/Ca proxy signals.
The Synthesis of Calcium Salt from Brine Water by Partial Evaporation and Chemical Precipitation
NASA Astrophysics Data System (ADS)
Lalasari, L. H.; Widowati, M. K.; Natasha, N. C.; Sulistiyono, E.; Prasetyo, A. B.
2017-02-01
In this study would be investigated the effects of partial evaporation and chemical precipitation in the formation of calcium salt from brine water resources. The chemical reagents used in the study was oxalate acid (C2H2O4), ammonium carbonate (NH4)2CO3) and ammonium hydroxide (NH4OH) with reagent concentration of 2 N, respectively. The procedure was 10 liters brine water evaporated until 20% volume and continued with filtration process to separate brine water filtrate from residue (salt). Salt resulted from evaporation process was characterized by Scanning Electron Microscopy (SEM), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) techniques. Filtrate then was reacted with C2H2O4, (NH4)2CO3 and NH4OH reagents to get salt products in atmospheric condition and variation ratio volume brine water/chemicals (v/v) [10/1; 10/5; 10/10; 10/20; 10/30; 10:50; 20/1; 20/5; 20/10; 20/20; 20/30; 20:50]. The salt product than were filtered, dried, measured weights and finally characterized by SEM/EDS and XRD techniques. The result of experiment showed the chemical composition of brine water from Tirta Sanita, Bogor was 28.87% Na, 9.17% Mg, 2.94% Ca, 22.33% O, 0.71% Sr, 30.02% Cl, 1.51% Si, 1.23% K, 0.55% S, 1.31% Al. The chemical composition of salt resulted by partial evaporation was 53.02% Ca, 28.93%O, 9.50% Na, 2.10% Mg, 1.53% Sr, 1.20% Cl, 1.10% Si, 0.63% K, 0.40% S, 0.39% Al. The salt resulted by total evaporation was indicated namely as NaCl. Whereas salt resulted by partial evaporation was CaCO3 with a purity of 90 % from High Score Plus analysis. In the experiment by chemical precipitation was reported that the reagents of ammonium carbonate were more reactive for synthesizing calcium salt from brine water compared to reagents of oxalate acid and ammonium hydroxide. The salts precipitated by NH4OH, (NH4)2CO3, and H2C2O4 reagents were indicated as NaCl, CaCO3 and CaC2O4.H2O, respectively. The techniques of partial evaporation until 20% volume sample of brine water and chemical precipitation using (NH4)2CO3 reagent are recommended in the synthesis of calcium salts from brine water because are simple, flexible and economical.
Kosicki, Maciej Bartosz; Kędziera, Dariusz; Żuchowski, Piotr Szymon
2017-06-01
We investigate the energetics of the atom exchange reaction in the SrF + alkali-metal atom and CaF + alkali-metal atom systems. Such reactions are possible only for collisions of SrF and CaF with the lithium atoms, while they are energetically forbidden for other alkali-metal atoms. Specifically, we focus on SrF interacting with Li, Rb, and Sr atoms and use ab initio methods to demonstrate that the SrF + Li and SrF + Sr reactions are barrierless. We present potential energy surfaces for the interaction of the SrF molecule with the Li, Rb, and Sr atoms in their energetically lowest-lying electronic spin states. The obtained potential energy surfaces are deep and exhibit profound interaction anisotropies. We predict that the collisions of SrF molecules in the rotational or Zeeman excited states most likely have a strong inelastic character. We discuss the prospects for the sympathetic cooling of SrF and CaF molecules using ultracold alkali-metal atoms.
Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways.
Conigrave, Arthur D; Ward, Donald T
2013-06-01
In this article we consider the mechanisms by which the calcium-sensing receptor (CaSR) induces its cellular responses via the control (activation or inhibition) of signaling pathways. We consider key features of CaSR-mediated signaling including its control of the heterotrimeric G-proteins Gq/11, Gi/o and G12/13 and the downstream consequences recognizing that very few CaSR-mediated cell phenomena have been fully described. We also consider the manner in which the CaSR contributes to the formation of specific signaling scaffolds via peptide recognition sequences in its intracellular C-terminal along with the origins of its high level of cooperativity, particularly for Ca(2+)o, and its remarkable resistance to desensitization. We also consider the nature of the mechanisms by which the CaSR controls oscillatory and sustained Ca(2+)i mobilizing responses and inhibits or elevates cyclic adenosine monophosphate (cAMP) levels dependent on the cellular and signaling context. Finally, we consider the diversity of the receptor's ligands, ligand binding sites and broader compartment-dependent physiological roles leading to the identification of pronounced ligand-biased signaling for agonists including Sr(2+) and modulators including l-amino acids and the clinically effective calcimimetic cinacalcet. We note the implications of these findings for the development of new designer drugs that might target the CaSR in pathophysiological contexts beyond those established for the treatment of disorders of calcium metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Carvalho, Bruna Borges; Janasi, Valdecir de Assis
2012-11-01
Major and trace-element microanalyses of the main minerals from the 610 Ma Pedra Branca Syenite, southeast Brazil, allow inferences on intensive parameters of magmatic crystallization and on the partition of trace-elements among these minerals, with important implications for the petrogenetic evolution of the pluton. Two main syenite types make up the pluton, a quartz-free syenite with tabular alkali feldspar (laminated silica-saturated syenite, LSS, with Na-rich augite + phlogopite + hematite + magnetite + titanite + apatite) and a quartz-bearing syenite (laminated silica-oversaturated syenite, LSO, with scarce corroded plagioclase plus diopside + biotite ± hornblende + ilmenite ± magnetite + titanite + apatite). Both types share a remarkable enrichment in incompatible elements as K, Ba, Sr, P and LREE. Apatite saturation temperatures of ~ 1060-1090 °C are the best estimates of liquidus, whereas the pressure of emplacement, based on Al-in-hornblende barometry, is estimated as 3.3 to 4.8 kbar. Although both units crystallized under oxidizing conditions, oxygen fugacity was probably higher in LSS, as shown by higher mg# of the mafic minerals and higher hematite contents in Hem-Ilmss. In contrast with the Ca-bearing alkali-feldspar from LSO, which hosts most of the whole-rock Sr and Pb, virtually Ca-free alkali-feldspar from LSS hosts ~ 50% of whole-rock Sr and ~ 80% of Pb, the remainder of these elements being shared by apatite, pyroxene and titanite. This contrast reflects a strong crystal-chemical control, whereby a higher proportion of an element with similar ratio and charge (Ca2 +) enhances the residence of Sr and Pb in the M-site of alkali feldspar. The more alkaline character of the LSS magma is inferred to have inhibited zircon saturation; Zr + Hf remained in solution until late in the crystallization, and were mostly accommodated in the structure of Ca-Na pyroxene and titanite, which are one order of magnitude richer in these elements compared to the same minerals in LSO, where most of Zr and Hf are inferred to reside in zircon. The REE, Th and U reside mostly in titanite and apatite; D(REE)Tit/Ap raises steadily from 1 to 6 from La to Tb then remains constant up to Lu in the LSO sample; these values are about half as much in the LSS sample, where lower contents of incompatible elements in titanite are attributed to its greater modal abundance and earlier crystallization.
Yachandra, Vittal K.; Yano, Junko
2011-01-01
This review describes the results from X-ray absorption spectroscopy studies that have contributed to an understanding of the role of Ca in the photosynthetic water oxidation reaction. The results include the first Mn, Ca and Sr X-ray spectroscopy studies using Ca or Sr-substituted PS II samples that established the presence of a MnCa heteronuclear structure and its orientation, and the most recent Sr X-ray spectroscopy study using biosynthetically prepared Sr-containing PS II in the various S-states that provide important insights into the requirement for Ca in the mechanism of the Mn4Ca catalytic center. PMID:21524917
Bioactivity of Y2O3 and CeO2 doped SiO2-SrO-Na2O glass-ceramics.
Placek, L M; Keenan, T J; Wren, A W
2016-08-01
The bioactivity of yttrium and cerium are investigated when substituted for Sodium (Na) in a 0.52SiO2-0.24SrO-0.24-xNa2O-xMO glass-ceramics (where x = 0.08 and MO = Y2O3 or CeO2). Bioactivity is monitored through pH and inductively coupled plasma-optical emission spectrometry where pH of simulated body fluid ranged from 7.5 to 7.6 and increased between 8.2 and 10.0 after 14-day incubation with the glass-ceramic disks. Calcium (Ca) and phosphorus (P) levels in simulated body fluid after incubation with yttrium and cerium containing disks show a continual decline over the 14-day period. In contrast, Con disks (not containing yttrium or cerium) caused the elimination of Ca in solution after 1 day and throughout the incubation period, and initially showed a decline in P levels followed by an increase at 14 days. Scanning electron microscopy and energy dispersive spectroscopy confirmed the presence of Ca and P on the surface of the simulated body fluid-incubated disks and showed precipitates on Con and HCe (8 mol% cerium) samples. Cell viability of MC3T3 osteoblasts was not significantly affected at a 9% extract concentration. Optical microscopy after 24 h cell incubation with disks showed that Con samples do not support osteoblast or Schwann cell growth, while all yttrium and cerium containing disks have direct contact with osteoblasts spread across the wells. Schwann cells attached in all wells, but only showed spreading with the HY-S (8 mol% yttrium, heated to sintering temperature) and YCe (4 mol% yttrium and cerium) disks. Scanning electron microscopy of the compatible disks shows osteoblast and sNF96.2 Schwann cells attachment and spreading directly on the disk surfaces. © The Author(s) 2016.
[Application of ICP-MS to Identify the Botanic Source of Characteristic Honey in South Yunnan].
Wei, Yue; Chen, Fang; Wang, Yong; Chen, Lan-zhen; Zhang, Xue-wen; Wang, Yan-hui; Wu, Li-ming; Zhou, Qun
2016-01-01
By adopting inductively coupled plasma mass spectrometry (ICP-MS) combined with chemometric analysis technology, 23 kinds of minerals in four kinds of characteristic honey derived from Yunnan province were analyzed. The result showed that 21 kinds of mineral elements, namely Na, Mg, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Sb, Ba, Tl and Pb, have significant differences among different varieties of honey. The results of principal component analysis (PCA) showed that the cumulative variance contribution rate of the first four main components reached 77.74%, seven kinds of elements (Mg, Ca, Mn, Co, Sr, Cd, Ba) from the first main component contained most of the honey information. Through the stepwise discriminant analysis, seven kinds of elements (Mg, K, Ca, Cr, Mn, Sr, Pb) were filtered. out and used to establish the discriminant function model, and the correct classification rates of the proposed model reached 90% and 86.7%, respectively, which showed elements contents could be effectively indicators to discriminate the four kinds characteristic honey in southern Yunnan Province. In view of all the honey samples were harvested from apiaries located at south Yunnan Province where have similar climate, soil and other environment conditions, the differences of the mineral elements contents for the honey samples mainly due to their corresponding nectariferous plant. Therefore, it is feasible to identify honey botanical source through the differences of mineral elements.
Interstitial water studies on small core samples, Leg 15
Sayles, Fred L.; Manheim, Frank T.; Waterman, Lee S.
1973-01-01
Analyses of pore fluids from reducing environments demonstrate that reduction of SO4 is accompanied by large increases in alkalinity and strong depletion of Ca and Mg. The data are compatible with a model of replacement of Fe3+ in clay lattices by Mg from the interstitial solutions and the precipitation of pyrite. Depletions of Na in the interstitial solutions are related to Mg losses by a ratio of approximately 1:3. Pore fluids from oxidizing pelagic sediments exhibit little SO4 depletion. Losses of Mg are accompanied by the addition of Ca to the pore solutions on a nearly 1:1 basis. Strong Sr enrichment is also found in these solutions. The magnitude of the Sr increase suggests that considerable carbonate recrystallization has occurred. As part of an extensive interlaboratory and analytical calibration, the effect of squeezing sediment at different temperatures has been studied in depth. Samples of a variety of lithologies have been included. Enrichment of K by as much as 24 percent and depletion of Mg and Ca by up to 7 percent occurs during warming. However, no significant effect upon Cl and SO4 could be detected. The strongest effects are seen in the minor constituents studied. On warming, Sr, Si, and B are enriched as much as 19, 40, and 60 percent, respectively. The size of the observed concentration changes varies with the mineralogy of the sediment, but is significant in all types studied, particularly with regards to Mg and K.
NASA Astrophysics Data System (ADS)
Yokota, Yuui; Tanaka, Chieko; Kurosawa, Shunsuke; Yamaji, Akihiro; Ohashi, Yuji; Kamada, Kei; Nikl, Martin; Yoshikawa, Akira
2018-05-01
Eu-doped Li(Ca,Sr)AlF6 [Eu:LiCSAF] single crystals with various Ca/Sr ratios were grown by the micro-pulling-down method, and their optical and scintillation properties were investigated to reveal the effects of Ca/Sr ratio on optical and scintillation properties of the Eu:LiCSAF single crystals. The Li(Ca1-x-ySrxEuy)AlF6 single crystals could be grown in 0 ≤ x ≤ 0.1, 0.5 ≤ x ≤ 1.0 and y = 0.02 while the Eu:LiCSAF crystals with x = 0.2, 0.25 and 0.4 included two colquiriite-type phases with different lattice parameters. The Li(Ca1-x-ySrxEuy)AlF6 single crystal with x = 0.25 and y = 0.02 showed the highest light yield under neutron irradiation.
Kabbara, A A; Allen, D G
2001-07-01
1. Single fibres from the lumbrical muscles of the cane toad (Bufo marinus) were incubated in fluo-5N AM for 2 h at 35 degrees C in order to load the indicator into the sarcoplasmic reticulum. Fluo-5N is a low-affinity calcium indicator (K(Ca) 90 microM). Successful sarcoplasmic reticulum (SR) loading was indicated by a fluorescence signal that declined during contraction. 2. Confocal microscopy showed that the dye loaded principally in lines perpendicular to the long axis of the fibre that repeated each sarcomere. This is consistent with much of the dye residing in the SR. 3. To establish the site of loading, fibres were exposed to 30 mM caffeine in the presence of 20 microM 2,5-di(tert-butyl)1,4-hydroquinone (TBQ, an SR pump inhibitor) which should release most Ca(2+) from the SR; this procedure reduced the fluorescence to 46 +/- 4 % of the control value. To determine how much indicator was in the myoplasm, fibres were exposed to 100 microg ml(-1) saponin which permeabilizes the surface membrane; saponin treatment reduced the fluorescence to 51 +/- 2 % of the control value. 4. During maximally activated tetani (100 Hz stimulation rate, 22 degrees C) the component of signal from the SR declined by 33 +/- 4 %. During relaxation the SR signal recovered in two phases with time constants of 0.38 +/- 0.14 s and 10.1 +/- 1.7 s. Partially activated tetani (30 Hz stimulation rate) showed a smaller SR signal. Application of the SR Ca(2+) pump inhibitor TBQ slowed the rate of recovery of the SR signal. 5. Muscle fatigue was produced by repeated short tetani until tension was reduced to 50 %. The SR signal during the periods between tetani declined steadily and the SR Ca(2+) signal was eventually reduced to 71 +/- 8 % of the control signal. This signal recovered in two phases when the muscle was rested. An initial phase had a time constant of 1.7 +/- 0.2 s so that by 20 s of recovery the SR Ca(2+) signal was 86 +/- 7 % of control; the second phase was slower and by 5 min the SR Ca(2+) signal was back to control values (98 +/- 5 % control). In addition the magnitude of the SR signal decline associated with each tetanus (Delta[Ca(2+)](SR)) declined monotonically throughout fatigue and returned to control after 5 min recovery. 6. This approach can monitor the SR Ca(2+) concentration in normally functioning muscle fibres with good time resolution. The method confirms other approaches that show that the free Ca(2+) available for release in the SR declines during fatigue. This reduction in [Ca(2+)](SR) will contribute to the failure of Ca(2+) delivery to the myofilaments which is an important cause of muscle fatigue.
Gorvin, Caroline M; Babinsky, Valerie N; Malinauskas, Tomas; Nissen, Peter H; Schou, Anders J; Hanyaloglu, Aylin C; Siebold, Christian; Jones, E Yvonne; Hannan, Fadil M; Thakker, Rajesh V
2018-02-20
The calcium-sensing receptor (CaSR) is a G protein-coupled receptor (GPCR) that signals through G q/11 and G i/o to stimulate cytosolic calcium (Ca 2+ i ) and mitogen-activated protein kinase (MAPK) signaling to control extracellular calcium homeostasis. Studies of loss- and gain-of-function CASR mutations, which cause familial hypocalciuric hypercalcemia type 1 (FHH1) and autosomal dominant hypocalcemia type 1 (ADH1), respectively, have revealed that the CaSR signals in a biased manner. Thus, some mutations associated with FHH1 lead to signaling predominantly through the MAPK pathway, whereas mutations associated with ADH1 preferentially enhance Ca 2+ i responses. We report a previously unidentified ADH1-associated R680G CaSR mutation, which led to the identification of a CaSR structural motif that mediates biased signaling. Expressing CaSR R680G in HEK 293 cells showed that this mutation increased MAPK signaling without altering Ca 2+ i responses. Moreover, this gain of function in MAPK activity occurred independently of G q/11 and G i/o and was mediated instead by a noncanonical pathway involving β-arrestin proteins. Homology modeling and mutagenesis studies showed that the R680G CaSR mutation selectively enhanced β-arrestin signaling by disrupting a salt bridge formed between Arg 680 and Glu 767 , which are located in CaSR transmembrane domain 3 and extracellular loop 2, respectively. Thus, our results demonstrate CaSR signaling through β-arrestin and the importance of the Arg 680 -Glu 767 salt bridge in mediating signaling bias. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Formation and composition of the moon. [carbonaceous meteorites
NASA Technical Reports Server (NTRS)
Anderson, D. L.
1974-01-01
Many of the properties of the moon are discussed including the enrichment in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the depletion in Fe, Rb, K, Na and other volatiles which could be understood if the moon represents a high temperature condensate from the solar nebula. Thermodynamic calculations show that Ca, Al and Ti rich compounds condense first in a cooling nebula. The initial high temperature mineralogy is gehlenite, spinel, perovskite, Ca-Al-rich pyroxenes and anorthite. Inclusions in Type III carbonaceous chondrites such as the Allende meteorite are composed primarily of these minerals and, in addition, are highly enriched in refractories such as REE relative to carbonaceous chondrites. These inclusions can yield basalt and anorthosite in the proportions required to eliminate the europium anomaly, leaving a residual spinel-melilite interior.
Zhang, Lei; Du, Liqun; Shen, Chenjia; Yang, Yanjun; Poovaiah, B W
2014-04-01
Transient changes in intracellular Ca(2+) concentration are essential signals for activation of plant immunity. It has also been reported that Ca(2+) signals suppress salicylic acid-mediated plant defense through AtSR1/CAMTA3, a member of the Ca(2+) /calmodulin-regulated transcription factor family that is conserved in multicellular eukaryotes. How plants overcome this negative regulation to mount an effective defense response during a stage of intracellular Ca(2+) surge is unclear. Here we report the identification and functional characterization of an important component of ubiquitin ligase, and the associated AtSR1 turnover. The AtSR1 interaction protein 1 (SR1IP1) was identified by CytoTrap two-hybrid screening. The loss-of-function mutant of SR1IP1 is more susceptible to bacterial pathogens, and over-expression of SR1IP1 confers enhanced resistance, indicating that SR1IP1 acts as a positive regulator of plant defense. SR1IP1 and AtSR1 act in the same signaling pathway to regulate plant immunity. SR1IP1 contains the structural features of a substrate adaptor in cullin 3-based E3 ubiquitin ligase, and was shown to serve as a substrate adaptor that recruits AtSR1 for ubiquitination and degradation when plants are challenged with pathogens. Hence, SR1IP1 positively regulates plant immunity by removing the defense suppressor AtSR1. These findings provide a mechanistic insight into how Ca(2+) -mediated actions are coordinated to achieve effective plant immunity. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Aqueous alteration of the Nakhla meteorite
NASA Technical Reports Server (NTRS)
Gooding, James L.; Zolensky, Michael E.; Wentworth, Susan J.
1991-01-01
Interior samples of three different Nakhla specimens contain an iron-rich silicate 'rust' (which includes a tentatively identified smectite), Ca-carbonate (probably calcite), Ca-sulfate (possibly gypsum or bassanite), Mg-sulfate (possibly epsomite or kieserite), and NaCl (halite); the total abundance of these phases is estimated as less than 0.01 weight percent of the bulk meteorite. Rust veins are truncated and decrepitated by fusion crust and are preserved as faulted segments in partially healed olivine crystals, indicating that the rust is preterrestrial in origin. Because Ca-carbonate and Ca-sulfate are intergrown with the rust, they are also indicated to be of preterrestrial origin. Similar textural evidence regarding origins of the NaCl and Mg-sulfate is lacking. Impure and poorly crystallized sulfates and halides on the fusion crust of the meteorite suggest leaching of interior (preterrestrial) salts from the interior after Makhla arrived on earth, but coincidental addition of these same salts by terrestrial contamination cannot be exluded. At least the clay-like silicate 'rust', Ca-carbonate, and Ca-sulfate were formed by precipitation from water-based solutions on the Nakhla parent planet, although temperature and pressure conditions of aqueous precipitation are unconstrained by currently available data. It is possible that aqueous alteration on the parent body was responsible for the previously observed disturbance of the Rb-Sr geochronometer in Nakhla at or near 1.3 Ga.
Physics and chemistry of MoS2 intercalation compounds
NASA Technical Reports Server (NTRS)
Woollam, J. A.; Somoano, R. B.
1977-01-01
An investigation is made of the physics and chemistry of MoS2 intercalation compounds. These compounds may be separated into two groups according to their stoichiometry, structure and superconducting properties. The first group consists of Na, Ca, and Sr intercalates, and the second group consists of K, Rb, and Cs intercalates. Particular attention is given to the structure of the electronic energy band and to the normal state and superconducting properties of these compounds.
NASA Astrophysics Data System (ADS)
Zhang, He; Li, Shuang-Qing; Fang, Bo-Wen; He, Jian-Feng; Xue, Ying-Yu; Siebel, Wolfgang; Chen, Fukun
2018-01-01
Migmatites provide a record of melt formation and crustal rheology. In this study we present zircon U-Pb ages and geochemical composition of migmatites from the Foping dome and granites from the Wulong pluton. U-Pb results from migmatite zircons indicate two episodes of partial melting. Rim domains from a leucosome in the Longcaoping area yield an age of ca. 209 Ma. Migmatites collected from the Foping dome yield U-Pb zircon ages of 2910 to 190 Ma, suggesting the involvement of meta-sedimentary source components. Rim domains of the zircons with low Th/U ratios (< 0.1) give ages of 225-190 Ma and the youngest age domains (ca. 195 Ma) are characterized by low contents of heavy rare earth elements, which is related to crystallization of garnet. Magmatic rocks from the Wulong pluton can be subdivided into high Sr/Y and low Sr/Y granites. U-Pb zircon ages vary from 219 to 214 Ma for the high Sr/Y granites and from 214 to 192 Ma for the low Sr/Y granites. High Sr/Y granites have higher Na2O and Sr contents than the low Sr/Y granites. They also lack negative Eu anomalies and are depleted in HREE compared to the low Sr/Y granites. Initial 87Sr/86Sr ratios and εNd values of all the samples roughly overlap with those of Neoproterozoic basement rocks exposed in South Qinling. Including previous studies, we propose that the high and low Sr/Y granites formed by melting of thickened and normal crust, respectively. Close temporal-spatial relationship of the high and low Sr/Y granites with the two-stage migmatization events implies variation of crustal thickness and thermal overprints of the orogenic crust in post-collisional collapse. Following the collision of South Qinling and the Yangtze block prior to 219 Ma, partial melting of the deep crust occurred. The melts migrated upwards to form the high Sr/Y granites. This process occurred rapidly and caused collapse of the thickened crust and carried heat upwards, leading to further partial melting within the shallower crust and formation of the low Sr/Y granites.
NASA Astrophysics Data System (ADS)
Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; Moscoso-Pérez, Carmen; Blanco-Heras, Gustavo; Turnes-Carou, Isabel; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío
2014-05-01
In the present research, the rainwater chemistry of soluble (SF) and non-soluble (NSF) fractions is studied over a one a half year period (from March 2011 to August 2012) at a suburban site (Oleiros, A Coruña, Spain). The monthly rainfall in this region during the studied period ranged from 10 to 137 mm, while the NSF ranged from 0.9 to 54 mg L-1. More rainfall occurs within October-January. Eighteen samples, which provide information pertaining to the monthly variation in chemistry, were analyzed. Trace metals (Al, As, Ba, Co, Cu, Cr, Fe, Mn, Ni, Pb, Sr, V, Zn) were enclosed in the study of both fractions of the rainwater. Major inorganic ions (Cl-, NO3-, SO42-, Na+, K+, Ca2+, Mg2+ and NH4+) were also enclosed in the study of the SF of the rainwater. After partition coefficients analysis, univariate and principal components analysis (PCA) and air mass back trajectories analysis, three sources were found for the ionic and metal composition of the SF of rainwater; terrestrial (Ca2+, non sea salt SO42-, Al and Fe), marine (Mg2+, Na+, Cl-) and anthropogenic (K+, NH4+, NO3-, Fe, Mn, Pb, Sr, V and Zn). Results also suggest ubiquitous sources for Ba, Co, Cu, Cr and Ni. One source (terrestrial) was found for NSF of rainwater.
Lamboley, C R; Murphy, R M; McKenna, M J; Lamb, G D
2014-03-15
The Ca(2+) uptake properties of the sarcoplasmic reticulum (SR) were compared between type I and type II fibres of vastus lateralis muscle of young healthy adults. Individual mechanically skinned muscle fibres were exposed to solutions with the free [Ca(2+)] heavily buffered in the pCa range (-log10[Ca(2+)]) 7.3-6.0 for set times and the amount of net SR Ca(2+) accumulation determined from the force response elicited upon emptying the SR of all Ca(2+). Western blotting was used to determine fibre type and the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) isoform present in every fibre examined. Type I fibres contained only SERCA2 and displayed half-maximal Ca(2+) uptake rate at ∼pCa 6.8, whereas type II fibres contained only SERCA1 and displayed half-maximal Ca(2+) uptake rate at ∼pCa 6.6. Maximal Ca(2+) uptake rate was ∼0.18 and ∼0.21 mmol Ca(2+) (l fibre)(-1) s(-1) in type I and type II fibres, respectively, in good accord with previously measured SR ATPase activity. Increasing free [Mg(2+)] from 1 to 3 mM had no significant effect on the net Ca(2+) uptake rate at pCa 6.0, indicating that there was little or no calcium-induced calcium release occurring through the Ca(2+) release channels during uptake in either fibre type. Ca(2+) leakage from the SR at pCa 8.5, which is thought to occur at least in part through the SERCA, was ∼2-fold lower in type II fibres than in type I fibres, and was little affected by the presence of ADP, in marked contrast to the larger SR Ca(2+) leak observed in rat muscle fibres under the same conditions. The higher affinity of Ca(2+) uptake in the type I human fibres can account for the higher relative level of SR Ca(2+) loading observed in type I compared to type II fibres, and the SR Ca(2+) leakage characteristics of the human fibres suggest that the SERCAs are regulated differently from those in rat and contribute comparatively less to resting metabolic rate.
Lyons, P.C.; Morelli, J.J.; Hercules, D.M.; Lineman, D.; Thompson-Rizer, C. L.; Dulong, F.T.
1990-01-01
A study of the elemental composition of intimately associated coal macerals in the English Swallow Wood coal bed was conducted using a laser microprobe mass analyser, and indicated a similar trace and minor elemental chemistry in the vitrinite and cutinite and a different elemental signature in the fusinite. Three to six sites were analysed within each maceral during the study by laser micro mass spectrometry (LAMMS). Al, Ba, Ca, Cl, Cr, Dy, F, Fe, Ga, K, Li, Mg, Na, S, Si, Sr, Ti, V, and Y were detected by LAMMS in all three macerals but not necessarily at each site analysed. The signal intensities of major isotopic peaks were normalized to the signal intensity of the m z 85 peak (C7H) to determine the relative minor- and trace-element concentrations among the three dominant macerals. The vitrinite and the cutinite were depleted in Ba, Ca, Dy, Li, Mg, Sr, and Y relative to their concentrations observed in the fusinite. The cutinite was distinguished over vitrinite by less Ti, V, Cr and Ca, and K Ca $ ??1 (relative signal intensities). The fusinite, relative to the cutinite and vitrinite, was relatively depleted in Cr, Sc, Ti, and V. The fusinite, as compared with both the cutinite and vitrinite, was relatively enriched in Ba, Ca, Dy, Li, Mg, Sr, and Y, and also showed the most intense m z 64, 65, 66 signals (possibly S2+, HS2+, H2S2+, respectively). The LAMMS data indicate a common source for most elements and selective loss from the maceral precursors in the peat or entrapment of certain elements as mineral matter, most likely during the peat stage or during early diagenesis. The relatively high amounts of Ba, Ca, Dy, Li, Mg, Sr, and Y in the fusinite are consistent with micron and submicron mineral-matter inclusions such as carbonates and Ca-Al phosphates (probably crandallite group minerals). Mineralogical data on the whole coal, the LAMMS chemistry of the vitrinite and cutinite, and scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDAX) of the elements in the macerals are consistent with the presence of micron and submicron inclusions of clays such as kaolinite, illite, and Ca-rich or Ca-bearing minerals (e.g. calcite, Ca-Al phosphates, and illite) which are different in kind and proportions in the three macerals. The variance as measured by the F-statistic for all three macerals indicates generally a nonuniform distribution of minor and trace elements in all three macerals, thus supporting a mineral-matter (inorganic) origin of the elements analysed. Exceptions are Al, K, Fe, Ga, and Sr in the vitrinite and cutinite, which is consistent with organic complexing or a uniform distribution of micron or submicron mineral matter such as illite and phosphate(s). ?? 1990.
Steenbergen, J M; Fay, F S
1996-01-26
Calcium release from intracellular stores occurs in a graded manner in response to increasing concentrations of either inositol 1,4,5-trisphosphate or caffeine. To investigate the mechanism responsible for this quantal release phenomenon, [Ca2+] changes inside intracellular stores in isolated single smooth muscle cells were monitored with mag-fura 2. Following permeabilization with saponin or alpha-toxin the dye, loaded via its acetoxymethyl ester, was predominantly trapped in the sarcoplasmic reticulum (SR). Low caffeine concentrations in the absence of ATP induced only partial Ca2+ release; however, after inhibiting the calcium pump with thapsigargin the same stimulus released twice as much Ca2+. When the SR Ca(2+)-ATPase was rendered non-functional by depleting its "ATP pool," submaximal caffeine doses almost fully emptied the stores of Ca2+. We conclude that quantal release of Ca2+ in response to caffeine in these smooth muscle cells is largely due to the activity of the SR Ca(2+)-ATPase, which appears to return a portion of the released Ca2+ back to the SR, even in the absence of ATP. Apparently the SR Ca(2+)-ATPase is fueled by ATP, which is either compartmentalized or bound to the SR.
Kuffner, Ilsa; Jokiel, Paul L.; Rodgers, Kuulei; Andersson, Andreas; Mackenzie, Fred T.
2012-01-01
Measuring the strontium to calcium ratio in coral skeletons reveals information on seawater temperatures during skeletal deposition, but studies have shown additional variables may affect the ratio. Here we measured Sr/Ca in the reef coral, Montipora capitata, grown in six mesocosms continuously supplied with seawater from the adjacent reef flat. Three mesocosms were ambient controls, and three had seawater chemistry simulating "ocean acidification" (OA). We found that Sr/Ca was not affected by the OA treatment, and neither was coral calcification for these small colonies (larger colonies did show an OA effect). The lack of OA effects allowed us to test the hypothesis that coral growth rate can affect Sr/Ca using the natural range in calcification rates of the corals grown at the same temperature. We found that Sr/Ca was inversely related to calcification rate (Sr/Ca = 9.39 - 0.00404 mmol/mol * mg day-1 cm-2, R2 = 0.32). Using a previously published calibration curve for this species, a 22 mg day-1 colony-1 increase in calcification rate introduced a 1°C warmer temperature estimate, with the 27 corals reporting "temperatures" ranging from 24.9 to 28.9, with mean 26.6 ± 0.9°C SD. Our results lend support to hypotheses invoking kinetic processes and growth rate to explain vital effects on Sr/Ca. However, uncertainty in the slope of the regression of Sr/Ca on calcification and a low R-squared value lead us to conclude that Sr/Ca could still be a useful proxy in this species given sufficient replication or by including growth rate in the calibration.
Lake Qinghai sediment geochemistry linked to hydroclimate variability since the last glacial
NASA Astrophysics Data System (ADS)
Jin, Zhangdong; An, Zhisheng; Yu, Jimin; Li, Fuchun; Zhang, Fei
2015-08-01
Geochemistry of basin sediments from semi-arid regions is valuable to understand past hydroclimatic changes. Here, we investigate the links of sedimentary geochemistry (Rb, Sr, Ca/Zr, TOC, and %CaCO3), carbonate mineralogy and ostracod shell δ18O of Lake Qinghai, a basin proximal to major dust production centers at mid-latitudes of the Northern Hemisphere, to changes in depositional conditions and hydroclimate during the past 32 ka. Surface lacustrine sediments are characterized by low-Rb, high-Sr, low-Rb/Sr, high-%CaCO3 and high-Ca/Zr values, in contrast to the chemical compositions of eolian loess (high-Rb, low-Sr, high-Rb/Sr, low-%CaCO3, and low-Ca/Zr). A direct comparison of soluble Ca and Sr in two short cores with instrumental water discharge data suggests that lacustrine precipitates in Lake Qinghai are dominated by authigenic aragonite formed under Ca2+-limited water conditions, and that the accumulation rate of aragonite dominantly depends on solute fluxes into the lake during the rainy seasons (late May to September). Our high-resolution down-core records show that sediments during the last glacial (∼32-19.8 ka) had high-Rb, low-Sr, low-%CaCO3, and low-Ca/Zr, indicating eolian dust (loess) accumulation in a desiccated basin under dry glacial conditions, further supported by grain size and pollen results. This type of sedimentation was maintained during the last deglacial (∼19.8-11.5 ka), but interrupted by episodic lacustrine precipitates with high-Sr, high-%CaCO3, high-Ca/Zr, and low-Rb. At ∼11.5 ka, sedimentary Rb/Sr, Ca/Zr, %CaCO3 and TOC show dramatic and permanent changes, implying an abrupt shift in the atmospheric circulation at the onset of the Holocene in the Lake Qinghai region. Lacustrine precipitates have persisted throughout the Holocene with a maximum during the early to mid-Holocene (∼10.5-8.0 ka). Since ∼8.0 ka, the gradual and significant decreases in aragonite and Sr accumulations in tandem with increasing dust deposit and more positive ostracod δ18O may be linked to a weakening of Asian summer monsoons during the mid-to-late Holocene. Overall, our records appear to show a high sensitivity of sediment development and geochemistry in Lake Qinghai to the regional hydroclimate changes since the last glacial.
Study of the superconducting properties of the Bi-Ca-Sr-Cu-O system
NASA Technical Reports Server (NTRS)
Khan, Musheer H.; Naqvi, S. M. M. R.; Zia-Ul-haq, S. M.
1991-01-01
High Temperature Superconductivity in the Bi-Ca-Sr-Cu-O System has been observed and has attracted considerable attention in 1988. The 80 K superconductivity phase has been identified to have a composition of Bi2CaSr2Cu2Ox, while the 110 K phase as reported in the literature has a possible composition of Bi2Ca2Sr2Cu3O(x). Researchers present here a study of the electrical properties of bulk samples of the slowly cooled and rapidly quenched 2:1:2:2 system. The samples used in this study were prepared from appropriate amounts of Bi2O3, CuO, SrCO3, CaCO3.
Stepanchick, Ann; McKenna, Jennifer; McGovern, Olivia; Huang, Ying; Breitwieser, Gerda E.
2010-01-01
Calcium sensing receptor (CaSR) mutations implicated in familial hypocalciuric hypercalcemia, pancreatitis and idiopathic epilepsy syndrome map to an extended arginine-rich region in the proximal carboxyl terminus. Arginine-rich motifs mediate endoplasmic reticulum retention and/or retrieval of multisubunit proteins so we asked whether these mutations, R886P, R896H or R898Q, altered CaSR targeting to the plasma membrane. Targeting was enhanced by all three mutations, and Ca2+-stimulated ERK1/2 phosphorylation was increased for R896H and R898Q. To define the role of the extended arginine-rich region in CaSR trafficking, we independently determined the contributions of R890/R891 and/or R896/K897/R898 motifs by mutation to alanine. Disruption of the motif(s) significantly increased surface expression and function relative to wt CaSR. The arginine-rich region is flanked by phosphorylation sites at S892 (protein kinase C) and S899 (protein kinase A). The phosphorylation state of S899 regulated recognition of the arginine-rich region; S899D showed increased surface localization. CaSR assembles in the endoplasmic reticulum as a covalent disulfide-linked dimer and we determined whether retention requires the presence of arginine-rich regions in both subunits. A single arginine-rich region within the dimer was sufficient to confer intracellular retention comparable to wt CaSR. We have identified an extended arginine-rich region in the proximal carboxyl terminus of CaSR (residues R890 - R898) which fosters intracellular retention of CaSR and is regulated by phosphorylation. Mutation(s) identified in chronic pancreatitis and idiopathic epilepsy syndrome therefore increase plasma membrane targeting of CaSR, likely contributing to the altered Ca2+ signaling characteristic of these diseases. PMID:20798521
Paydar, Mehrak Javadi; Pousti, Abbas; Farsam, Hasan; Amanlou, Massoud; Mehr, Shahram Ejtemaei; Dehpour, Ahmad Reza
2005-11-01
The purpose of this study was to determine the effects of 2 Ca2+ channel blockers, verapamil and diltiazem, on calcium loading (active Ca2+ uptake) and the following Ca2+ release induced by silver ion (Ag+) and Ca2+ from the membrane of heavy sarcoplasmic reticulum (SR) of chicken skeletal muscle. A fluorescent probe technique was employed to determine the calcium movement through the SR. Pretreatment of the medium with diltiazem and verapamil resulted in a significant decrease in the active Ca2+ uptake, with IC50 of about 290 micromol/L for verapamil and 260 micromol/L for diltiazem. Inhibition of Ca2+ uptake was not due to the development of a substantial drug-dependent leak of Ca2+ from the SR. It might, in part, have been mediated by a direct inhibitory effect of these drugs on the Ca2+ ATPase activity of the SR Ca2+ pump. We confirmed that Ca2+ channel blockers, administered after SR Ca2+ loading and before induction of Ca2+ release, caused a dose-dependent inhibition of both Ca2+- and Ag+-induced Ca2+ release rate. Moreover, if Ca2+ channel blockers were administered prior to SR Ca2+ loading, in spite of Ca2+ uptake inhibition the same reduction in Ca2+- and Ag+-induced Ca2+ release rate was seen. We showed that the inhibition of Ag+-induced Ca2+ release by L-channel blockers is more sensitive than Ca2+-induced Ca2+ release inhibition, so the IC50 for Ag+- and Ca2+-induced Ca2+ release was about 100 and 310 micromol/L for verapamil and 79 and 330 micromol/L for diltiazem, respectively. Our results support the evidence that Ca2+ channel blockers affect muscle microsome of chicken skeletal muscle by 2 independent mechanisms: first, reduction of Ca2+ uptake rate and Ca2+-ATPase activity inhibition, and second, inhibition of both Ag+- and Ca2+-induced Ca2+ release by Ca2+ release channels. These findings confirm the direct effect of Ca2+ channel blockers on calcium release channels. Our results suggest that even if the SR is incompletely preloaded with Ca2+ because of inhibition of Ca2+ uptake by verapamil and diltiazem, no impairment in Ca2+ release occurs.
El-Ani, Dalia; Stav, Hagit; Guetta, Victor; Arad, Michael; Shainberg, Asher
2011-07-04
Rapamycin (sirolimus) is an antibiotic that inhibits protein synthesis through mammalian targeting of rapamycin (mTOR) signaling, and is used as an immunosuppressant in the treatment of organ rejection in transplant recipients. Rapamycin confers preconditioning-like protection against ischemic-reperfusion injury in isolated mouse heart cultures. Our aim was to further define the role of rapamycin in intracellular Ca(2+) homeostasis and to investigate the mechanism by which rapamycin protects cardiomyocytes from hypoxic damage. We demonstrate here that rapamycin protects rat heart cultures from hypoxic-reoxygenation (H/R) damage, as revealed by assays of lactate dehydrogenase (LDH) and creatine kinase (CK) leakage to the medium, by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) measurements, and desmin immunostaining. As a result of hypoxia, intracellular calcium levels ([Ca(2+)](i)) were elevated. However, treatment of heart cultures with rapamycin during hypoxia attenuated the increase of [Ca(2+)](i). Rapamycin also attenuated (45)Ca(2+) uptake into the sarcoplasmic reticulum (SR) of skinned heart cultures in a dose- and time-dependent manner. KB-R7943, which inhibits the "reverse" mode of Na(+)/Ca(2+) exchanger (NCX), protected heart cultures from H/R damage with or without the addition of rapamycin. Rapamycin decreased [Ca(2+)](i) following its elevation by extracellular Ca(2+) ([Ca(2+)](o)) influx, thapsigargin treatment, or depolarization with KCl. We suggest that rapamycin induces cardioprotection against hypoxic/reoxygenation damage in primary heart cultures by stimulating NCX to extrude Ca(2+) outside the cardiomyocytes. According to our findings, rapamycin preserves Ca(2+) homeostasis and prevents Ca(2+) overload via extrusion of Ca(2+) surplus outside the sarcolemma, thereby protecting the cells from hypoxic stress. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Richey, J. N.; Flannery, J. A.; Toth, L. T.; Kuffner, I. B.; Poore, R. Z.
2017-12-01
The Sr/Ca in massive corals can be used as a proxy for sea surface temperature (SST) in shallow tropical to sub-tropical regions; however, the relationship between Sr/Ca and SST varies throughout the ocean, between different species of coral, and often between different colonies of the same species. We aimed to quantify the uncertainty associated with the Sr/Ca-SST proxy due to sample handling (e.g., micro-drilling or analytical error), vital effects (e.g., among-colony differences in coral growth), and local-scale variability in microhabitat. We examine the intra- and inter-colony reproducibility of Sr/Ca records extracted from five modern Orbicella faveolata colonies growing in the Dry Tortugas, Florida, USA. The average intra-colony absolute difference (AD) in Sr/Ca of the five colonies during an overlapping interval (1997-2008) was 0.055 ± 0.044 mmol mol-1 (0.96 ºC) and the average inter-colony Sr/Ca AD was 0.039 ± 0.01 mmol mol-1 (0.51 ºC). All available Sr/Ca-SST data pairs from 1997-2008 were combined and regressed against the HadISST1 gridded SST data set (24 ºN and 82 ºW) to produce a calibration equation that could be applied to O. faveolata specimens from throughout the Gulf of Mexico/Caribbean/Atlantic region after accounting for the potential uncertainties in Sr/Ca-derived SSTs. We quantified a combined error term for O. faveolata using the root-sum-square (RMS) of the analytical, intra-, and inter-colony uncertainties and suggest that an overall uncertainty of 0.046 mmol mol-1 (0.81 ºC, 1σ), should be used to interpret Sr/Ca records from O. faveolata specimens of unknown age or origin to reconstruct SST. We also explored how uncertainty is affected by the number of corals used in a reconstruction by iteratively calculating the RMS error for composite coral time-series using two, three, four, and five overlapping coral colonies. Our results indicate that maximum RMS error at the 95% confidence interval on mean annual SST estimates is 1.4 ºC when a composite record is made from only two overlapping coral Sr/Ca records. The uncertainty decreases as additional coral Sr/Ca data are added, with a maximum RMS error of 0.5 ºC on mean annual SST for a five-colony composite. To reduce uncertainty to under 1 ºC, it is best to use Sr/Ca from three or more coral colonies from the same geographic location and time period.
Bornapour, M; Mahjoubi, H; Vali, H; Shum-Tim, D; Cerruti, M; Pekguleryuz, M
2016-10-01
Magnesium-based alloys are attractive candidate materials for medical applications. Our earlier work showed that the ternary Mg-0.3Sr-0.3Ca alloy exhibits slower degradation rates than both binary Mg-Sr and Mg-Ca alloys. The ternary alloy immersed in simulated body fluid (SBF) forms a compact surface layer of corrosion products that we hypothesized to be a Sr-substituted hydroxyapatite (HA). The main objectives of the current work are to understand the bio-degradation mechanism of Mg-0.3Sr-0.3Ca, to identify the exact nature of its protective layer and to evaluate the in vitro and in vivo biocompatibility of the alloy for cardiovascular applications. To better simulate the physiological environment, the alloy was immersed in SBF which was daily refreshed. Raman spectroscopy and X-Ray photoelectron spectroscopy (XPS) confirmed the formation of a thin, Sr-substituted HA layer at the interface between the alloy and the corrosion products. In vitro biocompatibility evaluated via indirect cytotoxicity assays using HUVECs showed no toxicity effect and ions extracted from Mg-0.3Sr-0.3Ca in fact increased the viability of HUVECs after one week. In vivo tests were performed by implanting a tubular Mg-0.3Sr-0.3Ca stent along with a WE43 control stent into the right and left femoral artery of a dog. Post implantation and histological analyses showed no thrombosis in the artery with Mg-0.3Sr-0.3Ca stent after 5weeks of implantation while the artery implanted with WE43 stent was extensively occluded and thrombosed. Microscopic observation of the Mg-0.3Sr-0.3Ca implant-tissue interface confirmed the in situ formation of Sr-substituted HA on the surface during in vivo test. These results show that the interfacial layer protects the surface of the Mg-0.3Sr-0.3Ca alloy both in vitro and in vivo, and is the key factor in the bio-corrosion resistance of the alloy. Copyright © 2016 Elsevier B.V. All rights reserved.
Hostrup, M; Kalsen, A; Ortenblad, N; Juel, C; Mørch, K; Rzeppa, S; Karlsson, S; Backer, V; Bangsbo, J
2014-12-15
The aim of the present study was to examine the effect of β2-adrenergic stimulation on skeletal muscle contractile properties, sarcoplasmic reticulum (SR) rates of Ca(2+) release and uptake, and Na(+)-K(+)-ATPase activity before and after fatiguing exercise in trained men. The study consisted of two experiments (EXP1, n = 10 males, EXP2, n = 20 males), where β2-adrenoceptor agonist (terbutaline) or placebo was randomly administered in double-blinded crossover designs. In EXP1, maximal voluntary isometric contraction (MVC) of m. quadriceps was measured, followed by exercise to fatigue at 120% of maximal oxygen uptake (V̇O2, max ). A muscle biopsy was taken after MVC (non-fatigue) and at time of fatigue. In EXP2, contractile properties of m. quadriceps were measured with electrical stimulations before (non-fatigue) and after two fatiguing 45 s sprints. Non-fatigued MVCs were 6 ± 3 and 6 ± 2% higher (P < 0.05) with terbutaline than placebo in EXP1 and EXP2, respectively. Furthermore, peak twitch force was 11 ± 7% higher (P < 0.01) with terbutaline than placebo at non-fatigue. After sprints, MVC declined (P < 0.05) to the same levels with terbutaline as placebo, whereas peak twitch force was lower (P < 0.05) and half-relaxation time was prolonged (P < 0.05) with terbutaline. Rates of SR Ca(2+) release and uptake at 400 nm [Ca(2+)] were 15 ± 5 and 14 ± 5% (P < 0.05) higher, respectively, with terbutaline than placebo at non-fatigue, but declined (P < 0.05) to similar levels at time of fatigue. Na(+)-K(+)-ATPase activity was unaffected by terbutaline compared with placebo at non-fatigue, but terbutaline counteracted exercise-induced reductions in maximum rate of activity (Vmax) at time of fatigue. In conclusion, increased contractile force induced by β2-adrenergic stimulation is associated with enhanced rate of Ca(2+) release in humans. While β2-adrenergic stimulation elicits positive inotropic and lusitropic effects on non-fatigued m. quadriceps, these effects are blunted when muscles fatigue. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Tess E. Busch,; Flannery, Jennifer A.; Richey, Julie N.; Stathakopoulos, Anastasios
2015-11-13
An inverse relationship has been demonstrated between water temperature and the ratio of strontium to calcium (Sr/Ca) in coral aragonite for a number of Pacific species of the genus Porites. This empirically determined relationship has been used to reconstruct past sea-surface temperature (SST) from modern and Holocene age coral archives. A study was conducted to investigate this relationship for Porites astreoides to determine the potential for using these corals as a paleotemperature archive in the Caribbean and western tropical Atlantic Ocean. Skeletal aragonite from a P. astreoides colony growing offshore of the southeast coast of Florida was subsampled with a mean temporal resolution of 14 samples per year and analyzed for Sr/Ca. The resulting Sr/Ca time series yielded well-defined annual cycles that correspond to annual growth bands in the coral. Sr/Ca was regressed against a monthly SST record from C-MAN buoy station FWYF1 (located at Fowey Rocks, Florida), resulting in the following Sr/Ca-SST relationship: Sr/Ca = –0.040*SST + 10.128 (R = –0.77). A 10-year time series of Sr/Ca-derived SST yields annual cycles with a 10–12 degree Celsius seasonal amplitude, consistent with available local instrumental records. We conclude that Sr/Ca in Porites astreoides from the Caribbean/Atlantic region has high potential for developing subannually resolved modern and recent Holocene SST records.
Ca and Sr isotope records support ocean acidification during end-Permian mass extinction
NASA Astrophysics Data System (ADS)
Wang, J.; Jacobson, A. D.; Zhang, H.; Ramezani, J.; Sageman, B. B.; Hurtgen, M.; Bowring, S. A.; Shen, S.
2017-12-01
The end-Permian mass extinction represents the most devastating loss of biodiversity during the Phanerozoic. A negative carbon isotope (δ13C) excursion that accompanies the event suggests a significant perturbation to the global carbon cycle, likely induced by CO2 emissions during eruption of the Siberian Traps large igneous province. The carbon cycle is linked with the Ca and Sr cycles through chemical weathering and carbonate precipitation. Therefore, analyses of Ca (δ44/40Ca), radiogenic Sr (87Sr/86Sr), and stable Sr (δ88/86Sr) isotope abundance variations in marine carbonate rocks spanning the Permian-Triassic Boundary (PTB) can reveal key information about biogeochemical changes that occurred during this time. We report δ44/40Ca, 87Sr/86Sr, and δ88/86Sr records analyzed by TIMS for the Meishan and Dajiang sections in China. δ44/40Ca values exhibit similar patterns in both sections. The values remain unchanged across the extinction event layer (EXT) and then decrease by 0.20‰ before increasing by 0.20‰ to 0.40‰ around the PTB. In the Meishan section, 87Sr/86Sr ratios increase after the EXT and return to pre-excursion levels by the PTB. Simultaneously, δ88/86Sr values decrease by 0.12‰ across the EXT and increase by 0.08‰ by the PTB. The patterns of our data support the hypothesis that elevated atmospheric CO2 levels enhanced chemical weathering inputs and might have caused transient ocean acidification, with an "alkalinity overshoot" and increased carbonate deposition occurring after the extinction. Additional measurements and model calculations are underway to help refine and improve these preliminary interpretations.
Calcium release and its voltage dependence in frog cut muscle fibers equilibrated with 20 mM EGTA
1995-01-01
Sarcoplasmic reticulum (SR) Ca release was studied at 13-16 degrees C in cut fibers (sarcomere length, 3.4-3.9 microns) mounted in a double Vaseline-gap chamber. The amplitude and duration of the action- potential stimulated free [Ca] transient were reduced by equilibration with end-pool solutions that contained 20 mM EGTA with 1.76 mM Ca and 0.63 mM phenol red, a maneuver that appeared to markedly reduce the amount of Ca complexed by troponin. A theoretical analysis shows that, under these conditions, the increase in myoplasmic free [Ca] is expected to be restricted to within a few hundred nanometers of the SR Ca release sites and to have a time course that essentially matches that of release. Furthermore, almost all of the Ca that is released from the SR is expected to be rapidly bound by EGTA and exchanged for protons with a 1:2 stoichiometry. Consequently, the time course of SR Ca release can be estimated by scaling the delta pH signal measured with phenol red by -beta/2. The value of beta, the buffering power of myoplasm, was determined in fibers equilibrated with a combination of EGTA, phenol red, and fura-2; its mean value was 22 mM/pH unit. The Ca content of the SR (expressed as myoplasmic concentration) was estimated from the total amount of Ca released by either a train of action potentials or a depleting voltage step; its mean value was 2,685 microM in the action-potential experiments and 2,544 microM in the voltage- clamp experiments. An action potential released, on average, 0.14 of the SR Ca content with a peak rate of release of approximately 5%/ms. A second action potential, elicited 20 ms later, released only 0.6 times as much Ca (expressed as a fraction of the SR content), probably because Ca inactivation of Ca release was produced by the first action potential. During a depolarizing voltage step to 60 mV, the rate of Ca release rapidly increased to a peak value of approximately 3%/ms and then decreased to a quasi-steady level that was only 0.6 times as large; this decrease was also probably due to Ca inactivation of Ca release. SR Ca release was studied with small step depolarizations that open no more than one SR Ca channel in 7,000 and increase the value of spatially averaged myoplasmic free [Ca] by only 0.2 nM. PMID:8537818
First-principles calculations for XAS of infinite-layer iron oxides
NASA Astrophysics Data System (ADS)
Kodera, Mitsuru; Shishidou, Tatsuya; Oguchi, Tamio
2011-03-01
The oxygen defect perovskite SrFe O3 - x shows various properties such as the giant magnetoresistance effect and the thermoelectric effect. It had been believed that the oxygen content in SrFe O3 - x changes up to x = 0.5 . Recently, Tsujimoto et al . have succeeded in synthesizing the infinite-layer iron oxide SrFe O2 . SrFe O2 has a square-planar oxygen coordination, while the iron oxides usually have the tetrahedral and octahedral coordination. CaFe O2 has also infinite layer structure and the same magnetic ordering as SrFe O2 . However, it is suggested that the oxygen coordination of CaFe O2 is different from that of SrFe O2 . In order to investigate the electronic structure of iron in (Ca, Sr) Fe O2 , the x-ray absorption spectroscopy (XAS) spectrum has been measured. In this work, we perform the calculation for XAS spectrum near the Fe-K edge of (Ca, Sr) Fe O2 using the first-principles calculations. We compare the results with the experiment and discuss the electronic structure of iron in (Ca, Sr) Fe O2 .
Saida, K; van Breemen, C
1987-05-14
We have examined inositol-1,4,5-trisphosphate (IP3)-induced Ca2+ release from the sarcoplasmic reticulum (SR) in the skinned vascular smooth muscle. The amount of Ca2+ in the SR was estimated indirectly by caffeine-induced contraction of the skinned preparation. The Ca2+ release from the SR by IP3 required GTP. A non-hydrolyzable analogue of GTP, guanosine 5'-(beta gamma-imido) triphosphate (GppNHp) could substitute for GTP in the IP3-induced Ca2+ release. These results suggest an involvement of GTP-binding protein in the mechanism of Ca2+ release from the SR by IP3 in smooth muscle.
NASA Astrophysics Data System (ADS)
Balter, Vincent; Person, Alain; Labourdette, Nathalie; Drucker, Dorothée; Renard, Maurice; Vandermeersch, Bernard
2001-01-01
Strontium-calcium (Sr/Ca) and barium-calcium (Ba/Ca) ratios are reduced constantly between diet and bioapatite in mammal organisms. This phenomenon leads to a reduction in the Sr/Ca and Ba/Ca ratios at higher trophic level in predator-prey mammalian communities, and is applied here to the reconstruction of a castelperronian food web, which includes a Neanderthal specimen. Adapted chemical pretreatment allows to isolate bioapatite from diagenetic compounds for analysis of Ca, Sr and Ba. Sr/Ca and Ba/Ca results of the fauna are consistent with trophic predictions. Initial results for the Neandertal suggest that he was mostly carnivorous. Distribution of Ba/Ca values of bones of herbivorous taxa reveals that ruminant animals can be distinguished from non-ruminants. The biosegregation model predicts that the diet of the Neandertal was composed by about 97 % in weight of meat with a weak contribution of vegetable or fish, and that the association of fish and plant is excluded in any proportion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Juan; Liu, Xiao Qiang, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn; Chen, Xiang Ming, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn
Bi{sub 1−x}(Sr{sub 0.7}Ca{sub 0.3}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} ceramics were prepared by a standard solid state reaction process, and the influence of Sr/Ca ratio on structure and properties for Bi{sub 1−x}(Sr,Ca){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} system was discussed by comparing with Sr{sub 0.5}Ca{sub 0.5}TiO{sub 3}-modified BiFeO{sub 3} ceramics. Rietveld analysis of X-ray diffraction data revealed that the crystal structure changed from rhombohedral R3c (x ≤ 0.4) to orthorhombic Pnma (x = 0.6) with Sr{sub 0.7}Ca{sub 0.3}TiO{sub 3} substitution, and biphasic structure (R3c + Pnma) was determined at x = 0.5, while that for Bi{sub 1−x}(Sr{sub 0.5}Ca{sub 0.5}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} system was at x = 0.4. This indicated thatmore » the morphotropic phase boundary in Bi{sub 1−x}(Sr,Ca){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} system shifted toward (Sr,Ca)TiO{sub 3} side with increasing Sr/Ca ratio. The Raman spectrometric analysis and selected area electron diffraction analysis also confirmed this transition. The dielectric relaxation could be well fitted by Arrhenius law, and the different activation energies were attributed to the different origins of the dielectric relaxations with increasing temperature. The current density-field (J-E) curves indicated that the leakage current was reduced to about five orders of magnitude with Sr{sub 0.7}Ca{sub 0.3}TiO{sub 3} substitution. The P-E hysteresis loops obtained by three different methods indicated the enhanced ferroelectricity at x = 0.4, and it could be attributed to the decrement of leakage current. Meanwhile, the magnetization was enhanced with Sr{sub 0.7}Ca{sub 0.3}TiO{sub 3} substitution, and the maximum remanent magnetization was determined at x = 0.2. The enhanced magnetization originated from the partial substitution of Fe{sup 3+} by Ti{sup 4+}.« less
Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al₂O₄:Eu2+, Dy3+ Phosphors.
Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang
2017-10-18
(Sr, Ca, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al₂O₄:Eu 2+ ,Dy 3+ phosphors, the different phase formation from monoclinic SrAl₂O₄ phase to hexagonal SrAl₂O₄ phase to monoclinic CaAl₂O₄ phase was observed when the Ca content increased. The emission color of SrAl₂O₄:Eu 2+ , Dy 3+ phosphors varied from green to blue. For the (Sr, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors, different phase formation from the monoclinic SrAl₂O₄ phase to the hexagonal BaAl₂O₄ phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl₂O₄:Eu 2+ , Dy 3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr 2+ with Ba 2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips.
On the origin of high ionic conductivity in Na-doped SrSiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, Po-Hsiu; Jee, Youngseok; Huang, Chen
Understanding the local structure and ion dynamics is at the heart of ion conductor research. This paper reports on high-resolution solid-state 29Si, 23Na, and 17O NMR investigation of the structure, chemical composition, and ion dynamics of a newly discovered fast ion conductor, Na-doped SrSiO 3, which exhibited a much higher ionic conductivity than most of current oxide ion conductors. Quantitative analyses reveal that with a small dose (<10 mol%) of Na, the doped Na integrates into the SrSiO 3 structure to form Na xSr 1-xSiO 3-0.5x, and with >10 mol% Na doping, phase separation occurs, leading to the formation ofmore » an amorphous phase β-Na 2Si 2O 5 and a crystalline Sr-rich phase. Variable-temperature 23Na and 17O magic-angle-spinning NMR up to 618 °C have shown significant changes in Na ion dynamics at high temperatures but little oxide ion motion, suggesting that Na ions are responsible for the observed high ionic conductivity. In addition, β-Na 2Si 2O 5 starts to crystallize at temperatures higher than 480 °C with prolonged heating, resulting in reduction in Na+ motion, and thus degradation of ionic conductivity. This study has contributed critical evidence to the understanding of ionic conduction in Na-doped SrSiO 3 and demonstrated that multinuclear high-resolution and high-temperature solid-state NMR is a uniquely useful tool for investigating ion conductors at their operating conditions.« less
On the origin of high ionic conductivity in Na-doped SrSiO 3
Chien, Po-Hsiu; Jee, Youngseok; Huang, Chen; ...
2016-02-17
Understanding the local structure and ion dynamics is at the heart of ion conductor research. This paper reports on high-resolution solid-state 29Si, 23Na, and 17O NMR investigation of the structure, chemical composition, and ion dynamics of a newly discovered fast ion conductor, Na-doped SrSiO 3, which exhibited a much higher ionic conductivity than most of current oxide ion conductors. Quantitative analyses reveal that with a small dose (<10 mol%) of Na, the doped Na integrates into the SrSiO 3 structure to form Na xSr 1-xSiO 3-0.5x, and with >10 mol% Na doping, phase separation occurs, leading to the formation ofmore » an amorphous phase β-Na 2Si 2O 5 and a crystalline Sr-rich phase. Variable-temperature 23Na and 17O magic-angle-spinning NMR up to 618 °C have shown significant changes in Na ion dynamics at high temperatures but little oxide ion motion, suggesting that Na ions are responsible for the observed high ionic conductivity. In addition, β-Na 2Si 2O 5 starts to crystallize at temperatures higher than 480 °C with prolonged heating, resulting in reduction in Na+ motion, and thus degradation of ionic conductivity. This study has contributed critical evidence to the understanding of ionic conduction in Na-doped SrSiO 3 and demonstrated that multinuclear high-resolution and high-temperature solid-state NMR is a uniquely useful tool for investigating ion conductors at their operating conditions.« less
Kabbara, Akram A; Allen, David G
2001-01-01
Single fibres from the lumbrical muscles of the cane toad (Bufo marinus) were incubated in fluo-5N AM for 2 h at 35 °C in order to load the indicator into the sarcoplasmic reticulum. Fluo-5N is a low-affinity calcium indicator (KCa 90 μm). Successful sarcoplasmic reticulum (SR) loading was indicated by a fluorescence signal that declined during contraction. Confocal microscopy showed that the dye loaded principally in lines perpendicular to the long axis of the fibre that repeated each sarcomere. This is consistent with much of the dye residing in the SR. To establish the site of loading, fibres were exposed to 30 mm caffeine in the presence of 20 μm 2,5-di(tert-butyl)1,4-hydroquinone (TBQ, an SR pump inhibitor) which should release most Ca2+ from the SR; this procedure reduced the fluorescence to 46 ± 4 % of the control value. To determine how much indicator was in the myoplasm, fibres were exposed to 100 μg ml−1 saponin which permeabilizes the surface membrane; saponin treatment reduced the fluorescence to 51 ± 2 % of the control value. During maximally activated tetani (100 Hz stimulation rate, 22 °C) the component of signal from the SR declined by 33 ± 4 %. During relaxation the SR signal recovered in two phases with time constants of 0.38 ± 0.14 s and 10.1 ± 1.7 s. Partially activated tetani (30 Hz stimulation rate) showed a smaller SR signal. Application of the SR Ca2+ pump inhibitor TBQ slowed the rate of recovery of the SR signal. Muscle fatigue was produced by repeated short tetani until tension was reduced to 50 %. The SR signal during the periods between tetani declined steadily and the SR Ca2+ signal was eventually reduced to 71 ± 8 % of the control signal. This signal recovered in two phases when the muscle was rested. An initial phase had a time constant of 1.7 ± 0.2 s so that by 20 s of recovery the SR Ca2+ signal was 86 ± 7 % of control; the second phase was slower and by 5 min the SR Ca2+ signal was back to control values (98 ± 5 % control). In addition the magnitude of the SR signal decline associated with each tetanus (Δ[Ca2+]SR) declined monotonically throughout fatigue and returned to control after 5 min recovery. This approach can monitor the SR Ca2+ concentration in normally functioning muscle fibres with good time resolution. The method confirms other approaches that show that the free Ca2+ available for release in the SR declines during fatigue. This reduction in [Ca2+]SR will contribute to the failure of Ca2+ delivery to the myofilaments which is an important cause of muscle fatigue. PMID:11432994
Elements and inorganic ions as source tracers in recent Greenland snow
NASA Astrophysics Data System (ADS)
Lai, Alexandra M.; Shafer, Martin M.; Dibb, Jack E.; Polashenski, Chris M.; Schauer, James J.
2017-09-01
Atmospheric transport of aerosols leads to deposition of impurities in snow, even in areas of the Arctic as remote as Greenland. Major ions (e.g. Na+, Ca2+, NH4+, K+, SO42-) are frequently used as tracers for common aerosol sources (e.g. sea spray, dust, biomass burning, anthropogenic emissions). Trace element data can supplement tracer ion data by providing additional information about sources. Although many studies have considered either trace elements or major ions, few have reported both. This study determined total and water-soluble concentrations of 31 elements (Al, As, Ca, Cd, Ce, Co, Cr, Dy, Eu, Fe, Gd, K, La, Mg, Mn, Na, Nb, Nd, Pb, Pr, S, Sb, Si, Sm, Sn, Sr, Ti, V, U, Y, Zn) in shallow snow pits at 22 sampling sites in Greenland, along a transect from Summit Station to sites in the northwest. Black carbon (BC) and inorganic ions were measured in colocated samples. Sodium, which is typically used as a tracer of sea spray, did not appear to have any non-marine sources. The rare earth elements, alkaline earth elements (Mg, Ca, Sr), and other crustal elements (Fe, Si, Ti, V) were not enriched above crustal abundances relative to Al, indicating that these elements are primarily dust sourced. Calculated ratios of non-sea salt Ca (nssCa) to estimated dust mass affirm the use of nssCa as a dust tracer, but suggest up to 50% uncertainty in that estimate in the absence of other crustal element data. Crustal enrichment factors indicated that As, Cd, Pb, non-sea-salt S, Sb, Sn, and Zn were enriched in these samples, likely by anthropogenic sources. Principal component analysis indicated more than one crustal factor, and a variety of factors related to anthropogenically enriched elements. Analysis of trace elements alongside major tracer ions does not change interpretation of ion-based source attribution for sources that are well-characterized by ions, but is valuable for assessing uncertainty in source attribution and identifying sources not represented by major ions.
Ca2+ Overload and Sarcoplasmic Reticulum Instability in tric-a Null Skeletal Muscle*
Zhao, Xiaoli; Yamazaki, Daiju; Park, Ki Ho; Komazaki, Shinji; Tjondrokoesoemo, Andoria; Nishi, Miyuki; Lin, Peihui; Hirata, Yutaka; Brotto, Marco; Takeshima, Hiroshi; Ma, Jianjie
2010-01-01
The sarcoplasmic reticulum (SR) of skeletal muscle contains K+, Cl−, and H+ channels may facilitate charge neutralization during Ca2+ release. Our recent studies have identified trimeric intracellular cation (TRIC) channels on SR as an essential counter-ion permeability pathway associated with rapid Ca2+ release from intracellular stores. Skeletal muscle contains TRIC-A and TRIC-B isoforms as predominant and minor components, respectively. Here we test the physiological function of TRIC-A in skeletal muscle. Biochemical assay revealed abundant expression of TRIC-A relative to the skeletal muscle ryanodine receptor with a molar ratio of TRIC-A/ryanodine receptor ∼5:1. Electron microscopy with the tric-a−/− skeletal muscle showed Ca2+ overload inside the SR with frequent formation of Ca2+ deposits compared with the wild type muscle. This elevated SR Ca2+ pool in the tric-a−/− muscle could be released by caffeine, whereas the elemental Ca2+ release events, e.g. osmotic stress-induced Ca2+ spark activities, were significantly reduced likely reflecting compromised counter-ion movement across the SR. Ex vivo physiological test identified the appearance of “alternan” behavior with isolated tric-a−/− skeletal muscle, i.e. transient and drastic increase in contractile force appeared within the decreasing force profile during repetitive fatigue stimulation. Inhibition of SR/endoplasmic reticulum Ca2+ ATPase function could lead to aggravation of the stress-induced alternans in the tric-a−/− muscle. Our data suggests that absence of TRIC-A may lead to Ca2+ overload in SR, which in combination with the reduced counter-ion movement may lead to instability of Ca2+ movement across the SR membrane. The observed alternan behavior with the tric-a−/− muscle may reflect a skeletal muscle version of store overload-induced Ca2+ release that has been reported in the cardiac muscle under stress conditions. PMID:20858894
Dong, Bingzi; Endo, Itsuro; Ohnishi, Yukiyo; Kondo, Takeshi; Hasegawa, Tomoka; Amizuka, Norio; Kiyonari, Hiroshi; Shioi, Go; Abe, Masahiro; Fukumoto, Seiji; Matsumoto, Toshio
2015-11-01
Activating mutations of calcium-sensing receptor (CaSR) cause autosomal dominant hypocalcemia (ADH). ADH patients develop hypocalcemia, hyperphosphatemia, and hypercalciuria, similar to the clinical features of hypoparathyroidism. The current treatment of ADH is similar to the other forms of hypoparathyroidism, using active vitamin D3 or parathyroid hormone (PTH). However, these treatments aggravate hypercalciuria and renal calcification. Thus, new therapeutic strategies for ADH are needed. Calcilytics are allosteric antagonists of CaSR, and may be effective for the treatment of ADH caused by activating mutations of CaSR. In order to examine the effect of calcilytic JTT-305/MK-5442 on CaSR harboring activating mutations in the extracellular and transmembrane domains in vitro, we first transfected a mutated CaSR gene into HEK cells. JTT-305/MK-5442 suppressed the hypersensitivity to extracellular Ca(2+) of HEK cells transfected with the CaSR gene with activating mutations in the extracellular and transmembrane domains. We then selected two activating mutations locating in the extracellular (C129S) and transmembrane (A843E) domains, and generated two strains of CaSR knock-in mice to build an ADH mouse model. Both mutant mice mimicked almost all the clinical features of human ADH. JTT-305/MK-5442 treatment in vivo increased urinary cAMP excretion, improved serum and urinary calcium and phosphate levels by stimulating endogenous PTH secretion, and prevented renal calcification. In contrast, PTH(1-34) treatment normalized serum calcium and phosphate but could not reduce hypercalciuria or renal calcification. CaSR knock-in mice exhibited low bone turnover due to the deficiency of PTH, and JTT-305/MK-5442 as well as PTH(1-34) increased bone turnover and bone mineral density (BMD) in these mice. These results demonstrate that calcilytics can reverse almost all the phenotypes of ADH including hypercalciuria and renal calcification, and suggest that calcilytics can become a novel therapeutic agent for ADH. © 2015 American Society for Bone and Mineral Research.
NASA Astrophysics Data System (ADS)
Syverson, D. D.; Scheuermann, P.; Pester, N. J.; Higgins, J. A.; Seyfried, W. E., Jr.
2016-12-01
The elemental and isotopic mass balance of Ca and Sr between seawater and basalt at mid-ocean ridge (MOR) hydrothermal systems is an integrated reflection of the various physiochemical processes, which induce chemical exchange, in the subseafloor. Specifically, the processes of anhydrite precipitation and recrystallization are recognized to be important controls on governing the Ca and Sr elemental and isotope compositions of high temperature vent fluids, however, few experimental data exist to constrain these geochemical effects. Thus, to better understand the associated Sr/Ca partitioning and Ca isotope fractionation and rate of exchange between anhydrite and dissolved constituents, anhydrite precipitation and recrystallization experiments were performed at 175, 250, and 350°C and 500 bar at chemical conditions indicative of active MOR hydrothermal systems. The experimental data suggest that upon entrainment of seawater into MOR hydrothermal systems, anhydrite will precipitate rapidly and discriminate against the heavy isotopes of Ca (Δ44/40Ca(Anh-Fluid) = -0.68 - -0.25 ‰), whereas Sr/Ca partitioning depends on the saturation state of the evolving hydrothermal fluid with respect to anhydrite at each PTX (KD(Anh-Fluid) = 1.24 - 0.55). Coupling experimental constraints with the temperature gradient inferred for high temperature MOR hydrothermal systems in the oceanic crust, data suggest that the Ca isotope and Sr elemental composition of anhydrite formed near the seafloor will be influenced by disequilibrium effects, while, at higher temperatures further into the oceanic crust, anhydrite will be representative of equilibrium Sr/Ca partitioning and Ca isotope fractionation conditions. These experimental observations are consistent with analyzed Sr/Ca and Ca isotope compositions of anhydrites and vent fluids sampled from modern MOR hydrothermal systems1,2 and can be used to further constrain the geochemical effects of hydrothermal circulation in the oceanic crust throughout Earth's history. 1 Tivey, M. K. Generation of Seafloor Hydrothermal Deposits. Oceanography 20, 50-66 (2007).2 Amini, M. et al. Calcium isotope (δ44/40Ca) fractionation along hydrothermal pathways, Logatchev field (Mid-Atlantic Ridge, 14°45'N). Geochimica et Cosmochimica Acta 72, 4107-4122 (2008).
NASA Astrophysics Data System (ADS)
Gagnon, Alexander C.; Adkins, Jess F.; Fernandez, Diego P.; Robinson, Laura F.
2007-09-01
Deep-sea corals are a new tool in paleoceanography with the potential to provide century long records of deep ocean change at sub-decadal resolution. Complicating the reconstruction of past deep-sea temperatures, Mg/Ca and Sr/Ca paleothermometers in corals are also influenced by non-environmental factors, termed vital effects. To determine the magnitude, pattern and mechanism of vital effects we measure detailed collocated Sr/Ca and Mg/Ca ratios, using a combination of micromilling and isotope-dilution ICP-MS across skeletal features in recent samples of Desmophyllum dianthus, a scleractinian coral that grows in the near constant environment of the deep-sea. Sr/Ca variability across skeletal features is less than 5% (2σ relative standard deviation) and variability of Sr/Ca within the optically dense central band, composed of small and irregular aragonite crystals, is significantly less than the surrounding skeleton. The mean Sr/Ca of the central band, 10.6 ± 0.1 mmol/mol (2σ standard error), and that of the surrounding skeleton, 10.58±0.09 mmol/mol, are statistically similar, and agree well with the inorganic aragonite Sr/Ca-temperature relationship at the temperature of coral growth. In the central band, Mg/Ca is greater than 3 mmol/mol, more than twice that of the surrounding skeleton, a general result observed in the relative Mg/Ca ratios of D. dianthus collected from separate oceanographic locations. This large vital effect corresponds to a ˜ 10 °C signal, when calibrated via surface coral Mg/Ca-temperature relationships, and has the potential to complicate paleoreconstructions. Outside the central band, Mg/Ca ratios increase with decreasing Sr/Ca. We explain the correlated behavior of Mg/Ca and Sr/Ca outside the central band by Rayleigh fractionation from a closed pool, an explanation that has been proposed elsewhere, but which is tested in this study by a simple and general relationship. We constrain the initial solution and effective partition coefficients for a Rayleigh process consistent with our accurate Metal/Ca measurements. A process other than Rayleigh fractionation influences Mg in the central band and our data constrain a number of possible mechanisms for the precipitation of this aragonite. Understanding the process affecting tracer behavior during coral biomineralization can help us better interpret paleoproxies in biogenic carbonates and lead to an improved deep-sea paleothermometer.
Delmotte, Philippe; Sieck, Gary C
2015-02-01
Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.
Delmotte, Philippe; Sieck, Gary C.
2015-01-01
Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca2+ ([Ca2+]cyt) responses to agonist stimulation and Ca2+ sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca2+]cyt induced by agonists leads to a transient increase in mitochondrial Ca2+ ([Ca2+]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca2+]mito is blunted despite enhanced [Ca2+]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion–ER/SR coupling, decreased mitochondrial Ca2+ buffering, mitochondrial fragmentation, and increased cell proliferation. PMID:25506723
Noble, Penelope J.; Noble, Denis
2011-01-01
Ca2+-induced delayed afterdepolarizations (DADs) are depolarizations that occur after full repolarization. They have been observed across multiple species and cell types. Experimental results have indicated that the main cause of DADs is Ca2+ overload. The main hypothesis as to their initiation has been Ca2+ overflow from the overloaded sarcoplasmic reticulum (SR). Our results using 37 previously published mathematical models provide evidence that Ca2+-induced DADs are initiated by the same mechanism as Ca2+-induced Ca2+ release, i.e., the modulation of the opening of ryanodine receptors (RyR) by Ca2+ in the dyadic subspace; an SR overflow mechanism was not necessary for the induction of DADs in any of the models. The SR Ca2+ level is better viewed as a modulator of the appearance of DADs and the magnitude of Ca2+ release. The threshold for the total Ca2+ level within the cell (not only the SR) at which Ca2+ oscillations arise in the models is close to their baseline level (∼1- to 3-fold). It is most sensitive to changes in the maximum sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pump rate (directly proportional), the opening probability of RyRs, and the Ca2+ diffusion rate from the dyadic subspace into the cytosol (both indirectly proportional), indicating that the appearance of DADs is multifactorial. This shift in emphasis away from SR overload as the trigger for DADs toward a multifactorial analysis could explain why SERCA overexpression has been shown to suppress DADs (while increasing contractility) and why DADs appear during heart failure (at low SR Ca2+ levels). PMID:21666112
Lund Rasmussen, Kaare; Skytte, Lilian; D'imporzano, Paolo; Orla Thomsen, Per; Søvsø, Morten; Lier Boldsen, Jesper
2017-01-01
The differences in trace element concentrations among 19 different bone elements procured from 10 archaeologically derived human skeletons have been investigated. The 10 individuals are dated archaeologically and some by radiocarbon dating to the medieval and post-medieval period, an interval from ca. AD 1150 to ca. AD 1810. This study is relevant for two reasons. First, most archaeometric studies analyze only one bone sample from each individual; so to what degree are the bones in the human body equal in trace element chemistry? Second, differences in turnover time of the bone elements makes the cortical tissues record the trace element concentrations in equilibrium with the blood stream over a longer time earlier in life than the trabecular. Therefore, any differences in trace element concentrations between the bone elements can yield what can be termed a chemical life history of the individual, revealing changes in diet, provenance, or medication throughout life. Thorough decontamination and strict exclusion of non-viable data has secured a dataset of high quality. The measurements were carried out using Inductively Coupled Plasma Mass Spectrometry (for Fe, Mn, Al, Ca, Mg, Na, Ba, Sr, Zn, Pb and As) and Cold Vapor Atomic Absorption Spectroscopy (for Hg) on ca. 20 mg samples. Twelve major and trace elements have been measured on 19 bone elements from 10 different individuals interred at five cemeteries widely distributed in medieval and renaissance Denmark. The ranges of the concentrations of elements were: Na (2240-5660 µg g -1 ), Mg (440-2490 µg g -1 ), Al (9-2030 µg g -1 ), Ca (22-36 wt. %), Mn (5-11450 µg g -1 ), Fe (32-41850 µg g -1 ), Zn (69-2610 µg g -1 ), As (0.4-120 µg g -1 ), Sr (101-815 µg g -1 ), Ba (8-880 µg g -1 ), Hg (7-78730 ng g -1 ), and Pb (0.8-426 µg g -1 ). It is found that excess As is mainly of diagenetic origin. The results support that Ba and Sr concentrations are effective provenance or dietary indicators. Migrating behavior or changes in diet have been observed in four individuals; non-migratory or non-changing diet in six out of the 10 individuals studied. From the two most mobile (most changing diet) individuals in the study, it is deduced that the fastest turnover is seen in the trabecular tissues of the long bones and the hands and the feet, and that these bone elements have higher turnover rates than centrally placed trabecular bone tissue, such as from the ilium or the spine. Comparing Sr and published bone turnover times, it is concluded that the differences seen in Sr concentrations are not caused by diagenesis, but by changes of diet or provenance. Finally, it is concluded that there can be two viable interpretations of the Pb concentrations, which can either be seen as an indicator for social class or a temporal development of increased Pb exposure over the centuries. © 2016 Wiley Periodicals, Inc.
Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks.
Niggli, E
1999-01-01
Subcellularly localized Ca2+ signals in cardiac and skeletal muscle have recently been identified as elementary Ca2+ signaling events. The signals, termed Ca2+ sparks and Ca2+ quarks, represent openings of Ca2+ release channels located in the membrane of the sarcoplasmic reticulum (SR). In cardiac muscle, the revolutionary discovery of Ca2+ sparks has allowed the development of a fundamentally different concept for the amplification of Ca2+ signals by Ca(2+)-induced Ca2+ release. In such a system, a graded amplification of the triggering Ca2+ signal entering the myocyte via L-type Ca2+ channels is accomplished by a recruitment process whereby individual SR Ca2+ release units are locally controlled by L-type Ca2+ channels. In skeletal muscle, the initial SR Ca2+ release is governed by voltage-sensors but subsequently activates additional Ca2+ sparks by Ca(2+)-induced Ca2+ release from the SR. Results from studies on elementary Ca2+ release events will improve our knowledge of muscle Ca2+ signaling at all levels of complexity, from the molecule to normal cellular function, and from the regulation of cardiac and skeletal muscle force to the pathophysiology of excitation-contraction coupling.
NASA Astrophysics Data System (ADS)
Mejía, Luz María; Paytan, Adina; Eisenhauer, Anton; Böhm, Florian; Kolevica, Ana; Bolton, Clara; Méndez-Vicente, Ana; Abrevaya, Lorena; Isensee, Kirsten; Stoll, Heather
2018-01-01
Coccoliths comprise a major fraction of the global carbonate sink. Therefore, changes in coccolithophores' Ca isotopic fractionation could affect seawater Ca isotopic composition, affecting interpretations of the global Ca cycle and related changes in seawater chemistry and climate. Despite this, a quantitative interpretation of coccolith Ca isotopic fractionation and a clear understanding of the mechanisms driving it are not yet available. Here, we address this gap in knowledge by developing a simple model (CaSri-Co) to track coccolith Ca isotopic fractionation during cellular Ca uptake and allocation to calcification. We then apply it to published and new δ 44 / 40 Ca and Sr/Ca data of cultured coccolithophores of the species Emiliania huxleyi and Gephyrocapsa oceanica. We identify changes in calcification rates, Ca retention efficiency and solvation-desolvation rates as major drivers of the Ca isotopic fractionation and Sr/Ca variations observed in cultures. Higher calcification rates, higher Ca retention efficiencies and lower solvation-desolvation rates increase both coccolith Ca isotopic fractionation and Sr/Ca. Coccolith Ca isotopic fractionation is most sensitive to changes in solvation-desolvation rates. Changes in Ca retention efficiency may be a major driver of coccolith Sr/Ca variations in cultures. We suggest that substantial changes in the water structure strength caused by past changes in temperature could have induced significant changes in coccolithophores' Ca isotopic fractionation, potentially having some influence on seawater Ca isotopic composition. We also suggest a potential effect on Ca isotopic fractionation via modification of the solvation environment through cellular exudates, a hypothesis that remains to be tested.
A coral Sr/Ca calibration and replication study of two massive corals from the Gulf of Mexico
DeLong, Kristine L.; Flannery, Jennifer A.; Maupin, Christopher R.; Poore, Richard Z.; Quinn, Terrence M.
2011-01-01
This study examined the variations in the ratio of strontium-to-calcium (Sr/Ca) for two Atlantic corals (Montastraea faveolata and Siderastrea siderea) from the Dry Tortugas National Park (centered on 24.7°N, 82.8°W) in the Gulf of Mexico. Cores from coral colonies in close proximity (10s of meters) and with the same environmental conditions (i.e., depth and water chemistry) were micro-sampled with approximately monthly resolution and the resulting Sr/Ca variations were calibrated with local sea surface temperature (SST) records. Replication tests for coral Sr/Ca variations found high agreement between intra-colony variations and between individual colonies of S. siderea (a single M. faveolata colony was sampled). Regression analysis of monthly variations in coral Sr/Ca and local SST revealed significant correlation on monthly and inter-annual timescales. Verification of the calibration on different timescales found coral Sr/Ca–SST reconstructions in S. siderea were more accurate than those from M. faveolata, especially on inter-annual timescales. Sr/Ca–SST calibration equations for the two species are significantly different (cf., Sr/Ca = -0.042 SST + 10.070, S. siderea; Sr/Ca = -0.027 SST + 9.893, M. faveolata). Mean linear extension for M. faveolata is approximately twice that of S. siderea (4.63, 4.31, and 8.31 mm year−1, A1, F1, and B3, respectively); however, seasonal Sr/Ca variability in M. faveolata is less than S. siderea (0.323, 0.353, and 0.254 mmol mol−1, A1, F1, and B3, respectively). The reduced slope for M. faveolata is attributed to physical sampling issues associated with complex time-skeletal structure of M. faveolata, i.e., a sampling effect, and not a growth effect since the faster growing M. faveolata has the reduced Sr/Ca variability.
NASA Astrophysics Data System (ADS)
Kumam, Nandini; Singh, Ningthoujam Premananda; Singh, Laishram Priyobarta; Srivastava, Sri Krishna
2015-09-01
Synthesis of lanthanide-doped fluoride SrF2:3Dy and SrF2:3Dy@CaF2 nanoparticles with different ratios of core to shell (1:0.5, 1:1 and 1:2) has been carried out by employing ethylene glycol route. X-ray diffraction (XRD) patterns reveal that the structure of the prepared nanoparticles was of cubical shape, which is also evident in TEM images. The size of the nanoparticles for core (SrF2:3Dy) is found to increase when core is covered by shell (CaF2). It is also evident from Fourier transform infrared spectroscopy (FTIR) that ethylene glycol successfully controls the growth and acts as a shape modifier by regulating growth rate. In the photoluminescence investigation, emission spectra of SrF2:3Dy is found to be highly enhanced when SrF2:3Dy is covered by CaF2 due to the decrease of cross relaxation amongst the Dy3+-Dy3+ ions. Such type of enhancement of luminescence in homonanostructure SrF2:3Dy@CaF2 (core@shell) has not been studied so far, to the best of the authors' knowledge. This luminescent material exhibits prominently white light emitting properties as shown by the Commission Internationale d'Eclairage (CIE) chromaticity diagram. The calculated correlate colour temperature (CCT) values for SrF2:3Dy, SrF2:3Dy@CaF2 (1:0.05), SrF2:3Dy@CaF2 (1:1) and SrF2:3Dy@CaF2 (1:2) are 5475, 5476, 5384 and 5525 K, respectively, which lie in the cold white region.
40 CFR 799.6786 - TSCA water solubility: Generator column method.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., concentrations expressed in milligrams per liter (mg/L) are approximately equal to 10−3 g/103 g or parts per... section. (E) Two 6-port high-pressure rotary switching valves in paragraph (c)(3)(ii) of this section. (F... Seawater1 Chemical Amount NaF 3 mg SrCl2.6H2O 20 mg H3BO3 30 mg KBr 100 mg KCl 700 mg CaCl2.2H2O 1.47 gram...
Beaufort Sea Methane Hydrate Exploration: Energy and Climate Change
2011-05-27
2 Diesel Engine /Shaft 6,000 hp Continuous 1 Gas Turbine/Shaft 20,000 hp Continuous 25,000 hp demand boost 16 APPENDIX 2 : Science team and...Archive (3 ml) ICP, 3 ml total alkalinity (1 ml) nutrients (7 ml) cations Ca , Mg, Na, K, Sr ( 2 ml) δ 18 O (1ml) 26 APPENDIX 7: Porewater...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/ 6110 --11-9330 Beaufort Sea Methane Hydrate Exploration: Energy and Climate Change May 27
Mg and Sr Incorporation in Foraminifer Shells: Patterns, Controls and Applications.
NASA Astrophysics Data System (ADS)
Lea, D. W.
2001-12-01
The incorporation of Mg and Sr in planktonic and benthic foraminifer shells is important for paleoceanographic research because of the potential to record physical and chemical changes in the oceanic environment. Pelagic shells are 99%+ CaCO3, and abundances of Mg and Sr are typically ~0.1%, requiring sensitive quantification methods such as ICP-MS or AES. Mg/Ca values range from 0.5 mmol/mol in cold planktics and benthics to ~5 mmol/mol in tropical planktics, with some species (Orbulina universa) having even higher values. The main control on Mg incorporation is temperature, but pH and salinity also exert small influences, presumably through calcification rate. The Mg/Ca content of the primary ontogenetic calcite can be altered by the addition of so-called gametogenic calcite, generally deposited in deep, colder waters. After deposition on the seafloor, dissolution becomes the main influence, with progressively lower Mg/Ca values in more dissolved samples. This loss appears to occur by preferential loss of the more Mg-rich portions of the shell, although the details remain unexplained. Sr/Ca values range from 0.9 in some benthic species (Uvigerina spp.) to 1.6 mmol/mol in some planktics. Culturing results suggest that temperature, salinity and pH all exert a weak control (i.e., 1% per ° C) on shell Sr, presumably through a kinetic effect. The main control appears to be related to environmental differences. For example, comparison of Sr/Ca in Neogloboquadrina pachyderma from plankton tows and cultures with core-top specimens indicates that the latter have significantly higher values, presumably due to deep crusting, perhaps added with a much higher calcification rate. This observation clearly demonstrates that Sr/Ca is not simply related to a single physical parameter such as temperature. Downcore records of shell Mg/Ca and Sr/Ca reveal substantial variability that can be correlated with known paleoceanographic change. For Mg/Ca, observed variations can largely be explained by climate-related variations in temperature. For Sr/Ca, it appears that observed variations related to secular changes in seawater Sr/Ca, but this cannot be fully substantiated without a more complete understanding of primary and post-depositional controls on shell composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhaofeng; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000; Li, Yezhou, E-mail: leelienzoey@gmail.com
Highlights: • A novel blue-emitting phosphor Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} was reported. • Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} exhibited excellent thermal and irradiation stability. • Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} was found to possess high color purity. - Abstract: In this work, we synthesized Tm{sup 3+} doped Li{sub 4}SrCa(SiO{sub 4}){sub 2} phosphors and investigated their photoluminescence properties under the excitation of ultraviolet and vacuum ultraviolet lights. The crystal structure analysis and variation of cell parameters confirm that Tm{sup 3+} ions have been successfully doped in the structure of Li{sub 4}SrCa(SiO{sub 4}){sub 2} host by occupying the sites of Ca{supmore » 2+} with the coordination number of 6. The luminescence results suggest that Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} is a good blue-emitting phosphor when excited by ultraviolet and vacuum ultraviolet irradiations. In addition, it is observed that there is nearly no degradation for Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} after undergoing thermal and irradiation treatments. Possible mechanisms for the luminescence processes are proposed on the basis of the discussion of excitation and emission spectra. In particular, the emission color of Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} by excitation of 147 and 172 nm irradiations is very close to the standard blue color, suggesting that it could be potentially applied in plasma display panels and mercury-free fluorescence lamps.« less
Strategic Positioning and Biased Activity of the Mitochondrial Calcium Uniporter in Cardiac Muscle*
De La Fuente, Sergio; Fernandez-Sanz, Celia; Vail, Caitlin; Agra, Elorm J.; Holmstrom, Kira; Sun, Junhui; Mishra, Jyotsna; Williams, Dewight; Finkel, Toren; Murphy, Elizabeth; Joseph, Suresh K.; Sheu, Shey-Shing; Csordás, György
2016-01-01
Control of myocardial energetics by Ca2+ signal propagation to the mitochondrial matrix includes local Ca2+ delivery from sarcoplasmic reticulum (SR) ryanodine receptors (RyR2) to the inner mitochondrial membrane (IMM) Ca2+ uniporter (mtCU). mtCU activity in cardiac mitochondria is relatively low, whereas the IMM surface is large, due to extensive cristae folding. Hence, stochastically distributed mtCU may not suffice to support local Ca2+ transfer. We hypothesized that mtCU concentrated at mitochondria-SR associations would promote the effective Ca2+ transfer. mtCU distribution was determined by tracking MCU and EMRE, the proteins essential for channel formation. Both proteins were enriched in the IMM-outer mitochondrial membrane (OMM) contact point submitochondrial fraction and, as super-resolution microscopy revealed, located more to the mitochondrial periphery (inner boundary membrane) than inside the cristae, indicating high accessibility to cytosol-derived Ca2+ inputs. Furthermore, MCU immunofluorescence distribution was biased toward the mitochondria-SR interface (RyR2), and this bias was promoted by Ca2+ signaling activity in intact cardiomyocytes. The SR fraction of heart homogenate contains mitochondria with extensive SR associations, and these mitochondria are highly enriched in EMRE. Size exclusion chromatography suggested for EMRE- and MCU-containing complexes a wide size range and also revealed MCU-containing complexes devoid of EMRE (thus disabled) in the mitochondrial but not the SR fraction. Functional measurements suggested more effective mtCU-mediated Ca2+ uptake activity by the mitochondria of the SR than of the mitochondrial fraction. Thus, mtCU “hot spots” can be formed at the cardiac muscle mitochondria-SR associations via localization and assembly bias, serving local Ca2+ signaling and the excitation-energetics coupling. PMID:27637331
Gravinese, Philip M.; Flannery, Jennifer A.; Toth, Lauren T.
2016-11-23
The larvae of the Florida stone crab, Menippe mercenaria, migrate through a variety of habitats as they develop and, therefore, experience a broad range of environmental conditions through ontogeny. Environmental variability experienced by the larvae may result in distinct elemental signatures within the exoskeletons, which could provide a tool for tracking the environmental history of larval stone crab populations. A method was developed to examine trace-element ratios, specifically magnesium-to-calcium (Mg/Ca) and strontium-to-calcium (Sr/Ca) ratios, in the exoskeletons of M. mercenaria larvae. Two developmental stages of stone crab larvae were analyzed—stage III and stage V. Specimens were reared in a laboratory environment under stable conditions to quantify the average ratios of Mg/Ca and Sr/Ca of larval stone crab exoskeletons and to determine if the ratios differed through ontogeny. The elemental compositions (Ca, Mg, and Sr) in samples of stage III larvae (n = 50 per sample) from 11 different broods (mean Sr/Ca = 5.916 ± 0.161 millimole per mole [mmol mol−1]; mean Mg/Ca = 218.275 ± 59.957 mmol mol−1) and stage V larvae (n = 10 per sample) from 12 different broods (mean Sr/Ca = 6.110 ± 0.300 mmol mol−1; mean Mg/Ca = 267.081 ± 67.211 mmol mol–1) were measured using inductively coupled plasma optical emission spectrometry (ICP–OES). The ratio of Sr/Ca significantly increased from stage III to stage V larvae, suggesting an ontogenic shift in Sr/Ca ratios between larval stages. The ratio of Mg/Ca did not change significantly between larval stages, but variability among broods was high. The method used to examine the trace-element ratios provided robust, highly reproducible estimates of Sr/Ca and Mg/Ca ratios in the larvae of M. mercenaria, demonstrating that ICP–OES can be used to determine the trace-element composition of chitinous organisms like the Florida stone crab.
NASA Astrophysics Data System (ADS)
Klee, M.; de Vries, J. W. C.; Brand, W.
1988-11-01
Superconducting layers in the Bi(Pb)-Ca-Sr-Cu-O system are prepared by thermal decomposition of metal carboxylates. The films are deposited on MgO single crystal and ceramic substrates using a spin-coating and dip-coating process. The Bi-Ca-Sr-Cu-O films consist mainly of the low- Tc phase ( c-axis=3.073 nm), whereas partial substitution of Bi by Pb favours the formation of the high- Tc phase ( c-axis=3.707 nm). Films deposited on MgO (100) are strong c-axis preferentially oriented grown. While the Bi-Ca-Sr-Cu-O films show a step in the resistance versus temperature curve ( Tcf⋍80 K) due to the presence of the low- Tc and the high- Tc phase, the Bi(Pb)-Ca-Sr-Cu-O films have an onset at 110 K and are superconducting at 104 K. The temperature dependence of the critical current indicates that in the Bi-Ca-Sr-Cu-O system weak links of superconductor-isolator-superconductor type are present, while in the Bi(Pb)-Ca-Sr-Cu-O samples the contact is formed by normal-metal barriers. Using magnetic fields up to 5 T, the anisotropy of the resistive transition of the high- Tc phase was studied. In Bi(Pb)-Ca-Sr-Cu-O films the anisotropy ratio is about 18, and the corresponding coherence lengths are ξ ab(0)⋍3.6 nm and ξ c(0)⋍0.2 nm. These values are nearly the same as in the low- Tc phase.
Launikonis, B S; Stephenson, D G
2000-07-15
1. The role of myoplasmic [Mg2+] on Ca2+ release from the sarcoplasmic reticulum (SR) was examined in the two major types of crustacean muscle fibres, the tonic, long sarcomere fibres and the phasic, short sarcomere fibres of the fresh water decapod crustacean Cherax destructor (yabby) and in the fast-twitch rat muscle fibres using the mechanically skinned muscle fibre preparation. 2. A robust Ca2+-induced Ca2+-release (CICR) mechanism was present in both long and short sarcomere fibres and 1 mM Mg2+ exerted a strong inhibitory action on the SR Ca2+ release in both fibre types. 3. The SR displayed different properties with respect to Ca2+ loading in the long and the short sarcomere fibres and marked functional differences were identified with respect to Mg2+ inhibition between the two crustacean fibre types. Thus, in long sarcomere fibres, the submaximally loaded SR was able to release Ca2+ when [Mg2+] was lowered from 1 to 0.01 mM in the presence of 8 mM ATPtotal and in the virtual absence of Ca2+ (< 5 nM) even when the CICR was suppressed. In contrast, negligible Ca2+ was released from the submaximally loaded SR of short sarcomere yabby fibres when [Mg2+] was lowered from 1 to 0.01 mM under the same conditions as for the long sarcomere fibres. Nevertheless, the rate of SR Ca2+ release in short sarcomere fibres increased markedly when [Mg2+] was lowered in the presence of [Ca2+] approaching the normal resting levels (50-100 nM). 4. Rat fibres were able to release SR Ca2+ at a faster rate than the long sarcomere yabby fibres when [Mg2+] was lowered from 1 to 0. 01 mM in the virtual absence of Ca2+ but, unlike with yabby fibres, the net rate of Ca2+ release was actually increased for conditions that were considerably less favourable to CICR. 5. In summary, it is concluded that crustacean skeletal muscles have more that one functional type of Ca2+-release channels, that these channels display properties that are intermediate between those of mammalian skeletal and cardiac isoforms, that the inhibition exerted by Mg2+ at rest on the crustacean SR Ca2+-release channels must be removed during excitation-contraction coupling and that, unlike in crustacean fibres, CICR cannot play the major role in the activation of SR Ca2+-release channels in the rat skeletal muscle.
Owen, V J; Lamb, G D; Stephenson, D G; Fryer, M W
1997-02-01
1. The relationship between the total Ca2+ content of a muscle fibre and the magnitude of the force response to depolarization was examined in mechanically skinned fibres from the iliofibularis muscle of the toad and the extensor digitorum longus muscle of the rat. The response to depolarization in each skinned fibre was assessed either at the endogenous level of Ca2+ content or after depleting the fibre of Ca2+ to some degree. Ca2+ content was determined by a fibre lysing technique. 2. In both muscle types, the total Ca2+ content could be reduced from the endogenous level of approximately 1.3 mmol l-1 (expressed relative to intact fibre volume) to approximately 0.25 mmol l-1 by either depolarization or caffeine application in the presence of Ca2+ chelators, showing that the great majority of the Ca2+ was stored in the sarcoplasmic reticulum (SR). Chelation of Ca2+ in the transverse tubular (T-) system, either by exposure of fibres to EGTA before skinning or by permeabilizing the T-system with saponin after skinning, reduced the lower limit of Ca2+ content to < or = 0.12 mmol l-1, indicating that 10-20% of the total fibre Ca2+ resided in the T-system. 3. In toad fibres, both the peak and the area (i.e. time integral) of the force response to depolarization were reduced by any reduction in SR Ca2+ content, with both decreasing to zero in an approximately linear manner as the SR Ca2+ content was reduced to < 15% of the endogenous level. In rat fibres, the peak size of the force response was less affected by small decreases in SR content, but both the peak and area of the response decreased to zero with greater depletion. In partially depleted toad fibres, inhibition of SR Ca2+ uptake potentiated the force response to depolarization almost 2-fold. 4. The results show that in this skinned fibre preparation: (a) T-system depolarization and caffeine application can each virtually fully deplete the SR of Ca2+, irrespective of any putative inhibitory effect of SR depletion on channel activation; (b) all of the endogenous level of SR Ca2+ must be released in order to produce a maximal response to depolarization; and (c) a substantial part (approximately 40%) of the Ca2+ released by a depolarization is normally taken back into the SR before it can contribute to force production.
Owen, V J; Lamb, G D; Stephenson, D G; Fryer, M W
1997-01-01
1. The relationship between the total Ca2+ content of a muscle fibre and the magnitude of the force response to depolarization was examined in mechanically skinned fibres from the iliofibularis muscle of the toad and the extensor digitorum longus muscle of the rat. The response to depolarization in each skinned fibre was assessed either at the endogenous level of Ca2+ content or after depleting the fibre of Ca2+ to some degree. Ca2+ content was determined by a fibre lysing technique. 2. In both muscle types, the total Ca2+ content could be reduced from the endogenous level of approximately 1.3 mmol l-1 (expressed relative to intact fibre volume) to approximately 0.25 mmol l-1 by either depolarization or caffeine application in the presence of Ca2+ chelators, showing that the great majority of the Ca2+ was stored in the sarcoplasmic reticulum (SR). Chelation of Ca2+ in the transverse tubular (T-) system, either by exposure of fibres to EGTA before skinning or by permeabilizing the T-system with saponin after skinning, reduced the lower limit of Ca2+ content to < or = 0.12 mmol l-1, indicating that 10-20% of the total fibre Ca2+ resided in the T-system. 3. In toad fibres, both the peak and the area (i.e. time integral) of the force response to depolarization were reduced by any reduction in SR Ca2+ content, with both decreasing to zero in an approximately linear manner as the SR Ca2+ content was reduced to < 15% of the endogenous level. In rat fibres, the peak size of the force response was less affected by small decreases in SR content, but both the peak and area of the response decreased to zero with greater depletion. In partially depleted toad fibres, inhibition of SR Ca2+ uptake potentiated the force response to depolarization almost 2-fold. 4. The results show that in this skinned fibre preparation: (a) T-system depolarization and caffeine application can each virtually fully deplete the SR of Ca2+, irrespective of any putative inhibitory effect of SR depletion on channel activation; (b) all of the endogenous level of SR Ca2+ must be released in order to produce a maximal response to depolarization; and (c) a substantial part (approximately 40%) of the Ca2+ released by a depolarization is normally taken back into the SR before it can contribute to force production. PMID:9051571
A geochemical approach to determine sources and movement of saline groundwater in a coastal aquifer
Anders, Robert; Mendez, Gregory O.; Futa, Kiyoto; Danskin, Wesley R.
2014-01-01
Geochemical evaluation of the sources and movement of saline groundwater in coastal aquifers can aid in the initial mapping of the subsurface when geological information is unavailable. Chloride concentrations of groundwater in a coastal aquifer near San Diego, California, range from about 57 to 39,400 mg/L. On the basis of relative proportions of major-ions, the chemical composition is classified as Na-Ca-Cl-SO4, Na-Cl, or Na-Ca-Cl type water. δ2H and δ18O values range from −47.7‰ to −12.8‰ and from −7.0‰ to −1.2‰, respectively. The isotopically depleted groundwater occurs in the deeper part of the coastal aquifer, and the isotopically enriched groundwater occurs in zones of sea water intrusion. 87Sr/86Sr ratios range from about 0.7050 to 0.7090, and differ between shallower and deeper flow paths in the coastal aquifer. 3H and 14C analyses indicate that most of the groundwater was recharged many thousands of years ago. The analysis of multiple chemical and isotopic tracers indicates that the sources and movement of saline groundwater in the San Diego coastal aquifer are dominated by: (1) recharge of local precipitation in relatively shallow parts of the flow system; (2) regional flow of recharge of higher-elevation precipitation along deep flow paths that freshen a previously saline aquifer; and (3) intrusion of sea water that entered the aquifer primarily during premodern times. Two northwest-to-southeast trending sections show the spatial distribution of the different geochemical groups and suggest the subsurface in the coastal aquifer can be separated into two predominant hydrostratigraphic layers.
A geochemical approach to determine sources and movement of saline groundwater in a coastal aquifer.
Anders, Robert; Mendez, Gregory O; Futa, Kiyoto; Danskin, Wesley R
2014-01-01
Geochemical evaluation of the sources and movement of saline groundwater in coastal aquifers can aid in the initial mapping of the subsurface when geological information is unavailable. Chloride concentrations of groundwater in a coastal aquifer near San Diego, California, range from about 57 to 39,400 mg/L. On the basis of relative proportions of major-ions, the chemical composition is classified as Na-Ca-Cl-SO4, Na-Cl, or Na-Ca-Cl type water. δ(2)H and δ(18)O values range from -47.7‰ to -12.8‰ and from -7.0‰ to -1.2‰, respectively. The isotopically depleted groundwater occurs in the deeper part of the coastal aquifer, and the isotopically enriched groundwater occurs in zones of sea water intrusion. (87)Sr/(86)Sr ratios range from about 0.7050 to 0.7090, and differ between shallower and deeper flow paths in the coastal aquifer. (3)H and (14)C analyses indicate that most of the groundwater was recharged many thousands of years ago. The analysis of multiple chemical and isotopic tracers indicates that the sources and movement of saline groundwater in the San Diego coastal aquifer are dominated by: (1) recharge of local precipitation in relatively shallow parts of the flow system; (2) regional flow of recharge of higher-elevation precipitation along deep flow paths that freshen a previously saline aquifer; and (3) intrusion of sea water that entered the aquifer primarily during premodern times. Two northwest-to-southeast trending sections show the spatial distribution of the different geochemical groups and suggest the subsurface in the coastal aquifer can be separated into two predominant hydrostratigraphic layers. © 2013, National Ground Water Association.
Lalli, M J; Yong, J; Prasad, V; Hashimoto, K; Plank, D; Babu, G J; Kirkpatrick, D; Walsh, R A; Sussman, M; Yatani, A; Marbán, E; Periasamy, M
2001-07-20
Ectopic expression of the sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA) 1a pump in the mouse heart results in a 2.5-fold increase in total SERCA pump level. SERCA1a hearts show increased rates of contraction/relaxation and enhanced Ca(2+) transients; however, the cellular mechanisms underlying altered Ca(2+) handling in SERCA1a transgenic (TG) hearts are unknown. In this study, using confocal microscopy, we demonstrate that SERCA1a protein traffics to the cardiac SR and structurally substitutes for the endogenous SERCA2a isoform. SR Ca(2+) load measurements revealed that TG myocytes have significantly enhanced SR Ca(2+) load. Confocal line-scan images of field-stimulated SR Ca(2+) release showed an increased rate of Ca(2+) removal in TG myocytes. On the other hand, ryanodine receptor binding activity was decreased by approximately 30%. However, TG myocytes had a greater rate of spontaneous ryanodine receptor opening as measured by spark frequency. Whole-cell L-type Ca(2+) current density was reduced by approximately 50%, whereas the time course of inactivation was unchanged in TG myocytes. These studies provide important evidence that SERCA1a can substitute both structurally and functionally for SERCA2a in the heart and that SERCA1a overexpression can be used to enhance SR Ca(2+) transport and cardiac contractility.
Involvement of the Calcium-sensing Receptor in Human Taste Perception
Ohsu, Takeaki; Amino, Yusuke; Nagasaki, Hiroaki; Yamanaka, Tomohiko; Takeshita, Sen; Hatanaka, Toshihiro; Maruyama, Yutaka; Miyamura, Naohiro; Eto, Yuzuru
2010-01-01
By human sensory analyses, we found that various extracellular calcium-sensing receptor (CaSR) agonists enhance sweet, salty, and umami tastes, although they have no taste themselves. These characteristics are known as “kokumi taste” and often appear in traditional Japanese cuisine. Although GSH is a typical kokumi taste substance (taste enhancer), its mode of action is poorly understood. Here, we demonstrate how the kokumi taste is enhanced by the CaSR, a close relative of the class C G-protein-coupled receptors T1R1, T1R2, and T1R3 (sweet and umami receptors). We identified a large number of CaSR agonist γ-glutamyl peptides, including GSH (γ-Glu-Cys-Gly) and γ-Glu-Val-Gly, and showed that these peptides elicit the kokumi taste. Further analyses revealed that some known CaSR agonists such as Ca2+, protamine, polylysine, l-histidine, and cinacalcet (a calcium-mimetic drug) also elicit the kokumi taste and that the CaSR-specific antagonist, NPS-2143, significantly suppresses the kokumi taste. This is the first report indicating a distinct function of the CaSR in human taste perception. PMID:19892707
Dimke, Henrik; Desai, Prajakta; Borovac, Jelena; Lau, Alyssa; Pan, Wanling; Alexander, R. Todd
2016-01-01
Kidney stones are a prevalent clinical condition imposing a large economic burden on the health-care system. Hypercalciuria remains the major risk factor for development of a Ca2+-containing stone. The kidney’s ability to alter Ca2+ excretion in response to changes in serum Ca2+ is in part mediated by the Ca2+-sensing receptor (CaSR). Recent studies revealed renal claudin-14 (Cldn14) expression localized to the thick ascending limb (TAL) and its expression to be regulated via the CaSR. We find that Cldn14 expression is increased by high dietary Ca2+ intake and by elevated serum Ca2+ levels induced by prolonged 1,25-dihydroxyvitamin D3 administration. Consistent with this, activation of the CaSR in vivo via administration of the calcimimetic cinacalcet hydrochloride led to a 40-fold increase in Cldn14 mRNA. Moreover, overexpression of Cldn14 in two separate cell culture models decreased paracellular Ca2+ flux by preferentially decreasing cation permeability, thereby increasing transepithelial resistance. These data support the existence of a mechanism whereby activation of the CaSR in the TAL increases Cldn14 expression, which in turn blocks the paracellular reabsorption of Ca2+. This molecular mechanism likely facilitates renal Ca2+ losses in response to elevated serum Ca2+. Moreover, dys-regulation of the newly described CaSR-Cldn14 axis likely contributes to the development of hypercalciuria and kidney stones. PMID:23283989
Earthworm Activity and the Potential for Enhanced Leaching of Inorganic Elements in Soils
NASA Astrophysics Data System (ADS)
Gruau, G.; Ablain, F.; Cluzeau, D.
2002-12-01
The potential influence of earthworms on the mobility of soil inorganic constituents was experimentally investigated. Six 20 cm long and 15 cm i.d. columns were packed with soil (loamy material, Paris basin, France). Three earthworm specimens - Lombricus terrestris - were introduced into 3 of the 6 columns (earthworm treatment or ET), the remaing 3 being used to study changes in water composition and solute fluxes without earthworms (control treatment or CT). The 6 columns were operated for 8 weeks and were subjected to 100 ml addition of distilled water at 1, 8, 15, 22, 29, 36, 43 and 50 days. Effluents were collected weekly, filtered and analysed for their Dissolved Organic Carbon (DOC) as well as Si, Na, K, Mg, Ca, Fe, Mn, Al, Sr, Ba, Cu, Zn, Cr, Cd, REE and U concentrations. Replicates yielded extremely consistent results, with standard deviations generally lower than 10%. Effluent volumes were greatest during ET simulations (28% difference on a cumulative basis), which can be attributed to the construction by Lombricus terrestris of permanent vertical burrows into the soil columns. Different temporal chemical trends were observed depending on whether earthworms were present or not. During ET simulations, a washout phenomenon occurred for DOC, Ca, Mg, Fe, Ba, Sr, Cu and U during the startup outflow period (week 2). This washout was followed by a period of apparent equilibrium with concentrations in ET effluents remaining roughly constant for all solutes except REE, Zn and to a lesser extent Mn. No such washout nor equilibrium period was observed during CT simulations. Instead, concentrations in Ca, Mg, Fe, Ba, Sr, Cr and Cu decreased from week 2 to week 8, while those in other solutes increased from week 2 to week 5, then declining untill week 8. For many elements (not all), final (equilibrium?) concentrations (8 weeks simulation) were highest in ET effluents (e.g. 17% higher for Ca and Na; 30% higher for Zn), despite the enhanced infiltration rate (and thus the likely shorter soil-water interaction time). Although preliminary, these results suggest that earthworm activities can potentialy increase the leaching of a wide variety of inorganic elements in soils. This increase could occur through the ability of earthworms to change the biogeochemical conditions in the soil along their burrows (so-called drilosphere).
Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors
Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang
2017-01-01
(Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, Ba)Al2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips. PMID:29057839
Juranović Cindrić, Iva; Zeiner, Michaela; Mihajlov-Konanov, Darija; Stingeder, Gerhard
2017-05-18
Black chokeberries ( Aronia melanocarpa ) are considered to be functional food containing high amounts of anthocyanins, phenols, antioxidants, vitamins and minerals. Whereas organic compounds are well studied, there is little research on the mineral composition of the chokeberries. Thus, the presented study is focused on the determination of Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Se, Sr and Zn in black chokeberry fruits and infusions to study the metals' extractability. The nutrients Ca, K and Mg are present in the fruits (dried matter) at g/kg level, whereas the other elements are present from µg/kg up to mg/kg level. The extraction yields of the metals from the infusion range from 4 (Al, Mn) up to 44% (Na). The toxic elements present do not pose any health risk when berries or infusions are consumed. Concluding, Aronia berries, as well as infusions derived from them, are a good dietary source of essential metals in addition to the organic compounds also contained.
Rod, Kenton A; Um, Wooyong; Flury, Markus
2010-11-01
We investigated the effects of water saturation and secondary precipitate formation on Sr and Cs transport through quartz sand columns under saturated and unsaturated flow. Column experiments were conducted at effective water saturation ranging from 0.2 to 1.0 under steady-state flow using either 0.1 M NaNO(3) or simulated tank waste leachate (STWL; 1 M NaNO(3) and 1 M NaOH) mimicking Hanford (Washington, USA) tank waste. In 0.1 M NaNO(3) columns, Sr transported like a conservative tracer, whereas Cs was retarded relative to Sr. The transport of Sr and Cs in the 0.1 M NaNO(3) columns under all water saturations could be described with the equilibrium convection-dispersion equation (CDE). In STWL columns, Sr mobility was significantly reduced compared to the 0.1 M NaNO(3) column, because Sr was incorporated into or sorbed to neo-formed secondary precipitates. Strontium sequestration by precipitates was confirmed by additional batch and electron micrograph analyses. In contrast(,) the transport of Cs was less affected by the STWL; retardation of Cs in STWL columns was similar to that found in 0.1 M NaNO(3) columns. Analysis of STWL column data revealed that both Sr and Cs breakthrough curves showed nonideal behavior that suggest nonequilibrium conditions, although nonlinear geochemical behavior cannot be ruled out.
NASA Astrophysics Data System (ADS)
Romanko, Alexander
2010-05-01
Islamic republic of Iran We present some interesting materials on a poorly studied Neogene-(Quaternary) igneous rocks of Baluchistan and Sistan province, east Iran. They were received by a group led by a regional specialists E. Romanko, A. Hushmanzadeh and M.A.A. Nogol Sadat. Some important features on the rock studied are as follows: mainly K-Na subalkaline rock affinity (also alkaline one too) with a middle K), not very High-Ti, not high, deep 87Sr/86Sr (ISr) = 0.7039 +/- 2 (trachyandesite) and 0.7049 +/- 3 (trachybasalt, both data by GIN RAS, Russia) alongside the 0.7049 on a vulcanite (Camp & Griffis, 1982), LREE-enrichment with a high LREE/HREE (La - more than 32 ppm), and a characteristical Eu/Eu* more than 1.1; up to high - 1/3 of CaO and up to a high - 0.45% of Sr in basic trachyandesites (meaning the real carbonatites ca 200 km to the east, Hanneshin, Afghanistan), complex correlation of some characteristical elements; then-High-Ti (rhutile, Ti-hornblende) and High-Ca phases (clinocoizite, also, Ca- rich ceolie - vayrakite is proposed), replacement of primary minerals due to a fairly strong rock-fluid interaction. North-East tectonic-magmatic +/- metallogenic (economic regional Cu-Au +/- Pb, Zn, poor Ag, PGE, As, Hg, Bi etc. - e.x., Anarak deposits (E.Romanko, 1984) ) zonation, related to the famous subduction of Arabian plate, exists, e.x. (calc-alkaline /1/ - intraplate /2/ ): 1: Eocene shoshonites - Paleocene-Oligocene calc-alkaline intrusives - Miocene-Recent calc-alkaline volcanic (-plutonic) rocks and 2: Paleogene? (Lut block)-Neogene subalkaline rocks - Quaternary Afghanistan carbonatites etc. Alpine compression on the moderate subductional depths up to 200 km (Trubitsin et al., 2004) in the Central Iran, at least, partly compensated, as proposed, by contemporaneous/ younger Pg?-N-Q extensional intraplate magmatism of the East Iran/ Afghanistan and nearby area.
Isotopic imprints of mountaintop mining contaminants.
Vengosh, Avner; Lindberg, T Ty; Merola, Brittany R; Ruhl, Laura; Warner, Nathaniel R; White, Alissa; Dwyer, Gary S; Di Giulio, Richard T
2013-09-03
Mountaintop mining (MTM) is the primary procedure for surface coal exploration within the central Appalachian region of the eastern United States, and it is known to contaminate streams in local watersheds. In this study, we measured the chemical and isotopic compositions of water samples from MTM-impacted tributaries and streams in the Mud River watershed in West Virginia. We systematically document the isotopic compositions of three major constituents: sulfur isotopes in sulfate (δ(34)SSO4), carbon isotopes in dissolved inorganic carbon (δ(13)CDIC), and strontium isotopes ((87)Sr/(86)Sr). The data show that δ(34)SSO4, δ(13)CDIC, Sr/Ca, and (87)Sr/(86)Sr measured in saline- and selenium-rich MTM impacted tributaries are distinguishable from those of the surface water upstream of mining impacts. These tracers can therefore be used to delineate and quantify the impact of MTM in watersheds. High Sr/Ca and low (87)Sr/(86)Sr characterize tributaries that originated from active MTM areas, while tributaries from reclaimed MTM areas had low Sr/Ca and high (87)Sr/(86)Sr. Leaching experiments of rocks from the watershed show that pyrite oxidation and carbonate dissolution control the solute chemistry with distinct (87)Sr/(86)Sr ratios characterizing different rock sources. We propose that MTM operations that access the deeper Kanawha Formation generate residual mined rocks in valley fills from which effluents with distinctive (87)Sr/(86)Sr and Sr/Ca imprints affect the quality of the Appalachian watersheds.
Assessing elemental ratios as a paleotemperature proxy in shells of patelloid limpets
NASA Astrophysics Data System (ADS)
Graniero, L. E.; Surge, D. M.; Gillikin, D. P.
2016-02-01
Archaeological shell and fish middens are rich sources of paleoenvironmental proxy data. Patelloid limpet shells are common constituents in archaeological middens found along European, African, and South American coastlines. Paleotemperature reconstructions using oxygen isotope ratios of limpet shells depend on the ability to constrain the oxygen isotope ratio of seawater; therefore, alternative proxies are necessary for coastal localities where this is not possible. The study evaluates whether Mg/Ca, Sr/Ca, Li/Ca, Li/Mg, and Sr/Li ratios are reliable proxies of SST in shells of the patelloid limpets, P. vulgata and N. deaurata. We compare Mg/Ca, Sr/Ca, Li/Ca, Li/Mg, and Sr/Li ratios to the seasonal variations in contemporaneous δ18Oshell records which primarily record seasonal changes in SST. Elemental ratios (Mg/Ca, Sr/Ca, Li/Ca, Sr/Li, Li/Mg) show no significant correlations with reconstructed SST in P. vulgata and N. deaurata shells. Shell δ13C values show no significant ontogenetic trends, suggesting that these limpets show little change in metabolic carbon incorporation into the shell with increasing ontogenetic age. Although growth rate exhibits a logarithmic decrease with age based on calculated linear extension rates, growth rate does not correlate with elemental profiles in these limpets. Overall, elemental ratios (are not reliable recorders of paleotemperature in patelloid limpets. Further research is necessary to establish the controls on elemental ratio concentrations in limpet shells.
First Insights of the Eemian Hydroclimate of the Snowy Mountains, Australia.
NASA Astrophysics Data System (ADS)
Campbell, M.; Wong, H.; McGrath, G. S.; McGowan, H. A.; Callow, J. N.
2016-12-01
Geologic archives from the Last Interglacial (LIG) provide an opportunity to investigate the likely impacts of a future warmer climate on the hydroclimate of regions sensitive to climate change. Here we present early results from the analysis of a stalagmite from the Yarrangobilly Caves complex in Kosciuszko National Park, Australia - a marginal alpine setting believed to be highly susceptible to the impacts of global warming. Five uranium-series dates show that this stalagmite grew continuously from 123.77 - 117.74 ka B.P. Trace element analysis (Mg/Ca and Sr/Ca) shows that Mg/Ca and Sr/Ca correlate at lags of 40 to 100 years during the period 122.21 ka - 120.37 ka (MIS 5e). Wavelet power spectra show significant periodicity at 60 years in both the Sr/Ca and Mg/Ca record during this time. During the period 120.2 ka - 119.8 ka the Sr/Ca record continues to display significant periodicity at 60 years, while similar periodicity at this scale in the Mg/Ca record is limited to 119.7 ka - 119.6 ka. While it has been suggested that Mg/Ca and Sr/Ca must covary and be in phase in order to interpret `wet' vs `dry' proxies (Tremaine & Froelich 2013), others have shown that Mg/Ca and Sr/Ca can move in and out of phase, attributed to wind-blown inputs of Sr (Frumkin & Stein 2004; Li et al. 2005; Cross et al. 2015). It has been suggested that, due to this and other factors that make Sr less likely to be concentrated during prior calcite precipitation, Mg/Ca may be a better indicator of infiltration rates (Steponaitis et al. 2015). The disconnect between Mg/Ca and Sr/Ca in our record suggests that they had different climatic forcings in south-east Australia during the LIG, and the breakdown in the relationship coincides with peak Mg/Ca in the record and peak SST in the Western Pacific (Lea 2004). Periodicity of 60 years is common in the global climate system and is thought to be astronomical in origin. This periodicity is similar also to the penta-decadal (50-70 yr) cycle of the Pacific Decadal Oscillation. Results indicate that this signal dominated the south-eastern Australian climate signal recorded by the stalagmite during the lead up to the height of the LIG. This signal may therefore be significant under a warmer climate as a dominant cycle in the hydroclimate of the Australian Alpine region.
Wong, C.I.; Banner, J.L.; Musgrove, M.
2011-01-01
A 4-year study in a central Texas cave quantifies multiple mechanisms that control dripwater composition and how these mechanisms vary at different drip sites. We monitored cave-air compositions, in situ calcite growth, dripwater composition and drip rate every 4-6weeks. Three groups of drip sites are delineated (Groups 1-3) based on geochemical variations in dripwater composition. Quantitative modeling of mineral-solution reactions within the host carbonate rock and cave environments is used to identify mechanisms that can account for variations in dripwater compositions. The covariation of Mg/Ca (and Sr/Ca) and Sr isotopes is key in delineating whether Mg/Ca and Sr/Ca variations are dictated by water-rock interaction (i.e., calcite or dolomite recrystallization) or prior calcite precipitation (PCP). Group 1 dripwater compositions reflects a narrow range of the extent of water-rock interaction followed by varying amounts of prior calcite precipitation (PCP). Group 2 dripwater compositions are controlled by varying amounts of water-rock interaction with little to no PCP influence. Group 3 dripwater compositions are dictated by variable extents of both water-rock interaction and PCP. Group 1 drip sites show seasonal variations in dripwater Mg/Ca and Sr/Ca, whereas the other drip sites do not. In contrast to the findings of most previous dripwater Mg/Ca-Sr/Ca studies, these seasonal variations (at Group 1 drip sites) are independent of changes in water flux (i.e., rainfall and/or drip rate), and instead significantly correlate with changes in cave-air CO2 concentrations. These results are consistent with lower cave-air CO2, related to cool season ventilation of the cave atmosphere, enhancing calcite precipitation and leading to dripwater geochemical evolution via PCP. Group 1 dripwater Mg/Ca and Sr/Ca seasonality and evidence for PCP as a mechanism that can account for that seasonality, have two implications for many other regions where seasonal ventilation of caves is likely: (1) speleothem trace-element records may provide seasonal signals, and (2) such records may be biased toward recording climate conditions during the season when calcite is depositing. Additionally, we use our results to construct a forward model that illustrates the types of speleothem Mg/Ca and Sr/Ca variations that would result from varying controls on dripwater compositions. The model provides a basis for interpreting paleo-dripwater controls from high frequency Mg/Ca and Sr/Ca variations for speleothems from caves at which long term monitoring studies are not feasible. ?? 2011 Elsevier Ltd.
Hilliard, Fredrick A.; Steele, Derek S.; Laver, Derek; Yang, Zhaokang; Le Marchand, Sylvain J.; Chopra, Nagesh; Piston, David W.; Huke, Sabine; Knollmann, Björn C.
2009-01-01
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is linked to mutations in the cardiac ryanodine receptor (RyR2) or calsequestrin. We recently found that the drug flecainide inhibits RyR2 channels and prevents CPVT in mice and humans. Here we compared the effects of flecainide and tetracaine, a known RyR2 inhibitor ineffective in CPVT myocytes, on arrhythmogenic Ca2+ waves and elementary sarcoplasmic reticulum (SR) Ca2+ release events, Ca2+ sparks. In ventricular myocytes isolated from a CPVT mouse model, flecainide significantly reduced spark amplitude and spark width, resulting in a 40% reduction in spark mass. Surprisingly, flecainide significantly increased spark frequency. As a result, flecainide had no significant effect on spark-mediated SR Ca2+ leak or SR Ca2+ content. In contrast, tetracaine decreased spark frequency and spark-mediated SR Ca2+ leak, resulting in a significantly increased SR Ca2+ content. Measurements in permeabilized rat ventricular myocytes confirmed the different effects of flecainide and tetracaine on spark frequency and Ca2+ waves. In lipid bilayers, flecainide inhibited RyR2 channels by open state block, whereas tetracaine primarily prolonged RyR2 closed times. The differential effects of flecainide and tetracaine on sparks and RyR2 gating can explain why flecainide, unlike tetracaine, does not change the balance of SR Ca2+ fluxes. We suggest that the smaller spark mass contributes to flecainide's antiarrhythmic action by reducing the probability of saltatory wave propagation between adjacent Ca2+ release units. Our results indicate that inhibition of the RyR2 open state provides a new therapeutic strategy to prevent diastolic Ca2+ waves resulting in triggered arrhythmias, such as CPVT. PMID:19835880
Selectivity in biomineralization of barium and strontium.
Krejci, Minna R; Wasserman, Brian; Finney, Lydia; McNulty, Ian; Legnini, Daniel; Vogt, Stefan; Joester, Derk
2011-11-01
The desmid green alga Closterium moniliferum belongs to a small number of organisms that form barite (BaSO(4)) or celestite (SrSO(4)) biominerals. The ability to sequester Sr in the presence of an excess of Ca is of considerable interest for the remediation of (90)Sr from the environment and nuclear waste. While most cells dynamically regulate the concentration of the second messenger Ca(2+) in the cytosol and various organelles, transport proteins rarely discriminate strongly between Ca, Sr, and Ba. Herein, we investigate how these ions are trafficked in C. moniliferum and how precipitation of (Ba,Sr)SO(4) crystals occurs in the terminal vacuoles. Towards this goal, we simultaneously visualize intracellular dynamics of multiple elements using X-ray fluorescence microscopy (XFM) of cryo-fixed/freeze-dried samples. We correlate the resulting elemental maps with ultrastructural information gleaned from freeze-fracture cryo-SEM of frozen-hydrated cells and use micro X-ray absorption near edge structure (micro-XANES) to determine sulfur speciation. We find that the kinetics of Sr uptake and efflux depend on external Ca concentrations, and Sr, Ba, and Ca show similar intracellular localization. A highly ion-selective cross-membrane transport step is not evident. Based on elevated levels of sulfate detected in the terminal vacuoles, we propose a "sulfate trap" model, where the presence of dissolved barium leads to preferential precipitation of (Ba,Sr)SO(4) due to its low solubility relative to SrSO(4) and CaSO(4). Engineering the sulfate concentration in the vacuole may thus be the most direct way to increase the Sr sequestered per cell, an important consideration in using desmids for phytoremediation of (90)Sr. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuwen; Wang, Xiyao; Liang, Xiaohui
Hyperhomocysteinemia induces the proliferation of vascular smooth muscle cells (VSMCs). Hydrogen sulfide (H{sub 2}S) inhibits the phenotype switch of VSMCs and calcium-sensing receptor (CaSR) regulated the production of endogenous H{sub 2}S. However, whether CaSR inhibits the proliferation of VSMCs by regulating the endogenous cystathionine-gamma-lyase (CSE, a major enzyme that produces H{sub 2}S) pathway in high homocysteine (HHcy) has not been previously investigated. The intracellular calcium concentration, the concentration of H{sub 2}S, the cell viability, the proliferation and the expression of proteins of cultured VSMCs from rat thoracic aortas were measured, respectively. The results showed that the [Ca{sup 2+}]{sub i} andmore » the expression of p-CaMK and CSE increased upon treatment with CaSR agonist. In HHcy, the H{sub 2}S concentration decrease, the proliferation and migration rate increased, the expression of Cyclin D1, PCNA, Osteopontin and p-Erk1/2 increased while the α-SM actin, P21{sup Cip/WAK−1} and Calponin decreased. The CaSR agonist or exogenous H{sub 2}S significantly reversed the changes of VSMCs caused by HHcy. In conclusion, our results demonstrated that CaSR regulate the endogenous CSE/H{sub 2}S is related to the PLC-IP{sub 3} receptor and CaM signal pathways which inhibit the proliferation of VSMCs, and the latter is involved in the Erk1/2 dependent signal pathway in high homocysteine. - Highlights: • CaSR activation increased the production of endogenous H{sub 2}S in high homocysteine VSMCs. • CaSR modulated the CSE/H{sub 2}S are related to the PLC-IP{sub 3}R and Ca{sup 2+}-CaM signal pathways. • Inhibition of H{sub 2}S on the proliferation of VSMCs is involved in the Erk1/2 pathway. • Explore the potential roles of CaSR in regulating VSMCs proliferation in high homocysteine.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, B.Z.; Zhou, S.L.; Wang, H.
2014-01-15
A series of compound with the nominal composition of Bi{sub 2}Sr{sub 2−x}Ca{sub x}CuO{sub 6+δ} (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) were synthesized by the sol–gel method. Constituent phases and crystal structure of samples were analyzed by X-ray diffraction. It can be found that the Ca-doped Bi-2201 system was composed of Bi-2201 phase containing Ca and a small quantity of Bi{sub 16}(Sr,Ca){sub 14}O{sub 38}. For Bi-2201 unit cell containing Ca, chemical component and site preference of Ca atoms were characterized systematically by transmission electron microscopy. With the introduction of Ca atoms, Sr-sites have been occupiedmore » partially by Ca{sup 2+} in Bi-2201 unit cell, which leads to a decrease in the lattice parameters c and b of the Bi-2201 phase when the Ca-content x is below 0.6. Two types of new orthorhombic lattices are formed in the substitution. One is a lattice with space group Pma2 as the two nearest neighbor Sr-sites in the same Sr–O layer are occupied by Ca{sup 2+}. Its lattice parameters can be characterized as a = 5.402 Å, b = 5.313 Å and c = 24.272 Å, respectively. When two nearest Sr ions of the second neighboring Sr–O layers are replaced by Ca{sup 2+} ions, the lattice with the space group Pmn2{sub 1} can be formed. Its lattice parameters are close to that of the previous. The modulation vector is lying in the a*–c* plane in the two new orthorhombic lattices (Pma2 and Pmn2{sub 1}). Bi/Ca-2201 lattice (with Ca) and Bi-2201 lattice (without Ca) coexist in the same Bi{sub 2}Sr{sub 2−x}Ca{sub x}CuO{sub 6}+{sub δ} grain, which can be described as an intergrowth structure.« less
Neef, Stefan; Mann, Christian; Zwenger, Anne; Dybkova, Nataliya; Maier, Lars S
2017-07-01
Sarcoplasmic reticulum (SR) Ca 2+ leak induced by Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) is centrally involved in atrial and ventricular arrhythmogenesis as well as heart failure remodeling. Consequently, treating SR Ca 2+ leak has been proposed as a novel therapeutic paradigm, but compounds for use in humans are lacking. SMP-114 ("Rimacalib") is a novel, orally available CaMKII inhibitor developed for human use that has already entered clinical phase II trials to treat rheumatoid arthritis. We speculated that SMP-114 might also be useful to treat cardiac SR Ca 2+ leak. SMP-114 significantly reduces SR Ca 2+ leak (as assessed by Ca 2+ sparks) in human atrial (0.72 ± 0.33 sparks/100 µm/s vs. control 3.02 ± 0.91 sparks/100 µm/s) and failing left ventricular (0.78 ± 0.23 vs. 1.69 ± 0.27 sparks/100 µm/s) as well as in murine ventricular cardiomyocytes (0.30 ± 0.07 vs. 1.50 ± 0.28 sparks/100 µm/s). Associated with lower SR Ca 2+ leak, we found that SMP-114 suppressed the occurrence of spontaneous arrhythmogenic spontaneous Ca 2+ release (0.356 ± 0.109 vs. 0.927 ± 0.216 events per 30 s stimulation cessation). In consequence, post-rest potentiation of Ca 2+ -transient amplitude (measured using Fura-2) during the 30 s pause was improved by SMP-114 (52 ± 5 vs. 37 ± 4%). Noteworthy, SMP-114 has these beneficial effects without negatively impairing global excitation-contraction coupling: neither systolic Ca 2+ release nor single cell contractility was compromised, and also SR Ca 2+ reuptake, in line with resulting cardiomyocyte relaxation, was not impaired by SMP-114 in our assays. SMP-114 demonstrated potential to treat SR Ca 2+ leak and consequently proarrhythmogenic events in rodent as well as in human atrial cardiomyocytes and cardiomyocytes from patients with heart failure. Further research is necessary towards clinical use in cardiac disease.
Cole, Catherine; Finch, Adrian; Hintz, Christopher; Hintz, Kenneth; Allison, Nicola
2016-01-01
Coral skeletal Sr/Ca is a palaeothermometer commonly used to produce high resolution seasonal sea surface temperature (SST) records and to investigate the amplitude and frequency of ENSO and interdecadal climate events. The proxy relationship is typically calibrated by matching seasonal SST and skeletal Sr/Ca maxima and minima in modern corals. Applying these calibrations to fossil corals assumes that the temperature sensitivity of skeletal Sr/Ca is conserved, despite substantial changes in seawater carbonate chemistry between the modern and glacial ocean. We present Sr/Ca analyses of 3 genotypes of massive Porites spp. corals (the genus most commonly used for palaeoclimate reconstruction), cultured under seawater pCO2 reflecting modern, future (year 2100) and last glacial maximum (LGM) conditions. Skeletal Sr/Ca is indistinguishable between duplicate colonies of the same genotype cultured under the same conditions, but varies significantly in response to seawater pCO2 in two genotypes of Porites lutea, whilst Porites murrayensis is unaffected. Within P. lutea, the response is not systematic: skeletal Sr/Ca increases significantly (by 2–4%) at high seawater pCO2 relative to modern in both genotypes, and also increases significantly (by 4%) at low seawater pCO2 in one genotype. This magnitude of variation equates to errors in reconstructed SST of up to −5 °C. PMID:27241795
Cole, Catherine; Finch, Adrian; Hintz, Christopher; Hintz, Kenneth; Allison, Nicola
2016-05-31
Coral skeletal Sr/Ca is a palaeothermometer commonly used to produce high resolution seasonal sea surface temperature (SST) records and to investigate the amplitude and frequency of ENSO and interdecadal climate events. The proxy relationship is typically calibrated by matching seasonal SST and skeletal Sr/Ca maxima and minima in modern corals. Applying these calibrations to fossil corals assumes that the temperature sensitivity of skeletal Sr/Ca is conserved, despite substantial changes in seawater carbonate chemistry between the modern and glacial ocean. We present Sr/Ca analyses of 3 genotypes of massive Porites spp. corals (the genus most commonly used for palaeoclimate reconstruction), cultured under seawater pCO2 reflecting modern, future (year 2100) and last glacial maximum (LGM) conditions. Skeletal Sr/Ca is indistinguishable between duplicate colonies of the same genotype cultured under the same conditions, but varies significantly in response to seawater pCO2 in two genotypes of Porites lutea, whilst Porites murrayensis is unaffected. Within P. lutea, the response is not systematic: skeletal Sr/Ca increases significantly (by 2-4%) at high seawater pCO2 relative to modern in both genotypes, and also increases significantly (by 4%) at low seawater pCO2 in one genotype. This magnitude of variation equates to errors in reconstructed SST of up to -5 °C.
NASA Astrophysics Data System (ADS)
Turetta, C.; Planchon, F.; Gabrielli, P.; Cozzi, G.; Cairns, W.; Barbaro, E.; Petit, J. R.; Bulat, S.; Boutron, C.; Barbante, C.
2016-12-01
We present in this study comprehensive data on the occurrence of 25 trace and ultra-trace elements in the deepest part of the Vostok ice core. The determination of Li, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Ba, Pb, Bi and U has been performed in the different types of ice encountered from 3271 m to 3609 m of depth, corresponding to atmospheric ice, glacial flour and to accreted ice originating from the freezing of Lake Vostok waters. From atmospheric ice and glacial flour, the relative contributions of primary aerosols were evaluated for each element using a chemical mass balance approach in order to provide a first order evaluation of their partition between soluble (sea-salt) and insoluble (wind-blown dust) fractions in the ice. Sea-salt spray aerosols are the main source of impurities to the ice for certain elements (Na, Mg and K levels, and in a lesser extent to Ca, Sr, Rb, Li and U) while for other elements (Al, V, Cr, Mn, Fe, Co, Cu, Zn, Mo, Sb, Ba and Pb as well as the non sea salt fractions of Mg, K, Ca, Sr, Rb, Li and U) dust inputs appear to primarily control their depositional variability. For the glacial flour, the comparable levels of elements with the overlying atmospheric ice suggest that incorporation of abrasion debris at the glacier is quite limited in the sections considered. For the accreted ice originating from the subglacial waters of Lake Vostok, we observed a major chemical shift in the composition of the ice showing two distinct trends that we assumed to be derived from the chemical speciation of elements. The study of the glacier ice and the glacial flour has allowed us to perform a detailed characterisation of elemental abundances related to the aerosol sources variability and also to illustrate the interaction between the ice-sheet and the bedrock.
Broad, Lisa M; Cannon, Toby R; Taylor, Colin W
1999-01-01
Depletion of the Ca2+ stores of A7r5 cells stimulated Ca2+, though not Sr2+, entry. Vasopressin (AVP) or platelet-derived growth factor (PDGF) stimulated Sr2+ entry. The cells therefore express a capacitative pathway activated by empty stores and a non-capacitative pathway stimulated by receptors; only the former is permeable to Mn2+ and only the latter to Sr2+. Neither empty stores nor inositol 1,4,5-trisphosphate (InsP3) binding to its receptors are required for activation of the non-capacitative pathway, because microinjection of cells with heparin prevented PDGF-evoked Ca2+ mobilization but not Sr2+ entry. Low concentrations of Gd3+ irreversibly blocked capacitative Ca2+ entry without affecting AVP-evoked Sr2+ entry. After inhibition of the capacitative pathway with Gd3+, AVP evoked a substantial increase in cytosolic [Ca2+], confirming that the non-capacitative pathway can evoke a significant increase in cytosolic [Ca2+]. Arachidonic acid mimicked the effect of AVP on Sr2+ entry without stimulating Mn2+ entry; the Sr2+ entry was inhibited by 100 μM Gd3+, but not by 1 μM Gd3+ which completely inhibited capacitative Ca2+ entry. The effects of arachidonic acid did not require its metabolism. AVP-evoked Sr2+ entry was unaffected by isotetrandrine, an inhibitor of G protein-coupled phospholipase A2. U73122, an inhibitor of phosphoinositidase C, inhibited AVP-evoked formation of inositol phosphates and Sr2+ entry. The effects of phorbol esters and Ro31-8220 (a protein kinase C inhibitor) established that protein kinase C did not mediate the effects of AVP on the non-capacitative pathway. An inhibitor of diacylglycerol lipase, RHC-80267, inhibited AVP-evoked Sr2+ entry without affecting capacitative Ca2+ entry or release of Ca2+ stores. Selective inhibition of capacitative Ca2+ entry with Gd3+ revealed that the non-capacitative pathway is the major route for the Ca2+ entry evoked by low AVP concentrations. We conclude that in A7r5 cells, the Ca2+ entry evoked by low concentrations of AVP is mediated largely by a non-capacitative pathway directly regulated by arachidonic acid produced by the sequential activities of phosphoinositidase C and diacylglycerol lipase. PMID:10226154
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hona, Ram Krishna; Huq, Ashfia; Mulmi, Suresh
The ability to control electrical properties and magnetism by varying the crystal structure using the effect of the A-site cation in oxygen-deficient perovskites has been studied in AA’Fe 2O 6-δ, where A=Sr, Ca and A’= Sr. The structure of Sr 2Fe 2O 6-δ, synthesized at 1250 °C in air, contains dimeric units of FeO 5 square-pyramids separated by FeO 6 octahedra. Here we show that this ordering scheme can be transformed by changing the A-site cations from Sr to Ca. This leads to a structure where layers of corner-sharing FeO 6 octahedra are separated by chains of FeO 4 tetrahedra.more » Through systematic variation of the A-site cations, we have determined the average ionic radius required for this conversion to be ~1.41 Å. We have demonstrated that the magnetic structure is also transformed. The Sr 2 compound has an incommensurate magnetic structure, where magnetic moments are in spin-density wave state, aligning perpendicular to the body diagonal of the unit cell. With the aid of neutron diffraction experiments at 10 K and 300 K, we have shown that the magnetic structure is converted into a long-range G-type antiferromagnetic system when one Sr is replaced by Ca. In this G-type ordering scheme, the magnetic moments align in the 001 direction, antiparallel to their nearest neighbors. We have also performed variable-temperature electrical conductivity studies on these materials in the temperature range 298 – 1073 K. These studies have revealed the transformation of charge transport properties, where the metallic behavior of the Sr 2-compound is converted into semiconductivity in the CaSr-material. The trend of conductivity as a function of temperature is reversed upon changing the A-site cation. The conductivity of the Sr 2 compound shows a downturn, while the conductivity of the CaSr material increases as a function of temperature. We have also shown that the CaSr-compound exhibits temperature-dependent behavior typical of a mixed ionic-electronic conducting system.« less
Hona, Ram Krishna; Huq, Ashfia; Mulmi, Suresh; ...
2017-08-09
The ability to control electrical properties and magnetism by varying the crystal structure using the effect of the A-site cation in oxygen-deficient perovskites has been studied in AA’Fe 2O 6-δ, where A=Sr, Ca and A’= Sr. The structure of Sr 2Fe 2O 6-δ, synthesized at 1250 °C in air, contains dimeric units of FeO 5 square-pyramids separated by FeO 6 octahedra. Here we show that this ordering scheme can be transformed by changing the A-site cations from Sr to Ca. This leads to a structure where layers of corner-sharing FeO 6 octahedra are separated by chains of FeO 4 tetrahedra.more » Through systematic variation of the A-site cations, we have determined the average ionic radius required for this conversion to be ~1.41 Å. We have demonstrated that the magnetic structure is also transformed. The Sr 2 compound has an incommensurate magnetic structure, where magnetic moments are in spin-density wave state, aligning perpendicular to the body diagonal of the unit cell. With the aid of neutron diffraction experiments at 10 K and 300 K, we have shown that the magnetic structure is converted into a long-range G-type antiferromagnetic system when one Sr is replaced by Ca. In this G-type ordering scheme, the magnetic moments align in the 001 direction, antiparallel to their nearest neighbors. We have also performed variable-temperature electrical conductivity studies on these materials in the temperature range 298 – 1073 K. These studies have revealed the transformation of charge transport properties, where the metallic behavior of the Sr 2-compound is converted into semiconductivity in the CaSr-material. The trend of conductivity as a function of temperature is reversed upon changing the A-site cation. The conductivity of the Sr 2 compound shows a downturn, while the conductivity of the CaSr material increases as a function of temperature. We have also shown that the CaSr-compound exhibits temperature-dependent behavior typical of a mixed ionic-electronic conducting system.« less
Letz, Saskia; Haag, Christine; Schulze, Egbert; Frank-Raue, Karin; Raue, Friedhelm; Hofner, Benjamin; Mayr, Bernhard; Schöfl, Christof
2014-01-01
Introduction Activating calcium sensing receptor (CaSR) mutations cause autosomal dominant hypocalcemia (ADH) characterized by low serum calcium, inappropriately low PTH and relative hypercalciuria. Four activating CaSR mutations cause additional renal wasting of sodium, chloride and other salts, a condition called Bartter syndrome (BS) type 5. Until today there is no specific medical treatment for BS type 5 and ADH. We investigated the effects of different allosteric CaSR antagonists (calcilytics) on activating CaSR mutants. Methods All 4 known mutations causing BS type 5 and five ADH mutations were expressed in HEK 293T cells and receptor signalling was studied by measurement of intracellular free calcium in response to extracellular calcium ([Ca2+]o). To investigate the effect of calcilytics, cells were stimulated with 3 mM [Ca2+]o in the presence or absence of NPS-2143, ATF936 or AXT914. Results All BS type 5 and ADH mutants showed enhanced signalling activity to [Ca2+]o with left shifted dose response curves. In contrast to the amino alcohol NPS-2143, which was only partially effective, the quinazolinone calcilytics ATF936 and AXT914 significantly mitigated excessive cytosolic calcium signalling of all BS type 5 and ADH mutants studied. When these mutants were co-expressed with wild-type CaSR to approximate heterozygosity in patients, ATF936 and AXT914 were also effective on all mutants. Conclusion The calcilytics ATF936 and AXT914 are capable of attenuating enhanced cytosolic calcium signalling activity of CaSR mutations causing BS type 5 and ADH. Quinazolinone calcilytics might therefore offer a novel treatment option for patients with activating CaSR mutations. PMID:25506941
Ryan, D; Shephard, S; Kelly, F L
2016-09-01
This study investigates temporal stability in the scale microchemistry of brown trout Salmo trutta in feeder streams of a large heterogeneous lake catchment and rates of change after migration into the lake. Laser-ablation inductively coupled plasma mass spectrometry was used to quantify the elemental concentrations of Na, Mg, Mn, Cu, Zn, Ba and Sr in archived (1997-2002) scales of juvenile S. trutta collected from six major feeder streams of Lough Mask, County Mayo, Ireland. Water-element Ca ratios within these streams were determined for the fish sampling period and for a later period (2013-2015). Salmo trutta scale Sr and Ba concentrations were significantly (P < 0·05) correlated with stream water sample Sr:Ca and Ba:Ca ratios respectively from both periods, indicating multi-annual stability in scale and water-elemental signatures. Discriminant analysis of scale chemistries correctly classified 91% of sampled juvenile S. trutta to their stream of origin using a cross-validated classification model. This model was used to test whether assumed post-depositional change in scale element concentrations reduced correct natal stream classification of S. trutta in successive years after migration into Lough Mask. Fish residing in the lake for 1-3 years could be reliably classified to their most likely natal stream, but the probability of correct classification diminished strongly with longer lake residence. Use of scale chemistry to identify natal streams of lake S. trutta should focus on recent migrants, but may not require contemporary water chemistry data. © 2016 The Fisheries Society of the British Isles.
Stehno-Bittel, L; Sturek, M
1992-01-01
1. We tested the hypothesis that the Ca(2+)-loaded sarcoplasmic reticulum (SR) of coronary artery smooth muscle spontaneously releases Ca2+ preferentially toward the sarcolemma to be extruded from the cell without increasing the average free myoplasmic [Ca2+] (Ca(im)) concentration. 2. The SR of bovine cells was Ca(2+)-loaded by depolarization-induced Ca2+ influx. Release (unloading) of Ca2+ from the SR during recovery from depolarization was determined by Fura-2 microfluorometry of Ca(im). The SR Ca2+ unloading was maximal following a long (14 min) recovery from depolarization, as shown by the 66% decrease in the peak caffeine-induced Ca(im) transient compared to the Ca(im) transient after a short (2 min) recovery. No increase in Ca(im) occurred during the long recovery. No unloading of the SR Ca2+ store was noted in porcine cells. 3. Approximately 80% of the outward K+ current in bovine and porcine cells was sensitive to subsarcolemmal Ca2+ (Ca(is)) concentrations. Whole-cell voltage clamp using pipette solutions with Ca2+ concentrations clamped between 0 and 1000 nM with Ca(2+)-EGTA or Ca(2+)-BAPTA buffers showed increasing K+ currents (normalized for cell membrane surface area) as a function of both membrane potential and Ca(is). Clamping of Ca(im) and Ca(is) was verified by the lack of changes in K+ current and Fura-2 ratio in response to Ca2+ influx, Ca(2+)-free external solution, or caffeine-induced Ca2+ release. At +30 to +50 mV the K+ current amplitude showed a similar sensitivity to Ca2+ as Fura-2. These data indicate that in this experimental preparation Ca(2+)-activated K+ current is a valid estimate of Ca(is). 4. Simultaneous Ca(im) and Ca(is) measurements in bovine cells which were not Ca(2+)-clamped (2 x 10(-4) M-EGTA pipette solution) showed that during the long recovery period the K+ current (reflecting Ca(is)) increased 55%, while Ca(im) did not change. 5. In quiescent bovine cells the Ca(is) was higher than Ca(im), while the higher resting Ca(is) gradient was not apparent in porcine cells. 6. The Ca(is) concentration was directly related to the amount of Ca2+ in the SR in bovine, but not porcine cells. Depletion of the SR in bovine cells by caffeine resulted in a 58% decrease in K+ current compared to the resting K+ current. 7. Caffeine-induced Ca2+ release caused an increase in Ca(is) which preceded the increase in Ca(im) by approximately 2 s.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1403820
Thermoelectric misfit-layered cobalt oxides with interlayers of hydroxide and peroxide species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Ta-Lei; Lybeck, Jenni; Chan, Ting-Shan
Among the thermoelectric misfit-layered cobalt oxides, [M{sub m}A{sub 2}O{sub m+2}]{sub q}CoO{sub 2}, the parent m=0 phases exhibit divergent chemical features but are less understood than the more common m>0 members of the series. Here we synthesize Sr-for-Ca substituted [(Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2}]{sub q}CoO{sub 2} zero phases up to x=0.2 through low-temperature hydrothermal conversion of precursor powders of the m=1 misfit system, [Co(Ca{sub 1−x}Sr{sub x}){sub 2}O{sub 3}]{sub q}CoO{sub 2}. In the zero-phase [(Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2}]{sub q}CoO{sub 2} system, as the Sr content x increases the lattice expands anisotropically along the c axis such that the ab-plane dimension andmore » the misfit parameter q remain essentially constant. X-ray absorption spectroscopy data suggest the presence of peroxide-type oxygen species in the (Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2} rock-salt block and together with infrared spectroscopy, thermogravimetric and low-temperature resistivity and thermopower measurements evidence that the isovalent Sr-for-Ca substitution controls the balance between the peroxide and hydroxide species in the (Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2} block but leaves the valence of Co essentially intact in the CoO{sub 2} block. The higher electrical conductivity of the Sr-substituted phases is explained as a consequence of increased carrier mobility. - Graphical abstract: Among the thermoelectric misfit-layered cobalt oxides, [M{sub m}A{sub 2}O{sub m+2}]{sub q}CoO{sub 2}, the parent zero (m=0) phases exhibit divergent chemical features. For [(Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2}]{sub q}CoO{sub 2}, X-ray absorption spectroscopy data suggest the presence of peroxide-type oxygen species in the (Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2} rock-salt block and together with thermogravimetric and low-temperature transport-property measurements evidence that the isovalent Sr-for-Ca substitution controls the balance between the peroxide and hydroxide species in the (Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2} block but leaves the valence of Co essentially intact in the CoO{sub 2} block. - Highlights: • Parent m=0 [M{sub m}A{sub 2}O{sub m+2}]{sub q}CoO{sub 2} misfit-layer oxides exhibit divergent chemical features. • [(Ca,Sr){sub z}(O,OH){sub 2}]{sub q}CoO{sub 2} is found to contain both peroxide and hydroxide species. • Hydrothermal synthesis yields [(Ca{sub 1−x}Sr{sub x}){sub z}(O,OH){sub 2}]{sub q}CoO{sub 2} samples up to x=0.2. • With increasing x, the c axis expands but the misfit parameter q remains constant. • Co valence remains intact, but peroxide and hydroxide contents may be affected.« less
Mora, Miguel A.; Taylor, Robert J.; Brattin, Bryan L.
2007-01-01
We investigated the occurrence and potential ecotoxicological significance of elevated concentrations of strontium (Sr) in eggshells of nine passerine birds from four regions in Arizona. Concentrations of Sr in eggshells ranged from 70 to 1360 µg g−1 dry weight (overall mean = 684 ± 345 SD µg g−1 dw) for the four regions. 23% of the eggshells had Sr concentrations greater than 1000 µg g−1 dw. To our knowledge, these are among the highest levels of Sr that have been reported in bird eggshells in North America. Of the nine species, Brown-headed Cowbirds (Molothrus ater) had the greatest concentrations of Sr. There was a significant positive correlation between Sr and calcium (Ca), and between barium (Ba) and Ca. Ca, Sr, and Ba interact with each other and can exert similar chemical and pharmacological effects. Mean (n ≥ 3) eggshell∶egg ratios for Sr varied with species and ranged from 6.1∶1 to 40.2∶1; ratios for individual eggs reached 92.7∶1. Mean Sr/Ca values ranged from 1.3 × 10−3 to 3.0 × 10−3 and mean eggshell thickness ranged from 83 ± 6 to 120 ± 9 µm for all species. Eggshell thickness was not significantly correlated with Sr for any species but tended to increase with Sr concentrations. We postulate that high concentrations of Sr in the shell could affect later-stage embryos by possible interference with Ca metabolism and bone growth, resulting in reduced hatching success and potential minor beak deformities.
Synthesis and photoluminescence properties of Pb2+ doped inorganic borate phosphor NaSr4(BO3)3
NASA Astrophysics Data System (ADS)
Chauhan, A. O.; Koparkar, K. A.; Bajaj, N. S.; Omanwar, S. K.
2016-05-01
A series of Inorganic borate phosphors NaSr4(BO3)3 doped with Pb2+ was successfully synthesized by modified solid state diffusion method. The crystal structure and the phase purity of sample were characterized by powder X-ray diffraction (XRD). The photoluminescence properties of synthesized materials were investigated using spectrofluorometer at room temperature. The phosphor show strong broad band emission spectra in UVA region maximum at 370 nm under the excitation of 289 nm. The dependence of the emission intensity on the Pb2+ concentration for the NaSr4(BO3)3 were studied in details. The concentration quenching of Pb2+ doped NaSr4(BO3)3 was observed at 0.02 mol. The Stokes shifts of NaSr4(BO3)3: Pb2+ phosphor was calculated to be 7574 cm-1.
Kawakami, M; Okabe, E
1998-03-01
The ryanodine receptor Ca2+ channel (RyRC) constitutes the Ca2+-release pathway in sarcoplasmic reticulum (SR) of cardiac muscle. A direct mechanical and a Ca2+-triggered mechanism (Ca2+-induced Ca2+ release) have been proposed to explain the in situ activation of Ca2+ release in cardiac muscle. A variety of chemical oxidants have been shown to activate RyRC; however, the role of modification induced by oxygen-derived free radicals in pathological states of the muscle remains to be elucidated. It has been hypothesized that oxygen-derived free radicals initiate Ca2+-mediated functional changes in or damage to cardiac muscle by acting on the SR and promoting an increase in Ca2+ release. We confirmed that superoxide anion radical (O2-) generated from hypoxanthine-xanthine oxidase reaction decreases calmodulin content and increases 45Ca2+ efflux from the heavy fraction of canine cardiac SR vesicles; hypoxanthine-xanthine oxidase also decreases Ca2+ free within the intravesicular space of the SR with no effect on Ca2+-ATPase activity. Current fluctuations through single Ca2+-release channels have been monitored after incorporation into planar phospholipid bilayers. We demonstrate that activation of the channel by O2- is dependent of the presence of calmodulin and identified calmodulin as a functional mediator of O2--triggered Ca2+ release through the RyRC. For the first time, we show that O2- stimulates Ca2+ release from heavy SR vesicles and suggest the importance of accessory proteins such as calmodulin in modulating the effect of O2-. The decreased calmodulin content induced by oxygen-derived free radicals, especially O2-, is a likely mechanism of accumulation of cytosolic Ca2+ (due to increased Ca2+ release from SR) after reperfusion of the ischemic heart.
NASA Astrophysics Data System (ADS)
Négrel, Philippe; Petelet-Giraud, Emmanuelle
2010-10-01
The current use of untreated river water for drinking purposes by the population of French Guiana has important impacts on public health. Consequently, groundwater is of major importance as a possible alternative drinking water supply to reduce these impacts. Since French Guiana belongs to the Guyana Shield, sustainable water management can be expected to depend increasingly on water from fissured aquifers in hard rocks. Groundwater samples were collected from shallow drill holes in the densely populated coastal area, and deeper wells in the basement (around Cayenne and along the Maroni and Oyapock rivers). This study reports on major and trace elements for which Na + and Ca 2+ excess with regard to Cl reflect the role of water-rock interaction, as well as Sr and Nd isotopes that reflect the role of the different lithologies. δ 18O and δD in waters give constraints on the water cycle (recharge and evaporation processes).
Clarke, Jessica D.; Caldwell, Jessica L.; Horn, Margaux A.; Bode, Elizabeth F.; Richards, Mark A.; Hall, Mark C.S.; Graham, Helen K.; Briston, Sarah J.; Greensmith, David J.; Eisner, David A.; Dibb, Katharine M.; Trafford, Andrew W.
2015-01-01
Heart failure (HF) is commonly associated with reduced cardiac output and an increased risk of atrial arrhythmias particularly during β-adrenergic stimulation. The aim of the present study was to determine how HF alters systolic Ca2 + and the response to β-adrenergic (β-AR) stimulation in atrial myocytes. HF was induced in sheep by ventricular tachypacing and changes in intracellular Ca2 + concentration studied in single left atrial myocytes under voltage and current clamp conditions. The following were all reduced in HF atrial myocytes; Ca2 + transient amplitude (by 46% in current clamped and 28% in voltage clamped cells), SR dependent rate of Ca2 + removal (kSR, by 32%), L-type Ca2 + current density (by 36%) and action potential duration (APD90 by 22%). However, in HF SR Ca2 + content was increased (by 19%) when measured under voltage-clamp stimulation. Inhibiting the L-type Ca2 + current (ICa-L) in control cells reproduced both the decrease in Ca2 + transient amplitude and increase of SR Ca2 + content observed in voltage-clamped HF cells. During β-AR stimulation Ca2 + transient amplitude was the same in control and HF cells. However, ICa-L remained less in HF than control cells whilst SR Ca2 + content was highest in HF cells during β-AR stimulation. The decrease in ICa-L that occurs in HF atrial myocytes appears to underpin the decreased Ca2 + transient amplitude and increased SR Ca2 + content observed in voltage-clamped cells. PMID:25463272
Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle
Ørtenblad, Niels; Nielsen, Joachim; Saltin, Bengt; Holmberg, Hans-Christer
2011-01-01
Little is known about the precise mechanism that relates skeletal muscle glycogen to muscle fatigue. The aim of the present study was to examine the effect of glycogen on sarcoplasmic reticulum (SR) function in the arm and leg muscles of elite cross-country skiers (n= 10, 72 ± 2 ml kg−1 min−1) before, immediately after, and 4 h and 22 h after a fatiguing 1 h ski race. During the first 4 h recovery, skiers received either water or carbohydrate (CHO) and thereafter all received CHO-enriched food. Immediately after the race, arm glycogen was reduced to 31 ± 4% and SR Ca2+ release rate decreased to 85 ± 2% of initial levels. Glycogen noticeably recovered after 4 h recovery with CHO (59 ± 5% initial) and the SR Ca2+ release rate returned to pre-exercise levels. However, in the absence of CHO during the first 4 h recovery, glycogen and the SR Ca2+ release rate remained unchanged (29 ± 2% and 77 ± 8%, respectively), with both parameters becoming normal after the remaining 18 h recovery with CHO. Leg muscle glycogen decreased to a lesser extent (71 ± 10% initial), with no effects on the SR Ca2+ release rate. Interestingly, transmission electron microscopy (TEM) analysis revealed that the specific pool of intramyofibrillar glycogen, representing 10–15% of total glycogen, was highly significantly correlated with the SR Ca2+ release rate. These observations strongly indicate that low glycogen and especially intramyofibrillar glycogen, as suggested by TEM, modulate the SR Ca2+ release rate in highly trained subjects. Thus, low glycogen during exercise may contribute to fatigue by causing a decreased SR Ca2+ release rate. PMID:21135051
Calcium-Sensing Receptor Tumor Expression and Lethal Prostate Cancer Progression.
Ahearn, Thomas U; Tchrakian, Nairi; Wilson, Kathryn M; Lis, Rosina; Nuttall, Elizabeth; Sesso, Howard D; Loda, Massimo; Giovannucci, Edward; Mucci, Lorelei A; Finn, Stephen; Shui, Irene M
2016-06-01
Prostate cancer metastases preferentially target bone, and the calcium-sensing receptor (CaSR) may play a role in promoting this metastatic progression. We evaluated the association of prostate tumor CaSR expression with lethal prostate cancer. A validated CaSR immunohistochemistry assay was performed on tumor tissue microarrays. Vitamin D receptor (VDR) expression and phosphatase and tensin homolog tumor status were previously assessed in a subset of cases by immunohistochemistry. Cox proportional hazards models adjusting for age and body mass index at diagnosis, Gleason grade, and pathological tumor node metastasis stage were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association of CaSR expression with lethal prostate cancer. The investigation was conducted in the Health Professionals Follow-up Study and Physicians' Health Study. We studied 1241 incident prostate cancer cases diagnosed between 1983 and 2009. Participants were followed up or cancer-specific mortality or development of metastatic disease. On average, men were followed up 13.6 years, during which there were 83 lethal events. High CaSR expression was associated with lethal prostate cancer independent of clinical and pathological variables (HR 2.0; 95% CI 1.2-3.3). Additionally, there was evidence of effect modification by VDR expression; CaSR was associated with lethal progression among men with low tumor VDR expression (HR 3.2; 95% CI 1.4-7.3) but not in cases with high tumor VDR expression (HR 0.8; 95% CI 0.2-3.0). Tumor CaSR expression is associated with an increased risk of lethal prostate cancer, particularly in tumors with low VDR expression. These results support further investigating the mechanism linking CaSR with metastases.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 75) Silicon 31 (Si 31) Silver 105 (Ag 105) Silver 110m (Ag 110m) Silver 111 (Ag 111) Sodium 22 (Na 22) Sodium 24 (Na 24) Strontium 85 (Sr 85) Strontium 89 (Sr 89) Strontium 90 (Sr 90) Strontium 91 (Sr 91...
Nepheline structural and chemical dependence on melt composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcial, José; Crum, Jarrod; Neill, Owen
Nepheline crystallizes upon slow-cooling in some melts concentrated in Na2O and Al2O3, which can result in a residual glass phase of low chemical durability. Nepheline can incorporate many components often found in high-level waste radioactive borosilicate glass, including glass network ions (e.g., Si, Al, Fe), alkali metals (e.g., Cs, K, Na, and possibly Li), alkaline-earth metals (e.g., Ba, Sr, Ca, Mg), and transition metals (e.g., Mn, and possibly Cr, Zn, Ni). When crystallized from melts of different compositions, nepheline chemistry varies as a function of starting glass composition. Five simulated high level nuclear waste borosilicate glasses shown to crystallize largemore » fractions of nepheline on slow cooling, were selected for study. These melts constituted a range of Al2O3, B2O3, CaO, Na2O, K2O, Fe2O3, and SiO2 compositions. Compositional analyses of nepheline crystals in glass by electron probe micro-analysis (EPMA) indicate that boron is unlikely to be present in any significant concentration, if at all, in nepheline. Also, several models are presented for calculating the fraction of vacancies in the nepheline structure.« less
Nagano, Nobuo; Tsutsui, Takaaki
2016-06-01
Calcimimetics act as positive allosteric modulators of the calcium-sensing receptor (CaSR), thereby decreasing parathyroid hormone (PTH) secretion from the parathyroid glands. On the other hand, negative allosteric modulators of the CaSR with stimulatory effect on PTH secretion are termed calcilytics. The calcimimetic cinacalcet hydrochloride (cinacalcet) is the world's first allosteric modulator of G protein-coupled receptor to enter the clinical market. Cinacalcet just tunes the physiological effects of Ca(2+), an endogenous ligand, therefore, shows high selectivity and low side effects. Calcimimetics also increase cell surface CaSR expression by acting as pharmacological chaperones (pharmacoperones). It is considered that the cinacalcet-induced upper gastrointestinal problems are resulted from enhanced physiological responses to Ca(2+) and amino acids via increased sensitivity of digestive tract CaSR by cinacalcet. While clinical developments of calcilytics for osteoporosis were unfortunately halted or terminated due to paucity of efficacy, it is expected that calcilytics may be useful for the treatment of patients with activating CaSR mutations, asthma, and idiopathic pulmonary artery hypertension.
Zhang, Chen; Zhang, Tuo; Zou, Juan; Miller, Cassandra Lynn; Gorkhali, Rakshya; Yang, Jeong-Yeh; Schilmiller, Anthony; Wang, Shuo; Huang, Kenneth; Brown, Edward M; Moremen, Kelley W; Hu, Jian; Yang, Jenny J
2016-05-01
Ca(2+)-sensing receptors (CaSRs) modulate calcium and magnesium homeostasis and many (patho)physiological processes by responding to extracellular stimuli, including divalent cations and amino acids. We report the first crystal structure of the extracellular domain (ECD) of human CaSR bound with Mg(2+) and a tryptophan derivative ligand at 2.1 Å. The structure reveals key determinants for cooperative activation by metal ions and aromatic amino acids. The unexpected tryptophan derivative was bound in the hinge region between two globular ECD subdomains, and represents a novel high-affinity co-agonist of CaSR. The dissection of structure-function relations by mutagenesis, biochemical, and functional studies provides insights into the molecular basis of human diseases arising from CaSR mutations. The data also provide a novel paradigm for understanding the mechanism of CaSR-mediated signaling that is likely shared by the other family C GPCR [G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor] members and can facilitate the development of novel CaSR-based therapeutics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khanna, A.; Electrical Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180; Dutta, P.S., E-mail: duttap@rpi.edu
Red phosphors with narrow emission around 615 nm (with FWHM~5–10 nm) having chemical compositions of A{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} (A=Mg, Sr) have been found to exhibit the highest luminescence amongst the molybdate–tungstate family when excited by sources in the 380–420 nm wavelength range. Thus they are most suitable for enhancing color rendering index and lowering color temperature in phosphor converted white LEDs (pc-WLEDs) with near-UV/blue LED excitation sources. The excitation band edge in the near UV/blue wavelength in the reported phosphor has been attributed to the coordination environment of the transition metal ionmore » (Mo{sup 6+}, W{sup 6+}) and host crystal structure. Furthermore the quantum efficiency of the phosphors has been enhanced by adjusting activator concentration, suitable compositional alloying using substitutional alkaline earth metal cations and charge compensation mechanisms. - Graphical abstract: The charge transfer excitation of orthorhombic Mg{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} is significantly higher than tetragonal CaMoO{sub 4}: Eu{sup 3+} phosphors making Mg{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} prime candidates for fabrication of warm white phosphor-converted LEDs. - Highlights: • LED excitable Mg{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} phosphors were synthesized. • These phosphors are 10 times more intense than CaMoO{sub 4}: Eu{sup 3+} red phosphors. • Their intensity and efficiency were enhanced by materials optimization techniques. • Such techniques include compositional alloying, charge compensation, etc.« less
Bouhlel, Aicha; Joumaa, Wissam H; Léoty, Claude
2003-09-01
The effects of anabolic-androgenic steroid administration on the function of the sarcoplasmic reticulum (SR) pump were investigated in chemically skinned fibres from the extensor digitorum longus (EDL) and soleus muscles of sedentary rats. Twenty male rats were divided into two groups, one group received an intramuscular injection of nandrolone decanoate (15 mg x kg(-1)) weekly for 8 weeks, the second received similar weekly doses of vehicle (sterile peanut oil). Compared with control muscles, nandrolone decanoate treatment reduced SR Ca(2+) loading in EDL and soleus fibres by 49% and 29%, respectively. In control and treated muscles, the rate of Ca(2+) leakage depended on the quantity of Ca(2+) loaded. Furthermore, for similar SR Ca(2+) contents, the Ca(2+) leakage rate was not significantly modified by nandrolone decanoate treatment. Nandrolone decanoate treatment thus affects Ca (2+) uptake by the SR in a fibre-type dependent manner.
Calcium EXAFS Establishes the Mn-Ca Cluster in the Oxygen-Evolving Complex of Photosystem II†
Cinco, Roehl M.; Holman, Karen L. McFarlane; Robblee, John H.; Yano, Junko; Pizarro, Shelly A.; Bellacchio, Emanuele; Sauer, Kenneth; Yachandra, Vittal K.
2014-01-01
The proximity of Ca to the Mn cluster of the photosynthetic water-oxidation complex is demonstrated by X-ray absorption spectroscopy. We have collected EXAFS data at the Ca K-edge using active PS II membrane samples that contain approximately 2 Ca per 4 Mn. These samples are much less perturbed than previously investigated Sr-substituted samples, which were prepared subsequent to Ca depletion. The new Ca EXAFS clearly shows backscattering from Mn at 3.4 Å, a distance that agrees with that surmised from previously recorded Mn EXAFS. This result is also consistent with earlier related experiments at the Sr K-edge, using samples that contained functional Sr, that show Mn is ~ 3.5 Å distant from Sr. The totality of the evidence clearly advances the notion that the catalytic center of oxygen evolution is a Mn-Ca heteronuclear cluster. PMID:12390018
NASA Astrophysics Data System (ADS)
Phillis, C. C.; Ostrach, D. J.; Weber, P. K.; Ingram, B. L.; Zinkl, J. G.
2005-12-01
Habitat use has been shown to be an important factor in the bioaccumulation of contaminants in striped bass ( Morone saxatilis). This study explores techniques to determine migration in striped bass as part of a larger study investigating maternal transfer of xenobiotics to progeny in the San Francisco Estuary. The timing of movement of fish between salt and fresh water can easily be determined using a number of chemical markers in otoliths. Determining movement within estuaries, however, is a more difficult problem because mesohaline geochemical signatures approach the marine end member at very low salinities. Two tracers were used to reconstruct the migration history of striped bass in the San Francisco Estuary: Sr/Ca (measured by electron microprobe and LA-ICP-MS) and Sr isotope ratio (measured by LA-MC-ICP-MS). Both tracers can be used to map the salinity the fish is exposed to at the time of otolith increment deposition. Salinity, in turn, is mapped to location within the San Francisco Bay estuary based on monthly salinity surveys. The two methods have their respective benefits. Sr/Ca can be measured with higher spatial resolution (<10 microns). Sr isotope ratios are not modulated by metabolism. Sr isotope measurements were made to check the Sr/Ca results. In the San Francisco Estuary, low 87Sr/86Sr (0.706189) river water mixes with high 87Sr/86Sr (0.709168) marine water to 80% of the marine signal (0.7085) when the salinity is only 5% (1.8 ppt) seawater, and 95% of the marine signal (0.7090) at salinities of 20% (6.6 ppt) seawater (Ingram and Sloan, 1992). This salinity model should map directly to the otolith because there is no biological fractionation of Sr isotopes. The Sr/Ca otolith and salinity models predict a similar response. For both models, calculated otolith salinity is mapped to location within the San Francisco Estuary based on monthly salinity surveys. Using previously published salinity models, the otolith Sr/Ca and Sr isotope results are offset. These results suggest that a new Sr/Ca salinity model must be developed for this population of striped bass.
Skalak, Katherine J.; Engle, Mark A.; Rowan, Elisabeth L.; Jolly, Glenn D.; Conko, Kathryn M.; Benthem, Adam J.; Kraemer, Thomas F.
2014-01-01
Waters co-produced with hydrocarbons in the Appalachian Basin are of notably poor quality (concentrations of total dissolved solids (TDS) and total radium up to and exceeding 300,000 mg/L and 10,000 pCi/L, respectively). Since 2008, a rapid increase in Marcellus Shale gas production has led to a commensurate rise in associated wastewater while generation of produced water from conventional oil and gas activities has continued. In this study, we assess whether disposal practices from treatment of produced waters from both shale gas and conventional operations in Pennsylvania could result in the accumulation of associated alkali earth elements. The results from our 5 study sites indicate that there was no increase in concentrations of total Ra (Ra-226) and extractable Ba, Ca, Na, or Sr in fluvial sediments downstream of the discharge outfalls (p > 0.05) of publicly owned treatment works (POTWs) and centralized waste treatment facilities (CWTs). However, the use of road spreading of brines from conventional oil and gas wells for deicing resulted in accumulation of Ra-226 (1.2 ×), and extractable Sr (3.0 ×), Ca (5.3 ×), and Na (6.2 ×) in soil and sediment proximal to roads (p < 0.05). Although this study is an important initial assessment of the impacts of these disposal practices, more work is needed to consider the environmental consequences of produced waters management.
Phosphate glass useful in high energy lasers
Hayden, Yuiko T.; Payne, Stephen A.; Hayden, Joseph S.; Campbell, John H.; Aston, Mary Kay; Elder, Melanie L.
1996-01-01
In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.
Phosphate glass useful in high energy lasers
Hayden, Y.T.; Payne, S.A.; Hayden, J.S.; Campbell, J.H.; Aston, M.K.; Elder, M.L.
1996-06-11
In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.
Hori, Masako; Sano, Yuji; Ishida, Akizumi; Takahata, Naoto; Shirai, Kotaro; Watanabe, Tsuyoshi
2015-01-01
Insolation is an important component of meteorological data because solar energy is the primary and direct driver of weather and climate. Previous analyses of cultivated giant clam shells revealed diurnal variation in the Sr/Ca ratio, which might reflect the influence of the daily light cycle. We applied proxy method to sample from prehistoric era, a fossil giant clam shell collected at Ishigaki Island in southern Japan. The specimen was alive during the middle Holocene and thus exposed to the warmest climate after the last glacial period. This bivalve species is known to form a growth line each day, as confirmed by the analysis of the Sr enrichment bands using EPMA and facilitated age-model. We analyzed the Sr/Ca, Mg/Ca and Ba/Ca ratios along the growth axis, measuring a 2-μm spot size at 2-μm interval using NanoSIMS. The Sr/Ca ratios in the winter layers are characterized by a striking diurnal cycle consisting of narrow growth lines with high Sr/Ca ratios and broad growth bands with low Sr/Ca ratios. These variations, which are consistent with those of the cultivated clam shell, indicate the potential for the reconstruction of the variation in solar insolation during the middle Holocene at a multi-hourly resolution. PMID:25736488
Geng, Zhen; Wang, Renfeng; Li, Zhaoyang; Cui, Zhenduo; Zhu, Shengli; Liang, Yanqin; Liu, Yunde; Huijing, Bao; Li, Xue; Huo, Qianyu; Liu, Zhili; Yang, Xianjin
2016-07-01
The present study aims to investigate the contribution of two biologically important cations, Mg(2+) and Sr(2+), when co-substituted into the structure of hydroxyapatite (Ca10(PO4)6(OH)2, HA). The substituted samples were synthesized by a hydrothermal method that involved the addition of Mg(2+) and Sr(2+) containing precursors to partially replace Ca(2+) in the apatite structure. Four co-substituted HA samples with different concentrations of Mg(2+) and Sr(2+) ((Mg + Sr)/(Mg + Sr + Ca) = 30%) were investigated, and they were compared with pure HA. Experimental results showed that only a limited amount of Mg (Mg/(Mg + Ca + Sr) < 14%) could successfully substitute for Ca in HA. In addition, Mg substitution resulted in reduced crystallinity, thermal stability and lattice parameters of HA. In contrast, Sr could fully substitute for Ca. Furthermore, the addition of Sr increased the lattice parameters of HA. Here, we obtained the cation leach liquor by immersing the prepared samples in a culture medium for cell experiments. The in vitro study showed that 10Mg20Sr promoted better MG63 cell attachment, proliferation and differentiation than HA. Thus, the presence of an appropriate proportion of Mg and Sr could play a significant role in the increased biocompatibility of HA. © The Author(s) 2016.
Effect of chemical pressure on the electronic phase transition in Ca 1-x Sr x Mn 7 O 12 films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huon, A.; Lee, D.; Herklotz, A.
Here, we demonstrate how chemical pressure affects the structural and electronic phase transitions of the quadruple perovskite CaMn 7O 12 by Sr doping, a compound that exhibits a charge-ordering transition above room temperature making it a candidate for oxide electronics. We also have synthesized Ca 1-xSr xMn 7O 12 (0 ≤ x ≤ 0.6) thin films by oxide molecular beam epitaxy on (LaAlO 3) 0.3(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) substrates. The substitution of Sr for Ca results in a linear expansion of the lattice, as revealed by X-ray diffraction. Temperature-dependent resistivity and X-ray diffraction measurements are used to demonstratemore » that the coupled charge-ordering and structural phase transitions can be tuned with Sr doping. An increase in Sr concentration acts to decrease the phase transition temperature (T*) from 426 K at x = 0 to 385 K at x = 0.6. Furthemore, the presence of a tunable electronic phase transition, above room temperature, points to the potential applicability of Ca 1-xSr xMn 7O 12 in sensors or oxide electronics, for example, via charge doping.« less
Effect of chemical pressure on the electronic phase transition in Ca 1-x Sr x Mn 7 O 12 films
Huon, A.; Lee, D.; Herklotz, A.; ...
2017-09-18
Here, we demonstrate how chemical pressure affects the structural and electronic phase transitions of the quadruple perovskite CaMn 7O 12 by Sr doping, a compound that exhibits a charge-ordering transition above room temperature making it a candidate for oxide electronics. We also have synthesized Ca 1-xSr xMn 7O 12 (0 ≤ x ≤ 0.6) thin films by oxide molecular beam epitaxy on (LaAlO 3) 0.3(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) substrates. The substitution of Sr for Ca results in a linear expansion of the lattice, as revealed by X-ray diffraction. Temperature-dependent resistivity and X-ray diffraction measurements are used to demonstratemore » that the coupled charge-ordering and structural phase transitions can be tuned with Sr doping. An increase in Sr concentration acts to decrease the phase transition temperature (T*) from 426 K at x = 0 to 385 K at x = 0.6. Furthemore, the presence of a tunable electronic phase transition, above room temperature, points to the potential applicability of Ca 1-xSr xMn 7O 12 in sensors or oxide electronics, for example, via charge doping.« less
Maruyama, Yutaka; Yasuda, Reiko; Kuroda, Motonaka; Eto, Yuzuru
2012-01-01
Recently, we reported that calcium-sensing receptor (CaSR) is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca2+ concentration ([Ca2+]i) in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca2+. CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami. PMID:22511946
The role of luminal Ca2+ in the generation of Ca2+ waves in rat ventricular myocytes
Lukyanenko, Valeriy; Subramanian, Saisunder; Györke, Inna; Wiesner, Theodore F; Györke, Sandor
1999-01-01
We used confocal Ca2+ imaging and fluo-3 to investigate the transition of localized Ca2+ releases induced by focal caffeine stimulation into propagating Ca2+ waves in isolated rat ventricular myocytes. Self-sustaining Ca2+ waves could be initiated when the cellular Ca2+ load was increased by elevating the extracellular [Ca2+] ([Ca2+]o) and they could also be initiated at normal Ca2+ loads when the sensitivity of the release sites to cytosolic Ca2+ was enhanced by low doses of caffeine. When we prevented the accumulation of extra Ca2+ in the luminal compartment of the sarcoplasmic reticulum (SR) with thapsigargin, focal caffeine pulses failed to trigger self-sustaining Ca2+ waves on elevation of [Ca2+]o. Inhibition of SR Ca2+ uptake by thapsigargin in cells already preloaded with Ca2+ above normal levels did not prevent local Ca2+ elevations from triggering propagating waves. Moreover, wave velocity increased by 20 %. Tetracaine (0·75 mM) caused transient complete inhibition of both local and propagating Ca2+ signals, followed by full recovery of the responses due to increased SR Ca2+ accumulation. Computer simulations using a numerical model with spatially distinct Ca2+ release sites suggested that increased amounts of releasable Ca2+ might not be sufficient to generate self-sustaining Ca2+ waves under conditions of Ca2+ overload unless the threshold of release site Ca2+ activation was set at relatively low levels (< 1·5 μM). We conclude that the potentiation of SR Ca2+ release channels by luminal Ca2+ is an important factor in Ca2+ wave generation. Wave propagation does not require the translocation of Ca2+ from the spreading wave front into the SR. Instead, it relies on luminal Ca2+ sensitizing Ca2+ release channels to cytosolic Ca2+. PMID:10373699
NASA Astrophysics Data System (ADS)
Pierret, M. C.; Stille, P.; Prunier, J.; Viville, D.; Chabaux, F.
2014-03-01
This is the first comprehensive study dealing with major and trace element data as well as 87Sr/86Sr isotope and (234U/238U) activity ratios (AR) determined on the totality of springs and brooks of the Strengbach catchment. It shows that the small and more or less monolithic catchment drains different sources and streamlets with very different isotopic and geochemical signatures. Different parameters control the diversity of the source characteristics. Of importance is especially the hydrothermal overprint of the granitic bedrock, which was stronger for the granite from the northern than from the southern slope; also significant are the different meteoric alteration processes of the bedrock causing the formation of 0.5 to 9 m thick saprolite and above the formation of an up to 1 m thick soil system. These processes mainly account for springs and brooks from the northern slope having higher Ca/Na, Mg/Na, Sr/Na ratios but lower 87Sr/86Sr isotopic ratios than those from the southern slope. The chemical compositions of the source waters in the Strengbach catchment are only to a small extent the result of alteration of primary bedrock minerals and rather reflect dissolution/precipitation processes of secondary mineral phases like clay minerals. The (234U/238U) AR, however, are decoupled from the 87Sr/86Sr isotope system and reflect to some extent the level of altitude of the source and, thus, the degree of alteration of the bedrock. The sources emerging at high altitudes have circulated through already weathered materials (saprolite and fractured rock depleted in 234U) implying (234U/238U) AR < 1, which is uncommon for surface waters. Preferential flow paths along constant fractures in the bedrocks might explain the over time homogeneous U AR of the different spring waters. However, the geochemical and isotopic variations of stream waters at the outlet of the catchment are controlled by variable contributions of different springs depending on the hydrological conditions. It appears that the (234U/238U) AR is an appropriate very important tracer for studying and deciphering the contribution of the different source fluxes at the catchment scale because this unique geochemical parameter is different for each individual spring and at the same time remains unchanged for each of the springs with changing discharge and fluctuating hydrological conditions. This study further highlights the important impact of different and independent water pathways in fractured granite controlling the different geochemical and isotopic signatures of the waters.
Murphy, Robyn M; Larkins, Noni T; Mollica, Janelle P; Beard, Nicole A; Lamb, Graham D
2009-01-15
Whilst calsequestrin (CSQ) is widely recognized as the primary Ca2+ buffer in the sarcoplasmic reticulum (SR) in skeletal muscle fibres, its total buffering capacity and importance have come into question. This study quantified the absolute amount of CSQ isoform 1 (CSQ1, the primary isoform) present in rat extensor digitorum longus (EDL) and soleus fibres, and related this to their endogenous and maximal SR Ca2+ content. Using Western blotting, the entire constituents of minute samples of muscle homogenates or segments of individual muscle fibres were compared with known amounts of purified CSQ1. The fidelity of the analysis was proven by examining the relative signal intensity when mixing muscle samples and purified CSQ1. The CSQ1 contents of EDL fibres, almost exclusively type II fibres, and soleus type I fibres [SOL (I)] were, respectively, 36 +/- 2 and 10 +/- 1 micromol (l fibre volume)(-1), quantitatively accounting for the maximal SR Ca2+ content of each. Soleus type II [SOL (II)] fibres (approximately 20% of soleus fibres) had an intermediate amount of CSQ1. Every SOL (I) fibre examined also contained some CSQ isoform 2 (CSQ2), which was absent in every EDL and other type II fibre except for trace amounts in one case. Every EDL and other type II fibre had a high density of SERCA1, the fast-twitch muscle sarco(endo)plasmic reticulum Ca2+-ATPase isoform, whereas there was virtually no SERCA1 in any SOL (I) fibre. Maximal SR Ca2+ content measured in skinned fibres increased with CSQ1 content, and the ratio of endogenous to maximal Ca2+ content was inversely correlated with CSQ1 content. The relative SR Ca2+ content that could be maintained in resting cytoplasmic conditions was found to be much lower in EDL fibres than in SOL (I) fibres (approximately 20 versus >60%). Leakage of Ca2+ from the SR in EDL fibres could be substantially reduced with a SR Ca2+ pump blocker and increased by adding creatine to buffer cytoplasmic [ADP] at a higher level, both results indicating that at least part of the Ca2+ leakage occurred through SERCA. It is concluded that CSQ1 plays an important role in EDL muscle fibres by providing a large total pool of releasable Ca2+ in the SR whilst maintaining free [Ca2+] in the SR at sufficiently low levels that Ca2+ leakage through the high density of SERCA1 pumps does not metabolically compromise muscle function.
Optical anisotropy of Bi2Sr2CaCu2O8
NASA Astrophysics Data System (ADS)
Kim, J. H.; Bozovic, I.; Mitzi, D. B.; Kapitulnik, A.; Harris, J. S., Jr.
1990-04-01
The optical anisotropy of Bi2Sr2CaCu2O8 in the 0.08-0.5-eV region is investigated by polarized reflectance measurements on single crystals. A very large anisotropy is found in this spectral region. The in-plane reflectance exhibits metallic behavior, while the c-axis reflectance exhibits insulatorlike behavior. This result is consistent with the large anisotropy found in the resistivity of Bi2Sr2CaCu2O8. Our spectroscopic data suggest that Bi2Sr2CaCu2O8 is a quasi-two-dimensional metal similar to La2-xSrxCuO4.
Effects of antimony substitution on bismuth based superconductors
NASA Technical Reports Server (NTRS)
Barrientos, Alfonso
1990-01-01
The effect of Sb substitution and simultaneous substitution of Pb and Sb on the superconducting transition temperatures in the BiSrCaCuO system is investigated. The 2:2:2:3 phase is of particular interest since any small increase in the transition temperature could be of great interest. More that 90 different samples were prepared based on 2:2:2:3 stoichiometry in the BiSrCaCuO system. After this preliminary attempt, four different families of samples were investigated. In the first family of samples, Bi was substituted by Sb to form Bi(1.9)Sb(0.1)Sr2Ca2Cu3O(y). The second group of samples were prepared by simultaneous addition of Pb and Sb with nominal composition Bi(1.8)Pb(0.1)Sb(0.1)Sr2Ca2Cu3O(y). The third and fourth groups were prepared to determine the effect created when the Pb concentration is increased with the nominal compositions being Bi(1.7)Pb(0.1)Sr2Ca2Cu3O(y) and Bi(1.6)Sb(0.1)Sr2Ca2Cu3O(y). The results of these investigations are presented with a discussion.
Reich, Christopher D.; Kuffner, Ilsa B.; Hickey, T. Don; Morrison, Jennifer M.; Flannery, Jennifer A.
2013-01-01
Strontium-to-calcium ratios (Sr/Ca) were measured on the skeletal matrix of a core sample from a colony of the massive coral Siderastrea siderea collected in Coral Bay, St. John, U.S. Virgin Islands. Strontium and calcium are incorporated into the coral skeleton during the precipitation of aragonite by the coral polyps and their ratio is highly temperature dependent. The robustness of this temperature dependence makes Sr/Ca a reliable proxy for sea surface temperature (SST). Details presented from the St. John S. siderea core indicate that terrestrial inputs of sediment and freshwater can disrupt the chemical balance and subsequently complicate the utility of Sr/Ca in reconstructing historical SST. An approximately 44-year-long record of Sr/Ca shows that an annual SST signal is recorded but with an increasing Sr/Ca trend from 1980 to present, which is likely the result of runoff from the mountainous terrain of St. John. The overwhelming influence of the terrestrial fingerprint on local seawater chemistry makes utilizing Sr/Ca as a SST proxy in nearshore environments very difficult.
Jiang, M; Xu, A; Jones, D L; Narayanan, N
2004-09-01
This study investigated the effects of l-thyroxine-induced hyperthyroidism on Ca(2+)/calmodulin (CaM)-dependent protein kinase (CaM kinase II)-mediated sarcoplasmic reticulum (SR) protein phosphorylation, SR Ca(2+) pump (Ca(2+)-ATPase) activity, and contraction duration in slow-twitch soleus muscle of the rabbit. Phosphorylation of Ca(2+)-ATPase and phospholamban (PLN) by endogenous CaM kinase II was found to be significantly lower (30-50%) in soleus of the hyperthyroid compared with euthyroid rabbit. Western blotting analysis revealed higher levels of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) 1 ( approximately 150%) Ca(2+) pump isoform, unaltered levels of SERCA2 Ca(2+) pump isoform, and lower levels of PLN ( approximately 50%) and delta-, beta-, and gamma-CaM kinase II (40 approximately 70%) in soleus of the hyperthyroid rabbit. SR vesicles from hyperthyroid rabbit soleus displayed approximately twofold higher ATP-energized Ca(2+) uptake and Ca(2+)-stimulated ATPase activities compared with that from euthyroid control. The V(max) of Ca(2+) uptake (in nmol Ca(2+).mg SR protein(-1).min(-1): euthyroid, 818 +/- 73; hyperthyroid, 1,649 +/- 90) but not the apparent affinity of the Ca(2+)-ATPase for Ca(2+) (euthyroid, 0.97 +/- 0.02 microM, hyperthyroid, 1.09 +/- 0.04 microM) differed significantly between the two groups. CaM kinase II-mediated stimulation of Ca(2+) uptake by soleus muscle SR was approximately 60% lower in the hyperthyroid compared with euthyroid. Isometric twitch force of soleus measured in situ was significantly greater ( approximately 36%), and the time to peak force and relaxation time were significantly lower ( approximately 30-40%), in the hyperthyroid. These results demonstrate that thyroid hormone-induced transition in contractile properties of the rabbit soleus is associated with coordinate downregulation of the expression and function of PLN and CaM kinase II and selective upregulation of the expression and function of SERCA1, but not SERCA2, isoform of the SR Ca(2+) pump.
Laser spectroscopy of CaNC and SrNC
NASA Astrophysics Data System (ADS)
Douay, M.; Bernath, P. F.
1990-11-01
Low-resolution laser excitation and dispersed laser-induced fluorescence spectra of CaNC and SrNC were recorded. The laser excitation spectra of the overlineB2Σ+-overlineX2Σ+ and overlineA2Π-overlineX2Σ+ transitions of SrNC are consistent with a linear,isocyanide structure. For both CaNC and SrNC, additional strong, non-resonant features occur to the red of the overlineB2Σ+-overlineX2Σ+ and overlineA2Π-overlineX2Σ+ transitions in the dispersed fluorescence spectra. Although these features remain unassigned, they might be due to emission from the isomeric,linear cyanides, CaCN and SrCN. In this case, the excited state potential curves need to have a small barrier between the cyanide and the isocyanide forms.
The role of Sr2+ on the structure and reactivity of SrO-CaO-ZnO-SiO2 ionomer glasses.
Boyd, Daniel; Towler, Mark R; Watts, Sally; Hill, Robert G; Wren, Anthony W; Clarkin, Owen M
2008-02-01
The suitability of Glass Polyalkenoate Cements (GPCs) for use in orthopaedics is retarded by the presence in the glass phase of aluminium, a neurotoxin. Unfortunately, the aluminium ion plays an integral role in the setting process of GPCs and its absence is likely to hinder cement formation. However, the authors have previously shown that aluminium free GPCs may be formulated based on calcium zinc silicate glasses and these novel materials exhibit significant potential as hard tissue biomaterials. To further improve their potential, and given that Strontium (Sr) based drugs have had success in the treatment of osteoporosis, the authors have substituted Calcium (Ca) with Sr in the glass phase of a series of aluminium free GPCs. However to date little data exists on the effect SrO has on the structure and reactivity of SrO-CaO-ZnO-SiO(2) glasses. The objective of this work was to characterise the effect of the Ca/Sr substitution on the structure of such glasses, and evaluate the subsequent reactivity of these glasses with an aqueous solution of Polyacrylic acid (PAA). To this end (29)Si MAS-NMR, differential scanning calorimetry (DSC), X-ray diffraction, and network connectivity calculations, were used to characterize the structure of four strontium calcium zinc silicate glasses. Following glass characterization, GPCs were produced from each glass using a 40 wt% solution of PAA (powder:liquid = 2:1.5). The working times and setting times of the GPCs were recorded as per International standard ISO9917. The results acquired as part of this research indicate that the substitution of Ca for Sr in the glasses examined did not appear to significantly affect the structure of the glasses investigated. However it was noted that increasing the amount of Ca substituted for Sr did result in a concomitant increase in setting times, a feature that may be attributable to the higher basicity of SrO over CaO.
Wang, Yulong; Zhang, Wentao; Gao, Yang; Long, Jianping; Li, Junfeng
2017-02-01
Eu 2 + -doped Sr 2 SiO 4 phosphor with Ca 2 + /Zn 2 + substitution, (Sr 1-x M x ) 2 SiO 4 :Eu 2 + (M = Ca, Zn), was prepared using a high-temperature solid-state reaction method. The structure and luminescence properties of Ca 2 + /Zn 2 + partially substituted Sr 2 SiO 4 :Eu 2 + phosphors were investigated in detail. With Ca 2 + or Zn 2 + added to the silicate host, the crystal phase could be transformed between the α-form and the β-form of the Sr 2 SiO 4 structure. Under UV excitation at 367 nm, all samples exhibit a broad band emission from 420 to 680 nm due to the 4f 6 5d 1 → 4f 7 transition of Eu 2 + ions. The broad emission band consists of two peaks at 482 and 547 nm, which correspond to Eu 2 + ions occupying the ten-fold oxygen-coordinated Sr.(I) site and the nine-fold oxygen-coordinated Sr.(II) site, respectively. The luminescence properties, including the intensity and lifetime of Sr 2 SiO 4 :Eu 2 + phosphors, improved remarkably on Ca 2 + /Zn 2 + addition, and promote its application in white light-emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Zanatta, Melina Borges Teixeira; Nakadi, Flávio Venâncio; da Veiga, Márcia Andreia Mesquita Silva
2018-03-01
A new method to determine iodine in drug samples by high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) has been developed. The method measures the molecular absorption of a diatomic molecule, CaI or SrI (less toxic molecule-forming reagents), at 638.904 or 677.692nm, respectively, and uses a mixture containing 5μg of Pd and 0.5μg of Mg as chemical modifier. The method employs pyrolysis temperatures of 1000 and 800°C and vaporization temperatures of 2300 and 2400°C for CaI and SrI, respectively. The optimized amounts of Ca and Sr as molecule-forming reagents are 100 and 150µg, respectively. On the basis of interference studies, even small chlorine concentrations reduce CaI and SrI absorbance significantly. The developed method was used to analyze different commercial drug samples, namely thyroid hormone pills with three different iodine amounts (15.88, 31.77, and 47.66µg) and one liquid drug with 1% m v -1 active iodine in their compositions. The results agreed with the values informed by the manufacturers (95% confidence level) regardless of whether CaI or SrI was determined. Therefore, the developed method is useful for iodine determination on the basis of CaI or SrI molecular absorption. Copyright © 2017 Elsevier B.V. All rights reserved.
Structure and properties of strontium-doped phosphate-based glasses
Abou Neel, Ensanya A.; Chrzanowski, Wojciech; Pickup, David M.; O'Dell, Luke A.; Mordan, Nicola J.; Newport, Robert J.; Smith, Mark E.; Knowles, Jonathan C.
2008-01-01
Owing to similarity in both ionic size and polarity, strontium (Sr2+) is known to behave in a comparable way to calcium (Ca2+), and its role in bone metabolism has been well documented as both anti-resorptive and bone forming. In this study, novel quaternary strontium-doped phosphate-based glasses, containing 1, 3 and 5 mol% SrO, were synthesized and characterized. 31P magic angle spinning (MAS) nuclear magnetic resonance results showed that, as the Sr2+ content is increased in the glasses, there is a slight increase in disproportionation of Q2 phosphorus environments into Q1 and Q3 environments. Moreover, shortening and strengthening of the phosphorus to bridging oxygen distance occurred as obtained from FTIR. The general broadening of the spectral features with Sr2+ content is most probably due to the increased variation of the phosphate–cation bonding interactions caused by the introduction of the third cation. This increased disorder may be the cause of the increased degradation of the Sr-containing glasses relative to the Sr-free glass. As confirmed from elemental analysis, all Sr-containing glasses showed higher Na2O than expected and this also could be accounted for by the higher degradation of these glasses compared with Sr-free glasses. Measurements of surface free energy (SFE) showed that incorporation of strontium had no effect on SFE, and samples had relatively higher fractional polarity, which is not expected to promote high cell activity. From viability studies, however, the incorporation of Sr2+ showed better cellular response than Sr2+-free glasses, but still lower than the positive control. This unfavourable cellular response could be due to the high degradation nature of these glasses and not due to the presence of Sr2+. PMID:18826914
Synchrotron Study of Strontium in Modern and Ancient Human Bones
NASA Astrophysics Data System (ADS)
Pingitore, N. E.; Cruz-Jimenez, G.
2001-05-01
Archaeologists use the strontium in human bone to reconstruct diet and migration in ancient populations. Because mammals discriminate against strontium relative to calcium, carnivores show lower bone Sr/Ca ratios than herbivores. Thus, in a single population, bone Sr/Ca ratios can discriminate a meat-rich from a vegetarian diet. Also, the ratio of 87-Sr to 86-Sr in soils varies with the underlying geology; incorporated into the food chain, this local signature becomes embedded in our bones. The Sr isotopic ratio in the bones of individuals or populations which migrate to a different geologic terrane will gradually change as bone remodels. In contrast, the isotopic ratio of tooth enamel is fixed at an early age and is not altered later in life. Addition of Sr to bone during post-mortem residence in moist soil or sediment compromises application of the Sr/Ca or Sr-isotope techniques. If this post-mortem Sr resides in a different atomic environment than the Sr deposited in vivo, x-ray absorption spectroscopy could allow us to distinguish pristine from contaminated, and thus unreliable, samples. Initial examination of a suite of modern and ancient human and animal bones by extended x-ray absorption fine structure (EXAFS) showed no obvious differences between the fresh and buried materials. We note, with obvious concern, that the actual location of Sr in modern bone is controversial: there is evidence both that Sr substitutes for Ca and that Sr is sorbed on the surfaces of bone crystallites. Additional material is being studied.
Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle
Royer, Leandro; Ríos, Eduardo
2009-01-01
Since its discovery in 1971, calsequestrin has been recognized as the main Ca2+ binding protein inside the sarcoplasmic reticulum (SR), the organelle that stores and upon demand mobilizes Ca2+ for contractile activation of muscle. This article reviews the potential roles of calsequestrin in excitation–contraction coupling of skeletal muscle. It first considers the quantitative demands for a structure that binds Ca2+ inside the SR in view of the amounts of the ion that must be mobilized to elicit muscle contraction. It briefly discusses existing evidence, largely gathered in cardiac muscle, of two roles for calsequestrin: as Ca2+ reservoir and as modulator of the activity of Ca2+ release channels, and then considers the results of an incipient body of work that manipulates the cellular endowment of calsequestrin. The observations include evidence that both the Ca2+ buffering capacity of calsequestrin in solution and that of the SR in intact cells decay as the free Ca2+ concentration is lowered. Together with puzzling observations of increase of Ca2+ inside the SR, in cells or vesicular fractions, upon activation of Ca2+ release, this is interpreted as evidence that the Ca2+ buffering in the SR is non-linear, and is optimized for support of Ca2+ release at the physiological levels of SR Ca2+ concentration. Such non-linearity of buffering is qualitatively explained by a speculation that puts together ideas first proposed by others. The speculation pictures calsequestrin polymers as ‘wires’ that both bind Ca2+ and efficiently deliver it near the release channels. In spite of the kinetic changes, the functional studies reveal that cells devoid of calsequestrin are still capable of releasing large amounts of Ca2+ into the myoplasm, consistent with the long term viability and apparent good health of mice engineered for calsequestrin ablation. The experiments therefore suggest that other molecules are capable of providing sites for reversible binding of large amounts of Ca2+ inside the sarcoplasmic reticulum. PMID:19403601
White, Art F.; Schulz, Marjorie S.; Vivit, Davison V.; Bullen, Tomas D.; Fitzpatrick, John A.
2012-01-01
The fraction of a mineral nutrient annually cycled through the plants, compared to that lost from pore water discharge, is defined their respective fluxes Fj,plants = qj,plants/(qj,plants + qj,discharge) with average values for K and Ca (FK,plants = 0.99; FCa,plants = 0.93) much higher than for Mg and Na (FMg,plants 0.64; FNa,plants = 0.28). The discrimination against Rb and Sr by plants is described by fractionation factors (KSr/Ca = 0.86; KRb/K = 0.83) which are used in Rayleigh fractionation-mixing calculations to fit seasonal patterns in solute K and Ca cycling. KRb/K and K24Mg/22Mg values (derived from isotope data in the literature) fall within fractionation envelopes bounded by inputs from rainfall and mineral weathering. KSr/Ca and K44Ca/40Ca fractionation factors fall outside these envelopes indicating that Ca nutrient cycling is closed to these external inputs. Small net positive K and Ca fluxes (6–14 mol m-2 yr-1), based on annual mass balances, indicate that the soils are accumulating mineral nutrients, probably as a result of long-term environmental disequilibrium.
NASA Astrophysics Data System (ADS)
Mashonkina, Lyudmila; Jablonka, Pascale; Sitnova, Tatyana; Pakhomov, Yuri; North, Pierre
2018-06-01
We review recent abundance results for very metal-poor (VMP, -4 ≤ [Fe/H] ≤ -2) stars in seven dwarf spheroidal galaxies (dSphs) and in the Milky Way (MW) halo comparison sample that were obtained based on high-resolution spectroscopic datasets, homogeneous and accurate atmospheric parameters, and the non-local thermodynamic equilibrium (NLTE) line formation for 10 chemical species. A remarkable gain of using such an approach is the reduction, compared to a simple compilation of the literature data, of the spread in abundance ratios at given metallicity within each galaxy and from one to the other. We show that all massive galaxies in our sample, that is, the MW halo and the classical dSphs Sculptor, Ursa Minor, Sextans, and Fornax, reveal a similar plateau at [α/Fe] \\simeq 0.3 for each of the α-process elements: Mg, Ca, and Ti. We put on a firm ground the evidence for a decline in α/Fe with increasing metallicity in the Boötes I ultra-faint dwarf galaxy (UFD), that is most probably due to the ejecta of type Ia supernovae. In our classical dSphs, we observe the dichotomy in the [Sr/Ba] versus [Ba/H] diagram, similarly to the MW halo, calling for two different nucleosynthesis channels for Sr at the earliest evolution stages of these galaxies. Our three UFDs, that is Boötes I, UMa II, and Leo IV, are depleted in Sr and Ba relative to Fe and Mg, with very similar ratios of [Sr/Mg] ≈ -1.3 and [Ba/Mg] ≈ -1 on the entire range of their Mg abundances. The subsolar Sr/Ba ratios of Boötes I and UMa II indicate a common r-process origin of their neutron-capture elements. For Na/Fe, Na/Mg, and Al/Mg, the MW halo and all dSphs reveal indistinguishable trends with metallicity, suggesting that the processes of Na and Al synthesis are identical in all systems, independent of their mass. Sculptor remains the classical dSph, in which the evidence for inhomogeneous mixing in the early evolution stage, at [Fe/H] < -2, is the strongest.
NASA Astrophysics Data System (ADS)
Tan, Jihua; Duan, Jingchun; Zhen, Naijia; He, Kebin; Hao, Jiming
2016-01-01
The abundance, behavior, and source of chemical species in size-fractionated atmospheric particle were studied with a 13-stage low pressure impactor (ELPI) during high polluted winter episode in Beijing. Thirty three elements (Al, Ca, Fe, K, Mg, Na, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, and Pb) and eight water soluble ions (Cl-, NO3-, SO42 -, NH4+, Na+, K+, Ca2 +, and Mg2 +) were determined by ICP/MS and IC, respectively. The size distribution of TC (OC + EC) was reconstructed. Averagely, 51.5 ± 5.3% and 74.1 ± 3.7% of the total aerosol mass was distributed in the sub-micron (PM1) and fine particle (PM2.5), respectively. A significant shift to larger fractions during heavy pollution episode was observed for aerosol mass, NH4+, SO42 -, NO3-, K, Fe, Cu, Zn, Cd, and Pb. The mass size distributions of NH4+, SO42 -, NO3-, and K were dominated by accumulation mode. Size distributions of elements were classified into four main types: (I) elements were enriched within the accumulation mode (< 1 μm, Ge, Se, Ag, Sn, Sb, Cs, Hg, Ti, and Pb); (II) those mass (K, Cr, Mn, Cu, Zn, As, Mo, and Cd) was resided mainly within the accumulation mode, ranged from 1 to 2 μm; (III) Na, V, Co, Ni, and Ga were distributed among fine, intermediate, and coarse modes; and (IV) those which were mainly found within particles larger than 2.7 μm (Al, Mg, Si, Ca, Sc, Tl, Fe, Sr, Zr, and Ba). [H+]cor showed an accumulation mode at 600-700 nm and the role of Ca2 + should be fully considered in the estimation of acidity. The acidity in accumulation mode particles suggested that generally gaseous NH3 was not enough to neutralize sulfate completely. PMF method was applied for source apportionment of elements combined with water soluble ions. Dust, vehicle, aged coal combustion, and sea salt were identified, and the size resolved source apportionments were discussed. Aged coal combustion was the important source of fine particles and dust contributed most to coarse particle.
Lamboley, C R; Murphy, R M; McKenna, M J; Lamb, G D
2013-12-01
The relationship between sarcoplasmic reticulum (SR) Ca(2+) content and calsequestrin (CSQ) isoforms was investigated in human skeletal muscle. A fibre-lysing assay was used to quantify the endogenous Ca(2+) content and maximal Ca(2+) capacity of the SR in skinned segments of type I and type II fibres from vastus lateralis muscles of young healthy adults. Western blotting of individual fibres showed the great majority contained either all fast or all slow isoforms of myosin heavy chain (MHC), troponins C and I, tropomyosin and SERCA, and that the strontium sensitivity of the force response was closely indicative of the troponin C isoform present. The endogenous SR Ca(2+) content was slightly lower in type I compared to type II fibres (0.76 ± 0.03 and 0.85 ± 0.02 mmol Ca(2+) per litre of fibre, respectively), with virtually all of this Ca(2+) evidently being in the SR, as it could be rapidly released with a caffeine-low [Mg(2+)] solution (only 0.08 ± 0.01 and <0.07 mmol l(-1), respectively, remaining). The maximal Ca(2+) content that could be reached with SR Ca(2+) loading was 1.45 ± 0.04 and 1.79 ± 0.03 mmol l(-1) in type I and type II fibres, respectively (P < 0.05). In non-lysed skinned fibres, where the SR remained functional, repeated cycles of caffeine-induced Ca(2+) release and subsequent Ca(2+) reloading similarly indicated that (i) maximal SR Ca(2+) content was lower in type I fibres than in type II fibres (P < 0.05), and (ii) the endogenous Ca(2+) content represented a greater percentage of maximal content in type I fibres compared to type II fibres (∼59% and 41%, respectively, P < 0.05). Type II fibres were found on average to contain ∼3-fold more CSQ1 and ∼5-fold less CSQ2 than type I fibres (P < 0.001). The findings are consistent with the SR Ca(2+) content characteristics in human type II fibres being primarily determined by the CSQ1 abundance, and in type I fibres by the combined amounts of both CSQ1 and CSQ2.
Lamboley, C R; Murphy, R M; McKenna, M J; Lamb, G D
2013-01-01
The relationship between sarcoplasmic reticulum (SR) Ca2+ content and calsequestrin (CSQ) isoforms was investigated in human skeletal muscle. A fibre-lysing assay was used to quantify the endogenous Ca2+ content and maximal Ca2+ capacity of the SR in skinned segments of type I and type II fibres from vastus lateralis muscles of young healthy adults. Western blotting of individual fibres showed the great majority contained either all fast or all slow isoforms of myosin heavy chain (MHC), troponins C and I, tropomyosin and SERCA, and that the strontium sensitivity of the force response was closely indicative of the troponin C isoform present. The endogenous SR Ca2+ content was slightly lower in type I compared to type II fibres (0.76 ± 0.03 and 0.85 ± 0.02 mmol Ca2+ per litre of fibre, respectively), with virtually all of this Ca2+ evidently being in the SR, as it could be rapidly released with a caffeine-low [Mg2+] solution (only 0.08 ± 0.01 and <0.07 mmol l−1, respectively, remaining). The maximal Ca2+ content that could be reached with SR Ca2+ loading was 1.45 ± 0.04 and 1.79 ± 0.03 mmol l−1 in type I and type II fibres, respectively (P < 0.05). In non-lysed skinned fibres, where the SR remained functional, repeated cycles of caffeine-induced Ca2+ release and subsequent Ca2+ reloading similarly indicated that (i) maximal SR Ca2+ content was lower in type I fibres than in type II fibres (P < 0.05), and (ii) the endogenous Ca2+ content represented a greater percentage of maximal content in type I fibres compared to type II fibres (∼59% and 41%, respectively, P < 0.05). Type II fibres were found on average to contain ∼3–fold more CSQ1 and ∼5–fold less CSQ2 than type I fibres (P < 0.001). The findings are consistent with the SR Ca2+ content characteristics in human type II fibres being primarily determined by the CSQ1 abundance, and in type I fibres by the combined amounts of both CSQ1 and CSQ2. PMID:24127619
NASA Astrophysics Data System (ADS)
He, S.; Xu, Y. J.
2015-11-01
Strontium and barium to calcium ratios are often used as proxies for tracking animal movement across salinity gradients. As sea level rise continues, many estuarine rivers in the world face saltwater intrusion, which may cause changes in mobility and distribution of these metals upstream. Despite intensive research on metal adsorption and desorption in marine systems, knowledge of the spatiotemporal distribution of these elements along estuarine rivers is still limited. In this study, we conducted an intensive monitoring of Sr and Ba dynamics along an 88 km long estuary, the Calcasieu River in South Louisiana, USA, which has been strongly affected by saltwater intrusion. Over the period from May 2013 to August 2015, we collected monthly water samples and performed in-situ water quality measurements at six sites from the upstream to the river mouth, with a salinity range from 0.02 to 29.50 ppt. Water samples were analyzed for Sr, Ba, and Ca concentrations. In-situ measurements were made on salinity, pH, water temperature, dissolved oxygen concentration, and specific conductance. We found that the Sr and Ca concentrations and the Sr / Ca ratio all increased significantly with increasing salinity. The average Sr concentration at the site closest to the Gulf of Mexico (site 6) was 46.21 μmol L-1, which was about 130 times higher than that of the site furthest upstream (site 1, 0.35 μmol L-1). The average Ca concentration at site 6 was 8.19 mmol L-1, which was about 60 times higher than that of site 1 (0.13 mmol L-1). The average Sr / Ca ratio at site 6 (8.41 mmol mol-1) was about 3 times the average Sr / Ca ratio at site 1 (2.89 mmol mol-1). However, the spatial variation in Ba concentration was marginal, varying from 0.36 μmol L-1 at site 6 to 0.47 at site 5. The average Ba / Ca ratio at site 1 (4.82 mmol mol-1) was about 54 times the average Ba / Ca ratio at site 6 (0.09 mmol mol-1), showing a clear negative relation between the Ba / Ca ratio and increasing salinity. All the elemental concentrations and ratios had considerable seasonal variations, with significant differences among sampling months for the Sr, Ba concentrations and the Ba / Ca ratio (p < 0.01). The results from this study suggest that concentrations of Sr and Ca in the world's estuaries will very likely increase in the future as sea level rise continues. For low-gradient estuarine rivers such as the Calcasieu River in South Louisiana, USA, water chemistry upstream would experience substantial Sr and Ca enrichment, which could affect aquatic environments and biological communities.
Lee, S.-Y.; Barnes, C.G.; Snoke, A.W.; Howard, K.A.; Frost, C.D.
2003-01-01
Two groups of closely associated, peraluminous, two-mica granitic gneiss were identified in the area. The older, sparsely distributed unit is equigranular (EG) with initial ??Nd ??? -8??8 and initial 87Sr/86Sr ???0??7098. Its age is uncertain. The younger unit is Late Cretaceous (???80 Ma), pegmatitic, and sillimanite-bearing (KPG), with ??Nd from -15??8 to -17??3 and initial 87Sr/86Sr from 0??7157 to 0??7198. The concentrations of Fe, Mg, Na, Ca, Sr, V, Zr, Zn and Hf are higher, and K, Rb and Th are lower in the EG. Major- and trace-element models indicate that the KPG was derived by muscovite dehydration melting (<35 km depth) of Neoproterozoic metapelitic rocks that are widespread in the eastern Great Basin. The models are broadly consistent with anatexis of crust tectonically thickened during the Sevier orogeny; no mantle mass or heat contribution was necessary. As such, this unit represents one crustal end-member of regional Late Cretaceous peraluminous granites. The EG was produced by biotite dehydration melting at greater depths, with garnet stable in the residue. The source of the EG was probably Paleoproterozoic metagraywacke. Because EG magmatism probably pre-dated Late Cretaceous crustal thickening, it required heat input from the mantle or from mantle-derived magma.
NASA Astrophysics Data System (ADS)
Mirnejad, H.; Lalonde, A. E.; Obeid, M.; Hassanzadeh, J.
2013-06-01
Mashhad granitoids in northeast Iran are part of the so-called Silk Road arc that extended for 8300 km along the entire southern margin of Eurasia from North China to Europe and formed as the result of a north-dipping subduction of the Paleo-Tethys. The exact timing of the final coalescence of the Iran and Turan plates in the Silk Road arc is poorly constrained and thus the study of the Mashhad granitoids provides valuable information on the geodynamic history of the Paleo-Tethys. Three distinct granitoid suites are developed in space and time (ca. 217-200 Ma) during evolution of the Paleo-Tethys in the Mashhad area. They are: 1) the quartz diorite-tonalite-granodiorite, 2) the granodiorite, and 3) the monzogranite. Quartz diorite-tonalite-granodiorite stock from Dehnow-Vakilabad (217 ± 4-215 ± 4 Ma) intruded the pre-Late Triassic metamorphosed rocks. Large granodiorite and monzogranite intrusions, comprising the Mashhad batholith, were emplaced at 212 ± 5.2 Ma and 199.8 ± 3.7 Ma, respectively. The high initial 87Sr/86Sr ratios (0.708042-0.708368), low initial 143Nd/144Nd ratios (0.512044-0.51078) and low ɛNd(t) values (- 5.5 to - 6.1) of quartz diorite-tonalite-granodiorite stock along with its metaluminous to mildly peraluminous character (Al2O3/(CaO + Na2O + K2O) Mol. = 0.94-1.15) is consistent with geochemical features of I-type granitoid magma. This magma was derived from a mafic mantle source that was enriched by subducted slab materials. The granodiorite suite has low contents of Y (≤ 18 ppm) and heavy REE (HREE) (Yb < 1.53 ppm) and high contents of Sr (> 594 ppm) and high ratio of Sr/Y (> 35) that resemble geochemical characteristics of adakite intrusions. The metaluminous to mildly peraluminous nature of granodiorite from Mashhad batholiths as well as its initial 87Sr/86Sr ratios (0.705469-0.706356), initial 143Nd/144Nd ratios (0.512204-0.512225) and ɛNd(t) values (- 2.7 to - 3.2) are typical of adakitic magmas generated by partial melting of a subducted slab. These magmas were then hybridized in the mantle wedge with peridotite melt. The quartz diorite-tonalite-granodiorite stock and granodiorite batholith could be considered as arc-related granitoid intrusions, which were emplaced during the northward subduction of Paleo-Tethys Ocean crust beneath the Turan micro-continent. The monzogranite is strongly peraluminous (Al2O3/(CaO + Na2O + K2O) Mol. = 1.07-1.17), alkali-rich with normative corundum ranging between 1.19% and 2.37%, has high initial 87Sr/86Sr ratios (0.707457-0.709710) and low initial 143Nd/144Nd ratios (0.512042-0.512111) and ɛNd(t) values (- 5.3 to - 6.6) that substantiate with geochemical attributes of S-type granites formed by dehydration-melting of heterogeneous metasedimentary assemblages in thickened lower continental crust. The monzogranite was emplaced as a consequence of high-temperature metamorphism during the final integration of Turan and Iran plates. The ages found in the Mashhad granites show that the subduction of Paleo-Tethys under the Turan plate that led to the generation of arc-related Mashhad granites in late-Triassic, finally ceased due to the collision of Iran and Turan micro-plates in early Jurassic.
NASA Astrophysics Data System (ADS)
Not, C.; Thibodeau, B.; Yokoyama, Y.
2018-01-01
Measurement of elemental ratios (E/Ca) has been performed in two symbiont-bearing species of high-Mg calcite benthic foraminifers (hyaline, Baculogypsina sphaerulata and porcelaneous, Amphisorus hemprichii), cultured under five pCO2 levels, representing preindustrial, modern, and three predicted future values. E/Ca ratios were analyzed by Laser Ablation coupled with Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS). We measured several E/Ca, such as Mg/Ca, Sr/Ca, Ba/Ca, U/Ca, and B/Ca simultaneously. We observed that high-Mg calcite benthic foraminifers possess higher E/Ca than low-Mg calcite foraminifers, irrespective of their calcification mode (hyaline or porcelaneous). In both modes of calcification, Mg, Sr, Ba, U, and B incorporation could be controlled by Rayleigh fractionation. However, more data are needed to validate and quantify the relative importance of this process and closely investigate the presence/absence of other mechanism. Therefore, it highlights the need for a multielemental approach when looking at trace element incorporation. Finally, no significant relationship was observed between the different ratios and the pCO2 of the water, suggesting that none of the Mg/Ca, Sr/Ca, Ba/Ca, U/Ca, and B/Ca is sensitive to bottom water pCO2 or pH for these species.
NASA Astrophysics Data System (ADS)
Paytan, A.; Eisenhauer, A.; Wallmann, K. J. G.; Griffith, E. M.; Ridgwell, A.
2017-12-01
The radiogenic Sr-isotopic signature (87Sr/86Sr) of seawater fluctuates primarily in response to changes in the inputs of Sr from weathering and hydrothermal activity, which have distinct 87Sr/86Sr values. Changes in the isotopic ratio of the weathered terrain also contribute to observed changes in 87Sr/86Sr. The stable Sr-isotope ratios in seawater (mass dependent isotopic fractionation; δ88/86Sr) fluctuate primarily in response to the rate of calcium carbonate (CaCO3) accumulation at the seafloor. Together the radiogenic and stable Sr can constrain the coupling between weathering and sedimentation and shed light on the relation between weathering, CaCO3 deposition, the global carbon (C) cycle and climate. Reconstruction of the coupled stable and radiogenic Sr seawater curves over the past 35 Ma of Earth history indicates that the location and rate of CaCO3 burial in the ocean fluctuated considerably over the past 35 Ma. Between 35 to 18 Ma a reduction in neritic CaCO3 burial and increased burial in pelagic settings is observed. The trend was reversed between 20 and 3 Ma and finally over the last 3 million years a rapid change from neritic to pelagic burial is seen. The lack of continues increase of pelagic CaCO3 burial rates suggests that silicate weathering rates have not increased monotonically over the past 35 Ma implying strong feedbacks operating in the climate system - lower atmospheric pCO2 and cooling trends (which control chemical weathering as seen from carbonate deposition in the ocean) countered the effects of uplift (which controls physical weathering) - modulating weathering rates and preventing a runaway ice-house. In addition the data suggests considerable fluctuations in seawater Sr concentrations over time. These data demonstrate how using multiple isotope proxies can help constrain interpretations of the geological record.
Effect of paleoseawater composition on hydrothermal exchange in midocean ridges
NASA Astrophysics Data System (ADS)
Antonelli, Michael A.; Pester, Nicholas J.; Brown, Shaun T.; DePaolo, Donald J.
2017-11-01
Variations in the Mg, Ca, Sr, and SO4 concentrations of paleoseawater can affect the chemical exchange between seawater and oceanic basalt in hydrothermal systems at midocean ridges (MOR). We present a model for evaluating the nature and magnitude of these previously unappreciated effects, using available estimates of paleoseawater composition over Phanerozoic time as inputs and 87Sr/86Sr of ophiolite epidosites and epidote-quartz veins as constraints. The results suggest that modern hydrothermal fluids are not typical due to low Ca and Sr relative to Mg and SO4 in modern seawater. At other times during the last 500 million years, particularly during the Cretaceous and Ordovician, hydrothermal fluids had more seawater-derived Sr and Ca, a prediction that is supported by Sr isotope data. The predicted 87Sr/86Sr of vent fluids varies cyclically in concert with ocean chemistry, with some values much higher than the modern value of ˜0.7037. The seawater chemistry effects can be expressed in terms of the transfer efficiency of basaltic Ca and Sr to seawater in hydrothermal systems, which varies by a factor of ˜1.6 over the Phanerozoic, with minima when seawater Mg and SO4 are low. This effect provides a modest negative feedback on seawater composition and 87Sr/86Sr changes. For the mid-Cretaceous, the low 87Sr/86Sr of seawater requires either exceptionally large amounts of low-temperature exchange with oceanic crust or that the weathering flux of continentally derived Sr was especially small. The model also has implications for MOR hydrothermal systems in the Precambrian, when low-seawater SO4 could help explain low seawater 87Sr/86Sr.
Effect of paleoseawater composition on hydrothermal exchange in midocean ridges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonelli, Michael A.; Pester, Nicholas J.; Brown, Shaun T.
Variations in the Mg, Ca, Sr, and SO 4 concentrations of paleoseawater can affect the chemical exchange between seawater and oceanic basalt in hydrothermal systems at midocean ridges (MOR). Here, we present a model for evaluating the nature and magnitude of these previously unappreciated effects, using available estimates of paleoseawater composition over Phanerozoic time as inputs and 87Sr/ 86Sr of ophiolite epidosites and epidote-quartz veins as constraints. The results suggest that modern hydrothermal fluids are not typical due to low Ca and Sr relative to Mg and SO 4 in modern seawater. At other times during the last 500 millionmore » years, particularly during the Cretaceous and Ordovician, hydrothermal fluids had more seawater-derived Sr and Ca, a prediction that is supported by Sr isotope data. The predicted 87Sr/ 86Sr of vent fluids varies cyclically in concert with ocean chemistry, with some values much higher than the modern value of ~0.7037. The seawater chemistry effects can be expressed in terms of the transfer efficiency of basaltic Ca and Sr to seawater in hydrothermal systems, which varies by a factor of ~1.6 over the Phanerozoic, with minima when seawater Mg and SO 4 are low. This effect provides a modest negative feedback on seawater composition and 87Sr/ 86Sr changes. For the mid-Cretaceous, the low 87Sr/ 86Sr of seawater requires either exceptionally large amounts of low-temperature exchange with oceanic crust or that the weathering flux of continentally derived Sr was especially small. Lastly, the model also has implications for MOR hydrothermal systems in the Precambrian, when low-seawater SO 4 could help explain low seawater 87Sr/ 86Sr.« less
Effect of paleoseawater composition on hydrothermal exchange in midocean ridges
Antonelli, Michael A.; Pester, Nicholas J.; Brown, Shaun T.; ...
2017-11-06
Variations in the Mg, Ca, Sr, and SO 4 concentrations of paleoseawater can affect the chemical exchange between seawater and oceanic basalt in hydrothermal systems at midocean ridges (MOR). Here, we present a model for evaluating the nature and magnitude of these previously unappreciated effects, using available estimates of paleoseawater composition over Phanerozoic time as inputs and 87Sr/ 86Sr of ophiolite epidosites and epidote-quartz veins as constraints. The results suggest that modern hydrothermal fluids are not typical due to low Ca and Sr relative to Mg and SO 4 in modern seawater. At other times during the last 500 millionmore » years, particularly during the Cretaceous and Ordovician, hydrothermal fluids had more seawater-derived Sr and Ca, a prediction that is supported by Sr isotope data. The predicted 87Sr/ 86Sr of vent fluids varies cyclically in concert with ocean chemistry, with some values much higher than the modern value of ~0.7037. The seawater chemistry effects can be expressed in terms of the transfer efficiency of basaltic Ca and Sr to seawater in hydrothermal systems, which varies by a factor of ~1.6 over the Phanerozoic, with minima when seawater Mg and SO 4 are low. This effect provides a modest negative feedback on seawater composition and 87Sr/ 86Sr changes. For the mid-Cretaceous, the low 87Sr/ 86Sr of seawater requires either exceptionally large amounts of low-temperature exchange with oceanic crust or that the weathering flux of continentally derived Sr was especially small. Lastly, the model also has implications for MOR hydrothermal systems in the Precambrian, when low-seawater SO 4 could help explain low seawater 87Sr/ 86Sr.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, A. O., E-mail: abhi2718@gmail.com; Koparkar, K. A.; Omanwar, S. K.
2016-05-06
A series of Inorganic borate phosphors NaSr{sub 4}(BO{sub 3}){sub 3} doped with Pb{sup 2+} was successfully synthesized by modified solid state diffusion method. The crystal structure and the phase purity of sample were characterized by powder X-ray diffraction (XRD). The photoluminescence properties of synthesized materials were investigated using spectrofluorometer at room temperature. The phosphor show strong broad band emission spectra in UVA region maximum at 370 nm under the excitation of 289 nm. The dependence of the emission intensity on the Pb{sup 2+} concentration for the NaSr{sub 4}(BO{sub 3}){sub 3} were studied in details. The concentration quenching of Pb{sup 2+}more » doped NaSr{sub 4}(BO{sub 3}){sub 3} was observed at 0.02 mol. The Stokes shifts of NaSr{sub 4}(BO{sub 3}){sub 3}: Pb{sup 2+} phosphor was calculated to be 7574 cm{sup −1}.« less
Zr, Hf, Mo and W-containing oxide phases as pinning additives in Bi-2212 superconductor
NASA Astrophysics Data System (ADS)
Makarova, M. V.; Kazin, P. E.; Tretyakov, Yu. D.; Jansen, M.; Reissner, M.; Steiner, W.
2005-02-01
Phase formation was investigated in Bi-Sr-Ca-Cu-M-O (M = Mo, W) systems at 850-900 °C. It was found that Sr 2CaMO 6 phases were chemically compatible with Bi-2212. The composites Bi-2212-Sr 2CaMO 6 and Bi-2212-SrAO 3 (A = Zr, Hf) were obtained from a sol-gel precursor using crystallisation from the melt. The materials consisted of Bi-2212 matrix and submicron or micron grains of the corresponding dispersed phase. Tc was equal or exceeded that for undoped Bi-2212, reaching Tc = 97 K in the Mo-containing composite. The composites exhibited enhanced pinning in comparison with similar prepared pure Bi-2212, especially at T = 60 K. The best pinning parameters were observed for the Bi-2212-Sr 2CaWO 6 composite.
Sex ratio of congenital abnormalities in the function of maternal age: a population-based study.
Csermely, Gyula; Urbán, Robert; Czeizel, Andrew E; Veszprémi, Béla
2015-05-01
Maternal age effect is well-known in the origin of numerical chromosomal aberrations and some isolated congenital abnormalities (CAs). The sex ratio (SR), i.e. number of males divided by the number of males and females together, of most CAs deviates from the SR of newborn population (0.51). The objective of this analysis was to evaluate the possible association of maternal age with the SR of isolated CAs in a population-based large dataset of the Hungarian Case-Control Surveillance of Congenital Abnormalities, 1980-1996. First, SR of 24 CA entities/groups was estimated in 21,494 patients with isolated CA. In the next step SR of different maternal age groups was compared to the mean SR of the given CA-groups. The SR of four CA-groups showed some deviation in certain maternal age groups. Cases with anencephaly had female excess in young mothers (<25 years). Cases with skull's CAs particularly craniosynostosis had a male excess in cases born to women over 30 years. Two other CA groups (cleft lip ± palate and valvar pulmonic stenosis within the group of right-sided obstructive defect of heart) had significant deviation in SR of certain maternal age groups from the mean SR, but these deviations were not harmonized with joining age groups and thus were considered as a chance effect due to multiple testing. In conclusion, our study did not suggest that in general SR of isolated CAs might be modified by certain maternal age groups with some exception such as anencephaly and craniosynostosis. © 2014 Japanese Teratology Society.
High- T c superconductivity at the interface between the CaCuO 2 and SrTiO 3 insulating oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Castro, D.; Cantoni, C.; Ridolfi, F.
2015-09-28
At interfaces between complex oxides it is possible to generate electronic systems with unusual electronic properties, which are not present in the isolated oxides. One important example is the appearance of superconductivity at the interface between insulating oxides, although, until now, with very low T c. We report the occurrence of high T c superconductivity in the bilayer CaCuO 2/SrTiO 3, where both the constituent oxides are insulating. In order to obtain a superconducting state, the CaCuO 2/SrTiO 3 interface must be realized between the Ca plane of CaCuO 2 and the TiO 2 plane of SrTiO 3. Only inmore » this case can oxygen ions be incorporated in the interface Ca plane, acting as apical oxygen for Cu and providing holes to the CuO 2 planes. In addition, a detailed hole doping spatial profile can be obtained by scanning transmission electron microscopy and electron-energy-loss spectroscopy at the O K edge, clearly showing that the (super)conductivity is confined to about 1–2 CaCuO 2 unit cells close to the interface with SrTiO 3. The results obtained for the CaCuO 2/SrTiO 3 interface can be extended to multilayered high T c cuprates, contributing to explaining the dependence of T c on the number of CuO 2 planes in these systems.« less
Lamb, G D; Stephenson, D G
1990-04-01
1. Skeletal muscle fibres from the toad were mechanically skinned under paraffin oil and then bathed in a potassium HDTA solution (HDTA: hexamethylenediamine-tetraacetate) which mimicked the ionic composition of the myoplasm. 2. Rapid transient contractions could be triggered by substitution of K+ with Na+ (with no change of anion), which should have virtually no direct effect on the electrical polarization of the sarcoplasmic reticulum (SR) membrane. Up to thirty or more contractions could be evoked by repeated substitutions if there was sufficient 'repriming' time (about 30 s) between them; these rapid contractions were analagous to potassium contractures in intact fibres. 3. When the SR was not heavily loaded, substitution of potassium HDTA with choline chloride also produced a rapid, brief contraction. 4. All treatments designed to 'inactivate' the voltage sensor in the T-system invariably abolished the rapid contractions. Thus, rapid contractions were absent if (i) the T-system was permanently depolarized by pre-soaking the muscle in a high potassium solution with ouabain before skinning, (ii) a fibre was split rather than skinned, (iii) the T-system was temporarily depolarized by Na+ substitution immediately before choline chloride substitution, or vice versa, (iv) a skinned fibre was briefly exposed to saponin (50 micrograms/ml) to selectively disrupt the T-system membrane or (v) the muscle was pre-soaked in a solution with 1 mM-EGTA and no Ca2+ or Mg2+ before skinning. In contrast to (v), if 10 mM-Mg2+ was present in the EGTA solution before skinning, rapid contractions could be elicited, presumably because the presence of Mg2+ prevented the inactivation of the T-system voltage sensor in low [Ca2+]. 5. These results unequivocally demonstrate that (a) the T-system reseals and repolarizes after mechanical skinning under oil and (b) the fast contractions are produced by activation of the voltage sensor in the T-system. 6. When the SR had been heavily loaded, choline chloride substitution (but not Na+ substitution) could also induce an unphysiological, slow contraction ('second component'). In total contrast to the fast contraction, this slow component was unaffected by any of the treatments (i-v) above, indicating that it did not depend on activation of the voltage sensor in the T-system but resulted from a direct action of choline chloride on the SR.(ABSTRACT TRUNCATED AT 400 WORDS)
Lamb, G D; Stephenson, D G
1990-01-01
1. Skeletal muscle fibres from the toad were mechanically skinned under paraffin oil and then bathed in a potassium HDTA solution (HDTA: hexamethylenediamine-tetraacetate) which mimicked the ionic composition of the myoplasm. 2. Rapid transient contractions could be triggered by substitution of K+ with Na+ (with no change of anion), which should have virtually no direct effect on the electrical polarization of the sarcoplasmic reticulum (SR) membrane. Up to thirty or more contractions could be evoked by repeated substitutions if there was sufficient 'repriming' time (about 30 s) between them; these rapid contractions were analagous to potassium contractures in intact fibres. 3. When the SR was not heavily loaded, substitution of potassium HDTA with choline chloride also produced a rapid, brief contraction. 4. All treatments designed to 'inactivate' the voltage sensor in the T-system invariably abolished the rapid contractions. Thus, rapid contractions were absent if (i) the T-system was permanently depolarized by pre-soaking the muscle in a high potassium solution with ouabain before skinning, (ii) a fibre was split rather than skinned, (iii) the T-system was temporarily depolarized by Na+ substitution immediately before choline chloride substitution, or vice versa, (iv) a skinned fibre was briefly exposed to saponin (50 micrograms/ml) to selectively disrupt the T-system membrane or (v) the muscle was pre-soaked in a solution with 1 mM-EGTA and no Ca2+ or Mg2+ before skinning. In contrast to (v), if 10 mM-Mg2+ was present in the EGTA solution before skinning, rapid contractions could be elicited, presumably because the presence of Mg2+ prevented the inactivation of the T-system voltage sensor in low [Ca2+]. 5. These results unequivocally demonstrate that (a) the T-system reseals and repolarizes after mechanical skinning under oil and (b) the fast contractions are produced by activation of the voltage sensor in the T-system. 6. When the SR had been heavily loaded, choline chloride substitution (but not Na+ substitution) could also induce an unphysiological, slow contraction ('second component'). In total contrast to the fast contraction, this slow component was unaffected by any of the treatments (i-v) above, indicating that it did not depend on activation of the voltage sensor in the T-system but resulted from a direct action of choline chloride on the SR.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1696987
NASA Astrophysics Data System (ADS)
Vereshchagina, Tatiana A.; Vereshchagin, Sergei N.; Shishkina, Nina N.; Vasilieva, Nataly G.; Solovyov, Leonid A.; Anshits, Alexander G.
2013-06-01
Hollow microsphere zeolite materials with a bilayered zeolite/glass crystalline shell bearing NaP1 zeolite were synthesized by the hydrothermal treatment of coal fly ash cenospheres (Si/Al = 2.7) in an alkaline medium. Cs+ and/or Sr2+ forms of zeolitized cenospheres with the different Cs+ and/or Sr2+ loading were prepared by the ion exchange from nitrate solutions. The resulted (Cs,Na)P1, (Sr,Na)P1 and (Cs,Sr,Na)P1 bearing microsphere zeolites were converted to glass ceramics by heating at 900-1000 °C. The differential scanning calorimetry and quantitative phase analysis were used to monitor the solid-phase transformation of the initial and ion exchanged zeolite materials. It was established that the final solidified forms of Cs+ and/or Sr2+ are glass-crystalline ceramic materials based on pollucite-nepheline, Sr-feldspar-nepheline and Sr-feldspar-pollucite composites including ˜60 wt.% of the major host phases (pollucite, Sr-feldspar) and 10-20 wt.% of glass. The 137Cs leaching rate of 4.1 × 10-7 g cm-2 day-1 was determined for the pollucite glass-ceramic according to Russian State Standard (GOST) No. 52126 P-2003 (7 day, 25 °C, distilled water).
Jin, C.-Q.; Zhou, J.-S.; Goodenough, J. B.; Liu, Q. Q.; Zhao, J. G.; Yang, L. X.; Yu, Y.; Yu, R. C.; Katsura, T.; Shatskiy, A.; Ito, E.
2008-01-01
The cubic perovskite BaRuO3 has been synthesized under 18 GPa at 1,000°C. Rietveld refinement indicates that the new compound has a stretched Ru–O bond. The cubic perovskite BaRuO3 remains metallic to 4 K and exhibits a ferromagnetic transition at Tc = 60 K, which is significantly lower than the Tc ≈ 160 K for SrRuO3. The availability of cubic perovskite BaRuO3 not only makes it possible to map out the evolution of magnetism in the whole series of ARuO3 (A = Ca, Sr, Ba) as a function of the ionic size of the A-site rA, but also completes the polytypes of BaRuO3. Extension of the plot of Tc versus rA in perovskites ARuO3 (A = Ca, Sr, Ba) shows that Tc does not increase as the cubic structure is approached, but has a maximum for orthorhombic SrRuO3. Suppressing Tc by Ca and Ba doping in SrRuO3 is distinguished by sharply different magnetic susceptibilities χ(T) of the paramagnetic phase. This distinction has been interpreted in the context of a Griffiths' phase on the (Ca Sr)RuO3 side and bandwidth broadening on the (Sr,Ba)RuO3 side. PMID:18480262
NASA Astrophysics Data System (ADS)
MacAvoy, S. E.; De Filippis, N.
2016-12-01
Challenges facing urban rivers include water stormwater runoff and changing water chemistry, not only from air and water pollution, but also from altered geology with the development of "urban karst" (concrete). The Anacostia River in Washington, D.C. has 75% of its watershed classified as urban or impervious, and is among the 10 most contaminated rivers in the USA. In addition to its relatively well-documented organic contamination problems, we hypothesize that concrete could be substantially altering its geochemistry. Here we report findings from 6 locations along the Anacostia River and its tributaries that indicate both seasonally elevated Na and Cl (becoming brackish, 2000-3000 mg/L Total Dissolved Solids, in a suburban creek), and elevated cations in low flow suburban tributaries. Concentrations of all major cations (Ca, Mg, K, Na) strongly, and positively, covaried (factor scores (FC) >0.88). However Ca/Sr ratios negatively covaried with major cations (FC -0.64). This suggests the weathering of low Sr minerals, such as those in concrete. In urbanized portions of the river, Ca/Sr was >200, which is a concrete weathering indicator in areas with silica mineral bedrock (Anacostia bedrock consists of Precambrian phyllits, sericite, chlorite, quartzite, slate and schist). Mean ± SE Sr was 0.13 ± 0.02 mg/L in the most urban area, but 0.37 ± 0.03 mg/L in the most suburban. This supports the hypothesis that the source of elevated cations in the urban areas is concrete weathering, not bedrock mineral weathering. Inorganic N was not correlated strongly with cations. Mean NO3- was highest at the most suburban site (1.8 ± 0.2 mg/L), but rose above 3 mg/L in some samples at all sites. Elevated NO3- did not appear to vary with season or discharge rate at time of sampling. NH4+ was generally lower than 1 mg/L but spiked to 3.4 mg/L at the most urban site. These data follow patterns expected for "urban stream syndrome". Suburban areas, with their relatively small streams, show greater winter salting effects than more urban areas down stream. Suburban areas also show higher NO3- (and occasionally higher NH4+) than urban areas except in winter. The geochemistry of highly urbanized systems may be significantly altered and understanding this effect will help in the development of plans for more effective watershed rehabilitation.
NASA Astrophysics Data System (ADS)
Elias, Robert W.; Hirao, Yoshimitsu; Patterson, Clair C.
1982-12-01
Biopurification factors for Ca with respect to Sr, Ba, and natural, uncontaminated Pb were measured for different nutrient-consumer pairs in a remote subalpine ecosystem. The factor for Sr is expressed as: (nutrient Sr/Ca) ÷ (consumer Sr/Ca). Similar expressions were used for Ba/Ca and Pb/Ca. It was found that Ca was biopurified of Sr 3-fold, of Ba 16-fold, and of Pb 100-fold in going from rock to sedge leaves. In going from sedge leaf to vole, Ca was biopurified of Sr 4-fold, of Ba 8-fold, and of Pb 16-fold. In going from meadow vole to pine marten, Ca was biopurified of Sr 6-fold, of Ba 7-fold, and of Pb 1.1-fold. Similar ranges of values for these factors were obtained for detrital and amphibian food chains. Fluxes of industrial lead entering the ecosystem as precipitation and dry deposition were measured and it was found that 40% of the lead in soil humus and soil moisture, 82% of the lead in sedge leaves, 92% of the lead in vole, and 97% of the lead in marten was industrial. The natural skeletal Pb/Ca ratio in carnivores (4 × 10 -8) was determined by means of corrections for inputs of industrial lead, food chain relationships, and measured biopurification factors for the ecosystem studied. This represents a 1700-fold reduction of the average Pb/Ca ratio in igneous rocks at the earth's surface (6.4 × 10 -5) by the compounding of successive Pb biopurification factors in transferring Ca from rock to carnivore. The natural ratio is similar to the value of 6 × 10 -8 observed for Pb/Ca in the bones of Peruvians who lived 2000 years ago but is 1/900th of the value of about 3.5 × 10 -5 for the skeletal Pb/Ca ratio found in present day Americans. This study shows experimentally how the Ba/Ca ratio in average surface igneous rock (3 × 10 -3) has been reduced 800-fold through compounding of successive biopurification steps to provide the skeletal Ba/Ca ratio of about 4 × 10 -6 observed in humans. It also provides biopurification factors for Sr and Ba among a number of nutrient-consumer pairs which anthropologists can use to delineate degrees of herbivory in diets of hominids within the last 10,000 years.
Spectroscopic studies of different brands of cigarettes using laser-induced breakdown spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayyad, M. H.; Saleem, M.; Shah, M.
In this work the technique of laser-induced breakdown spectroscopy (LIBS) has been used for the elemental analysis of cigarettes. For this purpose emission spectra have been measured of eleven different kinds of cigarette brands sold and/or produced in Pakistan. Analysis of the spectral peaks observed shows that Na, Mg, Al, K, Ca, Cr, Fe, Sr and Ba are contained in all brands. Exhibiting the LIBS results, the powerful potential of this method for the identification of the elemental content of cigarettes is demonstrated.
Spectroscopic studies of different brands of cigarettes using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Sayyad, M. H.; Saleem, M.; Shah, M.; Shaikh, N. M.; Baig, M. A.
2008-05-01
In this work the technique of laser-induced breakdown spectroscopy (LIBS) has been used for the elemental analysis of cigarettes. For this purpose emission spectra have been measured of eleven different kinds of cigarette brands sold and/or produced in Pakistan. Analysis of the spectral peaks observed shows that Na, Mg, Al, K, Ca, Cr, Fe, Sr and Ba are contained in all brands. Exhibiting the LIBS results, the powerful potential of this method for the identification of the elemental content of cigarettes is demonstrated.
Growth of Nucleation Sites on Pd-doped Bi_2Sr_2Ca1 Cu_2O_8+δ
NASA Astrophysics Data System (ADS)
Kouzoudis, D.; Finnemore, D. K.; Xu, Ming; Balachandran
1996-03-01
Enviromental Scanning Electron Microscope has shown evidence that during the growth of Bi_2Sr_2Ca_2Cu_3O_10+δ from mixed powders of Pb-doped Bi_2Sr_2Ca_1Cu_2O_8+δ and other oxides, a dense array of hillocks or mesas grow at the interface between an Ag overlay and Pb doped Bi_2Sr_2Ca_1Cu_2O_8+δ grains. These hillocks develop a texture that looks like ''chicken pox'' during the ramp up to the reaction temperature starting at about 700^circ C and they are about 500 to 1000 nm across and are spaced at about 500 to 1000 nm. If there is no Ag, this texture does not develop. Preliminary measurments indicate that the hillocks are re-crystallization of (Bi,Pb)_2Sr_2Ca_1Cu_2O_8+δ and are definetely not a Pb rich phase
Synthesis of BiPbSrCaCuO superconductor
Hults, W.L.; Kubat-Martin, K.A.; Salazar, K.V.; Phillips, D.S.; Peterson, D.E.
1994-04-05
A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi[sub a]Pb[sub b]Sr[sub c]Ca[sub d]Cu[sub e]O[sub f] wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10[+-]z by reacting a mixture of Bi[sub 4]Sr[sub 3]Ca[sub 3]Cu[sub 4]O[sub 16[+-]z], an alkaline earth metal cuprate, e.g., Sr[sub 9]Ca[sub 5]Cu[sub 24]O[sub 41], and an alkaline earth metal plumbate, e.g., Ca[sub 2[minus]x]Sr[sub x]PbO[sub 4] wherein x is about 0.5, is disclosed.
Synthesis of BiPbSrCaCuO superconductor
Hults, William L.; Kubat-Martin, Kimberly A.; Salazar, Kenneth V.; Phillips, David S.; Peterson, Dean E.
1994-01-01
A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi.sub.a Pb.sub.b Sr.sub.c Ca.sub.d Cu.sub.e O.sub.f wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10.+-.z by reacting a mixture of Bi.sub.4 Sr.sub.3 Ca.sub.3 Cu.sub.4 O.sub.16.+-.z, an alkaline earth metal cuprate, e.g., Sr.sub.9 Ca.sub.5 Cu.sub.24 O.sub.41, and an alkaline earth metal plumbate, e.g., Ca.sub.2-x Sr.sub.x PbO.sub.4 wherein x is about 0.5, is disclosed.
Leaching Characteristics of Calcium and Strontium from Phosphogypsum Under Acid Rain.
Wang, Mei; Luo, Houqiao; Chen, Yong; Yang, Jinyan
2018-02-01
Phosphogypsum (PG) stored close to phosphorus chemical plants has caused worldwide environmental problems. Column leaching experiments were conducted to evaluate Ca and Sr leaching from PG under simulated acid rain at pH levels typical for rain in the study region (Shifang, China). High concentrations of Ca and Sr in leachates in the first five leaching events could pollute the soil and groundwater around the PG. Leachates pH was lower than and had no correlation with simulated rain pH. No correlations between simulated rain pH and cumulative Ca and Sr content in leachates were noted. Around 2.0%-2.2% of Ca and 0.5%-0.6% of Sr were leached out from PG by the simulated summer rainfall in Shifang. Electrical conductivity values, Ca and Sr concentrations at bottom sections of PG columns were higher than those of top sections, while pH values showed a reverse trend. More precautions should be taken to protect the environment around PG stacks.
Chemical Interaction between High-Tc Superconducting Oxides and Alkaline Earth Fluorides
NASA Astrophysics Data System (ADS)
Hashimoto, Takuya; Asakawa, Toshiaki; Shiraishi, Tadashi; Yoshida, Tsutomu; Yoshimoto, Mamoru; Koinuma, Hideomi
1989-07-01
Reactions of high-Tc superconductors and MF2 (M: Ca, Sr, Ba) were investigated by means of ac susceptibility, X-ray diffraction, and TG-DTA measurements. The superconducting transition temperature (Tconset) of Ba2YCu3O7-δ powder mixed with MF2 powder decreased as a result of heat treatment at 600°C in air, whereas it did not decrease by the heat treatment under carefully dried conditions. In contrast, neither of the heat-treatment conditions decreased the Tconset of Bi2Sr2CaCu2Ox mixed with MF2 powder. Heating with MF2 at temperatures higher than 700°C reduced volume fractions of these superconductors even in dry atmosphere and the reactivity increased in the order of BaF2
Growth of nucleation sites on Pb-doped Bi2Sr2Ca1Cu2O8 + delta
NASA Astrophysics Data System (ADS)
Finnemore, D. K.; Xu, Ming; Kouzoudis, D.; Bloomer, T.; Kramer, M. J.; McKernan, Stuart; Balachandran, U.; Haldar, Pradeep
1996-01-01
In the growth of Bi2Sr2Ca2Cu3O10+δ from mixed powders of Pb-doped Bi2Sr2Ca1Cu2O8+δ and other oxides, it has been discovered that a dense array of hillocks or mesas grow at the interface between a Ag overlay and Pb-doped Bi2Sr2Ca1Cu2O8+δ grains during the ramp up to the reaction temperature. As viewed in an environmental scanning electron microscope, the Ag coated grains develop a texture that looks like ``chicken pox'' growing on the grains at about 700 °C. These hillocks are about 100 nm across and are spaced at about 500 to 1000 nm. If there is no Ag, this texture does not develop. Preliminary measurements indicate that the hillocks are a recrystallization of (Bi,Pb)2Sr2Ca1Cu2O8+δ, and are definitely not a Pb rich phase.
NASA Astrophysics Data System (ADS)
Cheung, A. H.; Cole, J. E.; Vetter, L.; Jimenez, G.; Thompson, D. M.; Tudhope, A. W.
2017-12-01
Sea surface temperature (SST) in the Eastern Equatorial Pacific (EEP) exhibits large variability on multiple timescales. These variations are often related to modes of climate variability that exert significant influence on global climate, such as the El Niño Southern Oscillation. However, the short length and sparsity of instrumental data in the EEP limits our ability to discern changes in this region. Geochemical signals in corals can help extend instrumental data further back in time. While δ18O and Sr/Ca are the most commonly analyzed geochemical tracers of SST in corals, they often have site-specific complications. Several alternatives (e.g., Li/Mg) have been proposed to overcome these challenges, but have yet to be applied to long climate records, in part due to the cost and time required to measure these elements. Here, we develop a new method that uses Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) to analyze Li/Mg, Sr/Ca, and Ba/Ca ratios in coral aragonite. We apply this method to two Porites spp. corals collected from the northern Galapagos archipelago (Wolf and Darwin Islands). We specifically assess the fidelity of Li/Mg and Sr/Ca to reconstruct SST, and Ba/Ca to reconstruct upwelling conditions. Our results confirm that both Li/Mg and Sr/Ca track SST. We show that despite analytical noise, downcore reconstructions of Li/Mg have the potential to provide additional information about SST that is not present in reconstructions generated from Sr/Ca alone. Skeletal Ba/Ca shows little relationship with upwelling, perhaps because of the distance of our sites from the center of upwelling in the southern Galapagos. These results demonstrate the potential for analyzing Sr, Li, Ba, Mg simultaneously in corals with a cost- and time- efficient method, which may be applied to coral paleoclimate sites worldwide.
1993-01-01
Cut fibers from Rana temporaria and Rana pipiens (striation spacing, 3.9-4.2 microns) were mounted in a double Vaseline-gap chamber and studied at 14 degrees C. The Ca indicator purpurate-3,3' diacetic acid (PDAA) was introduced into the end pools and allowed to diffuse into the optical recording site. When the concentration at the site exceeded 2 mM, step depolarizations to 10 mV were applied and the [Ca] transient measured with PDAA was used to estimate Ca release from the sarcoplasmic reticulum (SR) (Baylor, S. M., W. K. Chandler, and M. W. Marshall. 1983. Journal of Physiology. 344:625-666). With depolarization, the rate of SR Ca release increased to an early peak and then rapidly decreased several-fold to a quasi-steady level. The total amount of Ca released from the SR at the time of peak rate of release appeared to be independent of SR Ca content, consistent with the idea that a single activated channel might pass, on average, a fixed number of ions, independent of the magnitude of the single channel flux. A possible explanation of this property is given in terms of locally induced Ca inactivation of Ca release. The solution in the end pools was then changed to one with PDAA plus fura-2. SR Ca release was estimated from the [Ca] transient, as before, and from the delta [Cafura-2] signal. On average, 2-3 mM fura-2 increased the quasi-steady level of the rate of SR Ca release by factors of 6.6 and 3.8, respectively, in three fibers from Rana temporaria and three fibers from Rana pipiens. The peak rate of release was increased in five of the six fibers but to a lesser extent than the quasi-steady level. In all fibers, the amplitude of the free [Ca] transient was markedly reduced. These increases in the rate of SR Ca release are consistent with the idea that Ca inactivation of Ca release develops during a step depolarization to 10 mV and that 2-3 mM fura-2 is able to reduce this inactivation by complexing Ca and thereby reducing free [Ca]. Once the concentration of fura-2 becomes sufficiently large, a further increase reduces the rate of SR Ca release. On average, 5-6 mM fura-2 increased the quasi-steady rate of release, compared with 0 mM fura-2, by 6.5 and 2.9, respectively, in four fibers from Rana temporaria and three from Rana pipiens.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8228914
Xie, Xiaolong; Zhu, Tiebing; Chen, Lulu; Ding, Shuang; Chu, Han; Wang, Jing; Yao, Honghong; Chao, Jie
2018-01-29
Monocyte chemotactic protein-1-induced protein 1 (MCPIP1) plays a important role in ischemia/reperfusion (I/R) injury. Autophagy is involved in activating endothelial cells in response to I/R. However, researchers have not clearly determined whether MCPIP1 mediates I/R injury in endothelial cells via autophagy, and its downstream mechanism remains unclear. Western blotting analyses and immunocytochemistry were applied to detect protein levels were detected in HUVECs. An in vitro scratch assay was used to detect cell migration. Cells were transfected with siRNAs to knockdown MCPIP1 and high mobility group box 1 (HMGB1) expression. The pharmacological activator of autophagy rapamycin and the specific calcium-sensing receptor (CaSR) inhibitor NPS-2143 were used to confirm the roles of autophagy and CaSR in I/R injury. I/R induced HMGB1 and CaSR expression, which subsequently upreguated the migration and apoptosis of HUVECs and coincided with the increase of autophagy. HMGB1 was involved in cell migration, whereas CaSR specifically participated in I/R-induced HUVEC apoptosis. Based on these findings, I/R-induced MCPIP1 expression regulates the migration and apoptosis of HUVECs via HMGB1 and CaSR, respectively, suggesting a new therapeutic targetof I/R injury.
The Calcium-Sensing Receptor and Integrins in Cellular Differentiation and Migration
Tharmalingam, Sujeenthar; Hampson, David R.
2016-01-01
The calcium-sensing receptor (CaSR) is a widely expressed homodimeric G-protein coupled receptor structurally related to the metabotropic glutamate receptors and GPRC6A. In addition to its well characterized role in maintaining calcium homeostasis and regulating parathyroid hormone release, evidence has accumulated linking the CaSR with cellular differentiation and migration, brain development, stem cell engraftment, wound healing, and tumor growth and metastasis. Elevated expression of the CaSR in aggressive metastatic tumors has been suggested as a potential novel prognostic marker for predicting metastasis, especially to bone tissue where extracellular calcium concentrations may be sufficiently high to activate the receptor. Recent evidence supports a model whereby CaSR-mediated activation of integrins promotes cellular migration. Integrins are single transmembrane spanning heterodimeric adhesion receptors that mediate cell migration by binding to extracellular matrix proteins. The CaSR has been shown to form signaling complexes with the integrins to facilitate both the movement and differentiation of cells, such as neurons during normal brain development and tumor cells under pathological circumstances. Thus, CaSR/integrin complexes may function as a universal cell migration or homing complex. Manipulation of this complex may be of potential interest for treating metastatic cancers, and for developmental disorders pertaining to aberrant neuronal migration. PMID:27303307
NASA Astrophysics Data System (ADS)
Li, Mei; He, Peng; Wu, Yuanhao; Zhang, Yu; Xia, Hong; Zheng, Yufeng; Han, Yong
2016-09-01
The influence of Mg-1Ca-xwt.% Sr (x = 0.2, 0.5, 1.0, 2.0) alloys on the osteogenic differentiation and mineralization of pre-osteoblast MC3T3-E1 were studied through typical differentiation markers, such as intracellular alkaline phosphatase (ALP) activity, extracellular collagen secretion and calcium nodule formation. It was shown that Mg-1Ca alloys with different content of Sr promoted cell viability and enhanced the differentiation and mineralization levels of osteoblasts, and Mg-1Ca-2.0Sr alloy had the most remarkable and significant effect among all. To further investigate the underlying mechanisms, RT-PCR and Western Blotting assays were taken to analyze the mRNA expression level of osteogenesis-related genes and intracellular signaling pathways involved in osteogenesis, respectively. RT-PCR results showed that Mg-1Ca-2.0Sr alloy significantly up-regulated the expressions of the transcription factors of Runt-related transcription factor 2 (RUNX2) and Osterix (OSX), Integrin subunits, as well as alkaline phosphatase (ALP), Bone sialoprotein (BSP), Collagen I (COL I), Osteocalcin (OCN) and Osteopontin (OPN). Western Blotting results suggested that Mg-1Ca-2.0Sr alloy rapidly induced extracellular signal-regulated kinase (ERK) activation but showed no obvious effects on c-Jun N terminal kinase (JNK) and p38 kinase of MAPK. Taken together, our results demonstrated that Mg-1Ca-2.0Sr alloy had excellent biocompatibility and osteogenesis via the ERK pathway and is expected to be promising as orthopedic implants and bone repair materials.
Kim, Donghyeon; Kim, Sung-Chul; Bae, Jong-Seong; Kim, Sungyun; Kim, Seung-Joo; Park, Jung-Chul
2016-09-06
Eu(2+)-activated M5(PO4)3X (M = Ca, Sr, Ba; X = F, Cl, Br) compounds providing different alkaline-earth metal and halide ions were successfully synthesized and characterized. The emission peak maxima of the M5(PO4)3Cl:Eu(2+) (M = Ca, Sr, Ba) compounds were blue-shifted from Ca to Ba (454 nm for Ca, 444 nm for Sr, and 434 nm for Ba), and those of the Sr5(PO4)3X:Eu(2+) (X = F, Cl, Br) compounds were red-shifted along the series of halides, F → Cl → Br (437 nm for F, 444 nm for Cl, and 448 nm for Br). The site selectivity and occupancy of the activator ions (Eu(2+)) in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) crystal lattices were estimated based on theoretical calculation of the 5d → 4f transition energies of Eu(2+) using LCAO. In combination with the photoluminescence measurements and theoretical calculation, it was elucidated that the Eu(2+) ions preferably enter the fully oxygen-coordinated sites in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) compounds. This trend can be well explained by "Pauling's rules". These compounds may provide a platform for modeling a new phosphor and application in the solid-state lighting field.
NASA Astrophysics Data System (ADS)
Labotka, Dana M.; Panno, Samuel V.; Locke, Randall A.; Freiburg, Jared T.
2015-09-01
Geochemical and isotopic characteristics of deep-seated saline groundwater provide valuable insight into the origin and evolving composition, water-rock interaction, and mixing potential of fossil brines. Such information may yield insight into intra- and interbasinal brine movement and relationships between brine evolution and regional groundwater flow systems. This investigation reports on the δ18O and δD composition and activity values, 87Sr/86Sr ratios and Sr concentrations, and major ion concentrations of the Cambrian-hosted brines of the Mt. Simon Sandstone and Ironton-Galesville Formation and discusses the evolution of these brines as they relate to other intracontinental brines. Brines in the Illinois Basin are dominated by Na-Ca-Cl-type chemistry. The Mt. Simon and overlying Ironton-Galesville brines exhibit total dissolved solids concentrations of ∼195,000 mg/L and ∼66,270 mg/L, respectively. The δD of brine composition of the Mt. Simon ranges from -34‰ to -22‰ (V-SMOW), and the Ironton-Galesville is ∼-53.2‰ (V-SMOW). The δ18O composition of the Mt. Simon brine ranges from -5.0‰ to -2.8‰ (V-SMOW), and the Ironton-Galesville brine is ∼-6.9‰ (V-SMOW). The 87Sr/86Sr values in the Mt. Simon brine range from 0.7110 to 0.7116. The less radiogenic Ironton-Galesville brine has an average 87Sr/86Sr value of 0.7107. Evaluation of δ18O and δD composition and activities and 87Sr/86Sr ratios suggests that the Mt. Simon brine is likely connate seawater and recirculating deep-seated brines that have been diluted with meteoric water and influenced by the dissolution of evaporites with a minimal halite contribution based on Cl/Br ratios. The Ironton-Galesville brine is also likely originally connate seawater that mixed with other brines and meteoric waters, including possibly Pleistocene glacial recharge. The Ca-excess vs. Na-deficiency comparison with the Basinal Fluid Line suggests the Mt. Simon and Ironton-Galesville brines have been influenced by the effects of albitization and plot very close to the Basinal Fluid Line. These Cambrian-hosted brines appear to have a different albitization history than other regional basin brines and a strong component of seawater. The Ironton-Galesville brine appears more geochemically associated with other Illinois Basin brines than the Mt. Simon brine which appears more geochemically conservative. Comparisons with other extrabasinal North American brines suggest that the Michigan basin brines are geochemically most similar to the Mt. Simon brines with the exception of the influence from carbonates in the Michigan Basin. Analyses of 87Sr/86Sr values in the Mt. Simon brine suggest that brine Sr has isotopically equilibrated with clay minerals in the Lower Mt. Simon and underlying bedrock formations and not with whole rock suggesting the influence of recirculating brines from the crystalline basement. Overall, the geochemistry of these Cambrian-hosted brines suggests an evolution from original seawater-like compositions. This investigation shows that intracratonic basins do not behave as closed systems but can be strongly affected by water-rock interaction and regional groundwater flow systems that circulate deep crystalline basement brines and brines from nearby basins.
Fast and accurate determination of K, Ca, and Mg in human serum by sector field ICP-MS.
Yu, Lee L; Davis, W Clay; Nuevo Ordonez, Yoana; Long, Stephen E
2013-11-01
Electrolytes in serum are important biomarkers for skeletal and cellular health. The levels of electrolytes are monitored by measuring the Ca, Mg, K, and Na in blood serum. Many reference methods have been developed for the determination of Ca, Mg, and K in clinical measurements; however, isotope dilution thermal ionization mass spectrometry (ID-TIMS) has traditionally been the primary reference method serving as an anchor for traceability and accuracy to these secondary reference methods. The sample matrix must be separated before ID-TIMS measurements, which is a slow and tedious process that hindered the adoption of the technique in routine clinical measurements. We have developed a fast and accurate method for the determination of Ca, Mg, and K in serum by taking advantage of the higher mass resolution capability of the modern sector field inductively coupled plasma mass spectrometry (SF-ICP-MS). Each serum sample was spiked with a mixture containing enriched (44)Ca, (26)Mg, and (41)K, and the (42)Ca(+):(44)Ca(+), (24)Mg(+):(26)Mg(+), and (39)K(+):(41)K(+) ratios were measured. The Ca and Mg ratios were measured in medium resolution mode (m/Δm ≈ 4 500), and the K ratio in high resolution mode (m/Δm ≈ 10 000). Residual (40)Ar(1)H(+) interference was still observed but the deleterious effects of the interference were minimized by measuring the sample at K > 100 ng g(-1). The interferences of Sr(++) at the two Ca isotopes were less than 0.25 % of the analyte signal, and they were corrected with the (88)Sr(+) intensity by using the Sr(++):Sr(+) ratio. The sample preparation involved only simple dilutions, and the measurement using this sample preparation approach is known as dilution-and-shoot (DNS). The DNS approach was validated with samples prepared via the traditional acid digestion approach followed by ID-SF-ICP-MS measurement. DNS and digested samples of SRM 956c were measured with ID-SF-ICP-MS for quality assurance, and the results (mean ± expanded uncertainty in mg dL(-1) unit) for Ca (DNS = 10.14 ± 0.13, digested = 10.11 ± 0.10), Mg (DNS = 2.093 ± 0.008, digested = 2.098 ± 0.007), and K (DNS = 15.48 ± 0.11, digested = 15.50 ± 0.28) were in good agreement with the certified values (Ca = 10.17 ± 0.06, Mg = 2.084 ± 0.023, K = 15.55 ± 0.13). Major sources of uncertainty are sample measurement, spike calibration, and instrument factor including mass discrimination of the spectrometer and the detector deadtime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCulloch, M.T.; Gagan, M.K.; Mortimer, G.E.
A high-resolution (near weekly) Sr/Ca and oxygen isotopic record is presented for a coral from the Pandora Reef in the Great Barrier Reef (GBR) of Australia during the period of 1978 to 1984. The records are well correlated except for periods of high rainfall when river runoff has significantly modified the [delta][sup 18]O value of seawater. Using the Sr/Ca temperature calibration of De Villiers et al., the Sr/Ca records exhibit seasonally controlled cyclical SST (sea surface temperature) variations of from [approximately] 21 to [approximately] 28[degrees]C. During the very strong El Nino of 1982-1983, the Sr/CA systematics indicate a sharp dropmore » in the winter SST to [approximately] 18.5[degrees]C. This represents a temperature anomaly of -3[degrees]C which is approximately twice that given by the [delta][sup 18]O variations, suggesting an [approximately] x2 amplification of the anomaly by the Sr/Ca system, possibly due to the increasing dominance of inorganically controlled aragonite-seawater fractionation. The oxygen isotope systematics show the combined effects of both temperature and changing seawater [delta][sup 18]O values, the latter reflecting the influx of [sup 18]O-depleted runoff during periods of high rainfall. Due to the extremely low ([approximately] 10[sup [minus]3]) Sr and Ca contents of river runoff relative to seawater, it is possible to use the Sr/Ca thermometer to calculate temperatures independent of major floods and hence deconvolve the combined effects in the oxygen isotopic record of variable temperature and the [delta][sup 18]O value of seawater. Using this approach it is possible to quantitatively reproduce the volume of runoff from the Burdekin River during the periods of major flooding that occurred in early 1979 and 1981. The results of this study demonstrate that the combined use of high-resolution Sr/Ca and [delta][sup 18]O systematics in scleractinian corals is a powerful tool for providing quantitative constraints on past climate.« less
Suzuki, M; Aso, T; Sato, T; Michimata, M; Kazama, I; Saiki, H; Hatano, R; Ejima, Y; Miyama, N; Sato, A; Matsubara, M
2005-06-01
The calcium-sensing receptor (CaSR) regulates the extracellular calcium level, mainly by controlling parathyroid hormon secretion and renal calcium reabsorption. In gain-of-function CaSR mutations, the genetic abnormalities increase CaSR activity leading to the development of such clinical manifestations as hypercalciuric hypocalcemia and hypoparathyroidism. We report a Japanese case of CaSR gain-of-function mutation and represent a therapeutic intervention based on the functional characteristics of CaSR in renal tubule. DNA sequence analysis revealed a heterozygous G to T mutation identified in a 12-year-old Japanese girl presenting with sporadic onset of hypercalciuric hypocalcemia and hypoparathyroidism. The mutation is located in the N-terminal extracellular domain of the CaSR gene, one of the most important parts for the three-dimensional construction of the receptor, resulting in the substitution of phenylalanine for cysteine at amino acid 131 (C131F) in exon 3. Based on the diagnosis of the gain-of-function mutation in the CaSR, oral hydrochlorothiazide administration and supplemental hydration were started in addition to calcium supplementation. The combination therapy of thiazide and supplemental hydration markedly reduced both renal calcium excretion and urinary calcium concentration from 0.4-0.7 to less than 0.1 mg/mg (urinary calcium/creatinine ratio) and from 10-15 to 3-5 mg/dl (urinary calcium concentration), respectively. This therapy stopped the progression of renal calcification during the follow-up period. Supplemental hydration should be considered essential for the following reasons: (1) calcium supplementation activates the CaSR in the kidney and suppresses renal urinary concentrating ability, (2) the thiazide has a diuretic effect, (3) as calcium supplementation increases renal calcium excretion, the supplemental hydration decreases urinary calcium concentration by increasing urinary volume, thereby diminishing the risk of intratubular crystallization of calcium ion.
NASA Astrophysics Data System (ADS)
Cirino, M.; Dunbar, R. B.; Tangri, N.; Mehta, A.
2014-12-01
We investigated the use of synchrotron radiation for elemental imaging within the skeleton of a Porites coral from American Samoa to explore the fine-scale structure of strontium to calcium (Sr/Ca) variability. The use of a synchrotron for coral paleoclimate analysis is relatively new. The method provides a high resolution, two-dimensional elemental map of a coral surface. The aragonitic skeleton of Porites sp. colonies has been widely used for paleoclimate reconstruction as the oxygen isotope ratio (δ18O) signal varies with both sea surface temperature (SST) and sea surface salinity (SSS). Sr/Ca has been used in previous studies in conjunction with δ18O to deconvolve SST from SSS, as Sr/Ca in the coral skeleton varies with SST, but not SSS. However, recent studies suggest that in some cases Sr/Ca variability in coral does not reliably reflect changes in SST. We sought to address this puzzle by investigating Sr/Ca variability in Porites corals at a very fine spatial scale while also demonstrating the suitability of the synchrotron as a coral analysis tool. We also considered Sr/Ca variability as it pertains to the coral's structural elements. The Stanford Linear Accelerator Center synchrotron station generates collimated x-rays in the energy range of 4500-45000 eV with beam diameters as small as 20 μm. Synchrotron imaging allows faster and higher-resolution Sr/Ca analysis than does inductively coupled plasma mass spectrometry (ICP-MS). It also is capable of mapping spatial distributions of many elements, which aids in the development of a multiproxy approach to paleoclimate reconstruction. Imaging and analysis of the Porites coral using synchrotron radiation revealed an intricate sub-seasonal Sr/Ca signal, possibly correlating to a sub-monthly resolution. This signal, which seems unrelated to SST, dominates the annual signal.
NASA Astrophysics Data System (ADS)
Lander, M.
2016-12-01
Located on the northern edge of the West Pacific Warm Pool, Guam is positioned to obtain uniquely valuable natural records of west Pacific maritime paleoclimate. This study is the first to evaluate the application of the coral Sr/Ca sea surface temperature (SST) proxy to the reconstruction of Guam's climate history. To help test the fidelity of the coral Sr/Ca proxy to actual climate, and how it might be affected by environmental variables—on Guam or elsewhere—the study documented monthly seawater oxygen isotope ratios (δ18O), pH, cation, and nitrate concentrations from September 2009 to December 2010 at a Porites lutea colony in Guam's Apra Harbor. The study site was chosen for its accessibility, so that environmental conditions could be readily monitored. A 50-year Sr/Ca record was carefully compared to instrumental records, the quality and reliability of which were also closely examined. Time series of seawater δ18O, pH, and cation concentrations show some evidence of freshwater input from direct rainfall or stream discharge into the harbor. The Sr/Ca proxy SST results, however, are robust, and do not appear to have been significantly affected. The Sr/Ca proxy reproduces the long-term warming trend observed in the historical records of regional SST and local air temperature. Moreover, it shows remarkable fidelity to regional ocean-atmosphere variations as represented by the indices of the El Niño/Southern Oscillation and the Pacific Decadal Oscillation. The consistency of the results with Guam's historical instrumental records, with previous δ18O results from Guam, and with previous Sr/Ca proxy results in similar environments elsewhere, demonstrate the efficacy of accessible near-shore sites for obtaining reliable Sr/Ca climate proxies, and the utility of Guam as a source for accurate coral records of western Pacific Ocean regional climate.
Effect of cryogenic temperature on spectroscopic and laser properties of Er,La:SrF2-CaF2 crystal
NASA Astrophysics Data System (ADS)
Švejkar, Richard; Šulc, Jan; Němec, Michal; Jelínková, Helena; Doroshenko, Maxim E.; Nakladov, Andrei N.; Osiko, Vjatcheslav V.
2016-03-01
The laser and spectroscopic properties of crystal Er,La:SrF2-CaF2 at temperature range 80 - 300 K, which is appropriate for generation of radiation around 2.7 um is presented. The sample of Er,La:SrF2-CaF2 (concentration Er(0.04), La(0.12):Ca(0.77)Sr(0.07)) had plan-parallel face-polished faces without anti-reflection coatings (thickness 8.2 mm). During spectroscopy and laser experiments the Er,La:SrF2-CaF2 was attached to temperature controlled copper holder and it was placed in vacuum chamber. The transmission and emission spectra of Er,La:SrF2-CaF2 together with the fluorescence decay time were measured in dependence on temperature. The excitation of Er,La:SrF2-CaF2 was carried out by a laser diode radiation (pulse duration 5 ms, repetition rate 20 Hz, pump wavelength 973 nm). Laser resonator was hemispherical, 140 mm in length with at pumping mirror (HR @ 2.7 µm) and spherical output coupler (r = 150 mm, R = 95 % @ 2.5 - 2.8 µm). Tunability of laser at 80 K in range 2690 - 2765 nm was obtained using MgF2 birefringent filter. With decreasing temperature of sample the fluorescence lifetime of manifold 4I11/2 (upper laser level) became shorter and intensity of up-conversion radiation was increasing. The highest slope efficiency with respect to absorbed power was 2.3 % at 80 K. The maximum output of peak amplitude power was 0.3 W at 80 K, i.e. 1.5 times higher than measured this value at 300 K. The wavelength generated by Er,La:SrF2-CaF2 laser (2.7 µm) is relatively close to absorption peak of water (3 µm) and so, one of the possible usage should be in medicine and spectroscopy.
The Biological Nature of Geochemical Proxies: algal symbionts affect coral skeletal chemistry
NASA Astrophysics Data System (ADS)
Owens, K.; Cohen, A. L.; Shimizu, N.
2001-12-01
The strontium-calcium ratio (Sr/Ca) of reef coral skeleton is an important ocean temperature proxy that has been used to address some particularly controversial climate change issues. However, the paleothermometer has sometimes proven unreliable and there are indications that the temperature-dependence of Sr/Ca in coral aragonite is linked to the photosynthetic activity of algal symbionts (zooxanthellae) in coral tissue. We examined the effect of algal symbiosis on skeletal chemistry using Astrangia danae, a small colonial temperate scleractinian that occurs naturally with and without zooxanthellae. Live symbiotic (deep brown) and asymbiotic (white) colonies of similar size were collected in Woods Hole where water temperatures fluctuate seasonally between -2oC and 23oC. We used a microbeam technique (Secondary Ion Mass Spectrometry) and a 30 micron diameter sampling beam to construct high-resolution Sr/Ca profiles, 2500 microns long, down the growth axes of the outer calical (thecal) walls. Profiles generated from co-occuring symbiotic and asymbiotic colonies are remarkably different despite their exposure to identical water temperatures. Symbiotic coral Sr/Ca displays four large-amplitude annual cycles with high values in the winter, low values in the summer and a temperature dependence similar to that of tropical reef corals. By comparison, Sr/Ca profiles constructed from asymbiotic coral skeleton display little variability over the same time period. Asymbiont Sr/Ca is relatively insensitive to the enormous temperature changes experienced over the year; the temperature dependence is similar to that of nighttime skeletal deposits in tropical reef corals and non-biological aragonite precipitates. We propose that the large variations in skeletal Sr/Ca observed in all symbiont-hosting coral species are not related to SST variability per se but are driven primarily by large seasonal variations in skeletal calcification rate associated with symbiont photosynthesis. Our model provides a framework for understanding the role of biology in determining coral skeletal chemistry and an explanation for anomalous Sr/Ca-based paleotemperature derivations.
NASA Astrophysics Data System (ADS)
Gao, L.; Zeng, L.
2011-12-01
Knowledge of the timing of formation and geochemical nature of the Cenozoic granites along the High Himalaya as well as the Tethyan Himalaya is essential to test or formulate models that link high-grade metamorphism, crustal anatexis, and tectonic transition during the evolution of the Himalayan orogen. The Malashan gneiss dome, one of the prominent domes within the Tethyan Himalaya, consists of pelitic schists, calc-silicate metamorphic rocks, and at least two generations of granites. Two mica granites(TMG) occur as large plutons in Cuobu and Malashan, whereas a small leucogranite pluton occurs at the western side of the Paiku Lake. Two-mica granites from the Cuobu and the Malashan share similar characteristics in mineral composition, major and trace element geochemistry and isotope(Sr and Nd) compositions. New LA-ICP-MS zircon U/Pb analyses yielded that the Cuobu and the Malashan TMG formed at 17.6±0.1 Ma and 16.9±0.1 Ma, respectively. Both suits of granites are characterized by:(1)high SiO2(>71.3wt%), Al2O3(>14.8wt%), and relatively high CaO(>1.5wt%); (2)high A/CNK(>1.0) and K/Na ratios; (3)relatively high Sr(>146ppm), low Rb(<228ppm) and Rb/Sr ratios(<1.3); (4) enriched in LREE, depleted in HREE, as well as no or weakly negative Eu anomalies(Eu*=0.7~0.9); (5) as compared to leucogranites of similar ages in other Northern Himalayan Gneiss Domes, lower initial 87Sr/86Sr ratios (0.7390~0.7484) and similarly unradiogenic Nd isotope compositions (ɛNd(t)=-13.7~-14.4). Correlations between Ba and Rb/Sr ratios and between Rb/Sr and initial 87Sr/86Sr ratios imply that these two-mica granites were derived from muscovite H2O-fluxed melting of metasedimentary rocks at T=700-780oC. Such a reaction could be represented by 9Muscovite + 15Plagioclase + 7Quartz + xH2O = 31Melt, in which enhances the involvement of plagioclase, but suppresses the biotite due to relatively low temperature and the presence of water. This reaction not only produces granitic melts with low Rb/Sr ratios, relatively high CaO and weak to no Eu anomalies, but also leads to lower initial 87Sr/86Sr ratios than their potential source rocks.
Massera, J; Kokkari, A; Närhi, T; Hupa, L
2015-06-01
In this paper, we investigate the effect of substituting SrO for CaO in silicate and phosphate bioactive glasses on the human gingival fibroblast activity. In both materials the presence of SrO led to the formation of a CaP layer with partial Sr substitution for Ca. The layer at the surface of the silicate glass consisted of HAP whereas at the phosphate glasses it was close to the DCPD composition. In silicate glasses, SrO gave a faster initial dissolution and a thinner reaction layer probably allowing for a continuous ion release into the solution. In phosphate glasses, SrO decreased the dissolution process and gave a more strongly bonded reaction layer. Overall, the SrO-containing silicate glass led to a slight enhancement in the activity of the gingival fibroblasts cells when compared to the SrO-free reference glass, S53P4. The cell activity decreased up to 3 days of culturing for all phosphate glasses containing SrO. Whereas culturing together with the SrO-free phosphate glass led to complete cell death at 7 days. The glasses containing SrO showed rapid cell proliferation and growth between 7 and 14 days, reaching similar activity than glass S53P4. The addition of SrO in both silicate and phosphate glasses was assumed beneficial for proliferation and growth of human gingival fibroblasts due to Sr incorporation in the reaction layer at the glass surface and released in the cell culture medium.
An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release.
Greenstein, Joseph L; Winslow, Raimond L
2002-01-01
The local control theory of excitation-contraction (EC) coupling in cardiac muscle asserts that L-type Ca(2+) current tightly controls Ca(2+) release from the sarcoplasmic reticulum (SR) via local interaction of closely apposed L-type Ca(2+) channels (LCCs) and ryanodine receptors (RyRs). These local interactions give rise to smoothly graded Ca(2+)-induced Ca(2+) release (CICR), which exhibits high gain. In this study we present a biophysically detailed model of the normal canine ventricular myocyte that conforms to local control theory. The model formulation incorporates details of microscopic EC coupling properties in the form of Ca(2+) release units (CaRUs) in which individual sarcolemmal LCCs interact in a stochastic manner with nearby RyRs in localized regions where junctional SR membrane and transverse-tubular membrane are in close proximity. The CaRUs are embedded within and interact with the global systems of the myocyte describing ionic and membrane pump/exchanger currents, SR Ca(2+) uptake, and time-varying cytosolic ion concentrations to form a model of the cardiac action potential (AP). The model can reproduce both the detailed properties of EC coupling, such as variable gain and graded SR Ca(2+) release, and whole-cell phenomena, such as modulation of AP duration by SR Ca(2+) release. Simulations indicate that the local control paradigm predicts stable APs when the L-type Ca(2+) current is adjusted in accord with the balance between voltage- and Ca(2+)-dependent inactivation processes as measured experimentally, a scenario where common pool models become unstable. The local control myocyte model provides a means for studying the interrelationship between microscopic and macroscopic behaviors in a manner that would not be possible in experiments. PMID:12496068
The Ca2+ leak paradox and “rogue ryanodine receptors”: SR Ca2+ efflux theory and practice
Sobie, Eric A.; Guatimosim, Silvia; Gómez-Viquez, Leticia; Song, Long-Sheng; Hartmann, Hali; Jafri, M. Saleet; Lederer, W.J.
2006-01-01
Ca2+ efflux from the sarcoplasmic reticulum (SR) is routed primarily through SR Ca2+ release channels (ryanodine receptors, RyRs). When clusters of RyRs are activated by trigger Ca2+ influx through L-type Ca2+ channels (dihydropyridine receptors, DHPR), Ca2+ sparks are observed. Close spatial coupling between DHPRs and RyR clusters and the relative insensitivity of RyRs to be triggered by Ca2+ together ensure the stability of this positive-feedback system of Ca2+ amplification. Despite evidence from single channel RyR gating experiments that phosphorylation of RyRs by protein kinase A (PKA) or calcium-calmodulin dependent protein kinase II (CAMK II) causes an increase in the sensitivity of the RyR to be triggered by [Ca2+]i there is little clear evidence to date showing an increase in Ca2+ spark rate. Indeed, there is some evidence that the SR Ca2+ content may be decreased in hyperadrenergic disease states. The question is whether or not these observations are compatible with each other and with the development of arrhythmogenic extrasystoles that can occur under these conditions. Furthermore, the appearance of an increase in the SR Ca2+ “leak” under these conditions is perplexing. These and related complexities are analyzed and discussed in this report. Using simple mathematical modeling discussed in the context of recent experimental findings, a possible resolution to this paradox is proposed. The resolution depends upon two features of SR function that have not been confirmed directly but are broadly consistent with several lines of indirect evidence: (1) the existence of unclustered or “rogue” RyRs that may respond differently to local [Ca2+]i in diastole and during the [Ca2+]i transient; and (2) a decrease in cooperative or coupled gating between clustered RyRs in response to physiologic phosphorylation or hyperphosphorylation of RyRs in disease states such as heart failure. Taken together, these two features may provide a framework that allows for an improved understanding of cardiac Ca2+ signaling. PMID:16326215
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, E.; Suzuki, S.; Fukuda, R.
Pharmacological means to accelerate the elimination of Cs-137 introduced into the living organism are studied. Male dd mice and male Wistar rats are individually housed in metal metabolism cages, and provided with commercial solid diet and water. Radioactivity is determined in urine, and feces for 24 hours and 4 days after subcutaneous injection of a tracer dose of Cs/sup 137/Cl, and in various organs after sacrifices at the ends of these periods. Effects of various chemicals on these results are compared. Twenty five chemicals were investigated. They include inorganic Na salts such as Na bicarbonate, Na carbonate, Na suliate, Namore » thiosulfate, primary and secondary Na phosphates, and organic Na salts such as Na lactate, lactated Ringer, Na acetate, Na glucuronate, Na salt of thioctic acid, ATP Na, and Na pentobarbiturate. Na bicarbonate, Na phosphates, Na sulfate, and Na thiosulfate are found as eifective, especially Na bicarbonate, K bicarbonate shows scarcely any effect, nor do other K salts. It is therefore assumed that Cs will exchange with Na ion in the tubular cells. LiCl is found to accelerate the excretion of Cs-137 from mice and rats. This result is of interest with respect to the periodic law, since it is known that for the elimination of Sr-90, Ca salts are ineffective or slightly effective, whereas Mg salts are effective. Of the diuretics, chlorothiazide, which is considered to increase the excretion of K, does nor increase the elimination of Cs-137 in any dose. This result is different from that of Diamox, a diuretic of the same nature. Cardiac glycosides and xanthine derivatives are effective. Out of digitalis preparations, Digitamin (Shionogi), Digilanogen C (Fujisawa), Digosin (Chugai) are effective. Digitoxin and strospeside are ineffective, and after their application, retention of Cs-137 is observed in the heart muscle. G- strophanthin is ineffective in a smaller dose, but increases the elimination of Cs-137 in a larger dose. Caffeine and sodium benzoate are also effective, but theophylline and theobromine are not so effective. Out of osmotic diuretics, Na ferrocyanate alone increases fecal excretion of Cs-137, and decreases the retention in the body. NaI and KI have scarcely any effect. Phosphomolybdic acid inhibits the elimination of Cs-137 and increases its retention. The above mentioned effective chemicals are also investigated for effects on the elimination of Sr-90. (JAIF)« less
Interaction of overlayers of Al and Rb with single-crystalline surfaces of Bi2Sr2CaCu2O8
NASA Astrophysics Data System (ADS)
Lindberg, P. A. P.; Wells, B. O.; Shen, Z.-X.; Dessau, D. S.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.
1990-03-01
Photoemission results from Al and Rb interfaces with single crystals of Bi2Sr2CaCu2O8 high-temperature superconductors are reported. The Al and Rb adsorbates are found to react quite differently with the Bi2Sr2CaCu2O8 substrate. While adatoms of Rb significantly affect only the Bi and O atoms in the top atomic layer, the Al adsorbate profoundly disrupts the bonding character of the whole Bi2Sr2CaCu2O8 material. For Al, the Bi and Cu states are strongly reduced, and the Sr and O states show evidence of oxidized components. In addition, Al causes a strong out-diffusion of oxygen from the bulk. The differences in the reactivity of Al and Rb are discussed in terms of the different mobility of the two atoms.
Surface and electronic structure of Bi-Ca-Sr-Cu-O superconductors studied by LEED, UPS and XPS
NASA Astrophysics Data System (ADS)
Shen, Z.-X.; Lindberg, P. A. P.; Wells, B. O.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Eom, C. B.; Kapitulnik, A.; Geballe, T. H.; Soukiassian, P.
1989-02-01
Single crystal and polycrystalline samples of Bi2CaSr2Cu2O8 have been studied by various surface sensitive techniques, including low energy electron diffraction (LEED), ultraviolet photoemission spectroscopy (UPS) and x-ray photoemission spectroscopy (XPS). The surface structure of the single crystals was characterized by LEED to be consistent with that of the bulk structure. Our data suggest that Bi2CaSr2Cu2O8 single crystals are very stable in the ultrahigh vacuu. No change of XPS spectra with temperature was observed. We have also studied the electronic structure of Bi2Sr2CuO6, which has a lower superconducting transition temperature Tc. Comparing the electronic structure of the two Bi-Ca-Sr-Cu-O superconductors, an important difference in the density of states near EF was observed which seems to be related to the difference in Tc.
Decomposition pathways of polytetrafluoroethylene by co-grinding with strontium/calcium oxides.
Qu, Jun; He, Xiaoman; Zhang, Qiwu; Liu, Xinzhong; Saito, Fumio
2017-06-01
Waste polytetrafluoroethylene (PTFE) could be easily decomposed by co-grinding with inorganic additive such as strontium oxide (SrO), strontium peroxide (SrO 2 ) and calcium oxide (CaO) by using a planetary ball mill, in which the fluorine was transformed into nontoxic inorganic fluoride salts such as strontium fluoride (SrF 2 ) or calcium fluoride (CaF 2 ). Depending on the kind of additive as well as the added molar ratio, however, the reaction mechanism of the decomposition was found to change, with different compositions of carbon compounds formed. CO gas, the mixture of strontium carbonate (SrCO 3 ) and carbon, only SrCO 3 were obtained as reaction products respectively with equimolar SrO, excess SrO and excess SrO 2 to the monomer unit CF 2 of PTFE were used. Excess amount of CaO was needed to effectively decompose PTFE because of its lower reactivity compared with strontium oxide, but it promised practical applications due to its low cost.
Trinh, Huong H; Lamb, Graham D
2006-07-01
1. The twitch characteristics (fast-twitch or slow-twitch) of skeletal muscle fibres are determined not only by the contractile apparatus properties of the fibre, but also by the time-course of Ca2+ release and re-uptake by the sarcoplasmic reticulum (SR). The present study examined, in individual fibres from non-transforming muscle of the rat, whether particular SR properties are matched to the contractile apparatus properties of the fibre, in particular in the case of fibres with fast-twitch contractile apparatus located in a slow-twitch muscle, namely the soleus. 2. Force was recorded in single, mechanically skinned fibres from extensor digitorum longus (EDL), gastrocnemius, peroneus longus and soleus muscles. Using repeated cycles in which the SR was emptied of all releasable Ca2+ and then reloaded, it was possible to determine the relative amount of Ca2+ present in the SR endogenously, the maximum SR capacity and the rate of Ca2+ loading. The sensitivity of the contractile apparatus to Ca2+ and Sr2+ was used to classify the fibres as fast-twitch (FT), slow-twitch (ST) or mixed (< 3% of the fibres examined) and thereby identify the likely troponin C and myosin heavy chain types present. 3. There was no significant difference in SR properties between the groups of FT fibres obtained from the four different muscles, including soleus. Despite some overlap in the SR properties of individual fibres between the FT and ST groups, the properties of the FT fibres in all four muscles studied were significantly different from those of the ST and mixed fibres. 4. In general, in FT fibres the SR had a larger capacity and the endogenous Ca2+ content was a relatively lower percentage of maximum compared with ST fibres. Importantly, in terms of their SR properties, FT fibres from soleus muscle more closely resembled FT fibres from other muscles than they did ST fibres from soleus muscle.
Disentangling controls on element impurities of bivalve shells
NASA Astrophysics Data System (ADS)
Zhao, Liqiang; Schöne, Bernd R.; Mertz-Kraus, Regina
2017-04-01
Trace and minor elements of bivalve shells can potentially serve as proxies of past environmental change. However, retrieving environmental information from element impurities of bivalve shells remains an extremely challenging task. A central difficulty concerns the fact that extrinsic and intrinsic factors governing the element incorporation are poorly constrained. Within the framework of the ARAMACC project, we aim to decipher the complexity of the incorporation of trace and minor elements into bivalve shells and explore their full potential as proxies of environmental change. More specifically, the following questions were tackled. (1) How are trace and minor elements transported from the ambient environment to the calcifying front? (2) How is their incorporation into the shells affected by environmental and physiological variables? Our findings lend support to the general assumption that divalent ions (e.g., Cu2+, Mn2+, Zn2+ and Pb2+) share the same transport pathways as Ca2+ because of similar ionic radii and electrochemical properties. However, results obtained for Mg2+, Sr2+ and Ba2+ are particularly interesting as they are at odds with existing hypotheses on the incorporation of these three elements, i.e., intracellular Ca2+ pathways (via Ca2+ channels and Ca2+-ATPase) are likely not responsible for their incorporation. Despite the existence of strong physiological interference, some encouraging results were found, in particular (1) strong, positive relationships between the Sr, Ba and Mn contents of the shells and concentrations in the ambient water, (2) only minor effects of growth rate (which is closely linked to the rate of crystal growth and hence, kinetics) on the amounts of Na, Sr, Ba and Mn incorporation into the shells. Overall, our findings demonstrate that environmental and physiological controls on the element incorporation do not have to be mutually exclusive, i.e., if environmental changes outweigh physiological influences, one could still expect that trace and minor elements of bivalve shells serve as promising environmental proxies.
Muhlfeld, Clint C.; Simon R. Thorrold,; Thomas E. McMahon,; Marotz, Brian
2012-01-01
We used natural variation in the strontium concentration (Sr:Ca) and isotope composition (87Sr:86Sr) of stream waters and corresponding values recorded in otoliths of westslope cutthroat trout (Oncorhynchus clarkii lewisi) to examine movements during their life history in a large river network. We found significant spatial differences in Sr:Ca and 87Sr:86Sr values (strontium isoscapes) within and among numerous spawning and rearing streams that remained relatively constant seasonally. Both Sr:Ca and 87Sr:86Sr values in the otoliths of juveniles collected from nine natal streams were highly correlated with those values in the ambient water. Strontium isoscapes measured along the axis of otolith growth revealed that almost half of the juveniles had moved at least some distance from their natal streams. Finally, otolith Sr profiles from three spawning adults confirmed homing to natal streams and use of nonoverlapping habitats over their migratory lifetimes. Our study demonstrates that otolith geochemistry records movements of cutthroat trout through Sr isoscapes and therefore provides a method that complements and extends the utility of conventional tagging techniques in understanding life history strategies and conservation needs of freshwater fishes in river networks.
Liao, Jiawei; Guo, Xin; Wang, Mengyu; Dong, Chengyan; Gao, Mingming; Wang, Huan; Kayoumu, Abudurexiti; Shen, Qiang; Wang, Yuhui; Wang, Fan; Liu, George
2017-01-01
Aim: Atherosclerosis-prone apolipoprotein E (apoE) or low-density lipoprotein receptor (LDL-R) knockout (KO) mice are generally resistant to developing coronary atherosclerosis (CA) and ischemic heart disease (IHD). However, studies have demonstrated the occurrence of spontaneous CA and IHD in scavenger receptor class B type 1 (SR-BI)/apoE double KO (dKO) mice, which suggests that SR-BI could be a potential target for the prevention and therapy of CA and IHD. This possibility was later investigated in SR-BI/LDL-R dKO mice, but no signs of CA or IHD was identified when mice were fed a normal western-type diet. Here we explored whether SR-BI deletion could result in CA and IHD in LDL-R KO mice when fed a modified western-type diet containing higher (0.5%) cholesterol. Methods: Cardiac functions were detected by electrocardiography, single photon emission computed tomography (SPECT), echocardiography (Echo) and 2,3,5-triphenyltetrazolium chloride staining. CA was visualized by hematoxylin-eosin staining. Results: After 12 weeks on the modified diet, SR-BI/LDL-R dKO mice developed cardiac ischemia/infarction, together with systolic dysfunction and left ventricular dilatation. CA was most severe at the aortic sinus level to an extent that no dKO mice survived to 20 weeks on the modified diet. None of control mice, however, developed CA or IHD. Conclusions: SR-BI deletion led to CA and IHD in LDL-R KO mice when fed the modified western-type diet. We established SR-BI/LDL-R dKO mice as a diet-induced murine model of human IHD and developed detection methods, using a combination of SPECT and Echo, for effective in vivo evaluation of cardiac functions. PMID:27373983
Plummer, Niel; Busenberg, E.; Glynn, P.D.; Blum, A.E.
1992-01-01
Synthetic strontianite-aragonite solid-solution minerals were dissolved in CO2-saturated non-stoichiometric solutions of Sr(HCO3)2 and Ca(HCO3)2 at 25??C. The results show that none of the dissolution reactions reach thermodynamic equilibrium. Congruent dissolution in Ca(HCO3)2 solutions either attains or closely approaches stoichiometric saturation with respect to the dissolving solid. In Sr(HCO3)2 solutions the reactions usually become incongruent, precipitating a Sr-rich phase before reaching stoichiometric saturation. Dissolution of mechanical mixtures of solids approaches stoichiometric saturation with respect to the least stable solid in the mixture. Surface uptake from subsaturated bulk solutions was observed in the initial minutes of dissolution. This surficial phase is 0-10 atomic layers thick in Sr(HCO3)2 solutions and 0-4 layers thick in Ca(HCO3)2 solutions, and subsequently dissolves and/or recrystallizes, usually within 6 min of reaction. The initial transient surface precipitation (recrystallization) process is followed by congruent dissolution of the original solid which proceeds to stoichiometric saturation, or until the precipitation of a more stable Sr-rich solid. The compositions of secondary precipitates do not correspond to thermodynamic equilibrium or stoichiometric saturation states. X-ray photoelectron spectroscopy (XPS) measurements indicate the formation of solid solutions on surfaces of aragonite and strontianite single crystals immersed in Sr(HCO3)2 and Ca(HCO3)2 solutions, respectively. In Sr(HCO3)2 solutions, the XPS signal from the outer ~ 60 A?? on aragonite indicates a composition of 16 mol% SrCO3 after only 2 min of contact, and 14-18 mol% SrCO3 after 3 weeks of contact. The strontianite surface averages approximately 22 mol% CaCO3 after 2 min of contact with Ca(HCO3)2 solution, and is 34-39 mol% CaCO3 after 3 weeks of contact. XPS analysis suggests the surface composition is zoned with somewhat greater enrichment in the outer ~25 A?? (as much as 26 mol% SrCO3 on aragonite and 44 mol% CaCO3 on strontianite). The results indicate rapid formation of a solid-solution surface phase from subsaturated aqueous solutions. The surface phase continually adjusts in composition in response to changes in composition of the bulk fluid as net dissolution proceeds. Dissolution rates of the endmembers are greatly reduced in nonstoichiometric solutions relative to dissolution rates observed in stoichiometric solutions. All solids dissolve more slowly in solutions spiked with the least soluble component ((Sr(HCO3)2)) than in solutions spiked with the more soluble component (Ca(HCO3)2), an effect that becomes increasingly significant as stoichiometric saturation is approached. It is proposed that the formation of a non-stoichiometric surface reactive zone significantly decreases dissolution rates. ?? 1992.
Spectroscopic and structural studies of a new para-iodo-N-benzyl amide of salinomycin
NASA Astrophysics Data System (ADS)
Antoszczak, Michał; Janczak, Jan; Rutkowski, Jacek; Brzezinski, Bogumił; Huczyński, Adam
2017-11-01
A new para-iodo-N-benzyl amide of salinomycin was synthesized and characterized by NMR, FT-IR, DFT, single crystal X-ray diffraction and theoretical methods. The results obtained for the crystal, in solution and in gas phase provided evidence of pseudo-cyclic structure of this compound stabilized by intramolecular hydrogen bonds. It was shown that the compound studied forms stable 1:1 complexes with monovalent (Li+, Na+, K+, Rb+ and Cs+) and divalent (Mg2+, Ca2+, Sr2+ and Ba2+) cations demonstrating that the chemical modification of salinomycin carboxyl group considerably changes the ionophoretic properties of this antibiotic. For the first time, the ESI MS fragmentations of the complex of para-iodo-N-benzyl amide of salinomycin with Na+ are also discussed in details.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokin, N. I., E-mail: nsorokin1@yandex.ru
The electrical conductivity of sodium–strontium germanate Na{sub 4}SrGe{sub 6}O{sub 15} (sp. gr. P6{sub 3}/m) has been studied by impedance spectroscopy in the frequency range of 10{sup 2}–4 × 10{sup 4} Hz and a temperature range of 450–600 K. Na4SrGe6O15 crystals were obtained by hydrothermal technique in the Na{sub 2}O–SrO–GeO{sub 2}–H{sub 2}O system (temperature t = 300–600°C and pressure p = 1.4 × 10{sup 8} Pа in the dissolution zone). The ionic conductivity of ceramic Na{sub 4}SrGe{sub 6}O{sub 15} samples is σ = 2.2 × 10{sup –6} S/cm (at 573 K), the activation energy of Na{sup +} ion transfer is E{submore » a} = 0.70 ± 0.03 eV.« less
Mg and Sr in Arctic echinoderm calcite: Nature or nurture?
NASA Astrophysics Data System (ADS)
Iglikowska, A.; Borszcz, T.; Drewnik, A.; Grabowska, M.; Humphreys-Williams, E.; Kędra, M.; Krzemińska, M.; Piwoni-Piórewicz, A.; Kukliński, P.
2018-04-01
The Mg/Ca and Sr/Ca ratios in echinoderm skeletal calcite are used as a proxy for Phanerozoic seawater changes, since the skeletal concentrations are, to some extent, controlled by environmental factors. However, it remains unclear how the influence of environmental factors is modified by vital effects, especially in polar waters. Therefore, the goal of this study was to compare the ratios of Mg/Ca and Sr/Ca among the skeletal parts of 10 common Arctic echinoderm species belonging to three classes Echinoidea, Asteroidea and Ophiuroidea that contribute substantially to the carbon cycle in the Arctic benthic system. Significant differences were recorded in echinoid skeletal element concentrations among specific skeletal parts. The lowest Mg/Ca and Sr/Ca ratios were detected in the spines (mean Mg/Ca 37.5 ± 8.8 SD; Sr/Ca 1.8 ± 0.1). The components of the Aristotle's lantern (epiphyses, pyramids and rotulas) were characterised by the highest Mg levels (Mg/Ca 79.9 ± 6.0; 75.2 ± 9.1; 60.1 ± 3.8, respectively). It is likely that mouth parts experience greater mechanical pressure compared to other body parts, and the higher content of Mg in the Aristotle's lantern contributes to its robustness. We did not find any distinctive trends in the distribution of skeletal elements in the asteroid and ophiuroid skeletal parts. The heterogeneous concentrations of Mg and Sr in different skeleton parts of the echinoids suggest possible physiological regulation of the chemical composition rather than the composition only being influenced by the environment. We cannot recommend echinoderm skeletons as reliable indicators in palaeoenvironmental reconstructions due to the possible biological control of skeletal chemistry, which may interfere with the effect of environmental variables.
Matsumura, M; Mashima, H
1976-01-01
Ca ions were ionophoretically injected through an intracellular microelectrode into the single muscle fiber of a crayfish, and the resulting contraction sphere was observed under a microscope and photographed with a movie camera. The minimum contraction produced by the threshold current involved usually three or four, sometimes two, sarcomers on both sides of the injecting pipette but contraction involving only one sarcomere was not observered. The rheobase of the Ca-injecting current was 3.2 X 10(-9) A. The strength-duration curves were determined for Ca-, Sr-, and Ba-injecting currents; all fitted a similar hyperbolic equation. The threshold amount of Ca above rheobasic injection was 2.1 X 10(-15)mol, and the ratios between threshold amounts were Ca: Sr: Ba=1: 1.9: 3.0. The effects of Ca and Sr were additive for the contraction. More current was required for the Ca-injection to produce the contraction in the K-depolarized-or 15mM-procaine-treated muscle, although less current was sufficient for the muscle treated with 0.5-1.0 mM of caffeine. The participation of the Ca-induced Ca release mechanism in the contraction produced by Ca injection and the role of Sr or Ba as a substitute for Ca were discussed.
Jin, C-Q; Zhou, J-S; Goodenough, J B; Liu, Q Q; Zhao, J G; Yang, L X; Yu, Y; Yu, R C; Katsura, T; Shatskiy, A; Ito, E
2008-05-20
The cubic perovskite BaRuO(3) has been synthesized under 18 GPa at 1,000 degrees C. Rietveld refinement indicates that the new compound has a stretched Ru-O bond. The cubic perovskite BaRuO(3) remains metallic to 4 K and exhibits a ferromagnetic transition at T(c) = 60 K, which is significantly lower than the T(c) approximately = 160 K for SrRuO(3). The availability of cubic perovskite BaRuO(3) not only makes it possible to map out the evolution of magnetism in the whole series of ARuO(3) (A = Ca, Sr, Ba) as a function of the ionic size of the A-site r(A,) but also completes the polytypes of BaRuO(3). Extension of the plot of T(c) versus r(A) in perovskites ARuO(3) (A = Ca, Sr, Ba) shows that T(c) does not increase as the cubic structure is approached, but has a maximum for orthorhombic SrRuO(3). Suppressing T(c) by Ca and Ba doping in SrRuO(3) is distinguished by sharply different magnetic susceptibilities chi(T) of the paramagnetic phase. This distinction has been interpreted in the context of a Griffiths' phase on the (Ca Sr)RuO(3) side and bandwidth broadening on the (Sr,Ba)RuO(3) side.
Identification of surface terminations of iron pnictides with low-temperature STM/STS
NASA Astrophysics Data System (ADS)
Wang, Jihui; Li, Ang; Ma, Jihua; Wu, Zheng; Yin, Jiaxin; Lv, Bing; Chu, C. W.; Sefat, A.; McGuire, M.; Sales, B.; Mandrus, D.; Zhang, Chenglin; Dai, Pengcheng; Jin, Rongying; Zhang, Jiandi; Plummer, E. W.; Chen, Genfu; Ding, Hong; Pan, Shuheng H.
2013-03-01
The alkaline-earth metal iron pnictide superconductor AEFe2As2 (AE =Ca, Sr, Ba) have been studied extensively with modern surface techniques, such as scanning tunneling microscopy/spectroscopy (STM/STS) and Angle Resolved Photoemission Spectroscopy (ARPES). Yet the surface termination upon cleaving is still controversial. Hence, the interpretation of those results of STM/STS and reconcile with results of other surface techniques tend to be challenging. We have performed a systematic low-temperature STM/STS study on a series of (Ca,Na)Fe2As2, (Ba,K)Fe2As2, Ba(Fe,Co)2As2, and BaFe2(As,P)2. We found that, with cryogenic cleaving method, all three crystalline atomic layers can be revealed and identified. We will discuss their identities and their implications.
Juranović Cindrić, Iva; Zeiner, Michaela; Mihajlov-Konanov, Darija; Stingeder, Gerhard
2017-01-01
Black chokeberries (Aronia melanocarpa) are considered to be functional food containing high amounts of anthocyanins, phenols, antioxidants, vitamins and minerals. Whereas organic compounds are well studied, there is little research on the mineral composition of the chokeberries. Thus, the presented study is focused on the determination of Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Se, Sr and Zn in black chokeberry fruits and infusions to study the metals’ extractability. The nutrients Ca, K and Mg are present in the fruits (dried matter) at g/kg level, whereas the other elements are present from µg/kg up to mg/kg level. The extraction yields of the metals from the infusion range from 4 (Al, Mn) up to 44% (Na). The toxic elements present do not pose any health risk when berries or infusions are consumed. Concluding, Aronia berries, as well as infusions derived from them, are a good dietary source of essential metals in addition to the organic compounds also contained. PMID:28524107
NASA Astrophysics Data System (ADS)
Marchitto, T. M.; Bryan, S. P.; Doss, W.; McCulloch, M. T.; Montagna, P.
2018-01-01
In contrast to Li/Ca and Mg/Ca, Li/Mg is strongly anticorrelated with temperature in aragonites precipitated by the benthic foraminifer Hoeglundina elegans and a wide range of scleractinian coral taxa. We propose a simple conceptual model of biomineralization that explains this pattern and is consistent with available abiotic aragonite partition coefficients. Under this model the organism actively modifies seawater within its calcification pool by raising its [Ca2+], using a pump that strongly discriminates against both Li+ and Mg2+. Rayleigh fractionation during calcification effectively reverses this process, removing Ca2+ while leaving most Li+ and Mg2+ behind in the calcifying fluid. The net effect of these two processes is that Li/Mg in the calcifying fluid remains very close to the seawater value, and temperature-dependent abiotic partition coefficients are expressed in the biogenic aragonite Li/Mg ratio. We further show that coral Sr/Ca is consistent with this model if the Ca2+ pump barely discriminates against Sr2+. In H. elegans the covariation of Sr/Ca and Mg/Ca requires either that the pump more strongly discriminates against Sr2+, or that cation incorporation is affected by aragonite precipitation rate via the mechanism of surface entrapment. In either case Li/Mg is minimally affected by such 'vital effects' which plague other elemental ratio paleotemperature proxies.
Koua, Faisal Hammad Mekky; Umena, Yasufumi; Kawakami, Keisuke; Shen, Jian-Ren
2013-03-05
Oxygen-evolving complex of photosystem II (PSII) is a tetra-manganese calcium penta-oxygenic cluster (Mn4CaO5) catalyzing light-induced water oxidation through several intermediate states (S-states) by a mechanism that is not fully understood. To elucidate the roles of Ca(2+) in this cluster and the possible location of water substrates in this process, we crystallized Sr(2+)-substituted PSII from Thermosynechococcus vulcanus, analyzed its crystal structure at a resolution of 2.1 Å, and compared it with the 1.9 Å structure of native PSII. Our analysis showed that the position of Sr was moved toward the outside of the cubane structure of the Mn4CaO5-cluster relative to that of Ca(2+), resulting in a general elongation of the bond distances between Sr and its surrounding atoms compared with the corresponding distances in the Ca-containing cluster. In particular, we identified an apparent elongation in the bond distance between Sr and one of the two terminal water ligands of Ca(2+), W3, whereas that of the Sr-W4 distance was not much changed. This result may contribute to the decrease of oxygen evolution upon Sr(2+)-substitution, and suggests a weak binding and rather mobile nature of this particular water molecule (W3), which in turn implies the possible involvement of this water molecule as a substrate in the O-O bond formation. In addition, the PsbY subunit, which was absent in the 1.9 Å structure of native PSII, was found in the Sr-PSII structure.
NASA Astrophysics Data System (ADS)
Ma, Lin; Kerr, Andrew C.; Wang, Qiang; Jiang, Zi-Qi; Hu, Wan-Long
2018-02-01
A-type granites have been the focus of considerable research due to their distinctive major- and trace-element signatures and tectonic significance. However, their petrogenesis, magmatic source and tectonic setting remain controversial, particularly for aluminous A-type granites. The earliest Cretaceous (ca. 140 Ma) Comei granite in the eastern Tethyan Himalaya is associated with coeval oceanic island basalt (OIB)-type mafic lava, and has A-type granite geochemical characteristics including high 10,000 × Ga/Al (up to 6), FeOtotal/MgO (4.6-6.1) and (Na2O + K2O)/Al2O3 (0.50-0.61) ratios but low CaO (0.6-1.6 wt%) and Na2O (1.8-2.6 wt%) contents. The Comei granite also has variable peraluminous compositions (A/CNK = 1.00-1.36) along with zircon δ18O, εNd(t) and initial 87Sr/86Sr values of 8.2‰ to 9.3‰, - 13.0 to - 12.4 and 0.7238 to 0.7295, respectively. This range of compositions can be interpreted as the interaction between high-temperature upwelling OIB type basaltic magmas and a shallow crustal (< 5 kbar) metapelitic source. The Comei granite and coeval OIB type basaltic rock could represent the earliest stage (145-140 Ma) of a large igneous event in eastern Tethyan Himalaya, which may well have been triggered by pre-breakup lithospheric extension prior to the arrival of the Kerguelen plume head.
Quinn, Stephen J.; Thomsen, Alex R. B.; Pang, Jian L.; Kantham, Lakshmi; Bräuner-Osborne, Hans; Pollak, Martin; Goltzman, David
2013-01-01
Calcium and phosphorus homeostasis are highly interrelated and share common regulatory hormones, including FGF23. However, little is known about calcium's role in the regulation of FGF23. We sought to investigate the regulatory roles of calcium and phosphorus in FGF23 production using genetic mouse models with targeted inactivation of PTH (PTH KO) or both PTH and the calcium-sensing receptor (CaSR; PTH-CaSR DKO). In wild-type, PTH KO, and PTH-CaSR DKO mice, elevation of either serum calcium or phosphorus by intraperitoneal injection increased serum FGF23 levels. In PTH KO and PTH-CaSR DKO mice, however, increases in serum phosphorus by dietary manipulation were accompanied by severe hypocalcemia, which appeared to blunt stimulation of FGF23 release. Increases in dietary phosphorus in PTH-CaSR DKO mice markedly decreased serum 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] despite no change in FGF23, suggesting direct regulation of 1,25(OH)2D3 synthesis by serum phosphorus. Calcium-mediated increases in serum FGF23 required a threshold level of serum phosphorus of about 5 mg/dl. Analogously, phosphorus-elicited increases in FGF23 were markedly blunted if serum calcium was less than 8 mg/dl. The best correlation between calcium and phosphorus and serum FGF23 was found between FGF23 and the calcium × phosphorus product. Since calcium stimulated FGF23 production in the PTH-CaSR DKO mice, this effect cannot be mediated by the full-length CaSR. Thus the regulation of FGF23 by both calcium and phosphorus appears to be fundamentally important in coordinating the serum levels of both mineral ions and ensuring that the calcium × phosphorus product remains within a physiological range. PMID:23233539
Sun, Xiangrong; Tang, Lieqi; Winesett, Steven; Chang, Wenhan; Cheng, Sam Xianjun
2018-02-01
Calcium-sensing receptor (CaSR) is expressed on neurons of both submucosal and myenteric plexuses of the enteric nervous system (ENS) and the CaSR agonist R568 inhibited Cl - secretion in intestine. The purpose of this study was to localize the primary site of action of R568 in the ENS and to explore how CaSR regulates secretion through the ENS. Two preparations of rat proximal and distal colon were used. The full-thickness preparation contained both the submucosal and myenteric plexuses, whereas for the "stripped" preparation the myenteric plexus with the muscle layers was removed. Both preparations were mounted onto Ussing chambers and Cl - secretory responses were compared by measuring changes in short circuit current (I sc ). Two tissue-specific CaSR knockouts (i.e., neuron-specific vs. enterocyte-specific) were generated to compare the effect of R568 on expression of c-fos protein in myenteric neurons by immunocytochemistry. In full-thickness colons, tetrodotoxin (TTX) inhibited I sc , both in proximal and distal colons. A nearly identical inhibition was produced by R568. However, in stripped preparations, while the effect of TTX on I sc largely remained, the effect of R568 was nearly completely eliminated. In keeping with this, R568 reduced c-fos protein expression only in myenteric neurons of wild type mice and mutant mice that contained CaSR in neurons (i.e., villin Cre/Casr flox/flox mice), but not in myenteric neurons of nestin Cre/Casr flox/flox mice in which neuronal cell CaSR was eliminated. These results indicate that R568 exerts its anti-secretory effects predominantly via CaSR-mediated inhibition of neuronal activity in the myenteric plexus. Published by Elsevier Inc.
von Glischinski, M; Willutzki, U; Stangier, U; Hiller, W; Hoyer, J; Leibing, E; Leichsenring, F; Hirschfeld, G
2018-02-11
The Liebowitz Social Anxiety Scale (LSAS) is the most frequently used instrument to assess social anxiety disorder (SAD) in clinical research and practice. Both a self-reported (LSAS-SR) and a clinician-administered (LSAS-CA) version are available. The aim of the present study was to define optimal cut-off (OC) scores for remission and response to treatment for the LSAS in a German sample. Data of N = 311 patients with SAD were used who had completed psychotherapeutic treatment within a multicentre randomized controlled trial. Diagnosis of SAD and reduction in symptom severity according to the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, 4th edition, served as gold standard. OCs yielding the best balance between sensitivity and specificity were determined using receiver operating characteristics. The variability of the resulting OCs was estimated by nonparametric bootstrapping. Using diagnosis of SAD (present vs. absent) as a criterion, results for remission indicated cut-off values of 35 for the LSAS-SR and 30 for the LSAS-CA, with acceptable sensitivity (LSAS-SR: .83, LSAS-CA: .88) and specificity (LSAS-SR: .82, LSAS-CA: .87). For detection of response to treatment, assessed by a 1-point reduction in the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, 4th edition, rating, a reduction of 28% for the LSAS-SR and 29% for the LSAS-CA yielded the best balance between sensitivity (LSAS-SR: .75, LSAS-CA: .83) and specificity (LSAS-SR: .76, LSAS-CA: .80). To our knowledge, we are the first to define cut points for the LSAS in a German sample. Overall, the cut points for remission and response corroborate previously reported cut points, now building on a broader data basis. Copyright © 2018 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremina, R. M., E-mail: REremina@yandex.ru; Sharipov, K. R.; Yatsyk, I. V.
2016-07-15
New composite materials (SrFe{sub 12}O{sub 19}){sub x}(CaCu{sub 3}Ti{sub 4}O{sub 12}){sub 1–x} (x = 0, 0.05, 1) have been synthesized. Their magnetic properties are studied in the temperature range 5–300 K using the magnetic resonance and magnetometry methods. It is found that strontium hexaferrite microinclusions in the (SrFe{sub 12}O{sub 19}){sub 0.05}(CaCu{sub 3}Ti{sub 4}O{sub 12}){sub 0.95} composite “magnetize” CaCu{sub 3}Ti{sub 4}O{sub 12} at temperatures from 300 to 200 K, forming a ferrimagnetic particle near the SrFe{sub 12}O{sub 19} “core.” The magnetic resonance line below 200 K splits into two lines corresponding to SrFe{sub 12}O{sub 19} and CaCu{sub 3}Ti{sub 4}O{sub 12}. The coremore » effect decoration is manifested in the increase in the Curie–Weiss temperature from 25 K in CaCu{sub 3}Ti{sub 4}O{sub 12} without the doping ceramics to 80 K in the composite with 5% of SrFe{sub 12}O{sub 19}.« less
Noble, Debbie; Borysova, Lyudmyla; Wray, Susan; Burdyga, Theodor
2014-09-01
In the myometrium SR Ca(2+) depletion promotes an increase in force but unlike several other smooth muscles, there is no Ca(2+) sparks-STOCs coupling mechanism to explain this. Given the importance of the control of contractility for successful parturition, we have examined, in pregnant rat myometrium, the effects of SR Ca(2+)-ATPase (SERCA) inhibition on the temporal relationship between action potentials, Ca(2+) transients and force. Simultaneous recording of electrical activity, calcium and force showed that SERCA inhibition, by cyclopiazonic acid (CPA 20 μM), caused time-dependent changes in excitability, most noticeably depolarization and elevations of baseline [Ca(2+)]i and force. At the onset of these changes there was a prolongation of the bursts of action potentials and a corresponding series of Ca(2+) spikes, which increased the amplitude and duration of contractions. As the rise of baseline Ca(2+) and depolarization continued a point was reached when electrical and Ca(2+) spikes and phasic contractions ceased, and a maintained, tonic force and Ca(2+) was produced. Lanthanum, a non-selective blocker of store-operated Ca(2+) entry, but not the L-type Ca(2+) channel blocker nifedipine (1-10 μM), could abolish the maintained force and calcium. Application of the agonist, carbachol, produced similar effects to CPA, i.e. depolarization, elevation of force and calcium. A brief, high concentration of carbachol, to cause SR Ca(2+) depletion without eliciting receptor-operated channel opening, also produced these results. The data obtained suggest that in pregnant rats SR Ca(2+) release is coupled to marked Ca(2+) entry, via store operated Ca(2+) channels, leading to depolarization and enhanced electrical and mechanical activity. Copyright © 2014. Published by Elsevier Ltd.
Miura, Yuki; Naka, Masamitsu; Matsuki, Norio; Nomura, Hiroshi
2012-10-31
Action potential-independent transmitter release, or spontaneous release, is postulated to produce multiple postsynaptic effects (e.g., maintenance of dendritic spines and suppression of local dendritic protein synthesis). Potentiation of spontaneous release may contribute to the precise modulation of synaptic function. However, the expression mechanism underlying potentiated spontaneous release remains unclear. In this study, we investigated the involvement of extracellular and intracellular calcium in basal and potentiated spontaneous release. Miniature excitatory postsynaptic currents (mEPSCs) of the basolateral amygdala neurons in acute brain slices were recorded. Forskolin, an adenylate cyclase activator, increased mEPSC frequency, and the increase lasted at least 25 min after washout. Removal of the extracellular calcium decreased mEPSC frequency in both naïve and forskolin-treated slices. On the other hand, chelation of intracellular calcium by BAPTA-AM decreased mEPSC frequency in naïve, but not in forskolin-treated slices. A blockade of the calcium-sensing receptor (CaSR) resulted in an increase in mEPSC frequency in forskolin-treated, but not in naïve slices. These findings indicate that forskolin-induced potentiation is accompanied by changes in the mechanisms underlying Ca(2+)-dependent spontaneous release. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Jeong, Sung-Eun; Park, Jae-Kweon; Kim, Jeong-Dong; Chang, In-Jeong; Hong, Seong-Joo; Kang, Sung-Ho; Lee, Choul-Gyun
2008-12-01
Statistical experimental designs; involving (i) a fractional factorial design (FFD) and (ii) a central composite design (CCD) were applied to optimize the culture medium constituents for production of a unique antifreeze protein by the Antartic microalgae Chaetoceros neogracile. The results of the FFD suggested that NaCl, KCl, MgCl2, and Na2SiO3 were significant variables that highly influenced the growth rate and biomass production. The optimum culture medium for the production of an antifreeze protein from C. neogracile was found to be Kalleampersandrsquor;s artificial seawater, pH of 7.0ampersandplusmn;0.5, consisting of 28.566 g/l of NaCl, 3.887 g/l of MgCl2, 1.787 g/l of MgSO4, 1.308 g/l of CaSO4, 0.832 g/l of K2SO4, 0.124 g/l of CaCO3, 0.103 g/l of KBr, 0.0288 g/l of SrSO4, and 0.0282 g/l of H3BO3. The antifreeze activity significantly increased after cells were treated with cold shock (at -5oC) for 14 h. To the best of our knowledge, this is the first report demonstrating an antifreeze-like protein of C. neogracile.
Brian K. Wells; Bruce E. Rieman; James L. Clayton; Donna L. Horan; Cynthia M. Jones
2003-01-01
We quantified Mg:Ca, Mn:Ca, Sr:Ca, and Ba:Ca molar ratios from an area representing the summer 2000 growth season on otoliths and scales from 1-year-old westslope cutthroat trout Oncorhyncus clarki lewisi collected from three streams in the Coeur d'Alene River, Idaho, system. We also quantified Mg:Ca, Sr:Ca, and Ba:Ca molar ratios in the water...
Yarova, Polina L.; Stewart, Alecia L.; Sathish, Venkatachalem; Britt, Rodney D; Thompson, Michael A.; Lowe, Alexander P. P.; Freeman, Michelle; Aravamudan, Bharathi; Kita, Hirohito; Brennan, Sarah C.; Schepelmann, Martin; Davies, Thomas; Yung, Sun; Cholisoh, Zakky; Kidd, Emma J.; Ford, William R.; Broadley, Kenneth J.; Rietdorf, Katja; Chang, Wenhan; Khayat, Mohd E. Bin; Ward, Donald T.; Corrigan, Christopher J.; Ward, Jeremy P. T.; Kemp, Paul J.; Pabelick, Christina M.; Prakash, Y. S.; Riccardi, Daniela
2016-01-01
Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyper-reactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics. PMID:25904744
The effect of oxidant on resputtering of Bi from Bi-Sr-Ca-Cu-O films
NASA Astrophysics Data System (ADS)
Grace, J. M.; McDonald, D. B.; Reiten, M. T.; Olson, J.; Kampwirth, R. T.; Gray, K. E.
1991-09-01
The type and partial pressure of oxidant mixed with argon can affect the selective resputtering of Bi in composite-target, magnetron-sputtered Bi-Sr-Ca-Cu-O films. Comparative studies using oxygen and ozone show that ozone is a more potent oxidant, as well as a more potent source of resputterers, than is oxygen. Severe resputtering from ozone is significantly reduced by a -40 V potential on the sample block. We suggest that oxygen causes resputtering by forming O2(+)p , which interacts with the target to produce energetic O(-). In contrast, ozone may form lower-energy O(-) by electron impact in the dark space. Negative oxygen ions from the target itself may be responsible for a background resputtering effect. Our results and those found for Y-Ba-Cu-O by others are comparable. Bi in Bi-Sr-Ca-Cu-O behaves as Ba in Y-Ba-Cu-O, with regard to selective resputtering; furthermore, the response of Sr, Ca, and Cu to oxygen in sputtered Bi-Sr-Ca-Cu-O is similar to what is observed for Cu in Y-Ba-Cu-O.
NASA Astrophysics Data System (ADS)
Schmitt, Anne-Désirée; Gangloff, Sophie; Labolle, François; Chabaux, François; Stille, Peter
2017-09-01
Calcium (Ca) is the fourth most abundant element in mineral nutrition and plays key physiological and structural roles in plant metabolism. At the soil-water-plant scale, stable Ca isotopes are a powerful tool for the identification of plant-mineral interactions and recycling via vegetation. Radiogenic Sr isotopes are often used as tracers of Ca sources and mixtures of different reservoirs. In this study, stable Ca and radiogenic Sr are combined and analysed in several organs from two beech trees that were collected in June and September in the Strengbach critical zone observatory (CZO) (NE France) and in corresponding soil solutions. At the beech-tree scale, this study confirms the field Ca adsorption (i.e., physico-chemical mechanism and not vital effects) on carboxyl acid groups of pectin in the apoplasm of small roots. The analysis of the xylem sap and corresponding organs shows that although the Strengbach CZO is nutrient-poor, Ca seems to be non-limiting for tree-growth. Different viscosities of xylem sap between the stemwood and branches or leaves can explain δ44/40Ca values in different tree-organs. The bark and phloem 40Ca-enrichments could be due to Ca-oxalate precipitation in the bark tissues and in the phloem. The results from this study regarding the combination of these two isotopic systems show that the isotopic signatures of the roots are dominated by Ca fractionation mechanisms and Sr, and thus Ca, source variations. In contrast, translocation mechanisms are only governed by Ca fractionation processes. This study showed that at the root-soil solution interface, litter degradation was not the main source of Ca and Sr and that the soil solutions are not the complement of uptake by roots for samples from the 2011/2013 period. The opposite is observed for older samples. These observations indicate the decreasing contribution of low radiogenic Sr fluxes, such as recycling, alimenting the soil solutions. Such reduced importance of nutrient uptake and biomass production by the trees could be because the Strengbach trees are ageing and probably weakened by repeated storm events and drought episodes.
Paying the piper: the cost of Ca2+ pumping during the mating call of toadfish
Harwood, Claire L; Young, Iain S; Tikunov, Boris A; Hollingworth, Stephen; Baylor, Stephen M; Rome, Lawrence C
2011-01-01
Abstract Superfast fibres of toadfish swimbladder muscle generate a series of superfast Ca2+ transients, a necessity for high-frequency calling. How is this accomplished with a relatively low rate of Ca2+ pumping by the sarcoplasmic reticulum (SR)? We hypothesized that there may not be complete Ca2+ saturation and desaturation of the troponin Ca2+ regulatory sites with each twitch during calling. To test this, we determined the number of regulatory sites by measuring the concentration of troponin C (TNC) molecules, 33.8 μmol per kg wet weight. We then estimated how much SR Ca2+ is released per twitch by measuring the recovery oxygen consumption in the presence of a crossbridge blocker, N-benzyl-p-toluene sulphonamide (BTS). The results agreed closely with SR release estimates obtained with a kinetic model used to analyse Ca2+ transient measurements. We found that 235 μmol of Ca2+ per kg muscle is released with the first twitch of an 80 Hz stimulus (15oC). Release per twitch declines dramatically thereafter such that by the 10th twitch release is only 48 μmol kg−1 (well below the concentration of TNC Ca2+ regulatory sites, 67.6 μmol kg−1). The ATP usage per twitch by the myosin crossbridges remains essentially constant at ∼25 μmol kg−1 throughout the stimulus period. Hence, for the first twitch, ∼80% of the energy goes into pumping Ca2+ (which uses 1 ATP per 2 Ca2+ ions pumped), but by the 10th and subsequent twitches the proportion is ∼50%. Even though by the 10th stimulus the Ca2+ release per twitch has dropped 5-fold, the Ca2+ remaining in the SR has declined by only ∼18%; hence dwindling SR Ca2+ content is not responsible for the drop. Rather, inactivation of the Ca2+ release channel by myoplasmic Ca2+ likely explains this reduction. If inactivation did not occur, the SR would run out of Ca2+ well before the end of even a 40-twitch call. Hence, inactivation of the Ca2+ release channel plays a critical role in swimbladder muscle during normal in vivo function. PMID:21946852
NASA Astrophysics Data System (ADS)
Evangelista, H.; Sifeddine, A.; Corrège, T.; Servain, J.; Dassié, E. P.; Logato, R.; Cordeiro, R. C.; Shen, C.-C.; Le Cornec, F.; Nogueira, J.; Segal, B.; Castagna, A.; Turcq, B.
2018-03-01
Although relatively rare compared to similar latitudes in the Pacific or Indian Oceans, massive coral colonies are present in the Tropical/Equatorial Southwestern Atlantic Ocean. However, detailed geochemical compositions of these corals are still largely unknown. In this work, we present growth rates, Sr/Ca, and U/Ca ratios of the coral colony (Siderastrea stellata) sampled at Rocas Atoll, off the Brazilian coast. These variables are primarily affected by sea surface temperature (SST) at seasonal scale, and by wind stress at interannual scale, these results represent a broad new finding. A lower significance at the interannual time scale between Sr/Ca and U/Ca with respect to SST is attributed to the low SST amplitude closed to Equator. An investigation on the dependence of coral growth rates with respect to the "cloud shading effect" promoted by the Intertropical Convergence Zone (ITCZ) does not show significant influence. Additionally, rain seems to act on local geochemistry of Sr/Ca ratios and growth rate at the decadal scale.
Yan, Jun; Sun, Ji-Feng; Chu, Paul K; Han, Yong; Zhang, Yu-Mei
2013-09-01
Strontium-containing hydroxyapatites (Sr-HA) combine the desirable bone regenerative properties of hydroxyapatites (HA) with anabolic and anti-catabolic effects of strontium cations. In the present work, a series of Sr(y)HA [Sr(y)Ca(10-y)(PO4)6(OH)2; y = 0, 0.5, 1, 2] coatings on titanium are produced by micro-arc oxidation (MAO), and the effects of the in vivo osseointegration ability of the coatings are investigated by using a rabbit model. All samples are subjected to biomechanical, surface elemental, micro-CT and histological analysis after 4 and 12 weeks of healing. The obtained results show that the MAO-formed coatings exhibit a microporous network structure composed of Sr(y)HA/Sr(y)HA-Sr(x)Ca(1-x)TiO3/Sr(x)Ca(1-x)TiO3-TiO2 multilayers, in which the outer Sr(y)HA and intermediate Sr(y)HA-Sr(x)Ca(1-x)TiO3 layers have a nanocrystalline structure. All Sr-HA coated implants induce marked improvements in the behavior of bone formation, quantity and quality of bone tissue around the implants than the control HA implant and in particular, the 20%Sr-HA coating promotes early bone formation as identified by polyfluorochrome sequential labeling. The bone-to-implant contact is increased by 46% (p < 0.05) and the pull-out strength is increased by 103% over the HA group (p < 0.01). Extensive areas of mineralized tissue densely deposit on the 20%Sr-HA coating after biomechanical testing, and the greatest improvement of bone microarchitecture are observed around the 20%Sr-HA implant. The identified biological parameters successfully demonstrate the osteoconductivity of 20%Sr-HA surfaces, which results not only in an acceleration but also an improvement of bone-implant integration. The study demonstrates the immense potential of 20%Sr-HA coatings in dental and orthopedic applications. Copyright © 2012 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barandiarán, Zoila, E-mail: zoila.barandiaran@uam.es; Seijo, Luis; Instituto Universitario de Ciencia de Materiales Nicolás Cabrera and Condensed Matter Physics Center
2015-10-14
Dopant-to-host electron transfer is calculated using ab initio wavefunction-based embedded cluster methods for Yb/Ca pairs in CaF{sub 2} and Yb/Sr pairs in SrF{sub 2} crystals to investigate the mechanism of photoconductivity. The results show that, in these crystals, dopant-to-host electron transfer is a two-photon process mediated by the 4f{sup N−1}5d excited states of Y b{sup 2+}: these are reached by the first photon excitation; then, they absorb the second photon, which provokes the Y b{sup 2+} + Ca{sup 2+} (Sr{sup 2+}) → Y b{sup 3+} + Ca{sup +} (Sr{sup +}) electron phototransfer. This mechanism applies to all the observed Ymore » b{sup 2+} 4f–5d absorption bands with the exception of the first one: Electron transfer cannot occur at the first band wavelengths in CaF{sub 2}:Y b{sup 2+} because the Y b{sup 3+}–Ca{sup +} states are not reached by the two-photon absorption. In contrast, Yb-to-host electron transfer is possible in SrF{sub 2}:Y b{sup 2+} at the wavelengths of the first 4f–5d absorption band, but the mechanism is different from that described above: first, the two-photon excitation process occurs within the Y b{sup 2+} active center, then, non-radiative Yb-to-Sr electron transfer can occur. All of these features allow to interpret consistently available photoconductivity experiments in these materials, including the modulation of the photoconductivity by the absorption spectrum, the differences in photoconductivity thresholds observed in both hosts, and the peculiar photosensitivity observed in the SrF{sub 2} host, associated with the lowest 4f–5d band.« less
Luminescence properties of Eu2+ in M2MgSi2O7 (M=Ca, Sr, and Ba) phosphors
NASA Astrophysics Data System (ADS)
Kim, T.; Kim, Y.; Kang, S.
2012-03-01
The photoluminescence properties of alkali-earth magnesium silicates (M2MgSi2O7, M=Ca, Sr, and Ba) doped with Eu2+ were investigated. Solid solutions of Ba x Sr2- x Si2O7, Ca2MgSi2O7, and Sr2MgSi2O7 were prepared. Ba x Sr2- x Si2O7 retained a tetragonal crystal structure similar to the structure of the other compounds up to a stoichiometry of x=1.6, which enabled a systematic study of the common structure. Monoclinic Ba2MgSi2O7 was prepared, and the luminescence properties were compared with those of other samples. The emission and excitation spectra of tetragonal M2MgSi2O7 (M=Ca, Sr, and Ba) changed as a function of the covalency, site symmetry, and crystal field strength. The luminescence properties showed excellent agreement with theoretical predictions based on these factors. The Stokes shift differentiated the emission behaviors of the tetragonal and monoclinic structures.
Phase diagram of the LiNO3-NaNO3-NaCl-Sr(NO3)2 salt system
NASA Astrophysics Data System (ADS)
Rasulov, A. I.; Gasanaliev, A. M.; Mamedova, A. K.; Gamataeva, B. Yu.
2015-04-01
The phase diagram of the quaternary LiNO3-NaNO3-NaCl-Sr(NO3)2 system is studied by means of differential thermal analysis, and the compositions and crystallization temperatures of nonvariant equilibrium phases are revealed. The temperature dependence of conductivity in eutectic and peritectic salt compositions is investigated.
Fabrication and Enhancement of Critical Currents of Silver Sheathed
NASA Astrophysics Data System (ADS)
Hu, Qingyu
X-ray diffraction was used to characterise the phase composition and to investigate the formation mechanism of the (Bi,Pb)_2Sr_2Ca_2Cu _3O_{10} phase from the precursor with (Bi,Pb)_2Sr_2CaCu _2O_8 as the main phase. The reaction is found to be a two-dimensional nucleation (random)-growth type, (-(ln(1-F)) ^{1/2} = kt, where F is the conversional fraction of (Bi,Pb) _2Sr_2CaCu_2O_8 phase and t is the sintering time. The two dimensional behaviour of the critical current in (Bi,Pb)_2Sr2Ca_2Cu _3O_{10}/Ag tapes was observed and analysed by introducing an effective grain misalignment angle, varphi_{eff}. This angle was found to be identical to the average crystallographic grain misalignment angle in the superconducting core. Furthermore, after fast neutron irradiation, which is isotropical, the J_{c}'s of the tapes were modified by the introduction of artificial defects, but the varphi_{eff}'s remained the same. The transport critical current of (Bi,Pb) _2Sr_2Ca_2Cu_3O_ {10}/Ag tapes was measured in magnetic fields up to 15 T and at temperatures from of 4.2 to 84 K. At high temperatures, the J_ {c} is strongly anisotropic and the anisotropy increases rapidly with magnetic field, whereas at low temperatures the critical current is less anisotropic and the anisotropy is almost field independent above 1 T. The transport J_{c }'s in (Bi,Pb)_2Sr_2Ca _2Cu_3O_{10}/Ag tapes at 77 K and higher magnetic fields after neutron irradiation are significantly enhanced. This enhancement is attributed to an improvement in the flux pinning capability of this material by the neutron-induced defects. The angular dependence of J_{c} is still consistent with two-dimensionality, i.e. flux pinning of pancake and/or Josephson vortices is directly confirmed by this transport measurement. Short multifilamentary (Bi,Pb)_2Sr_2Ca_2Cu_2O_{10 }/Ag tapes were fabricated. The sintering parameters were optimised to be 832^circ C and 180 h. The multifilamentary tape consists mainly of pure (Bi,Pb)_2Sr_2Ca _2Cu_3O_{10} with a (00l) preferred orientation, like the single filamentary tape. The mass densities of the (Bi,Pb)_2Sr_2Ca_2Cu_3O_{10 }/Ag wire and tape vary during the mechanical deformation process, as one of the steps of the oxide-powder -in-tube technique used to fabricate the composite superconductor. Results show that the rolling has a more significant effect on densifying the tape core, whereas the drawing process can only densify the core to about 75% of the theoretical density. Since the textured (Bi,Pb)_2Sr_2Ca _2Cu_3O_{10} phase forms by epitaxial growth on the textured (Bi,Pb) _2Sr_2CaCu_2O_8 seed crystals, the deformation induced texture is critical. The formation of the amorphous phase is harmful to the texturing of the (Bi,Pb)_2Sr_2Ca_2Cu _2O_{10} phase, which finally leads to a degradation of critical currents. (Abstract shortened by UMI.).
Superresolution Modeling of Calcium Release in the Heart
Walker, Mark A.; Williams, George S.B.; Kohl, Tobias; Lehnart, Stephan E.; Jafri, M. Saleet; Greenstein, Joseph L.; Lederer, W.J.; Winslow, Raimond L.
2014-01-01
Stable calcium-induced calcium release (CICR) is critical for maintaining normal cellular contraction during cardiac excitation-contraction coupling. The fundamental element of CICR in the heart is the calcium (Ca2+) spark, which arises from a cluster of ryanodine receptors (RyR). Opening of these RyR clusters is triggered to produce a local, regenerative release of Ca2+ from the sarcoplasmic reticulum (SR). The Ca2+ leak out of the SR is an important process for cellular Ca2+ management, and it is critically influenced by spark fidelity, i.e., the probability that a spontaneous RyR opening triggers a Ca2+ spark. Here, we present a detailed, three-dimensional model of a cardiac Ca2+ release unit that incorporates diffusion, intracellular buffering systems, and stochastically gated ion channels. The model exhibits realistic Ca2+ sparks and robust Ca2+ spark termination across a wide range of geometries and conditions. Furthermore, the model captures the details of Ca2+ spark and nonspark-based SR Ca2+ leak, and it produces normal excitation-contraction coupling gain. We show that SR luminal Ca2+-dependent regulation of the RyR is not critical for spark termination, but it can explain the exponential rise in the SR Ca2+ leak-load relationship demonstrated in previous experimental work. Perturbations to subspace dimensions, which have been observed in experimental models of disease, strongly alter Ca2+ spark dynamics. In addition, we find that the structure of RyR clusters also influences Ca2+ release properties due to variations in inter-RyR coupling via local subspace Ca2+ concentration ([Ca2+]ss). These results are illustrated for RyR clusters based on super-resolution stimulated emission depletion microscopy. Finally, we present a believed-novel approach by which the spark fidelity of a RyR cluster can be predicted from structural information of the cluster using the maximum eigenvalue of its adjacency matrix. These results provide critical insights into CICR dynamics in heart, under normal and pathological conditions. PMID:25517166
Transformation of Strontium during formation of biogenic calcium carbonate
NASA Astrophysics Data System (ADS)
Ohnuki, T.; Kozai, N.; Sakamoto, F.; Yamashita, M.; Horiieke, T.; Utsunomiya, S.
2016-12-01
Some amounts of radionuclides contaminated water containing 90Sr generated in the Fukushima Daiichi Nuclear Power Plant were leaked to sea water in the port. One of the possible method to eliminate 90Sr is co-precipitated with biogenic carbonates minerals (CCM). Specific bacteria are known to form biogenic CCM in groundwater. In the present study, we have screened specific bacterium to form CCM in saline water, and studied transformation of Sr during biogenic CCM. A marine microbe of strain TK2d, which is screened from Tokyo bay to form CCM in saline solution, was grown in the medium solution contained urea and Sr. The concentratuion of Sr2+ in the solution was monitored by ICP-OES (ICP-OES; 720 Agilent Technologies, Inc., USA) during the formation of biogenic CCM. The precipitates were analyzed by SEM, TEM, and XAFS. When 1.0 mM Sr was dissolved in the medium solution, the concentration of Sr decreased up to 0.02 mM within 10 days, indicating that most of Sr in the solution was eliminated within 10 days. SEM and TEM analyses showed that needle shaped CCM containing Ca and Sr were formed. The CCM was not single crystalline, but poly-crystalline of calcite and aragonite. The elemental mapping showed that Sr was present at the same position of Ca, indicating that Sr was coprecipitated with Ca. The XANES analysis of Sr in the precipitates showed that the XANES spectrum was not the same as that of Sr coprecipitated with an abiotic Ca carbonates. Linear combination fitting of XANES spectra by those of SrCl2 and SrCO3 showed that both Sr2+ and SrCO3 were present in CCM. Longer contact time resulted in higher content of SrCO3, indicating that Sr was incorporated gradually with time into CCM structure. Thus, Sr was changed its chemical species from adsorbed one to the incorporated one in biogenic CCM in saline solution. This work was partially supported by a research grant from the Japan Science and Technology Agency, Japan (research grant No. 260502).
Superconducting glass-ceramics in the Bi-Sr-Ca-Cu-O system
NASA Technical Reports Server (NTRS)
De Guire, Mark R.; Kim, Cheol J.; Bausal, Narottam P.
1990-01-01
Differential thermal analysis, XRD, SEM, and resistivity measurements, have been used to study the recrystallization during various heat treatments of a Bi1.5SrCaCu2O(z) glass obtained by rapid quenching from the melt. Heating at 450 C formed the Bi(2+x)Sr(2-x)-CuO(z) solid solution designated 'R'. Between 765 and 845 C, R reacts slowly with the glass to form the 80 K superconductor Bi2(Sr,Ca)3Cu2O(z), together with CuO. Heating for 7 days at the higher temperature, followed by slow cooling, raised the temperature of zero resistance to 77 K.
Begel, Svetlana; Puchta, Ralph; van Eldik, Rudi
2013-01-01
The selectivity of the cryptands [2.2.bpy] and [2.bpy.bpy] for the endohedral complexation of alkali, alkaline-earth and earth metal ions was predicted on the basis of the DFT (B3LYP/LANL2DZp) calculated structures and complex-formation energies. The cavity size in both cryptands lay between that for [2.2.2] and [bpy.bpy.bpy], such that the complexation of K(+), Sr(2+) and Tl(3+) is most favorable. While the [2.2.bpy] is moderately larger, preferring Rb(+) complexation and demonstrating equal priority for Sr(2+) and Ba(2+), the slightly smaller [2.bpy.bpy] yields more stable cryptates with Na(+) and Ca(2+). Although the CH2-units containing molecular bars fixed at the bridgehead nitrogen atoms determine the flexibility of the cryptands, the twist angles associated with the bipyridine and glycol building blocks also contribute considerably.
Geochemical Fingerprinting of the World Trade Center Attack in New York Harbor Sediments
NASA Astrophysics Data System (ADS)
Brabander, D. J.; Oktay, S.; Smith, J.; Kada, J.; Bullen, T.; Olsen, C.
2002-12-01
By comparing the textural, chemical, and isotopic composition of World Trade Center (WTC) ash samples (collected near Ground Zero one week after the terrorist attack) with sediment samples from cores taken on October 12, 2001 in known deposition areas in New York Harbor (NYH), we characterized a unique suite of geochemical-textural tracers that allow us to both identify and quantify the input of WTC derived material to adjacent areas in the Hudson River estuary. Scanning electron microscopy coupled with energy dispersive spectroscopy revealed two chemically distinct (Si-rich and Ca-rich) rod-like features (40-200 æm in length) in both ash and sediment samples. The Si-rich rods are consistent with a fiberglass parent material while the Ca-rich rods originate from gypsum. An 87Sr/86Sr ratio for the ash material of 0.7088 (n=2) coupled with Ca/Sr (wt. ratio) ranging from 260-300 suggest that the ash material analyzed is approximately 70% gypsum. As a function of depth within the sediment core, correlations exist between the measured activities of 7Be (a naturally occurring short-lived radionuclide), elemental weight-percent ratios of Ca/Sr, and the isotopic ratios of 87Sr/86Sr ratios. . These combined isotopic approaches allow us to constrain the timing (via 7Be), and the composition and amount (via 87Sr/86Sr and Ca/Sr) of WTC material input into the NYH sediments. These down-core isotope-ratio profiles can be described by a mixing line between background NYH 87Sr/86Sr ratios (>0.724) and the WTC derived ash material. The geochemical-textural tracers associated with the WTC terrorist attack may provide a potential tool for assessing the fate and transport of WTC material in the Lower Hudson River and aid in assessing the environmental and human health impacts of the WTC catastrophe.
Hirata, Yutaka; Brotto, Marco; Weisleder, Noah; Chu, Yi; Lin, Peihui; Zhao, Xiaoli; Thornton, Angela; Komazaki, Shinji; Takeshima, Hiroshi; Ma, Jianjie; Pan, Zui
2006-01-01
Junctophilin (JP) mediates the close contact between cell surface and intracellular membranes in muscle cells ensuring efficient excitation-contraction coupling. Here we demonstrate that disruption of triad junction structure formed by the transverse tubular (TT) invagination of plasma membrane and terminal cisternae of sarcoplasmic reticulum (SR) by reduction of JP expression leads to defective Ca2+ homeostasis in muscle cells. Using adenovirus with small hairpin interference RNA (shRNA) against both JP1 and JP2 genes, we could achieve acute suppression of JPs in skeletal muscle fibers. The shRNA-treated muscles exhibit deformed triad junctions and reduced store-operated Ca2+ entry (SOCE), which is likely due to uncoupled retrograde signaling from SR to TT. Knockdown of JP also causes a reduction in SR Ca2+ storage and altered caffeine-induced Ca2+ release, suggesting an orthograde regulation of the TT membrane on the SR Ca2+ release machinery. Our data demonstrate that JPs play an important role in controlling overall intracellular Ca2+ homeostasis in muscle cells. We speculate that altered expression of JPs may underlie some of the phenotypic changes associated with certain muscle diseases and aging. PMID:16565048
Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals
NASA Astrophysics Data System (ADS)
Kirillov, D.; Bozovic, I.; Geballe, T. H.; Kapitulnik, A.; Mitzi, D. B.
1988-12-01
Raman spectra of Bi2Sr2CaCu2O8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi2Sr2CaCu2O8 and YBa2Cu3O7 was found.
A first principles study on newly proposed (Ca/Sr/Ba)Fe2Bi2 compounds with their parent compounds
NASA Astrophysics Data System (ADS)
Sundareswari, M.; Jayalakshmi, D. S.; Viswanathan, E.
2016-02-01
The structural, electronic, bonding and magnetic properties of newly proposed iron-based compounds viz., CaFe2Bi2, SrFe2Bi2, BaFe2Bi2 with their Fermi surface topology are reported here for the first time by means of first principles calculation. All these properties of newly proposed compounds are compared and analysed along with their respective parent compounds namely (Ca,Sr,Ba)Fe2As2.
Aluminum/alkaline earth metal composites and method for producing
Russell, Alan M; Anderson, Iver E; Kim, Hyong J; Freichs, Andrew E
2014-02-11
A composite is provided having an electrically conducting Al matrix and elongated filaments comprising Ca and/or Sr and/or Ba disposed in the matrix and extending along a longitudinal axis of the composite. The filaments initially comprise Ca and/or Sr and/or Ba metal or allow and then may be reacted with the Al matrix to form a strengthening intermetallic compound comprising Al and Ca and/or Sr and/or Ba. The composite is useful as a long-distance, high voltage power transmission conductor.
Strontium iodide scintillators for high energy resolution gamma ray spectroscopy
NASA Astrophysics Data System (ADS)
Wilson, Cody M.; van Loef, Edgar V.; Glodo, Jarek; Cherepy, Nerine; Hull, Giulia; Payne, Stephen; Choong, Woon-Seng; Moses, William; Shah, Kanai S.
2008-08-01
Recently SrI2, a scintillator patented by Hofstadter in 1968, has been rediscovered and shown to possess remarkable scintillation properties. The light output of SrI2:Eu2+ has been measured to be even higher than previously observed and exceeds 120,000 photons/MeV, making it one of the brightest scintillators in existence. The crystal also has excellent energy resolution of less than 3% at 662 keV. The response is highly linear over a wide range of gamma ray energies. The emission of SrI2:Eu2+ and SrI2:Ce3+/Na+ is well-matched to both photomultiplier tubes and blue-enhanced silicon photodiodes. While SrI2:Eu2+ is relatively slow, SrI2:Ce3+/Na+ has a fast response. SrI2 crystals with many different dopant concentrations have been grown and characterized. In this presentation, crystal growth techniques as well as the effects of dopant concentration on the scintillation properties of SrI2, over the range 0.5% to 8% Eu2+ and 0.5% to 2% Ce3+/Na+, will be discussed in detail.
Srivastava, D; Azough, F; Freer, R; Combe, E; Funahashi, R; Kepaptsoglou, D M; Ramasse, Q M; Molinari, M; Yeandel, S R; Baran, J D; Parker, S C
2015-12-21
A combination of experimental and computational techniques has been employed to study doping effects in perovskite CaMnO 3 . High quality Sr-Mo co-substituted CaMnO 3 ceramics were prepared by the conventional mixed oxide route. Crystallographic data from X-ray and electron diffraction showed an orthorhombic to tetragonal symmetry change on increasing the Sr content, suggesting that Sr widens the transition temperature in CaMnO 3 preventing phase transformation-cracking on cooling after sintering, enabling the fabrication of high density ceramics. Atomically resolved imaging and analysis showed a random distribution of Sr in the A-site of the perovskite structure and revealed a boundary structure of 90° rotational twin boundaries across {101} orthorhombic ; the latter are predominant phonon scattering sources to lower the thermal conductivity as suggested by molecular dynamics calculations. The effect of doping on the thermoelectric properties was evaluated. Increasing Sr substitution reduces the Seebeck coefficient but the power factor remains high due to improved densification by Sr substitution. Mo doping generates additional charge carriers due to the presence of Mn 3+ in the Mn 4+ matrix, reducing electrical resistivity. The major impact of Sr on thermoelectric behaviour is the reduction of the thermal conductivity as shown experimentally and by modelling. Strontium containing ceramics showed thermoelectric figure of merit ( ZT ) values higher than 0.1 at temperatures above 850 K. Ca 0.7 Sr 0.3 Mn 0.96 Mo 0.04 O 3 ceramics exhibit enhanced properties with S 1000K = -180 μV K -1 , ρ 1000K = 5 × 10 -5 Ωm, k 1000K = 1.8 W m -1 K -1 and ZT ≈ 0.11 at 1000 K.
Manju, L; Nair, R Renuka
2005-09-01
Magnesium has a significant role in the regulation of ion transport. Marginal deficiency of Mg can therefore affect myocardial excitability and contractility. This study was taken up with the objective of examining the inotropic response of the myocardium to variation in extracellular [Mg]o and identifying the ion channels and pumps mediating the inotropic changes. Electrically stimulated rat papillary muscle was used as the experimental model and mechanical changes were recorded using a physiograph. Channel specific antagonists were used to identify the channels mediating the functional changes. Diastolic Ca2+ levels were determined in isolated myocytes by the ratiometric method using the fluorescent indicator Fura2-AM. A negative association was observed between the level of [Mg]o and force of contraction, with a peak at 0.48 mM Mg. The force of contraction in Mg deficient medium (0.48 mM) was 158% of control (1.2 mM Mg) (p < 0.001). Inotropic response to the L-type channel antagonist (verapamil-1 microm) and NaK ATPase inhibitor (Ouabain-0.3 mM) was augmented in Mg deficiency (p < 0.005), indicating activation of the channel and the pump. The response to T-type channel inhibitor (NiCl2-40 microM) was attenuated in Mg deficiency (p < 0.05). The response to the sarcoplasmic reticular Ca pump inhibitor (caffeine-10 mM) and the SR Ca2+ release channel inhibitor (ryanodine-1 microM) were not significantly affected by Mg deficiency. Diastolic level of Ca2+ increased with a decrease in Mg (p < 0.05). The observations of the study lead to the conclusion that the positive inotropic response in Mg deficiency is mediated by an increase in basal Ca2+ combined with Ca-induced-Ca release consequent to Ca2+ influx through L-type Ca channel. Variation in sensitivity to Ca channel blockers and NaK ATPase inhibitor in Mg deficiency can have pharmacological implications.
NASA Astrophysics Data System (ADS)
Cheng, Jianli; Nazir, Safdar; Yang, Kesong
By using first-principles electronic structure calculations, we explored the possibility of producing two-dimensional electron gas (2DEG) in nonpolar/nonpolar AHfO3/SrTiO3 (A = Ca, Sr, and Ba) heterostructures (HS). Two types of interfaces, AO/TiO2 and HfO2/SrO, each with AO and HfO2 surface terminations, are modeled, respectively. The polarization domain and resulting interfacial electronic property are found to be more sensitive to the surface termination of the film rather than the interface model. As film thickness increases, an insulator-to-metal transition (IMT) is found in all the HS with HfO2 surface termination: for AO/TiO2 interfaces, predicted critical film thickness for an IMT is about 7, 6, and 3 unit cells for CaHfO3/SrTiO3, SrHfO3/SrTiO3, and BaHfO3/SrTiO3, respectively; for HfO2/SrO interfaces, the critical film thickness is about 7.5, 5.5, and 4.5 unit cells, respectively. In contrast, for the HS with AO surface termination, only CaHfO3/SrTiO3 exhibits an IMT with a much larger critical film thickness about 11 - 12 unit cells. This work is expected to stimulate further experimental investigation to the interfacial conductivity in the nonpolar/nonpolar AHfO3/SrTiO3 HS. National Science Foundation and Department of Defense National Security Science and Engineering Faculty Fellowship.
Twentieth century warming of the tropical Atlantic captured by Sr-U paleothermometry
NASA Astrophysics Data System (ADS)
Alpert, Alice E.; Cohen, Anne L.; Oppo, Delia W.; DeCarlo, Thomas M.; Gaetani, Glenn A.; Hernandez-Delgado, Edwin A.; Winter, Amos; Gonneea, Meagan E.
2017-02-01
Coral skeletons are valuable archives of past ocean conditions. However, interpretation of coral paleotemperature records is confounded by uncertainties associated with single-element ratio thermometers, including Sr/Ca. A new approach, Sr-U, uses U/Ca to constrain the influence of Rayleigh fractionation on Sr/Ca. Here we build on the initial Pacific Porites Sr-U calibration to include multiple Atlantic and Pacific coral genera from multiple coral reef locations spanning a temperature range of 23.15-30.12°C. Accounting for the wintertime growth cessation of one Bermuda coral, we show that Sr-U is strongly correlated with the average water temperature at each location (r2 = 0.91, P < 0.001, n = 19). We applied the multispecies spatial calibration between Sr-U and temperature to reconstruct a 96 year long temperature record at Mona Island, Puerto Rico, using a coral not included in the calibration. Average Sr-U derived temperature for the period 1900-1996 is within 0.12°C of the average instrumental temperature at this site and captures the twentieth century warming trend of 0.06°C per decade. Sr-U also captures the timing of multiyear variability but with higher amplitude than implied by the instrumental data. Mean Sr-U temperatures and patterns of multiyear variability were replicated in a second coral in the same grid box. Conversely, Sr/Ca records from the same two corals were inconsistent with each other and failed to capture absolute sea temperatures, timing of multiyear variability, or the twentieth century warming trend. Our results suggest that coral Sr-U paleothermometry is a promising new tool for reconstruction of past ocean temperatures.